

Lecture Notes in Computer Science 5444
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Omer Reingold (Ed.)

Theory of
Cryptography

6th Theory of Cryptography Conference, TCC 2009
San Francisco, CA, USA, March 15-17, 2009
Proceedings

13

Volume Editor

Omer Reingold
The Weizmann Institute of Science
Faculty of Mathematics and Computer Science
Rehovot 76100, Israel
E-mail: omer.reingold@weizmann.ac.il

Library of Congress Control Number: 2009921605

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, G, D.4.6, K.4.1, K.4.3, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-00456-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00456-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12625369 06/3180 5 4 3 2 1 0

© Springer-Verlag Berlin Heidelberg 2009

The original version of the book was revised:
The copyright line was incorrect. The Erratum
to the book is available at
DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Preface

TCC 2009, the 6th Theory of Cryptography Conference, was held in San Fran-
cisco, CA, USA, March 15–17, 2009. TCC 2009 was sponsored by the Interna-
tional Association for Cryptologic Research (IACR) and was organized in co-
operation with the Applied Crypto Group at Stanford University. The General
Chair of the conference was Dan Boneh.

The conference received 109 submissions, of which the Program Commit-
tee selected 33 for presentation at the conference. These proceedings consist of
revised versions of those 33 papers. The revisions were not reviewed, and the
authors bear full responsibility for the contents of their papers. The conference
program also included two invited talks: “The Differential Privacy Frontier,”
given by Cynthia Dwork and “Some Recent Progress in Lattice-Based Cryptog-
raphy,” given by Chris Peikert.

I thank the Steering Committee of TCC for entrusting me with the respon-
sibility for the TCC 2009 program. I thank the authors of submitted papers for
their contributions. The general impression of the Program Committee is that
the submissions were of very high quality, and there were many more papers
we wanted to accept than we could. The review process was therefore very re-
warding but the selection was very delicate and challenging. I am grateful for
the dedication, thoroughness, and expertise of the Program Committee. Observ-
ing the way the members of the committee operated makes me as confident as
possible of the outcome of our selection process. I also thank the many external
reviewers who assisted the Program Committee in its work. I have benefited
from the experience and advice of past TCC Chairs, Ran Canetti, Moni Naor,
and Salil Vadhan. I am indebted to Shai Halevi, who wrote a wonderful soft-
ware package to facilitate all aspects of the PC work. Shai made his software
available to us and provided rapid technical support. I am very grateful to TCC
2007 General Chair, Dan Boneh, who anticipated my requests before they were
made. Thanks to our corporate Sponsors, Voltage Security, Google, Microsoft
Research, the D. E. Shaw group, and IBM Research. I appreciate the assistance
provided by the Springer LNCS editorial staff, including Ursula Barth, Alfred
Hofmann, Anna Kramer, and Nicole Sator, and the assistance provided by IACR
Director, Christian Cachin.

December 2008 Omer Reingold

TCC 2009

6th IACR Theory of Cryptography Conference

San Francisco, California, USA
March 15–17, 2009

Sponsored by The International Association for Cryptologic Research

With Financial Support from

Voltage Security
Google

Microsoft Research
The D. E. Shaw group

IBM Research

General Chair

Dan Boneh Stanford University

Program Chair

Omer Reingold Weizmann Institute

Program Committee

Ivan Damg̊ard University of Aarhus
Stefan Dziembowski University of Rome
Marc Fischlin Darmstadt University
Matthew Franklin UC Davis
Jens Groth University College London
Thomas Holenstein Princeton University
Nicholas J. Hopper University of Minnesota
Yuval Ishai Technion and UC Los Angeles
Charanjit Jutla IBM T.J. Watson Research Center
Daniele Micciancio UC San Diego
Kobbi Nissim Ben-Gurion University
Adriana M. Palacio Bowdoin
Rafael Pass Cornell
Manoj M Prabhakaran Urbana-Champaign
Yael Tauman Kalai Microsoft Research
Brent Waters UT Austin
John Watrous University of Waterloo

Organization

TCC Steering Committee

Mihir Bellare UC San Diego
Ivan Damg̊ard University of Aarhus
Oded Goldreich (Chair) Weizmann Institute
Shafi Goldwasser MIT and Weizmann Institute
Russell Impagliazzo UC San Diego and IAS
Johan Hastad KTH
Ueli Maurer ETH Zurich
Silvio Micali MIT
Moni Naor Weizmann Institute

External Reviewers

Ittai Abraham
Adi Akavia
Joel Alwen
Amos Beimel
Tor E. Bjorstad
Dario Catalano
Yan Zong Ding
Yevgeniy Dodis
Serge Fehr
Anna Lisa Ferrara
Dario Fiore
Matthias Fitzi
David Freeman
Juan Garay
Martin Geisler
Craig Gentry
Clint Givens
Dana Glasner
Sharon Goldberg
Mark Gondree
Dov Gordon
Ronen Gradwohl
Iftach Haitner
Danny Harnik
Carmit Hazay
Martin Hirt
Dennis Hofheinz
Russell Impagliazzo
Stanislaw Jarecki
Ayman Jarrous
Bhavana Kanukurthi
Jonathan Katz

Aggelos Kiayias
Robert König
Vladimir Kolesnikov
Chiu-Yuen Koo
Hugo Krawczyk
Mikkel Kroigaard
Eyal Kushilevitz
Anja Lehmann
Huija (Rachel) Lin
Noam Livne
Vadim Lyubashevsky
Yury Makarychev
Tal Malkin
Payman Mohassel
Petros Mol
Steven Myers
Jesper Buus Nielsen
Alina Oprea
Claudio Orlandi
Carles Padro
Omkant Pandey
Anindya Patthak
Chris Peikert
Krzysztof Pietrzak
Benny Pinkas
Bartosz Przydatek
Tal Rabin
Renato Renner
Thomas Ristenpart
Alon Rosen
Mike Rosulek
Guy Rothblum

Amit Sahai
Louis Salvail
Eric Schost
Dominique Schröder
Gil Segev
Hovav Shacham
Abhi Shelat
Elaine Shi
Michael Steiner
Alain Tapp
Stefano Tessaro
Nikos Triandopoulos
Wei-lung (Dustin) Tseng
Dominique Unruh
Salil Vadhan
Vinod Vaikuntanathan
Jorge L. Villar
Ivan Visconti
Hoeteck Wee
Stephanie Wehner
Enav Weinreb
Daniel Wichs
Severin Winkler
Stefan Wolf
Jürg Wullschleger
Scott Yilek
Aaram Yun
Rui Zhang
Yunlei Zhao
Hong-Sheng Zhou
Vassilis Zikas

X

Table of Contents

An Optimally Fair Coin Toss . 1
Tal Moran, Moni Naor, and Gil Segev

Complete Fairness in Multi-party Computation without an Honest
Majority . 19

S. Dov Gordon and Jonathan Katz

Fairness with an Honest Minority and a Rational Majority 36
Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil Vadhan

Purely Rational Secret Sharing (Extended Abstract) 54
Silvio Micali and abhi shelat

Some Recent Progress in Lattice-Based Cryptography (Invited Talk) . . . 72
Chris Peikert

Non-malleable Obfuscation . 73
Ran Canetti and Mayank Varia

Simulation-Based Concurrent Non-malleable Commitments and
Decommitments . 91

Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti

Proofs of Retrievability via Hardness Amplification 109
Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs

Security Amplification for Interactive Cryptographic Primitives 128
Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and
Valentine Kabanets

Composability and On-Line Deniability of Authentication 146
Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

Authenticated Adversarial Routing . 163
Yair Amir, Paul Bunn, and Rafail Ostrovsky

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious
Transfer . 183

Yehuda Lindell and Hila Zarosim

On the (Im)Possibility of Key Dependent Encryption 202
Iftach Haitner and Thomas Holenstein

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 220
Iftach Haitner, Alon Rosen, and Ronen Shaltiel

X Table of Contents

Secure Computability of Functions in the IT Setting with Dishonest
Majority and Applications to Long-Term Security . 238

Robin Künzler, Jörn Müller-Quade, and Dominik Raub

Complexity of Multi-party Computation Problems: The Case of 2-Party
Symmetric Secure Function Evaluation . 256

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek

Realistic Failures in Secure Multi-party Computation 274
Vassilis Zikas, Sarah Hauser, and Ueli Maurer

Secure Arithmetic Computation with No Honest Majority 294
Yuval Ishai, Manoj Prabhakaran, and Amit Sahai

Universally Composable Multiparty Computation with Partially
Isolated Parties . 315

Ivan Damg̊ard, Jesper Buus Nielsen, and Daniel Wichs

Oblivious Transfer from Weak Noisy Channels . 332
Jürg Wullschleger

Composing Quantum Protocols in a Classical Environment 350
Serge Fehr and Christian Schaffner

LEGO for Two-Party Secure Computation . 368
Jesper Buus Nielsen and Claudio Orlandi

Simple, Black-Box Constructions of Adaptively Secure Protocols 387
Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and
Hoeteck Wee

Black-Box Constructions of Two-Party Protocols from One-Way
Functions . 403

Rafael Pass and Hoeteck Wee

Chosen-Ciphertext Security via Correlated Products 419
Alon Rosen and Gil Segev

Hierarchical Identity Based Encryption with Polynomially Many
Levels . 437

Craig Gentry and Shai Halevi

Predicate Privacy in Encryption Systems . 457
Emily Shen, Elaine Shi, and Brent Waters

Simultaneous Hardcore Bits and Cryptography against Memory
Attacks . 474

Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan

II

Table of Contents X III

The Differential Privacy Frontier (Invited Talk, Extended Abstract) 496
Cynthia Dwork

How Efficient Can Memory Checking Be? . 503
Cynthia Dwork, Moni Naor, Guy N. Rothblum, and
Vinod Vaikuntanathan

Goldreich’s One-Way Function Candidate and Myopic Backtracking
Algorithms . 521

James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan

Secret Sharing and Non-Shannon Information Inequalities 539
Amos Beimel and Ilan Orlov

Weak Verifiable Random Functions . 558
Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, and
Vinod Vaikuntanathan

Efficient Oblivious Pseudorandom Function with Applications to
Adaptive OT and Secure Computation of Set Intersection 577

law Jarecki and Xiaomin Liu

Towards a Theory of Extractable Functions . 595
Ran Canetti and Ronny Ramzi Dakdouk

Author Index . 615

Erratum to: Theory of Cryptography . E1
Omer Reingold

An Optimally Fair Coin Toss

Tal Moran�, Moni Naor�,��, and Gil Segev�

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

talm@seas.harvard.edu, {moni.naor,gil.segev}@weizmann.ac.il

Abstract. We address one of the foundational problems in cryptog-
raphy: the bias of coin-flipping protocols. Coin-flipping protocols allow
mutually distrustful parties to generate a common unbiased random bit,
guaranteeing that even if one of the parties is malicious, it cannot sig-
nificantly bias the output of the honest party. A classical result by Cleve
[STOC ’86] showed that for any two-party r-round coin-flipping protocol
there exists an efficient adversary that can bias the output of the hon-
est party by Ω(1/r). However, the best previously known protocol only
guarantees O(1/

√
r) bias, and the question of whether Cleve’s bound is

tight has remained open for more than twenty years.
In this paper we establish the optimal trade-off between the round

complexity and the bias of two-party coin-flipping protocols. Under stan-
dard assumptions (the existence of oblivious transfer), we show that
Cleve’s lower bound is tight: we construct an r-round protocol with bias
O(1/r).

1 Introduction

A coin-flipping protocol allows mutually distrustful parties to generate a com-
mon unbiased random bit. Such a protocol should satisfy two properties. First,
when all parties are honest and follow the instructions of the protocol, their com-
mon output is a uniformly distributed bit. Second, even if some of the parties
collude and deviate from the protocol’s instructions, they should not be able to
significantly bias the common output of the honest parties.

When a majority of the parties are honest, efficient and completely fair coin-
flipping protocols are known as a special case of general multiparty computation
with an honest majority [1] (assuming a broadcast channel). When an honest
majority is not available, and in particular when there are only two parties, the
situation is more complex. Blum’s two-party coin-flipping protocol [2] guarantees
that the output of the honest party is unbiased only if the malicious party does
not abort prematurely (note that the malicious party can decide to abort after
learning the result of the coin flip). This satisfies a rather weak notion of fairness
in which once the malicious party is labeled as a “cheater” the honest party is
allowed to halt without outputting any value. Blum’s protocol can rely on the

� Research supported in part by a grant from the Israel Science Foundation.
�� Incumbent of the Judith Kleeman Professorial Chair.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 1–18, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

2 T. Moran, M. Naor, and G. Segev

existence of any one-way function [3, 4], and Impagliazzo and Luby [5] showed
that one-way functions are in fact essential even for such a seemingly weak
notion. While this notion suffices for some applications, in many cases fairness
is required to hold even if one of the parties aborts prematurely (consider, for
example, an adversary that controls the communication channel and can prevent
communication between the parties). In this paper we consider a stronger notion:
even when the malicious party is labeled as a cheater, we require that the honest
party outputs a bit.

Cleve’s impossibility result. The latter notion of fairness turns out to be
impossible to achieve in general. Specifically, Cleve [6] showed that for any two-
party r-round coin-flipping protocol there exists an efficient adversary that can
bias the output of the honest party by Ω(1/r). Cleve’s lower bound holds even
under arbitrary computational assumptions: the adversary only needs to sim-
ulate an honest party, and decide whether or not to abort early depending on
the output of the simulation. However, the best previously known protocol (with
respect to bias) only guaranteed O(1/

√
r) bias [7,6], and the question of whether

Cleve’s bound was tight has remained open for over twenty years.

Fairness in secure computation. The bias of coin-flipping protocols can be
viewed as a particular case of the more general framework of fairness in secure
computation. Typically, the security of protocols is formalized by comparing
their execution in the real model to an execution in an ideal model where a
trusted party receives the inputs of the parties, performs the computation on
their behalf, and then sends all parties their respective outputs. Executions in
the ideal model guarantee complete fairness: either all parties learn the output,
or neither party does. Cleve’s result, however, shows that without an honest
majority complete fairness is generally impossible to achieve, and therefore the
formulation of secure computation (see [8]) weakens the ideal model to one in
which fairness is not guaranteed. Informally, a protocol is “secure-with-abort”
if its execution in the real model is indistinguishable from an execution in the
ideal model allowing the ideal-model adversary to chose whether the honest
parties receive their outputs (this is the notion of security satisfied by Blum’s
coin-flipping protocol).

Recently, Katz [9] suggested an alternate relaxation: keep the ideal model
unchanged (i.e., all parties always receive their outputs), but relax the notion
of indistinguishability by asking that the real model and ideal model are distin-
guishable with probability at most 1/p(n) + ν(n), for a polynomial p(n) and a
negligible function ν(n) (we refer the reader to Section 2 for a formal definition).
Protocols satisfying this requirement are said to be 1/p-secure, and intuitively,
such protocols guarantee complete fairness in the real model except with proba-
bility 1/p. In the context of coin-flipping protocols, any 1/p-secure protocol has
bias at most 1/p. However, the definition of 1/p-security is more general and
applies to a larger class of functionalities.

An Optimally Fair Coin Toss 3

1.1 Our Contributions

In this paper we establish the optimal trade-off between the round complexity and
the bias of two-party coin-flipping protocols. We prove the following theorem:

Theorem 1.1. Assuming the existence of oblivious transfer, for any polynomial
r = r(n) there exists an r-round two-party coin-flipping protocol that is 1/(4r−c)-
secure, for some constant c > 0.

We prove the security of our protocol under the simulation-based definition
of 1/p-security1, which for coin-flipping protocols implies, in particular, that
the bias is at most 1/p. We note that our result not only identifies the opti-
mal trade-off asymptotically, but almost pins down the exact leading constant:
Cleve showed that any r-round two-party coin-flipping protocol has bias at least
1/(8r+2), and we manage to achieve bias of at most 1/(4r−c) for some constant
c > 0.

Our approach holds in fact for a larger class of functionalities. We consider
the more general task of sampling from a distribution D = (D1,D2): party P1
receives a sample from D1 and party P2 receives a correlated sample from D2
(in coin-flipping, for example, the joint distribution D produces the values (0, 0)
and (1, 1) each with probability 1/2). Before stating our result in this setting
we introduce a standard notation: we denote by SD(D,D1 ⊗ D2) the statistical
distance between the joint distribution D = (D1,D2) and the direct-product
of the two marginal distributions D1 and D2. We prove the following theorem
which generalizes Theorem 1.1:

Theorem 1.2. Assuming the existence of oblivious transfer, for any efficiently-
sampleable distribution D = (D1,D2) and polynomial r = r(n) there exists an
r-round two-party protocol for sampling from D that is SD(D,D1⊗D2)

2r−c -secure, for
some constant c > 0.

Our approach raises several open questions that are fundamental to the un-
derstanding of coin-flipping protocols. These questions include identifying the
minimal computational assumptions that are essential for reaching the optimal
trade-off (i.e., one-way functions vs. oblivious transfer), extending our approach
to the multiparty setting, and constructing a more efficient variant of our proto-
col that can result in a practical implementation. We elaborate on these questions
in Section 5, and hope that our approach and the questions it raises can make
progress towards resolving the complexity of coin-flipping protocols.

1.2 Related Work

Coin-flipping protocols. When security with abort is sufficient, simple vari-
ations of Blum’s protocol are the most commonly used coin-flipping protocols.
1 In a very preliminary version of this work we proved our results with respect to the

definition of bias (see Section 2), and motivated by [10, 9] we switch to the more
general framework of 1/p-secure computation.

4 T. Moran, M. Naor, and G. Segev

For example, an r-round protocol with bias O(1/
√

r) can be constructed by se-
quentially executing Blum’s protocol O(r) times, and outputting the majority
of the intermediate output values [7, 6]. We note that in this protocol an adver-
sary can indeed bias the output by Ω(1/

√
r) by aborting prematurely. One of

the most significant results on the bias of coin-flipping protocols gave reason to
believe that the optimal trade-off between the round complexity and the bias is
in fact Θ(1/

√
r) (as provided by the latter variant of Blum’s protocol): Cleve

and Impagliazzo [11] showed that in the fail-stop model, any two-party r-round
coin-flipping protocol has bias Ω(1/

√
r). In the fail-stop model adversaries are

computationally unbounded, but they must follow the instructions of the pro-
tocol except for being allowed to abort prematurely. In this model commitment
schemes exist in a trivial fashion2, and therefore the Cleve–Impagliazzo bound
also applies to any protocol whose security relies on commitment schemes in a
black-box manner, such as Blum’s protocol and its variants.

Coin-flipping protocols were also studied in a variety of other models. Among
those are collective coin-flipping in the “perfect information model” in which
parties are computationally unbounded and all communication is public [12,
13, 14, 15, 16], and protocols based on physical assumptions, such as quantum
computation [17, 18, 19] and tamper-evident seals [20].

Fair computation. Some of the techniques underlying our protocols found
their origins in a recent line of research devoted for achieving various forms of
fairness in secure computation. The technique of choosing a secret “threshold
round”, before which no information is learned, and after which aborting the
protocol is essentially useless was suggested by Moran and Naor [20] as part of
a coin-flipping protocol based on tamper-evident seals. It was later also used by
Katz [9] for partially-fair protocols using a simultaneous broadcast channel, and
by Gordon et al. [21] for completely-fair protocols for a restricted (but yet rather
surprising) class of functionalities. Various techniques for hiding a meaningful
round in game-theoretic settings were suggested by Halpern and Teague [22],
Gordon and Katz [23], and Kol and Naor [24]. Katz [9] also introduced the
technique of distributing shares to the parties in an initial setup phase (which
is only secure-with-abort), and these shares are then exchanged by the parties
in each round of the protocol.

Subsequent work. Our results were very recently generalized by Gordon and
Katz [10] to deal with the more general case of randomized functions, and not
only distributions. Gordon and Katz showed that any efficiently-computable ran-
domized function f : X×Y → Z where at least one of X and Y is of polynomial
size has an r-round protocol that is O

(
min{|X|,|Y |}

r

)
-secure. In addition, they

showed that even if both domains are of super-polynomial size but the range
Z is of polynomial size, the f has an r-round protocol that is O

(
|Z|√

r

)
-secure.

Gordon and Katz also showed a specific function f : X × Y → Z where X , Y ,

2 The protocol for commitment in the fail-stop model is simply to privately decide on
the committed value and send the message “I am committed” to the other party.

An Optimally Fair Coin Toss 5

and Z are of size super-polynomial which cannot be 1/p-securely computed for
any p > 2 assuming the existence of exponentially-hard one-way functions.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review several
notions and definitions that are used in the paper (most notably, the definition
of 1/p-secure computation). In Section 3 we describe a simplified variant of our
protocol and prove its security. In Section 4 we sketch a more refined and general
variant of our protocol (due to space limitations we refer the reader to the full
version for its complete specification and proof of security). Finally, in Section
5 we discuss several open problems.

2 Preliminaries

In this section we review the definitions of coin-flipping protocols, 1/p-secure
computation (taken almost verbatim from [10,9]), security with abort, and one-
time message authentication.

2.1 Coin-Flipping Protocols

A two-party coin-flipping protocol is defined via two probabilistic polynomial-
time Turing machines (P1, P2), referred to as parties, that receive as input a
security parameter 1n. The parties exchange messages in a sequence of rounds,
where in every round each party both sends and receives a message (i.e., a round
consists of two moves). At the end of the protocol, P1 and P2 produce outputs bits
c1 and c2, respectively. We denote by (c1|c2)← 〈P1(1n), P2(1n)〉 the experiment
in which P1 and P2 interact (using uniformly chosen random coins), and then
P1 outputs c1 and P2 outputs c2. It is required that for all sufficiently large n,
and every possible pair (c1, c2) that may be output by 〈P1(1n), P2(1n)〉, it holds
that c1 = c2 (i.e., P1 and P2 agree on a common value). This requirement can
be relaxed by asking that the parties agree on a common value with sufficiently
high probability3.

The security requirement of a coin-flipping protocol is that even if one of P1
and P2 is corrupted and arbitrarily deviates from the protocol’s instructions, the
bias of the honest party’s output remains bounded. Specifically, we emphasize
that a malicious party is allowed to abort prematurely, and in this case it is
assumed that the honest party is notified on the early termination of the protocol.
In addition, we emphasize that even when the malicious party is labeled as
a cheater, the honest party must output a bit. For simplicity, the following
definition considers only the case in which P1 is corrupted, and an analogous
definition holds for the case that P2 is corrupted:
3 Cleve’s lower bound [6] holds under this relaxation as well. Specifically, if the parties

agree on a common value with probability 1/2 + ε, then Cleve’s proof shows that
the protocol has bias at least ε/(4r + 1).

6 T. Moran, M. Naor, and G. Segev

Definition 2.1. A coin-flipping protocol (P1, P2) has bias at most ε(n) if for
every probabilistic polynomial-time Turing machine P ∗

1 it holds that∣∣∣∣Pr [(c1|c2)← 〈P ∗
1 (1n), P2(1n)〉 : c2 = 1]− 1

2

∣∣∣∣ ≤ ε(n) + ν(n) ,

for some negligible function ν(n) and for all sufficiently large n.

2.2 1/p-Indistinguishability and 1/p-Secure Computation

1/p-Indistinguishability. A distribution ensemble X = {X(a, n)}a∈Dn,n∈N

is an infinite sequence of random variables indexed by a ∈ Dn and n ∈ N,
where Dn is a set that may depend on n. For a fixed polynomial p(n), two
distribution ensembles X = {X(a, n)}a∈Dn,n∈N and Y = {Y (a, n)}a∈Dn,n∈N are

computationally 1/p-indistinguishable, denoted X
1/p≈ Y , if for every non-uniform

polynomial-time algorithm D there exists a negligible function ν(n) such that
for all sufficiently large n ∈ N and for all a ∈ Dn it holds that

|Pr [D(X(a, n)) = 1]− Pr [D(Y (a, n)) = 1]| ≤ 1
p(n)

+ ν(n) .

1/p-Secure computation. A two-party protocol for computing a functionality
F = {(f1, f2)} is a protocol running in polynomial time and satisfying the follow-
ing functional requirement: if party P1 holds input (1n, x), and party P2 holds in-
put (1n, y), then the joint distribution of the outputs of the parties is statistically
close to (f1(x, y), f2(x, y)). In what follows we define the notion of 1/p-secure
computation [10,9]. The definition uses the standard real/ideal paradigm [25,8],
except that we consider a completely fair ideal model (as typically considered in
the setting of honest majority), and require only 1/p-indistinguishability rather
than indistinguishability (we note that, in general, the notions of 1/p-security
and security-with-abort are incomparable). We consider active adversaries, who
may deviate from the protocol in an arbitrary manner, and static corruptions.

Security of protocols (informal). The security of a protocol is analyzed
by comparing what an adversary can do in a real protocol execution to what
it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted party to
whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Loosely speaking,
a protocol is secure if any adversary interacting in the real protocol (where no
trusted party exists) can do no more harm than if it was involved in the above-
described ideal computation.

Execution in the ideal model. The parties are P1 and P2, and there is
an adversary A who has corrupted one of them. An ideal execution for the
computation of F = {fn} proceeds as follows:

An Optimally Fair Coin Toss 7

Inputs: P1 and P2 hold the security parameter 1n and inputs x ∈ Xn and
y ∈ Yn, respectively. The adversary A receives an auxiliary input aux.

Send inputs to trusted party: The honest party sends its actual input to
the trusted party. The corrupted party may send an arbitrary value (chosen
by A) to the trusted party. Denote the pair of inputs sent to the trusted
party by (x′, y′).

Trusted party sends outputs: If x′ /∈ Xn the trusted party sets x′ to some
default element x0 ∈ Xn (and likewise if y′ /∈ Yn). Then, the trusted party
chooses r uniformly at random and sends f1

n(x′, y′; r) to P1 and f2
n(x′, y′; r)

to P2.
Outputs: The honest party outputs whatever it was sent by the trusted party,

the corrupted party outputs nothing, and A outputs any arbitrary (proba-
bilistic polynomial-time computable) function of its view.

We denote by IDEALF ,A(aux)(x, y, n) the random variable consisting of the
view of the adversary and the output of the honest party following an execution
in the ideal model as described above.

Execution in the real model. We now consider the real model in which a
two-party protocol π is executed by P1 and P2 (and there is no trusted party).
The protocol execution is divided into rounds; in each round one of the parties
sends a message. The honest party computes its messages as specified by π. The
messages sent by the corrupted party are chosen by the adversary, A, and can be
an arbitrary (polynomial-time) function of the corrupted party’s inputs, random
coins, and the messages received from the honest party in previous rounds. If the
corrupted party aborts in one of the protocol rounds, the honest party behaves
as if it had received a special ⊥ symbol in that round.

Let π be a two-party protocol computing the functionality F . Let A be a
non-uniform probabilistic polynomial-time machine with auxiliary input aux.
We denote by REALπ,A(aux)(x, y, n) the random variable consisting of the view
of the adversary and the output of the honest party, following an execution of π
where P1 begins by holding input (1n, x), and P2 begins by holding input (1n, y).

Security as emulation of an ideal execution in the real model. Having
defined the ideal and real models, we can now define security of a protocol.
Loosely speaking, the definition asserts that a secure protocol (in the real model)
emulates the ideal model (in which a trusted party exists). This is formulated
as follows:

Definition 2.2 (1/p-secure computation). Let F and π be as above, and fix
a function p = p(n). Protocol π is said to 1/p-securely compute F if for every
non-uniform probabilistic polynomial-time adversary A in the real model, there
exists a non-uniform probabilistic polynomial-time adversary S in the ideal model
such that

{IDEALF ,S(aux)(x, y, n)}(x,y)∈X×Y,aux

1/p≈ {REALπ,A(aux)(x, y, n)}(x,y)∈X×Y,aux

and the same party is corrupted in both the real and ideal models.

8 T. Moran, M. Naor, and G. Segev

2.3 Security with Abort

In what follows we use the standard notion of computational indistinguisha-
bility. That is, two distribution ensembles X = {X(a, n)}a∈Dn,n∈N and Y =
{Y (a, n)}a∈Dn,n∈N are computationally indistinguishable, denoted X

c= Y , if for
every non-uniform polynomial-time algorithm D there exists a negligible func-
tion ν(n) such that for all sufficiently large n ∈ N and for all a ∈ Dn it holds
that

|Pr [D(X(a, n)) = 1]− Pr [D(Y (a, n)) = 1]| ≤ ν(n) .

Security with abort is the standard notion for secure computation where an
honest majority is not available. The definition is similar to the definition of
1/p-security presented in Section 2.2, with the following two exceptions: (1) the
ideal-model adversary is allowed to choose whether the honest parties receive
their outputs (i.e., fairness is not guaranteed), and (2) the ideal model and real
model are required to be computationally indistinguishable.

Specifically, the execution in the real model is as described in Section 2.2, and
the execution in the ideal model is modified as follows:

Inputs: P1 and P2 hold the security parameter 1n and inputs x ∈ Xn and
y ∈ Yn, respectively. The adversary A receives an auxiliary input aux.

Send inputs to trusted party: The honest party sends its actual input to
the trusted party. The corrupted party controlled by A may send any value
of its choice. Denote the pair of inputs sent to the trusted party by (x′, y′).

Trusted party sends output to corrupted party: If x′ /∈ Xn the trusted
party sets x′ to some default element x0 ∈ Xn (and likewise if y′ /∈ Yn). Then,
the trusted party chooses r uniformly at random, computes z1 = f1

n(x′, y′; r)
and z2 = f2

n(x′, y′; r) to P2, and sends zi to the corrupted party Pi (i.e., to
the adversary A).

Adversary decides whether to abort: After receiving its output the adver-
sary sends either “abort” of “continue” to the trusted party. In the former
case the trusted party sends ⊥ to the honest party Pj , and in the latter case
the trusted party sends zj to Pj .

Outputs: The honest party outputs whatever it was sent by the trusted party,
the corrupted party outputs nothing, and A outputs any arbitrary (proba-
bilistic polynomial-time computable) function of its view.

We denote by IDEALabortF ,A(aux)(x, y, n) the random variable consisting of the view
of the adversary and the output of the honest party following an execution in
the ideal model as described above.

Definition 2.3 (security with abort). Let F and π be as above. Protocol π
is said to securely compute F with abort if for every non-uniform probabilis-
tic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that

{IDEALabortF ,S(aux)(x, y, n)}(x,y)∈X×Y,aux
c= {REALπ,A(aux)(x, y, n)}(x,y)∈X×Y,aux .

An Optimally Fair Coin Toss 9

2.4 One-Time Message Authentication

Message authentication codes provide assurance to the receiver of a message that
it was sent by a specified legitimate sender, even in the presence of an active
adversary who controls the communication channel. A message authentication
code is defined via triplet (Gen,Mac,Vrfy) of probabilistic polynomial-time Tur-
ing machines such that:

1. The key generation algorithm Gen receives as input a security parameter 1n,
and outputs an authentication key k.

2. The authentication algorithm Mac receives as input an authentication key k
and a message m, and outputs a tag t.

3. The verification algorithm Vrfy receives as input an authentication key k, a
message m, and a tag t, and outputs a bit b ∈ {0, 1}.

The functionality guarantee of a message authentication code is that for any
message m it holds that Vrfy(k, m,Mac(k, m)) = 1 with overwhelming proba-
bility over the internal coin tosses of Gen, Mac and Vrfy. In this paper we rely
on message authentication codes that are one-time secure. That is, an authen-
tication key is used to authenticate a single message. We consider an adversary
that queries the authentication algorithm on a single message m of her choice,
and then outputs a pair (m′, t′). We say that the adversary forges an authenti-
cation tag if m′ �= m and Vrfy(k, m′, t′) = 1. Message authentication codes that
are one-time secure exist in the information-theoretic setting, that is, even an
unbounded adversary has only a negligible probability of forging an authentica-
tion tag. Constructions of such codes can be based, for example, on pair-wise
independent hash functions [26].

3 A Simplified Protocol

In order to demonstrate the main ideas underlying our approach, in this section
we present a simplified protocol. The simplification is two-fold: First, we consider
the specific coin-flipping functionality (as in Theorem 1.1), and not the more
general functionality of sampling from an arbitrary distribution D = (D1,D2)
(as in Theorem 1.2). Second, the coin-flipping protocol will only be 1/(2r)-secure
and not 1/(4r)-secure.

We describe the protocol in a sequence of refinements. We first informally
describe the protocol assuming the existence of a trusted third party. The trusted
third party acts as a “dealer” in a pre-processing phase, sending each party an
input that it uses in the protocol. In the protocol we make no assumptions about
the computational power of the parties. We then eliminate the need for the
trusted third party by having the parties execute a secure-with-abort protocol
that implements its functionality (this can be done in a constant number of
rounds).

The protocol. The joint input of the parties, P1 and P2, is the security pa-
rameter 1n and a polynomial r = r(n) indicating the number of rounds in the

10 T. Moran, M. Naor, and G. Segev

protocol. In the pre-processing phase the trusted third party chooses uniformly
at random a value i∗ ∈ {1, . . . , r}, that corresponds to the round in which the
parties learn their outputs. In every round i ∈ {1, . . . , r} each party learns one
bit of information: P1 learns a bit ai, and P2 learns a bit bi. In every round
i ∈ {1, . . . , i∗ − 1} (these are the “dummy” rounds) the values ai and bi are
independently and uniformly chosen. In every round i ∈ {i∗, . . . , r} the parties
learn the same uniformly distributed bit c = ai = bi which is their output in
the protocol. If the parties complete all r rounds of the protocol, then P1 and
P2 output ar and br, respectively4. Otherwise, if a party aborts prematurely,
the other party outputs the value of the previous round and halts. That is, if
P1 aborts in round i ∈ {1, . . . , r} then P2 outputs the value bi−1 and halts.
Similarly, if P2 aborts in round i then P1 outputs the value ai−1 and halts.

More specifically, in the pre-processing phase the trusted third party chooses
i∗ ∈ {1, . . . , r} uniformly at random and defines a1, . . . , ar and b1, . . . , br as
follows: First, it choose a1, . . . , ai∗−1 ∈ {0, 1} and b1, . . . , bi∗−1 ∈ {0, 1} inde-
pendently and uniformly at random. Then, it chooses c ∈ {0, 1} uniformly at
random and lets ai∗ = · · · = ar = bi∗ = · · · = br = c. The trusted third party
creates secret shares of the values a1, . . . , ar and b1, . . . , br using an information-
theoretically-secure 2-out-of-2 secret sharing scheme, and these shares are given
to the parties. For concreteness, we use the specific secret-sharing scheme that
splits a bit x into (x(1), x(2)) by choosing x(1) ∈ {0, 1} uniformly at random
and letting x(2) = x ⊕ x(1). In every round i ∈ {1, . . . , r} the parties exchange
their shares for the current round, which enables P1 to reconstruct ai, and P2
to reconstruct bi. Clearly, when both parties are honest, the parties produce the
same output bit which is uniformly distributed.

Eliminating the trusted third party. We eliminate the need for the trusted
third party by relying on a possibly unfair sub-protocol that securely computes
with abort the functionality ShareGenr, formally described in Figure 1. Such a
protocol with a constant number of rounds can be constructed assuming the
existence of oblivious transfer (see, for example, [27]). In addition, our protocol
also relies on a one-time message authentication code (Gen,Mac,Vrfy) that is
information-theoretically secure. The functionality ShareGenr provides the par-
ties with authentication keys and authentication tags so each party can ver-
ify that the shares received from the other party were the ones generated by
ShareGenr in the pre-processing phase. A formal description of the protocol is
provided in Figure 2.

Proof of security. The following theorem states that the protocol is 1/(2r)-
secure. We then conclude the section by showing the our analysis is in fact tight:

4 An alternative approach that reduces the expected number of rounds from r to r/2+1
is as follows. In round i∗ the parties learn their output c = ai∗ = bi∗ , and in round
i∗ + 1 they learn a special value ai∗+1 = bi∗+1 = NULL indicating that they should
output the value from the previous round and halt. For simplicity (both in the
presentation of the protocol and in the proof of security) we chose to present the
protocol as always having r rounds, but this is not essential for our results.

An Optimally Fair Coin Toss 11

Functionality ShareGenr

Input: Security parameter 1n.

Computation:

1. Choose i∗ ∈ {1, . . . , r} uniformly at random.
2. Define values a1, . . . , ar and b1, . . . , br as follows:

– For 1 ≤ i ≤ i∗ − 1 choose ai, bi ∈ {0, 1} independently and uniformly at
random.

– Choose c ∈ {0, 1} uniformly at random, and for i∗ ≤ i ≤ r let ai = bi = c.

3. For 1 ≤ i ≤ r, choose
(
a
(1)
i , a

(2)
i

)
and

(
b
(1)
i , b

(2)
i

)
as random secret shares of ai

and bi, respectively.

4. Compute ka
1 , . . . , ka

r , kb
1, . . . , k

b
r ← Gen(1n). For 1 ≤ i ≤ r, let ta

i = Macka
i

(
i||a(2)

i

)
and tb

i = Mackb
i

(
i||b(1)i

)
.

Output:

1. Party P1 receives the values a
(1)
1 , . . . , a

(1)
r ,

(
b
(1)
1 , tb

1

)
, . . . ,

(
b
(1)
r , tb

r

)
, and ka =

(ka
1 , . . . , ka

r).

2. Party P2 receives the values
(
a
(2)
1 , ta

1

)
, . . . ,

(
a
(2)
r , ta

r

)
, b

(2)
1 , . . . , b

(2)
r , and kb =

(kb
1, . . . , k

b
r).

Fig. 1. The ideal functionality ShareGenr

there exists an efficient adversary that can bias the output of the honest party
by essentially 1/(2r).

Theorem 3.1. For any polynomial r = r(n), if protocol π securely computes
ShareGenr with abort, then protocol CoinFlipr is 1/(2r)-secure.

Proof. We prove the (1/2r)-security of protocol CoinFlipr in a hybrid model
where a trusted party for computing the ShareGenr functionality with abort is
available. Using standard techniques (see [25]), it then follows that when replac-
ing the trusted party computing ShareGenr with a sub-protocol that security
computes ShareGenr with abort, the resulting protocol is 1/(2r)-secure.

Specifically, for every polynomial-time hybrid-model adversary A corrupting
P1 and running CoinFlipr in the hybrid model, we show that there exists a
polynomial-time ideal-model adversary S corrupting P1 in the ideal model with
access to a trusted party computing the coin-flipping functionality such that the
statistical distance between these two executions is at most 1/(2r) + ν(n), for
some negligible function ν(n). For simplicity, in the remainder of the proof we
ignore the aspect of message authentication in the protocol, and assume that the
only malicious behavior of the adversary A is early abort. This does not result
in any loss of generality, since there is only a negligible probably of forging an
authentication tag.

12 T. Moran, M. Naor, and G. Segev

Protocol CoinFlipr

Joint input: Security parameter 1n.

Preliminary phase:

1. Parties P1 and P2 run protocol π for computing ShareGenr(1n) (see Figure 1).
2. If P1 receives ⊥ from the above computation, it outputs a uniformly chosen bit

and halts. Likewise, if P2 receives ⊥ it outputs a uniformly chosen bit and halts.
Otherwise, the parties proceed.

3. Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
r ,

(
b
(1)
1 , tb

1

)
, . . . ,

(
b
(1)
r , tb

r

)
, and

ka = (ka
1 , . . . , ka

r).

4. Denote the output of P2 from π by
(
a
(2)
1 , ta

1

)
, . . . ,

(
a
(2)
r , ta

r

)
, b

(2)
1 , . . . , b

(2)
r , and

kb = (kb
1, . . . , k

b
r).

In each round i = 1, . . . , r do:

1. P2 sends the next share to P1:
(a) P2 sends

(
a
(2)
i , ta

i

)
to P1.

(b) P1 receives
(
â
(2)
i , t̂a

i

)
from P2. If Vrfyka

i

(
i||â(2)

i , t̂a
i

)
= 0 (or if P1 received an

invalid message or no message), then P1 outputs ai−1 and halts (if i = 1 it
outputs a uniformly chosen bit).

(c) If Vrfyka
i

(
i||â(2)

i , t̂a
i

)
= 1 then P1 reconstructs ai using the shares a

(1)
i and

â
(2)
i .

2. P1 sends the next share to P2:
(a) P1 sends

(
b
(1)
i , tb

i

)
to P2.

(b) P2 receives
(
b̂
(1)
i , t̂b

i

)
from P1. If Vrfykb

i

(
i||̂b(1)i , t̂b

i

)
= 0 (or if P2 received an

invalid message or no message), then P2 outputs bi−1 and halts (if i = 1 it
outputs a uniformly chosen bit).

(c) If Vrfykb
i

(
i||̂b(1)i , t̂b

i

)
= 1 then P2 reconstructs bi using the shares b

(1)
i and b

(2)
i

Output: P1 and P2 output ar and br, respectively.

Fig. 2. The coin-flipping protocol CoinFlipr

On input (1n, aux) the ideal-model adversary S invokes the hybrid-model ad-
versary A on (1n, aux) and queries the trusted party computing the coin-flipping
functionality to obtain a bit c. The ideal-model adversary S proceeds as follows:

1. S simulates the trusted party computing the ShareGenr functionality by
sending A shares a

(1)
1 , . . . , a

(1)
r , b

(1)
1 , . . . , b

(1)
r that are chosen independently

and uniformly at random. If A aborts (i.e., if A sends abort to the simulated
ShareGenr after receiving the shares), then S outputs A’s output and halts.

2. S chooses i∗ ∈ {1, . . . , r} uniformly at random.

An Optimally Fair Coin Toss 13

3. In every round i ∈ {1, . . . , i∗ − 1}, S chooses a random bit ai, and sends A
the share a

(2)
i = a

(1)
i ⊕ ai. If A aborts then S outputs A’s output and halts.

4. In every round i ∈ {i∗, . . . , r}, S sends A the share a
(2)
i∗+1 = a

(1)
i∗+1⊕ c (recall

that c is the value received from the trusted party computing the coin-flipping
functionality). If A aborts then S outputs A’s output and halts.

5. At the end of the protocol S outputs A’s output and halts.

We now consider the joint distribution of A’s view and the output of the
honest party P2 in the ideal model and in the hybrid model. There are three
cases to consider:

1. A aborts before round i∗. In this case the distributions are identical: in both
models the view of the adversary is the sequence of shares, and the sequence
of messages up to the round in which A aborted, and the output of P2 is a
uniformly distributed bit which is independent of A’s view.

2. A aborts in round i∗. In this case A’s view is identical in both models, but
the distributions of P2’s output given A’s view are not identical. In the ideal
model, P2 outputs the random bit c that was revealed to A by S in round
i∗ (recall that c is the bit received from the trusted party computing the
coin-flipping functionality). In the hybrid model, however, the output of P2
is the value bi∗−1 which is a random bit that is independent of A’s view.
Thus, in this case the statistical distance between the two distributions is
1/2. However, this case occurs with probability at most 1/r since in both
models i∗ is independent of A’s view until this round (that is, the probability
that A aborts in round i∗ is at most 1/r).

3. A aborts after round i∗ or does not abort. In this case the distributions are
identical: the output of P2 is the same random bit that was revealed to A in
round i∗.

Note that A’s view in the hybrid and ideal models is always identically dis-
tributed (no matter what strategy A uses to decide when to abort). The only
difference is in the joint distribution of A’s view and the honest party’s output.
Thus, conditioning on the round at which A aborts will have the same effect
in the hybrid and ideal models; in particular, conditioned on case 1 or case 3
occurring, the joint distribution of A’s view and the honest party’s output will
be identical in both models. We state this explicitly because in similar (yet in-
herently different) settings, using conditional probabilities in such a way might
be problematic (see, for example, [28], Sect. 2).

The above three cases imply that the statistical distance between the two
distributions is at most 1/(2r), and this concludes the proof.

Claim 3.2. In protocol CoinFlipr there exists an efficient adversarial party P ∗
1

that can bias the output of P2 by 1−2−r

2r .

Proof. Consider the adversarial party P ∗
1 that completes the pre-processing

phase, and then halts in the first round i ∈ {1, . . . , r} for which ai = 0. We
denote by Abort the random variable corresponding to the round in which P ∗

1

14 T. Moran, M. Naor, and G. Segev

aborts, where Abort = ⊥ if P ∗
1 does not abort. In addition, we denote by c2 the

random variable corresponding to the output bit of P2. Notice that if P ∗
1 aborts

in round j ≤ i∗ then P2 outputs a random bit, and if P ∗
1 does not abort then

P2 always outputs 1. Therefore, for every i ∈ {1, . . . , r} it holds that

Pr [c2 = 1 | i∗ = i]

=
i∑

j=1

Pr [Abort = j | i∗ = i] Pr [c2 = 1 | Abort = j ∧ i∗ = i]

+Pr [Abort = ⊥ | i∗ = i] Pr [c2 = 1 | Abort = ⊥ ∧ i∗ = i]

=
i∑

j=1

Pr [a1 = · · · = aj−1 = 1, aj = 0]Pr [c2 = 1 | Abort = j ∧ i∗ = i]

+Pr [a1 = · · · = ai = 1]Pr [c2 = 1 | Abort = ⊥ ∧ i∗ = i]

=
i∑

j=1

1
2j
· 1
2

+
1
2i
· 1

=
1
2

+
1

2i+1 .

This implies that

Pr [c2 = 1] =
r∑

i=1

Pr [i∗ = i] Pr [c2 = 1 | i∗ = i]

=
r∑

i=1

1
r

(
1
2

+
1

2i+1

)
=

1
2

+
1− 2−r

2r
.

4 The Generalized Protocol

In this section we sketch a more refined and generalized protocol that settles
Theorems 1.1 and 1.2 (due to space limitations, we defer the formal description
of the protocol and its proof of security to the full version of the paper). The
improvements over the protocol presented in Section 3 are as follows:

Improved security guarantee: In the simplified protocol party P1 can bias
the output of party P2 (by aborting in round i∗), but party P2 cannot not
bias the output of party P1. This is due to the fact that party P1 always
learns the output before party P2 does. In the generalized protocol the party
that learns the output before the other party is chosen uniformly at ran-
dom (i.e., party P1 learns the output before party P2 with probability 1/2).
This is achieved by having the parties exchange a sequence of 2r values
(a1, b1), . . . , (a2r, b2r) (using the same secret-sharing exchange technique as
in the simplified protocol) with the following property: for odd values of i,

An Optimally Fair Coin Toss 15

Fig. 3. Overview of the generalized protocol

party P1 learns ai before party P2 learns bi, and for even values of i party P2
learns bi before party P1 learns ai. Thus, party P1 can bias the result only
when i∗ is odd, and party P2 can bias the result only when i∗ is even. The
key point is that the parties can exchange the sequence of 2r shares in only
r + 1 rounds by combining some of their messages5.

Note that modifying the original protocol by having ShareGen randomly
choose which player starts would also halve the bias (since with probability 1

2
the adversary chooses a player that cannot bias the outcome at all). However,
this is vulnerable to a trivial dynamic attack: the adversary decides which
party to corrupt after seeing which party was chosen to start.

A larger class of functionalities: We consider the more general task of sam-
pling from a distribution D = (D1,D2): party P1 receives a sample from
D1 and party P2 receives a correlated sample from D2 (in coin-flipping, for
example, the joint distribution D produces the values (0, 0) and (1, 1) each
with probability 1/2). Our generalized protocol can handle any polynomially-
sampleable distributionD. The basic idea here is ShareGen can be modified to
output shares of samples for arbitrary (efficiently sampleable) distributions.

5 Recall that each round consists of two moves: a message from P2 to P1 followed by
a message from P1 to P2.

16 T. Moran, M. Naor, and G. Segev

Up to round i∗ the values each party receives are independent samples from
the marginal distributions (i.e., P1 receives independent samples from D1,
and P2 from D1). From round i∗, the values are the “real” output from the
joint distribution.

Figure 3 gives a graphic overview of the protocol (ignoring the authentica-
tion tags). As in the simplified protocol, if P2 aborts prematurely, P1 outputs
the value ai, where i is the highest index such that ai was successfully recon-
structed. If P1 aborts prematurely, P2 outputs the last bi value it successfully
reconstructed.

5 Open Problems

Identifying the minimal computational assumptions. Blum’s coin-flipping
protocol, as well as its generalization that guarantees bias of O(1/

√
r), can rely

on the existence of any one-way function. We showed that the optimal trade-
off between the round complexity and the bias can be achieved assuming the
existence of oblivious transfer, a complete primitive for secure computation. A
challenging problem is to either achieve the optimal bias based on seemingly
weaker assumptions (e.g., one-way functions), or to demonstrate that oblivious
transfer is in fact essential.

Identifying the exact trade-off. The bias of our protocol almost exactly
matches Cleve’s lower bound: Cleve showed that any r-round protocol has bias
at least 1/(8r+2), and we manage to achieve bias of at most 1/(4r− c) for some
constant c > 0. It will be interesting to eliminate the multiplicative gap of 1/2
by either improving Cleve’s lower bound or by improving our upper bound. We
note, however, that this cannot be resolved by improving the security analysis of
our protocol since there exists an efficient adversary that can bias our protocol
by essentially 1/(4r) (see Section 4), and therefore our analysis is tight.

Efficient implementation. Our protocol uses a general secure computation
step in the preprocessing phase. Although asymptotically optimal, the tech-
niques used in general secure computation often have a large overhead. Hence,
it would be helpful to find an efficient sub-protocol to compute the ShareGenr

functionality that can lead to a practical implementation.

The multiparty setting. Blum’s coin-flipping protocol can be extended to
an m-party r-round protocol that has bias O(m/

√
r). An interesting problem

is to identify the optimal trade-off between the number of parties, the round
complexity, and the bias. Unfortunately, it seems that several natural variations
of our approach fail to extend to the case of more than two parties. Informally, the
main reason is that a coalition of malicious parties can guess the threshold round
with a pretty good probability by simulating the protocol among themselves for
any possible subset.

An Optimally Fair Coin Toss 17

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)

2. Blum, M.: Coin flipping by telephone - A protocol for solving impossible problems.
In: Proceedings of the 25th IEEE Computer Society International Conference, pp.
133–137 (1982)

3. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

4. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2),
151–158 (1991)

5. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: Proceedings of the 30th Annual IEEE Symposium on Founda-
tions of Computer Science, pp. 230–235 (1989)

6. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing,
pp. 364–369 (1986)

7. Averbuch, B., Blum, M., Chor, B., Silvio Micali, S.G.: How to implement Bracha’s
O(log n) byzantine agreement algorithm (manuscript, 1985)

8. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

9. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Proceedings of the 39th Annual ACM Symposium on Theory of computing, pp.
11–20 (2007)

10. Gordon, D., Katz, J.: Partial fairness in secure two-party computation. Cryptology
ePrint Archive, Report 2008/206 (2008)

11. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control
processes (1993), http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

12. Alon, N., Naor, M.: Coin-flipping games immune against linear-sized coalitions.
SIAM Journal on Computing 22(2), 403–417 (1993)

13. Ben-Or, M., Linial, N.: Collective coin flipping. Advances in Computing Research:
Randomness and Computation 5, 91–115 (1989)

14. Feige, U.: Noncryptographic selection protocols. In: Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science, pp. 142–153 (1999)

15. Russell, A., Zuckerman, D.: Perfect information leader election in log∗ n + O(1)
rounds. Journal of Computer and System Sciences 63(4), 612–626 (2001)

16. Saks, M.: A robust noncryptographic protocol for collective coin flipping. SIAM
Journal on Discrete Mathematics 2(2), 240–244 (1989)

17. Aharonov, D., Ta-Shma, A., Vazirani, U.V., Yao, A.C.: Quantum bit escrow. In:
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp.
705–714 (2000)

18. Ambainis, A.: A new protocol and lower bounds for quantum coin flipping. Journal
of Computer and System Sciences 68(2), 398–416 (2004)

19. Ambainis, A., Buhrman, H., Dodis, Y., Rohrig, H.: Multiparty quantum coin flip-
ping. In: Proceedings of the 19th Annual IEEE Conference on Computational Com-
plexity, pp. 250–259 (2004)

20. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005)

http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

18 T. Moran, M. Naor, and G. Segev

21. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: Proceedings of the 40th Annual ACM Symposium on The-
ory of Computing, pp. 413–422 (2008)

22. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation.
In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pp. 623–632 (2004)

23. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: Proceedings on the
5th International Conference on Security and Cryptographyfor Networks, pp. 229–
241 (2006)

24. Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for ex-
changing information. In: Proceedings of the 5th Theory of Cryptography Confer-
ence, pp. 320–339 (2008)

25. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

26. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

27. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology 16(3), 143–184 (2003)

28. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004),
http://eprint.iacr.org/2004/331.pdf

http://eprint.iacr.org/2004/331.pdf

Complete Fairness in Multi-party Computation
without an Honest Majority

S. Dov Gordon and Jonathan Katz�

Dept. of Computer Science, University of Maryland

Abstract. Gordon et al. recently showed that certain (non-trivial) func-
tions can be computed with complete fairness in the two-party setting.
Motivated by their results, we initiate a study of complete fairness in
the multi-party case and demonstrate the first completely-fair protocols
for non-trivial functions in this setting. We also provide evidence that
achieving fairness is “harder” in the multi-party setting, at least with
regard to round complexity.

1 Introduction

In the setting of secure computation, a group of parties wish to run a protocol for
computing some function of their inputs while preserving, to the extent possible,
security properties such as privacy, correctness, input independence and others.
These requirements are formalized by comparing a real-world execution of the
protocol to an ideal world where there is a trusted entity who performs the
computation on behalf of the parties. Informally, a protocol is “secure” if for
any real-world adversary A there exists a corresponding ideal-world adversary S
(corrupting the same parties as A) such that the result of executing the protocol
in the real world with A is computationally indistinguishable from the result of
computing the function in the ideal world with S.

One desirable property is fairness which, intuitively, means that either every-
one receives the output, or else no one does. Unfortunately, it has been shown
by Cleve [1] that complete fairness is impossible in general without a majority
of honest parties. Until recently, Cleve’s result was interpreted to mean that no
non-trivial functions could be computed with complete fairness without an hon-
est majority. A recent result of Gordon et al. [2], however, shows that this folklore
is wrong; there exist non-trivial functions than can be computed with complete
fairness in the two-party setting. Their work demands that we re-evaluate our
current understanding of fairness.

Gordon et al. [2] deal exclusively with the case of two-party computation,
and leave open the question of fairness in the multi-party setting. Their work
does not immediately extend to the case of more than two parties. (See also the
discussion in the section that follows.) An additional difficulty that arises in the

� This work was supported by NSF CNS-0447075, NSF CCF-0830464, and US-Israel
Binational Science Foundation grant #2004240.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 19–35, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

20 S.D. Gordon and J. Katz

multi-party setting is the need to ensure consistency between the outputs of the
honest parties, even after a malicious abort. In more detail: in the two-party
setting, it suffices for an honest party’s output (following an abort by the other
party) to be consistent only with its own local input. But in the multi-party
setting, the honest parties’ outputs must each be consistent with all of their
inputs. This issue is compounded by the adversary’s ability to adaptively abort
the t malicious players in any order and at any time, making fairness in the
multi-party setting even harder to achieve.

We initiate a study of complete fairness in the multi-party setting. We focus on
the case when a private1 broadcast channel (or, equivalently, a PKI) is available
to the parties; note that Cleve’s impossibility result applies in this case as well.
Although one can meaningfully study fairness in the absence of broadcast, we
have chosen to assume broadcast so as to separate the question of fairness from
the question of agreement (which has already been well studied in the distributed
systems literature). Also, although the question of fairness becomes interesting
as soon as an honest majority is not assumed, here we only consider the case
of completely-fair protocols tolerating an arbitrary number of corrupted parties.
We emphasize that, as in [2], we are interested in obtaining complete fairness
rather than some notion of partial fairness.

1.1 Our Results

A natural first question is whether two-party feasibility results [2] can be ex-
tended “easily” to the multi-party setting. More formally, say we have a function
f : {0, 1}×· · ·×{0, 1} → {0, 1} taking n boolean inputs. (We restrict to boolean
inputs/outputs for simplicity only.) For any non-trivial subset I ⊂ [n], define the
partition fI of f as the two-input function fI : {0, 1}|I| × {0, 1}n−|I| → {0, 1}
given by

fI(y, z) = f(x),

where x ∈ {0, 1}n is such that xI = y and xĪ = z. It is not hard to see that
if there exists an I for which fI cannot be computed with complete fairness
in the two-party setting, then f cannot be computed with complete fairness in
the multi-party setting. Similarly, the round complexity for computing f with
complete fairness in the multi-party case must be at least the round complexity
of fairly computing each fI . What about the converse? We show the following
negative result regarding such a “partition-based” approach to the problem:

Theorem 1. (Under suitable cryptographic assumptions) there exists a 3-party
function f all of whose partitions can be computed with complete fairness in
O(1) rounds, but for which any multi-party protocol computing f with complete
fairness requires ω(log k) rounds, where k is the security parameter.

This indicates that fairness in the multi-party setting is qualitatively harder than
fairness in the two-party setting. (A somewhat analogous result in a different
context was shown by Chor et al. [3].)
1 We assume private broadcast so as to ensure security against passive eavesdroppers

(who do not corrupt any parties).

Complete Fairness in Multi-party Computation without an Honest Majority 21

The function f for which we prove the above theorem is interesting in its own
right: it is the 3-party majority function (i.e., voting). Although the ω(log k)-
round lower bound may seem discouraging, we are able to show a positive result
for this function; to the best of our knowledge, this represents the first non-trivial
feasibility result for complete fairness in the multi-party setting.

Theorem 2. (Under suitable cryptographic assumptions) there exists an
ω(log k)-round protocol for securely computing 3-party majority with complete
fairness.

Our efforts to extend the above result to n-party majority have been unsuccess-
ful. One may therefore wonder whether there exists any (non-trivial) function
that can be computed with complete fairness for general n. Indeed, there is:

Theorem 3. (Under suitable cryptographic assumptions) for any number of
parties n, there exists an Θ(n)-round protocol for securely computing boolean
OR with complete fairness.

OR is non-trivial in our context: OR is complete for multi-party computation
(without fairness) [4], and cannot be computed with information-theoretic pri-
vacy even in the two-party setting [5].

Relation to prior work. At a superficial level, the proof of the ω(log k)-round
lower bound of Theorem 1 uses an approach similar to that used to prove an
analogous lower bound in [2]. We stress, however, that our theorem does not
follow as a corollary of that work (indeed, it cannot since each of the partitions
of f can be computed with complete fairness in O(1) rounds). We introduce new
ideas to prove the result in our setting; in particular, we rely in an essential way
on the fact that the output of any two honest parties must agree (whereas this
issue does not arise in the two-party setting considered in [2]).

Ishai et al. [6] propose a protocol that is resilient to a dishonest majority in a
weaker sense than that considered here. Specifically, their protocol achieves the
following guarantee (informally): when t < n parties are corrupted then a real
execution of the protocol is as secure as an execution in the ideal world with
complete fairness where the adversary can query the ideal functionality O(t)
times (using different inputs each time). While this definition may guarantee
privacy for certain functions (e.g., for the sum function), it does not prevent the
malicious parties from biasing the output of the honest parties. We refer the
reader to their work for further discussion.

1.2 Outline of the Paper

We include the standard definitions of secure multi-party computation in the full
version of this paper [7]. We stress that although the definitions are standard,
what is not standard is that we are interested in attaining complete fairness even
though we do not have an honest majority.

22 S.D. Gordon and J. Katz

We begin with our negative result, showing that any completely-fair protocol
for 3-party majority requires ω(log k) rounds. Recall that what is especially inter-
esting about this result is that it demonstrates a gap between the round complex-
ities required for completely-fair computation of a function and its (two-party)
partitions. In Section 3, we show an ω(log k)-round protocol for completely-fair
computation of 3-party majority. In Section 4 we describe our feasibility result
for the case of boolean OR.

2 A Lower Bound on the Round Complexity of Majority

2.1 Proof Overview

In this section, we prove Theorem 1 taking as our function f the three-party
majority function maj. That is, maj(x1, x2, x3) = 0 if at least two of the three
values {x1, x2, x3} are 0, and is 1 otherwise. Note that any partition of maj is just
(isomorphic to) the greater-than-or-equal-to function, where the domain of one
input can be viewed as {0, 1, 2} and the domain of the other input can be viewed
as {0, 1} (in each case, representing the number of ‘1’ inputs held). Gordon et
al. [2] show that, under suitable cryptographic assumptions, the greater-than-
or-equal-to function on constant-size domains can be securely computed with
complete fairness in O(1) rounds.

We prove Theorem 1 by showing that any completely-fair 3-party protocol
for maj requires ω(log k) rounds. The basic approach is to argue that if Π is
any protocol for securely computing maj, then eliminating the last round of Π
results in a protocol Π ′ that still computes maj correctly “with high probability”.
Specifically, if the error probability in Π is at most µ (that we will eventually
set to some negligible function of k), then the error probability in Π ′ is at most
c · µ for some constant c. If the original protocol Π has r = O(log k) rounds,
then applying this argument inductively r times gives a protocol that computes
maj correctly on all inputs with probability significantly better than guessing
without any interaction at all. This gives the desired contradiction.

To prove that eliminating the last round of Π cannot affect correctness “too
much”, we consider a constraint that holds for the ideal-world evaluation of maj.
(Recall, we are working in the ideal world where complete fairness holds.) Con-
sider an adversary who corrupts two parties, and let the input of the honest
party P be chosen uniformly at random. The adversary can learn P ’s input by
submitting (0, 1) or (1, 0) to the trusted party. The adversary can also try to
bias the output of maj to be the opposite of P ’s choice by submitting (0, 0) or
(1, 1); this will succeed in biasing the result half the time. But the adversary
cannot both learn P ’s input and simultaneously bias the result. (If the adver-
sary submits (0, 1) or (1, 0), the output of maj is always equal to P ’s input; if the
adversary submits (0, 0) or (1, 1) the the output of maj reveals nothing about
P ’s input.) Concretely, for any ideal-world adversary the sum of the probability
that the adversary guesses P ’s input and the probability that the output of maj
is not equal to P ’s input is at most 1. In our proof, we show that if correctness

Complete Fairness in Multi-party Computation without an Honest Majority 23

holds with significantly lower probability when the last round of Π is eliminated,
then there exists a real-world adversary violating this constraint.

2.2 Proof Details

We number the parties P1, P2, P3, and work modulo 3 in the subscript. The input
of Pj is denoted by xj . The following claim formalizes the ideal-world constraint
described informally above.

Claim 4. For all j ∈ {1, 2, 3} and any adversary A corrupting Pj−1 and Pj+1
in an ideal-world computation of maj, we have

Pr [A correctly guesses xj] + Pr [outputj �= xj] ≤ 1,

where the probabilities are taken over the random coins of A and random choice
of xj ∈ {0, 1}.
Proof. Consider an execution in the ideal world, where Pj ’s input xj is chosen
uniformly at random. Let equal be the event that A submits two equal inputs
(i.e., xj−1 = xj+1) to the trusted party. In this case, A learns nothing about
Pj ’s input and so can guess xj with probability at most 1/2. It follows that:

Pr [A correctly guesses xj] ≤ 1
2

Pr [equal] + Pr [equal] .

Moreover, Pr [outputj �= xj] = 1
2 Pr [equal] since outputj �= xj occurs only

if A submits xj−1 = xj+1 = x̄j to the trusted party. Therefore:

Pr [A correctly guesses xj] + Pr [outputj �= xj]

≤ 1
2

Pr [equal] + Pr [equal] +
1
2

Pr [equal]

= Pr [equal] + Pr [equal] = 1,

proving the claim.

Let Π be a protocol that securely computes maj using r = r(k) rounds. Consider
an execution of Π in which all parties run the protocol honestly except for
possibly aborting in some round. We denote by b

(i)
j the value that Pj−1 and

Pj+1 both2 output if Pj aborts the protocol after sending its round-i message
(and then Pj−1 and Pj+1 honestly run the protocol to completion). Similarly, we
denote by b

(i)
j−1 (resp., b

(i)
j+1) the value output by Pj and Pj+1 (resp., Pj and Pj−1)

when Pj−1 (resp., Pj+1) aborts after sending its round-i message. Note that an
adversary who corrupts, e.g., both Pj−1 and Pj+1 can compute b

(i)
j immediately

after receiving the round-i message of Pj .

2 Security of Π implies that the outputs of Pj−1 and Pj+1 in this case must be equal
with all but negligible probability. For simplicity we assume this to hold with prob-
ability 1 but our proof can be modified easily to remove this assumption.

24 S.D. Gordon and J. Katz

Since Π securely computes maj with complete fairness, the ideal-world con-
straint from the previous claim implies that for all j ∈ {1, 2, 3}, any inverse
polynomial µ(k), and any poly-time adversary A controlling players Pj−1 and
Pj+1, we have:

Pr
xj←{0,1}

[A correctly guesses xj] + Pr
xj←{0,1}

[outputj �= xj] ≤ 1 + µ(k) (1)

for k sufficiently large. Security of Π also guarantees that if the inputs of the
honest parties agree, then with all but negligible probability their output must
be their common input regardless of when a malicious Pj aborts. That is, for k
large enough we have

xj+1 = xj−1 ⇒ Pr
[
b
(i)
j = xj+1 = xj−1

]
≥ 1− µ(k) (2)

for all j ∈ {1, 2, 3} and all i ∈ {0, . . . , r(k)}.
The following claim represents the key step in our lower bound.

Claim 5. Fix a protocol Π, a function µ, and a value k such that Equations (1)
and (2) hold, and let µ = µ(k). Say there exists an i, with 1 ≤ i ≤ r(k), such
that for all j ∈ {1, 2, 3} and all c1, c2, c3 ∈ {0, 1} it holds that:

Pr
[
b
(i)
j = maj(c1, c2, c3) | (x1, x2, x3) = (c1, c2, c3)

]
≥ 1− µ. (3)

Then for all j ∈ {1, 2, 3} and all c1, c2, c3 ∈ {0, 1} it holds that:

Pr
[
b
(i−1)
j = maj(c1, c2, c3) | (x1, x2, x3) = (c1, c2, c3)

]
≥ 1− 5µ. (4)

Proof. When j = 1 and c2 = c3, the desired result follows from Equation (2);
this is similarly true for j = 2, c1 = c3 as well as j = 3, c1 = c2.

Consider the real-world adversary A that corrupts P1 and P3 and sets x1 = 0
and x3 = 1. Then:

– A runs the protocol honestly until it receives the round-i message from P2.
– A then locally computes the value of b

(i)
2 .

• If b
(i)
2 = 0, then A aborts P1 without sending its round-i message and

runs the protocol (honestly) on behalf of P3 until the end. By definition,
the output of P2 will be b

(i−1)
1 .

• If b
(i)
2 = 1, then A aborts P3 without sending its round-i message and

runs the protocol (honestly) on behalf of P1 until the end. By definition,
the output of P2 will be b

(i−1)
3 .

– After completion of the protocol, A outputs b
(i)
2 as its guess for the input

of P2.

Consider an experiment in which the input x2 of P2 is chosen uniformly at
random, and then A runs protocol Π with P2. Using Equation (3), we have:

Pr [A correctly guesses x2] = Pr
[
b
(i)
2 = x2

]
= Pr

[
b
(i)
2 = f(0, x2, 1)

]
≥ 1− µ . (5)

Complete Fairness in Multi-party Computation without an Honest Majority 25

We also have:

Pr [output2 �= x2] =
1
2
· Pr [output2 = 1 | (x1, x2, x3) = (0, 0, 1)] (6)

+
1
2
· Pr [output2 = 0 | (x1, x2, x3) = (0, 1, 1)]

=
1
2

(
Pr

[
b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]
+ Pr

[
b
(i−1)
3 = 1 ∧ b

(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]
+ Pr

[
b
(i−1)
3 = 0 ∧ b

(i)
2 = 1 | (x1, x2, x3) = (0, 1, 1)

]
+ Pr

[
b
(i−1)
1 = 0 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 1, 1)

])
.

From Equation (1), we know that the sum of Equations (5) and (6) is upper-
bounded by 1 + µ. Looking at the first summand in Equation (6), this implies
that

Pr
[
b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]
≤ 4µ. (7)

Probabilistic manipulation gives

Pr
[
b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]
= 1− Pr

[
b
(i−1)
1 = 0 ∨ b

(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]
≥ 1− Pr

[
b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]
− Pr

[
b
(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]
≥ 1− Pr

[
b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]
− µ ,

where the last inequality is due to the assumption of the claim. Combined with
Equation (7), this implies:

Pr
[
b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]
≥ 1− 5µ.

Applying an analogous argument starting with the third summand in Equa-
tion (6) gives

Pr
[
b
(i−1)
3 = 1 | (x1, x2, x3) = (0, 1, 1)

]
≥ 1− 5µ.

Repeating the entire argument, but modifying the adversary to consider all pos-
sible pairs of corrupted parties and all possible settings of their inputs, completes
the proof of the claim.

Theorem 6. Any protocol Π that securely computes maj with complete fairness
(assuming one exists3 at all) requires ω(log k) rounds.
3 In the following section we show that such a protocol does, indeed, exist.

26 S.D. Gordon and J. Katz

Proof. Assume there exists a protocol Π that securely computes maj with com-
plete fairness using r = O(log k) rounds. Let µ(k) = 1

4·5r(k) , and note that µ is
noticeable. By the assumed security of Π , the conditions of Claim 5 hold for k
large enough; Equation (3), in particular, holds for i = r(k). Fixing this k and
applying the claim iteratively r(k) times, we conclude that Pj−1 and Pj+1 can
correctly compute the value of the function, on all inputs, with probability at
least 3/4 without interacting with Pj at all. This is clearly impossible.

3 Fair Computation of Majority for Three Players

In this section we describe a completely-fair protocol for computing maj for the
case of n = 3 parties. The high-level structure of our protocol is as follows:
the protocol consists of two phases. In the first phase, the parties run a secure-
with-abort protocol to generate (authenticated) shares of certain values; in the
second phase some of these shares are exchanged, round-by-round, for a total of
m iterations. A more detailed description of the protocol follows.

In the first phase of the protocol the parties run a protocol π implementing
a functionality ShareGen that computes certain values and then distributes au-
thenticated 3-out-of-3 shares of these values to the parties. (See Fig. 1.) Three
sets of values {b(i)

1 }mi=0, {b(i)
2 }mi=0, and {b(i)

3 }mi=0 are computed; looking ahead, b
(i)
j

denotes the value that parties Pj−1 and Pj+1 are supposed to output in case
party Pj aborts after iteration i of the second phase; see below. The values b

(i)
j

are computed probabilistically, in the same manner as in [2]. That is, a round i∗

is first chosen according to a geometric distribution with parameter α = 1/5.4

(We will set m so that i∗ ≤ m with all but negligible probability.) Then, for
i < i∗ the value of b

(i)
j is computed using the true inputs of Pj−1 and Pj+1 but

a random input for Pj ; for i ≥ i∗ the value b
(i)
j is set equal to the correct out-

put (i.e., it is computed using the true inputs of all parties). Note that even an
adversary who knows all the parties’ inputs and learns, sequentially, the values
(say) b

(1)
1 , b

(2)
1 , . . . cannot determine definitively when round i∗ occurs.

We choose the protocol π computing ShareGen to be secure-with-designated-
abort [8] for P1. Roughly speaking, this means privacy and correctness are
ensured no matter what, and output delivery and (complete) fairness are guar-
anteed unless P1 is corrupted; a formal definition in given in the full version [7].

The second phase of the protocol proceeds in a sequence of m = ω(log n) iter-
ations. (See Fig. 2.) In each iteration i, each party Pj broadcasts its share of b

(i)
j .

(We stress that we allow rushing, and do not assume synchronous broadcast.)
Observe that, after this is done, parties Pj−1 and Pj+1 jointly have enough in-
formation to reconstruct b

(i)
j , but neither party has any information about b

(i)
j

on its own. If all parties behave honestly until the end of the protocol, then in
the final iteration all parties reconstruct b

(m)
1 and output this value.

4 This is the distribution on N = {1, 2, . . .} given by flipping a biased coin (that is
heads with probability α) until the first head appears.

Complete Fairness in Multi-party Computation without an Honest Majority 27

ShareGen

Inputs: Let the inputs to ShareGen be x1, x2, x3 ∈ {0, 1}. (If one of the received
inputs is not in the correct domain, then a default value of 1 is used for that
player.) The security parameter is k.

Computation:

1. Define values b
(1)
1 , . . . , b

(m)
1 , b

(1)
2 , . . . , b

(m)
2 and b

(1)
3 , . . . , b

(m)
3 in the following

way:
– Choose i∗ ≥ 1 according to a geometric distribution with parameter

α = 1/5 (see text).
– For i = 0 to i∗ − 1 and j ∈ {1, 2, 3} do:

• Choose x̂j ← {0, 1} at random.
• Set b

(i)
j = maj(xj−1, x̂j , xj+1).

– For i = i∗ to m and j ∈ {1, 2, 3}, set b
(i)
j = maj(x1, x2, x3).

2. For 0 ≤ i ≤ m and j ∈ {1, 2, 3}, choose b
(i)

j|1, b
(i)

j|2 and b
(i)

j|3 as random three-

way shares of b
(i)
j . (E.g., b

(i)
j|1 and b

(i)
j|2 are random and b

(i)
j|3 = b

(i)
j|1⊕b

(i)
j|2⊕b

(i)
j .)

3. Let (pk, sk) ← Gen(1k). For 0 ≤ i ≤ m, and j, j′ ∈ {1, 2, 3}, let σ
(i)

j|j′ =

Signsk(i‖j‖j′‖b(i)j|j′).

Output:

1. Send to each Pj the public key pk and the values{
(b(i)1|j , σ

(i)

1|j), (b
(i)

2|j , σ
(i)

2|j), (b
(i)

3|j , σ
(i)

3|j)
}m

i=0
. Additionally, for each j ∈ {1, 2, 3}

parties Pj−1 and Pj+1 receive the value b
(0)
j|j .

Fig. 1. Functionality ShareGen

If a single party Pj aborts in some iteration i, then the remaining players Pj−1

and Pj+1 jointly reconstruct the value b
(i−1)
j and output this value. (These two

parties jointly have enough information to do this.) If two parties abort in some
iteration i (whether at the same time, or one after the other) then the remaining
party simply outputs its own input.

We refer to Fig. 1 and Fig. 2 for the formal specification of the protocol. We
now prove that this protocol securely computes maj with complete fairness.

Theorem 7. Assume that (Gen, Sign,Vrfy) is a secure signature scheme, that π
securely computes ShareGen with designated abort, and that πOR securely com-
putes OR with complete fairness.5 Then the protocol in Figure 2 securely com-
putes maj with complete fairness.

Proof. Let Π denote the protocol of Figure 2. Observe that Π yields the
correct output with all but negligible probability when all players are hon-
est. This is because, with all but negligible probability, i∗ ≤ m, and then
b
(m)
j = maj(x1, x2, x3). We thus focus on security of Π .

5 It is shown in [2] that such a protocol exists under standard assumptions.

28 S.D. Gordon and J. Katz

Protocol 1

Inputs: Party Pi has input xi ∈ {0, 1}. The security parameter is k.

The protocol:

1. Preliminary phase:
(a) Parties P1, P2 and P3 run a protocol π for computing ShareGen. Each

player uses their respective inputs, x1, x2 and x3, and security param-
eter k.

(b) If P2 and P3 receive ⊥ from this execution, then P2 and P3 run a two-
party protocol πOR to compute the logical-or of their inputs.
Otherwise, continue to the next stage.

In what follows, parties always verify signatures; invalid signatures are
treated as an abort.

2. For i = 1, . . . , m − 1 do:
Broadcast shares:
(a) Each Pj broadcasts (b(i)j|j , σ

(i)
j|j).

(b) If (only) Pj aborts:
i. Pj−1 and Pj+1 broadcast (b(i−1)

j|j−1
, σ

(i−1)

j|j−1
) and (b(i−1)

j|j+1
, σ

(i−1)

j|j+1
), re-

spectively.
ii. If one of Pj−1, Pj+1 aborts in the previous step, the remaining

player outputs its own input value. Otherwise, Pj−1 and Pj+1 both
output b

(i−1)
j = b

(i−1)

j|1 ⊕ b
(i−1)

j|2 ⊕ b
(i−1)

j|3 . (Recall that if i = 1, parties

Pj−1 and Pj+1 received b
(0)
j|j as output from π.)

(c) If two parties abort, the remaining player outputs its own input value.

3. In round i = m do:
(a) Each Pj broadcasts b

(m)

1|j , σ
(m)

1|j .

(b) If no one aborts, then all players output b
(m)
1 = b

(m)
1|1 ⊕ b

(m)
1|2 ⊕ b

(m)
1|3 .

If (only) Pj aborts, then Pj−1 and Pj+1 proceed as in step 2b. If two
players abort, the remaining player outputs its own input as in step 2c.

Fig. 2. A protocol for computing majority

When no parties are corrupt, security is straightforward since we assume the
existence of a private broadcast channel. We therefore consider separately the
cases when a single party is corrupted and when two parties are corrupted.
Since the entire protocol is symmetric except for the fact that P1 may choose to
abort π, without loss of generality we may analyze the case when the adversary
corrupts P1 and the case when the adversary corrupts {P1, P2}. In each case,
we prove security of Π in a hybrid world where there is an ideal functionality
computing ShareGen (with abort) as well as an ideal functionality computing OR
(with complete fairness). Applying the composition theorem of [9] then gives the
desired result. A proof for the case where only P1 is corrupted turns out to be
fairly straightforward, and is given in Appendix A.1.

Claim 8. For every non-uniform, poly-time adversary A corrupting P1 and
P2 and running Π in a hybrid model with access to ideal functionalities

Complete Fairness in Multi-party Computation without an Honest Majority 29

computing ShareGen (with abort) and OR (with completes fairness), there ex-
ists a non-uniform, poly-time adversary S corrupting P1 and P2 and running in
the ideal world with access to an ideal functionality computing maj (with complete
fairness), such that{

idealmaj,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N

s≡
{
hybridShareGen,OR

Π,A (x1, x2, x3, k)
}

xi∈{0,1},k∈N

.

Proof. This case is significantly more complex than the case when only a sin-
gle party is corrupted, since here A learns b

(i)
3 in each iteration i of the second

phase. As in [2], we must deal with the fact that A might abort exactly in itera-
tion i∗, after learning the correct output but before P3 has enough information
to compute the correct output.

We describe a simulator S who corrupts P1 and P2 and runs A as a black-box.
For ease of exposition in what follows, we refer to the actions of P1 and P2 when
more formally we mean the action of A on behalf of those parties.

1. S invokes A on the inputs x1 and x2, the auxiliary input z, and the security
parameter k.

2. S receives x′
1 and x′

2 from P1 and P2, respectively, as input to ShareGen. If
x′

1 /∈ {0, 1} (resp., x′
2 /∈ {0, 1}), then S sets x′

1 = 1 (resp., x′
2 = 1).

3. S computes (sk, pk)← Gen(1k), and then generates shares as follows:

(a) Choose
{
b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2

}m

i=0
uniformly at random.

(b) Choose x̂3 ← {0, 1} and set b
(0)
3 = maj(x′

1, x
′
2, x̂3). Set b

(0)
3|3 = b

(0)
3 ⊕ b

(0)
3|1⊕

b
(0)
3|2.

S then hands A the public key pk, the values{
b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2

}m

i=0
(along with their appropriate signatures),

and the value b
(0)
3|3 as the outputs of P1 and P2 from ShareGen.

4. If P1 aborts execution of ShareGen, then S extracts x′′
2 from P2 as its input

to OR. It then sends (1, x′′
2) to the trusted party computing maj, outputs

whatever A outputs, and halts.
5. Otherwise, if P1 does not abort, then S picks a value i∗ according to a

geometric distribution with parameter α = 1
5 .

In what follows, for ease of description, we will use x1 and x2 in place of
x′

1 and x′
2, keeping in mind that that A could of course have used substituted

inputs. We also ignore the presence of signatures from now on, and leave the
following implicit in what follows: (1) S always computes an appropriate
signature when sending any value to A; (2) S treats an incorrect signature
as an abort; and (3) if S ever receives a valid signature on a previously
unsigned message (i.e., a forgery), then S outputs fail and halts.

Also, from here on we will say that S sends b to A in round i if S sends
a value b

(i)
3|3 such that b

(i)
3|3 ⊕ b

(i)
3|1 ⊕ b

(i)
3|2 = b

(i)
3 = b.

30 S.D. Gordon and J. Katz

6. For round i = 1, . . . , i∗− 1, the simulator S computes and then sends b
(i)
3 as

follows:
(a) Select x̂3 ← {0, 1} at random.
(b) b

(i)
3 = maj(x1, x2, x̂3).

7. If P1 aborts in round i < i∗, then S sets x̂2 = x2 and assigns a value to x̂1
according to the following rules that depend on the values of (x1, x2) and on
the value of b

(i)
3 :

(a) If x1 = x2, then S sets x̂1 = x1 with probability 3
8 (and sets x̂1 = x̄1

otherwise).
(b) If x1 �= x2 and b

(i)
3 = x1, then S sets x̂1 = x1 with probability 1

4 (and
sets x̂1 = x̄1 otherwise).

(c) If x1 �= x2 and b
(i)
3 = x2, then S sets x̂1 = x1 with probability 1

2 (and
sets x̂1 = x̄1 otherwise).

S then finishes the simulation as follows:
(a) If x̂1 �= x̂2, then S submits (x̂1, x̂2) to the trusted party computing maj.

Denote the output it receives from the trusted party by bout. Then S sets
b
(i−1)
1 = bout, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕ b

(i−1)
1|1 ⊕ b

(i−1)
1|2 , sends b

(i−1)
1|3 to

P2 (on behalf of P3), outputs whatever A outputs, and halts.
(b) If x̂1 = x̂2, then S sets b

(i−1)
1 = x̂1 = x̂2, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕

b
(i−1)
1|1 ⊕ b

(i−1)
1|2 , and sends b

(i−1)
1|3 to P2 (on behalf of P3). (We stress that

this is done before sending anything to the trusted party computing
maj.) If P2 aborts, then S sends (0, 1) to the trusted party computing
maj. Otherwise, it sends (x̂1, x̂2) to the trusted party computing maj. In
both cases it outputs whatever A outputs, and then halts.

If P2 aborts in round i < i∗, then S acts analogously but swapping the roles
of P1 and P2 as well as x1 and x2.

If both parties abort in round i < i∗ (at the same time), then S sends
(0, 1) to the trusted party computing maj, outputs whatever A outputs, and
halts.

8. In round i∗:
(a) If x1 �= x2, then S submits (x1, x2) to the trusted party. Let bout =

maj(x1, x2, x3) denote the output.
(b) If x1 = x2, then S simply sets bout = x1 = x2 without querying the trusted

party and continues. (Note that in this case, bout = maj(x1, x2, x3) even
though S did not query the trusted party.)

9. In rounds i∗, . . . , m− 1, the simulator S sends bout to A.
If A aborts P1 and P2 simultaneously, then S submits (1, 0) to the trusted

party (if he hasn’t already done so in step 8a), outputs whatever A outputs,
and halts.

If A aborts P1 (only), then S sets b
(i−1)
1 = bout, computes b

(i−1)
1|3 =

b
(i−1)
1 ⊕ b

(i−1)
1|1 ⊕ b

(i−1)
1|2 , and sends b

(i−1)
1|3 to P2 (on behalf of P3). Then:

Case 1: x1 �= x2. Here S has already sent (x1, x2) to the trusted party. So
S simply outputs whatever A outputs and ends the simulation.

Case 2: x1 = x2. If P2 does not abort, then S sends (x1, x2) to the trusted
party. If P2 aborts, then S sends (0, 1) to the trusted party. In both cases
S then outputs whatever A outputs and halts.

Complete Fairness in Multi-party Computation without an Honest Majority 31

If A aborts P2 (only), then S acts as above but swapping the roles of
P1, P2 and x1, x2. If A does not abort anyone through round m, then S sends
(x1, x2) to the trusted party (if he hasn’t already done so), outputs what A
outputs, and halts.

The above constitutes the full description of S. Due to space limitations, the
analysis of S is given in the full version of this paper [7].

4 Completely-Fair Computation of Boolean OR

The protocol in the previous section enables completely-fair computation of 3-
party majority; unfortunately, we were not able to extend the approach to the
case of n > 3 parties. In this section, we demonstrate feasibility of completely-
fair computation of a non-trivial function for an arbitrary number of parties n,
any t < n of whom are corrupted. Specifically, we show how to compute boolean
OR with complete fairness.

The basic idea behind our protocol is to have the parties repeatedly try to
compute OR on committed inputs using a protocol that is secure-with-
designated-abort where only the lowest-indexed party can force an abort. (See
the full version [7] for further discussion.) The key observation is that in case of
an abort, the dishonest players only “learn something” about the inputs of the
honest players in case all the malicious parties use input 0. (If any of the mali-
cious players holds input 1, then the output is always 1 regardless of the inputs
of the honest parties.) So, if the lowest-indexed party is corrupt and aborts the
computation of the committed OR, then the remaining parties simply recom-
pute the committed OR using ‘0’ as the effective input for any parties who have
already been eliminated. The parties repeatedly proceed in this fashion, elimi-
nating dishonest parties at each iteration. Eventually, when the lowest-indexed
player is honest, the process terminates and all honest players receive (correct)
output.

The actual protocol follows the above intuition, but is a bit more involved. A
formal description of the protocol is given in Fig. 3, and the “committed OR”
functionality is defined in Fig. 4.

Theorem 9. Assume Com is a computationally-hiding, statistically-binding
commitment scheme, and that πP securely computes CommittedORP (with
abort). Then the protocol of Fig. 3 computes OR with complete fairness.

Proof. Let Π denote the protocol of Fig. 3. For simplicity we assume Com is
perfectly binding, though statistical binding suffices. For any non-uniform, poly-
nomial time adversary A in the hybrid world, we demonstrate a non-uniform
polynomial-time adversary S corrupting the same parties as A and running in
the ideal world with access to an ideal functionality computing OR (with com-
plete fairness), such that{

idealOR,S(x1, . . . , xn, k)
}

xi∈{0,1},k∈N

c≡
{
hybridCommittedORP

Π,A (x1, . . . , xn, k)
}

xi∈{0,1},k∈N

.

32 S.D. Gordon and J. Katz

Protocol 2

Inputs: Each party Pi holds input xi ∈ {0, 1}, and the security parameter is k.

Computation:

1. Let P = {P1, . . . , Pn} be the set of all players.
2. Each player Pi chooses random coins ri and broadcasts ci = Com(1k, xi, ri),

where Com denotes a computationally-hiding, statistically-binding commit-
ment scheme. If any party Pi does not broadcast anything (or otherwise
broadcasts an invalid value), then all honest players output 1. Otherwise,
let c = (c1, . . . , cn).

3. All players Pi ∈ P run a protocol πP for computing CommittedORP , with
party Pi using (xi, ri, cP) as its input where cP

def= (ci)i:Pi∈P .
4. If players receive ⊥ from the execution of CommittedORP , they set P =

P \ {P ∗}, where P ∗ ∈ P is the lowest-indexed player in P , and return to
Step 3.

5. If players receive a set D ⊂ P from the execution of CommittedORP , they
set P = P \ D and return to Step 3.

6. If players receive a binary output from the execution of CommittedORP ,
they output this value and end the protocol.

Fig. 3. A protocol computing OR for n players

CommittedORP

Inputs: The functionality is run by parties in P . Let the input of player Pi ∈ P
be (xi, ri, c

i) where ci = (ci
j)j:Pj∈P . The security parameter is k.

For each party Pi ∈ P, determine its output as follows:

1. Say Pj disagrees with Pi if either (1) cj
= ci or (2) Com(1k, xj , rj)
= ci
j .

(Note that disagreement is not a symmetric relation.)
2. Let Di be the set of parties who disagree with Pi.
3. If there exist any parties that disagree with each other, return Di as output

to Pi. Otherwise, return
∨

j:Pj∈P xj to all parties.

Fig. 4. Functionality CommittedORP , parameterized by a set P

Applying the composition theorem of [9] then proves the theorem.
When no players are corrupt, security is trivial due to the assumed existence

of a private broadcast channel. We now describe the execution of S assuming a
set C �= ∅ of corrupted parties:

1. Let H = {P1, . . . Pn} \ C denote the honest players. Initialize I = C. Look-
ing ahead, I denotes the set of corrupted parties who have not yet been
eliminated from the protocol.

2. S invokes A on the inputs {xi}i:Pi∈C, the auxiliary input z, and the security
parameter k.

Complete Fairness in Multi-party Computation without an Honest Majority 33

3. For Pi ∈ H, the simulator S gives to A a commitment ci = Com(1k, xi, ri)
to xi = 0 using randomness ri. S then records the commitment ci that is
broadcast by A on behalf of each party Pi ∈ C. If any corrupted player fails
to broadcast a value ci, then S submits 1’s to the trusted party on behalf of
all corrupted parties, outputs whatever A outputs, and halts.

4. If I = ∅, S submits (on behalf of all the corrupted parties) 0’s to the trusted
party computing OR (unless it has already done so). It then outputs whatever
A outputs, and halts. If I �= ∅, continue to the next step.

5. S sets P = H∪I and obtains inputs {(ri, xi, c
i)}i:Pi∈I for the computation

of CommittedORP . For each Pi ∈ P , the simulator S computes the list of
players Di that disagree with Pi (as in Fig. 4), using as the inputs of the
honest parties the commitments defined in Step 3, and assuming that honest
parties provide correct decommitments. Observe that if Pi, Pj ∈ H then
Di = Dj ⊆ I. Let DH ⊆ I be the set of parties that disagree with the
honest parties.

Let P ∗ be the lowest-indexed player in P . If no parties disagree with each
other, go to Step 6. Otherwise:
(a) If P ∗ ∈ I, then A is given {Di}i:Pi∈I . If P ∗ aborts, then S sets I =
I \{P ∗} and goes to Step 4. If P ∗ does not abort, then S sets I = I \DH
and goes to Step 4.

(b) If P ∗ /∈ I, then A is given {Di}i:Pi∈I . Then S sets I = I \DH and goes
to Step 4.

6. S computes the value b =
∨

Pi∈I xi .
(a) If b = 0, and S has not yet queried the trusted party computing OR,

then S submits 0’s (on behalf of all the corrupted parties) to the trusted
party and stores the output of the trusted party as bout. S gives bout to A
(either as just received from the trusted party, or as stored in a previous
execution of this step).

(b) If b = 1, then S gives the value 1 to A without querying the trusted
party.

S now continues as follows:
(a) If P ∗ ∈ I and P ∗ aborts, then S sets I = I \ {P ∗} and goes to Step 4.
(b) If P ∗ /∈ I, or if P ∗ does not abort, then S submits 1’s to the trusted

party if it has not yet submitted 0’s. It outputs whatever A outputs, and
halts.

We refer the reader to the full version of this paper [7] for an analysis of the
above simulation.

References

1. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proc. 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 364–369
(1986)

2. Gordon, D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party
computation. In: Proc. 40th Annual ACM Symposium on Theory of Computing
(STOC) (2008)

34 S.D. Gordon and J. Katz

3. Chor, B., Ishai, Y.: On privacy and partition arguments. Inf. Comput. 167(1), 2–9
(2001)

4. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness
in private computations. SIAM J. Computing 29(4), 1189–1208 (2000)

5. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM Journal of
Discrete Math 4(1), 36–47 (1991)

6. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

7. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without
an honest majority. In: 6th Theory of Cryptography Conference, TCC (2009),
http://eprint.iacr.org/2008/458

8. Goldreich, O.: Foundations of Cryptography, Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

A Proofs

A.1 Proof of Security for Majority with a Single Corrupted Party

Claim 10. For every non-uniform, polynomial-time adversary A corrupting P1
and running Π in a hybrid model with access to ideal functionalities comput-
ing ShareGen (with abort) and OR (with complete fairness), there exists a non-
uniform, poly-time adversary S corrupting P1 and running in the ideal world
with access to an ideal functionality computing maj (with complete fairness),
such that {

idealmaj,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N

s≡
{
hybridShareGen,OR

Π,A (x1, x2, x3, k)
}

xi∈{0,1},k∈N

.

Proof. Fix some polynomial-time adversary A corrupting P1. We now describe
a simulator S that also corrupts P1 and runs A as a black box.

1. S invokes A on the input x1, the auxiliary input z, and the security param-
eter k.

2. S receives input x′
1 ∈ {0, 1} on behalf of P1 as input to ShareGen.

3. S computes (sk, pk)← Gen(1k), and gives to A the public key pk and values

b
(0)
2|2, b

(0)
3|3, and

{
b
(i)
1|1, b

(i)
2|1, b

(i)
3|1

}m

i=0
(along with their appropriate signatures)

chosen uniformly at random.
4. If A aborts execution of ShareGen, then S sends 1 to the trusted party

computing maj, outputs whatever A outputs, and halts. Otherwise, S picks
a value i∗ according to a geometric distribution with parameter α = 1

5 .
For simplicity in what follows, we ignore the presence of signatures and

leave the following implicit from now on: (1) S always computes an appro-
priate signature when sending any value to A; (2) S treats an incorrect
signature as an abort; and (3) if S ever receives a valid signature on a pre-
viously unsigned message, then S outputs fail and halts.

http://eprint.iacr.org/2008/458

Complete Fairness in Multi-party Computation without an Honest Majority 35

5. S now simulates the rounds of the protocol one-by-one: for i = 1 to m− 1,
the simulator chooses random b

(i)
2|2 and b

(i)
3|3 and sends these to A. During this

step, an abort by A (on behalf of P1) is treated as follows:
(a) If P1 aborts in round i ≤ i∗, then S chooses a random value x̂1 and sends

it to the trusted party computing maj.
(b) If P1 aborts in round i > i∗, then S submits x′

1 to the trusted party
computing maj.

In either case, S then outputs whatever A outputs and halts.
6. If P1 has not yet aborted, S then simulates the final round of the protocol.
S sends x′

1 to the trusted party, receives bout = maj(x′
1, x2, x3), and chooses

b
(m)
1|2 and b

(m)
1|3 at random subject to b

(m)
1|2 ⊕ b

(m)
1|3 ⊕ b

(m)
1|1 = bout. S then gives

these values to A, outputs whatever A outputs, and halts.

Due to the security of the underlying signature scheme, the probability that S
outputs fail is negligible in k. Note that the view of P1 is otherwise statistically
close in both worlds. Indeed, until round m the view of P1 is independent of the
inputs of the other parties in both the real and ideal worlds. In round m itself,
P1 learns the (correct) output bout in the ideal world and learns this value with
all but negligible probability in the real world.

We therefore only have to argue that outputs of the two honest parties in
the real and ideal worlds are statistically close. Clearly this is true if P1 never
aborts. As for the case when P1 aborts at some point during the protocol, we
divide our analysis into the following cases:

– If P1 aborts the execution of ShareGen in step 4, then S submits ‘1’ on
behalf of P1 to the trusted party computing maj. Thus, in the ideal world,
the outputs of P2 and P3 will be maj(1, x2, x3). In the real world, if P1
aborts computation of ShareGen, the honest parties output OR(x2, x3). Since
maj(1, x2, x3) = OR(x2, x3), their outputs are the same.

– If P1 aborts in round i of the protocol (cf. step 5), then in both the real and
ideal worlds the following holds:
• If i ≤ i∗, then P2 and P3 output maj(x̂1, x2, x3) where x̂1 is chosen

uniformly at random.
• If i > i∗, then P2 and P3 output maj(x′

1, x2, x3)
Since i∗ is identically distributed in both worlds, the outputs of P2 and P3
in this case are identically distributed as well.

– If P1 aborts in round m (cf. step 6), then in the ideal world the honest
parties will output maj(x′

1, x2, x3). In the real world the honest parties output
maj(x′

1, x2, x3) as long as i∗ ≤ m − 1, which occurs with all but negligible
probability.

This completes the proof.

Fairness with an Honest Minority
and a Rational Majority�

Shien Jin Ong1,��, David C. Parkes2, Alon Rosen3,� � �, and Salil Vadhan4,†

1 Goldman, Sachs & Co., New York, NY
shienjin@alum.mit.edu

2 Harvard School of Engineering and Applied Sciences, Cambridge, MA
parkes@eecs.harvard.edu

3 Herzliya Interdisciplinary Center, Herzliya, Israel
alon.rosen@idc.ac.il

4 Harvard School of Engineering and Applied Sciences and
Center for Research on Computation and Society, Cambridge, MA

salil@eecs.harvard.edu

Abstract. We provide a simple protocol for secret reconstruction in any
threshold secret sharing scheme, and prove that it is fair when executed
with many rational parties together with a small minority of honest par-
ties. That is, all parties will learn the secret with high probability when
the honest parties follow the protocol and the rational parties act in their
own self-interest (as captured by a set-Nash analogue of trembling hand
perfect equilibrium). The protocol only requires a standard (synchronous)
broadcast channel, tolerates both early stopping and incorrectly com-
puted messages, and only requires 2 rounds of communication.

Previous protocols for this problem in the cryptographic or economic
models have either required an honest majority, used strong communi-
cation channels that enable simultaneous exchange of information, or
settled for approximate notions of security/equilibria. They all also re-
quired a nonconstant number of rounds of communication.

Keywords: game theory, fairness, secret sharing.

1 Introduction

A major concern in the design of distributed protocols is the possibility that
parties may deviate from the protocol. Historically, there have been two main
paradigms for modeling this possibility. One is the cryptographic paradigm,
where some parties are honest, meaning they will always follow the specified

� Earlier versions of this paper are [34,35].
�� Work done while author was a graduate student at Harvard School of Engineering

and Applied Sciences.
� � � Part of this work done while the author was a postdoctoral fellow at Harvard

University’s Center for Research on Computation and Society. Work supported in
part by ISF Grant 334/08.

† Supported by NSF grant CNS-0831289.
O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 36–53, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Fairness with an Honest Minority and a Rational Majority 37

protocol, and others are malicious, meaning they can deviate arbitrarily from
the protocol. The other is the economic paradigm, where all parties are consid-
ered to be rational, meaning that they will deviate from the protocol if and only
if it is in their interest to do so.

Recently, some researchers have proposed studying mixtures of these tradi-
tional cryptographic and economic models, with various combinations of honest,
malicious, and rational participants. One motivation for this that it may allow
a more accurate modeling of the diversity of participants in real-life executions
of protocols. Along these lines, the papers of Aiyer et al. [2], Lysyanskaya and
Triandopoulos [30], and Abraham et al. [1] construct protocols that achieve the
best of both worlds. Specifically, they take protocol properties that are known
to be achievable in both the cryptographic model (with honest and malicious
parties) and the economic model (with only rational parties), and show that
protocols with the same properties can still be achieved in a more general model
consisting of malicious and rational parties.

Our work is of the opposite flavor. We consider properties that are not achiev-
able in either the cryptographic or economic models alone, and show that they
can be achieved in a model consisting of both honest and rational parties. Specif-
ically, we consider the task of secret reconstruction in secret sharing, and provide
a protocol that is fair, meaning that all parties will receive the output, given
many rational participants together with a small minority of honest partici-
pants. In standard communication models, fairness is impossible in a purely
economic model (with only rational participants) [20,25] or in a purely crypto-
graphic model (with a majority of malicious participants) [10]. Previous works in
the individual models achieved fairness by assuming strong communication prim-
itives that allow simultaneous exchange of information [20,19,1,25,28,29,21]1 or
settled for approximate notions of security/equilibria [12,7,17,38,25], whereas we
only use a standard (i.e. synchronous but not simultaneous) broadcast channel
and achieve a standard notion of game-theoretic equilibrium (namely, a trem-
bling hand perfect equilibrium).

Thus, our work illustrates the potential power of a small number of honest
parties to maintain equilibria in protocols. These parties follow the specified
strategy even when it is not in their interest to do so, whether out of altruism or
laziness. While we study a very specific problem (secret sharing reconstruction,
as opposed to general secure function evaluation), we hope that eventually the
understanding developed in this clean setting will be leveraged to handle more
complex settings (as has been the case in the past).

Below, we review the cryptographic and economic paradigms in more detail.
We then introduce the secret-sharing problem we study and survey recent works
on this problem in the purely economic model. We then describe our results and
compare them to what was achieved before.

1 Actually, the impossibility results of [20,25] also hold in the presence of a simultane-
ous broadcast channel and thus the works of [20,19,1,25] use additional relaxations,
such as allowing the number of rounds and/or the sizes of the shares to be unbounded
random variables.

38 S.J. Ong et al.

1.1 The Cryptographic Paradigm

In the cryptographic paradigm, we allow for a subset of the parties to deviate
from the protocol in an arbitrary, malicious manner (possibly restricted to com-
putationally feasible strategies), and the actions of these parties are viewed as
being controlled by a single adversary. Intuitively, this captures worst-case de-
viations from the protocol, so protocols protecting against such malicious and
monolithic adversaries provide a very high level of security. Remarkably, this
kind of security can be achieved for essentially every multiparty functionality,
as shown by a series of beautiful results from the 1980’s [45,18,8,5,39]. However,
considering arbitrary (and coordinated) malicious behavior does have some im-
portant limitations. For example, it is necessary to either assume that a majority
of the participants are honest (i.e. not controlled by the adversary) or allow for
protocols that are unfair (i.e. the adversary can prevent some parties from get-
ting the output). This follows from a classic result of Cleve [10], who first showed
that there is no fair 2-party protocol for coin-tossing (even with computational
security), and then deduced the general version by viewing a multiparty proto-
col an interaction between two super-parties, each of which controls half of the
original parties. Lepinski et al. [28] bypass this impossibility result by assuming
a strong communication primitive (“ideal envelopes”) which allow simultaneous
exchange of information, but it remains of interest to find ways of achieving
fairness without changing the communication model.

1.2 The Economic Paradigm

In the economic paradigm, parties are modeled as rational agents with individual
preferences, and will only deviate from the protocol if this is in their own self
interest. This approach has become very popular in the CS literature in recent
years, with many beautiful results. There are two aspects of this approach:

1. Design computationally efficient mechanisms (i.e. functionalities that can
be implemented by a trusted mediator) that give parties an incentive to
be truthful about their private inputs, while optimizing some social choice
function, which measures the benefit to society and/or the mechanism de-
signer [32,27,3].

2. Implement these mechanisms by distributed protocols, with computational
efficiency emphasized in distributed algorithmic mechanism design [13,14,15]
and extended to also emphasize additional equilibrium considerations in dis-
tributed implementation [42,36,37], so that parties are “faithful” and choose
to perform message passing and computational tasks in ex post Nash
equilibrium. More recent works achieve a strong form of distributed imple-
mentation, with provably no additional equilibria [29,21], but require strong
communication primitives.

Note that distributed algorithmic mechanism design is different in spirit from
the traditional problem considered in cryptographic protocols, in that parties
have “true” private inputs (whereas in cryptography all inputs are considered

Fairness with an Honest Minority and a Rational Majority 39

equally valid) and there is freedom to change how these inputs are mapped
to outcomes through choosing appropriate social choice functions to implement
(whereas in cryptography, the functionality is pre-specified.) Nevertheless, re-
cent works have explored whether we can use the economic model to obtain
‘better’ solutions to traditionally cryptographic problems, namely to compute
some pre-specified functionalities. One potential benefit is that we may be able
to incentivize parties to provide their “true” private inputs along the lines of
Item 1 above; the papers [31,43] explore for what functionalities and kinds of
utility functions this is possible in the presence of game-theoretic agents.

A second potential benefit is that rational deviations may be easier to han-
dle than malicious deviations (thus possibly leading to protocols with better
properties), while also preferable to assuming a mixture of players at the honest
and malicious extremes. This has led to a line of work, started by Halpern and
Teague [20] and followed by [19,1,25], studying the problems of secret sharing
and multiparty computation in the purely economic model, with all rational
participants. One can also require notions of equilibria that are robust against
coalitions of rational players [1]. While this approach has proved to be quite
fruitful, it too has limitations. Specifically, as pointed out in [19,25], it seems
difficult to construct rational protocols that are fair in the standard communi-
cation model, because parties may have an incentive to stop participating once
they receive their own output. The works [20,19,1,25], as well as [29,21] ap-
plied to appropriately designed mediated games, achieve fairness by using strong
communication primitives (simultaneous broadcast, “ballot boxes”) that allow
simultaneous exchange of information.

As mentioned above, we achieve fairness in the standard communication model
by considering a mix of many rational participants together with a small minority
of honest participants. Note that Cleve’s [10] proof that an honest majority is
necessary in the cryptographic setting, by reduction to the two-party case, no
longer applies. The reason is that we cannot view a subset of the rational parties
as being controlled by a single super-party. Even when considering coalitions,
it seems that each individual in that subset would only agree to a coordinated
(joint) deviation if it is in its own interest to do so.

Our protocol is for the share reconstruction problem in secret sharing, which
we now describe in more detail.

1.3 Secret Sharing

In a t-out-of-n secret-sharing scheme [41,6], a dealer takes a secret s and com-
putes n (randomized) shares s1, . . . , sn of s, which are distributed among n
parties. The required properties are that (a) any set of t parties can reconstruct
the secret s from their shares, but (b) any set of fewer than t parties has no
information about s (i.e. they would have been equally likely to receive the same
shares for every possible value of s).

Secret sharing is a fundamental building block for cryptographic protocols
[18,5,8,39]. Typically, these protocols are structured as follows. First, every party
shares its private input among all the parties. Then the computation of the

40 S.J. Ong et al.

functionality is done on shares (to maintain privacy). And at the end, the parties
reveal their shares of the output so that everyone can reconstruct it. Our focus is
on this final reconstruction step. Typically, it is assumed that there are enough
honest parties in the protocol to ensure that the secret can be reconstructed
from the revealed shares, even if some parties refuse to reveal their shares or even
reveal incorrect values. This turns out to be achievable if and only if more than a
2/3 fraction of the players are honest [9]. (In previous versions of the paper, we
restricted attention to fail-stop deviations where a party may stop participating
in the protocol early but otherwise follows the prescribed strategy, in which case
only an honest majority is needed in the traditional cryptographic model.)

1.4 Rational Secret Sharing

It is natural to ask whether we can bypass this need for an honest majority
by considering only rational deviations from the protocol. As noted above, the
study of secret sharing with only rational participants was initiated by Halpern
and Teague [20], and there have been several subsequent works [19,25,1]. In these
works, it is assumed that participants prefer to learn the secret over not learning
the secret, and secondarily, prefer that as few other agents as possible learn it. As
pointed out in Gordon and Katz [19], any protocol where rational participants
reveal their shares sequentially will not yield a Nash equilibrium. This is because
it is rational for the t’th player to stop participating, as she can already compute
the secret from the shares of the first t − 1 players and her own, and stopping
may prevent the first t− 1 players from learning it.

One way to get around this difficulty is to assume a simultaneous broadcast
channel, where all parties can broadcast values at the same time, without the
option of waiting to see what values the other parties are broadcasting. All parties
simultaneously revealing their shares is a Nash equilibrium. That is, assuming
all of the other parties are simultaneously revealing their shares, no party can
increase her utility by aborting (stopping early) instead of revealing. This basic
protocol is instructive because it has several deficiences:

1. A simultaneous broadcast channel is a strong (and perhaps unrealistic) com-
munication primitive, particularly in the context of trying to achieve fair-
ness, where the typical difficulties are due to asymmetries in the times that
parties get information. For example, fair coin-tossing is trivial with a si-
multaneous broadcast channel (everyone broadcasts a bit, and the output is
the exclusive-or), in contrast to Cleve’s impossibility result for synchronous
broadcast channels [10].

2. Nash Equilibrium in this context is a very weak guarantee. As argued by
Halpern and Teague [20], it seems likely that rational parties would actually
abort. The reason is that aborting is never worse than revealing, and is
sometimes better (if t−1 other parties reveal, then the tth party will always
learn the secret and can prevent the other parties from doing so by aborting.)

Halpern and Teague [20] and follow-up works [19,1,25] focus on the second
issue. That is, they allow simultaneous broadcast, and explore whether stronger

Fairness with an Honest Minority and a Rational Majority 41

solution concepts than plain Nash equilibrium can be achieved. Halpern and
Teague [20] propose looking for an equilibrium that survives “iterated deletion
of weakly dominated strategies.” They prove that no bounded-round protocol
can achieve a fair outcome in equilibrium when adopting this solution concept.
However, they and subsequent works by Gordon and Katz [19] and Abraham et
al. [1] show that fair outcomes are possible even with this equilibrium refinement
using a probabilistic protocol whose number of rounds has finite expectation.
Moreover, Abraham et al. [1] show how to achieve an equilibrium that is resistant
to deviations by coalitions of limited size. Kol and Naor [25] argue that “strict
equilibria” is a preferable solution concept to the iterated deletion notion used
by Halpern and Teague [20], and show how to achieve it with a protocol where
the size of shares dealt is an unbounded random variable with finite expectation.
(They also show that a strict equilibrium cannot be achieved if the shares are of
bounded size.) In all of the above works, the protocols’ prescribed instructions
crucially depend on the utilities of the various players.

The works of Lepinski et al. [29] and Izmalkov et al. [21] also can be used
to obtain fair protocols for secret sharing by making an even stronger physi-
cal assumption than a simultaneous broadcast channel, namely “ballot boxes.”
Specifically, they show how to compile any game with a trusted mediator into
a fair ballot-box protocol with the same incentive structure. Since the share-
reconstruction problem has a simple fair solution with a trusted mediator (the
mediator takes all the inputs, and broadcasts the secret iff all players reveal their
share), we can apply their compiler to obtain a fair ballot-box protocol. But our
interest in this paper is on retaining standard communication models.

1.5 Our Results

In this paper, we address both issues above. Specifically, we assume that there
is at least some small number k of honest participants, and along with many
rational players. In this setting, we exhibit a simple protocol that only requires
a standard communication model, namely synchronous broadcast, and in cases
where the total number of players is sufficiently large, achieves fair outcomes
with high probability with respect to a strong solution concept, namely (a set-
Nash analogue of) trembling hand perfect equilibrium. We describe both aspects
of our result in more detail below.

Synchronous Broadcast. With a synchronous (as opposed to simultaneous) broad-
cast channel, the protocol proceeds in rounds, and only one party can broadcast
in each round.2 When all parties are rational, the only previous positive results in
this model are in works by Kol and Naor [25,24], who achieve a fair solution with
an approximate notion of Nash equilibrium — no party can improve her utility
by ε by deviating from the protocol. However, it is unclear whether such ε-Nash

2 For round efficiency, sometimes people use a slightly more general channel where
many parties can broadcast in a single round, but deviating parties are can perform
‘rushing’ — wait to see what others have broadcast before broadcasting their own
values. We describe how to extend our results to this setting below.

42 S.J. Ong et al.

equilibria are satisfactory solution concepts because they may be unstable. In par-
ticular, how can everyone be sure that some parties will not try to improve their
utility by ε? Once this possibility is allowed, it may snowball into opportunities
for even greater gains by deviation. Indeed, Kol and Naor argue in favor of strict
Nash equilibria, where parties will obtain strictly less utility by deviating (and
show how to achieve strict equilibria in the presence of a simultaneous broadcast
channel).

In our work, we achieve an exact notion of equilibrium (i.e. ε = 0). However,
we allow a negligible probability that the honest parties will fail to compute the
secret correctly, so our notion of “fairness” is also approximate. Nevertheless, we
feel that the kind of error we achieve is preferable to ε-Nash. Indeed, the equi-
librium concept is supposed to ensure that parties have an incentive to behave
in a particular manner; if it is too weak, then parties may ignore it entirely and
whatever analysis we do may be rendered irrelevant. On the other hand, if we
achieve a sufficiently strong notion of exact equilibrium, then we may be confi-
dent that players will behave as predicted, and we are unlikely to see any bad
events that are shown to occur with small probability under equilibrium play.

Trembling-Hand Equilibrium. In order to establish the equilibrium properties of
the protocol, we introduce a framework of “extensive form games with public
actions and private outputs,” and use the formalism of incomplete information
games to model players’ uncertainties about the inputs (i.e. shares) of other play-
ers as well as uncertainty about which players are honest and which are rational.
(For simplicity, we assume that each player is honest independently with some
probability p, but with small modifications, the result should extend to other
distributions on the set of honest players.) The solution concept of Bayesian
Nash equilibrium handles the uncertainty that a player has about the shares
dealt to other players and requires that beliefs are updated according to Bayes
rule “whenever possible,” meaning that this occurs when the observed actions
are consistent with the equilibrium. A standard refinement is that of Bayesian
subgame perfect Nash equilibrium, which captures the idea that the strategy is
rational to follow regardless of the previous history of messages; intuitively, this
means that the equilibrium does not rely on irrational empty threats (where a
player will punish another player for deviating even at his own expense). In fact,
we achieve the additional refinement of trembling hand perfect equilibrium [40],
which strengthens this notion by requiring that players update their beliefs in
a consistent and meaningful manner even when out-of-equilibrium play occurs.
It is one of the strongest solution concepts studied for extensive form games;
related notions were advocated in this context by Peter Bro Miltersen (personal
communication) and Jonathan Katz [23].

Our Protocol. The protocol that we instruct honest players to follow is simple
to describe. The participants take turns broadcasting their shares in sequence.
However, if any of the first t−1 parties deviates from the protocol by stopping and
refusing to broadcast her share, then the protocol instructs all parties subsequent
to the first t − 1 to do the same. The intuition behind this protocol is that if

Fairness with an Honest Minority and a Rational Majority 43

there is likely to be at least one honest party after the first t − 1 parties, then
each rational party in the first t− 1 parties will also have an incentive to reveal
its share because by doing so, the honest party will also reveal her share and
enable the rational parties to reconstruct the secret. Then we observe that as
long as the set of honest parties is a random subset of k = ω(log n) parties, and
assuming that the total number, n, of players is sufficiently large, then there will
be an honest party after party t−1 with all but negligible probability, as long as
t ≤ (1 − Ω(1)) · n. Thus, assuming that parties have a nonnegligible preference
to learn the secret, we obtain an exact equilibrium in which everyone learns the
secret with all but negligible probability.

In order to deal with the possibility that some players may try to reveal incor-
rect shares, we use information-theoretic message authentication codes (MACs)
to authenticate the shares, following Kol and Naor [25]. Intuitively, we can toler-
ate the (negligible) forgery probability of the MACs (without getting an ε-Nash
equilibrium) because the first t−1 players actually achieve strictly higher utility
by revealing a valid share than by not doing so.

In addition, the incentives in our protocol hold regardless of what information
the first t− 1 players have about each others’ actions, and similarly for the last
n − t + 1 players. Thus, our protocol can actually be implemented with only 2
rounds of communication (in contrast to all previous protocols, which required
a super-constant number of rounds); we discuss how to formalize this below.

Modeling Contributions. While the intuition for our protocol is quite natural,
modeling it game-theoretically turns out to be quite delicate. As discussed above,
we introduce a Bayesian framework for capturing the uncertainty that players
have about each others’ secrets and which other players are honest vs. rational.
Additional modeling contributions include:

Set Nash. We find it useful to avoid specifying the exact actions that rational play-
ers should take in situations where the choice is irrelevant to the overall strategic
and fairness properties of our protocol. We do this by developing a variant of the
notions of Set-Nash [26] and CURB (Closed Under Rational Behavior) Sets [4] for
extensive-form games and trembling-hand perfect equilibrium. Roughly speaking,
this notion allows us to specify the equilibrium actions only in cases that we care
about, and argue that players have no incentive to deviate from the specified ac-
tions provided that all other players are playing according to the specified actions
(even if they may act arbitrarily when the action is unspecified) and given the
existence of a small number of honest players. Since the honest strategy is con-
sistent with the specified equilibrium actions, this solution concept ensures that
even repeated rational deviations from the honest strategy (which we envision to
be initial “program”distributed to all players) by all but a small number of players
will keep everyone consistent with the specified actions. When this occurs as pre-
dicted, we show that all honest players will learn the secret with all but negligible
probability, and thus fairness is maintained.

Modeling Rushing. To save on rounds, the cryptography literature often al-
lows protocols that specify messages for several players at once, but allows the

44 S.J. Ong et al.

possibility that deviating players may wait to see other players’ messages before
computing their own (i.e. simultaneity is allowed but not enforced). Modelling
such “rushing” game-theoretically was posed as a challenge in the survey talk
of Katz [23]. As mentioned above, we argue that our protocol can be collapsed
to two rounds of communication. To capture the possibility of rushing game-
theoretically, we follow an idea of Kalai [22], and argue that the specified strategy
remains an equilibrium for every ordering of players within each round. Thus,
players have no incentive to wait for other players’ messages; sending the same
message will maximize their utility regardless of what other players send in the
same round.

1.6 Future Directions and Independent Work

We view our work as but one more step in the line of work understanding the
benefits of bringing together cryptography and algorithmic mechanism design.
(See the survey [23].) While our main theorem is admittedly far from achieving
an end goal that one would want to implement as is, we hope that our high-
level message (regarding the benefit of a few honest players with many rational
players) and our game-theoretic modelling (e.g. the Bayesian framework, the
use of set-Nash, and the modelling of rushing) prove useful in subsequent work.
Some specific ways in which our results could be improved are:

– Handling other distributions on (i.e. beliefs about) the set of honest players.
Intuitively, this should be possible by having the dealer randomly permuting
the order of the players and including the permutation in the shares (or
publishing it).

– Achieving solution concepts that are robust even to coalitional deviations
from the protocol. In an earlier version of our paper [34], we demonstrated
coalition-proofness (against “stable” coalitions) in a model that is even more
simplified than the fail-stop one. As we have mentioned, Abraham et al. [1]
show how to handle arbitrary, not necessarily stable, collusions of a small
number of players with a simultaneous broadcast channel.

– Generalizing from secret sharing to secure multiparty computation. Indeed,
this is the main application for secret sharing and their reconstruction pro-
tocols.

– Getting stronger impossibility results for the entirely rational setting (prior
impossibility results either require players to learn the secret with probability
1 [25], or suffered other restrictive constraints [35]) or, alternatively, finding
a purely rational protocol.

O’Neill and Sangwan [33] extend the results from a preliminary version of our
paper [35] in several ways, including achieving a strict trembling-hand perfect
equilibrium for a restricted deviation model (which is still more general than the
fail-stop deviation model we considered in [35]) and handling a small number
of malicious players in this model. Fuchsbauer et al. [16] have recently shown
how to obtain a computational analogue of trembling-hand ε-equilibrium on a
standard communication channel when all players are rational.

Fairness with an Honest Minority and a Rational Majority 45

2 Definitions

2.1 Games with Public Actions and Private Outputs

To cast protocol executions into a game-theoretic setting, we introduce the no-
tion of extensive games with public actions and private outputs. The basis of
this new notion is the more standard definition of extensive form games with
perfect information. Extensive form games enable us to model the sequential as-
pect of protocols, where each player considers his plan of action only following
some of the other players’ messages (the “actions” of the game-theoretic model).
The perfect information property captures the fact that each player, when mak-
ing any decision in the public phase of the protocol, is perfectly informed of
all the actions by other players that have previously occurred. Thus, extensive
form games with perfect information are a good model for communication on a
synchronous broadcast channel.

We build upon extensive form games with perfect information and augment
them with an additional final private stage. This additional stage models the
fact that at the end of the game, each player is allowed to take some arbitrary
action as a function of the “terminal” history h ∈ Z of messages so far. This
action, along with the “non-terminal history” h ∈ H \ Z of public actions that
have taken place during the execution of the game (as well as the players’ inputs)
has a direct effect on players’ payoffs.

Working in the framework of Bayesian games of incomplete information, play-
ers i ∈ N are handed private inputs θi (a.k.a. ”types”) that belong to some
pre-specified set Θi and specify a distribution µ according to which the inputs
are chosen. Players’ inputs can be thought of as the shares for the secret-sharing
scheme, and are generated jointly with the secret. The secret is thought of as a
“reference” value δ ∈ ∆ that is not given to the players at the beginning of the
protocol (but may be determined by them through messages exchanged), and is
used at the output stage along with private actions to determine player utilities.

A game Γ = (N, H, P, A, L, ∆, Θ, µ, u) proceeds as follows: the reference value
and the types are selected according to a joint distribution µ. The type θi ∈ Θi

is handed to player i ∈ N and the value δ ∈ ∆ remains secret and affects the
players’ utilities. This is followed by a sequence of actions that are visible by all
players. After any history h ∈ H , player i = P (h) whose turn to play is next
chooses a public action a ∈ Ai(θi, h). This choice determines the next actions of
the players, and so on until a terminal history h ∈ Z is reached. At this point, all
players i ∈ N simultaneously pick an action, bi ∈ Li(θi, h), where Li(θi, h) ⊆ ∆.
The utility (or payoff) of player i for an execution of the game is then determined
to be the value ui(δ, θ, h, b1, . . . , bn).

2.2 Set Valued Strategies and Set Nash Equilibrium

The action chosen by a player for every history after which it is her turn to move,
is determined by her strategy function. As is required in extensive-form games,
the strategy is defined for all histories, even ones that would not be reached if
the strategy is followed.

46 S.J. Ong et al.

To enable a simple description of our protocol, and in order to minimize the
difference between the description of the behavior of an honest player and that
of a rational player, we allow each player to have a strategy that actually maps
each information set (i.e. view of the player) into a set of possible actions. More
precisely, a set-valued strategy for player i ∈ N is a pair Si = (Mi, Fi), where:

– The public set-valued strategy Mi is a function that takes a pair (θi, h) ∈
Θi × (H \ Z) and defines a set of public messages, Mi(θi, h).

– The private set-valued strategy Fi is a function that takes a pair (θi, h) ∈
Θi × Z and defines a set of private outputs Fi(θi, h).

We write si = (mi, fi) ∈ Si to indicate that strategy si is consistent with Si,
i.e. with mi(θi, h) ∈Mi(θi, h) for all (θi, h) ∈ Θi×(H\Z) and fi(θi, h) ∈ Fi(θi, h)
for all (θi, h) ∈ Θi ×Z (where these inclusions should hold with probability 1 in
case si is a mixed strategy).

We will allow the public and private strategy functions to be mixed, where the
randomization of the strategy is interpreted to be done independently at each
application of the function, if a player has multiple moves in the game. Strategies
that consist of deterministic functions are called pure, whereas strategies whose
functions have full support on the player’s action set are said to be fully mixed.
We achieve fairness (with high probability) in a pure strategy equilibrium but
use fully mixed strategies in defining the concept of trembling hand equilibrium.

The outcome o of the game Γ under a strategy s ∈ S is the random variable
(δ, θ, h, b1, . . . , bn), where (δ, θ) ∈ ∆ × Θ are sampled according to µ, h ∈ Z
is the terminal history that results when each player i ∈ N is given her type
θi ∈ Θi, publicly follows the actions chosen by mi, and computes her final private
output bi using fi. The value of player i’s utility is totally determined by o. The
initial distribution, µ, of the secret and the shares, along with the strategies
si = (mi, fi) induce a distribution on o, and thus on the utilities. Define ui(µ, s)
to be the expected value of the utility of player i ∈ N , when the types are
selected according to the distribution µ and all players follow strategy s. We
assume that rational players seek to maximize expected utility.

Definition 2.1 (Set Nash equilibrium). A profile S = (S1, . . . , Sn) of set-
valued strategies is a (Bayesian) Set Nash equilibrium for a game Γ if for all
i ∈ N , every (possibly mixed) s−i ∈ S−i, there exists a strategy si ∈ Si so that
for all strategies s′i, ui(µ, (s−i, s

′
i)) ≤ ui(µ, s).

Our definition of set-Nash equilibrium is stronger than the set-Nash equilibrium
definition introduced by Lavi and Nisan [26], who require only that for every
pure s−i ∈ S−i there exists some si ∈ Si for which ui(µ, s) ≥ ui(µ, (s−i, s

′
i))

for all possible strategies s′i. This earlier definition of set-Nash is insufficient to
ensure that there is a Nash equilibrium consistent with the set-valued strategy
profile S. The problem is that upon restricting the game to S the only Nash
equilibrium may be a mixed equilibrium, yet there may be some strategy s′i
outside of Si that is strictly better than all si ∈ Si given that players �= i play
a mixed strategy consistent with S−i. On the other hand, our definition of set-
Nash is weaker than the CURB (Closed Under Rational Behavior) sets of Basu

Fairness with an Honest Minority and a Rational Majority 47

and Weibull [4]; see also a recent discussion in Benisch et al. [11]. A CURB set
requires that for every mixed strategy s−i consistent with S−i, all best-responses
for player i are consistent with set-valued strategy Si whereas we require only
that there is some best-response that is consistent with Si.

2.3 Trembling-Hand Perfect Set Equilibrium

At the heart of a solution concept for extensive-form games with incomplete
information is a requirement about the way in which the players update their
beliefs about the values of other players’ types. The beliefs are distributions from
which players think that the types of other players were drawn. At the beginning
of the game, the belief corresponds to the initial distribution µ conditioned on
the player’s knowledge of her own type. As the game progresses, players update
their beliefs as a function of other players’ actions.

A straightforward approach for a player to update her beliefs is to use Bayes
rule to condition on her own view of the actions taken in the game. This is the
basic approach taken in the game theory literature, and the one pursued in a
previous version of this paper [35]. But such an approach suffers from the draw-
back that updating is not well-defined for views that occur with zero probability,
i.e. following out of equilibrium play.

A stronger approach, also discussed in the game theory literature, is the one of
trembling-hand perfect equilibrium [40]. The idea behind trembling-hand perfect
equilibrium is that updating is not problematic if the strategies under consider-
ation are fully mixed (since such strategies would never incur an updating that
conditions on a zero probability event). It thus becomes natural to require that
the equilibrium strategy is a best response in every subgame to some sequence
of fully mixed strategies that converge to equilibrium, and this is indeed the
definition of trembling hand equilibria.

The trembling-hand solution concept builds on the notion of a subgame
Γ (s, h), which is defined in the natural way to be the restriction of an extensive
form game with public actions and private outputs Γ , at a history h ∈ H . This
definition implicitly captures the way in which players update their beliefs as a
result of past players’ actions, assuming previous play according to strategy s.

Given a strategy profile s and a strategy s′i for player i, we denote by
ui|h(µ|h, s−i|h, s′i|h) the expected value of player i’s utility under strategy vec-
tor (s−i|h, s′i|h) in the game Γ (s, h). This is interpreted as considering player
i’s expected utility when all players except player i follow strategies s−i, and
assuming that until the history h has been reached player i has played according
to strategy si, and from that point on according to strategy s′i.

We define a set-Nash analogue of trembling-hand perfect equilibrium. To the
best of our knowledge, such a combination has not been previously considered
in the literature. Given a history h ∈ H and a set valued strategy Si, we define
Si|h in the natural way (i.e., if Si = (Mi, Fi) then Si|h = (Mi|h, Fi|h) where
Mi|h(θi, h

′) = Mi(θi, (h, h′)) and Fi|h(θi, h
′) = Fi(θi, (h, h′))).

48 S.J. Ong et al.

Definition 2.2 (Trembling-hand perfect set equilibrium). Let Γ be an ex-
tensive form game with public actions and private outputs. A profile of set-valued
strategies S = (S1, . . . , Sn) is said to be a trembling-hand perfect set equilibrium
for Γ if for every s ∈ S1 × · · · × Sn there exists a sequence of fully mixed strat-
egy profiles (sk)∞k=0 converging to s so that for every history h ∈ H and every
i ∈ N , there exists a strategy s′i ∈ Si|h such that for all strategies s′′i in the
game Γ (sk, h) it holds that ui|h(µ|h, sk

−i|h, s′i) ≥ ui|h(µ|h, sk
−i|h, s′′i) in the game

Γ (sk, h) for all k.

3 Secret Sharing

A secret sharing scheme (N, t, ∆, Θ, µ, g) is implemented by letting a trusted
dealer jointly pick the secret and shares according to the distribution µ, and
then distributing share θi ∈ Θi to player i ∈ N . The reconstruction functions
are what enables any set S of at least t players to use their shares (θi)i∈S in
order to jointly reconstruct the secret (by using a function gS ∈ g). The scheme
should also guarantee secrecy against any subset S of less than t players.

To prevent players from revealing shares that are different than the ones they
were dealt, we will want to work with a secret sharing scheme that is authenti-
cated. One can use standard “information theoretic” techniques for authenticat-
ing shares in any (plain) secret sharing scheme (cf. [44,39,25]).

3.1 Reconstruction Protocols

Once shares are distributed among the players, it is required to specify a protocol
according to which the players can jointly reconstruct the secret at a later stage.
The reconstruction protocol prescribes a way in which the players compute their
“messages”, which are chosen from a given fixed “alphabet,” and are then broad-
cast to all other players. The protocol also specifies an output function that is
used by the players to compute their (private) output.

A reconstruction protocol Π = (Σ, H, P, m∗, f∗) for a given secret shar-
ing scheme is implemented under the assumption that the secret and shares
(δ, θ1, . . . , θn) are chosen according to the distribution µ. Player i’s type is
θi. The protocol is interpreted as follows: player i = P (h) chooses a message
m = m∗

i (θi, h) ∈ Σ; this choice determines the next player to move, and so on
until a terminal history h ∈ Z is reached. At this point all players can determine
the value of their private output functions, f∗

i (θi, h).

3.2 Reconstruction Games

A secret sharing protocol induces a reconstruction game in a natural way. Loosely
speaking, this is an interpretation of a reconstruction protocol as an extensive
form game with public messages and private outputs, in which arbitrary de-
viations from the protocol’s instructions are allowed. The interpretation of the

Fairness with an Honest Minority and a Rational Majority 49

protocol as a game is straightforward: protocol histories correspond to game
histories, messages in the protocol correspond to actions, next message functions
correspond to strategies, and the outputs correspond to output actions.

The reconstruction game allows player i the choice between continuing with
the protocol’s prescribed instructions (and in particular choosing an action ac-
cording to m∗

i), and deviating from Π (by sending some other message from Σ).
We require that the utility functions are linear in the sense there are (real)

parameters {aij} such that the utility received by player i is equal to the sum
of aij over all players j that correctly compute the secret at the end of the
protocol. We define the players’ preference for learning the secret to be ρ =
mini aii/(−∑

j 	=i aij). We require that aii > 0, aij < 0 for i �= j, and ρ > 1.
These assumptions correspond to the assumptions (also made in previous works)
that players prefer to learn the secret over all else, and secondarily prefer that
as few other players learn the secret as possible.

4 Our Protocol

4.1 Introducing an Honest Minority

Our goal is to show that every authenticated secret-sharing scheme has a recon-
struction protocol so that any reconstruction game that corresponds to it has an
equilibrium strategy in which all players learn the secret. To do this, we require
that a small subset of honest players in the reconstruction game always follows
the strategy prescribed by the reconstruction protocol (whether or not this is the
best response to other players’ actions). We model this scenario by assuming that
the set of honest players is selected according to some distribution that specifies
to each player whether she is to act honestly or rationally. The set of actions
of an honest player coincides with the strategy prescribed by the reconstruction
protocol. The set of actions of a rational player remains unchanged.

The private type of player i ∈ N in a reconstruction game with honest players
consists of a pair (θi, ωi) ∈ Θi×Ωi that is drawn along with other player’s types
and the reference value δ according to the distribution µ × ζ. The value of
ωi ∈ {honest, rational} determines whether player i is bound to follow the
honest strategy (as prescribed by Π), or will be allowed to deviate from it. We
constraint the set of actions of each player in order to create a situation in which
rational players are indeed free to deviate from the public strategy vector m∗

(since they are allowed to choose any action in Σ), whereas the honest players
are in fact restricted to the single action prescribed by m∗.

4.2 Main Result

We show that assuming the existence of a small number of honest players, there
is a reconstruction protocol such that every corresponding reconstruction game
has an equilibrium such that with high probability all players learn the secret,
provided that the set of honest players is uniform among all sets of a sufficiently

50 S.J. Ong et al.

large size and every player has a nonnegligible preference for learning the secret.
Specifically, our theorem is the following:

Theorem 4.1. Every authenticated secret-sharing scheme (N, t, ∆, Θ, µ, g), with
t < |N | = n, has a reconstruction protocol Π such that the following holds. Let
Γ = (N, H, P, A, L, ∆, Θ×Ω, µ×ζm, u) be a reconstruction game that corresponds
to Π with honest players and linear utility functions, where ζm is a distribution over
tuples (ω1, . . . , ωn) ∈ Ω for which ωi = honestwith probability m/n independently
for all i ∈ N , for some real number m ∈ [0, n]. Suppose further that the players’
preference ρ for learning the secret satisfies:

ρ >
1− 1/|∆|

1− 1/|∆| − p(n, m)− γ
(1)

where p(n, m) = (1 − m/n)n−t+1 ≤ exp(−m · (n − t)/n) and γ is the forgery
probability of the authenticated secret-sharing scheme. Then Γ has a profile S =
(S1, . . . , Sn) of set-valued “rational” strategies such that:

1. The honest strategy profile s∗ = (m∗, f∗) is consistent with S,
2. S is a trembling-hand perfect set equilibrium in Γ ,
3. For every strategy vector s ∈ S, the probability that all honest players com-

pute the secret correctly in Γ is at least 1− (n− t + 1)γ − p(n, m), when the
players’ types are chosen according to µ and they follow strategy vector s.

4. For every Nash equilibrium s ∈ S, the probability that all players compute
the secret correctly in Γ is at least 1− (n− t + 1)γ − p(n, m), when players’
types are chosen according to µ and they follow strategy s.

5. S does not depend on the utility functions u in Γ (provided they satisfy (1)).

To interpret this theorem, consider a setting in which we distribute to each
player software that is programmed to play the honest strategy, which is in
consistent with S by Item 1. Rational players may then decide to deviate from
this strategy (i.e. reprogram their software) in order to improve their utility.
The fact that S is a trembling-hand perfect set equilibrium (Item 2), however,
guarantees that there is no incentive for the rational players to deviate from S,
even if this process is iterated. As long as all players remain within S, Items 3
and 4 say that fairness is maintained (with high probability).

In case that t ≤ (1−Ω(1))·n, observe that p(n, m) = exp(−Ω(m)) is negligible
provided that m = ω(log n), i.e. the expected number of honest players is super-
logarithmic. If, in addition, the forgery probability γ is negligible then (1) simply
says that a player’s preference for learning the secret should not be negligible.

4.3 The Reconstruction Protocol

The protocol proceeds in two stages, where in the first stage a subset of t − 1
players is instructed to reveal their share to all other parties in some sequence,
and in the second stage the remaining n− t + 1 players are instructed to reveal
their share in some sequence, provided that none of the t− 1 players in the first

Fairness with an Honest Minority and a Rational Majority 51

stage has failed to reveal her share. The individual parties will reveal their share
using a synchronous broadcast channel.

The stage in which a player is instructed to broadcast is fixed in some arbitrary
manner. For concreteness, suppose that at stage 1 of the protocol, it is the turn
of players 1, . . . , t− 1 to broadcast, and that at stage 2 it is the turn of players
t, . . . , n. The protocol will instruct player i to either reveal her share θi ∈ Θi

or not to reveal anything (symbolized by a special action denoted ⊥ ∈ Σ).
Specifically, we will require that player i reveals θi unless she is one of the stage
2 players and one of the first t−1 parties to speak has chosen not to reveal their
share. In the latter case player i does not reveal her share either.

In addition to revealing her share, player i is required to send along the
authentication information that was provided to her by the dealer. In case that
either the authentication fails, or that the player has refused to broadcast her
message,3 player i will be considered as having failed the authentication and
chosen the special ⊥ action.

After the two stages are completed, each player locally uses a reconstruction
function gS ∈ g in order to try and compute the secret given the shares that
have been revealed during the protocol’s execution. By the properties of secret
sharing, it follows that a party will be able to compute the secret at the end of
the protocol if a set S ⊆ N of at least t − 1 other parties have revealed their
shares, and otherwise she has no information about the secret.

The protocol requires that the players in each stage reveal their shares in
sequential order. However, the order in which the first t − 1 players broadcast
has no effect on the strategic properties of the protocol, and similarly for the
last n − t + 1 players. Thus, the protocol can effectively be implemented with
two rounds of communication (see full version for details).

4.4 Rational Strategies for Corresponding Reconstruction Games

The rational set-valued strategy S instructs both honest and rational players to
follow the strategy prescribed by Π , except that it does not specify how rational
players should act in cases when the honest strategy may not be in their self
interest. Specifically, we allow arbitrary action by a rational player i ≥ t when
the first t−1 players have all revealed valid shares (whereas honest players must
reveal in this case). The honest strategy (equivalent to the earlier ‘protocol’) is
itself consistent with the rational set-valued strategy profile. In the full version
of the paper, we show that S satisfies all the requirements of Theorem 4.1.

Acknowledgements

We thank Drew Fudenberg, Jonathan Katz, Silvio Micali, Peter Bro Miltersen,
Moni Naor, Adam O’Neill and the anonymous reviewers for helpful discussions
and comments.
3 In an implementation, a player that fails to broadcast her value within some prede-

termined amount of time might be considered to have refused to broadcast.

52 S.J. Ong et al.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets
game theory: robust mechanisms for rational secret sharing and multiparty com-
putation. In: PODC 2006, pp. 53–62 (2006)

2. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: Bar fault
tolerance for cooperative services. In: SOSP, pp. 45–58 (2005)

3. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In:
Proc. Nat. Conf. on Artificial Intelligence, AAAI 2005 (2005)

4. Basu, K., Weibull, J.W.: Strategy subsets closed under rational behavior. Eco-
nomics Letters 36, 141–146 (1991)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC 1988, pp. 1–10 (1988)

6. Blakely, G.: Safeguarding cryptographic keys. In: AFIPS, vol. 48, p. 313 (1979)
7. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)
8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols

(extended abstract). In: STOC 1988, pp. 11–19 (1988)
9. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and

achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp.
383–395. IEEE, Los Alamitos (1985)

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369. ACM, New York (1986)

11. Davis, G.B., Sandholm, T.W.: Algorithms for Rationalizability and CURB Sets.
In: AAAI 2006 (2006)

12. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

13. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-based mechanism
for lowest-cost routing. In: PODC, pp. 173–182 (2002)

14. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences 63, 21–41 (2001)

15. Feigenbaum, J., Shenker, S.: Distributed Algorithmic Mechanism Design: Recent
Results and Future Directions. In: Proc. 6th Int’l Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pp. 1–13 (2002)

16. Fuchsbauer, G., Katz, J., Levieil, E., Naccache, D.: Efficient rational secret shar-
ing in the standard communication model. Cryptology ePrint Archive, Report
2008/488 (2008), http://eprint.iacr.org/

17. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: Proc.
Financial Cryptography 2002, pp. 168–182 (2002)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229.
ACM, New York (1987)

19. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

20. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Babai, L. (ed.) STOC, pp. 623–632. ACM, New York (2004)

21. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mech-
anism design. In: FOCS, pp. 585–595. IEEE Computer Society, Los Alamitos (2005)

22. Kalai, E.: Large robust games. Econometrica 72(6), 1631–1665 (2004)

http://eprint.iacr.org/

Fairness with an Honest Minority and a Rational Majority 53

23. Katz, J.: Bridging game theory and cryptography: Recent results and future di-
rections. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008)

24. Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for ex-
changing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

25. Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432.
ACM, New York (2008)

26. Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring goods. In:
SODA 2005 (2005)

27. Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM 49(5)

28. Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair sfe and coalition-
safe cheap talk. In: PODC 2004, pp. 1–10 (2004)

29. Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: Gabow, H.N.,
Fagin, R. (eds.) STOC, pp. 543–552. ACM, New York (2005)

30. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-
party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–
197. Springer, Heidelberg (2006)

31. McGrew, R., Porter, R., Shoham, Y.: Towards a general theory of non-cooperative
computation. In: TARK, pp. 59–71 (2003)

32. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35, 166–196 (2001)

33. O’Neill, A., Sangwan, A.: Honesty, rationality, and malice in secret sharing and
MPC: Robust protocols for real-world populations (manuscript, 2008)

34. Ong, S.J., Parkes, D., Rosen, A., Vadhan, S.: Fairness with an honest minority and
a rational majority (April 2007),
http://eecs.harvard.edu/~salil/Fairness-abs.html

35. Ong, S.J., Parkes, D., Rosen, A., Vadhan, S.: Fairness with an honest minority and
a rational majority. Cryptology ePrint Archive, Report 2008/097 (March 2008),
http://eprint.iacr.org/

36. Parkes, D.C., Shneidman, J.: Distributed implementations of Vickrey-Clarke-
Groves mechanisms. In: Proc. 3rd AAMAS, pp. 261–268 (2004)

37. Petcu, A., Faltings, B., Parkes, D.: M-dpop: Faithful distributed implementation
of efficient social choice problems. In: AAMAS 2006, pp. 1397–1404 (May 2006)

38. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

39. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85. ACM, New York (1989)

40. Selten, R.: A reexamination of the perfectness concept for equilibrium points in
extensive games. International Journal of Game Theory 4, 25–55 (1975)

41. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
42. Shneidman, J., Parkes, D.C.: Specification faithfulness in networks with rational

nodes. In: PODC 2004, St. John’s, Canada (2004)
43. Shoham, Y., Tennenholtz, M.: Non-cooperative computation: Boolean functions

with correctness and exclusivity. Theor. Comput. Sci. 343(1-2), 97–113 (2005)
44. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and

set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)
45. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167. IEEE, Los Alamitos (1986)

http://eecs.harvard.edu/~salil/Fairness-abs.html
http://eprint.iacr.org/

Purely Rational Secret Sharing
(Extended Abstract)

Silvio Micali1 and abhi shelat2

1 MIT CSAIL
silvio@csail.mit.edu

2 U. Virginia
abhi@virginia.edu

Abstract. Rational secret sharing is a problem at the intersection of cryptogra-
phy and game theory. In essence, a dealer wishes to engineer a communication
game that, when rationally played, guarantees that each of the players learns the
dealer’s secret. Yet, all solutions proposed so far did not rely solely on the players’
rationality, but also on their beliefs, and were also quite inefficient.

After providing a more complete definition of the problem, we exhibit a very
efficient and purely rational solution to it with a verifiable trusted channel.

1 Introduction

In [LMPS04], Lepinski, Micali, Peikert and shelat put forward the notion and the first
implementation of Fair Secure Function Evaluation . This is a communication protocol
extending the traditional notion of secure function evaluation [GMW87]. In essence, a
Fair SFE is an SFE in which either (1) all players learn the result of evaluating a given
function on their secret inputs (but no other information about their inputs) or (2) none
of them learns anything. The first outcome is reached when all players want it, and the
second one when at least one of the players wants it. The difficulty lies in the fact that
such objectives must be reached no matter what the function may be and no matter how
many the player are, provided that at least one of the players is honest, that is sticking
to his communication instructions in all cases.

In [HT04], Halpern and Teague put forward the notion of rational secret sharing
(RSS), aiming at distilling separately, and in purely game theoretic terms, the last stage
of a Fair SFE (where the players attempt to reconstruct the specified output from their
shares of it). We believe this to be a very valuable contribution, but we also believe that
the notion of an RSS can be improved.

In this extended abstract we shall solely deal with the two-player version of the
notion, arguably the best way to highlight the novel and most poignant aspects of the
problem.1

1 Our approach easily extends to n players, where the dealer wishes that n out of n of them learn
the secret. The k-out-of-n definition of traditional secret sharing is very relevant for robustness,
and protects against the potential loss of shares, but is quite distracting and orthogonal to the
rationality problem at hand. Indeed, in a “k-out-of-n” rational secret sharing (assuming as
usual that the fewer the players knowing the secret, the more value to them), k players will
presumably prevent the others from learning their secret. Is this the natural wish of the dealer?

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 54–71, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Purely Rational Secret Sharing 55

1.1 Rational Secret Sharing as a Special Form of Mechanism Design

The Intuitive Notion. At the verge of dyeing, a dealer possessing a secret string S
wishes to ensure that two players will later on cooperate so as to both learn S. To this
end, he provides each player i with his share of the secret, a string Si. Each share is
individually meaningless (i.e., its distribution is independent of S), while together the
two shares reveal S. If the players were both honest, the dealer’s goal could be trivially
achieved. Unfortunately, honesty is not an available commodity: each player is assumed
to be rational (i.e., always trying to maximize his own utility), and the utilities that the
players attach to the possible ways of learning S are quite problematic. In particular,
each player prefers most to be the only one learning S, prefers less learning S together
with the other player, and even less not learning S at all. Accordingly, the dealer wishes
to chose the shares such that,

for a suitable communication channel, there exists a communication game that,
when rationally played, yields the secret to both players.

It is thus worth to recall quickly the traditional notions of solving a game.

Game Solution Concepts. Given a game G, a solution concept essentially is a way of
predicting how G will be played. From the cryptographic perspective of the authors,
traditional solution concepts are only partially meaningful, as they are stated from the
perspective of individual players, disregarding collusion altogether. Nonetheless their
meaningfulness is intact for the problem at hand restricted to just two players. (This is
by itself a good reason to focus on the two-player case.)

The strongest, traditional solution concept is that of solvability in dominant strate-
gies. Here, each player has a strategy σi that is best of him, no matter what strategies
the other players may use. In such a case predicting that each player i will play σi is
indeed the strongest form of prediction of play. Note that, in choosing σi, each player i
does not need to rely on the rationality on the other players, but just be rational himself!
Unfortunately, not all games admit dominant-strategy solutions.

The “next best” solution concept is dominant solvability, which now very roughly
explain. In a game G, a strategy a for player A is said to weakly dominate another
strategy a′ for A if (1) for all possible strategies b of player B, A’s utility under a is
greater than or equal to his utility under a′; and (2) for at least one strategy b′ of B,
A’s utility under a is strictly greater than his utility under a′. This being the case, a
rational A should remove strategy a′ and all of his weakly dominated strategies from
consideration. And a rational B should do the same on his side. Trusting that B has done
so, A should then eliminate from his remaining strategies all those that now become
weakly dominated (relative to the strategies left over to B). And so on, until neither
player can eliminate any more strategies. At that point, if A is left with a single strategy
a and player B with a single strategy b, then G is called dominant solvable, and (a, b)
is a very strong prediction for the way in which G will be rationally played. Notice,
however, that this second solution concept is weaker than the first one, since each player
must rely non only on his rationality, but also on that of his opponent. Again, not all
games admit such a strong solution concept.

56 S. Micali and a. shelat

The next solution concept we wish to roughly recall is that a Nash equilibrium. This
is a pair of strategies (a, b), such that a is the best strategy for A if he believes that B
will play b (and symmetrically for B). The good news is that each game admits such
equilibria, but the bad news is this is a very distant third among these solution concepts.
The meaningfulness of a Nash equilibrium in fact depends not only on the rationality of
both players, but also on their beliefs. Typically a game has a plurality of equilibria, often
having symmetric payoffs, making it very uncertain to predict which of them will be
played. Furthermore, the game may easily not end up in equilibrium at all. If A believes
that equilibrium (a, b) will be played, while B believes (a′, b′), then the strategy profile
ultimately played may be (a, b′) which needs not to be an equilibrium at all!

Mechanism Design. Very roughly said the goal of mechanism design is to engineer
a game so that, “when rationally played”, a given property P is guaranteed to hold.
The quality of such design therefore crucial depends on the solution concept adopted:
it is exceptionally meaningful (recall that we are focusing on the two-player case!)
when the game has dominant strategy solution, it is very meaningful when the game
is “dominant solvable”, and it has only very limited meaningfulness when the game
is “Nash solvable.” Such limited meaningfulness persists even if P is guaranteed to
hold at each of possible Nash equilibria of the game. In a sense, if the game has k Nash
equilibria, then —due mismatched beliefs— it roughly has k2 (kn if there are n players)
possible ways not to end in any equilibrium.

Another quality measure in mechanism design is the amount of knowledge about the
players (e.g., knowledge about their utilities) required to engineer the game. Indeed,
since precise knowledge about the players may not be available or too expensive to
gather, the lesser the knowledge required from the designer the better.

Rational Secret Sharing and Mechanism Design. We propose to view rational secret
sharing as a special mechanism-design problem. That is, one should try to guarantee
the property “all players learn the secret” by means of a pure communication game.
In essence, the game should be such that (1) all player actions consist of exchanging
messages over a special channel, (2) no trusted party is involved, and (3) no exogenous
punishments, fines, etc. can be triggered by the final outcome: the players’ utilities must
solely depend on who has, or has not, learned the secret.

This point of view enables us to extend to RSS the same quality analysis applicable
to mechanism design, providing a more meaningful comparison among various RSS
protocols.

1.2 Prior Solutions

In their quoted paper, Halpern and Teague present a protocol for the 3-out-of-3 case (and
then show how to modify it for the m-out-of-n case, where 3 ≤ m < n). Their proto-
col guarantees that all players learn the secret at a Nash equilibrium whose strategies
survive the iterated elimination of weakly dominated strategies (IEOWDS for short).
Rather than the swap channel of Lepinski, Micali, Peikert, and shelat, they rely on
simultaneous-broadcast channels, and prove that no rational secret sharing protocol
can be fixed-round with such channels. A main limitation of their protocol is that the
trusted dealer continues to be an active participant. (In most settings, such a dealer could
directly inform the players of what the secret is.)

Purely Rational Secret Sharing 57

Gordon and Katz [GK06] present a protocol for just two players that dismisses the
need for the periodic involvement of the dealer. Their protocol too relies on simultaneous-
broadcast channels, and guarantees that all players learn the secret at a Nash equilibrium
whose strategies survive IEOWDS. Abraham, Dolev, Gonen, and Halpern [ADGH06]
present a similar protocol, but focus on defining (and protecting against) coalitions of
rational players.

Lysyanskaya and Triandopoulos [LT06], with the same channels and implementation
type, consider a model with a mix of rational and malicious players.

Kol and Naor [KN08b] present a quite different protocol with simultaneous-broadcast
channels, which guarantees that all players learn the secret at a “strict Nash equilibrium”,
a locally stronger version of a Nash equilibrium. (In essence, any player deviating from
his own equilibrium strategy expects to receive a strictly smaller utility.)

A Separate Protocol. We wish to mention an interesting and recent protocol of Ong,
Parkes, Rosen, and Vadhan [OPRV08]. Their protocol however works in a quite differ-
ent model. On one side, it does not require any special channels (that is, it relies on
ordinary broadcast channels rather then simultaneous-broadcast ones). On the other, it
relies on the honesty of a few players. (As we focus solely on rational players, we shall
not include this protocol in any future discussion or comparison.)

1.3 Weaknesses of Prior Solutions

Protocol Inefficiency and Excessive Designer Knowledge. The prior protocols share
the following logical structure. The players interact in several rounds, using some spe-
cial channels. The protocol has a special round R, unknown to the players because it is
secretly selected by the dealer according to a given distribution. If no player “cheats”
then all players learn the secret. A player can successfully cheat only if he correctly
guesses R. If a player i erroneously guesses R, then no one learns the secret (which
gives i utility ui). But if i guesses R correctly (and acts appropriately), then he is the
only one to learn the secret (which gives him utility Ui).

In essence, therefore, to hope that it is rational to stick to the protocol’s prescribed
strategies without cheating, letting p be the probability of successfully guessing R, p
needs to be so small that p·ui ≤ (1−p)Ui. This shows two separate weaknesses of these
protocols. First, because properly engineering the game implies properly selecting p, the
designer needs to know the ui’s and the Ui’s quite accurately. (Thus, from a mechanism
design perspective, this diminishes the quality of these approaches.) Second, because
the expected number of rounds must be greater or equal to p, this implies that all prior
protocols run in exponential time. In fact, independent of the distribution according
to which R is selected, the expected number of rounds of the prior protocols must be
exponential in k, assuming as it is natural that all players utilities are presented in binary,
and that their length is k. This inefficiency alone calls for new protocols.

Limited Guarantee for the Desired Property. Prior solutions ensure that the property
“all players learn the secret” holds at a given Nash equilibrium of the engineered com-
munication game. Again, however, this assurance is far from guaranteeing our property
for two separate reasons: equilibrium selection and equilibrium absence. Let us discuss
the first reason first. Even if one were certain that the engineered game will end up in an

58 S. Micali and a. shelat

equilibrium, he could not be certain of which equilibrium would be actually selected.
And since, in the engineered games of the previous works, the “all-know-the-secret”
property was guaranteed only at one of the possible Nash equilibria, the equilibrium
ultimately selected could very well be one in which not all players learn the dealer’s
secret. Let us now discuss the second reason. The meaningfulness of any Nash equilib-
rium is inextricably linked to the assumption that the players’ beliefs are “consistent”,
which of course needs not be the case. Thus, even if all players learned the secret at
each Nash equilibrium of the engineered games, there is no guarantee at all that the en-
gineered game ends up in equilibrium. Again: assume that (a, b) and (a′, b′) are Nash
equilibria, that A believes that B will play b, and that B believes that A will play a′.
Then, A will rationally (based on her belief!) play strategy a, and B will play b′. And
since (a, b′) may not be an equilibrium, let alone an outcome in which all players learn
the secret.

To be sure, the prior protocols were engineered so that all players learned the dealer’s
secret not just at a generic Nash equilibrium, but at one whose strategies survived IE-
OWDS. But as long as multiple Nash survive IEOWDS (which is the case in prior
protocols), then equilibrium selection and equilibrium absence will continue to poison
the landscape.

To be sure too, some of the prior RSS protocols guaranteed that all players learned
the secret at an even stronger type of equilibrium, such as the strict Nash of [KN08b].
But these equilibria are in a sense only “locally stronger.” That is, if the players believe
that a strict Nash equilibrium (a, b) will be played out, they would have “even less
incentives” of deviating from it. But ensuring that A does not deviate from a if she
believes that B chooses strategy b is not too meaningful, unless one can also ensure
that B actually chooses b. If the game is engineered so that the best we can say about
it is that it has a strict Nash equilibrium (at which the desired property holds) alongside
with other additional equilibria, then equilibrium selection and equilibrium absence will
continue to stand in the way.

In sum, all prior RSS protocols did not solely depend on the players’ rationality, but
also on their beliefs. Thus they could not guarantee that all players, if rational, learned
the secret.

1.4 Our Contributions

Our contributions can be summarized as follows.

• Modeling. We put forward a more complete modeling of the RSS problem.
In particular: we highlight the inputs available to the designer of protocol; pro-
vide a more comprehensive set of utilities —including the possibility of learning
the wrong secret—; highlight the necessity of modeling RSS as a potentially infi-
nite communication game; provide a very general definition of a communication
channel; highlight the necessity of worrying about other channels even in a com-
munication game designed for a specific channel; provide the first rationalization
of aborting in a communication game; and bring to the fore the necessity of in-
cluding bargaining into the definition of RSS.

Purely Rational Secret Sharing 59

• Purely Rational Implementation. Our RSS protocol is an implementation in sur-
viving strategies, as put forward by Chen and Micali [CM08]. In essence, such an
implementation is “equilibrium-less.” It guarantees that the desired property holds
for any combination of strategies surviving IEOWDS. Implementation in surviv-
ing strategies thus implies that the desired property is guaranteed based solely on
the rationality of the players, and not on their beliefs. In a sense, as long no player
chooses a dumb strategy, the desired property is guaranteed to hold.

Actually, our protocol satisfies a stronger notion of implementation: namely,
the surviving strategy of each player is essentially unique.2 That is, in our RSS
protocol, after iteratively deleting all weakly dominated strategies, essentially a
single strategy survives for each player, and playing these two strategies guaran-
tees that both players learn the secret. That is, our RSS protocol essentially is a
dominant solvable game.

Note that IEOWDS often eliminates very few strategies (a fact that has been
used to argue that Nash equilibria that survive IEOWDS is a solution concept not
really better than an ordinary Nash). Thus it is even more remarkable that our
protocol is such that, for any player, all but one strategy is “rationally credible.”

Note too that, in general, which strategy survives depends on the order in
which weakly dominated strategies are eliminated. In our case, however, the (es-
sentially) unique surviving strategy of a player is the same irrespective of any
possible elimination order. In sum, our solution concept is indeed very strong.

• Communication Channel and Security. Our communication channel uses only or-
dinary envelopes (as a way of temporarily and perfectly hiding a secret value) and
the dealer’s public key.

The security depends on the ability of envelopes to perfectly hide their content
and unforgeable digital signatures.

• Operational Efficiency. Ours is the first polynomial-time RSS protocol, fully ac-
counting for all inputs. In fact, each surviving strategy requires a total of 10k
envelope operations, 4kL bit operations, plus the time of verifying two signatures
relative to k-bit public keys. Here L is an upperbound to the length of the binary
representation (of the absolute value) of any of the players’ utilities, and k is a
security parameter. The security parameter k controls the probability that some-
thing goes wrong. (The probability of something going wrong is guaranteed to be
exponentially small in k.)

The dealer is required to perform a total of 4kL bit operations, to generating
matching public and secret keys of a digital signature with security parameter k,
and to produce two signatures relative to the selected public key.

2 The reason that we do not say unique is that, as we shall argue, a pure communication game
G should be modeled as a possibly infinite sequence of the same sub-game g. Thus, a strategy
of any player in G actually consists of a sequence of strategies, σ1, σ2, . . ., where σj is the
player’s intended strategy for jth copy of g, if reached. By saying that each player has an
essentially unique surviving strategy in G we mean that any of his surviving strategies is of the
form s, σ2, . . ., where s is fixed; that is first sub-strategy is the same for any surviving strategy
of the player. And when all players play their first such strategies, G terminates.

60 S. Micali and a. shelat

• Round Efficiency. A play of our surviving strategies involves only 6 rounds (1 for
the players, and 5 for the channel).

2 Selected Modeling Issues

Dealer Secret, Player Outputs, Player Utilities, and Designer Knowledge. For con-
creteness, we model the secret as a uniformly selected string of n bits. (Our protocol of
course works for all kinds of other distributions as well.)

We assume that, upon termination, each player outputs either an n-bit string (inter-
pretable as the player’s guess for the dealer’s secret) or the special symbol “?” (inter-
pretable as the player’s having no information about the secret). The protocol terminates
when a prespecified stage is publicly reached, or when either one of the players aborts,
that is stops communicating and for ever takes no further action —after setting his own
output.3

We define an outcome of an RSS protocol to consist of three possible outputs for
each player: (1) the correct secret the dealer, (2) the symbol “?”, and (3) an incorrect
string. We assume that each player prefers his outputs in this order, and prefers the
inverse order for the outputs of the other player. That is, for each player i, denoting by
Ki (for “i knows the secret”) his first output, by Wi (for “i wrongly learns the secret)
his third output, and by ui his utility function, we assume that the utilities of the first
player over the possible 9 outcomes are as follows:

u1(K1, W2) ≥ u1(K1, ?) ≥ u1(K1, K2) ≥
u1(?, W2),≥ u1(?, ?) = 0 ≥ u1(?, K2) ≥
u1(W1, W2),≥ u1(W1, ?) ≥ u1(W1, K2).

Player 2’s utilities are symmetrically defined. (Setting the players’ utilities to 0 when
both of them have no information about the secret is somewhat arbitrary, but concretely
useful to fix our thoughts.) All of the above inequalities can be strict. But for our anal-
ysis it suffices that u1(K1, ?) > u1(K1, K2) > u1(?, ?) > u1(W1, W2), and symmet-
rically for player 2. That is, each player prefers learning the secret alone to learning
together with the other player, prefers the latter outcome to not learning the secret, and
prefers the latter outcome to learning the wrong secret.4 It is also useful to assume that a
player’s expected utility when randomly guessing the secret is negative. (Alternatively,
we must ensure that the utility of random guessing the dealer’s secret is less than that
of learning the secret together with the other player. Else, a player would not have any
incentive to participate in an RSS protocol.)

3 That is, we explicitly assume that one players’ aborting is detectable by the other player. (After
all, stopping all communications should be “eventually detectable” in practical settings, and
immediately detectable in synchronous ones.) Alternatively, each player may keep track of his
current output at all times (rather than producing his output at termination). This way if a player
aborts without the “courtesy” of informing the other player, the latter’ output is properly set.

4 Indeed, if the secret were the combination of a safe with money and a bomb inside, and the
safe exploded when the wrong combination were entered, learning the wrong secret could have
truly negative utility for a player!

Purely Rational Secret Sharing 61

This structure of the utility is assumed to be known to the designer. And so is an up-
perbound to the number of bits necessary to write down the largest of the 16 possibilities
of the players. (In other words, it suffices for the designer to know the players’ utilities
within an exponential accuracy, rather than the linear accuracy of the prior works.)

Ensuring the Rationality of Abort. Our protocol, if a special point in which a player i
has not yet learned the secret is reached, calls for him to abort. By so doing, of course,
the player looses any hope of learning the secret. Thus, in order to guarantee that the
suggested strategy survives IEOWDS, we need to ensure that, at that point of our pro-
tocol, the player no longer has any rational hope of learning the secret (whether alone
or together with the other player). What should this mean? In particular, of course, it
should mean that i’s expected utility when continuing the current execution of the pro-
tocol is worse than that of aborting outputting “?”. But it should not mean just that.
The dealer who has provided the players with their shares is now dead, and can no
longer control what the players do from his grave. RSS is a pure communication game,
the players have all the information they need to continue any given execution of our
protocol (if they so want) and no authority is there to stop them from (or fine them
for) doing so. In addition, the players also have the ability of starting another execution
from scratch. (For instance, they may use their same shares, but different coin tosses
for their strategies, if probabilistic. Alternatively, if reusing the old shares is not “ratio-
nally advisable,” they may first resort to a secure function evaluation to “compute new,
equivalent and, independently selected shares from their old ones, and then execute our
protocol again. The possible alternatives abound.) Better yet, perhaps, they also have
the ability to start a totally different RSS protocol using the same communication chan-
nel. More generally yet (unless one were ready to make the outlandish assumption that
no other channel exists), they have the ability to execute a totally different RSS protocol
with a totally different channel! In sum,

To rationalize player i’s aborting in an RSS protocol, we should prove that any
chance of i’s learning the secret has vanished.

Realizing, formalizing, and delivering this property is a main contribution of our work.

Modeling Special Channels. All RSS protocols with rational players must use some
special communication channel, such as a swap channel or a simultaneous-broadcast
channel. Since we have just argued that a proper analysis of RSS should include the
possibility of running a different protocol over a different channel, it becomes imper-
ative to model any possible special channel of communication. We do so by letting
special channels consist of “mildly trusted parties in abundant supply.” Let us explain.
If some party T could be totally and universally trusted, then many problems (includ-
ing rational secret sharing) would be trivialized. For instance, the dealer might as well
confide his secret to T and ask him to reveal it when all the designated players show up
together. Thus “mild trust” became imperative. As for abundant supply we mean that
there is not a unique mildly trusted party in the world. (If this were the case, one might
ask T to interact only once with a given group of players for a given task, and simplify
a lot of things too.) By contrast, to model the fact that a special communication channel
(if it exists at all) is indeed a commodity purchasable at any store, we envisage that

62 S. Micali and a. shelat

there is a plurality of mildly trusted parties, not aware of —or not in contact with—
each other.

Accordingly, following [ILM08], we model a mildly trusted party in abundant supply
as a verifiable trusted party (VTP for short) with no memory. By verifiable we mean
that every one can see the actions a VTP takes and verify that they are the prescribed
ones. That is, a VTP is not trusted to keep, nor to correctly make any secret actions. A
VTP knows nothing and acts publicly, so that he is trusted only to the extent that he will
indeed publicly perform his prescribed public actions.

For example, a VTP can trivially implement a swap channel between two parties as
follows. First each of A and B seals his message for the other into an opaque envelope
and publicly gives it to the VTP. Then the VTP publicly hands A’s envelope to B and
B’s envelope to A.

As for another example, a VTP can implement a simultaneous-broadcast channel as
follows. First, A and B seal their respective messages for the other in two envelopes
and publicly hand them to T , then T publicly opens both of them.

In sum, VTPs can be viewed as a formalization of a legal system. One may not
want to trust his secrets to —say— a judge, but should at least trust a judge to carry
out under public scrutiny a specified sequence of totally public actions. Since typically
there are multiple judges to choose from, the analogy with the legal system makes it
clear that the players can always walk to an new judge to execute their protocol one
more time. The analogy also makes it clear that if one type of channel is available, then
indeed other types are likely to be available too. Whether or not, as functions, the “swap
channel” is reducible to the “simultaneous-broadcast-channel” (or viceversa), from the
VTP perspective, both exist. (Indeed any judge can, with envelopes, implement both
channels and a host of similar ones.) This highlights the point that when a player is
asked to abort, then it really must be the case that no hope to resurrect the secret exists
for him, no matter what other protocol and channel might be considered.

Adding Costs to the Model. Consider a cryptographic rational secret sharing protocol
in which the dealer also announces an encryption E of the secret S. Then, a player, in
addition to any other strategy, also has available a computational-attack one: namely,
abort and try to decrypt E. A computational-attack strategy is also possible in our pro-
tocol, but in a more complex way. Indeed, successfully forging a given value enables a
player to learn the secret alone, and force the other to learn a false secret. Thus we too
need to argue that computational-attack strategies are not rational. One way to do so
is to define a computationally bounded version of rational secret sharing. A preferable
way is to attach cost to computation so as make it preferable for a player to play hon-
estly our protocol rather than try to attack the signature scheme and then, if the attack
is successful, getting an advantage in the protocol. Details will be provided in the final
version. (In any case, as argued by Halpern and Pass [HP08] considering computational
costs may be meaningful even for more traditional —i.e., non-cryptographic— game
theoretic settings.)

We also associate a small additive cost of γ to each use of the channel. (E.g., every
one has the right to access the legal system, but incurs a fixed cost in doing so.

Purely Rational Secret Sharing 63

We note that additive (or multiplicative) discounts of the players final utilities are
quite standard in game theoretical models in which the players could go on interacting
(possible even for ever), typically by executing a given sub-game.5

The Issue of Bargaining. Finally, let us bring to the reader attention a point totally
neglected so far. Traditionally, to guarantee the dealer’s wish that all players learn the
secret (at least when everyone behaves rationally), the only restrictions envisaged for the
utilities are local to each player (e.g., each player must prefer reconstructing the secret
alone to reconstructing it together with the other player, etc.). That is, the utilities of
an individual player must be “compatible with each other,” but not with those of other
players. We wish to point out, however, that it is necessary to consider inter-player
restrictions on the players’ utilities, or be ready live with the consequences relative to
the dealer’s wishes. Let us explain.

A dealer providing players with shares of his secret S automatically enables them to
bargain. In a bargaining situation, one player may get a better deal than others without
any failure of rationality. For instance, in an RSS context, Player 1 may simply insist
that unless everyone plays a protocol in which he learns the secret alone 99 times out
of 100, he is not going to cooperate. (In a sense, if to Bill Gates learning the secret
together with you and me is worth $1K, but learning it alone is worth $1B, then he
would be wasting time and opportunity costs in participating with you and me in a
“fair” reconstruction of the secret. Therefore, he may successfully bargain for a higher
probability of learning the secret.) Now, if the dealer indeed has come up with shares
and channels enabling the players to rationally reconstruct the secret together using a
given special communication channel, then we should also expect that —whether with
the same or with a different channel— the players can use their same shares to skew
the payoffs so as to suit their bargaining needs. Truly unbelievable assumptions must
be made to prevent the shares to be used in this alternative manner (especially in light
of the result of [ILM08], that essentially enables the players to do rationally almost
anything, although not too conveniently). Thus, either one must make the additional
assumption that the players utilities are such that their bargaining game has a unique
solution (e.g., some form of symmetry), or the dealer must be ready to die in peace with
the comfort that either all players (if rational) will learn the secret, or that he has put all
of them on a technically equal bargaining position.

The reader is free to pick the assumption he prefers. But always guaranteeing that
all players together learn the secret may not be possible. For the rest of this extended
abstract let us assume that the utilities are such that there is a unique bargaining solution.

3 Our Enriched Solution

It is simpler to explain our protocol assuming first that also special, dealer-sealed, en-
velopes are available: anyone can verify that such an envelope has been sealed by the
dealer, and thus that its content is what the dealer wanted it to be, because any attempt
to break the dealer’s seal is guaranteed to be detectable by anyone.

5 For instance, if a given contract is executed after i days of negotiation it is worth less to the
players than executing the same contract as i − 1 days of negotiation.

64 S. Micali and a. shelat

Notice that, if such special envelopes were available, then a trivial solution to the
RSS problem exists. In essence, letting s be the secret, the Dealer creates two random
strings sA, sB such that s = sA⊕sB , and then provides player A (respectively B) with
infinitely many pink (respectively, blue) dealer-sealed envelopes, each containing sA

(respectively sB). Players A and B then interact as follows. First, each player, simulta-
neously with the other, gives the VTP one of his dealer-sealed envelopes. Then, if the
VTP receives both a pink and a blue dealer-sealed envelope, he publicly opens both of
them. Else (e.g., one of the envelopes is ordinary, or has a broken seal), he destroys all
envelopes received. In either case, the players incur a positive cost for this interaction.

The above indeed is an RSS protocol working in dominant-strategies. The fact that s
becomes public is not a problem: the dealer could just give both players the same string
r and choose sA and sB such that their bit-by-bit exclusive-or is s⊕ r. The problem is
that we see no way of keeping its analysis by simulating its dealer-sealed envelopes with
ordinary ones and digital signatures. We thus now describe a more complex protocol
for which we can “simulate” dealer-sealed envelops as follows. Rather than handing to
a player infinitely many dealer-sealed envelopes with content c, the dealer gives him
a single digital signature of c, which then the player can —copy and— put into an
ordinary envelope and give to the VTP as many times as necessary. (In the final version
we shall prove that this simulation keeps our analysis essentially intact.)

In order to guarantee implementation in surviving strategies, our protocol critically
introduces an asymmetry in the way the players are treated.

3.1 Dealer’s Instructions

On input an �-bit secret s and a security parameter k′, do:
1. Choose a random string σ ∈ {0, 1}� and compute s′ ← s⊕ σ.
2. Choose a value k such that for all i

(a) ui(K1, K2) >
(
2−k/2

)
ui(K1, ?) +

(
1− 2−k/2

)
ui(?, ?)

3. For i = 1, 2, . . . , k, repeat the following
(a) Randomly select a four-tuple (a0, a1, b0, b1) such that a0, b0 are a random
⊕-sharing of the secret s′ and a1, b1 are random and independent values of
the same length as s.

(b) Pick two random bits e1, e2 ← {0, 1}.
(c) Player 1’s share is (ae1 , a1−e1) and Player 2’s share is (be2 , b1−e2).
(d) Player 1’s check value is C1,i = (e2, b1) and player 2’s check value is

C2,i = (e1, a1).
(e) Place value aj into envelope E1,i,j and place value bj into envelope E2,i,j

for j ∈ {0, 1}.
4. Let C be the k(� + 1)-bit number corresponding to the check values

C2,1, . . . , C2,k. Choose random values α, β ∈ Zk and compute the message
authentication code γ = α · C + β.

5. Place into an envelope E1,0 the values (C1,1, . . . , C1,k, α, β) and into an enve-
lope E2,0 the values (C2,1, . . . , C2,k, γ). Seal the envelope E1,0.

6. Place into an envelope Ep,σ the value σ for p ∈ {0, 1}.
7. Send the player 1 the envelopes E1,0, E1,σ and E1,i,j for i ∈ [1, k] and j ∈
{0, 1}. Send to player 2 the envelopes E1,0, E1,σ and E1,i,j for i ∈ [1, k] and
j ∈ {0, 1}.

Purely Rational Secret Sharing 65

3.2 Reconstruction Instructions

Recall that a player’s strategy consists of a Turing machine that on input a history h
outputs either a special symbol ⊥ to indicate abort, an output string s, or a sequence of
2k +1 strings to place into envelopes that are submitted to the VTP. We use the symbol
ε to denote the initial history consisting of only the envelopes received from the dealer.

Player p instructions T (h) :
1. If h = ε, then submit envelopes Ep,0 and Ep,i,j for i ∈ [1, k] to the VTP. If the

VTP destroy the envelopes, output ⊥ and stop. Else, after the VTP completes
all of its steps, reconstruct n candidates of s by xor’ing the non-check values
that have been opened. Let s′ be the majority candidate. If no majority exists,
then output⊥. Otherwise, privately open envelope Eσ and output s′ ⊕ σ.

2. For all other histories, output⊥ (i.e. do not invoke the VTP).
VTP Instructions :

1. Publicly verify envelope E1,0. If the envelope’s seal does not verify, then de-
stroy all envelopes. Otherwise, publicly open the envelope to reveal the values
(C1,1, . . . , C1,k) and α, β.

2. Publicly open envelope E2,0 to reveal values C = (C2,1, . . . , C2,k) and γ. If
γ �= α · C + β, then destroy all envelopes.

3. Open the check envelopes (left or right) of player two indicated by
C1,i, . . . , C1,k. If there exists an opened envelope E2,i,j that does not match
its stated value in C1,i, the check fails: destroy all envelopes.

4. Open the check envelopes (left or right) of player one indicated by
C2,i, . . . , C2,k. If there exists an opened envelope E1,i,j that does not match
its stated value in C2,i, the check fails: destroy all envelopes.

5. If all k checks succeed, open the remaining 2k envelopes (corresponding to
shares of the secret s′).

3.3 Analysis

Theorem 1. The strategy profile (T, T) for players 1 and 2 constitute a profile that
uniquely survives the iterated deletion of weakly dominated strategies in the given VTP
model.

The main idea of the proof. Unless the first envelope submitted by the first player is
sealed correctly, the VTP destroys envelopes. Once the one-and-only sealed envelope
E1,0 is opened, the second player knows which of her share values are check values, and
which are values that are used in the sharing of s′. If the VTP succeeds in the same use
that E1,0 is opened, then both players learn the secret. If it does not, then some check
envelope has failed and therefore no share value has yet been opened. In subsequent
uses of the VTP, the second player can then modify all of her share values by XORing
a random string r to them. This action is undetectable by the first player. Moreover,
this action is the weakly dominant response for player 2 since player 2 prefers to learn
the secret alone. Therefore, the first player has no hope to recover the secret (since
any future opened share values will be independent of the real secret s′. Thus, the first
player will abort in every subsequent use of the VTP. As a result, it is best for the second

66 S. Micali and a. shelat

player to submit the envelopes received from the dealer on the first use (since either her
envelopes are never opened, or they are opened in the first and only rational opportunity
there will be to recover the secret). In this case, the first player should follow T since
each use of the VTP incurs a small cost. Then finally, the second player should also
play T .

Definition 1. A revealing history h is a history in which the envelope E1,0 has been
opened and verified in some use of the VTP, but in every use of the VTP, all envelopes
have been destroyed.

Let X1 be the set of all player-one strategies, and X2 be the set of all player-two
strategies. Notice that for all σ ∈ X1, u2(σ, T) ≥ u2(?, ?) and for all τ ∈ X2,
u1(T, τ) ≥ u1(?, ?). Therefore in the first step of removal, all guessing strategies that
have expected utility less than ui(?, ?) can be removed.

For any player-two strategy τ , define Γ (τ) as the following strategy:

1. For the first use of the VTP, follow τ(ε). If the first use of the VTP results in all
envelopes being opened, output the same as strategy τ .

2. If the first use of the VTP does not result in all envelopes being opened, for the
subsequent uses of the VTP, follow strategy τ with the following exception: for
any revealing history h, compute which of player 2’s envelopes are non-check en-
velopes, choose a random value r and XOR r to each of these non-check values.
Use these new non-check envelope values in place of the original non-check values
received from the dealer to compute τ(h) for all subsequent histories h. If in this
use or any subsequent use of the VTP, all envelopes are opened, compute the output
O as per τ using the original non-check envelope values.

Claim. The player-two strategy Γ (τ) weakly dominates τ whenever τ �= Γ (τ).

For any player-one strategy σ, the player-two strategies τ and Γ (τ) are the same for the
first use of the VTP, and thus result in similar utilities in any execution that succeeds.

For any revealing history, Γ (τ) never does worse than τ since Γ (τ) is both perfectly
indistinguishable from τ to player one, and the share values produced by Γ (τ) do not
have any information about the secret s′. Since Γ (τ) �= τ , then there is some σ and
some execution for which Γ (τ) will be strictly better than τ .
Set X1

2 = {Γ (τ)}τ∈X2 . For any player-one strategy σ, let Π(σ) be the strategy that
does the following: If the input history h is not revealing, then follow σ(h). If input
history h is revealing, then (a) never use the VTP in any subsequent round and (b) if
σ(h) outputs a string s, then output s and otherwise output⊥.

Claim. The player-one strategy Π(σ) weakly dominates σ whenever (1) σ(ε) submits
the sealed envelope E1,0, and (2) there exists τ ′ ∈ X1

2 such that (σ, τ ′) produces a
revealing history h with positive probability and σ(h) does not instruct to abort.

Consider any profile (σ, τ) were τ ∈ X1
2 . The strategies σ and Π(σ) are equivalent on

the first use of the VTP and therefore result in the same history h. If h is successful,
then both σ and Π(σ) result in reconstructing the secret. Similarly, if h is not successful
and also not revealing, then the two strategies are equivalent. If h is revealing, but σ(h)

Purely Rational Secret Sharing 67

produces an output, then both are equivalent. Finally, if h is a revealing history and
σ(h) uses the VTP again, then Π(σ) is strictly better. This follows because τ survives
the first step of removal, and therefore τ produces envelopes for the second (and future)
uses of the VTP that are independent of the secret s′. This upper-bounds player 1’s
utility u1(σ, τ) by −ε + u1(?, ·). However, u1(Π(σ), τ ′) = u1(?, ·) which is strictly
greater. (Similar analysis for the case when σ outputs s instead of ⊥.)

The second condition of the claim ensures this situation occurs for some τ , and
therefore therefore Π(σ) weakly dominates σ.
Set X1

1 to be the set of player-one stratgies in which after the sealed envelope is submit-
ted, the VTP is never used again. Let Θi(τ) be the player-two strategy that plays T (ε)
in the first i uses of the VTP, and follows τ for all subsequent uses.

Claim. If τ �= Θ1(τ), then Θ1(τ) weakly dominates τ .

Consider any player-one strategy σ ∈ X1
1 .

For those executions of σ in which player 1 submits an unsealed envelope in the
first use of the VTP, all envelopes are immediately destroyed and therefore it holds
that u2(σ, Θ(τ)) = u2(σ, τ) since both strategies are equivalent for all second and
subsequent uses of the VTP.

We now consider those executions of σ in which the sealed E1,0 is submitted. (This
can only happen once.) Let pσ,τ be the probability that under profile (σ, τ), the first use
of the VTP results in destroyed envelopes. Observe that pσ,τ ≥ pσ,Θ(τ) for all σ. Since
σ ∈ X1

1 , the VTP is never used again by σ, and therefore u2(σ, τ) = pσ,τu2(·, K2)
which is less than or equal to pσ,Θ(τ)u2(·, K2) = u2(σ, Θ(τ)). The condition that
Θ(τ) �= τ implies that the inequality is strict for some player one strategy σ which
establishes the claim. Induction can be used to show that the claim holds for all i.
Set X2

2 = {Θ(τ)}τ∈X1
1
.

Claim. The player-one strategy T weakly dominates every surviving strategy σ.

Observe that u1(T, τ) = u1(K1, K2) for any τ ∈ X2
2 . Any other player one strategy

has a positive probability of causing the VTP to destroy all envelopes, and therefore
incurring a cost of −ε.

A similar argument with Π can be applied to every player-two strategy. Thus, in any
use of the VTP that reveals the dealer-received envelope E2, the player-two strategy
no longer uses the VTP. This implies that the player-two strategy T weakly dominates
every surviving strategy.

Acknowledgements

Many thanks to Sergei Izmalkov for his characteristically generous and insightful help.

References

[ADGH06] Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed Computing Meets
Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty
Computation. In: PODC 2006 (2006)

68 S. Micali and a. shelat

[BP98] Ben-Porath, E.: Correlation without mediation: Expanding the set of equilibria out-
comes by “cheap” pre-play procedures. J. of Economic Theory 80, 108–122 (1998)

[CM08] Chen, J., Micali, S.: Resilient Mechanisms For Truly Combinatorial Auctions.
MIT-CSAIL-TR-2008-067 (November 2008)

[GK06] Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987 (1987)

[HT04] Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In:
STOC 2004 (2004)

[HP08] Halpern, J., Pass, R.: Game Theory with Costly Computation (manuscript, 2008)
[IML05] Izmalkov, S., Micali, S., Lepinski, M.: Rational Secure Computation and Ideal

Mechanism Design. In: FOCS 2005 (2005)
[ILM08] Izmalkov, S., Lepinski, M., Micali, S.: Verifiably secure devices. In: Canetti, R.

(ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)
[KN08a] Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Ex-

changing Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

[KN08b] Kol, G., Naor, M.: Games for Exchanging Information. In: STOC 2008 (2008)
[LMPS04] Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely Fair SFE and

Coalition-Safe Cheap Talk. In: PODC 2004 (2004)
[LT06] Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-

party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–
197. Springer, Heidelberg (2006)

[OPRV08] Ong, S.J., Parkes, D., Rosen, A., Vadhan, S.: Fairness with an Honest Minority and
a Rational Majority. On Eprint, 2008/097 (2008)

[OR] Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

A The Ballot-Box Model

Ballot-box mechanisms are extensive-form, imperfect-information mechanisms with
Nature. Accordingly, to specify them we must specify who acts when, the actions and
the information available to the players, when the play terminates, and how the outcome
is determined upon termination.

A ballot-box mechanism ultimately is a mathematical abstraction, but possesses a
quite natural physical interpretation. The physical setting is that of a group of players,
seated around a table, acting on a set of ballots. Within this physical setting, one has
considerable latitude in choosing reasonable actions available to the players. In this
paper, we make a specific choice, sufficient for our present goals.

A.1 Intuition

Ballots. Externally, all ballots of the same kind are identical. (Unlike [ILM08], we
do not need super-envelopes here.) An envelope may contain a symbol from a finite
alphabet. An envelope perfectly hides and guarantees the integrity of the symbol it
contains until it is opened. Initially, all ballots are empty and in sufficient supply.

Ballot-Box Operations. We only need 3 classes of ballot-box operations. Each opera-
tion except for the first type is referred to as a public action, because it is performed

Purely Rational Secret Sharing 69

in plain view, so that all players know exactly which action has been performed. These
classes are: (1) writing a symbol on a piece of paper and sealing it into a new, empty en-
velope; (2) publicly opening an envelope to reveal its content to all players; (3) publicly
destroying a ballot; and (4) do nothing.

Public Information. Conceptually, the players observe which actions have been per-
formed on which ballots. Formally, (1) we associate to each ballot a unique identifier, a
positive integer that is common information to all players (these identifiers correspond
to the order in which the ballots are placed on the table for the first time or returned to
the table —e.g., after being ballot-boxed); and (2) we have each action generate, when
executed, a public string of the form “A, j, k, l, ...”; where A is a string identifying the
action and j, k, l, ... are the identifiers of the ballots involved. The public record is the
concatenation of the public strings generated by all actions executed thus far.

A.2 Formalization

Basic Notation. We denote by Σ the alphabet consisting of English letters, arabic nu-
merals, and punctuation marks; by Σ∗ the set of all finite strings over Σ; by Sk the
group of permutations of k elements; by x := y the operation that assigns value y
to variable x; by p := rand(Sk) the operation that assigns to variable p a randomly
selected permutation in Sk; and by ∅ the empty set.

If S is a set, by S0 we denote the empty set, and by Sk the Cartesian product of S
with itself k times. If x is a sequence, by either xi or xi we denote x’s ith element,6

and by {x} the set {z : xi = z for some i}. If x and y are sequences, respectively
of length j and k, by x ◦ y we denote their concatenation (i.e., the sequence of j + k
elements whose ith element is xi if i ≤ j, and yi−j otherwise). If x and y are strings
(i.e., sequences with elements in Σ), we denote their concatenation by xy.

If A is a probabilistic algorithm, the distribution over A’s outputs on input x is de-
noted by A(x). A probabilistic function f : X → Y is finite if X and Y are both finite
sets and, for every x ∈ X and y ∈ Y , the probability that f(x) = y has a finite binary
representation.

Ballots and Actions. An envelope is a triple (j, c, 0), where j is a positive integer, and
c a symbol of Σ. A ballot is an envelope. If (j, c, L) is a ballot, we refer to j as its
identifier, to c as its content, and to L as its level.

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B is
a well-defined set of ballots, then IB denotes the set of identifiers of B’s ballots. For
j ∈ IB , Bj (or the expression ballot j) denotes the unique ballot of B whose identifier
is j. For J ⊂ IB , BJ denotes the set of ballots of B whose identifiers belong to J .

Relative to a well-defined set of ballots B: if j is an envelope in B, then contB(j)
denotes the content of j; if x = j1, . . . , jk is a sequence of envelope identifiers in IB ,
then contB(x) denotes the concatenation of the contents of these envelopes, that is, the
string contB(j1) · · · contB(jk).

6 For any given sequence, we shall solely use superscripts, or solely subscripts, to denote all of
its elements.

70 S. Micali and a. shelat

A global memory consists of a pair (B, R), where

• B is a well defined set of ballots; and

• R is a sequence of strings in Σ∗, R = R1, R2,

We refer to B as the ballot set; to R as the public record; and to each element of R
as a record. The empty global memory is the global memory for which the ballot set and
the public record are empty. We denote the set of all possible global memories by GM .

Ballot-box actions are functions from GM to GM . The subset of ballot-box actions
available at a given global memory gm is denoted by Agm. The actions in Agm are
described below, grouped in 8 classes. For each a ∈ Agm we provide a formal identifier;
an informal reference (to facilitate the high-level description of our constructions); and
a functional specification. If gm = (B, R), we actually specify a(gm) as a program
acting on variables B and R. For convenience, we include in R the auxiliary variable
ub, the identifier upper-bound: a value equal to 0 for an empty global memory, and
always greater than or equal to any identifier in IB .

1. (NEWEN, c) —where c ∈ Σ.
“Make a new envelope with content c.”
ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NEWEN, c, ub).

2. (OPENEN, j) —where j is an envelope identifier in IB .
“Publicly open envelope j to reveal content contB(j).”
B := B \ {Bj} and R := R ◦ (OPENEN, j, contB(j), ub).

3. (DESTROY, j) —where j is a ballot identifier in IB .
“Destroy ballot j”
B := B \ {Bj} and R := R ◦ (DESTROY, j, ub).

4. (DONOTHING).
“Do nothing”
B := B and R := R ◦ (DONOTHING, ub).

Remarks
• All ballot-box actions are deterministic functions.

• The variable ub never decreases and coincides with the maximum of all identi-
fiers “ever in existence.” Notice that we never re-use the identifier of a ballot that
has left, temporarily or for ever, the table. This ensures that different ballots get
different identifiers.

Definition 2. A global memory gm is feasible if there exists a sequence of global mem-
ories gm0, gm1, . . . , gmk, such that gm0 is the empty global memory; gmk = gm;
and, for all i ∈ [1, k], gmi = ai(gmi−1) for some ai ∈ Agmi−1 .

If (B, R) is a feasible memory, we refer to R as a feasible public record.

Notice that if gm = (B, R) is feasible, then Agm is easily computable from R alone.
Indeed, what ballots are in play, which ballots are envelopes and which are super-
envelopes, et cetera, are all deducible from R. Therefore, different feasible global mem-
ories that have the same public record also have the same set of available actions. This
motivates the following definition.

Purely Rational Secret Sharing 71

Definition 3. If R is a feasible public record, by AR we denote the set of available
actions for any feasible global memory with public record R.

B The Notion of a Public Ballot-Box Mediator (VTP in Our
Language)

Definition 4. Let P be a sequence of K functions. We say that P is a public ballot-box
mediator (of length K) if, for all k ∈ [1, K] and public records R, P k(R) is a public
ballot-box action in AR.

An execution of P on an initial feasible global memory (B0, R0) is a sequence of
global memories
(B0, R0), . . . , (BK , RK) such that (Bk, Rk) = ak(Bk−1, Rk−1) for all k ∈ [1, K],
where ak = P k(Rk−1).7

If e is an execution of P , by Bk(e) and Rk(e) we denote, respectively, the ballot set,
the public record, and the private history profile of e at round k. By Rk

P (e) we denote
the last k records of Rk(e) (i.e., “the records appended to R0 by executing P”).

Remarks
• Note that the above definition captures our intuitive desideratum that no special

trust is bestowed on a public mediator. Because he performs a sequence of public
ballot-box actions, any one can verify that

(i) he performs the right sequence of actions;

(ii) he does not choose these actions; and

(iii) he does not learn any information that is not publicly available.

• Note too that ifP = P 1, . . . , PK andQ = Q1, . . . , QL are public mediators, then
their concatenation, that is, P 1, . . . , PK , Q1, . . . , QL is a public mediator too.

7 Note that the executions of P are, in general, random since P k(R) may return an action of
Nature.

Some Recent Progress in
Lattice-Based Cryptography

Chris Peikert

SRI International

Abstract. The past decade in computer science has witnessed tremen-
dous progress in the understanding of lattices, which are a rich source
of seemingly hard computational problems. One of their most promis-
ing applications is to the design of cryptographic schemes that enjoy
exceptionally strong security guarantees and other desirable properties.

Most notably, these schemes can be proved secure assuming only the
worst-case hardness of well-studied lattice problems. Additionally, and in
contrast with number-theoretic problems typically used in cryptography,
the underlying problems have so far resisted attacks by subexponential-
time and quantum algorithms. Yet even with these security advantages,
lattice-based schemes also tend to be remarkably simple, asymptotically
efficient, and embarrassingly parallelizable.

This tutorial will survey the foundational results of the area, as well as
some more recent developments. Our particular focus will be on the core
hard cryptographic (average-case) problems, some recurring techniques
and abstractions, and a few notable applications.

O. Reingold (Ed.): TCC 2009, LNCS 5444, p. 72, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Non-malleable Obfuscation

Ran Canetti1,� and Mayank Varia2,��

1 School of Computer Science, Tel Aviv University
canetti@cs.tau.ac.il

2 Massachusetts Institute of Technology
varia@csail.mit.edu

Abstract. Existing definitions of program obfuscation do not rule out
malleability attacks, where an adversary that sees an obfuscated pro-
gram is able to generate another (potentially obfuscated) program that
is related to the original one in some way.

We formulate two natural flavors of non-malleability requirements for
program obfuscation, and show that they are incomparable in general.
We also construct non-malleable obfuscators of both flavors for some pro-
gram families of interest. Some of our constructions are in the Random
Oracle model, whereas another one is in the common reference string
model. We also define the notion of verifiable obfuscation which is of
independent interest.

1 Introduction

The problem of program obfuscation has recently received a lot of attention in
cryptography. Informally, the goal of obfuscation is to transform a program in
such a way that its code becomes unintelligible while its functionality remains
the same. This intuitive idea was formalized in [1] using a simulation-based
definition.

In [1] it is shown that there do not exist generic algorithms that obfuscate any
program family. These results are extended in [2,3]. However, positive results
have been shown for some program families of interest, such as the family of
“point circuits,” which accept a single input string (that is explicitly given in the
circuit description) and reject all other inputs [4,5,6,7]. These constructions can
be generalized to form obfuscators for two more families: “multi-point circuits,”
which accept a constant number of input strings, and “point circuits with multibit
output,” which store a hidden string that is revealed only for a single input value
[8]. Finally, a different definition of obfuscation has been formulated [9,10] in
which it is possible to obfuscate the family of re-encryption programs [10].

� Supported by NSF grant 0635297, US-Israel Binational Science Foundation grant
20006317, a European Union Marie Curie grant, and the Check Point Institute for
Information Security.

�� Supported by the Department of Defense through the NDSEG Program and by NSF
grant 0635297.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 73–90, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

74 R. Canetti and M. Varia

However, the question of malleability attacks on obfuscated programs has
not been addressed. In fact, many of the above constructions are malleable.
We provide an overview of the definition of obfuscation and then describe its
malleability concerns.

Virtual black-box obfuscation. At a high level, the concept of “obfuscating” a
program is to produce a new program with the same functionality but with
“garbled” code. Of course, it is impossible for the garbled code to hide all useful
information, because at the very least one can run the program and observe its
input-output behavior. In this way, the code of a program must be at least as
useful as access to an oracle for the program. At a high level, obfuscation ensures
the converse: that access to the code of an obfuscated program is no more useful
than access to the oracle.

The formalization of this idea provided by [1], called the virtual black-box
property, considers two different worlds. In the real world, an efficient adversary
has access to the code of an obfuscated program, and attempts to learn a single-
bit predicate about the underlying program. Now consider an imaginary world
in which the code of an obfuscated program is not provided, but rather only
oracle access to the program is provided. Obfuscation ensures that there exists
an efficient algorithm known as a simulator that can learn the same predicate in
the imaginary world that the adversary learns in the real world.

Malleability concerns. If an adversary has access to obfuscated code, the vir-
tual black-box property guarantees that she cannot “understand” the underlying
program. However, suppose the adversary instead uses the obfuscated code to
create a new program in such a way that she controls the relationship between
the input-output functionality of the two programs.

Intuitively, one might expect that virtual black-box obfuscation already pre-
vents malleability attacks. The simulator only has oracle access to the obfuscated
code, so any program that it makes can only depend on the input-output func-
tionality of the obfuscated code at a polynomial number of locations. Therefore,
obfuscation should guarantee that the adversary is also restricted to these triv-
ial malleability attacks. However, the virtual black-box definition in [1] does
not carry this guarantee. Upon close inspection, the problem is that the vir-
tual black-box definition only considers adversaries and simulators that output
a single bit, not adversaries and simulators that output programs.

A naïve solution to this problem is to extend the virtual black-box definition
to hold even when the adversary and simulator output long strings. However, in
this case obfuscation becomes unrealizable for any family of interest. Consider
the adversary that outputs its input. Then, a corresponding simulator has oracle
access to a program and needs to write the code for this program, which is usually
impossible.

In this paper, we demonstrate two different methods to incorporate non-
malleability guarantees into obfuscation. Both non-malleability definitions ex-
tend the virtual black-box definition by allowing the adversary and simulator
to produce multiple bit strings, but only in a restricted manner. There are

Non-malleable Obfuscation 75

many subtleties involved in constructing a proper definition, such as deciding the
appropriate restrictions to impose on the adversary and simulator, and creat-
ing relations to test the similarities between the adversary’s input and output
programs. We defer treatment of these important details to Section 3. Here, we
motivate and describe the two definitions at a high level.

Functional non-malleability. Imagine that Alice, Bob, and Charles are three
graduate students in an office that receives a new computer. The department’s
network administrator wishes to configure the computer to allow the grad stu-
dents root access to the computer. The administrator receives the students’
desired passwords, and she needs to write a login program that accepts these
three passwords and rejects all other inputs. The administrator knows that she
has to be careful in designing the login program because the students will be able
to read the program’s code. As a result, she forms the login program using an
obfuscator for the family of three-point circuits, which ensures that a dictionary
attack is the best that the graduate students can do to learn their officemates’
passwords.

However, obfuscation does not alleviate all of the administrator’s fears, be-
cause the students will have root access to the computer so they can alter the
login program as well. The administrator would like to prevent tampering of the
login program, but the virtual black-box definition does not provide this guaran-
tee. For instance, suppose Alice wants to remove Bob’s access to the computer.
There exist obfuscators of the three-point circuit such that Alice can succeed in
this attack with noticeable probability [8].

Intuitively, the goal of obfuscation is to turn a program into a “black box,” so
the only predicates that Alice can learn from the program are those she could
learn from a black box. We extend this intuition to cover modifications as well.
We say that an obfuscator is functionally non-malleable if the only programs
that Alice can create given obfuscated code are the programs she could create
given black-box access to the obfuscated code.

This definition provides a guarantee on the possible attacks Alice can apply.
For instance, if Alice only has black-box access to the login program, then she
can only remove Bob’s access to the computer with negligible probability. In this
sense, functional non-malleability provides stronger security for Bob because it
protects all aspects of his access to the computer, whereas the virtual black-box
property only protects his password.

We wish to define functional non-malleability using a simulation-based defini-
tion: for every adversary that receives obfuscated code and uses it to create a new
program, there exists a simulator that only has oracle access to the obfuscated
code and produces a program that is functionally equivalent to the adversary’s
program. However, this definition is too strong: given the trivial adversary that
outputs its input, the simulator gets oracle access to a program and needs to
output the code of this program, which is usually impossible. But it is unfair
to demand that the simulator do this much work. After all, the adversary’s in-
put is a program but the simulator’s input is just an oracle. At the very least,
the adversary can output a program that uses its input program in a black-box

76 R. Canetti and M. Varia

manner, and the simulator should have the same ability. Therefore, we allow the
program that the simulator outputs to have oracle access to the obfuscated code.

Verifiable non-malleability. Functional non-malleability is a nice property for
obfuscators, but there are some scenarios where even this does not suffice. For
example, suppose that Alice wishes to play an April fools’ prank on her office-
mates by altering the login program to accept their old passwords appended to
the string “Alice is great.” Alice only knows her own password, so she cannot run
the obfuscator to produce this modified program. Nevertheless, she can write the
following program: “on input a string s, check that s begins with ‘Alice is great,’
and if so, remove it from s and send the rest of the string to the administrator’s
login program.” Functional non-malleability does not prevent this prank. In fact,
it is impossible to prevent this prank because Alice only uses the obfuscated login
program in a black-box manner.

Still, this attack is not “perfect”: after Alice performs this attack, the new login
program “looks” very different from a program that the network administrator
would create. As a result, we may not be able to prevent Alice from performing
her prank, but we may be able to detect Alice’s modification afterward and
restore the original program. Alice’s job is now harder, since she has to modify
obfuscated code in such a way that the change is undetectable. We say that an
obfuscator is verifiably non-malleable if the only programs Alice can create that
pass a verification procedure are the programs she could create given black-box
access to the obfuscated code. This approach gives us hope to detect attacks that
we cannot prevent, although it requires a stronger model in which a verification
procedure routinely audits the program.

In the setting of our example, one simple way to achieve non-malleability is
for the network administrator to digitally sign every program she makes, and for
the verification procedure to check the validity of the signature attached to an
obfuscated program before running it. By the existential unforgeability of the
signature scheme, Alice cannot make any modifications, so the non-malleability
goal is achieved.

However, this solution requires that the verification procedure can find and
store the network administrator’s verification key, which may not be practical.
We want the non-malleability guarantee to be an intrinsic property of the ob-
fuscation, without relying on an external public key infrastructure. As a result,
in this paper we consider “public” verifiers that depend only on the obfuscation
algorithm, and not on the party performing the obfuscation. Informally, a veri-
fier algorithm V accepts programs if and only if they could have been produced
by running the obfuscation algorithm. We stress that V does not receive any
party-specific information (such as public keys), so it does not depend on the
person that runs the obfuscator.

Verifiability has interesting applications in and of itself, as we describe in the
Discussion section below, but in this paper we only use it to create a simulation-
based definition of verifiable non-malleability. The definition guarantees that
an adversary cannot maul obfuscated code into a new program that passes the
verification test unless there exists a simulator that can perform the same attack

Non-malleable Obfuscation 77

given only oracle access to the obfuscated code. (Note that the adversary must
create a new program and not simply output the obfuscated code it receives.)
Because we hope to detect attacks that operate in a black-box manner (which
we could not hope to prevent in the functional setting), we no longer give the
simulator the extra help that we gave it in the definition of functional non-
malleability. Instead, the simulator must output a fully-functional program that
does not have an oracle.

Comparison. We show that both forms of non-malleability imply the virtual
black-box property. Intuitively, this relationship holds because an adversary that
outputs programs should easily be able to encode a single bit of information in
the output. As a result, all known impossibility results regarding the virtual
black-box property continue to hold for both types of non-malleability [1,2].

Additionally, we compare the two flavors of non-malleability. The goal of func-
tional non-malleability is to prevent as many malleability attacks as possible,
whereas the goal of verifiable non-malleability is to detect as many attacks as
possible. Intuitively, these goals are incomparable: the verifiable definition is
stronger because we can detect more attacks than we can prevent, but on the
other hand it is weaker because the model requires its participants to understand
and apply the verification algorithm. We justify this intuition by showing that
in the random oracle model, the two definitions of non-malleability are indeed
incomparable.

Constructions. In the random oracle model, we show that the obfuscator for
point circuits in [6] satisfies both functional and verifiable non-malleability. Next,
we study the family of multi-point circuits, which accept a constant number of
inputs. One idea to obfuscate the program that accepts values x1, . . . , xm is as
follows:

1. Use several instantiations of a single-point circuit obfuscator in order to
create obfuscated programs P1, P2, . . . , Pm, where each Pi accepts only the
value xi

2. Create the program P that contains P1 through Pm as subroutines, and
on input x, iteratively feeds x into the Pi and accepts if any one of these
programs accept.

This methodology is known as concatenation, and it is shown in [8] that con-
catenation preserves obfuscation. That is, given any obfuscator for the family
of single-point circuits, concatenation produces an obfuscator for the family of
multi-point circuits. However, concatenation does not preserve non-malleability.
The program P stores the subroutines P1 through Pm in a readily identifiable
way, so an adversary can modify one accepted point by changing one of the sub-
routines. This is true even if the obfuscator for the family of single-point circuits
is non-malleable.

In the verifiable setting, we resolve the problem with concatenation by us-
ing a self-signing technique to ensure that the subroutines are not modified.
The verification algorithm associated with this construction runs the verifica-
tion algorithm for the signature scheme. This approach does not suffice in the

78 R. Canetti and M. Varia

functional setting, where the self-signing technique is useless because there is no
guarantee that anybody checks the signature. Instead, we “glue” the accepted
points together in such a way that any attempt to change the obfuscated code
destroys information on all of the points simultaneously.

We also give a construction that does not use random oracles. Instead, it uses
the common reference string (CRS) model, in which a sequence of bits is chosen
uniformly at random and published in a public location that all participants
can access. (Note that this is different from a public key infrastructure because
the CRS is not tied to the specific identity of the party performing the obfus-
cation.) We construct a verifiably non-malleable obfuscation for the family of
point circuits by providing any (potentially malleable) obfuscation along with a
non-malleable NIZK proof of knowledge [11,12] that the obfuscator knows the
point that is accepted.

Informally, a non-malleable NIZK proof of knowledge considers an adversary
that can request multiple proofs for statements of its choice and then produces
a new proof. The non-malleability guarantee requires that the adversary knows
a witness to its constructed proof, so it cannot simply modify the old proofs to
prove a new statement.

Intuitively, our construction is verifiably non-malleable because an adversary
can only make a program that passes the verification test if she knows its func-
tionality, so she cannot produce a program that is related to a given obfuscated
point circuit or else she would learn information about the obfuscated circuit,
which is impossible by the virtual black-box property. However, the actual proof
turns out to be delicate. Using proof techniques from [4], we achieve a some-
what weaker variant of verifiable non-malleability. Specifically, we show that for
a large class of relations, no adversary can perform a modification that satisfies
the relation with noticeable probability.

Discussion on verifiable obfuscation. The concept of verifiable obfuscation is use-
ful even in situations where malleability is not a concern. For example, suppose
you create a new computer program that solves an important problem. You wish
to profit from your research by selling this program to others, but you also want
to protect the algorithm that you discovered. Therefore, you sell an obfuscated
version of the program to your customers. This protects your intellectual prop-
erty, but another problem has presented itself. Your customers do not wish to
install the obfuscated program on their computers because they no longer have
any guarantees about what this program does. For all they know, the program
could contain a virus, and because the program is obfuscated there is no hope for
a virus checker to detect the presence of a virus. Hence, you need a verification
algorithm that proves to your customers that you are selling them a program
from the proper family.

Future work. First, the constructions in this paper use the random oracle model
or common reference string model. It remains an open question to construct a
non-malleable obfuscator (of either flavor) without trusted setup.

Second, we provide a verifiably non-malleable obfuscation of single-point cir-
cuits in the CRS model for a large class of relations. Unfortunately, extending

Non-malleable Obfuscation 79

this construction to the multi-point setting is insufficient, as it only succeeds for
a small class of relations. It remains open to find a better construction in the
multi-point setting.

Organization. In Section 2, we provide an overview of virtual black-box obfus-
cation [1,2]. In Section 3, we provide rigorous definitions of the two notions of
non-malleability. In Sections 4 and 5, we present non-malleable obfuscators of
both flavors for the family of multi-point circuits.

2 Obfuscation

In [1], [2], and other works, an obfuscator is defined as a compiler that takes
a circuit as input and returns another circuit. The output circuit should be
equivalent in functionality to the input circuit, but the output circuit should
be unintelligible in the sense that any information that can be obtained from
the output circuit can also be obtained with oracle access to the circuit. In this
paper we will be interested in obfuscation with dependent auxiliary information,
as defined in [2].

Throughout this work, the adversaries and simulators are assumed to be non-
uniform.

Definition 1 (Obfuscation). Let C = {Cn}n∈IN be a family of polynomial-size
circuits, where Cn denotes all circuits of input length n. A probabilistic polyno-
mial time (PPT) algorithm O is an obfuscator for the family C operating over
randomness R = {Rn} if the following three conditions are met.

– Approximate functionality: There exists a negligible function ε such that for
every n, every circuit C ∈ Cn, and for all x ∈ {0, 1}n,

Pr[r ←Rn, C′ ← O(C, r) : C(x) = C′(x)] > 1− ε(n) .

If this probability is always 1, then we say that O has exact functionality.
– Polynomial slowdown: There exists a polynomial p such that for every n,

circuit C ∈ Cn, and r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).
– Virtual black-box: For every polynomial ρ and every PPT adversary A, there

exists a PPT simulator S such that for all sufficiently large n, for all C ∈ Cn,
and for all auxiliary information z ∈ {0, 1}∗,∣∣Pr[A(O(C), z) = 1]− Pr[SC(1n, z) = 1]

∣∣ <
1

ρ(n)
,

where the first probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S. Furthermore, we require
that A and S operate in time polynomial in the length of their first input.

We define obfuscation without auxiliary information in the same manner, except
that the auxiliary information is removed from the virtual black-box definition.
Unless otherwise specified, in this paper we assume that obfuscations are secure
with respect to dependent auxiliary information.

80 R. Canetti and M. Varia

3 Defining Non-malleable Obfuscation

In this section, we rigorously define the two variants of non-malleable obfusca-
tion.

3.1 Functionally Non-malleable Obfuscation

We obtain functionally non-malleable obfuscation by generalizing the virtual
black-box definition to allow the adversary and simulator to output programs
instead of bits. Intuitively, a functionally non-malleable obfuscation has the prop-
erty that an adversary, given the obfuscated code to a program, can only make
a related program if it could have already done so given only black-box access
to the program.

This is problematic in general, because the simulator cannot emulate all pro-
grams that the adversary can produce [1,7]. For example, consider the adversary
that outputs its input. Then, the simulator has oracle access to a circuit and
has to produce a program that is functionally equivalent to its oracle. This is
impossible unless the circuit is learnable with oracle queries, in which case the
entire concept of obfuscation is uninteresting. To make the definition meaning-
ful, we allow the program that the simulator produces to make oracle queries to
the original circuit as well.

To capture the effectiveness of an adversary’s modification, we introduce a
polynomial-time computable relation E that receives the adversary’s input pro-
gram and output program. The adversary succeeds in the modification if E
accepts it. The definition of non-malleability ensures that for every relation E,
the simulator can perform a successful modification with the approximately the
same probability as the adversary.

One technical concern about the relation E is the manner in which it re-
ceives the adversary’s input and output programs. The goal of functional non-
malleability is to compare the functionality of these programs, and not their
underlying code, so E should operate in the same manner when given function-
ally equivalent inputs. Our definition resolves this issue by giving the relation
a “canonical” member of the family that is equivalent to the adversary’s output
program. (See the Discussion section below for more detail on this issue.)

Additionally, in many situations, the adversary knows some a-priori useful
information on the obfuscated program, so we allow dependent auxiliary in-
formation in the definition of non-malleability. For instance, in the motivating
example from the Introduction in which Alice wishes to modify a login program,
she possesses the knowledge of her own password.

Definition 2 (Functional equivalence). We say that two circuits C1 and C2
are functionally equivalent, and write C1 ≡ C2, if for all inputs x it holds that
C1(x) = C2(x).

Definition 3 (Functionally non-malleable obfuscation). Let C and D be
families of circuits, and let O be a PPT algorithm. We say that O is an ob-
fuscator for C that is functionally non-malleable over D if the following three
conditions hold:

Non-malleable Obfuscation 81

– Almost exact functionality: There exists a negligible function ε such that for
every n and every circuit C ∈ Cn, Pr[r ←Rn : O(C, r) ≡ C] > 1− ε(n).

– Polynomial slowdown: There exists a polynomial p such that for every n,
circuit C ∈ Cn, and r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).

– Functional non-malleability: for every polynomial ρ and PPT adversary A,
there exists a PPT simulator S such that for all sufficiently large n, for
all circuits C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗, and for all
polynomial time computable relations E : Cn×Dn → {0, 1} (that may depend
on the circuit C),

|Pr[P ← A(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C, D) = 1]

−Pr[Q← SC(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and E(C, D) = 1]| < 1
ρ(n)

,

where the probabilities are over the coin tosses of A, O, and S. We require
that A and S run in time polynomial in the length of their first inputs.

If D = C, we say that O is a functionally non-malleable obfuscator for C.

Discussion. We make several remarks about this definition.

Almost exact functionality. The functionality requirement here is stronger than
the one used in Definition 1 above. Approximate functionality only guarantees
that an obfuscated program O(C, r) is “close” in functionality to C. However,
O(C, r) might never have the same functionality as C does (for any choice of
r). By contrast, almost exact functionality requires that the two circuits have
identical functionality for most choices of r.

We note that most of the constructions in this paper satisfy exact function-
ality.

Bivariate relation. In this definition, the bivariate relation E is allowed to depend
on the choice of circuit C ∈ Cn. Thus, restricting attention to univariate relations
E(D) results in an equivalent definition. We use a bivariate relation only to
emphasize the fact that E depends on both C and D.

Possible definitions for E. As mentioned above, an important feature of the
definition is that E only depends on the functionality of the adversary’s output
P and simulator’s output QC , and not on the code of these circuits. We found
three possible ways to enforce this condition on E.

First, we can constrain E to receive only oracle access to the program P or QC .
As a result, it follows immediately that E only depends on the functionality of
these programs, and not on their underlying code. Unfortunately, this definition
is too weak, because there are many natural predicates that cannot be tested by
relations of this type.

For instance, consider the family of point circuits, where Iw is the circuit that
accepts only the string w. Suppose the adversary is given an obfuscation of the
point circuit Ix and wishes to create a new point circuit Iy such that the first

82 R. Canetti and M. Varia

bit of x and y are equal. No polynomial-time relation E (even ones that know x,
since E can depend on x) can test the adversary’s probability of success given
only oracle access to Iy . We believe that relations of this type are meaningful,
and therefore we want a definition that can test for them.

Second, we can give the relation E full access to the code of P or QC , but
restrict our attention to relations that have identical output when given two
functionally equivalent programs. Specifically, we only consider relations E such
that given any programs C ∈ Cn, D ∈ Dn, and P , P ′ such that D ≡ P ≡ P ′,
it follows that E(C, P) = E(C, P ′). This definition does allow E access to the
code of its input programs. The advantage of this definition is that E finally
gets access to the code of the programs. The disadvantage is that the condition
we impose on relations is very restrictive. As a result, it is still impossible to
compute many relations, such as the one described in the previous paragraph.

Specifically, the virtual black-box definition guarantees that any relation
E(Ix,O(Iy)) cannot compute whether x and y have the same first bit with
probability greater than 1

2 . Thus, the condition that we impose on E is that it
has the same probability of success even when it is given Ix and Iy as inputs, in
which case E has enough information to perform the computation with proba-
bility 1 but must fail half of the time anyway in order to be consistent with the
condition.

Third, we can allow all polynomial-time relations E, but instead of providing
the code of P or QC as input to E, we provide the code of a functionally equiv-
alent member in Dn. This is the option we use in Definition 3 above, because it
clearly satisfies the requirement that E only depend on the functionality of the
adversary and simulator’s output, and it is a stronger definition that can test for
many relations that the previous two definitions cannot. For these reasons, we
choose to use relations of this type in the definition of functional non-malleability.

One technical point to keep in mind is that the relation E takes the description
of circuits in Cn and Dn as input. As a result, this definition is dependent upon
the representation of the circuits in these families, and not just the functionality
of these circuits. Therefore, we should choose a representation of the circuit
families that enables relations to extract important information easily from the
description of a circuit.

As a result, we define the families of multi-point circuits as follows. Given
w1, w2, . . . , wm ∈ {0, 1}n, let I{w1,...,wm} be the circuit that stores w1, . . . , wm

in some canonical, explicit manner, and on input x returns 1 if and only if x = wi

for some i. In particular, relations can extract the strings w1, . . . , wm from the
description of I{w1,...,wm} in polynomial time. Note that the wi need not be
distinct, so the circuit I{w1,...,wm} accepts between 1 and m points. For technical
reasons, we may also want to consider the circuit I∅ that immediately rejects all
inputs. Let

Pm
n = {I{w1,...,wm} : w1, . . . , wm ∈ {0, 1}n} ∪ {I∅}

be the set of all m-point circuits on n bits, and let Pm = {Pm
n }n∈IN be the family

of m-point circuits. Also, let Pm+ be the subfamily that does not include I∅.

Non-malleable Obfuscation 83

Output family D. According to our definition, an adversary succeeds only if it
outputs a circuit that is equivalent to a circuit in the family D. The most natural
family to choose is D = C, but we allow D to be different from C in order to
consider a wider range of adversaries. For instance, perhaps C is the family of
point circuits, but we are concerned with adversaries that produce two-point
circuits as output as well. The definition of functional non-malleability allows us
to form a larger family D to acknowledge this.

Of course, there is no reason to stop there: we may also be concerned with
an adversary that produces a three-point circuit, or a four-point circuit, or any
circuit for that matter. In fact, the presence of the circuit family D in the defini-
tion seems restrictive. It would be nice if our definition simultaneously covered
all possible outputs of the adversary, and not just those in a specific family. In
other words, we would like a functionally non-malleable obfuscator when D is
the family of all circuits, but unfortunately this is impossible. Intuitively, the
family of all circuits is so big that it allows A to output the obfuscated code that
it receives as input, which the simulator cannot do. A formal proof can be found
in the full version of this paper [13].

Comparison to virtual black-box obfuscation. Now that we have introduced a
new definition of obfuscation, it is natural to compare it to the old one. We
show that the functional non-malleability property implies the virtual black-box
property (at least for reasonable choices of the circuit family D). This justifies
our terminology of using the word “obfuscation” in Definition 3.

Theorem 4. Let C and D be circuit families, and let O be an obfuscator for C
that is functionally non-malleable over D. Furthermore, suppose that for suffi-
ciently large n, there exist circuits D0, D1 ∈ Dn such that D0 �≡ D1. Then, O
satisfies the virtual black-box property. As a result, O is an obfuscator for C.

This theorem also holds if neither the virtual black-box property nor functional
non-malleability allows auxiliary information.

Intuitively, this theorem holds because an adversary that outputs programs can
use this channel to transmit a single bit of information b by outputting the
program Db. See the full version of this paper [13] for a rigorous proof.

One consequence of this theorem is that all impossibility results pertaining to
the virtual black-box property immediately carry over to the non-malleability
setting [1,2].

3.2 Verifiably Non-malleable Obfuscation

In this section, we develop the notion of verifiable obfuscation and use it to define
another definition of non-malleability.

Definition 5 (Verifier). Given a pair of PPT algorithms O and V and a cir-
cuit family C, we say that V is a verifier forO applied to C if there exists a negligi-
ble function ε such that for all n and for all C ∈ Cn, Pr[V (O(C)) = 1] > 1−ε(n),
where the probability is taken over the randomness of V and O.

84 R. Canetti and M. Varia

If O is an obfuscator for the family of circuits C, then we say that the pair
(O, V) constitutes a verifiable obfuscator for C.
We do not place any restrictions on V when its input is not the result of the
obfuscator applied to a circuit in the family. In particular, given any obfuscator
O, the pair (O, 1l) is a verifiable obfuscator, where 1l is the algorithm that ac-
cepts all inputs. In many cases, however, we can create much better verification
algorithms. For example, the (r, rx) construction of [4] can simply be verified by
checking whether r and rx are elements in the desired group G of prime order,
because there is a unique discrete log of rx so the program does implement a
point circuit as desired. This results in a perfect verifier that accepts its input
program if and only if it has the form of a program produced by the obfuscator.

Now we create a definition of non-malleability for verifiable obfuscators. As
before, we consider an adversary that takes an obfuscated circuit as input and
outputs a program. In this model, the adversary succeeds only if her output
program passes the verification test and is related to the input program. Our
definition of non-malleability requires that a simulator succeeds with approxi-
mately the same probability, so it must also output a program that passes the
verification test. In particular, we no longer give an oracle to the program con-
structed by the simulator. A formal definition follows.

Definition 6 (Verifiable non-malleability). Let C and D be a families of
circuits such that C ⊆ D, and let O and V be PPT algorithms. We say that (O, V)
is an obfuscator for C that is verifiably non-malleable over D if the following four
conditions hold:

– Verification: V is a verifier for O applied to C. Additionally, for every n and
every circuit P with n bits of input such that V (P) = 1, there exists D ∈ Dn

such that P ≡ D.
– Almost exact functionality: There exists a negligible function ε such that for

every n and every circuit C ∈ Cn, Pr[r ←Rn : O(C, r) ≡ C] > 1− ε(n).
– Polynomial slowdown: There exists a polynomial p such that for every n,

circuit C ∈ Cn, and r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).
– Verifiable non-malleability: for every polynomial ρ and PPT adversary A,

there exists a PPT simulator S such that for all sufficiently large n, for
all circuits C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗, and for all
polynomial time computable relations E : Cn ×Dn → {0, 1},

|Pr[P ← A(O(C), z) : P
= O(C), V (P) = 1, ∃D ∈ Dn s.t. D ≡ P , E(C,D) = 1]

−Pr[Q ← SC(1n, z) : V (Q) = 1, ∃D ∈ Dn s.t. D ≡ Q, E(C,D) = 1]| <
1

ρ(n)
,

where A and S run in time polynomial in the length of their first inputs.

If D = C, we say that (O, V) is a verifiably non-malleable obfuscator for C.
It is potentially reasonable to relax the definition by not requiring the simulator
to pass the verification text. We choose not to do so because the current definition

Non-malleable Obfuscation 85

puts the adversary and simulator on more equal footing and because all of our
constructions satisfy the stronger notion.

We also note that the definition requires that V only accept circuits that are
equivalent to members of D. The benefit of this restriction is that the adversary
can efficiently test whether she outputs a circuit in Dn, which is a requirement
for her to succeed under this definition.

Additionally, the remarks pertaining to functional non-malleability also apply
here:

1. Restricting to univariate relations E(D) results in an equivalent definition.
2. It is usually impossible to achieve verifiable non-malleability if D is the family

of all circuits.
3. Verifiable non-malleability also implies the virtual black-box property.

Theorem 7. Let C and D be circuit families, and let (O, V) be an obfuscator
for C that is verifiably non-malleable over D. Then, O is an obfuscator for C.
This theorem also holds if neither definition allows auxiliary information.

3.3 Comparison

We conclude this section by showing that the two non-malleability definitions
are incomparable. Intuitively, functional non-malleability prevents more attacks.
This is reflected in the definition by the fact that an adversary attacking func-
tional non-malleability does not have to pass a verification test, so the simulator
must emulate more potential attacks. A concrete example of this separation is
the obfuscator described in Algorithm 2 below, which does not prevent the attack
described in the Introduction in which Alice removes Bob’s password.

On the other hand, verifiable non-malleability detects more attacks. This is
reflected in the definitions by the fact that the program Q constructed by the
simulator is not given oracle access to C in the verifiable definition. A con-
crete example of this separation is the functionally non-malleable obfuscator for
multi-point functions described in the full version of the paper [13], which is
vulnerable to a slightly modified form of Alice’s April fools’ prank described in
the Introduction.

4 Constructions of Functionally Non-malleable
Obfuscators

In this section, we present a functionally non-malleable obfuscator for the family
of multi-point circuits in the random oracle model.

We begin with the single-point case. Algorithm 1 describes an obfuscator
OP1 for the family P1 [6]. Informally, OP1 obfuscates the point circuit Iw by
recording R(w). This provides an information-theoretic way to hide the point w
while still making it easy to check whether the input to the obfuscated program
is w. However, the obfuscator should not be deterministic [4], so OP1 uses some
randomness as well.

86 R. Canetti and M. Varia

Algorithm 1. Obfuscator OP1 for the family of point circuits P1

Input: a circuit of the form Iw or I∅
1: if the input circuit is I∅ then
2: choose r

U← {0, 1}3|w| and t
U← {0, 1}4|w| (that is, uniformly at random)

3: else
4: extract the point w and choose randomness r

U← {0, 1}3|w|

5: set t = R(w ◦ r), where ◦ denotes the string concatenation operation
6: end if
7: output the circuit Φr,t that stores r and t in some clearly identifiable manner, and

on input a string x, outputs 1 if R(x ◦ r) = t and 0 otherwise

Theorem 8. In the random oracle model, the algorithm OP1 is a functionally
non-malleable obfuscator for the family of point circuits P1.

Due to space constraints, rigorous proofs of non-malleability for all of our con-
structions are deferred to the full version of this paper [13].

Constructing a functionally non-malleable obfuscator for the family of multi-
point circuits Pm is significantly more difficult. Roughly speaking, the principal
issue is that the obfuscated program must “bundle together” the m points in a
way that would prevent the adversary from changing any point in the bundle
without applying the exact same change to all points in the bundle. For instance,
simply concatenating m obfuscations of a single-point circuit (even obfuscations
that are individually non-malleable) does not suffice because an adversary will
be able to change some of the points at will. Instead, the obfuscated program
must be a “house of cards” in the sense that an adversary cannot change the code
without destroying information about all of the accepted points simultaneously.
Our construction is described in the full version of this paper [13].

5 Constructions of Verifiably Non-malleable Obfuscators

In this section, we present verifiably non-malleable obfuscators for the family of
multi-point circuits in the random oracle and common reference string models.

5.1 Random Oracle Model

In the single-point case, the obfuscator OP1 from Algorithm 1 can also be used
to create a verifiably non-malleable obfuscation. Let VP1 be the verification al-
gorithm that accepts if and only if its input is a program of the form Φr,t. It
is clear from Algorithm 1 that VP1 always accepts proper obfuscations of point
circuits.

Theorem 9. In the random oracle model, (OP1 , VP1) is a verifiably non-malleable
obfuscator for P1.

In the multi-point setting, we can concatenate m copies of OP1 and “glue” them
together using a self-signing technique in order to construct the obfuscator OPm

Non-malleable Obfuscation 87

described in Algorithm 2. The associated verification algorithm VPm checks that
its input program has the proper structure and validates the signature.

The self-signing technique ensures that an adversary will be detected if she
tries to re-use any of the OP1 obfuscations given to her, because she will not be
able to forge the required signature. For instance, using the example described
in the Introduction, Alice cannot keep the pieces of the obfuscated circuit that
accept Charles and herself but remove the part that accepts Bob. However, the
scheme does not prevent Alice from implementing this attack, so the scheme is
malleable in the functional sense.

The one-time signature scheme can be constructed from any one-way function
[14] so in particular it can be constructed from the random oracle.

Algorithm 2. Obfuscator OPm for the family of m-point circuits
Input: a circuit of the form I{w1,...,wm} or I∅
1: let k be the number of distinct accepted points for the input circuit (possibly 0)
2: extract the k distinct points w1, . . . , wk

3: choose randomness r1, . . . , rm
U← {0, 1}3mn

4: choose a signature-verification key pair (s, v) for a one-time signature scheme
5: for i = 1 to k do
6: set ti = R(wi ◦ ri ◦ v)
7: end for
8: for i = k + 1 to m do
9: choose ti

U← {0, 1}n+3mn+|v|

10: end for
11: choose a random permutation π on m elements, and permute the ri and ti by π
12: compute the signature σ = signs(t1, . . . , tm)
13: output the circuit that stores the ri, ti, v, and σ in a clearly identifiable manner,

and on input x does the following: “for i from 1 to m, accept if R(x ◦ ri ◦ v) = ti”

Theorem 10. In the random oracle model, (OPm , VPm) is a verifiably non-
malleable obfuscation for Pm. However, OPm is malleable in the functional
sense.

The self-signing technique can also be applied to the functionally non-malleable
obfuscator for the family of multi-point circuits described in the full version of
the paper [13], producing an obfuscator that simultaneously satisfies both forms
of non-malleability.

5.2 Common Reference String Model

In the common reference string (CRS) model, we provide verifiably non-malleable
obfuscators for the family Pm+ of multi-point circuits that does not include I∅.
This is a slightly different family than we used in the random oracle construc-
tions, because the constructions in this section have the property that it is easy
to tell that obfuscated circuits accept at least one input, which was not the case
in the random oracle constructions.

88 R. Canetti and M. Varia

Also, in this section we can only prove a slightly weaker form of verifiable non-
malleability. We first present an obfuscator in the single-point setting, where we
believe the weaker non-malleability property is meaningful. Then, we generalize
the obfuscator to operate in the multi-point setting, but we also show that the
weaker form of non-malleability is insufficient in this setting.

Single-point circuits. Our construction uses two building blocks:

1. Let ÔP1+ be any obfuscator for P1+ without auxiliary information, along
with a perfect verifier V̂P1+ for ÔP1+ , such as the obfuscator of [4] described
in Section 3.2.

2. Let Π be a non-malleable non-interactive zero-knowledge (NIZK) proof of
knowledge system [11,12]. Informally, the proof system Π has the property
that given an adversary that sees a proof π and then creates a proof π′ with
π′ �= π, there exists an extractor that extracts the witness to the proof of π′.

Using these building blocks, we form the obfuscator ÕP1+(Iw) that outputs
ÔP1+(Iw) along with a proof that it knows the point w. The verification algo-
rithm ṼP1+ associated to ÕP1+ runs V̂P1+ and the verification algorithm of the
proof system Π to check the validity of the proof.

More formally, we define an NP relation RÔP1+
based on ÔP1+ as follows:

RÔP1+
(P, w) = 1 if and only if ∃r s.t. P = ÔP1+(Iw, r) .

That is, the first input to the relation must be a valid output of the obfuscator
ÔP1+ (which can be efficiently verified by V̂P1+), and the second input must be
the unique point that is accepted by this circuit. The obfuscator ÕP1+ , described
in Algorithm 3, uses the NIZK Π on this NP relation.

Algorithm 3. Obfuscator ÕP1+ for the family of point circuits in the CRS model
Input: a circuit of the form Iw and a common reference string Σ
1: produce the obfuscated circuit Îw = ÔP1+(Iw)
2: use Π to prove that the obfuscator knows a witness w to the statement that

RÔP1+
(Îw, w) = 1, and call the resulting proof πw

3: output the circuit Ĩw that is equal to Îw except that it also stores πw in some
clearly visible way

Intuitively, the non-malleability of the obfuscation follows from the non-
malleability of the NIZK. Unfortunately, the proof turns out to be quite del-
icate, and we can only prove a weaker version of the verifiable non-malleability
property.

Definition 11 (Weakly verifiable non-malleability in the CRS model).
Let C be a family of circuits and (O, V) be a pair of algorithms. We say that
(O, V) is weakly verifiably non-malleable for relation E if for every polynomial

Non-malleable Obfuscation 89

ρ and PPT adversary A, there exists a PPT simulator S such that for all suffi-
ciently large n and for all circuits C ∈ Cn,

|Pr[P ← A(O(C), Σ) : P
= O(C), V (P, Σ) = 1, ∃D ∈ Cn s.t. D ≡ P , E(C, D) = 1]

−Pr[(Q, Σ) ← SC(1n) : V (Q,Σ) = 1, ∃D ∈ Cn s.t. D ≡ Q, E(C,D) = 1]| <
1

ρ(n)
,

where the first probability is taken over the coin tosses of A and O, along with
the uniformly random choice of the common reference string Σ, and the second
probability is taken over the coin tosses of S.

Note that this definition is weaker than the verifiable non-malleability property
in Definition 6 in two ways: the simulator S is allowed to depend on the relation
E, and there is no auxiliary information in this definition. We can prove that our
construction satisfies this weaker variant of non-malleability for many interesting
relations E.

Definition 12 (Invertible relation). A bivariate relation E is invertible if
there exists a polynomial time algorithm Ē such that for every y, Ē(y) returns
a list of all x such that E(x, y) = 1.

In particular, because E is a polynomial time algorithm, it can only output a
list that is polynomially long in length. Therefore, for every y, there must be
only polynomially many x such that E(x, y) = 1.

Theorem 13. Let E be an invertible relation. In the common reference string
model, (ÕP1+ , ṼP1+) is a weakly verifiably non-malleable obfuscator for E.

Multi-point circuits. The obfuscator ÕP1+ can be generalized to the multi-point
setting, as follows. Let ÕPm+ be the obfuscator that, when given I{w1,...,wm} as
input, outputs the concatenation of m single-point obfuscations ÔP1+(Iw1), . . .,
ÔP1+(Iwm) followed by a non-malleable NIZK proof of knowledge that it knows
all of the accepted points w1, . . . , wm. As before, let ṼPm+ be the verification
algorithm that checks the structure of the program and the validity of the proof.
It is shown in [8] that ÕPm+ is an obfuscator, and we show that this obfuscator
is weakly verifiably non-malleable for invertible relations.

Theorem 14. Let E be an invertible relation. In the common reference string
model, (ÕPm+ , ṼPm+) is a weakly verifiably non-malleable obfuscator for E.

Unfortunately, in the multi-point setting, the set of invertible relations is too
small. For example, the simple relation E(I{w1,...,wm}, I{w′

1,...,w′
m}) that accepts

if any of the wi equal any of the w′
j is not invertible. As a result, Theorem 14 is

a promising result but still unsatisfactory. Future research is needed to find an
obfuscator that is verifiably non-malleable for a wider class of relations.

Acknowledgment. We thank Ronny Dakdouk for his useful comments. In partic-
ular, an improvement in Theorem 7 and an error in an earlier proof of Theorem
9 were found by Ronny.

90 R. Canetti and M. Varia

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, pp. 553–562. IEEE Computer Society, Los Alamitos (2005)

3. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

4. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

5. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions. In: Proceedings of the 30th ACM Symposium on Theory of Computing,
pp. 131–140 (1998)

6. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

7. Wee, H.: On obfuscating point functions. In: Proceedings of the 37th ACM Sym-
posium on Theory of Computing, pp. 523–532 (2005)

8. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

9. Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Heidel-
berg (2007)

10. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely ob-
fuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
233–252. Springer, Heidelberg (2007)

11. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

12. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001)

13. Canetti, R., Varia, M.: Non-mallable obfuscation. Cryptology ePrint Archive, Re-
port 2008/495 (2008), http://eprint.iacr.org/2008/495

14. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

http://eprint.iacr.org/2008/495

Simulation-Based Concurrent Non-malleable
Commitments and Decommitments

Rafail Ostrovsky1, Giuseppe Persiano2, and Ivan Visconti2

1 Department of Computer Science and Department of Mathematics,
UCLA, Los Angeles, CA 90095, USA

rafail@cs.ucla.edu
2 Dipartimento di Informatica ed Applicazioni, Università di Salerno,

84084 Fisciano (SA), Italy
{giuper,visconti}@dia.unisa.it

Abstract. In this paper we consider commitment schemes that are se-
cure against concurrent man-in-the-middle (cMiM) attacks. Under such
attacks, two possible notions of security for commitment schemes have
been proposed in the literature: concurrent non-malleability with respect
to commitment and concurrent non-malleability with respect to decom-
mitment (i.e., opening).

After the original notion of non-malleability introduced by [Dolev,
Dwork and Naor STOC 91] that is based on the independence of the
committed messages, a new and stronger simulation-based notion of non-
malleability has been proposed with respect to openings or with respect
to commitment [1,2,3,4] by requiring that for any man-in-the-middle ad-
versary there is a stand-alone adversary that succeeds with the same
probability. When commitment schemes are used as sub-protocols (which
is often the case) the simulation-based notion is much more powerful and
simplifies the task of proving the security of the larger protocols.

Themain result of this paper is a commitment scheme that is simulation-
based concurrent non-malleable with respect to both commitment and
decommitment. This property protects against cMiM attacks mounted
during both commitments and decommitments which is a crucial security
requirement in several applications, as in some digital auctions, in which
players have to perform both commitments and decommitments. Our
scheme uses a constant number of rounds of interaction in the plain model
and is the first scheme that enjoys all these properties under the simulation-
based definitions.

1 Introduction

Commitment schemes are fundamental two-party protocols and have been used
in the design of more complex cryptographic protocols since the early 80’s (e.g.,
for coin flipping [5] and for zero-knowledge for NP [6]).

The basic setting in which commitment schemes are defined only requires the
hiding and binding properties. However several different scenarios need stronger
notions of commitment schemes. In some application scenarios, one wants to be
able to guarantee that an adversary A, playing as a receiver in an execution in

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 91–108, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

92 R. Ostrovsky, G. Persiano, and I. Visconti

which a honest committer commits to message m, is not able to commit to a
related value m̃ to a honest receiver in another execution in which A plays as a
committer. It is easy to observe that the hiding property does not guarantee this
extra property. This type of adversary is called a man-in-the-middle adversary
(as the adversary plays in between two honest players). Commitment schemes
secure with respect to these attacks are called non-malleable commitments.

Two notions of non-malleable commitments have been considered in the liter-
ature. A commitment scheme that is non-malleable with respect to commitment
(in short NMc), first defined by Dolev, Dwork, and Naor [7] guarantees that
no polynomial-time man-in-the-middle adversary A can commit to a message m̃
that is related to the message m committed by the honest committer. Instead,
a commitment scheme that is non-malleable with respect to decommitment (also
known as non-malleable with respect to opening), (in short NMd), first defined
by Di Crescenzo, Ishai and Ostrovsky [1] guarantees that after the commitment
phase, no polynomial-time man-in-the-middle adversary A, observing the de-
commitment to m of the honest committer, obtains an advantage to decommit
its commitment to a message m̃ that is related to m.

The need for non-malleable cryptography has been first pointed out in the
seminal paper by Dolev, Dwork and Naor [7] who also gave constructions for non-
malleable encryption, non-malleable zero-knowledge proofs and non-malleable
commitments. The constructions for non-malleable commitments of [7] required
O(log k) rounds, where k is the security parameter. The non-malleability notion
of [7] is based on the independence of the committed/decommitted messages
played by the man-in-the-middle with respect to the ones played by the sender.

The first non-interactive non-malleable commitment scheme (in the common
random string model) was shown by Di Crescenzo, Ishai and Ostrovsky [1] (with
further efficiency improvement in [2]). They also introduced a new notion of non-
malleability by requiring that for any man-in-the-middle adversary there exists
a stand-alone simulator with essentially the same success probability. This new
simulation-based notion is stronger than the one of Dolev, Dwork and Naor [7]
and is much more useful when a commitment scheme is used as sub-protocol
since the security of the larger protocol can be proved more easily by using the
simulator associated with the commitment scheme.

The first constant-round non-malleable commitment scheme in the plain
model (i.e., without setup assumptions such as a common reference string)
has been given by Barak [8] under the assumption of the existence of trap-
door permutations and hash functions that are collision resistant against sub-
exponential-time adversaries. Pass and Rosen [3] reduced the assumption to the
existence of hash functions that are collision resistant against polynomial-time
adversaries using simulation-based definition. Pass and Rosen [3] gave two dif-
ferent simulation-based schemes: one that is NMc and one that is NMd.

More recently, Pass and Rosen [4] have considered concurrent man-in-the-
middle attacks (cMiM attacks) where the man-in-the-middle can be active in
any polynomial number of executions as a receiver and as a committer. A
commitment scheme that is secure against cMiM attacks is called concurrent

Simulation-Based Concurrent Non-malleable Commitments 93

non-malleable. As before, we can have two notions of concurrent non-malleable
commitment schemes: concurrent NMc and NMd commitment schemes. Pass and
Rosen in [4] showed that the NMc scheme of [3] is actually a simulation-based
concurrent NMc. This implies that simulation-based security is guaranteed if the
commitments are concurrently executed but decommitments are not. Their pa-
per leaves as an open problem the construction of constant-round commitment
schemes that are simulation-based concurrent NMd. The scheme of [4] enjoys
a weaker notion of non-malleability with respect to decommitment that only
focuses on the independence of the opened messages [7].

The security of the scheme of [4] relies on the assumption that commitments
and decommitments do not overlap in time. We retain this assumption in our
schemes. This assumption is motivated by the fact that several important ap-
plications have such a separation (e.g., electronic auctions where first all parties
send their hidden bids, and only in a second phase they decommit their bids).

Our results. Our main result consists in the construction in the plain model of
a constant-round commitment scheme that is simultaneously concurrent NMc
and NMd under the simulation-based definition of [3,4]. This implies that secu-
rity is preserved when polynomially many commitment phases are concurrently
executed and when subsequently polynomial many decommitment phases are
concurrently executed. This solves a problem left open by the results of [4] and
allows one to securely run some commitment-based applications (e.g., digital
auctions) by only requiring a constant number of rounds. We follow [4] in that
concurrent non-malleability is guaranteed only if commitments and decommit-
ments do not overlap in time (which is the case in several applications).

Our scheme builds and extends multiple techniques. In particular, our scheme
uses the perfect NMZK argument of knowledge of [3,4,9] but in a critically differ-
ent manner. Indeed, whereas in [3,4] the perfect NMZK argument of knowledge
is simply combined with a (potentially malleable) commitment scheme and a
signature scheme, to achieve security in a concurrent setting we also employ a
technique by Feige [10] and a more sophisticated rewind technique. Furthermore,
the simulator used by [3,4] works in a straight-line fashion including non-black-
box techniques. Our result, instead, combines the straight-line simulation with
a new rewinding simulation that still avoids the well known problems of using
rewinds in concurrent settings [11]. Our approach also includes and extends some
of the techniques developed for building concurrent NMZK in the bare public-
key model [12,13]. Finally we stress that in [3] non-malleability with respect
to commitment is considered only with respect to statistically binding commit-
ments. Here, perhaps somewhat surprisingly, we show that it is possible to have
non-malleable commitments with respect to commitments that are not statisti-
cally binding. This is crucially used in our main result since the constant-round
NMc and NMd commitment scheme that we show is not statistically binding.

We also remark that the recent work of Barak et al. [14] obtains concur-
rent non-malleable zero-knowledge with a poly-logarithmic round complexity,
and thus does not seem to help for achieving constant-round simulation-based
concurrent non-malleable commitments.

94 R. Ostrovsky, G. Persiano, and I. Visconti

2 Simulation-Based Non-malleable Commitments

Since all our results concern the simulation-based notion of non-malleability, we
will concentrate on this notion only. Here we start by considering concurrent
non-malleable commitment schemes; that is, commitments schemes that are se-
cure under Concurrent Man-in-the-Middle attacks (cMiM attacks). Informally
speaking, a non-malleable commitment scheme guarantees that the value com-
mitted to (or the value that is decommitted) by a polynomial-time adversary
A is independent of the value simultaneously committed (or the value that is
decommitted) to A by a honest committer. We assume that A has full power
over the scheduling of the messages in the two sessions (the one in which A is a
committer and the one in which A is a receiver). Following [1,2,3,4], we formalize
this notion by comparing two executions: the man-in-the-middle execution (the
MiM execution) and the simulated execution. We denote the security parameter
by k and consider the concurrent case where the adversary A receives and send
a polynomial number of commitments.

The Dolev-Dwork-Naor notion of non-malleability. Informally speaking, non-
malleability with respect to commitment guarantees that the commitment com-
puted by the MiM adversary corresponds to a message that is independent from
the one committed to by the honest committer. In [7], dependency of the values m
and m̃ has been formalized through a poly-time computable relationR for which
R(m, m̃) = 1. Specifically, Dolev, Dwork and Naor[7] defined non-malleability
with respect to commitment by requiring that for any man-in-the-middle adver-
sary A and any polynomial time computable relation R, there exists a poly-time
stand-alone adversary S whose success probability in committing to a value m̃ so
that R(m, m̃) = 1 is at least as good as A’s success probability. Non-malleability
with respect to decommitment [1] instead considers the ability of A to decommit
to a value m̃ that is related to m. Notice that under the definition of [7], if A is
no more likely to commit to a related value than S and the commitment is sta-
tistically binding, then A is also no more likely to decommit to a related value.
This is true regardless of whether A is given the decommitment information
or not. So under this definition, any (statistically binding) commitment that is
NMc is also NMd.

A (stronger) simulation-based notion of non-malleable commitments. In this
work we adopt the simulation-based definition [1,2,3,4], which requires that the
value m̃ committed to by S in the stand-alone execution is computationally in-
distinguishable from the value committed to by A in the man-in-the-middle
execution. To have a meaningful definition of non-malleability with respect
to decommitment, since A obtains the message m committed by the honest
sender before decommitting its commitment, S is assumed to obtain m be-
fore decommitting its commitment. It is not clear that with respect to the
simulation-based definition, non-malleability with respect to commitment still
implies non-malleability with respect to decommitment. The problem here is
that (unlike in the [7] definition), one would like the success probability of S

Simulation-Based Concurrent Non-malleable Commitments 95

(i.e., the probability that the stand-alone simulator playing with a honest re-
ceiver correctly completes the decommitment phase) to be only negligibly far
from A’s success probability. Indeed, in the NMc schemes in the plain model
of [3,4], the simulator S generates a bogus commitment that is being fed to
A. However, after having committed to some value, S is stuck with the bogus
value and it is not clear how to enable S to decommit it to A as m. (In the
common reference string (CRS) model, the situation is easier, as CRS could be
arranged so that S can use “equivocal” commitments that can be decommitted
to any value, while A forced to use statistically-binding on CRS commitment
[1,2]. Here,we concentrate on the plain model without the CRS, and hence this
approach does not work).

From the above discussion we have that the constant-round commitment
scheme NMc of [3] that is proved to be NMc, does not seem to be NMd (ac-
cording to the simulation-based definition of [3]) or, at least, no evidence of
this is provided by the proof of [3]. Specifically, the simulator that computes
c = SBCom(0k, s) in the commitment phase cannot open c as m since the
decommitment phase simply consists in the decommitment phase of SBCom
which is statistically binding. Therefore under the simulation-based notion of
non-malleability, the proof that NMc is an NMc commitment scheme does not
seem to extend to prove that NMc is also NMd. We stress that in [3,4], only the
commitment phase is considered for proving NMc, and since the decommitment
phase as discussed above is quite problematic, their security proof implicitly re-
quires that the commitment and decommitment phases do not overlap in time.

NMc does not necessarily require statistical binding. When statistically binding
commitments are considered, the commitment phase encodes the unique message
to which the commitment can be later decommitted. Indeed, even in case the
adversarial committer is unbounded there is no way for him to violate the bind-
ing property. Since NMc considers the message committed in the commitment
phase, the statistical binding property guarantees that this non-malleability no-
tion is well defined, and indeed in [3] the authors consider the notion of NMc
only for statistically binding commitment schemes. Intuitively, NMc seems far
more problematic in case the scheme is not statistically binding (but only com-
putationally binding), since the commitment phase does not uniquely specify the
message that is going to be decommitted. Therefore, the meaning of NMc for an
unbounded adversarial committer is unclear. We observe though that NMc com-
mitments are meant to be secure against polynomial-time MiM adversaries for
which the computational binding property still holds. It is therefore potentially
possible to have a commitment scheme that is not statistically binding (i.e.,
binding does necessarily hold in case the adversarial committer is unbounded)
but however still is NMc as at the end of the commitment phase it is always
possible to determine the message committed by the polynomial-time MiM and
by the honest sender. Indeed, in this paper, we show commitment schemes that
are not statistically binding but that are NMc commitment schemes and, at the
same time, NMd. To define NMc we will use the concept of “message commit-
ted to by an adversary A during the commitment phase.” By this we mean the

96 R. Ostrovsky, G. Persiano, and I. Visconti

following. We will consider commitment schemes in which, for all adversaries A,
and for each possible transcript trans of the interaction between adversary A
and a honest receiver R such that R accepts the commitment, there exists (sta-
tistically) only one message m that is consistent with trans; that is, for which
there exist random coin tosses that give trans. We stress that statistically hiding
commitment schemes do not have the above property and thus our definition is
not suitable for these commitment schemes.

For lack of space, in the full version of this paper [15] we review the two schemes
of [3] for non-malleable commitments: NMc that is NMc and NMd that is NMd
and we also show a commitment scheme that combines NMc and NMd.

3 Simulation-Based cNM Commitments

Following [3,4], we now formalize the concept of a (simulation-based) concurrent
non-malleable commitment scheme by comparing two executions: the concurrent
man-in-the-middle execution (the cMiM execution) and the simulated execution.
We denote the security parameter by k.

The cMiM execution. In the cMiM execution, the cMiM adversary A is simul-
taneously participating in poly(k) left and poly(k) right interactions.

Consider a cMiM execution in which the cMiM adversary A with auxiliary
information z interacts in the i-th left interaction with a honest committer run-
ning on input a message mi of length poly(k) and in the right interactions with
honest receivers. We denote by cmimA

Com(M, z), where M = (m1, . . . , mpoly(k)),
the random variable that associates to the cMiM execution a vector M̃ whose i-
th component m̃i is defined as follows. If the commitment phase of the i-th right
interaction ends successfully and its transcript is different from the commitment
phase of all the left interactions, then m̃i is the message that A has committed
to in the i-th right interaction. Otherwise, m̃i =⊥.

Similarly, we denote by cmimA
Dec(M, z) the vector M̃ whose i-th component

m̃i is the message that A has decommitted in the right interaction. If the i-th
right interaction is not successful or its transcript (including commitment and
decommitment phase) is identical to the transcript of one of the left interactions
then m̃i =⊥.

The simulated execution. In the simulated execution we have one party S (called
the simulator) that interacts with poly(k) honest receivers. S works in two phases:
in the commitment phase S receives security parameter 1k and auxiliary infor-
mation z and interacts with the honest receivers. We denote by csisSCom(1k, z) the
vector M̃ whose i-th component m̃i is the value committed to by S if the i-th com-
mitment phase has been successfully completed. Otherwise m̃i is set equal to ⊥.

Once the commitment phases have been completed, S receives input vector
M and interacts with the honest receiver to complete the decommitment phase.
We denote by csisSDec(M, z) the vector M̃ whose i-th component m̃i is the value
decommitted by S in the i-th decommitment phase if it has been successfully
completed. Otherwise m̃i is set equal to ⊥.

Simulation-Based Concurrent Non-malleable Commitments 97

We have the following definitions (see also [3,4]).

Definition 1. A commitment scheme is simulation-based concurrent non-
malleable with respect to commitment (a concurrent NMc commitment scheme)
if, for every probabilistic polynomial-time cMiM adversary A, there exists a prob-
abilistic polynomial time simulator S such that following ensembles are compu-
tationally indistinguishable:

{cmimA
Com(M, z)}M∈({0,1}poly(k))poly(k),z∈{0,1}� and {csisSCom(1k, z)}z∈{0,1}� .

Definition 2. A commitment scheme is simulation-based concurrent non-
malleable with respect to decommitment (a concurrent NMd commitment
scheme) if, for every probabilistic polynomial-time cMiM adversary A, there ex-
ists a probabilistic polynomial time simulator S such that the following ensembles
are computationally indistinguishable:

{cmimA
Dec(M, z)}M∈({0,1}poly(k))poly(k),z∈{0,1}�

and
{csisSDec(M, z)}M∈({0,1}poly(k))poly(k),z∈{0,1}� .

3.1 Commitment Scheme cNMcd

In this section we present a constant-round commitment scheme cNMcd that
enjoys both simulation-based concurrent NMc and simulation-based concurrent
NMd. We will use a constant-round tag-based perfect NMZK argument of knowl-
edge nmZK = {Pt,Vt}t for all NP [3], a constant-round witness indistinguish-
able (wiP ,wiV) proof of knowledge (WIPoK) for all NP [16,17], a non-interactive
statistically binding commitment scheme Com and a secure signature scheme
SS = (SG, Sig, SVer). The most sophisticated tool that we use is obtained from
a sequence of works by Pass and Rosen.

Theorem 1 ([3,4,9]). Assume that there exists a family of claw-free permu-
tations. Then for any NP language L there exists a constant-round tag-based one-
left many-right perfect cNMZK arguments of knowledge nmZK =
= {〈Ptag,Vtag〉}tag for all NP.

According to the above definition, this theorem says that for any efficient one-
left many-right concurrent man-in-the-middle adversary A that is restricted to
one left session there exists an efficient simulator S that guarantees: 1) the
view (including the left proof and all the right proofs) given in output by S
is perfectly indistinguishable from the interaction of A with honest prover and
honest verifiers; 2) the extraction succeeds for all accepting right proofs in which
the one-left many-right concurrent man-in-the-middle adversary has used a tag
not appearing in the left proof.

See the full version [15] of this paper for details about the other tools.
A description of commitment scheme cNMcd is found in Figure 1.

98 R. Ostrovsky, G. Persiano, and I. Visconti

Security Parameter: 1k.
Input to Committer: m ∈ {0, 1}k.
Commitment Phase:

C → R: pick s ∈ {0, 1}k, set c = Com(m, s) and send c to R.
C → R: set (PK, SK) ← SG(1k) and send PK to R.
C ↔ R: C executes the code of PPK on input c to prove knowledge of
m,s ∈ {0, 1}k such that c = Com(m, s). R executes the code of VPK on
input c. If VPK rejects then R aborts.
R → C: pick m0, s0, m1, s1 ∈ {0, 1}k, set c0 = Com(m0, s0), c1 =
Com(m1, s1) and send c0 and c1 to C.
R ↔ C: R select a random bit b and executes the code of wiP on input
(c0, c1) to prove knowledge of m̂, ŝ ∈ {0, 1}k such that c0 = Com(m̂, ŝ) or
c1 = Com(m̂, ŝ) using (mb, sb) as witness. C executes the code of wiV on
input (c0, c1). If wiV rejects then C aborts.
C → R: let trans0 be the transcript so far with an extra bit 0 at the end.
Set σ0 ← Sig(trans0, SK) and send σ0 to R.
R: if SVer(trans0, σ0, PK)
= 1 abort.

Decommitment Phase:

C → R: send m.
C ↔ R: C executes the code of PPK on input (c, c0, c1) to prove knowledge
of m̂, ŝ ∈ {0, 1}k such that c = Com(m, ŝ) or c0 = Com(m̂, ŝ) or c1 =
Com(m̂, ŝ), using (m, s) as witness. R executes the code of VPK on input
(c, c0, c1). If VPK rejects then R aborts.
C → R: let trans1 be the transcript so far with an extra bit 1 at the end.
Set σ1 ← Sig(trans1, SK) and send σ1 to R.
R: if SVer(trans1, σ1, PK)
= 1 abort.

Fig. 1. Our concurrent NMc and concurrent NMd commitment scheme cNMcd

How we achieve concurrent NMd. First of all, we notice that a straight-forward
combination of the two commitment schemes of [3] produces a commitment
scheme that we call NMcd that achieves non-malleability with respect to both
commitment and decommitment, when concurrency is not considered. In proving
the NMd property one crucially relies on the existence of a simulator extractor
for the NMZK argument nmZK. If one tries to argue that NMcd is a concurrent
NMd commitment scheme along the same lines, one would need a simulator that
simulates concurrent executions; in other words, one would need a concurrent
NMZK argument of knowledge. Unfortunately, the existence of a constant-round
concurrent NMZK argument system in the plain model is still an open problem.

We use instead a more sophisticated protocol and prove its properties by
blending the straight-line simulator of the concurrent NMc commitment scheme
of [4] with a sophisticated rewind technique. In using rewinding we have to
be careful as the nested sessions can potentially make the running time super

Simulation-Based Concurrent Non-malleable Commitments 99

polynomial1. Instead, we perform rewinds “in advance,” to extract information
from the adversary. The simulator is then able to simulate in a straight-line
fashion the decommitment phase by using the information extracted by means
of rewinds. Our security proof also employs the two-witness technique by [10]
and the well known FLS-technique [18].

In somewhat more details, we extend the commitment phase of the concur-
rent non-malleable commitment scheme of [4] by requiring that the receiver
gives a proof of knowledge of a secret. The decommitment phase consists in
sending a message and in proving with a NMZK proof that either the message
corresponds to the committed one or the sender knows the secret (this is the
FLS-technique [18]). Our simulator will extract the secrets of all receivers in the
commitment phase and will use them as fake witnesses in the decommitment
phase. Note that one could think that the rewinding technique used by the sim-
ulator during the commitment phase could blow up its running time since the
adversarial receiver could adaptively play different messages when the transcript
changes. Fortunately we adopt a non-dangerous rewind technique that does not
harm the running time of the simulator. Indeed, the simulator will first play
the commitment phase running the honest sender algorithm. Then it will ex-
tract the secrets encoded by the receiver in that specific transcript by running
an extractor sequentially for each commitment, one-by-one, starting each time
from the same transcript. During this extraction procedure the simulator will
not be interested in re-committing again or in simulating concurrent sessions, it
will simply play again the honest sender procedure in all sessions with the only
exception of the one in which it extracts the secret of the receiver. The extracted
secret will only be kept in memory by the simulator and will not be used in the
commitment phase. Instead, the decommitment phase will be crucially based on
the knowledge of the secrets of the receiver, and will allow the simulator to play
in straight-line, opening the committed messages as any messages.

We show that an adversary will not be able to use such a secret, since we
prove that any successful adversary can be used to break a standard complexity-
theoretic assumption by using the two-witness technique of [10] and the non-
malleability of nmZK.

In the next section we prove the properties of commitment scheme cNMcd.
We will often use the simulation-extractability property of nmZK. Notice that
this property is guaranteed only in case the tag used by the adversary is different
from the one used by the other parties. Since in our scheme we use as tag the
public key of a signature scheme, and since each phase is only correctly completed
if there is a signature under that public key of the transcript of the phase, we
assume that the simulation-extractability property always holds, since otherwise
the security of the signature scheme is broken. We will detail this argument
only when we prove the NMc property for the one-left many-right case (see the
discussion below the description of Expt2), in the other cases the argument is
quite similar and is omitted.

1 The study of this problem started with the notion of concurrent zero knowledge [11].

100 R. Ostrovsky, G. Persiano, and I. Visconti

Binding. In the proof of concurrent NMd we show that any man-in-the-middle
adversary that completes the commitment phase, can later open that commit-
ment only in one way. This property is even stronger than binding (since the
classical adversary for the binding property can not play as receiver) thus that
proof properly contains the proof of the binding property.

Hiding. Assume by contradiction that there exists an adversarial receiver A
that, after the commitment phase distinguishes a commitment to m0 from a
commitment to m1 with non-negligible advantage. We show how to reduce A to
an adversary A′ that breaks the hiding property of Com. Indeed, A′ on input a
challenge com (i.e., a commitment of either m0 or m1), plays the honest commit-
ter algorithm with the following two exceptions: com is sent in the commitment
phase and the simulator for nmZKPK is used instead of the honest prover algo-
rithm. Since the simulation for nmZKPK is perfect, the only chanceA has to guess
concerns the value of com. Therefore, A′ by simply giving in output the same
bit given in output by A succeeds in guessing with non-negligible advantage the
message committed in com.

Simulation-Based Concurrent NMc. We start by considering the simpler
case in which the adversary A is active in one left commitment and in polyno-
mially many right commitments (a one-left many-right adversary).

The one-left many-right case. For every one-left many-right MiM adversary A,
we consider simulator S(z) that internally runs A(z) and provides A with a left
commitment by executing the code of the honest committer to commit to 0k (k
is the security parameter). For the right commitments instead S relays messages
between the polynomially many honest receivers and A. We stress that for NMc
we only have to consider the commitment phase.

We now prove that for all messages m ∈ {0, 1}k and all z, we have that∣∣∣Prob[D(m, cmimA
Com(m, z)) = 1]− Prob[D(m, csisSCom(1k, z)) = 1]

∣∣∣
is negligible in k for all distinguishers D. We consider hybrid experiments starting
with Expt0(v, z).

Expt0(v, z) is the experiment in which A(z) interacts in the left commitment
with a honest committer committing to v and with honest receivers in the right
commitments. We denote by M̃ the vector whose i-th component m̃i is defined
as follows. If the i-th right commitment is successfully completed by A and its
transcript differs from the one of the left commitment then m̃i is the message A
has committed to2 in the i-th right commitment. Otherwise m̃i =⊥. Expt0(v, z)
returns D(v, M̃). We set p0(v, z) = Prob[Expt0(v, z) = 1]. Obviously, we have
that for all z, k and m ∈ {0, 1}k, p0(m, z) = Prob[D(m, cmimA

Com(m, z)) = 1]
and that p0(0k, z) = Prob[D(m, csisSCom(1k, z)) = 1].

2 This is the message that is consistent with the transcript. Since we use a statistically
binding commitment scheme there is a unique such message.

Simulation-Based Concurrent Non-malleable Commitments 101

To define the next experiment, we observe that A naturally defines a one-left
many-right MiM adversary A′ for nmZK. Specifically, consider the following ad-
versary A′. A′(z) internally runs A(z). A′ forwards externally all A’s messages
of all the executions of nmZK. For the execution of (wiP ,wiV) of each right com-
mitment (here A acts as a verifier), A′ computes the commitment of two random
messages and executes the code of wiP . For the executions of (wiP ,wiV) of the
left commitments, A′ executes the code of wiV . Now let S′ be the simulator-
extractor of nmZK for adversary A′.

Experiment Expt1(v, z) differs from Expt0(v, z) in that we have the simulator
S′ for adversary A′ instead of A that is playing with the honest prover and
honest verifiers for nmZK. More precisely, in the left commitment of Expt1(v, z),
we first compute com = Com(v, s) and (PK, SK) = SG(1k) and then run S′ on
input com, tag PK and z. All other steps (executions of (wiP ,wiV) and signatures)
are performed just like in Expt0(v, z). Let View be the view output by S′ and
define vector M̃ as follows. If the i-th right commitment in View is successfully
completed and its transcript differs from the one of the left commitment, then
set m̃i equal to the message committed to (again, this message is unique since
Com is statistically binding) by A. Otherwise, set m̃i =⊥. Finally, Expt1(v, z)
outputs D(v, M̃). We set p1(v, z) = Prob[Expt1(v, z) = 1]. By the perfect
NMZK property of nmZK, we have that p0(v, z) = p1(v, z) for all v and z.

Experiment Expt2(v, z) differs from Expt1(v, z) in the way in which vector M̃
(and consequently the output) is computed. Specifically, in Expt2(v, z) we set
m̃i as the message that has been extracted by S′ as part of the witness for the
i-th right execution of nmZK. If no message is extracted then m̃i =⊥. We set
p2(v, z) = Prob[Expt2(v, z) = 1].

Denote by P̃Ki the signature public key used as a tag for the i-th right execution
of nmZK in View and by PK the signature public key used as a tag for the left
execution of nmZK in View. First of all observe that, for all i, if the transcript of
the i-th right commitment of View differs from the one of the left commitment
then, by the security of the signature scheme, the probability that P̃Ki = PK is
negligible. Therefore, for each i, only two cases have non-negligible probability.
In the first case the transcript of the i-th right commitment is equal to the one
of the left commitment (and thus P̃Ki = PK). Then we observe that in this case
m̃i =⊥ both in Expt1(v, z) and in Expt2(v, z). If instead the transcript of the
i-th right commitment differs from the one of the left commitment and P̃Ki �= PK
then, by the extraction properties of S′, the value m̃i extracted by S′ is not
the value committed to by A in View with negligible probability. Therefore we
conclude that |p2(v, z)− p1(v, z)| is negligible for all v and z.

We now conclude the proof by showing that for all k and for all v ∈ {0, 1}k,
|p2(v, z) − p2(0k, z)| is negligible. Suppose that it is not and thus for infinitely
many k there exists vk ∈ {0, 1}k and z such that |p2(vk, z) − p2(0k, z)| ≥
1/poly(k). Then, we can construct the following adversary B that breaks the
hiding of Com. B receives ĉ that is a commitment to either 0k or vk and exe-
cutes Expt2(vk, z) by setting in the left commitment phase c = ĉ. We notice that
Expt2 can be executed in polynomial time even though the message committed

102 R. Ostrovsky, G. Persiano, and I. Visconti

to by c in the left interaction is not known. From the output of the experiment
B has a non-negligible advantage in guessing the committed bit.

We have shown that both |p0(vk, z)− p2(vk, z)| and |p2(vk, z)− p2(0k, z)| are
negligible, Using again the same arguments, it follows that |p2(0k, z)− p0(0k, z)|
is negligible. Therefore, we have that

∣∣∣Prob[D(m, cmimA
Com(m, z)) = 1] −

Prob[D(m, csisSCom(1k, z)) = 1]
∣∣∣ = |p0(vk, z)− p0(0k, z)| is negligible.

The many-left many-right case for concurrent NMc. We now consider the many-
left many-right case. For concurrent MiM adversary A, we consider simulator
S(z) that runs A(z) internally and executes the code of the honest committer
on input 0k for all left commitments. For the right interactions, S relays mes-
sages between the external receivers and A. Notice that if we have only one left
commitment S coincides with the simulator we used for proving non-malleability
with respect to one-left many-right MiM.

Assume by contradiction that there exists a distinguisher D that distinguishes
cmimA

Com(M, z) and csisSCom(1k, z). Let l = poly(k) be the number of left commit-
ments and, for i = 0, . . . , l, consider hybrid experiment ExptAi defined as follows.
Let M = (m1, . . . , ml) be a vector of messages. In ExptAi (M, z), adversary A is
run on input z and the j-th honest left committer commits to mj if j ≤ i and
to 0k otherwise. ExptAi (M, z) outputs a vector whose i-th component consists
of the messages committed to by A in the i-th right commitment if it has been
successfully completed by A and if its transcript differs from the transcripts of
all the left commitments. If this is not the case then the i-th component of the
output of ExptAi (M, z) is set equal to ⊥. Obviously, for all M and z, ExptA0 (M, z)
coincides with csisSCom(1k, z) and ExptAl (M, z) with cmimA

Com(M, z). If there ex-
ists a probabilistic polynomial time distinguisher D that distinguishes between
csisSCom(1k, z) and cmimA

Com(M, z) then there must be i ∈ {0, . . . l− 1} such that
D distinguishes the output of ExptAi (M, z) and the output of ExptAi+1(M, z).
We stress that the only difference between experiment ExptAi and experiment
ExptAi+1 is that in the (i + 1)-st left commitment of ExptAi we are committing to
0k (just like the simulator) whereas in ExptAi+1 we are committing to mi+1. We
can therefore construct a successful MiM adversary A′ for the one-left many-
right case. Adversary A′ internally runs all left sessions with the only exception
of the (i + 1)-st session that is played either with a honest committer commit-
ting to mi+1 or with the simulator of the one-left many-right case. Therefore A′

breaks the one-left many-right non-malleability which is a contradiction.

Simulation-Based Concurrent NMd. For every cMiM adversary A, we de-
scribe a simulator S that interacts with polynomially many honest receivers and
performs with each of them a commitment and a decommitment phase. To sat-
isfy Definition 2, we will show that, for every vector M of messages, S decommits
its commitments to a vector M̃ of messages that is indistinguishable from the
messages decommitted by A when interacting on the left with honest committers
committing to M .

Simulation-Based Concurrent Non-malleable Commitments 103

The simulator. Since now we also have to care about decommitments, we extend
the simulator in the following way. S first runs the left and the right commitment
phases with A executing the code of the honest receiver in the right commitment
phases and the code of the honest committer on input message 0k in the left
commitment phase. Notice that A is interacting solely with S and no honest
receiver is involved. Then S runs the extractors for all the proofs (both in left
and right commitment phases) provided by A in order to get the corresponding
witnesses. More precisely, for each right commitment phase, S runs the extrac-
tor of nmZK and we denote by (mi, si) the witness extracted in the i-th right
commitment phase; for each left commitment phase, S runs the extractor of the
WIPoK and we denote by (mbi,i, sbi,i), with bi ∈ {0, 1}, the witness extracted in
the i-th left commitment phase. Extractions are executed sequentially and thus
the running time of S is polynomial.

Next, S plays the commitment phases with the honest receivers. S does so by
executing the code of the honest committer and using, for the i-th commitment
phase, message mi as input.

After the commitment phases have been completed, S receives vector M� =
(m�

1, . . . , m
�
l) and has to perform the decommitment phases with A. S does so by

resuming the interactions with A in the following way. In the left decommitment
phase corresponding to the i-th left commitment phase, S uses knowledge of mbi,i

to open the commitment (that was originally computed by S as a commitment
to 0k) to m�

i . In the right decommitment phases, S acts as a honest receiver.
Then, for each i, if A has successfully completed the i-th right decommitment
phase, then S completes the i-th decommitment phase with the honest receiver
decommitting the commitment to mi (notice that in the i-th commitment phase
with honest receivers, S had committed to mi). This ends the description of the
simulator S.

The above simulator combines the techniques we propose in this paper to
overcome the limitations of the [4] result. Our simulator not only guarantees
concurrent NMc as we proved previously, but it will also guarantee concurrent
NMd. Notice that the [4] simulator only works for concurrent NMc, while for
NMd it immediately fails when a single decommitment phase is executed. We
now turn to proving that the described simulator S satisfies Definition 2.

We now prove that the distribution of the messages decommitted by A when
interacting with honest committers and honest receivers is indistinguishable from
the distribution of the messages decommitted by A when interacting with S.

Indistinguishability of the simulation. We start with the one-left many-right case
and then we will consider the many-left many-right case. We consider a sequence
of experiments ExptAi (m, z) and show that any distinguisher D between the ex-
periments can be used to produce a contradiction. Therefore, the output of each
experiment is the output of a distinguisher D (which existence is assumed by
contradiction) on input a message m and a vector M̃ whose i-th component
m̃i is defined as follows. If the decommitment phase of the i-th right interaction
terminates successfully and its transcript is different from all the left interactions,

104 R. Ostrovsky, G. Persiano, and I. Visconti

then m̃i is the message that A has decommitted in the i-th right interaction.
Otherwise, m̃i =⊥. We also set pAi (m, z) = Prob[ExptAi (m, z) = 1].

ExptA0 (m, z) is the experiment in which A plays with S that behaves as a
honest receivers in the right interactions and as a honest committer on input
m in the left interaction. We notice that, since S is acting as honest receiver
and honest committer, pA0 (m, z) is the probability that D outputs 1 on input
distributed according to cmimA

Dec(m, z).
Experiment ExptA1 (m, z) differs from Expt0 only because in the left commit-

ment phase, S runs the extractor of the WIPoK used by A. Since there is no
other deviation, we have that pA1 (m, z) = pA0 (m, z).

Experiment ExptA2 (m, z) differs from Expt1 in that in the left decommitment
phase, S executes the code of the honest prover but uses a fake witness (that
is the witness extracted in the left commitment phase from A’s WIPoK). Next
we prove that |pA2 (m, z)− pA1 (m, z)| is negligible. Assume by contradiction that
this difference is non-negligible; as the only difference between the two games
consists in the witness used in the nmZK played in the decommitment phase,
we show how to break the witness indistinguishability of nmZK. Specifically, we
play the following game with an external prover P . We perform the commitment
phase like in game ExptA1 (m, z). In particular, in the left commitment phase S
has computed and sent to A commitment c = Com(m, s) and A has produced
commitments c0 and c1 and proved knowledge of the message committed to
by one of the two. We denote by (mb, sb) the witness extracted by S from A’s
WIPoK. The decommitment phase proceeds as in game Expt1 with the exception
of the execution of nmZK in the left decommitment phase which is performed by
the external prover P . P is fed with the real witness (m, s) and the fake witness
(mb, sb) and performs the code of the honest prover using one of the two. Notice
that the decommitment phase is straight-line. We observe that if P uses the fake
witness then we are actually playing game ExptA2 (m, z) whereas if P uses the
real witness we are playing ExptA1 (m, z). Therefore if D distinguishes these two
games, we break the witness indistinguishability of nmZK. We stress that in this
reduction we have not used the extractor of the nmZK of the decommitment
phase, therefore we can relay messages with P without rewinding it.

Next we consider ExptA3 (m, z) in which S uses the simulator of nmZK in the
left commitment phase. Since the simulation is perfect we have that pA3 (m, z) =
pA2 (m, z).

Next we consider ExptA4 (m, z) in which S commits to 0k in the left com-
mitment phase. Any distinguisher between ExptA4 (m, z) and ExptA3 (m, z) can be
easily reduced to a distinguisher between a commitment of 0k and a commitment
of m using Com, by simply playing this commitment as c, completing the exper-
iment and then giving in output the same output of the distinguisher. Therefore
by the computational hiding of Com we have that |pA4 (m, z)− pA3 (m, z)| is neg-
ligible.

Next we consider ExptA5 (m, z) in which S runs the honest prover of nmZK
in the left commitment phase. Since the simulation is perfect we have that
pA5 (m, z) = pA4 (m, z).

Simulation-Based Concurrent Non-malleable Commitments 105

This sequence of experiments shows that the distribution of the messages
decommitted by A during the man-in-the-middle game when the honest sender
commits and decommits to m and A commits and decommits with the honest
receiver R (i.e., ExptA0 (m, z)), is indistinguishable from the distribution of the
messages that A decommits in the simulated game where S plays both as sender
committing to 0k and as receiver (i.e., ExptA5 (m, z)).

Epilogue. We now show that S is actually a stand-alone adversary, i.e., it can
commit and open to a honest receiver R the same messages that A can open
and decommit during a man-in-the-middle game.

Following the description of S, we know that S commits to R the messages that
it extracts fromA at the end of the commitment phase of the simulated game. The
proof of non-malleability with respect to commitment given previously, says that
the messages committed by S to R have the same distribution of the ones commit-
ted by A in the real game. Then the description of S says that S decommits to R
the commitments that correspond to the ones thatA decided to decommit to S in
the decommitment phase of the simulated game. Since the indistinguishability of
the simulation proved so far says that A decommits to S the same messages that
A decommits in the real game, we have that S decommits to R the same messages
decommitted by A in the real game, unless A in the real game decommits mes-
sages different with respect to the committed ones (indeed, S never decommits to
R a message that is different from the committed one).

Therefore we now show that in the real game A can not open to different mes-
sages, this will imply that S decommits to R messages with the same distribution
of the ones decommitted by A.

In the real game A cannot open in a different way. Assume by contradiction
that, with some non-negligible probability, in the real game (i.e., when A plays
with a honest prover committing to m and with honest receivers) there exists i
such that the decommitted message m′

i is different from the committed message
mi

3. We denote by c0 and c1 the two commitments computed by R in the i-th
commitment phase of A and by b ∈ {0, 1} the bit such that the receiver R used
knowledge of the message committed to by cb to perform the WIPoK of the i-th
commitment phase. Given that A successfully completes the i-th decommitment
phase then, we can consider the following experiment. Adversary A plays with
a real sender and a receiver-extractor. The real sender commits to m, while the
receiver-extractor runs the honest receiver algorithm for all right commitments
and runs the extractor of nmZK of the i-th decommitment phase. The receiver-
extractor with overwhelming probability outputs a pair (m̂, ŝ) such that either
cb = Com(m̂, ŝ) or c1−b = Com(m̂, ŝ) (i.e., since A decommitted to a different
message, the witness must be a fake one).

Suppose that with some non-negligible probability it happens that c1−b =
Com(m̂, ŝ). Then we break the hiding property of Com. Consider the following

3 The committed message is the one uniquely specified by the statistically binding
commitment scheme used as sub-protocol.

106 R. Ostrovsky, G. Persiano, and I. Visconti

adversaryB that receives a commitment ĉ and would like to compute the message
committed to by ĉ with some non-negligible probability. B interacts with A
and plays all commitment phases as the honest senders and receivers, with the
only exception of the i-th commitment phase played as receiver. Here B picks
a random b ∈ {0, 1}, a random mb ∈ {0, 1}k and random sb ∈ {0, 1}k and
computes commitment cb = Com(mb, sb) and sets c1−b = ĉ. Then B continues
the commitment phase by running the code of the honest prover wiP of the
WIPoK using (mb, sb) as witness. By our hypothesis, with some non-negligible
probability, the extractor gives the message committed to by ĉ, this gives to B
a non-negligible advantage for breaking the hiding property of Com.

Suppose instead that, except with negligible probability, it happens that
cb = Com(m̂, ŝ). We show that the witness indistinguishability of the WIPoK is
violated. More specifically, we consider a WI adversary B that executes inter-
nally all the previous interactions with the only exception that the WIPoK of
the i-th right commitment phase is played by relaying messages with an external
prover (that uses a witness for cb� for some b� ∈ {0, 1}). B then plays internally
the decommitment phases with the exception of the i-th decommitment phase
for which the extractor is used. By looking at the extracted witness, B will guess
the witness used by the external prover.

Summing up. We have therefore shown that A decommits successfully only the
committed messages. Moreover, we have shown that in the simulated game A’s
choices for which commitment have to be decommitted are indistinguishable
from its choices in the simulated game. These two properties guarantee that S
decommits to R messages indistinguishable from the ones decommitted by A in
the real game.

This terminates the proof for the one-left many-right case.

The many-left many-right case for concurrent NMd. Let l = poly(k) be the size
of the vector of messages M , we consider the hybrid games {ExptAi }0≤i≤l, where
ExptAi for i = 0, . . . l is defined as follows. In the game ExptAi the committer
commits to mj as the j-th commitments if j ≤ i, and to 0k if j > i. Moreover
in ExptAi the i-th commitment is decommitted using a legal witness if j ≤ i
and a fake witness if j > i. Obviously ExptA0 corresponds to the game played
by the simulator (including both the commitment and decommitment phases)
while ExptAl corresponds to game played by the honest committer (again, in-
cluding both the commitment and decommitment phases). For all M and z we

denote by {csisExptAiDec (M, z)} the random variable that associates to each success-
fully completed decommitment phase of ExptAi the messages decommitted by A.

Instead {csisExptAiDec (M, z)} associates the value ⊥ to interactions that have not
been completed by A.

Assume by contradiction that the scheme is not concurrent non-malleable
with respect to decommitment. It follows that there must be an index i ∈
{0, . . . l − 1} such that D distinguishes with non-negligible probability between

{csisExptAiDec (M, z)} and {csisExptAi+1Dec(M, z)}. The only difference between game

Simulation-Based Concurrent Non-malleable Commitments 107

ExptAi and game ExptAi+1 for i ∈ {0, . . . l−1} is that the i+1 commitment is com-
puted for message 0k in ExptAi while it is computed for message mi in ExptAi+1.
Moreover the corresponding decommitment uses a fake witness in ExptAi and a
legal witness in ExptAi+1.

We can therefore construct a successful MiM adversary A′ for the one-left
many-right case. Adversary A′ internally runs all left sessions with the only
exception of the (i + 1)-st commitment and the corresponding decommitment
that is played either with a honest committer committing to mi+1 or with the
simulator of the one-left many-right case. Therefore A′ breaks the one-left many-
right non-malleability which is a contradiction.

From the previous discussion and by observing that existence of a family of
claw-free permutations is sufficient for the tools we use, we have the following
theorem and corollary.

Theorem 2. Under the assumption of existence of a tag-based one-left many-
right perfect cNMZK arguments of knowledge for all NP, of a secure signature
scheme and of a statistically-binding non-interactive commitment scheme, com-
mitment scheme NMcd is both simulation-based concurrent NMc and simulation-
based concurrent NMd.

Corollary 1. Under the existence of a family of claw-free permutations there
exists a constant-round commitment scheme that is both simulation-based con-
current NMc and simulation-based concurrent NMd.

Acknowledgments

We thank the anonymous reviewers for their suggestions. The work of the first
author has been supported in part by IBM Faculty Award, Xerox Innovation
Group Award, NSF grants 0430254, 0716835, 0716389, 0830803 and U.C. MI-
CRO grant. The work of the authors has been supported in part by the Euro-
pean Commission through the EU IST program under Contract IST-2002-507932
ECRYPT, and the one of the last two authors through the the EU ICT program
under Contract ICT-2007-216646 ECRYPT II and through the FP6 program
under contract FP6-1596 AEOLUS.

References

1. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: 30th Annual ACM Symposium on Theory of Computing, Dallas,
Texas, USA, pp. 141–150. ACM Press, New York (1998)

2. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

3. Pass, R., Rosen, A.: New and Improved Constructions of Non-Malleable Crypto-
graphic Protocols. In: 37th Annual ACM Symposium on Theory of Computing,
pp. 533–542. ACM Press, New York (2005)

108 R. Ostrovsky, G. Persiano, and I. Visconti

4. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th Annual Sym-
posium on Foundations of Computer Science, pp. 563–572. IEEE Computer Society
Press, Los Alamitos (2005)

5. Blum, M.: Coin flipping by telephone. In: Proc. IEEE Spring COMPCOM, pp.
133–137 (1982)

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design. In: 27th Annual Sympo-
sium on Foundations of Computer Science, Toronto, Ontario, Canada, pp. 174–187.
IEEE Computer Society Press, Los Alamitos (1986)

7. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd Annual
ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, pp.
542–552. ACM Press, New York (1991)

8. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: 43rd Annual Symposium on Foundations of Com-
puter Science, Vancouver, British Columbia, Canada, pp. 345–355. IEEE Computer
Society Press, Los Alamitos (2002)

9. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM Journal on
Computing 37, 1891–1925 (2008)

10. Feige, U.: Alternative Models for Zero Knowledge Interactive Proofs. Weizmann
Institute of Science (1990)

11. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th Annual ACM
Symposium on Theory of Computing, Dallas, Texas, USA, pp. 409–418. ACM
Press, New York (1998)

12. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
zero knowledge in the bare public-key model. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)

13. Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable witness indis-
tinguishability and its applications. Technical Report ECCC Report TR06-095,
ECCC (2006)

14. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: 47th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Los Alamitos (2006)

15. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
commitments and decommitments. Technical Report 2008/235, Cryptology ePrint
Archive (2008)

16. Blum, M.: How to Prove a Theorem So No One Else Can Claim It. In: Proceedings
of the International Congress of Mathematicians, pp. 1444–1451 (1986)

17. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland,
USA, pp. 416–426. ACM Press, New York (1990)

18. Feige, U., Lapidot, D., Shamir, A.: Multiple NonInteractive Zero Knowledge Proofs
under General Assumptions. SIAM Journal on Computing 29, 1–28 (1999)

Proofs of Retrievability via Hardness Amplification

Yevgeniy Dodis1, Salil Vadhan2, and Daniel Wichs1

1 Department of Computer Science, New York University
{dodis,wichs}@cs.nyu.edu

2 Harvard School of Engineering & Applied Sciences and Center for Research on Computation
and Society, Cambridge, MA

salil@eecs.harvard.edu

Abstract. Proofs of Retrievability (PoR), introduced by Juels and Kaliski [JK07],
allow the client to store a file F on an untrusted server, and later run an efficient
audit protocol in which the server proves that it (still) possesses the client’s data.
Constructions of PoR schemes attempt to minimize the client and server storage,
the communication complexity of an audit, and even the number of file-blocks
accessed by the server during the audit. In this work, we identify several different
variants of the problem (such as bounded-use vs. unbounded-use, knowledge-
soundness vs. information-soundness), and giving nearly optimal PoR schemes
for each of these variants. Our constructions either improve (and generalize) the
prior PoR constructions, or give the first known PoR schemes with the required
properties. In particular, we

– Formally prove the security of an (optimized) variant of the bounded-use
scheme of Juels and Kaliski [JK07], without making any simplifying as-
sumptions on the behavior of the adversary.

– Build the first unbounded-use PoR scheme where the communication com-
plexity is linear in the security parameter and which does not rely on Random
Oracles, resolving an open question of Shacham and Waters [SW08].

– Build the first bounded-use scheme with information-theoretic security.

The main insight of our work comes from a simple connection between PoR
schemes and the notion of hardness amplification, extensively studied in com-
plexity theory. In particular, our improvements come from first abstracting a
purely information-theoretic notion of PoR codes, and then building nearly op-
timal PoR codes using state-of-the-art tools from coding and complexity theory.

1 Introduction

Many organizations and even average computer users generate huge quantities of elec-
tronic data. Although advances in hard-disk capacity have mostly kept up, allowing
most users to store their data locally, there are many reasons not to do so. Users worried
about reliability want to have replicated copies of their files stored remotely in case their
local storage fails. Remotely stored data can be made accessible from many locations
making it more convenient for many users. Some companies provide useful functional-
ity on remotely stored data using the “software as a service” model. For example, many
web-based e-mail services provide tools for searching and managing remotely stored e-
mails, making it beneficial for users to store these remotely. Lastly, some organizations

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 109–127, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

110 Y. Dodis, S. Vadhan, and D. Wichs

create large data sets that must be archived for many years, but are rarely accessed and
so there is little reason to store such data locally.

PROOFS OF RETRIEVABILITY. One problem with remote storage is that of account-
ability. If remotely stored data is rarely accessed, how can users be sure that it is being
stored honestly? For example, if a remote storage provider experiences hardware fail-
ure and loses some data, it might reason that there is no need to notify its clients, since
there is a good chance that the data will never be accessed and, hence, the client would
never find out! Alternatively, a malicious storage provider might even choose to delete
rarely accessed files to save money. To assuage such concerns, we would like a simple
auditing procedure for clients to verify that their data is stored correctly.

Such audits, called Proofs of Retrievability (PoR), were first formalized by Juels
and Kaliski in [JK07]. In a PoR protocol a client stores a file F on a server an keeps
only a very short private verification string locally. Later, the client can run an audit
protocol in which it acts as a verifier while the server proves that it possesses the client’s
data. The security of a PoR protocol is formalized by the existence of an extractor that
retrieves the original file F from any adversarial server that can pass an audit with some
reasonable probability. One simple PoR protocol would be for the client to sign the file
F and store only the verification key locally. Then, to run an audit, the server would
send the file along with the signature. Of course, for practical use, we are interested
in schemes with significantly better efficiency. In particular, we want to minimize the
communication between the client and the server, and even wish that the amount of data
read by the server to run an audit should be much smaller than (essentially independent
of) the size of the original file.

In the rest of the introduction, we introduce a general “PoR framework” and show
how prior PoR constructions fit into it. We then describe our contributions by show-
ing how to optimize the components of this framework. We also explain a connection
between PoR and “hardness amplification”, which will allow us to get qualitatively
stronger results for some of our schemes.

1.1 The PoR Framework

Our framework consists of two parts: first, we define a purely information-theoretic
primitive which we call a PoR code and, second, we give several options for converting
PoR codes into “full” PoR schemes.

POR CODES. A PoR code consists of three procedures Init, Read and Resp. The func-
tion Init specifies the initial encoding of the original client file F into the server file
F ′ = Init(F) which is stored on the server. The functions Read,Resp are used to
specify a challenge-response audit protocol. The client sends a random challenge e
which consists of two parts e = (e1, e2). The first part of the challenge identifies a
set of t indices (i1, . . . , it) = Read(e1), which correspond to t locations in F ′ that
the server should read to compute its response. We refer to t as the locality parame-
ter and attempt to minimize it. The server reads the sub-string x = F ′[i1]|| . . . ||F ′[it]
of the server file F ′ and computes a response µ = Resp(x, e2), which it sends to the
client. The PoR code specifies a natural but incomplete PoR protocol, as depicted in
Figure 1.

Proofs of Retrievability via Hardness Amplification 111

1. The client starts out with the client file F and computes a server file F ′ = Init(F), to
store on the server.

2. To run an audit, the client picks a random challenge e = (e1, e2) and sends it to the
server.

3. The server reads t locations (i1, . . . , it) = Read(e1) of F ′, resulting in a sub-string x
of length t and sends a response µ = Resp(x, e2) to the client.

Fig. 1. An Incomplete PoR Protocol based on a PoR Code (Init,Read,Resp)

EXTRACTION PROPERTY. For the security of a PoR code, we want to ensure that any
(even computationally unbounded) adversary A, which provides the correct value µ
with some “reasonable” probability ε, must indeed “know” the file F .Towards that goal
we require the existence of a decoder D which decodes the file F given oracle access
to some such adversary A. We distinguish between two types of “ε-adversaries”: an ε-
erasure adversary answers correctly with probability at least ε and does not answer the
rest of the time, while an ε-error adversary answers correctly with probability at least
ε and can answer incorrectly the rest of the time. As the names suggest, there is a clear
relation between our problem and the erasure/error decoding of error-correcting codes
(ECC). In other words, we can think of the list of all correct responses µ as the challenge
e varies as comprising a (possibly exponential) encoding of F and an ε-(erasure/error)
adversary as defining a corrupted codeword. The extraction property requires that we
construct PoR codes which are (erasure/error)-decodable from an ε fraction of correct
responses. Since we want to allow ε � 1

2 , we will need to rely on the notion of list-
decoding (i.e. the decoder D outputs a small list of L candidates, one of which is the
actual file F) for the case of errors. Notice that the functions Init,Read,Resp give our
PoR codes a special structure, which is not usually present in general ECCs: for any
client file F , the server file F ′ = Init(F) allows the server to compute a response µ for
a challenge e (i.e. any arbitrary position in the full codeword) efficiently by accessing
only t “blocks” of F ′ for some small t. The server file F ′ should not be much larger than
the original file F , while the full codeword, which consists of all responses µ, could be
exponentially long and is never computed or stored in full.

BASIC POR CODE CONSTRUCTION. We now describe a basic PoR code construction,
which is the basis of most prior work. The function Init is simply an encoding of F
under some appropriate ECC, so that F can be recovered from any δ fraction of the
blocks of the server file F ′. The challenge is a random t-tuple of locations in F ′, and
the response is the value of F ′ at those locations. We can think of this in our framework
as e1 explicitly listing t locations, e2 being empty, and the Read,Resp functions being
identity. On an intuitive level, in order for the server to “forget” any part of F , it must
“forget” at least (1− δ)-fraction of the blocks of F ′, in which case it should not be able
to respond correctly with probability better than ε = δt (which can be made exponen-
tially small by choosing a constant δ < 1 and setting t to be proportional to the security
parameter). However, this is only intuition and our actual proof needs to work the other
way — given an adversarial server that responds correctly with probability ε > δt, we
need to decode the original file.

112 Y. Dodis, S. Vadhan, and D. Wichs

FULL POR SCHEMES. The protocol shown in Figure 1 is incomplete, since the server
can give any answer in step 3 and we did not specify how the client decides if to accept
or reject the audit! We need to ensure that any adversarial server that passes a single
audit with probability ε is an ε-(erasure/error) adversary. To that end we can have several
possible techniques for converting a PoR code into a full PoR scheme.
1. INFORMATION-THEORETIC BOUNDED-USE POR. The simplest technique is to
have the client precompute several random challenge-response pairs {(e(i), µ(i))} and
store them locally before giving F ′ to the server. Later, in the i-th audit, the client sends
the challenge e(i) and directly verifies the server’s response by comparing it against the
correct stored value µ(i). To argue the security of this construction, we notice that a
prover who can pass an audit with probability ε must be an ε-error adversary. The ad-
vantage of this solution comes from the fact that it does not need to rely on any compu-
tational assumptions, and, hence, we get information-theoretic security. The downside
comes from the fact that a fresh challenge-response pair is needed for each audit. Thus,
we will only get a bounded-use information-theoretic PoR, where the client’s storage
will be proportional to the maximum number of audits �.
2. COMPUTATIONAL BOUNDED-USE POR. It is simple to reduce the client’s storage
in the above protocol, and make it independent of the number of audits that the client
runs, by settling for computational security. Firstly, the client picks the challenges e(i)

pseudorandomly so that it only needs to remember a short key k1 for a pseudorandom
function (PRF) f and can efficiently recreate the challenge e(i) = fk1(i) later on at
the time of an audit. Secondly, the client does not store the responses µ(i) at all, but
instead computes a tag σi = fk2((i, µ(i))) for each response, and stores the tags σi on
the server. During the ith audit protocol, the server computes a a response and sends it
along with the ith tag σi, so that the client can verify that the response is correct. Note
that the client only stores two short keys k1, k2 and the rest of the storage is relegated to
the server. If the file F is much larger than the maximum number of audits �, the extra
server storage will also be relatively insignificant, resulting in a very efficient bounded-
use computational PoR. The tags σi hide future challenge values while ensuring that
the server’s response is correct, and thus the security analysis is similar to that of the
information-theoretic scheme.
3. COMPUTATIONAL UNBOUNDED-USE POR. To get an unbounded (computational)
PoR scheme, where the client can run an unlimited number of audits, we need a slightly
more complicated technique. The basic idea is for the client to provide the server with
some authenticator-tags for the blocks of F ′ in addition to the actual server file F ′,
and keep only some small verification key locally. The authenticator-tags must be de-
signed specifically to fit the PoR codes in such a way that the server can use them
to authenticate the response µ for an arbitrary challenge e and convince the client
that µ is correct. For example, in the basic PoR code construction, where the response
µ = F ′[i1]|| . . . ||F ′[it] consists of a subset of blocks, the authenticators-tags can sim-
ply be the tags of the individual blocks of F ′ under some message authentication code
(MAC) so that the server sends the response µ together with the tags of each of the
blocks F ′[i1], . . . , F ′[it]. For more complicated PoR codes, we will require smarter
authenticator-tag constructions which allow the server to authenticate a short response
µ by aggregating the authenticator-tags of the individual blocks in some clever way.

Proofs of Retrievability via Hardness Amplification 113

BOUNDED OR UNBOUNDED? Let us compare this last solution with the bounded-use
approaches from before. On the positive side, unbounded-use schemes do not force us
to choose the number of audits ahead of time. On the negative side, the main problem
with the authenticator-based solution is that, in all known schemes, the authenticators
require a significant amount of extra storage on the server, resulting in a large server
storage overhead. Intuitively, each block of the server file F ′ usually needs to be sep-
arately authenticated and therefore the solution usually doubles server storage (or in-
creases communication complexity by settling for large blocks). Bounded-use schemes
can often be significantly more efficient in terms of server storage, especially when
the number of audits to be run is much smaller than the file-size. For example, for a
1 GB file, current unbounded-use schemes only become more efficient than bounded-
use ones if the client wants to run more than 33 million audits (at one audit per hour,
this won’t occur for 3,800 years)!1 Therefore, there is often a good reason to study
bounded-use schemes in practice. Moreover, bounded-use schemes also allow us to get
information-theoretic security (at a cost in client storage).

In summary, there are tradeoffs in parameters and security between bounded and
unbounded use schemes, and which one is better depends on the particular application.
However, there is also another fundamental difference between these schemes. The use
of authenticators in unbounded schemes allows us to restrict our attention to ε-erasure
adversaries, since the decoder can always detect if the adversary answers incorrectly
for any challenge. As we shall see, this will translate to a relatively simple form of
(unique-)decoding with a straightforward proof. In bounded-use schemes, the decoder
cannot verify if arbitrary responses are correct and therefore we need to analyze the
(list-)decoding of PoR codes with respect to an ε-error adversary, which will make our
analysis more difficult. Although we only require list-decoding for the PoR code, we
would like the extractor for the full PoR scheme to output a single candidate which
matches the client’s file F with overwhelming probability. To do so, we will also make
the client store a short, private, “almost-universal” hash h of the file F and the extractor
outputs the only possibility in the list which matches the hash.

1.2 Prior Work

Naor and Rothblum [NR05] studied a primitive called sublinear authenticators which
is closely related to PoR. Although the motivation for sublinear authenticators is some-
what different than PoR, we can also think of sublinear authenticators as PoR schemes
that provide security against an restricted class of adversarial servers. In particular, for
sublinear authenticators, we assume that the adversarial server runs the honest code of
an audit protocol, but does so using some possibly modified server file F̃ ′ �= F ′. In
the PoR setting, the adversarial server may use an arbitrary strategy to run an audit
protocol and its responses may not be consistent with any particular server file. Hence,
security for sublinear-authenticators is strictly weaker and does not necessarily imply
security for PoR. The main result of Naor and Rothblum is a lower bound for infor-
mation theoretic unbounded-use sublinear authenticators, which translated to a lower-
bound for information theoretic unbounded-use PoR schemes, essentially showing that

1 We assume an additional server storage of (at least) 1 GB for the unbounded-use schemes
versus 256 bits per audit for bounded-use schemes, on top of the file F ′.

114 Y. Dodis, S. Vadhan, and D. Wichs

schemes of this type cannot be efficient. In addition, Naor and Rothblum proposed two
constructions for sublinear authenticators: a bounded-use information theoretic scheme
(corresponding to construction 1 in our framework) and an unbounded-use computa-
tional scheme (corresponding to construction 3). Both schemes use the basic PoR code
that we described. In [NR05], these schemes were shown to be secure as sublinear au-
thenticators but not as PoR schemes.

Juels and Kaliski [JK07] were the first to define PoR schemes formally and gave
two PoR constructions. First, they show that the unbounded-use computational scheme
of [NR05] is also secure as a PoR scheme. Second, Juels and Kaliski propose a com-
putational bounded-use scheme as their main construction. This scheme is essentially
equivalent to construction 2 within our framework and also uses the basic PoR code.
However, to prove the security of the scheme, [JK07] resorts to a simplifying assump-
tion on the behavior of the adversary called block-independence, more or less assuming
that the PoR attacker follows the restrictive syntax of the sublinear-authenticator at-
tacker mentioned above. Put differently, they only show the security of their scheme as
a sublinear authenticator, and make the “simplifying assumption” that this is enough for
full PoR security. In a follow-up work, Bowers et al. [BJO08] use a slightly different
simplifying assumption, requiring that the adversary cannot update its state during a
multi-round protocol. Neither work gives any security guarantees against fully Byzan-
tine adversarial servers.

Shacham and Waters [SW08] notice that, in the unbounded-use scheme of [NR05,
JK07] (corresponding to construction 3, with basic PoR code), the communication be-
tween server and client is unnecessarily large; in particular, it is O(λ2) where λ is the
security parameter. This is because a server response consists of t = O(λ) file blocks,
each of which is of size O(λ) (being the tag for the block under the message authenti-
cation code). In our language, the problem is that the underlying PoR code has a large
output alphabet. Shacham and Waters showed that this is not necessary, by construct-
ing a new scheme which implicitly uses an improved PoR code with a smaller output
alphabet. This scheme improves the server’s response size but, unfortunately, at the cost
of increasing the client’s challenge size to O(λ2) — a problem which was remedied in
[SW08] through the use of Random Oracles. The main contribution of Shacham and
Waters is the construction of homomorphic linear authenticators, following a similar
(but informal and less efficient) approach of Ateniese et al. [ABC+07]. Such authenti-
cators allow the server to aggregate the tags of individual file blocks and authenticate
a response under the improved PoR code (actually, any linear functions of the blocks)
using a single short tag. Shacham and Waters (again following [ABC+07]) also design
a PoR scheme with public verifiability (i.e. the client need not store any private data),
using a clever construction of publicly verifiable homomorphic authenticators.

1.3 Our Results

We make two observations about the prior work. Firstly, although all constructions im-
plicitly use some form of PoR codes, such codes have not been defined or studied ex-
plicitly. In particular, [NR05, JK07] use the basic PoR code, while the recent work of
[SW08] has a clever but ad-hoc optimization which improves some parameters (the re-
sponse size) at the cost of others (the challenge size). Secondly, we notice that none of

Proofs of Retrievability via Hardness Amplification 115

the prior bounded-use schemes are known to be to secure against fully Byzantine adver-
sarial server strategies, even though such schemes are often more efficient and practical
than unbounded-use constructions in many scenarios.

In this work, we undertake a thorough study of PoR codes and give a construction
of PoR codes based on hitting samplers and error-correcting codes. Since all prior
PoR code constructions (which implicitly appeared in prior work) employ sub-optimal
variants of these primitives, we can improve the efficiency of all known constructions.
In particular, we show how to construct a variant of the computational unbounded-use
scheme of [SW08], where the challenge size and response size are short, without the
need of the random-oracle model. We also show that our optimizations improve the
prior bounded-use schemes and allow for a flexible tradeoff between the locality t and
the server storage overhead, without increasing the communication complexity.

As we have already mentioned, proving the security of bounded-use schemes (infor-
mation theoretic and computational) relies on the security of PoR codes with respect to
ε-error adversaries, which was never shown fully in prior work. It turns out that most
of the difficulty lies in decoding the basic PoR code. Interestingly, this problem is in-
timately connected to hardness amplification and, more specifically, to direct product
theorems [Yao82, Lev87, Imp95, GNW95, IW97, Tre03, IJK06, IJKW08]. Informally,
direct product theorems state that if a given task T is hard to accomplish (for a certain
class of attackers) with probability more than δ, then t independently sampled tasks
T1, . . . , Tt are hard to simultaneously accomplish (for a slightly weaker class of attack-
ers) with probability significantly greater than the “expected” ε = δt. To prove such
a statement, one starts with the attacker A who can solve T1, . . . , Tt with probability
greater than ε, and builds a more complicated attacker B who can solve a single task
T with probability more than δ. The connection between hardness amplification and
error-decoding for the basic PoR code is as follows: one simply defines T to be the task
of predicting a random location of F ′. Then, the attacker A above becomes an adversar-
ial server who answers ε-fraction of the t-tuples in F ′, and the constructed attacker B
becomes an “extractor” who recovers a δ-fraction of F ′ (which should suffice in recov-
ering all of F). Using this connection, we will be able construct an efficient extractor
for bounded-use schemes, and, thus, provide the first formal proofs of security for such
schemes, including the first information-theoretic bounded-use scheme.

In Table 1, we compare the efficiency of our schemes with prior construction. We as-
sume that the client file size is k, the security parameter is λ, and choose to parameterize
the schemes by a value γ in the range 1 < γ ≤ 2, which allows us to formulate a flexible
tradeoff between parameters. In all of the schemes the locality t = O(λ/(γ − 1)) and,
as we will see, all bounded-use schemes achieve a server storage of roughly γk, while
the use of authenticators in the unbounded-use schemes roughly doubles the server stor-
age.2 We see that γ highlights a (necessary) tradeoff between server storage overhead
and the locality t. For example, setting γ = 2 we double the server storage and get
locality t = O(λ), while setting γ = 1.01 we can achieve bounded-use schemes were
the server only stores 1% of additional information, at the expense of 100× increase in

2 In prior unbounded-use schemes, one might reduce the overhead by making the block size
larger. However, this increases communication (and most other parameters, too). Thus, to keep
our comparison fair, we assume fixed block size and do not reflect this tradeoff in Table 1.

116 Y. Dodis, S. Vadhan, and D. Wichs

locality (but no other parameter degradation). We look at both information-theoretic
(I.T.) and computational (Comp) security. We also consider both efficient and ineffi-
cient “extractors”. Intuitively, an efficient extractor provides “knowledge soundness”
(Know), guaranteeing that the adversary stores the file in some reasonable format and
can efficiently recover it. An inefficient extractor only provides “information sound-
ness” (Inf), guaranteeing that the server still has all of the “information” in the file, but
may store it in some inefficient format. In the table we consider all possibilities with
(I.T. / Know) being the strongest security guarantee.

Due to the space constraints, all the proofs are deferred to the full version [DVW09].

Table 1. PoR Schemes: Prior Results and Our Improvements. k is the file size, λ is the security
parameter, and 1 < γ ≤ 2 is a flexible parameter. All schemes have locality O(λ/(γ − 1)).

Scheme Bounded? Security Server Storage Client Storage Challenge Response

[JK07] † �-time Comp/Know γk + O(�λ) O(λ) O
(

λ
γ−1

log k
)
O

(
λ2

γ−1

)
[JK07] No Comp/Know 2γk O(λ) O

(
λ

γ−1
log k

)
O

(
λ2

γ−1

)
[SW08] ‡ No Comp/Know 2γk O(λ) O(λ) O(λ)

Our �-time I.T./Know γk O
(
� λ

γ−1
log k

)
O

(
λ

γ−1
log k

)
O(λ)

Our �-time I.T./Inf γk O(�λ) O(λ) O(λ)
Our �-time Comp/Know γk + O(�λ) O(λ) O

(
λ

γ−1
log k

)
O(λ)

Our �-time Comp/Inf γk + O(�λ) O(λ) O(λ) O(λ)
Our No Comp/Know 2γk O(λ) O(λ) O(λ)

†= Not proven secure as PoR scheme ‡= Random Oracle Model

2 Preliminaries

We assume the basic familiarity with (linear) error-correcting codes. In particular, the
standard notation [n, k, d]q denotes an error-correcting codes over a q-ary alphabet with
minimal (Hamming) distance d, block length n and message k. We also assume famil-
iarity with Reed-Solomon codes, which are [n, k, n− k + 1]q-codes for a prime power
q ≥ n. For an integer N , we let [N] denote the set {1, . . . , N}. Given a string F ∈ ΣN

we let F [i] ∈ Σ denote the ith symbol of F for i ∈ [N].
A hitting sampler, or just hitter for short, provides a randomness-efficient way of

sampling t elements. We review the definition and parameters achieved by known effi-
cient constructions (see the survey [Gol97] for more details).

Definition 1. Let Hit : [M] → [n]t be a function and interpret the output Hit(e) as
a sample of t elements in [n]. We say that Hit(e) hits W ⊆ [n] if it includes at least
one member of W . A function Hit is a (δ, ρ)-hitter if for every subset W ⊆ [n] of size
|W | ≥ (1− δ)n, Pre←[M][Hit(e) hits W] ≥ (1− ρ).

A simple hitter construction involves choosing t uniformly random and independent
elements of [n]. This results in a (δ, ρ)-hitter with sample complexity t = O(log(1/ρ)/
(1− δ)) and randomness complexity log(M) = t log(n). It is known how to reduce the
randomness complexity significantly. Indeed, the survey of Goldreich [Gol97] shows
how to achieve the following parameters using a construction based on expander graphs.

Proofs of Retrievability via Hardness Amplification 117

Theorem 1. There exists an efficient hitter family such that, for any integer n and any
δ, ρ, we get sample complexity t = O(log(1/ρ)/(1 − δ)) and randomness complexity
log(M) = log(n) + 3 log(1/ρ).

3 PoR Codes

A PoR code consists of a triple of functions (Init,Read,Resp) with domains and ranges:

Init : (Σc)k → (Σc)n , Read : [M]→ [n]t , Resp : (Σc)t × [n′]→ Σr

for some alphabets Σc, Σr of sizes qc, qr respectively. The function Init is an initial
encoding which converts a client file F into a server file F ′ = Init(F). We let k̃ =
�k log(qc)� denote the initial file size in bits. The function Read,Resp are used by
the server to run an audit. The client picks a challenge e = (e1, e2) ∈ [N] where
N = Mn′ and we identify [N] with [M] × [n′]. The function Read(e1) determines a
tuple of t positions (i1, . . . , it) in F ′ which the server must read to produce the response
µ = Resp(F ′[(i1, . . . , it)], e2). The functions Init,Read,Resp are actually used by the
client/server and hence we require that they are all polynomial time computable.

For our understanding of PoR codes, it makes sense to think of functionsRead,Resp
as defining a challenge-response encoding of the server file F ′. Firstly, we can think of
the Read function as defining a simpler direct-product encoding DPE of the server file
F ′ into the codeword C′ ∈ ((Σc)t)M defined by:

C′ = DPE(F ′) = (F ′[Read(1)], F ′[Read(2)], . . . , F ′[Read(M)])

so that each position of C′ consists of a concatenation of t positions in F ′. The function
Read,Resp together define the functionAnswer : (Σc)n×[N]→Σr as Answer(F ′, e) =
Resp(F ′[Read(e1)], e2) where e = (e1, e2). The challenge-response encoding CRE of
the server file F ′ results in a codeword C ∈ (Σr)N defined by:

C = CRE(F ′) = (Answer(F ′, 1), . . . ,Answer(F ′, N)) .

Note that neither the direct-product encoding C′ nor the challenge-response encoding
C are ever stored explicitly and hence the functions DPE,CRE need not be efficient. In
our construction, the values N, M, n′ will be exponential. Of course, as is usually the
case for error-correcting codes, we want to have a family of PoR codes which allows for
many flexible choices of the parameters. In particular, we would like to have a family
of codes parameterized by the bit size k̃ = k log(qc) of the initial client file and the
security parameter λ.

Definition 2. For any PoR code, an ε-oracle OF is an oracle parameterized by some
F ∈ (Σc)k such that, letting F ′ = Init(F),C = CRE(F ′), we havePre∈R[N][OF (e) =
C[e]] ≥ ε. We say that OF is an erasure oracle if, Pr[OF (e) �∈ {C[e],⊥}] = 0.
Otherwise we say that OF is an error oracle.

Definition 3. We say that (Init,Read,Resp) is a (α, β, γ, t)qc -PoR code if the alphabet
size is qc, challenge size is α = log2(N), the response size is β = log2(|Σr|), the
storage overheadis γ = n/k and the locality is t. For a PoR code family, all of these
values are functions of the parameters k̃, λ. We say that a PoR code is

118 Y. Dodis, S. Vadhan, and D. Wichs

– ε0-erasure decodable if there is a oracle-access decoder D(·) such that, for any
ε-erasure oracle OF , with ε ≥ ε0, the decoder DOF (k̃, λ, ε) outputs F with prob-
ability at least 1− 2−λ.

– (ε0, L(·))-error decodable if there is a oracle-access decoder D(·) such that, for
any ε-error oracle OF with ε ≥ ε0, the decoderDOF (k̃, λ, ε) outputs a list of size
at most L(ε) containing the element F , with probability at least 1− 2−λ.

For both erasures and errors, we say that the scheme is efficiently decodable if D runs
in time poly(k̃, λ, 1/ε).

3.1 Constructions of PoR Codes

In all of our constructions, the initial encoding Init is an [n, k, d]qc error-correcting code
with a “good” distance d over the appropriate alphabet Σc. The initial encoding defines
the server storage overhead γ = n/k. For the functions Read,Resp we first present a
basic construction followed by two orthogonal improvements.

BASIC CONSTRUCTION. In the basic construction, the challenge is simply a random
t-tuple of positions in F ′, and the response is the value of F ′ at those positions. More
concretely, the number of challenges is N = M = nt and the functionRead(e1) simply
identifies the value e1 ∈ [N] with the tuples (i1, . . . , it) ∈ [n]t. The function Resp does
not get any portion e2 of the challenge and is the identity function on the first argument:
Resp(x, 1) = x. Thus, the challenge-response encoding CRE is equivalent here to the
direct product encodingDPE. This construction yields an (α, β, γ, t)qc -PoR code where
the challenge size is α = t log(n), the response size is β = log(qr) = t log(qc). This
basic PoR code is implicitly used in the schemes of [NR05, JK07].

IMPROVEMENT 1: FLEXIBLE RESPONSE SIZE. One problem with the basic construc-
tion that the response size β = t log(qc) increases proportionally to the locality t. In-
deed, in order to achieve good (list-)decoding, we will see that there is an advantage to
having a large alphabet Σc: i.e., log(qc) = Ω(λ). On the other hand, the locality t must
also be (at least) proportional to λ, making β = Ω(λ2). In fact, we already mentioned
that there is a necessary tradeoff between the locality t and the server storage overhead
γ, making t even larger if one is concerned with minimizing the server storage. Thus,
we would like to avoid the dependence of the response size β on t.

We improve our basic construction so that, instead of responding with all of the read
blocks x = F ′[i1]|| . . . ||F ′[it], the server responds with a randomly chosen position
in an encoding of x under some ECC, which we call a secondary encoding. More pre-
cisely, we instantiate a secondary encoding Sec which is an [n′, k′, d′]qr ECC over the
alphabet Σr of size |Σr| = qr. We assume that it is easy to compute any one posi-
tion in the codeword without computing the entire codeword. In particular, we define
Resp : (Σr)k′ × [n′] → Σr so that Resp(x, e2) = Sec(x)[e2] computes the value
in position e2 of the secondary encoding of x. We require that Resp is efficiently com-
putable (but allow Sec to be inefficient, and n′ to be exponential). Also, we assume that
(qr)k′ ≥ qc

t so that we can easily interpret elements in (Σc)t as elements in (Σr)k′
.

The read function remains unchanged from the basic scheme. This yields a PoR code
where β = log(qr) is flexible and does not need to depend on t. For example, we can
set Σr = Σc and k′ = t so that (Σr)k′

= (Σc)t and β = log(qc). As we will see, such

Proofs of Retrievability via Hardness Amplification 119

setting will not degrade the (list-)decoding capabilities too much, as long as we set the
value of n′ and the alphabet size log qc to be (appropriately) exponential in the security
parameter λ. With such a setting, even a negligible fraction of the responses in a sec-
ondary encoding allow us to (list-)decode the original t-tuple x, more or less bringing
us back to the basic construction, while reducing the response size β to be O(λ).

We also note that a variant of this improvement was implicitly used by [SW08],
which employed the Hadamard code (over a large alphabet) as the secondary encoding.

IMPROVEMENT 2: REDUCING THE CHALLENGE SIZE. We would also like to get rid
of the dependence between t and the challenge size α (currently, α = t log(n)). We do
so by using derandomization techniques to choose the indices (i1, . . . , it). Instead of
just choosing these indices uniformly at random, we just use a function Read which is
a (δ, ρ)-hitter (see Definition 1). Intuitively, hitters are useful in our context since, if an
adversarial server “forgets” many blocks of F ′, then the indices chosen by Read(e1) are
likely to “hit” at least one such block. We can think of the basic PoR code construction
as simply employing a “naive” hitter which is not randomness-efficient.

THE GENERAL CONSTRUCTION AND INSTANTIATIONS. To recap, our construction
is parameterized by:

An initial encoding Init : (Σc)k → (Σc)n which is a [n, k, d]qc -ECC.
A (δ, ρ)-hitter Read : [M]→ [n]t.
A secondary encoding Sec : (Σr)k′ → (Σr)n′

which is a [n′, k′, d′]qr -ECC and
qk′
r ≥ qc

t.
Most of our analysis will only use generic properties of the above primitives. However,
when discussing parameters, we will rely on the following two concrete instantiations
of PoR codes. For simplicity, we hide the concrete constants in the “Big-O” notation.
Both instantiations are parameterized by the security parameter λ, the file bit-size k̃, and
the server storage overhead γ, and will ensure locality t = O(λ/(γ − 1)). In fact, they
will use the identical Reed-Solomon Codes for their initial and secondary encodings,
setting qc = 2O(λ), k = k̃/ log(qc) and n = γk for the initial Reed-Solomon code,
and qr = qc, k′ = t and n′ = 2O(λ) for the secondary Reed-Solomon code (recall,
this defines d = n − k + 1 and d′ = n′ − k′ + 1). In fact, the only difference will
be in the choice of the (δ, ρ)-hitter, where δ ≈ 1

γ is roughly the fraction of the initial

encoding sufficient to recover the file and ρ = 2−Ω(λ). The first instantiation will use a
randomness-efficient hitter construction from Theorem 1, while the second instantiation
will use the “naive” hitter, where the t samples are chosen uniformly at random. As we
can see, both hitters will indeed achieve sample complexity t = O(log(1/ρ)/(1−δ)) =
O(λ/(γ − 1)). However, the first “clever” hitter will achieve randomness complexity
log M = log n + 3 log(1/ρ) = O(λ), while the second “naive” hitter will achieve
log M = t log n = O(λ log(k̃)/(γ − 1)). We summarize the (easily verified) resulting
efficiency parameters below, and then state our main technical theorem.

Parameters: λ, k̃ and γ, where 1 < γ ≤ 2 (and γk̃ + 1 ≤ 2λ/2).
First Instantiation: Our first instantiation is an (α, β, γ, t)qc -PoR code family with:

t = O
(

λ

γ − 1

)
, log(qc) = O(λ), α = O(λ), β = O(λ) (1)

120 Y. Dodis, S. Vadhan, and D. Wichs

Second Instantiation: Our second instantiation is a (α, β, γ, t)qc -PoR code family with:

t = O
(

λ

γ − 1

)
, log(qc) = O(λ), α = O

(
λ log(k̃)
γ − 1

)
, β = O(λ) (2)

Theorem 2. For appropriately selected constants, our PoR code family instantiations
have the following security properties.

1. The first instantiation is efficiently (2−λ)-erasure decodable.

2. The first instantiation is inefficiently (2−λ,O(λ/ε3))-error decodable.

3. The second instantiation is efficiently (2−λ,O(λ/ε3))-error decodable.

Thus, the first construction achieves (essentially) optimal parameters on all fronts, but in
the case of errors is only known to be inefficiently decodable, while the second construc-
tion is only marginally suboptimal in the challenge size α, but achieves efficient error
decodability instead. The proof of this theorem is given in the full version [DVW09]. In
the following subsections, we only briefly sketch the high-level outline for the proof of
the two efficient decoding variants. The latter variant for the case of errors will use the
state-of-the-art direct product theorem of [IJK06, IJKW08] to remove the “simplifying
assumption” on the behavior of the adversary made by [JK07].

3.2 Efficient Erasure Decodability

We now show that our first construction is efficiently erasure decodable. To do so, we
assume that both the primary and secondary encodings are efficiently erasure-decodable
up to the maximum radii d and d′, respectively. This is true of the Reed-Solomon code
employed by our concrete instantiation. First, we show how to (efficiently) convert an
ε-erasure oracle OF for the full PoR codeword C = CRE(Init(F)), into an ε′-erasure
oracle ÕF for the direct-product encoding C′ = DPE(Init(F)).

Lemma 1. Let c0 = n′ − d′ + 1 and let OF be an ε-erasure oracle with ε ≥ 4(c0/n′)
for the full PoR codeword C = CRE(Init(F)). Then there is an (efficient) machine
DOF

2 (λ, ε) which is an ε′-erasure oracle for the codeword C′ = DPE(Init(F)) where
ε′ ≥ ε/4. Moreover, on a query e1 ∈ [M], the machineD2 runs in time poly(λ, 1/ε).

Now we show how to (efficiently) recover n−d+1 values in the server file F ′ = Init(F)
given access to the ε′-oracle ÕF . Using erasure-decoding of the initial code, we can then
efficiently recover F .

Lemma 2. Let ÕF be an ε′-erasure oracle for the codeword C′ = DPE(Init(F)) =
(F [Read(1)], . . . , F [Read(M)]) and assume that the function Read is (δ, ρ)-hitter
where δ = d+1

n and ε′ ≥ 2ρ. Then there is an (efficient) algorithm DÕF
1 (k̃, λ, ε′)

such thatDOF
1 = F with probability 1− 2−λ and D1 runs in time poly(k̃, λ, 1/ε′).

Putting Lemma 1 and Lemma 2 together we easily get Part 1 of Theorem 2.

3.3 Efficient Error Decodability

We now show that our PoR code is also efficiently error decodable. Unfortunately, this
forces us to sacrifice some of our generality. We cannot use a general hitter construction

Proofs of Retrievability via Hardness Amplification 121

and must instead rely on the “naive” hitter, which samples the t positions uniformly at
random. In addition, we need an efficient list-decodability for the secondary encodings
and efficient error-correction for the initial encoding. All these properties are met by
our second instantiation. Again, we first show how to convert an ε-error oracle that
answers with values in the full encoding C = CRE(F ′) (which includes the secondary
encoding) into an ε′-error oracle that answers with values in the code C′ = DPE(F ′).

Lemma 3. Let OF be an ε-error oracle where ε ≥ 8k′/(n′)1/4 for the full PoR code-
word C = CRE(Init(F)). Then there is an (efficient) machineDOF

2 (ε, λ) which accepts
queries e1 ∈ [M] and is an ε′-error oracle for the codeword C′ = DPE(F ′), where
ε′ = ε3/256. Moreover, D2 runs in time poly(k̃, λ, 1/ε).

Now we need to efficiently list-decode the direct-product code C′ = DPE(F ′). Fur-
thermore, we need to do so by reading only a small number of position in C′, and cer-
tainly far fewer than the entire codeword. This is a highly non-trivial problem which is
intimately related to direct product theorems in hardness amplification. We now iden-
tify codewords C′, F ′ with functions C′ : [n]t → (Σc)t and F ′ : [n] → (Σc)
which map a position in the codeword to the value of the codeword at that position. Di-
rect product theorems [Yao82, Lev87, Imp95, GNW95, IW97, Tre03, IJK06, IJKW08]
essentially show that, if there exists an efficient algorithm which ε-computes the di-
rect product function C′ then there also exists an efficient algorithm which δ-computes
the original function F ′. Unfortunately, most direct product theorems (in particular,
[Yao82, Lev87, Imp95, GNW95, IW97, Tre03]) are in the context of circuits and the
reductions are not fully constructive. Instead, the reductions show the existence of some
advice which, if hardwired into a circuit, would allow it to δ-compute F ′. They do not
provide a way of efficiently finding such advice (except is special restrictive cases) and,
hence, these results are not appropriate for our setting where we need to actually run the
reduction as an extractor. Fortunately, direct-product theorems for uniform adversaries
(where all advice is efficiently self-generated) recently appeared in [IJK06, IJKW08].
Let us restate their main result of Impagliazzo et al. [IJKW08] in our language.

Theorem 3. (Theorem 1.3 of [IJKW08]) Given an ε′-error oracle ÕF for the direct-

product function C′, there exists an efficient algorithm DÕF
1 which outputs a list of L

candidate oracle-access functions gÕF
1 , . . . , gÕF

L such that, with probability (1− 2−λ),
there exists an i ∈ {1, . . . , L} for which the function gi is a δ-error oracle for the

function F ′. In particular this means that
∣∣∣{ j |gÕF

i (j) = F ′[j]}
∣∣∣ ≥ δ. Moreover the

functions g1, . . . , gL are efficient, L = O (
λ
ε

)
and δ = 1−O(log

(1
ε

)
/t).

Combining Lemma 3 and Theorem 3, we can then show that our second instantiation of
a PoR code family is efficiently list decodable, proving Part 3 of Theorem 2. Note that
it is an interesting open problem if we can modify the result of [IJKW08] to work with
some hitter having parameters similar to Theorem 1. This would also lead to some nice
derandomization results for hardness-amplification and seems like a difficult problem.
Indeed, the proof of Theorem 3 relies on certain efficient sampling properties of the
naive hitter construction that the construction from Theorem 1 does not have.

122 Y. Dodis, S. Vadhan, and D. Wichs

4 PoR Schemes from PoR Codes

A PoR scheme consists of a generation algorithm Gen and an audit protocol defined
by two ITMs P ,V for the prover (server) and verifier (client) respectively. All of the
algorithms are parameterized by a security parameter λ which we will omit from the
description in the sequel. The Gen algorithm is a randomized algorithm which takes
as input a file F ∈ {0, 1}∗ and produces (F̃ , ver) ← Gen(F). In the audit protocol,
the prover P is given F̃ and verifier V is given ver. At the conclusion of the protocol,
the verifier outputs a verdict v ∈ {accept, reject}. In general we allow the verifier to
be stateful and update the value of ver during the protocol and thus, for example, keep
track of how many proofs have been run. For unbounded-use schemes, we will give
constructions where the verifier is stateless. Our definition essentially follows that of
[JK07] but is slightly more general.

COMPLETENESS. We require that in any interaction
{
P(F̃) � V(ver)

}
between

honest prover and and honest verifier, the verifier outputs a verdict v = accept.

SOUNDNESS. We define the soundness game SoundE
A(k, �) between an adversaryA

and a challenger. In the soundness game, the adversary gets to create an adversarial
prover and the challenger runs the extractor E on it.
1. The adversary A chooses a file F ∈ {0, 1}k.

2. The challenger produces (F̃ , ver) ← Gen(F) and gives F̃ to A. In addition, the challenger
initializes a verifier V(ver).

3. We first have a test stage, where the adversary A gets protocol access to V(ver) and
can run at most � − 1 proofs with it. For each proof, the adversary gets the output v ∈
{accept, reject} of the verifier V .

4. At the end of the test stage, the adversary produces code for an (probabilistic) ITM prover
P̃ and gives this code to the challenger.

5. Let ε = Pr
[{

P̃ � V(ver)
}

= accept
]

be the success probability of the adversarial

prover P̃ , and F̄ = E P̃ (ver, k, ε) be the output of the extractor.

For complexity classes C1, C2, we say that an unbounded-use PoR scheme is sound if
there exists an extractor E ∈ C1 and two negligible functions ε0(·), ε1(·) such that, for
any adversaryA ∈ C2 and any polynomials p1, p2

Pr
[
ε > ε0(λ) ∧ F̄ �= F | ε, F̄ ← SoundE

A(p1(λ), p2(λ))
]
≤ ε1(λ).

We say that an �-time PoR scheme sound if the above holds with p1(λ) replaced by �.
The definition guarantees that the adversary cannot “lose” the file and still succeed in

an audit. We give four interesting variants of this definition based on the the complexity
classes C1, C2 of the extractor and adversary.

If the definition holds for the class Call of all ITM adversaries, we say that the
scheme has information-theoretic security. Otherwise, if the definition holds for
the class Cpoly of all ITMs running in time poly(λ), we say the scheme has compu-
tational security.
If the run time of E is poly(1/ε, k, λ) then we say that our scheme has knowledge-
soundness. Otherwise, if there is no bound on the running time of E , we say that
the scheme has information-soundness.

Proofs of Retrievability via Hardness Amplification 123

Remark 1. As in Proofs of Knowledge, the extractor is not part of the protocol but
rather serves as a thought-experiment that helps us define security. The adversary, after
running some arbitrary audits with the verifier, should not be able to cleverly “lose”
parts of the file F (represented by construction of the prover P̃ on which E fails) and
yet still succeed in the subsequent audit with reasonable probability ε ≥ ε0. Of course,
the adversarial server might correctly run all audits, but still refuse to give the full
file back to the client. This attack, unfortunately, cannot be prevented if the audits are
significantly shorter than the size of the file. Instead, we are satisfied if the server is
guaranteed to know the file at the conclusion of an audit; whether or not the server will
actually give that file back to the client is an orthogonal concern.

Remark 2. The four variants of soundness are all meaningful. For example, information
soundness is already a strong notion which ensures that the adversarial server cannot
save on space (by deleting a portion of the file F) and still pass an audit. Knowledge
soundness is a stronger notion, which also guarantees that the server stores the file
F in some efficiently recoverable representation. The strongest notion — information-
theoretic security with knowledge soundness — means that any adversary (regardless of
computational power) must store the file in some efficiently recoverable representation.

FROM POR CODES TO POR SCHEMES. In the following subsections, we will briefly
sketch how to build a secure PoR scheme (for any of the four variants) from an appropri-
ate (α, β, γ, t)qc -PoR code (Init,Read,Resp). Intuitively, the key step of the extractor E
will be to simply run the corresponding decoderD, givingD oracle access to the adver-
sarial prover P̃ . Then, ifD is efficient, we will get knowledge-soundness; if not, we will
only settle for information-soundness. As for the attacker’s efficiency, recall that PoR
codes are information-theoretically secure. Thus, as long as we do not introduce any
additional computationally-secure primitives into the final PoR scheme, the resulting
security will be information-theoretic. Also, for bounded-use schemes we will be using
error-decodable PoR codes, while for the unbounded-use schemes we can use erasure-
decodable schemes. In our presentation below, we will be only concentrating on the
main ideas, primarily focusing on justifying the parameters claimed in Section 1.3.

4.1 Bounded-Use Information-Theoretic Schemes

First, we present a very simple and efficient construction of an �-time, information-
theoretically secure PoR scheme from an error-decodable PoR code. We also use a
family of almost-universal hash functions H = {h}. Recall, a function family H is
ψ-universal, if for any inputs x �= y, Prh←H(h(x) = h(y)) ≤ ψ. It is well known that
one can construct such families on k̃-bit messages (say, based on polynomial evaluation
at a random point) having the description of h and the output length of h be at most
log(k̃/ψ) bits each. We will set the value ψ later. Bellow we give a detailed description,
which corresponds to construction 1 from the introduction.
Gen: Let F ′ = Init(F).

Choose � uniformly random challenges e(1), . . . , e(�) with e(i) ∈ [N] and compute the
responses µ(1), . . . , µ(�) where µ(i) =Answer(F ′, e(i)) = Resp(F ′[Read(e(i)1)], e(i)2).
Chooses a uniformly random hash function h ← H and compute ω := h(F).

Set F̃ = F ′, counter i = 1 and ver :=
(
〈(e(1), µ(1)), . . . , (e(�), µ(�))〉, h, ω, i

)

124 Y. Dodis, S. Vadhan, and D. Wichs

P ,V: To run an audit i ∈ {1, . . . , �}, the verifier V sends e(i) to P . Upon the receipt of a
challenge e, the prover P computes µ = Answer(F ′, e) and sends µ to V . When the verifier
V receives a value µ′, it checks if µ′ = µ(i) and outputs accept if yes and reject otherwise
(updating i := i + 1 in both cases).

Notice that the function h and the value ω = h(F) are not even used in the audit! Of
course, they are used by the extractor E instead, to check which of the L possibilities
returned by the decoder D is the actual file F .

Theorem 4. Let (Init,Read,Resp) be an (α, β, γ, t)qc -PoR code family which is effi-
ciently (resp. inefficiently) (ε0ε1, L)-error decodable, where ε1 is any negligible
function. LetH be a ψ-universal hash family. Then the above scheme is a information-
theoretically secure �-time PoR protocol with knowledge (resp. information) sound-
ness error at most max(ε0, Lψ + 2−λ). In addition, the scheme has locality t, server
storage overhead γ, communication complexity (α + β) and client storage overhead
�(α + β) +O(log(k log(qc)/ψ)).

PARAMETERS. We can now instantiate this scheme with particular error-decodable
PoR codes constructed in Theorem 2 (parts 2 and 3). Notice, for both variants, we have
L = O(λ/ε3) and can achieve ε0 = 2−λ (by changing constants, if needed). Thus,
we can set ψ = 2−2λε3

0/λ, so that ψL ≤ 2−2λ and the description of h and h(F) are
only O(log(k log(qc)/ψ)) = O(λ) bits long. Then, we get the final PoR soundness
max(ε0, Lψ + 2−λ) ≈ 2−λ. In fact, comparing the parameters for the efficient and
inefficient variant (see Equations (1) and (2)), the only noticeable difference is the client
challenge size α, equal to O(λ) for the inefficient case, and O(λ log(k̃)/(γ − 1)) for
the efficient case. Overall, we get an �-time information-theoretically secure PoR with
knowledge/information soundness, matching the parameters claimed in Section 1.3.

4.2 Reducing Client Storage: Bounded-Use Computational Schemes

Using computational assumptions, we now show that it is possible to “transfer” the
client’s storage of the � challenge/response pairs to the server. Overall, the client’s stor-
age becomes O(λ), and the server storage becomes O(�λ). Below we give a detailed
description of construction 2 as outlined in the introduction. Let F1,F2 be two PRF
families, where the output size of F1 is equal to the client’s challenge size α, and the
output size size of F2 is O(λ).
Gen: Let F ′ = Init(F).

Choose a random function fk1 ∈ F1 and compute � challenges e(1) = fk1(1), . . . ,
e(�) = fk1(�). Compute the responses µ(1), . . . , µ(�), where µ(i) = Answer(F ′, e(i)).
Choose a random function fk2 ∈ F2 and compute

σ1 := fk2

(
1, µ(1)

)
, . . . , σ� := fk2

(
�, µ�

)
. Set F̃ := (F ′, σ1, . . . , σ�).

Choose a uniformly random hash function h ← H and set ω = h(F ′).
Initialize count i = 1 and set ver := (k1, k2, h, ω, i).

P ,V: To run an audit i ∈ {1, . . . , �}, the verifier V computes e(i) = fk1(i) and sends (e(i), i)
to P . Upon the receipt of a challenge e = (e1, e2) and an index i, the prover P computes
µ = Answer(F ′, e(i)) and sends (µ, σi) to V . When the verifier V receives a value µ′, σ′,
it verifier σ′ = fk2(i, µ

′) and rejects if this check fails. Otherwise, it accepts (updating
i := i + 1 in either case).

Proofs of Retrievability via Hardness Amplification 125

COMMENTS AND PARAMETERS. The analysis of this scheme is very similar to the
bounded-use information-theoretic scheme. In particular, consider an adversarial prover
P̃ which answers with probability ε. Then this must be an ε′-error adversary where
ε − ε′ is some negligible distinguishing advantage for the PRF families F1,F2. We
omit this analysis. It is also easy to see that the computational PoR protocols with in-
formation/knowledge soundness, resulting by using our particular error-decodable PoR
codes constructed in Theorem 2 (parts 2 and 3), will match the parameters claimed in
Section 1.3. In particular, although the client’s storage is now reduced to O(λ) even for
the case of knowledge soundness, the client’s challenge cannot be “pseudorandomly
compressed” below O(λ log(k̃)/(1− γ)), since it needs to look random to the server.

4.3 An Unbounded-Use Computational Scheme

We now show how to construct an unbounded use scheme in our framework using the
techniques of [SW08]. The construction is based on the concept of a homomorphic
linear authenticator scheme — a notion we abstract away from the works of [ABC+07,
SW08]. On a high level, this is a scheme in which a verifier computes a vector-tag σ =
(σ1, . . . , σn) for a vector-message x = (x1, . . . , xn) consisting of n field values, using
some secret key K . A prover, who is given the vector-message x, the corresponding
vector-tag σ, and a vector-challenge a = (a1, . . . , an), but not the secret key K , can
then efficiently compute an authenticator σ for the field element µ =

∑n
i=1 aixi. The

verifier, when given µ′, σ′ from the prover, can then run a verification procedure (using
K) and, if it accepts, be convinced that µ′ = µ.

More precisely, a homomorphic authenticator scheme consists of three algorithms
(LinTag, LinAuth, LinVer), a key domain K and a field F. For a key K ∈ K, and a
vector-message x = (x1, . . . , xn) ∈ Fn the algorithm LinTagK(x) produces a vector-
tag σ = (σ1, . . . , σn). For a vector-challenge of n coefficients a = (a1, . . . , an), the
un-keyed function LinAuth computes an authenticator σ = LinAuth(x, a, σ). Moreover,
the LinAuth algorithm is “local”; i.e., it only reads values xi, σi for which ai �= 0.
Lastly, the verification algorithm computes b = LinVerK(a, µ′, σ′), where b ∈ {0, 1},
decides if the algorithm accepts or rejects.

For completeness, we require that for any K ∈ K, x ∈ Fn, a ∈ Fn letting σ ←
LinTagK(x) , σ ← LinAuth(x, a, σ) and µ =

∑n
i=1 xiai then LinVerK(a, µ, σ) = 1.

For security, given an adversaryA, we define the unforgeability game as follows:

1. The adversary A chooses a vector-message x ∈ Fn.
2. The challenger chooses a uniformly random key K ← K and computes σ ← LinTagK(x).

The adversary is given σ.
3. The adversary A produces a vector-challenge a ∈ Fn and a tuple (µ′, σ′).
4. If LinVerK(a, µ′, σ′) = 1 and µ′
= ∑n

i=1 aixi then the adversary wins.

We require that for every efficient adversary A, the probability that A succeeds in
the unforgeability game is negligible in the security parameter λ. We refer to [SW08]
for a particular, very elegant and efficient construction of such homomorphic linear
authenticators. We note that the definition can also be extended to the public-key setting
and an efficient construction for such setting was also given in [SW08].

126 Y. Dodis, S. Vadhan, and D. Wichs

We can employ linear-homomorphic authenticators along with any PoR code in
which the response function Resp : (Σc)t → (Σc) is linear (as is the case in our
constructions) to construct a full PoR scheme as follows:

Gen: Let F ′ = Init(F). Choose a key K for the linear authenticator scheme and compute
σ = LinTagK(F ′[1], . . . , F ′[n]). Set F̃ := (F ′, σ1, . . . , σn) and ver := K.

P ,V: – The verifier V chooses a uniformly random value e ∈ [N] and sends e to P .
– The prover P , upon receiving e = (e1, e2), computes (i1, . . . , it) = Read(e1) and

x = (x1, . . . , xt) = F ′[(i1, . . . , it)] ∈ (Σc)t. Since the function Resp(x, e2) linear,
we can write µ = Resp(x, e2) =

∑t
i=1 aixi for some coefficients a = (a1, . . . , at).

Let σ = (σi1 , . . . , σit).
The prover computes σ = LinAuth(x, a, σ) and sends (µ, σ) to V .

– Upon receipt of a value (µ′, σ′) the client accepts iff LinVerK(µ′, σ′) = 1.

In terms of parameters, we see that the client storage is O(λ), client communication is
still α, and the server communication is only increased by the the length of the authen-
ticator, which is O(β) (i.e., the size of a field element) for the homomorphic scheme
in [SW08]. However, the main price one pays is in the server’s storage, to store the
tag-vector σ = (σ1, . . . , σn). For the scheme of [SW08], the length of σ is equal to the
length of F , meaning that the server storage is doubled (see also Footnote 2). In terms of
security, we get computational unbounded-usePoR scheme with knowledge-soundness,
as long as our PoR code is efficiently ε0-erasure decodable, where ε0 is negligible in λ.

Finally, to obtain our actual parameters claimed in Section 1.3, we use the same linear-
authenticator construction as [SW08], but plug in our improved erasure-decodable PoR
Code from Equation (1) and Theorem 2 (part 1). In particular, by using the (linear)
Reed-Solomon code in place of the Hadamard code for the secondary encoding, and a
randomness-efficient hitter as our Read function, our construction is an unbounded-use
PoR scheme with communication complexityO(λ) in the standard model, and without
the use of Random Oracles.

Acknowledgments. Yevgeniy Dodis was supported in part by NSF Grants CNS-0831299,
CNS-0716690, CCF-0515121, CCF-0133806, and completed part of this work while
visiting Center for Research on Computation and Society at Harvard University. Salil
Vadhan was supported in part by NSF Grant CNS-0831289.

References

[ABC+07] Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: Ning, et al. (eds.)
[NdVS07], pp. 598–609 (2007)

[BJO08] Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and implemen-
tation. Cryptology ePrint Archive, Report 2008/175 (2008),
http://eprint.iacr.org/

[DVW09] Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification
(full version). Cryptology ePrint Archive (2009),
http://eprint.iacr.org/

[GNW95] Goldreich, O., Nisan, N., Wigderson, A.: On yao’s xor-lemma. Electronic Collo-
quium on Computational Complexity (ECCC) 2(50) (1995)

http://eprint.iacr.org/
http://eprint.iacr.org/

Proofs of Retrievability via Hardness Amplification 127

[Gol97] Goldreich, O.: A sample of samplers - a computational perspective on sampling
(survey). Electronic Colloquium on Computational Complexity (ECCC) 4(20)
(1997)

[IJK06] Impagliazzo, R., Jaiswal, R., Kabanets, V.: Approximately list-decoding direct
product codes and uniform hardness amplification. In: FOCS, pp. 187–196. IEEE
Computer Society, Los Alamitos (2006)

[IJKW08] Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct product
theorems: simplified, optimized, and derandomized. In: Ladner, R.E., Dwork, C.
(eds.) STOC, pp. 579–588. ACM, New York (2008)

[Imp95] Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: FOCS,
pp. 538–545 (1995)

[IW97] Impagliazzo, R., Wigderson, A.: P = BPP if EXP requires exponential circuits:
Derandomizing the xor lemma. In: STOC, pp. 220–229 (1997)

[JK07] Juels, A., Kaliski, B.S.: Pors: proofs of retrievability for large files. In: Ning, et al.
(eds.) [NdVS07], pp. 584–597 (2007)

[Lev87] Levin, L.A.: One-way functions and pseudorandom generators. Combinator-
ica 7(4), 357–363 (1987)

[NdVS07] Ning, P., De Capitani di Vimercati, S., Syverson, P.F.: Proceedings of the 2007
ACM Conference on Computer and Communications Security, CCS 2007, Alexan-
dria, Virginia, USA, October 28-31, 2007. ACM, New York (2007)

[NR05] Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: FOCS,
pp. 573–584 (2005)

[SW08] Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

[Tre03] Trevisan, L.: List-decoding using the xor lemma. In: FOCS, pp. 126–135. IEEE
Computer Society, Los Alamitos (2003)

[Yao82] Chi-Chih Yao, A.: Theory and applications of trapdoor functions (extended ab-
stract). In: FOCS, pp. 80–91. IEEE, Los Alamitos (1982)

Security Amplification for Interactive
Cryptographic Primitives

Yevgeniy Dodis1, Russell Impagliazzo2, Ragesh Jaiswal3, and Valentine Kabanets4

1 New York University
dodis@cs.nyu.edu

2 University of California at San Diego and IAS
russell@cs.ucsd.edu

3 Columbia University
rjaiswal@cs.columbia.edu

4 Simon Fraser University
kabanets@cs.sfu.ca

Abstract. Security amplification is an important problem in Cryptography: start-
ing with a “weakly secure” variant of some cryptographic primitive, the goal
is to build a “strongly secure” variant of the same primitive. This question has
been successfully studied for a variety of important cryptographic primitives,
such as one-way functions, collision-resistant hash functions, encryption schemes
and weakly verifiable puzzles. However, all these tasks were non-interactive.
In this work we study security amplification of interactive cryptographic prim-
itives, such as message authentication codes (MACs), digital signatures (SIGs)
and pseudorandom functions (PRFs). In particular, we prove direct product the-
orems for MACs/SIGs and an XOR lemma for PRFs, therefore obtaining nearly
optimal security amplification for these primitives.

Our main technical result is a new Chernoff-type theorem for what we call
Dynamic Weakly Verifiable Puzzles, which is a generalization of ordinary Weakly
Verifiable Puzzles which we introduce in this paper.

1 Introduction

Security amplification is a fundamental cryptographic problem: given a construction C
of some primitive P which is only “weakly secure”, can one build a “strongly secure”
construction C′ from C? The first result in this domain is a classical conversion from
weak one-way functions to strong one-way function by Yao [Yao82] (see also [Gol01]):
if a function f is only mildly hard to invert on a random input x, then, for appropriately
chosen n, the function F (x1, . . . , xn) = (f(x1), . . . , f(xn)) is very hard to invert.
The above result is an example of what is called the direct product theorem, which,
when true, roughly asserts that simultaneously solving many independent repetitions
of a mildly hard task is a much harder “combined task”. Since the result of Yao, such
direct product theorems have have been successfully used to argue security amplifi-
cation of several other important cryptographic primitives, such as collision-resistant
hash functions [CRS+07], encryption schemes [DNR04] and weakly verifiable puz-
zles [CHS05, IJK08].

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 128–145, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Security Amplification for Interactive Cryptographic Primitives 129

However, all the examples above are non-interactive: namely, after receiving its chal-
lenge, the attacker needs to break the corresponding primitives without any further
help or interaction. This restriction turns out to be important, as security amplifica-
tion, and, in particular, direct product theorems become much more subtle for inter-
active primitives. For example, Bellare, Impagliazzo and Naor [BIN97] demonstrated
that that parallel repetition does not, in general, reduce the soundness error of multi-
round (computationally sound) protocols, and this result was further strengthened by
Pietrzak and Wikstrom [PW07]. On the positive side, parallel repetition is known to
work for the special case of three-round protocols [BIN97] and constant-round public-
coin protocols [PV07]. However, considerably less work has been done in the security
amplification of more “basic” cryptographic primitives requiring interaction, such as
block ciphers, message authentications codes (MACs), digital signatures (SIGs) and
pseudorandom functions (PRFs). For example, Luby and Rackoff [LR86] (see also
[NR99, Mye99]) showed how to improve the security of a constant number of pseu-
dorandom permutation generators by composition, while Myers [Mye03] showed that
a (non-standard) variant of the XOR lemma [Yao82, Lev87, Imp95, GNW95] holds for
PRFs. In particular, the known results for the interactive case are either weaker or more
specialized than those for the non-interactive case. The difficulty is that, for instance
in the case of MACs, the attacker has oracle access to the corresponding “signing” and
“verification” oracles, and the existing techniques do not appear to handle such cases.

In this work we study the question of security amplification of MACs, SIGs and
PRFs, showing how to convert a corresponding weak primitive into a strong primi-
tive. In brief, we prove a direct product theorem for MACs/SIGs (and even a Chernoff-
type theorem to handle MACs/SIGs with imperfect completeness), and a (regular) XOR
lemma for PRFs. Before describing these results in more details, however, it is useful
to introduce our main technical tool for all these cases — a Chernoff-type theorem for
what we call Dynamic Weakly Verifiable Puzzles (DWVPs) — which is of independent
interest.

Dynamic Weakly Verifiable Puzzles. Recall, (non-dynamic) weakly verifiable puzzles
(WVPs) were introduced by Canetti, Halevi and Steiner [CHS05] to capture the class
of puzzles whose solutions can only be verified efficiently by the party generating the
instance of the puzzle. This notion includes, as special cases, most previously men-
tioned non-interactive primitives, such as one-way functions, collision-resistant hash
functions, one-way encryption schemes, CAPTCHAs, etc. To handle also interactive
primitives, such as MACs and SIGs (and also be useful later for PRFs), in Section 3 we
generalize this notion to that of dynamicWVPs (DWVPs) as follows. Just like in WVPs,
one samples a pair (x, α) from some distribution D, where α is the secret advice used
to verify proposed solutions r to the puzzle x. Unlike WVPs, however, each x actually
defines a set of related puzzles, indexed by some value q ∈ Q, as opposed to a single
puzzle (which corresponds to |Q| = 1). An efficient verification algorithm R for the
DWVP uses α and the puzzle index q to test if a given solution r is correct. An attacker
B has oracle access to this verification procedure. Additionally, the attacker has ora-
cle access to the hint oracle: given an index q, the hint oracle returns some hint value
H(α, q), presumably “helping” the attacker to solve the puzzle q. The attacker wins
the DWVP game if it ever causes the verification oracle to succeed on a query q ∈ Q

130 Y. Dodis et al.

not previously queried to the hint oracle. As we see, this abstraction clearly includes
MACs and SIGs as special cases. It also generalizes ordinary WVPs, corresponding to
|Q| = 1. We say that the DWVP is δ-hard, if no (appropriately bounded) attacker can
win the above game with probability more than (1− δ).

Our main technical result is the following (informally stated) Chernoff-type theorem
for DWVPs. Given n independently chosen δ-hard DWVPs on some index set Q, the
chance of solving more than (n− (1− γ)δn) DWVPs — on the same value q ∈ Q and
using less than h “hint” queries q′ �= q — is proportional to h · e−Ω(γ2δn); the exact
statement is given in Theorem 3. Notice, the value 0 < γ ≤ 1 measures the “slackness
parameter”. In particular, γ = 1 corresponds to the direct product theorem where the
attacker must solve all n puzzles (on the same q). However, setting γ < 1 allows to
handle the setting where even the “legitimate” users, — who have an advantage over
the attacker, like knowing α or being humans, — can also fail to solve the puzzle with
some probability slightly less than (1− γ)δ.

This result generalizes the corresponding Chernoff-type theorem of Impagliazzo,
Jaiswal and Kabanets [IJK08] for standard, non-dynamic, WVPs. However, the new
theorem involves a considerably more complicated proof. The extra difficulties are ex-
plained in Section 3.1. In essence, in order to amplify security, the attacker B for the
single DWVP must typically execute the assumed attacker A for the “threshold” vari-
ant several times, before obtaining sufficient “confidence” in the quality of the solutions
output by A. In each of these “auxiliary” runs, however, there is a chance that A will
ask a hint query for the index q which is equal to the one that A is going to solve
in the “actual” run leading to the forgery, making B’s forgery value q “old”. Thus,
a new delicate argument has to be made to argue security in this scenario. At a high
level, the argument is somewhat similar to Coron’s improved analysis [Cor00] of the
full domain hash signature scheme, although the details differ. See Theorem 3 for the
details.

Applications to MACs, SIGs and PRFs. Our main technical result above almost imme-
diately implies security amplification for MACs and SIGs, even with imperfect com-
pleteness. For completeness, we briefly state the (asymptotic) result for the MAC case.
(The case of SIGs and the exact security version for both cases are immediate.) We
assume that the reader is familiar with the basic syntax and the standard Chosen Mes-
sage Attack (CMA) scenario for a MAC, which is given by a tagging algorithm Tag
and the verification algorithm Ver. We denote the secret key by s, and allow the tagging
algorithm to be probabilistic (but not stateful). Given the security parameter k, we say
that the MAC has completeness error β = β(k) and unforgeability δ = δ(k), where
β < δ, if for any message m, Pr(Ver(s, m,Tag(s, m)) = 1) ≥ 1 − β, and that no
probabilistic polynomial-time attacker B can forge a valid tag for a “fresh” message m
with probability greater than (1 − δ) during the CMA attack.

The MAC Π is said to be weak if δ(k) − β(k) ≥ 1/poly(k), for some polynomial
poly, and is said to be strong if, for sufficiently large k, β(k) ≤ negl(k) and δ(k) ≥
1 − negl(k), where negl(k) is some negligible function of k. Given an integer n and
a number γ > 0, we can define the “threshold direct product” MAC Πn in the natural
way: the key of Πn consists of n independent keys for the basic MAC, the tag of m
contains the concatenation of all n individual tags of m, and the verification accepts an

Security Amplification for Interactive Cryptographic Primitives 131

n-tuples of individual tags if at least (n− (1− γ)δn) individual tags are correct. Then,
a straightforward application of Theorem 3 gives:

Theorem 1. Assume Π is a weak MAC. Then one can choose n = poly(k) and γ > 0
so that Πn has completeness error 2−Ω(k) and unforgeability (1 − 2−Ω(k)). In partic-
ular, Πn is a strong MAC.

We then use our direct product result for MACs to argue the XOR lemma for the se-
curity amplification of PRFs. Namely, in Section 4.2 we show that the XOR of several
independent weak PRFs results in a strong PRF (see Section 4.2 for definitions). It is in-
teresting to compare this result with a related XOR lemma for PRFs by Myers [Mye03].
Meyers observed that the natural XOR lemma above cannot hold for δ-pseudorandom
PRFs, where δ ≥ 1

2 . In particular, a PRF one of whose output bits is a constant for
some input can potentially reach security (almost) 1/2, but can never be amplified by a
simple XOR. Because of this counter-example, Meyers had a more complicated XOR
lemma for PRFs, where a separate pad was selected for each δ-pseudorandom PRF, and
showed that this variant worked for any δ < 1. In this work, we show that Meyers’
counter-example is the worst: the simple XOR lemma holds for δ-pseudorandom PRFs,
for any δ < 1

2 .
The PRF result generally follows the usual connection between the direct product

theorems and the XOR lemmas first observed by [GNW95], but with a subtlety. First,
it is easy to see that it suffices to consider Boolean PRFs. For those, we notice that a δ-
pseudorandom PRF is also a (1−2δ)-unforgeable (Boolean) MAC (this is where δ < 1

2
comes in). Then, we apply the direct product theorem to obtain a strong (non-Boolean)
MAC. At this stage, one typically applies the Goldreich-Levin [GL89] theorem to argue
that the XOR of a random subset of (strong) MACs is a PRF. Unfortunately, as observed
by Naor and Reingold [NR98], the standard GL theorem does not work in general for
converting unpredictability into pseudorandomness, at least when the subset is public
(which will ultimately happen in our case). However, [NR98] showed that the conver-
sion does work when r is kept secret. Luckily, by symmetry, it is easy to argue that for
“direct product MACs”, keeping r secret or public does not make much difference. In-
deed, by slightly adjusting the analysis of [NR98] to our setting, we will directly obtain
the desired XOR lemma for PRFs.

Finally, in Section 4.1 we observe a simple result regarding the security amplification
of pseudorandom generators (PRGs). This result does not use any new techniques (such
as our Chernoff-type theorem). However, we state it for completeness, since it naturally
leads to the (more complicated) case of PRFs in Section 4.2 and, as far as we know, it
has never explicitly appeared in the literature before.

2 Preliminaries

For a natural number k, we will denote by [k] the set {1, . . . , k}.

Lemma 1 (Hoeffding bound). Let X1, . . . , Xt be independent identically distributed
random variables taking values in the interval [0, 1], with expectation µ. Let χ =
(1/t)

∑t
i=1 Xi. For any 0 < ν ≤ 1, we have Pr[χ < (1− ν)µ] < e−ν2µt/2.

132 Y. Dodis et al.

Theorem 2 ([GL89]). There is a probabilistic algorithm Dec with the following prop-
erty. Let a ∈ {0, 1}k be any string, and let O : {0, 1}k → {0, 1} be any predicate such
that |Prz∈{0,1}k [O(z) = 〈a, z〉]− 1/2| ≥ ν for some ν > 0. Then, given ν and oracle
access to the predicate O, the algorithm Dec runs in time poly(k, 1/ν), and outputs a
list of size O(1/ν2) such that, with probability at least 3/4, the string a is on the list.

2.1 Samplers

We will consider bipartite graphs G = G(L ∪ R, E) defined on a bipartition L ∪ R of
vertices; we think of L as left vertices, and R as right vertices of the graph G. We allow
graphs with multiple edges. For a vertex v of G, we denote by NG(v) the multiset of its
neighbors in G; if the graph G is clear from the context, we will drop the subscript and
simply write N(v). Also, for a vertex x of G, we denote by Ex the set of all edges in G
that are incident to x. We say that G is bi-regular if the degrees of vertices in L are the
same, and the degrees of vertices in R are the same.

Let G = G(L ∪ R, E) be any bi-regular bipartite graph. For a function λ : [0, 1]×
[0, 1] → [0, 1], we say that G is a λ-sampler if, for every function F : L → [0, 1]
with the average value Expx∈L[F (x)] ≥ µ and any 0 < ν < 1, there are at most
λ(µ, ν) · |R| vertices r ∈ R where Expy∈N(r)[F (y)] ≤ (1− ν)µ.

We will use the following properties of samplers (proved in [IJKW08, IJK08]).
The first property says that for any two large vertex subsets W and F of a sampler,
the fraction of edges between W and F is close to the product of the densities of
W and F .

Lemma 2 ([IJKW08]). Suppose G = G(L ∪ R, E) is a λ-sampler. Let W ⊆ R be
any set of measure at least τ , and let V ⊆ L be any set of measure at least β. Then,
for all 0 < ν < 1 and λ0 = λ(β, ν), we have Prx∈L,y∈N(x)[x ∈ V & y ∈ W] ≥
β(1 − ν)(τ − λ0), where the probability is for the random experiment of first picking
a random node x ∈ L uniformly at random, and then picking a uniformly random
neighbor y of x in the graph G.

The second property deals with edge-colored samplers. It basically says that removing
some subset of right vertices of a sampler yields a graph which (although not necessarily
bi-regular) still has the following property: Picking a random left node and then picking
its random neighbor induces roughly the same distribution on the edges as picking a
random right node and then its random neighbor.

Lemma 3 ([IJKW08]). Suppose G = G(L ∪ R, E) is a λ-sampler, with the right
degree D. Let W ⊆ R be any subset of density at least τ , and let G′ = G(L ∪W, E′)
be the induced subgraph of G (obtained after removing all vertices in R \W), with the
edge set E′. Let Col : E′ → {red, green} be any coloring of the edges of G′ such that
at most ηD|W | edges are colored red, for some 0 ≤ η ≤ 1. Then, for all 0 < ν, β < 1
and λ0 = λ(β, ν), we have

Prx∈L,y∈NG′(x)[Col({x, y}) = red] ≤ max{η/((1− ν)(1− λ0/τ)), β},
where the probability is for the random experiment of first picking a uniformly random
node x ∈ L, and then picking a uniformly random neighbor y of x in the graph G′.

Security Amplification for Interactive Cryptographic Primitives 133

3 Dynamic Weakly Verifiable Puzzles

We consider the following generalization of weakly verifiable puzzles (WVP) [CHS05],
which we call dynamic weakly verifiable puzzles (DWVP).

Definition 1 (Dynamic Weakly Verifiable Puzzle). A DWVP Π is defined by a dis-
tribution D on pairs of strings (x, α); here α is the advice used to generate and eval-
uate responses to the puzzle x. Unlike the case of WVP, here the string x defines a
set of puzzles, (x, q) for q ∈ Q (for some set Q of indices). There is a probabilistic
polynomial-time computable relation R that specifies which answers are solutions for
which of these puzzles: R(α, q, r) is true iff response r is correct answer to puzzle q
in the collection determined by α. Finally, there is also a probabilistic polynomial-time
computable hint function H(α, q).

A solver can make a number of queries: query hint(q) asks for H(α, q), the hint
for puzzle number q; a verification query V (q, r) asks whether R(α, q, r). The solver
succeeds if it makes an accepting verification query for a q where it has not previously
made a hint query on q.

Clearly, WVP is a special case of DWVP when |Q| = 1. A MAC is also a special case
of DWVP where α is a secret key, x is the empty string, queries q are messages, a hint
is to give the MAC of a message, and correctness is for a (valid message, MAC) pair.
Signatures are also a special case with α being a secret key, x a public key, and the rest
similar to the case of MACs.

We give hardness amplification for such weakly verifiable puzzle collections, using
direct products. First, let us define an n-wise direct product for DWVPs.

Definition 2 (n-wise direct-product of DWVPs). Given a DWVP Π with D, R, Q,
and H , its n-wise direct product is a DWVP Πn with the product distribution Dn pro-
ducing n-tuples (α1, x1), . . . , (αn, xn). For a given n-tuple ᾱ = (α1, . . . , αn) and a
query q ∈ Q, the new hint function is Hn(ᾱ, q) = (H(α1, q), . . . , H(αn, q)). For pa-
rameters 0 ≤ γ, δ ≤ 1, we say that the new relation Rk((α1, . . . , αn), q, (r1, . . . , rn))
evaluates to true if there is a subset S ⊆ [n] of size at least n − (1 − γ)δn such that
∧i∈SR(αi, q, ri).

A solver of the n-wise DWVP Πn may ask hint queries hintn(q), getting Hn(ᾱ, q)
as the answer. A verification query V n(q, r̄) asks if Rn(ᾱ, q, r̄), for an n-tuple r̄ =
(r1, . . . , rn). We say that the solver succeeds if it makes an accepting verification query
for a q where it has not previously made a hint query on q.1

Theorem 3 (Security amplification for DWVP (uniform version)). Suppose a prob-
abilistic t-time algorithm A succeeds in solving the n-wise direct-product of some
DWVP Πn with probability at least ε, where ε ≥ (800/γδ) · (h + v) · e−γ2δn/40, and
h is the number of hint queries 2, and v the number of verification queries made by A.

1 We don’t allow the solver to make hint queries (q1, . . . , qn), with different qi’s, as this would
make the new k-wise DWVP completely insecure. Indeed, the solver could ask cyclic shifts of
the query (q1, . . . , qn), and thus learn the answers for q1 in all n positions, without actually
making the hint query (q1, . . . , q1).

2 Note that when h = 0, we’re in the case of WVPs.

134 Y. Dodis et al.

Then there is a uniform probabilistic algorithm B that succeeds in solving the original
DWVP Π with probability at least 1 − δ, while making O((h(h + v)/ε) · log(1/γδ))
hint queries, only one verification query, and having a running time

O
(
((h + v)4/ε4) · t + (t + ωh) · (h + v)/ε · log (1/γδ)

)
.

Here ω denotes the maximum time to generate a hint for a given query. The success
probability of B is over the random input puzzle of Π and internal randomness of B.

Note that B in the above theorem is a uniform algorithm. We get a reduction in running
time of an algorithm for attacking Π if we allow it to be non-uniform. The algorithm
B above (as we will see later in the proof) samples a suitable hash function from a
family of pairwise independent hash functions and then uses the selected function in the
remaining construction. In the non-uniform version of the above theorem, we can skip
this step and assume that the suitable hash function is given to it as advice. Following
is the non-uniform version of the above theorem.

Theorem 4 (Security amplification for DWVP (non uniform version)). Suppose a
probabilistic t-time algorithm A succeeds in solving the n-wise direct-product of some
DWVPΠn with probability at least ε, where ε ≥ (800/γδ) ·(h+v) ·e−γ2δn/40, h is the
number of hint queries, and v the number of verification queries made by A. Then there
is a probabilistic algorithmB that succeeds in solving the original DWVPΠ with prob-
ability at least 1−δ, while makingO((h ·(h+v)/ε)) · log(1/γδ)) hint queries, only one
verification query, and having the running time O ((t + ωh)·((h + v)/ε) · log (1/γδ)),
where ω denotes the maximum time to generate a hint for a given query. The success
probability of B is over the random input puzzle of Π and internal randomness of B.

3.1 Intuition

We want to solve a single instance of DWVP Π , using an algorithm A for the n-wise
direct-product Πn, and having access to the hint-oracle and the verification-oracle for
Π . The idea is to “embed” our unknown puzzle into an n-tuple of puzzles, by generating
the n − 1 puzzles at random by ourselves. Then we simulate algorithm A on this n-
tuple of puzzles. During this simulation, we can answer the hint queries made by A
by computing the hint function on our own puzzles and by making the appropriate
hint query to the hint-oracle for Π . We will answer all verification queries of A by
0 (meaning “failure”). At the end, we see if A made a verification query which was
“sufficiently” correct in the positions corresponding to our own puzzles; if so, we make
a probabilistic decision to output this query (for the position of our unknown input
puzzle).

To decide whether to believe or not to believe the verification query made by A, we
count the number of correct answers it gave for the puzzles we ourselves generated (and
hence can verify), and then believe with probability inverse-exponentially related to the
number of incorrect answers we see (i.e., the more incorrect answers we see, the less
likely we are to believe that A’s verification query is correct for the unknown puzzle);
since we allow up to (1−γ)δn incorrect answers, we will discount these many incorrect
answers, when making our probabilistic decision.

Security Amplification for Interactive Cryptographic Primitives 135

Such a “soft” decision algorithm for testing if an n-tuple is good has been proposed
in [IW97], and later used in [BIN97, IJK08]. Using the machinery of [IJK08], we may
assume, for the sake of intuition, that we can decide if a given verification query (q, r̄)
made by A is correct (i.e., is correct for at least n− (1− γ)δn of ri’s in the n-tuple r̄).

Since A is assumed to succeed on at least ε fraction of n-tuples of puzzles, we get
from A a correct verification query with probability at least ε (for a random unknown
puzzle, and random n − 1 self-generated puzzles). Hence, we will produce a correct
solution to the input puzzle of Π with probability at least ε.

To improve this probability, we would like to repeatedly sample n− 1 random puz-
zles, simulate A on the obtained n-tuple of puzzles (including the input puzzle in a
random position), and check if A produces a correct verification query. If we repeat for
O(log 1/δ)/ε) iterations, we should increase our success probability for solving Π to
1− δ.

However, there is a problem with such repeated simulations of A on different n-
tuples of puzzles: in some of its later runs, A may make a successful verification query
for the same q for which it made a hint query in an earlier run. Thus, we need to make
sure that a successful verification query should not be one of the hint queries asked by
A in one of its previous runs. We achieve this by randomly partitioning the query space
Q into the “attack” queries P , and “hint” queries. Here P is a random variable such
that any query has probability 1

2(h+v) of falling inside P . We will define the set P by
picking a random hash function hash from Q to {0, 1, . . . , 2(h + v) − 1}, and setting
P = Phash to be the preimages of 0 of hash.

We say that the first success query for A is the first query where a successful verifi-
cation query without a previous hint query is made. A canonical success for attacker A
with respect to P is an attack so that the first successful verification query is in P and
all earlier queries (hint or verification) are not in P .

We will show that the expected fraction of canonical successes for Phash is at least
ε

4(h+v) . We will also give an efficient algorithm (the Pick-hash procedure below) that
finds a hash function hash so that the fraction of canonical successes for Phash is close
to the expected fraction. Then we test random candidates for being canonical successes
with respect to Phash.

Due to this extra complication (having to separate hint and verification queries),
we lose on our success probability by a factor of 8(h + v) compared to the case of
WVPs analyzed in [IJK08]. The formal proof of the theorem is given in the following
subsection.

3.2 Proof of Theorems 3 and 4

Proof (proof of Theorem 3). For any mapping hash : Q → {0, ..., 2(h + v) − 1}, let
Phash denote the preimages of 0. Also, as defined in the previous section, a canonical
success for an attacker A with respect to P ⊆ Q is an attack so that the first successful
verification query is in P and all earlier queries (hint or verification) queries are not in
P . The proof of the main theorem follows from the following two lemmas.

Lemma 4. Let A be an algorithm which succeeds in solving the n-wise direct-product
of some DWVPΠn with probability at least εwhile making h hint queries, v verification

136 Y. Dodis et al.

queries and have a running time t. Then there is a probabilistic algorithm which runs
in time O(((h + v)4/ε4) · t) and with high probability outputs a function hash : Q →
{0, ..., 2(h + v) − 1} such that the canonical success probability of A with respect to
the set Phash is at least ε

8(h+v) .

Lemma 5. Let hash : Q→ {0, ..., 2(h+ v)− 1} be a function. Let A be an algorithm
such that the canonical success probability ofA over an n-wise DWVPΠn with respect
to Phash is at least ε′ = (100/γδ) · e−γ2δn/40. Furthermore, let A makes h hint queries
and v verification queries and have a running time t. Then there is a probabilistic
algorithm B that succeeds in solving the original DWVP Π with probability at least
1 − δ, while making O((h(h + v)/ε) · log(1/γδ)) hint queries, only one verification
query, and having the running time O ((t + ωh) · (h/ε) · log (1/γδ)), where ω denotes
the maximum time to generate a hint for a given query.

Proof (proof of Theorem 4). The proof follows from Lemmas 4 and 5.

In the remaining subsection, we give the proof of Lemmas 4 and 5. The proof of
Lemma 5 is very similar to the analysis of WVPs in [IJK08].

Proof (proof of Lemma 4). Let H be a pairwise independent family of hash functions
mapping Q into {0, ..., (2(h + v)− 1)}. First note that for a randomly chosen function

hash
$← H, Phash is a random variable denoting the partition of Q into two parts which

satisfies the following properties:

∀q1, q2 ∈ Q, Pr[q1 ∈ Phash | q2 ∈ Phash] = Pr[q1 ∈ Phash] =
1

2(h + v)
(1)

For any fixed choice of ᾱ = (α1, ..., αn), let qᾱ
1 , ..., qᾱ

h denote the hint queries of A
and (qᾱ

h+1, r̄
ᾱ
h+1), ..., (q

ᾱ
h+v, r̄ᾱ

h+v). Also, let (qᾱ
j , r̄ᾱ

j) denote the first successful verifi-
cation query, in case A succeeds, and let it denote any arbitrary verification query in
the case A fails. Furthermore, let Eᾱ denote the event that qᾱ

1 , ..., qᾱ
h , qᾱ

h+1, ..., q
ᾱ
j−1 /∈

Phash and qᾱ
j ∈ Phash. We bound the probability of the event Eᾱ as follows.

Claim. For each fixed ᾱ, we have PrPhash
[Eᾱ] ≥ 1

4(h+v) .

Proof. We have

PrPhash
[Eᾱ] = Pr[qᾱ

j ∈ Phash & ∀i < j, qᾱ
i /∈ Phash]

= Pr[qᾱ
j ∈ Phash] ·Pr[∀i < j, qᾱ

i /∈ Phash | qᾱ
j ∈ Phash].

By (1), we get that the latter expression is equal to 1
2(h+v) · (1 − Pr[∃i < j, qᾱ

i ∈
Phash | qᾱ

j ∈ Phash]), which, by the union bound, is at least

1
2(h + v)

·
⎛⎝1−

∑
i<j

Pr[qᾱ
i ∈ Phash | qᾱ

j ∈ Phash]

⎞⎠ .

Security Amplification for Interactive Cryptographic Primitives 137

Finally, using the pairwise independence property (1), we conclude that

Pr[Eᾱ] ≥ 1
2(h + v)

·
⎛⎝1−

∑
i<j

Pr[qᾱ
i ∈ Phash]

⎞⎠ ≥ 1
4(h + v)

,

as required.

Let T denote the “good” set corresponding to A’s attack, that is,
T = {ᾱ : A′s attack succeeds}. We have Pr[ᾱ ∈ T] ≥ ε. Consider the following
random variable: GPhash

= {ᾱ | ᾱ ∈ T and Eᾱ}. So, GPhash
contains those ᾱ’s for

which A has canonical success.
Since ∀ᾱ ∈ G,PrPhash

[Eᾱ] ≥ 1
4(h+v) , using linearity of expectation we get

ExpPhash
[Prᾱ[ᾱ ∈ GPhash

]] ≥ ε
4(h+v) . Hence, by averaging, we get that with prob-

ability at least ε
8(h+v) over the randomness of Phash, there is at least ε

8(h+v) chance
that a randomly chosen ᾱ ∈ GPhash

. Let us call such Phash’s “good”. The subroutine
Pick-hash (see figure 2) uses sampling and runs in time O(((h + v)4/ε4) · t) to return
a mapping hash such that Phash is good.

Pick-hash
00. Let H be a pairwise independent family of hash functions

which maps Q into {0, 1, ..., (2h − 1)}.
01. Repeat lines (2 − 15) for at most 64(h + v)2/ε2 times:

02. hash
$← H

03. Let Phash denote the subset of all queries q such that hash(q) = 0
04. count ← 0
05. Repeat for at most 64(h + v)2/ε2 times:
06. Pick ᾱ = (α1, ..., αn) randomly
07. Execute A
08. When A asks a hint query q
09. If (q ∈ Phash), then abort A and continue with step 5
10. Let (r1, ..., rn) be hints to query q for puzzle sets x1, ..., xn

11. return (r1, ..., rn) to A
12. When A asks a verification query (q, r̄)
13. If (Rn(ᾱ, q, r̄) = 1) and q ∈ Phash then
14. increase count by 1 and continue at step 5
15. If (count ≥ 4(h + v)/ε) then return hash

Fig. 1. Algorithm for picking a good hash function

Proof (Proof of Lemma 5)
Due to space restriction, we only give an intuitive sketch of the proof in this paper. The
detailed proof of this lemma can be found in the full version of the paper. Figure (2)
gives the formal description of the algorithm B which uses the algorithm A.

For any fixed ᾱ, let qᾱ
1 , ..., qᾱ

h denote the hint queries made by A and (qᾱ
h+1, r

ᾱ
h+1), ...,

(qᾱ
h+v, r

ᾱ
h+v) denote the verification queries. Let j ∈ [h + v] be the first query such that

qᾱ
v ∈ Phash. For all simulations of A, B correctly answers every hint query of A by itself

138 Y. Dodis et al.

B(x)
00. Let ρ = (1 − γ/10) and Θ = (1 − γ)δn
01. Let hash denote the function as in Lemma 4. For Theorem 3, hash is chosen using

the subroutine Pick-hash. For Theorem 4, we can assume that hash is given as advice.
02. Let Phash denote the subset of all queries q such that hash(q) = 0
03. Repeat lines (4 − 23) for at most timeout = O(((h + v)/ε) · log (1/γδ)) steps:

04. Pick i
$← [1..n]

05. Pick (n − 1) α’s randomly. Let (α1, ..., αi−1, αi+1, ..., αn) denote
these α’s and let (x1, ..., xi−1, xi+1, ..., xn) denote the puzzle sets
corresponding to these α’s.

06. Sv ← ∅
07. Execute A(x1, ..., xi−1, x, xi+1, ..., xn)
08. When A asks its hint query q
09. If q ∈ Phash then return ⊥ to A and halt the current simulation of A
10. B makes a hint query q to get the answer r
11. Let (r1, ..., ri−1, ri+1, ..., rn−1) be the hints for query q for

puzzle sets (x1, ..., xi−1, xi+1, ..., xn)
12. r̄ ← (r1, .., ri−1, r, ri+1.., rn)
13. return r̄ to A
14. When A asks a verification query (q, r̄)
15. If q /∈ Phash then return 0 to A
16. else
17. Parse r̄ as (r1, . . . , rn)
18. m ← |{j : R(αj , q, rj) = 1, j
= i}|
19. If (m ≥ n − Θ) then
20. with probability 1, B makes a verification query (q, ri) and halts
21. else
22. with probability ρm−Θ, B makes a verification query (q, ri) and halts
23. Halt the current simulation of A and continue at line (03)
25. return (⊥,⊥)

Fig. 2. Algorithm for solving Π

making a hint query with respect to the DWVP Π which it is trying to solve (lines 10–13).
Note that for a single simulation of A (lines 6–25), the simulation is aborted if j ≤ h (line
9). Otherwise, B makes a “soft” decision using (qᾱ

j , r̄ᾱ
j) to produce its verification query

(lines 19–24). Lemma 4 tells that there are at least ε′ fraction of ᾱ’s such that (qᾱ
j , r̄ᾱ

j) is
a correct verification query for A(these are ᾱ’s on which A has canonical success). So,
intuitively there is a fair chance that B produces a correct verification query.

Let Good denote the set of ᾱ’s on which A succeed canonically. From the assumption
of the Lemma we know that Good contains at least ε′ fraction of ᾱ’s. The remaining
task is to argue that this is sufficient to show that B succeeds with high probability.
The rest of the analysis, apart from minor details, is similar to the proof of the Direct
Product theorem for WVPs from [IJK08], essentially arguing that the lines 17–22 of
the algorithm B act as a decision procedure for the set Good. Next we give some details
of these arguments.

Consider the following bipartite graph G = G(L ∪ R, E): the set of left vertices
L is the set of α’s; the right vertices R are all n-tuples ᾱ = (α1, ..., αn); for every

Security Amplification for Interactive Cryptographic Primitives 139

y = (u1, . . . , un) ∈ R, there are n edges (y, u1), . . . , (y, un) ∈ E. Using Lemma 1,
we see that this graph is a λ-sampler for λ(µ, ν) = e−ν2µk/2.

For an unknown secret key α, let ᾱ = (α1, . . . , αi−1, α, αi, . . . , αn−1) be the n-
tuple of secret keys that corresponds to the n-tuple of puzzles (x1, . . . , xn) that B
will feed to A in line 7. Let qᾱ

1 , ..., qᾱ
h be the A’s hint queries and (qᾱ

h+1, r̄
ᾱ
h+1),,

(qᾱ
h+v, r̄

ᾱ
h+v) be the verification queries. Let j ∈ [h + v] be the first index such that

qᾱ
j ∈ Phash. Let (qᾱ, r̄ᾱ) denote (qᾱ

j , r̄ᾱ
j) in case j > h and (⊥,⊥) otherwise.

In the case (qᾱ, r̄ᾱ) �= (⊥,⊥), B makes a probabilistic decision about using (qᾱ, r̄ᾱ)
to produce its verification queries. It does that by verifying the answers to the query at
all positions other than position i where the unknown α has been planted. Let (qᾱ, rᾱ)
denote the verification query made by the algorithm B in this simulation of A. If no ver-
ification query is made or if (qᾱ, r̄ᾱ) = (⊥,⊥), then (qᾱ, rᾱ) = (⊥,⊥). Let (qB , rB)
denote the single verification query made by B.

First we bound the probability of timeout of B or in other words the probability that
(qᾱ, rᾱ) = (⊥,⊥) in all iterations of B. If ᾱ ∈ Good, then lines 7–23 will return a
verification query with probability 1. Hence, the probability of timeout is at most the
probability that B never samples a neighbor ᾱ ∈ Good of α in the graph G.

Consider the set H of all those left vertices α of G such that α has less than ε′/4
fraction of its neighbors falling into the set Good. These are precisely those α’s for
which B is likely to time out. The next lemma shows that the set H is small.

Lemma 6. The set H has density at most γδ/5.

Proof. Suppose that the density of H is greater than β = γδ/5. Let H ′ ⊆ H be any
subset of H of density exactly β. By our assumption, we have that Prα∈L,w∈N(α)[α ∈
H ′ & w ∈ Good] < βε′/4. On the other hand, by Lemma 2 we get that the same
probability is at least β(ε′ − λ0)/3 for λ0 = λ(β, 2/3). This is a contradiction if
λ0 ≤ ε′/4.

Lemma 7. For every α �∈ H , we havePr[B timeouts] ≤ γδ/20, where the probability
is over the internal randomness of B.

Proof. By the definition of H , we get that the probability of timeout on any given
α �∈ H is at most (1 − ε′/4)4 ln(20/γδ)/ε′ ≤ γδ/20.

Next, we need to show that the probability of R(α, qB, rB) = 0 conditioned on the
event that (qB , rB) �= (⊥,⊥), is small. Note that this conditional probability remains
the same across all the simulations of A in lines 4–23. Consider any fixed simulation of
A (lines 8–23) such that (qᾱ, r̄ᾱ) �= (⊥,⊥). Let err be the number of incorrect answers
in r̄ᾱ for the query qᾱ. Then if err ≤ (1 − γ)δn, then lines 7 − 25 of B produces a
verification query with probability 1. Otherwise a verification query is produced with
probability that decreases exponentially (by a factor of ρ) as err increases.For this
intuitive sketch of the proof, let us make a simplifying assumption there is an oracle
O which tells whether ᾱ ∈ Good 3 (in some sense lines 17–22 is an approximation of
such an oracle). Given such an oracle, consider the the algorithm BO, which is same as
B except we replace lines 17–23 with the following line:

3 Note that B does not have access to α and hence does not know ᾱ

140 Y. Dodis et al.

IfO tells that the hidden ᾱ ∈ Good, then B makes verification query (q, ri)

Intuitively, lines 17–22 in B is an approximation of the line above and hence
Pr[R(α, qB , rB) = 0|(qB , rB) �= (⊥,⊥)] should be close to Pr[R(α, qBO

, rBO
) =

0|(qBO
, rBO

) �= (⊥,⊥)]. On the other hand, analyzing the conditional probability
Pr[R(α, qBO

, rBO
) = 0|(qBO

, rBO
) �= (⊥,⊥)] is simple and is done by analyzing

the following graph: Let G′ be the induced subgraph of G obtained after removing all
vertices in R\Good. For each edge ((α1, . . . , αn), αl) of the graph G′, we color this
edge green if the lth answer in r̄ᾱ is correct for the query qᾱ, and we color it red other-
wise. Consider the following random experiment E defined on the graph G′:

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in G′, for ᾱ
containing α in position l ∈ [n]. If ᾱ ∈ Good, then output e with probability 1
else output⊥.”

For each α, we have

Pr[R(α, qBO
, rBO

) = 0 | (qBO
, rBO

) �= (⊥,⊥)] =
Pr[E outputs red edge incident to α | E outputs some edge incident to α], (2)

where the first probability is over internal randomness of BO, and the second probabil-
ity is over the random choices of E for the fixed α (i.e., over the random choice of an
edge e incident to α, and the random choice whether e is output).

From Lemma 3 we get that:

Pr[E outputs red edge incident to α | E outputs some edge incident to α] ≤
max

(
η

(1− ν)(1 − λ0/τ)
, β

)
which is at most δ−γδ/2 for η = (1−γ)δ, β = δ/2, ν = γ/4, and λ0

τ = λ(δ/2,γ/4)
ε′ ≤

γ/4.

Summing up, from Lemma 6 we get that the fraction of α’s for which B might time
out is small. From Lemma 7 we get that for the remaining α’s, it does not time out with
high probability. Furthermore, from the above argument, the conditional probability of
failing to produce a correct verification query is small. Hence, the probability that B
fails is small.

4 XOR Lemmas for PRGs and PRFs

In this section, we show how to amplify security of pseudorandom (function) genera-
tors, using Direct Products (old and new) and the Goldreich-Levin decoding algorithm
from Theorem 2.

Security Amplification for Interactive Cryptographic Primitives 141

4.1 Amplifying PRGs

We start with PRGs. Let G : {0, 1}k → {0, 1}�(k) be a polynomial-time computable
generator, stretching n-bit seeds to �(k)-bit strings, for �(k) > k, such that G is δ(k)-
pseudorandom. That is, for any probabilistic polynomial-time algorithm A, and all suf-
ficiently large k, we have |Prs[A(G(s)) = 1] − Prx[A(x) = 1]| ≤ δ(k), where s is
chosen uniformly at random from {0, 1}k, and x from {0, 1}�(k).

We say that a PRG G is weak if it is δ-pseudorandom for a constant δ < 1/2. We
say that a PRG G is strong if it is δ(n)-pseudorandom for δ(n) < 1/kc for any constant
c > 0 (i.e., negligible).

For the rest of this subsection, let n > ω(log k) and let n′ = 2n. We show that
any weak PRG Gweak of stretch �(k) > kn can be transformed into a strong PRG
Gstrong as follows: The seed to Gstrong is a n-tuple of seeds to Gweak, and the output of
Gstrong(s1, . . . , sn) is the bit-wise XOR of the n strings Gweak(s1), . . . , Gweak(sn).

Theorem 5 (Security amplification for PRGs). If Gweak is a weak PRG with stretch
�(k) > kn, then the generator Gstrong defined above is a strong PRG, mapping nk-bit
seeds into �(k)-bit strings.

Proof. Since the proof uses standard techniques, we will only sketch it here. Let Gweak

be δ-pseudorandom for δ < 1/2. The proof is by a sequence of the following steps.

1. Use Yao’s “pseudorandom implies unpredictable” reduction to argue that, for a
random seed s, each output bit Gweak(s)i (for i ∈ [�(k)]) is computable from
the previous bits Gweak(s)1..i−1 with probability at most 1/2 + δ, which is some
constant α < 1 since δ < 1/2 (this is where we need that δ < 1/2).

2. Use a Direct-Product lemma (say the one from [GNW95], or the one
from the present paper, Theorem 3) to argue that, for each i ∈ [�(k)],
computing the direct-product (Gweak(s1)i, ..., Gweak(sn′)i) from
(Gweak(s1)1..i−1, ..., Gweak(sn′)1..i−1) for independent random seeds s1, . . . , sn′

can’t be done better than with probability ε ≤ e−Ω(n), which is negligible.
3. Use the Goldreich-Levin decoding algorithm from Theorem 2 to argue that, for

each i ∈ [�(k)], computing the XOR Gweak(s1)i ⊕ · · · ⊕Gweak(sn)i

(i.e., Gstrong(s1, . . . , sn)i) from the given bit-wise XOR of Gweak(s1)1..i−1, ...,
Gweak(sn)1..i−1 (i.e., from Gstrong(s1, . . . , sn)1..i−1), for independent random
seeds s1, . . . , sn, can’t be done better than with probability 1/2 + poly(εn), which
is negligibly better that random guessing.

4. Finally, using Yao’s “unpredictable implies pseudorandom” reduction, conclude
that Gstrong is (�(k)·poly(εn))-pseudorandom, which means that Gstrong is δ′(k)-
pseudorandom for negligible δ′(k), as required.

4.2 Amplifying PRFs

Here we would like to show similar security amplification for pseudorandom function
generators (PRFs).

First we recall the definition of a PRF. Let {fs}s∈{0,1}∗ be a function family, where,
for each s ∈ {0, 1}∗, we have fs : {0, 1}d(|s|) → {0, 1}r(|s|). This function family is

142 Y. Dodis et al.

called polynomial-time computable if there is polynomial-time algorithm that on inputs
s and x ∈ {0, 1}d(|s|) computes fs(x). It is called δ(k)-pseudorandom function family
if, for every probabilistic polynomial-time oracle machine M , and all sufficiently large
k, we have

|Prs[Mfs(1k) = 1]−Prhk
[Mhk(1k) = 1]| ≤ δ(k),

where s is chosen uniformly at random from {0, 1}k, and hk is a uniformly random
function from {0, 1}d(k) to {0, 1}r(k). Finally, we say that a PRF is weak if it is δ-
pseudorandom for some constant δ < 1/2, and we say a PRF is strong if it is δ(k)-
pseudorandom for some δ(k) < 1/kc for any constant c > 0.

Let {fs}s be a weak PRF. By analogy with the case of PRGs considered above, a
natural idea for defining a strong PRF from {fs}s is as follows: For some parameter n,
take n independent seeds s̄ = (s1, . . . , sn), and define gs̄(x) to be the bit-wise XOR of
the strings fs1(x), . . . , fsn(x).

We will argue that the defined function family {gs̄}s̄ is a strong PRF. Rather than
proving this directly, we find it more convenient to prove this first for the case of weak
PRF {fs}s of Boolean functions fs, and use a simple reduction to get the result for
general weak PRFs.

For the rest of this subsection, let n > ω(log k) and let n′ = 2n.

Theorem 6 (XOR Lemma for Boolean PRFs). Let {fs}s be a δ-pseudorandom
Boolean function family for some constant δ < 1/2. Let s̄ = (s1, . . . , sn) be a n-
tuple of k-bit strings. Then, for some constant c0 dependent on δ, the following function
family {gs̄}s̄ is ε-pseudorandom for ε ≤ poly(k) · e−(δn)/c0:

gs̄(x) = fs1(x) ⊕ · · · ⊕ fsn(x).

Proof. The idea is to view {fs} also as a MAC, which is a special case of a DWVP and
hence we have a direct-product result (our Theorem 3). We will argue that if gs̄ is not
a strong PRF, then one can break with non-negligible probability the direct product of
MACs (fs1 , . . . , fsn′) for independent random seeds s1, . . . , sn′ , and hence (by Theo-
rem 3), one can break a single MAC fs with probability close to 1. The latter algorithm
breaking fs as a MAC will also be useful for breaking fs as a PRF, with the distinguish-
ing probability δ′ > δ, which will contradict the assumed δ-pseudorandomness of the
PRF {fs}s.

In more detail, suppose that A is a polynomial-time adversary that distinguishes gs̄

from a random function, with a distinguishing probability ε > poly(k) ·e−Ω(δn). Using
a standard hybrid argument, we may assume that the first query m of A is decisive.
That is, answering this query with gs̄(m) and all subsequent queries mi with gs̄(mi)
makes A accept with higher probability than answering this query randomly and all
subsequent queries mi with gs̄(mi). Let δ1(k) ≥ ε/poly(k) be the difference between
the two probabilities.

Since gs̄ is a Boolean function, we can use Yao’s “distinguisher-to-predictor” reduc-
tion [Yao82] to predict gs̄(m) with probability 1/2+δ1(n) over random n-tuples s̄, and
for the same fixed input m (since m is independent from the choice of s̄).

By a standard argument, we get an algorithm A′ for computing the following inner
product

〈fs1(m) . . . fsn′ (m), z〉, (3)

Security Amplification for Interactive Cryptographic Primitives 143

for random s1, . . . , sn′ and a random z ∈ {0, 1}n′
, whose success probability is at least

1/2 + δ2(k) ≥ 1/2 + Ω(δ1(k)/
√

n′); the idea is that a random n′ = 2n-bit string z is
balanced with probability Ω(1/

√
n′), in which case we run the predictor for n-XOR,

and otherwise (for non-balanced z) we flip a fair random coin. Next, by averaging, we
get that, for at least δ2(k)/2 fraction of n′-tuples s1, . . . , sn′ , our algorithm A′ correctly
computes the inner product in (3) for at least 1/2 + δ2(k)/2 fraction of random z’s.

Applying the Goldreich-Levin algorithm from Theorem 2 to our algorithm A′, we
get an algorithm A′′ that, for each of at least δ2(k)/2 fraction of n′-tuples s1, . . . , sn′ ,
computes (fs1(m), . . . , fsn′ (m)) with probability at least poly(δ2(k)). Hence, this al-
gorithm A′′ computes (fs1(m), . . . , fsn′ (m)) for a non-negligible fraction of n′-tuples
s1, . . . , sn′ .

Next, we view A′′ as an algorithm breaking the n′-wise direct-product of the MAC
fs, with non-negligible probability. Using Theorem 3, we get from A′′ an algorithm B
that breaks the single instance of the MAC fs with probability at least 1 − δ′ for δ′ ≤
O((log(poly(k)/δ2(k)))/n), which can be made less than 1/2 − δ for n > ω(log k)
and sufficiently large constant c0 in the bound on ε in the statement of the theorem (this
is where we need the assumption that δ < 1/2).

Note the algorithm B has 1−δ′ > 1/2+δ probability over a secret key s to compute
a correct message-tag pair (msg, tag) such that fs(msg) = tag. Also note that the
algorithm B makes some signing queries fs(qi) =? for qi �= msg, but no verification
queries (other than its final output pair (msg, tag)). We can use this algorithm B to
distinguish {fs}s from random in the obvious way: simulate B to get (msg, tag) (using
the oracle function to answer the signing queries of B); query the oracle function on
msg; if the answer is equal to tag, then accept, else reject.

Clearly, the described algorithm accepts with probability 1/2 on a random oracle,
and with probability greater than 1/2 + δ on a pseudorandom function fs. This contra-
dicts the assumption that {fs}s is δ-pseudorandom.

As a corollary, we get the following.

Theorem 7 (Security amplification for PRFs). Let {fs}s be a weak PRF. For a pa-
rameter n > ω(log k), take n independent seeds s̄ = (s1, . . . , sn), and define gs̄(x)
to be the bit-wise XOR of the strings fs1(x), . . . , fsn(x). The obtained function family
{gs̄}s̄ is a strong PRF.

Proof. Note that given a non-Boolean weak PRF {fs}s, we can define a Boolean func-
tion family {f ′

s}s where f ′
s(x, i) = fs(x)i, i.e., f ′

s treats its input as an input x to
fs and an index i ∈ [r(|s|)], and outputs the ith bit of fs(x). Clearly, if {fs}s is δ-
pseudorandom, then so is {f ′

s}s.
Then we amplify the security of {f ′

s}s, using our XOR Theorem for PRFs (The-
orem 6). We obtain a strong PRF {g ′̄s}s̄, where s̄ = (s1, . . . , sn) and g ′̄s(x, i) =
f ′

s1
(x, i)⊕ · · · ⊕ f ′

sn
(x, i).

Finally, we observe that our function gs̄(x) is the concatenation of the values g ′̄s(x, i)
for all 1 ≤ i ≤ r(|k|). This function family {gs̄}s̄ is still a strong PRF, since we can
simulate each oracle access to gs̄ with d(|s|) oracle calls to g′s̄.

144 Y. Dodis et al.

5 Conclusions

We have established security amplification theorems for several interactive crypto-
graphic primitives, including message authentication codes, digital signature and pseu-
dorandom functions. The security amplifications for MACs and SIGs follow the direct
product approach and work even for the weak variants of these primitives with imper-
fect completeness. For δ-pseudorandom PRFs, we have shown that the standard XOR
lemma works for any δ < 1

2 , which is optimal, complementing the non-standard XOR
lemma of [Mye03], which works even for 1

2 ≤ δ < 1.
Of independent interest, we abstracted away the notion of dynamic weakly verifiable

puzzles (DWVPs), which generalize a variety of known primitives, including ordinary
WVPs, MACs and SIGs. We have also shown a very strong Chernoff-type security
amplification theorem for DWVPs, and used it to establish our security amplification
results for MACs, SIGs and PRFs.

Acknowledgments. Yevgeniy Dodis was supported in part by NSF Grants 0831299,
0716690, 0515121, 0133806. Part of this work was done while the author was visiting
the Center for Research on Computation and Society at Harvard University. Russell
Impagliazzo was supported in part NSF Grants 0716790, 0835373, 0832797, and by the
Ellentuck Foundation. Ragesh Jaiswal was supported in part by NSF Grant 0716790,
and completed part of this work while being at the University of California at San
Diego.

References

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error
in computationally sound protocols? In: Proceedings of the Thirty-Eighth Annual
IEEE Symposium on Foundations of Computer Science, pp. 374–383 (1997)

[CHS05] Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005)

[Cor00] Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

[CRS+07] Canetti, R., Rivest, R., Sudan, M., Trevisan, L., Vadhan, S., Wee, H.: Amplify-
ing collision resistance: A complexity-theoretic treatment. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 264–283. Springer, Heidelberg (2007)

[DNR04] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Comput-
ing, pp. 25–32 (1989)

[GNW95] Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-Lemma. Electronic Col-
loquium on Computational Complexity, TR95-050 (1995)

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York (2001)

[IJK08] Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-type direct product theorems.
Journal of Cryptology (published online September 2008); preliminary version in
CRYPTO 2007

Security Amplification for Interactive Cryptographic Primitives 145

[IJKW08] Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct-product
theorems: Simplified, optimized, and derandomized. In: Proceedings of the Forti-
eth Annual ACM Symposium on Theory of Computing, pp. 579–588 (2008)

[Imp95] Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Pro-
ceedings of the Thirty-Sixth Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 538–545 (1995)

[IW97] Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pp. 220–229 (1997)

[Lev87] Levin, L.A.: One-way functions and pseudorandom generators. Combinator-
ica 7(4), 357–363 (1987)

[LR86] Luby, M., Rackoff, C.: Pseudorandom permutation generators and cryptographic
composition. In: Proceedings of the Eighteenth Annual ACM Symposium on The-
ory of Computing, pp. 356–363 (1986)

[Mye03] Myers, S.: Efficient Amplification of the Security of Weak Pseudo-Random Func-
tion Generators. J. Cryptology 16(1), 1–24 (2003)

[Mye99] Myers, S.: On the development of block-ciphers and pseudorandom function gen-
erators using the composition and XOR operators. Master’s thesis, University of
Toronto (1999)

[NR98] Naor, M., Reingold, O.: From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 267–282. Springer, Heidelberg (1998)

[NR99] Naor, M., Reingold, O.: On the construction of pseudorandom permutations:
Luby-Rackoff revisited. Journal of Cryptology, 29–66 (1999)

[PV07] Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for
Arthur-Merlin games. In: Proceedings of the Thirty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pp. 420–429 (2007)

[PW07] Pietrzak, K., Wikstrom, D.: Parallel repetition of computationally sound protocols
revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer,
Heidelberg (2007)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
Twenty-Third Annual IEEE Symposium on Foundations of Computer Science, pp.
80–91 (1982)

Composability and On-Line Deniability of
Authentication

Yevgeniy Dodis1,�, Jonathan Katz2,��, Adam Smith3,� � �,
and Shabsi Walfish4,†

1 Dept. of Computer Science, New York University
2 Dept. of Computer Science, University of Maryland

3 Dept. of Computer Science and Engineering, Pennsylvania State University
4 Google, Inc.

Abstract. Protocols for deniable authentication achieve seemingly para-
doxical guarantees: upon completion of the protocol the receiver is con-
vinced that the sender authenticated the message, but neither party can
convince anyone else that the other party took part in the protocol. We
introduce and study on-line deniability, where deniability should hold
even when one of the parties colludes with a third party during execu-
tion of the protocol. This turns out to generalize several realistic scenarios
that are outside the scope of previous models.

We show that a protocol achieves our definition of on-line deniability if
and only if it realizes the message authentication functionality in the gen-
eralized universal composability framework; any protocol satisfying our
definition thus automatically inherits strong composability guarantees.
Unfortunately, we show that our definition is impossible to realize in the
PKI model if adaptive corruptions are allowed (even if secure erasure is
assumed). On the other hand, we show feasibility with respect to static
corruptions (giving the first separation in terms of feasibility between
the static and adaptive setting), and show how to realize a relaxation
termed deniability with incriminating abort under adaptive corruptions.

1 Introduction

Message authentication allows a sender S to authenticate a message m to a
receiver R. If S has a public key, message authentication is usually handled
using digital signatures. A well-known drawback of digital signatures, however,
is that they leave a trace of the communication and, in particular, allow R (or,
in fact, any eavesdropper) to prove to a third party that S authenticated the
message in question. In some scenarios such non-repudiation is essential, but in
many other cases deniability is desired.

� Supported by NSF grants CNS-0831299, CNS-0716690, CCF-0515121, and CCF-
0133806. A portion of this work was done while visiting CRCS at Harvard Uni-
versity.

�� Supported by NSF CNS-0447075 and NSF CNS-0627306.
� � � Supported by NSF TF-0747294 and NSF CAREER award 0729171.

† A portion of this work was done while at New York University.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 146–162, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Composability and On-Line Deniability of Authentication 147

Deniable authentication, introduced in [16, 18] and studied extensively since
then, achieves the seemingly paradoxical guarantees that (1) the receiver is con-
vinced that the message originated from the sender, yet (2) the receiver, even if
malicious, cannot prove to anyone else that the sender authenticated the given
message. Furthermore, (3) the receiver cannot be incriminated as having been
involved, even by a malicious sender (this is meaningful when the receiver has a
public key, as will be the case in our work; see further below).

Deniability is a fundamental concept in cryptography. Non-repudiation is
sometimes crucial for the free exchange of ideas: without the assurance of remain-
ing “off the record”, individuals may be discouraged from discussing subversive
(or embarrassing) topics. Deniability is also intimately tied to the simulation
paradigm that is central to our understanding of cryptographic protocols.

Indeed, deniability is typically formalized via the simulation paradigm intro-
duced in the context of zero-knowledge (ZK) proofs [20]. Zero-knowledge proofs,
however, do not automatically provide deniability. Pass [27] points out that
non-interactive ZK proofs are not deniable, nor are many existing ZK proofs in
the random oracle model. Furthermore, ZK proofs for which simulation requires
rewinding may not suffice to achieve on-line deniability which protects each
party even when the other party colludes with an on-line entity that cannot be
“rewound” (see below for an example).1 Looking ahead, we note that on-line
deniability is only potentially feasible if receivers hold public keys, and we as-
sume this to be the case in our work. Once receivers have public keys, however,
protocols can realize the stronger semantics by which a sender can authenticate
a message for a specific receiver R but not for anyone else.

One might question whether on-line deniability is too strong. To see why it
might be essential, consider a setting where Bob talks to Alice while relaying all
messages to/from an external party (such as a law-enforcement agent). Ideally,
a deniable authentication protocol would not permit the agent to distinguish
the case when Bob is having a real conversation with Alice from the case when
Bob is fabricating the entire interaction. Previous, off-line models of deniability
provide no guarantees in this setting. Alternatively, imagine a publicly read-
able/writeable bulletin board (e.g., a wiki) where all entries are time-stamped
and assigned unpredictable identifiers. A corrupt receiver running a protocol
with an honest sender can post all the messages it receives to the bulletin board,
and then generate its responses based on the identifiers assigned to the resulting
posts. Again, off-line deniability would not suffice since the bulletin board cannot
be rewound; in this case, the contents of the bulletin board would prove that the
interaction occurred. More generally, one can imagine a “chosen-protocol attack”
by which someone designs and deploys a public service specifically targeted to
destroying the deniability of a particular authentication protocol.

With the above motivation in mind, we introduce a strong notion of deniabil-
ity that, in particular, implies on-line deniability. We then show that a protocol

1 In contrast, previous notions of deniable authentication only guarantee off-line de-
niability which protects against a malicious party who records the transcript and
shows it to a third party after the fact.

148 Y. Dodis et al.

satisfies our definition if and only if it securely realizes the message authen-
tication functionality Fauth in the recently introduced generalized UC (GUC)
framework [7]. (This is an extension of Canetti’s UC framework [5] that mod-
els globally-available, “external” functionalities like a common reference string,
PKI, etc.) Protocols proven secure with respect to our definition thus inherit
all the strong composability properties of the (G)UC framework. We stress that
protocols realizing Fauth in the UC framework do not necessarily provide de-
niability; in particular, digital signatures — which are clearly not deniable —
realize Fauth in the UC framework [6]. Similarly, protocols realizing Fauth in the
UC framework may be problematic when composed with other protocols that
are allowed to depend on parties’ public keys (see Section 2.3). In both cases,
the reason is that the UC framework treats public keys as local to a particu-
lar session. When this condition is enforced, the expected security properties
hold; when public keys are truly public, the expected security properties may
not hold.

1.1 Our Results

We propose a definition of deniable authentication which, in comparison to
prior work, guarantees stronger security properties such as on-line deniability
and security under concurrent executions with arbitrary other protocols. Unfor-
tunately, we show that our notion of deniable authentication is impossible to
achieve in the PKI model if adaptive corruptions are allowed. This holds even
if secure erasure is assumed; if we are unwilling to allow erasure then we can
rule out even the weaker notion of forward security (where, informally, honest
parties’ secret keys and state might be compromised after completion of the
protocol). In the full version, we show reductions from deniable authentication
to deniable key exchange and vice versa; thus, our impossibility results imply
that deniable key exchange is impossible (with regard to adaptive corruptions)
as well.

Our impossibility result is very different from prior impossibility results in
the UC setting [5,9,11,7]. Previous impossibility results assume secure channels
as a primitive, and show that additional setup assumptions (such as a PKI) are
necessary to realize other, more advanced functionalities. Here, we show that the
basic functionality of authenticated channels cannot be realized even given the
setup assumption of a PKI.

Faced with this strong negative result, we ask whether relaxed definitions of
deniable authentication can be achieved. In this direction, we show several pos-
itive results based on standard assumptions and without random oracles. First,
we observe that our definition can be satisfied with respect to static adversaries.
This appears to give the first separation between the static and adaptive set-
tings with regard to feasibility.2 Second, we observe that our definition can be
achieved, with respect to adaptive corruptions, in the symmetric-key setting
where all pairs of parties share a key.
2 Nielsen [26] shows a separation between the static and adaptive settings with regard

to round complexity, but not feasibility.

Composability and On-Line Deniability of Authentication 149

The symmetric-key setting is less appealing than the public-key setting. To
partially bridge the two we suggest that symmetric keys for deniable authenti-
cation can be established using a weak form of deniable key exchange termed
key exchange with incriminating abort (KEIA). Intuitively, KEIA guarantees
deniability as long as the protocol terminates successfully; once a shared key is
established, deniability is guaranteed even if corruptions occur at any later time.
If a malicious party aborts the protocol, however, this party may obtain some
incriminating evidence against the other party; all this proves, however, is that
the two parties attempted to establish a key. In light of our impossibility result,
realizing KEIA (and hence a weak form of deniable authentication) seems to be
a reasonable compromise.

As our third and most technically interesting feasibility result, we show how to
realize KEIA in the PKI model (without erasure) with respect to semi-adaptive
adversaries who corrupt parties either before or after (but not during) an exe-
cution of the protocol.

Due to space constraints, this extended abstract discusses the proposed mod-
eling of online deniability and states our main results. Proofs, additional results,
and further discussions are deferred to the full version.

1.2 Previous Work in Relation to Our Own

Deniable authentication was formally introduced by Dwork, Naor, and Sahai [18]
(though it was also mentioned in [16]) and it, along with several extensions and
generalizations, has received significant attention since then [4, 31, 3, 18, 19, 17,
24,27,28,14,7,25]. This prior work all assumes that only the sender has a public
key; thus, this work implicitly assumes that “guaranteed delivery” of messages
to a specific, intended recipient is possible, and/or that the sender is willing
to authenticate a given message for anyone. In such cases on-line deniability
does not make sense. Since we are specifically interested in on-line deniability,
we consider the setting where the receiver also has a public key. (This setting
was also considered in concurrent work done independently of our own [23,32].)
Once the receiver holds a public key, the sender can meaningfully authenticate
a message for a particular receiver without being willing to authenticate the
message for all other parties.

As previously mentioned, our definition implies very strong notions of denia-
bility. In particular, our protocols remain secure under concurrent composition,
something that was an explicit goal of prior work [18, 19,24,28]. To the best of
our knowledge all prior constructions achieving concurrent security use timing
assumptions [18] which, though reasonable, seem preferable to avoid.3 Our pro-
tocols also remain secure when run concurrently with arbitrary other protocols,
something not addressed by previous work.

Designated-verifier proofs [22] and two-party ring signatures [30,2] also pro-
vide authentication without non-repudiation. These primitives do not provide
3 It is not clear whether plugging a generic concurrent ZK proof [29] into any existing

deniable authentication protocol would yield a concurrently secure protocol. In any
case, this approach would yield protocols with very high round complexity [10].

150 Y. Dodis et al.

deniable authentication, however, since they incriminate the sender S and re-
ceiver R jointly; that is, they do leave evidence that either S or R was involved in
authenticating some message. Deniable authentication, in contrast, does not im-
plicate either party. Similarly, although there has been extensive work construct-
ing and analyzing various deniable key-exchange protocols such as as SIGMA,
SKEME, and HMQV (see [13,14]), none of these protocols meets our definition
of deniability. For example, SIGMA leaves a trace that the sender and receiver
communicated, even if it does not reveal exactly what message was authenti-
cated. (HMQV might satisfy our definition with respect to static adversaries,
though we have not verified the details. The HMQV protocol is not, however,
forward-secure unless erasure by honest parties is allowed).

2 Defining Deniable Authentication

In this section we define our notion of deniable authentication. We begin by giv-
ing a self-contained definition whose primary aim is to model on-line deniability.
Our definition is based on an interactive distinguisher, much like the “environ-
ment” in the UC framework. Indeed, we observe that a protocol satisfies our
definition if and only if it securely realizes the message authentication function-
ality Fauth in the GUC framework. This means that any protocol satisfying our
definition automatically inherits the strong composability guarantees of the UC
framework, and also provides some justification of the claim of Canetti et al. [7]
that the GUC-framework models deniability.

2.1 The Basic Definition

We start by introducing the relevant parties. We have a sender S who is presum-
ably sending a message m to a receiver R, a judge J who will eventually rule
whether or not the transmission was attempted, an informant I who witnesses
the message transmission and is trying to convince the judge, and a misinformant
M who did not witness any message transmission but still wants to convince
the judge that one occurred. Jumping ahead, a protocol is secure if the judge
is unable to distinguish whether it is talking to a true informant I (interacting
with S and R while they are running the protocol), or a misinformantM.

We assume the sender and receiver are part of a network environment that
includes some trusted parties (e.g., trusted setup like the PKI), some means of
communication between the sender and receiver (e.g., a direct unauthenticated
channel), and a direct, private channel between the judge and the informant
(or misinformant, depending on the setting). Intuitively, this on-line channel,
coupled with the fact that J cannot be “rewound”, is what guarantees on-line
deniability. Additionally, we assume that the judge does not have direct access
to the players (in particular, the judge does not know whether S really intends
to send a message, or whether R really received one); instead, the judge must
obtain information about the parties through the (mis)informant. However, the
judge J does have direct access to any global setup (for example, in the case of a
PKI it can reliably obtain the public keys of S and R), and so the misinformant

Composability and On-Line Deniability of Authentication 151

cannot necessarily lie arbitrarily without being caught. Both the informant I
and the misinformant M can adaptively corrupt either the sender S or the
receiver R at any time, and thereby learn the entire state of the corrupted
party (if this party has a public key, this state includes the corresponding secret
key). Additionally, once either S or R is corrupt the judge learns about the
corruption, and the (mis)informant can totally control the actions of this party
going forward. We assume the (mis)informant cannot corrupt the global setup;
for example, in the case of a PKI, the (mis)informant does not know the secret
keys of any uncorrupted party (but does know all the public keys). Finally, the
(mis)informant has partial control over the network: it can totally control all
unauthenticated links, and can block messages from authenticated links.

Roughly, a protocol π achieves on-line deniable authentication if for any ef-
ficient informant I, there exists an efficient misinformant M such that that
no efficient judge J can distinguish the following two experiments with non-
negligible probability.
1. Informant experiment. S and R run π in the presence of the informant
I (who in turn interacts with the judge J in an on-line manner). R informs
J upon accepting any message m′ as having been authenticated by S (the
message m′ need not be the same as the input to S if, say, S is corrupt and
ignores its input).

2. Misinformant experiment. S and R do nothing, and J only interacts
with the misinformant M. (Here, M is allowed to falsely inform J that R
accepted some arbitrary message m′ as having been authenticated by S.)

(See the full version for a precise definition.) As in the UC model, we can take
the informant I to be a “dummy” attacker who follows the instructions of the
judge and truthfully reports everything it sees.

2.2 Deniable Authentication in the GUC Framework

The ideal message authentication functionality Fauth (essentially from [5]) is
given in Figure 1. (In all our ideal functionalities, delivery of messages to parties
is scheduled by the adversary.) Fauth is “deniable” because, although the adver-
sary learns that a message transmission took place, the adversary is not provided
with any “evidence” of this fact that would convince a third party. Since Fauth

is deniable, we expect that a protocol π realizing Fauth (with respect to a suffi-
ciently strong notion of “realizing”) would be deniable as well. Such a claim is
not, however, immediate; in particular, recall that protocols realizing Fauth in
the UC framework are not necessarily deniable.

Thus, we turn instead to a recently-proposed extension to the UC framework
called generalized universal composability (GUC) [7] which enables direct mod-
eling of global setup. Canetti et al. claim [7], informally, that modeling global
setup in this way provides a means of capturing additional security concerns,
including deniability, within a UC-style security framework. We validate their
claim (at least in our context) via the following result:

Proposition 1. A protocol π achieves on-line deniable authentication if and
only if it realizes Fauth in the GUC framework.

152 Y. Dodis et al.

Functionality Fauth

1. Upon receiving input (send, sid, m) from S, do: If sid = (S, R, sid′) for
some R, then give the message (sent, sid, m) to the adversary who then
schedules delivery to R. Else ignore the input.

2. Upon receiving (corruptsend, sid, m′) from the adversary, if S is cor-
rupt and no message (sent, sid, m) was yet output, then give the message
(sent, sid, m′) to the adversary who then schedules delivery to R.

Fig. 1. The message authentication functionality of [5]

In the full version of this paper we define notions of on-line deniability for
identification and key exchange, and show that protocols achieve these definitions
if and only if they realize appropriate functionalities in the GUC framework.

2.3 PKI Setup and Comparison with Prior Models

We model a PKI as a shared functionality Fkrk that enforces the following:
Honest parties register with a central authority who generates the public and
secret keys for them. Corrupt parties register an arbitrary, but consistent, pair of
public/secret keys with the authority. Note that the central registration authority
knows the secret keys of all parties (including the corrupt parties), and therefore
the model is referred to as “Key Registration with Knowledge” [1]. Clearly this
model is more involved than a “bare” PKI. The fact that we work in this model
only strengthens our impossibility results. Moreover, the bare PKI model does
not suffice for our feasibility results (cf. Proposition 2).

An additional requirement we impose is that honest parties protect their secret
keys by using them only in some specified authentication protocol Φ. (Corrupt
parties are allowed to use their keys in an arbitrary manner.) There are several
ways to model this requirement. For concreteness, we parameterize the key-
registration functionality with a description of Φ, and allow honest parties to
run Φ via calls to the key-registration functionality. (See Figure 2.) In a real
execution of the protocol, of course, honest parties will actually hold their secret
key and it is up to them to restrict its use.

Comparison to prior models of a PKI. Our PKI functionality is defined
similarly to that of [1]. However, unlike in [1], we restrict honest parties to only
use their secret keys with the protocol Φ, and a single instance of Fkrk persists
across multiple sessions. In the terminology of [7], Fkrk is a shared functionality
as opposed to a local one. The shared nature of the functionality implies, in
particular, that the environment has direct access to the public keys of all the
parties (as well as the secret keys of corrupted parties). Local setup, in contrast,
is not adequate for capturing deniability. As argued in [7], local setup is also
not satisfactory with regard to composition. Indeed, local modeling of the PKI
seemingly leaves two options: either a fresh instance of the PKI is required for
every execution of the protocol (which is impractical), or one must use the joint
UC (JUC) theorem [12]. Unfortunately, the latter option only guarantees security
under composition with a restricted class of protocols. Specifically, security is

Composability and On-Line Deniability of Authentication 153

Shared Functionality FΦ
krk

Parameterized by a security parameter λ, a protocol (or, more generally, a
list of protocols) Φ, and a (deterministic) key generation function Gen, shared
functionality Fkrk proceeds as follows when running with parties P1, . . . , Pn:

Registration: When receiving a message (register) from an honest party
Pi that has not previously registered, sample r ← {0, 1}λ then compute
(PK i,SK i) ← Genλ(r) and record the tuple (Pi, PK i,SK i).

Corrupt Registration: When receiving a message (register, r) from
a corrupt party Pi that has not previously registered, compute
(PK i,SK i) ← Genλ(r) and record the tuple (Pi, PK i,SK i).

Public Key Retrieval: When receiving a message (retrieve, Pi) from any
party Pj (where i = j is allowed), if there is a previously recorded tuple
of the form (Pi,PK i, SK i), then return (Pi,PK i) to Pj . Otherwise return
(Pi,⊥) to Pj .

Secret Key Retrieval: When receiving a message (retrievesecret, Pi)
from a party Pi that is either corrupt or honestly running the protocol code
for Φ, if there is a previously recorded tuple of the form (Pi, PK i,SK i)
then return (Pi,PK i,SK i) to Pi. In all other cases, return (Pi,⊥).

Fig. 2. The Φ-Key Registration with Knowledge shared functionality

not guaranteed under composition with protocols that may depend on honest
parties’ public keys. (We provide an example in the full version.)

2.4 Flavors of Protocols/Attackers

An adaptive attacker can corrupt parties before, during, and after execution of
a protocol. A static attacker can only corrupt parties before the beginning of
the protocol. A semi-adaptive attacker can corrupt parties before and after (but
not during) a protocol execution. Finally, a forward-secure attacker can only
corrupt the parties after the protocol. We will distinguish between the setting
where (honest) parties are assumed to be able to securely erase information, and
where they cannot. Erasures do not affect the model for static attackers, but are
meaningful for semi-adaptive, forward-secure, and fully adaptive attackers.

3 Impossibility Result

In this section we prove our main result: adaptively secure deniable authentica-
tion is impossible in the PKI model, even if erasures are allowed, and even if
each secret key is used only once. If secure erasure is not assumed, we can even
rule out forward security for deniable authentication.

Before stating the precise impossibility results, it is instructive to consider
some näıve strategies for ruling out adaptively secure on-line deniable authenti-
cation. At first, it appears that since the behavior of the sender S can be simu-
lated in a straight-line manner without its secret key SKS , there is an attacker
who can impersonate the sender to the recipient R (by running the simulator).

154 Y. Dodis et al.

One of the reasons this does not work is that R might use its own secret key
SKR for verification. In particular, a simulated transcript might be easily distin-
guishable from a real transcript to R (since R can employ knowledge of SKR to
distinguish the transcript) but be indistinguishable from a real transcript to the
adversary. One “fix” to this problem is for the adversary to (adaptively) corrupt
R and then check the simulated transcript from R’s viewpoint. Unfortunately,
if R is corrupted too early (say, at the very beginning), it could be the case
that knowledge of R’s secret key is subsequently employed by the simulator in
order to simulate the proper transcript (without talking to S or obtaining SKS).
Notice that such a simulation does not contradict soundness since, in the real
world, R would know that he is not simulating the conversation with S. On the
other hand, if R is corrupted too late (say, at the very end), the initial flows
from the “then-honest” party R were also chosen by the simulator, so there is
no guarantee that they correspond to the behavior of a real R interacting with
the sender’s simulator.

In fact, a proof of the following theorem is more complicated and requires a
sequence of “hybrid arguments” where corruption of one of the parties is delayed
by one round each time. See the following section.

Theorem 1. There does not exist a protocol Π realizing the deniable authen-
tication functionality Fauthin the FΠ

krk-hybrid model with respect to adaptive
corruptions. Moreover, impossibility holds even under the following additional
assumptions/constraints:
• Secure data erasures are allowed.
• Each honest party P uses its secret key skP for only a single execution of
the protocol.
• The attacker A either impersonates a sender to a single honest receiver, or
impersonates a receiver to a single honest sender. (In particular, A does not
run a concurrent attack or a “man-in-the-middle attack” against an honest
sender and receiver.)

We also show how to extend the above impossibility result to rule out forward
security if erasures are not allowed.

Theorem 2. If data erasures are not allowed, it is impossible to realize Fauth in
the Fkrk-hybrid model with respect to forward security. Moreover, impossibility
holds even under the constraints of Theorem 1.

The results above can also be extended to rule out the possibility of realizing
deniable key exchange or identification.

Finally, we note that the “bare PKI” model (in which parties are allowed to
post public keys without necessarily knowing a corresponding secret key) is not
sufficient to realize deniable authentication at all, even with respect to security.
This seems to imply that key registration with knowledge is an unavoidable
requirement for deniability.

Proposition 2. It is impossible to realize the identification, authentication, or
key exchange functionalities in the bare public key model, even with respect to
static corruption.

Composability and On-Line Deniability of Authentication 155

3.1 Proof Sketch for Impossibility (Theorem 1)

At a high level, the proof is an inductive argument showing that each round of
the protocol either incriminates one of the parties, or can be simulated entirely
(from either side) without knowledge of any secret keys. Of course, if either party
can simulate the entire protocol without knowledge of any secret keys, it cannot
be sound (i.e., an attacker without S’s key can authenticate an arbitrary message
to R). Thus, we show that either the protocol is not deniable, or it is not sound,
contradicting our security requirements. The difficult part of the proof is the in-
ductive step, which requires a delicate series of hybrid arguments. In particular,
one must be careful about the order of corruptions in the various hybrids.

More formally, let Π be any protocol for deniable identification using r = r(n)
rounds, and assume toward a contradiction that Π is adaptively secure. Without
loss of generality, we assume that the receiver goes first, and that the final
message of the protocol is sent by the sender. In particular, we let α1, α2, . . . , αr

denote the messages sent by the receiver R and β1, . . . , βr denote the response
messages sent by the sender S. For convenience, we let αr+1 denote the binary
decision bit of the receiver indicating whether or not R accepted. Throughout the
protocol, we denote the current state of the sender and the receiver by ωS and
ωR, respectively. This evolving state will include all the information currently
stored by the given party, except for its secret key. Because we allow erasures, the
current state does not include any information previously erased by this party.

We already stated that we only consider two kinds of attackers: sender im-
personator AS and receiver impersonator AR. The sender impersonator AS will
talk with an honest receiver R, while the receiver impersonator AR will talk to
an honest sender S. By assumption, there exists efficient simulators SimR and
SimS for AS and AR, respectively: the job of SimR is to simulate the behavior
of R when talking to AS , while the job of SimS is to simulate the behavior of
S when talking to AR. Moreover, the GUC security of Π implies that SimS

and SimR have to work given only oracle access to R and S, respectively.4 In
particular, this means that in each round 1 ≤ i ≤ r,

• As long as neither S nor R is corrupted, SimS (resp., SimR) will receive
some arbitrary message αi (resp., βi) and must generate a “good-looking”
response βi (resp., αi+1). Moreover, it must do so without knowledge of the
secret keys SKS and SKR, or any future messages αi+1, . . . (resp., βi+1, . . .).
• If S (resp. R) is corrupted, SimS (resp., SimR) will be given the secret SKS

(resp., SKR), and must then generate a “consistent-looking” internal state
ωS (resp., ωR) for the corresponding party at round i. The pair (SKS , ωS)
(resp., (SKR, ωR)) will then be given to the attacker and the environment.

From this description, we make our first key observation: as long as S and R are
not corrupted, it is within the power of our attackers AS and AR to internally

4 This is because, without loss of generality, AS and AR are simply the dummy parties
forwarding the messages of the environment, and the simulator has to work for any
environment. In fact, this property follows whenever there is an external “judge” with
whom the adversary may interact when gathering evidence of protocol interactions.

156 Y. Dodis et al.

run the simulators SimS and SimR, respectively. In particular, we can make
meaningful experiments where AS runs SimS against an honest receiver R, or
AR runs SimR against an honest sender S. Of course, a priori it is unclear what
happens during these experiments, since SimS was only designed to work against
attackersAR who do not know SK R (as opposed to R itself, who certainly knows
it), and similarly for SimR. The bulk of the proof consists of showing that such
“unintended” usages of SimS and SimR nevertheless result in the “expected”
behavior. We give a sequence of hybrid experiments which show that, without
knowing the secret key of the sender, the simulator SimS can still successfully
imitate the sender to an honest receiver, contradicting the soundness of identi-
fication. The details are given in the full version.

4 Circumventing the Impossibility Result

In this section, we discuss several positive results that circumvent the impossi-
bility result of the previous section. We exhibit:
• A 1-message deniable authentication protocol tolerating adaptive corrup-

tions, assuming a symmetric key infrastructure (i.e., a symmetric key shared
between the sender and receiver);
• A 1-message deniable authentication protocol tolerating static corruptions

in the PKI model;
• A 4-message protocol achieving a relaxed notion of deniable authentication,

dubbed incriminating abort, and tolerating semi-adaptive corruptions in the
PKI model. The protocol we give also satisfies the non-relaxed definition
with respect to a static adversary.

Key exchange and deniable authentication can be reduced to each other, and so
the results above also imply the feasibility of corresponding notions of deniable
key exchange.

The first two results above are quite simple, and mainly serve to illustrate
the gap between the simpler settings (symmetric keys and static corruptions)
and the more realistic setting of public keys and adaptive corruptions. The third
feasibility result is significantly more involved. We feel it represents an interesting
and reasonable compromise between realistic modeling and feasibility.

Deniability with symmetric keys. Suppose for a moment that players have
access to a symmetric key infrastructure; i.e., every pair of participants shares a
uniformly random long-term key that is unknown to other participants. Then S
can authenticate a message m to R by appending a MAC (message authentica-
tion code) tag computed on the input (sid, S, R, m), where sid is a fresh random
nonce. This is deniable roughly because the simulator for the protocol can make
up a key for every pair of communicating players, and generate tags using the
made-up key. In case of an adaptive corruption, the simulator can include the
made-up key in the corrupted player’s simulated memory contents.

This can be formalized in terms of the ideal functionalities Fauth and Fke. The
SKI corresponds to granting every player of players one-time use of Fke, with key

Composability and On-Line Deniability of Authentication 157

re-use modeled via the UC with joint state theorem [12]. The use of a MAC shows
that Fauth can be reduced to a one-time Fke. In fact, the converse is also true:
one can realize Fke by encrypting a key using a protocol that is secure against
adaptive but passive adversaries (known as non-committing encryption [8]). The
flows of this protocol can be authenticated using Fauth to make it resistant to
active attacks.

Lemma 1 (Fauth ⇐⇒ Fke). If one way functions exist, then there exists a
protocol that UC-realizes the natural multi-session extension of Fauth in the Fke

hybrid model, requiring only a single call to Fke. Conversely, if non-committing
encryption exists, then there exists a protocol that UC-realizes Fke in the Fauth-
hybrid model. These reduction hold even against adaptive adversaries.

Static security with a PKI. We now turn to the public-key model. For cer-
tain types of public keys, players can use a PKI to generate a symmetric key k
non-interactively. The idea of the protocol is then to use k to compute tags on
messages as above. The authenticity of the message is derived from the authenti-
cation inherent in the PKI. The non-interactive key generation is not adaptively
secure, and so the resulting protocols are only secure against static adversaries.

For example, suppose we operate in a cyclic group G generated by a generator
g where the Decisional Diffie-Hellman (DDH) assumption holds. If each party
Pi has a secret key xi ∈ Zq and a public key yi = gxi , then Pi and Pj non-
interactively share a key k = gxixj = y

xj

i = yxi

j . Under the DDH asumption, k
looks like a random group element to an attacker who only knows the public keys
yi and yj . Either one of Pi or Pj can then use k as a MAC key to authenticate
messages to the other.

This type of key exchange is abstracted as non-interactive authenticated key
exchange. We model the PKI via the registered keys with knowledge functionality
FΦ

krk (Figure 2) described in Section 2. (Key knowledge is necessary even for
static security—see Proposition 2).

Theorem 3. Assuming the existence of non-interactive authenticated key ex-
change, there exists an efficient protocol Φ such that Fauth can be UC-realized
in the FΦ

krk-hybrid model with respect to static adversaries.

In contrast, the impossibility result of Section 3 rules out adaptively secure GUC
realizations. To the best of our knowledge, this is the first example of a task that
cannot be realized with respect to adaptive adversaries, but can be achieved
with respect to static adversaries.

4.1 Deniability with Incriminating Abort

Given the impossibility results of Section 3 and the possibility of PKI-based de-
niable authentication for static adversaries, it is natural to ask just how strong
a notion of deniability can be achieved in the public key setting. We show here
that one can guarantee deniability as long as (a) the protocol does not abort,
and (b) there is one round during which neither the sender S nor the receiver

158 Y. Dodis et al.

R is adaptively corrupted. If the protocol aborts, the adversary can learn un-
simulatable information depending on the secret keys of S and R—potentially
enough to prove that one of them was trying to talk to the other. We call this
notion deniability with incriminating abort.

We refer to an adversary that makes no corruptions during some phase of
the protocol run as semi-adaptive. In particular, such an adversary will not
corrupt any players during the protocol’s single vulnerable round. However, the
restriction to semi-adaptive security is also necessary to make the notion of
abort meaningful: a fully adaptive adversary could always ensure that a protocol
does not abort by corrupting a party immediately before it complains. Semi-
adaptive security implies forward security; that is, a conversation that completes
successfully is later deniable even if parties are forced to reveal the contents of
their memories.

We phrase our results in terms of key exchange. This implies the correspond-
ing feasibility results for authentication. However, forward security is especially
meaningful for key exchange, because the protocol need only be run once, at
setup time, for every pair of participants. If the key exchange protocol succeeds
(with no adaptive corruption occurring during the protocol execution), then we
can still use adaptively secure protocols realized in the Fke-hybrid model, and
they will retain their adaptive security. In other words, the new protocol almost
represents a deniable realization of Fke: if we could somehow guarantee that the
protocol never aborts, then it would GUC-realize Fke.

Modeling incriminating abort. We model the PKI via a shared, “registered
keys with knowledge” functionality FΦ

krk (Figure 2), as in the protocols for static
adversaries. The key exchange with incriminating abort functionality Fkeia is
similar to Fke except that the ideal-model adversary may explicitly request the
protocol to abort, and in such a case the functionality will provide evidence that
one of S and R was trying to talk to the other. It would be intuitively appealing
to leak a single bit to the environment stating that a conversation occurred. We
do not know of a way to ensure such limited leakage, and besides this gives up
too much information: as we will see, our protocol only compromises deniability
if the protocol aborts and one of S or R is corrupted at a later time. Instead,
we parametrize Fkeia with an “incrimination procedure” IncProc. In the case of
an abort, F IncProc

keia allows the adversary to interact with IncProc(SKS , ...), which
essentially represents the potentially non-simulatable flows of the protocol. If
the protocol doesn’t abort, then a fresh symmetric key is distributed to S and
R and nothing is leaked to the adversary. The functionality F IncProc

keia is described
in Figure 3.

The incrimination procedure may at first be hard to interpret, and so we high-
light some properties of protocols that realize F IncProc

keia . First, if no abort occurs
then the ideal protocol is forward secure, since the symmetric key is random and
unconnected to other quantities in the protocol. Hence, if a protocol π GUC-
realizes F IncProc

keia for any procedure IncProc then π is forward-secure. Second, if
an abort does occur and the adversary learns information, this information de-
pends only on the sender’s secret key and public information. Because secret

Composability and On-Line Deniability of Authentication 159

Functionality F IncProc
keia

Fkeia, which is parameterized by an “incrimination procedure” IncProc, and
a security parameter λ proceeds as follows, when running in the Fkrk-hybrid
model with parties S and R (who have already registered secret keys SK S and
SK R, respectively) and adversary S :

1. Upon receiving a message of the form (S, keyexchange, sid, S, R,SK S)
from party S, if there are no previous records, then record the value
(keyexchange, sid, S, R,SK S), mark S “active”, and a send public delayed
output (keyexchange, sid, S, R) to R. (Otherwise, ignore the message.)

2. Upon receiving a message of the form (R, keyexchange, sid, S, R,SK R)
from party R, if R is not yet “active”, mark R as “active” and send
a public delayed output (active, sid, S, R) to S. (Otherwise, ignore the
message.)

3. Upon receiving a message of the form (setkey, sid, S, R, k′) from S , if R
is corrupt and S is “active”, then output (setkey, sid, S, R, k′) to S and
R, and halt. If R is “active” but not corrupt, then sample a fresh key
k ← {0, 1}λ and send the message (setkey, sid, S, R, k) to R. Furthermore,
if S is “active”, then send the delayed message (setkey, sid, S, R, k) to S as
well. In all cases, this completes the protocol, and the functionality halts.

4. Upon receiving a message of the form (abort, sid, S, R) from S , if S is
“active”, send (abort, sid, S, R) as a delayed message to S and mark S
“aborted”. If R is “active”, send (abort, sid, S, R) as a delayed message
to R (i.e., S need not notify either party that the protocol was aborted,
and may still cause R to output a key using a setkey message, but cannot
cause S to output a key once an abort has occurred).

5. Upon receiving a message of the form (incriminate, sid, S) from S , if this
is the first time receiving such a message and S is currently “aborted” and
honest, then run the procedure IncProc(sid, S, R,PK S,PK R, SKS).

Fig. 3. The ideal functionality for Key Exchange with Incriminating Abort, parame-
terized by an incrimination procedure IncProc which runs only if the key exchange is
aborted by the adversary

keys are useless in the ideal model, this has no impact on the security of other
protocols. In particular, the incrimination information cannot be used to fake
authenticated messages in other conversations, or to convince the environment
that S talked to anyone other than R. This last observation implies that not all
incrimination oracles can be realized by real protocols: for example, if IncProc
gives away the sender’s secret key, then a real adversary would subsequently be
able to fake arbitrary messages from the sender to other parties, contradicting
the indistinguishability from the ideal model. We prove below that there exists
a procedure IncProc for which F IncProc

keia can, in fact, be realized.

Construction. At the core of our constructions for realizing Fkeia is a chosen-
ciphertext (CCA) secure variant of Dual Receiver Encryption (DRE) [15]. DRE
allows anyone to encrypt a message to two parties with a single ciphertext,
with the guarantee that attempts to decrypt a ciphertext by either of the two

160 Y. Dodis et al.

S R
keyexchange0,sid,S,R ��

ψ1=DREnc(PKS ,PKR,〈sid,ηR〉)�� ηR ← {0, 1}λ

(pk, sk) ← NCGen()
ηS ← {0, 1}λ

ψ2=DREnc(PKS,PKR,〈sid,ηR,ηS ,pk〉) ��

k ← NCDec(sk, γ)
ψ3=DREnc(PKS,PKR,〈sid,ηS ,γ〉)�� k ← {0, 1}λ

γ ← NCEnc(pk, k)

Fig. 4. A graphical illustration of Protocol Φdre for realizing Fkeia. S and R check
consistency of each flow immediately upon receiving it; if the flow is not consistent,
the protocol is aborted. Notation: (Gen,DREnc,DRDec) is a Dual Receiver Encryption
scheme and (NCGen,NCEnc,NCDec,NCSim,NCEqv) is a Non-Committing Encryption
scheme (see full version).

recipients will produce the same result. In our protocol, this means that certain
actions can be simulated using either S or R’s secret key. We formally define
CCA-secure DRE in the full version, and describe a DRE scheme that is similar
to the plaintext-aware encryption of [21]. Our protocol also uses a 2-round non-
committing encryption (NCE) scheme [8].

Our 4-message protocol for realizing F IncProc
keia is summarized in Figure 4. Intu-

itively, the incrimination procedure IncProc will expect the adversary to supply a
ciphertext that matches the form of the second flow (ψ1) in the protocol below,
and will then use S’s secret key to decrypt ψ1 and compute a corresponding
third flow (ψ2). The incrimination procedure hands ψ2 to the adversary, along
with the random coins used by a non-committing encryption scheme.

Notably, although we only realize F IncProc
keia against a semi-adaptive adversary,

the same protocol is also a statically secure realization of Fke. Therefore, we
have achieved a strictly stronger notion of security than that achieved by the
one-message protocol using NI-AKE and MACs, or HMQV. Honest parties are
always guaranteed complete deniability when the protocol succeeds, and even if
the protocol aborts, deniability is maintained until some future corruption of a
party occurs. It is an open question whether this notion of deniability can be
further improved upon.

Theorem 4. Assuming the existence of dual-receiver and non-committing en-
cryption, the protocol Φdre in Figure 4

1. realizes F IncProcdre

keia in the FΦdre

krk -hybrid model with semi-adaptive security, for
a suitable procedure IncProcdre (defined in the full version); and

2. realizes Fke in the FΦdre

krk -hybrid model with static security.

Moreover, the output of IncProcdre can be simulated using the secret key of R
instead of S.

As mentioned above, realizing F IncProc
keia is meaningful for any procedure IncProc.

However, the particular incrimination procedure of IncProc has additional

Composability and On-Line Deniability of Authentication 161

properties. First, it can be faked without knowing either secret key, and the
fake distribution is indistinguishable from the real one to a distinguisher who
knows neither key. Second, it can be simulated exactly using either of the secret
keys. These properties together mean that Φdre is statically secure (as stated in
the theorem) and that even in the case of an abort with a subsequent corruption,
it is only possible to incriminate one of the pair {S, R}, and not S specifically.

Acknowledgments. We would like to thank Ran Canetti for many extremely
illuminating discussions about composable authentication. We would also like to
thank Yehuda Lindell, Rafael Pass and Amit Sahai for useful comments.

References

1. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with
relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE Computer Society, Los
Alamitos (2004)

2. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

3. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not
to use PGP. In: WPES, pp. 77–84. ACM, New York (2004)

4. Boyd, C., Mao, W., Paterson, K.G.: Deniable authenticated key establishment for
internet protocols. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.)
Security Protocols 2003. LNCS, vol. 3364, pp. 255–271. Springer, Heidelberg (2005)

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)

6. Canetti, R.: Universally composable signatures, certification, and authentication.
In: Computer Security Foundations Workshop, pp. 219–235. IEEE Computer So-
ciety Press, Los Alamitos (2004)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007)

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639–648. ACM, New York (1996)

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

10. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM J. Comput-
ing 32(1), 1–47 (2002)

11. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology 19(2),
135–167 (2006)

12. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

13. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Secure off-the-record messaging. In:
WPES, pp. 81–89. ACM, New York (2005)

14. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R., De Capitani di Vimercati, S. (eds.) ACM Conf.
Computer and Communications Security, pp. 400–409. ACM, New York (2006)

162 Y. Dodis et al.

15. Diament, T., Lee, H.K., Keromytis, A.D., Yung, M.: The dual receiver cryptosys-
tem and its applications. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.)
ACM Conf. Computer and Communications Security, pp. 330–343. ACM, New
York (2004)

16. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput-
ing 30(2), 391–437 (2000); Preliminary version in STOC 1991

17. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Computing 36(6),
1513–1543 (2007); Preliminary version in FOCS 2000

18. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–
898 (2004); Preliminary version in STOC 1998

19. Dwork, C., Sahai, A.: Concurrent zero-knowledge: Reducing the need for timing
constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–
457. Springer, Heidelberg (1998); Full version available from the second author’s
webpage

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Computing 18(1), 186–208 (1989)

21. Herzog, J., Liskov, M., Micali, S.: Plaintext awareness via key registration. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg
(2003)

22. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

23. Jiang, S.: Deniable authentication on the internet. Cryptology ePrint Archive, Re-
port 2007/082 (2007), http://eprint.iacr.org/

24. Katz, J.: Efficient and non-malleable proofs of plaintext knowledge and applica-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228.
Springer, Heidelberg (2003)

25. Lim, M.-H., Lee, S., Park, Y., Moon, S.: Secure deniable authenticated key es-
tablishment for internet protocols. Cryptology ePrint Archive, Report 2007/163
(2007), http://eprint.iacr.org/

26. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

27. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003)

28. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In:
Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conf. Computer and Communica-
tions Security, pp. 112–121. ACM, New York (2005)

29. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999)

30. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

31. Susilo, W., Mu, Y.: Non-interactive deniable ring authentication. In: Lim, J.-I.,
Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 386–401. Springer, Heidelberg
(2004)

32. Yao, A.C.-C., Yao, F., Zhao, Y., Zhu, B.: Deniable internet key-exchange. Cryp-
tology ePrint Archive, Report 2007/191 (2007), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Authenticated Adversarial Routing�

Yair Amir1, Paul Bunn2, and Rafail Ostrovsky3

1 Johns Hopkins University Department of Computer Science,
Baltimore, MD 21218, USA

yairamir@cs.jhu.edu
2 UCLA Department of Mathematics,

Los Angeles, CA 90095, USA
paulbunn@math.ucla.edu

3 UCLA Department of Computer Science and Department of Mathematics
Los Angeles, CA 90095, USA

rafail@cs.ucla.edu

Abstract. The aim of this paper is to demonstrate the feasibility of
authenticated throughput-efficient routing in an unreliable and dynam-
ically changing synchronous network in which the majority of malicious
insiders try to destroy and alter messages or disrupt communication in
any way. More specifically, in this paper we seek to answer the following
question: Given a network in which the majority of nodes are controlled
by a node-controlling adversary and whose topology is changing every
round, is it possible to develop a protocol with polynomially-bounded
memory per processor that guarantees throughput-efficient and correct
end-to-end communication? We answer the question affirmatively for ex-
tremely general corruption patterns: we only request that the topology
of the network and the corruption pattern of the adversary leaves at least
one path each round connecting the sender and receiver through honest
nodes (though this path may change at every round). Out construction
works in the public-key setting and enjoys bounded memory per proces-
sor (that is polynomial in the network size and does not depend on the
amount of traffic). Our protocol achieves optimal transfer rate with neg-
ligible decoding error. We stress that our protocol assumes no knowledge
of which nodes are corrupted nor which path is reliable at any round,
and is also fully distributed with nodes making decisions locally, so that
they need not know the topology of the network at any time.

The optimality that we prove for our protocol is very strong. Given
any routing protocol, we evaluate its efficiency (rate of message deliv-
ery) in the “worst case,” that is with respect to the worst possible graph
and against the worst possible (polynomially bounded) adversarial strat-
egy (subject to the above mentioned connectivity constraints). Using
this metric, we show that there does not exist any protocol that can be
asymptotically superior (in terms of throughput) to ours in this setting.

We remark that the aim of our paper is to demonstrate via explicit
example the feasibility of throughput-efficient authenticated adversarial

� Full version of the paper is available on-line [5].

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 163–182, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

164 Y. Amir, P. Bunn, and R. Ostrovsky

routing. However, we stress that out protocol is not intended to provide
a practical solution, as due to its complexity, no attempt thus far has
been made to reduce constants and memory requirements.

Our result is related to recent work of Barak, Goldberg and Xiao in
2008 [9] who studied fault localization in networks assuming a private-
key trusted setup setting. Our work, in contrast, assumes a public-key
PKI setup and aims at not only fault localization, but also transmis-
sion optimality. Among other things, our work answers one of the open
questions posed in the Barak et. al. paper regarding fault localization on
multiple paths. The use of a public-key setting to achieve strong error-
correction results in networks was inspired by the work of Micali, Peikert,
Sudan and Wilson [14] who showed that classical error-correction against
a polynomially-bounded adversary can be achieved with surprisingly high
precision. Our work is also related to an interactive coding theorem of
Rajagopalan and Schulman [15] who showed that in noisy-edge static-
topology networks a constant overhead in communication can also be
achieved (provided none of the processors are malicious), thus establish-
ing an optimal-rate routing theorem for static-topology networks.

Finally, our work is closely related and builds upon to the problem
of End-To-End Communication in distributed networks, studied by Afek
and Gafni [1], Awebuch, Mansour, and Shavit [8], and Afek, Awerbuch,
Gafni, Mansour, Rosen, and Shavit [2], though none of these papers con-
sider or ensure correctness in the setting of a node-controlling adversary
that may corrupt the majority of the network.

Keywords: Network Routing; End-to-End Communication; Fault Lo-
calization; Error-Correction; Multi-Party Computation; Communication
Complexity.

1 Introduction

Our goal is to design a routing protocol for an unreliable and dynamically chang-
ing synchronous network that is resilient against malicious insiders who may try
to destroy and alter messages or disrupt communication in any way. We model
the network as a communication graph G = (V, E) where each vertex (node)
is a processor and each edge is a communication link. We do not assume the
topology of this graph is fixed or known by the processors. Rather, we assume
a complete graph on n vertices, where some of the edges are “up” and some are
“down”, and the status of each edge can change dynamically at any time.

We concentrate on the most basic task, namely how two processors in the net-
work can exchange information. Thus, we assume that there are two designated
vertices, called the sender S and the receiver R, who wish to communicate with
each other. The sender has an infinite read-once input tape of packets and the re-
ceiver has an infinite write-once output tape which is initially empty. We assume
that packets are of some bounded size, and that any edge in the system that is
“up” during some round can transmit only one packet (or control variables, also
of bounded size) per round.

Authenticated Adversarial Routing 165

We will evaluate our protocol using the following three considerations:

1. Correctness. A protocol is correct if the sequence of packets output by the
receiver is a prefix of packets appearing on the sender’s input tape, without
duplication or omission.

2. Throughput. This measures the number of packets on the output tape as
a function of the number of rounds that have passed.

3. Processor Memory. This measures the memory required of each node by
the protocol, independent of the number of packets to be transferred.

All three considerations will be measured in the worst-case scenario as standards
that are guaranteed to exist regardless of adversarial interference. One can also
evaluate a protocol based on its dependence on global information to make de-
cisions. The protocol that we present in this paper will not assume the internal
nodes have a global view of the network. Such protocols are termed “local con-
trol,” in that each node can make all routing decisions based only on the local
conditions of its adjacent edges and neighbors.

Our protocol is designed to be resilient against a malicious, polynomially-
bounded adversary who may attempt to impact the correctness, throughput, and
memory of our protocol by disrupting links between the nodes or by taking
direct control over the nodes and forcing them to deviate from our protocol in
any manner the adversary wishes. In order to relate our work to previous results
and to clarify the two main forms of adversarial interference, we describe two
separate (yet coordinated with each other) adversaries:1

Edge-Scheduling Adversary. This adversary controls the links between nodes
every round. More precisely, for each round, this adversary decides which
edges in the network are up and which are down. We will say that the edge-
scheduling adversary is conforming if for every round there is at least one
path from the sender to the receiver (although the path may change each
round).2 The adversary can make any arbitrary poly-time computation to
maximize interference in routing, so long as it remains conforming.
Node-Controlling Adversary. This adversary controls the nodes of the network
that it has corrupted. More precisely, each round this adversary decides
which nodes to corrupt. Once corrupted, a node is forever under complete
adversarial control and can behave in an arbitrary malicious manner. We say
that the node-controlling adversary is conforming if every round there is a
connection between the sender and receiver consisting of edges that are “up”
for the round (as specified by the edge-scheduling adversary) and that passes

1 The separation into two separate adversaries is artificial: our protocol is secure
whether edge-scheduling and corruption of nodes are performed by two separate
adversaries that have different capabilities yet can coordinate their actions with
each other, or this can be viewed as a single coordinated adversary.

2 A more general definition of an edge-scheduling adversary would be to allow com-
pletely arbitrary edge failures, with the exception that in the limit there is no per-
manent cut between the sender and receiver. However, this definition (while more
general) greatly complicates the exposition, including the definition of throughput
rate, and we do not treat it here.

166 Y. Amir, P. Bunn, and R. Ostrovsky

through uncorrupted nodes. We emphasize that this path can change each
round, and there is no other restriction on which nodes the node-controlling
adversary may corrupt (allowing even a vast majority of corrupt nodes).

There is another reason to view these adversaries as distinct: we deal with the
challenges they pose to correctness, throughput, and memory in different ways.
Namely, aside from the conforming condition, the edge-scheduling adversary
cannot be controlled or eliminated. Edges themselves are not inherently “good”
or “bad,” so identifying an edge that has failed does not allow us to forever
refuse the protocol to utilize this edge, as it may come back up at any time
(and indeed it could form a crucial link on the path connecting the sender and
receiver that the conforming assumption guarantees). In sum, we cannot hope
to control or alter the behavior of the edge-scheduling adversary, but must come
up with a protocol that works well regardless of the behavior of the ever-present
(conforming) edge-scheduling adversary.

By contrast, our protocol will limit the amount of influence the node-control-
ling adversary has on correctness, throughput, and memory. Specifically, we will
show that if a node deviates from the protocol in a sufficiently destructive manner
(in a well-defined sense), then our protocol will be able to identify it as corrupted
in a timely fashion. Once a corrupt node has been identified, it will be eliminated
from the network. Namely, our protocol will call for honest nodes to refuse all
communication with nodes that have been eliminated.3 Thus, there is an inherent
difference in how the two adversaries are handled: We can restrict the influence of
the node-controlling adversary by eliminating the nodes it has corrupted, while
the edge-scheduling adversary must be dealt with in a more ever-lasting manner.

1.1 Previous Work

To motivate the importance of the problem we consider in this paper, and to em-
phasize the significance of our result, it will be useful to highlight recent works in
related areas. To date, routing protocols that consider adversarial networks have
been of two main flavors: End-to-End Communication protocols that consider
dynamic topologies (a notion captured by our “edge-scheduling adversary”), and
Fault Detection and Localization protocols, which handle devious behavior of
nodes (as modeled by our “node-controlling adversary”).

End-to-End Communication: One of the most relevant research directions
to our paper is the notion of End-to-End Communication in distributed net-
works, considered by Afek and Gafni [1], Awerbuch, Mansour and Shavit [8],
Afek, Awebuch, Gafni, Mansour, Rosen, and Shavit [2], and Kushilevitz, Ostro-
vsky and Rosen [13]. Indeed, our starting point is the Slide protocol (also known
in practical works as “gravitational flow” routing) developed in these works. It
was designed to perform end-to-end communication with bounded memory in a
model where (using our terminology) an edge-scheduling adversary controls the
edges (subject to the constraint there is no permanent cut between the sender
3 The conforming assumption guarantees that the sender and receiver are incorrupt-

ible, and in our protocol they will identify and eliminate corrupt nodes.

Authenticated Adversarial Routing 167

and receiver). The Slide protocol has proven to be incredibly useful in a variety
of settings, including multi-commodity flow (Awerbuch and Leigthon [7]) and in
developing routing protocols that compete well (in terms of packet loss) against
an online bursty adversary ([4]). However, prior to our work there was no version
of the Slide protocol that could handle malicious behavior of the nodes.

Fault Detection and Localization Protocols: At the other end, there
have been a number of works that explore the possibility of a node-controlling
adversary that can corrupt nodes. In particular, there is a recent line of work that
considers a network consisting of a single path from the sender to the receiver,
culminating in the recent work of Barak, Goldberg and Xiao [9] (for further
background on fault localization see references therein). In this model, the ad-
versary can corrupt any node on the path (except the sender and receiver) in a
dynamic and malicious manner. Since corrupting any node on the path will sever
the honest connection between S and R, the goal of a protocol in this model is
not to guarantee that all messages sent to R are received. Instead, the goal is to
detect faults when they occur and to localize the fault to a single edge.

There have been many results that provide Fault Detection (FD) and Fault
Localization (FL) in this model. In Barak et. al. [9], they formalize the definitions
in this model and the notion of a secure FD/FL protocol, as well as providing
lower bounds in terms of communication complexity to guarantee accurate fault
detection/location in the presence of a node-controlling adversary. While the
Barak et. al. paper has a similar flavor to our paper, we emphasize that their
protocol does not seek to guarantee successful or efficient routing between the
sender and receiver. Instead, their proof of security guarantees that if a packet
is deleted, malicious nodes cannot collude to convince S that no fault occurred,
nor can they persuade S into believing that the fault occurred on an honest
edge. Localizing the fault in their paper relies on cryptographic tools, and in
particular the assumption that one-way functions exist. Although utilizing these
tools (such as MACs or Signature Schemes) increases communication cost, it is
shown by Goldberg, Xiao, Barak, and Redford [12] that the existence of a pro-
tocol that is able to securely detect faults (in the presence of a node-controlling
adversary) implies the existence of one-way functions, and it is shown in Barak
et. al. [9] that any protocol that is able to securely localize faults necessarily
requires the intermediate nodes to have a trusted setup. The proofs of these
results do not rely on the fact that there is a single path between S and R, and
we can therefore extend them to the more general network encountered in our
model to justify our use of cryptographic tools and a trusted setup assumption
(i.e. PKI) to identify malicious behavior.

Another paper that addresses routing in the Byzantine setting is the work
of Awerbuch, Holmes, Nina-Rotary and Rubens [6], though this paper does not
have a fully formal treatment of security, and indeed a counter-example that
challenges its security is discussed in the appendix of [9].

Error-correction in the active setting: Due to space considerations, we
will not be able to give a comprehensive account of all the work in this area.

168 Y. Amir, P. Bunn, and R. Ostrovsky

Instead we highlight some of the most relevant works and point out how they
differ from our setting and results. For a lengthy treatment of error-correcting
codes against polynomially bounded adversaries, we refer to the work of Micali
at. al [14] and references therein. It is important to note that this work deals with
a graph with a single “noisy” edge, as modelled by an adversary who can par-
tially control and modify information that crosses the edge. In particular, it does
not address throughput efficiency or memory considerations in a full communi-
cation network, nor does it account for malicious behavior at the vertices. Also
of relevance is the work on Rajagopalan and Schulman on error-correcting net-
work coding [15], where they show how to correct noisy edges during distributed
computation. Their work does not consider actively malicious nodes, and thus
is different from our setting. It should also be noted that their work utilizes
Schulman’s tree-codes [18] that allow length-flexible online error-correction. The
important difference between our work and that of Schulman is that in our net-
work setting, the amount of malicious activity of corrupt nodes is not restricted.

1.2 Our Results

To date, there has not been a protocol that has considered simultaneously a net-
work susceptible to faults occurring due to edge-failures and faults occurring due
to malicious activity of corrupt nodes. The end-to-end communication works are
not secure when the nodes are susceptible to corruption, and the fault detection
and localization works focus on a single path for some duration of time, and do
not consider a fully distributed routing protocol that utilizes the entire network
and attempts to maximize throughput efficiency while guaranteeing correctness.
Indeed, our work answers one of the open questions posed in the Barak et. al.
paper regarding fault localization on multiple paths. In this paper we bridge
the gap between these two research areas and obtain the first routing protocol
simultaneously secure against both an edge-scheduling adversary and a node-
controlling adversary, even if these two adversaries attack the network using
an arbitrary coordinated poly-time strategy. Furthermore, our protocol achieves
comparable efficiency standards in terms of throughput and processor memory
as state-of-the-art protocols that are not secure against a node-controlling ad-
versary, and it does so using local-control. An informal statement of our result
can be found below. We emphasize that the linear transmission rate that we
achieve (assuming at least n2 messages are sent) is asymptotically optimal, as
any protocol operating in a network with a single path connecting sender and
receiver can do no better than one packet per round.

A ROUTING THEOREM FOR ADVERSARIAL NETWORKS (In-
formal): If one-way functions exist, then for any n-node graph and k sufficiently
large, there exists a trusted-setup linear throughput transmission protocol that can
send n2 messages in O(n2) rounds with O(n4(k+log n)) memory per processor that
is resilient against any poly-time conforming Edge-Scheduling Adversary and any
conforming poly-time Node-Controlling Adversary, with negligible (in k) probability
of failure or decoding error.

Authenticated Adversarial Routing 169

Secure Against: Processor Throughput Rate
Edge- Node- Memory x rounds →
Sched? Contr? f(x) packets

Slide Protocol of [2] Y ES NO O(n2 log n) f(x) = O(x − n2)
Slide Protocol of [13] Y ES NO O(n log n) f(x) = O(x/n − n2)

(folklore)
(Flooding + Signatures) Y ES Y ES O(1) f(x) = O(x/n − n2)

(folklore)
(Signatures + Sequence No.’s) Y ES Y ES unbounded f(x) = O(x − n2)

Our Protocol Y ES Y ES O(n4(k+log n)) f(x) = O(x − n2)

Fig. 1. Comparison of Our Protocol to Related Existing Protocols and Folklore

2 Challenges and Naïve Solutions

Before proceeding, it will be useful to consider a couple of naïve solutions that
achieve the goal of correctness (but perform poorly in terms of throughput), and
help to illustrate some of the technical challenges that our theorem resolves.
Consider the approach of having the sender continuously flood a single signed
packet into the network for n rounds. Since the conforming assumption guaran-
tees that the network provides a path between the sender and receiver through
honest nodes at every round, this packet will reach the receiver within n rounds,
regardless of adversarial interference. After n rounds, the sender can begin flood-
ing the network with the next packet, and so forth. Notice that this solution will
require each processor to store and continuously broadcast a single packet at any
time, and hence this solution achieves excellent efficiency in terms of processor
memory. However, notice that the throughput rate is sub-linear, namely after x
rounds, only O(x/n) packets have been outputted by the receiver.

One idea to try to improve the throughput rate might be to have the sender
streamline the process, sending packets with ever-increasing sequence numbers
without waiting for n rounds to pass (or signed acknowledgments from the re-
ceiver) before sending the next packet. In particular, across each of his edges
the sender will send every packet once, waiting only for the neighboring node’s
confirmation of receipt before sending the next packet across that edge. The pro-
tocol calls for the internal nodes to act similarly. Analysis of this approach shows
that not only has the attempt to improve throughput failed (it is still O(x/n) in
the worst-case scenario), but additionally this modification requires arbitrarily
large (polynomial in n and k) processor memory, since achieving correctness in
the dynamic topology of the graph will force the nodes to remember all of the
packets they see until they have broadcasted them across all adjacent edges or
seen confirmation of their receipt from the receiver.

2.1 Challenges in Dealing with Node-Controlling Adversaries

In this section, we discuss some potential strategies that the node-controlling and
edge-scheduling adversaries may incorporate to disrupt network communication.
Although our theorem will work in the presence of arbitrary malicious activity
of the adversarial controlled nodes (except with negligible probability), it will

170 Y. Amir, P. Bunn, and R. Ostrovsky

be instructive to list a few obvious forms of devious behavior that our protocol
must protect against. It is important to stress that this list is not intended
to be exhaustive. Indeed, we do not claim to know all the specific ways an
arbitrary polynomially bounded adversary may force nodes to deviate from a
given protocol, and we rigorously prove that our protocol is secure against all
possible deviations.

Packet Deletion/Modification. Instead of forwarding a packet, a corrupt node
“drops it to the floor” (i.e. deletes it or effectively deletes it by forever storing it in
memory), or modifies the packet before passing it on. Another manifestation of
this is if the sender requests fault localization information of the internal nodes,
such as providing documentation of their interactions with neighbors. A corrupt
node can then block or modify information that passes through it in attempt to
hide malicious activity or implicate an honest node.

Introduction of Junk/Duplicate Packets. The adversary can attempt to disrupt
communication flow and “jam” the network by having corrupted nodes introduce
junk packets or re-broadcast old packets. Notice that junk packets can be handled
by using cryptographic signatures to prevent introduction of “new” packets, but
this does not control the re-transmission of old, correctly signed packets.

Disobedience of Transfer Rules. If the protocol specifies how nodes should make
decisions on where to send packets, etc., then corrupt nodes can disregard these
rules, including lying to adjacent nodes about their current state.

Coordination of Edge-Failures. The edge-scheduling adversary can attempt to dis-
rupt communication flow by scheduling edge-failures in any manner that is con-
sistent with the conforming criterion. Coordinating edge-failures can be used to
impede correctness, memory, and throughput in various ways: e.g. packets may
become lost across a failed edge, stuck at a suddenly isolated node, or arrive at
the receiver out of order. A separate issue arises concerning fault localization:
When the sender requests documentation from the internal nodes, the edge-
scheduling adversary can slow progress of this information, as well as attempt to
protect corrupt nodes by allowing them to “play-dead” (setting all of its adjacent
edges to be down), so that incriminating evidence cannot reach the sender.

2.2 Highlights of Our Solution

Our starting point is the Slide protocol [2], which has enjoyed practical success
in networks with dynamic topologies, but is not secure against nodes that are al-
lowed to behave maliciously. Due to space constraints, we will only highlight the
main ideas of the protocol here; the interested reader can find a full exposition
in [5]. We begin by viewing the edges in the graph as consisting of two directed
edges, and associate to each end of a directed edge a stack data-structure able
to hold 2n packets and to be maintained by the node at that end. The protocol
specifies the following simple, local condition for transferring a packet across
a directed edge: if there are more packets in the stack at the originating end
than the terminating end, transfer a packet across the edge. Similarly, within a

Authenticated Adversarial Routing 171

node’s local stacks, packets are shuffled to average out the stack heights along
each of its edges. Intuitively, packet movement is analogous to the flow of water:
high stacks create a pressure that force packets to “flow” to neighboring lower
stacks. At the source, the sender maintains the pressure by filling his outgoing
stacks (as long as there is room) while the receiver relieves pressure by consum-
ing packets and keeping his stacks empty. Loosely speaking, packets traveling
to nodes “near” the sender will therefore require a very large potential, packets
traveling to nodes near the receiver will require a small potential, and packet
transfers near intermediate nodes will require packages to have a moderate po-
tential. Assuming these potential requirements exist, packets will pass from the
sender with a high potential, and then “flow” downwards across nodes requiring
less potential, all the way to the receiver.

Because the Slide protocol provides a fully distributed protocol that works well
against an edge-scheduling adversary, our starting point was to try to extend the
protocol by using digital signatures4 to provide resilience against Byzantine at-
tacks and arbitrary malicious behavior of corrupt nodes. This proved to be a
highly nontrivial task that required us to develop a lot of additional machin-
ery, both in terms of additional protocol ideas and novel techniques for proving
correctness. We give a detailed explanation of our techniques in Section 3, but
due to space considerations we have omitted the formal pseudo-code and rig-
orous proofs of security (these can be found in the full version, see [5]). Below
we give a sample of some of the key ideas we used in ensuring our additional
machinery would be provably secure against a node-controlling adversary, and
yet not significantly affect throughput or memory, compared to the original Slide
protocol:

Addressing the “Coordination of Edge-Scheduling” Issues. In the ab-
sence of a node-control- ling adversary, previous versions of the Slide protocol
(e.g. [2]) are secure and efficient against an edge-scheduling adversary, and it
will be useful to discuss how some of the challenges posed by a network with a
dynamic topology are handled. First, note that the total capacity of the stack
data-structure is bounded by 4n3. That is, each of the n nodes can hold at most
2n packets in each of their 2n stacks (along each directed edge) at any time.

– To handle the loss of packets due to an edge going down while transmitting
a packet, a node is required to maintain a copy of each packet it transmits
along an edge until it receives confirmation from the neighbor of successful
receipt.

4 In this paper we use public-key operations to sign individual packets with control
information. Clearly, this is too expensive to do per-packet in practice. There are
methods of amortizing the cost of signatures by signing “batches” of packets; using
private-key initialization [9,12], or using a combination of private-key and public key
operations, such as “on-line/off-line” signatures [10,17]. For the sake of clarity and
since the primary focus of our paper is theoretical feasibility, we restrict our attention
to the straight-forward public-key setting without considering these additional cost-
saving techniques.

172 Y. Amir, P. Bunn, and R. Ostrovsky

– To handle packets becoming stuck in some internal node’s stack due to edge
failures, error-correction is utilized to allow the receiver to decode a full
message without needing every packet. In particular, if an error-correcting
code allowing a fraction of λ faults is utilized, then since the capacity of
the network is 4n3 packets, if the sender is able to pump 4n3/λ codeword
packets into the network and there is no malicious deletion or modification
of packets, then the receiver will necessarily have received enough packets to
decode the message.

– The Slide protocol has a natural bound in terms of memory per processor
of O(n2 log n) bits, where the bottleneck is the possibility of a node holding
up to 2n2 packets in its stacks, where each packet requires O(log n) bits to
describe its position in the code.

Of course, these techniques are only valid if nodes are acting honestly, which
leads us to our first extension idea.

Handling Packet Modification and Introduction of Junk Packets.

Before inserting any packets into the network, the sender will authenticate each
packet using his digital signature, and intermediate nodes and the receiver never
accept or forward messages not appropriately signed. This simultaneously pre-
vents honest nodes becoming bogged down with junk packets, as well as ensuring
that if the receiver has obtained enough authenticated packets to decode, a node-
controlling adversary cannot impede the successful decoding of the message as
the integrity of the codeword packets is guaranteed by the inforgibility of the
sender’s signature.

Fault Detection. In the absence of a node-controlling adversary, our protocol
looks almost identical to the Slide protocol of [2], with the addition of signatures
that accompany all interactions between two nodes. First, the sender attempts
to pump the 4n3/λ codeword packets of the first message into the network,
with packet movement exactly as in the original Slide protocol. We consider all
possible outcomes:

1. The sender is able to insert all codeword packets and the receiver is able to de-
code. In this case, the message was transmitted successfully, and our protocol
moves to transfer the next message.

2. The sender is able to insert all codeword packets, but the receiver has not
received enough to decode. In this case, the receiver floods the network with
a single-bit message indicating packet deletion has occurred.

3. The sender is able to insert all codeword packets, but the receiver cannot decode
because he has received duplicated packets. Although the sender’s authenti-
cating signature guarantees the receiver will not receive junk or modified
packets, a corrupt node can duplicate valid packets. Therefore, the receiver
may receive enough packets to decode, but cannot because he has received
duplicates. In this case, the receiver floods the network with a single message
indicating the label of a duplicated packet.

4. After some amount of time, the sender still has not inserted all codeword packets.
In this case, the duplication of old packets is so severe that the network

Authenticated Adversarial Routing 173

has become jammed, and the sender is prevented from inserting packets
even along the honest path that the conforming assumption guarantees. If
the sender believes the jamming cannot be accounted for by edge-failures
alone, he will halt transmission and move to localizing a corrupt node.5 One
contribution this paper makes is to prove a lower bound on the insertion rate
of the sender for the Slide protocol in the absence of the node-controlling
adversary. This bound not only alerts the sender when the jamming he is
experiencing exceeds what can be expected in the absence of corrupt nodes,
but it also provides a mechanism for localizing the offending node(s).

The above four cases exhaust all possibilities. Furthermore, if a transmission
is not successful, the sender is not only able to detect the fact that malicious
activity has occurred, but he is also able to distinguish the form (i.e. Case 2-4)
of the malicious activity. Meanwhile, for the top case, our protocol enjoys (within
a constant factor) an equivalent throughput rate as the original Slide protocol.

Fault Localization. Once a fault has been detected, it remains to describe
how to localize the problem to the offending node. To this end, we use digital
signatures to achieve a new mechanism we call “Routing with Responsibility.”
By forcing nodes to sign key parts of every communication with their neighbors
during the transfer of packets, they can later be held accountable for their ac-
tions. In particular, once the sender has identified the reason for failure (Cases
2-4 above), he will request all internal nodes to return status reports, which are
signatures on the relevant parts of the communication with their neighbors. We
then prove in each case that with the complete status report from every node,
the sender can identify and eliminate a corrupt node. Of course, malicious nodes
may choose not to send self-incriminating information. We handle this separately
as explained below.

Processor Memory. The signatures on the communication a node has with
its neighbors for the purpose of fault localization is a burden on the memory
required of each processor that is not encountered in the original Slide protocol.
One major challenge was to reduce the amount of signed information each node
must maintain as much as possible, while still guaranteeing that each node has
maintained “enough” information to identify a corrupt node in the case of ar-
bitrary malicious activity leading to a failure of type 2-4 above. The content of
Theorem 3.2 in Section 3 demonstrates that the extra memory required of our
protocol is a factor of n2 higher than that of the original Slide protocol.

5 We emphasize here the importance that the sender is able to distinguish the case
that the jamming is a result of the edge-scheduling adversary’s controlling of edges
verses the case that a corrupt node is duplicating packets. After all, in the case of
the former, there is no reward for “localizing” the fault to an edge that has failed,
as all edges are controlled by the edge-scheduling adversary, and therefore no edge
is inherently better than another. But in the case a node is duplicating packets,
if the sender can identify the node, it can eliminate it and effectively reduce the
node-controlling adversary’s ability to disrupt communication in the future.

174 Y. Amir, P. Bunn, and R. Ostrovsky

Incomplete Information. As already mentioned, we will show that as long
as the sender has the complete status reports from every node, he will be able to
identify a corrupt node, regardless of the reason for failure 2-4 above. However,
this relies on the sender obtaining all of the relevant information; the absence
of even a single node’s information can prevent the localization of a fault. We
address this challenge in the following ways:

1. We minimize the amount of information the sender requires of each node.
This way, a node need not be connected to the sender for very many rounds
in order for the sender to receive its information. Specifically, regardless of
the reason for failure 2-4 above, a status report consists of only n pieces of
information from each node, i.e. one packet for each of its edges.

2. If the sender does not have the n pieces of information from a node, it cannot
afford to wait indefinitely. After all, the edge-scheduling adversary may keep
the node disconnected indefinitely, or a corrupt node may simply refuse to
respond. For this purpose, we create a blacklist for non-responding nodes,
which will disallow them from transferring codeword packets in the future.
This way, anytime the receiver fails to decode a codeword as in Cases 2-
4 above, the sender can request the information he needs, blacklist nodes
not responding within some short amount of time, and then re-attempt to
transmit the codeword using only non-blacklisted nodes. Nodes should not
transfer codeword packets to blacklisted nodes, but they do still communicate
with them to transfer the information the sender has requested. If a new
transmission again fails, the sender will only need to request information from
nodes that were participating, i.e. he will not need to collect new information
from blacklisted nodes (although the nodes will remain blacklisted until the
sender gets the original information he requested of them). Nodes will be
removed from the blacklist and re-allowed to route codeword packets as
soon as the sender receives their information.

The Blacklist. Blacklisting nodes is a delicate matter; we want to place ma-
licious nodes “playing-dead” on this list, while at the same time we don’t want
honest nodes that are temporarily disconnected from being on this list for too
long. We prove in the full version (see [5]) that the occasional honest node that
gets put on the blacklist won’t significantly hinder packet transmission. Intu-
itively, this is true because any honest node that is an important link between
the sender and receiver will not remain on the blacklist for very long, as his con-
nection to the sender guarantees the sender will receive all requested information
from the node in a timely manner.

Ultimately, the blacklist allows us to control the amount of malicious activity
to which a single corrupt node can contribute. Indeed, we show that each failed
message transmission (Cases 2-4 above) can be localized (eventually) to (at least)
one corrupt node. More precisely, the blacklist allows us to argue that malicious
activity can cause at most n failed transmissions before a corrupt node can
necessarily be identified and eliminated. Since there are at most n corrupt nodes,
this bounds the number of failed transmissions at n2. The result of this is that
other than at most n2 failed message transmissions, our protocol enjoys the same

Authenticated Adversarial Routing 175

throughput efficiency of the old Slide protocol. The formal statement of this and
a sketch of the proof are the contents of Theorem 3.3 in Section 3.

3 Routing against a Node-Controlling + Edge-Scheduling
Adversary

3.1 Definitions

In this section, we briefly describe our protocol. Due to space constraints, a de-
tailed presentation, including formal pseudo-code and rigorous proofs, has been
omitted (these can be found in the full version [5]). As mentioned in the Introduc-
tion, our model considers end-to-end communication in a network consisting of
n nodes in the presence of conforming edge-scheduling and node-controlling ad-
versaries. We assume a synchronous network with discrete stages, where a stage
is defined to be the unit of time in which every edge can transfer a single packet
of P bits.6 A round will consist of two consecutive stages during which packets
are transferred between adjacent nodes (the Routing Phase), followed by the
Re-Shuffle Phase in which nodes perform (instantaneous) local maintenance of
their buffers. A transmission (usually denoted by T) will consist of O(n3) rounds
during which the sender inserts packets corresponding to a single codeword. At
the end of each transmission, the receiver will broadcast an end of transmission
message, indicating whether it could successfully decode the codeword. In the
case that the receiver cannot decode, we will say that the transmission failed,
and otherwise the transmission was successful.

In the case a transmission fails, the sender will determine the reason for failure
(Cases 2-4 from Section 2.2, and also F2-F4 below), and request nodes to return
status reports that correspond to a particular piece of signed communication
between each node and its neighbors. We will refer to status report packets as
parcels to clarify discussion in distinguishing them from the codeword packets.

The first step in providing a guarantee of efficiency (in terms of throughput)
is to prove that every failed transmission falls under one of the following cases
(the number of packets per codeword, D, will be defined in the next section):

F2. The receiver could not decode, and the sender has inserted D packets
F3. The receiver could not decode, the sender has inserted D packets, and
the receiver has not received any duplicated packets corresponding to the
current codeword
F4. The receiver could not decode and cases F2 and F3 do not happen

We describe in Section 3.3 how we identify a corrupt node in each case. The
primary tool that will be used to handle case F2 will be the notion of potential,
defined now.
6 We assume P > O(k + log n), where k is the security parameter used for the signa-

ture scheme and n is the number of nodes. In particular, this will allow packets to
carry two signatures (requires 2k bits) and a codeword index (requires log n bits) in
addition to the codeword information.

176 Y. Amir, P. Bunn, and R. Ostrovsky

Definition 3.1. The height HB of any internal buffer B is the number of pack-
ets currently stored in the buffer. The potential ΦB of the buffer is the arithmetic
sum up to HB, i.e. ΦB =

∑H
i=1 i = H(H+1)

2 .

3.2 Description of the Node-Controlling+Edge-Scheduling Protocol

Setup. The sender has a sequence of messages {m1, m2, . . . } of uniform size
M = 6σ(P−2k)n3

λ that he will expand into codewords {b1, b2, . . . } of size C = M
σ

(σ is the information rate and λ the error-rate of any error-correcting code). The
codewords are divided into packets of size P − 2k (P is the number of bits that
can be transferred by an edge in a single stage, k is the security parameter),
which will allow packets to have enough room to hold two signatures of size k.
Since the number of packets per codeword is D := C

P−2k = 6(P−2k)n3

(P−2k)λ = 6n3

λ ,
if R receives (1 − λ)D distinct packets corresponding to the same codeword, he
will be able to decode.

Each internal node has the following buffers:

1. Incoming and Outgoing Buffers. For each incoming/outgoing edge, a node
will have a buffer that has the capacity to hold 2n packets at any given
time. The receiver has one large storage buffer, and the sender has a “Copy
of Current Packets” buffer to be used any time a transmission fails and needs
to be repeated.

2. Signature Buffers. Each node has a signature buffer along each edge to keep
track of incoming (resp. outgoing) information exchanged with its neighbor
along that edge. The signature buffers will hold information corresponding
to changes in: 1) The net number of packets passed across each adjacent
edge; 2) The cumulative change in potential due to packet transfers across
each adjacent edge; and 3) For each packet p, the net number of times p has
passed across each adjacent edge. Each of the three items above, together
with the current round index and transmission index, will be signed by the
adjacent node before they are stored.

3. Broadcast Buffer. This is where nodes will temporarily store their neigh-
bor’s (and their own) state information that the sender will need to identify
malicious activity. A node’s broadcast buffer can hold the start and end of
transmission parcels (see below), blacklist information, and up to n parcels
of status report information for each node in the network.

4. Data Buffer. This keeps track of eliminated and blacklisted nodes. The
sender’s data buffer will also be able to store information for up to n failed
transmissions, including why they failed, blacklisted nodes, and up to n sta-
tus report parcels per node per failed transmission.

Also as part of the Setup, all nodes learn the relevant parameters (P , n, λ, and
σ), each node receives a private key from a trusted third party for signing, and
each node receives public information that allows them to verify the signature
of every other node in the network.

Authenticated Adversarial Routing 177

Stage A B
HA := Height of buffer along E(A,B)

1
Height of prev. p. sent (if still in A)
Round prev. packet was sent −→
Confirmation of rec. of broadcast info.

←−
HB :=Ht. of buffer along E(A,B)

Round prev. packet was received
Sig’s on values for edge E(A,B)

Send p. and Sig’s on values for E(A,B) if: Receive packet if:
• A has rec.’d SOT bdcst • B has rec.’d SOT bdcst

2 • B is not on A’s blacklist/eliminated −→ • A is not on B’s blacklist/elim.
− HA > HB OR
− B didn’t rec. prev. packet sent

←− Broadcast Information

Fig. 2. Description of Communication Exchange Along Directed Edge E(A, B) During
the Routing Phase of Some Round

Routing Phase. This consists of two consecutive stages during which nodes
transfer codeword packets and broadcast parcels that comprise status reports
and auxiliary information. The manner in which packets and parcels are trans-
ferred across a directed edge7 E(A, B) is succinctly described in the figure below.
We state once and for all that if a node ever receives inaccurate or mis-signed
information, it will act as if no information was received at all (e.g. as if the edge
had failed for that stage).

At the end of every transmission, the receiver will broadcast a parcel indicating
if it was able to decode the previous codeword, as well as containing the label
of a codeword packet he received twice (if one exists). From this, the sender will
create the start of transmission (SOT) broadcast, which includes information
concerning up to n failed transmissions, including why the transmission failed
and which nodes are blacklisted (or eliminated) for those transmissions. We stress
that no node is allowed to transfer any codeword packets until it has received the
complete SOT broadcast.

Re-Shuffle Rules. At the end of each round, nodes will shuffle the packets they
are holding to balance the distribution of packets in their incoming and outgoing
buffers. After re-shuffling, all buffers will have the same number of packets, where
preference will be given to outgoing buffers if perfect balancing is not possible.
During the Re-Shuffle Phase, the sender will fill each of his outgoing buffers
(in an arbitrary order) with packets corresponding to the current codeword.
Meanwhile, the receiver will empty all of its incoming buffers into its storage
buffer. If at any time R has received enough packets to decode a codeword bi,
then R outputs message mi and empties his storage buffer.

3.3 Analysis of Our Node-Controlling + Edge-Scheduling Protocol
We state our results concerning the correctness, throughput, and memory of our
adversarial routing protocol.
7 For clarity, even though we are considering “directed edge” E(A, B), we indicate

communication that travels from B to A. In reality, this communication will pass
across E(B, A).

178 Y. Amir, P. Bunn, and R. Ostrovsky

Theorem 3.2. The memory required of each node is at most O(n4(k + log n)).

Proof (Sketch). Looking at the information each node is required to store in their
buffers (see Setup of Section 3.2), the dominant expense comes from maintaining
the signature buffers. The theorem follows as there are O(n) such buffers, and
each has the capacity to hold D=O(n3) packets of P=O(k + log n) bits.

Theorem 3.3. Except for the at most n2 transmissions that may fail due to ma-
licious activity, our Routing Protocol enjoys linear throughput. More precisely,
after x transmissions, the receiver has correctly outputted at least x − n2 mes-
sages. If the number of transmissions x is quadratic in n or greater, than the
failed transmissions due to adversarial behavior become asymptotically negligi-
ble. Since a transmission lasts O(n3) rounds and messages contain O(n3) bits,
information is transferred through the network at a linear rate.

We begin with a sequence of lemmas:

Lemma 1. Every failed transmission falls under Case F2, F3, or F4; the sender
(with the aide of the end of transmission parcel) can determine at the end of each
transmission which case occurred.

Proof. That Cases F2-F4 cover all possibilities is clear. The sender will know
Case F2 has occurred since the sender keeps track of how many packets he has
inserted in each transmission. The sender will know Case F4 has occurred if the
receiver returns the label of a packet received twice (in the end of transmission
parcel). Otherwise, a failed transmission is Case F3.

Lemma 2. If a transmission fails and Case F4 occurred, then if the sender has
collected the complete status report from every participating node, then the
sender can identify a corrupt node.

Proof (Sketch). Case F4 roughly corresponds to a mixed adversarial strategy of
packet deletion and packet duplication: a corrupt node has been replacing cur-
rent codeword packets with duplicated packets. When a transmission T fails due
to Case F4, the sender has the label of a packet p that has been received at least
twice by the receiver, and a node’s status report contains its signed communica-
tion with neighbors regarding the number of times p transferred between them.
The idea is to use the status reports to find a node who output p more times
than it input p. In the full version, we argue that if the sender has the complete
status reports from all nodes who participated in this transmission, then he will
be able to find such a node N ∈ G, and this node is necessarily corrupt.

Lemma 3. If a transmission fails and Case F3 occurred, then if the sender has
collected the complete status report from every participating node, then the
sender can identify a corrupt node.

Proof (Sketch). Case F3 roughly corresponds to an adversarial strategy of packet
deletion. When a transmission fails due to Case F3, a node’s status report con-
tains its signed communication with neighbors regarding the net number of pack-
ets transferred between them. The idea is to use the status reports to find a node

Authenticated Adversarial Routing 179

who input more packets than it output. In the full version, we argue that if the
sender has the complete status reports from all nodes who participated in this
transmission, then he will be able to find such a node N ∈ G, and this node is
necessarily corrupt.

Lemma 4. If a transmission fails and Case F2 occurred, then if the sender has
collected the complete status report from every participating node, then the
sender can identify a corrupt node.

Proof (Sketch). Case F2 roughly corresponds to an adversarial strategy of packet
duplication. When a transmission fails due to F2, a node’s status report contains
its signed communication with neighbors regarding the net change in potential
due to the packet transfers between them.

Notice that a single packet in some internal buffer at height H should (if
all nodes are honest) contribute this amount H to the buffer’s potential. Since
packets in the sender’s buffers do not count towards potential, when a packet
is inserted by the sender, the total potential in the network will increase by
the height the packet assumes in the incoming buffer that receives this packet
(which is at most 2n). Since the sender inserted less than D packets in Case F2,
(in the absence of malicious activity) the total potential in the network can have
increased by at most 2nD. Meanwhile, we argue in the full version [5] that in each
of the 4D−D rounds in which the sender could not insert a packet, the packet
movement along the active honest path for the round will necessarily cause a
decrease of at least n in the total potential in the network. Since the maximum
amount of potential added to the network (due to insertions by the sender and
in the absence of malicious activity) is 2nD, while the minimum decrease in
potential is 3nD, there would be a negative amount of potential in the network.
By definition of potential, this is impossible, and thus there must be a corrupt
node who is contributing to illegal increases in potential (e.g. by duplicating
packets). We show in the full version [5] how the status reports (which contain
information on potential changes across each edge) can be used by the sender to
identify and eliminate a corrupt node.

Lemma 5. There can be at most n failed transmissions before the sender nec-
essarily has the complete status report from every node that participated in one
of those n transmissions.

Proof (Sketch). A node will only be allowed to participate in a transmission if it
is in “good standing” with the sender; i.e. the sender is not missing any status
report parcel from the node. Therefore, for every failed transmission for which
the sender does not have the complete status report from all participating nodes,
there will be a distinct node N ∈ G whose status report the sender does not
have. Since there are n nodes, there are at most n such transmissions.

Proof of Theorem 3.3 (Sketch). We provide here only a very brief sketch of the
proof, leaving the details to the full version [5]. We proceed by making a sequence
of Lemmas. Theorem 3.3 now follows from Lemmas 1-5 as follows. There are at
most n2 failed transmissions (Cases F2-F4) since Lemma F5 states that after

180 Y. Amir, P. Bunn, and R. Ostrovsky

n failed transmissions, the sender will have the complete status report from
every participating node for one of these transmissions, and then Lemmas 1-4
state that the sender can identify (and eliminate) a corrupt node. After a node
has been eliminated, the network is reduced to n − 1 nodes, and the argument
can be repeated recursively. Since there are at most n corruptible nodes, there
are at most n2 failed transmissions. Meanwhile, all successful transmissions enjoy
linear throughput, as each transmission lasts 4D=O(n3) rounds and successfully
decoded codewords contain M=O(n3) bits.

4 Conclusion and Open Problems

In this paper, we have described a protocol that is secure simultaneously against
conforming node-controlling and edge-scheduling adversaries. Our results are
of a theoretical nature, with rigorous proofs of correctness and guarantees of
performance. Surprisingly, our protocol shows that the additional protection
against the node-controlling adversary, on top of protection against the edge-
scheduling adversary, can be achieved without any additional asymptotic cost in
terms of throughput.

While our results do provide a significant step in the search for protocols
that work in a dynamic setting (edge-failures controlled by the edge-scheduling
adversary) where some of the nodes are susceptible to corruption (by a node-
controlling adversary), there remain important open questions. The original Slide
protocol8 requires each internal node to have buffers of size O(n2 log n), while
ours requires O(n4 log n), though this can be slightly improved with additional
assumptions.9 In practice, the extra factor of n2 may make our protocol infeasi-
ble for implementation, even for overlay networks. While the need for signatures
inherently force an increase in memory per node in our protocol verses the origi-
nal Slide protocol, this is not what contributes to the extra O(n2) factor. Rather,
the only reason we need the extra memory is to handle the third kind of ma-
licious behavior, which roughly corresponds to the mixed adversarial strategy
of a corrupt node replacing a valid packet with an old packet that the node
has duplicated. Recall that in order to detect this, for every packet a node sees
and for every neighbor, a node must keep a (signed) record of how many times
this packet has traversed the adjacent edge (the O(n3) packets per codeword
and O(n) neighbors per node yield the O(n4) bound on memory). Therefore,
one open problem is finding a less memory-intensive way to handle this type of
adversarial behavior.

Our model also makes additional assumptions that would be interesting to
relax. In particular, it remains an open problem to find a protocol that provides
8 In [13], it was shown how to modify the Slide protocol so that it only requires

O(n log n) memory per internal node. We did not explore in this paper if and/or
how their techniques could be applied to our protocol to similarly reduce it by a
factor of n.

9 If we are given an a-priori bound that a path-length of any conforming path is at
most L, the O(n4 log n) can be somewhat reduced to O(Ln3 log n).

Authenticated Adversarial Routing 181

efficient routing against a node-controlling and edge-scheduling adversary in a
network that is fully asynchronous (without the use of timing assumptions, which
can be used to replace full synchrony in our solution) and/or does not restrict the
adversaries to be conforming. As mentioned in the Introduction, if the adversary
is not conforming, then he can simply permanently disconnect the sender and
receiver, disallowing any possible progress. Therefore, results in this direction
would have to first define some notion of connectedness between sender and
receiver, and then state throughput efficiency results in terms of this definition.

Acknowledgments

We thank the anonymous reviewers for their suggestions. Part of the work of
the authors was done while visiting IPAM and supported in part by NSF grant
0430254. The third author was also supported in part by IBM Faculty Award,
Xerox Innovation Group Award, NSF grants 0430254, 0716835, 0716389, 0830803
and U.C. MICRO grant. The first author was also supported in part by NSF
grants 0430271 and 0716620.

References

1. Afek, Y., Gafni, E.: End-to-End Communication in Unreliable Networks. In: PODC
(1988)

2. Afek, Y., Awebuch, B., Gafni, E., Mansour, Y., Rosen, A., Shavit, N.: Slide– The
Key to Poly. End-to-End Communication. J. of Algorithms 22, 158–186 (1997)

3. Afek, Y., Gafni, E., Rosén, A.: The Slide Mechanism With Applications In Dynamic
Networks. In: Proc. of the 11th ACM Symp. on PoDC, pp. 35–46 (1992)

4. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive Packet Routing For
Bursty Adversarial Traffic. J. Comput. Syst. Sci. 60(3), 482–509 (2000)

5. Amir, Y., Bunn, P., Ostrovsky, R.: Authenticated Adversarial Routing, Full Ver-
sion. Cornell Univ. Library arXiv, Article No. 0808.0156 (2008),
http://arxiv.org/abs/0808.0156

6. Awerbuch, B., Holmer, D., Nina-Rotaru, C., Rubens, H.: A Secure Routing Proto-
col Resilient to Byzantine Failures. In: WiSE, pp. 21–30. ACM, New York (2002)

7. Awerbuch, B., Leighton, T.: Improved Approximation Algorithms for the Multi-
Commodity Flow Problem and Local Competitive Routing in Dynamic Networks.
In: STOC (1994)

8. Awerbuch, B., Mansour, Y., Shavit, N.: End-to-End Communication With Poly-
nomial Overhead. In: Proc. of the 30th IEEE Symp. on Foundations of Computer
Science, FOCS (1989)

9. Barak, B., Goldberg, S., Xiao, D.: Protocols and Lower Bounds for Failure Local-
ization in the Internet. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 341–360. Springer, Heidelberg (2008)

10. Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line Digital Signatures. J. Cryp-
tology 9(1), 35–67 (1996)

11. Goldreich, O.: The Foundations of Cryptography, Basic Applications. Cambridge
University Press, Cambridge (2004)

12. Goldberg, S., Xiao, D., Tromer, E., Barak, B., Rexford, J.: Path-Quality Monitoring
in the Presence of Adversaries. ACM SIGMETRICS 36, 193–204 (2008)

http://arxiv.org/abs/0808.0156

182 Y. Amir, P. Bunn, and R. Ostrovsky

13. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-Space Polynomial End-to-End Com-
munication. SIAM Journal of Computing 27(6), 1531–1549 (1998)

14. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against
computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 1–16. Springer, Heidelberg (2005)

15. Rajagopalan, S., Schulman, L.: A Coding Theorem for Distributed Computation.
In: Proc. 26th STOC, pp. 790–799 (1994)

16. Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio
Engineers 37(1), 10–21 (1949)

17. Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

18. Schulman, L.: Coding for interactive communication. Special issue on Codes and
Comp. of IEEE Transactions on Info. Theory 42(6), Part I: 1745–1756 (1996)

Adaptive Zero-Knowledge Proofs and
Adaptively Secure Oblivious Transfer

Yehuda Lindell and Hila Zarosim

Department of Computer Science
Bar-Ilan University, Israel

{zarosih,lindell}@cs.biu.ac.il

Abstract. In the setting of secure computation, a set of parties wish
to securely compute some function of their inputs, in the presence of an
adversary. The adversary in question may be static (meaning that it con-
trols a predetermined subset of the parties) or adaptive (meaning that it
can choose to corrupt parties during the protocol execution and based on
what it sees). In this paper, we study two fundamental questions relating
to the basic zero-knowledge and oblivious transfer protocol problems:

– Adaptive zero-knowledge proofs: We ask whether it is possible to con-
struct adaptive zero-knowledge proofs (with unconditional sound-
ness). Beaver (STOC 1996) showed that known zero-knowledge proofs
are not adaptively secure, and in addition showed how to construct
zero-knowledge arguments (with computational soundness).

– Adaptively secure oblivious transfer: All known protocols for adap-
tively secure oblivious transfer rely on seemingly stronger hardness
assumptions than for the case of static adversaries. We ask whether
this is inherent, and in particular, whether it is possible to construct
adaptively secure oblivious transfer from enhanced trapdoor permu-
tations alone.

We provide surprising answers to the above questions, showing that
achieving adaptive security is sometimes harder than achieving static se-
curity, and sometimes not. First, we show that assuming the existence of
one-way functions only, there exist adaptive zero-knowledge proofs for all
languages in NP . In order to prove this, we overcome the problem that
all adaptive zero-knowledge protocols known until now used equivocal
commitments (which would enable an all-powerful prover to cheat). Sec-
ond, we prove a black-box separation between adaptively secure oblivious
transfer and enhanced trapdoor permutations. As a corollary, we derive
a black-box separation between adaptively and statically securely obliv-
ious transfer. This is the first black-box separation to relate to adaptive
security and thus the first evidence that it is indeed harder to achieve
security in the presence of adaptive adversaries than in the presence of
static adversaries.

1 Introduction

In the setting of secure two-party and multiparty computation, parties with pri-
vate inputs wish to securely compute some joint function of their inputs, where

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 183–201, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

184 Y. Lindell and H. Zarosim

“security” must hold in the presence of adversarial behavior by some of the
parties. An important parameter in any definition of security relates to the ad-
versary’s power. Is the adversary computationally bounded or all powerful? Is
the adversary semi-honest (meaning that it follows all protocol instructions but
tries to learn more than it’s supposed to by analyzing the messages it receives)
or is it malicious (meaning that it can arbitrarily deviate from the protocol
specification)? Finally, are the adversarial corruptions static (meaning that the
set of corrupted parties is fixed) or adaptive (meaning that the adversary can
corrupt parties throughout the computation and the question of who to corrupt
and when may depend on the adversary’s view in the protocol execution). It is
desirable to achieve security in the presence of adaptive adversaries where pos-
sible, since it models the real-world phenomenon of “hackers” actively breaking
into computers, possibly while they are executing secure protocols. However, it
seems to be technically harder to achieve security in the presence of adaptive
adversaries. Among other things, it requires the ability to construct a simulator
who can first generate a transcript blindly (without knowing any party’s input)
and then later, upon receiving inputs, “explain” the transcript as an execution
of honest parties with those inputs.

In this paper, we ask two basic questions related to the feasibility of achieving
security in the presence of adaptive adversaries. Our questions were borne out
of the following two observations:

1. Adaptive zero-knowledge proofs: It has been shown that the zero-knowledge
proof system of [15] (and all others known) is not secure in the presence
of adaptive adversaries, or else the polynomial hierarchy collapses [1]. Due
to this result, all known zero-knowledge protocols for NP in the adaptive
setting are arguments, meaning that soundness only holds in the presence of a
polynomial-time prover (adaptive zero-knowledge arguments were presented
by [1] and later in the context of universal composability; e.g., see [7,8]).
However, the question of whether or not adaptive zero-knowledge proofs
exist for all NP has not been addressed.

2. Adaptively secure oblivious transfer: One of the goals of the theory of cryp-
tography is to understand what assumptions are necessary and sufficient
for carrying out cryptographic tasks; see for example [16]. Despite this, no
such study has been carried out regarding adaptively secure protocols. In
particular, we do not know what assumptions are necessary for achieving
adaptively secure oblivious transfer (since oblivious transfer is complete for
secure computation, this question has important ramifications to adaptively
secure computation in general). Currently, what is known is that although
statically secure oblivious transfer can be constructed from enhanced trap-
door permutations [10,14], all constructions for adaptively secure oblivious
transfer use additional assumptions like the ability to sample a permutation
without knowing its trapdoor [2,8].

Our results – adaptive zero-knowledge proofs. All known zero-knowledge
protocols for NP essentially follow the same paradigm: the prover sends the

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 185

verifier commitments that are based on the statement being proved (and its
witness), and the verifier then asks the prover to open part or all of the com-
mitments. Based on the prover’s answer, the verifier is either convinced that
the statement is true or detects the prover cheating. It therefore follows that
soundness only holds if the commitment scheme used is binding, and this is a
problem in the setting of adaptive security. Consider an adversary that corrupts
the verifier at the beginning of the execution and the prover at the end. In this
case, the zero-knowledge simulator must generate a transcript without knowing
the NP-witness. However, at the end, after the prover is corrupted (and the sim-
ulator then receives a witness), it must be able to show that the commitments
were generated using that witness. Until now, this has been solved by using
equivocal commitments that can be opened to any value desired (in order for
soundness to hold, the ability to equivocate is given to the simulator and not
the real prover). However, this means that the protocol has only computational
soundness, because an all-powerful prover is able to equivocate like the simula-
tor. Indeed, the above observation led us to initially conjecture that adaptive
zero-knowledge proofs exist only for SZK. However, our conjecture was wrong,
and in this paper we prove the following theorem:

Theorem 1. Assuming the existence of one-way functions that are hard to in-
vert for non-uniform adversaries, there exist adaptive zero-knowledge proofs for
all NP.

We prove Theorem 1 by constructing a new type of instance-dependent commit-
ment scheme. Instance-dependent commitment schemes are commitments whose
properties depend on whether the instance (or statement) in question is in the
language or not [3,18]. Typically, they are defined for a language L as follows. Let
x be a statement. If x ∈ L then the commitment associated with x is computa-
tionally hiding and if x /∈ L then the commitment associated with x is perfectly
binding. This has proven very useful in the context of zero-knowledge where hid-
ing alone is needed for the case of x ∈ L, and binding alone is needed in the case
of x /∈ L; see for example [21,26,22]. We construct an instance-dependent com-
mitment scheme with the additional property that if x ∈ L then the commitment
is equivocal and the simulator can open it to any value it wishes. To be more
exact, we need the commitment itself to be adaptively secure, meaning that it
must be possible to generate a commitment value c and then later find “random
coins” r for any bit b so that c is a commitment string generated by an honest
committer with input b and random coins r.1 In contrast to the above, if x /∈ L
then the commitment is still perfectly binding. Given such a commitment (which
is actually very similar to the commitment schemes presented in [11]and [8]) we

1 We stress that this is a strictly stronger requirement than equivocality. In most equiv-
ocal commitments, the committer reveals only some of its coins upon decommitting.
This does not suffice for achieving adaptive commitments.

186 Y. Lindell and H. Zarosim

are able to construct the first computational zero-knowledge proof for all NP
that is secure also in the case of adaptive corruptions.2

Our results – adaptively secure oblivious transfer. As we have mentioned,
all known protocols for adaptively secure oblivious transfer require assumptions
of the flavor that it is possible to sample a permutation without its trapdoor. In
contrast, standard trapdoor permutations do not have this property. We remark
that enhanced trapdoor permutations do have the property that it is possible
to sample an element in the domain of the permutation without knowing its
preimage. This begs the question as to whether such “oblivious sampling” of the
permutation’s domain suffices for achieving adaptively secure oblivious transfer,
or is something stronger needed (like oblivious sampling of permutations them-
selves). We remark that oblivious sampling is used in this context by having the
simulator sample unobliviously and then “lie” in its final transcript by claiming
to have sampled in the regular way. However, this strategy is problematic when
the oblivious sampling is carried out on elements in the domain because if the
trapdoor is known then it may be possible to see if the preimage of the sampled
value appears implicitly in the protocol transcript. (For example, in the protocol
of [10], the preimages fully define the sender’s input and so if the trapdoor is
known, the values can be checked.) Of course, such arguments do not constitute
any form of evidence. In order to demonstrate hardness, we use the methodol-
ogy of black-box separations, introduced by [17] and later used in [25,19,12,24]
amongst others. We prove the following informally stated theorem:

Theorem 2. There exists an oracle relative to which enhanced trapdoor permu-
tations exist but adaptively secure oblivious transfer does not exist.

Recalling that statically secure oblivious transfer can be constructed from any
enhanced trapdoor permutation in a black-box way [10,14], we obtain the fol-
lowing corollary:

Corollary 3. There exists an oracle relative to which statically secure oblivious
transfer exists but adaptively secure oblivious transfer does not exist.

This is the first evidence that it is strictly harder to achieve security in the pres-
ence of adaptive adversaries than to achieve security in the presence of static
adversaries. We prove Theorem 2 by showing that if it is possible to achieve adap-
tively secure oblivious transfer using only enhanced trapdoor permutations, then
it is possible to achieve statically secure oblivious transfer using only symmetric
encryption (this is very inexact but sufficient for intuition). We then show that
statically secure oblivious transfer does not exist relative to most symmetric

2 In [22], adaptively secure commitment schemes are constructed for the languages of
Graph Isomorphism and Quadratic Residuosity (although they are not presented in
this way nor for this purpose). The constructions in [22] are incomparable to ours.
On the one hand, they require no hardness assumptions whereas we use one-way
functions. On the other hand, our construction is for all languages in NP whereas
they are restricted to the above two specific languages (which are also in SZK).

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 187

encryption oracles. We prove this using the recent result of [9] that shows the
equivalence of the random oracle and ideal cipher models, to replace a symmet-
ric encryption oracle by a “plain” random oracle (using six rounds of the Luby-
Rackoff construction [20]). This enables us to extend the black-box separation
of [17] to show that key agreement does not exist relative to most symmetric
encryption oracles. We conclude the proof by recalling that key agreement can
be constructed from oblivious transfer [12]. Thus, adaptively secure oblivious
transfer cannot be constructed in a black-box way from enhanced trapdoor per-
mutations. We remark that all of our results for oblivious transfer are proven for
semi-honest adversaries (and thus hold also for malicious adversaries).

Our proof makes no use of the fact that the functionality being computed is
oblivious transfer and holds for any functionality. We conclude that either a given
function can be securely computed statically assuming only the existence of one-
way functions (or to be more exact, only given a “symmetric” random oracle),
or enhanced trapdoor permutations do not suffice for computing it adaptively.

Organization. Due to lack of space in this extended abstract, we present only
proof sketches of our results; the full proofs can be found in the full version. Like-
wise, we do not present the definitions of secure computation and refer to [14]
for the definition of security in the presence of semi-honest static adversaries
(needed in Section 3.2), and to [6] for the definition of security in the presence
of adaptive adversaries. Very briefly, the formulation of security for adaptive
adversaries in [6] includes an environment Z that communicates with the ad-
versary before and after the execution. An important property of the definition
is that of post-execution corruption, meaning that the environment can ask the
adversary to corrupt parties after the protocol transcript has already been fixed.
This property is crucial for proving sequential composition; see [6].

2 Adaptive Zero-Knowledge Proofs

In this section we show how to construct adaptive zero-knowledge proof for
the language of Hamiltonicity (HC). Our construction is based on Blum’s zero-
knowledge proof for Hamiltonicity [5]. In this protocol, the prover first commits
to a random permutation of G, and the verifier then chooses randomly whether
to check that the committed graph is indeed a permutation of G or that the
committed graph contains a Hamiltonian cycle. Soundness holds because a non-
Hamiltonian graph cannot simultaneously be a permutation of G and contain
a Hamiltonian cycle. The simulator for this proof system does not know the
witness and so cannot decommit to a Hamiltonian cycle after committing to a
permutation of G. Therefore, it works by randomly choosing whether to send
commitments to a permutation of G or to a graph containing only a random
cycle of length n. Note that in the latter case, the commitments generated by
the simulator are to different values than those generated by the real prover. This
is not a problem when considering static corruptions because the hiding property
of the commitments means that this cannot be distinguished. However, in the
setting of adaptive corruptions, the prover can be corrupted after the simulation

188 Y. Lindell and H. Zarosim

ends. In this case, the simulator must be able to provide random coins that
demonstrate that the commitments sent initially are those that an honest prover
would have sent. However, when the simulator commits to a graph containing
only a Hamiltonian cycle, it cannot do this (because an honest prover never sends
such a commitment). Thus, the commitment scheme used must be such that the
simulator – given an appropriate trapdoor – can “explain” commitments to 1 as
commitments to 0 and vice versa (actually it suffices that commitments to 0 be
explainable as commitments to 1). However, if we use this type of commitment
scheme, then we can no longer achieve statistical soundness (since an all-powerful
cheating prover can find the trapdoor and use the adaptive property of the
commitment scheme to fool the verifier).

We overcome this problem and construct adaptive zero-knowledge proofs for
all NP by constructing an adaptive instance-dependent commitment scheme.
Informally speaking, an adaptive instance-dependent commitment scheme
(AIDCS) for an NP-language L is comprised of 3 algorithms: (1) An ordinary
commitment algorithm Com that on an instance x, a bit b, and random coins r
returns a commitment c to b, denoted Com(x, b; r); (2) A “fake” commitment
algorithm Com′ that on an instance x and random coins r′ returns a commit-
ment c′ = Com′(x; r′); (3) An “adaptive-opening” algorithm Adapt that given
x ∈ L and a witness w ∈ Rx, can present every output c′ of Com′ as a valid
commitment to any bit b. That is, given c′, the random coins r′ used by Com′ to
generate c′ and any bit b, algorithm Adapt outputs “random coins” r such that
c′ = Com(x, b; r). Note the difference between Com and Com′: While Com is an
ordinary committing algorithm (creating a commitment value for a given bit),
when x ∈ L, algorithm Com′ creates commitment values that are not associated
to any specific bit. However, given a witness attesting to the fact that x ∈ L,
these commitments can later be claimed to be commitments to 0 or to 1 by
using algorithm Adapt. We stress that without such a witness, a commitment
generated by Com′ cannot necessarily be decommitted to any bit.

The security requirements of (Com,Com′,Adapt) are as follows. For every
x ∈ L, the commitment scheme must be hiding, meaning that commitments
to 0, to 1 and fake commitments are all indistinguishable (i.e., {Com(x, 0)}x∈L

c≡
{Com(x, 1)}x∈L

c≡ {Com′(x)}x∈L). Furthermore, the output of Adapt must be
indistinguishable from the output of an “honest committer” using algorithm
Com. More specifically, for every c′ in the range of Com′ and every bit b, when
given a witness w ∈ Rx and coins r′ such that c′ = Com′(x; r′), algorithm Adapt
outputs a string r that is computationally indistinguishable from a uniformly
distributed string and for which c′ = Com(x, b; r). In addition to the above
hiding properties we require that for every x �∈ L, the commitment scheme
Com is perfectly binding (i.e., {Com(x, 0)}x/∈L ∩ {Com(x, 1)}x/∈L = φ). A formal
definition appears in the full version of this paper.

Constructing adaptive instance-dependent schemes. Our construction
is almost identical to the trapdoor commitment scheme of [11] (as adapted
by [8]), with one small but crucial difference. We begin by describing the adap-
tation by [8] of the trapdoor commitment of [11]. Let C be a perfectly binding

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 189

commitment scheme with pseudorandom range and let G be a graph (in [11] G
is a Hamiltonian graph generated by the receiver whereas in [8] it is a Hamil-
tonian graph that is placed in the common reference string). Then, in order to
commit to 0, the committer chooses a random permutation π of the vertices
of G and commits to the adjacency matrix of π(G) using C. To decommit, it
opens all entries and sends π. To commit to 1, the committer chooses a random
n-cycle and for all entries in the adjacency matrix corresponding to the edges of
the n-cycle, it uses C to commit to 1. In contrast, all other entries are set to a
random string (recall that the commitment scheme has a pseudorandom range
and thus this is indistinguishable from a commitment to 0). To decommit, it
opens only the entries corresponding to the edges of the n-cycle. As stated, this
scheme is computationally hiding due to the underlying commitment scheme C.
In addition, it is computational binding as long as the sender does not know
any Hamiltonian cycle in G. We stress that the scheme is not perfectly binding
because an all-powerful corrupted committer can find the Hamiltonian cycle in
G and send commitments that it can later open to both 0 and 1.

Our key observation is that in the setting of zero-knowledge we can use the
graph G that is the statement being proven as the graph in the above commitment
scheme. This implies that if G ∈ HC, then the commitment scheme is compu-
tationally hiding and if G /∈ HC then it is perfectly binding, as required. (As
an added bonus, the graph need not be generated by the protocol.) Regarding
adaptivity, when G ∈ HC a commitment to 0 can be opened as a 0 or 1 given a
cycle in G. This is due to the fact that when a cycle is known in G, it is possible
to decommit to the cycle only (and claim that the rest of the commitments are
just random coins), or to decommit to the entire graph.

In summary, we construct the following tuple of probabilistic polynomial-time
algorithms: Com works as described above. Algorithm Com′ simply generates a
commitment to 0 (that is, Com′(G; r) = Com(G, 0; r)). Given a witness w ∈ RG

(a Hamiltonian cycle in G) and a commitment c in the range of Com′, if Adapt
has to explain c as a commitment to 0, then it simply outputs the random coins
used by Com′. In contrast, in order to explain c as a commitment to 1, Adapt
outputs the randomness used by C for the edges in the Hamiltonian cycle in
π(G) (recall Adapt receives a Hamiltonian cycle w in G as input) and simply
claims that all the other commitments are merely random strings (recall that C
has pseudorandom range and therefore the output of Adapt is computationally
indistinguishable from the uniform distribution).

Adaptive zero-knowledge proof for Hamiltonicity. Our adaptive ZK proof
system is exactly that of [5], with the ordinary commitment scheme replaced by
an adaptive instance-dependent commitment scheme. The fact that this scheme
has unconditional soundness follows from the fact that when x /∈ L, the commit-
ment is perfectly binding. The simulation works like the standard zero-knowledge
simulator for Hamiltonicity except that Com′ is used to commit to all edges out-
side of the n-cycle (in the case that the simulator sends a graph containing only
a cycle). This enables the simulator to use Adapt later in case the prover is
corrupted, and show that the commitment was “really” to a permutation of G.

190 Y. Lindell and H. Zarosim

3 Adaptive Oblivious Transfer

We prove our black-box separation of adaptively secure oblivious transfer from
enhanced trapdoor permutations in the following steps. First, in Section 3.1 we
define Γ and ∆ oracles, where a Γ -oracle essentially represents an enhanced trap-
door permutation and a ∆-oracle is essentially a type of symmetric encryption
scheme. Then, in Section 3.2 we show that if there exists a protocol for securely
computing any functionality in the presence of adaptive adversaries relative to
Γ -oracles, then there exists a protocol for securely computing the same function-
ality in the presence of static adversaries relative to ∆-oracles. The next step of
the proof is to then show that for measure 1 of random ∆-oracles no statically
secure OT 2

1 exists. This is done by using the original black-box separation of key
agreement from one-way functions [17], and the fact that key agreement can be
obtained from statically secure oblivious transfer; see Section 3.3. We conclude
that for measure 1 of random Γ -oracles no adaptively secure OT 2

1 exists (see
Section 3.4).

3.1 Oracle Definitions

We begin by defining (asymmetric) Γ and (symmetric) ∆ oracles which are used
in our proof.

Γ -oracles. Informally speaking, a Γ oracle is supposed to model an enhanced
trapdoor permutation. Thus, it has an oracle for specifying a function and its
trapdoor, and an oracle for computing the function (given the function identifier)
and inverting it (given the trapdoor). The functions themselves are all over
{0, 1}n and thus it is trivial to sample an element without knowing its inverse
(as is required for enhanced trapdoor permutations). Formally, we define a Γ -
oracle to be an oracle containing the following functions:

– GΓ (·) = (G1
Γ , G2

Γ) is a pair of injective functions such that on an input
r ∈ {0, 1}n, GΓ (r) = (G1

Γ (r), G2
Γ (r)) = (fid, tid) ∈ {0, 1}2n× {0, 1}2n. Note

that a party can query only GΓ and cannot query one of its components
separately.

– A function F (·, ·), such that for every fid ∈ Range(G1
Γ), F (fid, ·) is a per-

mutation over {0, 1}n and for every fid �∈ Range(G1
Γ) and every x ∈ {0, 1}n,

F (fid, x) =⊥.
– A function F−1 satisfying F−1(tid, F (fid, x)) = x for every x ∈ {0, 1}n and

every (fid, tid) ∈ Range(GΓ). If tid is not in the range of G2
Γ (·), then F−1

returns ⊥. Note that since G1
Γ and G2

Γ are injective functions, pairs of the
form (fid, tid) and (fid′, tid), where fid �= fid′ do not exist and F−1 is well
defined.

Uniform distribution over oracles – notation: We denote by UΓ the uni-
form distribution over Γ -oracles. Namely, an oracle OΓ = (GΓ , F, F−1) is dis-
tributed according to UΓ if G1

Γ and G2
Γ are two uniformly distributed injective

functions from {0, 1}n to {0, 1}2n and for every fid ∈ Range(G1
Γ), F (fid, ·) is

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 191

a uniformly distributed permutation over {0, 1}n. We write “OΓ is a random
Γ -oracle” as shorthand for “OΓ is distributed according to UΓ ”.

∆-oracles. Informally, a ∆ oracle is a symmetric oracle, meaning that anyone
with the ability to compute the function also has the ability to invert it. Specifi-
cally, we define a function P and its inverse that is analogous to F and F−1 in a
Γ oracle. For reasons that will become apparent later, we also define a function
Q and its inverse (this has no analogue in a Γ oracle). Formally, we define a
“∆-oracle” to be an oracle containing the following functions:

– G∆ is an injective function from {0, 1}n to {0, 1}2n.
– A function P (·, ·) such that for every fid ∈ Range(G∆), P (fid, ·) is a

permutation over {0, 1}n. For fid �∈ Range(G∆) and every x ∈ {0, 1}n,
P (fid, x) =⊥.

– P−1 is the inversion algorithm of P . Namely for every fid ∈ Range(G∆)
and x ∈ {0, 1}n, P−1(fid, P (fid, x)) = x. For fid �∈ Range(G∆) and every
x ∈ {0, 1}n, P−1(fid, x) =⊥.

– Q is an injective function from the range of G∆ to {0, 1}2n. Namely, for every
fid ∈ Range(G∆), Q(fid) ∈ {0, 1}2n, for every fid �= fid′ ∈ Range(G∆),
Q(fid) �= Q(fid′) and for every fid �∈ Range(G∆), Q(fid) =⊥.

– Q−1 is the inversion algorithm of Q. Namely, for every fid ∈ Range(G∆),
Q−1(Q(fid)) = fid. for every y �∈ Range(Q), Q−1(y) =⊥.

We denote by U∆ the uniform distribution over ∆-oracles. Namely, the or-
acle O∆ = (G∆, P, P−1, Q, Q−1) is distributed according to U∆, if G∆ is
a uniformly distributed injective function from {0, 1}n to {0, 1}2n, for every
fid ∈ Range(G∆), P (fid, ·) is a uniformly distributed permutation over {0, 1}n
and Q is a uniformly distributed injective function from the range of G∆ to
{0, 1}2n.

Note the difference between Γ -oracles and ∆-oracles. Γ -oracle have an asym-
metric nature: F and its inversion oracle F−1 use different keys. On the contrary,
∆-oracles have a symmetric nature: identical keys are used by P and its inversion
oracle P−1. (For this reason, we used a “symmetric” character ∆ for ∆-oracles
and an “asymmetric” character Γ for Γ -oracles.)

Γ -oracles versus ∆-oracles. We now show a bijection φ that maps every Γ -
oracle to a corresponding ∆-oracle. Let OΓ = (GΓ , F, F−1) be a Γ -oracle. φ(OΓ)
is the tuple of functions (G∆, P, P−1, Q, Q−1) satisfying:

– For every r ∈ {0, 1}n, it holds that G∆(r) = G1
Γ (r).

– For every r ∈ {0, 1}n, Q(G∆(r)) = G2
Γ (r), and for every fid �∈ Range(G∆),

Q(fid) =⊥.
– For every fid ∈ {0, 1}2n and x ∈ {0, 1}n, it holds that P (fid, x) = F (fid, x).
– P−1 and Q−1 are the inversion algorithms of P and Q.

Claim 1. φ is a bijection from the set of Γ -oracles to the set of ∆-oracles.

The above claim is proven in the full version of this paper and immediately
implies the following:

192 Y. Lindell and H. Zarosim

Corollary 2. The random variables U∆ and φ(UΓ) are identically distributed.

Enhanced trapdoor permutations relative to Γ -oracles. It is not difficult
to show there exist enhanced trapdoor permutations, as defined in [14], relative
to random Γ -oracles. Indeed, it can be shown that there exist enhanced trapdoor
permutations relative to measure 1 of the Γ -oracles. This is shown in the full
version. We remark also that semi-honest oblivious transfer with static corrup-
tions can be constructed from any enhanced trapdoor permutation [10] and thus
exists relative to measure 1 of the Γ -oracles.

3.2 Static OT 2
1 Relative to ∆-Oracles from Adaptive OT 2

1

In this section we prove that if there exists an adaptively secure OT 2
1 relative to

random Γ -oracles, then there exists a statically secure OT 2
1 relative to random ∆-

oracles. We actually prove a more general theorem that if there exists a protocol
for securely computing a functionality f in the presence of adaptive adversaries
relative to a random Γ -oracle, then there exists a protocol for securely computing
f in the presence of static adversaries relative to a random ∆-oracle. We restrict
our proof to two-party protocols only, but stress that the claim can be proved
similarly for multiparty protocols as well.

Let Π1 = 〈Alice1, Bob1〉 be a protocol for securely computing a functionality
f in the presence of adaptive adversaries relative a Γ -oracle. We use Π1 to
construct a new protocol Π2 = 〈Alice2, Bob2〉 for securely computing f in the
presence of static adversaries relative to a ∆-oracle.

Recall that the parties Alice2 and Bob2 have access to a ∆-oracle, while in
the original protocol, Alice1 and Bob1 have access to a Γ -oracle. There is a
fundamental difference between these two cases because a Γ -oracle is inherently
asymmetric (it is possible to send a party fid while keeping tid secret, thereby
enabling them to compute the permutation but not invert it), while a ∆-oracle
is inherently symmetric (the same fid is used to compute and invert the permu-
tation). The idea behind our proof is to eliminate the asymmetric nature of the
Γ -oracle by using the fact that in the adaptive setting (e.g., in the post-execution
corruption phase), the distinguisher can ultimately corrupt all parties. If it does
so, it obtains the entire view of all parties and in particular the view of any party
who samples a permutation using GΓ . The critical observation is that the prob-
ability of a party finding an fid in the range of GΓ without explicitly querying
it is negligible. However, if it does make such a query, then its view contains both
fid and tid and this will be obtained by the distinguisher upon corrupting the
parties. Thus, the distinguisher is able to compute and invert the permutation,
just like in the case of a ∆-oracle. The fact that the adaptive simulator must
simulate well even when the distinguisher works in this way (learning all fid, tid
pairs) is the basis for constructing a simulator for the static case when using a
∆-oracle.

We begin by defining Π2 = 〈Alice2, Bob2〉 which is constructed from Π1 by
replacing the Γ -oracle with a ∆-oracle:

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 193

Protocol Π2: On input xA, Alice2 invokes Alice1 on xA. On input xB , Bob2
invokes Bob1 on xB . The execution is described below for a party P2 emulating
P1, and is the same for both Alice2 and Bob2. In each round:

– When P2 gets the message sent by the other party in the previous round, it
hands it to P1.

– If P1 makes a query r to the oracle GΓ , P2 first queries G∆(r) and gets an
output fid. Then, P2 queries Q(fid) and gets an output tid. P2 hands the
pair (fid, tid) to P1.

– If P1 makes a query (fid, x) to F , P2 queries P (fid, x), receives an output
y and hands y to P1 (note that y may equal ⊥).

– If P1 makes a query (tid, y) to F−1, P2 first queries its oracle Q−1 on tid
and receives an output fid. If the outputs is ⊥, it hands ⊥ to P1. Otherwise,
P2 queries P−1(fid, y), obtains an output x and hands x to P1.

– If P1 writes a string m on its outgoing communication tape, P2 sends m to
the other party.

– At the end of the simulation, P2 outputs the output of P1.

We now prove that Π2 securely computes the functionality f in the presence
of semi-honest static adversaries.

Theorem 3. If Π1 securely computes the functionality f in the presence of
adaptive adversaries relative to a random Γ -oracle OΓ , then Π2 securely com-
putes f in the presence of static semi-honest adversaries relative to the ∆-oracle
φ(OΓ).

Proof Sketch: The intuition has already been described above and we there-
fore proceed directly to the proof. Let OΓ be an oracle that is distributed ac-
cording to UΓ . We show that if Π1 is a secure adaptive protocol for computing
f relative to OΓ , then Π2 is a secure static semi-honest protocol for computing
f relative to O∆ = φ(OΓ). It is easy to see that Π2 computes f relative to
O∆ because an execution of Π2 is, in fact, an execution of Π1 with a simulated
Γ -oracle which is exactly φ−1(O∆) = OΓ .

Next, we show that Π2 is a statically secure protocol relative to O∆. We use
the ideal-process simulator SIM of Π1 for the adaptive setting to construct two
probabilistic polynomial-time simulators SAlice2 and SBob2 for Π2 in the static
setting. Due to space restrictions, we present below only SBob2 (the simulator
SAlice2 is almost identical). Let A and Z be the following adversary strategy and
environment: Z starts with an input z ∈ {0, 1}. At the onset of the run of Π1, A
corrupts Bob1 and at the end of the computation outputs the entire view of Bob1.
In the postexecution phase, if z = 0, no corruptions are made and if z = 1, Z
creates a “corrupt Alice1” message, hands it to A who corrupts Alice. Eventually
Z outputs the entire view of the corrupted parties (that is: if z = 0, the view
of Bob alone and if z = 1, the view of both parties). No auxiliary information
is sent by Z to A. Let SIM be the ideal-process adversary guaranteed to exist
for A and Z by the security of Π1. We now use A, Z and SIM to define SBob2

(the static simulator for the case that Bob is corrupted). SBob2 receives the input

194 Y. Lindell and H. Zarosim

xB and output yB of Bob as defined by the functionality f and emulates the
run of SIM in the adaptive ideal model with environment Z with input z = 0.
Note that SIM must corrupt only Bob, because in the real world only Bob is
corrupted when z = 0. We also can assume, w.l.o.g. that SIM corrupts Bob in
the first corruption phase.
SBob2 receives input (xB , yB) and works as follows, simulating a Γ -oracle for

SIM using its ∆-oracle:

– If SIM makes a query r to the oracle GΓ , SBob2 queries its oracle G∆(r)
and receives an output fid. It then queries Q on fid, gets an output tid and
hands the pair (fid, tid) to SIM.

– If SIM makes a query (fid, x) to F , SBob2 queries it oracle P (fid, x), gets
an output y and hands it to SIM.

– If SIM makes a query (tid, y) to F−1, SBob2 first queries its oracle Q−1 on
tid, gets an output fid. If the outputs is ⊥, it hands ⊥ to SIM. Otherwise,
SBob2 queries P−1(fid, y), gets an output x and hands x to SIM.

– When SIM decides to corrupt Bob1, SBob2 plays the role of Z by sending
xB to SIM.

– In the computation phase, SBob2 plays the role of the trusted party and sends
yB to SIM (recall that SBob2 gets yB as input).

– At the end of the simulation, SBob2 outputs the output of SIM.

Informally speaking, we show that a distinguisher D2 for Π2 and SBob2 (rela-
tive to O∆) implies the existence of a distinguisher D1 for Π1 and SIM (relative
to OΓ). The idea is to have D1 simulate the run of D2 on the view of Bob. How-
ever, D2 has oracle access to a ∆-oracle O∆, while D1 has oracle access to a
Γ -oracle OΓ . This might be problematic for example if D2 wishes to compute
P−1(fid, y) but D1 doesn’t know the corresponding tid (recall that D1 can only
invert y in the Γ -oracle world if it holds the trapdoor tid whereas D2 can invert
y given fid only). Despite the above, we use the fact that the range of GΓ is
a negligible fraction of {0, 1}2n × {0, 1}2n, and therefore any fid used in the
protocol (except with negligible probability) must have been generated via a
query to GΓ , as described in the intuition above. More specifically, we show that
if there exists a distinguisher D2 that distinguishes the output of SBob2 from
the output of a corrupted Bob2 in a real execution of Π2, then there exists a
distinguisher D1 that distinguishes the result of an ideal execution with SIM
from a real execution of Π1 with adversary A and environment Z with input
z = 1, meaning that Alice is also corrupted at the end. (Note that we set z = 0
in order to define SBob2 , but now set z = 1 to construct the distinguisher. Since
SIM has to work for all inputs z to Z, this suffices.) Since both Alice and Bob
are corrupted in this execution, D1 obtains all of the (fid, tid) pairs generated
by queries to GΓ and so it can invert always, enabling it to run D2 and use its
Γ -oracle to answer all of D2’s ∆ queries.

Formally, the distinguisher D1 begins by initializing a table TQ that
will hold all pairs (fid, tid) generated by queries to the oracle. D1 invokes
〈AliceOΓ

1 , BobOΓ
1 〉 on the appropriate input and random tapes (recall that they

are a part of D1’s input) and for every access of one of the parties to GΓ ,

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 195

namely a query GΓ (r) = (fid, tid), D1 records the entry (fid, tid) in TQ. D1
starts simulating D2 on the view of Bob and proceeds as follows:

– If D2 makes a query G∆(r), D1 makes a query GΓ (r), gets a pair (fid, tid),
records the entry (fid, tid) in TQ and hands fid to D2.

– If D2 tries to compute Q(fid), D1 looks for an entry (fid, tid) in TQ. If such
an entry exists, it hands tid to D2 and continues. Else, it hands ⊥ to D2.

– If D2 tries to compute Q−1(tid), D1 looks for (fid, tid) in TQ. If such an
entry exists, it hands fid to D2 and continues. Otherwise, it hands ⊥ to D2.

– If D2 tries to compute P (fid, x), D1 queries its oracle F (fid, x) and returns
its answer.

– If D2 tries to compute P−1(fid, y), D1 checks whether an entry (fid, tid)
exists in TQ. If not, it returns ⊥. If yes, it queries F−1(tid, y) and returns
its answer.

There are two cases: If the simulated D2 does not make a query on an fid (or
its corresponding tid) in the range of G∆ that does not appear in TQ, then the
run of D1 with OΓ is identical to a run of D2 with O∆ and therefore D1 outputs
the same as D2. On the other hand, if the simulated D2 does make such a query,
then the output of D1 might be different than that of D1 (since, for such queries
D1 replies by ⊥, while the real O∆’s reply is different). However, D2 can find
such an fid (or tid) with only negligible probability and therefore if D2 is a
distinguisher for Π2, D1 is a distinguisher for Π1.

Remark 4. Theorem 3 is true only for random Γ -oracles. Specifically, if OΓ

is not a random Γ -oracle, then the claim that finding an fid in the range of
GΓ without making a query to it can happen only with negligible probability does
not necessarily hold, and therefore the theorem is not necessarily true for an
arbitrary Γ -oracle.

Needless to say, Theorem 3 holds for oblivious transfer as a special case.

3.3 No Static OT 2
1 Relative to ∆ Oracles

For the next step of our proof, we show that static OT 2
1 does not exist relative

to most ∆ oracles. In order to do this, we show that key agreement does not
exist relative to most ∆ oracles, and then derive the result from the fact that
secure OT 2

1 implies key agreement. In order to show that key agreement does not
exist relative to most ∆ oracles, we show that a ∆-oracle can be replaced with
a “plain random oracle”, with at most a negligible difference. Thus, the results
of [17] for key agreement relative to a plain random oracle hold also relative to
a ∆ oracle. We begin by formally defining a random oracle type, denoted ρ, and
show its relationship to ∆-oracles.

ρ-oracles. We define a ρ-oracle to be an oracle with the following functions:

– Gρ is an injective function from {0, 1}n to {0, 1}2n.

196 Y. Lindell and H. Zarosim

– GTEST is a function that returns a string in {0, 1}n on inputs in the range
of Gρ(·). For any other input, it returns ⊥. Note that GTEST is in fact a
tool for examining whether a string of size 2n is in the range of Gρ or not.3

– FP is a function that on a triple (I, k, x) ∈ {0, . . . , 5} × {0, 1}2n × {0, 1}n
2

returns a string y ∈ {0, 1}n
2 . Note that for a given I and k ∈ {0, 1}2n,

FP (I, k, ·) is a function from {0, 1}n
2 to {0, 1}n

2 .
– FQ is a function that on a pair (I, x) ∈ {0, . . . , 5} × {0, 1}n returns a string

y ∈ {0, 1}n. Thus, for a given I, FQ(I, ·) is a function from {0, 1}n to {0, 1}n.

Note that the output of Gρ is an fid – or symmetric key k – of length 2n
which defines 6 random functions FP (0, k, ·), . . . , FP (5, k, ·) which are then used
to simulate the P permutation of a ∆-oracle, using Luby-Rackoff. Likewise, the
index I in FQ is used for deriving 6 different function for Luby-Rackoff (there is
no “secret key” k for FQ because it is used for simulating the Q permutation in
a ∆ oracle which is not keyed).

We denote by Uρ the uniform distribution on ρ-oracles. Namely, we say that
a ρ-oracle Oρ = (Gρ, GTEST , FP , FQ) is distributed according to Uρ if Gρ is
a uniformly distributed injective function from {0, 1}n to {0, 1}2n, GTEST is a
uniformly distributed function from the range of Gρ to {0, 1}n (and for inputs
not in the range of Gρ, it returns ⊥), FP is a uniformly distributed function
from {0, . . . , 5}×{0, 1}2n×{0, 1}n

2 to {0, 1}n
2 and FQ is a uniformly distributed

function from (I, x) ∈ {0, . . . , 5} × {0, 1}n to {0, 1}n. We sometimes use the
phrase “Oρ is a random ρ-oracle” as an abbreviation for “Oρ is distributed
according to Uρ”.

∆-oracles versus ρ-oracles. We now use the Luby-Rackoff construction [20]
to replace a random ∆-oracle with a random ρ-oracle. We stress that unlike
Corollary 2, the distributions are only computationally indistinguishable.

Definition 5 (Feistel Permutation). Let f : {0, 1}l → {0, 1}l be a function
and let x1, x2 ∈ {0, 1}l. DESf is the permutation defined by DESf (x1, x2)

def=

(x2, x1⊕f(x2)). DESf1,...,fk
is the permutation defined by DESf1,...,fk

(x1, x2)
def=

DESf2,...,xk
(DESf1 (x1, x2)).

Note that inverting a Feistel permutation is no harder than computing it,
as DES−1

f (y1, y2) = (y2 ⊕ f(y1), y1). Intuitively, a Feistel permutation upon
a random ρ-oracle can be used in order to obtain an oracle that behaves
like a ∆-oracle. Formally, for a given ρ-oracle Oρ = (Gρ, GTEST , FP , FQ), an
fid ∈ {0, 1}2n and x1, x2 ∈ {0, 1}n

2 , we define six functions: f0 = FP (0, f id, ·),
f1 = FP (1, f id, ·), f2 = FP (2, f id, ·), f3 = FP (3, f id, ·) ,f4 = FP (4, f id, ·) and
f5 = FP (5, f id, ·). Then, the permutation PDES relative to a given oracle Oρ,
that simulates the P permutation in the ∆-oracle, is defined by

PDESOρ,fid(x1, x2)
def= DESf0,...,f5(x1, x2)

3 It was shown in [12] that the black-box separation of [17] holds when GTEST is
added to the oracle defined in [17].

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 197

Note that PDESOρ,fid is a permutation over {0, 1}n (similar to P (fid, ·) in a
∆-oracle). Let PDES−1

Oρ,fid be the inverse permutation. Similarly, for a given
ρ-oracle Oρ = (Gρ, GTEST , FP , FQ) and for x1, x2 ∈ {0, 1}n we define g0 =
FQ(0, ·), . . . , g5 = FQ(5, ·). (Recall that Q oracle queries in a ∆-oracle are not
keyed and thus when simulated using FQ in a ρ-oracle, no key is used.) We
define:

QDESOρ(x1, x2)
def= DESg0,...,g5(x1, x2)

As above, QDESOρ is a permutation over {0, 1}2n (similar to Q in a ∆-oracle).
Let QDES−1

Oρ
be the inverse permutation.

We define a mapping ψ from ρ to ∆ oracles. Let Oρ = (Gρ, GTEST , FP , FQ)
be a ρ-oracle. Then ψ(Oρ) = (G∆, P, P−1, Q, Q−1) is the following ∆-oracle:

– For every r ∈ {0, 1}n, G∆(r) = Gρ(r)
– For every fid ∈ Range(G∆) and all x ∈ {0, 1}n, P (fid, x) = PDESOρ,fid(x)
– For every fid �∈ Range(G∆) and for every x ∈ {0, 1}n, P (fid, x) =⊥
– For every fid ∈ Range(G∆), Q(fid) = QDESOρ(fid)
– For every fid �∈ Range(G∆), Q(fid) =⊥
– P−1 and Q−1 are the inverse functions of P and Q

We denote by ψ(Uρ) the distribution where a random ρ-oracle is chosen and then
ψ is applied to it. The following claim states that access to a random ∆-oracle
O∆ is essentially the same as access to a ∆-oracle ψ(Oρ), when Oρ is random.

Theorem 6 ([9]). There exists a simulator S and a negligible function µ, such
that for every machine D with unbounded running time which makes a polyno-
mial number of queries,∣∣∣Pr

[
DUρ,ψ(Uρ)(1n) = 1

]
− Pr

[
DSU∆ ,U∆(1n) = 1

]∣∣∣ < µ(n)

We remark that [9] refer to a plain random oracle and a plain random per-
mutation, without the additional fid generating and other functions. However,
Gρ = G∆ by definition, and so clearly Gρ can be simulated given G∆. Likewise,
GTEST can be simulated using P (because the latter returns ⊥ if the fid is not
in the range). We use Theorem 6 in order to prove the following theorem:

Theorem 7. If P = NP, then relative to measure 1 of ∆-oracles, there does
not exist any statically secure protocol for computing the OT 2

1 functionality.

In order to prove Theorem 7, we recall the original black-box separation of key
agreement from a random oracle, as proven in [17].

Theorem 8 ([17]). If P = NP, then given any key-agreement protocol relative
to a random ρ-oracle4, for every polynomial poly(·), there exists a polynomial
time Eve such that Eve finds all intersection queries with probability 1− 1

poly(n) .

4 [17] refer to a single random permutation oracle; however, the same proof can be
extended to ρ-oracles.

198 Y. Lindell and H. Zarosim

We first show that a similar argument holds relative to ∆-oracles (that is, every
key agreement protocol relative to a random ∆-oracle can be broken with proba-
bility 1− 1

poly(n)). Then, using the same methods as in [17], we show that relative
to measure 1 of ∆-oracles, any key-agreement can be broken in polynomial time.
As described in [12], it is possible to construct a secure key agreement from any
static oblivious transfer protocol and it is easy to verify that this construction
relativizes. Therefore, we conclude that relative to measure 1 of ∆-oracles, there
does not exist any statically secure protocol for computing the OT 2

1 functionality.
We begin by proving the following claim:

Proposition 9. If P = NP, then given any key-agreement protocol relative to
a random ∆-oracle, for every polynomial poly(·), there exists a polynomial time
Eve such that Eve finds all intersection queries with probability 1− 1

2poly(n) .

Proof Sketch: Let 〈A1,B1〉 be a key-agreement protocol relative to random ∆-
oracles. We use 〈A1,B1〉 to construct a key-agreement protocol 〈A2,B2〉 relative
to random ρ-oracles. Recall that A2 and B2 have oracle access to a ρ-oracle while
A1 and B1 have oracle access to a ∆-oracle. The idea is to use the ρ-oracle in
order to simulate a ∆-oracle while replacing queries to P , P−1, Q and Q−1 by
appropriate Feistel permutations obtained from FP and FQ.

Let 〈A2,B2〉 be the following protocol:

Protocol 1. On input 1n, A2 invokes A1 on 1n and B2 invokes B1 on 1n. The
execution is described below for a party P2 emulating P1, and is the same for
both A2 and B2. In each round:

– When P2 gets the message sent by the other party in the previous round, it
sends it to P1.

– If P1 makes a query r to oracle G∆, P1 queries it oracle Gρ(r), and hands
the output to P1.

– If P1 makes a query P (fid, x), P1 queries its oracle GTEST on fid (recall
that GTEST (fid) returns ⊥ if and only if fid is not in the range of Gρ). If
the oracle returns ⊥, P1 returns ⊥ as well. Otherwise, uses its oracle FP to
compute y = PDESOρ,fid(x) and hands y to P1.

– If P1 makes a query P−1(fid, y), P1 queries GTEST on fid. If it returns
⊥, P1 returns ⊥ as well. Otherwise, P1 uses its oracle FP to compute x =
PDES−1

Oρ,fid(y) and hands x to P1.
– If P1 makes a query Q(fid), P1 queries GTEST on fid. If it returns ⊥,
P1 returns ⊥ as well. Otherwise, it uses its oracle FQ to compute tid =
QDESOρ(fid) and hands tid to P1.

– If P1 makes a query Q−1(tid), P1 uses its oracle FQ to compute fid =
QDES−1(tid) and queries GTEST (fid). If it returns ⊥, P1 returns ⊥ as
well. Otherwise, P1 hands fid to P1.

– If P1 writes a string m on its outgoing communication tape, P1 sends m to
the other party.

– At the end of the protocol, P1 outputs the output of P1.

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 199

Now, assume P = NP . Let poly(·) be some polynomial and let Eve2 be as in
Theorem 8. We use Eve2 to construct an adversary Eve1 for 〈A1,B1〉. Eve1 sim-
ply invokes Eve2 and simulates the ρ-oracle using the simulator S guaranteed
to exist by Theorem 6. Note that if Eve1 outputs a list of intersection queries
with probability less than 1 − 1

2poly(n) , then it is possible to distinguish oracles
Uρ, ψ(Uρ) from SU∆ ,U∆ with non-negligible probability. Specifically, given a pair
of oracles (O1,O2) that are distributed according to Uρ, ψ(Uρ) or SU∆ ,U∆, dis-
tinguisher D first invokes a run of 〈AO2

1 ,BO2
1 〉 and then invokes EveO1

2 on the
transcript. D outputs 1 if and only if Eve2 outputs all intersection queries. Now,
if (O1,O2) are distributed according to Uρ, ψ(Uρ) then Eve2 outputs all intersec-
tion queries with probability at least 1− 1

poly(n) , and if (O1,O2) are distributed
according to SU∆ , U∆ then Eve2 outputs all intersection queries with probability
less than 1− 1

2poly(n) . Thus D distinguishes with non-negligible probability.

Remark 10. Theorem 6 holds even when P = NP since the running time of
D is unbounded.

The following corollary can be proved using the same methods as in [17] (the
only difference between it and what was proven in [17] is the type of oracle used):

Corollary 11. If P = NP, then for measure 1 of ∆-oracles, any key-agreement
protocol can be broken in polynomial time.

Recalling that the existence of a secure OT 2
1 relative to an oracle O implies the

existence of a secure key agreement relative to O, we obtain:

Corollary 12. If P = NP, then for measure 1 of ∆-oracles, there does not
exist any statically secure protocol for computing the OT 2

1 functionality.

3.4 Concluding the Proof

Theorem 3 states that if there exists an adaptively secure protocol for OT 2
1

relative to a given Γ oracle O, then there exists a statically secure protocol
for OT 2

1 relative to the oracle φ(O). Now, by Theorem 7, for measure 1 of ∆
oracles, there exists no statically secure OT 2

1 . Using the fact that φ is a bijection
(Claim 1), we conclude that for measure 1 of Γ oracles, there exists no adaptively
secure OT 2

1 . That is, we have the following:

Theorem 13. If P = NP, then for measure 1 of Γ -oracles, there does not exist
any adaptively secure protocol for computing the OT 2

1 functionality.

Similarly to [17], we derive an oracle separation of enhanced trapdoor permuta-
tions form adaptively secure OT 2

1 (even for semi-honest adversaries):

Corollary 14. There exists an oracle relative to which enhanced trapdoor per-
mutations exist, but not adaptively secure OT 2

1 .

Proof: LetO be a PSPACE-complete oracle combined with a random Γ -oracle.
Enhanced trapdoor permutations exist relative to O whereas adaptively secure
OT 2

1 does not, as we have shown.

200 Y. Lindell and H. Zarosim

Acknowledgements. We thank Omer Reingold for helpful discussions.

References

1. Beaver, D.: Adaptive Zero Knowledge and Computational Equivocation. In: 28th
STOC, pp. 629–638 (1996)

2. Beaver, D.: Adaptively Secure Oblivious Transfer. In: Ohta, K., Pei, D. (eds.)
ASIACRYPT 1998. LNCS, vol. 1514, pp. 300–314. Springer, Heidelberg (1998)

3. Bellare, M., Micali, S., Ostrovsky, R.: Perfect Zero-Knowledge in Constant Rounds.
In: 22nd STOC, pp. 482–493 (1990)

4. Blum, M.: Coin Flipping by Phone. In: IEEE Spring COMPCOM, pp. 133–137
(1982)

5. Blum, M.: How to Prove a Theorem So No One Else Can Claim It. In: Proceedings
of the International Congress of Mathematicians, USA, pp. 1444–1451

6. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

7. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable
Two-Party and Multi-Party Computation. In: 34th STOC, pp. 494–503 (2002),
http://eprint.iacr.org/2002/140

9. Coron, J.S., Patarin, J., Seurin, Y.: The Random Oracle Model and the Ideal Ci-
pher Model are Equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 1–20. Springer, Heidelberg (2008)

10. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of the ACM 28(6), 637–647 (1985)

11. Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in Two Rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidel-
berg (1990)

12. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The Rela-
tionship Between Public Key Encryption and Oblivious Transfer. In: 41st FOCS,
pp. 325–335 (2000)

13. Gertner, Y., Malkin, T., Reingold, O.: On the Impossibility of Basing Trapdoor
Functions on Trapdoor Predicates. In: The 42nd FOCS, pp. 126–135 (2001)

14. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but their Va-
lidity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the
ACM 38(1), 691–729 (1991)

16. Impagliazzo, R., Luby, M.: One-way Functions are Essential for Complexity Based
Cryptography. In: The 30th FOCS, pp. 230–235 (1989)

17. Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-way
Permutations. In: 21st STOC, pp. 44–61 (1989)

18. Itoh, T., Ohta, Y., Shizuya, H.: A Language-Dependent Cryptographic Primitive.
Journal of Cryptology 10(1), 37–49 (1997)

19. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the Efficiency of One-Way
Permutation-Based Hash Functions. In: The 40th FOCS, pp. 535–542 (1999)

20. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM Journal on Computing 17(2), 373–386 (1988)

http://eprint.iacr.org/2002/140

Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 201

21. Micciancio, D., Vadhan, S.: Statistical Zero-Knowledge Proofs with Efficient
Provers: Lattice Problems and More. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

22. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent Zero Knowledge with-
out Complexity Assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 1–20. Springer, Heidelberg (2006)

23. Naor, M.: Bit Commitment Using Pseudorandomness. Journal of Cryptology 4(2),
151–158 (1991)

24. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryp-
tographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

25. Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

26. Vadhan, S.P.: An Unconditional Study of Computational Zero Knowledge. In: The
45th FOCS, pp. 176–185 (2004)

On the (Im)Possibility of
Key Dependent Encryption�

Iftach Haitner1,�� and Thomas Holenstein2,� � �

1 Microsoft Research, New England Campus
iftach@microsoft.com

2 Department of Computer Science, Princeton University
tholenst@princeton.edu

Abstract. We study the possibility of constructing encryption schemes
secure under messages that are chosen depending on the key k of the
encryption scheme itself. We give the following separation results that
hold both in the private and in the public key settings:

– Let H be the family of poly(n)-wise independent hash-functions.
There exists no fully-black-box reduction from an encryption scheme
secure against key-dependent messages to one-way permutations
(and also to families of trapdoor permutations) if the adversary can
obtain encryptions of h(k) for h ∈ H.

– There exists no reduction from an encryption scheme secure against
key-dependent messages to, essentially, any cryptographic assump-
tion, if the adversary can obtain an encryption of g(k) for an arbi-
trary g, as long as the reduction’s proof of security treats both the
adversary and the function g as black boxes.

Keywords: Key-dependent input, Black-box separations, One-way
functions.

1 Introduction

A cryptographic primitive is key-dependent input secure, or KDI-secure for short,
if it remains secure also in case where the input depends on the secret key. In the
case of encryption schemes, KDI-security means that the adversary can obtain,
in addition to the usual queries, encryptions of h(k), where k is the key of the
scheme and h is chosen by the adversary from some (hopefully large) family of
functions H.

On a first look it might seem that by using the right design it is possible to
prevent any “KDI-attacks” on the encryption scheme, and thus achieving such
strong security would be only of pure theoretical interest. It turns out, however,

� All omitted proofs can be found in [HH08].
�� This work was performed while at Weizmann Institute of Science and at Microsoft

Research, Silicon Valley Campus.
� � � This work was performed while at Microsoft Research, Silicon Valley Campus.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 202–219, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

On the (Im)Possibility of Key Dependent Encryption 203

that such attacks might “naturally” arise when considering complex systems.
For instance, in the BitLocker disk encryption utility (used in Windows Vista),
the disk encryption key can end up being stored on the disk and thus encrypted
along with the disk contents. For more details on the importance of KDI-security,
see [BHHO08] and references within.

In this work we study the possibility of obtaining such an encryption scheme
both from one-way functions and from other hardness assumptions. In particular,
we exclude different types of reductions from a KDI-secure encryption scheme to
different hardness assumption. Intuitively, a black-box reduction of a primitive
P to a primitive Q is a construction of P out of Q that ignores the internal
structure of the implementation of Q and just uses it as a “subroutine” (i.e., as
a black box). The reduction is fully-black-box (following [RTV04]) if the proof
of security (showing that an adversary that breaks the implementation of P
implies an adversary that breaks the implementation of Q) is also black-box
(i.e., the internal structure of the adversary that breaks the implementation of
P is ignored as well).

Our first result shows that there is no fully-black-box reduction from KDI-
secure encryption schemes to one-way permutations, even if the KDI-security
is only against the relatively small class of poly(n)-wise independent hash-
functions. When considering reduction from a KDI-secure encryption scheme,
it is natural to ask whether the proof of security accesses the challenge func-
tion h in a black-box manner as well. Our second result, however, shows that
under this restriction essentially no hardness assumption implies a KDI-secure
encryption scheme.

1.1 Related Work

KDI security. The development of encryption secure against key-dependent in-
puts started by the works of Abadi and Rogaway [AR02]. They studied formal
security proofs for cryptographic protocols (as described by [DY83]), and showed
that these imply security by a reduction, as long as no key-cycles exist in the
protocol, i.e., there is a partial order � on the keys exists such that a message
depending on k1 would only be encrypted with k2 if k1 � k2. Since this is a
restriction (even though it may be a very natural one), the community became
aware that it would be desirable to create encryption schemes that provide se-
curity even in the existence of such key cycles. Consequently, Black, Rogaway,
and Shrimpton [BRS02] define the (possibly stronger) notion of KDI-security
for symmetric encryption schemes, and show how to obtain this notion in the
random-oracle model. In such a scheme, an adversary can obtain encryptions
of h(k) under the key k, where h is given as a circuit to an encryption oracle.
Such a scheme implies the security of the scheme under cycles as well. Indepen-
dently of [BRS02], a notion of circular security has been defined by Camenisch
and Lysyanskaya [CL01], considering asymmetric encryption schemes as well.

Recently, Halevi and Krawczyk [HK07] generalized the notion of KDI-security
to other cryptographic primitives, such as pseudorandom functions. They also
coined the name KDI for this sort of security (previously, it was named

204 I. Haitner and T. Holenstein

key-dependent message security). Their results in this setting are mainly for
the construction of pseudorandom functions. In addition, [HK07] shows that a
deterministic encryption scheme cannot be KDI-secure. Independently and con-
currently of [HK07], Hofheinz and Unruh [HU08] provided private-key encryp-
tion schemes secure under a limited class of KDI-attacks. The main limitation of
their work is that the scheme only remains secure as long as h(k) is significantly
shorter than the key; also, after every application of the encryption scheme the
key is updated. This makes the construction insufficient for the initial motiva-
tion of allowing key cycles in cryptographic protocols. Very recently, Boneh et al.
[BHHO08] presented a public-key encryption scheme that is KDI-secure (assum-
ing that the DDH assumption holds) against the family of affine transformations
over the messages’ domain. Their system remains secure also when key-cycles
are allowed.

Black-box impossibility results. Impagliazzo and Rudich [IR89] showed that there
is no black-box reduction of key-agrement to one-way permutations and addi-
tional work in this line followed (cf., [GKM+00, Rud88, Sim98]). Kim, Simon
and Tetali [KST99] initiated a new line of impossibility results, by providing
a lower bound on the efficiency any black-box reduction of universal one-way
hash functions to one-way permutations, substantial additional work in this line
followed (cf., [GGKT05, HHRS07, HK05, Wee07]). Dodis et al. [DOP05] (and
also [Hof08]) give a black-box separation of a similar flavor to the one given in
Theorem 2, in the sense that it excludes a large family of hardness assumptions.

1.2 Contributions of This Paper

In this paper we give two impossibility results for security proofs of constructions
of KDI-secure private-key encryption schemes. However, since every public-key
encryption scheme can be also viewed as a private-key scheme (i.e., both parties
use the same private/public key), our impossibility results immediately extend to
the public-key case. Our first result is a black-box separation of KDI encryption
scheme from one-way permutations and from (even enhanced) family of trapdoor
permutations.

Theorem 1. Let (Enc, Dec) be an encryption scheme that is fully-black-box con-
structed from one-way permutations. Then there exists an efficient family H of
poly(n)-wise independent hash functions such that the following holds: there ex-
ists no black-box reduction from breaking the KDI-security of (Enc, Dec) against
H to inverting one-way permutations. Furthermore, the above holds also with
respect to (enhanced) families of trapdoor permutations.

For our second result, we assume that the challenge function itself under which
the scheme should be KDI-secure is treated by the proof of security as a black
box. Moreover, the proof of security does not forward an access to the challenge
function to a “third party”. We call such a reduction strongly-black-box.

Theorem 2 (informal). There exists no reduction with strongly-black-box proof
from the KDI-security of an encryption scheme to the security of ”any crypto-
graphic assumption”.

On the (Im)Possibility of Key Dependent Encryption 205

We stress that the construction of the encryption scheme considered in Theo-
rem 2 can be arbitrary. The formal statement of Theorem 2 is given in Section 4.

1.3 Interpretation of Our Results

So what should we think on the possibility of building KDI-secure encryption
scheme given the above negative results? Let us start with Theorem 1 and let’s
first consider the fully-black-box restrictions. We remark that while quite a few
black-box impossibility results of these types are known (see Section 1.1), there
is not even a single known example where we have an impossibility result of
the type given in Theorem 1, and yet a “non-black-box” reduction was found.1

We also remark that the reductions given in [BHHO08, HK07, HU08] are fully-
black-box. The second issue is that we only rule out security against poly-wise
independent hash function, where the value for “poly” is determined as a function
of the encryption scheme. It seems, however, that in most settings one cannot
limit the power of the queries used in the KDI attack (but merely assume that
these functions should be efficiently computable). Typically, when designing an
encryption scheme, the exact configuration of each of the systems in which the
scheme is going to be used is unknown. These configurations, however, determine
the challenge functions “used” in the KDI attacks.

In Theorem 2 we consider arbitrary constructions, but require only black-box
access to the challenge functions. This additional restriction actually reflects
three separate restrictions. The first is that the proof has only input/output ac-
cess to the challenge function, the second is that the challenge function cannot
be assumed to be efficient, and the third is that the reduction “knows” all the
queries made to the challenge functions (we force the last restriction by disal-
lowing the reduction to give a third party an handle to the challenge function).
While the first two restrictions seem to be a real limitation on the generality of
our second result, the third restriction is harmless in most settings. In particular,
this is the case where the hardness assumption does not accept (even implicitly)
handler to functions. This list includes all the “non-interactive hardness assump-
tions” such as one-way functions, factoring, DDH etc.2

1.4 Our Technique

In the proof of both our results, we are using the same oracle, Breaker, that
helps us to break the KDI-security of every encryption scheme. Let (Enc, Dec)
be some fixed encryption scheme. On input (h, c), where h is some length doubling
1 The superiority of non-black-box techniques was demonstrated by Barak [Bar01] in

the settings of zero-knowledge arguments for NP. In these settings, however, the
black-box access is to the, possibly cheating, verifier and not to any underlying
primitive.

2 The only exception we could think of for a reduction that benefits from passing the
handler to the challenge function to a third party, is a reduction from one KDI-
secure encryption scheme B to another KDI-secure encryption scheme A. In such a
reduction, the security proof of scheme B typically forwards the challenge function
to the security proof of scheme A.

206 I. Haitner and T. Holenstein

function and c is a ciphertext, Breaker considers all possible keys, and returns
the first key k for which Dec(k, c) = h(k), or ⊥ if no such key exists. It is
not hard to see that (Enc, Dec) is not KDI-secure, with respect to h, in the
presence of Breaker. Therefore, our impossibly results follow if Breaker does not
help to violate the underlying hardness assumption. For this, we need to assume
that Breaker is only called with functions h that are chosen uniformly from the
respective set of challenge functions. We ensure this by restricting the functions h
for which Breaker performs the above computation to one that is randomly
chosen (and then give the adversary access to it). Under this restriction, we
manage to prove that Breaker does not help in breaking the assumption. Proving
this is our main technical contribution (note that Breaker cannot be implemented
efficiently) and we prove it differently in each of our separation results.

One-way permutations. Let π be a random permutation and let (Decπ, Encπ) be
a candidate of a KDI-secure encryption scheme given π as the one-way permu-
tation. We find a polynomial p(n) (which depends on Dec and Enc) and use a
family of length-doubling p(n)-wise independent hash-functions as the challenge
functions. Imagine now that a call of A to Breaker helps A to invert π. Then, the
behavior of Breaker must be very different for a large number of potential preim-
ages of y, as otherwise the call gave roughly no information about the preimage
of y. We show, however, that for all but a negligible fraction of the functions h,
the behavior of Breaker will be the same for most possible preimages of y, no
matter how the ciphertext is chosen.

Arbitrary assumptions. In this we use the family of all length-doubling functions
as the challenge functions. The idea is that for a random h in the family, all calls
to Breaker (done outside of the KDI game) are very likely to be answered with ⊥.
The reason is that for a fixed k ∈ {0, 1}t, the probability that Dec(k, c) = h(k)
is roughly 2−2t. This somewhat naive intuition is actually false, as it can fail
in the following way: A picks a key k′ itself, queries h(k′), encrypt this with k′

itself, and gives the resulting ciphertext to Breaker. We prove, however, that this
is essentially the only way in which the above intuition fails. Thus, instead of
calling Breaker, A can as well check the keys on which h was previously queried,
which can be done efficiently. We conclude that if there is a reduction with
strongly-black-box proof of security from a KDI encryption scheme to a given
hardness assumption, then the hardness assumption is false.

2 Preliminaries

2.1 Notation

We denote the concatenation of two strings x and y by x ◦ y. If X is a random
variable taking values in a finite set U , then we write x← U to indicate that x is
selected according to the uniform distribution over U . We often use probabilities
where we choose an oracle π from some uncountable set of oracles at random. It
is possible to defined these using Lebesgue measure and an appropriate mapping
of oracles to [0, 1).

On the (Im)Possibility of Key Dependent Encryption 207

2.2 Many-Wise Independence

We use standard facts on s-independence, as well as the following upper bound
on the probability that many s-wise independent events occur, where each event
has low probability.3. The proof is omitted in this version.

Lemma 1. For s, V ∈ N let B1, . . . , BV be s-wise independent Bernoulli random
variables with Pr[Bi = 1] ≤ 1

V . If α > s, then Pr
[∑V

i=1 Bj ≥ α
]

< log(V)
αs−1 .

2.3 Encryption Schemes and KDI Security

We define a (private-key) encryption scheme as a pair of an encryption and
a decryption algorithm (Enc, Dec). On security parameter n, the encryption
algorithm Enc gets as input a key of length t(n) and a message of length m,
and outputs a ciphertext of length �(n, m). The decryption algorithm Dec, gets
a key and a ciphertext and outputs the message.4 Informally, an encryption
scheme (Enc, Dec) is KDI-secure against a family of functionsH ⊆ {h : {0, 1}t →
{0, 1}∗}, if no efficient adversary can distinguish between an oracle that correctly
returns an encryption of h(k), given input h, and one that returns an encryption
of the all zero string of the same length. Note that if H contains functions that
map to constants, plain-text queries can be obtained as well.

Definition 1 (KDI-security). Given an encryption scheme (Enc, Dec) and a
key of length t, let QEnc,k [resp. Q̃Enc,k] be an algorithm that gets as input a
function h : {0, 1}t �→ {0, 1}m(t), and returns Enc(k, h(k)) [resp. Enc(k, 0m(t))]
(if the schemes is randomized, it returns a random encryption). We say that
(Enc, Dec) is KDI-secure for a class of functions H, if∣∣∣Prk←{0,1}t(n) [AQEnc,k

(1n) = 1]− Prk←{0,1}t(n) [AQ̃Enc,k

(1n) = 1]
∣∣∣

is negligible for every efficient algorithm A that only queries functions in H.

2.4 Cryptographic Games

For reductions that treat the family H of query-functions as black-box, we are
able to prove a very strong impossibility result. In this case, we show that essen-
tially no cryptographic assumption is sufficient to guarantee the KDI-security of
the scheme. In order to do this, we first define the set of cryptographic assump-
tions we consider.5 For the sake of readability, however, we will not try to be as
3 The usual bounds seem not strong enough in our setting, as they focus on the range

where the probability of a single event is constant. Here, the probability of a single
event decreases as the number of events increases, and we use a different bound.

4 In some definitions, a private-key encryption scheme also includes a key-generation
algorithm “Gen”. We omit this since we are not concerned by polynomial factors,
and in this case one can simply take the random-coins used by Gen as the private
key.

5 We remark that definitions of similar spirit to the one below were previously used
in [DOP05, Hof08].

208 I. Haitner and T. Holenstein

general as possible here. Yet, as far as we can see our definition still captures all
natural hardness assumptions.

Definition 2 (cryptographic games). A cryptographic game is a (possibly
inefficient) random system Γ that on security parameter n interacts with an at-
tacker A and may output a special symbol win. In case Γ (1n) outputs this symbol
in an interaction with A(1n), we say that A(1n)↔ Γ(1n) wins. The game is se-
cure if Pr[A(1n)↔ Γ (1n) wins] is negligible for all ppt A, where the probability
is over the randomness of A and Γ .

Examples: One might define the security of a one-way function f by the following
game. On security parameter n, the system Γ selects a random x ∈ {0, 1}n and
sends y = f(x) to the adversary. Γ outputs win if A outputs x′ ∈ f−1(y).

To define the DDH hardness assumption one needs a bit more work.6 On se-
curity parameter n, the system Γ expects first a sequence of at least n ones, we
denote the actual number received by α. The system Γ then sends A a description
of an appropriately chosen group 〈g〉 of order Ω(2n) and the generator g, as well
as α randomly chosen triples (gxi , gyi , gzi), where zi = xiyi or a uniform random
element, each with probability 1

2 . The attacker A wins, if the number of instances
where he incorrectly predicts whether zi was chosen independently of xi and yi, is
at most α

2 −α2/3. Using [IJK07, Theorem 1], one can now show that winning the
above is equivalent to the DDH assumption, we omit the details in this version.

2.5 Black-Box Reductions

A reduction from a primitive P to a primitive Q consists of showing that if
there exists an implementation C of Q, then there exists an implementation MC

of P . This is equivalent to showing that for every adversary that breaks MC ,
there exists an adversary that breaks C. Such a reduction is semi-black-box if
it ignores the internal structure of Q’s implementation, and it is fully-black-box
(using the terminology of [RTV04]) if it also has black-box proof of security.
That is, the adversary for breaking Q ignores the internal structure of both
Q’s implementation and of the (alleged) adversary breaking P . The following
definition expands the above general discussion for the case of a fully-black-box
reduction of a KDI-secure encryption scheme from a one-way permutation.

Definition 3 (fully-black-box reduction). A fully-black-box reduction of a
KDI-secure encryption scheme from a one-way permutation consists of poly-
nomial-time oracle-aided algorithms (Enc(·), Dec(·)) and a polynomial-time or-
acle-aided adversary A

(·)
OWP, such that the following hold:

– If f is a permutation, then (Encf , Decf) is an encryption scheme.
– For any (possibly unbounded) AKDI that breaks the KDI-security of the en-

cryption scheme, Af,AKDI
OWP inverts the permutation with non-negligible proba-

bility.
6 The same argument can be applied for many other assumptions, but we refrain from

formalizing this in order no to get bogged down in unrelated details.

On the (Im)Possibility of Key Dependent Encryption 209

When considering reductions from a KDI-secure cryptosystem, it is natural
to consider whether the proof of security accesses the challenge functions also as
a black box. We say that a proof of KDI-security of a cryptosystem is strongly-
black-box, if it treats the challenge function also as a black-box.

Definition 4 (strongly-black-box reduction). A reduction from a KDI-se-
cure encryption scheme to a cryptographic game Γ with strongly-black-box proof
of security, consists of polynomial-time oracle-aided algorithms (Enc, Dec) and
a polynomial-time oracle-aided adversary A

(·)
Γ such that the following holds:

– (Enc, Dec) is an encryption scheme.
– For any adversary AQ

KDI that breaks the KDI-security of (Enc, Dec), the
oracle-aided adversary A

(AKDI)
Γ violates the security of Γ . Additionally, AΓ

treats the challenge functions provided by AKDI as a black box.

The requirement that AΓ treats the challenge function as black-box, means that
AΓ can only obtain evaluations of it at arbitrary chosen points and the reduction
must work for every challenge function (not just efficiently computable ones).
In addition, AΓ does not provide Γ with a description of the function.7

2.6 Extending KDI-Secure Encryption Schemes

We would like to make sure our impossibility results hold even for encryption
schemes that encrypt messages of length one bit. For technical reasons, however,
we will actually need to encrypt messages of length 2t, where t is the key length.
We therefore give a straightforward, but slightly tedious transformation that
allows us to do that. (In fact, the following transformation does slightly more,
in order to make the technical part in Sections 3 and 4 a bit easier.) We omit
the proof of it in this version.

Proposition 1. Let (Enc, Dec) be an encryption scheme for single bit messages.
Assume (Enc, Dec) is KDI-secure for a given set H ⊆ {{0, 1}t → {0, 1}}, then
there exists an encryption scheme (Enc1, Dec1) with the following properties:

(a) The key length t1 of (Enc1, Dec1) equals the security parameter. (b) (Enc1,
Dec1) is defined for messages of arbitrary length. (c) (Enc1, Dec1) is KDI-secure
for H1 :=

{
h : {0, 1}t → {0, 1}∗ : ∀i, ∀τ ∈ {0, 1}t1−t : h|i(x, τ) ∈ H}, where h|i

is the function that outputs the i’th bit of the output of h.8 (d) (Enc1, Dec1)
has perfect correctness. (e) (Enc1, Dec1) has deterministic decryption. (f) If
(Enc, Dec) has a strongly-black-box [resp. black-box] proof of security to a cryp-
tographic game Γ , then (Enc1, Dec1) has a strongly-black-box [resp. black-box]
proof of security to Γ .

7 Alternatively, given AΓ ’s (partial) view, it is possible to (efficiently) list all the
queries done to the challenge function during the execution.

8 Namely, H1 is the set of functions with the property that every output bit is described
by a function in H, after some appropriate padding of the input.

210 I. Haitner and T. Holenstein

3 From One-Way Permutations

In this section we prove Theorem 1, but we only give the proof for the case of
one-way permutations. The proof for (enhanced) family of trapdoor permuta-
tions follows immediately using standard techniques (cf., [GT00, HHRS07]). Let
(Enc(·), Dec(·)) be an encryption scheme with oracle access to a one-way permu-
tation. By Proposition 1, we can assume that the encryption scheme is always
correct, has a deterministic decryption algorithm, defined on messages of any
polynomial length and has a security parameter t equal to it’s key length. We
let �(t) be the length of an encryption of a message of length 2t. In order to
prove Theorem 1, we use the following inefficient algorithm Breakerf,h.

Algorithm 3 Breakerf,h.

Oracles: A function f : {0, 1}t × {0, 1}�(t) �→ {0, 1}2t (defined for every t ∈ N)
and an infinite sequence of functions h =

{
ht : {0, 1}t �→ {0, 1}2t

}
t∈N

.
Input: A pair (t, c) ∈ N× {0, 1}∗.
Operation: Return the smallest k ∈ {0, 1}t such that f(k, c) = ht(k), or ⊥ if

no such k exists.

Let Π = {Πt}t∈N
, where Πt is the set of all possible permutations over {0, 1}t,

and let H = {Ht}t∈N
, where ht is a family of (�(t) + t)-wise independent hash

functions from {0, 1}t to {0, 1}2t with polynomial description size. We denote by
π = {πt}t∈N

← Π [resp., h = {ht}t∈N
← H] the sequence of functions induced by

selecting, for every t ∈ N, πt uniformly at random from Πt [resp., ht uniformly
at random from Ht]. In this section, we consider an instantiation of Breaker with
f = Decπ, where π is chosen at random from Π , and h chosen at random fromH.
In Section 3.1, we show how to use BreakerDecπ ,h for violating the KDI-security
of (Encπ, Decπ), where in Section 3.2 we show that BreakerDecπ,h does not help
inverting a random π. We prove Theorem 1 in Section 3.3.

3.1 Breaker Violates the KDI-Security of the Scheme

The following adversary uses BreakerDecπ,h for breaking the KDI-security of
(Encπ, Decπ).

Algorithm 4 Algorithm ABreakerDecπ,h,h
KDI .

Oracles: An infinite sequence of functions h =
{
ht : {0, 1}t → {0, 1}2t

}
t∈N

and
BreakerDecπ,h.

Input: Security parameter t.
Operation:

Step 1: Call Q(ht) [or Q̃(ht)] to obtain an encryption c of ht(k) [or 02t].
Step 2: Call BreakerDecπ ,h(t, c) to obtain a candidate key k′ or ⊥.
Step 3: Output 1 iff Breaker did not return ⊥.

Lemma 2. For every value of π ∈ Π, algorithm ABreakerDecπ,h,h
KDI breaks the KDI-

security of the (Encπ, Decπ) with probability one over a random choice of h ∈ H.

On the (Im)Possibility of Key Dependent Encryption 211

Proof. Algorithm AKDI only gives the wrong answer if the oracle is Q̃ and Breaker
does not return ⊥. Assume now that the oracle is Q̃. Then, for any fixed k′ and k
we have Prht [ht(k′) = Dec(k′, Enc(k, 02t))] = 1

22t , and using the union bound we
have that the for a fixed k the probability that Breaker does not return ⊥ is
at most 2−t.9 Using an averaging argument, the probability that ht is such
that something else but ⊥ is returned with probability higher than 2−t/2 is at
most 2−t/2.

Since the ht ∈ h’s are chosen independently from each other, the probability
that there exists t0 ∈ N for which AKDI breaks the scheme for no t > t0 is zero.
We conclude that with probability one over the random choice of h ∈ H, it holds
that AKDI breaks the KDI-security of (Enc, Dec) infinitely often.

3.2 Breaker Does Not Invert Random Permutations

We prove the following upper bound on the probability that an algorithm with
access to Breaker inverts a random permutation. In the following let µA(n) be an
upper bound on number of π queries and the length of the maximal π query that
A does on input y ∈ {0, 1}n (either directly or through the calls to BreakerDecπ,h),
and let µDec(t) the same bound with respect to the π queries that Dec does on
input (k, c) ∈ {0, 1}t × {0, 1}�(t). We assume without loss of generality that
both upper bounds are monotonically increasing, that µDec(t) ≥ t + �(t) and
that µA(n) ≥ n. We also assume that µDec(t) < 2t.

Lemma 3. Let A be an adversary that gets h as an auxiliary input10 and has
oracle access to π and BreakerDecπ,h. Then for every y ∈ {0, 1}n it holds that

Prπ←Π,h←H[A(π,Breaker)
h (y) = π−1(y)] < 3µA(n)

(
2−µ−1

Dec(n) + µDec(µA(n))22−n
)
,

where µ−1
Dec(n) := min {t ∈ N : µDec(t) ≥ n}.

Applying the Borel-Cantelli lemma on the above we get the following corollary.

Corollary 1. Assume that A and Dec are polynomially bounded, then there ex-
ists a negligible function ε such that with probability one over the choice of π

and h, Pry←{0,1}n [A(π,BreakerDecπ,h)
h (y) = π−1(y)] < ε(n) for large enough n.

In Appendix A, we give a proof of a non-uniform version of Lemma 3 (the ad-
versary can use an arbitrary additional non-uniform advice) using the technique
introduced by Gennaro and Trevisan [GT00]. Here, we use a different technique
that is similar to the one used by Simon [Sim98]. The main idea is to study what
happens if π is modified slightly by mapping a second, randomly chosen element
to y (the element that A tries to invert). We show that such a change will likely
go unnoticed by A(y), and it will not find the new preimage. After the change,

9 For this lemma, we are only using the “one-wise” independence of h.
10 We handle the fact that h is an infinite object, by only providing A the (description

of the) first q(n) functions in the sequence, where q(n) is an upper bound on the
running-time of A(y ∈ {0, 1}n).

212 I. Haitner and T. Holenstein

however, both preimages of y are equally likely to be the original one, so A(y)
could not have found the original one either.11

For a given function g : {0, 1}n �→ {0, 1}n and two strings x∗, y ∈ {0, 1}n, we

define the function g|x∗→y as g|x∗→y(x) :=

{
y if x = x∗,
g(x) otherwise.

. We assume that

all calls to Decπ|x∗→y are well defined. In particular, if Dec queries π|x∗→y both
at position π−1(y) and at x∗ �= π−1(y) (and thus might act arbitrarily as it “no-
tices” that π|x∗→y is not a permutation), we assume it stops and outputs 0. We
now wish to consider the elements {x∗ ∈ {0, 1}n} for which BreakerDecπ,h(t, c) �=
Breakerπ|x∗→y,h(t, c). The set Diffπ(t, c, h, y) is a (possibly proper) superset of
this set.

Definition 5 (Diff). For an oracle function Dec, an infinite sequence of func-
tions h ∈ H, t ∈ N, c ∈ {0, 1}∗ and y ∈ {0, 1}n, we let Diffπ(t, c, h, y) :=

{
x∗ ∈

{0, 1}n ∣∣ ∃k ∈ {0, 1}t :
(
Decπ(k, c) �= ht(k) = Decπ|x∗→y(k, c)

)∨(Decπ(k, c) =
ht(k) �= Decπ|x∗→y(k, c)

)}
.

For x∗ /∈ Diffπ(t, c, h, y), it holds that BreakerDecπ,h(t, c) = Breakerπ|x∗→y,h(t, c).
To see this, let k0 �= ⊥ be the lexicographic smaller output of the two calls.
Clearly, k0 must be the output of both calls to Breaker. The next claim states
that if h is uniformly chosen from H, then Diffπ(t, c, h, y) is very likely to be
small for all possible c.

Claim. Let A be an adversary with oracle access to π and BreakerDecπ,h, which
gets h as an auxiliary input. Then, for every π and y ∈ {0, 1}n:

Prh←H
[
A

(π,BreakerDecπ,h)
h (y) queries BreakerDecπ,h(t, c) with

|Diffπ(t, c, h, y)| ≥ µDec(µA(n))2
]

< µA(n)2−µ−1
Dec(n)

Proof. For t ∈ N, c ∈ {0, 1}∗ and k ∈ {0, 1}t, let Dc,k be the set of all possible
images of Decπ|x∗→y(k, c), enumerating over all x∗ ∈ {0, 1}n (i.e., the set Dc,k :=
{Decπ|x∗→y(k, c) : x∗ ∈ {0, 1}n}).12 We first note that |Dc,k| ≤ µDec(t) + 1 ≤ 2t

– in an execution of Decπ(k, c) at most µDec(t) elements x1, . . . , xµDec(t) are
queried, and only if x∗ ∈ {x1, . . . , xµDec(t)} the image of Dec can be changed.
Let Ht be the t’th entry in H. Applying Lemma 1 with V = 2t, s = t + �(t),
α = µDec(t) and letting Bk = 1 iff ht(k) ∈ Dc,k, we have that Prht←Ht

[∣∣{k ∈
{0, 1}t : ht(k) ∈ Dc,k}

∣∣ ≥ µDec(t)
]

< t
µDec(t)t+�(t)−1 ≤ 2−t−�(t).

We next show that |Diffπ(t, c, h, y)| ≤ µDec(t) · |{k ∈ {0, 1}t : ht(k) ∈ Dc,k}|.
We prove this by presenting an injective function φ from Diffπ(t, c, h, y) to
{1, . . . , µDec(t)} × {k : ht(k) ∈ Dc,k}. If x∗ ∈ Diffπ(t, c, h, y), then there exists

11 The main difference between our approach and the one in [Sim98], is that we do not
insist on keeping π a permutation. It turns out that this slackness makes our proof
significantly simpler.

12 Note that the original image Decπ(k, c) is in Dc,k.

On the (Im)Possibility of Key Dependent Encryption 213

kx∗ such that Decπ(kx∗ , c) �= ht(kx∗) = Decπ|x∗→y(kx∗ , c) or Decπ(kx∗ , c) =
ht(kx∗) �= Decπ|x∗→y(kx∗ , c) and therefore kx∗ ∈ {k : ht(k) ∈ Dc,k}. Further-
more, Decπ(kx∗ , c) must query π on x∗. Let ix∗ denote the index (i.e., position)
of the query π(x∗) among the π queries that Decπ(kx∗ , c) does, and let φ be the
function that maps x∗ to (ix∗ , kx∗). Since a pair (i, k) specifies a single x (the
one queried at i’th position in Decπ(k, c)), it follows that φ is indeed injective.

We note that for t > µ−1
Dec(n), it always holds that x∗ /∈ Diffπ(t, c, h, y) (Dec

cannot invoke π on such a long input). Combining the above, we have that with
probability at least 1 − µA(n)2−µ−1

Dec(n) over the choice of h, for each of the at
most µA(n) queries Breaker(t, c) that A(y) does, it holds that |Diff(t, c, h, y)| ≤
µDec(t)2 ≤ µDec(µA(n))2.

For a given value of π and x0, x1 ∈ {0, 1}n, let π|x0↔x1 := π|x0→π(x1),x1→π(x0).
We next show that with high probability, A(y) behaves exactly the same given
the oracle π or π|x∗↔y.

Definition 6 (trace). For a given oracle function Dec, the trace, tr(π, h, y, rA),
of an adversary A is the sequence of all queries A(y) makes to BreakerDecπ,h

and π (and their responses), when it uses rA as its random-coins and gets h as
an auxiliary input.

Claim. Let y ∈ {0, 1}n and let A be an adversary with oracle access to π

and BreakerDecπ,h, and assume that A queries π on its output before returning it.
Then, Prπ,h,rA,x∗←{0,1}n [tr(π, h, y, rA) �= tr(π|x∗↔π−1(y), h, y, rA)] < p(n), where
p(n) := 2µA(n)

(
2−µ−1

Dec(n) + µDec(µA(n))22−n
)
.

Proof. Let Xπ be all the queries to π in tr(π, h, y, rA), clearly |Xπ| ≤ µA(n).
Let further XDiff be the union of the sets Diffπ(t, c, h, y) for all calls (t, c)
made by A to Breaker. If x∗ /∈ Xπ ∪ XDiff , we have that tr(π, h, y, rA) =
tr(π|x∗→y, h, y, rA) (cf., the remark after Definition 5). Claim 3.2 yields that
with probability at least 1 − µA(n)2−µ−1

Dec(n) over the choice of h and rA,
it holds that |Xπ ∪ XDiff | ≤ µA(n)µDec(µA(n))2. The union bound yields
that Prh,rA,x∗←{0,1}n [tr(π, h, y, rA) �= tr(π|x∗→y, h, y, rA)] < µA(n)

(
2−µ−1

Dec(n) +
µDec(µA(n))22−n

)
.

Finally, if tr(π, h, y, rA) and tr(π|x∗↔π−1(y), h, y, rA) are different,
then one of tr(π, h, y, rA) �= tr(π|x∗→y, h, y, rA) or tr(π|x∗→y, h, y, rA) �=
tr(π|x∗↔π−1(y), h, y, rA) must hold. Since π|x↔π−1(y) is also a permutation,
and x∗ is a uniformly chosen element given π|x∗↔π−1(y) and y, the inequality
obtained before states that both these events have probability at most p(n)/2.

Proof. (of Lemma 3) Assuming without lost of generality that A queries it’s
output, the probability that A(π,BreakerDecπ,h)(y)h = π−1(y) is at most the prob-
ability that the traces tr(π, h, y, rA) and tr(π|x∗↔π−1(y), h, y, rA) are different
plus 2−n (to handle the case x∗ = π−1(y)). By Claim 3.2, the latter probability
is at most 2−n + p(n).

214 I. Haitner and T. Holenstein

3.3 Putting It Together

Proof. (of Theorem 1) Assume that there exists a black-box proof of security
from breaking the KDI-security of (Encπ , Decπ) using a poly-wise independent
hash function to breaking the hardness of π, and let M (·) be the algorithm
for inverting π as guaranteed by this proof of security. Lemma 2 yields that
ABreakerDecπ,h,h

KDI breaks the KDI-security of (Encπ, Decπ) with probability one

over the choice of h. Thus, MABreakerDecπ,h,h
KDI needs to break the one-way property

of π with probability one over the choice of h as well. However, since Aπ,B can be
efficiently emulated by an algorithm Ã with oracle access to BreakerDecπ,h and
π, and given h as an auxiliary input, Corollary 1 yields that with probability
one over the choice of π and h, algorithm Aπ,B does not break the one-wayness
of π, and a contradiction is derived.

4 From Arbitrary Assumptions

In this section, we rule out the existence of reductions with strongly-black-box
proof of security from the KDI-security of an encryption scheme, to a very large
class of hardness assumptions. That is, we prove the following theorem.

Theorem 5 (formal restatement of Theorem 2). There exists no reduction
with strongly-black-box proof of security from the KDI-security of an encryption
scheme to any cryptographic game.

Let (Enc, Dec) be an encryption scheme. As in Section 3, we use Proposition 1
and assume without loss of generality that the encryption scheme is always
correct, has deterministic decryption algorithm, is defined on messages of any
length, and has security parameter t equal to the key length. We let �(t) be the
length of an encryption of a message of length 2t.

Consider an instantiation of Breaker (Algorithm 3) with f = Dec and h ∈
H = {Ht}t∈N

, where Ht is the set of all possible function from {0, 1}t to {0, 1}2t.
As in Section 3, we have that there exists an efficient algorithm, with oracle
access to BreakerDec,h and h, that breaks the KDI-security of (Enc, Dec) with
probability one over the choice of h ∈ H. The following Lemma states that in
many settings, having oracle access to BreakerDec,h does not yield any significant
additional power.

Lemma 4. Let ABreakerDec,h,h be an algorithm with oracle access to BreakerDec,h

and h, and let tA(n), for security parameter n, be a polynomial-time computable
upper bound on the running-time of ABreakerDec,h,h.

Then for every polynomial computable function δ : N �→ [0, 1], there exists an
algorithm Ãh

δ , which has oracle access only to h, runs in time poly(1/δ(n), tA(n),
n) and uses random-coins of the same length as ABreakerDec,h,h such that the
following holds. If ABreakerDec,h,h and Ãh

δ are using the same random-coins, then
ABreakerDec,h,h(1n) = Ãh

δ (1n) with probability 1− δ(n) over a random choice of h.

On the (Im)Possibility of Key Dependent Encryption 215

Proof. Algorithm Ã emulates A, while remembering all query and answer pairs
to h. When A queries BreakerDec,h(t, c), algorithm Ã distinguishes two cases:

Case 1: t < log(tA(n)) + log(1/δ(n)). Ã fully emulates BreakerDec,h. Namely,
Ã evaluates ht(k) for all k ∈ {0, 1}t and returns the first one for which
Dec(k, c) = ht(k). It returns ⊥ if no such k exists.

Case 2: t ≥ log(tA(n)) + log(1/δ(n)). Ã checks all the previous queries to h of
length t in lexicographic order. If for one of those queries it holds that
Dec(k, c) = ht(k), it returns k, otherwise it returns ⊥.

The bound on the running-time of Ã is clear, in the following we show Ã emulates
A well. We first note that in Case 1, Ã always returns the same answer that
BreakerDec,h would. To handle Case 2, let k ∈ {0, 1}t and assume that the query
ht(k) was not perviously asked by A. Since h is length doubling, the probability
over the choice of h that Dec(k, c) = ht(k) is 2−2t. Using a union bound we have
that the probability, over the choice of h, that Ã returns a value different from
what BreakerDec,h would (i.e., Ã returns ⊥ where BreakerDec,h finds a consistent
key) is at most 2− log(tA(n))−log(1/δ(n)) = δ(n)/tA(n). Since there are at most tA(n)
calls to BreakerDec,h, the probability that in any of those Ã returns a wrong value
is at most δ(n), which proves the lemma.

Proof. (of Theorem 5) The proof follows the lines of the one of Theorem 1, but
we need to work a little harder for proving that having access to h does not give
the adversary additional power.13

Assume that there exists a strongly-black-box proof of security from (Enc,
Dec) to a cryptographic game Γ and let M (·) be the algorithm for break-
ing Γ as guaranteed by this proof of security. It easily follows from the proof
of Lemma 2 that also in the setting of this section there is an efficient al-
gorithm ABreakerDec,h,h

KDI , with oracle access to BreakerDec,h and h breaking the
KDI-security of (Enc, Dec) with probability one over the choice of h. Thus,

MABreakerDec,h,h
KDI breaks Γ with probability 1 over the choice of h. Namely,

Prh
[
PrrA,rΓ [MABreakerDec,h,h

KDI ↔ Γ (1n) wins] > 1
ph(n) for infinitely many n

]
=1, (1)

where rA and rΓ denote the random-coins of A and Γ , respectively, and ph is some
polynomial that may depend on h. In the following we first remove the depen-

dence of the polynomial ph from h. For this let ε(n) := Prh,rA,rΓ [MABreakerDec,h,h
KDI

↔ Γ (1n) wins] = Eh

[
PrrA,rΓ [MABreakerDec,h,h

KDI ↔ Γ (1n) wins]
]
. We show that ε

is non negligible. Using Markov’s inequality we get for every n ∈ N

that Prh
[
PrrA,rΓ [MABreakerDec,h,h

KDI ↔ Γ (1n) wins] < n2ε(n)
]

> 1 − 1
n2 , and

therefore14 Prh
[
PrrA,rΓ [MABreakerDec,h,h

KDI ↔ Γ (1n) wins] < n2ε(n) for all n > 2
]

13 One gets this property “for free”, when the underlying hardness assumption is in-
verting a random permutation.

14 The σ-additivity of the measure implies that the event in the next probability is
measurable.

216 I. Haitner and T. Holenstein

≥ 1−∑∞
n=2

1
n2 > 1

3 Combining this with Equation (1) we get that Prh
[

1
ph(n) <

PrrA,rΓ [MABreakerDec,h,h
KDI ↔Γ (1n) wins] < n2ε(n) for infinitely many n

]
> 1

3 ,

which implies that there is a polynomial p(n) such that ε(n) > 1
p(n) infinitely

often.
In order to finish the proof, we will now to apply Lemma 4 on MABreakerDec,h,h

KDI .
Recall that Lemma 4 was proved only in the stand alone settings, where in partic-
ular no interaction with a random system is considered. Since the proof of secu-
rity of (Enc, Dec) is strongly-black-box, we have that Γ does not access, through

interaction with MABreakerDec,h,h
KDI , the function h. Therefore, Γ ’s answers are de-

termined by the output behavior of MABreakerDec,h,h
KDI and the proof of Lemma 4

goes through also in this setting. Hence, Lemma 4 yields, letting δ(n) = 1
2p(n) ,

the existence of an efficient algorithm M̃h with oracle access only to h, such that
Prh,rA,rΓ [M̃h ↔ Γ (1n) wins] > 1

2p(n) for infinitely many n’s.

Our final step is to emulate M̃h, where rather than accessing h we randomly
chooses the answer of each time one is requested (and cache it). The latter
emulation breaks the cryptographic assumption with probability at least 1

2p(n)
for infinitely many n’s and since it is also efficient, it implies that Γ is not secure.

5 Applying Our Technique to Other Primitives

It seems tempting to try and use the above Breaker also to show the impossi-
bility of constructing other KDI-secure primitives. Consider for instance pseu-
dorandom functions or permutations that are supposed to be secure even if
the adversary can obtain its value on a function of its secret key. Halevi and
Krawczyk [HK07] show that a deterministic construction cannot exist, but give
a construction in case the permutation has an additional public parameter (i.e.,
salt) chosen after the challenge function is fixed. Their construction, however,
compresses (e.g., maps n bits to n/2).

It is indeed possible to generalize our techniques to this case, as long for as the
pseudorandom functions are injective for every key. In this case, Breaker finds
a key k such that fk,r(h(k)) = c, where f is the pseudorandom function and r
is the random salt. The reason this method fails if the construction compresses
(as the one given by Halevi and Krawczyk [HK07]), is that Breaker as defined
above does not seem to give useful information about the key anymore, since it
is unlikely that the correct key is the lexicographically smallest.

It seems that we also cannot utilize our Breaker for the general case of length
increasing (non-injective) pseudorandom functions (or equivalently, for the case
that we are allowed to make several KDI queries). Consider the question whether
a given pseudorandom function is constant on a negligible fraction of the keys
(e.g., on a single key k it holds that fk,r(·) := 0�). Deciding whether a given
function has this property or not might be infeasible. Yet, using for instance
the Breaker of Section 4, we can easily find the right answer: ask the Breaker
on (h, 0�), where h is a random hash function, and answer “Yes” is the Breaker

On the (Im)Possibility of Key Dependent Encryption 217

finds some consistent key. Thus, in this setting our Breaker gives us an extra
power that we cannot emulate.

Acknowledgments

We are very grateful to Oded Goldreich, Jonathan Hoch, Gil Segev, Omer Rein-
gold and Udi Wieder for useful discussions. We thank the anonymous referees
for many useful comments.

References

[AR02] Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the com-
putational soundness of formal encryption). JoC 15(2), 103–127 (2002)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd
FOCS, pp. 106–115. IEEE Computer Society, Los Alamitos (2001)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure en-
cryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 93.
Springer, Heidelberg (2001)

[CW79] Carter, J.L., Wegman, M.N.: Universal classes of hash functions.
JCSS 18(2), 143–154 (1979)

[DOP05] Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full
domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
449–466. Springer, Heidelberg (2005)

[DY83] Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE
Transactions on Information Theory 29(2), 198–208 (1983)

[GGKT05] Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency
of generic cryptographic constructions. S. J. on Comp. 35(1), 217–246
(2005)

[GKM+00] Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.:
The relationship between public key encryption and oblivious transfer.
In: FOCS 2000 (2000)

[GT00] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic
cryptographic constructions. In: FOCS 2000 (2000)

[HHRS07] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in
interactive protocols – A tight lower bound on the round complexity of
statistically-hiding commitments. In: FOCS 2007 (2007)

[HH08] Haitner, I., Holenstein, T.: On the (Im) Possibility of Key Dependent
Encryption (full version), http://eprint.iacr.org/2008/164

[HK05] Horvitz, O., Katz, J.: Bounds on the efficiency of “black-box” commit-
ment schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 128–139. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2008/164

218 I. Haitner and T. Holenstein

[HK07] Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: 14th
ACM CCS (2007)

[Hof08] Hofheinz, D.: Possibility and impossibility results for selective decom-
mitments. Technical Report 2008/168, eprint.iacr.org (April 2008)

[HU08] Hofheinz, D., Unruh, D.: Towards key-dependent message security
in the standard model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 108–126. Springer, Heidelberg (2008)

[IJK07] Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-type direct product
theorems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
500–516. Springer, Heidelberg (2007)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: STOC 1989 (1989)

[KST99] Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way
permutation-based hash functions. In: FOCS 1999 (1999)

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004)

[Rud88] Rudich, S.: Limits on the Provable Consequences of One-Way Functions.
PhD thesis, U.C. Berkeley (1988)

[Sim98] Simon, D.R.: Findings collisions on a one-way street: Can secure hash
functions be based on general assumptions? In: Nyberg, K. (ed.) EU-
ROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg
(1998)

[Wee07] Wee, H.M.: One-way permutations, interactive hashing and statistically
hiding commitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 419–433. Springer, Heidelberg (2007)

A Gennaro-Trevisan Style Proof of Lemma 3

In this section we prove an alternative non-uniform version of Lemma 3.

Lemma 5 (non-uniform version of Lemma 3). Let A be a non-uniform
adversary that gets h as an auxiliary input and has oracle access to π and
BreakerDecπ,h. Assume that A and Dec satisfy the bounds µA(n)=µDec(n)= nC

for some C ∈ N. For ε(n) = 2−n1/(2C)
we have that Prh←H,π←Π,y←{0,1}n [

A(π,BreakerDecπ,h)(y, h) = π−1(y)] < 3ε.

Our main tool is the following lemma.

Lemma 6. Let A be a non-uniform adversary that gets h as an auxiliary input,
and has oracle access to π and Breaker, and assume Pry

[
A(π,BreakerDecπ,h)(y,

h) = π−1(y) ∧ Bad(y)
]

> ε(n), where Bad(y) is the event that A(y, h) makes
a query BreakerDecπ,h(t, c) for which |Diffπ(t, c, h, y)| ≥ µDec(µA(n))2. Then, π

can be described using log((2n − s(n))!) + 2s(n) log
(

e2n

s(n)

)
+ µA(n)2µDec(µA(n))

bits, where s(n) = ε(n)2n/
(
2µA(n)(µDec(µA(n)))2

)
.

We omit the proof of Lemma 5 in this version, it is obtained from Lemma 6.

On the (Im)Possibility of Key Dependent Encryption 219

Proof. (of Lemma 6) We assume w.l.o.g. ε(n) > 2µA(n)2−n, since otherwise
the statement is trivial. Our description of π consists of the following parts: the
description of a set S ⊆ {0, 1}n, the description of the image of S under π (which
roughly corresponds to the y’s on which A succeeds in inverting), the description
of the permutation that π implies if restricted on {0, 1}n \ S (i.e., the elements
not in S) and finally the description of {hm ∈ h | m ≤ µA(n)}.

The description of S and the image of S both require log
((2n

|S|
)) ≤ |S| log(e 2n

|S|)
bits. The description of the permutation requires at most log((2n − |S|)!) bits.
To store the functions hm takes µA(n)2µDec(µA(n)) bits, for some appropriate
family H. Thus, in total log((2n − |S|)!) + 2|S| log(e 2n

|S|) + µA(n)2µDec(µA(n))
bits are sufficient. In the following we succeed in making S as big as |S| =
ε(n)2n/

(
2µA(n)(µDec(µA(n)))2

)
, which implies our description size of π.

Defining the set S. We use the following, inefficient, algorithm to create S: we
start by letting I = {y ∈ {0, 1}n : A(y) = π−1(y) ∧ Bad(y)} and iteratively
do the following. First, remove the lexicographic smallest element y from I and
add π−1(y) to S. Next, emulate A(π,BreakerDecπ,h)(y, h) and remove all queries A
makes whose answers are in I from I (without putting them into S). In addition,
for each query to BreakerDecπ,h(t, c) done by A(π,BreakerDecπ,h)(y, h), remove the
images π(x) from I for all x∗ ∈ Diffπ(t, c, h, y) (note that y itself is not removed
from I, as we already removed it). Once the emulation is over, repeat with the
next element. Since for every emulation we remove at most µA(n) + µA(n) ·
µDec(µA(n))2 elements from I before moving another element to S, we have that
|S| ≥ ε(n)2n/2µA(n)(µDec(µA(n)))2.

The reconstruction of π. We now show that we can reconstruct π from the given
information. For this, we first reconstruct the oracle outside of S from the given
information. Then pick the lexicographic smallest element y ∈ S whose preimage
is not yet known, and emulate Aπ,BreakerDecπ,h

(y, h). We first consider the queries
π(x) done by A(y, h). The definition of S yields that we either know the answer
for this query, or we are guaranteed that π(x) = y (and we can stop the emula-
tion). So it is left to consider the queries BreakerDecπ,h(t, c). We note the that if
k ∈ {0, 1}t is the value we should return as the answer of BreakerDecπ,h(t, c), then
the answers to all π-queries made by BreakerDecπ,h(t, c) when it calls Decπ(k, c)
(see Algorithm 3) should be known, where the only exception is a query on π−1(y)
if such occurs. Therefore, we try all candidates x∗ (i.e., the elements whose im-
age we don’t know at this point) for π−1(y), and emulate Decπ|x∗→y(k, c). The
latter emulation succeeds unless a query is made whose answer we don’t know.
In this case, we know by the above observation that the current pair (k, x∗) is
not the one we are looking for, and we can safely move to the next candidate for
x∗. Finally, note that if a successful emulation of Decπ|x∗→y(k, c) = h(k) done by
BreakerDecπ,h(t, c) satisfies Decπ|x∗→y(k, c) = h(k), then k must be the correct
answer to BreakerDecπ,h(t, c). The reason for that x∗ would be in Diffπ(t, c, h, y),
and therefore cannot be in S. All in all, we can emulate A(y, h)’s run correctly and
obtain the correct π−1(y) as the output of A.

On the (Im)Possibility of Arthur-Merlin Witness
Hiding Protocols

Iftach Haitner1,�, Alon Rosen2,��, and Ronen Shaltiel3,� � �

1 Microsoft Research, New England Campus
iftach@microsoft.com

2 Herzliya Interdisciplinary Center, Herzliya, Israel
alon.rosen@idc.ac.il
3 University of Haifa

ronen@cs.haifa.ac.il

Abstract. The concept of witness-hiding suggested by Feige and Shamir
is a natural relaxation of zero-knowledge. In this paper we identify
languages and distributions for which many known constant-round public-
coin protocols with negligible soundness cannot be shown to be witness-
hiding using black-box techniques. One particular consequence of our
results is that parallel repetition of either 3-Colorability or Hamiltonic-
ity cannot be shown to be witness hiding with respect to some probability
distribution over the inputs assuming that:
1. the distribution assigns positive probability only to instances with

exactly one witness.
2. Polynomial size circuits cannot find a witness with noticeable prob-

ability on a random input chosen according to the distribution.
3. The proof of security relies on a black-box reduction that is indepen-

dent of the choice of the commitment scheme used in the protocol.
These impossibility results conceptually match results of Feige and

Shamir that use such black-box reductions to show that parallel repeti-
tion of 3-Colorability or Hamiltonicity is witness-hiding for distributions
with “two independent witnesses”.

We also consider black-box reductions for parallel repetition of 3-
Colorability or Hamiltonicity that depend on a specific implementation
of the commitment scheme. While we cannot rule out such reductions
completely, we show that “natural reductions” cannot bypass the limi-
tations above.

Our proofs use techniques developed by Goldreich and Krawczyk for
the case of zero knowledge. The setup of witness-hiding, however, presents
new technical and conceptual difficulties that do not arise in the zero-
knowledge setting. The high level idea is that if a black-box reduction es-
tablishes the witness-hiding property for a protocol, and the protocol also
happens to be a proof of knowledge, then this latter property can be ac-
tually used “against the reduction” to find witnesses unconditionally.

Keywords: Zero-Knowledge, Witness-Hiding, Arthur Merlin protocols,
Black-box reductions.

� Part of this work performed while at the University of Haifa.
�� Research supported by BSF grant 2006317.

� � � Research supported by BSF grant 2004329 and ISF grant 686/07.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 220–237, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 221

1 Introduction

In a proof the prover tries to convince the verifier that a certain statement is
true. The basic requirements are completeness and soundness. The former means
that the prover is always able to convince the verifier in the validity of a true
statement, while the latter means that the prover is not able to convince the
verifier in the validity of a false statement.

In cryptography, the statement typically belongs to NP, and the proof is
required to maintain the prover’s “privacy”. As a consequence, the proof is in-
teractive and randomized, and the verifier only gets statistical confidence in the
validity of the statement.

The privacy requirement usually refers to some information about the NP-
witness used by the prover. Given the difficulty in capturing what exactly is the
information that needs to be hidden, the tendency is to be conservative. This
gives rise to the notion of zero-knowledge proofs: protocols that do not reveal
anything beyond the validity of the statement being proved [15].

1.1 Zero Knowledge

Zero-knowledge (ZK) proofs are usually constructed using smaller “atomic” ZK
protocols as a building block. The typical atomic protocol is “public coin”, re-
quires 3 rounds of interaction, and may convince the verifier in the validity of a
false statement with constant probability.1 Well known examples are the proto-
cols for Quadratic Residuosity [15], 3-Colorability [13], and Hamiltonicity [5].

In order to gain higher statistical confidence in the validity of the statement,
the verifier requests to repeat the execution of the atomic ZK protocol multiple
times independently. To retain the zero-knowledge property of the atomic pro-
tocol, the verifier requests that the repetitions be conducted sequentially [14].
This results in high round complexity, and is highly undesirable.

An alternative way to increase the verifier’s confidence (preferable in terms of
round complexity) is to repeat the sub-protocol in parallel. Demonstrating that
parallel repetition of the atomic protocols is zero-knowledge, however, appears
to be a challenging task. Indeed, as shown by Goldreich and Krawczyk only
trivial languages have a black-box zero-knowledge constant-round public-coin
proof with negligible soundness error [12].2

The Goldreich-Krawczyk impossibility result can be bypassed by considering
private-coin protocols [12], or by employing non black-box simulation
techniques [3]. Nevertheless, it is still interesting to ask whether black-box tech-
niques can be used to establish security of public-coin protocols. First of all,
public-coin protocols tend to be simpler than private-coin ones, and are easier

1 A protocol is public-coin if the verifier’s messages consist of his own random coins.
Constant-round, public-coin proofs are sometimes referred to as Arthur-Merlin proofs
(AM) in the literature (cf., [2])

2 Black-box zero-knowledge essentially means that when establishing the zero-
knowledge property of the protocol, the protocol designer is restricted to only ob-
serving the “input-output” behavior of a given malicious verifier.

222 I. Haitner, A. Rosen, and R. Shaltiel

to work with when used as sub-protocols. Secondly, current non black-box tech-
niques are only known to achieve soundness against computationally bounded
provers, whereas the “atomic” ZK protocols retain their soundness even in face of
a computationally unbounded prover. Thirdly, many of the known public-coin
protocols require only 3 rounds of communication, whereas the best private-
coin and non-black protocols require 5 and 7 rounds respectively. Finally, when
available, black-box techniques are preferable over their ”non-black-box” coun-
terparts, mainly because they offer a better tradeoff of security vs. efficiency.

1.2 Witness Indistinguishability

Despite the failure in establishing the zero-knowledge property of constant-round
public-coin protocols with negligible soundness, and in particular of the parallel
repetition of “atomic” ZK, there is still no evidence that these specific protocols
are insecure. This suggests an alternative approach: identify a weaker (yet mean-
ingful) security property and prove that it is satisfied by the protocols.

Feige and Shamir define a protocol to be witness-indistinguishable (WI) if the
verifier cannot identify the witness that was actually used by the prover in the
interaction [9]. Witness-indistinguishability is implied by zero knowledge. Unlike
zero-knowledge, however, witness indistinguishability is preserved under parallel
repetition. As a consequence, repeating atomic ZK protocols in parallel results
in a 3-round WI public-coin protocol with negligible soundness error.

Witness-indistinguishability has turned out to be highly applicable as a build-
ing block for higher level protocols. It is sometimes unclear, however, what
exactly is hidden by such protocols. On the one hand, WI gives no security
guarantee in case that the statement has only one witness associated with it. On
the other hand, if a statement has at least two independent witnesses, then any
WI protocol for that statement does not reveal the witness being used by the
prover in the interaction [9].3

1.3 Witness Hiding

Motivated by the above observation, Feige and Shamir put forward the notion of
witness-hiding [9]. Loosely speaking, a protocol is said to be witness-hiding (WH)
3 The precise formulation of this implication is somewhat technical to state. See [11],

Sec 4.6.3.2 for more details. Let us briefly review the argument in a special case. Let
f be a one way function and consider the distribution X defined by x = f(s) for a
uniformly chosen s. Now consider the distribution X ′ that consists of two independent
copies of X and let L′ = {x1, x2 : ∃i, si s.t. f(si) = xi}. Note that L′ ∈ NP and L′

has at least two witnesses on any input in the support of X ′. [9] show that a WI
proof for L′ is hiding witnesses for the distribution X ′. Loosely speaking, this follows
because if a verifier V ∗ finds witnesses on X ′ then V ∗ can be used to invert f as
follows: Given x chosen from X, one can sample another x′ from X together with
a witness s′. We then set (x1, x2) to be a random ordering of (x, x′) and prove that
the pair (x1, x2) ∈ L to the verifier using the witness s′. We have assumed that the
verifier produces a preimage for one of the two x’s with noticeable probability. Since
the proof is WI the verifier “does not know” which of the two x’s was used, V ∗ can
be used to invert the one-way function with noticeable probability.

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 223

if at the end of the protocol the verifier cannot compute any new witness that he
did not know before the protocol began. This is a natural security requirement,
and can replace zero-knowledge in many cryptographic protocols.

Clearly, any ZK protocol is also WH, for any distribution of instances and
for any efficiently computable function of the witness. The converse, however,
is not true in general.4 A well known question in this context is whether the
parallel repetition of any of the “classical” 3-round protocols hides “interesting”
functions of the witness for “interesting” distributions on the instances.

The results of [9] exhibit languages and distributions for which WI protocols
are also WH, and thus provide an example where the answer is affirmative. In
particular, this is an example where black-box techniques give 3-round public-
coin WH protocols whereas, by the results of [12], black-box techniques cannot
give such efficient ZK protocols. We remark that WI is not sufficiently strong to
always imply WH. For example, WI is meaningless for languages that have only
one witness, whereas WH is not.

1.4 Our Contributions

The main question we investigate is for what choices of languages and distribu-
tions there exist constant-round public-coin WH protocols with negligible sound-
ness. We identify settings in which black-box techniques cannot establish the WH
hiding property of such protocols. The precise model and results are described
below. Before going into these details let us describe some consequences: Suppose
that L is a non-trivial language in NP (meaning that L �∈ BPP) and suppose
that any input x ∈ L has exactly one witness. Let X be an arbitrary distribu-
tion over inputs in L that is hard in the sense that no polynomial size circuit
can produce a witness when given x sampled according to X with noticeable
probability. We show that:

– It is impossible to show that parallel repetition of 3-colorability or Hamil-
tonicity is WH for X using certain black-box techniques. This result stands
in contrast to the case where L has two or more witnesses, as in this case
there exist distributions X for which there are black-box WH proofs (of the
type we ruled out above) for the these protocols [9].

– It is impossible to show that generic constructions of Zaps given in [7] are
WH for X using black-box techniques.

A consequence of our results is that there exist pairs of indistinguishable distri-
butions for which parallel repetition of 3-colorability (or Hamiltonicity) cannot
be shown to have strong witness indistinguishability using certain black-box
techniques. The precise details appear in the full version.

Another consequence concerns a recent paper by Pass [17] that, following ear-
lier work [10,6,1], investigates the possibility of constructing a one way function
whose inversion task is at least as hard as deciding some NP complete language
(via Turing reductions). Pass shows a relationship between the existence of a Tur-
ing reduction as above and the existence of constant-round, negligible soundness
4 E.g., 2-round WI protocols (ZAPs) [7] cannot be ZK, but are WH in some special

cases. E.g., the case that the statement has “two independent witnesses”.

224 I. Haitner, A. Rosen, and R. Shaltiel

public-coin interactive proofs for SAT that hide the bits of the satisfying assign-
ment. The main point in our context is that Pass’s relationship requires that
the WH property is established using black-box techniques. Our results provide
limitations on this approach. The precise details appear in the full version.

1.5 The Notion of Black-Box Witness Hiding

We now explain what we mean by “black-box techniques”. For a precise de-
scription of the model the reader is referred to Sections 2,3. Our definitions of
“black-box WH” follow the framework of “black-box ZK” as defined in [12].

Loosely speaking, the definition of black-box WH requires that the WH prop-
erty of the protocol is established using a reduction R (the reduction can be
thought of as the “black-box simulator” in black-box ZK) that satisfies the fol-
lowing property: When R is given oracle access to a cheating verifier V ∗ that
learns the witness following an interaction with the prover P , and an input x
sampled from the distribution X , then either R is able to learn the witness with
noticeable probability, or R is able to violate the security assumption on which
the protocol is based. We consider several flavors of reductions.

Fully vs. weakly black-box reductions We distinguish between two kinds reduc-
tions depending on whether the reductions relies on a generic security assump-
tion, such as “there exist one-way functions” or “there exist bit-commitment
schemes”, or on a specific security assumption, such as “factoring is a one-way
function”. To illustrate this distinction consider parallel repetition of the classi-
cal protocols for 3-Colorability [15] or Hamiltonicity [5]. These protocols require
a bit-commitment scheme and can be seen as generic constructions of proof
systems that can use any bit-commitment scheme. When considering black-box
reductions for showing that these protocols are WH, we distinguish between two
cases: A fully-black-box reduction is oblivious to the choice of commitment
scheme and should work for any choice of commitment scheme. This is modeled
by giving the reduction oracle access to the commitment scheme and requiring
that the reduction works for any implementation of commitment schemes. A
weakly-black-box reduction may be tailored for a specific implementation of
the commitment scheme that relies on the hardness of a specific function (e.g.,
we can consider the protocol for 3-Colorability when implemented using Blum’s
commitment instantiated with Discrete Log). Naturally, it is more difficult to
rule out weakly-black-box reductions than fully black box ones.5

Oblivious versus Tailored reductions. Recall that the witness-hiding property is
defined with respect to some distribution X on inputs in L. A reduction R may

5 Since in all the reductions considered in this paper access the cheating verifier (e.g.,
the adversary) as a ”black box”, the above definition of fully-black-box reduction
coincides with the standard use of this notion (cf., [18]). In our definition of weakly-
black-box reduction, however, the reduction treats the adversary as a black-box and
treats the “hardness assumption” arbitrarily. This is with contrast to the standard
definition of weakly-black-box reduction, where the reduction treats the adversary
arbitrarily and treats the hardness assumption as a black box.

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 225

be tailored for a specific distribution X . Alternatively, it may be oblivious and
work for any distribution X over inputs in L.

To illustrate this point note that in the case of ZK, a black-box simulator
is an oblivious reduction (as the simulator is able to simulate a transcript of
(P, V ∗)(x) on every input x ∈ L and thus on every distribution over such inputs).
In the case of witness-hiding the reduction of [9] is an example of a black-box
reduction that is tailored to the specific distribution. Specifically, this reduction
critically relies on the ability to query V ∗ on inputs x′ that are different than
the input x given to the reduction. It is easy to show that oblivious reductions
(and in particular black-box simulators) do not benefit form such behavior, as
V ∗ may be chosen as a function of x and refuse to answer in interactions on
inputs x′ �= x. In contrast, in the setup of witness-hiding the verifier V ∗ must
agree to participate in the protocol on a noticeable fraction of inputs x in the
support of X in order to break the witness-hiding property with noticeable
probability.

The fact that tailored reductions can benefit from querying V ∗ on many dif-
ferent inputs is a new consideration that does not come up in the setting of
ZK. The main technical difficulty dealt with in this paper is the development of
techniques that handle such reductions.

Embedding reductions. For tailored reductions we say that R is non-embedding
if for every pair of different inputs, if R queries V ∗ on both inputs then all queries
for one input are made before the first query to the other input. A reduction is
embedding if it does not obey the previous requirement.

Reductions in the literature. The reductions that establish the ZK property
of 3-Colorability and Hamiltonicity are fully-black-box oblivious reductions. In
fact, as explained earlier all black-box simulators that establish ZK are oblivious
reductions. There are examples in the literature where the WH property is estab-
lished using tailored reductions (e.g. the reduction of [9] that we sketched earlier
that is a tailored and fully-black-box). However, to the best of our knowledge
all the reductions in the literature are non embedding.

1.6 Statement of Our Results

We now state our results more precisely and explain which kind of black-box
reductions we can rule out. Recall that WH is defined with respect to a language
L ∈ NP and a distribution X over instances in L that is hard in the following
sense. No polynomial-size circuit can produce a witness when given x sampled
according to X with noticeable probability. We are assuming that L �∈ BPP and
that every x ∈ L has exactly one witness (0therwise WH may follow from WI).6

6 We can relax this assumption and consider protocols where the goal is to hide some
specific function g of the witness. We refer to g as a “feature” of the witness. We
say that g is uniquely determined if for every input x ∈ L and every two witnesses
w1, w2 for x, g(w1) = g(w2). (A special case is the function g(w) = w that is uniquely
determined in the case where every x ∈ L has one witness). Our lower bounds apply
to any reduction that establishes witness-hiding of some uniquely determined feature
of the input, and our results in Section 3 are stated using this terminology.

226 I. Haitner, A. Rosen, and R. Shaltiel

Our results apply for any constant-round public-coin protocol that has negligible
soundness. We now describe our precise results for various kinds of reductions:

Oblivious reductions: We show that oblivious reductions cannot be used to
establish black-box WH even if they are weakly-black-box. This is a simple
extension of the lower bounds of [12] on black-box ZK. The precise formula-
tion of this result appears in Theorem 3.1.

Tailored non-embedding reductions: We show that tailored reductions
that are non-embedding cannot be used to establish WH of protocols that
are proofs of knowledge. This result also applies for weakly-black-box reduc-
tions. The precise formulation of this result appears in Theorem 3.2. For this
result we need to develop new techniques that can handle tailored reductions.
Recall that parallel repetition of 3-Colorability or Hamiltonicity are proofs
of knowledge and therefore we obtain results on these specific protocols.
As we can handle weakly-black-box reductions, these results apply to any
implementation of these protocols using any choice of commitment schemes.

Embedding fully-black-box reductions: While we do not know how to han-
dle embedding reductions in general, we can handle embedding reductions
that are fully-black-box for protocols with an additional property, which we
refer to as TKE for “Transcript Knowledge Extractor”. Loosely speaking,
such protocols have the property that for any prover P ∗ that convinces V on
some input x with probability that is larger than the soundness of the proto-
col, V can learn a witness for x at the end of the interaction assuming it can
break the security assumption on which the protocol is based. We elaborate
on this property below (a precise definition appears in Section 3.4).

What we show is that such protocols cannot have a fully-black-box re-
duction even if the reduction is tailored and embedding. The precise formu-
lation of this result appears in Theorem 3.3. Many generic constructions in
the literature of interactive proofs for NP-complete languages have the TKE
property. In particular, the protocols for parallel repetition of 3-colorability
or Hamiltonicity are fully-black-box (in the sense that they can use any
bit-commitment scheme) and have the TKE property (in the sense that a
verifier that can break the commitment scheme can learn the witness). It
follows that these protocols cannot have fully-black-box reductions even if
the reductions are tailored and embedding.

Another interesting case is that of Zaps [7]. These are 2-round WI proofs.
Generic constructions of Zaps are not known to be proofs of knowledge (and
therefore the lower bound in the previous item does not apply). Nevertheless,
we observe that the generic constructions of Zaps in [7] have the TKE prop-
erty. It follows that these protocols cannot have fully-black-box reductions
even if the reductions are tailored and embedding.

1.7 Transcript Knowledge Extractors

We now discuss the TKE assumption mentioned earlier. Loosely speaking a re-
duction for an interactive proof from an hardness assumption (e.g., the existence
of bit commitment schemes) has a Transcript Knowledge Extractor (TKE)

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 227

if the following holds: There is a polynomial-time machine E that has access
to an oracle that breaks commitments, and E is able to extract witnesses from
“most” accepting transcripts between any prover P ∗ and the verifier V . The
precise definition is given in Definition 3.8. In many cases (e.g., 3-colorability
and Hamiltonicity) the soundness analysis of the protocol implicitly presents a
transcript knowledge extractor. More details are given in Section 3.4.

What about non-black-box techniques? Our results only apply when the proof es-
tablishing witness-hiding is done by a black-box reduction. As we explained ear-
lier, following the breakthrough paper of Barak [3] there are examples of protocols
where the reductionproving zero-knowledge isnon-black-boxand relies on the code
of V ∗. We remark that [4] shows that parallel repetition of Hamiltonicity is ZK
assuming that CIRCUIT-SAT has “small” circuits. Thus, we cannot expect un-
conditional results that rule out non black-box reductions establishing WH of this
protocol.A naturalquestion (that is not addressed in this paper) is to try andprove
impossibility results for non-black-box reductions under hardness assumptions.

Organization of this paper. Due to space limitations this extended abstract does
not contain all our results and there are no proofs. The reader is referred to the
full version for more details. We give formal definitions for WH in Section 2 and
our results are stated in Section 3.

2 Definitions of Witness Hiding

2.1 Preliminaries on Interactive Proofs

We use standard definitions of interactive machines and protocols. The reader
is referred to [11] for an extensive treatment that also introduces this notation.

In this paper we are only interested in interactive proofs for languages L in
NP. Such languages are defined using a witness relation RL (that is L contains
all inputs x such that there exist w ∈ RL(x)). When we consider L ∈ NP we
always assume that it comes with some specific witness relation RL and that on
input x ∈ L the prover in the interactive proof is provided with some witness
w ∈ RL(x). We want that completeness, soundness and privacy requirements
are maintained for every choice of this witness. We use the following definition.

Definition 2.1 (interactive proofs for NP languages). Let L be a language
in NP. A witness choice is a function that maps every input x in L to a random
variable W that is distributed over RL(x). A pair (P, V) of interactive machines
is an interactive proof for L with completeness c(n) and soundness s(n) if V is
probabilistic-polynomial-time and the following two conditions hold:

– Completeness: For every x ∈ L and witness choice W , Pr[(P (W (x)), V)(x)=
1] ≥ c(|x|).

– Soundness: For every x �∈ L and machine P ∗, Pr[(P ∗, V)(x) = 1] ≤ s(|x|).
If the completeness and soundness parameters are omitted then we mean perfect
completeness (that is c(n) = 1) and negligible soundness (that is s(n) = neg(n)).

228 I. Haitner, A. Rosen, and R. Shaltiel

An interactive proof is public-coin if every message of V consists of independent
random coins. The number of rounds in the protocol is the overall number of
messages.

2.2 The Concept of Witness Hiding

Witness-hiding interactive proofs (defined by [9]) have the following property: if
a verifier can find a witness to the NP statement that is being proven following an
interaction with a prover, then he could have done so without such an interaction.
This notion is defined with respect to a distribution ensemble over inputs in L.

Definition 2.2. Let L be a language in NP. A distribution ensemble X = {Xn}
is over positive instances with respect to L if for every n, Xn assigns positive
probability only to instances in L ∩ {0, 1}n.

Definition 2.3 (witness-hiding). Let L ∈ NP and let RL be its witness rela-
tion. Let X = {Xn} be a distribution ensemble over positive instances. An interac-
tive proof (P, V) for L is witness-hiding with respect to X if the following condition
holds: If for every sufficiently large n and every polynomial size circuit C,

Pr
X←Xn

[C(X) ∈ RL(X)] = neg(n)

then for every polynomial-time V ∗, every witness choice W , sufficiently large n
and every auxiliary input zn,

Pr
X←Xn

[(P (W (X)), V ∗(zn))(X) ∈ RL(X)] = neg(n)

Note that there is an inherent difference between the definition of witness-
hiding proofs and zero-knowledge proofs in the sense that the definition is
with respect to an ensemble X , whereas in zero-knowledge proofs (or witness-
indistinguishable proofs) information should not leak on any input x.

2.3 Hiding Features of the Witness

Definition 2.3 is only concerned with whether V ∗ can recover an entire wit-
ness. A stronger privacy requirement is that V ∗ does not learn some efficiently
computable feature of a witness. Our results are stated using this more general
notion. We use the following definition.

Definition 2.4 (feature function). Let L be a language in NP and let m(n)
denote the length of witnesses w ∈ RL(x) for inputs x ∈ L of length n. Let �(n)
be an integer function. A feature function g is a polynomial-time computable
function g : {0, 1}m(n) → {0, 1}�(n). We say that g is uniquely determined on
an input x ∈ L, if w1, w2 ∈ RL(x) implies g(w1) = g(w2). In that case, we
sometimes abuse the notation and write g(x) rather than g(w). We say that g is
uniquely determined on a distribution X that is distributed over L∩ {0, 1}n, if it
is uniquely determined on every input in the support of X.

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 229

Using this terminology, we can define the following notion of witness-hiding
proofs that hides a uniquely determined feature g of the witness. (We restrict
our attention to uniquely determined features as otherwise the feature of a wit-
ness W (X) depends on the witness choice W). Loosely speaking, the definition
below says that if the verifier V ∗ can distinguish the feature g(X) from uni-
form following an interaction with the prover then he can do that prior to the
interaction.

Definition 2.5 (witness-hiding for a uniquely determined feature g).
Let L ∈ NP and let RL be its witness relation. Let X = {Xn} be a distribu-
tion ensemble over positive instances of L. An interactive proof (P, V) for L is
witness-hiding a feature g that is uniquely determined with respect to X, if the
following condition holds: If for every sufficiently large n and every polynomial
size circuit C,

| Pr
X←Xn

[C(X) = g(X)]− 2−�(n)| = neg(n)

then for every polynomial-time V ∗, every witness choice W , sufficiently large n
and every auxiliary input zn,

| Pr
X←Xn

[(P (W (X)), V ∗(zn))(X) = g(X)]− 2�(n)| = neg(n)

Remark 2.1 (The case of one witness). In the case that a language L ∈ NP is
defined using a witness relation RL where every x ∈ L has exactly one witness
then any feature g is uniquely determined. This in particular applies to the
feature g(w) = w. With this choice definitions 2.5 and 2.3 coincide. Our lower
bounds apply to every uniquely determined feature of witnesses and in particular
apply to the standard notion of witness-hiding in the case that there is only one
witness.

3 Black-Box Witness-Hiding and Our Results

We study reductions that establish the conditions of Definitions 2.3 and 2.5.
Consider an interactive proof (P, V). A black-box reduction R that establishes
the witness-hiding property of (P, V) is a polynomial-time machine that receives
oracle access to a “cheating verifier” V ∗ (that is not necessarily efficient). It
is assumed that V ∗ is able to break the witness-hiding property of the proof
system and learn the feature g(X) following an interaction with P . As our goal
is to prove lower bounds on reductions we make it easier for the reduction and
assume that V ∗ learns g(X) with probability one (this only makes our results
stronger). The reduction R is required to perform one of the following two tasks
when given oracle access to such a V ∗:

– Learn the feature g(X) with noticeable advantage when given X as input.
(This shows that V ∗ could have learned g(X) without interacting with the
prover).

– Break the security assumption on which the protocol is based. (This gives a
contradiction in case V ∗ is efficient).

230 I. Haitner, A. Rosen, and R. Shaltiel

We distinguish between two kinds of constructions of interactive protocols
depending on whether the protocol relies on a generic security assumption (e.g.,
“there exist one-way functions” or “there exist bit-commitment schemes”) or
on a specific security assumption (e.g., “factoring is a one-way function”). This
distinction is described in the next sections.

3.1 Weakly Black-Box Reductions

In this paper we consider the following notion of weakly-black-box reductions.
The “protocol designer” chooses a specific ”hardness assumption“ (which we
model, without lost of generality, as a one-way function) and designs specific
machines P, V to be used by the prover and verifier. The designer also chooses a
language L ∈ NP, an ensemble X over positive instances and a feature g that is
uniquely determined for X . His goal is to show that (P, V) is witness-hiding for
these specific choices and this allows the reduction R to depend in an arbitrary
(non black-box) way on all the previous choices. A precise definition follows:

Definition 3.1 (weakly black-box reduction establishing witness hid-
ing). Let f be a length preserving function. Let L be a language in NP. Let (P, V)
be a proof system for L. Let X = {Xn} be a distribution ensemble over positive
instances of L, and g be a feature that is uniquely determined for X. We say that
R is a weakly-black-boxWH reduction from f if R is a polynomial-time oracle ma-
chine and there exist polynomials p(n) and k(n) such that for every input length
n, and every deterministic (not necessarily efficient) algorithm V ∗: If there is a
witness choice W (x) such that PrX←Xn [(P (W (X)), V ∗)(X) = g(X)] = 1 then

– either RV ∗
inverts f on random inputs of length k(n) with probability 1/p(n),

– or PrX←Xn [RV ∗
(X) = g(X)] ≥ 2−�(n) + 1/p(n).

Remark 3.1 (Relationship to black-box simulation). It is natural to compare our
definitions to that of “black-box simulation” introduced in [12]. The notion of
black-box simulation corresponds to a specific protocol (P, V) and requires that
there is one reduction R (called black-box simulator) so that for every efficient
V ∗, RV ∗

(x) simulates a transcript that is indistinguishable from (P, V ∗)(x).
It turns out that all black-box simulators in the literature satisfy a stronger
requirement: For every V ∗ (not necessarily efficient) either RV ∗

(x) simulates a
transcript or it is able to invert some one-way function f . Note that every such
reduction is a weakly-black-box WH reduction from f .

3.2 Our Results on Weakly Black-Box Reductions

We consider several notions of weakly-black-box reductions. A reduction R is
oblivious if it does not depend on the choice of the distribution ensemble X and
one reduction applies to any distribution ensemble. We remark that all proofs
of “black-box ZK” [12] in the literature are oblivious reductions.

Definition 3.2 (oblivious reductions). Let L, P, V, g, f be as in Definition
3.1. Let R be a polynomial-time oracle procedure. We say that R is an oblivious

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 231

reduction if for every distribution ensemble X over positive instances, R is a
weakly-black-box WH reduction from f with respect to X.

We show that assuming NP �= BPP, oblivious reductions cannot show witness-
hiding for constant-round public-coin protocols with negligible soundness, with
respect to NP complete languages L, where every input x ∈ L has exactly one
witness. This result (stated below) is an easy extension of the negative results
of [12] for black-box ZK.

Theorem 3.1. Let L be a language in NP and let RL be its witness relation.
Let (P, V) be a constant-round public-coin interactive proof for L with negligible
soundness. Assume that the feature g(w) = w is uniquely determined on every
input x (that is that every x ∈ L has exactly one witness). Let R be an oblivious
weakly-black-box WH reduction from some one-way function f . Then L ∈ BPP.

We now consider reductions that can be tailored to a specific distribution en-
semble X . Such a weakly-black-box reduction R receives an input x and oracle
access to a “cheating verifier” V ∗ that breaks the witness-hiding property. When
R queries V ∗ it supplies some partial history of the protocol (P, V) and V ∗ replies
with his next message in the protocol. A part of the partial history is the input
x′ to the protocol (P, V). Note that R may query V ∗ on partial histories that
contain inputs x′ that are different from the input x given to R. A reduction R
is non-embedding if it finishes all queries to V ∗ on one input before it queries
V ∗ on some other input.

Definition 3.3 (non-embedding reductions). Let L, P, V, g, f, X be as in
Definition 3.1 and let R be a weakly-black-box WH reduction from f . We say
that R is a non-embedding reduction if for every input x and every oracle V ∗

and every two inputs x1 �= x2, if RV ∗
(x) makes a query containing x1 before

making a query containing x2 then all queries that contain x1 are made before
the first query that contains x2.

We show that if a non-embedding reduction is used to show witness-hiding for
a constant-round public-coin protocol with negligible soundness with respect to
some distribution X and uniquely determined feature g, and if furthermore the
protocol is also a proof of knowledge, then it is possible to efficiently predict
g(x) with noticeable advantage when given x sampled from X . This means that
it is impossible to use such reductions to hide features that are hard to predict.

Theorem 3.2. Let L ∈ NP, let RL be its witness relation. Let X be a dis-
tribution ensemble over positive instances of L and let g be a feature that is
uniquely determined with respect to X. Let (P, V) be a constant-round public-
coin interactive proof for L with negligible soundness and assume that (P, V) is
a proof of knowledge with negligible knowledge error (see Definition 3.7). Let R
be a non-embedding weakly-black-box WH reduction from a one-way function f .
Then there is a polynomial-time machine M and a polynomial p such that for
every sufficiently large n, PrX←Xn [M(X) = g(X)] ≥ 2−�(n) + 1/p(n).

232 I. Haitner, A. Rosen, and R. Shaltiel

In particular, if every input x ∈ L has one witness then the feature g(w) = w
is uniquely determined. The theorem says that if (P, V) is a proof of knowledge
then the existence of a non-embedding reduction R gives that one can efficiently
find witnesses when given x sampled from X with noticeable probability (and
thus X is not a “hard distribution”).

Corollaries on specific protocols. Consider parallel repetition of 3-Colorability
[13] and Hamiltonicity [5] using any choice of commitment scheme (that may
be based on an arbitrary one-way function). These protocols are constant-round
public-coin interactive proofs with negligible soundness for complete languages in
NP. Furthermore, both these protocols are proofs of knowledge with negligible
knowledge error. Thus, Theorems 3.1 and 3.2 apply and give limitations on
reductions that establish the WH property of these protocols.

3.3 Fully-Black-Box Reductions

In a fully-black-box construction the protocol designer is given a cryptographic
primitive as a black-box. (In this paper we consider the primitives: one-way
function, one-way permutation and information theoretically binding bit com-
mitments). In this setup the protocol designer receives a black-box that imple-
ments the basic primitive. He designs oracle machines P (·), V (·) to be used by
the prover and verifier. We start by formally defining this setup.

Definition 3.4 (black-box interactive proofs). Let L be language in NP.
Let F be a set of functions from strings to strings. A pair (P (·), V (·)) of oracle
machines is a F -black-box interactive proof for L if V is probabilistic polyno-
mial time and for every f ∈ F , the pair (P f , V f) satisfy the completeness and
soundness properties in Definition 2.1.

We now consider several families of possible oracles that model one-way func-
tions, one-way permutations and bit-commitment schemes. The same framework,
however, can be used to describe most cryptographic primitives.

Definition 3.5 (oracles for primitives). Let OOWF denote the set of all
length preserving functions. Let OOWP be the subset of all functions in OOWF
that are permutations on every input length. Given f ∈ OOWF, an algorithm T
η-breaks f on security parameter k if PrX←Uk

[T (f(X)) ∈ f−1(f(X))] ≥ η.
Let OBC denote the set of all functions f that given a bit b and a string

r ∈ {0, 1}k produce a string c ∈ {0, 1}k. We furthermore require that f is binding,
namely that for every k and r1, r2 ∈ {0, 1}k, f(0, r1) �= f(1, r2). Given f ∈ OBC,
an algorithm T η-breaks f on security parameter k if PrB←U1,R←Uk

[T (f(B, R) =
B] ≥ 1/2 + η/2.7

7 The choice of dividing η by 2 is so that the success probability of T is one when
η = 1. This way, for both OOWF, OBC an algorithm T that 1-breaks f succeeds with
probability one.

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 233

Remark 3.2 (interactive commitment schemes). The family OBC defined above
corresponds to perfectly binding non-interactive commitment schemes. In such
a scheme the sender commits to a bit b by sending f(b, r) for a randomly chosen
r. The sender can later reveal the bit b by sending r and our definition requires
that the commitment is binding.

One can consider more relaxed notion of commitment schemes in which the
commitment phase is an interactive protocol between the sender and receiver.
In such a scheme the binding property can be statistical rather than perfect
(namely, binding only holds with high probability over the receiver’s coins). We
have chosen the more simple version of commitment schemes in order to simplify
the presentation. All our results, however, apply also for the more general notion
of interactive statistically binding commitments (and this holds by exactly the
same proofs).

Remark 3.3 (3-Colorability and Hamiltonicity). Using this framework the clas-
sical protocols for 3-Colorability and Hamiltonicity can be viewed as OBC-black-
box interactive proofs. (This also applies if we modify OBC to capture interactive
commitments as explained in Remark 3.2).

We can now give the definition of a fully-black-box reduction. We consider two
flavors depending on whether the black-box interactive proof starts from one-way
functions or bit-commitment (that is whether f is assumed to come from OOWF
or OBC). The definition below is identical to definition 3.1 with the following
modifications: all parties (including the verifier V ∗ and the reduction R) get
oracle access to f and the reduction should work for every choice of f in the
family of relevant oracles.

Definition 3.6 (fully-black-box reduction establishing witness hiding).
Let L be a language in NP. Let (P (·), V (·)) be a OOWF-black-box interactive
proof for L (resp., OBC-black-box interactive proof for L). Let X = {Xn} be
a distribution ensemble over positive instances of L, and g be a feature that is
uniquely determined for X. We say that R is a fully-black-box WH reduction
from OWF (resp., fully-black-box WH reduction from BC) if R is a polynomial-
time oracle machine and there exist polynomials p(n) and k(n) such that for
every f ∈ OOWF (resp., every f ∈ OBC) and every input length n, and every
deterministic (not necessarily efficient) algorithm V ∗: If there is a witness choice
W (x) such that PrX←Xn [(P f (W (X)), V ∗f)(X) = g(X)] = 1 then

– either RV ∗f ,f 1/p(n)-breaks f on security parameter k(n),
– or PrX←Xn [RV ∗f ,f (X) = g(X)] ≥ 2−�(n) + 1/p(n).

We note that any fully-black-box reduction R gives a weakly-black-box reduc-
tion for any specific choice of f .

3.4 Transcript Knowledge Extractors

We introduce a non-standard notion of proofs of knowledge (which is incom-
parable to the standard one) and show that black-box interactive proofs from

234 I. Haitner, A. Rosen, and R. Shaltiel

commitment schemes that are constant-round public-coin protocols with negli-
gible soundness, and in addition have “transcript knowledge extractors” cannot
have fully-black-box reductions establishing WH. Before we define this new no-
tion, let us first recall the definition of “standard” knowledge extractors.

Definition 3.7 (knowledge extractor [11]). Let (P, V) be an interactive
proof system for L ∈ NP and let RL be its witness relation. A probabilistic
machine E is a knowledge extractor for (P, V) and RL with error η : N �→ R,
if there exists a polynomial qE such that for every input x ∈ Ln and every de-
terministic algorithm P ∗, EP∗

(x) runs in expected number of step bounded by
qE(n)

δ(x)−η(|x|) and outputs w ∈ RL(x), where δ(x) = Pr[(P ∗, V)(x) = 1].

The new notion applies to black-box interactive proofs (See definition 3.4) and
allow the extractor to access an oracle that breaks the security assumption on
which the protocol is based. The extractor gets as input a transcript on which
V accepts and is required to extract a witness from the transcript (we stress
that the extractor does not get oracle access to the prover P ∗). A precise defini-
tion follows. The definition has two flavors depending on whether the black-box
interactive proofs is from one-way functions or bit-commitment.

Definition 3.8 (transcript knowledge extractor (TKE)). Let L be a lan-
guage in NP and let (P (·), V (·)) be a OOWF-black-box interactive proof for L
(resp., a OBC-black-box interactive proof for L). A polynomial-time oracle ma-
chine E is a transcript knowledge extractor with error η(n) if for every f ∈ OOWF
(resp., every f ∈ OBC) and every algorithm T that 1-breaks f on every security
parameter k it holds that: For every input x ∈ L and for every deterministic al-
gorithm P ∗, let τ(x) be the random variable that is the transcript of (P ∗f , V f)(x)
then:

Pr[τ(x) is accepting and Ef,T (τ(x)) �∈ RL(x)] ≤ η(|x|)
We allow E to access both f and an oracle T that completely breaks f . While
transcript knowledge extractors require an oracle that breaks the security as-
sumption, they have the advantage that they do not require oracle access to the
prover P ∗. This in particular means that they do not rely on rewinding P ∗ and
that the extraction process is efficient even if P ∗ is inefficient.

3.5 Our Results on Fully-Black-Box Reductions

We now state our main result on fully-black-box reductions. We consider black-
box interactive proofs that use one-way functions or commitment schemes. This
result applies to any reduction (even one that is embedding) whenever the black-
box interactive proof has a transcript knowledge extractor.

Theorem 3.3. Let L ∈ NP and let RL be its witness relation. Let X be a distri-
bution ensemble over positive instances of L and let g be a feature that is uniquely
determined with respect to X. Let (P (·), V (·)) be a constant-round public-coin
OOWF-black-box interactive proof for L (resp., OBC-black-box interactive proof
for L). Assume that the proof system has negligible soundness and a TKE with

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 235

negligible error. Let R be a fully-black-box WH reduction from OWF (resp., BC).
Then, there is a polynomial-time machine M and a polynomial p such that for
every sufficiently large n, PrX←Xn [M(X) = g(X)] ≥ 2−�(n) + 1/p(n).

The theorem above is very similar to Theorem 3.2 with the exception that it
handles general fully-black-box reductions (rather than non-embedding weakly-
black-box ones) and requires transcript knowledge extractors (rather than stan-
dard knowledge extractors). In the next section we observe that many protocols
in the literature have transcript knowledge extractors. In particular, when con-
sidering a language L in which every x ∈ L has exactly one witness, the feature
g(w) = w is uniquely determined and the Theorem asserts that one cannot use a
fully-black-box reduction to establish WH for distributions X for which finding
a witness is hard.

3.6 Prevalence of Transcript Knowledge Extractors

On an intuitive level one can expect that any interactive proof where the privacy
of the prover is based on a hardness assumption (e.g., the existence of bit-
commitment schemes) has a transcript knowledge extractor as otherwise the
hardness assumption is “not really needed” and the security of the protocol
follows unconditionally. We do not make such a formal statement and do not
know whether a statement of this flavor is true. In the discussion below we
observe that many specific interactive proofs in the literature have transcript
knowledge extractors. The impossibility results of Theorem 3.3 apply to all these
protocols.

3-Colorability. Consider the ZK proof of [13] for 3-colorability. This is a OBC-
black-box interactive proof that is a 3-round protocol with perfect completeness
and soundness 1 − 1/m (where m is the number of edges in the input graph).
It is known that this protocol is zero-knowledge. The soundness analysis of this
protocol shows that if in the first message of the protocol the prover does not
send a commitment to a witness (a legal coloring) then with probability 1/m
(where m is the number of edges in the input graph) the verifier rejects. It follows
that this protocol has a transcript knowledge extractor with η = 1− 1/m as E
can open the commitment using the fact it has oracle access to an algorithm T
that breaks the commitment. Recall that we are interested in investigating the
security of the parallel repetition of this atomic protocol when repeated t times.
It is easy to see that after repetition there is a transcript knowledge extractor
with error η = (1−1/m)t. (This follows as if the extractor cannot find a witness
in any of the commitments sent in the first round then the probability that the
verifier accepts is the expression above).

Graph Hamiltonicity. Consider the ZK proof of [5] for Graph Hamiltonicity.
This is a OBC-black-box interactive proof that is a 3-round protocol with perfect
completeness and soundness 1/2. The soundness analysis of this protocol shows
that if B does not commit to a graph that is isomorphic the input graph G in
its first message then with probability 1/2 he is caught in the third message. On

236 I. Haitner, A. Rosen, and R. Shaltiel

the other hand if B commits to a graph that is isomorphic to the correct graph
then with probability half he reveals a cycle in the graph in the third message
and the knowledge extractor can “break” the commitment and find a cycle in
the original graph when given the transcript. These properties give a knowledge
extractor with η = 1/2 and parallel repetition reduces η at an exponential rate.

Zaps. These are 2-message WI protocols [7], and are not known to be a (stan-
dard) proof of knowledge. Zaps can be either constructed based on non-interactive
zero-knowledge (NIZK) proofs, or based on a verifiable pseudo-random generator
(VPRG). The “generic” versions of both of these primitives are constructed using
trapdoor permutations, where the role of trapdoor permutations in all known con-
structions is to implement the hidden bits (or hidden random string) model [8,16,7].
A close examination of these constructions reveals that if one is able to invert
the underlying trapdoor permutation then the bits (random string) becomes com-
pletely revealed. As observed in [19], such information can be used to extract the
witness for the statement. With appropriately chosenparameters (i.e., if the sound-
ness error is small enough), this can be done with all but negligible probability. The
same applies for VPRG based constructions. Thus, many of the “generic” zap con-
structions have transcript knowledge extractors.

Acknowledgements. We thank Oded Goldreich and Rafael Pass for helpful
discussions.

References

1. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way
functions on np-hardness. In: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing (STOC), pp. 701–710 (2006)

2. Babai, L., Moran, S.: Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

3. Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings of
the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pp.
106–115 (2001)

4. Barak, B., Lindell, Y., Vadhan, S.: Lower bounds for non-black-box zero knowledge.
Journal of Computer and System Sciences 72(2), 321–391 (2006)

5. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1451 (1987)

6. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for np prob-
lems. SIAM Journal on Computing 36(4), 1119–1159 (2006)

7. Dwork, C., Naor, M.: Zaps and their applications. SIAM Journal on Comput-
ing 36(6), 1513–1543 (2007)

8. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)

9. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 416–426. ACM, New York (1990)

10. Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SIAM
Journal on Computing 22(5), 994–1005 (1993)

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols 237

11. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

12. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996); Preliminary version in ICALP 1990

13. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In:
FOCS, pp. 174–187. IEEE, Los Alamitos (1986)

14. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7(1), 1–32 (1994)

15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989); Preliminary version in
STOC 1985

16. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for
np with general assumptions. J. Cryptology 11(1), 1–27 (1998)

17. Pass, R.: Parallel repetition of zero-knowledge proofs and the possibility of basing
cryptography on np-hardness. In: IEEE Conference on Computational Complexity,
pp. 96–110 (2006)

18. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

19. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 427–436 (1992)

Secure Computability of Functions in the IT Setting
with Dishonest Majority and Applications to Long-Term

Security

Robin Künzler1, Jörn Müller-Quade2,�, and Dominik Raub1,��

1 ETH Zurich, Department of Computer Science, CH-8092 Zurich, Switzerland
robink@student.ethz.ch, raubd@inf.ethz.ch

2 IKS/EISS, Fakultät für Informatik, Universität Karlsruhe (TH), Germany
muellerq@ira.uka.de

Abstract. While general secure function evaluation (SFE) with information-the-
oretical (IT) security is infeasible in presence of a corrupted majority in the
standard model, there are SFE protocols (Goldreich et al. [STOC’87]) that are
computationally secure (without fairness) in presence of an actively corrupted
majority of the participants. Now, computational assumptions can usually be well
justified at the time of protocol execution. The concern is rather a potential vio-
lation of the privacy of sensitive data by an attacker whose power increases over
time. Therefore, we ask which functions can be computed with long-term secu-
rity, where we admit computational assumptions for the duration of a computa-
tion, but require IT security (privacy) once the computation is concluded.

Towards a combinatorial characterization of this class of functions, we also
characterize the classes of functions that can be computed IT securely in the au-
thenticated channels model in presence of passive, semi-honest, active, and quan-
tum adversaries.

Keywords: long-term security, information-theoretic security, corrupted major-
ity, secure function evaluation.

1 Introduction

In cryptography one distinguishes computational (CO) security which could in princi-
ple be broken by a very powerful adversary and information theoretical (IT) security
which withstands even an unlimited attacker. However, general IT secure protocols fail
in presence of an adversary that may corrupt a majority of the participants. On the other
hand, an unlimited attacker is not a realistic threat and the problem with CO assump-
tions is not so much that these could be unjustified right now, but that concrete CO as-
sumptions could eventually be broken by an attacker whose power increases over time.
With such a more realistic threat model in mind an interesting question arises: Which
cryptographic tasks can be realized with long-term (LT) security? I.e., which tasks
can be realized in presence of an attacker (potentially corrupting a majority of protocol

� Thanks for financial support from the European Commission (SECOQC).
�� Supported by the Swiss National Science Foundation (SNF), project no. 200020-113700/1.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 238–255, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Secure Computability of Functions in the IT Setting 239

participants) who is CO limited during the protocol execution, but becomes unlimited
afterwards?

In this work we study multi-party secure function evaluation (SFE). The main result
is a classification of the functions which can be computed with LT security over a net-
work of authenticated channels. Furthermore we give a classification of all the 2-party
functions which can securely be computed in presence of an adversary who is unlim-
ited from the start. This class is strictly contained in the class of functions which can
be computed with LT security and the notion of LT security hence lies strictly between
CO security and IT security.

Quantum cryptography can achieve tasks, like IT secure key distribution, which can-
not be achieved classically. For the task of secure function evaluation it is not known
if quantum cryptography can achieve anything beyond the classically possible1. How-
ever, in this work we show that the class of 2-party functions which can be realized with
quantum cryptography is strictly contained in the class of 2-party functions realizable
with LT security. From this inclusion novel impossibility results for quantum cryptog-
raphy arise that are no direct consequences of the results by Mayers [25] or Kitaev [1].

All results in this paper are constructive (whenever it is claimed that a class of func-
tions is securely computable a protocol is given) and proven in a stand-alone simulata-
bility based security model with a synchronous communication network (see e.g. [15]).

1.1 Contributions

To combinatorially characterize the class of functions which are computable with LT
security we first characterize the class of passively computable functionsFaut

pas which can
securely be computed by parties connected by authenticated channels in presence of a
CO unlimited passive2 adversary who must behave according to the protocol. Next we
characterize the class of semi-honestly computable functions Faut

sh which are securely
computable in the same setting as above but in presence of a stronger, semi-honest3

adversary, that has to stick to the protocol, but may replace his inputs or lie about his
local output.

To prove a separation between the notion of LT security and IT security we charac-
terize the class F2act of all 2-party functions which are securely computable in presence
of an unlimited active adversary. We furthermore provide a necessary condition (which
we conjecture to be also sufficient) for membership in the class of actively computable
functions Faut

act that are securely computable in presence of an active adversary in the
authenticated channels model with broadcast (BC). Next we consider the class of 2-
party functions F2qu that can securely be computed where the parties may use quantum
cryptographic protocols and the attacker is an unlimited active quantum adversary. We
show that the class F2qu is strictly contained in the class F2sh of semi-honestly com-
putable 2-party functions which gives rise to novel impossibility results beyond those
of Mayers [25] or Kitaev [1].

1 However, quantum bit commitment is impossible [25] and hence no function implying bit
commitment is computable.

2 In the literature our notion of passive is also occasionally referred to as semi-honest.
3 In the literature our notion of semi-honest is also sometimes referred to as weakly semi-honest

or weakly passive.

240 R. Künzler, J. Müller-Quade, and D. Raub

To obtain the desired result on LT security we prove that the class of semi-honestly
computable functions Faut

sh equals the class Fbc
lts of functions which can LT securely be

computed given an authenticated BC channel. Furthermore, we show that the class of
LT securely computable functions remains unchanged if we replace the authenticated
BC channel by a network of authenticated channels or by a realistic communication in-
frastructure consisting of a network of insecure channels with a given public-key infras-
tructure (PKI). Hence our classification applies to a very practical internet-like setting.

Unlike our IT secure protocols the LT secure protocols given in this work do not
achieve robustness or fairness. We show that this is optimal in the sense that generally
functions implementable with LT security cannot be implemented with fairness. How-
ever, we present protocols which guarantee that only a specific designated party can abort
the computation after learning the output. I.e. the fairness property can only be violated
by this designated party. Interestingly these protocols make use of CO secure oblivious
transfer (OT) protocols even though OT itself cannot be achieved with LT security.

Summarizing our results and importing the treatment of complete two party func-
tions from [21] (i.e. functions which are cryptographically as powerful as oblivious
transfer) we arrive at a complete classification of two party functions. Interestingly,
there is a class of functions which cannot securely be computed but still are not com-
plete. This shows that for non-boolean functions there is no zero-one law for privacy [9].

1.2 Related Work

Secure computability of functions was first discussed by [9]. They characterize the sym-
metric boolean functions (all parties receive the same output y ∈ {0, 1}) that can be
computed with IT security in presence of passive adversaries in the private channels
model. In this scenario functions are either computable or complete (zero-one law for
privacy).

Kushilevitz [23,24] and Beaver [2] presented the first results for non-boolean func-
tions describing the symmetric 2-party functions which can be computed with perfect
security in presence of an unbounded passive adversary. Our protocols and proof tech-
niques draw heavily upon [24]. Also, in the 2-party setting, [26] sketches a generaliza-
tion of [24] to the asymmetric, IT case, connections to LT security and discusses quan-
tum aspects, though without proper formalization or proofs. Our work goes beyond the
results of [9,2,24,26] in that we consider IT secure computability of asymmetric, non-
boolean functions, in presence of passive, semi-honest, active, and quantum adversaries,
for the most part in the multi-party setting.

Gordon et al. [17] characterize the boolean functions computable with CO fairness in
the 2-party setting in presence of active adversaries. Our protocols for active adversaries
are robust (and hence fair) and being applicable to asymmetric, non-boolean functions,
pertain to a larger class of functions than those of [17], but in the IT scenario instead of
the CO setting.

Other works that deal with the computability of 2-party functions in the perfect or IT
setting are [19,20,3,21]. However, these papers focus mostly on reducibility and com-
pleteness, while we are more interested in computability in the authenticated channels
model and implications for LT security. Computability of a few interesting special func-
tions in presence of dishonest majorities is discussed in [6].

Secure Computability of Functions in the IT Setting 241

Our impossibility result in the quantum case makes use of a result of Kitaev showing
the impossibility of quantum coin flipping which is published in [1].

Everlasting security from temporary assumptions has been investigated in crypto-
graphic research for some time. It was shown that a bound on the memory available to
the adversary allows key exchange and OT protocols [8,7] which remain secure even if
the memory bound holds only during the execution of the protocol. This idea has been
pursued further to achieve everlasting security from a network of distributed servers
providing randomness [28]. In [13] it was shown that using a CO secure key exchange
in the bounded storage model need not yield everlasting security. For some time general
quantum cryptographic protocols were sought which obtain everlasting security from a
temporary assumption. Such protocols are now generally accepted to be impossible [5].
Additional assumptions, like a temporary bound on the quantum memory can again
provide everlasting security for secure computations [11].

In this paper we investigate the power of temporary CO assumptions in the standard
model. This is along the lines of [27]. However, in [27] strong composability require-
ments are imposed under which little is possible without additional setup assumptions,
like the temporary availability of secure hardware.

2 Security Definitions and Notation

In secure function evaluation (SFE) the goal is to compute a function f : X1 × . . . ×
Xn → Y1× . . .×Yn securely among n parties P = {P1, . . . , Pn}.4 Each party Pi ∈ P
(i ∈ [n] := {1, . . . , n}) holds an input xi ∈ Xi from a finite set Xi and is supposed
to receive output fi(x1, . . . , xn) := yi ∈ Yi, where (y1, . . . , yn) = f(x1, . . . , xn). We
extend this notation to sets M = {Pm1 , . . . , Pm|M|} ⊆ P and write fM (x1, . . . , xn) :=
yM := (ym1 , . . . , ym|M|) and xM := (xm1 , . . . , xm|M|). We call the set of all n-party
functions Fn and the set of multi-party functions F :=

⋃
n≥1 Fn.

In order to compute the function f the parties may execute a protocol π, utilizing a set
of resources5 (communication primitives) R. We designate by H ⊂ P the set of honest
parties, that execute their protocol machine πi as specified by protocol π, and by E :=
P\H the set of corrupted parties that may deviate from the protocol. We generally make
the worst case assumption that corrupted parties are controlled by a central adversary
E. The adversary (if present, i.e. if at least one party is corrupted) acts for the corrupted
parties, sees messages sent over authenticated channels, and can manipulate messages
sent over insecure channels. If no party is corrupted, we assume that no adversary is
present. External adversaries that can listen on authenticated channels and manipulate
insecure channels even when no party is corrupted are easily modelled by adding an
additional party, that has constant function output and whose input is ignored.

We define security using a simulation based stand-alone6 model (see e.g. [15]) with
synchronous message passing. The security of a protocol (the real model) is defined
with respect to an ideal model, where f is evaluated by a trusted third party or ideal

4 In the 2-party setting we will occasionally use A and B instead of P1 and P2.
5 In this work these are most often a complete network of authenticated channels or an authen-

ticated broadcast (BC) channel.
6 As opposed to a universally composable model.

242 R. Künzler, J. Müller-Quade, and D. Raub

Table 1. Basic Security Paradigms

Paradigm Short D = E = S = ε(κ) Notation

Perfect security PF Algo Algo Algo ε(κ) = 0 π �PF I

Information-theoretical security IT Algo Algo Algo ε(κ) < negl π �IT I

PF security with efficient simulator PFE Algo Algo Poly ε(κ) = 0 π �PFE I

IT security with efficient simulator ITE Algo Algo Poly ε(κ) < negl π �ITE I

Computational security CO Poly Poly Poly ε(κ) < negl π �CO I

Long-term security LT Algo Poly Poly ε(κ) < negl π �LT I

functionality I . A protocol π achieves security according to the simulation paradigm if
whatever an adversary E controlling a subset E ⊆ P of parties can do in the real model,
a simulator (or ideal adversary) S (connected to the interfaces of the corrupted parties
to the ideal functionality I) could replicate in the ideal model.

This is formalized by means of a distinguisher D which provides inputs xi (Pi ∈ H)
for the honest parties and xE for the adversary E. In the ideal setting the xi (Pi ∈ H) are
input to I , while xE is passed to the simulator S (which in turn computes inputs x′

E to I
for the corrupted parties). In the real setting the protocol machines πi are run on input
xi (Pi ∈ H) with the adversary E on input xE and with resources R. Finally the outputs
yH of the honest parties and yE of the adversary or simulator are passed to D which then
has to guess if it is connected to the real system E ◦πH ◦R or the ideal system S(E) ◦ I .
To facilitate a unified treatment of different corruption models, we will wlog assume
that xE = (xE, x′

E) and yE = (yE, y′
E) where xE ∈ XE and yE ∈ YE are function

inputs and outputs respectively, x′
E is an auxiliary input and y′

E is the protocol transcript
observed by the adversary.7 If now for any adversaries E from a class E controlling a
set E of parties there is a simulator S from a class S such that the advantage of any
distinguisher D from a classD in distinguishing the real system E◦πH ◦R and the ideal
system S(E) ◦ I is bounded by an advantage function ε(κ), then we say that protocol
π securely implements the ideal functionality I . The type of security is dependent on
the choice of D, E , S, and ε(κ), and on the ideal functionality I . Denoting the class
of efficient8 algorithms by Poly, the class of arbitrary unbounded algorithms by Algo,
and negligibility in the security parameter κ as ε(κ) < negl we arrive at the security
paradigms listed in Table 1.

We refine these further by defining adversarial models, i.e. restrictions that we can
impose on the adversaries and simulators for any of the above paradigms. We discuss ac-
tive (act) adversaries, where adversaries and simulators in the classes Eact, Sact are not
restricted further; semi-honest (sh) adversaries3, where adversaries in the class Esh are
restricted to generate messages according to the prescribed protocol π with the inputs
xE provided by the distinguisher D, and simulators in the class Ssh are not restricted
further; and passive (pas) adversaries2, where adversaries are in the class Epas = Esh
and simulators in the class Spas are restricted to forward the inputs xE provided by the
distinguisher D to the ideal functionality I .

7 Arbitrary inputs can be passed to the adversary via x′
E and whatever the adversary might com-

pute from its observations can also be computed from the protocol transcript y′
E directly.

8 By efficient we mean polynomially bounded in the security parameter κ.

Secure Computability of Functions in the IT Setting 243

We briefly motivate our definition of sh adversaries. When CO tools are applied to
force active adversaries to behave passively, they can, in contrast to the pas setting, still
substitute inputs. The sh setting is intended to model this scenario. However, for sim-
plicity, the definition above only allows for simulators (and not adversaries) to substitute
inputs, as this is actually equivalent under the distinguisher classes D we consider: For
any D ∈ D we can find a distinguisher D′ = D ◦ σ ∈ D that incorporates the input sub-
stitution of the adversaryE = E′◦σ. So we can find a passive adversaryE′ ∈ Esh = Epas
and a distinguisher D′ that yield the same advantage as E and D.

Security paradigms and adversarial models as defined above are combined by in-
tersecting their defining sets, i.e. IT security against sh adversaries is described by
DIT

sh = DIT ∩ Dsh, S ITsh = S IT ∩ Ssh, E ITsh = E IT ∩ Esh, ε(κ) < negl and denoted
π �IT

sh I . By definition we have the following implications among security paradigms
and adversarial models respectively:

PFE

��

�� ITE

��

�� LT �� CO

PF �� IT

act �� sh pas��

We can now formalize the computation of a function f with a specific set of secu-
rity properties under each of the definitions above by providing an appropriate ideal
functionality. Let f ∈ Fn be a function9 and let E ⊂ P be a set of corrupted players.

Demanding privacy, correctness and agreement on abort only for the computation
of f is captured by the ideal functionality Iabf , which operates as follows: Iabf accepts

an input xi from each party Pi. If a party Pi provides no input, a default input xdef
i

is used. Iabf then computes the outputs (y1, . . . , yn) = f(x1, . . . , xn) and outputs yE
to the adversary (simulator). If |E| > 0, the adversary may decide whether the other
parties also receive the output (output flag o = 1) or not (output flag o = 0). Finally,
Iabf sends either the outputs yi or the empty value⊥ to the honest parties, depending on
the output flag received from the adversary.10

The ideal functionality I fairf specifying privacy, correctness and fairness (which im-

plies agreement on abort) works like Iabf but takes an output flag before making output

to the adversary. Then for output flag 1 the functionality I fairf sends the result y to all
parties and for output flag 0 it sends ⊥ to all parties.

Computing function f with full security (including robustness), which implies all
the security notions mentioned above, is specified by means of the ideal functionality
If . The functionality If operates like I fairf but takes no output flag and instead directly
delivers the output y to all parties.

9 In this work we take the function f to be independent of the security parameter κ. As such
the efficiency of protocols is always discussed for a fixed function in terms of the security
parameter κ. This is the most relevant case for applications, however, our proofs still hold
for a family of functions fκ, where the input domain grows at most polynomially fast in the
security parameter κ.

10 We could relax the definition further by allowing the adversary to send one output flag for
each party, dropping agreement on abort. However, all our protocols will achieve agreement
on abort.

244 R. Künzler, J. Müller-Quade, and D. Raub

Computing function f with a designated aborter (DA) is a slightly weaker notion of
security than fairness in that only the designated party P1 can abort the protocol after
receiving output. The corresponding ideal functionality Idesf operates as follows: Idesf

accepts an input xi from each party Pi. If a party Pi provides no input, a default input
xdef

i is used. Idesf then computes the outputs (y1, . . . , yn) = f(x1, . . . , xn). If P1 ∈ E

the functionality Idesf outputs yE to the adversary (simulator). If |E| > 0, the adversary
may decide whether the other parties also receive the output (output flag o = 1) or not
(output flag o = 0). Finally, Idesf either delivers the remaining outputs yi or the empty
value⊥, depending on the output flag received from the adversary.

In the 2-party setting (but not for n > 2 parties) given I fairf we can implement If by

having Pi output fi(xi, x
def
2−i) when it receives⊥. Conversely, given If , we can directly

use it as implementation of I fairf . Thus robustness and fairness amount to the same:

Lemma 1. In the 2-party setting, I fairf and If are efficiently and PFE securely locally
mutually reducible, even in presence of active adversaries.

Finally we show that computability by public discussion (authenticated BC only as
resources R) and in the authenticated channels model (complete network of authen-
ticated channels as resources R) lead to identical results for semi-honest or passive
adversaries. In the authenticated channels model we can securely (against sh and pas
adversaries) implement BC by simply sending messages to all other parties. Conversely
in the authenticated BC model, authenticated channels can be implemented by broad-
casting messages and instructing parties other than the intended recipient to ignore the
messages. By the same argument computability by public discussion and in the authen-
ticated channels model with BC lead to identical results for active adversaries also.

Lemma 2. In presence of semi-honest or passive adversaries, a function f ∈ F is se-
curely computable in the authenticated channels model if and only if it is computable by
public discussion (authenticated BC only). In presence of passive, semi-honest, or ac-
tive adversaries, a function f ∈ F is securely computable in the authenticated channels
model with BC if and only if it is computable by public discussion.

3 The Class Faut
pas of Passively Computable Functions

We subsequently characterize the class Faut
pas of functions f ∈ F that are computable IT

securely in the authenticated channels model in presence of a passive adversary.

Definition 1 (Faut
pas: Passively Computable Functions). The class of passively com-

putable functions Faut
pas consists of the functions f ∈ F for which an efficient protocol

π ∈ Poly exists that implements If with IT security in presence of a passive adversary
in the authenticated channels model.

Note that by Lem. 2 we have Faut
pas = Fbc

pas, where Fbc
pas denotes the functions com-

putable by public discussion in the setting above. Hence we may, for the sake of sim-
plicity, assume an authenticated BC channel instead of authenticated channels as the
sole underlying resource in the following discussion.

An important subset Faut
pas is the set Floc of locally computable n-party functions.

Secure Computability of Functions in the IT Setting 245

Definition 2 (Floc: Locally Computable Functions). A function f ∈ F is called lo-
cally computable (f ∈ Floc) if each party Pi can compute its function value yi =
fi(x1, . . . , xn) locally, without interacting with a resource or another party.

Obviously, for f to be locally computable, fi cannot depend on the inputs of parties
other then Pi:

Lemma 3 (Characterization of Floc). A function f ∈ F is locally computable (f ∈
Floc) iff for every i ∈ [n], xi ∈ Xi the restriction fi |X1×...×Xi−1×{xi}×Xi+1×...×Xn

of
f is constant.

Towards a characterization of Faut
pas, we give a combinatorial definition of a set F′

pas of
functions that we call passively decomposable. Passive decomposability captures the
fact that a party can send a message about its input such that no adversary can learn
anything that is not implied by its own input and function output.

Definition 3 (F′
pas: Passively Decomposable Functions). A function f ∈ Fn is called

passively decomposable, denoted f ∈ F′
pas, if for any restriction f |X̃1×...×X̃n

of f to

subsets X̃j ⊆ Xj (j ∈ [n]) we have:

1. f |X̃1×...×X̃n
is locally computable (f |X̃1×...×X̃n

∈ Floc) or

2. there is an i ∈ [n] and a partition (K-Cut) of X̃i into non-empty sets X ′
i ∪̇X ′′

i = X̃i

such that for all Pe ∈ P \ {Pi} and all xe ∈ X̃e (E := {Pe}, H′ := H \ {Pi}):
fe(xe, X̃H′ ,X ′

i) ∩ fe(xe, X̃H′ ,X ′′
i) = ∅.

The above definition only discusses adversary sets E of cardinality |E| = 1. As we
show next this is actually equivalent to quantifying over all sets E ⊆ P.

Lemma 4 (An Equivalent Characterization of F′
pas). A function f ∈ Fn is passively

decomposable if and only if for any restriction f |X̃1×...×X̃n
of f to subsets X̃j ⊆ Xj

(j ∈ [n]) we have:

1. f |X̃1×...×X̃n
is locally computable (f |X̃1×...×X̃n

∈ Floc) or

2. there is an i ∈ [n] and a partition (K-Cut) of X̃i into non-empty sets X ′
i ∪̇X ′′

i =
X̃i such that for all ∅ �= E ⊆ P \ {Pi} and all xE ∈ X̃E (H′ := H \ {Pi}):
fE(xE, X̃H′ ,X ′

i) ∩ fE(xE, X̃H′ ,X ′′
i) = ∅.

The proof of Lemma 4 is by induction over the size of the adversary set E and can be
found in the full version [22].

We now show that passive decomposability as defined above indeed characterizes
the passively computable n-party functions:

Theorem 1. A function f ∈ F is passively computable if and only if it is passively de-
composable. In short Faut

pas = F′
pas. Furthermore, any function f ∈ Faut

pas can efficiently
(in the security parameter κ) be computed with PFE security.

The full proof of Thm. 1 can be found in [22]. Faut
pas ⊆ F′

pas is shown by demonstrat-
ing that in absence of a K-cut no protocol participant can send a message that bears

246 R. Künzler, J. Müller-Quade, and D. Raub

any information about his input without losing security. The proof of Faut
pas ⊇ F′

pas is
constructive in the sense that it inductively describes an efficient passively PFE secure
protocol πf to compute a function f ∈ F′

pas. The protocol πf generalizes the approach
of [24] to asymmetric n-party functions:

Wlog assume that there is a partition of Xi = X (1)
i ∪̇X (2)

i as described in Definition
3. The protocol πf then proceeds as follows: The party Pi determines the message

m1 ∈ {0, 1} such that for the input xi ∈ Xi of Pi we have xi ∈ X (m1)
i and broadcasts

m1. The partiesP then restrict the function f to f |X1×X2×...×X (m1)
i ×...×Xn

and proceed

with a partition for the restricted function in the same fashion. The process is iterated
until the parties arrive at a locally computable restriction of f , at which point they can
determine the output locally.

We conjecture that the above protocol achieves the optimal round complexity if it is
refined to use the finest possible decomposition (according to [24]) of the input domains
in every round.

4 The Class Faut
sh of Semi-honestly Computable Functions

Next we characterize the class Faut
sh of n-party functions that are IT securely computable

in the authenticated channels model in presence of a semi-honest adversary. Here, in
order to obtain extra information, the corrupted parties are allowed to exchange their
inputs for different ones, but must still behave according to the prescribed protocol.
The results in this chapter will later help us to characterize LT secure functions in a
very practical setting.

Definition 4 (Faut
sh : Semi-Honestly Computable Functions). The class of semi-hon-

estly computable functions Faut
sh consists of the functions f ∈ F for which an efficient

protocol π ∈ Poly exists that implements If with IT security in presence of a semi-
honest adversary in the authenticated channels model.

Note that by Lem. 2 we have Faut
sh = Fbc

sh, where Fbc
sh denotes the functions computable

by public discussion in the setting above. Hence we may, for the sake of simplicity,
assume an authenticated BC channel instead of authenticated channels as the sole un-
derlying resource in the following discussion.

We intend to characterize the class Faut
sh combinatorially. To this end we introduce the

concept of redundancy-freeness for n-party functions, generalizing the 2-party defini-
tions of [21]. For a party Pi, two of its possible inputs xi and x′

i to f may be completely
indistinguishable to the other parties (by their output from f), while the input xi may
yield a more informative output from f for Pi than x′

i. We then say the input xi yielding
more information dominates the input x′

i giving less information. As semi-honest (and
active) adversaries can select their inputs, generally with the goal to obtain as much
information as possible, the dominated input x′

i giving less information is not useful
to a corrupted Pi. Along the same lines an ideal adversary (simulator) can always use
the dominating input xi instead x′

i of for simulation. As such the input x′
i is redundant,

irrelevant in terms of security, and we can eliminate it from the function f under con-
sideration. This procedure yields a redundancy-free version f̂ of f , with new, smaller,
dominating input sets.

Secure Computability of Functions in the IT Setting 247

Definition 5 (Domination and Redundancy-Freeness). Given an n-party function
f ∈ Fn we say xi ∈ Xi dominates x′

i ∈ Xi iff for all xP′ ∈ XP′ : fP′(xi, xP′) =
fP′(x′

i, xP′) and for all xP′ , x′
P′ ∈ XP′ (where P′ := P \ {Pi}): fi(x′

i, xP′) �=
fi(x′

i, x
′
P′) =⇒ fi(xi, xP′) �= fi(xi, x

′
P′).

We define sets of dominating inputs X̃j := {X ⊆ Xj | ∀x′ ∈ Xj∃x ∈ X :
x dominates x′} (j ∈ [n]). Take the dominating set X̂j as (some) element of minimal
cardinality in X̃j . We then call f̂ := f |X̂1×...×X̂n

the redundancy-free version of f .

Furthermore, for xj ∈ Xj let x̂j ∈ X̂j be the (unique) element that dominates xj .

The redundancy-free version f̂ of f is uniquely defined up to a renaming of input and
output values (also see Sec. 8 or [22]). Domination is a reflexive and transitive relation.
Furthermore it is antisymmetric up to renaming of input and output symbols. Hence two
different dominating sets X̂i and X̂ ′

i are sets of maximal elements under the domination
relation and equal up to renaming of input and output values.

Since corrupted parties can cooperate to choose their inputs to obtain as much infor-
mation as possible, it is important to note that the above Def. 5 generalizes to the com-
bined input of the corrupted parties E as stated in Lem. 5 below. So if each corrupted
party Pej chooses an input xej dominating input x′

ej
, then the combined adversarial

input xE actually dominates x′
E.

Lemma 5. Let xE = (xe1 , . . . , xe|E|), x
′
E = (x′

e1
, . . . , x′

e|E|) such that each xej dom-
inates x′

ej
(j ∈ [|E|]). Then we have for all xH ∈ XH: fH(xE, xH) = fH(x′

E, xH) and
for all xH, x′

H ∈ XH: fE(x′
E, xH) �= fE(x′

E, x′
H) =⇒ fE(xE, xH) �= fE(xE, x′

H).
Again we say that xE dominates x′

E.

The proof of Lem. 5 is by induction on |E| and can be found in [22].
The following lemma states that the functions f and f̂ are locally11 and efficiently

mutually reducible. This means that it does not matter in terms of security which of the
two functions is used and redundant inputs can safely be eliminated.

Lemma 6. The functions f and f̂ are efficiently and PFE securely locally mutually
reducible, even in presence of active adversaries.

The proof of Lem. 6 is fairly straightforward, by showing how to implement If̂ when
If is given and vice versa. It can be found in [22]. One essentially replaces inputs xi

with dominating inputs x̂i.
As PFE security in presence of active adversaries implies IT security in presence of

semi-honest adversaries, we can derive the following simple corollary:

Corollary 1. For any function f ∈ F we have: f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

sh .

An n-party function f is then sh computable if and only if its redundancy-free version
f̂ is pas computable.

Theorem 2. For a function f ∈ F we have: f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

pas.

11 without using any communication resources

248 R. Künzler, J. Müller-Quade, and D. Raub

f (1) 0 1
0 0/0 0/0
1 0/0 1/0

f (2) 0 1
0 0 1
1 0 2
2 3 2

f (3) 0 1 2
0 0/0 1/1 1/0
1 0/0 2/2 2/0
2 3/3 2/2 2/0

f (4) 0 1 2 3
0 1/1 1/1 2/2 2/0
1 4/4 5/5 2/2 2/0
2 4/4 3/3 3/3 3/0

f (5) 0 1
0 0 0
1 0 1

f (6) 0 1 2
0 1 1 2
1 4 5 2
2 4 3 3

f (7) 4 2 0
3 4 3 3
1 4 2 1
0 4 2 0

f (8) 0 1
0 0 1
1 0 2
2 3 2
3 3 1

f (9) z1 z2 z3

x1 5/d 5/e 6/e
x2 8/a 5/b 9/c
x3 8/a 9/b 8/c

Fig. 1. Examples. Inputs for A are shown to the right, inputs for B on top. For asymmetric func-
tions, outputs are denoted yA/yB ; for symmetric functions only the common output of both
parties is listed.

The full proof of Thm. 2 can be found in [22], we only give a sketch here. By Cor. 1 we
know that f ∈ Faut

sh ⇐⇒ f̂ ∈ Faut
sh . Therefore it suffices to show for redundancy-free

functions f where f = f̂ that we have f ∈ Faut
sh ⇐⇒ f ∈ Faut

pas. The implication
f ∈ Faut

pas =⇒ f ∈ Faut
sh is then clear by definition. The implication f ∈ Faut

sh =⇒
f ∈ Faut

pas is shown along the lines of the proof of Thm. 1, demonstrating that f ∈
Faut
sh =⇒ f ∈ F′

pas. The proof exploits the redundancy-freeness of f due to which a
(working) simulator in the sh setting cannot actually substitute inputs.

The functions f (5) and f (6) in Fig. 1 are examples of not sh computable functions
taken from [24]. The function f (6) is of particular interest as it is of strictly less cryp-
tographic strength than oblivious transfer. Function f (9) is sh computable: After elim-
inating the redundant input x3, the function is pas computable (as indicated by the
horizontal and vertical lines).

5 The Class Faut
act of Actively Computable Functions

We give a sufficient criterion for a function f to be in the class Fbc
act of functions which

can securely be computed by public discussion in presence of an unlimited active adver-
sary. We conjecture that this criterion is also necessary and prove this fact for the 2-party
case. As such we only obtain a full characterization of the class F2act of actively com-
putable 2-party functions, but this suffices to see that F2act is strictly contained in F2sh
and hence the notion of LT security lies strictly between IT security and CO security.

Definition 6 (Faut
act: Actively Computable Functions). The class of actively compu-

table functions Faut
act consists of the functions f ∈ F for which an efficient protocol

π ∈ Poly exists that implements If with IT security in presence of an active adversary
in the authenticated channels model with broadcast.

Note that by Lem. 2 we have Faut
act = Fbc

act, where Fbc
act denotes the functions computable

by public discussion in the setting above. Hence we may in the following assume an
authenticated BC channel as the sole underlying resource.

Secure Computability of Functions in the IT Setting 249

Interestingly there are some useful functions in the class Faut
act , e.g. f (7) in Fig. 1

which is a formalization of a Dutch flower auction, where the price is lowered in every
round until a party decides to buy.

We next give a combinatorial characterization of actively computable functions,
which essentially states that a party Pi must be able to send a message about its in-
put such that the corrupted parties E reacting to this new information by changing their
input from x′

E to x′′
E could have achieved the same effect on the output by selecting a

third input xE a priori:

Definition 7 (F′
act: Actively Decomposable Functions). A function f ∈ F is called

actively decomposable, denoted f ∈ F′
act, if and only if f̂ ∈ F̂act. We have f ∈ F̂act if

one of the following holds:

1. f is locally computable (f ∈ Floc);
2. there is an i ∈ [n] and a partition (T-Cut) of Xi into non-empty sets X ′

i ∪̇X ′′
i = Xi

such that
(i) f |X1×...×X ′

i×...×Xn
, f |X1×...×X ′′

i ×...×Xn
∈ F̂act and

(ii) for all E ⊆ P \ {Pi} and H′ := H \ {Pi} we have

∀x̄E ∈ XE : fE(x̄E,XH′ ,X ′
i) ∩ fE(x̄E,XH′ ,X ′′

i) = ∅ (K-cut) and

∀x′
E, x′′

E ∈ XE ∃xE ∈ XE ∀xH′ ∈ XH′

∀x′
i ∈ X ′

i : fH(x′
E, xH′ , x′

i) = fH(xE, xH′ , x′
i) ∧

∀x′′
i ∈ X ′′

i : fH(x′′
E, xH′ , x′′

i) = fH(xE, xH′ , x′′
i)

Active decomposability indeed characterizes the actively computable functions:

Theorem 3. A function f ∈ F is actively computable if it is actively decomposable. In
short Faut

act ⊇ F′
act. In the 2-party case12 we even have F2act ⊆ F′

2act, i.e. F2act = F′
2act.

Furthermore, any function f ∈ F′
act can be computed efficiently with PFE security.

Furthermore, we conjecture:

Conjecture 1. Faut
act = F′

act.

The full proof of Thm. 3 can be found in [22]. The implication f ∈ F′
act =⇒ f ∈ Faut

act
is proven by showing the protocol for the semi-honest scenario secure against active
adversaries, when applied to the T-cuts of a function f ∈ F′

act instead of the K-cuts of a
function in Faut

sh . To obtain f ∈ F2act =⇒ f ∈ F′
2act we observe that for f �∈ F′

2act the
adversary can in any protocol induce an output distribution that is impossible to achieve
in the ideal setting. The adversary does this by extracting information on the inputs of
other participants from the protocol messages and adjusting his input according to that
information.

The functions f (7) and f (8) in Fig. 1 are examples of actively computable functions.
Especially compare f (8) with f (2) ∈ F2sh which is not actively computable. The lines
in the tables for f (7) and f (8) represent messages which are to be sent in the protocol.

12 For a function class Fchan
name we denote the 2-party subclass Fchan

name ∩ F2 by F2name. We drop the
communication model specification chan as it is irrelevant for the 2-party setting.

250 R. Künzler, J. Müller-Quade, and D. Raub

6 Quantum Protocols

In this section we will relate the class F2sh of sh computable 2-party functions with
the class of 2-party functions computable with quantum cryptography in presence of an
active adversary. A similar result has been obtained by Louis Salvail, but is not pub-
lished yet. Naturally, we have to adapt our model of security to the quantum case. All
machines except for the distinguisher D will be quantum machines able to exchange
quantum messages. Furthermore, all inputs and outputs must be classical and the dis-
tinguisher must try to distinguish the real and the ideal model based on this classical
information.

Let F2qu denote the set of functions f ∈ F2 which can, with the help of a quan-
tum channel, securely and efficiently be computed in presence of an unbounded active
adversary. Then the following result holds.

Theorem 4. The class F2qu of quantum computable functions is strictly contained in
the class of sh computable functions F2sh.

A proof of this theorem is sketched in [22]. The strict inclusion F2qu � F2sh gives rise
to new impossibility results. For instance, the function f (6) �∈ F2sh in Fig. 1 cannot be
computed by means of quantum cryptography. An interesting still open question is the
power of temporary CO assumptions together with a quantum channel. It is known that
this does not suffice to securely implement any function which could in turn be used
to implement an IT secure bit commitment. However, a secure implementation of the
function f (6) in Fig. 1 is not precluded by this impossibility result.

7 Long-Term Security

Subsequently we characterize the n-party functions that can be computed LT securely
(without fairness) in presence of active adversaries. LT security means we are willing
to make CO assumptions, but only for the duration of the protocol interaction. Once
the protocol has terminated we demand IT security. We look at different classes of LT
securely computable functions, defined by different channel models. The most practi-
cal model, corresponding to the class Fins, pki

lts , is an internet-like setting, where inse-
cure channels and a PKI are available to the parties. Furthermore we also discuss the
classes Faut

lts where authenticated channels and Fbc
lts where an authenticated BC channel

are given. We find that all these classes Fins, pki
lts = Fbc

lts = Faut
lts are equal to the class Faut

sh
of sh computable functions.

Definition 8 (Fbc
lts , F

ins, pki
lts , Faut

lts : LT Computable Functions). The classes of LT com-

putable functions (i) Fbc
lts , (ii) F

ins, pki
lts , (iii) Faut

lts consists of the functions f ∈ F for which
an efficient protocol π ∈ Poly exists that implements Iabf with LT security in presence
of an active adversary from (i) an authenticated broadcast channel; (ii) a complete net-
work of insecure channels and a PKI; (iii) a complete network of authenticated chan-
nels; respectively.

Secure Computability of Functions in the IT Setting 251

We now show that the classes defined in the previous section are all equivalent to Faut
sh .

First, we observe that once we allow CO assumptions during the protocol execution,
we can force semi-honest behavior (i.e. that the adversary behaves according to the pro-
tocol) using an unconditionally hiding commitment scheme [18] and zero-knowledge
arguments of knowledge:

Theorem 5. If one-way functions (OWF) exist, we have Faut
sh = Fbc

lts .

A full proof of Thm. 5 can be found in [22]. We show that the semi-honest to active
protocol compiler of [16] can be applied to a semi-honestly secure protocol in such a
way that it becomes CO secure against active adversaries, while maintaining IT security
against semi-honest adversaries. Furthermore we claim:

Theorem 6. We have Fins, pki
lts = Fbc

lts = Faut
lts = Faut

sh .

We prove this by showing Fbc
lts ⊆ F

ins, pki
lts , Fins, pki

lts ⊆ Faut
lts , Faut

lts ⊆ Fbc
lts . First, Fbc

lts ⊆
F
ins, pki
lts holds as we can use the Dolev-Strong-Protocol [12] to obtain authenticated BC

in the PKI setting. Fins, pki
lts ⊆ Faut

lts holds as using detectable precomputation [14] we can
establish a PKI in the authenticated channels model.13 Faut

lts ⊆ Fbc
lts follows from Lem. 2.

Thm. 6 is optimal in the sense that we cannot hope to implement all functions
f ∈ F

ins, pki
lts with robustness or even fairness. Of course we have (by definition) ro-

bust LT (even IT) secure protocols for the functions f ∈ Faut
act . But e.g. the symmet-

ric XOR function fXOR(x1, x2) := (x1 XOR x2, x1 XORx2) is by the combinatorial
characterizations of the previous sections fXOR ∈ F2sh \ Fact ⊂ Fbc

lts \ Faut
act . Now a fair

implementation of fXOR would clearly imply a fair cointoss, which by [10] cannot be
implemented in the model under consideration. As such the security without fairness as
guaranteed by Thm. 6 is indeed the best we can hope for.

7.1 Long Term Security with Designated Aborter

As mentioned above we cannot generally guarantee robustness or even fairness for a LT
secure protocol πf computing f ∈ F2lts. However, under stronger CO assumptions, we
can guarantee that only a specific designated party can abort the protocol after obtain-
ing output and before the honest parties can generate output. This may be of practical
relevance where a specific party is not trusted, but can be relied upon not to abort the
protocol. For instance a party may have a vested interest in the successful termination
of the protocol regardless of the outcome. One may think of an auctioneer that gets paid
only if the auction terminates successfully. Or a party may act in an official capacity
and cannot abort the protocol for legal reasons.

We will show that stronger guarantees of this type are obtainable if the underly-
ing CO assumption allows for an oblivious transfer (OT) protocol which is LT secure
against one of the participants. Enhanced trapdoor one-way permutations are an exam-
ple of such an assumption [15]. It is generally believed that OT is not implied by OWFs,
meaning that LT security with designated aborter appears to require strictly stronger as-
sumptions than plain LT security.

13 Note that robustness is not required here: The establishment of the PKI may fail, but then the
protocol simply aborts.

252 R. Künzler, J. Müller-Quade, and D. Raub

Lemma 7. Any sh computable function f ∈ Faut
sh = Fins, pki

lts can be computed using a
protocol π which is LTS-DA, i.e. implements Idesf with CO security and simultaneously

Iabf with LT security in the insecure channels model with PKI iff CO oblivious transfer
LT-secure against one party (CO-OT+) exists.

A proof of this lemma is sketched in [22]. Essentially we apply the protocol compiler
of [16] to the distributed circuit of the sh secure protocol for f in such a fashion that
gates owned by a specific party Pi are computed with CO primitives that IT protect Pi.
Reconstruction is in the end done toward the designated party P1, which then ensures
that the remaining parties can reconstruct. As a result the protocol is CO correct, and IT
no one learns more than in the sh secure protocol for f .

8 Classification of 2-Party Functions

Combining the results of this work and of [21], we can derive a complete combinatorial
classification of the 2-party functions F2 by completeness and computability.

We first define an equivalence relation renaming on F2 by f (1) ≡ f (2) iff f (2) is
obtained from f (1) by locally renaming input and output values. A formal definition can
be found in [21] or [22]. It is easy to see that renamings are locally mutually reducible
under all security paradigms considered in this work. In particular f (1) ≡ f (2) implies
If(1) �PFE

act If(2) �PFE
act If(1) and If(1) �PFE

pas If(2) �PFE
pas If(1) .

Next we define an equivalence relation matching on the set of classes F2/ ≡ (and
thereby on F2) by isolating inputs that lead to identical behavior and regarding functions
as matching if, after eliminating such trivially redundant inputs, they are renamings:

Definition 9. Given a 2-party function f ∈ F2 we say xA matches x′
A for inputs

xA, x′
A ∈ XA, iff xA dominates x′

A and x′
A dominates xA. The matching relation is

an equivalence relation on XA. By X̄A we designate a set of representatives. X̄B is
defined analogously.

We then call f̄ := f |X̄A×X̄B
the weakly redundancy-free version of f and for

f (1), f (2) ∈ F2 we write f (1) ∼= f (2) if f̄ (1) ≡ f̄ (2) Furthermore for xA ∈ XA

and xB ∈ XB let x̄A ∈ X̄A and x̄B ∈ X̄B be the (unique) elements that match xA

respectively xB .

Like the redundancy-free version f̂ of f , the weakly redundancy-free version f̄ of f is
well defined up to renaming. Before we can state the actual classification, we have to
reiterate another result of [21]:

Theorem 7 (Complete Functions [21]). The classes C2act, C2sh and C2pas of actively,
semi-honestly, and passively complete 2-party functions are the classes of functions
f ∈ F2 to which all other 2-party functions can be securely reduced in presence of an
active, semi-honest or passive adversary respectively. The classes C2act = C2sh consist
of exactly the functions f ∈ F2 where f̂ ∈ C2pas. The class C2pas consists of exactly the
functions f ∈ F2 where ∃ a1, a2 ∈ XA, b1, b2 ∈ XB :

∃ a1, a2 ∈ XA, b1, b2 ∈ XB : fA(a1, b1) = fA(a1, b2) ∧ fB(a1, b1) = fB(a2, b1)
∧ (fA(a2, b1) �= fA(a2, b2) ∨ fB(a1, b2) �= fB(a2, b2)).

We refer to this combinatorial structure as minimal OT.

Secure Computability of Functions in the IT Setting 253

Note that f ∈ C2pas iff f ∈ C2act or f̂ �≡ f̄ . This is clear from Kraschewski’s result as
stated above and from the observation that f̂ �≡ f̄ implies a minimal OT. We then arrive
at the following

Theorem 8 (Classification). The class of 2-party functions is a disjoint union of three
sets F2 = C2act∪F2act∪Fnct

2act or F2 = C2sh∪F2sh∪Fnct
2sh or F2 = C2pas∪F2pas∪Fnct

2pas
where nct stand for “neither complete nor computable”. Now

∅ �= F2act,F2pas � F2act ∪ F2pas � F2sh

∅ �= Fnct
2pas � Fnct

2sh � Fnct
2act

∅ �= C2act = C2sh � C2pas

The above results are directly derived from the combinatorial descriptions of the func-
tion classes that can be found in the preceding sections and, as far as complete functions
are concerned, in [21]. Additional details and examples can be found in [22].

9 Conclusions

We defined the notion of long-term (LT) security, where we assume that the adversary is
CO bounded during the execution of the protocol only. That is, we rely on CO assump-
tions, but only for the duration of the protocol execution; thereafter, a failure of the CO
assumptions must not compromise security. We then gave a combinatorial description
of the class Fins, pki

lts of functions that can be computed LT securely in an internet-like set-
ting, where a complete network of insecure channels and a PKI are available. Towards
this goal, we characterized the classes Faut

pas, F
aut
sh and Faut

act of functions that can be com-
puted with information theoretic (IT) security in the authenticated channels model (with
broadcast) in presence of passive, semi-honest and active adversaries. Our results are
constructive in that, for every function proven computable in a given setting, one can
deduce a secure protocol.

More precisely, we showed that semi-honest computability and LT secure com-
putability amount to the same, i.e. Faut

sh = Fbc
lts = Faut

lts = F
ins, pki
lts , where the classes

Faut
lts and Fbc

lts are defined analogously to F
ins, pki
lts , but rely on a network of authenti-

cated channels or authenticated broadcast respectively as communication resources.
We then characterized the class F2act of actively computable 2-party functions in order
to offset IT secure computability against LT secure computability. Indeed, we found
Faut
act � F

ins, pki
lts , meaning that in presence of corrupted majorities strictly more functions

are computable with LT security than with IT security. We furthermore gave a necessary
condition (that we conjecture also to be sufficient) for an n-party function to be in Faut

act .
As the functions in Faut

act are robustly (and therefore fairly) computable, these results can
be interpreted along the lines Gordon et al. [17], who discuss the fair computability of
binary 2-party functions in the CO setting. Our results apply to the IT scenario instead
of the CO setting, there however, our results are much more general in that they pertain
to arbitrary n-party functions. We showed that for the functions Fins, pki

lts fairness is gen-

erally not achievable. However, for the functions Fins, pki
lts we can guarantee LT security

with designated aborter, where only a specific designated party can prematurely abort

254 R. Künzler, J. Müller-Quade, and D. Raub

the protocol after having learned the output. Astonishingly, CO secure oblivious trans-
fer (OT) is used in our construction, even though OT itself cannot be realized with full
LT security.

We remark, that from a practical point of view, LT security is a useful notion if we
deal with sensitive data that has to remain private beyond a limited time frame in a
setting where a majority of the parties may be corrupted. In such a setting general IT
secure SFE protocols like [4] fail, as they do not tolerate corrupted majorities. CO pro-
tocols can tolerate corrupted majorities (if fairness is not required) but, as time passes,
progress in hardware or algorithms may invalidate our CO assumptions and jeopardize
the privacy of our computation. As the problem with CO assumptions is not so much
that these could be unjustified right now, but rather their possible future invalidation,
LT security is a viable alternative to IT security in this case. And indeed we could show
that Faut

act � Fins, pki
lts , i.e. there are functions that cannot be computed with IT security in

presence of dishonest majorities, but can be computed with LT security.
Furthermore, we found that quantum cryptography is not helpful in our context,

i.e. the class F2qu of 2-party functions which can be implemented with quantum cryp-
tography is strictly contained in F2sh. This inclusion implies novel impossibility results
beyond those of Mayers [25] or Kitaev [1]. However, quantum cryptography can solve
classically impossible problems in other models of security, like achieving a certain
robustness to abort in a model with guaranteed message delivery or implementing de-
niable key exchange.

Finally, collecting results from the literature, especially [24,21], and adding the re-
sults of this work, we obtain a complete taxonomy of 2-party functions by computability
and completeness in the IT setting.

Acknowledgments

The authors wish to thank Daniel Kraschewski for helpful comments and discussions,
and Ueli Maurer for encouragement and insightful comments on security models.

References

1. Ambainis, A., Buhrman, H., Dodis, Y., Röhrig, H.: Multiparty quantum coin flipping. In:
IEEE Conference on Computational Complexity, pp. 250–259. IEEE, Los Alamitos (2004)

2. Beaver, D.: Perfect privacy for two-party protocols. In: Proceedings of the DIMACS Work-
shop on Distributed Computing and Cryptography (1989)

3. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure computa-
tion. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg
(1999)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: STOC 1988, pp. 1–10 (1988)

5. Brassard, G., Crépeau, C., Mayers, D., Salvail, L.: Defeating classical bit commitments with
a quantum computer. Los Alamos preprint archive quant-ph/9806031 (May 1999)

6. Broadbent, A., Tapp, A.: Information-theoretic security without an honest majority. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 410–426. Springer, Heidelberg
(2007)

Secure Computability of Functions in the IT Setting 255

7. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded receiver. In:
STOC 2002, pp. 493–502. ACM Press, New York (2002)

8. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adversaries. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg
(1997)

9. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. In: STOC 1989 (1989)
10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: STOC

1986, pp. 364–369. ACM Press, New York (1986)
11. Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-

storage model. In: FOCS 2005, pp. 449–458. IEEE, Los Alamitos (2005)
12. Dolev, D., Strong, R.: Authenticated algorithms for byzantine agreement. SICOMP: SIAM

Journal on Computing, 12 (1983)
13. Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-storage model.

In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 126–137.
Springer, Heidelberg (2004)

14. Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-threshold broadcast and detectable
multi-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 51–
67. Springer, Heidelberg (2003)

15. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge Univer-
sity Press, Cambridge (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a completeness
theorem for protocols with honest majority. In: STOC 1987, pp. 218–229 (1987)

17. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party compu-
tation. In: STOC 2008, pp. 413–422. ACM, New York (2008)

18. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way function. In:
STOC 2007, pp. 1–10. ACM, New York (2007)

19. Kilian, J.: A general completeness theorem for two-party games. In: STOC 1991, pp. 553–
560. ACM Press, New York (1991)

20. Kilian, J.: More general completeness theorems for secure two-party computation. In: STOC
2000, pp. 316–324. ACM Press, New York (2000)

21. Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive proofs for
symmetric, asymmetric and general 2-party-functions (unpublished manuscript, 2008)

22. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in the IT setting
with dishonest majority and applications to long-term security. Cryptology ePrint Archive,
Report 2008/264 (2008), http://eprint.iacr.org/2008/264

23. Kushilevitz, E.: Privacy and communication complexity. In: FOCS 1989, pp. 416–421. IEEE,
Los Alamitos (1989)

24. Kushilevitz, E.: Privacy and communication complexity. SIAM Journal on Discrete Mathe-
matics 5(2), 273–284 (1992)

25. Mayers, D.: Unconditionally secure bit commitment is impossible. Phys. Rev. Letters 78,
3414–3417 (1997)

26. Müller-Quade, J.: Temporary assumptions—quantum and classical. In: The 2005 IEEE In-
formation Theory Workshop on Theory and Practice in Information-Theoretic Security, pp.
31–33 (2005)

27. Müller-Quade, J., Unruh, D.: Long-term security and universal composability. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 41–60. Springer, Heidelberg (2007)

28. Rabin, M.: Hyper-encryption by virtual satellite. Science Center Research Lecture Series
(2003)

http://eprint.iacr.org/2008/264

Complexity of Multi-party Computation
Problems: The Case of 2-Party Symmetric

Secure Function Evaluation�

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek

Department of Computer Science, University of Illinois, Urbana-Champaign
{hmaji2,mmp,rosulek}@uiuc.edu

Abstract. In symmetric secure function evaluation (SSFE), Alice has
an input x, Bob has an input y, and both parties wish to securely
compute f(x, y). We show several new results classifying the feasibil-
ity of securely implementing these functions in several security settings.
Namely, we give new alternate characterizations of the functions that
have (statistically) secure protocols against passive and active (stan-
dalone), computationally unbounded adversaries. We also show a strict,
infinite hierarchy of complexity for SSFE functions with respect to uni-
versally composable security against unbounded adversaries. That is,
there exists a sequence of functions f1, f2, . . . such that there exists a
UC-secure protocol for fi in the fj-hybrid world if and only if i ≤ j.

The main new technical tool that unifies our unrealizability results is
a powerful protocol simulation theorem, which may be of independent
interest. Essentially, in any adversarial setting (UC, standalone, or pas-
sive), f is securely realizable if and only if a very simple (deterministic)
“canonical” protocol for f achieves the desired security. Thus, to show
that f is unrealizable, one need simply demonstrate a single attack on a
single simple protocol.

1 Introduction

In the classical setting of secure two-party computation, Alice and Bob have
private inputs x and y respectively, and they want to to jointly compute a com-
mon value f(x, y) in a secure way. Starting from Yao’s millionaire’s problem [21],
such symmetric secure function evaluation (SSFE) problems have remained the
most widely studied multi-party computation problems, in many security mod-
els. SSFE problems are fully specified by their associated function tables (i.e.,
a matrix M with Mx,y = f(x, y)); studying this matrix can tell us everything
about the corresponding SSFE problem. Despite this apparent simplicity, and
several works carefully exploring SSFE problems, the landscape of such problems
has remained far from complete.

� Partially supported by NSF grants CNS 07-47027 and CNS 07-16626.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 256–273, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Complexity of Multi-party Computation Problems 257

On “cryptographic complexity.” One expects different cryptographic tasks to
have different levels of cryptographic sophistication. For instance public-key en-
cryption is more complex than symmetric-key encryption. One indication of this
is that in a computationally unbounded setting one-time pads provide (a limited
version of) symmetric-key encryption, but public-key encryption is simply impos-
sible. Impagliazzo and Rudich [8] provide a separation between the complexity
of these two primitives by demonstrating another primitive (namely random or-
acles) which is sufficient to realize (full-fledged) symmetric-key encryption, but
not enough for public-key encryption (in, say, a computationally unbounded set-
ting). Our goal in this work is to understand such complexity separations among
2-party SSFE functionalities (and more generally, among multi-party computa-
tion functionalities).

The natural tool for comparing qualitative complexity of two tasks is a reduc-
tion. In the context of cryptographic feasibility, the most natural reduction is
a black-box security reduction — we say that an SSFE functionality f reduces
to another functionality g if it is possible to securely realize f using calls to a
trusted party that securely implements g. As in computational complexity, the
most fine-grained distinctions in complexity are made by considering the most
restricted kinds of reductions. In fact, fine-grained complexity distinctions often
disappear when using more generous reductions. In this work, we consider a very
strong formulation of black-box security reduction: universally composable secu-
rity in computationally unbounded environments against active (and adaptive)
adversaries.

Our goal is to identify broad complexity classes of SSFE functionalities under
this notion of reduction. This involves identifying various functionalities that
reduce to each other, and — this is typically the more difficult part — estab-
lishing separations (non-reducibility) between functionalities. A complexity class
can be understood by providing alternate (say combinatorial) characterizations
of the functionalities in the class. Another approach to understanding a class
is to identify a complete functionality, which provides a concrete embodiment
of the complexity of all functionalities in that class. Conversely, the inherent
cryptographic qualities of a given functionality can be understood by studying
its “degree,” namely, the class of all functionalities that can be reduced to it.
We pursue all these approaches in this paper.

Finally, a systematic study of multi-party computation functionalities, under
a stringent notion of reduction, unifies several prior advances in different security
models. In particular, the two main classes that we identify and combinatori-
ally characterize in this paper, which are downward-closed under this reduction,
correspond to realizability in weaker security models — standalone security and
passive security (a.k.a, semi-honest or honest-but-curious security). We empha-
size that in plotting these classes in our complexity map, we do not change our
notion of reduction.

Our results only start to unveil the rich landscape of cryptographic complex-
ity of multi-party computation functionalities. We believe it will be of great
theoretical — and potentially practical — value to further uncover this picture.

258 H.K. Maji, M. Prabhakaran, and M. Rosulek

1.1 Previous Work

Cryptographic complexity of multi-party computation functionalities (though
not necessarily under that name) has been widely studied in various security
models. We restrict our focus mostly to work on 2-party SSFE functions in
computationally unbounded settings. Complexity questions studied were limited
to realizability (least complex), completeness (most complex) and whether there
exist functions of intermediate complexities.

Realizability. The oldest and most widely studied model for SSFE is security
against passive (honest-but-curious) adversaries. Chor and Kushilevitz [6] char-
acterized SSFE functions with boolean output. Beaver [2] and Kushilevitz [17]
independently extended this to general SSFE function, but restricted to the case
of perfect security (as opposed to statistical security). These characterizations
were given in the standalone security model, but do extend to the the universal
composition (UC) framework [4] that we use.

However, in the case of security against active (a.k.a malicious) adversaries,
demanding composability does affect realizability. The following hold for both
computationally bounded and unbounded settings. In the UC-setting, Canetti
et al. [5] characterized securely realizable SSFE functions as those in which the
function is insensitive to one party’s input. Lindell [18] showed that UC security
is equivalent to concurrent self-composable security, for a class of functionalities
that includes SSFE. But Backes et al. [1] gave an example of a function that is
realizable in the standalone setting, but not in the UC-setting. The problem of
identifying all such functions remained open.

Completeness. The question of completeness for SSFE was essentially settled by
Kilian [12], who showed that a function is complete if and only if it contains a
generalized “or-minor.” This relies on the completeness of the SFE functionality
of oblivious transfer, a result originally proven in [10], and proven in the UC
setting in [9].1 The reduction in [12] was reconsidered in the UC setting by [15].

Intermediate Complexities. In some security settings, there are only two distinct
levels of complexity: the realizable tasks and the complete tasks, with nothing in
between. Indeed, such a dichotomy holds in the case of asymmetric SFE (in which
only one party receives any output), both for passive [3] and active security [13],2

and also in the case of passive security for boolean output SSFE [14]. In [20]
it is conjectured that such a dichotomy holds for general functionalities in a
computationally bounded setting. However, there is no such simple dichotomy
in the setting of SSFE. Indeed the characterizations of complete and realizable

1 The protocol in [10] is not UC-secure, but an extension presented in [11] is likely
to be.

2 [3] also considers a notion of active security for computationally bounded setting,
and extends their dichotomy using a stronger notion of realizability and a weaker,
non-black-box notion of completeness; this result draws the line between realizability
and completeness differently from [13]. The dichotomy does not extend to the UC-
setting.

Complexity of Multi-party Computation Problems 259

SSFE functions [12,5] leaves much gap between them. Further, [2,17,14] give an
example SSFE function which is neither complete nor even passively realizable.

1.2 Our Results

A visual overview of our results is given in Figure 1.
First, we show that SSFE functions with perfect passive-secure protocols (as

characterized by Beaver and Kushilevitz) are exactly those with statistically
secure, passive-secure protocols (Theorem 3). They are also exactly the functions
that are UC-realizable in the Fcom-hybrid world — i.e., realizable against active

0 0
0 1

0 0 1
3 4 1
3 2 2

[2,10,13]

0 1
1 0

0 1

0 0
1 2 = g1

g2

g3

...
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

infinite
hierarchy

⎧⎪⎪⎨⎪⎪⎩
incomparable

complete
= has or-minor [12,15]

passively realizable
= decomposable [2,17]

= UC-realizable using Fcom

standalone-realizable
= saturated

UC-realizable
= single-input function [5]

= self-concurrently realizable [18]

Fig. 1. Cryptographic complexity of 2-party SSFE

adversaries in the UC
framework, using calls
to an ideal commit-
ment functionality (The-
orem 4). Thus, Fcom ex-
actly captures the dif-
ficulty of passively re-
alizing SSFE functions
(it cannot be said to
be complete, since it is
not SSFE itself). We
also show that the per-
fectly secure determin-
istic protocols used by
Kushilevitz achieve op-
timal round complexity,
even among randomized,
statistically secure pro-
tocols (Corollary 2).

Next, we give an ex-
plicit and simple com-
binatorial characteriza-
tion of the standalone-
realizable SSFE functions, as the uniquely decomposable functions which are
“maximal” (Theorem 5). We call such functions saturated functions. We also
show that every SSFE function which is standalone-realizable but not UC-
realizable also has no protocol secure under concurrent self-composition (The-
orem 6), strengthening a negative result from [1], and yielding a much simpler
proof of Lindell’s characterization [18] for the special case of SSFE.

Finally, we focus our investigation on the vast area between the two complexity
extremes of completeness and UC-realizability. We leverage ideas from passive
security and standalone security to obtain a new technique for obtaining impos-
sibility results in the UC framework. Namely, we describe a purely combinatorial
criterion of two functions f , g (which has to do with the round complexity of
realizing f and g) which implies that there is no UC-secure protocol for f that
uses calls to an ideal functionality for g. (Theorem 7).

260 H.K. Maji, M. Prabhakaran, and M. Rosulek

We apply this new separation technique to obtain several new results. We
first demonstrate an infinite hierarchy of complexity — that is, SSFE functions
g1, g2, . . . such that there is a secure protocol for gi using calls to an ideal gj if
and only if i ≤ j (Corollary 8). We also show that there is no complete function
(complete under our strong notion of reduction) for the class of standalone-
realizable or passively realizable SSFE functions (Corollary 9). Finally, we show
that there exist SSFE functions with incomparable complexities (Corollary 10),
answering an open problem from [20].

We note that our characterizations of passive (Theorem 3) and standalone
security (Theorem 5) were also independently discovered by Künzler, Müller-
Quade, and Raub [16]. They also extend these results to a multi-party setting,
and beyond the symmetric-output case.

About our techniques. The characterization of Beaver and Kushilevitz for passive
security gives very simple deterministic protocols for SSFE functions, which we
call canonical protocols. Our results demonstrate the special privilege of canon-
ical protocols in the universe of SSFE. Our main technical tool is Theorem 1,
which strongly formalizes the intuition that every protocol for f must disclose
information in essentially the same order as the canonical protocol for f . Stated
more formally, for any secure protocol π for an SSFE function f , if the canonical
protocol for f is unique (up to some isomorphism), then the canonical protocol
is “as secure as” π, in the UC simulation sense. That is, for any adversary in
the canonical-protocol-real-world, there is an adversary in the π-real-world that
achieves the same effect for all environments. Note that standalone security and
passive security can both be expressed as restrictions of the UC definitions, so
our theorem is applicable to a wide variety of security settings.

Using this powerful theorem, it is quite simple to demonstrate impossibility
results for secure realizability. Roughly speaking, an SSFE function f satisfying
the above condition is realizable in a given security model if and only if its
canonical protocol achieves the desired security. Thus, to show f is unrealizable,
we simply describe a feasible attack against the (simple) canonical protocol.

We crucially use Theorem 1 as the unifying component when proving im-
possibility of secure realization in the standalone (Theorem 5), concurrent self-
composition (Theorem 6), and even UC hybrid world settings (Theorem 7).

2 Preliminaries

In this section we present some standard notions, and also introduce some con-
cepts and definitions used in our constructions and proofs.

MPC Problems and Secure Realization. Following the Universal Composition [4]
framework, a multi-party computation problem is defined by the code of a trusted
(probabilistic, interactive) entity called a functionality. A protocol π is said to se-
curely realize an MPC functionality F , if for all (static) active adversaries, there
exists a simulator such that for all environments, |Pr[execF = 1]− Pr[execπ =
1]| ≤ ε(k), for some negligible function ε. Here k is the security parameter that is

Complexity of Multi-party Computation Problems 261

– Wait for (and record) input x from Alice and input y from Bob.
– When both x and y have been received, if either party is corrupt, then send

(Output, f(x, y)) to the adversary.
– On input Deliver from the adversary, or if neither party is corrupt, send

f(x, y) to both Alice and Bob.

Fig. 2. Functionality Ff : Symmetric Secure Function Evaluation of f with abort

an input to the protocol and simulator. execF denotes the environment’s output
distribution in the “ideal” execution: involving F , the environment, and the sim-
ulator; execπ denotes the environment’s output in the “real” execution: involv-
ing an instance of the protocol, the environment, and the adversary. Throughout
this paper, we consider a UC model in which all entities are computationally un-
bounded.

We also consider hybrid worlds, in which protocols may also have access to a
particular ideal functionality. In a G-hybrid world, parties running the protocol
π can invoke up any number of independent, asynchronous instances of G. Reg-
ular protocols could be considered to use the (authenticated) communication
functionality. If a protocol π securely realizes a functionality F in the G-hybrid
world, we shall write F # G. The # relation is transitive and reflexive, and it
provides our basis for comparing the complexity of various functionalities.

We also consider two common restrictions of the security model, which will
prove useful in our results. If we restrict the security definition to environments
which do not interact with the adversary during the protocol execution (i.e.,
simulators are allowed to rewind the adversary), we get a weaker notion of se-
curity, called standalone security. If we restrict to adversaries and simulators
which receive an input from the environment and run the protocol honestly, we
get a different relaxation of security called passive security. Note that in this def-
inition, simulators must behave honestly in the ideal world, which means they
simply pass the input directly to the functionality.

Symmetric SFE Functionalities. In this paper we focus exclusively on classifying
2-party symmetric secure function evaluation (SSFE) functionalities. An SSFE
functionality Ff is parameterized by a function f : X × Y → Z, where X, Y, Z
are finite sets.3 The functionality Ff simply receives the inputs from the two
parties, computes f on the inputs and sends the result to both the parties.
However, as is standard, we also allow the adversary to first receive the output
and block delivery if desired (see Figure 2). For convenience, we shall often use
f and Ff interchangeably.

3 We restrict our attention to finite functions. In particular, the size of the domain of
a function does not change with the security parameter. This is in line with previous
works. Further, in the computationally unbounded setting, it is reasonable to have the
ideal world not involve the security parameter. Nevertheless, all of our results can be
extended to the case where f ’s input domain is polynomially bounded in the security
parameter. We can show that this restriction is necessary for most of our results.

262 H.K. Maji, M. Prabhakaran, and M. Rosulek

2.1 Structure of Functions and Protocols

We say that two functions are isomorphic if each one can be computed using a
single call to the other with no other communication (with only local processing
of the inputs and output). That is, Alice and Bob can independently map their
inputs for f function to inputs for g, carryout the computation for g, and then
locally (using their private inputs) map the output of g to the output of f (and
vice-versa).

Definition 1 (Function Isomorphism, ∼=). Let f : X ×Y → D and g : X ′×
Y ′ → D′ be two functions. We say f ≤ g, if there exist functions IA : X → X ′,
IB : Y → Y ′, MA : X × D′ → D and MB : Y × D′ → D, such that for any
x ∈ X and y ∈ Y f(x, y) = MA(x, g(IA(x), IB(y))) = MB(y, g(IA(x), IB(y))).
If f ≤ g and g ≤ f then f ∼= g (f is isomorphic to g).

For example, the xor function
0 1
1 0 is isomorphic to the function

1 2
3 4 .

Definition 2 (Decomposable [2,17]). A function f : X × Y → D is row
decomposable if there exists a partition X = X1∪ · · · ∪Xt (Xi �= ∅), t ≥ 2, such
that the following hold for all i ≤ t:

– for all y ∈ Y , x ∈ Xi, x′ ∈ (X \Xi), we have f(x, y) �= f(x′y); and
– f

∣∣
Xi×Y

is either a constant function or column decomposable, where f
∣∣
Xi×Y

denotes the restriction of f to the domain Xi × Y .

We define being column decomposable symmetrically with respect to X and Y .
We say that f is simply decomposable if it is either constant, row decomposable,
or column decomposable.

For instance,
0 0
1 2 and

0 1
1 0 are decomposable, but

0 0
0 1 and

0 0 1
3 4 1
3 2 2

are not.

Note that our definition differs slightly from [2,17], since we insist that row
and column decomposition steps strictly alternate. We say that a function f is
uniquely decomposable if all of its decompositions are equivalent up to re-indexing

X1, . . . , Xt (Y1, . . . , Yt) at each step. Thus
0 0
1 2 is uniquely decomposable, but

0 1
1 0

is not.

Canonical protocols [2,17]. If f is decomposable, then a canonical protocol for f
is a deterministic protocol defined inductively as follows:

– If f is a constant function, both parties output the value, without interaction.
– If f : X × Y → Z is row decomposable as X = X1 ∪ · · · ∪ Xt, then Alice

announces the unique i such that her input x ∈ Xi. Then both parties run
a canonical protocol for f

∣∣
Xi×Y

.
– If f : X × Y → Z is column decomposable as Y = Y1 ∪ · · · ∪ Yt, then Bob

announces the unique i such that his input y ∈ Yi. Then both parties run a
canonical protocol for f

∣∣
X×Yi

.

Complexity of Multi-party Computation Problems 263

It is a simple exercise to see that a canonical protocol is a perfectly secure
protocol for f against passive adversaries (cf. [2,17]).

Normal form for protocols. For simplicity in our proofs, we will often assume
that a protocol is given in the following normal form:

1. At the end of the interaction, both parties include their outputs in the
transcript as their last message before terminating, so that each party’s output
is a function of the transcript alone (i.e., not a function of their input and random
tape, etc.). Since both parties should receive the same output, this is without
loss of generality, even for standalone or UC security.

2. If u1, u2, . . . are the messages exchanged in a run of the protocol, then
(u1, u2, . . .) can be uniquely and unambiguously obtained from the string
u1u2 · · · .

3. The honest protocol does not require the parties to maintain a persistent
state besides their private input (in particular, no random tape). Instead, the
protocol is simply a mapping P : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → [0, 1], indicating
that if t is the transcript so far, and a party’s input is x, then its next message
is u with probability P (t, x, u). In other words, randomness can be sampled as
needed and immediately discarded. This requirement is without loss of generality
for computationally unbounded parties.4

Deviation revealing. In [20] it is shown that for a class of functionalities called
“deviation revealing”, if a protocol π is a UC-secure realization of that function-
ality, then the same protocol is also secure against passive adversaries. Note that
this property is not true in general for all SFE functionalities. For example, the
SFE where Alice gets no output but Bob gets the boolean-or of both parties’ in-
puts is not passively realizable. However, the protocol where Alice simply sends
her input to Bob is UC-secure, since a malicious Bob can always learn Alice’s
input in the ideal world by choosing 0 as its input to the functionality. It turns
out SSFE functions are deviation revealing. We include an adapted version of
the argument in [20]:

Lemma 1 ([20]). Let π be a UC-secure (perhaps in a hybrid world) or a
standalone-secure protocol for an SSFE f . Then π itself is a passive-secure pro-
tocol for f as well (in the same hybrid world as π).

Proof. We show that, without loss of generality, the simulator for π maps passive
real-world adversaries to passive ideal-world adversaries. A passive adversary A
for π is one which receives an input x from the environment, runs π honestly,
and then reports its view to the environment. Note that the relevant kinds
of environments comprise a special class of standalone environments, so that
even if π is only standalone secure, its security still holds with respect to the
environments we consider for passive security.

Suppose S is the simulator for A. In the ideal world, both parties produce
output with overwhelming probability, and so S must also allow the other party
4 Note that because of this, security against adaptive corruption and static corruption

are the same for this setting.

264 H.K. Maji, M. Prabhakaran, and M. Rosulek

to generate output in the ideal world with overwhelming probability. Thus with
overwhelming probability, S must receive x from the environment, send some x′

to the ideal functionality f , receive the output f(x′, y) and deliver the output.
Without loss of generality, we may assume S does so with probability 1.

Suppose x′ is the input sent by S to f . If f(x, y) �= f(x′, y) for some input
y, then consider an environment that uses y for the other party’s input. In this
environment, the other party will report f(x, y) in the real world, but f(x′, y) in
the ideal world, so the simulation is unsound. Thus with overwhelming probabil-
ity, S sends an input x′ such that f(x, ·) ≡ f(x′, ·). We may modify S by adding
a simple wrapper which ensures that x (the input originally obtained from the
environment) is always sent to f . With overwhelming probability, the reply from
f is unaffected by this change. Conditioned on these overwhelming probability
events, the output of the wrapped S is identical to that of the original S. How-
ever, the wrapped S is a passive ideal-world adversary: it receives x from the
environment, sends x to f , and delivers the output. $%

3 Simulation of Canonical Protocol in a General Protocol

In this section, we develop our main new technical tool, the protocol simulation
theorem. Throughout the section we fix an SSFE f with domain X ×Y , and fix
a secure protocol π for f .

Definition 3. We say that x, x′, y, y′ forms a -minor (resp. -minor) in
f if:

f(x, y) = f(x, y′)
�= �=

f(x′, y) �= f(x′, y′)

⎛⎝resp. if
f(x, y) �= f(x, y′)

= �=
f(x′, y) �= f(x′, y′)

⎞⎠
In the canonical protocol for a function that is entirely a -minor, Alice

must completely reveal her input before Bob reveals (anything about) his input.
We show that, in general, this intuition carries through for any protocol, with
respect to any embedded or -minor. That is, there must be a point at
which Alice has completely made the distinction between two of her inputs, but
Bob has not made any distinction between two of his inputs.

Definition 4. Let Pr[u|x, y] denote the probability that π generates a transcript
that has u as a prefix, when executed honestly with x and y as inputs.

Let F be a set of strings that is prefix-free.5 Define Pr[F |x, y] =∑
u∈F Pr[u|x, y]. We call F a frontier if F is maximal – that is, if Pr[F |x, y] = 1

for all x, y. We denote as Dx,y
F the probability distribution over F where u ∈ F

is chosen with probability Pr[u|x, y].

Lemma 2 (Frontiers). For all x �= x′ ∈ X, there is a frontier F and
negligible function ν such that, for all y, y′ ∈ Y :

5 That is, no string in F is a proper prefix of another string in F .

Complexity of Multi-party Computation Problems 265

– if f(x, y) �= f(x′, y), then SD
(
Dx,y

F ,Dx′,y
F

)
≥ 1− ν(k), and

– if x, x′, y, y′ form a -minor, then SD
(
Dx,y

F ,Dx,y′
F

)
,SD

(
Dx′,y

F ,Dx′,y′
F

)
≤

ν(k).

We defer the technical proof of Lemma 2 to the full version [19].
Our main protocol simulation theorem extends this intuition to show that

the information disclosed during a protocol must come in the same order as
in the canonical protocol, provided that the canonical protocol is unique. This
restriction on the canonical protocol is necessary, since different (non-isomorphic)
canonical protocols for the same f can admit completely different kinds of attacks
(e.g., for the xor function, depending on which party speaks first).

Theorem 1 (Protocol Simulation). If f has a unique decomposition, then
for any protocol π for f , the canonical protocol for f is “as secure as” π. That
is, for every adversary attacking the canonical protocol, there is an adversary
attacking π which achieves the same effect in every environment.

Proof (Sketch). The proof (presented in [19]) involves a careful inductive gen-
eralization of Lemma 2. Consider a step in the decomposition of X × Y , say
X = X1 ∪ · · · ∪Xk. Roughly, if the function is uniquely decomposable, then for
each i �= j, there is a witnessing -minor x, x′, y, y′ with x ∈ Xi, x′ ∈ Xj . Thus
we may apply Lemma 2 to obtain a frontier with respect to these inputs. We
can combine these individual frontiers to obtain a frontier representing the entire
decomposition step X = X1 ∪ · · · ∪Xk. We show inductively that the transcript
distribution at this combined frontier statistically reveals (in this case) which Xi

contains Alice’s input, while at the same is nearly independent of any further
distinctions among either party’s inputs within X × Y .

Given such frontiers, the required simulation is fairly natural. The simulator’s
job is to simulate the canonical protocol to an adversary A, while interacting
with the honest party in the protocol π. The simulator S simply keeps track of
the current step in the decomposition of f , and runs π honestly with any repre-
sentative input. Each time S reaches a frontier for a decomposition step by the
honest party, the transcript distribution at the frontier statistically determines
with great certainty which part of the decomposition the honest party’s input
belongs to. Thus S can simulate to A what the honest party would send next in
the canonical protocol. Then the simulator receives the adversary’s next move
in the canonical protocol. S changes its own input for π to any input consistent
with the canonical protocol transcript so far, if necessary. Since the π-transcript
so far is nearly independent of such distinctions among the adversary’s input,
it is indeed possible to swap inputs to π at this point and maintain a sound
simulation. It is also for this reason that we consider protocols to be in a nor-
mal form, so that the protocol’s next-message function depends only on the
(currently considered) input and the transcript so far — i.e., not on any other
persistent state. $%

266 H.K. Maji, M. Prabhakaran, and M. Rosulek

Let R(π, x, y) denote the random variable indicating the number of rounds taken
by π on inputs x, y, and let R(f, x, y) denote the same quantity with respect to
the canonical protocol for f (which is deterministic).

Corollary 2. If f is uniquely decomposable, then its canonical protocol achieves
the optimal round complexity. That is, for every secure protocol π for f , we have
E[R(π, x, y)] ≥ R(f, x, y) − ν, where ν is a negligible function in the security
parameter of π.

Proof. The proof of Theorem 1 constructs for π a frontier for each step in the
decomposition of f (corresponding to each step in the canonical protocol). By the
required properties of the frontiers, the transcript for π must visit all the relevant
frontiers in order, one strictly after the next, with overwhelming probability. $%

4 Characterizing Passive Security

In this section, we apply Lemma 2 to extend the characterization of Beaver [2]
and Kushilevitz [17] to the case of statistical security. We also show a new char-
acterization of passive security in terms of the ideal commitment functionality.

Theorem 3. f is decomposable if and only if f has a (statistically secure)
passive-secure protocol.

Proof (Sketch). (⇒) Trivial by the (perfect) security of canonical protocols.
(⇐) Suppose f is not decomposable. Without loss of generality, we may as-

sume that f is not even row- or column-decomposable at the top level. Then
for each way that Alice might start revealing information about her input, there
is a -minor that witnesses the fact that this information cannot be revealed
first — Bob must reveal a particular distinction of his inputs before it is safe for
Alice to reveal information this way. However, the converse statement holds as
well, and so neither party can be the first to safely reveal any information about
their input.

More formally, we suppose a secure protocol exists for f . We consider all -
minors, and take the upper envelope of their associated frontiers from Lemma 2.
This new frontier corresponds to the first point at which Alice reveals significant
information about her input. Similarly, we construct a frontier corresponding to
the first point at which Bob reveals significant information. The properties of
Lemma 2 imply that with overwhelming probability, the protocol must visit the
first frontier after the second one, and visit the second frontier after the first one
(i.e., neither party can be the first to significantly reveal information). This is a
contradiction, since the two frontiers cannot coincide — they consist of points
where different parties have just spoken. Thus no secure protocol is possible. $%

Theorem 4. f has a passive-secure protocol if and only if f has a UC-secure
protocol in the Fcom-hybrid world, where Fcom denotes the ideal commitment
functionality defined in Figure 3.

Complexity of Multi-party Computation Problems 267

– On input (commit, x, P2) from party P1, send (committed, P1) to party P2,
and remember x.

– On input reveal from party P1, if x has already been recorded, send x to
party P2.

Fig. 3. Commitment functionality Fcom

Proof (Sketch). (⇐) By Lemma 1, any UC-secure protocol π for a symmetric
SFE f is also passively secure. There is a trivial passive-secure protocol for Fcom

(the committing party sends “committed” in the commit phase and sends the
correct value in the reveal phase). We can compose π with the passive-secure
Fcom protocol to obtain a passive-secure protocol for f in the plain model.

(⇒) We will give a general-purpose “compiler” from passive-secure protocols
to the UC-secure Fcom-hybrid protocols. Suppose π is a passive-secure protocol
for f , in normal form. In fact, we need to consider only the canonical proto-
col for f . Below we consider an arbitrary deterministic protocol π. (In the full
version [19] we extend this compiler to randomized protocols as well.)

Suppose Alice’s input is x ∈ {1, . . . , n}, and let χ ∈ {0, 1}n be the associated
characteristic vector, where χi = 1 if and only if i = x. Alice commits to both
χσ(1), . . . , χσ(n) and σ(1), . . . , σ(n) for many random permutations σ. For each
pair of such commitments, Bob will (randomly) ask Alice to open either all
of χσ(1), . . . , χσ(n) (and verify that χ has exactly one 1) or open all σ(i) (and
verify that σ is a permutation). Bob also commits to his own input in a similar
way, with Alice giving challenges. Then both parties simulate the π protocol one
step at a time. When it is Alice’s turn in π, she computes the appropriate next
message b ∈ {0, 1} and sends it. For a deterministic protocol, the next message
function is a function of the transcript so far and the input. Given the partial
transcript so far t, both parties can compute the set Xb = {x′ | π(t, x′) = b}; i.e.,
the set of inputs for which the protocol instructs Alice to send b at this point.
Then Alice can open enough of her commitments to prove that χi = 0 for all
i ∈ X1−b to prove that the message b was consistent with her committed input
and the honest protocol. $%
Note that much like the well-known GMW compiler [7], we convert an arbitrary
passive-secure protocol to a protocol secure in a stronger setting. In particular,
we do not use the fact that the protocol realizes a functionality with symmetric,
deterministic outputs. Thus the compiler may be of more general interest. Unlike
the GMW compiler, our compiler operates in an unbounded setting, given ideal
commitments. The GMW compiler relies on the existence of commitment pro-
tocols and zero-knowledge proofs, while in an unbounded setting, commitment
protocols are impossible and zero-knowledge proofs are trivial.

5 Characterizing Standalone Security

From Lemma 1, we know that standalone-realizability for SSFE is a special case
of passive-realizability, and hence by Theorem 3, any standalone realizable SSFE

268 H.K. Maji, M. Prabhakaran, and M. Rosulek

must be decomposable. In this section we identify the additional properties that
exactly characterize standalone realizability.

Decomposition strategies. Fix some decomposition of an SSFE function f :
X × Y → D. We define an Alice-strategy as a function that maps every row
decomposition step X0 = X1 ∪ · · · ∪ Xt to one of the Xi’s. Similarly we de-
fine a Bob-strategy for the set of column decomposition steps. If A, B are Alice
and Bob-strategies for f , respectively, then we define f∗(A, B) to be the subset
X ′× Y ′ ⊆ X × Y obtained by “traversing” the decomposition of f according to
the choices of A and B.

The definition of f∗ is easy to motivate: it denotes the outcome in a canonical
protocol for f , as a function of the strategies of (possibly corrupt) Alice and
Bob.

Definition 5 (Saturation). Let f be a uniquely decomposable function. We
say that f is saturated if f ∼= f∗.

To understand this condition further, we provide an alternate description for it.
For every x ∈ X we define an Alice-strategy Ax such that at any row decompo-
sition step X0 = X1 ∪ · · · ∪Xt where x ∈ X0, it chooses Xi such that x ∈ Xi.
(For X0 such that x �∈ X0, the choice is arbitrary, say X1.) Similarly for y ∈ Y
we define a Bob-strategy By. Note that in the canonical protocol, on inputs x
and y, Alice and Bob traverse the decomposition of f according to the strategy
(Ax, By), to compute the set f∗(Ax, By) (where f is constant). If f is saturated,
then all Alice strategies should correspond to some x that Alice can use as an
input to f . That is, for all Alice-strategies A, there exists a x ∈ X such that
for all y ∈ Y , we have f∗(A, By) = f∗(Ax, By); similarly each Bob strategy B is
equivalent to some By.

As an example,
0 1
2 3 is not uniquely decomposable.

0 1 1
2 3 2 is uniquely decom-

posable, but not saturated. Finally,
0 1 1 0
2 3 2 3 is saturated.

Note that there is exactly one saturated function (up to isomorphism) for
each decomposition structure.

Theorem 5. f is standalone-realizable if and only if f is saturated.

Proof (Sketch). (⇐) To securely realize a saturated f , we use its canonical pro-
tocol. The simulator for an adversary A is a rewinding simulator, which does
the following: Without loss of generality, assume A corrupts Alice. First fix a
random tape ω for A, then for every Bob-strategy B, run the canonical protocol
against A (using random tape ω), effecting the strategy B. The choices of A
at each step uniquely determine an Alice-strategy. By the saturation of f , A
is equivalent to some Ax strategy, and we use x as the adversary’s input to f .
After receiving the output f(x, y), we simulate the unique canonical protocol
transcript consistent with f(x, y).

(⇒) We shall use the following lemma (proven, in the full version [19], by
induction on the number of steps in the protocol):

Complexity of Multi-party Computation Problems 269

Lemma 3. If π is a 2-party protocol whereby both parties agree on the output,
then for any way of coloring the possible outputs red and blue, π has one of the
4 properties:

1. A malicious Alice can force a red output and can force a blue output.
2. A malicious Bob can force a red output and can force a blue output.
3. Both a malicious Bob and malicious Alice are able to force a red output.
4. Both a malicious Bob and malicious Alice are able to force a blue output.

By Lemma 1, we have that f is passively realizable and thus decomposable. We
can show that if f is not uniquely decomposable, then there is a way to color its
outputs red and blue so that each of the 4 conditions of Lemma 3 for any protocol
evaluating f is a violation of security. Thus f must be uniquely decomposable.

Now, since f is uniquely decomposable, Theorem 1 implies that f is standalone-
realizable if and only if its canonical protocol is standalone secure. Suppose that
f is not saturated. Then there is a (without loss of generality) Alice-strategy A
that corresponds to no Ax strategy. The strategy A can be trivially effected by a
malicious Alice in the canonical protocol. If Bob’s input is chosen at random by
the environment, then the same outcome can not be achieved by an ideal-world
adversary (who must send an input x to f). Thus the canonical protocol is stan-
dalone insecure; a contradiction. Therefore f must be saturated. $%

6 Characterizing Concurrent Self-composition

Backes et al. [1] showed that even a perfectly secure protocol with rewinding
simulator cannot in general be transformed into even a protocol secure under
concurrent self-composition. Recall that in concurrent self-composition, the en-
vironment initiates several protocol instances, but does not interact with the
adversary during their execution. The adversary also corrupts the same party in
all protocol instances. We are able to greatly strengthen their negative result to
show that concurrent attacks are the rule rather than the exception:

Theorem 6. If f is standalone-realizable but not UC-realizable, then f has no
protocol secure against concurrent self-composition.

Proof. A function f is UC-realizable if and only if it is decomposable with de-
composition depth 1 [5]. Thus an f as in the theorem statement must be uniquely
decomposable (by Theorem 5), with decomposition depth at least 2. We show a
concurrent attack against two instances of the canonical protocol for f , which by
Theorem 1 will imply that f is not realizable under concurrent self-composition.

By symmetry, suppose Alice moves first in the canonical protocol, and let x, x′

be two inputs which induce different messages in the first round of the protocol.
Let y, y′ be two inputs which induce different messages in the second round of the
protocol when Alice has input x (thus f(x, y) �= f(x, y′)). We consider an envi-
ronment which runs two instances of f , supplies inputs for Alice for the instances,
and outputs 1 if Alice reports particular expected outputs for the two instances.
The environment chooses randomly from one of the following three cases:

270 H.K. Maji, M. Prabhakaran, and M. Rosulek

1. Supply inputs x and x′. Expect outputs f(x, y′) and f(x′, y).
2. Supply inputs x′ and x, Expect outputs f(x′, y) and f(x, y′).
3. Supply inputs x and x. Expect outputs f(x, y) and f(x, y).

A malicious Bob can cause the environment to output 1 with probability 1 in
the real world. He waits to receive Alice’s first message in both protocol instances
to determine whether she has x or x′ in each instance. Then he can continue the
protocols with inputs y or y′, as appropriate.

In the ideal world, Bob must send an input to one of the instances of f
before the other (i.e., before learning anything about how Alice’s inputs have
been chosen); suppose he first sends ŷ to the first instance of f . If f(x, ŷ) �=
f(x, y), then with probability 1/3, he induces the wrong output in case (3). But
if f(x, ŷ) = f(x, y) �= f(x, y′), then with probability 1/3, he induces the wrong
output in case (1). Similarly, if he first sends an input to the second instance of
f , he violates either case (2) or (3) with probability 1/3. $%
Put differently, UC-realizability is equivalent to concurrent-self-composition-
realizability for SSFE. This is in fact a special case of a theorem by Lindell [18],
although our proof is much more direct and requires only 2 instances of the
protocol/functionality, as in [1].

7 Finer Complexity Separations

Finally, we develop a new technique for deriving separations among SSFE func-
tions with respect to the # relation, and apply the technique to concrete func-
tions to inform the landscape of cryptographic complexity.

Theorem 7. Let F be any (not necessarily SSFE) UC functionality with a
passive-secure, m-round protocol. Let f be an SSFE function with unique de-
composition of depth n > m + 1.6 Then there is no UC-secure protocol for f in
the F-hybrid world; i.e., f �# F .

Proof (Sketch). We use a modified version of Theorem 1. Suppose for contra-
diction that π is a protocol for f in the F -hybrid world. By Lemma 1, π is also
passive-secure in the same setting. Define π̂ to be the result of replacing each call
to F in π with the m-round passive-secure protocol for F . π̂ is a passive-secure
protocol for f in the plain setting. Say that an adversary behaves consistently
for a span of time if it runs the protocol honestly with an input that is fixed
throughout the span.

We mark every π̂ transcript prefix that corresponds to a step in the F subpro-
tocol, except for the first step of that subprotocol. Intuitively, if a π̂-adversary
behaves consistently during every span of marked transcripts, then that adver-
sary can be mapped to a π adversary that achieves the same effect by interacting
with F appropriately during these points.
6 We remark that this condition can be tightened to n > m via a more delicate

analysis.

Complexity of Multi-party Computation Problems 271

Since f is uniquely decomposable, we describe a feasible adversary A attack-
ing the canonical protocol for f , and apply Theorem 1 to obtain an equivalent
adversary S attacking π̂. Theorem 1 always constructs an adversary S that be-
haves consistently except for a small number of times where it might swap its
input. We will construct A so that S only needs to swap its input at most once. If
we can ensure that S will always be able to swap its input at an unmarked point
in π̂, then S behaves consistently during the marked spans, so we can obtain an
adversary successfully attacking π in the F -hybrid world, a contradiction.

Suppose by symmetry that Alice goes first in the canonical protocol for f . Let
x0, y0 be inputs that cause the canonical protocol to take a maximum number
of rounds, and let y1 be such that the (unique) transcripts for x0, y0 and x0, y1
agree until Bob’s last message; thus f(x0, y0) �= f(x0, y1). Let x1 be an input for
which Alice’s first message is different than for x0.

We consider an environment which chooses a random b← {0, 1} and supplies xb

as Alice’s input. It expects the adversary to detect and correctly report its choice
of b. If b = 0, then the environment chooses a random c← {0, 1}, and gives c to the
adversary. The environment expects the adversary to induce Alice to report out-
put f(xb, yc). The environment outputs 1 if the adversary succeeds at both phases
(guessing b and inducing f(xb, yc) when b = 0). These conditions are similar to
those of a “split adversary” considered by [5]. In the ideal world, an adversary
must choose an input for f with no knowledge of Alice’s input, and it is easy to
see that the adversary fails with probability at least 1/4. On the other hand, a
trivial adversary A attacking the canonical protocol for f can always succeed.

Applying Theorem 1 to A will result in a S that considers n levels of frontiers
in π̂ – one for each step in the canonical protocol. S only needs to swap its input
at most once (possibly from y0 to y1). By the choice of x0 and x1, S can make
its decision to swap after visiting the first frontier. Let k be the last round in
which Bob moves, then k ∈ {n− 1, n}. By the choice of y0 and y1, S can safely
swap anywhere except after visiting the (k − 1)th frontier. It suffices for the
transcript to encounter an unmarked step in π̂ in this range. This is true with
overwhelming probability, since there is an unmarked step in every m ≤ k − 1
consecutive steps in the protocol, and the frontiers are encountered in strict
order with overwhelming probability, $%
Let gn : {0, 2, . . . , 2n} × {1, 3, . . . , 2n + 1} → {0, 1, . . . , 2n} be defined as
gn(x, y) = min{x, y}. It can be seen by inspection that gn has a unique de-
composition of depth 2n. The corresponding canonical protocol is the one in
which Alice first announces whether x = 0, then (if necessary) Bob announces
whether y = 1, and so on — the “Dutch flower auction” protocols from [1].

Corollary 8. The functions g1, g2, . . . form a strict, infinite hierarchy of in-
creasing #-complexity. That is, gi # gj if and only if i ≤ j.

Proof. By Theorem 7, gi �# gj when i > j. It suffices to show that gn # gn+1,
since the # relation is transitive. It is straight-forward to see that the following
is a UC-secure protocol for gn in the gn+1-hybrid world: both parties to send

272 H.K. Maji, M. Prabhakaran, and M. Rosulek

their gn-inputs directly to gn+1, and abort if the response is out of bounds for
the output of gn (i.e., 2n or 2n + 1). The simulator for this protocol crucially
uses the fact that the adversary can receive the output and then abort. $%
Corollary 9. There is no function f which is complete (with respect to the #
relation) for the class of passively realizable SSFE functions, or for the class
standalone-realizable SSFE functions.

Proof. This follows from Theorem 7 and by observing that there exist functions
of arbitrarily high decomposition depth in both classes in question. $%
Corollary 10. There exist SSFE functions f, g whose complexities are incom-
parable; that is, f �# g and g �# f .

Proof. If f is passively realizable but not standalone realizable, and g is stan-
dalone realizable, then f �# g, since the class of standalone security is closed un-
der composition (at least when restricted to SSFE functions with abort, where
the only kind of composition possible is sequential composition). On the other
hand, if g has a unique decomposition depth at least 2 larger than the decom-
position depth of f , then g �# f , by Theorem 7. $%
One example of such a pair of functions is f = xor and g = g2 from Corollary 8.
In fact, using a more careful analysis, one can choose g = g1 (see [19]). Thus
xor is incomparable to the entire {gi} hierarchy.

8 Conclusion and Open Problems

We have gained significant insight into the terrain of SSFE functions. However,
there are regions of complexity of SSFE functions that we do not fully understand.
In particular, we have not studied the class of incomplete functions which are not
passive realizable. Nor have we attempted fully characterizing which functions are
reducible to which ones. Going beyond SSFE functions, it remains open to explore
similar questions for multi-party functionalities, for reactive functionalities, and
(in the case of passive-security) for randomized functionalities. In the computa-
tionallybounded setting, the “zero-one conjecture” from [20]— that all functional-
ities are either realizable or complete — remains unresolved. It is also an intriguing
problem to consider cryptographic complexity of multi-party functionalities vis a
vis the “complexity” of cryptographic primitives (like one-way functions) that are
required to realize them (in different hybrid worlds). In short, our understanding of
cryptographic complexity of multi-party functionalities is still quite limited. There
are exciting questions that probably call for a fresh set of tools and approaches.

References

1. Backes, M., Müller-Quade, J., Unruh, D.: On the necessity of rewinding in secure
multiparty computation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
157–173. Springer, Heidelberg (2007)

Complexity of Multi-party Computation Problems 273

2. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt,
M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryp-
tography, vol. 2, pp. 65–77. American Mathematical Society (1989)

3. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016 (2001); Extended abstract in FOCS 2001

5. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

6. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy (extended abstract).
In: STOC, pp. 62–72. ACM, New York (1989)

7. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991); Preliminary version in FOCS 1986

8. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC, pp. 44–61. ACM Press, New York (1989)

9. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

10. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

11. Kilian, J.: Uses of Randomness in Algorithms and Protocols. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology (1989)

12. Kilian, J.: A general completeness theorem for two-party games. In: STOC, pp.
553–560. ACM, New York (1991)

13. Kilian, J.: More general completeness theorems for secure two-party computation.
In: Proc. 32nd STOC, pp. 316–324. ACM, New York (2000)

14. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness
in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)

15. Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive
proofs for symmetric, asymmetric and general 2-party-functions (unpublished
manuscript, 2008)

16. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in the
it setting with dishonest majority and applications to long-term security (in these
proceedings)

17. Kushilevitz, E.: Privacy and communication complexity. In: FOCS, pp. 416–421.
IEEE, Los Alamitos (1989)

18. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

19. Maji, H., Prabhakaran, M., Rosulek, M.: Complexity of multiparty computation
problems: The case of 2-party symmetric secure function evaluation. Cryptology
ePrint Archive, Report 2008/454 (2008), http://eprint.iacr.org/

20. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)

21. Yao, A.C.: Protocols for secure computation. In: Proc. 23rd FOCS, pp. 160–164.
IEEE, Los Alamitos (1982)

http://eprint.iacr.org/

Realistic Failures in Secure Multi-party Computation�

Vassilis Zikas, Sarah Hauser, and Ueli Maurer

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{vzikas,maurer}@inf.ethz.ch,

shauser@student.ethz.ch

Abstract. In secure multi-party computation, the different ways in which the
adversary can control the corrupted players are described by different corrup-
tion types. The three most common corruption types are active corruption (the
adversary has full control over the corrupted player), passive corruption (the ad-
versary sees what the corrupted player sees) and fail-corruption (the adversary
can force the corrupted player to crash irrevocably). Because fail-corruption is
inadequate for modeling recoverable failures, the so-called omission corruption
was proposed and studied mainly in the context of Byzantine Agreement (BA). It
allows the adversary to selectively block messages sent from and to the corrupted
player, but without actually seeing the message.

In this paper we propose a modular study of omission failures in MPC, by
introducing the notions of send-omission (the adversary can selectively block
outgoing messages) and receive-omission (the adversary can selectively block
incoming messages) corruption. We provide security definitions for protocols
tolerating a threshold adversary who can actively, receive-omission, and send-
omission corrupt up to ta, tρ, and tσ players, respectively. We show that the
condition 3ta + tρ + tσ < n is necessary and sufficient for perfectly secure MPC
tolerating such an adversary. Along the way we provide perfectly secure proto-
cols for BA under the same bound. As an implication of our results, we show
that an adversary who actively corrupts up to ta players and omission corrupts
(according to the already existing notion) up to tω players can be tolerated for
perfectly secure MPC if 3ta + 2tω < n. This significantly improves a result by
Koo in TCC 2006.

1 Introduction

In secure multi-party computation (MPC) n players p1, . . . , pn wish to securely com-
pute a function of their inputs. The computation should be secure, in the sense that
the output is correct and the privacy of the players’ inputs is not violated. The security
should be guaranteed even when some of the players misbehave. The misbehavior of
players is modeled by assuming a central adversary who corrupts players. The most
typical corruption types are active corruption (the adversary has full control over the
corrupted player), passive corruption (the adversary sees whatever the player sees), and
fail-corruption (the adversary can make the player crash irrevocably).

� This research was partially supported by the Swiss National Science Foundation
(SNF), project no. 200020-113700/1. The full version of this paper is available at
http://www.crypto.ethz.ch/pubs/ZiHaMa09

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 274–293, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Realistic Failures in Secure Multi-party Computation 275

The study of MPC was initiated by Yao [Yao82]. The first general solutions were
given by Goldreich, Micali, and Wigderson [GMW87]; these protocols are secure un-
der some intractability assumptions. Later solutions [BGW88, CCD88, RB89, Bea91b]
provide information-theoretic security.

One of the most studied sub-problems of secure multi-party computation is Byzan-
tine Agreement (BA). BA comes in two flavors, namely consensus and broadcast. In-
formally, consensus guarantees that n players, each holding an input, can agree on a
common output without destroying pre-agreement. On the other hand, broadcast al-
lows a dedicated player to consistently send his input to every player. BA serves as an
important tool for the design of multi-party protocols.

Failures in MPC. For motivating the different corruption-types one typically thinks of
MPC as each player running his protocol on his (local) computer, where the computers
can communicate over some network (e.g., the Internet). Passive and active corruption
correspond, for example, to (the adversary) planting a spyware or a virus, respectively,
to the player’s computer. Fail-corruption, however, can be criticized as being not so
realistic due to the requirement that the crash is irrevocable. Indeed, in real-world sce-
narios computer-crashes are not irrevocable and are usually fixed soon after they are
discovered, e.g., by replacing the computer.

Corruption types modeling more realistic failures than irrevocable computer-crashes
have been studied in the literature. An example is the so-called omission corruption
which allows the adversary to selectively block messages sent or received by the cor-
rupted player, but without seeing the actual message. Omission corruption models fail-
ures that are apparent in many real-world applications, e.g., a computer which might
lose messages while being restarted due to a hang of the operating system. It also mod-
els failures or temporary unavailability of the communication network, e.g., a router’s
buffer overflow, or instability of the links due to a thunderstorm. Partial asynchronity of
the network, i.e., the adversary causing unexpected delays on messages sent from and
to certain players, can also be modeled.

Omission corruption has been primarily studied in the context of fault-tolerant con-
sensus [Had85, PT86, Ray02, PR03] and, recently, also in MPC [Koo06].

Summary of known results. In the seminal papers solving the general MPC problem,
the adversary is specified by a single corruption type (active or passive) and a thresh-
old t on the tolerated number of corrupted players. Goldreich, Micali, and Wigderson
[GMW87] proved that, based on cryptographic intractability assumptions, general se-
cure MPC is possible if and only if t < n/2 players are actively corrupted, or, al-
ternatively, if and only if t < n players are passively corrupted. In the information-
theoretic model, Ben-Or, Goldwasser, and Wigderson [BGW88] and independently
Chaum, Crépeau, and Damgård [CCD88] proved that unconditional security is pos-
sible if and only if t < n/3 for active corruption, and for passive corruption if and only
if t < n/2. These results were unified and extended by fail-corruption in [FHM98] by
proving that perfectly secure MPC is achievable if and only if 3ta + 2tp + tf < n,
where ta, tp, and tf denote the upper bounds on the number of actively, passively and
fail corrupted players, respectively.

A similar development as in MPC can be observed in the area of Byzantine agree-
ment protocols [LSP82, DS82, LF82, MP91, GP92, FM98].

276 V. Zikas, S. Hauser, and U. Maurer

The first to consider omission corruption were Perry and Tueg [PT86]. They consid-
ered a threshold adversary who can omission corrupt up to t players and showed that
BA tolerating this adversary is possible if and only if t < n. However their consistency-
guarantee is limited to the outputs of uncorrupted players, i.e., omission corrupted play-
ers are allowed to output arbitrary values. Raynal and Parvedy [Ray02, PR03] proved
that if we require omission corrupted players to output either the correct value (i.e., con-
sistent with the output of uncorrupted players) or no value, then consensus is possible
if and only if 2t < n.

In the context of general MPC, omission corruption was first studied, in combination
with active corruption, by Koo [Koo06]. He considered a threshold adversary who can
actively corrupt up to ta players and, simultaneously, omission corrupt up to tω players,1

and proved that the conditions 3ta + 2tω < n and 3ta + 4tω < n are sufficient for
perfectly secure consensus and general MPC, respectively. However, as we show in
Section 9, the condition 3ta + 4tω < n is far from optimal.

Our Contributions. We propose a modular study of realistic failures in multi-party
computation, by introducing the notions of send-omission and receive-omission corrup-
tion. As the names suggest, send-omission (resp. receive-omission) corruption allows
the adversary to selectively block only outgoing (resp. only incoming) messages of the
corrupted player, but without seeing the messages (this is consistent with the existent
omission-corruption literature). Note that a player who is omission corrupted according
to the definitions of [PT86, Ray02, PR03, Koo06] can be thought of as a player who is
both send- and receive-omission corrupted at the same time; for clarity we refer to this
type of corruption as full-omission corruption.

We provide security definitions for the model where the adversary can actively, send-
omission, and receive-omission corrupt players, simultaneously. We show that in this
model, an adversary who can actively, receive-omission, and send-omission corrupt up
to ta, tρ, and tσ players, respectively, can be tolerated for perfectly secure MPC if and
only if 3ta + tρ + tσ < n. Along the way, we also construct BA primitives for the same
bound. Our bound implies that the condition 3ta + 2tω < n is sufficient for perfectly
secure MPC.

The novelty of our approach is that, unlike past results on fault-tolerant MPC, we
primarily deal with the omissions on the network-level instead of internally in the pro-
tocol. In particular, using the paradigm of layered communication (e.g., the OSI-model),
first we engineer the actual network to build a new network-layer with better security
guarantees, and then we design protocols in which the players communicate over this
higher network-layer. This approach leads to simpler and more intuitive protocols. For
the construction of our main protocol we also use ideas from the player-elimination
technique [HMP00].

Outline of this paper. In Section 2 we define the model and introduce some notation.
In Section 3 we discuss the security definitions and prove an impossibility result. In
Sections 4 and 5 we show how to get an authenticated network with strong security
guarantees and then build BA protocols over it. In Section 6 we provide tools that will

1 In [Koo06], omission corrupted players are called constrained and actively corrupted are called
corrupted.

Realistic Failures in Secure Multi-party Computation 277

be used as building blocks for the construction of the SFE and MPC protocols;2 these
protocols are described in Sections 7 and 8, respectively. In Section 9 we look at the
case of full-omission corruption.

2 The Model

We consider the standard secure-channels model introduced in [BGW88, CCD88]: The
players in P = {p1, . . . , pn} are connected by a complete network of bilateral secure
channels. The communication is synchronous, i.e., all players have synchronized clocks
and there is a known upper bound on the delay of the network. The computation is
described as an arithmetic circuit over some finite field F, consisting of addition (or
linear) and multiplication gates.

We look at the case of perfect security, i.e., information-theoretic without error prob-
ability. A protocol is defined to be secure if it realizes a trusted functionality (comput-
ing the function f), where the term “realize” is defined via the simulation paradigm
[Can00, MR91, Bea91a, DM00, PW01] which, in a nutshell, guarantees that whatever
the adversary can achieve in the real world where the protocol is executed, he could
also achieve in the ideal setting with the trusted functionality.3 This security notion im-
plies in particular that the adversary cannot obtain any information about the players’
inputs beyond what is implied by the outputs (privacy), and that he cannot influence the
outputs other than by choosing the inputs of the corrupted players (correctness).

We consider a rushing4 threshold adversary who can actively, receive-omission, and
send-omission corrupt up to ta, tρ, and tσ players, respectively. The adversary chooses
the players to corrupt non-adaptively, i.e., before the beginning of the protocol.5

To simplify the description we adopt the following convention: whenever a player
does not receive a message (when expecting one), or receives a message outside of the
expected range, then the special symbol ⊥�∈ F is taken for this message.

Every pi ∈ P can be in one of the following two internal states: alive or zombie. At
the beginning of the computation every player is alive, which means that he correctly
executes all the protocol instructions (unless he is actively corrupted). If pi realizes that
he is receive-omission corrupted, e.g., by receiving fewer messages than what he should
in some round, then pi sets his internal state to zombie (we say that pi becomes a zom-
bie). Once the state is set to zombie it never switches back. A zombie behaves in the

2 SFE stands for Secure Function Evaluation, i.e., multi-party computation of non-reactive func-
tionalities.

3 While our protocols can be proved secure in any of these simulation-based frameworks, with
perfect indistinguishability of the real and the ideal world, we will not give full-fledged
simulation-based security proofs in this paper; this is consistent with the previous literature
on secure SFE and MPC.

4 A rushing adversary is an adversary who, in each round of the protocol, first sees all the
messages sent to actively corrupted players in this round and then decides how the corrupted
players should behave in this round.

5 In contrast, an adaptive adversary can corrupt more and more players during the protocol
execution, subject only to the constraint that the number of corrupted players of each type is
upper-bounded by the corresponding threshold. We do not consider the adaptive setting in this
paper, but our results could be generalized to it.

278 V. Zikas, S. Hauser, and U. Maurer

protocols as a player who has crashed, i.e., sends and receives no messages and has no
outputs. However, there are two conceptual differences between zombies and crashed
players: (1) Being a zombie is a self-imposed state and corresponds to a correct behav-
ior, i.e., players become zombies when the protocol (and not the adversary) instructs
them to; (2) zombie-players are “aware of the actual time”, as they have clocks which
are synchronized with the clocks of the alive players; this will be useful in the context
of reactive computation (Section 8) where time plays an important role.

The sets A, S, R, SR, and H. To simplify the description we denote the sets of ac-
tively, send-omission only, receive-omission only, and full-omission6 (but not actively)
corrupted players by A, S, R, and SR, respectively, and the set of uncorrupted players
by H (H stands for “honest”). Note that these sets are a partition of the player set P ,
they are not known to the players and appear only in the security analysis.

3 Security Definition

Intuitively, the security definition for our model should not allow the adversary to do
more with send- and receive-omission corrupted players than to decide which of them
give input to and receive output from the computation, respectively. The strongest secu-
rity one can hope for is to require that the adversary’s decision is taken independently
of the inputs of non actively corrupted players and before seeing the outputs of ac-
tively corrupted players. More precisely one would be interested in securely realizing
the functionality STRONG SFE (see below).7

STRONG SFE - IDEAL MODEL. Each pi ∈ P has input xi. The function to be
computed is f(·). The adversary decides which of the send-omission (resp. receive-
omission) corrupted players give input to (resp. receive output from) the trusted party
before seeing the outputs of actively corrupted players.

1. Every pi ∈ H ∪ R sends his input to the trusted party (TP). Actively corrupted
players might send TP arbitrary inputs as instructed by the adversary. For each
pi ∈ SR ∪ S the adversary decides (without seeing pi’s input) whether pi sends
TP his input or a default value from F (e.g., 0). TP denotes the received values by
x′1, . . . , x

′
n.

2. TP computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) (if f is randomized then TP inter-

nally generates the necessary random coins). TP asks the adversary which of the
players pi ∈ R ∪ SR should receive their output yi (without revealing any infor-
mation about yi).

3. For each pi ∈ H∪S ∪A, TP sends yi to pi. For each pi ∈ R∪SR, TP sends yi to
pi if the adversary allowed that pi receives output in the previous step, otherwise
TP sends nothing to pi.

6 Recall that a full-omission corrupted player is one who is both send- and receive-omission
corrupted at the same time.

7 We assume that the reader is familiar with the ideal-world/real-world paradigm for defining
security of multi-party protocols [Bea91a, MR91, Can00, DM00, BPW03].

Realistic Failures in Secure Multi-party Computation 279

We say that a protocol Π strongly (ta, tρ, tσ)-securely evaluates the function f if it
securely realizes the functionality STRONG SFE in the presence of an adversary who
can actively, receive-omission, and send-omission corrupt up to ta, tρ, and tσ players,
respectively.

Unfortunately, as stated in the following lemma, when the adversary is rushing then
for any non-trivial choice for ta and tρ there exist functions which cannot be perfectly
strongly (ta, tρ, tσ)-securely evaluated. In fact our impossibility result is inherent in
any setting where we have a threshold adversary with active (or even just passive) and
receive-omission corruption, simultaneously. In particular it also applies to the (non-
adaptive) case of active and full-omission corruption [Koo06].8 The idea is the follow-
ing: the adversary might, with non-zero probability, corrupt the player pi who is the
first (or among the first) to get the output, e.g., by randomly choosing whom to corrupt.
In this case, as she is rushing, she can decide, depending on the output, whether the
receive-omission corrupted players get full information on the output or not. However,
the simulator has to take this decision without seeing the outputs of corrupted players,
and hence he is not able to perfectly simulate this behavior. Due to space restrictions
the proof of the lemma is deleted from this extended abstract.

Lemma 1. If ta > 0 and tρ > 0 and the adversary is rushing, then there exist functions
which cannot be perfectly strongly (ta, tρ, ·)-securely evaluated. The statement holds
even when we have passive instead of active corruption.

We relax the definition of the functionality to allow the adversary to decide which
receive-omission corrupted players receive output, even after having seen the outputs
of actively corrupted players (and possibly depending on those outputs). Our relaxation
is minimal as Lemma 1 suggests. We call the resulting functionality SFE (see below).

SFE – IDEAL MODEL. Each pi ∈ P has input xi. The function to be computed is
f(·). The adversary decides which of the receive-omission corrupted players receive
output from the trusted party after receiving the outputs of actively corrupted players.

1. Every pi ∈ H ∪ R sends his input to the trusted party (TP). Actively corrupted
players might send TP arbitrary inputs as instructed by the adversary. For each
pi ∈ SR ∪ S the adversary decides (without seeing pi’s input) whether pi sends
TP his input or a default value from F (e.g., 0). TP denotes the received values by
x′1, . . . , x

′
n.

2. TP computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) (if f is randomized then TP inter-

nally generates the necessary random coins). For each pi ∈ H∪S ∪A, TP sends
yi to pi.

3. For pi ∈ R∪SR, TP asks the adversary if pi should receive his output yi (without
revealing any information about yi), if the answer is yes then TP sends yi to pi,
otherwise it sends nothing to pi.

8 In [Koo06] the assumed adversary is also rushing and the (non-adaptive) ideal-world function-
ality requires the adversary to decide which omission corrupted players receive output before
seeing the outputs of actively corrupted players.

280 V. Zikas, S. Hauser, and U. Maurer

Definition 1. We say that a protocol Π (ta, tρ, tσ)-securely evaluates the function f
if Π securely realizes the functionality SFE in the presence of an adversary who can
actively, receive-omission, and send-omission corrupt up to ta, tρ, and tσ players, re-
spectively.

4 Engineering the Network – Authenticated Channels

A source of difficulties in designing protocols tolerating both active cheaters and omis-
sions is that a player pj who receives ⊥ when expecting a message from a player pi

cannot decide whether pi is send-omission or actively corrupted, or himself (i.e., pj)
is receive-omission corrupted. In [Koo06] the following straight-forward approach was
taken in order to overcome this difficulty in the context of pi sharing a secret: Every
player complains when he received no share from the dealer pi. If more players com-
plain than the number of potentially corrupted players, pi is disqualified. Otherwise,
the players who did not complain pairwise check the consistency of their shares (as
in [BGW88, FHM98]), where inconsistencies are publicly reported and resolved by the
dealer. This approach, however, leads to thresholds on the number of actively and (full)
omission corrupted players which are far from optimal, as discussed in the introduction.

Our approach is different. We deal with this difficulty outside the protocol, on the net-
work level. In particular, using the paradigm of layered communication (e.g., the OSI-
model), first we engineer the actual network to get a new network-layer with stronger
guarantees, and then we invoke the actual protocol over this layer.

The protocol which is used to build the new network-layer is called FixReceive. It
works on the channels of the actual network (the lowest layer), i.e., the secure channels
with omissions, and builds on top of them a network of authenticated channels (the
higher layer), where for any receive-omission corrupted pi the adversary has to choose
either to allow pi to receive all messages that are sent to him or to let pi know that he is
receive-omission corrupted. More precisely, FixReceive guarantees that when some pi

sends a message x to a receive-omission corrupted pj then either pj receives it, as if he
were uncorrupted, or pj finds out that he is receive-omission corrupted (and becomes a
zombie). If pj becomes a zombie in FixReceive then he notifies every pk ∈ P about this
by sending a bilateral message; this information will be used by the players in future
invocations of FixReceive. The protocol FixReceive is described in the following. For
the proof of the lemma we refer to the full version of this paper.

Protocol FixReceive (P, ta, tρ, tσ, pi, pj, x)
1. pi sends his input x to every pk ∈ P .
2. Each pk ∈ P forwards x to pj (if pk received no value, he sends a special symbol

“n/v” to pj); pj denotes the received value as xk (if pk has become a zombie in
the past then pj sets xk = “n/v”).

3. If |{pk : xk ∈ F∪{“n/v”}}| < n− ta− tσ then pj becomes zombie (and notifies
all players). Otherwise, if there exists x′ �∈ {⊥, “n/v”} such that |{pk : xk =
x′}| > ta then pj outputs x′, otherwise pj outputs ⊥.

Realistic Failures in Secure Multi-party Computation 281

Lemma 2. If 3ta + tρ + tσ < |P|, protocol FixReceive has the following properties.
If pj is alive at the end of the protocol then he outputs a value x′, where x′ ∈ {x,⊥}
unless pi ∈ A, and x′ = x when pi ∈ H ∪ R. Moreover, pj might become a zombie
only when pj ∈ R ∪ SR and when he becomes a zombie every player notices.

5 Byzantine Agreement

In this section we build primitives solving the Byzantine Agreement (BA) problem,
which we will later use as tools for constructing the main SFE protocol. BA comes in
two flavors, namely consensus and broadcast. Informally, consensus guarantees that n
players, each holding an input, can decide on a common output y, where y = x if all
non-actively corrupted players had (the same) input x. On the other hand, broadcast
allows a dedicated player ps holding input xs, to consistently send xs to every player.

In our BA protocols, the players communicate over the strengthened authenticated
network which is constructed using FixReceive. More precisely, whenever pi ∈ P is
instructed to bilaterally send a message to pj ∈ P , the protocol FixReceive is invoked.
Because alive players might become zombies only within FixReceive, all the designed
protocols have the following property: Only receive-omission corrupted players might
become zombies. The proofs of the lemmas can be found in the full version of the paper.

5.1 Consensus

For constructing a consensus protocol, we use the standard approach [BGP89, FM00]:
We construct weaker consensus primitives, and then compose them in a clever way to
construct the desired consensus primitive. We construct three such weaker primitives
called Weak Consensus, Graded Consensus, and King Consensus.

Weak Consensus. Informally, weak consensus guarantees that there are no inconsis-
tencies among the outputs of the non-actively corrupted players, but some of them (even
alive) might have no output (we say that they output ⊥). However, we get the guarantee
that if the players pre-agreed on some value x, i.e., all non-actively corrupted players
had input (the same) x, then we get post-agreement on x, i.e., all non-actively cor-
rupted players output x.9 In the following we describe protocol WeakConsensus which
achieves weak consensus in our model. The input of each pi ∈ P is denoted as xi

ProtocolWeakConsensus (P, ta, tρ, tσ,
→
x = (x1, . . . , xn))

1. Each pi ∈ P sends xi to every pj ∈ P , by invoking FixReceive; pj denotes the
received value by x(i)

j .
2. Each pj ∈ P sets

yj :=

⎧⎨⎩
x , if (|{pi : x(i)

j = x}| ≥ n− ta − tσ − tρ)
∧

(|{pi : x(i)
j �∈ {x,⊥}}| ≤ ta)

⊥ , otherwise

Lemma 3. If 3ta + tρ + tσ < |P|, the protocol WeakConsensus has the following
properties. Weak Consistency: Every (alive) pj ∈ P \ A outputs yj ∈ {x′,⊥} for

9 Recall that the zombies send no values in any protocol and receive no output.

282 V. Zikas, S. Hauser, and U. Maurer

some x′ ∈ F. Correctness: If every pi ∈ P \ A who is alive at the beginning of
WeakConsensus has input xi = x, then x′ = x.

Graded Consensus. In Graded Consensus each pi ∈ P outputs a pair (yi, gi), where
yi is pi’s actual output-value and gi ∈ {0, 1} is a bit, called pi’s grade. The grade gi

has the meaning of the confidence level of pi on the fact that all non-actively corrupted
players also output yi. In particular, if gi = 1 for some non-actively corrupted pi then
yj = yi for every (alive) non-actively corrupted pj ∈ P . Moreover, when the non-
actively corrupted players pre-agreed on a value x, then they all output x with grade 1.

In the following we describe the protocol GradedConsensus. The idea is to have the
players first invoke the protocol WeakConsensus and then exchange their outputs of
WeakConsensus to decide on the actual output and the corresponding grade.

ProtocolGradedConsensus
(P, ta, tρ, tσ,

→
x = (x1, . . . , xn)

)
1. Invoke WeakConsensus (P , ta, tρ, tσ,→x); pi denotes his output by x′i.
2. Each pi ∈ P sends x′i to every pj ∈ P by invocation of FixReceive; pj denotes

the received value by x(i)
j .

3. Each pj ∈ P sets yj :=
{
x , if there exists x ∈ F s.t. |{pi : x(i)

j = x}| > ta
0 , otherwise

and sets gj :=

⎧⎨⎩
1 , if (|{pi : x(i)

j ∈ {yj ,⊥}}| ≥ n− ta)
∧

(|{pi : x(i)
j = yj}| ≥ n− ta − tρ − tσ)

0 , otherwise

Lemma 4. If 3ta+tρ+tσ < |P|, protocolGradedConsensus has the following proper-
ties. Graded Consistency: If some pj ∈ P \A outputs (yj , gj) = (y, 1) for some y ∈ F,
then every (alive) pk ∈ P \ A outputs (yk, gk) = (y, gk), where gk ∈ {0, 1}. Graded
Correctness: If every pi ∈ P \A who is alive at the beginning of GradedConsensus has
input xi = x, then every (alive) pj ∈ P \ A outputs (yj , gj) = (x, 1).

King Consensus. In King Consensus there is a distinguished player pk ∈ P , called the
king. King Consensus guarantees that if the king is uncorrupted, then all non-actively
corrupted players output the same value. Additionally, independent of the king’s cor-
ruption, if the non-actively corrupted players pre-agreed on a value x, then they all
output x. The protocol KingConsensus is described in the following.

ProtocolKingConsensus (P, ta, tρ, tσ,
→
x = (x1, . . . , xn), pk)

1. Invoke GradedConsensus(P , ta, tρ, tσ,→x); pi denotes his output by (x′i, gi).
2. The king pk sends x′k to every pj ∈ P by invocation of FixReceive.
3. Each pj ∈ P sets

yj; =
{
x′j , if (gj = 1) or (pk sent x′k =⊥)
x′k , otherwise

Lemma 5. If 3ta + tρ + tσ < |P|, the protocol KingConsensus has the following
properties. King Consistency: If the king pk is uncorrupted, then every pj ∈ P \ A
outputs yj = y. Correctness: If every pi ∈ P \ A who is alive at the beginning of
KingConsensus has input xi = x then they all output y = x.

Realistic Failures in Secure Multi-party Computation 283

Consensus. Building a consensus protocol from king consensus is straight-forward:
Invoke KingConsensus with ta + tρ + tσ + 1 different players as king, where the input
of the i-th iteration is the output of the (i−1)-th iteration. As there are at most ta + tρ +
tσ corrupted players, at least one of the kings will be uncorrupted, hence consistency
on the output value will be achieved in the corresponding iteration; the correctness of
KingConsensus guarantees that this value will not be changed in any future iteration.
Note that when we have pre-agreement on some value then consistency on this value is
achieved from the first iteration independent of the king.

Lemma 6. If 3ta + tρ + tσ < |P|, the protocol Consensus has the following properties.
Consistency: All (alive) pi ∈ P \ A output (the same) y ∈ F. Correctness: If every
pi ∈ P \ A who is alive at the beginning of Consensus has input xi = x then y = x.

5.2 Broadcast

The standard approach for achieving broadcast when consensus is given, is to have the
sender ps send his input to every player, and then run consensus on the received values.
Unfortunately, this generic approach does not work in our setting, as it provides no guar-
antees when a send-omission corrupted ps fails to send his input to some uncorrupted
players.

To guarantee that a non actively corrupted ps never broadcasts a wrong value we ex-
tend the above generic protocol by adding the following steps: ps sends a confirmation
bit to every player, i.e., a bit b where b = 1 if ps agrees with the output of the consen-
sus and b = 0 otherwise; subsequently, the players invoke consensus on the received
bits to establish a consistent view on the confirmation-bit and they accept the output of
the generic broadcast protocol only if this bit equals 1, otherwise they output ⊥. This
results in the protocol Broadcast (see below).

ProtocolBroadcast (P, ta, tρ, tσ, ps, xs)
1. ps sends x to every pj ∈ P (by FixReceive), who denotes the received value by
xj (xj = 0 if pj received ⊥).

2. The players invoke Consensus on the received values. Let yj denote pj’s output.
3. Each pj sends yj to ps (by FixReceive).
4. ps sends a confirmation bit b to every pi ∈ P (by FixReceive), where b = 1 if
ps received yj = x from more that ta players in the previous step and b = 0
otherwise; pi denotes the received bit by bi (bi = 0 if pi received ⊥).

5. Invoke Consensus (P , ta, tσ, tρ, (b1, . . . , bn)). For each pi ∈ P , if pi’s output in
Consensus is 1 then pi outputs yi, otherwise he outputs ⊥.

Lemma 7. If 3ta + tρ + tσ < |P|, protocol Broadcast has the following properties.
Consistency: All (alive) pj ∈ P \ A output the (same) value yj = y. Correctness:
y ∈ {x,⊥} when ps ∈ P \ A, where y = x when ps ∈ H ∪ R and he is alive at the
end of the protocol, and y =⊥ when ps has been a zombie from the beginning of the
protocol.

284 V. Zikas, S. Hauser, and U. Maurer

6 Tools

In this section we describe sub-protocols that will be used as building-blocks in the
construction of the main SFE and MPC protocols. Some of the sub-protocols are non-
robust, and might abort with a non-empty set B ⊆ P . When they abort, then all (alive)
players in P notice it and they also learn the set B. As in the case of BA, some alive
players might become zombies during the invocation of the sub-protocols, but only
when they are receive-omission corrupted.

6.1 Secret Sharing

A secret sharing scheme allows a player, called the dealer, to distribute his input among
the players in some player set P , so that only qualified sets of players can reconstruct
it. As usual in the threshold adversary literature, we use Shamir-sharings for sharing
values: With each pi ∈ P a unique publicly known αi ∈ F is associated. A secret s
is t-shared among the players in P when there exists a degree-t polynomial q(·) with
q(0) = s, and every non actively corrupted pi ∈ P holds si ∈ {q(αi),⊥}, where
si = q(αi) unless pi is receive-omission corrupted. The value si is pi’s share of s. We
refer to the vector of shares, denoted by 〈s〉 = (s1, . . . , sn), as a t-sharing of s.

We say that 〈s〉 is a t-consistent sharing of s among the players in P if there exists
a degree-t polynomial q(·) such that each non actively corrupted pi ∈ P holds share
si ∈ {q(αi),⊥}. We say that 〈s〉 is a t-valid sharing of s among the players in P , if 〈s〉
is t-consistent and for some degree-t polynomial q(·) with q(0) = s, each uncorrupted
pi ∈ P holds share si = q(αi).

Protocol Share allows a dealer p to t-share his input among the players in any set P .
Essentially it is a passive Shamir-sharing protocol: p picks a degree-t uniformly random
polynomial q(·) and sends q(αi) to pi. The following lemma states the achieved security.

Lemma 8. Protocol Share(P , t, p, s) has the following properties. Correctness: When
p ∈ P \ A then Share outputs a t-consistent sharing 〈s〉 of s among the players in P ,
where 〈s〉 is even t-valid unless p ∈ A ∪ S ∪ SR or unless p is a zombie. Privacy: The
players in any set P ′ ⊆ P with |P ′| ≤ t get no (joint) information on s.
In the following we describe the protocols PublicReconstruct and Reconstruct used to
reconstruct a shared value publicly and towards some output player p, respectively. The
protocols take as input a sharing of a value among the players in some P ′ (P ′ might
be different than P). In protocol Reconstruct (resp. PublicReconstruct) every pi ∈ P ′

sends his share to p (resp. broadcasts his share to P) and then p (resp. every pj ∈ P)
reconstructs the shared value using standard error correction. Due to their similarity we
only describe protocol Reconstruct and state the security of both protocols in a joint
lemma.

ProtocolReconstruct (P′, t, t′, p, 〈s〉)
1. Each pi ∈ P ′ sends his share si to p.
2. p finds, using standard polynomial interpolation techniques, a degree t polyno-

mial f(·) with the property that more than t+ t′ of the received shares lie on f(·)
and outputs s′ = f(0). If no such polynomial exists then pj outputs ⊥.

Realistic Failures in Secure Multi-party Computation 285

Lemma 9. Assume that there exists tc such that there are at most tc corrupted players
in P ′, of whom at most t′ are actively corrupted and the condition t+ t′ + tc < |P ′|
holds. Then the protocol Reconstruct (resp. PublicReconstruct)10 reconstructs a value
s′ towards player p (resp. towards every pj ∈ P), where s′ ∈ {s,⊥} if 〈s〉 is a t-
consistent sharing of s among the players in P ′, and s′ = s if 〈s〉 is t-valid.

6.2 Engineering the Network - Secure Channels

The trick of engineering the network allowed us to reduce the effect of receive-omission
corruption. However, because the channels which we achieve provide no privacy guar-
antees, we cannot use the resulting network directly to build a perfectly secure SFE pro-
tocol. In the following, we show how to engineer the initial network of secure channels
to get a new network-layer (also of secure channels) with stronger security guarantees.

The new network layer will allow any pj ∈ P who receives ⊥ instead of a message x
from pi ∈ P to decide whether he (i.e., pj) is receive-omission corrupted or the sender
pi is corrupted. Additionally, when the reception fails because of pi, then every (alive)
player will recognize that pi is (actively or send-omission) corrupted. Given Broadcast
and a uniformly random key ki,j ∈ F known exclusively to pi and pj , this can be
achieved as follows: For pi to privately send s to pj , pi uses ki,j as a one time pad to
perfectly blind s, and broadcasts the blinded value s + ki,j . Because only pi and pj

know ki,j , only pj can unblind the broadcasted message and any other player gets no
information about it. As syntactic sugar, we denote this protocol as PrivBroadcast.

In the remaining of this section we concentrate on enabling two players pi and
pj to establish a secret key ki,j (to use in PrivBroadcast). We design two proto-
cols, called WeakExchangeKey and ExchangeKey, which achieve the following:
WeakExchangeKey uses the bilateral secure channels and allows any pair pi, pj ∈ P
to exchange a key as long as one of them is at most receive-omission corrupted (i.e.,
is in H ∪ R) and the other one is at most send-omission corrupted (i.e., is in H ∪ S).
Protocol ExchangeKey uses protocols WeakExchangeKey and Broadcast and allows
pi and pj to exchange a key, even when each of them is either at most receive-omission
or at most send-omission corrupted. Both protocols work in a publicly detectable way,
i.e., all (alive) players notice whether or not the key-exchange worked. In the following
we describe the protocols WeakExchangeKey and ExchangeKey in more detail.

ProtocolWeakExchangeKey is based on the observation that when pi is at most send-
omission and pj is at most receive-omission corrupted, then pj can always securely send
messages to pi through the bilateral secure channel. The protocol works as follows: pi

and pj choose uniformly random values ki ∈ F and kj ∈ F, respectively, and exchange
them over their bilateral channel. Subsequently, each of them publicly announces, by
Broadcast, whether or not he received a value from the other. If any of them confirms
reception of a value then this value is used as the secret key and the protocol succeeds;
otherwise the protocol fails. WeakExchangeKey is non-robust and might abort with a
set B ∈ {{pi}, {pj}}, but only when pi and/or pj broadcast ⊥ (if they both broadcast
⊥ take the one with the smallest index). The detailed description of WeakExchangeKey
and the proof of the following lemma can be found in the full version.
10 For PublicReconstruct we need to assume a broadcast primitive, which when 3ta + tσ + tρ <
|P| we can instantiate by Broadcast.

286 V. Zikas, S. Hauser, and U. Maurer

Lemma 10. If 3ta + tρ + tσ < |P|, protocol WeakExchangeKey has the following
properties. Correctness: Either it succeeds in pi and pj exchanging a uniformly random
key k, or it fails, or it aborts with setB ∈ {{pi}, {pj}}. It might abort withB only when
B ⊆ R∪ S ∪ SR ∪A. When it does not abort then the following hold: (1) Every alive
pk ∈ P sees whether the protocol succeded or failed, and (2) it always succeeds when
pi ∈ H ∪ R and pj ∈ H ∪ S or vice versa (i.e., when pi ∈ H ∪ S and pj ∈ H ∪ R).
Privacy: The adversary gets no information on k (unless pi or pj is actively corrupted).

We describe the protocol ExchangeKey (see below) and state its achieved security in a
lemma. The protocol is non-robust and might abort with setB ∈ {{pi}, {pj}, {pi, pj}}.
However, from the fact that it aborted the players can deduce useful information on the
corruption of the players in B.

Protocol ExchangeKey (P, ta, pi, pj)
1. For � ∈ {i, j}: p� invokes WeakExchangeKey with every pr ∈ P . If

WeakExchangeKey aborts with B, then ExchangeKey also aborts with B.
Denote by P �

“ok” ⊆ P the set of players who successfully exchanged keys
with p�, and by P“ok” := (P i

“ok” ∩ P j
“ok”). If |P“ok” | ≤ 2ta then ExchangeKey aborts

with B = {pi, pj}.
2. For � ∈ {i, j}: p� picks a value k� ∈R F uniformly at random and a degree ta

random polynomial f�(·) with f�(0) = k�. For each pr ∈ P“ok” , p� sends, by
invoking PrivBroadcast with the exchanged keys, the share f�(αr) to pr, who
denotes the received value as s(�)r . If p� broadcast ⊥ then ExchangeKey aborts
with B = {p�} (if both pi and pj broadcast ⊥ take the one with the smallest
index).

3. The players in P“ok” compute a sharing of the sum ki + kj , by each player (lo-
cally) adding his shares, and then publicly reconstruct it by PublicReconstruct. If
PublicReconstruct outputs ⊥ then ExchangeKey aborts with B = {pi, pj}.

Lemma 11. If 3ta + tσ + tρ < |P|, the protocol ExchangeKey has the following prop-
erties. Correctness: Either pi and pj succeed in exchanging a uniformly random key k
(and all players notice) or the protocol aborts with a set B ∈ {{pi}, {pj}, {pi, pj}}. It
might abort with set B only if one of the following two cases holds: (1) |B| = 1 and
B ⊆ R∪S ∪SR∪A and (2) |B| = 2 andB ∩ (SR∪A) �= ∅. Privacy: The adversary
gets no information on k (unless pi or pj is actively corrupted).

6.3 Protocol SFE(BC)

The last tool is a protocol, called SFE(BC), which perfectly securely evaluates any given
function f without fairness but with unanimous abort [GL02]. In particular, protocol
SFE(BC) either perfectly (ta, tρ, tσ)-securely evaluates the function f , or it aborts with
set B ∈ {{pi}, {pj}, {pi, pj}} for some pi, pj ∈ P . The adversary might force the
protocol to abort even after receiving the outputs of actively corrupted players. How-
ever, when it aborts every player learns useful information about the corruption of the
players in B.

Realistic Failures in Secure Multi-party Computation 287

The idea is the following: Let ΠP,t(·) denote a protocol which perfectly t-securely
evaluates any given function, in the presence of an adversary who can (only) actively
corrupt up to t players.11 Such a protocol is known to exist if 3t < n [BGW88]. Also, let
Cf denote the arithmetic circuit which computes a given function f . To securely eval-
uate Cf , protocol SFE(BC) invokes protocol ΠP,t(Cf) over the engineered network of
secure channels. More precisely, each pi ∈ P executes the instructions of ΠP,t(Cf)
with the following modification: whenever pi is instructed to bilaterally send a message
x to some pj ∈ P , protocol ExchangeKey(P , pj, pj) is invoked to have pi and pj ex-
change a uniformly random key, and then the message x is sent using PrivBroadcast
with the established key; whenever pi is instructed to broadcast a message, he invokes
Broadcast. If some invocation of ExchangeKey aborts with B or some pi ∈ P broad-
casts ⊥ (in this case we set B = {pi}) then SFE(BC) aborts with B.

In the following lemma we state the security of SFE(BC). The proof follows directly
from the perfect t-security of protocol ΠP,t(·) and the perfect security of protocols
ExchangeKey and Broadcast. SFE(BC) is parametrized by a single threshold, namely t,
but it assumes as given the primitives Broadcast and ExchangeKey as specified in Lem-
mas 7 and 11, respectively.12

Lemma 12. Given Broadcast and ExchangeKey, assuming that the condition 3t < |P|
holds protocol SFE(BC)(P , t, Cf) has the following properties. Correctness: Either it
perfectly (t, tσ, tρ)-securely evaluates the circuit Cf among the players in P for any
tσ, tρ < n, or it aborts with a set B ⊆ P . It might abort with set B only when one of
the following two cases holds: (1) |B| = 1 and B ⊆ R ∪ S ∪ SR ∪A and (2) |B| = 2
and B ∩ (SR ∪ A) �= ∅. Privacy: The adversary gets no more information than what
he can compute from the specified inputs and outputs of actively corrupted players (i.e.,
from the inputs and outputs she should get when the protocol does not abort).

7 SFE

In this section we prove the necessary and sufficient condition for perfectly (ta, tρ, tσ)-
securely evaluating any given function f(·), namely we prove the following theorem:

Theorem 1. Perfectly (ta, tρ, tσ)-secure SFE is possible if and only if 3ta+tρ+tσ < n.

The necessity of the condition follows, with some additional work, from the necessity
of the conditions 3ta < n for SFE [BGW88]; we state the necessity in the following
lemma which is proved in the full version of this paper.

Lemma 13. If 3ta + tρ + tσ ≥ n then there are functions which cannot be perfectly
(ta, tρ, tσ)-securely evaluated.
11 Here, t-secure evaluation is according to any of the standard security definition (with fair-

ness and guaranteed output delivery) of protocols tolerating an active-only adversary [MR91,
Can00, DM00, BPW03].

12 In slight abuse of notation here, we write Broadcast and ExchangeKey to refer not to the
protocols but to primitives achieving the security specified in Lemmas 7 and 11 (independent
of pre-conditions). To be able to instantiate them with our protocols we will have to guarantee
that the pre-conditions of the lemmas are satisfied.

288 V. Zikas, S. Hauser, and U. Maurer

The sufficiency is proved by constructing an SFE protocol for computing any given
function f . For simplicity, we assume that f takes one input per player and has one
global output. Using standard techniques, we can obtain a protocol for computing func-
tions with multiple inputs and/or multiple or even private outputs.

On a high level, the evaluation of the function f proceeds in three stages: In the first
stage, called the input stage, every pi ∈ P ta-shares his input to the players in P . Next,
in the computation stage, the players use SFE(BC) to compute a random ta-sharing of
the output of the function f . Finally, in the output stage, this sharing is reconstructed
towards every player using Reconstruct. In the remaining of this section we describe in
detail the three stages, and give a detailed description of protocol SFE.

The input stage. In this stage protocol Share is invoked to have each pi ∈ P ta-share
his input s(i) to the players in P . Denote the resulting sharing by 〈s(i)〉. The security of
Share guarantees that for any non actively corrupted pi 〈s(i)〉 is a ta-consistent sharing
of s(i) , where 〈s(i)〉 is even t-valid when pi ∈ H ∪R.

The computation stage. The goal is to securely compute, using SFE(BC), a uniformly
random ta-valid sharing of the output of f on input the values that where shared in the
input stage. This stage is non-robust and might abort with a player set B ⊆ P , when
SFE(BC) aborts with B. When it aborts, the players use the information about the set
B, which is provided by Lemma 12, to repeat this stage in a smaller setting, i.e., among
the players in P ′ := P \ B. The security of SFE(BC) guarantees that, even when it
aborts, the adversary learns at most the outputs of actively corrupted players, which,
as they are shares of a (uniformly random) ta-sharing, give her no information on the
input-sharings. Hence, in the successful iteration of SFE(BC), both the inputs of actively
corrupted players and the decision of which send-omission corrupted players give their
inputs are independent of the inputs of non actively corrupted players.

Initially P ′ := P and t′a := ta. Protocol SFE(BC) is invoked with player set P ′ and
threshold t′a, to compute the circuit Cta

〈f〉 which does the following: Cta
〈f〉 takes as input

from each pj ∈ P ′ his share of each of the input-sharings 〈s(1)〉, . . . , 〈s(n)〉. For each
such sharing 〈s(i)〉: Cta

〈f〉 attempts, exactly as in protocol Reconstruct, to reconstruct
the shared value; if the reconstruction succeeds it sets ŝi to the reconstructed value,
otherwise it sets ŝi to a default value (e.g., ŝi := 0). Note that for t = t′a, t

′ = t′a, and
tc = t′a + tσ + tρ all the sufficient conditions for Reconstruct are satisfied; therefore,
Cta

〈f〉 correctly reconstructs the input of every pi ∈ H ∪ R (which is t-valid), and for
every pi ∈ S ∪ SR it either reconstructs pi’s input or it takes a default value (since
the sharing of pi is a t-consistent sharing of his input). Having computed the values
ŝ1, . . . , ŝn, Cta

〈f〉 inputs them to the circuit computing f ; denote the output by y. Finally,
Cta

〈f〉 computes and outputs a uniformly random ta-valid sharing of y among the players
in P ′. We point out that the circuit Cta

〈f〉 can be efficiently computed from the circuit
which computes the function f [IKLP06].

To be able to re-invoke SFE(BC) in P ′ = P ′ \ B when it aborts with B, we need to
guarantee that in the updated P ′: (1) the condition 3t′a < |P ′|, which is sufficient for
SFE(BC), holds and (2) no inputs of non actively corrupted players are lost. To ensure
Property (1), we use the idea of player elimination [HMP00]:13 The security of SFE(BC)

13 To our knowledge, this is the first work which uses the idea of player elimination not for
improving efficiency but rather for arguing about feasibility of protocols.

Realistic Failures in Secure Multi-party Computation 289

guarantees that when it aborts with set B, then either |B| = 1 andB ⊆ R∪S ∪SR∪A
or |B| = 2 andB∩ (SR∪A) �= ∅. Therefore, by eliminating the players inB we might
only change the ratio of uncorrupted vs. actively corrupted players in P ′ in favor of the
uncorrupted players. However, as the set P ′ becomes smaller, the players might have to
reduce the actual threshold t′a. To be on the safe side, t′a is reduced only when at least as
many players as there can be send-/receive-omission corrupted have been eliminated.
Property (2) is guaranteed because, first, the ta-consistency and ta-validity of input
sharings cannot be destroyed by deleting players and, second, the newly computed t′a
satisfies, as we show, the sufficient condition for Reconstruct.

The output stage. The players invoke Reconstruct with the (latest) t′a to reconstruct
the sharing created in the successful iteration of SFE(BC). Because the protocol SFE(BC)

outputs a ta-valid sharing of the output, and, as we will show, t′a satisfies the sufficient
condition for protocol Reconstruct, the reconstruction is robust. For completeness we
describe the protocol SFE (see below) and state the achieved security in the follow-
ing lemma.

Protocol SFE (P, ta, tρ, tσ, f)
0. Set P ′ := P , and t′a := ta.
1. For each pi ∈ P invoke Share(P , ta, pi, xi). Each pj ∈ P denotes the vector of

all shares he received by →
x (j) .

2. The players in P ′ invoke SFE(BC)(P ′, t′a, C
ta
〈f〉),where each pi ∈ P ′ has in-

put →
x (j) .a If SFE(BC) aborts with B, then set P ′ = P ′ \ B, set t′a := ta −

max{0, |P \ P ′|−(tσ + tρ)} and repeat this step; otherwise denote by 〈f〉 the
output sharing.

3. For each pj ∈ P invoke Reconstruct(P ′, ta, t′a, pj, 〈f〉).
a The required invocations of Broadcast and ExchangeKey are done in the player set P .

Lemma 14. Protocol SFE is perfectly (ta, tρ, tσ)-secure if 3ta + tρ + tσ < |P|.
Proof (sketch). Termination is guaranteed because Step 2 is repeated at most ta+tσ+tρ
times (in each repetition at least one corrupted player is removed from P ′). Correctness
follows from the security of the invoked sub-protocols; however one needs to verify that
the corresponding sufficient conditions hold whenever they are invoked. This follows
from a player-elimination argument, which, due to space restrictions, is deleted from
this proceedings version. Privacy follows also from the security of the invoked subpro-
tocols and from the fact that all the sharings that we do are of degree ta (except of those
done internally in SFE(BC) whose privacy is guaranteed by the security of SFE(BC)),
therefore they leak no information to the adversary about the inputs. �
As already mentioned, when the adversary is rushing there are functions that cannot
be strongly (ta, tρ, tσ)-securely evaluated, except in trivial corruption scenarios (i.e., if
ta = 0 or tσ = 0). However, when the adversary is non-rushing the above protocol can
be used to achieve strong security. Indeed, before the output stage, the adversary gains
no useful information. As protocol Reconstruct is single round, if, within the output
stage, we run it in parallel for every pi ∈ P , then a non-rushing adversary has to choose

290 V. Zikas, S. Hauser, and U. Maurer

which receive-omission corrupted players do not get enough messages to reconstruct
the output before getting any information about the output. This implies strong security.
We point out that the necessity of condition 3ta + tρ + tσ < n for SFE is independent
of whether or not the adversary is rushing.

Corollary 1. Assuming that the adversary in non-rushing, perfectly strongly
(ta, tρ, tσ)-secure SFE is possible if and only 3ta + tρ + tσ < n.

8 Computing Reactive Circuits (MPC)

In this section we show how to compute reactive functionalities, i.e., functionalities that
receive inputs from and give outputs to the players several times during the computa-
tion (an output can depend on all previous inputs). An important consideration when
computing a reactive functionality, is to make sure that the players can keep a secret
joint state.

The circuit to be computed consists of input, output, addition, and multiplication
gates.14 We model the reactiveness of the computation by assigning to each gate a point
in time in which the gate should be evaluated. The circuit is evaluated in a gate-by-gate
fashion, using protocol SFE, where the evaluation of each gate (except for the output
gates) yields a uniformly random ta-valid sharing of the output of the gate among the
players in P . Keeping state is guaranteed by the fact that such a sharing is robustly
reconstructible, e.g., by using protocol Reconstruct, given that the condition 3ta + tσ +
tρ < n holds (Lemma 9). The privacy of the state is guaranteed, as there are at most ta
actively corrupted players.

To evaluate addition and multiplication gates, protocol SFE(BC) is invoked to com-
pute the circuits C〈Mult〉 and C〈Add〉, respectively, which on input ta-valid sharings of
the inputs x1 and x2 of the gate output a uniformly random ta-valid sharing of the sum
x1+x2 and of the product x1 ·x2, respectively. For an output gate, protocolReconstruct
is invoked (with P ′ = P , and t = t′ = ta) to reconstruct the shared output towards the
output player.

To evaluate an input gate, protocol SFE is invoked to evaluate the circuit C〈I〉 which
takes as input the input of the corresponding player (and no value from other players)
and computes a uniformly random ta-valid sharing of it among the players in P . Excep-
tionally in the evaluation of input gates, even the zombies are required to take part as if
they were alive. This is possible as all players (including zombies) hold synchronized
clocks, and are aware of when it is time to evaluate an input gate.15 Instructing the zom-
bies to “wake up” during the evaluation of input gates ensures that every pi ∈ H ∪ R,
even if he is a zombie, is able to give input to the computation. When the evaluation of
the gate finishes, all zombies “sleep” again, i.e., they stop playing (until the next input
gate). The security of the MPC protocol follows from the security of protocols SFE
and Reconstruct.

14 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and taking the sum of the inputs as the output of the gate.

15 A zombie might re-become zombie during the evaluation of the input gate, in which case he
gives up the evaluation of the gate.

Realistic Failures in Secure Multi-party Computation 291

Theorem 2. Perfectly (ta, tρ, tσ)-secure (reactive) MPC is possible if and only if
3ta + tσ + tρ < n.

As in the case of SFE, when the adversary is non-rushing, then by evaluating in parallel
each tuple of output gates that are due to be evaluated at the same time, we get a strongly
perfectly secure MPC protocol.

Corollary 2. Assuming that the adversary in non-rushing, perfectly strongly
(ta, tρ, tσ)-secure (reactive) MPC is possible if an only if 3ta + tρ + tσ < n.

9 (Full) Omission Corruption

Our results can be trivially used to obtain sufficient bounds for MPC and SFE in the
presence of an adversary who can full-omission corrupt up to tω players and, simulta-
neously, actively corrupted ta players (as in [Koo06]). Indeed, by setting tσ = tρ = tω
in our MPC protocols, we get a protocol which perfectly (ta, tω)-securely realized any
function when 3ta + 2tω < n. Note that this bound is strictly better than the bound
3ta + 4tω < n which was proved sufficient in [Koo06].

Lemma 15. Perfectly (ta, tω)-secure (even reactive) MPC is possible if 3ta + 2tω < n.

10 Extensions

Our results can be extended to deal with adversaries who can, additionally, passively
and fail-corrupt players; denote by tp and tf the corresponding thresholds. The proof
of the following lemma is omitted, but we give some evidence of its validity: Fail-
corruption comes almost “for free” as in our protocol a fail-corrupted players behaves
exactly as a receive-omission corrupted player with the only difference that, instead
of turning him into a zombie the adversary can make him crash. To incorporate pas-
sive corruption we need to do the following modifications: (1) the degree of the shares
that are computed in SFE is increased by tp; (2) for SFE(BC), instead of invoking, over
the engineered network, the protocol ΠP,t(·) [BGW88] which tolerates only actively-
corruption, we use a protocol which tolerates both active and passive corruption, si-
multaneously. Such a protocol is known to exist if 3ta + 2tp < n [FHM98]. These
modifications will guarantee privacy of our computation.

Lemma 16. Perfectly (ta, tp, tf , tρ, tσ)-secure MPC is possible if and only if 3ta +
2tp + tσ + tρ + tf < n.

Using techniques from Secure Message Transmission [DDWY93], we can extend our
results to allow every (even uncorrupted) pi ∈ P to suffer from some message loss, as
long as we have the following guarantee: in every round every pi ∈ H ∪ S might lose
at most ta of the messages sent to him by players pj ∈ H ∪R.

Acknowledgements. We would like to thank Martin Hirt for many useful discussions
and comments.

292 V. Zikas, S. Hauser, and U. Maurer

References

[Bea91a] Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

[Bea91b] Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems toler-
ating a faulty minority. Journal of Cryptology 4(2), 370–381 (1991)

[BGP89] Berman, P.J., Garray, J., Perry, J.: Towards optimal distributed consensus. In:
FOCS 1989, pp. 410–415 (1989)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10
(1988)

[BPW03] Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic
library (2003)

[Can00] Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

[CCD88] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC 1988, pp. 11–19 (1988)

[DDWY93] Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmis-
sion. Journal of the ACM 40(1), 17–47 (1993)

[DM00] Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure
computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92.
Springer, Heidelberg (2000)

[DS82] Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: STOC 1982, pp. 401–407 (1982)

[FHM98] Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998)

[FM98] Fitzi, M., Maurer, U.: Efficient byzantine agreement secure against general adver-
saries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134–148. Springer,
Heidelberg (1998)

[FM00] Fitzi, M., Maurer, U.: From partial consistency to global broadcast. In: STOC
2000, pp. 494–503 (2000)

[GL02] Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi,
D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229
(1987)

[GP92] Garay, J.A., Perry, K.J.: A continuum of failure models for distributed comput-
ing. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 153–165.
Springer, Heidelberg (1992)

[Had85] Hadzilacos, V.: Issues of fault tolerance in concurrent computations (databases,
reliability, transactions, agreement protocols, distributed computing). PhD thesis,
Cambridge, MA, USA (1985)

[HMP00] Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000)

[IKLP06] Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

Realistic Failures in Secure Multi-party Computation 293

[Koo06] Koo, C.-Y.: Secure computation with partial message loss. In: Halevi, S., Rabin, T.
(eds.) TCC 2006. LNCS, vol. 3876, pp. 502–521. Springer, Heidelberg (2006)

[LF82] Lamport, L., Fischer, M.J.: Byzantine generals and transaction commit protocols.
Technical Report Opus 62, SRI International (Menlo Park CA), TR (1982)

[LSP82] Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

[MP91] Meyer, F.J., Pradhan, D.K.: Consensus with dual failure modes. IEEE Transactions
on Parallel and Distributed Systems 2(2), 214–222 (1991)

[MR91] Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

[PR03] Parvedy, P.R., Raynal, M.: Uniform agreement despite process omission failures.
In: International Symposium on Parallel and Distributed Processing — IPDPS
2003, p. 212.2 (2003)

[PT86] Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and com-
munication faults. IEEE Trans. Softw. Eng. 12(3), 477–482 (1986)

[PW01] Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE Symposium on Security and
Privacy, pp. 184–200 (2001)

[Ray02] Raynal, M.: Consensus in synchronous systems: A concise guided tour. In: Pacific
Rim International Symposium on Dependable Computing — PRDC 2002, p. 221
(2002)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority. In: STOC 1989, pp. 73–85 (1989)

[Yao82] Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160–164 (1982)

Secure Arithmetic Computation
with No Honest Majority�

Yuval Ishai1,��, Manoj Prabhakaran2, � � �, and Amit Sahai3,†

1 Technion, Israel and University of California, Los Angeles
yuvali@cs.technion.il

2 University of Illinois, Urbana-Champaign
mmp@cs.uiuc.edu

3 University of California, Los Angeles
sahai@cs.ucla.edu

Abstract. We study the complexity of securely evaluating arithmetic
circuits over finite rings. This question is motivated by natural secure
computation tasks. Focusing mainly on the case of two-party protocols
with security against malicious parties, our main goals are to: (1) only
make black-box calls to the ring operations and standard cryptographic
primitives, and (2) minimize the number of such black-box calls as well
as the communication overhead.

We present several solutions which differ in their efficiency, generality,
and underlying intractability assumptions. These include:
– An unconditionally secure protocol in the OT-hybrid model which

makes a black-box use of an arbitrary ring R, but where the number
of ring operations grows linearly with (an upper bound on) log |R|.

– Computationally secure protocols in the OT-hybrid model which
make a black-box use of an underlying ring, and in which the num-
ber of ring operations does not grow with the ring size. The protocols
rely on variants of previous intractability assumptions related to lin-
ear codes. In the most efficient instance of these protocols, applied
to a suitable class of fields, the (amortized) communication cost is
a constant number of field elements per multiplication gate and the
computational cost is dominated by O(log k) field operations per
gate, where k is a security parameter. These results extend a previ-
ous approach of Naor and Pinkas for secure polynomial evaluation
(SIAM J. Comput., 2006).

– A protocol for the rings Zm = Z/mZ which only makes a black-box
use of a homomorphic encryption scheme. When m is prime, the

� Extended Abstract. Please see full version at Cryptology ePrint Archive: Report
2008/465.

�� Supported in part by ISF grant 1310/06, BSF grant 2004361, and NSF grants
0205594, 0430254, 0456717, 0627781, 0716389.

� � � Supported in part by NSF grants CNS 07-16626 and CNS 07-47027.
† Research supported in part from NSF grants 0627781, 0716389, 0456717, and

0205594, BSF grant 2004361, a subgrant from SRI as part of the Army Cyber-TA
program, an equipment grant from Intel, an Alfred P. Sloan Foundation Fellow-
ship, and an Okawa Foundation Research Grant.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 294–314, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Secure Arithmetic Computation with No Honest Majority 295

(amortized) number of calls to the encryption scheme for each gate
of the circuit is constant.

All of our protocols are in fact UC-secure in the OT-hybrid model and
can be generalized to multiparty computation with an arbitrary number
of malicious parties.

1 Introduction

This paper studies the complexity of secure multiparty computation (MPC)
tasks which involve arithmetic computations. Following the general feasibility
results from the 1980s [60,34,4,13], much research in this area shifted to effi-
ciency questions, with a major focus on the efficiency of securely distributing
natural computational tasks that arise in the “real world”. In many of these
cases, some inputs, outputs, or intermediate values in the computation are in-
tegers, finite-precision reals, matrices, or elements of a big finite ring, and the
computation involves arithmetic operations in this ring. To name just a few
examples from the MPC literature, such arithmetic computations are useful
in the contexts of distributed generation of cryptographic keys [8,28,56,32,2],
privacy-preserving data-mining and statistics [48,11], comparing and matching
data [50,31,38], auctions and mechanism design [51,21,59,7], and distributed lin-
ear algebra computations [15,52,47,20,49].

This motivates the following question:

What is the complexity of securely evaluating a given arithmetic circuit
C over a given finite ring R?

Before surveying the state of the art, some clarifications are in place.

Arithmetic circuits. An arithmetic circuit over a ring is defined similarly to a
standard boolean circuit, except that the inputs and outputs are ring elements
rather than bits and gates are labeled by the ring operations add, subtract, and
multiply. (Here and in the following, by “ring” we will refer to a finite ring by
default.) In the current context of distributed computations, the inputs and
outputs of the circuit are annotated with the parties to which they belong.
Thus, the circuit C together with the ring R naturally define a multi-party
arithmetic functionality CR. Note that arithmetic computations over the integers
or finite-precision reals can be embedded into a sufficiently large finite ring or
field, provided that there is an a-priori upper bound on the bit-length of the
output. See Section 1.2 for further discussion of the usefulness of arithmetic
circuits and some extensions of this basic model to which our results apply.

Secure computation model. The main focus of this paper is on secure two-
party computation or, more generally, MPC with an arbitrary number of ma-
licious parties. (In this setting it is generally impossible to guarantee output
delivery or even fairness, and one has to settle for allowing the adversary to
abort the protocol after learning the output.) Our protocols are described in
the “OT-hybrid model,” namely in a model that allows parties to invoke an

296 Y. Ishai, M. Prabhakaran, and A. Sahai

ideal oblivious transfer (OT) oracle [57,27,33]. This has several advantages in
generality and efficiency, see [44] and Section 1.2 for discussion.

Ruling out the obvious. An obvious approach for securely realizing an arith-
metic computation CR is by first designing an equivalent boolean circuit C′ which
computes the same function on a binary representation of the inputs, and then
using standard MPC protocols for realizing C′. The main disadvantage of such
an approach is that it typically becomes very inefficient when R is large. A clean
way for ruling out such an approach, which is of independent theoretical interest,
is by restricting protocols to only make a black-box access to the ring R. That is,
Π securely realizes C if ΠR securely realizes CR for every finite ring R and ev-
ery representation of elements in R. The black-box access to R enables Π to per-
form ring operations and sample random ring elements, but the correspondence
between ring elements and their identifiers (or even the exact size of the ring) will
be unknown to the protocol. This automatically ensures that the overhead of Π
(compared to an insecure implementation) does not grow with the computational
complexity of ring operations. When considering the special case of fields, we al-
low by default the protocolΠ to access an inversion oracle. Most of our protocols
will make black-box access to a ring, although we will also consider some protocols
outside of this model based on homomorphic encryption (see below).

1.1 Previous Work

In the setting of MPC with honest majority, most protocols from the litera-
ture can make a black-box use of an arbitrary field. An extension to arbitrary
black-box rings was given in [19], building on previous black-box secret sharing
techniques of [26,18] and previous MPC techniques of [4,16].

In the case of secure two-party computation and MPC with no honest ma-
jority, most protocols from the literature apply to boolean circuits. Below we
survey some previous approaches from the literature that apply to secure arith-
metic computation with no honest majority.

In the semi-honest model, it is easy to employ any homomorphic encryption
scheme with plaintext group Zm for performing arithmetic MPC over Zm. (See,
e.g., [1,11].) An alternative approach, which relies on oblivious transfer and uses
the standard binary representation of elements in Zm, was employed in [32]. Both
of the above protocols make a black-box use of the underlying cryptographic
primitives but do not make a black-box use of the underlying ring. Applying the
general compilers of [34,12] to these protocols in order to obtain security in the
malicious model would result in inefficient protocols which make a non-black-box
use of the underlying cryptographic primitives (let alone the ring).

In the malicious model, protocols for secure arithmetic computation based
on threshold homomorphic encryption were given in [17,24]1 (extending a simi-
lar protocol for the semi-honest model from [29]). These protocols provide the

1 While [17,24] refer to the case of robust MPC in the presence of an honest majority,
these protocols can be easily modified to apply to the case of MPC with no honest
majority.

Secure Arithmetic Computation with No Honest Majority 297

most practical general solutions for secure arithmetic two-party computation we
are aware of, requiring a constant number of modular exponentiations for each
arithmetic gate. On the down side, these protocols require a nontrivial setup
of keys which is expensive to distribute. Moreover, they rely on special-purpose
zero-knowledge proofs and specific number-theoretic assumptions and thus do
not make a black-box use of the underlying cryptographic primitives, let alone
a black-box use of the ring.

The only previous approach which makes a black-box use of an underlying
ring (as well as a black-box use of OT) was suggested by Naor and Pinkas [50]
in the context of secure polynomial evaluation. Their protocol can make a black-
box use of any field, and its security is related to the conjectured intractability
of decoding Reed-Solomon codes with a sufficiently high level of random noise.
The protocol from [50] can be easily used to obtain general secure protocols for
arithmetic circuits in the semi-honest model. However, extending it to allow full
simulation-based security in the malicious model (while still making only a black-
box use of the underlying field) is not straightforward. (Even in the special case
of secure polynomial evaluation, an extension to the malicious model suggested
in [50] only considers privacy rather than full simulation-based security.)

Finally, we note that Yao’s garbled circuit technique [60], the main known
technique for constant-round secure computation of general functionalities, does
not have a known arithmetic analogue. Thus, in all general-purpose protocols for
secure arithmetic computation (including the ones presented in this work) the
round complexity must grow with the multiplicative depth of C – the maximal
number of multiplication gates on a path from an input to an output.

1.2 Our Contribution

We study the complexity of general secure arithmetic computation over finite
rings in the presence of an arbitrary number of malicious parties. We are moti-
vated by the following two related goals.

– Black-box feasibility: only make a black-box use of an underlying ring R or
field F and standard cryptographic primitives;

– Efficiency: minimize the number of such black-box calls, as well as the com-
munication overhead.

For simplicity, we do not attempt to optimize the dependence of the com-
plexity on the number of parties, and restrict the following discussion to the
two-party case.

We present several solutions which differ in their efficiency, generality, and
underlying intractability assumptions. All these constructions use the general
framework from [44]: one can obtain 2-party UC-secure protocols in the OT-
hybrid model, by combining an “outer MPC protocol” secure against active
adversaries in the honest majority setting, with an “inner two-party protocol”
for simple functionalities that need only be secure against passive adversaries.
The main technical contribution of this work is in designing inner protocols,
that can then be combined with appropriate variants of outer protocols from the

298 Y. Ishai, M. Prabhakaran, and A. Sahai

literature, to obtain secure protocols with desired properties. Below we describe
the main protocols we obtain in this way, along with their efficiency and security
features.

An unconditionally secure protocol. We present an unconditionally secure
protocol in the OT-hybrid model which makes a black-box use of an arbitrary
finite ring R, but where the number of ring operations and the number of ring
elements being communicated grow linearly with (an upper bound on) log |R|.
(We assume for simplicity that an upper bound on log |R| is given by the ring
oracle, though such an upper bound can always be inferred from the length
of the strings representing ring elements.) More concretely, the number of ring
operations for each gate of C is poly(k) · log |R|, where k is a statistical security
parameter. This gives a two-party analogue for the MPC protocol over black-
box rings from [19], which requires an honest majority (but does not require the
number of ring operations to grow with log |R|).
Protocols based on noisy linear encodings. Motivated by the goal of re-
ducing the overhead of the previous protocol, we present a general approach for
deriving secure arithmetic computation protocols over a ring R from linear codes
over R. The (computational) security of the protocols relies on intractability as-
sumptions related to the hardness of decoding in the presence of random noise.
These protocols generalize and extend in several ways the previous approach of
Naor and Pinkas for secure polynomial evaluation [50]. More concretely, we make
three main observations: (1) Using [44], secure evaluation of degree-1 polynomi-
als in the semi-honest model can be used in a black-box way for general secure
arithmetic computation in the malicious model; (2) In the case of degree-1 poly-
nomials, the approach of [50] can be generalized to rely on arbitrary linear codes
for which the relevant intractability assumption holds; (3) When using Reed-
Solomon codes as in [50], it is possible to significantly improve the efficiency by
batching together many instances of secure polynomial evaluation.

Using this approach, we obtain the following types of protocols in the OT-
hybrid model.

– A protocol which makes a black-box use of an arbitrary field F , in which
the number of field operations (and field elements being communicated) does
not grow with the field size. More concretely, the number of field operations for
each gate of C is bounded by a fixed polynomial in the security parameter k,
independently of |F |. The underlying assumption is related to the conjectured
intractability of decoding a random linear code over F . Our assumption is im-
plied by the assumption that a noisy codeword in a random linear code over F
is pseudorandom.

– A variant of the previous protocol which makes a black-box use of an arbi-
trary ring R, and in particular does not rely on inversion. This variant is based on
families of linear codes over rings in which decoding in the presence of erasures
can be done efficiently, and for which decoding in the presence of (a suitable
distribution of) random noise seems intractable.

– The most efficient protocol we present relies on the intractability of decod-
ing Reed-Solomon codes with a (small) constant rate in the presence of a (large)

Secure Arithmetic Computation with No Honest Majority 299

constant fraction of noise.2 The amortized communication cost is a constant
number of field elements per multiplication gate. (Here and in the following,
when we refer to “amortized” complexity we ignore an additive term that may
depend on the security parameter and the circuit depth, but not on the circuit
size. In most natural instances of large circuits this additive term does not form
an efficiency bottleneck.)
A careful implementation yields protocols whose amortized computational cost
is O(log k) field operations per gate, where k is a security parameter, assuming
that the field size is super-polynomial in k. In contrast, protocols which are
based on homomorphic encryption schemes (such as [17] or the ones obtained
in this work) apply modular exponentiations, which require Ω(k + log |F |) ring
multiplications per gate, in a ciphertext ring which is larger than F . This is the
case even in the semi-honest model.

Protocols making a black-box use of homomorphic encryption. We also
consider protocols for the specific rings Zm = Z/mZ (thus leaving behind the
black-box ring model), but which make black-box use of any homomorphic en-
cryption scheme with plaintext group Zm. Alternatively, the protocol can make a
black-box use of homomorphic encryption schemes in which the plaintext group
is determined by the key generation algorithm, such as those of Paillier [53] or
Damg̊ard-Jurik [23]. In both variants of the protocol, the (amortized) number of
communicated ciphertexts and calls to the encryption scheme for each gate of C
is constant, assuming that m is prime. This efficiency feature is comparable to
the protocols from [17,24] discussed in Section 1.1 above. Our protocols have the
advantages of using a more general primitive and only making a black-box use of
this primitive (rather than relying on special-purpose zero-knowledge protocols).
Furthermore, the additive term which we ignore in the above “amortized” com-
plexity measure seems to be considerably smaller than the cost of distributing
the setup of the threshold cryptosystem required by [17].

Both variants of the protocol can be naturally extended to the case of ma-
trix rings Zn×n

m , increasing the communication complexity by a factor of n2.
(Note that emulating matrix operations via basic arithmetic operations over Zm

would result in a bigger overhead, corresponding to the complexity of matrix
multiplication.) Building on the techniques from [49], this protocol can be used
to obtain efficient protocols for secure linear algebra which make a black-box
use of homomorphic encryption and achieve simulation-based security against
malicious parties (improving over similar protocols with security against covert
adversaries [3] recently presented in [49]).

All of our protocols are in fact UC-secure in the OT-hybrid model and can
be generalized to multiparty computation with an arbitrary number of malicious

2 The precise intractability assumption we use is similar in flavor to an assumption
used in [50] for evaluating polynomials of degree d ≥ 2. With a suitable choice
of parameters, our assumption is implied by a natural pseudorandomness variant
of the assumption from [50], discussed in [46]. The assumption does not seem to
be affected by the recent progress on list-decoding Reed-Solomon codes and their
variants [37,14,6,54].

300 Y. Ishai, M. Prabhakaran, and A. Sahai

parties. The security of the protocols also holds against adaptive adversaries,
assuming that honest parties may erase data. (This is weaker than the standard
notion of adaptive security [10] which does not rely on data erasure.) The round
complexity of all the protocols is a constant multiple of the multiplicative depth
of C.
From the OT-hybrid model to the plain model. An advantage of present-
ing our protocols in the OT-hybrid model is that they can be instantiated in a
variety of models and under a variety of assumptions. For instance, using UC-
secure OT protocols from [55,25], one can obtain efficient UC-secure instances of
our protocols in the CRS model. In the stand-alone model, one can implement
these OTs by making a black-box use of homomorphic encryption [42]. Thus,
our protocols which make a black-box use of homomorphic encryption do not
need to employ an additional OT primitive in the stand-alone model.

We finally note that our protocols require only O(k) OTs with security in
the malicious model, independently of the circuit size; the remaining OT invo-
cations can all be implemented in the semi-honest model, which can be done
very efficiently using the technique of [41]. Furthermore, all the “cryptographic”
work for implementing the OTs can be done off-line, before any inputs are avail-
able. We expect that in most natural instances of large-scale secure arithmetic
computation, the cost of realizing the OTs will not form an efficiency bottleneck.
Extensions. While we explicitly consider here only stateless arithmetic circuits,
this model (as well as our results) can be readily generalized to allow stateful,
reactive arithmetic computations whose secret state evolves by interacting with
the parties.3

As it turns out, reactive arithmetic computations are useful not only for the
obvious purpose of implementing stateful functionalities, but also, somewhat sur-
prisingly, for enriching the (non-reactive) arithmetic computation model. They
can be used to obtain efficient secure realizations of several “non-arithmetic”
manipulations of the state, including decomposing a ring element into its bit-
representation, equality testing, inversion, comparison, exponentiation, and oth-
ers [21,59]. These reductions enhance the power of the basic arithmetic model,
and allow protocols to efficiently switch from one representation to another in
computations that involve both boolean and arithmetic operations.

2 Preliminaries

Black-box rings and fields. A probabilistic oracle R is said to be a valid
implementation of a finite ring R if it behaves as follows: it takes as input
one of the commands add, subtract, multiply, sample and two m bit “element
identifiers” (or none, in the case of sample), and returns a single m bit string.
There is a one-to-one mapping label : R ↪→ {0, 1}m such that for all x, y ∈ R
3 An ideal functionality which formally captures such general reactive arithmetic com-

putations was defined in [24] (see also [59, Chapter 4]) and referred to as an arith-
metic black-box (ABB). All of our protocols for arithmetic circuits can be naturally
extended to realize the ABB functionality.

Secure Arithmetic Computation with No Honest Majority 301

R(op, label(x), label(y)) = label(x ∗R y) where op is one of add, subtract and
multiply and ∗R is the ring operation +,−, or · respectively. When an input is
not from the range of label, the oracle outputs ⊥. (In a typical protocol, if a
⊥ is ever encountered by an honest player, the protocol aborts.) The output of
R(sample) is label(x) where x will be drawn uniformly at random from R. We will
be interested in oracles of the kind that implements a family of rings, of varying
sizes. Such a function should take an additional input id to indicate which ring
it is implementing.

Definition 1. A probabilistic oracle R is said to be a concrete ring family (or
simply a ring family) if, for all strings id, the oracle R(id, ·) (i.e., with first input
being fixed to id), is an implementation of some ring. This concrete ring will be
denoted by Rid.

Note that so far we have not placed any computability requirement on the or-
acle; we only require a concrete mapping from ring elements to binary strings.
However, when considering computationally secure protocols we will typically
restrict the attention to “efficient” families of rings: we say R is a computation-
ally efficient ring family if it is a ring family that can be implemented by a
probabilistic polynomial time algorithm.

There are some special cases that we shall refer to:

1. Suppose that for all id, we have that Rid is a ring with an identity for mul-
tiplication, 1. Then, we call R a ring family with inverse if in addition to
the other operations, R(id, one) returns labelid(1) and R(id, invert, labelid(x))
returns labelid(x−1) if x is a unit (i.e., has a unique left- and right-inverse)
and ⊥ otherwise.

2. If R is a ring family with inverse such that for all id the ring Rid is a field,
then we say that R is a field family.

3. We call a ring family with inverse R a pseudo-field family, if for all id, all
but negligible fraction of the elements in the ring Rid are units.

Some special families of rings we will be interested in, other than finite fields,
include rings of the form Zm = Z/mZ for a composite integer m (namely, the
ring of residue classes modulo m), and rings of matrices over a finite field or
ring. With an appropriate choice of parameters, both of these families are in
fact pseudo-fields. Note that a concrete ring family R for the rings of the form
Zm could use the binary representation ofm as the input id; further the elements
in Zm could be represented as �logm�-bit strings in a natural way. Of course, a
different concrete ring family for the same ring can use a different representation.

Finally, for notational convenience we assume that the length of all element
identifiers in Rid is exactly |id|. In particular, the ring Rid has at most 2|id|

elements.

Arithmetic circuits. We consider arithmetic circuits with gates labeled by
add, subtract, or multiply. (In addition, for fields there is an additional constant
gate one.) For a concrete ring family R, we denote by CR the mapping which

302 Y. Ishai, M. Prabhakaran, and A. Sahai

takes an id and a vector of input identifiers and outputs the corresponding vector
of output identifiers. In the context of multi-party computation, each input or
output to such a circuit is annotated to indicate which party (or parties) it
“belongs” to. Given such an annotated circuit C and a concrete ring family R,
we define the functionality FR

C to behave as follows:

– The functionality takes id as a common (public) input, and receives (private)
inputs to C from each party. It then evaluates the function CR(id, inputs)
using access to R, and provides the outputs to the parties.4

Protocols securely realizing arithmetic computations. We follow the
standard UC-security framework [9]. Informally, a protocol π is said to securely
realize a functionality F if there exists a PPT simulator Sim, such that for all
(non-uniform PPT) adversaries Adv, and all (non-uniform PPT) environments
Env which interact with a set of parties and an adversary, the following two
scenarios are indistinguishable: the real interaction where the parties run the
protocol π and the adversary is Adv; the ideal interaction where the parties
communicate directly with the ideal functionality F and the adversary is SimAdv.
Indistinguishability can either be statistical (in the case of unconditional secu-
rity) or computational (in the case of computational security). All parties, the
adversary, the simulator, the environment and the functionality get the security
parameter k as implicit input. Polynomial time computation, computational or
statistical indistinguishability and non-uniformity are defined with respect to
this security parameter k. However, since we don’t impose an a-priori bound
on the size of the inputs received from the environment as a function of k, the
running time of honest parties is bounded by a fixed polynomial in the total
length of their inputs (rather than a fixed polynomial in k).

We distinguish between static corruption and adaptive corruption. In the latter
case it also makes a difference whether the protocols can erase part of their state
(so that a subsequent corruption will not have access to the erased information),
or no erasure is allowed. Our final protocols will have security against adaptive
corruption with erasures.

We shall consider protocols which make oracle access to a ring family R.
The standard security definition is adapted to this case by giving all algorithms
(including the environment) oracle access to R. For such a protocol we define
its arithmetic computation complexity as the number of oracle calls to R. Simi-
larly the arithmetic communication complexity is defined as the number of ring-
element labels in the communication transcript. The arithmetic computation (re-
spectively communication) complexity of our protocols will dominate the other
computation steps in the protocol execution (respectively, the number of other
bits in the transcript). Thus, the arithmetic complexity gives a good measure of
efficiency for our protocols.

4 FR
C can take id as input from each party, and ensure that all the parties agree on

the same id. Alternately, we can restrict to environments which provide the same
common input id to all parties.

Secure Arithmetic Computation with No Honest Majority 303

Note that while any computational implementation of the ring oracle neces-
sarily requires the complexity to grow with the ring size, it is possible that the
arithmetic complexity does not depend on the size of the ring at all.

We now define our main notion of secure arithmetic computation.

Definition 2. Let C be an arithmetic circuit. A protocol π is said to be a secure
black-box realization of C-evaluation for a given set of ring families if, for each
R in the set,

1. πR securely realizes FR
C , and

2. the arithmetic (communication and computation) complexity of πR is bounded
by some fixed polynomial in k and |id| (independently of R).

In the case of unconditional security we will quantify over the set of all ring
families, whereas in the case of computational security we will typically quantify
only over computationally efficient rings or fields. In both cases, the efficiency
requirement on π rules out the option of using a brute-force approach to emulate
the ring oracle by a boolean circuit.

We remark that our constructions will achieve a stronger notion of security,
as the simulator used to establish the security in item (1) above will not depend
on R. A bit more precisely, the stronger definition is quantified as follows: there
exists a simulator such that for all adversaries, ring families, and environments,
the ideal process and the real process are indistinguishable. For simplicity how-
ever we phrase our definition as above which does allow different simulators for
different R.

3 Arithmetic Computation with Passive Corruption

To construct a protocol for general arithmetic circuit evaluation over a black-box
ring family R, that is secure against passive (adaptive) corruption it is enough to
realize the following functionality Fpdt-shr (see [45] for more details). Let R = Rid,
where id is an implicit common input.

– A sends a ∈ R and B sends b ∈ R to Fpdt-shr.
– Fpdt-shr samples two random elements zA, zB ∈ R such that zA + zB = ab,

and gives zA to A and zB to B.

A well-known approach for securely realizing this functionality against passive
corruption, using a homomorphic encryption scheme (if available), goes as fol-
lows:

– Bob generates a public/secret key-pair encryption scheme, and sends an
encryption of b along with the public key.

– Alice picks a random element zA in the ring. She then computes an encryp-
tion of ab − zA from the encryption b (and the public-key) and sends it to
Bob.

– Bob decrypts this ciphertext and accepts it as zB. The encryption scheme
should ensure that even with the secret-key, Bob does not learn anything
else about (a, zA) from the message she receives from Alice.

304 Y. Ishai, M. Prabhakaran, and A. Sahai

Indeed when such a homomorphic encryption scheme is available this gives a
protocol with security against passive corruption for this task. However, such
schemes are known only for select families of rings, and further do not meet the
goal of making only black-box access to the ring.

This basic approach can be extended to the black-box ring setting with the
help of an OT channel to ensure part of the privacy: Instead of an encryption,
Alice sends an encoding of a under an appropriate erasure correcting code, but
with sufficient noise to hide a from Bob. Her “secret-key” is the information
about which co-ordinates are noisy. The code should have homomorphic proper-
ties to let Bob create a noisy encoding of ab+zB from this. To ensure that Alice
does not learn anything beyond ab+ zB, Bob does not send the resulting noisy
codeword to Alice, but lets her use an OT channel to pick up only the non-noisy
co-ordinates of the codeword.

This high-level description fits the approach taken by Naor and Pinkas [50]
for the special case of Reed-Solomon codes. Our protocols in this section provide
more general and more efficient instantiations of this approach, to realize the
functionality Fpdt-shr described above. In Section 3.1 we describe our encoding
schemes, and in Section 3.2 we show how these encoding schemes can be used
in protocols that realize Fpdt-shr against passive corruption.

3.1 Noisy Encodings

We describe several noisy encoding schemes based on linear codes. All our encod-
ing schemes are specified using a code generation algorithm G, over a ring family
R. G is a randomized algorithm such that GR(id, k) outputs (G,L,H), where G
is an n × k generator matrix of a linear code over Rid of length n = n(k), L is
a subset of [n] of size �(k) which specifies the set of coordinates which are not
replaced by noise, and H is another matrix which is used to facilitate efficient
decoding. Here k is the security parameter as well as the code dimension, and
n(k) (code length) and �(k) (number of coordinates without noise) are parame-
ters of G. In our instantiations n will be a constant multiple of k and in most
cases we will have � = k.

Let R be a ring family. Given G, a parameter t(k) ≤ k (number of ring
elements to be encoded, t = 1 by default), and x ∈ Rt

id, we define a distribution
ER
(G,t)(id, k, x) as that of the public output in the following encoding process:

– Encoding EncodeR(G,t)(id, k, x):
• Input: x = (x1, . . . , xt) ∈ Rt, where R = Rid and t = t(k).
• Let (G,L,H) ← GR(id, k)
• Pick a random vector u ∈ Rk conditioned on ui = xi for i = 1, . . . , t

(i.e., u is x padded with k − t random elements). Compute Gu ∈ Rn.
• Let v = Gu+ e, where e← Rn is drawn uniformly random conditioned

on ei := 0 for i ∈ L.
• Let the private output be (G,L,H, v) and the public output be (G, v).

The matrix H is not used in the encoding above, but will be useful towards
efficient decoding. In our main instantiations H can be readily derived from G

Secure Arithmetic Computation with No Honest Majority 305

and L. We include H explicitly in the outcome of G, because in some cases it is
possible to obtain efficiency gains if (G,H,L) are sampled together.

Below we describe four instantiations of the above encoding scheme. The
respective code generation algorithms are denoted by GStat, GRing, GRand, and
GRS. The first three use t = 1, i.e., a single ring element is encoded in a noisy
codeword, and the last one allows t(k) to be constant fraction of k, say k/2. The
first three schemes allow homomorphic operations of multiplication and addition
of the encoded element with an unencoded element. The last one allows co-
ordinate wise multiplication and addition of t-long vectors. The last two require
the ring family to be a field family.

The first encoding scheme has a statistical hiding property, whereas the others
depend on computational assumptions for their hiding property. The assumption,
in these three cases, is as follows:

Assumption 1 (Generic version, for a given G, R and t(k)). For
all sequences {(idk, xk, yk)}k such that xk, yk ∈ R

t(k)
idk

, the ensembles
{ER

(G,t)(idk, k, xk)}k and {ER
(G,t)(idk, k, yk)}k are computationally indistinguish-

able (by any poly(k)-size nonuniform distinguisher).

Statistically hiding encoding. Our statistically hiding encoding mixes an
additive secret sharing of x with an equal number of uniformly random ring
elements. Following is a more precise description of the encoding algorithm GStat

which fits into the above general framework.

– Let R = Rid. Let n = 2m where m = log2 |R| + k.
– Let A0 be the m×m matrix with 1 along the main diagonal and −1 along

the rest of the first row.5 Let G be the fixed 2m×m matrix G0 =
[

A0
A0

]
.

– Define L as follows. Let L = {a1, . . . , am} where ai = i or m + i uniformly
at random. (That is ai indices the i-th row in one of the two copies of A0.)

– Note that G|L = A0. H has 1 along the main diagonal and the first row, so
that HG|L = I.

The encoding of x is the vector v = G0u + e, where u is a random vector
with u1 = x and e is a random noise vector with ei = 0 for i ∈ L; v is then
simply a random vector conditioned on

∑
i∈L vi = x. This simple encoding has

the useful property that it statistically hides x when the decoding information
L is not provided. In the full version [45], we prove this fact using the Leftover
Hash Lemma [39] (similarly to previous uses of this lemma in [40,43]).

Lemma 1. For any R, id, and x ∈ Rid, the statistical distance between the
distribution of ER

(GStat,1)(id, k, x) and (G0, v), where v is drawn uniformly from
R2m

id , is 2−Ω(k).

We note that in light of efficient algorithms for low-density instances of subset
sum, one cannot hope to obtain significant efficiency improvements by choosing
a smaller value of m and settling for computational security.
5 Here it is not necessary to assume that the ring has a multiplicative identity. In

computing the matrix product, 1.a and −1.a stand for a and −a.

306 Y. Ishai, M. Prabhakaran, and A. Sahai

Ring code based instantiation. Our next encoding scheme also uses t = 1,
and works with any arbitrary ring family. It differs from the previous encoding
scheme by not requiring n to depend on |R|; instead we fix n = 2k. The code
generation algorithm, denoted by GRing, is very similar to GStat, except that G =
[A
B], where A and B are two random k × k upper triangular matrices with 1

along the main diagonal. L is the same as before (using k instead of m). Note
that G|L is an upper triangular matrix with 1 in the main diagonal. It is easy to
compute an upper triangular matrix H (also with 1 in the main diagonal) using
only the ring operations on elements in G|L such that HG|L = I.

The hiding property is no longer statistical, but is a consequence of Assump-
tion 1, instantiated with GRing and t = 1. GRing could be modified to use more
than two matrices A and B, to make the resulting assumption weaker, at the
expense of increasing n. In the full version we give an alternative to GRing which
relies on a random walk in the special linear group.

Random code based instantiation. Our next instantiation of the generic
encoding, again with t = 1, uses a code generation algorithm GRand based on
a random linear code. It restricts the ring family to be a field family (or a
pseudo-field family) F. But this instantiation of Assumption 1 is a more standard
assumption, which can be reduced to the hardness of decoding a random linear
code when the field is small. GF

Rand works as follows:

– Let F = Fid and n = 2k.
– Pick a random n× k matrix G← Fn×k.
– Pick a random subset L ⊆ [n], |L| = k, such that the k× k submatrix G|L is

non-singular, where G|L consists of those rows in G whose indices are in L.
– Let H = G|−1

L .

These three encoding schemes encode a single element in the ring (or field) R.
They allow the following homomorphic operation: given an encoding of x ∈ R,
namely v = Gu + e where u1 = x, for any a, z ∈ R, an encoding of ax + z
(with the same non-noisy co-ordinates) can be computed as av +Gw, where w
is a random vector with w1 = z. Further they all have the hiding property that
after such a homomorphic operation, the non-noisy co-ordinates of the resulting
encoding reveals nothing beyond the value ax + z. Finally, a noisy encoding
v ∈ Rn of x ∈ R can be decoded by taking the first coordinate of Hv|L.

Reed-Solomon code based instantiation. In our final instantiation of the
generic encoding, we will let t(k) be a constant fraction of k, say t = k/2. This
variant of the construction exploits a stronger homomorphic property of Reed-
Solomon codes, which was previously exploited in [30]. The code generation
algorithm GRS uses n = ck, for a sufficiently large constant6 c > 4. For a field
F = Fid the n×k matrix G is a linear transformation that extrapolates a degree
k − 1 polynomial, given by its value at k randomly chosen points ζi in the field

6 We require c > 4 so that Assumption 2(c) will not be broken by known list-decoding
algorithms for Reed-Solomon codes [37]. Letting c = 8 may be a safe choice, with
larger values of c being more conservative.

Secure Arithmetic Computation with No Honest Majority 307

F , to n other randomly chosen evaluation points ϑi. (All ζi and ϑi are distinct,7

and can be thought of as specifying G.) The non-noisy coordinates L ⊆ [n] are
chosen at random, where |L| = 2k − 1 to allow reconstructing polynomials of
degree 2(k − 1).

This encoding allows the following homomorphic operation: given an encoding
of x ∈ F t, namely v = Gu + e where ui = xi for i = 1, . . . , t, for any a, z ∈ F t,
an encoding of ax+ z (where ax denotes coordinate-wise multiplication) can be
computed as pv + w, where p, w ∈ Fn are the values of random polynomials of
degree k and 2k respectively at the n evaluation points ϑi, which evaluate to a
and z respectively in the first t of the k points ζi. Note that the resulting vector
encodes (with noise) a degree 2k polynomial.

Instantiations of Assumption 1. Each of the above instantiations of the
encoding leads to a corresponding instantiation of Assumption 1. For the sake
of clarity we collect these assumptions below.

Assumption 2 (a) [For GRand, with t(k) = 1]. For every computationally ef-
ficient field family F and sequence {(idk, xk, yk)}k such that xk, yk ∈ Fidk

,
the ensembles {EF

(GRand,1)
(idk, k, xk)}k and {EF

(GRand,1)
(idk, k, yk)}k are compu-

tationally indistinguishable.
(b) [For GRing, with t(k) = 1]. For every computationally efficient ring fam-

ily R and sequence {(idk, xk, yk)}k such that xk, yk ∈ Ridk
, the ensembles

{EF
(GRing,1)

(idk, k, xk)}k and {EF
(GRing,1)

(idk, k, yk)}k are computationally indis-
tinguishable.

(c) [For GRS, with t(k) = k/2].8 Let t(k) = k/2. For every computationally
efficient field family F and sequence {(idk, xk, yk)}k such that xk, yk ∈ F

t(k)
idk

,
the ensembles {EF

(GRS,t(k))(idk, k, xk)}k and {EF
(GRS,t(k))(idk, k, yk)}k are com-

putationally indistinguishable.

3.2 Product-Sharing Secure against Passive Corruption

Below we list the protocols for securely realizing Fpdt-shr that we obtain from
the noisy encodings above. They have increasing efficiency, but use stronger
assumptions. These protocols use only black-box access to the ring (or field), and
are in the OT-hybrid model. The protocols follow the pattern described at the
beginning of Section 3. But this achieves security only against static corruption.
In the full version [45] we show how to transform them into protocols that are
secure against adaptive passive corruption, with erasures. In brief, in the new
protocol, first the original protocol is run on random inputs, and then its working
memory is deleted, and finally the real inputs and the outcome of the original
protocol are used to complete the protocol.

7 This requires to ensure that |F | > n + k. If id does not satisfy this requirement the
algorithm uses a sufficiently large extension field of F .

8 We can make the assumption weaker by choosing smaller values of t, or larger values
of n in GRS.

308 Y. Ishai, M. Prabhakaran, and A. Sahai

The different protocols are as follows:
– Protocol ρOT (with statistical security): this protocol uses the statistically

hiding encoding scheme based on GStat, and achieves statistical security.
– Protocol σOT: this protocol uses the computationally hiding encoding

scheme based on GRand (for fields) or GRing. Security follows from Assumption 2(a)
or (b), respectively.

– Protocol τOT (using packed encoding): this protocol uses the noisy encoding
scheme with the code generation algorithm GRS. It realizes multiple (t = k/2)
parallel sessions of Fpdt-shr. Security follows from Assumption 2(c).

4 Arithmetic Computation with Active Corruption

In [44] it is shown how to obtain a UC-secure protocol in the OT-hybrid model for
any two-party functionality F against active corruption by making a black-box
use of the following two ingredients:

1. An “outer protocol” for F which employs k auxiliary parties (servers); this
protocol should be UC-secure against active corruption provided that only some
constant fraction of the servers can be (adaptively) corrupted.

2. An “inner protocol” for a reactive two-party functionality corresponding to
each server in the outer protocol. In contrast to the outer protocol, this protocol
only needs to be secure against passive (adaptive) corruption. The inner protocol
is allowed to be in the OT-hybrid model and to have memory erasures.

Below we summarize the results we obtain by combining appropriate choices
for the outer protocol with the inner protocols from Section 3. All these results
can be readily extended to the multi-party setting as well, where the complexity
grows polynomially with the number of parties; see [45] for details. All of the
protocols provide adaptive security with erasures.

Combining the protocol from [19] (which makes a black-box use of an arbitrary
ring) as the outer protocol with ρOT as the inner protocol, we get:

Theorem 1 (Unconditionally Secure Protocol). For any arithmetic circuit
C, there exists a protocol Π in the OT-hybrid model that is a secure black-box
realization of C-evaluation for the set of all ring families. The security holds un-
conditionally against computationally unbounded adversaries and environments.

The arithmetic communication complexity of the protocol ρOT, and hence that
of the above protocol, grows linearly with (a bound on) | logRid|. To obtain a
computationally secure protocol whose arithmetic communication complexity is
independent of the ring, we can replace ρOT by σOT (with GRand as the code
generation scheme) in the previous construction:

Theorem 2. Suppose that Assumption 2(a) holds. Then, for every arithmetic
circuit C, there exists a protocol Π in the OT-hybrid model that is a secure black-
box realization of C-evaluation for the set of all computationally efficient field
families F. Further, the arithmetic complexity of Π is poly(k) · |C|, independent
of F or id.

Secure Arithmetic Computation with No Honest Majority 309

Using GRing instead of GRand, this result extends to all computationally efficient
ring families:

Theorem 3. Suppose that Assumption 2(b) holds. Then, for every arithmetic
circuit C, there exists a protocol Π in the OT-hybrid model that is a secure black-
box realization of C-evaluation for the set of all computationally efficient ring
families R. Further, the arithmetic complexity of Π is poly(k) · |C|, independent
of R or id.

Finally, to obtain our most efficient protocol we use τOT (with n = O(k) and t =
Ω(k)) as the inner protocol. The outer protocol is a variant of the protocol from
[22] in which the computational complexity is optimized using an idea from [36]
(see [45] for a description). To get the computational complexity specified below,
the size of the field should be super-polynomial in the security parameter. (The
communication complexity does not depend on this assumption.)

Theorem 4. Suppose that Assumption 2(c) holds. Then, for every arithmetic
circuit C, there exists a protocol Π in the OT-hybrid model with the follow-
ing properties. The protocol Π is a secure black-box realization of C-evaluation
for the set of all computationally efficient field families F, with respect to all
computationally bounded environments for which |Fid| is super-polynomial in k.
The arithmetic communication complexity of Π is O(|C| + k · depth(C)), where
depth(C) denotes the depth of C, and its arithmetic computation complexity is
O(log2 k) · (|C| + k · depth(C)). Its round complexity is O(depth(C)).

By using a suitable choice of fields and evaluation points for the Reed-Solomon
encoding, and under a corresponding specialization of Assumption 2(c), the com-
putational overhead of the above protocol can be reduced from O(log2 k) to
O(log k). (In this variant we do not attempt to make a black-box use of the
underlying field and rely on the standard representation of field elements.)

4.1 Protocols from Homomorphic Encryption

So far we considered protocols using only black-box access to a ring. If we fur-
ther assume a black-box access9 to a homomorphic encryption scheme over the
ring, there are simple protocols for Fpdt-shr secure against passive adversaries.
These can then be used instead of the protocols from Section 3.2 in the above
constructions.

We are interested in homomorphic encryptions over rings that support addi-
tion of two encrypted elements, and multiplication of an encrypted element by
an unencrypted element. There are two kinds of such schemes. The more versa-
tile kind — which we shall call a controlled-ring scheme — allows one to specify
id during the key-generation phase, and then allows operations on elements in
Rid, where R is the ring family associated with the scheme. Candidates for such
schemes are the classic Goldwasser-Micali encryption scheme [35] (for which the
ring family consists of the single ring Z2) and Benaloh’s scheme [5] (for which
9 When saying that a construction makes a black-box use of a homomorphic encryption

primitive, we refer to the notion of a fully black-box reduction as defined in [58].

310 Y. Ishai, M. Prabhakaran, and A. Sahai

the ring family consists of rings Zp where p is a polynomially bounded prime
number). Any such R-homomorphic encryption scheme can be used as a black-
box to obtain a homomorphic encryption scheme for the ring family of square
matrices over R (where the matrix size n is specified by id).

Theorem 5. For every arithmetic circuit C, there exists a protocol Π in the OT-
hybrid model, such that for every ring family R, the protocol ΠR securely realizes
FR

C by making a black-box use of any controlled-ring homomorphic encryption
for R. The number of invocations of the encryption scheme is poly(k) · |C|,
independent of R or id.

Note that the protocol in the above theorem, when instantiated with the ring of
n×nmatrices over Zp, has communication complexity poly(k)·|C|·n2. Combined
with [49], this yields constant-round protocols for secure linear algebra which
make a black-box use of homomorphic encryption and whose communication
complexity is nearly linear in the input size.

For the case of fields, we obtain the following more efficient version of the
result by using the same outer protocol as used in Theorem 4:

Theorem 6. For every arithmetic circuit C, there exists a protocol Π in the
OT-hybrid model, such that for every field family F, the protocol ΠF securely
realizes FF

C by making a black-box use of any controlled-ring homomorphic en-
cryption for F. The security holds against adaptive corruption with erasures.
Further, Π makes O(|C| + k · depth(C)) invocations of the encryption scheme,
and the communication complexity is dominated by sending O(|C|+k ·depth(C))
ciphertexts.

Homomorphic encryption schemes like the Paillier cryptosystem [53] are homo-
morphic with respect to the ring ZN , where N is a randomly chosen product
of two large primes chosen at the time of key generation; N cannot be speci-
fied ahead of time. We call such a scheme an “uncontrolled ring” homomorphic
encryption scheme. Using standard techniques computation over ZM for an a
priori fixed modulus M can be securely reduced to computation over ZN where
N is a sufficiently large, dynamically chosen modulus (see [45] for more details).
We obtain the following results:

Theorem 7. Let R be the ring family where Rid is the standard representation of
the ring Zid. For every arithmetic circuit C there exists a black-box construction
of a protocol Π in the OT-hybrid model from any uncontrolled-ring homomorphic
encryption for R, such that Π is a secure realization of C-evaluation for R. The
number of invocations of the encryption scheme is poly(k) · |C|, independent of
id, and the communication complexity is dominated by poly(k) · |C| ciphertexts.
During the protocol, the ring size parameter fed to the encryption scheme by
honest parties is limited to k′ = O(k + |id|).

If, further, the ring over which C should be computed is restricted to be a field,
there exists a protocol as above which makes O(|C|+ k · depth(C)) invocations of
the encryption scheme, and where the communication complexity is dominated
by sending O(|C| + k · depth(C)) ciphertexts.

Secure Arithmetic Computation with No Honest Majority 311

The second part of the above theorem also applies to the case of arithmetic
computation over pseudo-fields. Furthermore, it can be generalized to the ring
of n × n matrices, which when used with constructions of uncontrolled-ring
ZN -homomorphic encryption schemes from the literature [53,23] would yield
arithmetic protocols for matrices over large rings whose complexity grows
quadratically with n.

We finally note that in the stand-alone model, the OT oracle in the above pro-
tocols can be realized by making a black-box use of the homomorphic encryption
primitive without affecting the asymptotic number of calls to the primitive. This
relies on the black-box construction from [42] and the fact that only O(k) OTs
need to be secure against active corruption. Thus, the above theorems hold also
in the plain, stand-alone model (as opposed to the OT-hybrid UC-model).

Acknowledgments. We thank Jens Groth, Venkatesan Guruswami, Farzad
Parvaresh, Oded Regev, and Ronny Roth for helpful discussions.

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptology 2(1), 1–12
(1990)

2. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)

3. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10
(1988)

5. Benaloh, J.: Verifiable Secret-Ballot Elections. PhD thesis, Department of Com-
puter Science, Yale University (1987)

6. Bleichenbacher, D., Kiayias, A., Yung, M.: Decoding interleaved reed-solomon
codes over noisy channels. Theor. Comput. Sci. 379(3), 348–360 (2007)

7. Bogetoft, P., Christensen, D.L., Damgard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.:
Multiparty computation goes live. Cryptology ePrint Archive, Report 2008/068

8. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001); Earlier version in Crypto 1997

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2005)

10. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC 1996, pp. 639–648 (1996)

11. Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.: Selec-
tive private function evaluation with applications to private statistics. In: PODC
2001, pp. 293–304 (2001)

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
computation. In: STOC 2002, pp. 494–503 (2002)

312 Y. Ishai, M. Prabhakaran, and A. Sahai

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC 1988, pp. 11–19 (1988)

14. Coppersmith, D., Sudan, M.: Reconstructing curves in three (and higher) dimen-
sional space from noisy data. In: STOC 2003, pp. 136–142 (2003)

15. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer,
Heidelberg (2001)

16. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

17. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from thresh-
old homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

18. Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary abelian
groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer,
Heidelberg (2002)

19. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003)

20. Cramer, R., Kiltz, E., Padró, C.: A note on secure computation of the Moore-
Penrose pseudoinverse and its application to secure linear algebra. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 613–630. Springer, Heidelberg (2007)

21. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (2006)

22. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

23. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Preneel, B. (ed.) CT-RSA 2002.
LNCS, vol. 2271, pp. 79–95. Springer, Heidelberg (2002)

24. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

25. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable
oblivious transfer. In: ICISC 2008 (2008)

26. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

27. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

28. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed rsa-key gen-
eration. In: STOC 1998, pp. 663–672 (1998)

29. Franklin, M.K., Haber, S.: Joint encryption and message-efficient secure computa-
tion. J. Cryptology 9(4), 217–232 (1996)

30. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC 1992, pp. 699–710 (1992)

31. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

32. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999)

Secure Arithmetic Computation with No Honest Majority 313

33. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

34. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
1987, pp. 218–229 (1987); See [ch. 7] for more details.

35. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984); Preliminary version in STOC 1982

36. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments (manuscript,
2008)

37. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

38. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

39. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstract). In: STOC 1989, pp. 12–24 (1989)

40. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptology 9(4), 199–216 (1996)

41. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

42. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC 2006, pp. 99–108 (2006)

43. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: FOCS 2006, pp. 239–248 (2006)

44. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

45. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. Cryptology ePrint Archive, Report 2008/465 (2008)

46. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-
solomon codes. IEEE Transactions on Information Theory 54(6), 2752–2769 (2008)

47. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.K.: Secure linear algebra using
linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 291–310. Springer, Heidelberg (2007)

48. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177–
206 (2002); Earlier version in Crypto 2000

49. Mohassel, P., Weinreb, E.: Efficient secure linear algebra in the presence of covert
or computationally unbounded adversaries. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008)

50. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006); Earlier version in STOC 1999

51. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce 1999, pp. 129–139 (1999)

52. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 522–541. Springer, Heidelberg
(2006)

53. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

54. Parvaresh, F., Vardy, A.: Correcting errors beyond the guruswami-sudan radius in
polynomial time. In: FOCS 2005, pp. 285–294 (2005)

314 Y. Ishai, M. Prabhakaran, and A. Sahai

55. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

56. Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24. Springer, Heidelberg
(1998)

57. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory (1981)

58. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

59. Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis,
Department of Computer Science, Aarhus University (2007)

60. Yao, A.C.: How to generate and exchange secrets. In: FOCS 1996, pp. 162–167
(1996)

Universally Composable Multiparty Computation with
Partially Isolated Parties

Ivan Damgård1, Jesper Buus Nielsen1, and Daniel Wichs2

1 University of Aarhus, Denmark
2 New York University, USA

Abstract. It is well known that universally composable multiparty computation
cannot, in general, be achieved in the standard model without setup assumptions
when the adversary can corrupt an arbitrary number of players. One way to get
around this problem is by having a trusted third party generate some global
setup such as a common reference string (CRS) or a public key infrastructure
(PKI). The recent work of Katz shows that we may instead rely on physical
assumptions, and in particular tamper-proof hardware tokens. In this paper, we
consider a similar but strictly weaker physical assumption. We assume that a
player (Alice) can partially isolate another player (Bob) for a brief portion of
the computation and prevent Bob from communicating more than some limited
number of bits with the environment. For example, isolation might be achieved
by asking Bob to put his functionality on a tamper-proof hardware token and
assuming that Alice can prevent this token from communicating to the outside
world. Alternatively, Alice may interact with Bob directly but in a special office
which she administers and where there are no high-bandwidth communication
channels to the outside world. We show that, under standard cryptographic
assumptions, such physical setup can be used to UC-realize any two party and
multiparty computation in the presence of an active and adaptive adversary
corrupting any number of players. We also consider an alternative scenario, in
which there are some trusted third parties but no single such party is trusted by
all of the players. This compromise allows us to significantly limit the use of the
physical set-up and hence might be preferred in practice.

Keywords: universally composable security, multiparty computation, public-key
infrastructure.

1 Introduction

Traditionally, the security of cryptographic protocols was considered in the stand-alone
setting where a single run of the protocol executes in isolation. In the real world, when
many copies of a single protocol and related protocols may be executing concurrently,
security in the stand-alone setting becomes insufficient.

The universal composability (UC) framework was introduced by Canetti in [Can01]
to fix this problem and allow us to prove the security of protocols in the real-world
setting without resorting to intractably complicated proofs. The initial work of Canetti
gave hope that UC security is achievable by showing that any multiparty computation
(MPC) can be realized in the UC framework, assuming a strict majority of the players

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 315–331, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

316 I. Damgård, J.B. Nielsen, and D. Wichs

are honest. Unfortunately, this work was followed by results showing that many natural
functionalities cannot be UC realized without an honest majority, including essentially
all non-trivial two party computations such as commitments and zero knowledge proofs
[CKL03].

To get around these negative results, one can require the existence of additional setup
infrastructure available to the parties. For example, such setup can consist of a common
reference string (CRS) which is honestly sampled from some pre-defined distribution
and given to all the players [CLOS02] or a public key infrastructure (PKI) where a
trusted certificate authority (CA) verifies that each player knows the secret key corre-
sponding to his registered public key [BCNP04]. Both of the above setup assumptions
require a trusted party to initialize the infrastructure and the protocols become com-
pletely insecure if this party is corrupted.

In this paper we rely on a physical assumption instead of a trusted third party.
Namely, we assume that a player (Alice) can ensure that another player (Bob) is par-
tially isolated for a short portion of the computation. During this time, Bob can only
exchange a limited number of bits with the environment but Alice’s communication
is unrestricted. We show that, under standard cryptographic assumptions, the above
physical setup allows us to UC realize any two-party and multiparty computation in the
presence of an active and adaptive adversary corrupting any number of parties. We do
not assume erasures.

1.1 Related Work

The idea of relying on physical assumptions to achieve universal composability was
first proposed by Katz in [K07]. In particular, the work of Katz assumes the existence of
tamper-proof hardware tokens. A player, Bob, puts some arbitrary functionality inside
such a token and sends it to another player, Alice. Alice can then only interact with the
token through the intended interface. In addition, it is assumed that Alice can isolate
the token during this interaction, ensuring that it has no way of communicating with the
outside world. In general, there seem to be two ways to take advantage of the fact that
Bob’s functionality is placed on tamper-proof hardware (rather than having Bob run it
remotely):

(1) The tamper-proof hardware token is isolated and cannot communicate with the
environment.

(2) The tamper-proof hardware token is a new and separate entity from Bob. Bob never
sees the content of Alice’s interaction with the token.

In [K07], Katz shows how to use tamper-proof tokens to UC realize any multiparty
computation in the presence of an active but static adversary, under the Diffie Hellman
(DH) assumption. We note that this solution only makes use of advantage (1), though
this distinction is not explicit and the formal model allows for both advantages.

The work of Chandran et al. [CGS08] extends the result of Katz by considering an
adversary who might not necessarily know the code of the token he creates. In addi-
tion, the adversary may perform reset attacks on received tokens, effectively getting the
power to rewind tokens at will. The work of Moran and Segev [MS08], on the other

Universally Composable Multiparty Computation with Partially Isolated Parties 317

hand, presents a protocol for two asymmetrically powerful parties: a powerful Goliath
and a limited David. Only Goliath has the ability to create tamper-proof hardware to-
kens. Moreover, Goliath is not assumed to be computationally bounded (but David is).
Both of these works crucially rely on advantage (2) above.

The work of Damgård et al. [DNW08] introduces a new and slightly different phys-
ical assumption – namely, that parties can be partially isolated so that their commu-
nication with the environment is limited. This setting was studied only with regard to
zero knowledge proofs of knowledge (ZK PoK). Damgård et al. present a witness indis-
tinguishable (WI) PoK protocol for the case where only the prover is partially isolated
(while the verifier’s communication is unrestricted) and a ZK PoK protocol for the case
where both parties are partially isolated.

1.2 Our Contribution

In this paper we consider the partial isolation physical assumption for multiparty com-
putation in general. First, we notice that there is a relationship between the partial iso-
lation model of [DNW08] and the tamper-proof hardware model of [K07]. Namely a
party can be (fully) isolated by placing its functionality on a tamper-proof hardware to-
ken. However, isolation can also be implemented in many other ways. For example, we
may imagine a setting where Bob simply brings his laptop into an office administered
by Alice who ensures that there is no wireless or wired internet access available to Bob.
Bob then connects his laptop to Alice’s machine and they run an interactive protocol
between them. During this time, Alice can communicate with the environment as much
as she wants, but Bob cannot. In the above example, we see a crucial difference between
the isolated parties model and the tamper-proof hardware model: we cannot (in general)
assume that some isolated entity is separate from Bob – it might be Bob himself who is
isolated! Of course, since Bob sees Alice’s interaction with himself while he is isolated
we do not get advantage (2). Therefore, even the full isolation model is strictly weaker
than the tamper proof hardware model and the protocols of [CGS08, MS08] cannot be
used in the isolation setting.

Moreover, as a further weakening of our physical assumptions, we only assume that
parties can be partially isolated from the environment. Specifically, as in [DNW08], we
assume the existence of some threshold �, such that Alice can prevent Bob from exchang-
ing more than � bits with the environment. In practice, this might significantly easier to
achieve than full isolation. In our example, where Bob meets Alice in her office, it might
be significantly easier for Alice to only block high-bandwidth communication channels
to the outside world than to block all such channels. Even if the parties do choose to use
tamper-proof hardware tokens, it might not be trivial to fully isolate a token as is required
in Katz’s model. Partial isolation might be much simpler to achieve. For example, if the
tamper-proof token is a smart-card that is too small to have its own power supply, Alice
can then observe (and limit) the card’s power consumption to limit communication. A
study by [BA03] shows that one bit of wireless communication by a smart-card has the
same power consumption as 1000 32-bit elementary operations and hence this could be
a practical solution in limiting the amount of communication that is possible.

The work of [DNW08] defines partial isolation for the case of zero knowledge proofs
of knowledge directly. In this work, we define partial isolation in general as an ideal

318 I. Damgård, J.B. Nielsen, and D. Wichs

functionality (similarly to Katz’s functionality for tamper-proof hardware tokens). We
then construct a protocol for arbitrary two-party and multiparty computation using this
functionality. In our protocol, the use of physical assumptions is limited to a short setup
phase during which parties register keys with one another while the registrant is par-
tially isolated. In practice, the use of physical setup might be expensive and difficult
for individuals. We also propose a hybrid model in which there are some trusted Cer-
tificate Authorities (CAs) but no such authority needs to be trusted by all the players.
Each player either trusts an external CA (and many players may trust the same one)
or can act as his own CA and trust nobody else. This model might be natural in many
scenarios where large organizations (countries, companies...) do not trust each other but
individuals trust the organization they belong to.

1.3 Overview of Construction

Our basic approach is to set up a public key infrastructure (PKI) between the parties so
that each player must know the secret key corresponding to his registered public key.
The result of [BCNP04] shows that such a PKI, when created by a trusted third party,
can be used to UC-realize the ideal commitment functionality, which in turn allow one
to UC-realize arbitrary multiparty computation.

Consider the following naive approach of setting up such a PKI. Each player chooses
a public key and registers it with every other player. When a player, Bob, wants to
register his key with another player, Alice, he simply sends her his public key and runs
a zero knowledge (ZK) proof of knowledge (PoK) to convince her that he knows the
corresponding secret key.

Unfortunately, using a standard ZK PoK (secure in the stand-alone setting) does not
give us security in the UC-framework. However, if Alice can ensure that Bob is isolated
for the duration of the proof, a standard PoK protocol does guarantee that Bob knows
his secret key. In fact, the result of [DNW08] shows that for any threshold � there is an �-
Isolated Proof of Knowledge (�-IPoK) protocol, which ensures that the prover knows a
witness even if he can exchange up to � bits of information with the environment during
the proof. By using an �-IPoK protocol, Alice will be assured that Bob knows his secret
key even if she can only partially isolate Bob and keep him from communicating more
than � bits.

We cannot, however, guarantee that Alice (who is not isolated during the proof) does
not learn anything from such a proof. As is shown in [DNW08], no witness hiding
protocol can be zero knowledge simulatable with respect to a verifier that communi-
cates arbitrarily with the environment. Instead, we will only rely on the witness indis-
tinguishability (WI) property of an �-IPoK protocol. This means that our PKI is not
perfect and verifying parties might get some limited information about the registered
private keys. Nevertheless, we show that an imperfect PKI of this type can be used to
implement the ideal commitment functionality. To do so, we modify the commitment
scheme of [BCNP04] (which is based on the prior scheme of [CLOS02]) so that it re-
mains secure even if the adversary sees a witness indistinguishable proof of knowledge
of the commitment private key. As is shown in [CLOS02], the commitment functional-
ity allows us to implement all other two-party and multiparty computation.

Universally Composable Multiparty Computation with Partially Isolated Parties 319

2 The Formal Model of Our Setting

2.1 The Fisolate Ideal Functionality

We model partial isolation using an ideal functionality Fisolate described in Fig. 1.
It describes a situation where P is partially isolated from the environment during an
interaction with P ′. This is similar to the ideal functionality Fwrap defined in [K07] to
model tamper-proof hardware, but there are several important differences.

The Fisolate ideal functionality is parametrized by an isolation parameter �, a security param-
eter κ and a polynomial p.

Isolation of P : Wait until receiving messages (isolate, sid, P, P ′) from P ′ and
(isolate, sid, P, P ′, M) from P . If there is already a stored tuple of the form
(P, P ′, ·, ·, ·, ·) then ignore the command. Otherwise:

1. Parse the string M as the description of an ITM with four communication tapes;
two tapes (“in” and “out”) for regular protocol communication with P ′ and two
tapes for secret communication with P . Let the value state encode the ini-
tial state of M (including the value of a work tape and an initialized random
tape). Define new values inCom := 0, outCom := 0 and store the tuple
(P, P ′, M,state,inCom,outCom).

2. Send (isolate, sid, P) to P ′.
Interaction with P ′: On input (run, sid, P, P ′,msg) from P ′, retrieve the tuple

(P, P ′, M,state,inCom,outCom). If there is no such tuple then ignore the com-
mand.

1. Place the string msg on the “in” tape designated for P and run M for p(κ) steps.
2. If there is any value msg′ on the output tape for P ′ then send the message

(reply, sid, P,msg′) to P ′.
3. If there is any value msg′ on the output tape for P and outCom+ |msg′| < � then

send the message (secretCom, sid, P ′, P,msg′) to P and update outCom :=
outCom + |msg′|.

4. Update the value of state in the stored tuple to encode the updated state of M and
the values of its tapes.

Communication: On input (secretCom, sid, P, P ′,msg) from P , if there is no tuple
of the form (P, P ′, M,state, inCom,outCom) then ignore. Also if the tuple has
inCom + |msg| > � then ignore the command. Otherwise

1. Update inCom := inCom + |msg|, place msg on the “in” tape for P and run M
for p(κ) steps.

2. Proceed with steps 2,3,4 of the above command.
Release of P : On input (release, sid, P, P ′) from P ′, retrieve the tuple

(P, P ′, M,state,inCom,outCom) and send (release, sid, P, P ′,state)
to P .

Fig. 1. The Fisolate Ideal Functionality

When Alice wants to isolate Bob, both of them call the isolate command and
Bob sends a description of his functionality (modeled as an ITMM) and current state to
Fisolate. Alice can then interact with Bob’s functionality by issuing run commands to

320 I. Damgård, J.B. Nielsen, and D. Wichs

Fisolate which internally runs Bob’s code to produce replies for Alice. At the conclusion
of the interaction, Alice sends a release command.

The main differences between Katz’s Fwrap functionality and our Fisolate function-
ality are as follows. Firstly, we want to capture the fact that it might be Bob himself who
is isolated and not some separate token. Therefore, we make a restriction on how honest
parties can use this functionality in legitimate protocols. We require that, if Bob is honest,
he will be inactive between the time that he issues the isolate command and the time
that the release command is issued by Alice. In addition, when the release com-
mand is issued,Fisolate sends Bob the current updated state of his functionalityM , which
might contain information about the interaction that took place with Alice. Secondly, we
want to capture the fact that our isolation is only partial and that there might be some
limited secret communication between a partially isolated party and the environment.
We parameterize Fisolate with a communication threshold �. Bob’s functionalityM can
send up to � bits of communication to its creator (and hence the environment) and can
receive up to � bits of communication from its creator using secretCom commands.
We require that only corrupted parties takes advantage of this secret communication —
i.e., it describes an allowed flaw of the isolation rather than a useful feature.

2.2 PKI and Certificate Authorities

We use the ideal functionalityFisolate to setup a public key infrastructure. In the general
multiparty computation setting, there are many parties which will register keys and try
to implement ideal functionalities among them. We denote these parties by P1, . . . , Pn.
In addition we have parties CA1, . . . , CAm acting as certificate authorities. We allow
the case where a player Pi acts as his own certificate authority (Pi = CAk). In general,
however, we only require that each party Pi trusts some certificate authority CAk and
many parties may trust the same certificate authority. Any player Pj who wishes to
interact with Pi needs to register a key with an authority CAk trusted by Pi.

We model the certificate authorities as additional players in the game. In the ideal
world, the certificate authorities have no inputs and receive no outputs. We define a
certificate authority trust structure as the mapping of players to the certificate authority
they trust, and we assume that each player trusts at least one CA. The group of players
who trust a single CA is called the certificate authority’s trust group. To model the no-
tion of trust, we assume that when an adversary actively corrupts a certificate authority
he also actively corrupts all of the players in the authority’s trust group. The adversary
may actively corrupt an arbitrary number of real players Pi and an arbitrary number
of certificate authorities subject to the above restriction. We call any such adversarial
corruption strategy a legal corruption strategy. An adversary can also passively corrupt
any CAs at will. For simplicity, we will just require that an honest CA makes all of its
interactions public so such corruptions are unnecessary.

2.3 Statement of Result

We are now ready to state the main theorem of our paper.

Theorem 1. Assume the existence of one-way permutations and dense public key, IND-
CPA secure encryption schemes with pseudorandom ciphertexts. Then any polynomial

Universally Composable Multiparty Computation with Partially Isolated Parties 321

time ideal functionality can be UC realized in the Fisolate-hybrid model under any
certificate authority trust structure. We assume that an active and adaptive adversary
can corrupt any number of players and certificate authorities using a legal corruption
strategy. We do not assume erasures.

We can instantiate the theorem with the trust structure in which each player acts as his
own certificate authority and trusts nobody else. This shows that, as a special case of
Theorem 1, any polynomial time ideal functionality can be UC realized in the Fisolate-
hybrid model without any additional certificate authority parties and with an adaptive
and active adversary corrupting any number of players. The proof of the above theorem
spans the remainder of the paper. As in [K07], we will only show how to UC-realize
the ideal functionality for multiple commitments and the rest follows from the work of
[CLOS02].

3 Proofs of Knowledge and Isolated Proofs of Knowledge

Our construction relies heavily on proofs of knowledge (PoK). Here we review some
terminology and results. Recall that an NP relation R is a set of pairs (x,w) where
(x,w)∈?R can be checked in poly-time in the length of x. For such a relation we define
the witnesses for an instance WR(x) = {w|(x,w) ∈ R} and the language L(R) =
{x|WR(x) �= ∅}. Given an NP relation R, a PoK is an interactive protocol between
two parties called a Prover P and a Verifier V . The protocol is specified by the PPT
ITMs (P, V) where P is given an input (x,w) ∈ R and V is given the instance x. The
parties run the protocol and, at the end, the verifier outputs a judgment J = accept
or J = reject. We require completeness: when P and V are honest then V outputs
the judgment J = accept with all but negligible probability.

In our setting, the prover may communicate with an external adversarial environment
during the proof, but this communication is limited to some pre-defined bound of � bits.
The verifier, on the other hand, has unbounded communication with the environment.
This setting is considered in [DNW08], which defines the notion of an �-Isolated Proof
of Knowledge (�-IPoK) protocol. Such a protocol ensures that a successful prover knows
a witness, even in the above environment.

Formally, knowledge soundness of an �-IPoK protocol is defined by requiring that
for any adversarial prover given by a PPT ITM P ∗, there exists a strict PPT extractor
X which wins the knowledge soundness extraction game outlined in Fig. 2 with all but
negligible probability. This should hold for any environment given by a PPT ITM E .

It was shown in [DNW08] that there exists an Isolated Proof of Knowledge compiler
(called an IPoK) which, for any NP relation R and any � polynomial in the security
parameter, produces a protocol that is an �-IPoK for R. In addition, the protocol is
witness indistinguishable (WI). This means that for any malicious verifier V ∗, and any
two pairs (x,w1) ∈ R, (x,w2) ∈ R the verifier cannot distinguish between a prover
that uses the witness w1 and a prover that uses the witness w2, even when given w1
and w2. Formally, letting EXEC(P (x,w), V (x)) denote the transcript of the execution
between P and V where P uses the witness w for the instance x, we require that for
any PPT cheating verifier V ∗

(EXEC(P (x,w1), V ∗(x)), w1, w2) ≈ (EXEC(P (x,w2), V ∗(x)), w1, w2)

322 I. Damgård, J.B. Nielsen, and D. Wichs

Setup: First the environment E is run to produce x which it sends to P ∗ and V . At this stage
P ∗ and E can communicate arbitrarily.

Execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message v(r) that
is input to P ∗ which is activated to produce a message p(r) that is input to V . In addition,
P ∗ can at any point send a message y to E and receive a response z from E . However,
the total number of bits sent and the total number of bits received during the execution
stage are both bounded by �. At the conclusion of the ρ rounds, the verifier V produces
a judgment J ∈ {accept,reject}.

Extraction: If J = reject then the extractor X wins the extraction game. Otherwise, we
construct the view σ to be the description of P ∗, its initial random tape, the messages
v(r), p(r) exchanged between P ∗ and V , and the transcript of the communication be-
tween P ∗ and E . We let w = X (κ, σ). If w ∈ WR(x), then X wins the game; otherwise
it looses.

Fig. 2. Knowledge soundness extraction game

This notion is significantly weaker than zero knowledge (ZK) but [DNW08] shows that
one cannot achieve ZK without isolating the verifier as well and hence we will have to
rely on witness indistinguishability only.

4 Construction

We use the results of [CLOS02] which show that one can UC-realize arbitrary MPC
given the ideal functionality for multiple commitments FMCOM which we review in
Fig. 3.

Commit Phase: On input (commit, sid, ssid, Pj , m) from Pi, if there is already a stored
tuple of the form (sid, ssid, Pi, Pj , ·) then ignore the command. Otherwise store the tuple
(sid, ssid, Pi, Pj , m) and send a receipt (receipt, sid, ssid, Pi) to Pj .

Reveal Phase: On input (reveal, sid, ssid, Pj) from Pi, if a tuple (sid, ssidPi, Pj , m) is
stored then send a message (reveal, sid, ssid, Pi, m) to Pj . Otherwise, ignore the com-
mand.

Fig. 3. The FMCOM Ideal Functionality

There are several challenges in UC realizing the FMCOM functionality. Obviously,
we need a commitment scheme which is hiding and binding. In addition, the simula-
tor needs to be able to generate commitments for honest parties before knowing the
message being committed to and later be able to decommit to any specified message.
A scheme with this property is called equivocal. For adaptive security, the simulator
needs to be able to simulate the corruption of an honest party and thus reveal all of the
randomness used to generate such simulated commitments as though they were gener-
ated honestly. We call this strong equivocality. The simulator also needs to extract the
message contained in any valid commitment even if it was adversarially generated. This
is called extractability.

Universally Composable Multiparty Computation with Partially Isolated Parties 323

Luckily, the result of [CLOS02] contains just such a scheme. It relies on two public
keys, an extraction key pkX and an equivocation key pkE , that are generated randomly
and placed in a CRS. The corresponding secret keys, which are known by the simula-
tor but not the players in the real world, give it the power of strong equivocality and
extractability. It was already noticed in [BCNP04] that the players can choose these
keys themselves. A sender uses his extraction key and the receiver’s equivocation key
to generate commitment.

We use the basic idea of [BCNP04] but modify it to fit our setting. Firstly, if the hon-
est sender knows his own extraction secret key (and cannot erase it) then the adversary
learns this key when the sender is corrupted. This allows the adversary to distinguish
if previous commitments sent by the sender were generated honestly (as is done in the
real world) or if they were equivocated (as is done by the simulator in the ideal world).
To get around this issue, we have the sender and receiver do a coin-flip to generate the
extraction public key so that neither party knows the corresponding secret key. To sim-
ulate the coin-flip, it is enough to have a strongly equivocal commitment scheme (i.e.,
no extraction is needed) and so players only register their equivocation public keys.
The second problem arises from the fact that the sender’s commitments can only be ex-
tracted (and in general are only binding) when the sender has no information about the
receiver’s equivocation key. However, in our setting the adversary gets to run as a veri-
fier in a WI �-IPoK of the equivocation secret key, which might potentially leak useful
information. We show how to modify the original scheme so that it remains extractable
even with respect to an adversary that sees such proofs.

We begin by formalizing an abstraction which captures the properties achieved by
the scheme of [CLOS02]. Then we show how to turn any scheme which has those
properties into one that is secure even if the adversary has access to a prover running a
WI PoK protocol and using the equivocation secret key as a witness.

4.1 The Commitment Scheme

A Two-Key Extractable and Strongly Equivocal Commitment Scheme has two key
generation algorithms (pkE , skE) ← genE(1k) and (pkX , skX) ← genX(1κ) for
the equivocation and extraction keys respectively. The commitment algorithm takes
as input the two public keys and a message m. It produces a commitment C =
commitpkX

pkE
(m; r) using the randomness r. To decommit, the sender simply sends

(m, r) and the receiver verifies C=?commitpkX

pkE
(m; r).1 In addition, we need the

ability to easily recognize well-formed public key/secret key pairs. For that, we as-
sume that there is an NP relation RE which defines well formed equivocation key
pairs (pkE , skE), and a relation RX that defines well formed extraction key pairs
(pkX , skX). We assume that every key pair generated by genE (resp. genX) is con-
tained in RE (resp. RX) but allow the set of well-formed key pairs to contain other
elements.

1 Because we consider adaptive security where the environment can always corrupt the sender to
learn all the randomness r used to commit, there is no reason to consider commitment schemes
where the decommitment does not consist of sending all this randomness: If the simulator
can produce it to simulate a corruption of the sender, it can also produce it to simulate a
decommitment.

324 I. Damgård, J.B. Nielsen, and D. Wichs

Extractability. We define an extraction game between a challenger and an adversary as fol-
lows:

1. The challenger generates random (pkE, skE) ← genE(1κ) and the adversary is
given pkE .

2. The adversary chooses a pair (pkX , skX) ∈ RX , a commitment C and a pair
(m′, r′) and sends these to the challenger.

3. Let m = extract(pkX ,skX)
pkE

(C). If m′
= m and C = commitpkX
pkE

(m′; r′) then the
adversary wins the extraction game.

We say that a commitment scheme is extractable if there is a PPT algorithm extract such
that, for any PPT adversary A, the success probability of A winning the extraction game
is negligible in κ.

Binding. We define a binding game between a challenger and an adversary:
1. The challenger generates a random (pkE, skE) ← genE(1κ) and the adversary is

given pkE .
2. The adversary generates some public key pkX ∈ {0, 1}t. In addition, the adversary

specifies a commitment C and two pairs (m, r), (m′, r) and sends these to the
challenger.

3. The adversary wins the binding game if m
= m′, C = commitpkX
pkE

(m; r) and

C = commitpkX
pkE

(m′; r′).
We say that a commitment scheme is binding if, for any PPT adversary A, the success
probability of A winning the binding game is negligible in κ.

Strong Equivocality/Hiding. We define equivocality by insisting that there is no adversary
that can distinguish between the commitment game and the equivocation game defined
below:
The commitment game between a challenger and adversary proceeds as follows:

1. The challenger generates a random (pkX , skX) ← genX(1κ) and gives pkX to the
adversary.

2. The adversary specifies (pkE, wE) ∈ RE , and a message m.
3. The challenger computes C = commitpkX

pkE
(m; r) where r is chosen randomly and

gives (C, r) to the adversary.
The equivocation game between a challenger and adversary as follows:

1. The challenger generates a random (pkX , skX) ← genX(1κ) and gives pkX to the
adversary.

2. The adversary specifies (pkE, wE) ∈ RE , and a message m.
3. The challenger computes (C,aux) = ecommitpkX

pkE ,wE
(), r ←

equivocatepkX
pkE ,wE

(C,aux, m) and gives (C, r) to the adversary.
We say that a commitment scheme is strongly equivocal if there exists PPT algorithm
ecommit and PPT algorithm equivocate such that no PPT adversary can distinguish
between the commitment game and the equivocation game with more than negligible
probability.

Fig. 4. Security of a Two Key Extractable and Equivocal Commitment Scheme

Lastly, we require that the extraction keys are dense. More precisely, for
(pkX , skX) ← genX(1κ), the element pkX is statistically close to a uniformly ran-
dom element from some G = {0, 1}t. We use ⊕ to denote bit-wise xor of elements
from G. The security properties of the scheme are outlined in Fig. 4. The commitment
scheme of [CLOS02] meets our definition.

Universally Composable Multiparty Computation with Partially Isolated Parties 325

The observation that the scheme meets the given security requirements was essen-
tially already made in [BCNP04]. For completeness, we include a short description of
the scheme in Appendix A.

4.2 Security after WI Proofs

In the security definitions for extractability and binding of the commitment scheme,
it is crucial that the adversary has no information about the equivocation secret key
skE . However, in our protocols the adversary will get to see a witness indistinguishable
(WI) proof of knowledge of such a secret key. For this reason, we augment the security
definitions for extractability and binding to give the adversary unlimited protocol access
to a prover running a WI proof of knowledge for the relation RE using the public key
pkE as the instance and the secret key skE as a witness. We show how to turn any
two-key extractable and strongly equivocal commitment scheme into a scheme that has
security after WI proofs - i.e. is secure in the above setting.

Assume we have a two-key extractable and strongly equivocal commitment scheme
defined by (genE , genX , commit, extract, ecommit, equivocate) and the equivoca-
tion key relation RE . We define a new commitment scheme (gen′

E , gen
′
X , commit′,

extract′, ecommit′, equivocate′) with equivocation relation R′
E as follows:

Let gen′
E generate two equivocation keys (pk(0)

E , sk
(0)
E) ← genE(1κ),

(pk(1)
E , sk

(1)
E) ← genE(1κ) and let pk′E = (pk(0)

E , pk
(1)
E), sk′E = sk

(0)
E . We define

the relation

R′
E :=

{(
pk

(0)
E , pk

(1)
E , wE

) ∣∣∣ (pk(0)
E , wE

)
∈ RE or

(
pk

(1)
E , wE

)
∈ RE

}
.

It is clear that this is an NP relation and that (pk′E , sk
′
E) = ((pk(0)

E , pk
(1)
E), sk(0)

E) ∈
R′

E . We let gen′
X be the same as genX so the extraction keys are generated as in the

original scheme.
Now assume that the message space is some {0, 1}s. We use ⊕ to denote bitwise xor

in {0, 1}s. To commit tom the sender chooses a uniformly randomm(1) and computes
m(0) = m⊕m(1). The sender then computes

C(0) = commitpkX

pk
(0)
E

(m(0); r(0)) , C(1) = commitpkX

pk
(1)
E

(m(1); r(1)) (1)

and sends the commitment C = (C(0), C(1)).
To open the commitment, the sender sends (m, r) = (m, (m(1), r(0), r(1))). The

receiver checks that C(0), C(1) were correctly computed using equation (1).

Equivocality/Hiding. We use a series-of-games argument to show that the above
scheme is strongly equivocal. Let us define Game 1 to be the commitment game used
in the definition of strong equivocality in Fig. 4.

In Step 2 of the game, the adversary specifies (pk′E , wE) = ((pk(0)
E , pk

(1)
E), wE) ∈

R′
E such that (pk(b)

E , wE) ∈ RE for b = 0 or b = 1. In addition, since the relation RE

is in NP, it is easy to check which is the case (if both, we let b = 0). Let b̄ = 1 − b.
We define Game 2 which proceeds as Game 1 except that the challenger computes the

326 I. Damgård, J.B. Nielsen, and D. Wichs

commitment by choosingm(b̄) randomly and settingm(b) = m−m(b̄). Games 1 and 2
have identical distributions and so are indistinguishable.

We define Game 3 which proceeds as Game 2, but the challenger com-
putes C(b) and r(b) using (C(b),aux) = ecommitpkX

pk
(b)
E ,wE

() and r(b) =

equivocatepkX

pk
(b)
E ,wE

(C(b),m(b),aux). The strong equivocality of the original scheme

ensures that Game 2 and 3 are indistinguishable via a simple reduction.
In Game 3, the commitmentsC(0), C(1) are computed independently of the message

m and hence Game 3 implicitly defines the functionsecommit′ and equivocate′. Since
Games 1 and 3 are indistinguishable the equivocality/hiding property holds for the new
scheme.

Extractability and Binding afterWI Proofs. We show that the extractability property
for the new scheme holds even when the adversary has unlimited protocol access to a
prover P running a witness indistinguishable proof for the relation RE . The argument
that binding holds as well proceeds in almost exactly the same way and hence we skip it.

Let us assume that there is an adversary A′ which wins the extraction game for the
above scheme with non-negligible probability. This time, the adversary is also given
protocol access to a prover P running a WI proof for the relation R′

E using the instance

pk′E =
(
pk

(0)
E , pk

(1)
E

)
and the witness sk′E = sk

(0)
E . We construct an adversary A

which wins the extraction game for the original scheme.
The adversary A gets a challenge pkE generated randomly by its challenger. It will

pick a bit b at random and choose (pk(b)
E , sk

(b)
E) ← genE(1κ) and set pk(1−b)

E = pkE .

Then it sends pk′E = (pk(0)
E , pk

(1)
E) as a challenge to A′ and gets back (pkX , skX) ∈

RX . Then A outputs (pkX , skX) to its challenger. (Recall that our construction did not

change RX .) In addition, it will act as a prover for the instance (pk(0)
E , pk

(1)
E) using the

witness sk(b)
E . This is different from the original game where the witness sk(0)

E is always
used. However, since the proof is WI, the success probability of A′ can be affected at
most negligibly.

Next A′ generates some commitment C = (C(0), C(1)) and some decommitment
(m′, r′) = (m′, (m′(1), r(0), r(1))). Definem′(0) = m′−m′(1). The adversary A sends
(m′(1−b), r(1−b)) to its challenger.

Let
m(0) = extractpkX ,skX

pk
(0)
E

(C(0)) , m(1) = extractpkX ,skX

pk
(1)
E

(C(1))

andm = m(0)⊕m(1). Then, if A′ wins the extraction game,m �= m′ and somb̂ �= m′b̂

for some b̂ ∈ {0, 1}. Since b was only used in choosing which witness to use in the WI
proof, with probability negligibly close to 1/2 we have b̂ = 1−b. If this is the case, then
A wins the original extraction game. Hence the success probability of A is negligibly
close to half the success probability of A′ which is non-negligible.

4.3 The Protocol

Let (genS , genR, commit, extract, ecommit, equivocate) be a two-key extractable
and strongly equivocal commitment scheme secure after WI proofs. Assume the scheme

Universally Composable Multiparty Computation with Partially Isolated Parties 327

has an equivocation key relation RE and that random extraction public keys are sta-
tistically close to uniformly random elements from some G = {0, 1}t. We use such
a scheme to UC realize the FMCOM functionality in the Fisolate-hybrid model with
isolation parameter �. We label the players involved P1, . . . , Pn. We also have some
certificate authoritiesCA1, . . . , CAm and some certificate authority trust structure. We
specify the protocol in Fig. 5.

In the ideal world, the additional certificate authorities are not involved in the proto-
col at all. They get no inputs from the environment and receive no outputs. However, in
the real world, parties cannot use the commitment functionality without registering their
keys first. We model this discrepancy by adding a dummy registration phase to the ideal
world functionality. When FMCOM gets the input (register, sid, Pi, CAk) from Pi

then, for every Pj in the trust group of CAk, it sends (certify, sid, CAk, Pi) to Pj

and (registered, sid, CAk, Pj) to Pi. The adversary decides when these messages
are delivered.

The ideal functionality FMCOM ignores all request from Pi to commit to Pj until
Pi receives the messages (certify, sid, CAd, Pj) and (registered, sid, CAk, Pj)
for some CAk, CAd. This corresponds to the real world where a sender cannot initiate
the commitment protocol until he registers a key with some CAk trusted by the receiver
and the receiver registers a key with some CAd trusted by the sender.

4.4 Outline of Proof of Theorem 1

We now proceed to go over the intuition for how the simulation is performed and why it
is indistinguishable. A more complete description and proof appears in the full version
of this paper.

We show that for any certificate authority trust structure, any environment E , and any
real-world adversary A attacking the above protocol using a valid corruption strategy,
there exists an ideal-world simulator S such that E cannot distinguish between inter-
acting with A in the real-world versus interacting with S and dummy parties using the
ideal functionality FMCOM. The simulator internally runs a copy of the protocol. The
simulator also internally runs a copy of A and lets A attack the internal copy of the
protocol. It passes messages from E to its internal copy of A and outputs from A to E .

The simulator runs all key registrations honestly, by following the code of Key Reg-
istration above. In particular, for an honest party Pi, the simulator will pick a key pair
(pk(E,i), sk(E,i)) honestly and remember the secret key. For a corrupt Pi, which suc-
cessfully registers a public keys pk(E,i) with an honest CAk , the simulator will see the
PPT ITMM given by the adversary to the Fisolate functionality. In addition,M is able
to run an �-IPoK for the relation RE and the instance pk(E,i) and, by the specification
of Fisolate, M communicated at most � bits with its environment during this proof. By
the definition of an �-IPoK, this allows S to extract a witness w(E,i) from M , such
that (pk(E,i), w(E,i)) ∈ RE . For public keys pk(E,i) registered by a corrupted Pi at a
corrupted CAk no witness can be computed.

The coin-flipping protocols are simulated in two different ways depending on
whether Pj is honest or not. If Pj is honest and accepts the coin-flipping, then it
received some message (registered, sid, CAk, Pj , Pi, pk(E,i)) from an authority
CAk trusted by Pj . In addition CAk was honest since Pj is in the trust group of CAk

328 I. Damgård, J.B. Nielsen, and D. Wichs

Key Registration: The first step in the protocol is for each party to register a key with every
other party. Each party Pi that wants to talk to another party Pj registers a public key
with a certificate authority CAk that is trusted by Pj . Formally, this step happens when
Pi gets an input (register, sid, Pi, CAk). The registration is done as follows:

1. Party Pi chooses an equivocation public/secret key pair (pk(E,i), sk(E,i)) ←
genE(1k). In addition, Pi generates the PPT ITM M implementing the prover func-
tionality of a WI �-IPoK protocol for the relation RE using the instance pk(E,i) and
the witness sk(E,i). The random tape of M is initialized with fresh random coins
(enough to run one proof). The machine M is set to run a single proof and, at its
conclusion, goes into an inactive state in which it produces no further output.

2. The player Pi sends (isolate, sid, Pi, CAk, M) to the ideal functionality
Fisolate and a key registration request (register, sid, Pi, CAk, pk(E,i)) to CAk.

3. The authority CAk, upon receiving (register, sid, Pi, CAk, pk(E,i)) from Pi

sends (isolate, sid, Pi, CAk) to Fisolate. It then runs as a verifier in the �-
IPoK protocol by sending challenge messages through the interface provided by
Fisolate. At the conclusion of this protocol, CAk sends (release, sid, Pi, CAk)
to Fisolate.

4. If the conversation is accepting, CAk sends the message
(certify, sid, CAk, Pj , Pi, pk(E,i)) to every player Pj in its trust group.

5. When Pj receives (certify, sid, CAk, Pj , Pi, pk(E,i)) from CAk it sends
(registered, sid, Pj , Pi, CAk) to Pi.

6. The party Pi ignores all commands instructing it to commit to Pj until it re-
ceives a message (registered, sid, Pj , Pi, ·, pk(E,i)) from Pj and a message
(certify, sid, CAd, Pi, Pj , pk(E,j)) from some trusted authority CAd. Until
then, it also ignores all coin-flip requests or commit messages from Pj .

Commitment Setup: The first time that Pi wants to send a commitment to Pj they run a
coin-flipping protocol to decide on the extraction key pk(X,i,j). This protocol proceeds
as follows:

1. Pi sends a “coin flip request” to Pj .
2. Pj picks a random g1 ← G and a random extraction key pkX ← G. It sends pkX

and C = commitpkX
pk(E,i)

(g1; r) to Pi.

3. Pi sends a random g2 ← G to Pj .
4. Pj sends the opening (g1, r) to Pi and Pi verifies that C was generated correctly as

a commitment to g1. Both parties compute pk(X,i,j) = g1 ⊕ g2.
Commit: Whenever Pi gets input (commit, sid, ssid, Pj , m), it retrieves the key pk(E,j).

Then it computes C = commit
pk(X,i,j)
pk(E,j)

(m; r) and sends (commit, sid, ssid, Pj , C) to

Pj , which outputs (receipt, sid, ssid, Pi).
Open: If Pi later gets input (reveal, sid, ssid, Pj), then it sends

(commit, sid, ssid, Pj , (m,r)) to Pj . If C = commit
pk(X,i,j)
pk(E,j)

(m; r), then Pj

outputs (reveal, sid, ssid, Pi, m).

Fig. 5. The Commitment Protocol

and Pj is honest. Therefore S knowsw(E,i) such that (pk(E,i), w(E,i)) ∈ RE . The sim-
ulator uses w(E,i) to equivocate the commitment sent by Pj . In particular, the simulator
uses ecommit in step 2 of the coin-flip protocol. When it receives g2 from Pi in step
3, it then samples a random key-pair (pk(X,i,j), sk(X,i,j)), lets g1 = pk(X,i,j) ⊕ g2.
It then uses the equivocate algorithm in step 4 to open the commitment C to g2.

Universally Composable Multiparty Computation with Partially Isolated Parties 329

This results in a key pk(X,i,j) = g1 ⊕ g2 for which S knows sk(X,i,j) such that
(pk(X,i,j), sk(X,i,j)) ∈ RX . If Pj is corrupted for the coin-flip, then S simulates Pi

by sending a random g2 as in the protocol. Note that when Pi is honest, then pk(E,i)
was picked at random by the simulator and the adversary did not see sk(E,i), except
that it saw a WI proof for sk(E,i). Therefore the commitment C sent in step 2 of the
coin-flip is computationally binding for Pj , and pk(X,i,j) will have been produced by a
Blum coin-flip using a computationally binding commitment scheme. Intuitively it fol-
lows that, even if Pj is corrupted, the public key pk(X,i,j) is a random key. Formally, we
rely on the “coin tossing lemma” from [CDPW] to argue that strong equivocality/hiding
still hold even when the extraction public key pk(X,i,j) is generated using a Blum coin
flip protocol as above rather than randomly as in the definition of the commitment and
equivocation games in Fig. 4.

The commitments are simulated in two different ways, depending on whether Pj

is honest or not. If Pj is honest, then Pj was also honest when pk(X,i,j) was gen-
erated. Therefore S knows a secret key sk(X,i,j) for the key pk(X,i,j) used by Pi.
The simulator uses sk(X,i,j) to extract a message m from all commitments C sent
by Pi to Pj . By the Extractability (Fig. 4) the probability that Pi later opens C to

C = commit
pk(X,i,j)

pk(E,j)
(m′; r′) with m′ �= m is negligible. If Pj is corrupted, then S

simulates Pi without knowingm. As above, since Pi is honest and uses the key pk(E,j)
to commit to Pj , the simulator knows a witness w(E,j) for the instance pk(E,j) in RE .
The simulator uses w(E,j) to equivocate the commitment. In particular, it computes
a commitment without knowing m using ecommit. Later to simulate the opening of
the commitment or the corruption of Pi, S receives m and uses the equivocate com-
mand to compute r which serves as both, an opening of m and an explanation of the
randomness used to generate C. By Strong Equivocality/Hiding (Fig. 4), it follows
that computing r using equivocate is indistinguishable from the way it is done in the
protocol.

References

[BA03] Barr, K., Asanovic, K.: Energy aware lossless data compression. In: The Interna-
tional Conference on Mobile Systems - MobiSys, San Francisco, CA, USA, pp.
231–244. ACM Press, New York (2003)

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th Annual Symposium on Foundations of
Computer Science, Rome, Italy, pp. 186–195. IEEE, Los Alamitos (2004)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-Sound Zero-
Knowledge and its Applications. In: 42nd Annual Symposium on Foundations of
Computer Science, Las Vegas, Nevada, pp. 14–17. IEEE, Los Alamitos (2001)

[Can] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive 2000/067

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Las
Vegas, Nevada, pp. 136–145. IEEE, Los Alamitos (2001); Full version in [Can]

[CDPW] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security
with Global Setup. Cryptology ePrint Archive 2006/042; Published Version in
[CDPW07]

330 I. Damgård, J.B. Nielsen, and D. Wichs

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with
Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (2007)

[CKL03] Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: Proceedings of the Thirty-Fourth Annual
ACM Symposium on the Theory of Computing, Montreal, Quebec, Canada, pp.
494–503 (2002)

[CGS08] Chandran, N., Goyal, V., Sahai, A.: New Constructions for UC Secure Computation
using Tamper-proof Hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

[DNW08] Damgård, I., Nielsen, J.B., Wich, D.: Isolated Proofs of Knowledge and Isolated
Zero Knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
509–526. Springer, Heidelberg (2008); Full version in Cryptology ePrint Archive
2007/331

[K07] Katz, J.: Universally composable multi-party computation using tamper-proof hard-
ware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

[MS08] Moran, T., Segev, G.: David and Goliath Commitments: UC Computation for Asym-
metric Parties Using Tamper-Proof Hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

A A Two Key Extractable and Strongly Equivocal Commitment
Scheme

In this section we briefly describe the construction of a two-key extractable and strongly
equivocal commitment scheme defined in [CLOS02]. Most of the observations here
were already made in [BCNP04]. For our purposes we only need to make a slight mod-
ification and use a dense public key encryption scheme.

We start with a strongly equivocal, perfectly hiding commitment scheme which is
not extractable. For example, we can use the Pedersen commitment scheme which is
an efficient scheme based on the DL assumption. Alternatively we can use the Feige-
Shamir commitment scheme which is based on the existence of one-way permutations
(OWP) alone. This is the approach taken by [CLOS02] where it is shown that a small
modification to the Feige-Shamir scheme makes it strongly equivocal as well. In the
Feige-Shamir scheme, the secret key skE is a random string w and the public key pkE

is f(w) where f is some one-way-function. We can define the relation R as the set of
elements (f(w), w) for some one way function f . For any such pair, the equivocated
commitments and honestly produced commitments have equivalent distributions. The
message space of the Feige-Shamir scheme is only 1-bit. The scheme has the property
that knowledge ofw allows one to create equivocated commitments and openings which
are indistinguishable from real commitments and openings even if the adversary knows
w as well. However, for an adversary that only sees f(w), the scheme is binding.

To get extractability, we take a strongly equivocal, perfectly hiding commitment
scheme and restrict the message space to only 1-bit. Then we use a dense public key

Universally Composable Multiparty Computation with Partially Isolated Parties 331

CPA secure encryption scheme (gen,Enc,Dec) where the ciphertexts are pseudoran-
dom elements in some easily sampleable range C and where each ciphertext has only
one valid decryption for any public key. To commit to a bit b, the sender computes
Ccom = commitpkE (b; rcom), Cb = EncpkX (rcom; renc) and C1−b ← C and send the
commitment C = (Ccom, C0, C1).

To equivocate using the secret key skE we simply compute (Ccom,aux) ←
ecommitpkE ,skE (), r

(0)
com ← equivocatepkE ,skE

(Ccom,aux, 0), r
(1)
com ←

equivocatepkE ,skE
(Ccom,aux, 1) and C0 = Enc(r(0)com; r(0)enc), C1 =

Enc(r(1)com; r(1)enc). To equivocate to a bit b send (b, r(b)com, r
(b)
enc). It is easy to see

that equivocality is preserved because of CPA-security of the encryption scheme and
the pseudorandomness of the ciphertexts.

The extractability property holds because the values C0, C1 define the encrypted
messages r(0)com, r(1)com which can be decrypted using the encryption secret key. If both
equations Ccom = commitpkE (0; r(0)com) and Ccom = commitpkE (1; r(1)com) hold, then
the adversary breaks the computational binding property of the original equivocal com-
mitment scheme. If only one such equation holds, say for the bit b, then b is the extracted
message and the committer cannot produce a decommitment for 1− b. This is true even
if the adversary knows the decryption key skX . Similarly, binding holds because of the
computational binding property of the original strongly equivocal commitment scheme.

Oblivious Transfer from Weak Noisy Channels

Jürg Wullschleger

University of Bristol, UK
j.wullschleger@bristol.ac.uk

Abstract. Various results show that oblivious transfer can be imple-
mented using the assumption of noisy channels. Unfortunately, this
assumption is not as weak as one might think, because in a crypto-
graphic setting, these noisy channels must satisfy very strong security
requirements.

Unfair noisy channels, introduced by Damg̊ard, Kilian and Salvail
[Eurocrypt ’99], reduce these limitations: They give the adversary an un-
fair advantage over the honest player, and therefore weaken the security
requirements on the noisy channel. However, this model still has many
shortcomings: For example, the adversary’s advantage is only allowed to
have a very special form, and no error is allowed in the implementation.

In this paper we generalize the idea of unfair noisy channels. We in-
troduce two new models of cryptographic noisy channels that we call
the weak erasure channel and the weak binary symmetric channel, and
show how they can be used to implement oblivious transfer. Our models
are more general and use much weaker assumptions than unfair noisy
channels, which makes implementation a more realistic prospect. For ex-
ample, these are the first models that allow the parameters to come from
experimental evidence.

1 Introduction

Secure two-party computation, introduced in [23], allows two mutually distrust-
ful players to calculate a function in a secure way. This means that both players
get the correct output, but nothing more than that. Even though secure two-
party computation is generally impossible without any further assumption, it
has been shown in [11,14] that if a very simple primitive called oblivious transfer
is available, then any two-party computation can be implemented in an uncon-
ditionally secure way.

Oblivious transfer was first defined in [21], however without realizing its con-
nection to cryptography. In the cryptographic context, the two variants of oblivi-
ous transfer were defined in [19] and [9], which were shown to be equally powerful
in [3]. Throughout this work, we will only consider chosen one-out-of-two obliv-
ious transfer, or OT for short. Here, a sender can send two message bits x0 and
x1, and a receiver can choose which of the two messages he wants to receive by
sending a choice bit c. He receives xc, but does not get to know the other mes-
sage bit x1−c, and the sender does not get to know the choice bit c. There exist
various implementations of OT that are secure against computationally bounded

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 332–349, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Oblivious Transfer from Weak Noisy Channels 333

adversaries, under various hardness assumptions. Against adversaries with un-
bounded computational power, OT can only be implemented if the players have
access to an additional (weaker) functionality.

1.1 OT from (Unfair) Noisy Channels

In [5], it has been shown that OT can be implemented from various weaker
forms of OT, as well as noisy channels. Therefore, noise is not always a bad
thing; in a cryptographic context it can become a valuable resource. These pro-
tocols have later been improved and generalized in [4], [6] and [16]. The basic
idea of all these protocols is very similar: First, they construct some kind of
erasure channel. Then, this erasure channel is used many times to implement
OT. The correctness and the security is guaranteed using error correcting codes
and privacy amplification.

These noisy channels seem to be quite weak primitives and easily imple-
mentable, but they have some rather strong requirements: The statistics of the
channel must be exactly the same in every instance, and known to both players.
And, apart from the output of the channel, a dishonest player must not get any
additional output.

In [8], weaker forms of noisy channels called unfair noisy channels were intro-
duced. Unfair noisy channels are binary symmetric noisy channels that let the
dishonest player change the error-rate in the channel by a certain amount. For
example, this makes the protocol secure against an adversary that might use
better transmitters or detectors in order to break the protocol. In this model,
OT must be implemented in a different way, using the following two steps. First,
from only a few instances of the channel, a weak form of OT (called WOT) is
constructed. In the second step, the security is amplified, i.e., many of these
WOTs are used to get one secure instance of OT. The resulting protocol is only
secure in the semi-honest model, i.e., under the assumption that the dishonest
player follows the protocol. To make the protocol secure in the malicious model,
where the dishonest player may deviate in an arbitrary way from the protocol, a
third step is needed, which uses bit commitments and zero-knowledge proofs to
force the dishonest player to follow the protocol.

The results from [8] were later improved in [7], and OT amplification was
improved in [22].

1.2 Limitations of Unfair Noisy Channels

Even though unfair noisy channels are much weaker than (fair) noisy channels,
they still have some very strong assumptions, which makes them hard to imple-
ment. Let us look at the following example:

A (fair) binary symmetric noisy channel with error ε lets a sender input a
bit x ∈ {0, 1}. The channel then outputs a value Y ∈ {0, 1} to the receiver,
where Pr[Y �= x] = ε. Let us assume that neither the sender nor the receiver can
influence ε, but that the dishonest receiver gets an additional value E ∈ {0, 1},
where Pr[E = 1] = µ, and E = 1 ⇒ Y = x. Therefore, with some probability µ,

334 J. Wullschleger

the dishonest receiver gets to know that the value Y he received is in fact equal
to x. If µ is small, then this channel is very close to a fair binary symmetric noisy
channel. However, even then it cannot be modeled by an unfair noisy channel,
because there, the receiver can only change the error probability of the channel
in a certain range, but he can never be sure that his received bit is the bit sent
by the sender. Therefore, unfair noisy channels forbid the adversary to have this
kind of advantage.

Now, let us assume that we are given an implementation a noisy channel, and
that the statistics of the channel show that the channel behaves like a fair noisy
channel. The accuracy of these statistics are only polynomial. For example, the
channel might as well be the channel from the example above, where µ is only
polynomially small. Therefore, we cannot conclude that the channel is really a
implementation of a fair noisy channel, and neither can the channel be modeled
by an unfair noisy channel. To be able to implement OT in this situation, we
need to have a model that allows the implementation to behave arbitrarily with
some probability.

1.3 Contribution

The goal of this work is to present new, more realistic models for noisy chan-
nels (called weak noisy channels) and to show that oblivious transfer can be
implemented in an unconditionally secure way, assuming that such weak noisy
channels exist. Opposed to the unfair noisy channel which is defined as an ideal
functionality, our definitions are merely a list of conditions that a implementa-
tion of a weak noisy channels should satisfy. For a given implementation, one
only needs to check these (quite simple) conditions, and does not need to show
a cryptographically secure reduction of an ideal functionality to the implemen-
tation. This makes our model easier to apply.

We will introduce the following three models of weak noisy channels:

– Weak erasure channels in the semi-honest model 1 (PassiveWEC). These are
weak variants of erasure channels2 (channels that transmit a bit with some
probability).

– Weak binary symmetric channels in the semi-honest model (PassiveWBSC).
As the unfair noisy channel, these are weak variants of binary symmetric
channels.

– Weak erasure channels in the malicious model (ActiveWEC).

We defined these channels such that they fitted well into the protocol proposed
in [8], which is the only protocol we know of to implement OT from weak noisy
channels.

To show the flexibility and generality of our models, we show that it is very
easy to implement a PassiveWEC from Gaussian channels, and that the (passive)
unfair noisy channel can be seen as an instance of a PassiveWBSC.
1 See Section 2.2 for explanation of the semi-honest and the malicious model.
2 Note that the original definition of OT by Rabin [19] is in fact also an erasure

channel, so a WEC is also a weak form of Rabin OT.

Oblivious Transfer from Weak Noisy Channels 335

In Sections 3 and 4, we show that PassiveWEC implies WOT, and PassiveWBSC
implies PassiveWEC in the semi-honest model. Then, in Section 5, we show that
ActiveWEC implies both bit commitment and a committed version of PassiveWEC
in the malicious model. This implies that in a certain range of parameters, each
of the three weak noisy channels allows for any secure two-party computation
to be achieved. For each of the weak noisy channels, we also present a simu-
lation of the channel using nothing else than noiseless communication, and in
the case of ActiveWEC, shared randomness. Since it is impossible to implement
bit commitment or oblivious transfer from noiseless communication and shared
randomness, it is also impossible to implement them using the simulated weak
noisy channels.

Full proofs are provided in the full version of this work.

2 Preliminaries

We start with some basic definitions and lemmas that we will need later.
We will use the following convention: Lower case letters will denote fixed

values and upper case letters will denote random variables. Calligraphic letters
will denote sets and domains of random variables. For a random variable X over
X , we denote its distribution by PX : X → [0, 1] with

∑
x∈X PX(x) = 1. For a

given distribution PXY : X × Y → [0, 1], we write for the marginal distribution
PX(x) :=

∑
y∈Y PXY (x, y) and, if PY (y) �= 0, PX|Y (x | y) := PXY (x, y)/PY (y)

for the conditional distribution. Let h(x) := −x log x− (1 − x) log(1 − x) be the
binary entropy function.

2.1 Statistical Distance and Maximal Bit-Prediction Advantage

The statistical distance of two distributions PX and PY over the same domain
U is defined as

δ(PX , PY) :=
1
2

∑
u∈U

|PX(u) − PY (u)| .

For a distribution PXY over {0, 1}×Y, the maximal bit-prediction advantage of
X from Y for a function f is defined as

PredAdv(X | Y) := 2 · max
f

Pr[f(Y) = X] − 1 .

Lemmas 1, 2 and 3 give some intuition about these measures: The random
variable B (or C) indicates that an error occurred: If B = 0, everything is
fine. But if B = 1, the adversary may have complete knowledge. (See also [12]
and [22].)

Lemma 1. Let PBX and PCY be distributions over {0, 1}×U such that Pr[B =
1] = Pr[C = 1] = ε. Then δ(PX , PY) ≤ ε+ (1 − ε) · δ(PX|B=0, PY |C=0).

Lemma 2. Let PXY be a distribution over {0, 1}×Y. There exists a conditional
distribution PB|XY over {0, 1}× {0, 1}×Y such that Pr[B = 1] ≤ PredAdv(X |
Y) and such that for all functions f : Y → {0, 1}, Pr[f(Y) = X | B = 0] = 1/2.

336 J. Wullschleger

Lemma 3. Let PXY be a distribution over {0, 1}×Y with δ(PY |X=0, PY |X=1) ≤
ε. There exists a random variable B over {0, 1} such that Pr[B = 1 | X = 0] =
Pr[B = 1 | X = 1] = ε, and PY |X=0,B=0 = PY |X=1,B=0.

Lemma 4. Let PXY be a distribution over {0, 1}×Y with δ(PY |X=0, PY |X=1) ≤
b and PredAdv(X) ≤ a. Then PredAdv(X | Y) ≤ 1 − (1 − a)(1 − b).

We say that X is ε-close to uniform with respect to Y , if δ(PXY , PUPY) ≤ ε,
where PU is the uniform distribution.

2.2 Adversaries

We distinguish between two different models, the semi-honest model and the
malicious model. In the semi-honest model, the adversary is passive, which means
that he follows the protocol, but may try to get additional knowledge from the
messages received. In the malicious model, the adversary is active, which means
that he may change his behavior in an arbitrary way.

2.3 Randomized Functionalities

All our channels are randomized, because we think the security conditions tend
to be more intuitive this way. But randomized channels are usually also easier to
implement (See for example Protocol ActiveToPassiveWEC in Section 5.3). The
results for randomized channels immediately imply similar conditions for non-
randomized channel, as they can be converted into a randomized channel simply
by requiring the players to choose their inputs at random. Our definitions are
weak enough that this works even in the malicious case.

2.4 Oblivious Transfer Amplification

Our work is based on oblivious transfer amplification from [8,22], which gives a
way to implement oblivious transfer (OT) from weak oblivious transfer (WOT).
We will take the definition of WOT from the full version of [22], however we use
the weaker requirement of PredAdv(C | U) ≤ p instead of PredAdv(C | U,E) ≤
p. As explained there, the reduction of OT to WOT still works for this weaker
definition, as long as the error correction is always done from the sender to the
receiver, which is normally the case.

Definition 1 (WOT, semi-honest model). A weak (randomized) oblivious
transfer, denoted by (p, q, ε)-WOT, is a primitive between a sender and a receiver,
that outputs (X0, X1) to the honest sender and (C, Y) to the honest receiver.
Let U be the additional auxiliary output3 to a dishonest sender and let V be
the auxiliary output to a dishonest receiver. Let E := XC ⊕ Y . The following
conditions must be satisfied:

3 Or the view of the adversary, i.e., everything he knows at the end of the protocol.

Oblivious Transfer from Weak Noisy Channels 337

– Correctness: Pr[E = 1] ≤ ε.
– Receiver Security: PredAdv(C | U) ≤ p.
– Sender Security: PredAdv(X1−C | V,E) ≤ q.

Theorem 1 ([22]). Let p, q and ε be constants such at least one of the following
conditions holds:

p+q+2ε ≤ 0.24 , 22q+44ε < 1−p , 22p+44ε < 1−q , 49p+49q < (1−2ε)2 ,

q = 0 ∧ p < (1 − 2ε)2 , p = 0 ∧ q < (1 − 2ε)2 , ε = 0 ∧ p+ q < 1 .

Then there exists a protocol that efficiently implements OT from (p, q, ε)-WOT
secure in the semi-honest model.

We will only use the first four bounds, because we assume that p, q, ε > 0.

2.5 Bit Commitment

To achieve oblivious transfer in the malicious model, we will need bit commit-
ments. A bit commitment scheme is a pair of protocols, a Commit protocol and
a Open protocol, executed between a committer and a receiver. The players first
execute the Commit protocol, where the committer has an input b. Then, they
may also execute the Open protocol. After the Open protocol, the receiver either
accepts or rejects. If he accepts, he gets a value b′. The protocols are ε-secure, if
they satisfy the following properties:

– Correctness: If both players follow the protocols, then the receiver rejects
with a probability smaller than ε, and if he accepts, he outputs b′ = b with
probability at least 1 − ε.

– Binding: If the receiver is honest, then for any malicious sender, with prob-
ability 1 − ε, there exists at most one value after the commit protocol that
the receiver will accept with a probability bigger than ε in the open phase.

– Hiding: If the committer is honest, then no malicious receiver gets to know
b with a probability bigger than ε.4

3 Weak Erasure Channel in the Semi-honest Model

In this section, we present a reduction of WOT to weak erasure channels (WEC)
in the semi-honest model. A weak erasure channel lets a honest sender send a
bit, which is then received by the honest receiver with a certain probability,
and gets lost otherwise. Dishonest players are allowed to receive some additional
information, so a dishonest receiver may get to know some information about
the input even in the case where the channel lost the bit, and a dishonest sender
may get information about whether the bit has been lost or not.

4 This means that if b ∈ {0, 1} and V is the receiver’s view, then we require that
δ(PV |B=0, PV |B=0) ≤ ε.

338 J. Wullschleger

Definition 2 (WEC, semi-honest model). (d0, d1, p, q, ε)-PassiveWEC is a
primitive where the honest sender has output X ∈ {0, 1} and the honest receiver
has output Y ∈ {0, 1, ∆}. Furthermore, the dishonest sender may receive an
additional value U , and the dishonest receiver may receive an additional value
V . These values must satisfy the following conditions:

– Correctness: Pr[Y = ∆] ∈ [d0, d1], Pr[Y �= X | Y �= ∆] ≤ ε.
– Receiver Security: δ(PXU|Y 	=∆, PXU|Y =∆) ≤ p.
– Sender Security: PredAdv(X | V, Y = ∆) ≤ q.

The parameters can be interpreted as follows: d0,d1 and ε are parameters of
the honest players. The probability that the output of the channel is ∆ is in
the interval [d0, d1]. (Defining this as an interval gives some freedom to the
implementation, which may be important, as parameters often cannot be known
precisely.) ε is the probability that the output of the honest receiver is wrong,
if the output is not ∆. According to Lemma 2, q is the probability that the
dishonest receiver gets to know the input of the channel, given that the output
of the channel is ∆, and according to Lemma 3, p is the probability that a
dishonest sender gets to know whether Y = ∆ or Y �= ∆.

3.1 Simulation of PassiveWEC

We start by showing for which values a PassiveWEC can be simulated by only
using noiseless communication. Since OT cannot be implemented from noise-
less communication, such PassiveWEC therefore cannot be used to implement
OT. Note that in any simulation that only uses noiseless communication, we
always have d0 = d1, as both players know all the probabilities. In the following
simulation, we require that ε ∈ [0, 1

2], d, g ∈ [0, 1], and g ≥ (1 − 2ε)(1 − d).
Protocol SimWEC(d, ε, g)

1. The sender chooses x uniformly at random and sends the receiver m := x
with probability g, and m := ∆ otherwise. The sender outputs x.

2. If the receiver getsm∈{0, 1}, he outputs y := m with probability (1−2ε)(1−d)
g ,

and y := ∆ otherwise.
3. If the receiver gets m = ∆, he outputs y chosen at random with probability

2ε(1−d)
1−g , and y := ∆ otherwise.

Theorem 2. For any d, ε, p and q, where p+q+2ε≥1, (d, d, p, q, ε)-PassiveWEC
is simulatable in the semi-honest model.

3.2 WOT from PassiveWEC

Protocol PassiveWECtoWOT

1. The sender and the receiver execute PassiveWEC twice. The sender receives
(x0, x1), the receiver (y0, y1).

Oblivious Transfer from Weak Noisy Channels 339

2. If there exists a c, such that yc �= ∆ and y1−c = ∆, then the receiver
sets y := yc, outputs (c, y), tells the sender to terminate the protocol and
terminates.

3. If the sender receives the message to terminate the protocol, he outputs
(x0, x1) and terminates. Otherwise, they restart the protocol.

Theorem 3. Protocol PassiveWECtoWOT securely implements a(
1 − 2d0(1 − d1)

d1(1 − d0) + d0(1 − d1) (1 − p)2, q, ε
)
-WOT

secure against passive adversaries out of (d0, d1, p, q, ε)-PassiveWEC. The ex-
pected number of instances used is at most 1/min(2d0(1 − d0), 2d1(1 − d1)).
Theorem 3 is not difficult to show using Lemma 3 and Lemma 4. Corollary 1
follows now from Theorem 1, Theorem 3 and

1 − 2d0(1 − d1)w(1 − p)2 ≤ 2p+ (d1 − d0)w .
Corollary 1. Let d0 ≤ d1, p, q and ε be constants, and let w = 1/(d1(1− d0)+
d0(1 − d1)). If at least one of the conditions

2p+ q + (d1 − d0)w + 2ε ≤ 0.24 , 11q + 22ε < d0(1 − d1)w(1 − p)2 ,
44p+ 22(d1 − d0)w + 44ε < 1 − q , 98p+ 49q + 49(d1 − d0)w < (1 − 2ε)2

holds, then there exists a protocol that uses (d0, d1, p, q, ε)-PassiveWEC and effi-
ciently implements OT secure in the semi-honest model.

3.3 An Example: The Gaussian Channel

The Gaussian channel is often used in information theory as a model of a noisy
channel, because it models real physical channels quite well. It has been shown
that a perfect and fair Gaussian channel implies bit commitment, see [17,18].
A Gaussian channel is a channel where the sender has input xg ∈ R and the
receiver has output Yg = xg + Eg, where Eg ∼ N (0, 1), i.e., the channel has an
additive error that is normal distributed.

We can easily implement a PassiveWEC from this channel in the following
way: Let a, b ∈ R+. The sender chooses x ∈ {0, 1} uniformly at random, sends
xg := (2x−1)a and outputs x. The receiver gets yg, and outputs y = ∆ if |yg| ≤ b,
y = 1 if yg > b and y = 0 otherwise. With an arbitrary small error, we can make
the Gaussian channel discrete. In the limit, we get a (d, d, p, q, ε)-PassiveWEC,
where d = Φ(b− a)−Φ(−a− b), ε = Φ(−a−b)

1−d , p = 0 and q = 2Φ(b−a)−Φ(−a)
d − 1.

Choosing for example a = 1 and b = 2.5, we get d ≈ 0.93296, ε ≤ 0.0035, and
q ≤ 0.6604. Since 44 ·ε < 1−q, it follows from Corollary 1 that oblivious transfer
can be implemented. Together with the bit commitment protocols from [17,18],
this implies (using a protocol similar to ActiveToPassiveWEC) that OT can be
implemented from (perfect and fair) Gaussian channels in the malicious model.

To the best of our knowledge, this has not been known before, as previous
results in [6,16] rely on the fact that the channel is discrete and cannot be applied

340 J. Wullschleger

to the Gaussian channel. Note that in contrast to the reductions from [17,18],
our reduction even works for Gaussian channels that are neither perfect nor fair.

4 Weak Binary Symmetric Channel in the Semi-honest
Model

Weak Binary Symmetric Channel is a weak form of a binary symmetric channel.
The channel transmits the input bit of the sender to the receiver, but flips the
bit with some probability. Again, the definition is randomized.

Definition 3 (WBSC, semi-honest model). (ε, ε0, ε1, p, q)-PassiveWBSC is
defined as follows: The honest sender has output X ∈ {0, 1} and the honest
receiver has output Y ∈ {0, 1}. Furthermore, the dishonest sender may receive
an additional value U ∈ U , and the dishonest receiver may receive an additional
value V ∈ V. These values must satisfy the following conditions:

– Correctness: Pr[X = 0] ∈ [1−ε
2 ,

1+ε
2], and for x ∈ {0, 1}, Pr[Y �= x] ∈ [ε0, ε1].

– Receiver Security: δ(PUX|Y =X , PUX|Y 	=X) ≤ p.
– Sender Security: For all y ∈ {0, 1}: δ(PV |X=0,Y =y, PV |X=1,Y =y) ≤ q.

The parameters can be interpreted as follows: ε is the bias of X , and ε0 and
ε1 define the error interval of the honest players. From Lemma 3 it follows that
p is the probability that the sender, and q is the probability that the receiver
gets to know whether X = Y or not. Note that in order to make our reduction
work, the sender security has a slightly different form than the receiver security.
If ε = 0 and ε0 = ε1, the sender security implies δ(PV Y |Y =X , PV Y |Y 	=X) ≤ q. So
in this case, the sender security is strictly stronger than the receiver security.

4.1 Simulation of PassiveWBSC

The following simulation is basically the same as in [8] for the unfair noisy
channel. Let εA, εB ∈ [0, 1

2].

Protocol SimWBSC(εA, εB)

1. The players toss a uniform coin M ∈ {0, 1}.
2. The sender calculates X := 1 −M with probability εA and X := M other-

wise, and outputs X .
3. The receiver calculates Y := 1 −M with probability εB and Y := M other-

wise, and outputs Y .

Theorem 4. Let ε := εA(1 − εB) + εB(1 − εA), p := (1−εA)(1−εB)
1−ε − εA(1−εB)

ε ,

and q := (1−εA)(1−εB)
1−ε − (1−εA)εB

ε . The Protocol SimWBSC(εA, εB) securely im-
plements a (0, ε, ε, p, q)-PassiveWBSC in the semi-honest model.

Theorem 4 implies that (0, ε, ε, p, q)-PassiveWBSC is simulatable if p+ q > 1.

Oblivious Transfer from Weak Noisy Channels 341

4.2 PassiveWEC from PassiveWBSC

We will now give a reduction of PassiveWEC to PassiveWBSC. The protocol itself
has already been used in [5] and [4]. The intuition behind the following protocol
is simple: The sender sends a bit twice over a binary noisy channel. If the receiver
gets twice the same message, he knows (with a small error) what the sender has
sent and outputs that. If he receives two different messages, he does not know the
input and outputs ∆. Note that since two channels are randomized, the sender
cannot choose his input, and therefore has to additionally send x0 ⊕ x1.

Protocol PassiveWBSCtoWEC

1. The players execute PassiveWBSC twice. The sender gets (x0, x1), the re-
ceiver (y0, y1).

2. The sender sends k := x0 ⊕ x1 to the receiver and outputs x := x0.
3. If y0 ⊕ y1 = k, the receiver outputs y := y0. Otherwise, he outputs y := ∆.

Theorem 5. Let

d0 := min(2ε0(1 − ε0), 2ε1(1 − ε1)) ,
d1 := max(2ε0(1 − ε0), 2ε1(1 − ε1), ε0(1 − ε1) + ε1(1 − ε0)) .
ε′ :=

ε1 − ε0
ε1 + ε0 − 2ε0ε1

− 2ε
1 + ε2

.

Protocol PassiveWBSCtoWEC securely implements a(
d0, d1, 1 − (1 − p)2, 1 − (1 − ε′)(1 − q)2, ε21

ε21 + (1 − ε1)2
)
-PassiveWEC

in the semi-honest model out of two instances of (ε, ε0, ε1, p, q)-PassiveWBSC.

Proof (Sketch). It is easy to verify that

Pr[Y �= X | Y �= ∆] ≤ ε21
ε21 + (1 − ε1)2

and Pr[Y = ∆] ∈ [d0, d1], and the security against a dishonest sender can be
shown using Lemma 3 and Lemma 1.

Let V0 and V1 be the additional information a dishonest receiver gets in the
two executions of the PassiveWBSC. We have V := (K,V0, V1, Y0, Y1). Using
Lemma 3 and Lemma 1 it can be shown that

δ(PV0V1|X=0,K=k,Y0=y0,Y1=y1 , PV0V1|X=1,K=k,Y0=y0,Y1=y1) ≤ 1 − (1 − q)2 .
We can bound

Pr[X = x | Y0 = y0, Y1 = y1,K = k, Y = ∆]

≤ (1 + ε)ε1 · (1 + ε)(1 − ε0)
(1 + ε)ε1 · (1 + ε)(1 − ε0) + (1 − ε)ε0 · (1 − ε)(1 − ε1) ,

from which follows

342 J. Wullschleger

PredAdv(X | Y0 = y0, Y1 = y1,K = k, Y = ∆) ≤ ε1 − ε0
ε1 + ε0 − 2ε0ε1

+
2ε

1 + ε2
.

The statement now follows from Lemma 4. �

4.3 An Example: The Unfair Noisy Channel

The passive unfair noisy channel (γ, δ)-PassiveUNC from [8,7] is a special case
of a PassiveWBSC, namely a (0, δ, δ, p, p)-PassiveWBSC, where

p :=
(1 − δ)δ − (1 − γ)γ
(1 − 2γ)δ(1 − δ) .

Note, however, that the bounds that we get using our results are not as good as
the bounds from [8,7].

5 WEC in the Malicious Model

The assumption that the adversary is semi-honest and therefore follows the pro-
tocol is quite strong and often too strong. As shown in [10], there exist compilers
that can convert protocols which are only secure in the semi-honest model into
protocols that are also secure in the malicious model. The basic idea is that at
the beginning, the players are committed to all the secret data they have, and af-
ter every computation step they do, they commit to the newly computed values
and show with a zero-knowledge proof that the new committed value contains
indeed the correct value, according to the protocol. To implement this in our
setting, we need two things: A bit commitment protocol, and a protocol that
implements a committed version of the passive weak noisy channel. Hence, for
any weak noisy channel in the active model, we need to show that it implies bit
commitment and a committed version of either PassiveWEC or PassiveWBSC for
parameters that allow us to achieve OT in the semi-honest model. (See also [7]
for a more detailed discussion.)

Defining a weak noisy channel in the malicious model turns out to be much
more tricky than in the semi-honest model. It is possible to define them in the
same way as in the semi-honest model, however we think that this would not give
a very realistic model. For example, the dishonest player probably may choose
an attack where he does not get the output of the honest player. Therefore, we
think that it is preferable to state the security conditions such that the malicious
player does not need to get the value of the honest player. In the following we
will do this for the WEC. For the WBSC, we were not able to come up with a
simple definition.

Definition 4 (WEC, malicious model). (d0, d1, p, g, ε)-ActiveWEC is a
primitive with the following properties.

– Correctness: If both players are honest, then the sender has output X ∈ {0, 1}
and the receiver has output Y ∈ {0, 1, ∆}, where Pr[Y = ∆] ∈ [d0, d1] and
Pr[Y �= X | Y �= ∆] ≤ ε.

Oblivious Transfer from Weak Noisy Channels 343

– Receiver Security: If the receiver is honest, then for all dishonest sender with
auxiliary input z and output U , the receiver has output Y ∈ {0, 1, ∆} where
Pr[Y = ∆] ∈ [d0, d1] and δ(PU|Z=z,Y 	=∆, PU|Z=z,Y =∆) ≤ p.

– Sender Security: If the sender is honest, then for all dishonest receiver with
auxiliary input z and output V , the sender has output X ∈ {0, 1} and
PredAdv(X | V, Z = z) ≤ g.

Note that the parameter g is different from the parameter q in the semi-honest
case, because we do not condition on the event Y = ∆. The honest receiver
can guess X using f(Y) := Y if Y �= ∆, and either 0 or 1 if Y = ∆. We
get PredAdv(X | Y) ≥ (1 − 2ε)(1 − d1). Therefore, an ActiveWEC can only be
implemented if g ≥ (1 − 2ε)(1 − d1).
5.1 Simulation

Using the same simulation as for the semi-honest case, we get

Theorem 6. For any d, ε, p and g, where

dp+ g + 2ε ≥ 1 ∧ g ≥ (1 − 2ε)(1 − d) ,
(d, d, p, g, ε)-ActiveWEC is simulatable in the malicious model, given that the
players have access to a source of trusted shared randomness.

5.2 Bit Commitment

Our commitment protocol takes parameters n, c, m, � and κ, where n is the
number of instances used, c the error-tolerance of the protocol, � the number of
bits committed to, and κ the error. Let c := n−1/3, and

κ := exp(−2(1 − d1 − c)nc2) .
Let a be the maximum value that satisfies

(1 − d) · a−
√
a

2
· ln 1

κ
≤ (ε+ c)(1 − d)n

for all d ∈ [d0 − c, d1 + c]. Let

m := (d1p+ c)n+ 2a+ 1

and let C ⊂ {0, 1}n be a (n, k,m)-linear code5, i.e., with 2k elements and minimal
distance m. Let

� := k − (g + c) · n− 3 log(1/κ)
and n be big enough such that � > 0. Let H be the parity-check matrix of C
and g : R × {0, 1}n → {0, 1}� be a 2-universal hash function. In the following
protocol, the sender is the committer.

Protocol ActiveWECtoBC
Commit(b).

– The parties execute ActiveWEC n times. The sender gets x = (x0, . . . , xn−1),
and the receiver gets y = (y0, . . . , yn−1).

5 Since we do not have to decode C, this could be a random linear code.

344 J. Wullschleger

– The committer chooses r ∈ R uniformly at random and sends it to the
receiver.

– The committer sends s := (H(x), b⊕ g(r, x)) to the receiver.

Open.

– The committer sends (b, x) to the receiver.
– Let n∆ be the number of yi equal to ∆. The receiver checks that n∆/n ∈

[d0 − c, d1 + c] and that the number i where yi �= xi and yi �= ∆ is smaller
than (n − n∆)(ε + c). He also checks that s = (H(x), b ⊕ g(r, x)). If this is
the case, he accepts, and rejects otherwise.

In the protocol, the committer has to send the receiver the parity-check of
a code, because then the committer cannot guess with probability more than ε
more than one value x that passes the test of the receiver in the open phase.
The committer extracts a string of size � from x, where � is chosen small enough
such that the receiver has almost no information about it.

Theorem 7. Protocol ActiveWECtoBC implements a commitment with an error
of 4κ, out of n instances of (d0, d1, p, g, ε)-ActiveWEC.

The correctness of the protocol follows from the Chernoff/Hoeffding bound. It
remains to proof that the protocol is also binding and hiding.

Lemma 5. Protocol ActiveWECtoBC is binding with probability 1 − 4κ.

Proof. Let d := n∆/n. Let Bi be defined as in Lemma 3. If Yi �= ∆, let Y ′
i = Yi,

and let Y ′
i be chosen randomly from {0, 1} otherwise, such that Pr[Y ′

i = 1 | Yi =
∆] = Pr[Yi = 1 | Yi �= ∆]. (Y ′

i is therefore independent of the event Yi = ∆.) Let
us assume that the sender additionally receives the values Bi and Y ′

i .
We divide the n instances into 3 sets. Let S0 be the set of values where

Bi = 1 ∧ Yi = ∆, S1 the set of values where Bi = 1 ∧ Yi �= ∆, and S2 the set of
values where Bi = 0. The sender may choose a subset of S1 of size a′ and a subset
of S2 of size a, where xi �= y′i. It follows from the Chernoff/Hoeffding bound that

with probability at least κ, the receiver will notice at least a · (1− d)−
√

a
2 · ln 1

κ

of these errors in S2. Therefore, the receiver will only accept with probability at
least κ, if

a′ + a · (1 − d) −
√
a

2
· ln 1

κ
≤ (ε+ c)(1 − d)n .

The sender would only be able to find two values with the same parity-check if

(dp+ c)n+ 2(a′ + a) ≥ m .

The best strategy for the sender is to choose a′ = 0, and to make a maximal.
It follows from the definition of m that the sender cannot find two such values.
The statement follows. �

Oblivious Transfer from Weak Noisy Channels 345

To proof that the protocol is hiding we need some additional lemmas. The con-
ditional smooth min-entropy of X given Y [20] is defined as

Hε
min(X | Y) := max

Ω:Pr[Ω]≥1−ε
min
xy

(− logPXΩ|Y =y(x)) .

Lemma 6 ([2,15]). Hε+ε′
min (X | Y Z) ≥ Hε

min(XY | Z) − log |Y| − log(1/ε′).

Lemma 7 (Leftover hash lemma [1,13]). Let X be a random variable over
X and let m > 0. Let h : R × X → {0, 1}m be a 2-universal hash function. If
m ≤ Hε

min(X | Y)− 2 log(1/ε′), then for R uniform over R, h(R,X) is (ε+ ε′)-
close to uniform with respect to (R, Y).

Lemma 8. Protocol ActiveWECtoBC is hiding with probability 1 − 3κ.

Proof. The sender holds X = (X1, . . . , Xn), and the receiver V = (V1, . . . Vn), S
and the auxiliary input z. Using Lemma 2, for every pair (Xi, Vi), there exists a
random variable Bi, such that Pr[Bi = 1] = g and Xi is uniform, given (Vi, Bi =
0, Z = z). From the Chernoff/Hoeffding bound follows that with probability
1 − κ, the number of Bi = 0 is at least n(1 − g − c) and therefore Hκ

∞(X |
V, Z = z) ≥ n(1 − g − c). Using Lemma 6, we get H2κ∞ (X | V, S, Z = z) ≥
n(1 − g − c)− (n− k)− log(1/κ). Finally, we can apply Lemma 7, and get that
g(X,R) is 3κ-close to uniform, since � ≤ H2κ

∞ (X | V, S, Z = z)−2 log(1/κ). This
implies that the protocol is hiding with probability 1 − 3κ. �
Note that for any e > 0, and k ≤ (1 − h(m/n))n−e, a random linear (n, k)-code
has a minimal distance of at leastm with probability at least 1−2−e. If we choose
a random linear code and let n→ ∞, then b/n→ ε, and hence m/n→ d1p+2ε.
From the property of the random linear code, we get k/n→ 1−h(d1p+2ε). We
need � > 0, which is equivalent to g < k/n. We get the following corollary.

Corollary 2. For any d1, d1, ε, p and q where

d1p+ 2ε <
1
2
, and g + h(d1p+ 2ε) < 1 ,

(d0, d1, p, g, ε)-ActiveWEC implies bit commitment.

Our bound is optimal for p = 0 ∧ ε = 0. Otherwise, it does not reach the
simulation bound, since h(x) > x for all 0 < x < 1

2 . It would be interesting
to know whether this bound can be improved. Note that it is also possible to
implement bit commitment in the other direction. We will leave this to the full
version of this work.

5.3 Committed PassiveWEC from ActiveWEC

In the following, we present the protocol to implement a committed version of
PassiveWEC in the malicious model, using ActiveWEC. It uses a similar idea
already used in [7]: The players execute ActiveWEC n times and commit to their

346 J. Wullschleger

output values. Then, they open all except one that is chosen at random, and
check if the statistics are fine. If they are, then with high probability, also the
statistics of the remaining instance is fine.

The following lemma is essential to the proof, because it can be used to bound
the parameter p for any committed value Y produced by the dishonest receiver,
if he passes the test by the honest sender. It is easy to verify that the lemma is
tight if V is equal to X with probability p and ∆ otherwise.

Lemma 9. Let PXV be a distribution over {0, 1} × V. If PredAdv(X | V) ≤ g,
then for any function Y = f(V) ∈ {0, 1, ∆} where Pr[Y = ∆] ∈ [d0, d1] and
Pr[Y �= X | Y �= ∆] ≤ ε, we have

δ(PV |X=0,Y =∆, PV |X=1,Y =∆) ≤ g − (1 − 2ε)(1 − d1)
d1

.

Proof. Let B be the random variable defined by Lemma 2. We have Pr[B =
1] = g and PV |X=0,B=0 = PV |X=1,B=0. Given B = 0, V does not have any
information about X . Hence, for any Y = f(V), we have

Pr[Y �= X | Y �= ∆] ≥ 1
2
· Pr[Y �= ∆ ∧B = 0]

Pr[Y �= ∆]
.

Therefore, it must hold that 2εPr[Y �= ∆] ≥ Pr[Y �= ∆ ∧B = 0]. We get

Pr[B = 1 | Y = ∆] =
g − Pr[Y �= ∆] + Pr[Y �= ∆ ∧B = 0]

Pr[Y = ∆]

≤ g − (1 − 2ε)(1 − Pr[Y = ∆])
Pr[Y = ∆]

≤ g − (1 − 2ε)(1 − d1)
d1

.

The statement follows now by applying Lemma 1. �

In addition to ActiveWEC, our protocol needs bit commitments and coin-tosses.
Coin-toss can easily be implemented using bit commitments.

Again, c is the error-tolerance, and κ is the error in the protocol. We choose
c := n−1/3 and κ := exp(−2(1 − d1 − c)nc2). Furthermore, let n be big enough
such that c ≥ 1/((1 − d1 − c)n).
Protocol ActiveToPassiveWEC

1. The sender and the receiver execute ActiveWEC n times. The sender gets
(x0, . . . , xn−1), and the receiver (y0, . . . , yn−1).

2. Both players commit to their values.
3. Using coin-toss, they randomly select one instance s of the n instances.
4. They open all commitments, except for instance s. If any of the players does

not accept one opening of a commitment, they abort.

Oblivious Transfer from Weak Noisy Channels 347

5. Let n∆ be the number of yi that is equal to ∆. They check if n∆ is in the
interval [(d0 − c) · n− 1, (d1 + c) · n], and the number of yi that is not equal
to ∆ nor xi is smaller than (ε+ c) · (n− n∆). If not, they abort.

6. The sender outputs x := xs, the receiver y := ys.

Theorem 8. Protocol ActiveToPassiveWEC implements a committed version of(
d0 − 2c, d1 + 2c, p,

g − (1 − 2ε)(1 − d1)
d1

+
6
d21
c, ε+ 2c

)
-PassiveWEC

with an error of at most 3κ in the malicious model. It uses coin-toss, bit com-
mitment and n independent instances of (d0, d1, p, g, ε)-ActiveWEC.

Theorem 8 can be shown using the Chernoff/Hoeffding bound and Lemma 9.
Note that c is only polynomially small and cannot be made negligible. Here we
see an advantage of our definition compared to the PassiveUNC in [8,7]: We do
not have to introduce the additional error parameter p(k) as it has to be done for
the committed version of the PassiveUNC, nor do we have to add an additional
amplification step to the reduction to make this additional error negligible. The
following corollary follows from Corollary 1 and Theorem 8.

Corollary 3. Let d0 ≤ d1, p, g and ε be constants, and let w := 1/(d1(1−d0)+
d0(1 − d1)) and q := g−(1−2ε)(1−d1)

d1
. If at least one of the conditions

p+ q + w(d1 − d0) + 2ε < 0.24 , 11q + 22ε < d0(1 − d1)w(1 − p)2 ,
44p+ 22w(d1 − d0) + 44ε < 1 − q , 98p+ 49q + 49w(d1 − d0) < (1 − 2ε)2

holds, then there exists a protocol that uses (d0, d1, p, g, ε)-ActiveWEC and bit
commitments and efficiently implements OT secure in the malicious model.

To achieve any two party computation from a (d0, d1, p, g, ε)-ActiveWEC, the
conditions of Corollary 3 and Corollary 2 must be satisfied simultaneously.

6 Conclusions and Open Problems

We gave new, weaker security definitions for the erasure channel and the binary
symmetric channel, and showed that they imply oblivious transfer. The advan-
tage of our new definitions is that they allow the use of channels from which
the statistics are not known with arbitrary precision, which make it possible to
use channels where the parameters come from experimental evidence. Note that
together with the computational WOT amplification from [22], our results can
also be used in a computational setting.

It seems to be difficult to close the gap between the possibility and the im-
possibility bounds for OT. But maybe it is possible to get a tight bound for bit
commitment. Still missing is a definition of the weak binary symmetric channel
in the malicious model. Furthermore, it would be nice to have a bit commitment
protocol that works for a weak form of the Gaussian channels.

348 J. Wullschleger

Acknowledgment

I thank the anonymous referees for many helpful comments. I was supported by
the U.K. EPSRC, grant EP/E04297X/1.

References

1. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-
cussion. SIAM Journal on Computing 17(2), 210–229 (1988)

2. Cachin, C.: Smooth entropy and rényi entropy. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)

3. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Price,
W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 350–354.
Springer, Heidelberg (1988)

4. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg
(1997)

5. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: Proceedings of the 29th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS 1988), pp. 42–52 (1988)

6. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 47–59. Springer, Heidelberg (2005)

7. Damg̊ard, I.B., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivi-
ous transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer,
Heidelberg (2004)

8. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

9. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC
1987), pp. 218–229. ACM Press, New York (1987)

11. Goldreich, O., Vainish, R.: How to solve any protocol probleman efficiency im-
provement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

12. Holenstein, T.: Strengthening key agreement using hard-core sets. PhD thesis, ETH
Zurich, Switzerland, Reprint as vol. 7 of ETH Series in Information Security and
Cryptography, Hartung-Gorre Verlag (2006)

13. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting (STOC 1989), pp. 12–24. ACM Press, New York (1989)

14. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 20–31.
ACM Press, New York (1988)

15. Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer,
Heidelberg (1997)

Oblivious Transfer from Weak Noisy Channels 349

16. Nascimento, A., Winter, A.: On the oblivious transfer capacity of noisy correlations.
IEEE Trans. on Information Theory 54(6) (2008)

17. Nascimento, A.C.A., Skludarek, S., Barros, J., Imai, H.: The commitment capacity
of the gaussian channel is infinite. IEEE Trans. on Information Theory, Special
Issue on Information Security (2007)

18. Oggier, F., Morozov, K.: A practical scheme for string commitment based on the
gaussian channel. In: Proceedings of 2006 IEEE Information Theory Workshop
(ITW 2008) (2008)

19. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-
81, Harvard Aiken Computation Laboratory (1981)

20. Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and
privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
199–216. Springer, Heidelberg (2005)

21. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
22. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT

2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007); Full version (PhD
Thesis, ETH Zurich), http://arxiv.org/abs/cs.CR/0608076

23. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164
(1982)

http://arxiv.org/abs/cs.CR/0608076

Composing Quantum Protocols in a Classical
Environment

Serge Fehr� and Christian Schaffner��

Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands
{S.Fehr,C.Schaffner}@cwi.nl

Abstract. We propose a general security definition for cryptographic
quantum protocols that implement classical non-reactive two-party
tasks. The definition is expressed in terms of simple quantum-
information-theoretic conditions which must be satisfied by the protocol
to be secure. The conditions are uniquely determined by the ideal func-
tionality F defining the cryptographic task to be implemented. We then
show the following composition result. If quantum protocols π1, . . . , π�

securely implement ideal functionalities F1, . . . ,F� according to our secu-
rity definition, then any purely classical two-party protocol, which makes
sequential calls to F1, . . . ,F�, is equally secure as the protocol obtained
by replacing the calls to F1, . . . ,F� with the respective quantum proto-
cols π1, . . . , π�. Hence, our approach yields the minimal security require-
ments which are strong enough for the typical use of quantum protocols
as subroutines within larger classical schemes. Finally, we show that re-
cently proposed quantum protocols for secure identification and oblivious
transfer in the bounded-quantum-storage model satisfy our security def-
inition, and thus compose in the above sense.

1 Introduction

Background. Finding the right security definition for a cryptographic task is
a non-trivial fundamental question in cryptography. From a theoretical point
of view, one would like definitions to be as strong as possible in order to ob-
tain strong composability guarantees. However, this often leads to impossibility
results or to very complex and inefficient schemes. Therefore, from a practical
point of view, one may also consider milder security definitions which allow for
efficient schemes, but still offer “good enough” security.

It is fair to say that in computational cryptography, the question of defin-
ing security and the trade-offs that come along with these definitions are by
now quite well understood. The situation is different in quantum cryptography.
For instance, it was realized only recently that the standard security definition of
quantum key-agreement does not guarantee the desired kind of security and some

� Supported by the Dutch Organization for Scientific Research (NWO).
�� Supported by the EU fifth framework project QAP IST 015848 and the Dutch Or-

ganization for Scientific Research (NWO).

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 350–367, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Composing Quantum Protocols in a Classical Environment 351

work was required to establish the right security definition [13,23,2,22,17]. Se-
curity definitions for general quantum protocols have first been proposed in [14]
and subsequently been refined for the case of quantum multi-party computa-
tion in [26]. In [3,27], strong security definitions for general quantum protocols
were proposed by translating Canetti’s universal-composability framework and
Backes, Pfitzmann and Waidner’s reactive-simulatability model, respectively,
into the quantum setting. The resulting security definitions are very strong and
guarantee full composability. However, they are complex and hard to achieve.
Indeed, so far they have been actually used and shown to be achievable only in a
couple of isolated cases: quantum key distribution [2] and quantum multi-party
computation with dishonest minority [1]. It is still common practice in quantum
cryptography that every paper proposes its own security definition of a certain
task and proves security with respect to the proposed definition. However, it usu-
ally remains unclear whether these definitions are strong enough to guarantee
any kind of composability, and thus whether protocols that meet the definition
really behave as expected.

Contribution. We propose a general security definition for quantum protocols
that implement cryptographic two-party tasks. The definition is in terms of sim-
ple quantum-information-theoretic security conditions that must be satisfied for
the protocol to be secure. In particular, the definition does not involve addi-
tional entities like a “simulator” or an “environment”. The security conditions
are uniquely determined by the ideal functionality that defines the cryptographic
task to be realized. Our definition applies to any non-reactive, classical ideal
functionality F , which obtains classical (in the sense of non-quantum) input
from the two parties, processes the provided input according to its specifica-
tion, and outputs the resulting classical result to the parties. A typical example
for such a functionality/task is oblivious transfer (OT). Reactive functionalities,
i.e. functionalities that have several phases (like e.g. bit commitment), or func-
tionalities that take quantum input and/or produce quantum output are not the
scope of this paper.

We show the following composition result. If quantum protocols π1, . . . , π� se-
curely implement ideal functionalities F1, . . . ,F� according to our security defi-
nition, then any purely classical two-party protocol, which makes sequential calls
to F1, . . . ,F�, is equally secure as the protocol obtained by replacing the calls to
F1, . . . ,F� with the respective quantum subroutines π1, . . . , π�. We stress that
our composition theorem, respectively our security definition, only allows for the
composition of quantum sub-protocols into a classical outer protocol. This is a
trade-off which allows for milder security definitions (which in turn allows for
simpler and more efficient implementations) but still offers security in realistic
situations. Indeed, current technology is far from being able to execute quantum
algorithms or protocols which involve complicated quantum operations and/or
need to keep a quantum state “alive” for more than a tiny fraction of a second.
Thus, the best one can hope for in the near future in terms of practical quantum
algorithms is that certain small subroutines, like key-distribution or OT, may
be implemented by quantum protocols, while the more complex outer protocol

352 S. Fehr and C. Schaffner

remains classical. From a more theoretical point of view, our general security
definition expresses what security properties a quantum protocol must satisfy in
order to be able to instantiate a basic cryptographic primitive upon which an
information-theoretic cryptographic construction is based. For instance, it ex-
presses the security properties a quantum OT1 needs to satisfy so that Kilian’s
classical2 construction of general secure function evaluation based on OT [15]
remains secure when instantiating the OT primitive by a quantum protocol.

Finally, we show that the ad-hoc security definitions proposed by Damg̊ard,
Fehr, Salvail and Schaffner for their 1-2 OT and secure-identification protocols
in the bounded-quantum-storage model [7,9] imply (and are likely to be equiv-
alent) to the corresponding security definitions obtained from our approach.3

This implies composability in the above sense for these quantum protocols in
the bounded-quantum-storage model.

Related work. In the classical setting, Crépeau et al. proposed information-
theoretic conditions for two-party secure function evaluation [5], though re-
stricted to the perfect case, where the protocol is not allowed to make any error.
They show equivalence to a simulation-based definition that corresponds to the
standard framework of Goldreich [12]. Similar conditions have been subsequently
found by Crépeau and Wullschleger for the case of non-perfect classical proto-
cols [6]. Our work can be seen as an extension of [5,6] to the setting where
classical subroutines are implemented by quantum protocols.

As pointed out and discussed above, general frameworks for universal com-
posability in the quantum setting have been established in [3,27]. The compos-
ability of protocols in the bounded-quantum-storage model has recently been
investigated by Wehner and Wullschleger [29]. They propose security definitions
that guarantee sequential composability of quantum protocols within quantum
protocols. This is clearly a stronger composition result than we obtain (though
restricted to the bounded-quantum-storage model) but comes at the price of
a more demanding security definition. And indeed, whereas we show that the
simple definitions used in [8,7] already guarantee composability into classical
protocols without any modifications to the original parameters and proofs, [29]
need to strengthen the quantum-memory bound (and re-do the security proof)
in order to show that the 1-2 OT protocol from [7] meets their strong security
definition. As we argued above, this is an overkill in many situations.

1 We are well aware that quantum OT is impossible without any restriction on the
adversary, but it becomes possible for instance when restricting the adversary’s quan-
tum memory [8,7].

2 Here, “classical” can be understood as “non-quantum” as well as “being a classic”.
3 Interestingly, this is not true for the definition of Rabin OT given in the first paper in

this line of research [8], and indeed in the full version of that paper, it is mentioned
that their definition poses some “composability problems” (this problem though
has been fixed in the journal version [10]). This supports our claim that failure
of satisfying our security definition is strong evidence for a security problem of a
quantum protocol (or the definition used).

Composing Quantum Protocols in a Classical Environment 353

2 Notation

Quantum States. We assume the reader’s familiarity with basic notation and
concepts of quantum information processing [21].

Given a bipartite quantum state ρXE , we say that X is classical if ρXE is of
the form ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρx

E for a probability distribution PX over
a finite set X . This can be understood in that the state of the quantum register
E depends on the classical random variable X , in the sense that E is in state
ρx

E exactly if X = x. For any event E defined by PE|X(x) = P [E|X=x] for all x,
we may then write

ρXE|E :=
∑

x

PX|E(x)|x〉〈x| ⊗ ρx
E . (1)

When we omit registers, we mean the partial trace over these register, for in-
stance ρE|E = trX(ρXE|E) =

∑
x PX|E(x)ρx

E , which describes E given that the
event E occurs.

This notation extends naturally to states that depend on several classical ran-
dom variables X , Y etc., defining the density matrices ρXY E , ρXY E|E , ρY E|X=x

etc. We tend to slightly abuse notation and write ρx
Y E = ρXE|X=x and ρx

Y E|E =
ρY E|X=x,E , as well as ρx

E = trY (ρx
Y E) and ρx

E|E = trY (ρx
Y E|E). Given a state ρXE

with classical X , by saying that “there exists a classical random variable Y such
that ρXY E satisfies some condition”, we mean that ρXE can be understood as
ρXE = trY (ρXY E) for some state ρXY E with classical X and Y , and that ρXY E

satisfies the required condition.
X is independent of E (in that ρx

E does not depend on x) if and only if
ρXE = ρX ⊗ ρE , which in particular implies that no information on X can be
learned by observing only E. Similarly, X is random and independent of E if
and only if ρXE = 1

|X |�⊗ρE, where 1
|X |� is the density matrix of the fully mixed

state of suitable dimension.
We also need to express that a random variableX is independent of a quantum

state E when given a random variable Y . This means that when given Y , the
state E gives no additional information on X . Yet another way to understand
this is that E is obtained from X and Y by solely processing Y . Formally,
adopting the notion introduced in [9], this is expressed by requiring that ρXY E

equals ρX↔Y ↔E , where the latter is defined as

ρX↔Y ↔E :=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E .

In other words, ρXY E = ρX↔Y ↔E precisely if ρx,y
E = ρy

E for all x and y. This
notation naturally extends to ρX↔Y ↔E|E =

∑
x,y PXY |E(x, y)|x〉〈x|⊗|y〉〈y|⊗ρy

E|E .
Full (conditional) independence is often too strong a requirement, and it usu-

ally suffices to be “close” to such a situation. Closeness of two states ρ and
σ is measured in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), where
for any operator A, |A| is defined as |A| :=

√
AA†. We write ρ ≈ε σ to de-

note that δ(ρ, σ) ≤ ε, and we then say that ρ and σ are ε-close. It is known

354 S. Fehr and C. Schaffner

that ε-closeness is preserved under any quantum operation; this in particular
implies that if ρ ≈ε σ then no observer can distinguish ρ from σ with advan-
tage greater than ε [23]. For states ρXE and ρX′E′ with classical X and X ′, it
is not hard to see that δ(ρXE , ρX′E′) =

∑
x δ(PX(x)ρx

E , PX′(x)ρx
E′), and thus

δ(ρXE , ρX′E′) =
∑

x PX(x)δ(ρx
E , ρ

x
E′) if PX = PX′ . In case of purely classical

states ρX and ρX′ , the trace distance coincides with the statistical distance of
the random variables X and X ′: δ(ρX , ρX′) = 1

2

∑
x |PX(x) − PX′(x)|, and we

then write PX ≈ε PX′ , or X ≈ε X
′, instead of ρX ≈ε ρX′ .

We will make use of the following lemmas whose proofs are given in the full
version [11] of this paper.

Lemma 2.1. 1. If ρXY ZE ≈ε ρX↔Y ↔ZE then ρXY ZE ≈2ε ρX↔Y Z↔E .
2. If ρXZE ≈ε ρX ⊗ ρZE then ρXZE ≈2ε ρX↔Z↔E .
3. If ρXZE ≈ε �/|X | ⊗ ρZE, then ρXZE ≈4ε ρX↔Z↔E .

Lemma 2.2. If ρXY E ≈ε ρX↔Y ↔E then ρXf(X,Y)Y E ≈ε ρXf(X,Y)↔Y ↔E for
any function f .

Lemma 2.3. For an event E which is completely determined by the random
variable Y , i.e. for all y, the probability Pr[E|Y = y] either vanishes or equals
one, we can decompose the density matrix ρX↔Y ↔E into4

ρX↔Y ↔E = Pr[E] · ρX↔Y ↔E|E + Pr[E] · ρX↔Y ↔E|E .

3 Protocols and Functionalities

Quantum Protocols. We consider two-party quantum protocols π = (A,B),
consisting of interactive quantum algorithms A and B. For convenience, we call
the two parties who run A and B Alice and Bob, respectively. There are different
approaches to formally define interactive quantum algorithms and thus quantum
two-party protocols, in particular when we restrict in- and outputs (of honest
participants) to be classical. For instance such a formalization can be done by
means of quantum circuits, or by means of a classical Turing machine which
outputs unitaries that are applied to a quantum register. For our work, the
specific choice of the formalization is immaterial; what is important is that such
a two-party quantum protocol, formalized in whatever way, uniquely specifies its
input-output behavior. Therefore, in this work, we capture quantum protocols
by their input-output behavior, which we formalize by a quantum operation, i.e.
a trace-preserving completely-positive map, which maps the common two-partite
input state ρUV to the common two-partite output state ρXY . We denote this
operation by ρXY = π ρUV or, when we want to emphasize that π is executed by
honest Alice and Bob, also by ρXY = πA,B ρUV . If one of the players, say Bob,
is dishonest and follows a malicious strategy B′, then we slightly abuse notation
and write πA,B′ for the corresponding operator.
4 One is tempted to think that such a decomposition holds for any event E ; however,

this is not true. See Lemma 2.1 of [9] for another special case where the decomposition
does hold.

Composing Quantum Protocols in a Classical Environment 355

Protocols and Functionalities with Classical In- and Output. In this
work, we focus on quantum protocols π = (A,B) with classical in- and output
for the honest players. This means that we assume the common input state ρUV

to be classical, i.e. of the form ρUV =
∑

u,v PUV (u, v)|u〉〈u| ⊗ |v〉〈v| for some
probability distribution PUV , and the common output state ρXY = πA,B ρUV is
then guaranteed to be classical as well, i.e., ρXY =

∑
x,y PXY (x, y)|x〉〈x|⊗ |y〉〈y|.

In this case we may understand U and V as well as X and Y as random vari-
ables, and we also write (X,Y) = π(U, V). Note that the input-output behavior
of the protocol is uniquely determined by the conditional probability distribu-
tion PXY |UV . If one of the players, say Bob, is dishonest and follows a ma-
licious strategy B′, then we may allow his part of the input to be quantum
and denote it as V ′, i.e. ρUV ′ =

∑
u PU (u)|u〉〈u| ⊗ ρV ′|U=u, and we allow his

part Y ′ of the common output state ρXY ′ = πA,B′ ρUV ′ to be quantum, i.e.
ρXY ′ =

∑
x PX(x)|x〉〈x| ⊗ ρY ′|X=x. We write ρUV ′ as ρU∅ = ρU ⊗ ρ∅ = ρU if V ′

is empty, i.e. if B′ has no input at all, and we write it as ρUZV ′ if part of his
input, Z, is actually classical.

A classical non-reactive two-party ideal functionality F is given by a condi-
tional probability distribution PF(U,V)|UV , inducing a pair of random variables
(X,Y) = F(U, V) for every joint distribution of U and V . We also want to
take into account ideal functionalities which allow the dishonest player some
additional—though still limited—capabilities (as for instance in Section 6). We
do this as follows. We specify F not only for the “proper” domains U and V ,
over which U and V are supposed to be distributed, but we actually specify
it for some larger domains Ũ ⊇ U and Ṽ ⊇ V . The understanding is that U
and V provided by honest players always lie in U and V , respectively, whereas
a dishonest player, say Bob, may select V from Ṽ \ V , and this way Bob may
cause F , if specified that way, to process its inputs differently and/or to provide
a “more informative” output Y to Bob. For simplicity though, we often leave
the possibly different domains for honest and dishonest players implicit.

We write (X,Y) = FÂ,B̂(U, V) or ρXY = FÂ,B̂ ρUV for the execution of the
“ideal-life” protocol, where Alice and Bob forward their inputs to F and output
whatever they obtain from F . And we write ρXY ′ = FÂ,B̂′ ρUV ′ for the execution
of this protocol with a dishonest Bob with strategy B̂′ and quantum input V ′.
Note that Bob’s possibilities are very limited: he can produce some classical input
V for F (distributed over Ṽ) from his input quantum state V ′, and then he can
prepare and output a quantum state Y ′ which might depend on F ’s reply Y .

Classical Hybrid Protocols. A two-party classical hybrid protocol ΣF1···F� =
(Â, B̂) between Alice and Bob is a protocol which makes a bounded number k
of sequential oracle calls to possibly different ideal functionalities F1, . . . ,F�.
We allow Â and B̂ to make several calls to independent copies of the same Fi,
but we require from ΣF1···F� that for every possible execution, there is always
agreement between Â and B̂ on when to call which functionality; for instance we
may assume that Â and B̂ exchange the index i before they call Fi (and stop if
there is disagreement).

356 S. Fehr and C. Schaffner

Fig. 1. Hybrid protocol ΣF1···F�

Â,B̂′

Formally, such a classical hybrid
protocol is given by a sequence of k + 1
quantum protocols formalized by quan-
tum operators with classical in- and out-
put for the honest players, see Figure 1.
For an honest player, say Alice, the j-
th protocol outputs an index i indicating
which functionality is to be called, classi-
cal auxiliary (or “state”) information in-
formation Sj and a classical input Uj for
Fi. The (j+ 1)-st protocol expects as in-
put Sj and Alice’s classical output Xj

from Fi. Furthermore, the first protocol
expects Alice’s classical input U to the
hybrid protocol, and the last produces
the classical output X of the hybrid pro-
tocol. In case of a dishonest player, say
Bob, all in- and outputs may be quan-
tum states V ′

j respectively Y ′
j . By instan-

tiating the j-th call to a functionality F
(where we from now on omit the index
for simpler notation) in the obvious way
by the corresponding “ideal-life” proto-
col FÂ,B̂ (respectively FÂ′,B̂ or FÂ,B̂′ in case of a dishonest Alice or Bob), we
obtain the instantiated hybrid protocol formally described by quantum operator
ΣF1···F�

Â,B̂
(respectively ΣF1···F�

Â′,B̂
or ΣF1···F�

Â,B̂′).5

For the hybrid protocol to be classical, we mean that it has classical in- and
output (for the honest players), but also that all communication between Alice
and Bob is classical.Since we have not formally modeled the communication
within (hybrid) protocols, we need to formalize this property as a property of
the quantum operators that describe the hybrid protocol: Consider a dishonest
player, say Bob, with no input, and consider the common state ρSjUjV ′

j
at any

point during the execution of the hybrid protocol when a call to functionality
Fi is made. The requirement for the hybrid protocol to be classical is now
expressed in that there exists a classical Zj—to be understood as consisting of
B̂′’s classical communication with Â and with the Fi′ ’s up to this point—such
that given Zj , Bob’s quantum state V ′

j is uncorrelated with (i.e. independent
of) Alice’ classical input and auxiliary information: ρSjUjZjV ′

j
= ρSjUj↔Zj↔V ′

j
.

Furthermore, we require that we may assume Zj to be part of V ′
j in the sense

that for any B̂′ there exists B̂′′ such that Zj is part of V ′
j . This definition is

motivated by the observation that if Bob can communicate only classically with
Alice, then he can correlate his quantum state with information on Alice’s side
only by means of the classical communication.

5 Note that for simpler notation, we are a bit sloppy and give the same name, like Â and
B̂′, to honest Alice’s and dishonest Bob’s strategy within different (sub)protocols.

Composing Quantum Protocols in a Classical Environment 357

We also consider the protocol we obtain by replacing the ideal functionalities
by quantum two-party sub-protocols π1, . . . , π� with classical in- and outputs
for the honest parties: whenever ΣF1···F� instructs Â and B̂ to execute FiÂ,B̂,
they instead execute πi = (Ai,Bi) and take the resulting outputs. We write
Σπ1···π� = (A,B) for the real-life quantum protocol we obtain this way.

4 Security for Two-Party Quantum Protocols

4.1 The Security Definition

Framework. We use the following framework for defining security of a quantum
protocol π with classical in- and output. We distinguish three cases and consider
the respective output states obtained by executing π in case of honest Alice and
honest Bob, in case of honest Alice and dishonest Bob, and in case of dishonest
Alice and honest Bob. For each of these cases we require some security conditions
on the output state to hold. More precisely, for honest Alice and Bob, we fix an
arbitrary joint probability distribution PUV for the inputs U and V , resulting
in outputs (X,Y) = πA,B(U, V) with a well defined joint probability distribution
PUV XY . For an honest Alice and a dishonest Bob, we fix an arbitrary distribution
PU for Alice’s input and an arbitrary strategy B′ with no input for Bob, and we
consider the resulting joint output state

ρUXY ′ =
(
idU ⊗ πA,B′

)
ρUU∅ =

∑
u

PU (u)|u〉〈u| ⊗ πA,B′(|u〉〈u|⊗ρ∅)

augmented with Alice’s input U , where U and X are classical and Y ′ is in
general quantum. And, correspondingly, for a dishonest Alice and an honest
Bob, we fix an arbitrary distribution PV for Bob’s input and an arbitrary strat-
egy A′ with no input for Alice, and we consider the resulting joint output state
ρV X′Y =

(
idV ⊗πA′,B

)
ρV ∅V augmented with Bob’s input V . Then, security is de-

fined by specific information-theoretic conditions on PUV XY , ρUXY ′ and ρV X′Y ,
where the conditions depend on the functionality F which π is implementing.
Definition 4.1 below for a general functionality F , as well as the definitions
studied later for specific functionalities (Definitions 6.1), are to be understood
in this framework. In particular, the augmented common output states are to
be understood as defined above.

We stress once more that the framework assumes that dishonest players have
no input at all. This might appear too weak at first glance; one would expect a
dishonest player, say Bob, to at least get the input V of the honest Bob. The
justification for giving dishonest players no input is that on the one hand, we will
show that this “minimalistic approach” is good enough for the level of security
we are aiming for (see Theorem 5.1), and on the other hand, our goal is to keep
the security definitions as simple as possible.

Restricting the Adversary. Since essentially no interesting two-party task
can be implemented securely by a quantum protocol against unbounded quantum

358 S. Fehr and C. Schaffner

attacks [20,19,18,16], one typically has to put some restriction upon the dishon-
est player’s capabilities, like to limit his quantum-storage capabilities [8,7,9,28]
or the size of coherent measurements he can do [24]. Throughout, we let A and
B be subfamilies of all possible strategies A′ and B′ of a dishonest Alice and a
dishonest Bob, respectively. In order to circumvent pathological counter exam-
ples, we need to assume the following two natural consistency conditions on A,
and correspondingly on B. If a dishonest strategy A′ ∈ A expects as input some
state ρZU ′ with classical Z, then for any z and for any ρU ′|Z=z, the strategy
A′

z,ρU′|Z=z
, which has z hard-wired and prepares the state ρU ′|Z=z as an initial

step but otherwise runs like A′, is in A as well. And, if A′ ∈ A is a dishonest
strategy for a protocol Σπ which makes a call to a sub-protocol π, then the
corresponding “sub-strategy” of A′, which is active during the execution of π, is
in A as well. It is for instance clear that bounding the quantum memory leads
to a family of strategies that satisfies these conditions.

Defining Security. Following the framework described above, we propose the
following security definition for two-party quantum protocols with classical in-
and output. The proposed definition implies strong simulation-based security
when using quantum protocols as sub-protocols in classical outer protocols (The-
orem 5.1), yet it is expressed in a way that is as simple and as weak as seemingly
possible, making it as easy as possible to design and prove quantum crypto-
graphic schemes secure according to the definition.

Definition 4.1. A two-party quantum protocol π ε-securely implements an ideal
classical functionality F against A and B if the following holds:

Correctness: For any joint distribution of the input U and V , the resulting
common output (X,Y) = π(U, V) satisfies (U, V,X, Y) ≈ε (U, V,F(U, V)).

Security for Alice: For any B′ ∈ B (with no input), and for any distribution
of U , the resulting common output state ρUXY ′ (augmented with U) is such
that there exist6 classical random variables V, Y such that PUV ≈ε PU · PV ,
(U, V,X, Y) ≈ε (U, V,F(U, V)), and ρUXV Y Y ′ ≈ε ρUX↔V Y ↔Y ′ .

Security for Bob: For any A′ ∈ A (with no input), and for any distribution
of V , the resulting common output state ρV X′Y (augmented with V) is such
that there exist classical random variables U,X such that PUV ≈ε PU · PV ,
(U, V,X, Y) ≈ε (U, V,F(U, V)), and ρV Y UXX′ ≈ε ρV Y ↔UX↔X′ .

The three conditions for dishonest Bob (and similarly for dishonest Alice) express
that, up to a small error, V is independent of U , X and Y are obtained by
applying F , and the quantum state Y ′ is obtained by locally processing V and Y .

We would like to point out that Definition 4.1 requires existence of the dishon-
est party’s input, and as such prohibits the dishonest party to execute π in super-
position with several inputs and to obtain a superposition of the corresponding
outputs. Indeed, it is interesting to note that from a superposition of outputs,

6 As defined in Section 2.

Composing Quantum Protocols in a Classical Environment 359

the dishonest party can typically extract “forbidden information” [4,25].This is
another way to see that without any restriction on the adversary, non-trivial
quantum two-party computation is not possible [18].

4.2 Equivalent Formulations

As already mentioned, Definition 4.1 appears to guarantee security only in a
very restricted setting, where the honest player has no information beyond his
input, and the dishonest player has no (auxiliary) information at all. Below, we
argue that Definition 4.1 actually implies security in a somewhat more general
setting, where the dishonest player is allowed as input to have arbitrary classical
information Z as well as a quantum state which only depends on Z. For com-
pleteness, although this is rather clear, we also argue that not only the honest
player’s input is protected, but also any classical “side information” S he might
additionally have but does not use.

Proposition 4.2. Let π be a two-party protocol that ε-securely implements F
against A and B. Let B′ ∈ B be a dishonest Bob who takes as input a classical
Z and a quantum state V ′ and outputs (the same) Z and a quantum state Y ′.
Then, for any ρSUZV ′ with ρSUZV ′ = ρSU↔Z↔V ′ , the resulting overall output
state (augmented with S and U) ρSUXZY ′ =

(
idSU ⊗ πA,B′

)
ρSUUZV ′ is such

that there exist classical random variables V, Y such that PSUZV ≈ε PSU↔Z↔V ,
(S,U, V,X, Y, Z) ≈ε (S,U, V,F(U, V), Z) and ρSUXV Y ZY ′ = ρSUX↔V Y Z↔Y ′ .
The corresponding holds for a dishonest Alice.

The proof of Proposition 4.2, as well as the proof of Proposition 4.3 below, can
be found in the full version [11].

Note the restriction on the adversary’s quantum input V ′, namely that it is
only allowed to depend on the honest player’s input U (and side information S)
“through” Z. It is this limitation which prohibits quantum protocols satisfying
Definition 4.1 to securely compose into outer quantum protocols but requires
the outer protocol to be classical. Indeed, within a quantum protocol that uses
quantum communication, a dishonest player may be able to correlate his quan-
tum state with classical information on the honest player’s side; however, within
a classical protocol, he can only do so through the classical communication so
that his state is still independent when given the classical communication.

The following proposition shows equivalence to a simulation-based definition;
this will be a handy formulation in order to prove the composition theorem.

Proposition 4.3. Let π be a two-party protocol that ε-securely implements F
against A and B. Let B′ ∈ B be a dishonest Bob who takes as input a classical Z
and a quantum state V ′, engages into π with honest Alice and outputs Z and a
quantum state Y ′. Then, for any ρSUZV ′ with ρSUZV ′ = ρSU↔Z↔V ′ there exists
B̂′ such that (

idS ⊗ πA,B′
)
ρSUZV ′ ≈3ε

(
idS ⊗FÂ,B̂′

)
ρSUZV ′ .

The corresponding holds for a dishonest Alice.

360 S. Fehr and C. Schaffner

Recall that FÂ,B̂′ is the execution of the “ideal-life” protocol, where honest Â
relays in- and outputs, and the only thing dishonest B̂′ can do is modify the
input and the output. Note that we do not guarantee that B̂′ is in B; we will
comment on this after Theorem 5.1.

5 Composability

We show the following composition result. If quantum protocols π1, . . . , π� se-
curely implement ideal functionalities F1, . . . ,F� according to Definition 4.1,
then any two-party classical hybrid protocol ΣF1,...,F� which makes sequential
calls to F1, . . . ,F� is essentially equally secure as the protocol obtained by re-
placing the calls to F1, . . . ,F� by the respective quantum subroutines π1, . . . , π�.

We stress that the Fi’s are classical functionalities, i.e., even a dishonest player
Â′ or B̂′ can only input a classical value to Fi, and for instance cannot execute Fi

with several inputs in superposition. This makes our composition result stronger,
because we give the adversary less power in the “ideal” (actually hybrid) world.

Theorem 5.1 (Composition Theorem). Let ΣF1···F� = (Â, B̂) be a classical
two-party hybrid protocol which makes at most k oracle calls to the functionali-
ties, and for every i ∈ {1, . . . , �}, let protocol πi be an ε-secure implementation
of Fi against A and B. Then, the following holds.

Correctness: For every (distribution of) U and V

δ
(
Σπ1···π�

A,B ρUV , Σ
F1···F�

Â,B̂
ρUV

)
≤ kε .

Security for Alice: For every B′ ∈ B there exists B̂′ such that for every U

δ
(
Σπ1···π�

A,B′ ρU∅, Σ
F1···F�

Â,B̂′ ρU∅
)
≤ 3kε .

Security for Bob: For every A′ ∈ A there exists Â′ such that for every V

δ
(
Σπ1···π�

A′,B ρ∅V , Σ
F1···F�

Â′,B̂
ρ∅V

)
≤ 3kε .

Before going into the proof, we would like to point out the following observations.
First of all, note that in contrast to typical composition theorems, which per-se
guarantee security when replacing one functionality by a sub-protocol and where
in case of several functionalities security then follows by induction, Theorem 5.1
is stated in such a way that it directly guarantees security when replacing all
functionalities by sub-protocols. The reason for this is that the assumption that
the outer protocol is classical is not satisfied anymore once the first functionality
is replaced by a quantum sub-protocol, and thus the inductive reasoning does
not work directly. We stress that our composition theorem nevertheless allows for
several levels of compositions (see Corollary 5.2 and the preceding discussion).

Also, note that in Theorem 5.1 we assume the dishonest party to have no
input. As in Section 4.2, this can be relaxed to a dishonest party, say Bob, that

Composing Quantum Protocols in a Classical Environment 361

has an auxiliary input, consisting of a classical part Z and a quantum part V ′,
as long as the quantum part V ′ depends on Alice’ input U only through Z:
ρUZV = ρU↔Z↔V ; i.e., dishonest Bob has only classical side-information on
Alice’ input. This restriction is motivated by our model which captures a classical
world except for specific designated quantum sub-protocols, and as such provides
dishonest Bob a priori only with classical side-information.

Furthermore, note that we do not guarantee that the hybrid adversary B̂′ is
in B (and similarly for Â′). For instance the specific B̂′ we construct in the proof
is more involved with respect to classical resources (memory and computation),
but less involved with respect to quantum resources: essentially it follows B′, ex-
cept that it remembers all classical communication and except that the actions
during the sub-protocols are replaced by sampling a value from some distribu-
tion and preparing a quantum state (of a size that also B′ has to handle); the
descriptions of the distribution and the state have to be computed by B̂′ from the
stored classical communication. By this, natural restrictions on B′ concerning its
quantum capabilities propagate to B̂′. For instance if B′ has a quantum memory
of bounded size, so has B̂′. Furthermore, in many cases the classical hybrid pro-
tocol is actually unconditionally secure against classical dishonest players and as
such in particular secure against unbounded quantum dishonest players (because
every dishonest quantum strategy can be simulated by an unbounded classical
adversary), so no restriction on B̂′ is needed.

Finally, note that we do not specify what it means for the hybrid protocol to
be secure; Theorem 5.1 guarantees that whatever the hybrid protocol achieves,
essentially the same is achieved by the real-life protocol with the oracle calls
replaced by protocols. But of course in particular, if the hybrid protocol is secure
in the sense of Definition 4.1, then so is the real-life protocol, and as such it could
itself be used as a quantum sub-protocol in yet another classical outer protocol.

Corollary 5.2. If ΣF1···F� is a δ-secure implementation of G against A and
B, and if πi is an ε-secure implementation of Fi against A and B for every
i ∈ {1, . . . , �}, then Σπ1···π� is a (δ+3kε)-secure implementation of G.

Proof (of Theorem 5.1). Correctness is obvious. We show security for Alice;
security for Bob can be shown accordingly. Consider a dishonest B′. First we
argue that for every distribution for Alice’s input U , there exists a B̂′ as claimed
(which though may depend on PU). Then, in the end, we show how to make B̂′

independent of PU .
Let A’s input U be arbitrarily distributed. We prove the claim by induction

on k. The claim holds trivially for protocols that make zero oracle calls. Consider
now a protocol ΣF1···F� with at most k > 0 oracle calls. For simplicity, we as-
sume that the number of oracle calls equals k, otherwise we instruct the players
to makes some “dummy calls”. Let ρSkUkV ′

k
be the common state right before the

k-th and thus last call to one of the sub-protocols π1, . . . , π� in the execution of
the real protocol Σπ1,...,π� . To simplify notation in the rest of the proof, we omit
the index k and write ρ

S̄ŪV̄ ′ instead; see Figure 2. We know from the induction
hypothesis for k − 1 that there exists B̂′ such that ρ

S̄Ū V̄ ′ ≈3(k−1)ε σS̄Ū V̄ ′ where

362 S. Fehr and C. Schaffner

πiπi πiπi

Σπ1···π�

AB′

ρS̄X̄Ȳ ′

πi′ Fi′

ρ
S̄Ū V̄ ′ Fi

ΣF1···F�

ÂB̂′

Fi′

≈

τS̄X̄Ȳ ′

σ
S̄Ū V̄ ′

σS̄X̄Ȳ ′

≈

Fig. 2. Steps of the Composability Proof

σ
S̄Ū V̄ ′ is the common state right before the k-th call to a functionality in the

execution of the hybrid protocol ΣF1···F�

Â,B̂′ ρU∅. As described in Section 3, S̄, Ū
and V̄ ′ are to be understood as follows. S̄ denotes A’s (respectively Â’s) classical
auxiliary information to be “remembered” during the call to the functionality. Ū
denotes A’s (respectively Â’s) input to the sub-protocol (respectively function-
ality) that is to be called next, and V̄ ′ denotes the dishonest player’s current
quantum state. For simplicity, we assume that the index i, which determines the
sub-protocol πi (functionality Fi) to be called next, is fixed and we just write π
and F for πi and Fi, respectively. If this is not the case, we consider ρ

S̄Ū V̄ ′|Ī=i
and σ

S̄ŪV̄ ′|Ī=i
instead, and reason as below for any i, where Ī denotes the index

of the sub-protocol (functionality) to be called. Note that conditioning on Ī = i

means that we allow B̂′ to depend on i, but this is legitimate since Ī is known
to the dishonest party.

Consider now the evolution of the state σ
S̄Ū V̄ ′ when executing FÂ,B̂′ (as pre-

scribed by the hybrid protocol) with a strategy for B̂′ yet to be determined and
when executing πA,B′ instead. Let σS̄X̄Ȳ ′ and τS̄X̄Ȳ ′ denote the corresponding
states after the execution of respectively πA,B′ and FÂ,B̂′ , see Figure 2. We show
that σS̄X̄Ȳ ′ and τS̄X̄Ȳ ′ are 3ε-close; this then proves the result by the fact that
evolution does not increase the trace distance and by the triangle inequality:

ρS̄X̄Ȳ ′ = (idS̄ ⊗ πA,B′) ρS̄Ū V̄ ′ ≈3(k−1)ε (idS̄ ⊗ πA,B′)σS̄Ū V̄ ′ = σS̄X̄Ȳ ′

≈3ε τS̄X̄Ȳ ′ = (idS̄ ⊗FÂ,B̂′)σS̄ŪV̄ ′ .

Let σ
S̄Ū Z̄V̄ ′ , σS̄X̄Z̄Ȳ ′ and τS̄X̄Z̄Ȳ ′ be the extensions of the respective states

σ
S̄Ū V̄ ′ , σS̄X̄Ȳ ′ and τS̄X̄Ȳ ′ when we also consider Z̄ (which collects the classi-

cal communication dictated by ΣF1...,F� as well as B̂′’s classical inputs to and
outputs from the previous oracle calls), which is guaranteed to exist by our for-
malization of a classical hybrid protocol, so that Z̄ is without loss of generality
contained in V̄ ′ and σ

S̄Ū Z̄V̄ ′ = σ
S̄Ū↔Z̄↔V̄ ′ . It thus follows from Proposition 4.3

that σS̄X̄Z̄Ȳ ′ and τS̄X̄Z̄Ȳ ′ are 3ε-close for a proper strategy of B̂′. Note that the

Composing Quantum Protocols in a Classical Environment 363

strategy of B̂′ may depend on the state σ
S̄Ū Z̄V̄ ′ , but since PU as well as Â’s

behavior are fixed, σ
S̄ŪZ̄V̄ ′ is also fixed.

It remains to argue that we can make B̂′ independent of PU . We use an elegant
argument due to Crépeau and Wullschleger [6]. We know that for any PU there
exists a B̂′ (though depending on PU) as required. For any value u that U may
take on, let then

εu = δ
(
Σπ1···π�

A,B′ ρU∅|U=u, Σ
F1···F�

Â,B̂′ ρU∅|U=u

)
.

Then,
∑

u PU (u)εu = 3kε. The εu’s depend on PU , and thus we also write
εu(PU). Consider now the function F which maps an arbitrary distribution PU

for U to a new distribution defined as F (PU)(u) := 1+εu(PU)
1+3kε PU (u). Function F

is continuous and maps a non-empty, compact, convex set onto itself. Thus, by
Brouwer’s Fixed Point Theorem, it must have a fixed point: a distribution PU

with F (PU) = PU , and thus εu(PU) = 3kε for any u. It follows that B̂′ which
works for that particular distribution PU in fact works for any specific value for
U and so for any distribution of U . �

6 Example: Secure Identification

We show that the information-theoretic security definition proposed by Damg̊ard
et al. for their secure-identification quantum protocol in the bounded-quantum-
storage model [9] implies security in our sense for a proper functionality FID; this
guarantees composability as in Theorem 5.1 for their protocol. In the full ver-
sion [11] of this paper, we also show the corresponding for the 1-2 OT scheme [7]
and for other variants of OT.

A secure identification scheme allows a user Alice to identify herself to server
Bob by securely checking whether the supplied password agrees with the one
stored by Bob. Specifically, on respective input strings WA,WB ∈ W provided
by Alice and Bob, the functionality outputs the bit Y = (WA

?= WB) to Bob. A
dishonest server B′ should learn essentially no information on WA beyond that
he can come up with a guess W ′ for WA and learns whether W ′ = WA or not,
and similarly a dishonest user A′ succeeds in convincing Bob essentially only
if she guesses WB correctly. If her guess is incorrect then the only thing she
might learn is that her guess is incorrect. The corresponding ideal functionality
is depicted in Figure 3. Note that if dishonest A′ provides the “correct” input
WA = WB, then FID allows A′ to learn this while she may still enforce Bob to
reject (by setting the “override bit” D to 0). In [11] we study a slightly stronger
variant, which does not allow this somewhat unfair option for A′.7

We recall the security definition from [9] for a secure identification scheme.
The definition is in the framework described in Section 4.1; thus, it considers
a single execution of the protocol with an arbitrary distribution for the honest

7 The reason we study here the weaker version is that this corresponds to the security
guaranteed by the definition proposed in [9], as we show.

364 S. Fehr and C. Schaffner

Functionality FID: Upon receiving strings WA and WB from user Alice
and from server Bob, FID outputs the bit WA

?= WB to Bob.
If Alice is dishonest, she may input an additional “override bit” D. Then,
FID outputs the bit WA

?= WB to Alice and the bit (WA
?= WB)∧D to Bob.

Fig. 3. The Ideal Password-Based Identification Functionality

players inputs and with no input for dishonest players, and security is defined by
information-theoretic conditions on the resulting output states. For consistency
with the above notation (and the notation used in [9]), Alice and Bob’s inputs
are denoted by WA and WB, respectively, rather than U and V . Furthermore,
note that honest Alice’s output X is empty: X = ∅.
Definition 6.1 (Secure Identification). A password-based quantum identifi-
cation scheme is ε-secure (against A and B) if the following properties hold.

Correctness: For honest user Alice and honest server Bob, and for any joint
input distribution PWAWB , Bob learns whether their input is equal, except
with probability ε.

Security for Alice: For any dishonest server B′ ∈ B, and for any distribution
of WA, the resulting common output state ρWAY ′ (augmented with WA) is
such that there exists a classical W ′ that is independent of WA and such that

ρWAW ′Y ′|WA 	=W ′ ≈ε ρWA↔W ′↔Y ′|WA 	=W ′ ,

Security for Bob: For any dishonest user A′ ∈ A, and for any distribution
of WB, the resulting common output state ρWBY X′ (augmented with WB)
is such that there exists a classical W ′ independent of WB, such that if
WB �=W ′ then Y = 1 with probability at most ε, and

ρWBW ′X′|W ′ 	=WB
≈ε ρWB↔W ′↔X′|W ′ 	=WB

.

Proposition 6.2. A quantum protocol satisfying Definition 6.1 3ε-securely im-
plements the functionality FID from Figure 3 according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: ConsiderW ′ which is guaranteed to exist by Definition 6.1.

Let us define V = W ′ and let Y be the bit WA
?= W ′. By the requirement of

Definition 6.1, W ′ is independent of Alice’s input WA. Furthermore, we have(
WA,W

′, ∅, Y) =
(
WA,W

′,FID(WA,W
′)
)

by the definition of FID . Finally, we note that Y completely determines the event
E := {WA �= W ′} and therefore, we conclude using Lemma 2.3 that

Composing Quantum Protocols in a Classical Environment 365

ρWA∅W ′Y Y ′

=Pr[WA �= W ′]·ρWA∅W ′Y Y ′|WA 	=W ′ + Pr[WA = W ′]·ρWA∅W ′Y Y ′|WA=W ′

=Pr[WA �= W ′]·ρWA∅W ′Y Y ′|WA 	=W ′ + Pr[WA = W ′]·ρWA↔W ′Y ↔Y ′|WA=W ′

≈ε Pr[WA �=W ′]·ρWA↔W ′Y ↔Y ′|WA 	=W ′ + Pr[WA = W ′]·ρWA↔W ′Y ↔Y ′|WA=W ′

=ρWA↔W ′Y ↔Y ′ .

Security for Bob: Consider the random variable W ′ which is guaranteed to exist
by Definition 6.1. Let us define U and X as follows. We let U = (W ′, D) where
we define D = Y if WB = W ′, and else we choose D “freshly” to be 0 with
probability Pr[Y = 0|WB =W ′] and to be 1 otherwise. Furthermore, we let X =
(W ′ ?= WB). Recall that by the requirement of Definition 6.1, W ′ is independent
of Bob’s inputWB. Furthermore by construction,D = 0 with probability Pr[Y =
0|WB = W ′], independent of the value of WB (and independent of whether
WB = W ′ or not). Thus, U is perfectly independent of WB.

Since by Definition 6.1 the probability for Bob to decide that the inputs are
equal, Y = 1, does not exceed ε if WB �=W ′, we have that

PUWBXY = Pr[WB =W ′]·PUWBXY |WB=W ′ + Pr[WB �=W ′]·PUWBXY |WB 	=W ′

=Pr[WB =W ′]·PUWBFID(U,WB)|WB=W ′ + Pr[WB �=W ′]·PUWBXY |WB 	=W ′

≈ε Pr[WB =W ′]·PUWBFID(U,WB)|WB=W ′ +Pr[WB �=W ′]·PUWBFID(U,WB)|WB 	=W ′

=PUWBFID(U,WB) .

Finally, we have

ρWBY UXX′ = Pr[WB �=W ′] · ρWBY W ′DXX′|WB 	=W ′

+ Pr[WB =W ′] · ρWBY W ′DXX′|WB=W ′ .

In the case WB = W ′, we have by construction that D = Y and therefore, we
obtain that ρWBY W ′DXX′|WB=W ′ = ρWBY ↔W ′D↔XX′|WB=W ′ . If WB �= W ′, it
follows from Definition 6.1 and the fact that D is sampled independently that
ρWBW ′DX′|W ′ 	=WB

≈ε ρWB↔W ′D↔X′|W ′ 	=WB
. Furthermore, the bit X is fixed to

0 in case WB �=W ′ and we only make an error of at most ε assuming that Bob’s
output Y is always 0 and therefore,

ρWBY W ′DXX′|WB 	=W ′ ≈ε ρWB(Y =0)W ′D(X=0)X′|WB 	=W ′

≈ε ρWB(Y =0)↔W ′D(X=0)↔X′|WB 	=W ′ ≈ε ρWBY ↔W ′DX↔X′|WB 	=W ′

Putting things together, we obtain

ρWBY UXX′ ≈3ε Pr[WB �=W ′] · ρWBY ↔W ′DX↔X′|WB 	=W ′

+ Pr[WB =W ′] · ρWBY ↔W ′D↔XX′|WB=W ′

= ρWBY ↔(W ′D)X↔X′ ,

where we used Lemma 2.1 and 2.3 in the last step. �

366 S. Fehr and C. Schaffner

7 Conclusion

We proposed a general security definition for quantum protocols in terms of sim-
ple quantum-information-theoretic conditions and showed that quantum proto-
cols fulfilling the definition do their job as expected when used as subroutines in
a larger classical protocol. The restriction to classical “outer” protocols fits our
currently limited ability for executing quantum protocols, but can also be appre-
ciated in that our security conditions pose minimal requirements for a quantum
protocol to be useful beyond running it in isolation.

Acknowledgements

We would like to thank Jürg Wullschleger for sharing a draft of [6] and pointing
out how to avoid the dependency of the dishonest player in the ideal model from
the honest player’s input distribution.

References

1. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure mul-
tiparty quantum computation with (only) a strict honest majority. In: 46th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 249–260
(2005)

2. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The uni-
versal composable security of quantum key distribution. In: Kilian, J. (ed.) TCC
2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005)

3. Ben-Or, M., Mayers, D.: General security definition and composability for quantum
and classical protocols (September 2004),
http://arxive.org/abs/quant-ph/0409062

4. Colbeck, R.: The impossibility of secure two-party classical computation (August
2007), http://arxiv.org/abs/0708.2843

5. Crépeau, C., Savvides, G., Schaffner, C., Wullschleger, J.: Information-theoretic
conditions for two-party secure function evaluation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 538–554. Springer, Heidelberg (2006)

6. Crépeau, C., Wullschleger, J.: Statistical security conditions for two-party secure
function evaluation. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp.
86–99. Springer, Heidelberg (2008)

7. Damg̊ard, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order
entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)

8. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 449–458 (2005),
http://arxiv.org/abs/quant-ph/0508222v2

9. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in
the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 342–359. Springer, Heidelberg (2007)

10. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-
quantum-storage model. SIAM Journal on Computing 37(6), 1865–1890 (2008)

http://arxive.org/abs/quant-ph/0409062
http://arxiv.org/abs/0708.2843
http://arxiv.org/abs/quant-ph/0508222v2

Composing Quantum Protocols in a Classical Environment 367

11. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment
(2008), http://arxiv.org/abs/0804.1059

12. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. II. Cam-
bridge University Press, Cambridge (2004)

13. Gottesman, D., Lo, H.-K.: Proof of security of quantum key distribution with two-
way classical communications. IEEE Transactions on Information Theory 49(2),
457–475 (2003), http://arxiv.org/abs/quant-ph/0105121

14. J.: v. d. Graaf. Towards a formal definition of security for quantum protocols. PhD
thesis, Université de Montréal (1997)

15. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM
Symposium on Theory of Computing (STOC), pp. 20–31 (1988)

16. Kitaev, A.: Quantum coin-flipping. In: QIP 2003 (2003); A review of this technique
can be found, http://lightlike.com/~carlosm/publ

17. Koenig, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum infor-
mation does not imply security. Physical Review Letters 98(140502) (April 2007)

18. Lo, H.-K.: Insecurity of quantum secure computations. Physical Review A 56(2),
1154–1162 (1997)

19. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Physical Re-
view Letters 78(17), 3410–3413 (1997)

20. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys-
ical Review Letters 78(17), 3414–3417 (1997)

21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

22. Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zürich
(Switzerland) (September 2005), http://arxiv.org/abs/quant-ph/0512258

23. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

24. Salvail, L.: Quantum bit commitment from a physical assumption. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998)

25. Salvail, L., Sotáková, M., Schaffner, C.: On the power of two-party quantum cryp-
tography (submitted, 2008)

26. Smith, A.: Multi-party quantum computation. Master’s thesis, MIT (2001)
27. Unruh, D.: Simulatable security for quantum protocols (2004),

http://arxiv.org/abs/quant-ph/0409125

28. Wehner, S., Schaffner, C., Terhal, B.M.: Cryptography from noisy storage. Physical
Review Letters 100(22), 220502 (2008)

29. Wehner, S., Wullschleger, J.: Composable security in the bounded-quantum-
storage model. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
604–615. Springer, Heidelberg (2008)

http://arxiv.org/abs/0804.1059
http://arxiv.org/abs/quant-ph/0105121
http://lightlike.com/~carlosm/publ
http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/quant-ph/0409125

LEGO for Two-Party Secure Computation

Jesper Buus Nielsen and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus University
{jbn,orlandi}@cs.au.dk

Abstract. This paper continues the recent line of work of making Yao’s
garbled circuit approach to two-party computation secure against an ac-
tive adversary. We propose a new cut-and-choose based approach called
LEGO (Large Efficient Garbled-circuit Optimization): It is specifically
aimed at large circuits. Asymptotically it obtains a factor log |C| improve-
ment in computation and communication over previous cut-and-choose
based solutions, where |C| is the size of the circuit being computed. The
protocol is universally composable (UC) in the OT-hybrid model against
a static, active adversary.

1 Introduction

In secure two-party computation we have two parties, Alice and Bob, that want
to compute a function f(·, ·) of their inputs a, b, and learn the result y = f(a, b),
without any party learning any other information.

Yao [Yao82, Yao86] was the first to present a solution to this problem. His
protocol, presented and proved in [LP04], is only secure against a passive ad-
versary. We give a novel approach to making Yao’s idea secure against active
adversaries.

In Yao’s protocol Alice constructs a garbled circuit and sends it to Bob: a
malicious Alice can send Bob a circuit that does not compute the agreed func-
tion, as a consequence the computation loses both privacy and correctness. In
our protocol instead Alice and Bob both participate in the circuit construction.
The main idea of our protocol is to have Alice prepare and send a bunch of gar-
bled NAND gates (together with some other components) to Bob. Bob selects a
random subset of the gates and Alice provides Bob with the keys to test them. If
they all work correctly he assumes that at most a small fraction of the remain-
ing gates are malfunctioning. Bob shuffles the remaining gates to put the faulty
gates in random positions and connects them into a circuit that computes the
desired function even in the presence of a few random faults — the scrambled
NAND gates are designed such that Bob can, with a limited help from Alice,
connect the gates as he likes. Then the circuit is evaluated by Bob as in Yao’s
protocol: Bob gets his keys running oblivious transfers (OT) with Alice and he
evaluates the circuit.

Related Work: In the last years many solutions have been proposed to achieve
two-party computation secure against malicious adversaries.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 368–386, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

LEGO for Two-Party Secure Computation 369

In [LP07, LPS08], Alice sends s copies of the Yao’s garbled circuit to be
computed. Bob checks half of them and computes on the remaining circuits. A
similar approach was suggested in [MF06]. Due to the circuit replication, they
need to introduce some machinery in order to force the parties to provide the
same inputs to every circuit, resulting in an overhead of s2 commitments per
input wire for a total of O(sκ|C| + s2κ|I|), where |C| is the size of the circuit,
|I| is the size of the input and κ is the length of a hash value. To optimize the
cut-and-choose construction, Woodruff [Woo07] proposed a way of proving input
consistency using expander graphs: using this construction it is possible to get
rid of the dependency on the input size and therefore achieving complexity of
O(sκ|C|). More concretely, the protocol in [LP07, LPS08] requires s copies of a
circuit of size |C| + |D|, where D is an input decoder, added to the circuit to
deal with so-called selective failures. They propose a basic version of D with
size O(s|I|) and a more advanced with size O(s + |I|). However, because of
the s2|I| commitments, their optimized encoding gives them just a benefit in
the number of OT required. With our construction, we can fully exploit their
encoding. In fact we need just to replicate s/ log(|C|) times a circuit of size O(|C|+
s+ |I|) = O(|C|), which gives our protocol a complexity of O((s/ log(|C|))κ|C|),
i.e., our replication factor is reduced by the logarithm of the circuit size. The
improvement in replication factor from s to s/ log(|C|) comes from doing cut-
and-choose on individual gates instead of doing it on entire circuits.

Another approach to making Yao’s idea actively secure is to use generic zero-
knowledge proofs to force good behavior [GMW86]. In theory this can be done
with just a constant overhead in communication [NN01].

Other related works include: Considering UC security, in [JS07] a solution
for two party computation on committed inputs is presented. This construction
uses public-key encryption together with efficient zero-knowledge proofs, in order
to prove that the circuit was built correctly. Their asymptotic complexity is
O(κ′|C|), where κ′ is the length of factorization-based public-key cryptosystems.
In our protocol the parameter κ can be chosen to be much smaller i.e., the
required size for hashing and elliptic curves cryptography.

In [IPS08] a protocol for UC secure two-party computation in the OT-hybrid
model is presented with communication complexity O(|C|) + poly(s, d, log |C|),
where s is the security parameter and d is the depth of C. The hidden constant
factor and the term poly(s, d, log |C|), however, makes the comparison between
the protocols unclear. Moreover, their protocol has non-constant round complex-
ity as opposed to ours. Even the situation for very small or alternatively very
large circuits is not clear a priori without trying to optimize and implement
both approaches.

Our Contribution: Our scheme is based on three assumptions. We need a
UC secure OT scheme. In addition we assume a finite group and an element g
of prime order p such that the discrete logarithm problem is hard in 〈g〉, for
instance the group of points over an elliptic curve. Finally we need a function
H : Zp → Zp which is collision resistant and which is correlation resistant
according to Def. 1.

370 J.B. Nielsen and C. Orlandi

Definition 1. Given F : Zp → Zp, let OF be the following oracle: It samples a
uniformly random ∆ ∈ Zp and stores ∆. Whenever it is queried on c ∈ {0, 1, 2},
it samples a uniformly random K0 ∈ Zp, lets K1 = K0 + ∆ mod p, K2 =
K0 + 2∆ mod p and returns Kc and F (Kd) for d ∈ {0, 1, 2} \ {c}. We call H
correlation resistant if no poly-time adversary can distinguish OH from OR,
where R is a uniformly random function from Zp to Zp.

It is clear that a random function is correlation resistant and it seems reasonable
to assume that practical hash functions satisfy this property. The notion of
correlation resistance is closely related to the notion of correlation robustness
in [IKNP03].

Theorem 1. If H is collision resistant and correlation resistant according to
Def. 1 with output length at most κ, the DL problem is hard in 〈g〉, elements
of 〈g〉 can be represented with κ bits and 2−s is negligible, then our protocol
securely evaluates any function y = f(a, b) computed by a poly-sized Boolean
circuit C. The protocol is UC secure against a static, active adversary in the
OT-hybrid model. The round complexity is constant, the communication com-
plexity is O(κs|C|/ log |C|). Regarding computational complexity, O(s|C|/ log |C|)
exponentiations in 〈g〉 are performed and the number of OT calls is O(|I| + s).
The version of our protocol presented in this short version of the paper is less
efficient than need be, to allow clearer presentation and analysis. In the full
version [NO08] some (constant factor) efficiency improvements are presented.

2 Ideal Functionalities

The ideal functionality we implement is described in Fig. 1 (see Fig. 2 for no-
tation). It is “insecure” in the sense that it allows Alice to guess Bob’s input
bits. This can be solved in a black-box manner by replacing C with a circuit
computing a function of an encoded version of Bob’s input. The randomized

The ideal functionality Fsce is parametrized by a circuit C and runs as follows:

Inputs: Alice inputs {xw}w∈IA to specify an input bit xw for each of her wires w,
and Bob inputs {xw}w∈IB .

Abort: If a party is corrupted and inputs abort!, then Fsce outputs abort! to
the other party and terminates.

Evaluation: If no party inputs abort!, then Fsce computes {yw}w∈O =
C({xw}w∈I) and outputs {yw}w∈O to Alice.

Guess: If Alice is corrupted, she can after Bob inputs {xw}w∈IB give an input
W ⊆ IB and {βw}w∈W . If βw = xw for all w ∈ W , then Fsce outputs correct!
to Alice and continues as above. Otherwise, it outputs You were busted! to
Alice, outputs Alice cheats! to Bob and then terminates.

Fig. 1. Our ideal functionality for secure circuit evaluation

LEGO for Two-Party Secure Computation 371

encoding is such that any s bits of a codeword are uniformly random and inde-
pendent. The security follows from the fact that Alice cannot guess s or more
bits with probability more than 2−s, and if she guesses less bits she will learn no
information. One method for this is given in [LP07]. The extra number of gates
used is O(|IB | + s), where |IB| is the length of Bob’s input and s is a security
parameter.

We implement Fsce in the OT-hybrid model with an ideal functionality Fot.
We also assume an ideal functionality Fzk for zero-knowledge proof of knowledge.
This can be implemented by s calls to the OT functionality: The prover offers a
reply to challenge e = 0 and e = 1 and the verifier chooses and verifies one of the
replies. The simulator reads the verifier’s challenge and sets the corresponding
message to be a simulated reply. The extractor can get both replies and compute
the witness if both are correct. Repeating s times gives a soundness error of 2−s.
We use in total just 2 calls to the proof of knowledge functionality, giving an
overhead of 2s calls to Fot.

3 LEGO Circuits

We start by describing our variation of Yao circuits. It is designed to allow Alice
to generate garbled gates independently and later let Bob connect the gates in
any order. In the description we use the notation in Fig. 2.

We work with garbled circuits where each wire can carry a value c ∈ {0, 1, 2}.
Input wires to the circuit and output values from the circuit only carry values
c ∈ {0, 1} — the value c = 2 is only carried by certain internal wires. For a wire
with name w we use V(w) ∈ {0, 1, 2} to denote the value carried by the wire.
The values on input wires are specified by Alice and Bob.

LEGO circuits consist of wires and so-called bricks. Wires are essentially just
names w ∈ {0, 1}∗ to which we will associate certain values, in particular a zero-
key K0 and a commitment [K0]. We write Z(w) = K0 to denote the zero-key
associated to wire w and we write COM(w) = [K0] to denote the associated
commitment to K0. Alice knows K0 and [K0] while Bob knows only [K0] from
the beginning. During the evaluation of the garbled circuit Bob will learn a key
Kc ∈ {K0,K1,K2} for each wire w — here Kc = K0 + c∆ mod p. We think of
this as the wire w carrying the value c ∈ {0, 1, 2}. Bob does not know the value
of K0 and therefore he does not know the value of c.

Bricks are special garbled circuits allowing Bob to compute on keys Kc. As an
example we sketch the not-two brick. It has one input wire wI and one output
wire wO — these are just unique names from {0, 1}∗. Let I0 = Z(wI) and
O0 = Z(wO) be the associated zero-keys. If Bob knows Ix ∈ {I0, I1, I2} then the
not-two brick will allow Bob to compute Oz ∈ {O0, O1} with z = nt(x). The not-
two brick does not leak either x or z to Bob. We also have an addition brick with
two input wires (with zero-keys L0 and R0) and one output wire (with zero-key
S0): from Lx ∈ {L0, L1} and Ry ∈ {R0, R1} it allows Bob to compute Sx+y ∈
{S0, S1, S2}. Finally we have a key-filter brick with one associated zero-key K0.
Given a possibly large set of keys K ⊂ Zp it allows to compute K∩ {K0,K1}. It

372 J.B. Nielsen and C. Orlandi

– s is the security parameter.
– C is a Boolean circuit specifying the function to be computed. It consists of

NAND gates only.
– |C| is the number of NAND gates in C.
– I,O are the names of input wires respectively output wires in C. IA ⊂ I are

Alice’s input wires and IB = I \ IA are Bob’s input wires.
– {yw}w∈O = C{xw}w∈I says that if input wires w ∈ I are assigned the bits xw

and C is evaluated on them, then the output wires w ∈ O will hold the bits yw.
– p is a large prime.
– [x] is a Pedersen commitment to x ∈ Zp. It is computed as [x] = gxhr for

uniformly random r ∈ Zp. Here g is a group generator of order p, and h ∈R 〈g〉
is chosen by Bob. The prime p and the group is picked such that no poly-time
algorithm can solve the DL problem in 〈g〉 with probability better than 2−s.

– If [x] = gxhr and [y] = gyhs then [x]� [y] = [x][y] = gx+yhr+s is a commitment
to x + y mod p, and [x] � [y] = [x][y]−1 = gx−yhr−s is a commitment to x −
y mod p.

– ∆ ∈ Zp is the global difference, chosen uniformly at random by Alice and
unknown by Bob; [∆] is a uniformly random commitment to it. Our use of ∆
is inspired by [KS08].

– K0 ∈ Zp denotes a so-called zero-key. After ∆ is fixed it defines the one-key
K1 = K0 + ∆ mod p and the two-key K2 = K0 + 2∆ mod p. The key Kc will
be Bob’s representation of the “plaintext” c ∈ {0, 1, 2}.

– [K0] is a commitment to a zero-key, always produced by Alice. From [K0] and
[∆] Bob can compute commitments [K1] = [K0] � [∆] and [K2] = [K1] � [∆].

– Σ ∈ Zp denotes a so-called shifting value: It is a difference Σ = K′
0−K0 mod p

between two zero-keys K0 and K′
0. Note that Kc + Σ = K′

c for c = 0, 1, 2.
– H : Zp → Zp is a hash function which is collision resistant and correlation

resistant according to Def. 1. It is picked such that no poly-time adversary can
distinguish with probability better than 2−s in Def. 1.

– For K, K′ ∈ Zp we let EK(K′) = H(K) + K′ mod p and think of it as a
deterministic encryption of K′ using K. We let DK(C) = C − H(K) mod p =
K′.

– We define nt : {0, 1, 2} → {0, 1} by nt(0) = nt(1) = 1 and nt(2) = 0.
– We define ∧̄ : {0, 1}×{0, 1} → {0, 1} by a∧̄b = 0 iff a = 1 and b = 1. Note that

if a, b ∈ {0, 1}, then nt(a + b) = a∧̄b.
– K : {0, 1}∗ → 2Zp maps wire names w ∈ {0, 1}∗ to subsets of keys.

Fig. 2. Notation, explained further in main text

is among other things used to ensure that Alice sends valid keys for her input
wires.

In the evaluation of the circuit Alice will send Ka ∈ {K0,K1} to represent her
input a ∈ {0, 1} for each of her input wires w with zero-key K0. Bob uses a key-
filter brick to ensure that Ka ∈ {K0,K1}. For each of Bob’s input wires Alice
offersK0 andK1 in an OT and Bob inputs b to get the keyKb representing input
b ∈ {0, 1}. Then the circuit C is evaluated by Bob on these keys. Each NAND
gate in C is implemented by an addition brick followed by a not-two brick. When
Bob knows Kc = K0 + c∆ mod p for an output wire he sends Kc to Alice who
computes c ∈ {0, 1} using K0 and ∆.

LEGO for Two-Party Secure Computation 373

1

1 1

[L0 + R0]

[R0][L0]

1
[I0]

3
[O0]

EI0(O1)

EI1(O1)

EI2(O0)

NT

n

n

[K0]

[K′
0]

n
[K0]

H(K0)

H(K1)

KF

[K0]
2

1

1

1 1

3 3 3

9

EI0 (O1)

EI1 (O1)

EI2 (O0)

[I0]

[O0]

NT

[S0]

[S0] = [L0 + R0]

[R0][L0]

[O0]

EI′0
(O′

1)

EI′1
(O′

1)

EI′2
(O′

0)

NT

[O′
0]

[I′
0]

[S0]

[O0]

NT

[O′′
0]

[I′′
0]

[S0]

[O0]

EI′′0
(O′′

1)

EI′′1
(O′′

1)

EI′′2
(O′′

0)

n
[K0]

[K0]
1

3-KF

9

1 1

[O0]

[R0][L0]

3-NAND

n

1

6

1
1

1
[K0]

H(K′
0)

H(K′
1)

H(K′′
0)

H(K′′
1)

H(K0)

H(K1)

KF KF KF

[O0] [O0]

[K′
0] [K′′

0]

[K0] [K′
0] [K′′

0]

[K0] [K0]

[K0]

Maj

[O0]

[R0][L0]

2-NAND

[K′
0]1

3-KF

6
[K′

0]

3-KF

1

[K0]

R0
R1

Ka

K′
a∧̄b

[K0]
[R0]

Rb

b
OT

Fig. 3. Graphical notation, explained in main text

The above did not use the associated commitments [K0]. These are used to
allow Bob to connect the bricks as he desires, even though they were gener-
ated independently. A wire w with zero-key K0 is connected to a wire w′ with
zero-key K ′

0 by Alice opening [K ′
0] � [K0] to Bob to let him learn Σ = K ′

0 −
K0 mod p. Given Kc for w, Bob can then compute K ′

c = Kc +Σ mod p for w′.
The commitments are use to prevent Alice from sending a wrong value of Σ.

Alice can, however, cheat when she generates the bricks. To deal with this
she produces more bricks than needed and a random subset of them is selected
by Bob for testing. In the test Bob selects a random input for the brick and
Alice sends the appropriate keys by opening the associated commitments. If the

374 J.B. Nielsen and C. Orlandi

selected bricks pass the test Bob will be ensured that most of the remaining
bricks will also run correctly. To deal with a small number of incorrect bricks
Bob will replicate each of the bricks in the circuit design.

We now give the details of how bricks are generated, evaluated, connected
and replicated.

Potential Keys: Above we said that Bob learns Kc ∈ {K0,K1,K2} for each
wire. In fact, at some points Bob might hold more than one potential key for
a wire. To ease notation we introduce a function K : {0, 1}∗ → 2Zp mapping a
wire name w to the set of potential keys held by Bob.

NT Bricks: An NT brick (Fig. 3 top, left) with input wire wI and output
wire wO contains two commitments [I0] and [O0], where COM(wI)

def= [I0] and
COM(wO) def= [O0]. Besides it contains three encryptions C0 = EI0 (O1), C1 =
EI1(O1), C2 = EI2(O0). The zero-keys I0, O0 ∈ Zp are chosen uniformly at
random by Alice, and Alice computes and sends (wI , wO, [I0], {C0, C1, C2}, [O0])
to Bob. The three ciphertexts are sent in a randomly permuted order, so that
Bob does not know which ciphertext encrypts which key.

Given potential keys K(wI) for the input wire wI , Bob computes potential
keys for the output wire as follows:

K(wO) def=
⋃

K∈K(wI)

{DK(C0), DK(C1), DK(C2)} .

If K = Ic for Ic ∈ {I0, I1, I2}, then it follows from Cc ∈ {C0, C1, C2} that
Ont(c) ∈ {DK(C0), DK(C1), DK(C2)}. Therefore

Ic ∈ K(wI) ⇒ Ont(c) ∈ K(wO) .

Note that |K(wO)| ≤ 3|K(wI)|. Our particular use of NT bricks will at all
times ensure that |K(wI)| = 1, and thus |K(wO)| ≤ 3. This is depicted by the
numbers in circles next to the wires in Fig. 3.

Addition Bricks: An addition brick (Fig. 3 left, second to the top) has two
input wires wL and wR and one output wire wS . It contains two commitments
[L0] and [R0], where COM(wL) def= [L0], COM(wR) def= [R0]. We let [S0] =
[L0] � [R0] and let COM(wS) def= [S0]. I.e., the zero-key S0 for the output wire
is S0 = L0 +R0 mod p. Alice picks L0, R0 ∈ Zp uniformly at random and sends
(wL, wR, wS , [L0], [R0]) to Bob.

Given potential keys K(wL) and K(wR) for the input wires, Bob computes
potential keys for the output wire as follows:

K(wS) def= K(wL) + K(wR) = {L+R mod p|L ∈ K(wL) ∧R ∈ K(wR)} .

Note that Lx +Ry ≡p (L0 +x∆)+ (R0 + y∆) ≡p (L0 +R0)+ (x+ y)∆ ≡p Sx+y.
Therefore, if x, y ∈ {0, 1}, then

Lx ∈ K(wL) ∧Ry ∈ K(wR) ⇒ Sx+y ∈ K(wS) .

LEGO for Two-Party Secure Computation 375

Our particular use of addition bricks will at all times ensure that |K(wL)| = 1
and |K(wR)| = 1, and thus |K(wS)| = 1. This is depicted by the numbers in
circles next to the wires in Fig. 3.

Shifts: The next component is the shift (Fig. 3 left, second to the bottom).
Assume that Bob just evaluated a brick, like an NT brick, to get potential keys
K(w) for its output wire w, and let [K0] = COM(w) be the commitment associ-
ated to w. Bob needs to use K(w) as input for the next brick in the LEGO circuit.
The next brick was, however, generated independently of the brick producing the
potential keys K(w). This means that it has an input wire w′ �= w and another
associated commitment [K ′

0] = COM(w′). This is handled as follows: After Bob
announces the position of the bricks in the LEGO circuit, Alice will open the
commitment [K ′

0] � [K0] to let Bob learn the shifting value Σ = K ′
0 −K0 mod p

for each pair of output wire w and input wire w′, where w is to feed w′. We
denote such a connection by w =⇒ w′. Given Σ, Bob can compute

K(w′) def= K(w) +Σ = {K +Σ mod p|K ∈ K(w)} .

Note that Kc +Σ ≡p (K0 + c∆) + (K ′
0 −K0) ≡p K

′
0 + c∆ ≡p K

′
c. Therefore

Kc ∈ K(w) ⇒ K ′
c ∈ K(w′) ,

unless Alice opens [K ′
0] � [K0] to Σ �= K ′

0 − K0 mod p, which would involve
breaking the computational binding of the commitment scheme. We make this
precise in the formal analysis. Clearly |K(w′)| = |K(w)|.
KF Bricks: Already with the above components one can evaluate a NAND
circuit C, using one addition brick and one NT brick to securely evaluate each
NAND gate in C. The maximal size of potential-key sets, however, grows by a
factor 3 after each NT gate and squares after each addition gate. We deal with
this using the key-filter brick.

A KF brick (Fig. 3 left, bottom) has one input wire wI and one output wire
wO. It consists of one commitment [K0] and COM(wI)

def= [K0] and COM(wO) def=
[K0]. It also contains two hash values T0 = H(K0) and T1 = H(K1). Alice
chooses K0 uniformly at random and sends ([K0], {T0, T1}) to Bob, with T0 and
T1 in a uniformly random order.

When Bob has potential-key set K(wI) for the input wire he computes poten-
tial keys for wO as follows

K(wO) def= {K ∈ K(wI)|H(K) ∈ {T0, T1}} .

It clearly holds for b ∈ {0, 1} that Kb ∈ K(wI) ⇒ Kb ∈ K(wO). It is also clear
that when Alice knows K0 and K1 such that T0 = H(K0) and T1 = H(K1), then
unless the collision resistance of the hash function is broken, K(wO) ⊆ {K0,K1}.
Therefore, except with negligible probability,

K(wO) = K(wI) ∩ {K0,K1} .

376 J.B. Nielsen and C. Orlandi

NAND Composites: Take an addition brick Add = (wL, wR, wS , [L0], [R0])
and an NT brick NT = (wI , wO, [I0], {C0, C1, C2}, [O0]). We call (Add,wS =⇒
wI , NT) a NAND brick. I.e., Bob is given Σ = I0−S0 mod p so that he can shift
the potential output keys from the Add brick to the NT brick. If for x, y ∈ {0, 1}
we have Lx ∈ K(wL) and Ry ∈ K(wR), then Sx+y ∈ K(wS) and therefore
Ont(x+y) ∈ K(wO). I.e.,

Lx ∈ K(wL) ∧Ry ∈ K(wR) ⇒ Ox∧̄y ∈ K(wO) .

The above describes our components and how they work when they are cor-
rect. We now proceed to describe how we deal with faulty components using
replication. We start with the NT brick.

Consider the NT brick NT = (wI , wO, [I0], {C0, C1, C2}, [O0]) connected to
an addition brick above. If the encryptions of NT are not correct, it might
not output the correct Oz . To deal with this, we use a fresh NT brick NT ′ =
(w′

I , w
′
O, [I

′
0], {C′

0, C
′
1, C

′
2}, [O′

0]) and we add a new fresh wire name ν′ to the
circuit, with COM(ν′) = [O0] and Z(ν′) = O0. We then connect the output
wire of Add to the input wire of NT ′ and the output wire w′

O of NT ′ to ν′ by
adding (wS =⇒ w′

I , NT
′, w′

O =⇒ ν′) to the circuit design.
If for x, y ∈ {0, 1} we have Lx ∈ K(wL) and Ry ∈ K(wR), then Sx+y ∈

K(wS) and therefore (by wS =⇒ w′
I) I

′
x+y ∈ K(w′

I). So, if NT ′ is correct, then
O′

nt(x+y) ∈ K(w′
O) and thus (by w′

O =⇒ ν′) Ont(x+y) ∈ K(ν′). We already argued
that if NT is correct, then Ont(x+y) ∈ K(wO). This implies that if NT is correct
or NT ′ is correct, then Ont(x+y) ∈ K(wO)∪K(ν′). We can therefore add a fresh
wire u to the circuit and let Bob compute K(u) = K(wO) ∪ K(ν′). We picture
this as the wires wO and ν′ being joined in Fig. 3.

When using a total of � NT bricks we call the structure an �-NAND composite
or �-NANDC, as depicted in the top, center of Fig. 3. When we use a NANDC
in a larger construction we depict it as the right, top graphic. It is clear that if
at least one of the � NT bricks is correct, then for x, y ∈ {0, 1} we have

Lx ∈ K(wL) ∧Ry ∈ K(wR) ⇒ Ox∧̄y ∈ K(u) .

In our use of �-NANDC’s we always ensure that |K(wL)| = |K(wR)| = 1,
which clearly implies that |K(u)| ≤ 3�.

KF Composites: Also KF bricks can be incorrect, e.g. by T0 and T1 being
random values. If both are incorrect it is not a real problem as Bob will end
up with K(wO) = ∅ in all cases. Alice might, however, create a brick where
T0 = H(K0) and T1 is random. In that case Bob will get K(wO) = {K0} if K0 ∈
K(wI) and K(wO) = ∅ if K1 ∈ K(wI). In the first case he completes the protocol,
but in the second case he has to terminate. Alice detects the termination by not
receiving her keys, which allows her to learn the bit on the (possibly) internal
wire wO. To avoid this leakage via conditional failure we replicate key filters.

The simple observation is that if we run several KF bricks on the same poten-
tial keys, then a correct key will be contained in the output of all correct filters.

LEGO for Two-Party Secure Computation 377

If we use 2�+ 1 filters under the assumption that that at most � are faulty, this
allows us to pick the correct keys by majority voting.

To ease the presentation, we describe just the case � = 1. Consider three
KF bricks KF = (wI , wO, [K0], {T0, T1}), KF ′ = (w′

I , w
′
O, [K

′
0], {T ′

0, T
′
1}),

KF ′ = (w′′
I , w

′′
O, [K

′′
0], {T ′′

0 , T
′′
1 }), add fresh wires ν′, ν′′, v with COM(ν′) def=

[K0], COM(ν′′) def= [K0] and COM(v) def= [K0], and add the shifts wI =⇒ w′
I ,

wI =⇒ w′′
I , w′

O =⇒ ν′, w′
O =⇒ ν′′. Let K(v) consist of the K which are found

in at least two of the sets K(wO),K(ν′),K(ν′′). We write

K(v) def= Maj(K(wO),K(ν′),K(ν′′)) .

If Kc ∈ K(wI) and KF (resp KF ′,KF ′′) is correct, then Kc ∈ K(wO) (resp.
K(ν′),K(ν′′)). So, if a majority of the KF bricks are correct, then Kc ∈ K(wI) ⇒
Kc ∈ K(v). Furthermore, since a correct KF brick only output keys in {K0,K1},
it follows that K(v) ⊆ {K0,K1}. So, except with negligible probability

K(v) = K(wI) ∩ {K0,K1} .

We depict the KFC in Fig. 3 (center, bottom). When using a KFC in a larger
construction we depict it as the right, second from the top graphic.

Overall Architecture: To evaluate a NAND circuit C with replication pa-
rameter � we place one (�+ 1)-NANDC on each NAND gate G in C and attach
a (2�+1)-KFC to the output wire of the NANDC — we connect them using the
appropriate shift u =⇒ wI . We consider the two input wires wL and wR of the
NANDC as the input wires of G and we consider the output wire v of the KFC
as the output wire of G. We then use shifts to connect output wires of gates to
input wires of other gates according to the architecture of C.

In the evaluation Bob will learn input keys Kxw for his input wires via an
OT of K0 and K1. By letting Alice send the opening of [Kxw] in the OT, Bob
can verify that Kxw is correct. For Alice’s input wires, she will simply send
Kxw to give input xw on wire w. To prevent her from sending an incorrect key,
K ′ �∈ {K0,K1} we add an extra (2� + 1)-KFC and send K ′ through this filter
before feeding it unto w. This ensures that K ′ ∈ {K0,K1}, if accepted.

In Fig. 3 (bottom, right) we depict this construction for � = 1 and C consisting
of one NAND gate where Alice provides the left input and Bob provides the right
input.

It is easy to see that if for each (� + 1)-NANDC at most � NT bricks are
incorrect and for each (2�+ 1)-KFC at most � KF bricks are incorrect, then the
LEGO circuit will compute the correct result, in the following sense: If Z(w) +
xw∆ mod p ∈ K(w) for all input wires w ∈ I and xw ∈ {0, 1}, then Z(w) +
yw∆ mod p ∈ K(w) for all output wires w ∈ O and {yw}w∈O = C({xw}w∈I).

If in addition K(w) is a singleton set for all w ∈ I, then K(w) will be a
singleton set for all w ∈ O, except with negligible probability. As detailed in
the analysis, this follows from the use of KFC’s and the fact that Bob could not
compute both keys K0 and K1 for a wire even if he tried.

378 J.B. Nielsen and C. Orlandi

4 The Protocol

The overall protocol is given in Fig. 4. It depends on the NAND circuit C and a
replication factor � ∈ N.

Bricks Production: Details of how individual bricks are produced and which
values are sent to Bob were given in Section 3. Alice will produce PNT = (1 +
τNT)(�+ 1)|C| NT bricks and Bob will select a uniformly random subset of size
τNT (� + 1)|C| for testing. This leaves (� + 1)|C| NT bricks, which is sufficient
to construct a (� + 1)-NANDC for each gate in C. She generates PKF = (1 +
τKF)(2�+1)(|C|+|IA|) KF bricks and Bob tests a random subset of size τKF (2�+
1)(|C|+ |IA|), leaving enough to construct a (2�+1)-KFC for each gate and each
of Alice’s input wires.

After sending the components, and before the tests, Alice proves to Bob
that she knows the openings of all commitments in the bricks, as follows: Let
[K(1)

0], . . . , [K(n)
0] be the set of all commitments contained in the bricks. Bob

picks a uniformly random challenge e ∈R Zn
p and sends e to Alice. Bob computes

[
∑n

i=1 eiK
(i)
0] = �n

i=1[K
(i)
0]ei and Alice computes the opening of [

∑n
i=1 eiK

(i)
0].

Then Alice uses Fzk to prove that she knows this opening. Bob terminates if the
proof fails.

Addition bricks are by definition correct, as Bob lets [S0] = [L0] � [R0]. For
NT bricks and KF bricks Alice can cheat by not providing correct encryptions
respectively hash values, which is the reason for the following tests.

NT Bricks: A test of NT = (wI , wO, [I0], [O0], {C0, C1, C2}) proceeds as
follows:

1. Alice sends a value telling Bob the correct order C0, C1, C2 of {C0, C1, C2}.
2. Bob computes [O1] = [O0] � [∆], [I1] = [I0] � [∆], [I2] = [I1] � [∆] and sends

challenge e ∈R {0, 1, 2} to Alice.
3. Alice opens [Ie] and [Ont(e)] to let Bob learn Ie and Ont(e).
4. Bob accepts iff the openings are correct and EIe(Ont(e)) = Ce.

It is clear that if Alice can answer all three challenges correctly and cannot break
the computational binding of the commitment scheme, then NT is a correct NT
brick, i.e., it would produce the correct output key in {O0, O1} on all input keys
in {I0, I1, I2}, where I0 is the key in [I0] and and O0 is the key in [O0]. For now,
we informally define the key in [I0], [O0] as the value Alice can open [I0], [O0] to.
The formal analysis is, of course, more crisp.

KF Bricks: A test of KF = (wI , wO, [K0], {T0, T1}) proceeds as follows:

1. Alice sends a bit telling Bob the correct order T0, T1 of {T0, T1}.
2. Bob computes [K1] = [K0] � [∆] and sends a one bit challenge e ∈R {0, 1}

to Alice.
3. Alice opens [Ke] to let Bob learn Ke.
4. Bob accepts iff the opening is correct and Te = H(Ke).

LEGO for Two-Party Secure Computation 379

It is clear that if Alice can answer both challenges, then she can open [K0] to
K0 such that H(K0) = T0 and H(K0 +∆) = T1, or she can break the computa-
tional binding of the commitment scheme. Therefore KF is correct except with
negligible probability. I.e., it would work correctly on both K0 and K1, where
K0 is the key in [K0].

5 Analysis

In the full version of this paper [NO08] we prove Theorem 1. Here we sketch
the proof, but assuming that H is a random oracle. By a hybrid argument
the random oracle can be replaced by a collision resistant function which is
correlation resistant according to Def. 1.

5.1 Corrupted Bob

We first consider the case where Alice is honest and Bob is corrupted. We model
H as a non-programmable and non-extractable random oracle.

The UC simulator S runs Alice’s part of the protocol towards Bob completely
honestly, except that it uses xw = 0 for each of her input wires. If Bob sends keys
in Result announcement which makes Alice reject, then S inputs abort! to
Fsce on behalf of Bob. Otherwise, S for each of Bob’s wires takes xw ∈ {0, 1} to
be the input of Bob to the OT associated to wire w ∈ IB and inputs these xw

to Fsce on behalf of Bob. That completes the description of S.
It remains to argue that the views of the environment in the simulation and

in the protocol are indistinguishable. When H is random they are in fact statis-
tically close. There are the following differences between the simulation and the
protocol:

1. In the simulation xw = 0 for each of Alice’s wires. In the protocol the xw’s
have the values specified by the environment.

2. In the protocol Alice’s output to the environment is computed from the
values sent by Bob. In the simulation it is the value output by Fsce.

To handle the first difference we argue that Bob’s view is statistically inde-
pendent of Alice’s input. To handle the second difference we argue that if Alice
does not abort she outputs the same yw values in the two settings, and we argue
that she aborts with the same probability in the two settings.

It is straight-forward to verify that when H is a uniformly random function,
then the LEGO circuit leaks no information on Alice’s input to Bob unless he
queries H on two different points P, P ′ ∈ {K0,K0 +∆,K0 + 2∆} for some zero-
key K0 of the bricks sent by Alice, and that until he makes such queries, ∆ is
uniformly random in the view of Bob. It follows from an easy application of the
birthday bound that when ∆ is uniformly random and independent of the view
of Bob, the probability that he makes such queries is less than 2−s, because of
our choice of p.

380 J.B. Nielsen and C. Orlandi

Setup: We assume Alice and Bob agree on a generator g of order p. Bob picks
uniformly random h ∈R 〈g〉 and sends it to Alice. This defines the commitment
scheme [K] = gKhr. Alice picks a global difference ∆ ∈R Zp and sends a
commitment [∆] to Bob and uses Fzk to prove knowledge of the opening of [∆].

Bricks production: Alice produces PNT uniformly random and independent NT
bricks, PKF uniformly random and independent KF bricks and PAdd = |C|
uniformly random addition bricks, and sends all these bricks to Bob. All bricks
are produced using ∆.

Test: Bob selects some NT bricks and KF bricks for testing. For each such brick
he picks a random input and Alice provides Bob with the keys needed to run
on those inputs. Bob terminates if any test fails.

Bricks shuffling: For each NAND gate G in C Bob picks: a random unused ad-
dition brick, � + 1 random unused NT bricks and 2� + 1 random unused KF
bricks and assigns them to G. For each of Alice’s input wires he picks 2� + 1
random unused KF bricks and assigns them to w. He announce the assignment
to Alice.

Bricks connection: The positions of the bricks chosen by Bob define a number of
brick output wires w feeding unto brick input wires w′. For each such connection
Alice and Bob add w =⇒ w′ to the circuit by Alice opening COM(w′) �
COM(w) to Bob. Bob terminates if any opening is incorrect.

Bob’s input: For each input wire w ∈ IB (with Z(w) = K0 and COM(w) = [K0])
Bob has an input xw ∈ {0, 1}. Alice and Bob run an OT where Alice inputs
messages m

(w)
0 = (K0, r0) and m

(w)
1 = (K1, r1) and Bob inputs the selection

bit xw — here (K0, r0) is the opening of [K0] and (K1, r1) is the opening of
[K1] = [K0]� [∆]. Bob terminates if m

(w)
wx is not an opening of [Kwx]. Otherwise

he lets K(w) def= {Kxw} for w ∈ IB.
Alice’s input: For each input wire w ∈ IA (with Z(w) = K0 and COM(w) =

[K0]) Alice has an input xw ∈ {0, 1}. She sends Kxw to Bob and Bob lets
K(w) = {Kxw}. Bob evaluates the KFC for w on K(w) to get K(w′). Since
|K(w)| = 1 and K(w′) = K(w) ∩ {K0, K1}, it follows that |K(w′)| ≤ 1 and
K(w′) ⊂ {K0, K1}. If |K(w′)| = 1 for all of Alice’s wires w, Bob adopts the sets
K(w′) for w ∈ IA, otherwise he terminates.

Garbled evaluation: If Bob did not yet terminate, he holds a singleton set
K(w) ⊂ {K0, K1} for all input wires w ∈ I, where K0 = Z(w). Now Bob
computes singleton sets K(w) ⊂ {K0, K1} for all output wires w ∈ O, where
K0 = Z(w). Details of how this is done were given in Section 3.

Result announcement: For each output wire w, Bob sends (w,K(w)) to Alice.
Alice terminates if any set K(w) is not a singleton. Otherwise she picks K ∈
K(w) and tries to write K as K = Z(w) + yw∆ mod p for yw ∈ {0, 1}. If this
fails, she terminates the protocol; Otherwise, she adopts yw as the output bit
for wire w.

Fig. 4. The LEGO protocol

Now note that from the keysKxw , w ∈ IA sent by Alice and the keysKxw , w ∈
IB Bob chooses in the OT’s, he can compute Kyw for each w ∈ O, where
{yw}w∈O = C({xw}w∈I). So, Bob knows the correct output keys Kyw . If Bob
sends Kyw for all w ∈ O, then Alice accepts and outputs the correct values yw.

LEGO for Two-Party Secure Computation 381

If Bob sends K ′ �= Kyw for some wire, then Alice rejects unless K ′ = K1−yw .
But then, if K ′ = K1−yw , Bob could query H on two different points Kyw ,K

′ ∈
{K0,K0+∆,K0+2∆}, and we already argued that this happens with probability
less than 2−s. So, the probability that Alice aborts is statistically close to the
probability that Bob sends some K ′ �= Kyw .

5.2 Corrupted Alice

We then consider the case where Bob is honest and Alice is corrupted.

The simulator: The simulator runs Bob honestly in Setup, Bricks produc-
tion, Test, Bricks shuffling, Bricks connection, Bob’s input and Alice’s
input, except that:

1. It inspects Alice’s input to Fzk in Setup. If the input to Fzk is not an
opening of [∆], it inputs abort! to Fsce on behalf of Alice. Otherwise it
records ∆.

2. For each of Bob’s input wires w ∈ IB it records both of Alice’s inputs m(w)
0

and m(w)
1 to Fot in Bob’s input. For c = 0, 1, if m(w)

c is a valid opening of
the [Kc] defined in Bob’s input, it defines V (w)

c
def= Kc. If m(w)

c is not an
opening of [Kc], it defines V (w)

c
def= ⊥.

Plain abort: If Alice (formally the adversary) makes Bob abort in any of the
steps run so far, e.g. by sending a key for one of Alice’s input wires which is
not accepted by the corresponding KFC, then S inputs abort! to Fsce to make
it output abort! to the environment, exactly as Bob would have done in the
protocol. The only step in which S cannot compute whether Bob would have
aborted is in Bob’s input, as S does not know the inputs {xw}w∈Iw of Bob —
these were input to Fsce by the environment. This is handled as follows.

Handling conditional failures: If V (w)
0 = V

(w)
1 = ⊥ for some w ∈ IB, then

S inputs abort! to Fsce on behalf of Alice. Note that Bob would always abort
in the protocol in this case, as he would always receive an incorrect opening for
the wire w. If not already terminated, then S computes W = {w ∈ IB |V (w)

0 =
⊥∨V (w)

1 = ⊥} and for w ∈W sets βw ∈ {0, 1} to be the value where V (w)
βw

�= ⊥.
It then inputs (W, {βw}w∈W) to Fsce on behalf of Alice in Guess. Note that
Fsce aborts iff βw �= xw for some w ∈ W . By construction of the protocol and
definition of the V (w)

c , Bob would have aborted in the protocol iff V (w)
xw �= Kxw ,

if he was running with the inputs {xw}w∈IB input to Fsce by the environment.
Therefore S makes Fsce abort iff Bob would have aborted in the protocol. So,
until now the simulation is perfect.

Extracting inputs: If S did not yet make Fsce abort, it must now give an
input to Fsce on behalf of Alice. Note that if S did not yet make Fsce abort,
then it knows a key K(w) for each w ∈ IA, namely the keys obtained by running
the KFC’s on the keys sent by Alice in Alice’s input. The simulator uses ∆ to

382 J.B. Nielsen and C. Orlandi

compute K(w)
−1 = K

(w)
xw −∆ and K(w)

+1 = K
(w)
xw +∆.1 Then it runs the KFC for

input wire w on K = {K(w)
−1 ,K

(w),K
(w)
+1 }. If the output from the KFC does not

consist of two keys K and K ′ where K−K ′ ∈ {∆,−∆} or K(w) �∈ {K,K ′}, then
S makes Fsce abort. Otherwise it names and orders the two keys as K(w)

0 ,K
(w)
1

such that K(w)
1 = K

(w)
0 +∆ and computes xw ∈ {0, 1} such that K(w) = K

(w)
xw . It

inputs {xw}w∈IA to Fsce and gets back {yw}w∈O = C({xw}w∈IA ∪ {xw}w∈IB).

Evaluation: By now S has a key K(w) for each w ∈ IA. It lets K(w) = {K(w)}.
For each w ∈ IB it lets K(w) = {V (w)

0 } if V (w)
0 �= ⊥ and K(w) = {V (w)

1 } if
V

(w)
0 = ⊥. Note that at this point V (w)

1 �= ⊥ when V (w)
0 = ⊥. It then evaluates

the LEGO circuit on these K(w). If the evaluation fails, then it makes Fsce

abort. Otherwise it computed K(w) = {K(w)} for w ∈ O. It computes K =
{K(w)

−1 ,K
(w),K

(w)
+1 } as above and runs the KFC from the gate computing K(w)

on K. If the output does not consist of two keys which can be named and ordered
such that K(w)

1 = K
(w)
0 +∆ it makes Fsce abort. Otherwise, it sends {K(w)

yw }w∈O
to Alice, where the yw are the values received from Fsce.

That completes the description of the simulator.

Analysis: We argued that the simulation is perfect up until the evaluation.
What remains is to argue that the simulator aborts in the evaluation with the
same probability as Bob would in the protocol and that when it does not abort,
then the keys {K(w)

yw }w∈O sent to Alice have the same distribution in the protocol
and the simulation. This boils down to arguing that the LEGO circuit is correct
if Bob does not abort before the evaluation phase.

Defining good and bad : We start the analysis by dividing bricks into good
and bad and use this to define good and bad composites.

Consider the entire state of an execution after Alice sent all bricks to Bob
and before Bob sends the challenge e ∈ Zn

p . Define q to be the probability that

Bob accepts Alice’s proof for [Ke]
def= [
∑n

i=1 eiK
(i)
0], when run from this fixed

state (formally we fix the random tape of the environment and the adversary).
If q ≤ 2/p we define all bricks to be bad. Otherwise we extract the openings
of all commitments and use these to define the goodness of the bricks, as de-
scribed now.

For a fixed state of Alice she will for a fixed e ∈ E
def= Zn

p input a correct
opening of [Ke] to Fzk with probability 0 or 1. Let Eg denote the e ∈ E where
the probability is 1. Then q = |Eg|/|E|, and we have a poly-time oracle for
computing Ke

def=
∑n

i=1 eiK
(i)
0 for e ∈ Eg: Given any e ∈ E we can run the

execution from the fixed state until Alice inputs to Fzk. If e ∈ Eg, this gives
us Ke. Let n denote the number of commitments [Ki]. It is clear that if we get
Kei for n linear independent values ei ∈ Zn

p , then we can efficiently solve for
openings of all [Ki]. We get the ei by querying the oracle on several uniformly

1 Both additions are modulo p. Below we will continue not explicitly mentioning the
mod p when computing on elements from Zp.

LEGO for Two-Party Secure Computation 383

random e ∈ E. At any point, let {ei} denote the ei on which we got an opening
of [Kei]. We continue querying as long as span{ei} �= Zn

p . If we query on a fresh
uniformly random e ∈ E, then the probability that e ∈ span{ei} is at most 1/p.
The probability that e ∈ Eg is q. Therefore the probability that e ∈ Eg\span{ei}
is at least q − 1/p ≥ q/2. It follows that the expected number of queries to
get span{ei} = Zn

p is at most n(q/2)−1 = 2nq−1. The expected running time
is therefore poly(s)q−1. We only need to run the above extraction when Bob
accepts the proof in the simulation, which he does with probability q. Therefore
the expected running time of running the simulation once and extracting if Bob
accepts is q poly(s)q−1 = poly(κ).

After having extracted openings of all commitments we let Z(w) = K0 for all
wires, where [K0] = COM(w) and K0 is the key extracted from [K0].

We then define a KF brick (wI , wO, [K0], {T0, T1}) to be good if there is an
ordering T0, T1 of {T0, T1} such that T0 = H(K0) and T1 = H(K0 + ∆). We
define an NT brick (wL, wR, wO, [L0], [R0], [O0], {C0, C1, C2}) to be good if there
is an ordering C0, C1, C2 of {C0, C1, C2} such that C0 = H(I0) +O0 +∆, C1 =
H(I0 +∆) + O0 +∆ and C2 = H(I0 + 2∆) + O0. All other KF and NT bricks
are defined to be bad.

We already now note that Alice cannot later open shifting values incorrectly:
Assume that Alice opens [K ′

0] � [K0] to Σ �= K ′
0 −K0 as part of implementing

w =⇒ w′ (here [K0] = COM(w),K0 = Z(w), [K ′
0] = COM(w′),K ′

0 = Z(w′)).
We can then use the opening of [K ′

0] to K ′
0, the opening of [K0] to K0 and the

opening of [K ′
0] � [K0] to Σ to compute an opening of e.g. [K0] to two different

values. Since all three openings originate from Alice2 and were computed in
expected poly-time, we broke the computational binding of the commitment
scheme. We also note the easy fact that if a KF brick is defined to be bad, then
there exists at least one challenge e ∈ {0, 1} on which Alice cannot make Bob
accept a test, and if an NT brick is defined to be bad, then there exists at least
one challenge e ∈ {0, 1, 2} on which Alice cannot make Bob accept a test.3

We call a composite bad if it consists of more than � bad composites. Otherwise
it is good. An NANDC consists of �+1 bricks and a KFC consists of 2�+1 bricks.
As a consequence they will work correctly if they are good. It then follows from
Section 3 that a LEGO circuit consisting of only good composites will compute
correct K(w) for all w ∈ O.

We first analyze the probability that any NANDC is bad. Let P = (1+ τ)(�+
1)|C| be the number of NT bricks produced by Alice, let B be the number of
NT bricks being defined as bad, let T = τ(�+ 1)|C| be the number of NT bricks
being tested, and let U = (� + 1)|C| be the number of NT bricks used in the
LEGO circuit.

Split each good NT brick into three green balls and split each bad NT brick
into two green balls and a red ball. A ball represents one of the values a specific
brick can be tested on. Each bad brick has at least one value which will catch

2 The two first ones from extraction and the last because she sent it.
3 In both case, unless she breaks the computational binding of the commitment

scheme.

384 J.B. Nielsen and C. Orlandi

Alice if Bob tests on that value — this is the red ball. There are 3P balls and
B are red. We analyze the game where Bob chooses T balls at random and
accepts if they are all green. This upper bounds his probability of accepting
in the protocol, except for a negligible amount coming from Alice’s possible
breaking of the commitment scheme. The probability that Bob accepts in the
game is upper bounded by

(3P−B
3P

)T
. The probability that a given NANDC is

bad is upper bounded by
(

B
U

)�+1
, so by a union bound, the probability that Bob

accepts and there is at least one bad NANDC is upper bounded by

(
3P −B

3P

)T

|C|
(
B

U

)�+1

= |C|
((

3P −B
3P

)τ |C|
B

U

)�+1

. (1)

This is maximal in B when (3P −B)τ |C|
B is maximal in B, which it is when

B = 3P (1 + τ |C|)−1 = 3(1 + τ)(� + 1)|C|(1 + τ |C|)−1 ≈ 3 1+τ
τ (� + 1) = 3(1 +

τ−1)(�+ 1). We use B = 3(1 + τ−1)(�+ 1). Then B/U = 3(1 + τ−1)|C|−1 , and
(3P −B)(3P)−1 = 1−B(3P)−1 = 1− (1+ τ−1)(1+ τ)|C|−1 = 1− τ−1|C|−1. So,(3P−B

3P

)τ |C|
= (1 − τ−1|C|−1)τ |C| ≈ e−1. Plugging this into (1), we get an error

probability of |C|−�
(

3(τ+1)
eτ

)�+1
. Isolating for a probability of 2−s that there is

a bad NT composite we get

� ≈ s+ 0.1423 + log τ+1
τ

log |C| − 0.1423− log τ+1
τ

= O(s/ log |C|) .

We round up this value to the nearest integer to get the replication factor for
the protocol. A more careful analysis without the approximations shows that
this actually gives a probability of O(2−s) that Bob accepts and yet there is a
NANDC being defined as bad.

Correctness: In the full version [NO08] we give a similar analysis for KFCs
and recommend optimal values of τ for a wide range of circuit sizes and de-
sired security levels. Here it suffices to note that for � = O(s/ log |C|) also the
probability that Bob accepts and there is a bad KFC is O(2−s). Therefore, if
Bob accepts (in the protocol or simulation) then all composites are good, ex-
cept with negligible probability. As described in Section 3, this implies that Bob
will be able to evaluate the LEGO circuit in both settings, or at least abort
with negligible probability. Furthermore, in the protocol the keys sent to Alice
are {K(w)

yw }w∈O, where K(w)
0 is the key she can open COM(w) to (by the ex-

traction argument) and {yw}w∈O = C({xw}w∈IA ∪ {xw}w∈IB) for Bob’s inputs
{xw}w∈IB and inputs {xw}w∈IA defined by the keys {K(w)

xw }w∈IA sent by Alice
and the keys K(w)

0 she can open the commitment of the input KFCs to. By con-
struction of the simulator the keys sent to Alice are {K(w)

yw }w∈O, where K(w)
0 is

the key she can open COM(w) to and {yw}w∈O = C({xw}w∈IA ∪{xw}w∈IB) for
Bob’s inputs {xw}w∈IB (held by the Fsce) and the inputs {xw}w∈IA extracted
from the keys sent by Alice. So, it suffices to argue that the extraction produces

LEGO for Two-Party Secure Computation 385

the correct values of xw for w ∈ IA: Since Bob did not abort, the KFC for w
produced a unique output. Since the KFC is correct, the output is of the form
K(w) = K(0) + c∆, defined relative to the K(0) Alice can open COM(w) to
and c ∈ {0, 1}. Therefore {K(w)

0 ,K
(w)
1 } ⊂ {K(w)

−1 ,K
(w),K

(w)
+1 }. Therefore the

KFC outputs K ∩ {K(w)
0 ,K

(w)
1 } = {K(w)

0 ,K
(w)
1 }. By construction this leads to

S computing the xw ∈ {0, 1} for which K(w) = K
(w)
0 + xw∆.

Acknowledgments

We thank the TCC reviewers for their suggestions on improving the presentation
and in particular Yuval Ishai who provided valuable feedback during our writing
of the conference version.

References

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design (extended
abstract). In: FOCS (1986)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–
161. Springer, Heidelberg (2003)

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

[JS07] Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on com-
mitted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 97–114. Springer, Heidelberg (2007)

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 486–498. Springer, Heidelberg (2008)

[LP04] Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party com-
putation. Electronic Colloquium on Computational Complexity (2004)

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

[LPS08] Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation
efficiently with security against malicious adversaries. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20.
Springer, Heidelberg (2008)

[MF06] Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC
2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

[NN01] Naor, M., Nissim, K.: Communication preserving protocols for secure func-
tion evaluation. In: STOC (2001)

[NO08] Nielsen, J.B., Orlandi, C.: Lego for two party secure computation. Cryptol-
ogy ePrint Archive, Report 2008/427 (2008), http://eprint.iacr.org/

http://eprint.iacr.org/

386 J.B. Nielsen and C. Orlandi

[Woo07] Woodruff, D.P.: Revisiting the efficiency of malicious two-party computa-
tion. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96.
Springer, Heidelberg (2007)

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In:
FOCS (1982)

[Yao86] Yao, A.C.: How to generate and exchange secrets (extended abstract). In:
FOCS (1986)

Simple, Black-Box Constructions of
Adaptively Secure Protocols�

Seung Geol Choi1, Dana Dachman-Soled1, Tal Malkin1, and Hoeteck Wee2,��

1 Columbia University
{sgchoi,dglasner,tal}@cs.columbia.edu

2 Queens College, CUNY
hoeteck@cs.qc.cuny.edu

Abstract. We present a compiler for transforming an oblivious transfer (OT)
protocol secure against an adaptive semi-honest adversary into one that is secure
against an adaptive malicious adversary. Our compiler achieves security in the
universal composability framework, assuming access to an ideal commitment
functionality, and improves over previous work achieving the same security
guarantee in two ways: it uses black-box access to the underlying protocol
and achieves a constant multiplicative overhead in the round complexity. As a
corollary, we obtain the first constructions of adaptively secure protocols in the
stand-alone model using black-box access to a low-level primitive.

1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful parties to
perform a joint computation without compromising, to the greatest extent possible,
the privacy of their inputs or the correctness of the outputs. An important criterion in
evaluating the security guarantee is how many parties an adversary is allowed to corrupt
and when the adversary determines which parties to corrupt. In this work, we focus on
MPC protocols secure against an adversary that corrupts an arbitrary number of parties,
and in addition, adaptively determines who and when to corrupt during the course of the
computation. Even though the latter is a very natural and realistic assumption about the
adversary, most of the MPC literature only addresses security against a static adversary,
namely one that chooses (and fixes) which parties to corrupt before the protocol starts
executing.

In the absence of an honest majority, secure MPC protocols can only be realized
under computational assumptions. From both a theoretical and practical stand-point,
it is desirable for these protocols to be based on general hardness assumptions, and in
addition, to require only black-box access to the primitive guaranteed by the assumption
(that is, the protocol refers only to the input/output behavior of the primitive). Indeed,
the first MPC protocols achieving security without an honest majority [GMW87] require
non-black-box access to the underlying cryptographic primitives: the first step in the
construction is to obtain protocols that are secure against semi-honest adversaries, and
the second handles malicious behavior by having the parties prove in zero knowledge

� Supported in part by NSF Grants CNS-0716245, CCF-0347839, and SBE-0245014.
�� Part of this work was done while a post-doc at Columbia University.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 387–402, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

388 S.G. Choi et al.

that they are adhering to the protocol constructions. It is the second step that requires
the code of the underlying primitive with the use of general NP reductions to prove
statements in zero knowledge. This aversely affects both computational complexity
and communication complexity of the resulting protocol as well as the complexity of
implementing the protocol.

In a recent work, Ishai et al. [IKLP06] exhibited MPC protocols that are secure against
a static adversary corrupting any number of parties and that rely only on black-box access
to a low-level primitive, such as (enhanced) trapdoor permutations and homomorphic
encryption schemes. This, along with the follow-up work of Haitner [H08], resolves the
theoretical question of the minimal assumptions under which we may obtain black-box
constructions of secure MPC protocols against a static adversary. The main technical
contribution in both works is to construct a secure protocol for a specific two-party
functionality, that of oblivious transfer (OT). The general result then follows from a
classic result of Kilian’s [K88] showing that any multi-party functionality can be securely
computed using black-box access to a secure OT protocol. However, none of these works
addresses security against an adaptive adversary, which begs the following question:

Is it possible to construct MPC protocols secure against a malicious,
adaptive adversary that may corrupt any number of parties, given only
black-box access to a low-level primitive?

Towards resolving this question, Ishai, Prabhakaran and Sahai [IPS08] established
an analogue of Kilian’s result for an adaptive adversary. While there has been fairly
extensive work on secure OT protocols against a static malicious adversary (e.g.
[NP01, K05, PVW08]), very few - namely [B98, CLOS02, KO04] - provide security
against an adaptive adversary; moreover, all of those which do follow [GMW87]
paradigm and exploit non-black-box access to the underlying primitive.

1.1 Our Results

Our main technical contribution is the construction of efficient OT protocols that
achieve security against an adaptive adversary, while relying only upon black-box
access to some low-level primitive. Specifically, we provide a compiler that transforms
an OT protocol secure against a semi-honest, adaptive adversary into one that is secure
against a malicious, adaptive adversary, given only black-box access to the underlying
OT protocol and an “ideal” commitment scheme. In addition, we achieve security in the
universal composability (UC) model, where a protocol may be executed concurrently
with an unknown number of other protocols [C01]. This is a notable improvement over
afore-mentioned works of Ishai et al. [IKLP06, H08] which provide a compiler for semi-
honest OT to malicious OT, but only for static adversaries in the stand-alone model.1

Theorem 1 (informal). There exists a black-box construction of a protocol that UC
realizes OT against a malicious, adaptive adversary in the FCOM-hybrid model, starting

1 We note that our construction does not improve on the computational complexity of the
previous compiler, as measured by the number of invocations of the underlying semi-honest
OT protocol. However, we believe our construction may be combined with the OT extension
protocol in [IPS08, Section 5.3] to achieve better efficiency.

Simple, Black-Box Constructions of Adaptively Secure Protocols 389

from any protocol that UC realizes OT against a semi-honest, adaptive adversary.2

Moreover, the construction achieves a constant multiplicative blow-up in the number of
rounds.

Our construction also improves upon the earlier work of Canetti et. al [CLOS02]
achieving the same guarantee; their construction is non-black-box and incurs a blow-
up in round complexity proportional to the depth of the circuit computing the semi-
honest OT protocol. Combined with the 2-round semi-honest OT protocol in [CLOS02,
CDMW08], we obtain the first constant-round protocol for OT in the FCOM-hybrid model
secure against a malicious, adaptive adversary.3 Moreover, the protocol uses black-box
access to a low-level primitive, that of trapdoor simulatable cryptosystems4, which
may in turn be based on the RSA, DDH, worst-case lattice assumptions or hardness
of factoring.

The key conceptual insight underlying the construction is to view the [IKLP06, H08]
compiler as an instantiation of the [GMW87] paradigm in the FCOM-hybrid model,
except enforcing consistency via cut-and-choose techniques instead of using zero-
knowledge proofs. This perspective leads naturally to a simpler, more modular, and
more direct analysis of the previous compiler for static adversaries. In addition, we
immediately obtain a string OT protocol, which is important for obtaining round-
efficient MPC protocols [LP07, IPS08]. Showing that the modified compiler achieves
UC security against an adaptive adversary requires new insight in constructing a
simulator and in the analysis. We defer a more detailed discussion of the construction
to Section 2, and instead focus here on the applications to secure MPC derived by
combining our OT protocol with various MPC protocols in the FOT-hybrid model
in [IPS08].

MPC in the FCOM-Hybrid Model. Combining our OT protocol with [IPS08, Theorem
2], we obtain UC-secure MPC protocols in the FCOM-hybrid model against a malicious,
adaptive adversary, which improves upon [CLOS02] in that we only require black-box
access to the underlying primitive:

Theorem 2 (informal). There exists a protocol in the FCOM-hybrid model that uses
black-box access to a (trapdoor) simulatable cryptosystem and UC realizes any well-
formed multi-party functionality against a malicious, adaptive adversary that may
corrupt any number of parties.

The round complexity of the protocol is proportional to the depth of the circuit
computing the functionality. By combining our OT protocol with [IPS08, Theorem 3],

2 In both the semi-honest and the malicious OT protocols, we allow the adaptive adversary to
corrupt both the sender and the receiver.

3 In an independent work [GWZ08], Garay, Wichs and Zhou also constructed a constant-round
protocol for OT in the common reference string model, secure against a malicious, adaptive
adversary. Their underlying assumptions are comparatively more restrictive.

4 Trapdoor simulatable cryptosystems are introduced in [CDMW08], as a relaxation of
simulatable cryptosystems [DN00]. These are semantically secure encryption schemes with
special algorithms for “obliviously” sampling public keys and ciphertexts without learning the
respective secret keys and plaintexts. In addition, both of these oblivious sampling algorithms
are efficiently invertible given the corresponding secret key.

390 S.G. Choi et al.

we obtain a constant-round MPC protocol in the FCOM with the same guarantees, except
that the adversary is limited to corrupting up tom−1 parties for am-party functionality.
The advantage of constructing UC-secure MPC protocols in the FCOM-hybrid model
is that they may be combined with many of the existing UC feasibility results under
various set-up or modeling assumptions e.g. [CLOS02, BCNP04, CDPW07, K07], almost
all of which start by showing how to UC realize FCOM in some new security model5.
Moreover, if the protocol realizing FCOM uses black-box access to a low-level primitive,
so will the combined protocol.

MPC in the Stand-Alone Model. Next, we present our results for the stand-alone
model with adaptive post-execution corruptions [C00], which is a weaker notion of
security than UC security with adaptive corruptions (and in particular, our protocols
in the FCOM-hybrid model achieve this notion of security). Here, there is a constant-
round two-party protocol that uses black-box access to a one-way function and
securely realizes FCOM in the plain model without any set-up assumptions [PW09]. This
immediately yields the following corollaries (via the composition theorem in [C00]):

Corollary 1 (informal). There exists a constant-round string OT protocol that uses
black-box access to a (trapdoor) simulatable cryptosystem and is secure in the stand-
alone model against a malicious, adaptive adversary.

Corollary 2 (informal). There exists a protocol that uses black-box access to a
(trapdoor) simulatable cryptosystem and securely computes any well-formed multi-
party functionality in the stand-alone model against a malicious, adaptive adversary
that may corrupt any number of parties.

Both of these results improve on the work of Beaver’s [B98] which achieve similar
security guarantees but with non-black-box access to the underlying primitive.

Corollary 3 (informal). For any constant m ≥ 2, there exists a constant-round
protocol that uses black-box access to a (trapdoor) simulatable cryptosystem and
securely computes any well-formed m-party functionality in the stand-alone model
against a malicious, adaptive adversary that may corrupt up tom− 1 parties.

This extends a result of Katz and Ostrovsky [KO04] which presents a 4-round protocol
achieving the same security guarantee for two parties but relying on non-black-box
access to the underlying primitive.

2 Construction

High-Level Description. We provide an overview of the [IKLP06, H08] compiler. Our
presentation is slightly different from, and simpler than, that in the original works, and
is closer in spirit to the [GMW87] compiler. Our presentation is easier to adapt to the
UC setting and the adaptive setting (and also OT with strings instead of bits) since
we do not need to rely on the intermediate notion and construction of a defensible

5 This is because it is impossible to UC realize any non-trivial 2-party functionality in the plain
model (even against static adversaries) [CKL06, C01].

Simple, Black-Box Constructions of Adaptively Secure Protocols 391

OT protocol.6 We focus on the main transformation Comp (shown in Fig 3), which
“boosts” the security guarantee of an OT protocolΠ from security against semi-honest
receivers to security against malicious receivers while preserving the security guarantee
for corrupted senders.

Phase I: Random tape generation. The sender and the receiver engage in a coin-
tossing (in the well) protocol to determine a collection of 2n random strings for
the receiver.

Phase II: Basic execution. The sender and the receiver engage in 2n parallel execu-
tions ofΠ with random inputs: the sender will choose its own inputs randomly and
independently for each of the 2n executions, whereas the inputs and randomness
for the receiver are determined by the preceding coin-tossing protocol (one random
string for each execution ofΠ).

Phase III: Cut-and-choose. The sender and the receiver engage in a coin-tossing
protocol to pick a random subset Q of n executions, and the receiver proves that
it acted accordingly to Π for the n executions in Q by revealing the inputs and
randomness used for those executions. The sender verifies that the inputs and
randomness are indeed consistent with both the n executions of Π and the coin-
tossing protocol, and if so, we are guaranteed that the receiver must have behaved
honestly in at least one of the n executions of Π not in Q (except with negligible
probability).

Phase IV: Combiner. We may then apply a combiner that (essentially) yields a single
secure OT protocol, starting a collection of n OT protocols all of which guarantee
security against a malicious sender, but only one of which guarantee security
against a malicious receiver.

To obtain a full-fledged string-OT protocol secure against both a malicious sender and
a malicious receiver starting from a semi-honest bit-OT protocol, we proceed as in
[IKLP06], with the addition of Step 3 to directly obtain a string-OT protocol and with
references to semi-honest instead of defensible adversaries:

1. Use Comp to obtain a bit-OT protocol secure against a semi-honest sender and a
malicious receiver.

2. Use OT reversal [WW06] (shown in Fig 4) to obtain a bit-OT protocol secure against
a malicious sender and a semi-honest receiver.

3. Repeat in parallel to obtain a string-OT protocol secure against a malicious sender
and a semi-honest receiver.

4. Use Comp again to obtain a string-OT protocol secure against malicious sender and
receiver.

In this work, we will view the above construction in the FCOM-hybrid model,
where the FCOM functionality is used to implement the coin-tossing protocol in Phases I

6 Specifically, the previous compiler proceeds in two phases. The first [H08] transforms any
semi-honest OT protocol into defensible OT protocols. A defensible OT protocol provides
an intermediate level of security interpolating semi-honest and malicious OT. The second
[IKLP06] transforms any defensible OT protocol into a malicious one.

392 S.G. Choi et al.

FunctionalityFCOM

1. Upon receiving input (commit, sid, Pj , x) from Pi where x ∈ {0, 1}m,
internally record the tuple (Pi, Pj , x) and send the message (sid, Pi, Pj)
to the adversary; When receiving (ok) from the adversary, output
(receipt, sid, Pi) to Pj . Ignore all subsequent (commit, ...) inputs.

2. Upon receiving a value (reveal, sid) from Pi, where a tuple (Pi, Pj , x) is
recorded, send (x) to the adversary; When receiving (ok) from the adversary,
output (reveal, sid, x) to Pj .

Fig. 1. String Commitment Functionality

Functionality FOT

1. Upon receiving input (sender, sid, s0, s1) from S where s0, s1 ∈ {0, 1}�,
record the pair (sid, s0, s1).

2. Upon receiving input (receiver, sid, r) from R where r ∈ {0, 1}, send
(sid, sr) to R and (sid) to the adversary, and halt. If no (sender, sid, . . .)
message was previously sent, send nothing to R.

Fig. 2. Oblivious Transfer Functionality

and III [B81, CR03]. To instantiate the protocol in the plain stand-alone model, we will
need to replaceFCOM with an extractable trapdoor commitment scheme. This is different
from the original [IKLP06, H08] compiler, where a standard commitment scheme is
used in the Phase I commitments. We will use the same construction for an adaptive
adversary except a minor simplification to Comp: the sender picks the challenge Q
in Phase III (even when it may be malicious) We note here that we will exploit the
extractability of the Phase I commitments in a crucial way when handling an adaptive
adversary.

Improved Analysis for Static Adversaries. We sketch an improved analysis of Comp
for static adversaries in the stand-alone FCOM-hybrid model (i.e. showing that if Π is
secure against a semi-honest receiver, then Comp(Π) is secure against a malicious
receiver). Our simulator for a malicious receiver R∗ is similar to that in [IKLP06],
except we extract R∗’s input to FOT (in the ideal model) from Phase I instead of Phase
III. This way, we achieve straight-line and strict polynomial time simulation. In the
reduction7, we will need to use repeated sampling to estimate for each r = 1, 2, . . . , n,
a quantity related to the probability that an honest sender interacting with a malicious
receiver R∗ in Comp(Π) does not abort at the end of Phase III, and amongst the
remaining executions not inQ, exactly r are consistent with the random tape determined
in Phase I. This is reminiscent of the analysis in [H08, Lemma 3] but much simpler.
Putting everything together, we obtain the following result8:

Proposition 1. There exists a black-box construction of a string-OT protocol secure
against a static, malicious adversary in the stand-alone FCOM-hybrid model, starting

7 This step is not necessary if we use a non-uniform reduction.
8 We believe our analysis also extends to static adversaries in the UC model and we plan to look

into that in the full version of this paper.

Simple, Black-Box Constructions of Adaptively Secure Protocols 393

INITIALIZATION.

Sender input: (sender, sid, s0, s1) where s0, s1 ∈ {0, 1}�.
Receiver input: (receiver, sid, r) where r ∈ {0, 1}.

PHASE I: RANDOM TAPE GENERATION.

1. R chooses 2n random strings (rR
1 , τ R

1), . . . , (rR
2n, τ R

2n) and sends
(commit, sidi, r

R
i , τ R

i) to FCOM, for i = 1, 2, . . . , 2n.
2. Upon receiving (receipt, sid1), . . . , (receipt, sid2n) from FCOM, S sends 2n random

strings (rS
1, τ

S
1), . . . , (rS

2n, τ S
2n).

3. R sets ri = rR
i ⊕ rS

i and τi = τ R
i ⊕ τ S

i , for i = 1, 2, . . . , 2n.

PHASE II: BASIC EXECUTION.

1. S chooses 2n pairs of random inputs (s01, s11), . . . , (s02n, s12n).
2. S and R engages in 2n parallel executions of the protocol Π . In the ith execution, S

inputs (s0i , s
1
i) and R inputs ri with randomness τi and obtains output sri

i .

PHASE III: CUT-AND-CHOOSE.

1. S chooses a random q = (q1, . . . , qn) ∈ {0, 1}n . The string q is used to define a set
of indices Q ⊂ {1, 2, . . . , 2n} of size n in the following way: Q = {2i − qi}n

i=1.
2. For every i ∈ Q, R sends (reveal, sidi) to FCOM and upon receiving

(reveal, sidi, r
R
i , τ R

i) from FCOM , S computes (ri, τi).
3. S checks that for all i ∈ Q, (ri, τi) is consistent with R’s messages in the i’th

execution of Π . If not, S aborts and halts.

PHASE IV: COMBINER.

1. For every j /∈ Q, R computes αj = r ⊕ rj and sends {αj}j /∈Q to S.

2. S computes σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j) and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j) and sends
(σ0, σ1).

3. R computes and outputs sr = σr ⊕ (
⊕

j /∈Q s
rj

j).

Fig. 3. THE COMPILER Comp(Π)

from any bit-OT protocol secure against a static, semi-honest adversary. Moreover, the
construction achieves a constant multiplicative blow-up in the number of rounds, and
has a strict polynomial-time and straight-line simulator.

Our result and analysis even for static adversaries offers several improvements over that
in [IKLP06, H08]:

– The simulator in [IKLP06] uses rewinding and runs in expected polynomial time,
even in the FCOM-hybrid model.

– Our result immediately yields string-OT protocols and in a constant number of
rounds.

– We eliminate many of the tedious steps in the analysis in both [IKLP06] and
[H08], most notably verifying that the OT reversal protocol in [WW06] works for
defensible adversaries [IKLP06, Claim 5.2]. The overall analysis is simpler, more
modular, and more intuitive.

As shown in [PW09], there exists a constant-round protocol that securely realizes FCOM

against a static adversary in the stand-alone model and that uses black-box access to a

394 S.G. Choi et al.

one-way function. Combined with Proposition 1, we obtain a constant-round string-OT
protocol secure against a static, malicious adversary, relying only on black-box access
to a constant-round bit-OT protocol secure against a static, semi-honest adversary.

Achieving Security against Adaptive Adversaries. In order to cope with adaptive
adversaries in Comp(Π), we will further modify our simulator for static adversaries.
The main difference lies in how we simulate the sender messages in Phase II of
Comp(Π). For static adversaries, we may simply follow the honest sender strategy
for Comp(Π) (i.e., run the honest sender in Π on random inputs for all 2n parallel
executions of Π). This simulation strategy fails against an adaptive adversary because
we will then be unable to present random tapes that are consistent with different sender’s
inputs and the protocol transcript if the sender is corrupted at the end of the protocol.
Instead, we will simulate honest sender messages in Phase II against a malicious
receiver as follows:

1. For each i, extract the receiver’s input and randomness for the i’th execution of Π
from the commitment in Phase I.

2. Upon receiving a message from the receiver in the i’th execution ofΠ , check if all
of the receiver’s messages so far are consistent with its input and randomness. If so,
generate the sender’s response by using the simulator forΠ . Otherwise, corrupt the
sender in the i’th execution ofΠ to obtain its input and random tape and complete
the simulation of the sender’s messages using the honest sender strategy.

Organization. We present our analysis of Comp and OT reversal for adaptive
adversaries in the UC model in Sections 3 and 4 respectively. We defer the proof of
Proposition 1 for static adversaries to the full version of the paper. Henceforth, we will
always refer to adaptive adversaries.

3 Achieving Security against a Malicious Receiver

In this section, we show that Comp boosts the security guarantee from security against
semi-honest receivers to security against malicious receivers.

Proposition 2. Suppose Π is a protocol that UC realizes FOT against a semi-honest,
adaptive adversary, and let Comp(Π) be the protocol obtained by applying the
compiler in Fig 3 toΠ . Then,Comp(Π)UC realizesFOT against an adaptive adversary
with a semi-honest sender and a malicious receiver. Moreover, if Π is in addition
secure against a malicious, adaptive sender, then Comp(Π) UC realizes FOT against
an adaptive adversary with malicious sender and receiver.

A Hybrid Execution. To facilitate the analysis, we introduce an intermediate setting
(inspired by [IKOS07]) in which the protocol Comp(Π) is executed, where there
is again a sender S and a receiver R and in addition 2n pairs of “virtual” parties
(S1,R1), . . . , (S2n,R2n). The i’th execution of Π in Comp(Π) will be executed by
Si and Ri with inputs from S and R respectively. We will require that R1, . . . ,R2n are
always semi-honest; i.e. they use a truly random tape forΠ . Moreover, the environment
is not aware of the “virtual parties”.

Simple, Black-Box Constructions of Adaptively Secure Protocols 395

PHASE I/II: BASIC EXECUTION.9 S chooses 2n pairs of random inputs (s01, s
1
1), . . . ,

(s02n, s
1
2n) and R chooses 2n random inputs r1, . . . , r2n. For each i = 1, . . . , 2n, S

activates Si with (sender, sidi, s
0
i , s

1
i) and R activates Ri with (receiver, sidi, ri).

In HYBRIDΠ,A,Z , the parties Si and Ri executeΠ in parallel. In HYBRIDFOT ,A,Z ,
the parties Si and Ri call the ideal functionality FOT.

PHASE III: CUT-AND-CHOOSE. S chooses a random q ∈ {0, 1}n which identifies
Q ⊂ {1, 2, . . . , 2n} as in Comp(Π) and sends q to R. S checks that for all i ∈ Q,
Si is not corrupted. Otherwise, abort.

PHASE IV: COMBINER. Proceed as in Phase IV of Comp(Π).

We say that an adversary A in the hybrid execution is well-formed if it satisfies the
following properties:

– When A corrupts S, it also corrupts each of S1, . . . ,S2n. Moreover, if S is semi-
honest, then S1, . . . ,S2n are semi-honest.

– When A corrupts R, it also corrupts each of R1, . . . ,R2n. Moreover, R1, . . . ,R2n

are always semi-honest, even if R is malicious.
– If R is corrupted, then A may corrupt any of S1, . . . ,S2n with semi-honest

behavior, without corrupting S.
– Upon receiving the set Q in Phase III from S, A may corrupt all of Rj, j ∈ Q with

semi-honest behavior, even if neither R nor S is corrupted. However, if R is not
corrupted, then Rj , j /∈ Q are also not corrupted.

We will also stipulate that the communication channels between S and each of
S1, . . . ,S2n are private and authenticated. The same holds for the communication
channels between R and each of R1, . . . ,R2n. In addition, S learns whether each of
S1, . . . ,S2n is corrupted.

Lemma 1. For every adversary A that interacts with Comp(Π) in the FCOM-hybrid
model, there exists a well-formed adversary A′ that interacts in the hybrid execution
runningΠ , such that for every environment Z ,

EXEC
FCOM
Comp(Π),A,Z ≡ HYBRIDΠ,A′,Z

In the first step, we show how to enforce semi-honest behavior of R1, . . . ,R2n

in HYBRIDΠ,A′,Z . The high-level strategy is as follows: if a corrupted receiver in
Comp(Π) deviates from semi-honest behavior in the i’th execution of Π in Phase III,
we corrupt Si in HYBRIDΠ,A′,Z to obtain its input and randomness, and continue the
simulation by running the honest sender strategy.

Proof. As usual, A′ works by invoking a copy of A and running a simulated interaction
of A with Z and the parties S and R. We will refer to the communication of A′ with
Z and Comp(Π) as external communication, and that with the simulated A as internal
communication. More precisely, A′ works as follows:

9 The choice of notation is so that Phase III always corresponds to cut-and-choose and Phase IV
corresponds to combiner in both Comp(Π) and in the hybrid executions.

396 S.G. Choi et al.

Simulating the communication with Z: Every input value that A′ receives from Z
externally is written into the adversary A’s input tape (as if coming from A’s
environment). Every output value written by A on its output tape is copied to A′’s
own output tape (to be read by the external Z).

Simulating the case when neither party is corrupted:
PHASE I. A′ internally passes A the message (receipt, sid1), (receipt, sid2), . . . ,

(receipt, sid2n) as if sent from FCOM to S. Then, A′ chooses 2n random strings
(rS

1 , τ
S
1), . . . , (rS

2n, τ
S
2n), and simulates S sending R those 2n strings.

PHASE II. For each round in the protocol Π , if it is the receiver’s turn, then for
each i = 1, . . . , 2n, A′ obtains βi from Ri for the corresponding round. Next,
A′ internally passes A the message (β1, . . . , β2n), as if sent from R to S. The
sender’s turn is handled analogously.

PHASE III. When S externally sends q which determines Q, then for each i ∈ Q:
corrupt Ri to obtain (ri, τi) and compute rR

i = ri⊕rS
i and τR

i = τi⊕τ S
i . Send

(reveal, sidi, r
R
i , τ

R
i) to A as if coming from FCOM.

PHASE IV. Just forward all the messages between S and R.

Simulating the case when only the sender is corrupted: This is essentially the same as
when neither party is corrupted, except the values (rS

1 , τ
S
1), . . . , (rS

2n, τ
S
2n) in Phase

I and the value q in Phase III are chosen by A.

Simulating the case when only the receiver is corrupted:
PHASE I. A′ externally corrupts (R1, . . . ,R2n) to obtain (τ1, . . . , τ2n) and picks

2n random values r1, . . . , r2n. Next, A′ obtains from A the messages
(commit, sidi, r

R
i , τ

R
i) as sent by R to FCOM. Then, A′ sets rS

i = ri ⊕ rR
i and

τ S
i = τi⊕τR

i for i = 1, 2, . . . , 2n and internally passes (rS
1 , τ

S
1), . . . , (rS

2n, τ
S
2n)

to A as if sent by S to R.

PHASE II. We need to simulate the external messages sent by S in Comp(Π) (with
the “help” of S1, . . . ,S2n). If R behaves consistently in the ith execution of
Π , we will just obtain the corresponding message from Si; otherwise, we will
corrupt Si so that we may compute those messages.

First, we handle receiver messages in Comp(Π). Whenever A sends a
message (β1, . . . , β2n) from R where βi is the message in the ith parallel
execution ofΠ , do the following for each i = 1, . . . , 2n:
– If Ri has not aborted and βi is consistent with (ri, τi), deliver the

corresponding message from Ri to Si.
– If Ri has not aborted and βi is not consistent with (ri, τi), A′ tells Ri

to abort. In addition, A′ corrupts Si to obtain its input (s0i , s
1
i) and its

randomness.
– If Ri has aborted, then record βi and do nothing.

Next, we handle sender messages in Comp(Π). Whenever A expects a
message (γ1, . . . , γ2n) from S, where γi is the message in the ith parallel
execution ofΠ , do the following for each i = 1, . . . , 2n:

Simple, Black-Box Constructions of Adaptively Secure Protocols 397

– If Si is corrupted, then A′ computes γi according to Si’s input and
randomness and the previous messages from Ri.

– If Si is not corrupted, then set γi to be the corresponding message sent
from Si to Ri.

A′ then sends (γ1, . . . , γ2n) to A as if sent by S to R.

PHASE III. Deliver q sent externally by S to R. Check that for all i ∈ Q, Si is not
corrupted. Otherwise, abort.

PHASE IV. Just forward all the messages between S and R.

Dealing with corruption of parties: When the simulated A internally corrupts R, A′

externally corrupts R and thus R1, . . . ,R2n, and learns the values r1, . . . , r2n

and τ1, . . . , τ2n (in addition to the input r). A′ then sets rR
i = ri ⊕ rS

i and
τR
i = τi ⊕ τ S

i for i = 1, 2, . . . , 2n and internally passes (rR
1 , τ

R
1), . . . , (rR

2n, τ
R
2n)

to A as the randomness for R in Comp(Π). Similarly, when the simulated A
internally corrupts S, A′ externally corrupts S and thus S1, . . . ,S2n and learns
the values (s01, s

1
1), . . . , (s

0
2n, s

1
2n) along with the randomness used by S1, . . . ,S2n

in the 2n executions of Π . A′ then internally passes all of these values to A as
the randomness for S in Comp(Π). In addition, for all i ∈ Q, A′ passes the value
(rR

i , τ
R
i) to A as the value sent from FCOM to S in Phase III.

It is straight-forward to verify that in Phase III, checking Si is not corrupted in
HYBRIDΠ,A′,Z is identical to R behaving consistently in the ith execution of Π in
Comp(Π). Thus, the abort condition at the end of Phase III are identical. We may
therefore conclude that the ensembles EXEC and HYBRID are identical. �
Lemma 2. For every well-formed adversary A′ that interacts in the hybrid execution
running Π , there exists a well-formed adversary A′′ that interacts in the hybrid
execution running FOT, such that for every environment Z ,

HYBRIDΠ,A′,Z
c≈ HYBRIDFOT,A′′,Z

Proof (sketch). The idea is that we may interpret HYBRIDΠ,A′,Z as an execution
involving 4n+2 parties S,R,S1, . . . ,S2n,R1, . . . ,R2n jointly running some protocol
that usesΠ as a sub-routine, and HYBRIDFOT ,A′′,Z as an execution involving the same
4n+ 2 parties running the same protocol except with an ideal FOT functionality instead
ofΠ . The claim then follows from the UC composition [C01]. �
Lemma 3. For every well-formed adversary A′′ that interacts in the hybrid execution
running FOT , there exists an ideal-process adversary S, such that for every environ-
ment Z ,

HYBRIDFOT,A′′,Z
s≈ IDEALFOT,S,Z

Proof. Again, we first specify S depending on the corruption pattern:

Simulating the communication with Z: Every input value that S receives from Z
externally is written into the adversary A′′’s input tape (as if coming from A′′’s
environment). Every output value written by A′′ on its output tape is copied to S’s
own output tape (to be read by the external Z).

398 S.G. Choi et al.

Simulating the case when neither party is corrupted:
PHASE I/II. Send (sid1, . . . , sid2n) internally to A′′ as if sent from FOT.

PHASE III. Send a random q ∈ {0, 1}n as if sent from S to R. For each i ∈ Q,
when A′′ corrupts Ri, pick a random ri ∈ {0, 1} and a random sri

i ∈ {0, 1}�.

PHASE IV. Send random {αj}j /∈Q as if sent from R and random (σ0, σ1) as if
sent from S.

Simulating the case when only the sender is corrupted:
PHASE I/II. When A′′ sends (sender, sidi, s

0
i , s

1
i) to FOT as Si, then S records

(s0i , s
1
i). Then, send (sid1, . . . , sid2n) internally to A′′ as if sent from FOT.

PHASE III. Proceed as in the case neither party is corrupted, except q is chosen
by A′′.

PHASE IV. Send random {αj}j /∈Q to A′′ as if sent from R. When A′′ sends

(σ0, σ1) as S, compute s0 = σ0 ⊕ (
⊕

j /∈Q s
αj

j) and s1 = σ1 ⊕ (
⊕

j /∈Q s
1−αj

j).
Next, send (sender, s0, s1) to FOT as if sent from S.

Simulating the case when only the receiver is corrupted:
PHASE I/II. S picks 2n pairs of random inputs (s01, s

1
1), . . . , (s

0
2n, s

1
2n). If A′′

sends (receiver, sidi, ri) to FOT as Ri, record ri and pass (sidi, s
ri

i) to A′′ as
if sent by FOT to Ri. If A′′ corrupts Si, then S presents (s0i , s

1
i) as Si’s input

to A′′.

PHASE III. Pick a random q ∈ {0, 1}n and send q to A′′ as if coming from S.
Compute Q ⊂ {1, 2, . . . , 2n} as in Comp(Π). Check that for all i ∈ Q, Si is
not corrupted. Otherwise, S simulates an abort from S.

PHASE IV. Compute j∗ /∈ Q where Sj∗ is not corrupted; output failure if such a
j∗ does not exist. When A′′ sends {αj}j /∈Q as R, compute r = αj∗ ⊕ rj∗

and send (receiver, sid, r) to FOT. Upon receiving (sid, sr) from FOT, compute
(σ0, σ1) so that σr is consistent with sr as follows:
– If r = 0, then σ0 = s0⊕ (

⊕
j /∈Q s

αj

j) and σ1 is a random string in {0, 1}�.
– If r = 1, then σ0 is a random string in {0, 1}� and σ1 = s1 ⊕

(
⊕

j /∈Q s
1−αj

j).
S then sends (σ0, σ1) to A′′ as if sent by S to R.

Dealing with corruptions: Corruptions of R1, . . . ,R2n,S1, . . . ,S2n may be handled
as above. For corruptions of R and S, we will consider two cases depending on the
corruption schedule. In the first case, at least one of the parties is corrupted before
the message (σ0, σ1) is sent.
– Once S is corrupted, S learns the actual input (s0, s1). If S is corrupted

before the messages (σ0, σ1) are computed, then S may simply present
(s01, s11), . . . , (s02n, s

1
2n) (as chosen in Phase I) as the randomness of S.

Otherwise, S modifies s
1−rj∗
j∗ (if necessary) so that both relations σ0 =

s0 ⊕ (
⊕

j /∈Q s
αj

j) and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j) are satisfied.

Simple, Black-Box Constructions of Adaptively Secure Protocols 399

– Once R is corrupted, S learns the actual input r. If R is corrupted before the
messages {αj}j /∈Q are computed, then S may simply present (r1, . . . , r2n) (as
chosen in Phase I) as the randomness of R. Otherwise, S modifies {rj}j /∈Q

so that rj = r ⊕ αj . In addition, S presents sri

i as the output of Ri, i =
1, 2, . . . , 2n.

In the other case, neither party is corrupted when the message (σ0, σ1) is sent.
– Once S is corrupted, we will modify both s0j∗ and s1j∗ so that (σ0, σ1) is

consistent with (s0, s1).
– Once R is corrupted, we will first modify {rj}j /∈Q as in the previous case and

then modify s
rj∗
j∗ so that σr is consistent with sr.

We claim that if S does not output failure, then the ensembles HYBRIDFOT,A′′,Z and
IDEALFOT,S,Z are identical. This is clear up to the end of Phase III. For Phase IV,
observe that if S and Sj∗ are not corrupted, then from the view of A′′ and Z in

HYBRIDFOT ,A′′,Z , the string s
1−rj∗
j∗ is truly random. As such, σ1−r is also truly random.

Similarly, if R is not corrupted, then from the view of A′′ and Z , the n values {rj}j /∈Q

are truly random and thus {αj}j /∈Q are also truly random. Furthermore, if neither S nor
R is corrupted just before the message (σ0, σ1) is sent, then from the view of A′′ and
Z , both s0j∗ and s1j∗ are truly random, and thus both σ0 and σ1 are truly random.

It remains to show that S outputs failure with negligible probability. Observe that S
only outputs failure if at the start of Phase IV, all of the following conditions hold:

– Neither party has aborted. In addition, the sender is honest at the start of Phase IV,
so the challenge q is chosen at random.

– Amongst the n pairs of parties (S1,S2), . . . , (S2n−1,S2n), exactly one party in
each pair is corrupted. Otherwise, if there is a pair where both parties are corrupted,
then S will abort at the end of Phase III; and if there is a pair where neither party is
corrupted, then there is an uncorrupted Sj∗ .

– The set Q corresponding to the challenge q is exactly the set of n uncorrupted
parties (one in each pair).

Clearly, the last condition only holds with probability 2−n over a random choice
of q. �

4 Malicious Sender and Semi-honest Receiver

In this section, we reverse the OT protocol from the previous section to obtain one that
is secure for a malicious sender and a semi-honest receiver. The construction (shown in
Fig 4) is the same as that in [WW06], the novelty lies in the analysis which establishes
security against an adaptive adversary. We note that the analysis though tedious, is fairly
straight-forward.

Proposition 3. For every adaptive adversaryA that interacts with the protocolψ in the
FOT-hybrid model, there exists an adaptive adversary S that interacts with FOT , such
that for every environmentZ ,

EXEC
FOT
ψ,A,Z ≡ IDEALFOT,S,Z .

Moreover, the corruption pattern in S is the reverse of that in A.

400 S.G. Choi et al.

INITIALIZATION.

Sender input: (sender, sid, s0, s1) where s0, s1 ∈ {0, 1}.
Receiver input: (receiver, sid, r) where r ∈ {0, 1}.

PHASE I: CALL FOT .

1. R chooses a bit ρ ∈ {0, 1} and sends (sender, sid, ρ, ρ ⊕ r) to FOT.
2. S sends (receiver, sid, s0 ⊕ s1) to FOT.

PHASE II: REVERSE.

1. Upon receiving (sid, a) from FOT, S computes α = s0 ⊕ a and sends α to R.
2. Upon receiving α, R computes and outputs ρ ⊕ α.

Fig. 4. The OT-Reversal Protocol ψ

Proof (sketch). As usual, S works by invoking a copy of A and running a simulated
interaction of A with Z and the parties S and R in the FOT-hybrid model. We will
refer to the communication of S with Z and ψ as external communication, and that
with the simulated A as internal communication. In addition, we will refer to the FOT

functionality in the real execution as the internal FOT, and that in the ideal execution as
the external FOT. S works as follows:

Simulating the communication with Z: Every input value that S externally receives
from Z is written into the adversary A’s input tape (as if coming from A’s
environment). Every output value written by A on its output tape is copied to S’s
own output tape (to be read by the external Z).

Simulating the case when neither party is corrupted: S internally passes (sid) to A as
if coming from the internal FOT. When S receives (sid) from the external FOT, S
chooses α ∈ {0, 1} at random and sends it to A as if coming from S.

Simulating the case when only the sender is corrupted:WhenA sends (receiver, sid, d)
to the internal FOT as S, S chooses a ∈ {0, 1} at random and sends (sid, a) to A
the output from the internal FOT. When A sends α as S, S sends (sender, sid, a ⊕
α, a⊕ α⊕ d) to the external FOT.

Simulating the case when only the receiver is corrupted: When A internally sends
(sender, sid, a0, a1) to FOT as R, S sets ρ = a0, r = a0 ⊕ a1 and externally sends
(receiver, sid, r) to FOT. Upon receiving (sid, sr) externally from FOT, S internally
sends α = sr ⊕ ρ to A as if coming from S.

Dealing with corruptions: When R is corrupted, S needs to present A with a
consistent random tape comprising of a single bit ρ. When S is corrupted, S needs
to present A with the output bit a which S receives from the internal FOT. We
consider four cases depending on the corruption schedule:
– Case 1: R is corrupted before it sends its input to the internal FOT. In this case,

S proceeds as in the case when only the receiver is corrupted to compute ρ and
r. If and when S is corrupted, S computes a = ρ⊕ rd where d is S’s input to
the internal FOT (set to s0 ⊕ s1 if S is honest when it submits its input to the
internal FOT).

Simple, Black-Box Constructions of Adaptively Secure Protocols 401

– Case 2: Neither party is corrupted whenα is sent. In this case, S picks a random
α ∈ {0, 1}. Then, when R is corrupted, S learns both its input r and its output
sr, and computes ρ = α ⊕ sr. When S is corrupted, S learns its input s0, s1
and computes a = α⊕ s0.

If neither Case 1 nor Case 2 holds, then the adversary A corrupts either R or S (or
both) and learns at least one of ρ and a before seeing α.

– Case 3: A learns a first. This means A corrupts S first and corrupts R (if at
all) after S receives a from the internal FOT. Then, S proceeds as in the case
where only the sender is corrupted and picks a random a ∈ {0, 1}. When R is
corrupted, S learns r and computes ρ = a⊕ rd (where d is again S’s input to
the internal FOT).

– Case 4: A learns ρ first. This means either A corrupts R first, or A corrupts R
before S receives a from the internal FOT.10 In this case, S picks ρ ∈ {0, 1}
at random when R is corrupted, and subsequently (if and when A corrupts S)
computes a = ρ⊕ rd.

Finally, we need to check that EXEC
FOT
ψ,A,Z ≡ IDEALFOT ,S,Z , which is similar to that in

[WW06] which addresses static corruptions. �

Acknowledgments. We thank Ran Canetti, Yehuda Lindell and Manoj Prabhakaran
for helpful discussions.

References

[B81] Blum, M.: Coin flipping by telephone. In: CRYPTO (1981)
[B98] Beaver, D.: Adaptively secure oblivious transfer. In: Ohta, K., Pei, D. (eds.)

ASIACRYPT 1998. LNCS, vol. 1514, pp. 300–314. Springer, Heidelberg (1998)
[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols

with relaxed set-up assumptions. In: FOCS (2004)
[C00] Canetti, R.: Security and composition of multiparty cryptographic protocols. J.

Cryptology 13(1), 143–202 (2000)
[C01] Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. In: FOCS (2001)
[CDMW08] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Non-committing encryption

and adaptively secure protocols from weaker assumptions (manuscript, 2008)
[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with

global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (2007)

[CKL06] Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. J. Cryptology 19(2), 135–
167 (2006)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC (2002)

10 In particular, it could be that A corrupts S at the start of the protocol (learning nothing at this
point), and then corrupts R immediately after it sends its input to the internal FOT.

402 S.G. Choi et al.

[CR03] Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

[DN00] Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, p. 432. Springer, Heidelberg (2000)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC (1987)

[GWZ08] Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. Cryptology ePrint 2008/534 (2008)

[H08] Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

[IKLP06] Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC (2006)

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC (2007)

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

[K88] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)
[K05] Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:

Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005)

[K07] Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

[KO04] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg
(2004)

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and

composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

[PW09] Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-
way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418.
Springer, Heidelberg (2009)

[WW06] Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)

Black-Box Constructions of Two-Party Protocols from
One-Way Functions

Rafael Pass1,� and Hoeteck Wee2,��

1 Cornell University
rafael@cs.cornell.edu
2 Queens College, CUNY

hoeteck@cs.qc.cuny.edu

Abstract. We exhibit constructions of the following two-party cryptographic
protocols given only black-box access to a one-way function:

– constant-round zero-knowledge arguments (of knowledge) for any language
in NP;

– constant-round trapdoor commitment schemes;
– constant-round parallel coin-tossing.

Previous constructions either require stronger computational assumptions (e.g.
collision-resistant hash functions), non-black-box access to a one-way function,
or a super-constant number of rounds. As an immediate corollary, we obtain a
constant-round black-box construction of secure two-party computation proto-
cols starting from only semi-honest oblivious transfer. In addition, by combining
our techniques with recent constructions of concurrent zero-knowledge and non-
malleable primitives, we obtain black-box constructions of concurrent zero-
knowledge arguments for NP and non-malleable commitments starting from only
one-way functions.

Keywords: black-box constructions, zero-knowledge arguments, trapdoor com-
mitments, parallel coin-tossing, secure two-party computation, non-malleable
commitments.

1 Introduction

Much of the modern work in foundations of cryptography rests on general crypto-
graphic assumptions like the existence of one-way functions and trapdoor permutations.
General assumptions provide an abstraction of the functionalities and hardness we
exploit in specific assumptions such as hardness of factoring and discrete log without
referring to any specific underlying algebraic structure. The expressive nature of general
assumptions means that we could then derive constructions based on a large number of
concrete assumptions of our choice, even ones that may not have been considered at the
time of designing the protocols. Constructions based on general assumptions may use
the primitive guaranteed by the assumption in one of two ways:

� Supported in part by NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-
0197, BSF Grant 2006317 and I3P grant 2006CS-001-0000001-02.

�� Most of this work was done while a post-doc at Columbia University, supported in part by
NSF Grants CNS-0716245 and SBE-0245014.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 403–418, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

404 R. Pass and H. Wee

Black-box usage: A construction is black-box if it refers only to the input/output
behavior of the underlying primitive; we would typically also require that in the
proof of security, we can use an adversary breaking the security of the construction
as an oracle to break the underlying primitive (c.f. [39,27]).

Non-black-box usage: A construction is non-black box if it uses the code computing
the functionality of the primitive.

Motivated by the fact that the vast majority of constructions in cryptography indeed
are black-box, a rich and fruitful body of work initiated in [27] seeks to understand the
power and limitations of black-box constructions in cryptography, resulting in a fairly
complete picture of the relations amongst most cryptographic primitives with respect to
black-box constructions. We stress that the general question of whether we can securely
realize tasks via black-box access to a general primitive is not merely of theoretical
interest. A practical reason is related to efficiency, as non-black box constructions
tend to be less efficient due to the use of general NP reductions to order to prove
statements in zero knowledge; this impacts both computational complexity as well as
communication complexity. As such, non-black box constructions traditionally only
serve as “feasibility” results; moreover, the constructions underlying such feasibility
results often do not translate readily into “practical” black-box constructions without a
recourse to the use of either specific assumptions or additional general assumptions.

Fortunately, a recent line of work has narrowed - and in several cases even closed
- the gap between black-box and non-black-box constructions for many cryptographic
tasks. A notable example is the work of Ishai et al. [28,24], which building on the early
work of Kilian’s [30], provides a black-box construction of secure multi-party protocols
that can tolerate any number of static malicious adversaries, assuming only the existence
a semi-honest oblivious transfer protocol (which can in turn be based on homomorphic
encryption schemes or enhanced trapdoor permutations); the corresponding non-black-
box feasibility result was known since the 1980s [21]. Several other works address
improvements in efficiency for two-party protocols and multi-party protocols with an
honest majority e.g. [12,34], as well as public-key encryption schemes secure against
chosen-ciphertext attacks and variants thereof [9,37]. In fact, the recent success we have
had with black-box constructions of secure protocols seems to hint that there is perhaps
no inherent gap between non-black-box “feasibility” results and black-box “practical”
constructions for natural cryptographic tasks: that is, any feasibility result may also be
realized by a practical black-box construction under the same assumptions. If so, this
would be a stark contrast to black-box versus non-black-box use of the adversary’s code
in the proof of security in simulation-based notions of security, for which a gap has been
established [20,1].

Upon closer examination, one notices that while the afore-mentioned black-box
constructions of secure protocols do improve on the efficiency of previous non-
black-box constructions as measured in terms of computational and communication
complexity, most (except for [12]) do not match the round complexity of existing non-
black-box constructions. Indeed, there are several fundamental constant-round two-
party cryptographic tasks, notably zero-knowledge arguments for NP for which we do
know how to realize via non-black-box usage of a one-way function [16], but existing

Black-Box Constructions of Two-Party Protocols from One-Way Functions 405

cryptographic task black-box OWF non-black-box OWF black-box SHC

zero-knowledge argument ω(1) [22] O(1) [16] O(1) [19]

trapdoor commitments (m bits) Õ(m) [13] O(1) [16] O(1) [13]

coin-tossing (m coins) Õ(m) [3] O(1) [33] O(1) [33]

Fig. 1. Round complexity of existing constructions of several cryptographic tasks from one-way
functions (OWF) and constant-round statistically hiding commitments (SHC). Here Õ(·) hides
savings of multiplicative factors that are logarithmic in the security parameter. The trapdoor
commitment with Õ(m) rounds from black-box OWF is obtained by combining the [13] protocol
with Blum’s coin-tossing protocol [3].

black-box constructions either require a super-constant number of rounds or stronger
assumptions [21,19]. This raises the following intriguing question:

Is there an inherent trade-off between round complexity and either efficiency or
computational assumptions in realizing these two-party cryptographic tasks?

Put differently, if we require a constant-round zero-knowledge argument system, must
we necessarily turn to a non-black-box construction (thereby incurring a loss in ef-
ficiency) or use collision-resistant hash functions (a stronger assumption)? Interest-
ingly, the Feige-Shamir zero-knowledge arguments [16] constitute one of the earliest
examples of non-black-box constructions; the same work also presents a non-black-
box construction of constant-round trapdoor commitments from one-way functions,
for which there is again a gap with respect to existing black-box constructions. Other
related tasks with a similar gap include parallel coin-tossing from one-way functions,
and secure two-party computation from semi-honest oblivious transfer. In each of
these cases, constant-round non-black-box constructions are known [33,43,21], whereas
existing black-box constructions either additionally assuming collision-resistant hash
functions or constant-round statistically hiding commitments [19,13,33,34] (which we
know cannot be realized via black-box access to a one-way function [25,42]1) or by
considering protocols with super-constant number of rounds. We summarize these prior
results in Figure 1.

Our Results. In this work, we answer the afore-mentioned question negatively: we
present black-box constructions of constant-round zero-knowledge arguments for NP
and several other two-party functionalities under the minimal assumption of one-way
functions:

Theorem 1 (informal). There exist black-box constructions of constant-round zero-
knowledge arguments (of knowledge) for NP, constant-round trapdoor commitments
and constant-round parallel coin-tossing, starting from any one-way function.

1 This is true even if we allow black-box access to semi-honest oblivious transfer, by observing
that the impossibility result in [25] extends to enhanced trapdoor permutations with which we
could realize constant-round semi-honest oblivious transfer [15].

406 R. Pass and H. Wee

We stress that reducing the computational assumptions for these cryptographic pro-
tocols from collision-resistant hash functions to one-way functions is important also
in practice; recent attacks on the popular MD4, MD5 and SHA1 hash functions
demonstrate that achieving collision-resistance in the heuristic sense is much harder
than achieving one-way’ness.

The above constructions may be modified to achieve security against adaptive
corruptions in the stand-alone model (c.f. [5]) while maintaining constant round
complexity. This improves on the early work of Beaver [2], who provided constructions
assuming hardness of factoring. The idea is to have the receiver in the commitment
scheme from [13] (which we observe to be adaptively secure) commit to its challenge
using our trapdoor commitment scheme.

Secure Two-Party Computation. A series of recent work [28,34,24,10,29] (building on
[30]) provided a black-box construction of secure two-party protocols starting from
semi-honest oblivious transfer. The resulting protocol has constant round complexity
assuming a constant-round parallel coin-tossing protocol. The following result then
follows as an immediate corollary of our coin-tossing protocol:

Theorem 2 (informal). There exists a black-box construction of constant-round secure
two-party computation protocol with respect to static malicious adversaries, starting
from any constant-round oblivious transfer protocol secure against static semi-honest
adversaries.

This result also extends to any constant number of parties, while preserving constant
round complexity. We point out that in concurrent work, Choi et al. [10] established
an analogous statement for adaptive corruptions, using as a building block our trapdoor
commitment schemes tolerating adaptive corruptions.

Additional Constructions. Combining our techniques with previous work, we also
obtain black-box constructions of concurrent zero-knowledge arguments and non-
malleable commitments from one-way functions:

Theorem 3 (informal). There exist black-box constructions of the following crypto-
graphic protocols starting from any one-way function:

– concurrent zero-knowledge arguments for NP with c logn rounds for any super-
constant function c(·);

– non-malleable commitments with O(log n) rounds, and concurrent non-malleable
commitments with O(n) rounds.

The concurrent zero-knowledge argument system follows readily from modifying the
challenge-response preamble in our stand-alone zero-knowledge argument system in
the manner of [38,36]. The non-malleable commitment scheme requires substantially
more work, combining ideas from our stand-alone zero-knowledge argument system,
an encoding scheme from [9] along the messaging scheduling and analysis from
[14,32].

Black-Box Constructions of Two-Party Protocols from One-Way Functions 407

2 Overview of Our Constructions

We begin with our overview of our constant-round zero-knowledge arguments and trap-
door commitment schemes, which are obtained by applying a compiler to challenge-
response protocols with a certain structure.

Challenge-Response Protocol. Consider a 3-round challenge-response protocol, say
between a prover and a verifier with possibly a common input, with the following
structure: In the first round, the prover commits to values v1, . . . , vk (bit by bit, in
parallel). The verifier responds with a random challenge e ∈ {0, 1}k, and the prover
responds by opening to some subset of bits in each value v1, . . . , vk. Then verifier then
decides whether to accept or reject.

SPECIAL SOUNDNESS: For every message in the first round, there exists at most
one “easy challenge” ẽ that allows the prover to cheat. For a language, cheating
means convincing the verifier to accept a NO instance; for a commitment scheme,
cheating means generating an accepting commit phase transcript that can be opened
to two different values. Moreover, we require that the “easy challenge” is efficiently
recoverable in the following sense: there is an efficient procedure that given the
values v1, . . . , vk (along with the common input), outputs a string ẽ such that if an
easy challenge exists, it must equal ẽ.

LOOK-AHEAD SIMULATION: Roughly speaking, this condition says simulation is
easy if we can look ahead and obtain the verifier’s challenge e. For a language,
this condition stipulates that the protocol is special honest-verifier zero-knowledge
[11]: we require that the simulator on input any fixed verifier’s challenge e gener-
ates an “honest-looking” transcript. Here, honest-looking means computationally
indistinguishable from an honest prover-verifier interaction wherein the verifier
always sends e. For a commitment scheme, this condition stipulates that there exists
a simulator that on input any fixed verifier’s challenge e generates an “honest-
looking” transcript of the commit phase that can be later opened to any value
v. Here, honest-looking means computationally indistinguishable from an honest
commitment and opening to the value v wherein the verifier always sends e in the
commit phase.

The Compiler. We have the verifier commits to its challenge e in advance before
running the challenge-response protocol. Indeed, this approach was adopted in [19,17]
for zero knowledge, and in [13] for trapdoor commitments. The difficulty is that we
do not know how to guarantee soundness as there could be a malleability attack
(specifically, we do not know how to rule out the possibility that after seeing the
verifier’s commitment to e, the cheating prover could send some carefully crafted
commitments that can be open to a valid accepting response once the verifier opens
the commitment to e). This problem can be circumvented in one of three ways:

– Have the verifier commit using a perfectly hiding commitment scheme and the
prover use a statistically binding commitment scheme [19,13].

408 R. Pass and H. Wee

– Have the verifier commit using a trapdoor commitment scheme and the prover use
a statistically binding commitment scheme (implicit in [33,38,41,23]2).

– Have both the prover and verifier commit using a computationally hiding com-
mitment scheme, but have the prover prove that it “knows” the values underlying
its commitments (e.g., by using a zero-knowledge proof of knowledge) before the
verifier opens the commitment to its challenge [17, Sec 4.9.2.2].

We adopt the third approach in this paper. Specifically, we use an extractable commit-
ment scheme, which is informally a commitment scheme with a proof of knowledge
property. Such a commitment scheme can be constructed via black-box access to
any commitment scheme using cut-and-choose techniques [38,14]. Note that the first
approach cannot work in our setting because there is no black-box construction of
constant-round perfectly hiding commitment schemes from one-way functions [25],
whereas the second requires a functionality that we are trying to construct.

Towards Trapdoor Commitments and Parallel Coin-Tossing. For zero-knowledge
arguments, Blum’s challenge-response protocol for the NP-complete problem Graph
Hamiltonicity [4] suffices. On the other hand, for trapdoor commitments, we need to
design a new challenge-response protocol because we do not know how to efficiently
recover the easy challenge in the [13] protocol. Next, we show how to derive an
extractable trapdoor commitment scheme starting from any trapdoor commitment
scheme (such as ours), and from there, we obtain a constant-round parallel coin-tossing
protocol from the works of [3,8].

3 Preliminaries

We will use 1k to denote the security parameter. We refer the reader to [17] for
definitions of various cryptographic notions, such as zero knowledge.

Commitment Schemes. Recall that a commitment scheme Com is a 2-party protocol
between a sender C and a receiver R. In this paper, we always refer to computationally
hiding commitment schemes. The binding property however, may be either statistical or
computational. A commitment scheme has a commit phase and an open phase; we only
consider commitment schemes where the open phase consists of a single message from
the sender to the receiver. We know that there is a black-box construction of a 2-round
statistically binding commitment scheme from any one-way function [35,26].

Trapdoor Commitment Schemes. Let (C,R) be a (computationally hiding) com-
mitment scheme. We say that (C,R) is a trapdoor commitment scheme if there exists
an expected polynomial-time probabilistic oracle machine S = (S1,S2) such that for
any PPT R∗ and all v ∈ {0, 1}n, the output (τ, w) of the following experiments are
computationally indistinguishable:

2 In these works (specifically, the protocols based on one-way functions), the verifier commits
to its challenge e, and to reveal the challenge, it sends the string e, along with a zero-
knowledge proof that the value in the commitment is e; the verifier is effectively using a
trapdoor commitment.

Black-Box Constructions of Two-Party Protocols from One-Way Functions 409

– an honest sender C interacts with R∗ to commit to v, and then opens the
commitment: τ is the view of R∗ in the commit phase, and w is the message C
sends in the open phase.

– the simulator S generates a simulated view τ for the commit phase, and then opens
the commitment to v in the open phase: formally, SR∗

1 (1n, 1k) → (τ, STATE),
S2(STATE, v) → w.

Extractable Commitment Schemes. Let (C,R) be a statistically binding commitment
scheme. We say that (C,R) is an extractable commitment scheme if there exists an
expected polynomial-time probabilistic oracle machine (the extractor) E that given
oracle access to any PPT cheating sender C∗ outputs a pair (τ, σ∗) such that:

– (simulation) τ is identically distributed to the view of C∗ at the end of interacting
with an honest receiver R in commit phase.

– (extraction) the probability that τ is accepting and σ∗ = ⊥ is negligible.
– (binding) if σ∗ �= ⊥, then it is statistically impossible to open τ to any value other

than σ∗.

We will also consider extractable commitment schemes that are computationally
binding; the definition is as above, except if σ∗ �= ⊥, we only require that it is
computationally infeasible to open τ to any value other than σ∗.

4 Extractable Commitment Schemes

The Basic Construction. The following protocol used in the works of [14,38,40]
(also [30]) yields an extractable commitment scheme, starting from any commitment
scheme Com:

PROTOCOL ExtCom.
– Common input: security parameter 1k.
– Sender’s input: a string σ ∈ {0, 1}m.

COMMIT PHASE.
– The sender commits (using Com) to k pairs of strings (v01 , v

1
1), . . . , (v

0
k, v

1
k)

where (v0i , v
1
i) = (ηi, σ ⊕ ηi) and η1, . . . , ηk are random strings in {0, 1}m.

– Upon receiving a challenge e = (e1, . . . , ek) from the receiver, the sender
opens the commitments to ve1

1 , . . . , v
ek

k .
– The receiver checks that the openings are valid.

OPEN PHASE.
– The sender sends σ and opens the commitments to all k pairs of strings.
– The receiver checks that all the openings are valid, and also that σ = v01⊕v11 =
· · · = v0k ⊕ v1k.

We sketch the proof (implicit in [14,38,40]) that ExtCom is an extractable commitment
scheme.

Computationally hiding. The proof proceeds by a hybrid argument. Fix a cheating
receiver, σ, σ′ and suppose we want to show that ExtCom(σ) and ExtCom(σ′) are

410 R. Pass and H. Wee

computationally indistinguishable. In the i’th hybrid distribution, the first i pairs
of strings are random shares of σ and the last k − i pairs of strings are random
shares of σ′. Suppose we have a distinguisher for the i’th and i + 1’th hybrids.
If the distribution of the bit ei is noticeably biased, then we can break the hiding
property of the underlying commitment Com right away. Otherwise, we can guess
ei with probability roughly 1/2 and obtain a distinguisher for Com(σ ⊕ ηi) and
Com(σ′ ⊕ ηi).

Extractable. We start with the easier case where Com is statistically binding, upon
which ExtCom is also statistically binding. Fix a cheating sender C∗. We construct
the extractor E as follows:
1. First, simulate an execution of C∗ by internally emulating an honest receiver

R to obtain a transcript τ of the commit phase. If τ is rejecting, then output
(τ,⊥) and halt.

2. If τ is accepting with some challenge e, then keep rewinding C∗ with random
challenges until we receive another accepting response from C∗ with some
challenge e′. If e = e′, then output (τ,⊥) and halt. Otherwise, extract a
value σ∗ from the C∗’s responses to distinct challenges e, e′ (by combining
the appropriate shares), and output (τ, σ∗).

Now, suppose the probability over e that we obtain an accepting transcript τ is p.
Then, the expected number of queries E makes to C∗ is (1 − p) + p · 1

p ≤ 2. Also,
the failure probability, i.e., the probability that τ is accepting and e = e′ is at most
p · 2−k

p = 2−k.
We can still use the same extractor E in the case where Com is computationally

binding. Now, if there is a cheating sender that can open the commitment in τ to a
different value from σ∗, then we can combine this with the opening to σ∗ obtained
by E to derive an efficient adversary that breaks the binding property of Com.

The Parallel Variant. For our compiler, we will actually need an extractable
commitment scheme to a string σ for which we can open any subset of the bits in σ
without compromising the security (i.e. hiding) of the remaining bits. We may obtain
such a scheme PExtCom by running ExtCom to commit to each bit of σ in parallel.
That PExtCom is hiding follows from the more general fact that the hiding property of
commitment schemes is preserved under parallel composition. To show that PExtCom
is extractable, we may use the same extractor E as before, except for a modification
in step 2. Note that the receiver’s challenge in PExtCom is a k-tuple of m-bit strings,
which again we denote by e ∈ ({0, 1}m)k. Once we obtain responses to two challenges
e, e′ in Step 2, we proceed as follows: if e′ agrees with e in any of the k components,
we output (τ,⊥) and halt. Otherwise, we will be able to extract each of them bits in the
m parallel executions of ExtCom. As before, the expected number of queries E makes
to C∗ is at most 2. The failure probability in this case is now at mostm · 2−k.

5 Zero-Knowledge Arguments for NP

Look-Ahead Zero-Knowledge Proof System. We use as our look-ahead zero-
knowledge proof system the parallel repetition variant of Blum’s Hamiltonicity protocol
[4], which we already know to be special honest-verifier zero-knowledge.

Black-Box Constructions of Two-Party Protocols from One-Way Functions 411

HAMILTONICITY PROTOCOL ΠHAM .
– Common input: a graphG on n vertices.
– Prover’s input, a cycle h in G

1. The prover picks random permutations πi over [n] and commits to vi =
(πi, Ai), where Ai denotes the adjacency matrix of the graph πi(G).

2. Upon receiving the verifier’s challenge e = (e1, . . . , ek), the prover responds
as follows for each i = 1, . . . , k: if ei = 0, it opens the commitment to (πi, Ai);
if ei = 1, it opens the commitment to entries in Ai corresponding to the edges
of the cycle πi(h).

3. The verifier checks that the openings are valid and in addition, that Ai =
πi(Gi) if ei = 0 and that the open entries correspond to edges of a Hamiltonian
cycle if ei = 1.

We just need to verify that the easy challenge is efficiently recoverable:

Special soundness. Given a non-Hamiltonian graph G and the values vi = (πi, Ai),
we can compute ẽ = (ẽ1, . . . , ẽk) as follows: ẽi equals 0 if πi(G) = Ai and 1
otherwise. It is easy to see that if an easy challenge (that allows the prover to cheat)
exists, then it must equal ẽ.3

The Zero-Knowledge Argument System. The zero-knowledge protocol is as follows:

1. The verifier picks a random e ∈ {0, 1}k and commits to e usingCom, a statistically-
binding commitment scheme.

2. The prover commits to v1, . . . , vk as inΠHAM using PExtCom.
3. The verifier opens the commitment to e.
4. The prover aborts if the opening to e is not valid. Otherwise, it responds to the

challenge e according to ΠHAM.
5. The verifier runs the final verification step as inΠHAM.

The Analysis. Completeness is straight-forward.

Computational Soundness. Suppose there exists a cheating proverP ∗ (WLOG determin-
istic) that convinces the verifier to accept a non-Hamiltonian graph G with probability
ε = 1/ poly(k). Intuitively this means that P ∗ on input Com(e) predicts e with
probability roughly ε� 2−k, which must contradict the hiding property of Com. More
formally, fix the graph G, and we know that with probability ε/2 over e, P ∗ succeeds
with probability ε/2. Let Γ denote the set of such challenges e, so |Γ | ≥ ε

2 · 2k, and
consider the procedureA that on input a commitment Com(e):

1. sends Com(e) to P ∗;
2. uses the extractor for PExtCom with P ∗ as the cheating sender to obtain commit-

ments to v1, . . . , vk along with the values v1, . . . , vk.
3. computes a candidate easy challenge ẽ from v1, . . . , vk and outputs ẽ.

It is easy to see that for all e ∈ Γ , Pr[A(Com(e)) → e] ≥ ε
2 − neg(k) ≥ ε

4 . By using a
non-uniform reduction, we may WLOG assume that 0k ∈ Γ . Now, the sets of strings Γ ′

3 Note that determining whether an easy challenge exists is NP-hard, since we must determine
whether Ai contains a cycle.

412 R. Pass and H. Wee

in the output of A(Com(0k)) that occurs with probability at least ε
8 is at most 8

ε . Since
|Γ ′| < |Γ |, there must exist a string, say 1k, that lies in Γ but outside Γ ′. Now,

1k /∈ Γ ′ ⇒ Pr[A(Com(0k)) → 1k] ≤ ε
8

1k ∈ Γ ⇒ Pr[A(Com(1k)) → 1k] ≥ ε
4

This yields a distinguisher for Com(0k) and Com(1k), which contradicts the hiding
property of Com.

Zero-Knowledge. The zero-knowledge simulator is virtually identically to that in
the Goldreich-Kahan protocol [19]. Roughly speaking, upon receiving the verifier’s
commitment to e, the prover sends the cheating verifier V ∗ dummy commitments. If the
verifier aborts, we are basically done. Otherwise, we learn the challenge e and then we
could use the honest-verifier zero-knowledge simulator to complete the simulation. As
in [19], we will need to estimate the probability that V ∗ aborts on dummy commitments.

Argument of Knowledge. We may obtain a zero-knowledge argument of knowledge
for NP by instantiating the Feige-Shamir protocol [16] with the trapdoor commitment
scheme, which we present in the next section.

6 Trapdoor Commitments

We construct a “look-ahead trapdoor commitment”. This is a statistically binding
commitment scheme wherein the commit phase comprises a 3-round challenge-
response protocol. In addition, the scheme will be “look-ahead trapdoor” in the
following sense: if we fix the receiver’s challenge in the challenge-response phase,
then we may generate a simulated transcript for the commit phase which we may
later open to both a 0 and a 1. Moreover, the transcript together with either bit b is
computationally indistinguishable from a legitimate commitment to b followed by an
opening to b. We note similar constructions appear in [31,30]. In addition, we stress
that we cannot use the challenge-response protocol in [13] because we do not know
how to efficient compute the easy challenge in that protocol.4

Look-Ahead Trapdoor Bit Commitment. To commit to a bit σ. Again, we fix some
statistically binding commitment scheme Com.

COMMIT PHASE.
– Each vi is a 2 × 2 0,1-matrix given by⎛⎝v00i v01i

v10i v11i

⎞⎠ =

⎛⎝ηi σ ⊕ ηi

ηi σ ⊕ ηi

⎞⎠
4 Roughly speaking, easy challenges in [13] are the first-round messages in Naor’s commitment

scheme [35] that allow a computationally unbounded sender to cheat, i.e. strings of the form
G(a) ⊕ G(b) ∈ {0, 1}k ranging over all a, b ∈ {0, 1}k , and where G : {0, 1}k/3 → {0, 1}k

is a pseudorandom generator.

Black-Box Constructions of Two-Party Protocols from One-Way Functions 413

where ηi is a random bit. The sender commits to v1, . . . , vk using Com (bit
by bit in parallel). In addition, the sender prepares (a0

1, a
1
1), . . . , (a

0
k, a

1
k) where

aβ
i is the opening of the commitment to v0β

i , v
1β
i (i.e., either the left or right

column of vi).
– Upon receiving a challenge e = (e1, . . . , ek) from the receiver, the sender

responds with ae1
1 , . . . , a

ek

k .
– The receiver checks that the openings are valid and that v0ei

i = v1ei

i for i =
1, 2, . . . , k (i.e., every column that is open contains two equal bits).

OPEN PHASE.
– The sender sends σ. In addition, it chooses a random γ ∈ {0, 1}, sends γ, opens

the commitments to vγ0
i , v

γ1
i for i = 1, 2, . . . , k (i.e., either the top rows or the

bottom rows of all the matrices).
– The receiver checks that all the openings are valid, and also that σ = vγ0

1 ⊕
vγ1
1 = · · · = vγ0

k ⊕ vγ1
k .

Analysis. It is straight-forward to show that the commitment scheme is computation-
ally hiding.

Special soundness. Suppose we have a cheating sender that generates a transcript for
the commit phase that can be successfully open to both a 0 and a 1. It must be
the case that every matrix vi contains at least one column with two unequal bits;
call that column ẽi. Then, the cheating sender will get caught in the commit phase
unless e = ẽ = (ẽ1, . . . , ẽk). Moreover, given v1, . . . , vk it is easy to compute ẽ.

Look-ahead trapdoor. We construct a simulator as follows:
– Given the challenge e, pick a random β ∈ {0, 1}, and prepare the matrices vi

as follows: ⎛⎝v00i v01i

v10i v11i

⎞⎠ =

⎛⎝ηi β ⊕ ηi

ηi β̄ ⊕ ηi

⎞⎠ if ei = 0; and

⎛⎝ v00i v01i

v10i v11i

⎞⎠ =

⎛⎝β ⊕ ηi ηi

β̄ ⊕ ηi ηi

⎞⎠ otherwise;

where ηi is a random bit. When the receiver sends e, open the commitments to
v0ei

i and v1ei

i like the honest sender.
– To open to σ, send γ = β ⊕ σ, and open the commitments to vγ0

i , v
γ1
i for

i = 1, 2, . . . , k.

The Trapdoor Bit Commitment Scheme. The construction and the analysis is com-
pletely analogous to the zero-knowledge protocol. The verifier begins by committing
to a random challenge e ∈ {0, 1}k using a statistically-binding commitment Com, and
then we proceed according to the look-ahead scheme except the prover commits using
ExtCom. Completeness is again straight-forward. Establishing computational binding
is analogous to establishing computational soundness for the zero-knowledge protocol;
we transform any cheating sender a distinguisher for Com by arguing that it must on

414 R. Pass and H. Wee

input Com(e) predict e with noticeable probability. Trapdoor simulation is again based
on the Goldreich-Kahan simulation strategy [19].

Extension to Multiple Bits. We claim that by running the trapdoor bit commitment
scheme in parallel, we obtain a trapdoor commitment scheme for multiple bits, with the
additional property that we can open the commitment to any subset of the bits without
compromising the security of the remaining bits. We know that parallel repetition
preserves the hiding and binding properties of commitment schemes. To see that the
parallel version is still trapdoor, observe that we may still use the Goldreich-Kahan
simulation strategy and that the look-ahead simulation property is preserved under
parallel repetition.

7 Parallel Coin-Tossing

We present a constant-round parallel coin-tossing protocol in this section. Using the
composition theorem in [6] and the results of [3,8], it is sufficient to implement the
ideal string commitment functionality FCom (shown in Fig 2) with stand-alone security
a la [21,5,18] in constant rounds. Moreover, by the results of [7], it suffices to construct
a constant-round extractable trapdoor commitment scheme.

FunctionalityFCom

1. Upon receiving input (Commit, sid, Pj , x) from Pi where x ∈ {0, 1}m,
internally record the tuple (Pi, Pj , x) and send the message (sid, Pi, Pj)
to the adversary; When receiving (ok) from the adversary, output
(Receipt, sid, Pi) to Pj . Ignore all subsequent (Commit, ...) inputs.

2. Upon receiving a value (Open, sid) from Pi, where a tuple (Pi, Pj , x) is
recorded, send (x) to the adversary; When receiving (ok) from the adversary,
output (Open, sid, x) to Pj .

Fig. 2. Ideal String Commitment Functionality

Extractable Trapdoor Commitment Scheme. We provide a general construction of
an extractable trapdoor commitment scheme ExtTDCom starting from any trapdoor
commitment schemeTDCom: simply instantiate the protocolExtCom with the trapdoor
commitment scheme TDCom. Specifically, the sender in ExtTDCom on input a string
σ ∈ {0, 1}m, commits to k pairs of strings (v01 , v

1
1), . . . , (v

0
k, v

1
k) (with v01 ⊕v11 = · · · =

v0k ⊕ v1k = σ) using TDCom, by treating the k pairs of strings as a single string of
length 2km. The trapdoor property is straight-forward: if we could equivocate on the
commitment to the string (v01 , v

1
1), . . . , (v

0
k, v

1
k), then we could easily equivocate on the

commitment to σ. The extractable property is already established in Section 4.

The Coin-Tossing Protocol. For self-containment, we present the coin-tossing proto-
col based directly on ExtTDCom.

1. Party 1 chooses a random s1 ∈ {0, 1}m and commits to s1 using ExtTDCom. Party
2 aborts with output ⊥ if the commitment protocol fails.

2. Party 2 chooses s2 ∈ {0, 1}m and sends s2 to Party 1.

Black-Box Constructions of Two-Party Protocols from One-Way Functions 415

3. If Party 1 receives an invalid message from Party 2, then Party 1 aborts. Otherwise,
Party 1 opens the commitment to s1. Party 2 aborts with output ⊥ if the opening is
invalid.

4. Output: both parties output s1 ⊕ s2.

The high level proof strategy is as follows.

– If Party 1 is corrupted, we will use the extractor for ExtTDCom to extract s1 and
then set s2 = s1 ⊕ s (where s is the string chosen by the trusted party).

– If Party 2 is corrupted, we will use the trapdoor commitment property so that upon
receiving s2 from Party 2, the simulator can open the commitment to s1 = s⊕ s2.

8 Non-malleable Commitments

We begin by describing a commitment scheme satisfying some strong notions of
extractability and hiding, based on an encoding scheme from [9].

An Intermediate Construction. To commit to a string v with parameter 1� (� is the
length of the identities):

COMMIT PHASE.
1. The receiver commits to a random subset S ⊂ [10k] of size k using Com.
2. The sender picks random α1, . . . , αk ∈ GF(2n) and set sj = p(j), j ∈ [10k]

where p(x) = v+α1x+ . . .+αkx
k. (Note that (s1, . . . , s10k) encodes v under

the Reed-Solomon code.) The sender then commits to (s1, . . . , s10k) a total of
2� times using PExtCom sequentially.

3. The receiver opens the commitment to S.
4. The sender opens the 2� commitments to the value sj for all j ∈ S.
5. The receiver checks that for each j ∈ S, the 2� commitments to sj open to the

same value.

OPEN PHASE.
1. The sender sends v and opens the commitments to (s1, . . . , s10k) in the first

execution of PExtCom.
2. The receiver computes the codeword w = (w1, . . . , w10k) that agrees with

(s1, . . . , s10k) in at least 9k positions, and checks that (s1, . . . , s10k) is a
codeword corresponding to v and that for all j ∈ S, sj = wj .

We sketch the properties satisfied by this commitment scheme, and defer the analysis
to the full version of this paper.

Extractability. There exists expected polynomial-time probabilistic oracle machines
E1, E2, . . . , E2� such that for all i = 1, 2, . . . , 2�, the machine Ei given oracle
access to any PPT cheating sender C∗ outputs a pair (τ, σ∗) such that
– (simulation) τ is identically distributed to the view of C∗ at the end of

interacting with an honest receiver R in commit phase.
– (strong extraction) the pair (τ, σ∗) is computationally indistinguishable from

the view of C∗ at the end of interacting with an honest receiver R in commit
phase, together with the committed value implicitly specified by the view.

416 R. Pass and H. Wee

We will also require that the machine Ei extracts from the i’th execution of
PExtCom, for i = 1, . . . , 2�.

Hiding. We require that the commitment scheme is (computationally) hiding even
against a PPT cheating receiver R∗ that may request for an arbitrary number of
additional commitments to (s1, . . . , s10k) using PExtCom, along with the openings
to sj for each j ∈ S in these additional commitments.

We stress that the notion of extractability above is stronger than that in Section 3. In
particular, it guarantees that if there is no valid opening for the commit phase transcript
τ , then the extractor must output σ∗ =⊥.

Achieving Non-malleability. To obtain a non-malleable commitment scheme from
the previous construction, we just need to schedule the messages in the 2� copies of
PExtCom according to the message scheduling in [14]. It follows from the analysis
in [32] that the resulting O(n)-round commitment scheme is one-many non-malleable.
By further applying the results in [14,32], we obtain a O(logn)-round non-malleable
commitment and a O(n)-round concurrent non-malleable commitment.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)
2. Beaver, D.: Adaptive zero knowledge and computational equivocation. In: STOC, pp. 629–

638 (1996)
3. Blum, M.: Coin flipping by telephone. In: CRYPTO, pp.11–15 (1981)
4. Blum, M.: How to prove a theorem so no one else can claim it. In: Proc. ICM (1986)
5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol-

ogy 13(1), 143–202 (2000)
6. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.

In: FOCS, pp. 136–145 (2001)
7. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO

2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)
8. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO

2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)
9. Choi, S.G., Dachman-Soled, D., Malkin, T.G., Wee, H.M.: Black-box construction of a non-

malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

10. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of
adaptively secure protocols. In: TCC (to appear, 2009)

11. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified
design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 174–187. Springer, Heidelberg (1994)

12. Damgård, I.B., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394.
Springer, Heidelberg (2005)

13. Di Crescenzo, G., Ostrovsky, R.: On concurrent zero-knowledge with pre-processing
(Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 485–502.
Springer, Heidelberg (1999)

Black-Box Constructions of Two-Party Protocols from One-Way Functions 417

14. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–
437 (2000)

15. Even, S., Goldreich, O., and Lempel, A. A randomized protocol for signing contracts. In:
CRYPTO 1982, pp. 205–210 (1982)

16. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)

17. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press,
Cambridge (2001)

18. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. II. Cambridge
University Press, Cambridge (2004)

19. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems
for NP. J. Cryptology 9(3), 167–190 (1996)

20. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM
J. Comput. 25(1), 169–192 (1996)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

22. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for
all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991);
Prelim. version in FOCS 1986

23. Goyal, V., Moriarty, R., Ostrovsky, R., Sahai, A.: Concurrent statistical zero-knowledge
arguments for NP from one way functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 444–459. Springer, Heidelberg (2007)

24. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)

25. Haitner, I., Hoch, J., Reingold, O., Segev, G.: Finding collisions in interactive protocols – a
tight lower bound on the round complexity of statistically-hiding commitments. In: FOCS,
pp. 669–679 (2007)

26. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any
one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: STOC, pp. 44–61 (1989)

28. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure
computation. In: STOC, pp. 99–108 (2006)

29. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer –
efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer,
Heidelberg (2008)

30. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)
31. Kilian, J.: On the complexity of bounded-interaction and noninteractive zero-knowledge

proofs. In: FOCS, pp. 466–477 (1994)
32. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from

any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588.
Springer, Heidelberg (2008)

33. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J.
Cryptology 16(3), 143–184 (2003)

34. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–
78. Springer, Heidelberg (2007)

35. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
36. Pass, R., Tseng, W., Venkitasubramaniam, M.: Unconditional characterizations of concurrent

zero knowledge (manuscript, 2008)

418 R. Pass and H. Wee

37. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC (to appear,
2008); Cryptology ePrint Archive, Report 2007/279

38. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-
complexity. In: FOCS, pp. 366–375 (2002)

39. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic
primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg
(2004)

40. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004)

41. Rosen, A.: The Round-Complexity of Black-Box Concurrent Zero-Knowledge. Ph.D.,
Weizmann Institute of Science (May 2004)

42. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be based
on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
334–345. Springer, Heidelberg (1998)

43. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–
167 (1986)

Chosen-Ciphertext Security
via Correlated Products

Alon Rosen1,� and Gil Segev2

1 Efi Arazi School of Computer Science,
Herzliya Interdisciplinary Center (IDC), Herzliya 46150, Israel

alon.rosen@idc.ac.il
2 Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot 76100, Israel
gil.segev@weizmann.ac.il

Abstract. We initiate the study of one-wayness under correlated prod-
ucts. We are interested in identifying necessary and sufficient conditions
for a function f and a distribution on inputs (x1, . . . , xk), so that the
function (f(x1), . . . , f(xk)) is one-way. The main motivation of this study
is the construction of public-key encryption schemes that are secure
against chosen-ciphertext attacks (CCA). We show that any collection of
injective trapdoor functions that is secure under a very natural correlated
product can be used to construct a CCA-secure encryption scheme. The
construction is simple, black-box, and admits a direct proof of security.

We provide evidence that security under correlated products is achiev-
able by demonstrating that lossy trapdoor functions (Peikert and Waters,
STOC ’08) yield injective trapdoor functions that are secure under the
above mentioned correlated product. Although we currently base secu-
rity under correlated products on existing constructions of lossy trapdoor
functions, we argue that the former notion is potentially weaker as a gen-
eral assumption. Specifically, there is no fully-black-box construction of
lossy trapdoor functions from trapdoor functions that are secure under
correlated products.

1 Introduction

The construction of secure public-key encryption schemes lies at the heart of
cryptography. Following the seminal work of Goldwasser and Micali [20], in-
creasingly strong security definitions have been formulated. The strongest notion
to date is that of semantic security against a chosen-ciphertext attack (CCA)
[27,32], which protects against an adversary that is given access to decryptions
of ciphertexts of her choice.

Constructions of CCA-secure public-key encryption schemes have followed
several structural approaches. These approaches, however, either result in rather
complicated schemes, or rely only on specific number-theoretic assumptions. Our

� Research supported in part by BSF grant 2006317.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 419–436, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

420 A. Rosen and G. Segev

goal in this paper is to construct a simple CCA-secure public-key encryption
scheme based on general computational assumptions.

The first approach for constructing a CCA-secure encryption scheme was put
forward by Naor and Yung [27], and relies on any semantically secure public-key
encryption scheme and non-interactive zero-knowledge (NIZK) proof system for
NP . Their approach was later extended by Dolev, Dwork and Naor [11] for a
more general notion of chosen-ciphertext attack, and subsequently simplified by
Sahai [35] and by Lindell [26]. Schemes resulting from this approach, however, are
somewhat complicated and impractical due to the use of generic NIZK proofs.

An additional approach was introduced by Cramer and Shoup [10], and is
based on “smooth hash proof systems”, which were shown to exist based on
several number-theoretic assumptions. Elkind and Sahai [12] observed that both
the above approaches can be viewed as special cases of a single paradigm in which
ciphertexts include “proofs of well-formedness”. Even though in some cases this
paradigm leads to elegant and efficient constructions [9], the complexity of the
underlying notions makes the general framework somewhat cumbersome.

Recently, Peikert and Waters [31] introduced the intriguing notion of lossy
trapdoor functions, and demonstrated that such functions can be used to con-
struct a CCA-secure public-key encryption scheme in a black-box manner. Their
construction can be viewed as an efficient and elegant realization of the “proofs
of well-formedness” paradigm. Lossy trapdoor functions seem to be a very pow-
erful primitive. In particular, they were shown to also imply oblivious trans-
fer protocols and collision-resistant hash functions1. It is thus conceivable that
CCA-secure encryption can be realized based on weaker primitives.

A different approach was suggested by Canetti, Halevi and Katz [6] (followed
by [3,4,5]) who constructed a CCA-secure public-key encryption scheme based
on any identity-based encryption (IBE) scheme. Their construction is elegant,
black-box, and essentially preserves the efficiency of the underlying IBE scheme.
However, IBE is a rather strong cryptographic primitive, which is currently
realized only based on a small number of specific number-theoretic assumptions.

1.1 Our Contributions

Motivated by the task of constructing a simple CCA-secure public-key encryp-
tion scheme, we initiate the study of one-wayness under correlated products. The
main question in this context is to identify necessary and sufficient conditions
for a collection of functions F and a distribution on inputs (x1, . . . , xk) so that
the function (f1(x1), . . . , fk(xk)) is one-way, where f1, . . . , fk are independently
chosen from F . Our results are as follows:

1. We show that any collection of injective trapdoor functions that is secure
under a very natural correlated product can be used to construct a CCA-
secure public-key encryption scheme. The construction is simple, black-box,

1 We note that the constructions of CCA-secure encryption and collision-resistant hash
functions presented in [31] require lossy trapdoor functions that are “sufficiently
lossy” (i.e., they rely on lossy trapdoor functions with sufficiently good parameters).

Chosen-Ciphertext Security via Correlated Products 421

and admits a direct proof of security. Arguably, both the underlying as-
sumption and the proof of security are simple enough to be taught in an
undergraduate course in cryptography.

2. We demonstrate that any collection of lossy trapdoor functions (with appro-
priately chosen parameters) yields a collection of injective trapdoor
functions that is secure under the correlated product that is required by our
encryption scheme. In turn, existing constructions of lossy trapdoor functions
[1,31,34] imply that our encryption scheme can be based on the hardness of
the decisional Diffie-Hellman problem, and of Paillier’s decisional composite
residuosity problem.

3. We argue that security under correlated products is potentially weaker than
lossy trapdoor functions as a general computational assumption. Specifi-
cally, we prove that there is no fully-black-box construction of lossy trap-
door functions from trapdoor functions (and even from enhanced trapdoor
permutations) that are secure under correlated products.

Following our work Peikert [30] and Goldwasser and Vaikuntanathan [21] re-
cently showed that security under correlated products is achievable also under
the worst-case hardness of lattice problems (although these assumptions are cur-
rently not known to imply lossy trapdoor functions with the appropriately chosen
parameters that are required for our transformation). Their constructions result
in new CCA-secure public-key encryption schemes that are based on lattices, and
this demonstrates that the correlated products approach for chosen-ciphertext
security is fruitful, and that security under correlated products is achievable
under a variety of number-theoretic assumptions.

In the remainder of this section we provide a high-level overview of our con-
tributions, and then turn to describe the related work.

1.2 Security under Correlated Products

It is well known that for every collection of one-way functions F = {fs}s∈S and
polynomially-bounded k ∈ N, the collection Fk = {fs1,...,sk

}(s1,...,sk)∈Sk , whose
members are defined as

fs1,...,sk
(x1, . . . , xk) = (fs1(x1), . . . , fsk

(xk))

is also one-way. Moreover, such a direct product amplifies the one-wayness of
F [19,37], and this holds even when considering a single function (i.e., when
s1 = · · · = sk).

In general, however, the one-wayness of Fk is guaranteed only when the inputs
are independently chosen, and when the inputs are correlated no such guarantee
can exist. A well-known example for insecurity under correlated products is
H̊astad’s attack [2,23] on plain-broadcast RSA: there is an efficient algorithm
that is given as input x3 mod N1, x3 mod N2, and x3 mod N3, and outputs x.
More generally, it is rather easy to show that if collections of one-way functions
exist, then there exists a collection of one-way functions F = {fs}s∈S such that
fs1,s2(x, x) = (fs1(x), fs2(x)) is not one-way. However, this does not rule out

422 A. Rosen and G. Segev

the possibility of constructing a collection of one-way functions whose product
remains one-way even when the inputs are correlated.

Informally, given a collection F of functions and a distribution Ck of inputs
(x1, . . . , xk), we say that F is secure under a Ck-correlated product if Fk is one-
way when the inputs (x1, . . . , xk) are distributed according to Ck (a formal def-
inition is provided in Section 2). The main goal in this setting is to characterize
the class of collections F and distributions Ck that satisfy this notion.

We motivate the study of security under correlated products by relating it to
the study of chosen-ciphertext security. Specifically, we show that any collection
of injective trapdoor functions that is secure under a very natural correlated
product can be used to construct a CCA-secure public-key encryption scheme.
The simplest form of distribution Ck on inputs that is sufficient for our construc-
tion is the uniform k-repetition distribution that outputs k copies of a uniformly
chosen input x. We note that although this seems to be a strong requirement,
we demonstrate that it can be based on various number-theoretic assumptions.

More generally, our construction can rely on any distribution Ck with the
property that any (x1, . . . , xk) in the support of Ck can be reconstructed given
any t = (1 − ε)k entries from (x1, . . . , xk), for some constant 0 < ε < 1. For
example, Ck may be a distribution that evaluates a random polynomial of degree
at most t−1 on a set of k points (in this case the xi’s are t-wise independent, but
other choices which do not guarantee such a strong property are also possible).

1.3 Chosen-Ciphertext Security via Correlated Products

Consider the following, very simple, public-key encryption scheme. The public-
key consists of an injective trapdoor function f , and the secret-key consists of
its trapdoor td. Given a message m ∈ {0, 1}, the encryption algorithm chooses a
random input x and outputs the ciphertext (f(x),m⊕ h(x)), where h is a hard-
core predicate of f . The decryption algorithm uses the trapdoor to retrieve x
and then extracts m. In what follows we frame our approach as a generalization
of this fundamental scheme.

The above scheme is easily proven secure against a chosen-plaintext attack.
Any adversary A that distinguishes between an encryption of 0 and an encryp-
tion of 1 can be used to construct an adversary A′ that distinguishes between
h(x) and a randomly chosen bit with exactly the same probability. Specifically,
A′ receives a function f , a value y = f(x), and a bit w (which is either h(x) or a
uniformly chosen bit), and emulates A with f as the public-key and (y,m⊕ w)
as the challenge ciphertext for a random message m. This scheme, however, fails
to be proven secure against a chosen-ciphertext attack (even when considering
only CCA1 security). There is a conflict between the fact that A′ is required to
answer decryption queries, and the fact that A′ does not have the trapdoor for
inverting f .

The following simplified variant of our scheme is designed to resolve this
conflict. The public-key consists of k pairs of functions (f0

1 , f
1
1), . . . , (f0

k , f
1
k),

where each function is sampled independently from a collection F of injective

Chosen-Ciphertext Security via Correlated Products 423

trapdoor functions2. The secret-key consists of the trapdoors (td01, td
1
1), . . . ,

(td0k, td
1
k), where each tdb

i is the trapdoor of the function f b
i . Given a message

m ∈ {0, 1}, the encryption algorithm chooses a random v = v1 · · · vk ∈ {0, 1}k,
a random input x, and outputs the ciphertext

EPK(m; v, x) = (v, fv1
1 (x), . . . , fvk

k (x),m⊕ h(x)) ,

where h is a hard-core predicate of Fk with respect to the uniform k-repetition
distribution. The decryption algorithm acts as follows: given a ciphertext of the
form (v, y1, . . . , yk, z) it inverts y1, . . . , yk to obtain x1, . . . , xk, and if x1 = · · · =
xk then it outputs h(x1) ⊕ z (otherwise it outputs ⊥).

In order to prove the CCA1 security of this scheme, we show that any adver-
sary A that breaks the CCA1 security of the scheme can be used to construct an
adversary A′ that distinguishes between h(x) and a randomly chosen bit with
exactly the same probability. The adversary A′ receives as input k functions
f1, . . . , fk ∈ F , k values y1 = f1(x), . . . , yk = fk(x), and a bit w (which is either
h(x) or a uniformly chosen bit). A′ simulates the CCA1 interaction to A by
choosing a random value v∗ = v∗1 · · · v∗k ∈ {0, 1}k, and for each pair (f0

i , f
1
i) it

sets fvk∗
i

i = fi and samples f1−vk∗
i

i together with its trapdoor from F . Note that
now A′ is able to answer decryption queries as long as none of them contain
the value v∗, and in this case we claim that essentially no information on v∗ is
revealed. The challenge ciphertext is then computed as (v∗, y1, . . . , yk,m ⊕ w)
for a random message m. If A guesses the bit m correctly then A′ outputs that
w = h(x), and otherwise A′ outputs that w is a random bit.

Our scheme can be viewed as a realization of the Naor-Yung paradigm [27]
in which a message is encrypted using several independently chosen keys, and
ciphertexts include “proofs of well-formedness”. In our scheme, however, the
decryption algorithm can verify “well-formedness” of ciphertexts without any
additional “proof”: given any one of the trapdoors it is possible to verify that
the remaining values are consistent with the same input x.

Our scheme is inspired also by the one based on lossy trapdoor functions
[31], and specifically, by the generic construction of all-but-one lossy trapdoor
functions from lossy trapdoor functions. However, the proof security of our con-
struction is simpler than that of [31] due to the additional hybrids resulting
from using both lossy trapdoor functions and all-but-one trapdoor functions.
In addition, our construction only relies on computational hardness, whereas the
construction of [31] relies on the statistical properties of lossy trapdoor functions.

Finally, we note that our proof of security is rather similar to that of the
IBE-based schemes [4,5,6]. The value v∗ can be viewed as the challenge identity,
for which A′ does not have the secret key, and is therefore not able to decrypt
ciphertexts for this identity. For any other identity v �= v∗, A′ has sufficient
information to decrypt ciphertexts.

2 For CCA1 security any k = ω(log n) is sufficient, where n is the security parameter.
For our more generalized construction that guarantees CCA2 security, any k = nε

for some constant 0 < ε < 1 is sufficient.

424 A. Rosen and G. Segev

In some sense, our approach enjoys “the best of both worlds” in that both
the underlying assumption and the proof of security are simpler than those of
previous approaches.

1.4 A Black-Box Separation

Although we currently base security under correlated products on lossy trapdoor
functions, we argue that security under correlated products is potentially weaker
than lossy trapdoor functions as a general computational assumption. Specifi-
cally, we prove that there is no fully-black-box construction of lossy trapdoor
functions from trapdoor functions that are secure under correlated products. We
present an oracle relative to which there exists a collection of injective trapdoor
functions (and even of enhanced trapdoor permutations) that is secure under
a correlated product with respect to the above mentioned uniform k-repetition
distribution, but there is no collection of lossy trapdoor functions. The oracle is
essentially the collision-finding oracle due to Simon [36], and the proof follows
the approach of Haitner et al. [22] while overcoming several technical difficulties.

Informally, consider a circuit A which is given as input (f1(x), . . . , fk(x)),
and whose goal is to retrieve x. The circuit A is provided access to an oracle
Sam that receives as input a circuit C and outputs random w and w′ such that
C(w) = C(w′). As in the approach of Haitner et al. the idea underlying the
proof is to distinguish between two cases: one in which A obtains information
on x via one of its Sam-queries, and the other in which none of A’s Sam-queries
provides information on x. The proof consists of two modular parts dealing with
these two cases separately. In first part we generalize an argument of Haitner et
al. (who in turn generalized the reconstruction lemma of Gennaro and Trevisan
[14]) to deal with the product of several functions. We show that the probability
that A retrieves x in the first case is exponentially small. In the second part we
show that the second case can essentially be reduced to the first case. This part
of the proof is simpler than the corresponding argument of Haitner et al. that
considers a more interactive setting.

1.5 Related Work

Much research has been devoted for the construction of CCA-secure public-key
encryption schemes. A significant part of this research was already mentioned
in the previous sections, and here we mainly focus on results regarding the
possibility and limitations of basing such schemes on general assumptions.

Pass, shelat and Vaikuntanathan [28] constructed a public-key encryption
scheme that is non-malleable against a chosen-plaintext attack from any seman-
tically secure one (building on the scheme of Dolev, Dwork and Naor [11]). Their
technique was later shown by Cramer et al. [8] to also imply non-malleability
against a weak notion of chosen-ciphertext attack, in which the number of de-
cryption queries is bounded. These approaches, however, are rather impractical
due to the use of generic (designated verifier) NIZK proofs. Very recently, Choi et
al. [7] showed that the latter notions of security can in fact be elegantly realized

Chosen-Ciphertext Security via Correlated Products 425

in a black-box manner based on the same assumptions. The reader is referred to
[11,29] for classifications of the different notions of security.

Impagliazzo and Rudich [24] introduced a paradigm for proving impossibility
results for cryptographic constructions. They showed that there are no black-
box constructions of key-agreement protocols from one-way permutations, and
substantial additional work in this line followed (see, for example [13,15,17,25,36]
and many more). The reader is referred to [33] for a comprehensive discussion
and taxonomy of black-box constructions. In the context of public-key encryption
schemes, most relevant to our result is the work of Gertner, Malkin and Myers
[16], who addressed the question of whether or not semantically secure public-key
encryption schemes imply the existence of CCA-secure schemes. They showed
that there are no black-box constructions in which the decryption algorithm of
the proposed CCA-secure scheme does not query the encryption algorithm of
the semantically secure one.

1.6 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we provide a
formal treatment of security under correlated products, which is shown to be sat-
isfied by lossy trapdoor functions. In Section 3 we describe a simplified version of
our encryption scheme which already illustrates the main ideas underlying our
approach. In Section 4 we prove that there is no fully-black-box construction of
lossy trapdoor functions from trapdoor functions secure under correlated prod-
ucts. Due to space limitation we refer the reader to the full version for a more
generalized version of the encryption scheme, and for a complete proof of the
black-box separation.

2 Security under Correlated Products

In this section we formally define the notion of security under correlated prod-
ucts, and demonstrate that the notion is satisfied by any collection of lossy trap-
door functions (with appropriately chosen parameters) for a very natural and
useful correlation. We then discuss the exact parameters that are required for
our encryption scheme, and the number-theoretic assumptions that are currently
known to guarantee such parameters.

A collection of functions is represented as a pair of algorithms F = (G,F),
where G is a generation algorithm used for sampling a description of a function,
and F is an evaluation algorithm used for evaluating a function on a given
input. The following definition formalizes the notion of a k-wise product which
introduces a collection Fk consisting of all k-tuples of functions from F .

Definition 2.1 (k-wise product). Let F = (G,F) be a collection of efficiently
computable functions. For any integer k, we define the k-wise product Fk =
(Gk, Fk) as follows:
– The generation algorithm Gk on input 1n invokes G(1n) for k times inde-

pendently and outputs (s1, . . . , sk). That is, a function is sampled from Fk

by independently sampling k functions from F .

426 A. Rosen and G. Segev

– The evaluation algorithm Fk on input (s1, . . . , sk, x1, . . . , xk) invokes F to
evaluate each function si on xi. That is,

Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) .

The notion of a one-way function asks for a function that is efficiently computable
but is hard to invert given the image of a uniformly chosen input. More generally,
one can naturally extend this notion to consider one-wayness under any specified
input distribution, not necessarily the uniform distribution. That is, informally,
we say that a function is one-way with respect to an input distribution I if it
is efficiently computable but hard to invert given the image of a random input
sampled according to I.

In the context of k-wise products, a standard argument shows that for any
collection F which is one-way with respect to some input distribution I, the k-
wise product Fk is one-way with respect to the input distribution which samples
k independent inputs from I. The following definition formalizes the notion of
security under correlated products, where the inputs for Fk may be correlated.

Definition 2.2 (Security under correlated products). Let F = (G,F) be
a collection of efficiently computable functions, and let Ck be a distribution where
Ck(1n) is distributed over {0, 1}k·n for some integer k = k(n). We say that F is
secure under a Ck-correlated product if Fk is one-way with respect to the input
distribution Ck.

Correlated products security based on lossy trapdoor functions. We
conclude this section by demonstrating that, for an appropriate choice of pa-
rameters, any collection of lossy trapdoor functions yields a collection of injec-
tive trapdoor functions that is secure under a Ck-correlated product. The input
distribution under consideration, Ck, samples a uniformly random input x and
outputs k copies of x. We refer to this distribution as the uniform k-repetition
distribution, and this distribution is the one required for the simplified variant
of our encryption scheme, presented in Section 3.

Specifically, given a collection of lossy trapdoor functions F = (G,F, F−1) we
define a collection Finj of injective trapdoor functions by restricting F to its in-
jective functions. That is, Finj = (Ginj, F, F

−1) where Ginj(1n) = G(1n, injective).
We prove the following theorem:

Theorem 2.1. Let F = (G,F, F−1) be a collection of (n, �)-lossy trapdoor func-
tions. Then, for any integer k < n−ω(log n)

n−� , for any probabilistic polynomial-time
algorithm A and polynomial p(·), it holds that

Pr [A(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = x] <
1
p(n)

,

for all sufficiently large n, where the probability is taken over the choices of
s1 ← Ginj(1n), . . . , sk ← Ginj(1n), x← {0, 1}n, and over the internal coin tosses
of A.

Chosen-Ciphertext Security via Correlated Products 427

Proof. Peikert and Waters [31] proved that any collection of (n, ω(logn))-lossy
trapdoor functions is in particular a collection of one-way functions. Thus, it is
sufficient to prove that Fk is a collection of (n, ω(logn))-lossy trapdoor func-
tions. For any k functions s1, . . . , sk sampled according to Ginj(1n), the func-
tion Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) is clearly injective.
For any k functions s1, . . . , sk sampled according to Glossy(1n), the function
Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) obtains at most 2k(n−�)

values, which is upper bounded by 2n−ω(log n) for any k < n−ω(log n)
n−� . Finally,

note that a standard hybrid argument shows that the distribution obtained by
independently sampling k functions according to Ginj(1n) is computationally
indistinguishable from the distribution obtained by independently sampling k
functions according to Glossy(1n). Thus, Fk is a collection of (n, ω(logn))-lossy
trapdoor functions. �

The required parameters for our scheme. The assumption underlying our
encryption scheme asks for k(n) = ω(logn) for CCA1 security, and for k(n) = nε

(for some constant 0 < ε < 1) for CCA2 security. In turn, existing constructions
of lossy trapdoor functions guaranteing these parameters [1,31,34] imply that our
encryption scheme can be realized under the hardness of the decisional Diffie-
Hellman problem, and of Paillier’s decisional composite residuosity problem. We
note that the lattice-based construction of Peikert and Waters [31] guarantees
only a constant k(n) that is not sufficient for our encryption scheme. However,
Peikert [30] and Goldwasser and Vaikuntanathan [21] recently showed that se-
curity under correlated products (with sufficiently large k(n)) is nevertheless
achievable under the worst-case hardness of lattice problems, although these are
currently known to imply lossy trapdoor functions with only a relatively small
amount of loss.

3 A Simplified Construction

In this section we describe a simplified version of our construction which already
illustrates the main ideas underlying our approach. The encryption scheme pre-
sented in the current section is a simplification in the sense that it relies on a
seemingly stronger computational assumption than the more generalized con-
struction which is presented in the full version. In addition, we first present the
scheme as encrypting only one bit messages, and then demonstrate that it natu-
rally extends to multi-bit messages. In what follows we state the computational
assumption, describe the encryption scheme, prove its security, and describe the
extension to multi-bit messages.

The underlying computational assumption. The computational assump-
tion underlying the simplified scheme is that there exists a collection F of injec-
tive trapdoor functions and an integer function k = k(n) such that F is secure
under a Ck-correlated product, where Ck is the uniform k-repetition distribu-
tion (i.e., outputs k copies of a uniformly distributed input x). Specifically, our

428 A. Rosen and G. Segev

scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1} for Fk with respect to Ck.
That is, the underlying computational assumption is that for any probabilistic
polynomial-time predictor P it holds that∣∣∣∣Pr [P(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = h(s1, . . . , sk, x)] − 1

2

∣∣∣∣
is negligible in n, where the probability is taken over the choices of s1 ←
G(1n), . . . , sk ← G(1n), x← {0, 1}n, and over the internal coin tosses of P .

The integer function k(n) should correspond to the bit-length of verification
keys of some one-time strongly-unforgeable signature scheme (KGsig, Sign,Ver).
By applying a universal one-way hash function to the verification keys (as in
[11]) it suffices that the above assumption holds for k(n) = nε for a constant
0 < ε < 1. For simplicity, however, when describing our scheme we do not apply
a universal one-way hash function to the verification keys. We also note that for
an even more simplified version which is only CCA1-secure (the one described
in Section 1.3), any k(n) = ω(logn) suffices.

The construction. The following describes our simplified encryption scheme
given by the triplet (KG,E,D).

– Key generation: On input 1n the key generation algorithm invokes G(1n)
for 2k times independently to obtain 2k descriptions of functions denoted
(s01, s

1
1), . . . , (s

0
k, s

1
k) with trapdoors (td01, td

1
1), . . . , (td

0
k, td

1
k). The public-key

and secret-key are defined as follows:

PK =
((
s01, s

1
1
)
, . . . ,

(
s0k, s

1
k

))
SK =

((
td01, td

1
1
)
, . . . ,

(
td0k, td

1
k

))
.

– Encryption: On input a message m ∈ {0, 1} and a public key PK, the
algorithm samples (vk, sk) ← KGsig(1n) where vk = vk1 ◦ · · · ◦ vkk ∈ {0, 1}k,
chooses a uniformly distributed x ∈ {0, 1}n, and outputs the ciphertext

(vk, y1, . . . , yk, c1, c2) ,

where

yi = F
(
svki

i , x
)

∀i ∈ [k]

c1 = m⊕ h
(
svk1
1 , . . . , svkk

k , x
)

c2 = Sign(sk, (y1, . . . , yk, c1)) .

– Decryption: On input a ciphertext (vk, y1, . . . , yk, c1, c2) and a secret-key
SK, the algorithm acts as follows. If Ver(vk, (y1, . . . , yk, c1), c2) = 0, it out-
puts ⊥. Otherwise, for every i ∈ [k] it computes xi = F−1

(
tdvki

i , yi

)
. If

x1 = · · · = xk then it outputs c1 ⊕ h
(
svk1
1 , . . . , svkk

k , x1

)
, and otherwise it

outputs ⊥.

Chosen-Ciphertext Security via Correlated Products 429

The following theorem establishes the security of the scheme.

Theorem 3.1. Assuming that F is secure under a Ck-correlated product, where
Ck is the uniform k-repetition distribution, and that (KGsig, Sign,Ver) is one-time
strongly unforgeable, the encryption scheme (KG,E,D) is CCA2-secure.

Proof. Let A be a probabilistic polynomial-time CCA2-adversary. We denote by
Forge the event in which for one of A’s decryption queries (vk, y1, . . . , yk, c1, c2)
during the CCA2 interaction it holds that vk = vk∗ (where vk∗ is given in the
secret key) and Ver(vk, (y1, . . . , yk, c1), c2) = 1. We first argue that the event
Forge has a negligible probability due to the security of the one-time signature
scheme. Then, assuming that the event Forge does not occur, we construct a
probabilistic polynomial-time algorithm P that predicts the hard-core predicate
h while preserving the advantage of A.

More formally, we denote by Success the event in which A successfully guesses
the bit b used for encrypting the challenge ciphertext. Then, the advantage of A
in the CCA2 interaction is bounded as follows:∣∣∣∣Pr [Success] − 1

2

∣∣∣∣ =
∣∣∣∣Pr [Success ∧ Forge] + Pr

[
Success ∧ Forge

]− 1
2

∣∣∣∣
≤ Pr [Forge] +

∣∣∣∣Pr
[
Success ∧ Forge

]− 1
2

∣∣∣∣ .
The theorem follows from the following two claims:

Claim 3.2. Pr [Forge] is negligible.

Proof. We show that any probabilistic polynomial-time adversary A for which
Pr [Forge] is non-negligible, can be used to construct a probabilistic polynomial-
time adversary A′ that breaks the security of the one-time signature with the
same probability. The adversary A′ is given a verification key vk∗ sampled
using KGsig(1n) and simulates the CCA2 interaction to A as follows. A′ be-
gins by invoking the key generation algorithm on input 1n and using vk∗ for
forming the public and secret keys. In the decryption phases, whenever A sub-
mits a decryption query (vk, y1, . . . , yk, c1, c2), A′ acts as follows. If vk = vk∗

and Ver(vk, (y1, . . . , yk, c1), c2) = 1, then A′ outputs ((y1, . . . , yk, c1), c2) as the
forgery and halts. Otherwise, A′ invokes the decryption procedure. In the chal-
lenge phase, upon receiving two message m0 and m1, A′ chooses b ∈ {0, 1} and
x ∈ {0, 1}n uniformly at random, and computes

yi = F
(
s

vk∗
i

i , x
)

∀i ∈ [k]

c1 = mb ⊕ h
(
s

vk∗
1

1 , . . . , s
vk∗

k

k , x
)
.

Then, it obtains a signature c2 on (y1, . . . , yk, c1) with respect to vk∗ (recall
that A′ is allowed to ask for a signature on one message). Finally, it sends
(vk∗, y1, . . . , yk, c1, c2) to A. We note that during the second decryption phase,

430 A. Rosen and G. Segev

if A submits the challenge ciphertext as a decryption query, then A′ responds
with ⊥.

Note that prior to the first decryption query in which Forge occurs (assuming
that Forge indeed occurs), the simulation of the CCA2 interaction is perfect.
Therefore, the probability that A′ breaks the security of the one-time signature
scheme is exactly Pr [forge]. The security of the signature scheme implies that
this probability is negligible. �
Claim 3.3.

∣∣Pr
[
Success ∧ Forge

]− 1
2

∣∣ is negligible.

Proof. Given any efficient adversary A for which
∣∣Pr
[
Success ∧ Forge

]− 1
2

∣∣ is
non-negligible, we construct a predictor P that breaks the security of the hard-
core predicate h. That is,∣∣∣∣Pr [P(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = h(s1, . . . , sk, x)] − 1

2

∣∣∣∣
is non-negligible, where s1 ← G(1n), . . . , sk ← G(1n) independently, and the
probability is taken over the uniform choice of x ∈ {0, 1}n, and over the internal
coin tosses of both G and P .

For simplicity, we first construct an efficient distinguisher A′ which receives
input of the form (1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) and a bit w ∈ {0, 1}
which is either h(s1, . . . , sk, x) or a uniformly random bit, and is able to distin-
guish between the two cases with non-negligible probability. The distinguisher
A′ acts by simulating the CCA2 interaction to A. More specifically, on in-
put (1n, s1, . . . , sk, y1, . . . , yk) and a bit w, the distinguisher A′ first creates a
pair (PK,SK) as follows. It samples (vk∗, sk∗) ← KGsig(1n), where vk∗ =
vk∗1 ◦ · · · ◦ vk∗k ∈ {0, 1}k, and for every i ∈ [k] sets svk∗

i

i = si and samples(
s
1−vk∗

i

i , td
1−vk∗

i

i

)
← G(1n). Then, A′ outputs the public-key

PK =
((
s01, s

1
1
)
, . . . ,

(
s0k, s

1
k

))
.

Whenever A submits a decryption query of the form (vk, y1, . . . , yk, c1, c2), A′

acts as follows. If vk = vk∗ or Ver(vk, (y1, . . . , yk, c1), c2) = 0, it outputs ⊥
and halts. Otherwise, it picks some i ∈ [k] for which vki �= vk∗i and computes
x = F−1

(
tdvki

i , yi

)
. If for every j ∈ [k] it holds that yj = F

(
s

vkj

j , x
)
, it outputs

c1 ⊕ h
(
svk1
1 , . . . , svkk

k , x
)
, and otherwise it outputs ⊥.

In the challenge phase, given two messages m0 and m1, A′ chooses a random
bit b ∈ {0, 1} and replies with the challenge ciphertext

c = (vk∗, y1, . . . , yk, c1, c2) ,

where c1 = mb ⊕w, and c2 = Sign(sk∗, (y1, . . . , yk, c1)). We note that during the
second decryption phase, if A submits the challenge ciphertext as a decryption
query, then A′ responds with ⊥. At the end of this interaction A outputs a bit
b′. If b′ = b then A′ outputs 1, and otherwise A′ outputs 0.

Chosen-Ciphertext Security via Correlated Products 431

In order to compute the advantage of A′ we observe the following:

1. If w is a uniformly random bit, then the challenge ciphertext in the simulated
interaction is independent of b. Therefore, the probability that A′ outputs 1
in this case is exactly 1/2.

2. If w = h(s1, . . . , sk, x), then as long as the event Forge does not occur, the
simulated interaction is identical to the CCA2 interaction (a formal argument
follows). Therefore, the probability that A′ outputs 1 in this case is exactly
Pr
[
Success ∧ Forge

]
.

Note that the only difference between the CCA2 interaction and the simu-
lated interaction is the distribution of the challenge ciphertext: In the CCA2
interaction the value vk in the challenge ciphertext is a randomly chosen ver-
ification key, and in the simulated interaction the value vk is chosen ahead
of time by A. In what follows we claim that as long as the event Forge does
not occur, the distribution of vk in the challenge ciphertext is identical in
the two cases.

Formally, denote by vk1, . . . , vkq the random variables corresponding to
the value of vk in A’s decryption queries (without loss of generality we
assume that A always submits q queries, and that the signature verification
never fails on these queries). In the CCA2 interaction, as long as the event
Forge does not occur, it holds that the verification key used for the challenge
ciphertext is a random verification key with the only restriction that it is
different than vk1, . . . , vkq. In the simulated interaction, given that vk∗ /∈
{vk1, . . . , vkq}, we claim that from A’s point of view, the value vk∗ is also
a random verification key which is different than vk1, . . . , vkq. That is, each
vk∗ /∈ {vk1, . . . vkq} produces exactly the same transcript. Indeed, first note
that the public key is independent of vk∗. Now consider a decryption query
(vk, y1, . . . , yk, c1, c2) for some vk ∈ {vk1, . . . , vkq}. For any vk∗ �= vk, if
y1, . . . , yk have the same preimage x, then the decryption algorithm will
always output c1 ⊕ h

(
svk1
1 , . . . , svkk

k , x
)
. In addition, for any vk∗ �= vk, if

y1, . . . , yk do not have the same preimage, then the decryption algorithm
will always output ⊥.

The above observations imply that

|Pr [A′ outputs 1 | w = h(s1, . . . , sk, x)] − Pr [A′ outputs 1 | w is random]|
=
∣∣∣∣Pr
[
Success ∧ Forge

]− 1
2

∣∣∣∣ .
A standard argument (see, for example, [18, Chapter 3.4]) can be applied to
efficiently transform A′ into a predictor P that predicts h(s1, . . . , sk, x) with the
same probability. �

Encrypting any polynomial number of bits. For simplicity we presented
the encryption scheme above for one-bit plaintexts. We now demonstrate that

432 A. Rosen and G. Segev

our approach extends to plaintexts of any polynomial length while relying on
the same computational assumption3.

Recall that the underlying computational assumption is the existence of a col-
lection F of injective trapdoor functions such that Fk is one-way under the uni-
form k-repetition distribution (i.e., x1 = · · · = xk where x1 is chosen uniformly at
random). Specifically, the scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1}
for Fk to mask the plaintext bit. This assumption clearly implies that for any
polynomial T = T (n) there exists a collection F ′ of injective trapdoor functions
such that F ′ is one-way under the uniform k-repetition distribution, and has a
hard-core function h′ : {0, 1}∗ → {0, 1}T that can be used in our scheme to mask
T -bit plaintexts. Specifically, the collection F ′ is defined as follows: for every
function f : {0, 1}n → {0, 1}m in F define a function f ′ : {0, 1}Tn → {0, 1}Tm

by f ′(x1, . . . xT) = (f(x1), . . . , f(xT)). The security proof of the T -bit encryp-
tion scheme is essentially identical to the proof of Theorem 3.1 by showing that
any successful CCA-adversary can be used to either break the one-time signature
scheme or to break the pseudorandomness of h′.

4 A Black-Box Separation

In this section we show that there is no fully-black-box construction of lossy
trapdoor functions (with even a single bit of lossiness) from injective trapdoor
functions that are secure under correlated products. We show that this holds
for the seemingly strongest form of correlated product, where independently
chosen functions are evaluated on the same input (i.e., we consider the uniform
k-repetition distribution).

Our proof consists of constructing an oracle O relative to which there exists
a collection of injective trapdoor functions that are permutations secure under
a correlated product4, but there are no collections of lossy trapdoor functions.
In what follows, we describe the oracle O, and show that it breaks the security
of any collection of lossy trapdoor functions.

The oracle. The oracle O is of the form (τ, Samτ), where τ is a collection
of trapdoor permutations, and Samτ is an oracle that samples random collision.
Specifically, Sam receives as input a description of a circuit C (which may contain
τ -gates), chooses a random input w, and then samples a uniformly distributed
w′ ∈ C−1(C(w)).

We now explain how exactly Sam samples w and w′. We provide Sam with a
collection of permutations F , where for every possible circuit C the collection
F contains two permutations f1

C and f2
C over the domain of C. Given a circuit

3 It is well-known that for semantic security under a chosen-plaintext attack it is
straightforward to construct a multi-bit encryption scheme from any one-bit encryp-
tion scheme by independently encrypting the individual bits of the plaintext. For
semantic security under a chosen-ciphertext attack, however, this approach fails in
general.

4 These functions are in fact enhanced trapdoor permutations, but we note that this
is not essential for our result.

Chosen-Ciphertext Security via Correlated Products 433

On input a circuit C : {0, 1}m → {0, 1}�(m), the oracle Samτ,F acts as fol-
lows:

1. Compute w = f1
C(0m).

2. Compute w′ = f2
C(t) for the lexicographically smallest t ∈ {0, 1}m such that

C(f2
C(t)) = C(w).

3. Output (w, w′)

Fig. 1. The oracle Sam

C : {0, 1}m → {0, 1}�(m), for some m and �(m), the oracle Sam uses f1
C to

compute w = f1
C(0m). Then, it computes w′ = f2

C(t) for the lexicographically
smallest t ∈ {0, 1}m such that C(f2

C(t)) = C(w). Note that whenever the per-
mutations f1

C and f2
C are chosen uniformly at random, and independently of all

other permutations in F , then w is uniformly distributed over {0, 1}m, and w′ is
uniformly distributed over C−1(C(w)). In the remainder of the proof, whenever
we consider the probability of an event over the choice of the collection F , we
mean that for each circuit C, two permutations f1

C and f2
C are chosen uniformly

at random and independently of all other permutations. A complete and formal
description of the oracle is provided in Figure 1.

Distinguishing between injective functions and lossy functions. The
oracle Sam can be easily used to distinguish between the injective mode and
the lossy mode of any collection of (n, 1)-lossy functions. Consider the following
distinguisher A: given a circuit C (which may contain τ -gates5), which is a
description of either an injective function or a lossy function (with image size at
most 2n−1), A queries Sam with C. If Sam returns (w,w′) such that w = w′, then
A outputs 1, and otherwise A outputs 0. Clearly, if C corresponds to an injective
function, then always w = w′ and A outputs 1. In addition, if C corresponds to
a lossy function, then with probability at least 1/4 it holds that w �= w′, where
the probability is taken over the randomness of Sam (i.e., over the collection F).

Outline of the proof. For simplicity we first consider only two permutations.
Then, we extend our argument to more than two permutations, and to trapdoor
permutations. Our goal is to upper bound the success probability of circuits
having oracle access to Sam in the task of inverting (π1(x), π2(x)) for random
permutations π1, π2 ∈ Πn and a random x ∈ {0, 1}n (where Πn is the set of all
permutations over {0, 1}n). We prove the following theorem:

Theorem 4.1. For any circuit A of size at most 2n/40 and for all sufficiently
large n, it holds that

Pr π1,π2,F
x←{0,1}n

[
Aπ1,π2,Samπ1,π2,F

(π1(x), π2(x)) = x
]
≤ 1

2n/40 .

5 We allow the circuits given as input to Sam to contain τ -gates, but we do not allow
them to contain Sam-gates. This suffices, however, for ruling out fully-black-box
constructions.

434 A. Rosen and G. Segev

Consider a circuit A which is given as input (π1(x), π2(x)), and whose goal is to
retrieve x. The idea underlying the proof is to distinguish between two cases: one
in which A obtains information on x via one of its Sam-queries, and the other
in which none of A’s Sam-queries provides information on x. More specifically,
we define:

Definition 4.1. A Sam-query C produces a x-hit if Sam outputs (w,w′) such
that some π1-gate or π2-gate in the computations of C(w) or C(w′) has input x.

Given π1, π2, F , a circuit A, and a pair (π1(x), π2(x)), we denote by SamHITx

the event in which one of the Sam-queries made by A produces a x-hit. From this
point on, the proof proceeds in two modular parts. In the first part of the proof,
we consider the case that the event SamHITx does not occur, and generalize
an argument of Haitner et al. [22] (who in turn generalized the reconstruction
lemma of Gennaro and Trevisan [14]). We show that if a circuit A manages to
invert (π1(x), π2(x)) for many x’s, then π1 and π2 have a short representation
given A. This enables us to prove the following lemma:

Lemma 4.1. For any circuit A of size at most 2n/7 and for all sufficiently large
n, it holds that

Pr π1,π2,F
x←{0,1}n

[
Aπ1,π2,Samπ1,π2,F

(π1(x), π2(x)) = x ∧ SamHITx

]
≤ 2−n/8 .

In the second part of the proof, we show that the case where the event SamHITx

does occur can be reduced to the case where the event SamHITx does not occur.
Given a circuit A that tries to invert (π1(x), π2(x)), we construct a circuit M
that succeeds almost as well as A, without M ’s Sam-queries producing any x-
hits. This proof is a simpler case of a similar argument due to Haitner et al. [22].
The following theorem is proved:

Lemma 4.2. For any circuit A of size s(n), if

Pr π1,π2,F
x←{0,1}n

[
Aπ1,π2,Samπ1,π2,F

((π1(x), π2(x))) = x
]
≥ 1
s(n)

for infinitely many values of n, then there exists a circuit M of size O(s(n)) such
that

Pr π1,π2,F
x←{0,1}n

[
Mπ1,π2,Samπ1,π2,F

((π1(x), π2(x))) = x ∧ SamHITx

]
≥ 1
s(n)5

for infinitely many values of n.

Due to space limitations the remainder of the proof is provided in the full version.

Acknowledgments

We thank Oded Goldreich, Moni Naor, Chris Peikert, and Omer Reingold for
useful discussions. In particular, we thank Oded for suggesting the relaxation
that led to the more generalized scheme.

Chosen-Ciphertext Security via Correlated Products 435

References

1. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

2. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the Amer-
ican Mathematical Society 46(2), 203–213 (1999)

3. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

4. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

5. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: 12th ACM CCS, pp. 320–329 (2005)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

7. Choi, S.G., Dachman-Soled, D., Malkin, T.G., Wee, H.M.: Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

8. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen-ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

12. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002)

13. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

14. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st FOCS, pp. 305–313 (2000)

15. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335 (2000)

16. Gertner, Y., Malkin, T.G., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 434–455. Springer, Heidelberg (2007)

17. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd FOCS, pp. 126–135 (2001)

18. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

19. Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., Zuckerman, D.: Secu-
rity preserving amplification of hardness. In: 31st FOCS, pp. 318–326 (1990)

436 A. Rosen and G. Segev

20. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

21. Goldwasser, S., Vaikuntanathan, V.: New constructions of correlation-secure trap-
door functions and CCA-secure encryption schemes (manuscript, 2008)

22. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols – A tight lower bound on the round complexity of statistically-hiding
commitments. In: 48th FOCS, pp. 669–679 (2007)

23. H̊astad, J.: Solving simultaneous modular equations of low degree. SIAM J. Com-
put. 17(2), 336–341 (1988)

24. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st STOC, pp. 44–61 (1989)

25. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-
based hash functions. In: 40th FOCS, pp. 535–542 (1999)

26. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. J. Cryptology 19(3), 359–377 (2006)

27. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd STOC, pp. 427–437 (1990)

28. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

29. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 519–535. Springer, Heidelberg (2007)

30. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
Cryptology ePrint Archive, Report 2008/481 (2008)

31. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th
STOC, pp. 187–196 (2008)

32. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

33. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

34. Rosen, A., Segev, G.: Efficient lossy trapdoor functions based on the composite
residuosity assumption. Cryptology ePrint Archive, Report 2008/134 (2008)

35. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553 (1999)

36. Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

37. Yao, A.C.: Theory and applications of trapdoor functions. In: 23rd FOCS, pp.
80–91 (1982)

Hierarchical Identity Based Encryption with
Polynomially Many Levels

Craig Gentry1 and Shai Halevi2,�

1 Stanford & IBM
2 IBM

Abstract. We present the first hierarchical identity based encryption
(HIBE) system that has full security for more than a constant number of
levels. In all prior HIBE systems in the literature, the security reductions
suffered from exponential degradation in the depth of the hierarchy, so
these systems were only proven fully secure for identity hierarchies of
constant depth. (For deep hierarchies, previous work could only prove
the weaker notion of selective-ID security.) In contrast, we offer a tight
proof of security, regardless of the number of levels; hence our system is
secure for polynomially many levels.

Our result can very roughly be viewed as an application of Boyen’s
framework for constructing HIBE systems from exponent-inversion IBE
systems to a (dramatically souped-up) version of Gentry’s IBE system,
which has a tight reduction. In more detail, we first describe a generic
transformation from “identity based broadcast encryption with key ran-
domization” (KR-IBBE) to a HIBE, and then construct KR-IBBE by
modifying a recent construction of IBBE of Gentry and Waters, which
is itself an extension of Gentry’s IBE system. Our hardness assumption
is similar to that underlying Gentry’s IBE system.

1 Introduction

Identity-Based Encryption (IBE) is a public-key encryption scheme where one’s
public key can be freely set to any value (such as one’s identity): An authority
that holds a master secret key can take any arbitrary identifier and extract a
secret key corresponding to this identifier. Anyone can then encrypt messages
using the identifier as a public encryption key, and only the holder of the cor-
responding secret key can decrypt these messages. This concept was introduced
by Shamir [19], a partial solution was proposed by Maurer and Yacobi [18], and

� Research was sponsored by US Army Research laboratory and the UK Ministry of
Defense and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the U.S. Government, the UK Ministry of
Defense, or the UK Government. The US and UK Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 437–456, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

438 C. Gentry and S. Halevi

the first fully functional IBE systems were described by Boneh and Franklin [5]
and Cocks [11].

IBE systems can greatly simplify the public-key infrastructure for encryption
solutions, but they are still not as general as one would like. Many organiza-
tions have an hierarchical structure, perhaps with one central authority, several
sub-authorities and sub-sub-authorities and many individual users, each belong-
ing to a small part of the organization tree. We would like to have a solution
where each authority can delegate keys to its sub-authorities, who in turn can
keep delegating keys further down the hierarchy to the users. The depth of the
hierarchy can range from two or three in small organizations, up to ten or more
in large ones. An IBE system that allows delegation as above is called Hier-
archical Identity-Based Encryption (HIBE). In HIBE, messages are encrypted
for identity-vectors, representing nodes in the identity hierarchy. This concept
was introduced by Horwitz and Lynn [17], who also described a partial solution
to it, and the first fully functional HIBE system was described by Gentry and
Silverberg [15].

The security model for IBE and HIBE systems postulates an attacker that
can adaptively make “key-reveal” queries, thereby revealing the decryption keys
of identities of its choice. The required security property asserts that such an
attacker still cannot break the encryption at any identity other than those for
which it issued key-reveal queries. (Or in the case of HIBE, other than those for
which it issued key-reveal queries or their descendants.)

For the first IBE and HIBE systems, the only known proofs of security are car-
ried out in the random-oracle model. Canetti et al. [9] introduced a weaker notion
of security called selective-ID, where the attacker must choose the identity to
attack before the system parameters are chosen (but can still make adaptive key-
reveal queries afterward). They proved that a variant of the Gentry-Silverberg
system is secure in this model even without random oracles. Boneh and Boyen
described a more efficient selective-ID HIBE [1], and later described a fully secure
IBE system without a random oracle [2]. Waters [22] described what is currently
the most practical adaptively-secure HIBE system without random oracles.

All currently known fully-secure HIBE systems, however, suffer from loose
security reductions (whether they use random oracles or not). Specifically, they
lose a multiplicative factor of Ω(q/�)� in the success probability, where q is the
number of key-reveal queries and � is the depth of the identity hierarchy. This
means that asymptotically these reductions can only be used for hierarchies
of constant depth. When considering concrete parameters, these reductions are
only meaningful for hierarchies of depth two or three.

Gentry [13] proposed the first adaptively-secure IBE system without random
oracles that has a tight reduction to its underlying hard problem. Recently Gen-
try and Waters extended Gentry’s IBE to construct an adaptively-secure identity
based broadcast encryption (IBBE) system without random oracles [16], whose
security is tightly based on a related hard problem. Our HIBE system builds on
the Gentry-Waters system.

HIBE with Polynomially Many Levels 439

Boyen [8] proposed a framework for constructing HIBE systems from exponent-
inversion IBE systems. Specifically, Boyen described some properties of pairing-
based IBE systems (called parallel IBE and linear IBE), and proved that an IBE
system with these properties can be transformed to HIBE with comparable secu-
rity. Boyen noted that Gentry’s IBE does not quite fit within this template, and
left it as an open problem to construct a HIBE system from Gentry’s IBE system.
Our system, which solves this problem, does not quite fit within Boyen’s frame-
work, yet our approach owes much to Boyen’s idea.

We construct the first fully-secure HIBE with a tight proof of security. Namely,
ours is the first HIBE system that can be proven fully secure for more than a small
constant number of levels. This solves an open problem posed in [15,1,2,22,3,13,8].
Similarly to the systems of Gentry [13] and Gentry-Waters [16], we exhibit a tight
reduction, albeit to a problem whose instances are of size linear in q + �.

1.1 Loose and Tight Reductions

On a high level, the reason that most IBE systems have loose reductions is that
those reductions involve the following trade-off: For each identity ID, either the
simulator knows a decryption key for ID, or it doesn’t. If it knows a key for ID
then it does not learn anything new if the adversary chooses ID as the target
identity to attack, since it could have used the decryption key to learn the same
information. And if the simulator does not know a decryption key for ID then it
must abort if the adversary makes a key-reveal query for this identity.

The crucial difference in the security proof of Gentry’s IBE [13] is that there
are many different decryption keys for each identity, and the simulator knows
a small subset of these keys. Thus, the simulator can answer every key-reveal
query without aborting, but still learn something when the adversary choses that
identity for the challenge ciphertext. In this sense, Gentry’s IBE system follows
the universal hash proof paradigm of Cramer and Shoup [12]: Given a well-
formed ciphertext, all the decryption keys recover the same message, but they
recover different messages when the ciphertext is mal-formed (in a certain sense).
The adversary is assumed to have a non-negligible advantage when the challenge
ciphertext is well-formed, but has essentially no advantage (statistically) when
it is mal-formed; the adversary’s different behavior in these cases allows the
simulator to solve the underlying decision problem. Gentry’s reduction uses an
underlying hard problem that has a large problem instance (size θ(q)), to ensure
that the adversary cannot use its q key-reveal queries to determine what keys
the simulator possesses for the target identity. In this work we extend Gentry’s
IBE system and proof to the case of a HIBE.

1.2 Constructing HIBE, Step 1: From IBBE to HIBE

In our quest to construct HIBE, we use as an intermediate step a specific type
of identity-based broadcast encryption (IBBE). An IBBE system can be seen
as somewhere in between regular IBE and HIBE: It allows a sender to encrypt
a message to a set identities, and each member of this set can use its own key

440 C. Gentry and S. Halevi

to decrypt the message. This is somewhat similar to HIBE, in that encryption
is targeted at a group of identities (similarly to the identity vector in HIBE).1

However, IBBE is simpler than HIBE since decryption keys correspond only to
single identities (see Section 2.2).

As a first step in constructing HIBE systems, we provide a generic transforma-
tion from IBBE to HIBE. This transformation, however, requires an “augmented
IBBE system” that also has decryption keys corresponding to sets of identi-
ties (for decrypting ciphertexts that were encrypted for these sets). Specifically,
we require a key-randomizable identity based broadcast encryption (KR-IBBE),
where it is possible to generate a uniformly random decryption key KS for a
set of identities S from any decryption key KS′ for S′ ⊂ S (see Section 2.3).
KR-IBBE is rather close to HIBE, but a major difference is that security is
defined with respect to an adversary that can only ask for decryption keys cor-
responding to single identities, not for sets of identities. Hence it is still sim-
pler to design KR-IBBE and use our transformation than to design a HIBE
“from scratch.”

1.3 Constructing HIBE, Step 2: Constructing KR-IBBE

Even with the simplification of KR-IBBE, our construction and its proof are still
rather complex. Part of the reason for the complexity of our system and proof
stems from the inherent tension between the key-randomization requirement and
the Cramer-Shoup proof paradigm: On one hand, key-randomization implies in
particular that one can generate a random decryption key for an identity set S
from any fixed valid encryption key for the same set. On the other hand, the
Cramer-Shoup paradigm require that the simulator be able to generate only a
small subset of the decryption keys for the target identity set.

Our proof resolves this tension by going through an intermediate step in which
we replace the full-randomization requirement with “pseudo-randomization”:
Namely, from each fixed valid encryption key we can only generate a small subset
of the decryption keys, but this small subset still looks random. In our case, the
difference between “fully-random” and “pseudo-random” keys is that “fully ran-
dom” keys are taken from some linear space and “pseudo-random” keys are taken
from a proper subspace of this linear space. These being linear spaces of group
elements, they are indistinguishable under the Decision Linear Assumption [4].

We prove the security of the “pseudo-random” system using techniques and
hard problems analogous to those used by Gentry and Waters in [16], but we
we need to make rather substantial modifications to the system given in [16].
Most notably, the randomization requirement seems to imply that we cannot
have scalars in the decryption key, so we must convert everything into vectors
of group elements.

1 We use IBBE as a tool for constructing HIBE, so we consider a variant where the
intended recipients must be enumerated explicitly by the encryption procedure. Note
that it is more common for IBBE to have the “revoked” recipients enumerated on
encryption. Arguably, our variant should have been called multicast encryption.

HIBE with Polynomially Many Levels 441

2 HIBE and IBBE: Definitions

For simplicity, we define our encryption systems as key encapsulation mecha-
nisms (KEM). The standard transformation from KEM to encryption is ignored
here.

2.1 Hierarchical Identity-Based Encryption

A HIBE system consists of the following five procedures:

Setup(λ, �) Takes as input a security parameter λ and the hierarchy depth �. It
outputs a public key PK and a master secret key SK. The public key implies
also a key space K(PK) and an identity space ID(PK), and hierarchical
identities are (ordered) tuples in ID(PK)≤�.

KeyGen(PK,SK, ID) Takes as input the public key PK and master secret key
SK, and an identity vector ID = [ID1, . . . , IDt] ∈ ID(PK)≤�. It outputs a
decryption key KID for ID.

KeyDerive(PK, ID,KID, ID
′) Takes as input the public key PK, the identity

vector ID and corresponding decryption key KID, and another vector ID′

such that ID is a prefix of ID′. It outputs a decryption key KID′ for ID′.
KEM(PK, ID) Takes as input the public key PK and identity vector ID. It

outputs a pair (K,C), whereK is the KEM key (from the key space K(PK))
and C is the ciphertext.

Decrypt(PK,C, ID,KID) On input the public key PK, ciphertext C, identity
vector ID and corresponding decryption key KID. It outputs the correspond-
ing KEM key K (or an error message ⊥).

We require the usual “completeness”, namely that decryption with the cor-
rect decryption key always recovers the correct KEM key. In particular, setting
(PK,SK) ← Setup(λ, �) and fixing any chain of identity vectors ID1,ID2,. . .,IDt

with each IDi a prefix of IDi+1, if we set KID1 ← KeyGen(PK,SK, ID1) and
then KIDi

← KeyDerive(PK, IDi−1,KIDi−1 , IDi) for i = 2, . . . , t and (K,C) ←
KEM(PK, IDt), then we have Decrypt(PK,C, IDt,KIDt

) = K (with
probability one).

Security.2 Chosen-plaintext security for a HIBE system E against an adversaryA
is defined by the following game between A and a “challenger” (both given the
parameters λ, � as input):

Setup: The challenger runs (PK,SK) ← E .Setup(λ, �) and gives PK to A.

Key-Reveal: The adversary A makes adaptive key-reveal queries to the chal-
lenger, each consisting of an identity vector ID = [ID1, . . . , IDt] ∈ ID(PK)≤�.
If the adversary already made the challenge query and ID is a prefix of the
target identity ID∗ then the challenger ignores this query, and otherwise it
returns to the adversary the decryption key KID ← E .KeyGen(PK,SK, ID).

2 Our security definition below ignores the delegation issue that was noted by Shi and
Waters [20], see discussions later in this section.

442 C. Gentry and S. Halevi

Challenge: The adversary queries the challenger with the target identity vector
ID∗ = [ID∗

1, . . . , ID
∗
t] ∈ ID(PK)≤�. If the adversary already made a challenge

query before, or if it made a key-reveal query for any prefix of the target iden-
tity ID∗ then the challenger ignores this query. Otherwise the challenger sets
(K1, C) ← E .KEM(PK, ID∗), chooses another random key K0 ∈R K(PK)
and a “challenge bit” σ ∈R {0, 1}, and returns (Kσ, C) to the adversary.

The adversary can make many Key-Reveal queries and one Challenge query, in
whatever order. Then it halts, outputting a guess σ′ for the challenge bit σ. The
HIBE advantage of A is

AdvHIBEE
A(λ, �) = Pr[A⇒ 1|σ = 1] − Pr[A⇒ 1|σ = 0]

Definition 1 (CPA-secure HIBE). The system E is CPA-secure if for any
efficient adversary A and any � = poly(λ) it holds that AdvHIBEE

A(λ, �(λ)) is
negligible in λ.

CCA-security is defined similarly, where the adversary can also make decryption
queries (except for decrypting the target ciphertext by the target identity vector).

Key delegation. Shi and Waters observed recently [20] that definitions such as
the one above are incomplete model of the real world. In the definition above
the adversary only sees decryption keys that were generated by KeyGen, whereas
compromised nodes in the real world have keys that were generated by KeyDerive.
This could be significant, since different delegation paths could result in different
distributions of secret keys. Shi wand Waters presented a more elaborate defini-
tion in which the adversary is allowed to specify a delegation path and obtain a
key that was generated using this delegation path.

For our construction, the key-randomization property ensures that the dis-
tribution of keys is nearly identical, whether they are generated by KeyGen
or by KeyDerive. Hence, we only prove security with respect to this simplified
definition.

2.2 Identity-Based Broadcast Encryption

An IBBE system consists of the procedures (Setup,KeyGen,KEM,Decrypt).
Setup, KeyGen, and KEM are similar to HIBE, except that KeyGen can only
be used for single identities (not identity vectors), and KEM gets a set of iden-
tities S instead of an ordered vector. Decrypt is defined as follows:

Decrypt(PK,C, S, ID,KID) On input the public key PK, ciphertext C, identity
set S = {ID1, . . . , IDt} (with t ≤ �) and the decryption key KID for some
ID ∈ S. It outputs the corresponding KEM key K (or an error message ⊥).

The security definition for IBBE is similar to the one for HIBE, the difference
being that the adversary can only make key-reveal queries for single identities
rather than identity-vectors. See the long version [14] for the formal definitions.

HIBE with Polynomially Many Levels 443

2.3 Key-Randomizable IBBE

To construct HIBE systems, we will use “augmented IBBE systems” that also
have decryption keys corresponding to sets of identities: A decryption key corre-
sponding to an identity-set S makes it possible to decrypt ciphertexts that were
created with respect to this set. A Key-Randomizable Identity-Based Broadcast
Encryption system (KR-IBBE) is an IBBE system with extended key generation
KeyGen∗, extended decryptionDecrypt∗, and key-derivationKeyDerive, as follows:

KeyGen∗(PK,SK, S) Takes as input the public key PK, master secret key SK,
and an identity set S = {ID1, . . . , IDt} ∈ ID(PK)≤�, and outputs a decryp-
tion key KS for S. We require that KeyGen∗(PK,SK, S) degenerates to the
original KeyGen when S is a singleton set S = {ID}.

KeyDerive(PK,S,KS, S
′) Takes as input the public key PK, an identity set S

and corresponding decryption key KS, and a superset S′ ⊇ S, and outputs
a decryption key KS′ for S′.3

Decrypt∗(PK,C, S,KS) Takes as input the public key PK, an identity set S, ci-
phertext C that was generated with respect to S, and the decryption key KS

for S. It outputs the KEM key K (or an error message ⊥).

We stress that we make no security requirements regarding these additional
procedures: the CPA-security game is still defined with respect to the original
four procedures Setup,KeyGen,KEM, Decrypt. However, we do make some func-
tionality requirements, specifically the standard “completeness” requirement on
Decrypt∗ and a distribution requirement on KeyDerive.

The “completeness” requirement says that for any (PK,SK) ← Setup(λ, �)
and any set of identities S, if we set KS ← KeyGen∗(PK,SK, S) and (K,C) ←
KEM(PK,S), then we get Decrypt∗(PK,C, S,KS) = K (with probability one).

The distribution requirement says for any (PK,SK) ← Setup(λ, �), any two
sets of identities S ⊆ S′, and any decryption key KS ← KeyGen∗(PK,SK, S),
the output distributions of KeyGen∗(PK,SK, S′) and KeyDerive(PK,S,KS , S

′)
are almost identical. (That is, their statistical distance is negligible in λ.)

Remark. Due to the distribution requirement above, our transformation from
key-randomizable IBBE to HIBE in Section 3 results in a system where the
decryption keys generated by KeyDerive have the same distribution as the ones
generated by KeyGen. As we pointed out before, this property allows us to ignore
the delegation issue of Shi and Waters [20].

3 From Key-Randomizable IBBE to HIBE

The transformation from key-randomizable IBBE to HIBE is quite straight-
forward: we use collision-resistant hashing to map identity-vectors to identity-
sets, and then just use each of the procedures Setup, KeyGen∗, KeyDerive, KEM,
3 Note that in this setting of broadcast encryption, keys corresponding to smaller sets

are “more powerful” than ones corresponding to larger sets: one can derive a key for
the superset S′ from any key for a subset S, but not the other way around.

444 C. Gentry and S. Halevi

Decrypt∗ as-is. The only non-trivial aspect of this transformation is the security
reduction, since the HIBE adversary can make key-reveal queries on identity-
vectors whereas the IBBE adversary can only ask for keys of “top level” single
identities. We handle this difference by having the reduction algorithm generate
decryption keys differently than is done in the system, which is where we need
the distribution requirement of key randomization.

3.1 The Transformation

Let E = (Setup,KeyGen∗,KeyDerive,KEM,Decrypt∗) be a key-randomizable
IBBE system, and we assume that we have a “matching” collision resistant
hash function H that can hash identity-vectors into the identity space of E .4 We
use H to hash identity vectors in the HIBE system into identity sets for E by
setting:

H(ID1, . . . , IDi)
def= {H(ID1), H(ID1, ID2), . . . , H(ID1, ID2, . . . , IDi)}

Note that short of finding collisions in H , we can only get H(ID1, ID2, . . . , IDi) ∈
H(ID′) if (ID1, ID2, . . . , IDi) is a prefix of ID′. Then we construct a HIBE system
as follows:5

HIBE.Setup(λ, �): Set (SK0, PK0) ← E .Setup(λ, �). Output SK and PK, which
are the same as SK0 and PK0, except that each includes a description of the
hash function H as above.

HIBE.KeyGen(PK,SK, ID): Set S ← H(ID) (as above), KS ← E .KeyGen∗(PK0,
SK0, S) and output KID = KS .

HIBE.KeyDerive(PK, ID,KID, ID′): Set S ← H(ID) and S′ ← H(ID′), and note
that S ⊆ S′ since ID is a prefix of ID′. Also let KS = KID, compute KS′ ←
E .KeyDerive(PK0, S,KS , S

′) and output KID′ = KS′ .

HIBE.KEM(PK,S): Set S ← H(ID), compute (K,C) ← E .KEM(PK0, S) and
output (K,C).

HIBE.Decrypt(PK,C, ID,KID): Set S ← H(ID) and KS = KID, and return
E .Decrypt∗(PK0, C, S,KS).

Theorem 1. Suppose that there exists a HIBE adversary A that breaks CPA
security (resp. CCA security) of the HIBE construction with advantage ε. Then,
there exists an IBBE adversary B and a collision finder B′, both running in
about the same time as A, such that B′ finds a hash function collision with
some probability ε′ and B breaks the CPA security (resp. CCA security) of the
underlying KR-IBBE system E with advantage ε− ε′.
4 The identity space in our IBBE system from Section 5 is Zq for a large q, so “match-

ing” a hash function is easy.
5 Note that this transformation is completely black box; in particular, it does not

depend on whether or not the IBBE system uses a bilinear map.

HIBE with Polynomially Many Levels 445

The proof is in the long version [14]. The only non-trivial aspect of the proof is
that to get a key for the set S ← H(ID1, . . . , IDt), the simulator makes a query
for the singleton key of the identity ID′

t = H(ID1, . . . , IDt) ∈ S, and then uses
key-derivation to get the key for S.

4 Notations and Preliminaries

We now introduce notations and hardness assumption that are used to establish
our key-randomizable IBBE in Section 5. We denote the set of integers from
m to n (inclusive) by [m,n]. We denote polynomials by uppercase letters in
San-serif font, for example P, Q, T, etc. We use the following simple fact about
polynomials:

Lemma 1. For any polynomial P(x) and any scalar a, P(x) − P(a) is divisible
by x − a. In other words, P(x)−P(a)

x−a is a polynomial (without denominator) of
degree deg(P) − 1.

4.1 Bilinear Maps and Our Additive Notations

Our system and its security proof make heavy use of linear algebra. We there-
fore use additive notations for all the groups that are involved in the system.
Specifically, we use Zq — the field of integers modulo a prime q — as our base
scalar field, and we have two order-q groups that we call the source group G and
target group GT , both of which can be viewed as vector spaces over Zq.

Throughout the writeup we denote elements of the source group with a hat
over lowercase letters (e.g., â, b̂, etc.) and elements of the target group with
a tilde (ã, b̃, etc.). Scalars will be denoted with no decorations (e.g., a, b, and
sometimes also τ, ρ, etc.)

We will make use of an efficiently computable bilinear map from the source
group to the target group e : G×G → GT , 6 such that for any two source-group
elements â, b̂ ∈ G and any two scalars u, v ∈ Zq it holds that

e(u · â, v · b̂) = uv · e(â, b̂)
The neutral elements in the groups G,GT are denoted by 0̂, 0̃, respectively. We
also denote by 1̂ some fixed generator in G, which we consider to be part of the
description of G. We require that the mapping e is non-trivial, which means that
e(1̂, 1̂) is a generator in GT , and we denote this generator by 1̃ = e(1̂, 1̂).

More generally, for a scalar a ∈ Zq, we denote the source-group element a · 1̂
by â, and the target-group element a · 1̃ = e(â, 1̂) by ã. Conversely, for an el-
ement â ∈ G, its discrete-logarithm based 1̂ is denoted a ∈ Zq. (Readers who
are used to multiplicative notations may find it easier to think of â, ã as denoting

6 Our system can just as well use a-symmetric bilinear maps where you have two
different source groups, e : G1×G2 → GT . We chose to describe it for the symmetric
case G1 = G2 in order to avoid introducing even more notations.

446 C. Gentry and S. Halevi

“a in the exponent” in the appropriate groups.) Note also that in these notations,
the discrete-logarithm of â with respect to b̂ is just their “ratio” â/b̂, which is a
scalar.

With these notations, we usually omit the map e altogether, and simply denote
it as a “product” of two source-group elements:

â · b̂ def= e(â, b̂) = ãb ∈ GT

Note that the bi-linearity of e looks in these notations just like the natural
commutative property of products ûa · v̂b = uv · ãb.

Below we slightly abuse notations to denote “powers of group elements”: If â
is a group element with discrete-logarithm a, then we denote âi def= ai · 1̂ and we
call âi the i’th power of â. 7

Vectors and Matrices. We extend our notations to vectors and matrices: A
vector of scalars is denoted with no decoration a = [a1, a2, . . . , an], a vector of
source-group elements denoted with a hat, â = [â1, â2, . . . , ân], and a vector of
target-group elements denoted with a tilde ã = [ã1, ã2, . . . , ãn]. All these vectors
are considered row vectors.

Matrices are denoted by uppercase letters, e.g., A for a matrix of scalars, Â for
a matrix of source-group elements, and Ã for a matrix of target-group elements.
We denote the i’th row of A by Ai, the sub-matrix consisting of rows i, j, k by
Ai,j,k, and the sub-matrix consisting of rows i through j is denoted Ai..j . As
usual, the transposed matrix of A is denoted At.

We denote by span(x,y, z) the linear space that is spanned by the vectors
x,y, z, and also use the same notation to denote the uniform distribution over
this space. For example, we use û ← ŵ + span(Â1,2,4) as a shorthand for the
process of choosing three random scalars a, b, c ∈R Zp and setting û ← ŵ +
aÂ1 + bÂ2 + cÂ4.

Inner and Outer-Products. For vectors a, b, we denote their inner product
by 〈a, b〉 def=

∑
i aibi. We use the same inner-product notations also for vectors

of source-group elements, namely:〈
a, b̂
〉

=
〈
b̂,a
〉

def=
∑

i

aib̂i = 〈a, b〉 · 1̂, and
〈
â, b̂
〉

def=
∑

i

e(âi, b̂i) = 〈a, b〉 · 1̃

It is easy to check that all the commutative, associative, and distributive prop-
erties of inner products hold for both scalars and group elements.

Similar notations apply to matrix multiplication, for either scalar matrices or
group-element matrices. For example, if A is an � ×m scalar matrix and B̂ is
an m × n matrix of source-group elements, then AB̂ ∈ G[� × n] is a matrix of
source-group elements whose i, j element is the inner product of the i’th row

7 This abuse of notation may take some getting used to: notice that the a’s themselves
should be thought of as being “in the exponent.” In multiplicative notation, this
power of â would be denoted as something like g(ai).

HIBE with Polynomially Many Levels 447

of A by the j’th column of B̂. We also use a× b to denote the outer product of
two vectors. Namely, the outer product of the m-vector a by the n-vector b is
the m× n matrix obtained as the matrix product of the m× 1 matrix at by the
1 × n matrix b. The same notation applies to vectors of group elements.

Linear Algebra. All the standard concepts from linear algebra behave just the
same with either scalars or group elements. For example, if Â ∈ G[n × n] is
a square matrix of source-group elements and A is the matrix of the discrete
logarithm of all the elements in Â (with respect to the fixed generator 1̂), then
the inverse of Â is Â−1 = A−1 · 1̂. (Equivalently, the inverse of Â is the unique
matrix B̂ such that Â · B̂ = Ĩ.) Similarly, the rank of a scalar matrix is defined
as usual, and the rank of a matrix of group elements is defined as the rank of
their discrete-logarithm matrix.

4.2 The BDHE-Set Assumption

The BDHE-Set assumption (used also in [16]) is a parameterized generaliza-
tion of the t-BDHI problem from [1].8 Recall that a t-BDHI adversary is given
t + 1 powers of a random source-group element, 1̂, â, â2, . . . ât, and it needs to
distinguish the target-group element ã−1 from random.

An instance of the BDHE-Set assumption is parameterized by a set of integers
S ⊂ Z and another “target integer” m. The BDHE-Set adversary is given some
powers of a random source-group element, {âi : i ∈ S}, and it (roughly) needs
to distinguish the target-group element ãm from random. Denoting S +q S def=
{i+ j mod λ(q) : i, j ∈ S}, where λ(q) is the order of elements modulo q, it is
easy to see that if G is an order-q bilinear-map group and m ∈ S +q S then the
problem is easy: Just choose some i, j ∈ S such that i + j = m mod λ(q) and
compute the bilinear map

e(âi, âj) = âi · âj = ãi+j = ãm

However, when m /∈ S +q S then there does not seem to be an easy way of
distinguishing ãm from random given the source-group elements {âi : i ∈ S}.
The formal BDHE-Set assumption below is somewhat stronger, however, giving
the adversary not the target group element ãm itself, but rather two random
source group elements whose product is ãm. Even so, this may be a reasonable
assumption to make.

Definition 2 (Decision BDHE-Set). Fix a prime number q, a set of inte-
gers S and another integer m /∈ S +q S. Also fix two order-q groups G and GT ,
admitting a non-trivial, efficiently computable bilinear map e : G × G → GT .

The (S,m)-BDHE-Set problem with respect to G and GT consists of the fol-
lowing experiment: Choose at random a scalar a ∈R Z∗

q and a bit σ ∈R {0, 1}.
If σ = 0 then choose two random scalars z1, z2 ∈R Z∗

q , and if σ = 1 then choose
a random scalar z1 ∈R Z∗

q and set z2 ← a/z1 mod q. The BDHE-Set adversary

8 This assumption is called q-BDHI in [1], but we use the letter q as our group order.

448 C. Gentry and S. Halevi

gets as input âi = ai · 1̂ for all i ∈ S and also ẑ1, ẑ2, and its goal is to guess the
bit σ. The advantage of an adversary A is defined as

AdvBDHES,m
A (G,GT) def= Pr

[
a, z1 ∈R Z∗

q , z2 ← a

z1
, A
({âi : i ∈ S}, ẑ1, ẑ2

)⇒ 1
]

−Pr
[
a, z1, z2 ∈R Z∗

q , A
({âi : i ∈ S}, ẑ1, ẑ2

)⇒ 1
]

Informally, the asymptotic Decision BDHE-Set assumption states that for any
m /∈ S + S and a large enough prime q, efficient adversaries (that work in time
poly(|S|, log q) only have insignificant advantage in the experiment from above.
Making this formal is rather straightforward (though getting the quantification
right takes some care).

Jumping ahead, for our system we use the assumption above with the target
integer m = −1 and the set S defined as:

S = [−2h− 2�, − 2h− �− 2] ∪ [−h− �, − �− 1] (1)
∪ [0, �− 1] ∪ [h+ �, 2h+ �] ∪ [2h+ 2�, 3h+ 2�+ 1]

where � is the depth of the identity-hierarchy of the system and h > � is some
other parameter. (Specifically, if q∗ is a bound on the number of queries then
h = q∗ + �+ 2.) It is easy to check that indeed m = −1 /∈ S + S.

The Linear Assumption. The decision linear assumption, first defined in [4],
states (in our additive notations) that given the six source group elements
â,b̂,ĉ,d̂,ê,f̂ , it is hard to distinguish the case where these elements are completely
random from the case where they are chosen at random subject to the condition
f̂/ĉ = ê/b̂ + d̂/â. (I.e., the discrete logarithm of f relative to c is the sum of
the discrete logarithm of e relative to b and the discrete logarithm of d relative
to a.) Note that this assumption is equivalent to saying that given the matrix of
group elements

M =

⎛⎝ â 0̂ ĉ
0̂ b̂ ĉ
d̂ ê f̂

⎞⎠
it is hard to decide if this matrix is invertible or has rank two. In this work we
use a slightly weaker variant of this assumption: Specifically, we assume that
given a 3 × 3 matrix of source-group elements, it is hard to distinguish the case
where this is a random invertible matrix from the case where it is a random
rank-two matrix. (The advantage of an adversary in distinguishing these cases is
denoted AdvLinearA(G,GT).) This assumption is implied both by the standard
linear assumption from [4] and by our BDHE-Set assumption, but we make it a
separate assumption just to make the exposition of our security-proof easier.

5 A Key-Randomizable IBBE System

Our system operates in prime-order bilinear-map groups. In the description
below we assume that these order-q groups are fixed “once and for all” and

HIBE with Polynomially Many Levels 449

everyone knows their description. (An alternative description will include the
group-generation as part of the Setup procedure.) We also fix the hierarchy-
depth of the system to some integer �.

The identity space of the system is the scalar field Zq, except that we have �
“forbidden identities” within this range: �− 1 of them are arbitrary (and we set
them to be 0, 1, . . . , �− 2), and the last one is a random scalar a that is chosen
during Setup (see below).

Setup: Choose three random scalars a, b, s ∈ Zq and a random invertible matrix
A ∈ G[7 × 7], and set B̂ = (Â−1)t. We note that the system only uses the top
four rows of Â and five rows of B̂. The seventh dimension is only used in the
security proof. Below we denote by ai the vector ai

def= [1 a a2 . . . ai].

– The master secret key is SK = (B̂1..6, s,a�).
– The public key consists of three parts, PK = (PK1, PK2, PK3) with PK1

consisting of a target-group element that is used to compute the KEM key,
PK2 consisting of multiples of the rows of Â that are used to compute the
ciphertext, and PK3 consisting of multiples of the rows of B̂ that are used
only for key randomization. Specifically we have PK1 = a�−1s̃ and

PK2 =
{
{aiÂ1 : i = 0, . . . , �}︸ ︷︷ ︸

a�×Â1

, sÂ2, {aiÂ3 : i = 0, . . . , �− 1}︸ ︷︷ ︸
a�−1×Â3

, Â4

}
(2)

PK3 =
{
bsB̂1, absB̂1, B̂5, B̂6, , {aibB̂1 : i = 0, . . . , �}︸ ︷︷ ︸

b(a�×B̂1)

,

{aibB̂2 : i = 0, . . . , �}︸ ︷︷ ︸
b(a�×B̂2)

, {aibB̂3 : i = 0, . . . , �+ 1}︸ ︷︷ ︸
b(a�+1×B̂3)

}

KeyGen(PK,SK, ID): Choose a key of 3� − 3 seven-dimensional vectors of
source-group elements as follows: Pick at random r

ID
∈ Zq and set K̂ID =

(û
ID
, V̂

ID
, Ŵ

ID
, X̂

ID
, ŷ

ID
), where

û
ID

=
s− r

ID

a− ID
B̂1 V̂

ID
=r

ID
(a�−2 × B̂1)

(
={r

ID
aiB̂1 : i = 0, . . . , �− 2}

)
Ŵ

ID
=a�−2 × B̂2

(
={aiB̂2 : i = 0, . . . , �− 2}

)
ŷ

ID
=r

ID
a�−1B̂3+span(B̂5,6) X̂ID

=r
ID
(a�−2 × B̂3)

(
={r

ID
aiB̂3 : i = 0, . . . , �− 2}

)
(3)

Note that the Ŵ
ID

component is the same for all identities (so it really belongs
in the public key). It is included in the secret key only for the purpose of the
key-randomization procedure below.

KEM(PK,S): If |S| < � then add to S the first � − |S| of the “forbidden
identities” 0, 1, Denote the resulting � identities by {ID1, ID2, . . . , ID�}.

450 C. Gentry and S. Halevi

– Set the monic degree-� polynomial P(x) def=
∏�

i=1(x − IDi), let p0, . . . , p� be

the coefficients of P and denote p
def= [p0 . . . p�] (so P(a) = 〈p,a�〉).

– Choose at random f0, . . . , f�−1 ∈ Zq and denote f
def= [f0 f1 . . . f�−1] and

F(x) def=
∑�−1

i=0 fix
i. Make sure that F(IDi) �= 0 for all i = 1, . . . , � (otherwise

re-choose F until this condition holds).
– Choose a random scalar t ∈ Zq.
– Output the ciphertext containing the polynomial F and the vector

ĉ = t

(
P(a)Â1︸ ︷︷ ︸
p(a�×Â1)

+ sÂ2 + F(a)Â3︸ ︷︷ ︸
f(a�−1×Â3)

)
+ span(Â4) (4)

The implied KEM key is the target-group element k̃ = t · PK1 = a�−1ts̃.

Remark. Note that the ciphertext include seven source group elements and �
scalars (to specify F). The ciphertext size can be reduced in a particular way,
so that when encrypting to a set S of size m < � we only have m scalars in the
ciphertext: Instead of choosing F completely at random, we impose the condition
that F(ID) = 1 for each of the “forbidden identities” that were added to S. This
way, the encryptor can specify F using only the m scalars F(IDi) for all IDi ∈ S.
This optimization requires a small change to the proof of security, see remark at
the end of Section 6. We also note that we can get a constant-size ciphertext by
moving to the random-oracle model: the encryptor just sends some nonce, and
F is determined by applying the random oracle to this nonce.

Decrypt(PK, (F, ĉ), S, ID, K̂ID), where ID ∈ S. If |S| < � then add to S the first
�− |S| of the “forbidden identities” 0, 1, Denote the resulting � identities by
{ID1, ID2, . . . , ID�}. Parse the key as K̂ID = (û

ID
, V̂

ID
, Ŵ

ID
, X̂

ID
, ŷ

ID
), recalculate

the monic �-degree polynomial P(x) =
∏�

i=1(x− IDi), and do the following:

– Set Q
ID
(x) def=

P(x)
x− ID

and Q′
ID
(x) = Q

ID
(x)−a�−1. (That is, Q′ is the polyno-

mial Q without the top coefficient of 1 · x�−1.) Denote the coefficient vector
of Q′

ID
by q′

ID
= [q0 q1 . . . q�−2].

– Set G
ID
(x) def=

F(x) − F(ID)
x− ID

and denote the coefficient vector of G
ID

by g
ID

=

[g0 g1 . . . g�−2].
– Set

d̂
ID

= û
ID
− q′

ID
· Ŵ

ID
− g

ID
· V̂

ID
− q′

ID
· X̂

ID
− ŷ

ID

F(ID)
(5)

Finally, recover the KEM key as k̃ =
〈
ĉ, d̂ID

〉
.

HIBE with Polynomially Many Levels 451

5.1 Correctness

To argue correctness, we can rewrite

d̂
ID

=

s−r
ID

a−ID B̂1︷︸︸︷
û

ID
−q′

ID
·

a�−2×B̂2︷︸︸︷
Ŵ

ID
−g

ID
·

r
ID

a�−2×B̂1︷︸︸︷
V̂

ID
−q′

ID
·

r
ID

a�−2×B̂3︷︸︸︷
X̂

ID
−

r
ID

a�−1B̂3+span(B̂5,6)︷︸︸︷
ŷ

ID

F(ID)

=
s− r

ID

a− ID
B̂1 − 〈q′

ID
,a�−2〉 B̂2

− r
ID

F(ID)

(
〈g

ID
,a�−2〉 B̂1−

(〈q′
ID
,a�−2〉+a�−1) B̂3−span(B̂5,6)

)
=
(
s− r

ID

a− ID
− rIDGID

(a)
F(ID)

)
B̂1−(Q

ID
(a)−a�−1)B̂2+

r
ID

F(ID)

(
Q

ID
(a)B̂3+span(B̂5,6)

)
Further developing the coefficient of B̂1 (using G

ID
(a)(a − ID) = F(a) − F(ID)),

we get(
s− r

ID

a− ID
− r

ID
G

ID
(a)

F(ID)

)
=

F(ID)(s− r
ID
) − r

ID
G

ID
(a)(a− ID)

F(ID)(a− ID)
=
s · F(ID) − r

ID
· F(a)

F(ID)(a− ID)

Examining the inner-product of ĉ with d̂
ID
, we use the fact that

〈
Âi, B̂j

〉
is

either 0 (when i �= j) or 1̃ (when i = j). Hence the span’s of Â4 and of B̂5,6 drop
out completely, and we are left with the product of the matching coefficients
only:〈
ĉ, d̂

ID

〉
=
(
tP(a)

s · F(ID) − r
ID
· F(a)

F(ID)(a− ID)︸ ︷︷ ︸
coefficients of Â1,B̂1

−ts(Q
ID
(a) − a�−1)︸ ︷︷ ︸

coefficients of Â2,B̂2

+tF(a)
r
ID

F(ID)
Q

ID
(a)︸ ︷︷ ︸

coefficients of Â3,B̂3

)
· 1̃

The first term in the parenthesis can be simplified using Q
ID
(a) = P(a)/(a− ID),

so we get〈
ĉ, d̂

ID

〉
= t

(
Q

ID
(a)
s · F(ID) − r

ID
· F(a)

F(ID)
−s(Q

ID
(a)−a�−1)+F(a)

r
ID

F(ID)
Q

ID
(a)
)
· 1̃

= t

(
Q

ID
(a)s− r

ID
Q

ID
(a)F(a)

F(ID)
− Q

ID
(a)s+ a�−1s+

r
ID
Q

ID
(a)F(a)

F(ID)

)
· 1̃

= t · a�−1s · 1̃ = k̃ �

5.2 Key Randomization

Our key-randomization follows Boyen’s idea from [8], where the key for identity-
set S = {ID1, . . . , IDm} consists of m “shifted versions” of the keys, r′

ID1
K̂ID1 ,

. . ., r′
IDn
K̂IDm

, such that
∑

i r
′
IDi

= 1 (mod q). Namely, the augmented procedure

452 C. Gentry and S. Halevi

KeyGen∗(PK,SK, S) uses the same KeyGen procedure from above m times to
get K̂IDi

← KeyGen(PK,SK, IDi). Then for i = 1 . . .m it chooses r′
IDi

∈ Zq at
random subject to the constraint

∑
i r

′
IDi

= 1 (mod q), and outputs the secret
key

K̂S = [r′
ID1
K̂ID1 , . . . , r

′
IDm
K̂IDm

]

where r′
IDi
K̂IDi

means multiplying all the elements in K̂IDi
by the scalar r′

IDi
.

Below we call K̂IDi
the singleton key corresponding to IDi, and r′

IDi
K̂IDi

is the
shifted singleton key for IDi. Note that for the special case m = 1, we have
r′
ID

= 1, so KeyGen∗ degenerates to the original KeyGen.

Extended Decryption. The extended decryption procedure Decrypt∗ is given
a ciphertext (F, ĉ) together with a set of identities S = {ID1, . . . , IDm} (m ≤
�) and a matching decryption key K̂S . It parses the decryption key as K̂S =
[K̂ ′

ID1
, . . . , K̂ ′

IDm
] where the K̂ ′

IDi
’s are shifted singleton keys. Namely we have

K̂ ′
IDi

= r′
IDi
K̂IDi where the K̂IDi ’s are singleton keys and

∑
i r

′
IDi

= 1 (mod q).

Then we use each shifted singleton key to produce d̂′
IDi

just as in Eq. (5), sets
d̂S =

∑
i d̂′

IDi , and recover k̃ =
〈
ĉ, d̂S

〉
.

Correctness holds since the decryption process in linear: Denote by d̂IDi the
vector that would have been obtained from the singleton key K̂IDi

using Eq. (5).
Then on one hand decryption is linear so we have d̂′

IDi
= r′

IDi
d̂′

IDi
. On the other

hand by correctness of the basic decryption procedure we know that
〈
ĉ, d̂IDi

〉
=

k̃. We therefore get

〈
ĉ, d̂S

〉
=
∑

i

〈
ĉ, d̂

′
IDi

〉
=
∑

i

〈
ĉ, r′

IDi
d̂IDi

〉
=
∑

i

r′
IDi

〈
ĉ, d̂IDi

〉
=
∑

i

r′
IDi
k̃ = k̃

Key Derivation. Key-derivation uses Boyen’s idea of reciprocal keys [8].
Namely, given the public key and any two identities ID1 and ID2, anyone can
compute a pair of shifted singleton keys δK̂ID1 and δK̂ID2 for the same (unknown)
scalar factor δ. The procedure for generating these reciprocal keys (which is used
as a subroutine for key derivation) is as follows:

ReciprocalKeys(PK, ID1, ID2): Recall that the public key PK depends on the
unknown scalars a, b, s (among other things).

– Choose at random z ∈ Zq. The shifted singleton keys δK̂IDi
will have δ =

bz(a− ID1)(a− ID2).

– Choose at random r1, r2 ∈ Zq (which will play the role of r
ID1

and r
ID2

in the
reciprocal keys).

HIBE with Polynomially Many Levels 453

– Compute δK̂ID1 as

δ · s−r1
a−ID1

B̂1 =(abs− bsID2 − abr1 + br1ID2)zB̂1

δ · r1(a�−2 × B̂1)={br1z(ai+2 − ai+1(ID1 + ID2) + aiID1ID2)B̂1
: i = 0, . . . , �− 2}

δ · (a�−2 × B̂2)={bz(ai+2 − ai+1(ID1 + ID2) + aiID1ID2)B̂2
: i = 0, . . . , �− 2}

δ · r1(a�−2 × B̂3)={br1z(ai+2 − ai+1(ID1 + ID2) + aiID1ID2)B̂3
: i = 0, . . . , �− 2}

δ
(
r1a

�−1B̂3 + span(B̂5,6)
)

=br1z(a�+1 − a�(ID1 + ID2) + a�−1ID1ID2)B̂3

+ span(B̂5,6)

and similarly for δK̂ID2 (using r2 instead of r1 and swapping the roles of
ID1, ID2). Notice that the terms aibB̂j for i ∈ [0, �],j = 1, 2, 3, as well as
bsB̂1, absB̂1, a�+1bB̂3, and B̂5,6, are all part of the PK3 component of the
public key.

From the description above it is clear that when ID1, ID2 �= a, then Recipro-
calKeys indeed returns the correct distribution, namely two shifted singleton
keys δK̂ID1 , δK̂ID2 where each K̂ID is drawn from the same distribution as the
singleton keys for ID in KeyGen and δ is chosen at random in Zq (and inde-
pendently of K̂ID1 , K̂ID2).

KeyDerive(PK,S, K̂S , S
′) (where S′ = {ID1, . . . , IDm} and S ⊆ S′). Assume

(w.l.o.g.) that S consists of the first n identities in S′, namely S = {ID1, . . . , IDn}
with n ≤ m. Denote K̂S = {K̂ ′

ID1
, . . . , K̂ ′

IDn
}, where K̂ ′

IDi
is the shifted singleton

key for IDi (consisting of 3�−3 7-dimensional vectors of source-group elements).
For i = 1, . . . ,m, run the ReciprocalKeys procedure from above with identities

IDi and IDi+1 (indexing mod m) to get two shifted singleton keys for these ID’s,
which we denote by L̂IDi , M̂IDi+1 , respectively. Namely, set

(L̂IDi
, M̂IDi+1) ← ReciprocalKeys(PK, IDi, IDi+1)

Then for i ∈ [1, n] set K̂∗
IDi

= K̂ ′
IDi

+ L̂IDi
− M̂IDi

, and for i ∈ [n + 1,m] set
K̂∗

IDi
= L̂IDi − M̂IDi (where addition and subtraction is element-wise). The new

key is K̂S = [K̂∗
ID1
, . . . , K̂∗

IDm
]. In Lemma 2 below we show that this KeyDerive

procedure induces almost the same distribution as KeyGen over the decryption
key K̂S′ .

Lemma 2. For every S ⊆ S′ (with |S′| = m) and every secret key K̂S corre-
sponding to S, the procedure KeyDerivation(PK,S, K̂S , S

′) draws from a distri-
bution at most O(m/q) away from that of KeyGen(PK,SK, S′).

Proof. Observe that every 7-vector in a singleton key K̂ID corresponding to
identity ID (as computed by KeyGen) is of the form

(expr(a, s, ID) + r
ID
expr′(a, s, ID)) · B̂k

454 C. Gentry and S. Halevi

where r
ID

is the scalar that was chosen for this singleton key, B̂k is one specific
row of the matrix B̂, and expr(a, s, ID), expr′(a, s, ID) are two fixed scalar-valued
expressions that depend only on the scalars a, s from the master secret key and
on the identity ID. (Note that either expr(a, s, ID) or expr′(a, s, ID) can be zero,
but not both.)

Considering the same vector in all the shifted singleton keys in K̂S , we have a
collection of n vectors, x̂1, . . . , x̂n, where x̂i = r′

IDi
(expr(a, s, IDi) + r

IDi
expr′(a, s,

IDi)) · B̂k, and the scalars r′
IDi

satisfy
∑

i r
′
IDi

= 1. For notational convenience,

for i ∈ [n + 1,m] we denote r
IDi

= r′
IDi

= 0 and x̂i = 0̂ (so we still have x̂i’s
of the right format with

∑
i r

′
IDi

= 1, even when we consider all m elements).
Similarly considering the same vector in all the shifted singleton keys that are
generated by ReciprocalKeys, we have vectors ŷ1 . . . ŷm (from the L̂IDi ’s) and
ẑ1 . . . ẑm (from the M̂IDi

’s) of the form

ŷi = δi(expr(a, s, IDi) + ρi expr
′(a, s, IDi)) · B̂k

and ẑi = δi−1(expr(a, s, IDi) + τi expr′(a, s, IDi)) · B̂k

where all the scalars δi, ρi, τi, i = 1 . . .m, are chosen at random in Zq (and
indexing is mod m, so δ0 = δm). Hence the corresponding element in the shifted
singleton key K̂∗

IDi
is

x̂i + ŷi− ẑi =
(
(r′

IDi
+δi−δi−1)expr(a, s, IDi)+(r′

IDi
rIDi

+δiρi−δi−1τi)expr′(a, s, IDi)
)

B̂k

Assuming that r′
IDi

+ δi − δi−1 �= 0, we can denote

r∗∗
IDi

def= r′
IDi

+ δi − δi−1 and r∗
IDi

def=
r′
IDi
r
IDi

+ δiρi − δi−1τi

r′
IDi

+ δi − δi−1

and then we have x̂i + ŷi − ẑi = r∗∗
IDi

(expr(a, s, IDi) + r∗
IDi
expr′(a, s, IDi))B̂k,

which is of the right form, and indeed the scalars r∗∗
IDi

satisfy

m∑
i=1

r∗∗
IDi

=
m∑

i=1

r′
IDi

+
m∑

i=1

δi −
m∑

i=1

δi−1 =
m∑

i=1

r′
IDi

= 1

Since the δi’s are random and independent then the r∗∗
IDi

’s are also random and
independent subject to the constraint that their sum is one. Finally, assuming
that none of the r∗∗

IDi
’s is zero and also none of the δi’s are zero (which happens

with probability at least 1 − O(m/q)) then all the r∗
IDi

’s are random and inde-
pendent (since the τi’s and ρi’s are). �

6 Security of Our System

Theorem 2. The IBBE system from Section 5 is secure under the BDHE-
Set assumption and the decision Linear assumption. Specifically, for an �-depth

HIBE with Polynomially Many Levels 455

hierarchy, groups G,GT of order q, and an adversary that makes upto q∗ key-
extraction queries, we have AdvIBBEE(log q, �) ≤ AdvBDHE(G,GT) + AdvLinear
(G,GT), where the BDHE-Set instances are of size O(�+ q∗).

The proof is found in the long version [14]. On a very high level, the proof
consists of four games: Game 0 is the actual interaction of the adversary with
our system, in Game 1 we use decryption rather than encryption to compute
the KEM key corresponding to the challenge ciphertext (which has no effect on
the outcome), in Game 2 we add a component of B̂7 to the secret keys (which is
indistinguishable by the Linear assumption), and in Game 3 we add a component
of Â7 to the challenge ciphertext vector (thus making the KEM key statistically
independent of the adversary’s view).

The main reduction then proves indistinguishability of Game 3 from Game 2
based on the BDHE-Set assumption. That reduction follows the hash-proof ap-
proach: The simulator generates the challenge ciphertext so that this is either a
valid ciphertext or an invalid one, depending on whether the input of the sim-
ulator is a YES instance or a NO instance of the decision BDHE-Set problem.
In our case, a valid ciphertext is spanned by the rows Â1,2,3,4, and an invalid
ciphertext also has a component of Â7. The secret keys have a random B̂7 com-
ponent in them, so an invalid ciphertext is decrypted to a random KEM key
(while a valid ciphertext are always decrypted to the “right KEM key”).

In the reduction itself, the simulator gets as input source-group elements âi =
ai · 1̂ for all i ∈ S and two additional source-group elements ẑ1, ẑ2, and uses these
elements to answer all the queries of the adversary: Very roughly, it chooses a
random polynomial H(x) of high-enough degree over Zq, sets s = H(a) for the
master secret key, r

ID
= H(ID) in all the key-reveal queries, and F = H mod P

for the challenge ciphertext. To compute the appropriate terms, the simulator
uses the powers âi from its input. The main challenge is to make the set S
“large enough” so the simulator can produce the entire view of the adversary
from the elements âi that it knows, while at the same time ensuring that S is
“small enough” so that the target integer m is not in S +S (since otherwise the
problem becomes easy).

References

1. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertexts. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

456 C. Gentry and S. Halevi

5. Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boneh, D., Gentry, C., Hamburg, M.: Space Efficient Identity Based Encryption
without Pairings. In: Proceedings of FOCS 2007, pp. 647–657. IEEE, Los Alamitos
(2007)

7. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Boyen, X.: General Ad Hoc Encryption from Exponent Inversion IBE. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg
(2007)

9. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

10. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

11. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues.
In: IMA Int. Conf. 2001 (2001)

12. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Gentry, C.: Practical Identity-Based Encryption without Random Oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

14. Gentry, C., Halevi, S.: Hierarchical Identity Based Encryption with Polynomially
Many Levels, http://eprint.iacr.org/2008/383

15. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

16. Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems
(manuscript, 2008), http://eprint.iacr.org/2008/268

17. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

18. Maurer, U.M., Yacobi, Y.: Non-interative Public-Key Cryptography. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 498–507. Springer, Heidelberg
(1991)

19. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

20. Shi, E., Waters, B.: Delegating Capabilities in Predicate Encryption Systems.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

21. Weisstein, E.W.: Sylvester Matrix. From MathWorld, a Wolfram Web Resource,
http://mathworld.wolfram.com/SylvesterMatrix.html

22. Waters, B.: Efficient Identity Based Encryption without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2008/383
http://eprint.iacr.org/2008/268
http://mathworld.wolfram.com/SylvesterMatrix.html

Predicate Privacy in Encryption Systems

Emily Shen1, Elaine Shi2, and Brent Waters3,�

1 MIT
eshen@csail.mit.edu

2 CMU/PARC
eshi@parc.com
3 UT Austin

bwaters@cs.utexas.edu

Abstract. Predicate encryption is a new encryption paradigm which
gives a master secret key owner fine-grained control over access to en-
crypted data. The master secret key owner can generate secret key tokens
corresponding to predicates. An encryption of data x can be evaluated us-
ing a secret token corresponding to a predicate f ; the user learns whether
the data satisfies the predicate, i.e., whether f(x) = 1.

Prior work on public-key predicate encryption has focused on the no-
tion of data or plaintext privacy, the property that ciphertexts reveal no
information about the encrypted data to an attacker other than what
is inherently revealed by the tokens the attacker possesses. In this pa-
per, we consider a new notion called predicate privacy, the property that
tokens reveal no information about the encoded query predicate. Predi-
cate privacy is inherently impossible to achieve in the public-key setting
and has therefore received little attention in prior work. In this work, we
consider predicate encryption in the symmetric-key setting and present a
symmetric-key predicate encryption scheme which supports inner prod-
uct queries. We prove that our scheme achieves both plaintext privacy
and predicate privacy.

1 Introduction

In traditional public-key encryption, a user encrypts a message under a public
key, and only the owner of the corresponding secret key can decrypt the cipher-
text. In some applications, however, the user may wish to have more fine-grained
control over what is revealed about the encrypted data. For example, in a med-
ical context an administrative assistant might only be able to learn whether an
encrypted record was generated at a certain clinic. Predicate encryption is a new
encryption paradigm which allows for such fine-grained control over access to en-
crypted data. In a predicate encryption scheme, the owner of a master secret key
can create and issue secret key tokens to other users. Tokens are associated with

� Supported by NSF CNS-0524252, CNS-0716199; the U.S. Department of Homeland
Security under Grant Award Number 2006-CS-001-000001.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 457–473, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

458 E. Shen, E. Shi, and B. Waters

predicates which can be evaluated over encrypted data. Specifically, an encryp-
tion of a data x can be evaluated using a token TKf associated with a predicate
f to learn whether f(x) = 1.

Prior work on public-key predicate encryption [7,12,1,9,19,11,28,27] has
focused on the security property that ciphertexts reveal no information about the
underlying plaintext or data other than what is implied by the tokens in one’s pos-
session. More specifically, an adversary in possession of tokens TKf1, . . . , TKf�

for
predicates f1, . . . , f� learns no information about the underlying plaintext x other
than the values of f1(x), . . . , f�(x)1. We refer to the above property as plaintext
or data privacy.

In this work, we consider a different dimension of predicate encryption – pred-
icate privacy. In addition to protecting the privacy of plaintexts, we would like
to protect the description of the predicates encoded by tokens. Informally, predi-
cate privacy says that a token hides all information about the encoded predicate
other than what is implied by the ciphertexts in one’s possession. Unfortunately,
predicate privacy is inherently impossible to achieve in the public-key setting.
Since encryption does not require a secret key, an adversary can encrypt any
plaintext of his choice and evaluate a token on the resulting ciphertext to learn
whether the plaintext satisfies the predicate associated with the token. In this
way, an adversary can gain information about the predicate encoded in a token.
Therefore, it does not make sense to consider the notion of predicate privacy for
predicate encryption in the public-key setting.

However, it is interesting to consider predicate privacy in the symmetric-key
setting, in applications where we want to hide information about the predicate
being tested from the party evaluating a token. For example, suppose a user
Alice uses a remote storage service to back up her files. Alice wishes to protect
the privacy of her files by encrypting them using her secret key before sending
them to the server. (Only Alice possesses her secret key.) Later on, Alice may
wish to retrieve all files satisfying a certain predicate. To do this, Alice can
create a token (using her secret key) for this predicate and issue the token to
the server. The server can then evaluate the predicate on the encrypted files and
return those files which satisfy the predicate. We want to guarantee that the
server learns nothing about the predicate it evaluates on Alice’s behalf.

1.1 Our Results

In this paper, we present formal definitions of security for predicate encryp-
tion in the symmetric-key setting, for general classes of predicates. We present a
symmetric-key predicate encryption scheme that achieves both plaintext privacy
and predicate privacy. Our construction supports the class of predicates corre-
sponding to the evaluation of inner products. We take the set of plaintexts to
be Σ = Zn

N and the class of predicates to be F = {fv|v ∈ Zn
N} where fv(x) = 1

1 In some works the authors also distinguish an extra “payload message” M such that
in the case that one of f1(x), . . . , f�(x) evaluates to 1, the adversary learns the payload
message M . In our work we solely consider the predicate encryption system property
where the evaluation reveals f(x).

Predicate Privacy in Encryption Systems 459

iff 〈v,x〉 = 0, where 〈v,x〉 denotes the inner product
∑n

i=1 vi · xi mod N of
vectors v and x. Our construction is based on the KSW construction [21], which
uses bilinear groups whose order is the product of three primes. Our construction
uses groups whose order is the product of four primes. Our complexity assump-
tions have all been introduced in prior work but for the case of groups whose
order is the product of fewer than four primes.

Why Inner Product Queries? An important goal in predicate encryption is to
support complex, expressive queries. Prior work has focused on achieving more
expressive schemes, with the most expressive scheme to date being that of Katz,
Sahai and Waters [21]. The KSW scheme supports inner product queries, which
are strictly more expressive than conjunctive queries and, as shown in [21], imply
conjunctions, disjunctions, CNF/DNF formulas, polynomial evaluation, and ex-
act thresholds. Therefore, our goal in this work is to construct a symmetric-key
predicate encryption scheme that supports inner product queries.

1.2 Related Work

Public-Key Predicate Encryption. The earliest examples of public-key predicate
encryption are anonymous identity-based encryption (A-IBE) schemes with key-
word search (which corresponds to an equality predicate) [7,12,1,9]. Since then,
more expressive schemes such as those supporting conjunctive queries [19,11,28]
and multi-dimensional range queries [27] have been proposed. The most expres-
sive scheme known to date is due to Katz, Sahai and Waters [21] and supports
inner-product queries. As explained above, the KSW scheme is strictly more
expressive than previously proposed predicate encryption schemes.

Searchable Encrypted Databases. A related line of research is secure searching
on outsourced encrypted databases. The problem was considered by Goldreich
and Ostrovsky [22,18] when cast as a problem of oblivious RAM, and they pro-
vided general solutions. Song, Wagner, and Perrig [29] later gave more efficient
solutions for equality searches, but made a tradeoff of letting a storage server
learn the access pattern of a user. Curtmola et al. [17] considered stronger secu-
rity definitions in a similar setting. While we do not directly address searchable
encrypted databases in this work, our predicate encryption solution allows for
more complex queries to be made in this particular application.

Identity-Based Encryption and Attribute-Based Encryption. Identity-based en-
cryption (IBE) [26,8,16] can be viewed as a special, more limited, case of pred-
icate encryption for the class of equality tests. In attribute-based encryption
(ABE) [25,20,3,24,15,23], a user can receive a capability representing an access
control policy over the attributes of an encrypted record.

In both IBE and ABE schemes, the identity or attributes are not hidden in
the ciphertext. In fact, access to the encrypted data itself is inherently “all-
or-nothing.” The important distinction between these systems and the ones we
consider is that they only hide a “payload message” M . In particular, the ci-
phertext is associated with a payload message M and some extra structure x

460 E. Shen, E. Shi, and B. Waters

(e.g., the “identity” or set of attributes associated with the ciphertext). The
security guarantee of these systems is that M remains hidden as along as the
attacker does not have a secret key associated with a predicate function f such
that f(x) = 1; however, there is no guarantee about hiding the structure of x,
which in general might be leaked to the attacker. One advantage, however, is
that this relaxation might allow for more expressive access predicates.

2 Definitions

In this section, we formally define symmetric-key predicate encryption and its
security. For simplicity, we consider the predicate-only variant, in which evalu-
ating a token on a ciphertext outputs a bit indicating whether the encrypted
plaintext satisfies the predicate corresponding to the token. We note that a
predicate-only scheme can easily be extended to obtain a full-fledged predicate
encryption scheme, in which evaluating a token on a ciphertext outputs the en-
crypted plaintext if the plaintext satisfies the predicate corresponding to the
token, using techniques from prior work such as [11,27,21].

We give definitions for the general case of an arbitrary set of plaintexts Σ and
an arbitrary set of predicates F . Our construction in Section 4 will be for the
specific case of Σ = Zn

N and F = {fv|v ∈ Zn
N} with fx(v) = 1 iff 〈x,v〉 = 0

mod N , where 〈x,v〉 denotes the inner product
∑n

i=1 xi · vi mod N of vectors
x and v. We follow the notation of [21].

2.1 Symmetric-Key Predicate-Only Encryption

Let Σ denote a finite set of plaintexts, and let F denote a finite set of predicates
f : Σ → {0, 1}. We say that x ∈ Σ satisfies a predicate f if f(x) = 1.

Definition 1 (Symmetric-Key Predicate-Only Encryption Scheme). A
symmetric-key predicate-only encryption scheme for the class of predicates F
over the set of attributes Σ consists of the following probabilistic polynomial
time (PPT) algorithms.
Setup(1λ): Takes as input a security parameter 1λ and outputs a secret key SK.
Encrypt(SK, x): Takes as input a secret key SK and a plaintext x ∈ Σ and

outputs a ciphertext CT .
GenToken(SK, f): Takes as input a secret key SK and a description of a pred-

icate f ∈ F and outputs a token TKf .
Query(TKf , CT): Takes as input a token TKf for a predicate f and a cipher-

text CT . It outputs either 0 or 1, indicating the value of the predicate f
evaluated on the underlying plaintext.

Correctness. For correctness, we require the following condition. For all λ, all
x ∈ Σ, and all f ∈ F , letting SK ← Setup(1λ), TKf ← GenToken(SK, f), and
CT ← Encrypt(SK, x),
– If f(x) = 1, then Query(TKf , CT) = 1.
– If f(x) = 0, then Pr[Query(TKf , CT) = 0] > 1− ε(λ) where ε is a negligible

function.

Predicate Privacy in Encryption Systems 461

2.2 Security Definitions

We now give formal definitions of security for a symmetric-key predicate-only
encryption scheme. We first define full security, which, roughly speaking, says
that given a set of tokens for predicates f1, . . . , fk and a set of encryptions of
plaintexts x1, . . . , x�, an adversary A gains no information about any of the
predicates f1, . . . , fk or the plaintexts x1, . . . , x� (other than the value of each of
the predicates evaluated on each of the plaintexts).

However, the full security notion turns out to be difficult to work with in our
proofs of security. Therefore, we introduce a second security notion called single
challenge security, which resembles the security notions used in previous work
such as [11,21]. As we show later, full security implies single challenge security,
and, for the specific case of inner product predicates, single challenge security
implies full security in the sense that, given a single challenge secure scheme for
inner product predicates overΣ = Z2n

N , we can construct a fully secure scheme for
inner product predicates over Σ = Zn

N . Therefore, for our construction it suffices
to consider the single challenge security definition. To prove the security of our
construction, we will use the selective relaxation of single challenge security. The
notion of selective security was first introduced by [13] and has been used widely
in the literature [13,14,5,11,12,27].

Full Security. We define full security of a symmetric-key predicate-only encryp-
tion scheme using the following game between an adversary A and a challenger.

Setup: The challenger runs Setup(1λ) and keeps SK to itself. The challenger
picks a random bit b.

Queries: A adaptively issues queries, where each query is of one of two types:
– Ciphertext query. On the jth ciphertext query, A outputs a bit t = 0

(indicating a ciphertext query) and two plaintexts xj,0, xj,1 ∈ Σ. The
challenger responds with Encrypt(SK, xj,b).

– Token query. On the ith token query, A outputs a bit t = 1 (indicating
a token query) and descriptions of two predicates fi,0, fi,1 ∈ F . The
challenger responds with GenToken(SK, fi,b).

A’s queries are subject to the restriction that, for all ciphertext queries
(xj,0, xj,1) and all predicate queries (fi,0, fi,1), fi,0(xj,0) = fi,1(xj,1).

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA =
∣∣Pr[b′ = b] − 1

2

∣∣.
Definition 2 (Full Security). A symmetric-key predicate-only encryption
scheme is fully secure if, for all PPT adversaries A, the advantage of A in
winning the above game is negligible in λ.

Single Challenge Security. In order to prove the security of our construction,
we will need to introduce a second security definition, which we refer to as single
challenge security. Whereas in the full security game, each of the adversary’s
queries is considered part of the challenge, in the single challenge security game,
the challenge consists of only one pair of plaintexts or predicates. The single
challenge security game resembles security games used previously in the IBE
and predicate encryption literature. The game proceeds as follows.

462 E. Shen, E. Shi, and B. Waters

Setup: The challenger runs Setup(1λ) and keeps SK to itself.
Query Phase 1: A adaptively issues queries, where each query is of one of

two types:
– Ciphertext query. On the jth ciphertext query, A outputs a bit t =

0 (indicating a ciphertext query) and a plaintext xj . The challenger
responds with Encrypt(SK, xj).

– Token query. On the jth token query, A outputs a bit t = 1 (indicating a
token query) and a description of a predicate fj. The challenger responds
with GenToken(SK, fj).

Challenge: A outputs a request for one of the following:
– Ciphertext challenge. A outputs a bit t = 0 (indicating a ciphertext

challenge) and two plaintexts x∗0 and x∗1 such that, for all previous token
queries fj, fj(x∗0) = fj(x∗1). The challenger picks a random bit b and
responds with Encrypt(SK, x∗b).

– Token challenge. A outputs a bit t = 1 (indicating a token challenge)
and descriptions of two predicates f∗0 and f∗1 such that, for all previous
ciphertext queries xj , f∗0 (xj) = f∗1 (xj). The challenger picks a random
bit b and responds with GenToken(SK, f∗b).

Query Phase 2: A adaptively issues additional queries as in Query Phase 1,
subject to the same restriction with respect to the challenge as above.

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA =
∣∣Pr[b′ = b] − 1

2

∣∣.
Definition 3 (Single Challenge Security). A symmetric-key predicate-only
encryption scheme is single challenge secure if, for all PPT adversaries A, the
advantage of A in winning the above game is negligible in λ.

Selective Single Challenge Security. We will need to use the selective variant of
single challenge security, defined below. The notion of selective security was first
introduced by [13] and has been used previously by [13,14,5,11,12,27].

Definition 4 (Selective Single Challenge Security). In the selective single
challenge security game, the adversary A outputs the challenge strings at the
start of the game during an Init phase (instead of during a Challenge phase).
The rest of the game proceeds in the same way as in the single challenge security
game. We say that a symmetric-key predicate-only encryption scheme is selective
single challenge secure if, for all PPT adversaries A, the advantage of A in
winning the selective single challenge game is negligible in λ.

For our proofs of security, it will be useful to define separate notions of plaintext
privacy and predicate privacy, which correspond to a ciphertext challenge and a
token challenge, respectively, in the selective single challenge security game.

Definition 5 (Plaintext Privacy). A symmetric-key predicate-only encryp-
tion scheme has selective single challenge plaintext privacy (plaintext privacy,
for short) if, for all PPT adversaries A, the advantage of A in winning the
selective single challenge game for a ciphertext challenge is negligible in λ.

Predicate Privacy in Encryption Systems 463

Definition 6 (Predicate Privacy). A symmetric-key predicate-only encryp-
tion scheme has selective single challenge predicate privacy (predicate privacy,
for short) if, for all PPT adversaries A, the advantage of A in winning the
selective single challenge game for a token challenge is negligible in λ.

We note that plaintext privacy and predicate privacy, together, are equivalent
to selective single challenge security.

Relationship Between Single Challenge Security and Full Security. It
is useful to consider the relationship between the security definitions introduced
above. The full security notion implies single challenge security. For the specific
case of inner product query predicates, a single challenge secure scheme for
vectors of length 2n can be used to construct a fully secure scheme for vectors
of length n. Therefore, we consider single challenge security to be a sufficiently
strong notion of security for our construction.

These relationships are stated formally in the following theorems.

Theorem 1. If a symmetric-key predicate-only encryption scheme is fully se-
cure, then it is single challenge secure.

Proof. Suppose an adversary A wins the single challenge security game with
advantage ε. We can define an adversary B that wins the full security game with
advantage ε as follows. When A makes a ciphertext query x, B in turn makes the
ciphertext query (x,x) to B’s challenger and responds to A with the ciphertext
it receives. Similarly, when A makes a token query v, B in turn makes the token
query (v,v) to B’s challenger and responds to A with the token it receives.
When A issues its challenge request, B outputs the challenge request as a query
to its challenger and responds to A with the answer it receives. B outputs the
same guess b′ as A does. It is clear that all of B’s responses to A are properly
constructed, and B wins the full security game with the same advantage ε with
which A wins the single challenge security game.

Theorem 2. Let Scheme2n denote a single challenge secure symmetric-key
predicate-only encryption scheme for inner product queries, where plaintext and
predicate vectors have length 2n. Then Scheme2n can be used to construct a
fully secure symmetric-key predicate-only encryption scheme Schemen for in-
ner product queries, where plaintext and predicate vectors have length n.

The proof of this theorem is deferred to Appendix A.

3 Background and Complexity Assumptions

Our symmetric-key predicate encryption scheme uses bilinear groups of com-
posite order, first introduced by [10]. While the public-key predicate encryption
scheme of [21] uses bilinear groups whose order is the product of three distinct
primes, we use bilinear groups whose order is the product of four distinct primes.

We briefly review some facts about bilinear groups and then state the assump-
tions we use to prove security of our construction.

464 E. Shen, E. Shi, and B. Waters

3.1 Bilinear Groups of Composite Order

Let G denote a group generator algorithm that takes as input a security parame-
ter 1λ and outputs a tuple (p, q, r, s,G,GT , e) where p, q, r, s are distinct primes,
G and GT are two cyclic groups of order N = pqrs, and e : G×G → GT satisfies
the following properties:

– (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We assume that group operations in G and GT as well as the bilinear map e can
be computed in time polynomial in λ.

We use the notation Gp,Gq,Gr,Gs to denote the subgroups of G having order
p, q, r, s, respectively.

We will use the following facts about bilinear groups of composite order.
Although these facts are stated in terms of Gp and Gq, similar facts hold in
general for distinct subgroups of a composite order bilinear group.

– Let ap ∈ Gp, bq ∈ Gq denote two elements from distinct subgroups. Then
e(ap, bq) = 1.

– Let Gpq = Gp × Gq, a, b ∈ Gpq. a and b can be rewritten (uniquely) as
a = apaq, b = bpbq, where ap, bq ∈ Gp, and aq, bq ∈ Gq. Then e(a, b) =
e(ap, bp)e(aq, bq).

3.2 Our Assumptions

The security of our symmetric-key predicate-only encryption scheme relies on
three assumptions. All of these assumptions have been introduced previously but
in groups whose order is the product of at most three distinct primes. Specifically,
Assumption 1 involves 3 subgroups, C3DH involves 2 subgroups, and DL involves
1 subgroup. We assume that these assumptions hold when the relevant subgroups
are contained in a larger group whose order is the product of four distinct primes.
Note that the naming of subgroups is not significant in our assumptions; that
is, the assumptions are the same if the subgroups are renamed.

Assumption 1. We use Assumption 1 of KSW [21], which was used for bilinear
groups whose order is the product of three distinct primes. We restate the as-
sumption in the context of a bilinear group whose order is the product of four
distinct primes.

Let G be a group generator algorithm as above. Run G(1λ) to obtain (p,
q, r, s,G,GT , e). Let N = pqrs and let gp, gq, gr, gs be random generators of
Gp,Gq,Gr,Gs, respectively. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2,

R3 ∈ Gr, random a, b, c ∈ Zp, and a random bit b. If b = 0, let T = gb2c
p R3; if

b = 1, let T = gb2c
p Q3R3. Give the adversary A the description of the bilinear

group, (N,G,GT , e), along with the following values:(
gp, gr, gs, gqR1, g

b
p, g

b2

p , g
a
pgq, g

ab
p Q1, g

c
p, g

bc
p Q2R2, T

)

Predicate Privacy in Encryption Systems 465

The adversary A outputs a guess b′ of b. The advantage of A is defined as
AdvA =

∣∣Pr[b′ = b] − 1
2

∣∣.
Definition 7. We say that G satisfies Assumption 1 if, for all PPT algorithms
A, the advantage of A in winning the above game is negligible in the security
parameter λ.

We note that Assumption 1 implies the hardness of finding a non-trivial factor
of N .

Generalized 3-Party Diffie-Hellman Assumption (C3DH). We use the compos-
ite 3-party Diffie-Hellman assumption first introduced by [11]. We restate the
assumption in the context of a bilinear group whose order is the product of four
distinct primes.

Let G be a group generator algorithm as above. Run G(1λ) to obtain (p,
q, r, s,G,GT , e). Let N = pqrs and let gp, gq, gr, gs be random generators of
Gp,Gq,Gr,Gs, respectively. Choose random R1, R2, R3 ∈ Gr, random a, b, c ∈
ZN , and a random bit b. If b = 0, let T = gc

p · R3; if b = 1, let T be a random
element in Gpr = Gp × Gr. Give the adversary A the description of the bilinear
group, (N,G,GT , e), along with the following values:(

gp, gq, gr, gs, g
a
p , g

b
p, g

ab
p ·R1, g

abc
p ·R2, T

)
The adversary A outputs a guess b′ of b. The advantage of A is defined as
AdvA =

∣∣Pr[b′ = b] − 1
2

∣∣.
Definition 8. We say that G satisfies the C3DH assumption if for all PPT
algorithms A, the advantage of A in winning the above game is negligible in the
security parameter λ.

We note that the C3DH assumption implies the hardness of finding a non-trivial
factor N .

Decisional Linear assumption (DLinear). We use the Decisional Linear assump-
tion introduced by [6]. We restate the assumption in the context of a bilinear
group whose order is the product of four distinct primes.

Let G be a group generator algorithm as above. Run G(1λ) to obtain (p,
q, r, s,G,GT , e). Let N = pqrs and let gp, gq, gr, gs be random generators of
Gp,Gq,Gr,Gs, respectively. Choose random z1, z2, z3, z4 ∈ Zp and a random bit
b. If b = 0, let Z = gz3+z4

p ; if b = 1, let Z be a random element in Gp. Give the
adversary A the description of the bilinear group, (N,G,GT , e), along with the
following values:

(gp, gq, gr, gs, g
z1
p , g

z2
p , g

z1z3
p , gz2z4

p , Z)

The adversary A outputs a guess b′ of b. The advantage of A is defined as
AdvA =

∣∣Pr[b′ = b] − 1
2

∣∣.
Definition 9. We say that G satisfies the DLinear assumption if for all PPT
algorithms A, the advantage of A in winning the above game is negligible in the
security parameter n.

466 E. Shen, E. Shi, and B. Waters

4 Construction

Our goal is to construct a symmetric-key predicate encryption scheme supporting
inner product queries that has both plaintext privacy and predicate privacy. The
KSW construction [21] is a public-key predicate encryption scheme supporting
inner product queries that has plaintext privacy. A natural first attempt might be
to convert the KSW scheme into a symmetric-key scheme simply by withholding
the public key. Such a scheme would immediately inherit plaintext privacy from
the KSW construction. However, it is difficult to prove the predicate privacy of
such a scheme. Our primary challenge is to achieve predicate privacy.

To achieve predicate privacy, we use the observation that, for inner product
queries, ciphertexts and tokens play symmetric roles in the scheme and the
security definitions. In particular, a token and a ciphertext each encode a vector
in Zn

N , and the inner product 〈x,v〉 is commutative. Furthermore, for inner
products, ciphertexts and tokens have symmetric roles in the security definitions.
One way to interpret this observation is to view a ciphertext as an encryption
of a plaintext vector and a token as an encryption of a predicate vector.

Based on this observation, our general approach is to start from a construction
that resembles the KSW construction, so that we can prove plaintext privacy in
a relatively straightforward manner. We then show through a series of modifica-
tions to our construction that it is indistinguishable from one in which cipher-
texts and tokens are formed symmetrically. Using this symmetry, we can leverage
the plaintext privacy proven for our main construction to achieve predicate pri-
vacy as well. Taken all together, the “native” formation of our system gives us
plaintext privacy by a KSW type of approach, and the indistinguishability of
our construction from one in which ciphertexts and tokens are symmetrically
formed implies that our construction also has predicate privacy.

4.1 A Symmetric-Key Predicate Encryption Scheme

Our main construction is a symmetric-key predicate-only encryption scheme
supporting inner product queries. We take the class of plaintexts to be Σ = Zn

N

and the class of predicates to be F = {fv|v ∈ Zn
N} with fx(v) = 1 iff 〈x,v〉 = 0

mod N .
We now describe our construction in detail.

Setup(1λ): The setup algorithm runs G(1λ) to obtain (p, q, r, s,G,GT , e) with
G = Gp×Gq×Gr×Gs. Next it picks generators gp, gq, gr, gs of Gp,Gq,Gr,Gs,
respectively. It chooses h1,i, h2,i, u1,i, u2,i ∈ Gp uniformly at random for i = 1
to n. The secret key is

SK =
(
gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}n

i=1

)
.

Encrypt(SK,x): Let x = (x1, . . . , xn) ∈ Zn
N . The encryption algorithm chooses

random y, z, α, β ∈ ZN , random S, S0 ∈ Gs, and random R1,i, R2,i ∈ Gr for
i = 1 to n. It outputs the ciphertext

CT =

(
C = S · gy

p , C0 = S0 · gz
p,{

C1,i = hy
1,i · uz

1,i · gαxi
q · R1,i, C2,i = hy

2,i · uz
2,i · gβxi

q ·R2,i

}n

i=1

)
.

Predicate Privacy in Encryption Systems 467

GenToken(SK,v): Let v = (v1, . . . , vn) ∈ Zn
N . The token generation algorithm

chooses random f1, f2 ∈ ZN , random r1,i, r2,i ∈ ZN for i = 1 to n, random
R,R0 ∈ Gr, and random S1,i, S2,i ∈ Gs for i = 1 to n. It outputs the token

TKv =

(
K = R ·∏n

i=1 h
−r1,i

1,i · h−r2,i

2,i , K0 = R0 ·
∏n

i=1 u
−r1,i

1,i · u−r2,i

2,i ,{
K1,i = g

r1,i
p · gf1vi

q · S1,i, K2,i = g
r2,i
p · gf2vi

q · S2,i

}n

i=1

)
.

Query(TKv, CT) : Let CT = (C,C0, {C1,i, C2,i}n
i=1) and

TKv = (K,K0, {K1,i,K2,i}n
i=1) as above. The query algorithm outputs 1 iff

e(C,K) · e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i)
?= 1.

Correctness. Let CT and TKv be as above. Then

e(C,K) · e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i)

= e(S · gy
p , R ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i) · e(S0 · gz
p, R0 ·

n∏
i=1

u
−r1,i

1,i · u−r2,i

2,i)

·
n∏

i=1

e(hy
1,i · uz

1,i · gαxi
q · R1,i, g

r1,i
p · gf1vi

q · S1,i)

·e(hy
2,i · uz

2,i · gβxi
q ·R2,i, g

r2,i
p · gf2vi

q · S2,i)

= e(gy
p ,

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i) · e(gz
p,

n∏
i=1

u
−r1,i

1,i · u−r2,i

2,i)

·
n∏

i=1

e(hy
1,i · uz

1,i · gαxi
q , gr1,i

p · gf1vi
q) · e(hy

2,i · uz
2,i · gβxi

q , gr2,i
p · gf2vi

q)

=
n∏

i=1

e(gq, gq)(αf1+βf2)xivi = e(gq, gq)(αf1+βf2 mod q)〈x,v〉

If 〈x,v〉 = 0 mod N , then the above expression evaluates to 1. If 〈x,v〉 �= 0
mod N , then there are two cases. If 〈x,v〉 = 0 mod q, then the above expression
evaluates to 1; however, this case would reveal a non-trivial factor of N and,
therefore, this case occurs with negligible probability. If 〈x,v〉 �= 0 mod q, then
with all but negligible probability αf1+βf2 �= 0 mod q and the above expression
does not evaluate to 1.

4.2 Discussion

To understand our construction, it is useful to examine the role of each of the
subgroups Gp,Gq,Gr,Gs.

The Gq subgroup is used to encode the plaintext vector x in the C1,i and C2,i

terms of the ciphertext and the predicate vector v in the K1,i and K2,i terms of

468 E. Shen, E. Shi, and B. Waters

the token. When a token for v is applied to an encryption of x, the computation
of the inner product 〈x,v〉 is evaluated in the exponent of the Gq subgroup.

The Gp subgroup is used to prevent an adversary from manipulating com-
ponents of either a ciphertext or a token and then evaluating a query on the
improperly formed inputs. The Gp subgroup encodes an equation which will
evaluate to 0 in the exponent if the inputs to the query algorithm are properly
formed.

The Gr subgroup is used for to hide factors from other subgroups and ensure
plaintext privacy. In an analogous manner, the Gs subgroup is used to ensure
predicate privacy. Also, the additional subgroup Gs allows us to construct our
scheme in a slightly different manner from KSW. For example, the Gs subgroup
allows us to eliminate the factor Q from the Gq subgroup in the K term of the
token.

As discussed earlier, in our proofs of security we will need to show that our
main construction is computationally indistinguishable from a scheme in which
ciphertexts and tokens are formed symmetrically. In the KSW construction,
all terms in the ciphertext have the same exponent y in the Gp subgroup. In
our construction, we introduce an additional degree of randomness using the
exponent z. Terms in the ciphertext now contain two degrees of randomness, y
and z, in the Gp subgroup. This change is necessary to ensure symmetry of the
ciphertext and the token in the Gp subgroup.

To see why this is the case, recall that Decisional Diffie-Hellman is easy in bi-
linear groups. That is, for a random vector gα1

p , g
α2
p , . . . , g

αk
p , it is easy to decide

whether the exponents (α1, α2, . . . , αk) are picked independently at random or
picked from a prescribed one-dimensional subspace. On the other hand, an in-
formal interpretation of the Decisional Linear assumption tells us that it is com-
putationally hard to decide whether the exponents (α1, α2, . . . , αk) are picked
independently at random or picked randomly from a prescribed 2-dimensional
subspace. The reason for introducing the extra randomness z in the ciphertext is
to ensure that the exponents in the Gp subgroup are picked from a 2-dimensional
subspace instead of a 1-dimensional subspace.

Similarly to [11,12,21], our construction consists of two parallel sub-systems.
Note that C1,i and C2,i (similarly, K1,i and K2,i) play identical roles. Our proof
of security will rely on having these two parallel sub-systems.

For comparison, we provide a review of the KSW construction in Appendix B.

4.3 Proof Overview

Our main security statement is the following theorem.

Theorem 3. Under the generalized Assumption 1 of the KSW construction,
the generalized C3DH assumption, and the Decisional Linear assumption, the
symmetric-key predicate-only encryption scheme presented in Section 4.1 is se-
lectively single challenge secure.

Our proof technique consists of two steps. First, we prove that our construction
achieves plaintext privacy. Second, we prove that, for our construction, plaintext

Predicate Privacy in Encryption Systems 469

privacy implies predicate privacy. Taken together, these results imply the security
of our scheme.

Our construction defined above, which we call SchemeReal, does not imme-
diately yield a proof of these two properties. In order to argue these properties,
we define two different schemes that are computationally indistinguishable from
our original construction. That is, no adversary can tell whether tokens and ci-
phertexts are generated from our actual system or from one of the two defined
for the purposes of the proof.

We first define a system that we call SchemeQ, which very closely follows
the KSW construction. We reduce the plaintext privacy of SchemeQ to the
plaintext privacy of the KSW construction.

Next we define a system that we call SchemeSym, in which ciphertexts and
tokens are formed symmetrically. For this system it is straightforward to argue
that plaintext privacy implies predicate privacy.

We observe that since our main construction and the two variants defined are
all computationally indistinguishable (from an adversary’s view), it is actually
possible to define any of them as the “real” construction that we will actually
use. We chose the variant described above due to (relative) notational simplicity
and slight efficiency advantages. Details of our proof and further discussion are
given in the full version of our paper.

5 Conclusions

We examined the idea of protecting the privacy of predicates in predicate en-
cryption systems. While this turns out to be an inherently unachievable in a
public-key system, we showed that there exist solutions in the symmetric-key
setting. We first provided security definitions for predicate encryption schemes
in the symmetric-key setting and then presented a construction supporting inner
product queries, which are the most expressive queries supported by currently
known schemes.

While semantic security of predicates is inherently impossible in the public-
key setting, in the future we might wish to consider relaxations of public-key
encryption. For example, is it possible to find interesting systems where predi-
cates are drawn from a high entropy distribution, in a fashion similar to recent
work on deterministic encryption [4,2]? Another open direction is to consider
“partial public-key encryption,” in which a public key might allow a user to
generate only a subset of valid ciphertexts. (The rest may be generated from
a secret key or other public keys kept hidden from an attacker.) Thus, certain
predicates might be indistinguishable given the partial public keys published.

Acknowledgments

We thank Philippe Golle for helpful discussions. The second author thanks
Adrian Perrig for his support while part of this research was conducted.

470 E. Shen, E. Shi, and B. Waters

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: SP 2007: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, Washington, DC, USA, pp. 321–334. IEEE Computer Society Press, Los
Alamitos (2007)

4. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004),
http://www.cs.stanford.edu/~xb/eurocrypt04b/

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS (2007)

10. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–342. Springer, Heidelberg
(2005)

11. Boneh, D., Waters, B.: A fully collusion resistant broadcast trace and revoke system
with public traceability. In: ACM Conference on Computer and Communication
Security (CCS) (2006)

12. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (Without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

13. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

14. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

15. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

16. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

http://www.cs.stanford.edu/~xb/eurocrypt04b/

Predicate Privacy in Encryption Systems 471

17. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS 2006: Proceedings
of the 13th ACM conference on Computer and communications security (2006)

18. Goldreich, O., Ostrovsky, R.: Software protection and simulation by oblivious rams.
JACM (1996)

19. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-
crypted data. In: Proc. of the 2004 Applied Cryptography and Network Security
Conference (2004)

20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006: Proceedings of the 13th
ACM conference on Computer and communications security, pp. 89–98. ACM
Press, New York (2006)

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

22. Ostrovsky, R.: Software protection and simulation on oblivious RAMs. PhD thesis,
M.I.T (1992); Preliminary version in STOC 1990

23. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: CCS 2007: Proceedings of the 14th ACM con-
ference on Computer and communications security (2007)

24. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: CCS 2006: Proceedings of the 13th ACM conference on Computer and
communications security, New York, NY, USA, pp. 99–112 (2006)

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

27. Shi, E., Bethencourt, J., Chan, T.-H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy
(May 2007)

28. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008),
http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf

29. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE symposium on Security and Privacy, S&P
2000 (2000)

A Proof of Theorem 2

Here, we prove that a single challenge secure symmetric-key predicate-only en-
cryption scheme supporting inner product queries for vectors of length 2n can be
used to construct a fully secure symmetric-key predicate-only encryption scheme
supporting inner product queries for vectors length n. Our proof is inspired by
the hybrid argument used by [21].

Proof. Let Scheme2n be a single challenge secure symmetric-key predicate-only
encryption scheme supporting inner product queries over Z2n

N . We construct a

http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf

472 E. Shen, E. Shi, and B. Waters

fully secure symmetric-key predicate-only encryption scheme Schemen support-
ing inner product queries over Zn

N .
For any two vectors x = (x1, . . . xn),y = (y1, . . . , yn) ∈ Zn

N , define x‖y =
(x1, . . . , xn, y1, . . . , yn) to be the vector obtained by concatenating x and y.

Informally, Schemen works as follows. To encrypt a vector x ∈ Zn
N , encrypt

the vector x‖x ∈ Z2n
N using Scheme2n. Similarly, to construct a token for the

vector v ∈ Zn
N , use Scheme2n to construct a token for the vector v‖v ∈ Z2n

N .
The algorithms of Schemen are defined as follows.

Schemen.Setup(1λ): Run Scheme2n.Setup(1λ). The secret key SK is the same
as that generated by Scheme2n.

Schemen.Encrypt(SK,x): Output Scheme2n.Encrypt(SK,x‖x).
Schemen.GenToken(SK,v): Output Scheme2n.GenToken(SK,v‖v).
Schemen.Query(TKv, CT): Output Scheme2n.Query(TKv, CT).

The correctness of Schemen results from the fact that for vectors x,v ∈ Zn
N ,

〈x,v〉 = 0 iff 〈x‖x, v‖v〉 = 0.

We now show that Schemen is fully secure. Recall the full security game
defined in Section 2.2. First, the challenger picks a random bit b. Next, the
adversary A adaptively issues queries to the challenger. If a query is a ciphertext
query (xj,0,xj,1), the challenger responds with an encryption of xj,b. If a query
is a token query (vi,0,vi,1), the challenger responds with a token for vi,b. A’s
queries are subject to the restriction that, for all ciphertext queries (xj,0, xj,1)
and all predicate queries (fi,0, fi,1), fi,0(xj,0) = fi,1(xj,1). At the end of the
game, A outputs a guess b′ of b and wins if b′ = b.

Suppose that the adversary A makes c ciphertext queries, (x1,0, x1,1), . . .,
(xc,0, xc,1), and t token queries, (v1,0,v1,1), . . . , (vt,0,vt,1).

Our task is to show that A cannot distinguish between two experiments:
one where the challenger constructs ciphertexts for x1,0, . . . ,xc,0 and tokens
for v1,0, . . . ,vt,0 (call this Game 0), and one where the challenger constructs
ciphertexts for x1,1, . . . ,xc,1 and tokens for v1,1, . . . ,vt,1 (call this Game 1). To
do this, we construct a series of hybrid games as follows.

Game 0: The challenger calls Scheme2n and computes ciphertexts for
x1,0‖x1,0, x2,0‖x2,0, . . ., xc,0‖xc,0 and tokens for v1,0‖v1,0, v2,0‖v2,0, . . .,
vt,0‖vt,0.

Game A: The challenger calls Scheme2n and computes ciphertexts for x1,0‖0,
x2,0‖0, . . ., xc,0‖0 and tokens for v1,0‖v1,0, v2,0‖v2,0, . . ., vt,0‖vt,0.

Game B: The challenger calls Scheme2n and computes ciphertexts for x1,0‖0,
x2,0‖0, . . ., xc,0‖0 and tokens for v1,0‖v1,1, v2,0‖v2,1, . . ., vt,0‖vt,1.

Game M: The challenger picks a random α
R← ZN , calls Scheme2n and com-

putes ciphertexts for x1,0‖αx1,1, x2,0‖αx2,1, . . . , xc,0‖αxc,1 and tokens
for v1,0‖v1,1, v2,0‖v2,1, . . . , vt,0‖vt,1.

Notice that in the above sequence of hybrid games, the outcomes of the predicates
corresponding to the generated tokens on the plaintexts in Z2n

N encrypted by the
challenger remain the same between all pairs of adjacent games, except with
negligible probability.

Predicate Privacy in Encryption Systems 473

Claim. If Scheme2n is single challenge secure, then no PPT adversary A has
more than negligible advantage in distinguishing between any pair of adjacent
games in the above sequence of games.

Proof. By a hybrid argument.

Similarly, we can construct a sequence of hybrid games connecting Game M and
Game 1. Using a hybrid argument, we conclude that no PPT adversary has more
than negligible advantage in distinguishing between Game 0 and Game 1.

B KSW Predicate Encryption Scheme

To aid in the understanding of our construction and the proof of security, we
review the KSW public key predicate-only encryption scheme for inner product
queries [21].

Let G′ denote a group generator algorithm for a bilinear group whose order
is the product of three distinct primes.

Setup(1λ): The setup algorithm runs G′(1λ) to obtain (p, q, r,G,GT , e) with
G = Gp × Gq × Gr. Next it picks generators gp, gq, gr from subgroups
Gp,Gq,Gr, respectively. It then chooses, uniformly at random, h1,i, h2,i ∈
Gp, R1,i, R2,i ∈ Gr for i = 1 to n, and R0 ∈ Gr.
The public key consists of:

PK = (gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i · R2,i}n
i=1)

The secret key is set to:

SK =
(
p, q, r, gq, {h1,i, h2,i}n

i=1

)
.

Encrypt(PK,x): Let x = (x1, . . . , xn) ∈ Zn
N . The encryption algorithm first

picks random exponents y, α, β from ZN , and it chooses random R3,i, R4,i ∈
Gr for i = 1 to n. It outputs the ciphertext

CT =
(
C = gy

p ,
{
C1,i = Hy

1,i ·Qαxi ·R3,i, C2,i = Hy
2,i ·Qβxi ·R4,i

}n

i=1

)
.

GenToken(SK,v): Let v = (v1, . . . , vn) ∈ Zn
N . The token generation algorithm

chooses random f1, f2, {r1,i, r2,i}n
i=1 from ZN , random R5 ∈ Gr, and random

Q6 ∈ Gq. It outputs the token

TKv =

(
K = R5 ·Q6 ·

∏n
i=1 h

−r1,i

1,i · h−r2,i

2,i ,{
K1,i = g

r1,i
p · gf1vi

q , K2,i = g
r2,i
p · gf2vi

q

}n

i=1

)
.

Query(TKv, CT): Let CT =(C, {C1,i, C2,i}n
i=1) and TKv =(K, {K1,i,K2,i}n

i=1)
as above. The query algorithm outputs 1 iff

e(C,K) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i)
?= 1.

Simultaneous Hardcore Bits and
Cryptography against Memory Attacks

Adi Akavia1,�, Shafi Goldwasser2,��, and Vinod Vaikuntanathan3,� � �

1 IAS and DIMACS
2 MIT and Weizmann Insitute

3 MIT and IBM Research

Abstract. This paper considers two questions in cryptography.

Cryptography Secure Against Memory Attacks. A particularly devastating
side-channel attack against cryptosystems, termed the “memory attack”, was pro-
posed recently. In this attack, a significant fraction of the bits of a secret key of
a cryptographic algorithm can be measured by an adversary if the secret key is
ever stored in a part of memory which can be accessed even after power has been
turned off for a short amount of time. Such an attack has been shown to com-
pletely compromise the security of various cryptosystems in use, including the
RSA cryptosystem and AES.

We show that the public-key encryption scheme of Regev (STOC 2005),
and the identity-based encryption scheme of Gentry, Peikert and Vaikuntanathan
(STOC 2008) are remarkably robust against memory attacks where the adversary
can measure a large fraction of the bits of the secret-key, or more generally, can
compute an arbitrary function of the secret-key of bounded output length. This is
done without increasing the size of the secret-key, and without introducing any
complication of the natural encryption and decryption routines.

Simultaneous Hardcore Bits. We say that a block of bits of x are simulta-
neously hard-core for a one-way function f(x), if given f(x) they cannot be
distinguished from a random string of the same length. Although any candidate
one-way function can be shown to hide one hardcore bit and even a logarithmic
number of simultaneously hardcore bits, there are few examples of one-way or
trapdoor functions for which a linear number of the input bits have been proved
simultaneously hardcore; the ones that are known relate the simultaneous security
to the difficulty of factoring integers.

We show that for a lattice-based (injective) trapdoor function which is a variant
of function proposed earlier by Gentry, Peikert and Vaikuntanathan, an N−o(N)
number of input bits are simultaneously hardcore, where N is the total length of
the input.

These two results rely on similar proof techniques.

� Supported in part by NSF grant CCF-0514167, by NSF grant CCF-0832797, and by Israel
Science Foundation 700/08.

�� Supported in part by NSF grants CCF-0514167, CCF-0635297, NSF-0729011, the Israel
Science Foundation 700/08 and the Chais Family Fellows Program.

� � � Supported in part by NSF grant CCF-0635297 and Israel Science Foundation 700/08.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 474–495, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 475

1 Introduction

The contribution of this paper is two-fold.
First, we define a new class of strong side-channel attacks that we call “mem-

ory attacks”, generalizing the “cold-boot attack” recently introduced by Halderman
et al. [22]. We show that the public-key encryption scheme proposed by Regev [39],
and the identity-based encryption scheme proposed by Gentry, Peikert, and Vaikun-
tanathan [16] can provably withstand these side channel attacks under essentially the
same intractability assumptions as the original systems1.

Second, we study how many bits are simultaneously hardcore for the candidate trap-
door one-way function proposed by [16]. This function family has been proven one-way
under the assumption that the learning with error problem (LWE) for certain parameter
settings is intractable, or alternatively the assumption that approximating the length of
the shortest vector in an integer lattice to within a polynomial factor is hard for quan-
tum algorithms [39]. We first show that for the set of parameters considered by [16],
the function family has O(N

log N) simultaneously hardcore bits (where N is the length
of the input to the function). Next, we introduce a new parameter regime for which
we prove that the function family is still trapdoor one-way and has upto N − o(N) si-
multaneously hardcore bits2, under the assumption that approximating the length of the
shortest vector in an integer lattice to within a quasi-polynomial factor in the worst-case
is hard for quantum algorithms running in quasi-polynomial time.

The techniques used to solve both problems are closely related. We elaborate on the
two results below.

1.1 Security against Memory Attacks

The absolute privacy of the secret-keys associated with cryptographic algorithms has
been the corner-stone of modern cryptography. Still, in practice, keys do get compro-
mised at times for a variety of reasons.

A particularly disturbing loss of secrecy is as a result of side-channel attacks. These
attacks exploit the fact that every cryptographic algorithm is ultimately implemented on
a physical device and such implementations typically enable ‘observations’ which can
be made and measured, such as the amount of power consumption or the time taken
by a particular implementation of a cryptographic algorithm. These side-channel ob-
servations lead to information leakage about secret-keys which can (and have) lead to
complete breaks of systems which have been proved mathematically secure, without
violating any of the underlying mathematical principles or assumptions (see, for exam-
ple, [28, 29, 12, 1, 2]). Traditionally, such attacks have been followed by ad-hoc ‘fixes’
which make particular implementations invulnerable to particular attacks, only to po-
tentially be broken anew by new examples of side-channel attacks.

In their pioneering paper on physically observable cryptography [33], Micali and
Reyzin set forth the goal of building a general theory of physical security against a

1 Technically, the assumptions are the same except that they are required to hold for problems
of a smaller size, or dimension. See Informal Theorems 1 and 2 for the exact statements.

2 The statement holds for a particular o(N) function. See Informal Theorem 3.

476 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

large class of side channel attacks which one may call computational side-channel at-
tacks. These include any side channel attack in which leakage of information on secrets
occurs as a result of performing a computation on secrets. Some well-known exam-
ples of such attacks include Kocher’s timing attacks [28], power analysis attacks [29],
and electromagnetic radiation attacks [1] (see [32] for a glossary of examples.) A ba-
sic defining feature of a computational side-channel attack, as put forth by [33] is that
computation and only computation leaks information. Namely, the portions of memory
which are not involved in computation do not leak any information.

Recently, several works [33, 26, 37, 20, 15] have proposed cryptographic algorithms
provably robust against computational side-channel attacks, by limiting in various ways
the portions of the secret key which are involved in each step of the computation [26,
37, 20, 15].

In this paper, we consider an entirely different family of side-channel attacks that are
not included in the computational side-channel attack family, as they violate the basic
premise (or axiom, as they refer to it) of Micali-Reyzin [33] that only computation leaks
information. The new class of attacks, which we call “memory attacks”, are inspired by
(although not restricted to) the “cold-boot attack” introduced recently by Halderman
et al. [22]. The Halderman et al. paper shows how to measure a significant fraction of
the bits of secret keys if the keys were ever stored in a part of memory which could be
accessed by an adversary (e.g. DRAM), even after the power of the machine has been
turned off. They show that uncovering half of the bits of the secret key that is stored
in the natural way completely compromises the security of cryptosystems, such as the
RSA and Rabin cryptosystems.3

ANew Family of Side Channel Attacks. Generalizing from [22], we define the family
of memory attacks to leak a bounded number of bits computed as a result of applying
an arbitrary function whose output length is bounded by α(N) to the content of the
secret-key of the cryptographic algorithm (where N is the size of the the secret-key).4

Naturally, this family of attacks is inherently parameterized and quantitative in nature.
If α(N) = N , then the attack could uncover the entire secret key at the outset, and there
is no hope for any cryptography. However, it seems that in practice, only a fraction of
the secret key is recovered [22]. The question that emerges is how large a fraction of
the secret-key can leak without compromising the security of the cryptosystems.

For the public-key case (which is the focus of this paper), we differentiate between
two flavors of memory attacks.

The first is non-adaptive α-memory attacks. Intuitively, in this case, a function h
with output-length α(N) (where N is the length of the secret-key in the system) is
first chosen by the adversary, and then the adversary is given (PK, h(SK)), where
(PK,SK) is a random key-pair produced by the key-generation algorithm. Thus, h is
chosen independently of the system parameters and in particular, PK . This definition
captures the attack specified in [22] where the bits measured were only a function of
the hardware or the storage medium used. In principle, in this case, one could design

3 This follows from the work of Rivest and Shamir, and later Coppersmith [40,13], and has been
demonstrated in practice by [22]: their experiments successfuly recovered RSA and AES keys.

4 The special case considered in [22] corresponds to a function that outputs a subset of its input
bits.

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 477

the decryption algorithm to protect against the particular h which was fixed a-priori.
However, this would require the design of new software (i.e, the decryption algorithm)
for every possible piece of hardware (e.g, a smart-card implementing the decryption
algorithm) which is highly impractical. Moreover, it seems that such a solution will
involve artificially expanding the secret-key, which one may wish to avoid. We avoid the
aforementioned disadvantages by showing an encryption scheme that protects against
all leakage functions h (with output of length at most α(N)).

The second, stronger, attack is the adaptive α-memory attacks. In this case, a key-
pair (PK,SK) is first chosen by running the key generation algorithm with security
parameter n, and then the adversary on input PK chooses functions hi adaptively (de-
pending on the PK and the outputs of hj(SK), for j < i) and the adversary receives
hi(SK). The total number of bits output by hi(SK) for all i, is bounded by α(N).

Since we deal with public-key encryption (PKE) and identity-based encryption (IBE)
schemes in this paper, we tailor our definitions to the case of encryption. However, we
remark that similar definitions can be made for other cryptographic tasks such as digital
signatures, identification protocols, commitment schemes etc. We defer these to the full
version of the paper.

New Results on PKE Security. There are two natural directions to take in desiging
schemes which are secure against memory attacks. The first is to look for redundant
representations of secret-keys which will enable battling memory attacks. The works
of [26, 25, 10] can be construed in this light. Naturally, this entails expansion of the
storage required for secret keys and data. The second approach would be to examine
natural and existing cryptosystems, and see how vulnerable they are to memory attacks.
We take the second approach here.

Following Regev [39], we define the learning with error problem (LWE) in dimen-
sion n, to be the task of learning a vector s ∈ Zn

q (where q is a prime), given m pairs
of the form (ai, 〈ai, s〉 + xi mod q) where ai ∈ Zn

q are chosen uniformly and inde-
pendently and the xi are chosen from some “error distribution” Ψβ (Throughout, we
one may think of xi’s as being small in magnitude. See section 2 for precise definition
of this error distribution.). We denote the above parameterization by LWEn,m,q,β . The
hardness of the LWE problem is chiefly parametrized by the dimension n: we say that
LWEn,m,q,β is t-hard if no probabilistic algorithm running in time t can solve it.

We prove the following two main theorems.

Informal Theorem 1. Let the parameters m, q and β be polynomial in the security
parameter n. There exist public key encryption schemes with secret-key length N =
n log q = O(n log n) that are:

1. semantically secure against a non-adaptive (N − k)-memory attack, assuming the
poly(n)-hardness of LWEO(k/ log n),m,q,β , for any k > 0. The encryption scheme
corresponds to a slight variant of the public key encryption scheme of [39].

2. semantically secure against an adaptiveO(N/polylog(N))-memory attack, assum-
ing the poly(n)-hardness of LWEk,m,q,β for k = O(n). The encryption scheme is
the public-key scheme proposed by [39].

478 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

Informal Theorem 2. Let the parameters m, q and β be polynomial in the security
parameter n. The GPV identity-based encryption scheme [16] with secret-key length
N = n log q = O(n logn) is:

1. semantically secure against a non-adaptive (N − k)-memory attack, assuming the
poly(n)-hardness of LWEO(k/ log n),m,q,β for any k > 0.

2. semantically secure against an adaptiveO(N/polylog(N))-memory attack, assum-
ing the poly(n)-hardness of LWEk,m,q,β for k = O(n).

The parameter settings for these theorems require some elaboration. First, the theorem
for the non-adaptive case is fully parametrized. That is, for any k, we prove security
in the presence of leakage of N − k bits of information about the secret-key, under a
corresponding hardness assumption. The more the leakage we would like to tolerate,
the stronger the hardness assumption. In particular, setting the parameter k to beO(N),
we prove security against leakage of a constant fraction of the secret-key bits assuming
the hardness of LWE for O(N/ logn) = O(n) dimensions. If we set k = N ε (for
some ε > 0) we prove security against a leakage of all but N ε bits of the secret-key,
assuming the hardness of LWE for a polynomially smaller dimension O(N ε/ logn) =
O((n log n)ε/ logn).

For the adaptive case, we prove security against a leakage ofO(N/polylog(N)) bits,
assuming the hardness of LWE forO(n) dimensions, where n is the security parameter
of the encryption scheme.

Due to lack of space, we describe only the public-key encryption result in this paper,
and defer the identity-based encryption result to the full version.

Idea of the Proof. The main idea of the proof is dimension reduction. To illustrate the
idea, let us outline the proof of the non-adaptive case in which this idea is central.

The hardness of the encryption schemes under a non-adaptive memory attack relies
on the hardness of computing s givenm = poly(n) LWE samples (ai, 〈ai, s〉+xi mod
q) and the leakage h(s). Let us represent these m samples compactly as (A,As + x),
where the ai are the rows of the matrix A. This is exactly the LWE problem except that
the adversary also gets to see h(s). Consider now the mental experiment where A =
BC, where C ∈ Zm×l

q for some l < n. The key observations are that (a) since h(s)
is small, s still has considerable min-entropy given h(s), and (b) matrix multiplication
is a strong randomness extractor. In particular, these two observations together mean
that t = Cs is (statistically close to) random, even given h(s). The resulting expression
now looks like Bt + x, which is exactly the LWE distribution with secret t (a vector in
l < n dimensions). The proof of the adaptive case uses similar ideas in a more complex
way: we refer the reader to Section 3.1 for the proof.

A few remarks are in order.

(Arbitrary) Polynomial number of measurements. We find it extremely interesting to
construct encryption schemes secure against repeated memory attacks, where the com-
bined number of bits leaked can be larger than the size of the secret-key (although any
single measurement leaks only a small number of bits). Of course, if the secret-key is
unchanged, this is impossible. It seems that to achieve this goal, some off-line (random-
ized) refreshing of the secret key must be done periodically. We do not deal with these
further issues in this paper.

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 479

Leaking the content of the entire secret memory. The secret-memory may include more
than the secret-keys. For example, results of intermediate computations produced dur-
ing the execution of the decryption algorithm may compromise the security of the
scheme even more than a carefully stored secret-key. Given this, why not allow the def-
inition of memory attacks to measure the entire content of the secret-memory? We have
two answers to this issue. First, in the case of the adaptive definition, when the decryp-
tion algorithm is deterministic (as is the case for the scheme in question and all schemes
in use today), there is no loss of generality in restricting the adversary to measure the
leakage from just the secret-key. This is the case because the decryption algorithm is
itself only a function of the secret and public keys as well as the ciphertext that it re-
ceives, and this can be captured by a leakage function h that the adversary chooses to
apply. In the non-adaptive case, the definition does not necessarily generalize this way;
however, the constructions we give are secure under a stronger definition which allows
leakage from the entire secret-memory. Roughly, the reason is that the decryption algo-
rithm in question can be implemented using a small amount of extra memory, and thus
the intermediate computations are an insignificant fraction of memory at any time.

1.2 Simultaneous Hard-Core Bits

The notion of hard-core bits for one-way functions was introduced very early in the
developement of the theory of cryptography [42, 21, 8]. Indeed, the existence of hard-
core bits for particular proposals of one-way functions (see, for example [8, 4, 23, 27])
and later for any one-way function [17], has been central to the constructions of se-
cure public-key (and private-key) encryption schemes, and strong pseudo-random bit
generators, the cornerstones of modern cryptography.

The main questions which remain open in this area concern the generalized notion
of “simultaneous hard-core bit security” loosely defined as follows. Let f be a one-way
function and h an easy to compute function. We say that h is a simultaneously hard-core
function for f if given f(x), h(x) is computationally indistinguishable from random.
In particular, we say that a block of bits of x are simultaneously hard-core for f(x) if
given f(x), they cannot be distinguished from a random string of the same length (this
corresponds to a function h that outputs a subset of its input bits).

The question of how many bits of x can be proved simultaneously hard-core has
been studied for general one-way functions as well as for particular candidates in [41,
4, 31, 24, 18, 17], but the results obtained are far from satisfactory. For a general one-
way function (modified in a similar manner as in their hard-core result), [17] showed
the existence of an h that outputs O(logN) bits (where we let N denote the length
of the input to the one-way function throughout) which is a simultaneous hard-core
function for f . For particular candidate one-way functions such as the exponentiation
function (modulo a prime p), the RSA function and the Rabin function, [41, 31] have
pointed to particular blocks of O(logN) input bits which are simultaneously hard-core
given f(x).

The first example of a one-way function candidate that hides more thanO(logN) si-
multaneous hardcore bits was shown by Hastad, Schrift and Shamir [24,18] who proved
that the modular exponentiation function f(x) = gx mod M hides half the bits of x
under the intractability of factoring the modulus M . The first example of a trapdoor

480 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

function for which many bits were shown simultaneous hardcore was the Pallier func-
tion. In particular, Catalano, Gennaro and Howgrave-Graham [11] showed that N −
o(N) bits are simulatenously hard-core for the Pallier function, under a stronger as-
sumption than the standard Paillier assumption.

A question raised by [11] was whether it is possible to construct other natural and
efficient trapdoor functions with many simultaneous hardcore bits and in particular,
functions whose conjectured one-wayness is not based on the difficulty of the factor-
ing problem. In this paper, we present two lattice-based trapdoor functions for which
is the case.

First, we consider the following trapdoor function family proposed in [16]. A func-
tion fA in the family is described by a matrix A ∈ Zm×n

q , where q = poly(n) is
prime and m = poly(n). fA takes two inputs s ∈ Zn

q and a sequence of random bits
r; it first uses r to sample a vector x from (a discretized form of) the Gaussian distri-
bution over Zm

q . fA then outputs As + x. The one-wayness of this function is based
on the learning with error (LWE) problem LWEn,m,q,β . Alternatively, the one-wayness
can also be based on the worst-case quantum hardness of poly(n)-approximate shortest
vector problem (gapSVPpoly(n)), by a reduction of Regev [39] from gapSVP to LWE.
We prove that O(N/ logN) bits (where N is the total number of input bits) of fA are
simultaneously hardcore.

Second, for a new setting of the parameters in fA, we show thatN −N/polylog(N)
bits (out of the N input bits) are simultaneously hardcore. The new parameter setting
is a much larger modulus q = npolylog(n), a much smaller m = O(n) and a Gaussian
noise with a much smaller (inverse superpolynomial) standard deviation. At first glance,
it is unclear whether for these new parameter setting, the function is still a trapdoor
(injective) function. To this end, we show that the function is injective, is sampleable
with an appropriate trapdoor (which can be used to invert the function) and that it is one-
way. The one-wayness is based on a much stronger (yet plausible) assumption, namely
the quantum hardness of gapSVP with approximation factor npolylog(n) (For details, see
Section 4.2).

We stress that our results (as well as the results of [24, 18, 11]) show that particular
sets of input bits of these functions are simultaneously hardcore (as opposed to arbitrary
hardcore functions that output many bits).

Informal Theorem 3

1. Let m and q be polynomial in n and let β = 4
√
n/q. There exists an injec-

tive trapdoor function Fn,m,q,β with input length N for which a 1/logN fraction
of the input bits are simultaneously hardcore, assuming the poly(n)-hardness of
LWEO(n),m,q,β .

2. Letm = O(n), q = npolylog(n) and β = 4
√
n/q. There exists an injective trapdoor

functionFn,m,q,β with input lengthN for which a 1−1/polylog(N) fraction of input
bits are simultaneously hardcore, assuming the hardness of LWEn/polylog(n),m,q,β .

Our proof is simple and general: one of the consequences of the proof is that a re-
lated one-way function based on the well-studied learning parity with noise problem
(LPN) [7] also has N − o(N) simultaneous hardcore bits. We defer the proof of this
result to the full version due to lack of space.

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 481

Idea of the Proof. In the case of security against non-adaptive memory attacks, the
statement we showed (see Section 1.1) is that given A and h(s), As+x looks random.
The statement of hardcore bits is that given A and As+x, h(s) (where h is the particular
function that outputs a subset of bits of s) looks random. Though the statements look
different, the main idea in the proof of security against non-adaptive memory attacks,
namely dimension reduction, carries over and can be used to prove the simultaneous
hardcore bits result also. For details, see Section 4.

1.3 Other Related Work

Brent Waters, in a personal communication, has suggested a possible connection be-
tween the recently proposed notion of deterministic encryption [9,6], and simultaneous
hardcore bits. In particular, his observation is that deterministic encryption schemes
(which are, informally speaking, trapdoor functions that are uninvertible even if the in-
put comes from a min-entropy source) satisfying the definition of [9] imply trapdoor
functions with many simultaneous hardcore bits. Together with the construction of de-
terministic encryption schemes from lossy trapdoor functions [36] (based on DDH and
LWE), this gives us trapdoor functions based on DDH and LWE with many simulta-
neous hardcore bits. However, it seems that using this approach applied to the LWE
instantiation, it is possible to get only o(N) hardcore bits (where N is the total num-
ber of input bits); roughly speaking, the bottleneck is the “quality” of lossy trapdoor
functions based on LWE. In contrast, in this work, we achieveN − o(N) hardcore bits.

Recently, Peikert [34] has shown a classical reduction from a variant of the worst-
case shortest vector problem (with appropriate approximation factors) to the average-
case LWE problem. This, in turn, means that our results can be based on the classical
worst-case hardness of this variant shortest-vector problem as well.

A recent observation of [38] surprisingly shows that any public-key encryption
scheme is secure against an adaptive α(N)-memory attack, under (sub-)exponential
hardness assumptions on the security of the public-key encryption scheme. Slightly
more precisely, the observation is that any semantically secure public-key encryption
scheme that cannot be broken in time roughly 2α(N) is secure against an adaptiveα(N)-
memory attack. In contrast, the schemes in this paper make only polynomial hardness
assumptions. (See Section 3.1 for more details).

2 Preliminaries and Definitions

We will let bold capitals such as A denote matrices, and bold small letters such as a
denote vectors. x ·y denotes the inner product of x and y. If A is anm×n matrix and
S ⊆ [n] represents a subset of the columns of A, we let AS denote the restriction of A
to the columns in S, namely them× |S| matrix consisting of the columns with indices
in S. In this case, we will write A as [AS ,AS].

A problem is t-hard if no (probabilistic) algorithm running in time t can solve it.
When we say that a problem is hard without further qualification, we mean that it is
poly(n)-hard, where n is the security parameter of the system (which is usually explic-
itly specified).

482 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

2.1 Cryptographic Assumptions

The cryptographic assumptions we make are related to the hardness of learning-type
problems. In particular, we will consider the hardness of learning with error (LWE); this
problem was introduced by Regev [39] where he showed a relation between the hardness
of LWE and the worst-case hardness of certain problems on lattices (see Proposition 1).

We now define a probability distribution As,χ that is later used to specify this prob-
lem. For positive integers n and q ≥ 2, a vector s ∈ Zn

q and a probability distribution
χ on Zq , define As,χ to be the distribution obtained by choosing a vector ai ∈ Zn

q uni-
formly at random, a noise-term xi ∈ Zq according to χ and outputting (ai, 〈ai, s〉+xi),
where addition is performed in Zq .5

Learning With Error (LWE). Our notation here follows [39, 35]. The normal (or the
Gaussian) distribution with mean 0 and variance σ2 (or standard deviation σ) is the
distribution on R with density function 1

σ·√2π
exp(−x2/2σ2).

For β ∈ R+ we define Ψβ to be the distribution on T = [0, 1) of a normal variable
with mean 0 and standard deviation β/

√
2π, reduced modulo 1.6 For any probability

distribution φ : T → R+ and an integer q ∈ Z+ (often implicit) we define its discretiza-
tion φ̄ : Zq → R+ to be the distribution over Zq of the random variable $q ·Xφ� mod q,
where Xφ has distribution φ.7 In our case, the distribution Ψβ over Zq is defined by
choosing a number in [0, 1) from the distribution Ψβ , multiplying it by q, and rounding
the result.

Definition 1. Let s ∈ Zn
q be uniformly random. Let q = q(n) and m = m(n) be

integers, and let χ(n) be the distribution Ψβ with parameter β = β(n). The goal of
the learning with error problem in n dimensions, denoted LWEn,m,q,β , is to find s (with
overwhelming probability) given access to an oracle that outputs m samples from the
distribution As,χ. The goal of the decision variant LWE-Distn,m,q,β is to distinguish
(with non-negligible probability) betweenm samples from the distribution As,χ andm
uniform samples over Zn

q × Zq . We say that LWEn,m,q,β (resp. LWE-Distn,m,q,β) is
t-hard if no (probabilistic) algorithm running in time t can solve it.

The LWE problem was introduced by Regev [39], where he demonstrated a connection
between the LWE problem for certain moduli q and error distributions χ, and worst-
case lattice problems. In essence, he showed that LWE is as hard as solving several
standard worst-case lattice problems using a quantum algorithm. We state a version
of his result here. Informally, gapSVPc(n) refers to the (worst-case) promise problem
of distinguishing between lattices that have a vector of length at most 1 from ones that
have no vector shorter than c(n) (by scaling, this is equivalent to distinguishing between
lattices with a vector of length at most k from ones with no vector shorter than k · c(n)).
Proposition 1 ([39]). Let q = q(n) be a prime and β = β(n) ∈ [0, 1] be such that
βq > 2

√
n. Assume that we have access to an oracle that solves LWEn,m,q,β . Then,

5 Here, we think of n as the security parameter, and q = q(n) and χ = χ(n) as functions of n.
We will sometimes omit the explicit dependence of q and χ on n.

6 For x ∈ R, x mod 1 is simply the fractional part of x.
7 For a real x, �x� is the result of rounding x to the nearest integer.

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 483

there is a polynomial (in n andm) time quantum algorithm to solve gapSVP200n/β for
any n-dimensional lattice.

We will use Proposition 1 as a guideline for which parameters are hard for LWE. In
particular, the (reasonable) assumption that gapSVPnpolylog(n) is hard to solve in quasi-
polynomial (quantum) time implies that LWEn,m,q,β (as well as LWE-Distn,m,q,β)
where q = npolylog(n) and β = 2

√
n/q is hard to solve in polynomial time.

Regev [39] also showed that an algorithm that solves the decision version LWE-Dist
with m samples implies an algorithm that solves the search version LWE in time
poly(n, q).

Proposition 2. There is a polynomial (in n and q) time reduction from the search ver-
sion LWEn,m,q,β to the decision version LWE-Distn,m·poly(n,q),q,β , and vice versa (for
some polynomial poly).

Sampling Ψβ . The following proposition gives a way to sample from the distribution
Ψβ using few random bits. This is done by a simple rejection sampling routine (see, for
example, [16]).

Proposition 3. There is a PPT algorithm that outputs a vector x whose distribution
is statistically close to Ψ

m

β (namely, m independent samples from Ψβ) using O(m ·
log(qβ) · log2 n) uniformly random bits.

2.2 Defining Memory Attacks

In this section, we define the semantic security of public-key encryption schemes against
memory attacks. The definitions in this section can be extended to other cryptographic
primitives as well; these extensions are deferred to the full version. We proceed to de-
fine semantic security against two flavors of memory attacks, (the stronger) adaptive
memory attacks and (the weaker) non-adaptive memory attacks.

Semantic Security Against Adaptive Memory Attacks. In an adaptive memory attack
against a public-key encryption scheme, the adversary, upon seeing the public-keyPK ,
chooses (efficiently computable) functions hi adaptively (depending on PK and the
outputs of hj(SK) for j < i) and receives hi(SK). This is called the probing phase.
The definition is parametrized by a function α(·), and requires that the total number
of bits output by hi(SK) for all i is bounded by α(N) (where N is the length of the
secret-key).

After the probing phase, the adversary plays the semantic security game, namely he
chooses two messages (m0,m1) of the same length and gets ENCPK(mb) for a random
b ∈ {0, 1} and he tries to guess b. We require that the adversary guesses the bit b
with probability at most 1

2 + negl(n), where n is the security parameter and negl is
a negligible function. We stress that the adversary is allowed to get the measurements
hi(SK) only before he sees the challenge ciphertext. The formal definition follows.

Definition 2 (AdaptiveMemory Attacks). Let α : N → N be a function, and letN be
the size of the secret-key output by GEN(1n). Let HSK be an oracle that takes as input

484 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

a polynomial-size circuit h and outputs h(SK). A PPT adversary A = (AHSK
1 , A2) is

called admissible if the total number of bits that A gets as a result of oracle queries to
HSK is at most α(N).

A public-key encryption scheme PKE = (GEN, ENC, DEC) is semantically secure
against adaptive α(N)-memory attacks if for any admissible PPT adversary A =
(A1, A2), the probability that A wins in the following experiment differs from 1

2 by
a negligible function in n.

(PK, SK) ← GEN(1n)
(m0,m1, state) ← AHSK

1 (PK) s.t. |m0| = |m1|
y ← ENCPK(mb) where b ∈ {0, 1} is a random bit
b′ ← A2(y, state)

The adversary A wins the experiment if b′ = b.

The definitions of security for identity-based encryption schemes against memory at-
tacks is similar in spirit, and is deferred to the full version.

Semantic Security Against Non-Adaptive Memory Attacks. Non-adaptive memory at-
tacks capture the scenario in which a polynomial-time computable leakage function h
whose output length is bounded by α(N) is fixed in advance (possibly as a function
of the encryption scheme, and the underlying hardware). We require that the encryp-
tion scheme be semantically secure even if the adversary is given the auxiliary input
h(SK). We stress that h is chosen independently of the public-key PK . Even though
this is much weaker than the adaptive definition, schemes satisfying the non-adaptive
definition could be much easier to design and prove (as we will see in Section 3). More-
over, in some practical scenarios, the leakage function is just a characteristic of the
hardware and is independent of the parameters of the system, including the public-key.
The formal definition follows.

Definition 3 (Non-adaptive Memory Attacks). Let α : N → N be a function, and
let N be the size of the secret-key output by GEN(1n). A public-key encryption scheme
PKE = (GEN, ENC, DEC) is semantically secure against non-adaptive α(N)-memory
attacks if for any function h : {0, 1}N → {0, 1}α(N), and any PPT adversary A =
(A1, A2), the probability that A wins in the following experiment differs from 1

2 by a
negligible function in n:

(PK, SK) ← GEN(1n)
(m0,m1, state) ← A1(PK, h(SK)) s.t. |m0| = |m1|
y ← ENCPK(mb) where b ∈ {0, 1} is a random bit
b′ ← A2(y, state)

The adversary A wins the experiment if b′ = b.

Remarks about the Definitions

A Simpler Definition that is Equivalent to the adaptive definition. We observe that with-
out loss of generality, we can restrict our attention to an adversary that outputs a single
function h (whose output length is bounded by α(N)) and gets (PK, h(PK,SK))

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 485

(where (PK,SK) ← GEN(1n)) as a result. Informally, the equivalence holds because
the adversary can encode all the functions hi (that depend on PK as well as hj(SK)
for j < i) into a single polynomial-size circuit h that takes PK as well as SK as inputs.
We will use this formulation of Definition 2 later in the paper.

The Dependence of the Leakage Function on the Challenge Ciphertext. In the adaptive
definition, the adversary is not allowed to obtain h(SK) after he sees the challenge
ciphertext. This restriction is necessary: if we allow the adversary to choose h depend-
ing on the challenge ciphertext, he can use this ability to decrypt it (by letting h be the
decryption circuit and encoding the ciphertext into h), and thus the definition would be
unachievable.

A similar issue arises in the definition of CCA2-security of encryption schemes,
where the adversary should be prohibited from querying the decryption oracle on the
challenge ciphertext. Unfortunately, whereas the solution to this issue in the CCA2-
secure encryption case is straightforward (namely, explicity disallow querying the de-
cryption oracle on the challenge ciphertext), it seems far less clear in our case.

The Adaptive Definition and Bounded CCA1-security. It is easy to see that a bit-
encryption scheme secure against an adaptive α(N)-memory attack is also secure
against a CCA1 attack where adversary can make at most α(N) decryption queries
(also called an α(N)-bounded CCA1 attack).

3 Public-Key Encryption Secure against Memory Attacks

In this section, we construct a public-key encryption scheme that is secure against mem-
ory attacks. In Section 3.1, we show that the Regev encryption scheme [39] is secure
against adaptive α-memory attacks, for α(N) = O(N

log N), under the assumption that
LWEO(n),m,q,β is poly(n)-hard (where n is the security parameter andN = 3n log q is
the length of the secret-key). The parameters q,m and β are just as in Regev’s encryp-
tion scheme, described below.

In Section 3.2, we show that a slight variant of Regev’s encryption scheme is se-
cure against non-adaptive (N − k)-memory attacks, assuming the poly(n)-hardness of
LWEO(k/ log n),m,q,β . On the one hand, this allows the adversary to obtain more infor-
mation about the secret-key but on the other hand, achieves a much weaker (namely,
non-adaptive) definition of security.

The Regev Encryption Scheme. First, we describe the public-key encryption scheme
of Regev, namely RPKE = (RGEN, RENC, RDEC) which works as follows. Let n be
the security parameter and let m(n), q(n), β(n) ∈ N be parameters of the system. For
concreteness, we will set q(n) be a prime between n3 and 2n3, m(n) = 3n log q and
β(n) = 4

√
n/q.

– RGEN(1n) picks a random matrix A ∈ Zm×n
q , a random vector s ∈ Zn

q and a vector

x ← Ψ
m

β (that is, where each entry xi is chosen independently from the probability
distribution Ψβ). Output PK = (A,As + x) and SK = s.

– RENC(PK, b), where b is a bit, works as follows. First, pick a vector r at random
from {0, 1}m. Output (rA, r(As + x) + b$ q

2�) as the ciphertext.

486 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

– RDEC(SK, c) first parses c = (c0, c1), computes b′ = c1 − c0 · s and outputs 0 if b′

is closer to 0 than to q
2 , and 1 otherwise.

Decryption is correct because the value b′ = r ·x+ b$q/2% computed by the decryp-
tion algorithm is very close to b$q/2%: this is because the absolute value of r ·x is much
smaller than q/4. In particular, since ||r||2 ≤ √

m and ||x||2 ≤ mqβ = 4m
√
n with

high probability, |r · x| ≤ ||r||2||x||2 ≤ 4m
√
mn& q/4.

3.1 Security against Adaptive Memory Attacks

Let N = 3n log q be the length of the secret-key in the Regev encryption scheme. In
this section, we show that the scheme is secure against α(N)-adaptive memory attacks
for any α(N) = O(N

log N), assuming that LWEO(n),m,q,β is poly(n)-hard, where m, q
and β are as in encryption scheme described above.

Theorem 1. Let the parameters m, q and β be as in RPKE. Assuming that
LWEO(n),m,q,β is poly(n)-hard, the scheme is semantically secure against adaptive
α(N)-memory attacks for α(N) ≤ N/10 logN .

Proof. (Sketch.) First, we observe that without loss of generality, we can restrict our at-
tention to an adversary that outputs single function h (whose output length is bounded
by α(N)) and the adversary gets (PK, h(PK,SK)) as a result. Informally, the equiv-
alence holds because the adversary can encode all the functions hi (that depend on PK
as well as hj(SK) for j < i) into a single polynomial (in n) size circuit h that takes
PK as well as SK as inputs.

Thus, it suffices to show that for any polynomial-size circuit h,

(PK, ENCPK(0), h(PK,SK)) ≈c (PK, ENCPK(1), h(PK,SK))

In our case, it suffices to show the following statement (which states that the encryption
of 0 is computationally indistinguishable from uniform)

(A,As + x, rA, r(As + x), h(A, s,x)) ≈c (A,As + x,u, u′, h(A, s,x)) (1)

where u ∈ Zn
q and u′ ∈ Zq are uniformly random and independent of all other com-

ponents. That is, the ciphertext is computationally indistinguishable from uniformly
random, given the public-key and the leakage h(PK,SK).

We will in fact show a stronger statement, namely that

(A,As + x, rA, rAs, h(A, s,x), rx) ≈c (A,As + x,u, u′, h(A, s,x), rx) (2)

The difference between (1) and (2) is that in the latter, the distributions also contain the
additional information r ·x. Clearly, this is stronger than (1). We show (2) in four steps.

Step 1. We show that rA can be replaced with a uniformly random vector in Zn
q

while maintaining statistical indistinguishability, even given A,As + x, the leakage
h(A, s,x) and r · x. More precisely,

(A,As+x, rA, rAs, h(A, s,x), r ·x) ≈s (A,As+x,u,u · s, h(A, s,x), r ·x) (3)

where u ∈ Zn
q is uniformly random.

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 487

Informally, 3 is true because of the leftover hash lemma. (A variant of) leftover
hash lemma states that if (a) r is chosen from a distribution over Zn

q with min-entropy
k ≥ 2n log q + ω(logn), (b) A is a uniformly random matrix in Zm×n

q , and (c) the
distributions of r and A are statistically independent, then (A, rA) ≈s (A,u) where
u is a uniformly random vector in Zn

q . Given r ·x (which has length log q = O(log n)),
the residual min-entropy of r is at least m − log q ≥ 2n log q + ω(logn). Moreover,
the distribution of r given r · x depends only on x, and is statistically independent of
A. Thus, leftover hash lemma applies and rA can be replaced with a random vector u.

Step 2. This is the crucial step in the proof. Here, we replace the (uniformly random)
matrix A with a matrix A′ drawn from another distribution D. Informally, the (effi-
ciently sampleable) distribution D satisfies two properties: (1) a random matrix drawn
from D is computationally indistinguishable from a uniformly random matrix, assum-
ing the poly(n)-hardness of LWEO(n),m,q,β , and (2) given A′ ← D and y = A′s + x,
the min-entropy of s is at least n. The existence of such a distribution follows from
Lemma 1 below.

The intuition behind this step is the following: Clearly, As + x is computationally
indistinguishable from A′s + x. Moreover, given A′s + x, s has high (information-
theoretic) min-entropy. Thus, in some informal sense, s has high “computational en-
tropy” given As + x. This is the intuition for the next step.

Summing up, the claim in this step is that

(A,As+x,u,u · s, h(A, s,x), r ·x) ≈c (A′,A′s+x,u,u · s, h(A′, s,x), r ·x) (4)

where A′ ← D. This follows directly from Lemma 1 below.

Step 3. By Lemma 1, s has min-entropy at least n ≥ N
9 log N given A′s + x. Since

the output length of h is at most N
10 log N and the length of r · x is log q = O(log n), s

still has residual min-entropy ω(logn) given A′,A′s + x, h(A′, s,x) and r · x. Note
also that the vector u on the left-hand side distribution is independent of (A,As +
x, h(A, s,x), r · x). This allows us to apply leftover hash lemma again (with u as the
“seed” and s as the min-entropy source). Thus,

(A′,A′s+x,u,u ·s, h(A′, s,x), r ·x) ≈s (A′,A′s+x,u, u′, h(A′, s,x), r ·x) (5)

where u′ ← Zq is uniformly random and independent of all the other components in
the distribution.

Step 4. In the last step, we switch back to a uniform matrix A. That is,

(A′,A′s + x,u, u′, h(A′, s,x), r · x) ≈c (A,As + x,u, u′, h(A, s,x), r · x) (6)

Putting the four steps together proves (2). �
Lemma 1. There is a distribution D such that

– A ← U
Z

m×n
q

≈c A′ ← D, assuming the poly(n)-hardness of LWEO(n),m,q,β ,
wherem, q, β are as in Regev’s encryption scheme.

– The min-entropy of s given A′s + x is at least n. That is, H∞(s | A′s + x) ≥ n 8.
8 The precise statement uses the notion of average min-entropy due to Dodis, Reyzin and

Smith [14].

488 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

Remark: The above lemma is a new lemma proved in [19]; it has other consequences
such as security under auxiliary input, which is beyond the scope of this paper.

A Different Proof of Adaptive Security under (Sub-)Exponential Assumptions. Inter-
estingly, [38] observed that any public-key encryption scheme that is 2α(N)-hard can
be proven to be secure against α(N) adaptive memory attacks. In contrast, our result
(Theorem 1) holds under a standard, polynomial (in the security parameter n) hardness
assumption (for a reduced dimension, namely O(n)). We sketch the idea of the [38]
proof here.

The proof follows from the existence of a simulator that breaks the standard se-
mantic security with probability 1

2 + ε
2α(N) given an adversary that breaks the adap-

tive α(N)-memory security with probability 1
2 + ε. The simulator simply guesses the

(at most α(N)) bits of the output of h and runs the adversary with the guess; if the
guess is correct, the adversary succeeds in guessing the encrypted bit with probabil-
ity 1

2 + ε. The key observation that makes this idea work is that there is indeed a way
for the simulator to “test” if its guess is correct or wrong: simply produce many en-
cryptions of random bits and check if the adversary succeeds on more than 1/2 + ε
fraction of these encryptions. We remark that this proof idea carries over to the case
of symmetric encryption schemes secure against a chosen plaintext attack (that is,
CPA-secure) as well.

3.2 Security against Non-adaptive Memory Attacks

In this section, we show that a variant of Regev’s encryption scheme is secure against
non-adaptive N − o(N) memory attacks (where N is the length of the secret-key),
assuming that LWEo(n),m,q,β is poly(n)-hard. The variant encryption scheme differs
from Regev’s encryption scheme only in the way the public-key is generated.

The key generation algorithm picks the matrix A as BC where B is uniformly ran-
dom in Zm×k

q and C is uniformly random in Zk×n
q (as opposed to uniformly random in

Zn×m
q). We will let k = n− α(N)

3 log q (note that k < n). For this modified key-generation
procedure, it is easy to show that the decryption algorithm is still correct. We show:

Theorem 2. The variant public-key encryption scheme outlined above is secure against
a non-adaptive α-memory attack, where α(N) ≤ N − o(N) for some o(N) function,
assuming that LWEo(n),m,q,β is poly(n)-hard, where the parameters m, q and β are
exactly as in Regev’s encryption scheme.

We sketch a proof of this theorem below. The proof of semantic security of Regev’s
encryption is based on the fact that the public-key (A,As + x) is computationally in-
distinguishable from uniform. In order to show security against non-adaptive memory
attacks, it is sufficient to show that this computational indistinguishability holds even
given h(s), where h is an arbitrary (polynomial-time computable) function whose out-
put length is at most α(N).

The proof of this essentially follows from the leftover hash lemma. First of all, ob-
serve that s has min-entropy at least N − α(N), given h(s) (this is because the output
length of h is at most α(N)). Furthermore, the distribution of s given h(s) is indepen-
dent of A (since h depends only on s and is chosen independent of A). By our choice

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 489

of parameters, N − α(N) ≥ 3k log q. Thus, leftover hash lemma implies that Cs is
a vector t whose distribution is statistically close to uniform (even given C and h(s)).
Thus, As + x = BCs + x = Bt + x is distributed exactly like the output of an LWE
distribution with dimension k (since t ∈ Zk

q). This is computationally indistinguishable
from random, assuming LWEk,m,q,β = LWEo(n),m,q,β (since k = o(n) by our choice).

4 Simultaneous Hardcore Bits

In this section, we show that variants of the trapdoor one-way function proposed by
Gentry et al. [16] (the GPV trapdoor function) has many simultaneous hardcore bits.
For the parameters of [16], we show that a 1/polylog(N) fraction of the input bits are
simultaneously hardcore, assuming the poly(n)-hardness of LWEO(n),m,q,β (here, m
and q are polynomial in n and β is inverse-polynomial in n, the GPV parameter regime).

More significantly, we show a different (and non-standard) choice of parameters for
which the function has N − N/polylog(N) hardcore bits. The choice of parameters
is m = O(n), a modulus q = npolylog(n) and β = 4

√
n/q. This result assumes the

poly(n)-hardness of LWEn/polylog(n),m,q,β for these parameters m, q and β. The pa-
rameters are non-standard in two respects: first, the modulus is superpolynomial, and
the noise rate is very small (i.e, inverse super-polynomial) which makes the hardness
assumption stronger. Secondly, the number of samples m is linear in n (as opposed to
roughlyn logn in [16]): this affects the trapdoor properties of the function (for more de-
tails, see Section 4.2). Also, note that the hardness assumption here refers to a reduced
dimension (namely, n/polylog(n)).

We remark that for any sufficiently large o(N) function, we can show that the GPV
function is a trapdoor function with N − o(N) hardcore bits for different choices of
parameters. We defer the details to the full version.

4.1 Hardcore Bits for the GPV Trapdoor Function

In this section, we show simultaneous hardcore bits for the GPV trapdoor function.
First, we show a general result about hardcore bits that applies to a wide class of pa-
rameter settings: then, we show how to apply it to get O(N/polylog(N)) hardcore bits
for the GPV parameters, and in Section 4.2, N − N/polylog(N) hardcore bits for our
new setting of parameters.

The collection of (injective) trapdoor functions Fn,m,q,β is defined as follows. Let
m = m(n) be polynomial in n. Each function fA : Zn

q × {0, 1}r → Zm
q is indexed

by a matrix A ∈ Zm×n
q . It takes as input (s, r) where s ∈ Zn

q and r ∈ {0, 1}r, first

uses r to sample a vector x ← Ψ
m

β (that is, a vector each of whose components is
independently drawn from the Gaussian error-distribution Ψβ), and outputs As + x.
Clearly, the one-wayness of this function is equivalent to solving LWEn,m,q,β . Gentry
et al. [16] show that Fn,m,q,β is a trapdoor one-way function for the parameters q =
O(n3), m = 3n log q and β = 4

√
n/q (assuming the hardness of LWEn,m,q,β).

Lemma 2. For any integer n > 0, integer q ≥ 2, an error-distribution χ = Ψβ over Zq

and any subset S ⊆ [n], the two distributions (A,As+x, s|S) and (A,As+x, U
Z
|S|
q

)

490 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

are computationally indistinguishable assuming the hardness of the decision version
LWE-Distn−|S|,m,q,β .

Proof. We will show this in two steps.

Step 1. The first and the main step is to show that (A,As+x, s|S) ≈c (A, UZm
q
, U

Z
|S|
q

).
The distribution on the right consists of uniformly random and independent elements.
This statement is shown by contradiction: Suppose a PPT algorithmD distinguishes be-
tween the two distributions. Then, we construct a PPT algorithmE that breaks the deci-
sion version LWE-Distn−|S|,m,q,β. E gets as input (A′,y′) such that A′ ∈ Zm×(n−|S|)

q

is uniformly random and y′ is either drawn from the LWE distribution (with dimension
n− |S|) or is uniformly random.E does the following:

1. Let AS̄ = A′. Choose AS uniformly at random from Zm×|S|
q and set A =

[AS ,AS̄].
2. Choose sS ← Z|S|

q uniformly at random and compute y = y′ + ASsS .
3. RunD with input (A,y, sS), and output whateverD outputs.

First, suppose (A′,y′) is drawn from the LWE distribution As′,χ for some s′. Let
sS̄ = s′ and let s = [sS , sS̄]. Then, (A,y) constructed by E is distributed identical to
As,χ. On the other hand, if (A′,y′) is drawn from the uniform distribution, then (A,y)
is uniformly distributed, and independent of s|S . Thus, if D distinguishes between the
two distributions, then E solves LWE-Distn−|S|,m,q,β .

Step 2. The second step is to show that (A, UZm
q
, U

Z
|S|
q

) ≈c (A,As + x, U
Z
|S|
q

). This

is equivalent to the hardness of LWE-Distn,m,q,β . �
The theorem below shows that for the GPV parameter settings, a 1/polylog(N) fraction
of the bits are simultaneously hardcore.

Theorem 3. Let γ = m log(qβ) log2 n/n log q. For any k > 0, assuming that
LWEk,m,q,β is poly(n, q)-hard, the fraction of simultaneous hardcore bits for the family
Fn,m,q,β is 1

1+γ (1 − k
n). In particular, for the GPV parameters as above, the number

of hardcore bits is O(N/polylog(N)).

Proof. We first bound the total input length of a function in Fn,m,q,β , in terms of
n,m, q and β. The number of bits r needed to sample x from Ψ

m

β is mH(β) =
O(m log(qβ) log2 n), by Proposition 3. Thus, the total input length is n log q + r =
n log q +O(m log(qβ) log2 n) = n log q(1 + γ).

By Lemma 2, assuming the hardness of the decision problem LWE-Distk,m,q,β (or,
by Proposition 2, assuming the poly(n, q)-hardness of the search problem LWEk,m,q,β),
the number of simultaneously hardcore bits is at least (n − k) log q. The fraction of
hardcore bits, then, is (n−k) log q

n log q(1+γ) = 1
1+γ (1 − k

n).
For the GPV parameters γ = polylog(N), and with k = O(n), the number of

hardcore bits is O(N/polylog(N)) assuming the hardness of LWEO(n),m,q,β . �

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 491

4.2 A New Setting of Parameters for the GPV Function

In this section, we show a choice of the parameters for the GPV function for which
the function remains trapdoor one-way and an 1 − o(1) fraction of the input bits are
simultaneously hardcore. Although the number of hardcore bits remains the same as in
the GPV parametrization (as a function of n and q), namely (n− k) log q bits assuming
the hardness of LWEk,m,q,β , the length of the input relative to this number will be
much smaller. Overall, this means that the fraction of input bits that are simultaneously
hardcore is larger.

We choose the parameters so that r (the number of random bits needed to sample the
error-vector x) is a subconstant fraction of n log q. This could be done in one (or both)
of the following ways. (a) Reduce m relative to n: note that m cannot be too small
relative to n, otherwise the function ceases to be injective. (b) Reduce the standard
deviation β of the Gaussian noise relative to the modulus q: as β/q gets smaller and
smaller, it becomes easier to invert the function and consequently, the one-wayness of
the function has to be based on progressively stronger assumptions. Indeed, we will
employ both these methods (a) and (b) to achieve our goal.

In addition, we have to show that for our choice of parameters, it is possible to
sample a random function in Fn,m,q,β (that is, the trapdoor sampling property) and that
given the trapdoor, it is possible to invert the function (that is, the trapdoor inversion
property). See the proof of Theorem 4 below for more details.

Our choice of parameters ism(n) = 6n, q(n) = nlog3 n and β = 4
√
n/q.

Theorem 4. Let m(n) = 6n, q(n) = nlog3 n and β = 4
√
n/q. Then, the family of

functions Fn,m,q,β is a family of trapdoor injective one-way functions with an 1 −
1/polylog(N) fraction of hardcore bits, assuming the npolylog(n)-hardness of the search
problem LWEn/polylog(n),m,q,β . Using Regev’s worst-case to average-case connection
for LWE, the one-wayness of this function family can also be based on the worst-case
npolylog(n)-hardness of gapSVPnpolylog(n) .

Proof. (Sketch.) Let us first compute the fraction of hardcore bits. By Theorem 3 ap-
plied to our parameters, we get a 1 − 1

log n fraction of hardcore bits assuming the
hardness of LWE-DistO(n/ log n),m,q,β . By Propositions 2 and 1, this translates to the
assumptions claimed in the theorem.

We now outline the proof that for this choice of parameters, Fn,m,q,β is an injec-
tive trapdoor one-way function. Injectivity9 follows from the fact that for all but an
exponentially small fraction of A, the minimum distance (in the �2 norm) of the lat-
tice defined by A is very large; the proof is by a simple probabilistic argument and is
omitted due to lack of space. Inverting the function is identical to solving LWEn,m,q,β .
By Proposition 1, this implies that inverting the function on the average is as hard as
solving gapSVPnlog3n in the worst-case.

9 In fact, what we prove is a slightly weaker statement. More precisely, we show that for all
but an exponentially small fraction of A, there are no two pairs (s,x) and (s′, x′) such that
As + x = As′ + x′ where s, s′ ∈ Zm

q and ||x||2, ||x′||2 ≤ β
√

mn. This does not affect the
applications of injective one-way and trapdoor functions such as commitment and encryption
schemes.

492 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

Trapdoor Sampling. The trapdoor for the function indexed by A is a short basis for
the lattice Λ⊥(A) = {y ∈ Zm : yA = 0 mod q} defined by A (in a sense described
below). We use here a modification of the procedure due to Ajtai [3] (and its recent
improvement due to Alwen and Peikert [5]) which generates a pair (A,S) such that
A ∈ Zm×n

q is statistically close to uniform and S ∈ Zm×m is a short basis for Λ⊥(A).
We outline the main distinction between [3, 5] and our theorem. Both [3] and [5]

aim to construct bases for Λ⊥(A) that is as short as possible (namely, where each basis
vector has length poly(n)). Their proof works for the GPV parameter choices, that is
q = poly(n) and m = Ω(n log q) = Ω(n logn), for which they construct a basis
S such that each basis vector has length O(m3) (this was recently improved to m0.5

by [5]). In contrast, we deal with a much smaller m (linear in n) and a much larger q
(superpolynomial in n). For this choice of parameters, the shortest vectors in Λ⊥(A)
are quite long: indeed, they are unlikely to be much shorter than qn/m = qO(1) (this
follows by a simpler probabilistic argument). What we do is to construct a basis that is
nearly as short; it turns out that this suffices for our purposes. Reworking the result of
Ajtai for our parameters, we get the following theorem. The proof is omitted from this
extended abstract.

Theorem 5. Letm = 6n and q = nlog3 n. There is a polynomial (in n) time algorithm
that outputs a pair (A,S) such that (a) The distribution ofA is statistically close to the
uniform distribution in Zm×n

q . (b) S ∈ Zm×m is a full-rank matrix and is a short basis
for Λ⊥(A). In particular, SA = 0 mod q. (c) Each entry of S has absolute value at
most q′ = q/m4.

Trapdoor Inversion. As in GPV, we use the procedure of Liu, Lyubashevsky and Mic-
ciancio [30] for trapdoor inversion. In particular, we show a procedure that, given the
basis S for the lattice Λ⊥(A) from above, outputs (s,x) given fA(s, r) (if such a pair
(s,x) exists, and ⊥ otherwise). Formally, they show the following:

Lemma 3. Let n,m, q, β be as above, and let L be the length of the basis S of Λ⊥(A)
(namely, the sum of the lengths of all the basis vectors). If β ≤ 1/Lm, then there is an
algorithm that, with overwhelming probability over the choice of (A,S) output by the
trapdoor sampling algorithm, efficiently computes s from fA(s, r).

The length L of the basis output by the trapdoor sampling algorithm is at mostm2q′ ≤
q/m2. For our choice of parameters, namely β = 4

√
n/q, and m = 6n, clearly

β ≤ 1/Lm. Thus, the inversion algorithm guaranteed by Lemma 3 succeeds with over-
whelming probability over the choice of inputs. Note that once we compute s, we can
also compute the unique value of x. �

5 Open Questions

In this paper, we design public-key and identity-based encryption schemes that are se-
cure against memory attacks. The first question that arises from our work is whether
it is possible to (define and) construct other cryptographic primitives such as signature
schemes, identification schemes and even protocol tasks that are secure against mem-
ory attacks. The second question is whether it is possible to protect against memory

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 493

attacks that measure an arbitrary polynomial number of bits. Clearly, this requires some
form of (randomized) refreshing of the secret-key, and it would be interesting to con-
struct such a mechanism. Finally, it would be interesting to improve the parameters of
our construction, as well as the complexity assumptions, and also to design encryption
schemes against memory attacks under other cryptographic assumptions.

Acknowledgments. We thank Yael Kalai, Chris Peikert, Omer Reingold, Brent Waters
and the TCC program committee for their excellent comments. The third author would
like to acknowledge delightful discussions with Rafael Pass about the simultaneous
hardcore bits problem in the initial stages of this work.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s). In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer,
Heidelberg (2003)

2. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel attacks. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg (2003)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van
Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidel-
berg (1999)

4. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: Rsa and rabin functions: Certain parts are
as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices (manuscript, 2008)
6. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption: Definitional

equivalences and constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

7. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learn-
ing problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer,
Heidelberg (1994)

8. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput. 13(4), 850–864 (1984)

9. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and
efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

10. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without perfect
shredding. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 511–523. Springer, Hei-
delberg (2008)

11. Catalano, D., Gennaro, R., Howgrave-Graham, N.: Paillier’s trapdoor function hides up to
O(n) bits. J. Cryptology 15(4), 251–269 (2002)

12. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C.
(eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

13. Coppersmith, D.: Small solutions to polynomial equations, and low exponent rsa vulnerabil-
ities. J. Cryptology 10(4), 233–260 (1997)

14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biomet-
rics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

494 A. Akavia, S. Goldwasser, and V. Vaikuntanathan

15. Dziembowski, S., Pietrzak, K.: Leakage-resilient stream ciphers. In: IEEE Foundations of
Computer Science (to appear, 2008)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: STOC, pp. 197–206 (2008)

17. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC, pp.
25–32 (1989)

18. Goldreich, O., Rosen, V.: On the security of modular exponentiation with application to the
construction of pseudorandom generators. Journal of Cryptology 16, 2003 (2000)

19. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V (manuscript in preparation, 2008)
20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.)

CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)
21. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299

(1984)
22. Halderman, A., Schoen, S., Heninger, N., Clarkson, W., Paul, W., Calandrino, J., Feldman,

A., Appelbaum, J., Felten, E.: Lest we remember: Cold boot attacks on encryption keys. In:
Usenix Security Symposium (2008)

23. Håstad, J., Näslund, M.: The security of individual rsa bits. In: FOCS, pp. 510–521 (1998)
24. Håstad, J., Schrift, A.W., Shamir, A.: The discrete logarithm modulo a composite hides o(n)

bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)
25. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping secrets in

tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–
327. Springer, Heidelberg (2006)

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg
(2003)

27. Kaliski Jr., B.S.: A pseudo-random bit generator based on elliptic logarithms. In: Odlyzko,
A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 84–103. Springer, Heidelberg (1987)

28. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Hei-
delberg (1996)

29. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

30. Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On bounded distance decoding for general
lattices. In: APPROX-RANDOM, pp. 450–461 (2006)

31. Long, D.L., Wigderson, A.: The discrete logarithm hides o(log n) bits. SIAM J. Com-
put. 17(2), 363–372 (1988)

32. Side-Channel Cryptanalysis Lounge (2008),
http://www.crypto.rub.de/en_sclounge.html.

33. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

34. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. Cryptol-
ogy ePrint Archive, Report 2008/481 (2008), http://eprint.iacr.org/

35. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable obliv-
ious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer,
Heidelberg (2008)

36. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–
196 (2008)

37. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher based pseudo
random number generator secure against side-channel key recovery. In: ASIACCS, pp. 56–
65 (2008)

http://www.crypto.rub.de/en_sclounge.html
http://eprint.iacr.org/

Simultaneous Hardcore Bits and Cryptography against Memory Attacks 495

38. Pietrzak, K., Vaikuntanathan, V.: Personal Communication (2009)
39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:

STOC, pp. 84–93 (2005)
40. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. Cryptology ePrint

Archive, Report 2008/116 (2008)
41. Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number generation. In:

Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 193–202. Springer,
Heidelberg (1985)

42. Yao, A.C.: Theory and application of trapdoor functions. In: Symposium on Foundations of
Computer Science, pp. 80–91 (1982)

The Differential Privacy Frontier
(Extended Abstract)

Cynthia Dwork

Microsoft Research

Abstract. We review the definition of differential privacy and briefly
survey a handful of very recent contributions to the differential privacy
frontier.

1 Background

Differential privacy is a strong privacy guarantee for an individual’s input to a
(randomized) function or sequence of functions, which we call a privacy mech-
anism. Informally, the guarantee says that the behavior of the mechanism is
essentially unchanged independent of whether any individual opts into or opts
out of the data set. Designed for statistical analysis, for example, of health or
census data, the definition protects the privacy of individuals, and small groups
of individuals, while permitting very different outcomes in the case of very dif-
ferent data sets.

We begin by recalling some differential privacy basics. While the frontier of
a vibrant area is always in flux, we will endeavor to give an impression of the
state of the art by surveying a handful of extremely recent advances in the field.

Formally, The degree of privacy offered is described by a parameter, ε.

Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D and D′ of Hamming distance d(D,D′) ≤ 1 and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ eε × Pr[K(D′) ∈ S] (1)

The probability is taken is over the coin tosses of K.

The definition represents a paradigm shift: instead of a simulation-style defi-
nition, in which we compare what an adversary can learn about an individual
with, versus without, access to the outputs of the privacy mechanism, differential
privacy focuses on limiting the additional risk – of anything! – incurred by an
individual as a consequence of opting into (or opting out of) a data set. This is
no accident, as any “with vs. without access” definition is doomed to fail [5,9].
The defintion is suited to the real world because it is a property of the mecha-
nism alone, and has no bearing on what the consumer of information produced
in a differentially private fashion might or might not know. In consequence the

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 496–502, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

The Differential Privacy Frontier 497

outputs of a differentially private mechanism preserve differential privacy inde-
pendent of the information and computational power available to an adversary,
now or in the future.

Two principal techniques for ensuring differential privacy have appeared, one
for the case of (vectors of) real-valued outputs and the other for outputs of
arbitrary types [7,20]; the former is efficient, the latter may not be [10]. These
positive results and a key precursor [11] (which used a cumbersome definition
now known to imply a natural, mild relaxation of pure differential privacy and
which showed that if the number of queries is sublinear in the size of the data
set then privacy can be obtained “for free,” i.e., with noise smaller than the
sampling error) have been used to obtain highly accurate differentially private
solutions to a host of problems in datamining, statistics, and learning (see, e.g.,
[2,1,19,3]). A central concept is the sensitivity of a real-valued function mapping
data sets to (vectors of) reals:

Definition 2. Let D denote the space of all databases. For f : D → Rd, the
sensitivity of f is

∆f = max
D,D′

‖f(D) − f(D)‖1

for all D,D′ of distance at most 1.

Roughly speaking, real-valued data analyses that have low sensitivity permit
highly accurate differentially private mechanisms [7]. The true answer is com-
puted and Lapalacian (symmetric exponential) noise is added with variance de-
pending on ε and the sensitivity of the query. For analyses whose outcome need
not be real (it might be the choice of a color, or a set of locations, or a string),
or in cases where the output is real-valued but adding noise makes no sense (the
output might be a price when the data set is a collection of bids in an auction),
if there is an insensitive function for evaluating the quality of an output (for
example, revenue, in the case of an auction), then again high-quality outputs
can be obtained in a differentially private fashion [20]. This is done using the
exponential mechanism which, roughly speaking, weights each possible answer
with a density that falls exponentially with its (in)utility, again depending on ε
and also the sensitivity, this time, of the utility function1.

Very recently Ghosh et al. considered the question of what it means for a pri-
vacy mechanism to be optimal [14]. Intuitively, different users may have different
preconceptions before seeing the output of a privacy mechanism, and therefore
two users might place different values on the same piece of information. In such
a setting what sort of utility function should the mechanism employ? Using a
very general notion of utility, and permitting each user to have her own utility
function, Ghosh et al. show that a discretized version of the Laplace distribution
used in [7] simultaneously maximizes utility for all users for the case of counting
functions (“How many rows in the data set satisfy predicate P?”).

1 The addition of Laplacian noise to a real-valued output is a special case of the
exponential mechanism: the (in)utility of an output is its L1 distance from the true
answer.

498 C. Dwork

2 Differentially Private Synthetic Data Sets and Coresets

A series of negative results concerning privacy, says, roughly, that there is a
class of queries with the property that it is blatantly non-private (allowing al-
most full reconstruction) if “too many” queries receive “overly accurate” re-
sponses [4,8,12]. These results have been viewed as saying that, in contrast to
the sublinear queries work discussed above, one cannot privately answer a small
polynomial number of queries, say, n3 or even n2, with reasonably small noise
(here, n is the number of elements in the data set).

The idea of creating a synthetic data set whose statistics closely mirror those
of the original data set, but which preserves privacy of individuals, was proposed
in the statistics community as far back as 1993 [24]. However, the negative results
imply that no such data set can safely provide very accurate answers to too many
questions, motivating the interactive approach to private data analysis ([11] et
sequelae). Intuitively, the advantage of the interactive approach is that only the
questions actually asked receive responses, while to offer the same utility in
the non-interactive approach all, or at least most, questions must receive very
accurate responses, leading to blatant non-privacy.

Against this backdrop, Blum, et al. revisited the non-interactive case from
a learning theory perspective, and challenged the above interpretation about
the necessity of limiting the number of queries [3]. Let X be a universe of data
items and C be a “concept” class consisting of efficiently computable functions
c : X → {0, 1}. Given a sufficiently large database x ∈ Xn, Blum et al. ineffi-
ciently, but with differential privacy, obtain a synthetic database that maintains
approximately correct fractional counts for all concepts in C. That is, letting y
denote the synthetic database produced, with high probability over the choices
made by the privacy mechanism, for every concept c ∈ C, the fraction of elements
in y that satisfy c is approximately the same as the fraction of elements in x
that satisfy c.2

This remarkable result has rekindled interest in synthetic databases in par-
ticular and non-interactive solutions in general. When can differentially private
synthetic databases be constructed efficiently? Very roughly, if either the universe
X of data items or the concept class C is of size superpolynomial in a computa-
tion parameter κ, then, under standard computational assumptions, there exists
a distribution on databases and a concept class C for which there is no efficient
(in κ) mechanism for privately generating synthetic databases. In contrast, if
both the concept class and the data universe are of size polynomial in κ then
not only is there an efficient mechanism, but the size of the input database can
be surprisingly small, namely |C|o(1) · log |X | (or even O(2

√
log |C| log |X |)) [10].

Thus C can be very large, as a function of n (while still polynomial in κ).
Interestingly, for the potentially easier problem of privately generating a data

structure (as opposed to a synthetic data set) from which it is possible to

2 This does not contradict the negative results because of the size of the error in
the case of attacks using a polynomial number of queries, or the size of the input
database in the case of attacks using an exponential number of queries.

The Differential Privacy Frontier 499

approximate counts, there is a tight “if and only if” connection between hardness
of sanitization and the existence of traitor tracing schemes in cryptography [10].

2.1 Coresets

In computational geometry a coreset for a point set P is a small, weighted, point
set C that is useful in computing approximate solutions of problems for P . For
example, the queries might consist of a set of k points (not necessarily related to
P), and the exact answer to the query might be the sum of the distances from
each point p ∈ P to its closest point in the query set Q; this is a k-median query.
Coresets enjoy an extensive literature; different techniques are used for creating
coresets appropriate for different sorts of queries.

Feldman et al. define private coresets. These are coresets in the traditional
sense, but they are generated from P in a differentially private fashion [13]. Thus,
the private coreset problem is similar to the problem of private generation of a
synthetic data set, where the class of queries to be handled by the coreset plays a
role analagous to the fractional concept class counts. Using similar techniques to
those in [3], Feldman et al. show how any coreset construction can (ineffeciently)
be modified to yield differentially private coresets, and using new techniques they
obtain an efficient construction of coresets for k-median queries.

3 Connections to Other Fields of Study

As the study of privacy broadens, differential privacy productively blends, Zelig-
like, with a surprising variety of concepts3. We have already seen this in the
connection between traitor-tracing and non-interactive sanitization. Here we of-
fer four additional examples.

Truthful Mechanisms for Strategic Agents. In a truthful mechanism, re-
porting one’s true value is a dominant strategy. Designing mechanisms to be
truthful simplifies their analysis, making truthful mechanisms a widely studied
solution concept in economics. One way of ensuring truthfulness is to arrange
that the price paid by an individual is independent of his or her reported value.
Analogously, if a price is set by a differentially private mechanism, then the price
paid by an individual is “almost” independent of her bid. This intuition has
been validated: differential privacy can be used to obtain “approximate truth-
fulness” [20], yielding the first collusion-resilient mechanism; it can also be used
to better approximately solve combinatorial public project problems than can
be done with any efficient truthful solution (unless NP ⊆ BPP) [15]. In each
case an agent can gain only slightly by lying.

Additive Combinatorics and Dense Model Theorems. Reingold et al. [23]
give (almost) the following definition of density: Consider distributions X and

3 The Internet Movie Database summarizes Woody Allen’s Zelig: “Fictional docu-
mentary about the life of human chameleon Leonard Zelig, a man who becomes a
celebrity in the 1920s due to his ability to look and act like whoever is around him.”

500 C. Dwork

Y over a set R. X is eε-dense in Y if for all x ∈ R, Pr[X = x] ≤ eεPr[Y = x].
Thus, a randomized mechanism f is ε-differentially private if and only if f(D)
is eε-dense in f(D′) for all D,D′ such that d(D,D′) ≤ 1. This connection
between differential privacy and (mutually) dense distributions has been ex-
ploited in an investigation of computational differential privacy, i.e., differential
privacy against a computationally bounded adversary. [21], which extends the
dense model theorem in [23] to demonstrate equivalence between two definitions
(indistinguishability-based and simulatability-based, respectively) of computa-
tional differential privacy.

Robust Statistics and the Influence Function. Robust statistics is the sub-
field of statistics that attempts to cope with outliers. In consequence, in a robust
analysis the specific data for any one individual should not greatly affect the
outcome of the analysis, suggesting a connection to differential privacy. Indeed,
independently of our community and unknown to us, as early as 2005 Heitzig [17]
proposed adapting, for the sake of privacy, a specific robust technique for reduc-
ing bias and estimating variance, known as the Jackknife [22,25].

The Jackknife is related to the the influence function IF(x, T ;F), which de-
scribes how an estimator T applied to samples from distribution F changes
if we replace F by a distribution G with an infinitesimal contamination at x:
G = (1 − t)F + t∆x, for very small t. (See [18,16].) This, in turn, is related to
sensitivity “in a statistical setting” (that is, whp over samples from the distri-
bution F). Typically, robust estimators are designed to have bounded influence
function, implying vanishing sensitivity in a statistical setting. Heitzig’s intu-
ition, supported by detailed statistical insight but not made rigorous, was that
it should be possible to ensure privacy by reporting an interval for the results of
an analysis, rather than the exact value, where the size of the interval is deter-
mined by his (randomized) Jackknife-like procedure. Independently of Heitzig,
but later, Dwork and Lei were also inspired by the implications of vanishing sen-
sitivity offered by bounded influence functions. They adapted several robust al-
gorithms, for varying statistical tasks, to provably (and always) yield differential
privacy, with excellent accuracy whenever certain mild statistical assumptions
hold [6].

4 Concluding Remarks

We have surveyed at least six very recent contributions on the differential privacy
frontier. In several cases the work has forged links with other fields and com-
munities: statistics, cryptography, complexity, geometry, mechanism design, and
optimization. The plethora of new techniques, the formulation of new problems,
and the fruitful interplay with other fields provides fertile ground for ebullient
growth in an intellectually exciting and socially valuable endeavor.

Acknowledgements. I am grateful to all the authors of the new works for
sharing their results with me before publication. Thanks also to Guy Rothblum
for his helpful comments on an early draft of this extended abstract.

The Differential Privacy Frontier 501

References

1. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy,
accuracy, and consistency too: A holistic solution to contingency table release.
In: Proceedings of the 26th Symposium on Principles of Database Systems, pp.
273–282 (2007)

2. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The SuLQ frame-
work. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (June 2005)

3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. In: Proceedings of the 40th ACM SIGACT Symposium on Thoery
of Computing (2008)

4. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Pro-
ceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 202–210 (2003)

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

6. Dwork, C., Lei, J.: Differential privacy and robust statistics (manuscript) (Novem-
ber 2008)

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Proceedings of the 3rd Theory of Cryptography Confer-
ence, pp. 265–284 (2006)

8. Dwork, C., McSherry, F., Talwar, K.: The price of privacy and the limits of lp
decoding. In: Proceedings of the 39th ACM Symposium on Theory of Computing,
pp. 85–94 (2007)

9. Dwork, C., Naor, M.: On the difficulties of disclosure prevention in statistical
databases or the case for differential privacy (manuscript, 2008)

10. Dwork, C., Naor, M., Reingold, O., Rothblum, G., Vadhan, S.: When and how can
privacy-preserving data release be done efficiently? (November 2008) (manuscript)

11. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned
databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544.
Springer, Heidelberg (2004)

12. Dwork, C., Yekhanin, S.: New efficient attacks on statistical disclosure control
mechanisms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 468–480.
Springer, Heidelberg (2008)

13. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets (November 2008)
(manuscript)

14. Ghosh, A., Roughgarden, T., Sundarajan, M.: Universally utility-maximizing pri-
vacy mechanisms (November 2008) (manuscript)

15. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differentially private
approximation algorithms (November 2008) (manuscript)

16. Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W.: Robust Statistics: The Ap-
proach Based on Influence Functions. John Wiley, New York (1986)

17. Heitzig, J.: The ”jackknife” method: Confidentiality protection for complex sta-
tistical analyses. In: Proceedings of the Joint UNECE/Eurostat work session on
statistical data confidentiality (2005)

18. Huber, P.: Robust statistics. John Wiley & Sons, Chichester (1981)
19. Kasiviswanathan, S., Lee, H., Nissim, K., Raskhodnikova, S., Smith, A.: What can

we learn privately? In: Proceedings of FOCS 2008 (2008)

502 C. Dwork

20. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceed-
ings of the 48th Annual Symposium on Foundations of Computer Science (2007)

21. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential pri-
vacy (November 2008) (manuscript)

22. Quenouille, M.: Notes on bias in estimation. Biometrika 43, 353–360 (1956)
23. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.: Dense subsets of pseudo-

random sets. In: Proceedings 49th Annual IEEE Symposium on Foundations of
Computing (2008)

24. Rubin, D.: Discussion: Statistical disclosure limitation. Journal of Official Statis-
tics 9, 462–468 (1993)

25. Tukey, J.: Bias and confidence in not-quite large samples (abstract). Ann. Math.
Statist., 29 (1958)

How Efficient Can Memory Checking Be?

Cynthia Dwork1, Moni Naor2,�,
Guy N. Rothblum3,��, and Vinod Vaikuntanathan4,� � �

1 Microsoft Research
2 The Weizmann Institute of Science

3 MIT
4 IBM Research

Abstract. We consider the problem of memory checking, where a user
wants to maintain a large database on a remote server but has only
limited local storage. The user wants to use the small (but trusted and
secret) local storage to detect faults in the large (but public and un-
trusted) remote storage. A memory checker receives from the user store
and retrieve operations to the large database. The checker makes its own
requests to the (untrusted) remote storage and receives answers to these
requests. It then uses these responses, together with its small private
and reliable local memory, to ascertain that all requests were answered
correctly, or to report faults in the remote storage (the public memory).

A fruitful line of research investigates the complexity of memory check-
ing in terms of the number of queries the checker issues per user request
(query complexity) and the size of the reliable local memory (space com-
plexity). Blum et al., who first formalized the question, distinguished
between online checkers (that report faults as soon as they occur) and
offline checkers (that report faults only at the end of a long sequence
of operations). In this work we revisit the question of memory checking,
asking how efficient can memory checking be?

For online checkers, Blum et al. provided a checker with logarithmic
query complexity in n, the database size. Our main result is a lower
bound: we show that for checkers that access the remote storage in a de-
terministic and non-adaptive manner (as do all known memory checkers),
their query complexity must be at least Ω(log n/ log log n). To cope with
this negative result, we show how to trade off the read and write com-
plexity of online memory checkers: for any desired logarithm base d, we
construct an online checker where either reading or writing is inexpensive
and has query complexity O(logd n). The price for this is that the other
operation (write or read respectively) has query complexity O(d · logd n).
Finally, if even this performance is unacceptable, offline memory check-
ing may be an inexpensive alternative. We provide a scheme with O(1)
amortized query complexity, improving Blum et al.’s construction, which
only had such performance for long sequences of at least n operations.

� Incumbent of the Judith Kleeman Professorial Chair; Research supported in part
by a grant from the Israel Science Foundation.

�� Research supported by NSF Grants CCF-0635297, NSF-0729011, CNS-0430336,
Israel Science Foundation Grant 700/08 and by a Symantec Graduate Fellowship.

� � � Supported in part by NSF CCF-0635297 and Israel Science Foundation 700/08.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 503–520, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

504 C. Dwork et al.

1 Introduction

Consider a user who wants to maintain a large database but has only limited lo-
cal storage. A natural approach is for the user to store the database on a remote
storage server. This solution, however, requires that the user trust the remote
storage server to store the information reliably. It is natural to ask whether the
user can use his or her small (but trusted and secret) local storage to detect faults
in the large (but public and untrusted) remote storage. This is the problem of
memory checking, as introduced by Blum, Evans, Gemmel, Kannan and Naor [6]
in 1991. Since then, this problem has gained even more importance for real-world
applications, see for example the more recent works of Clarke et al. [8], Ateniese
et al. [4], Juels and Kaliski [13], Oprea and Reiter [16] and Shacham and Wa-
ters [17]. Large databases are increasingly being outsourced to untrusted storage
providers, and this is happening even with medical or other databases where
reliability is crucial. Another wide-spread and growing phenomenon are services
that offer individual users huge and growing remote storage capacities (e.g. web-
mail providers, social networks, repositories of digital photographs, etc.). In all
of these applications it is important to guarantee the integrity of the remotely
stored data.

Blum et al. formalized the above problem as the problem of memory checking.
A memory checker can be thought of as a layer between the user and the remote
storage. The checker receives from its user a sequence of “store” and “retrieve”
operations to a large unreliable memory. Based on these “store” and “retrieve”
requests, it makes its own requests to the (untrusted) remote storage and receives
answers to these requests. The checker then uses these responses, together with
a small private and reliable “local” memory, to ascertain that all requests were
answered correctly, or to report that the remote storage (the public memory)
was faulty. The checker’s assertion should be correct with high probability (a
small two-sided error is permitted). Blum et al. made the distinction between
online and offline memory checking. An online checker verifies the correctness
of each answer it gives to the user. An offline checker gives only the relaxed
guarantee that after a (long) sequence of operations a user can verify whether or
not there was an error somewhere in the sequence of operations. Two important
complexity measures of a memory checker are its space complexity, the size of the
secret reliable “local” memory, and its query complexity, the number of queries
made to the unreliable memory per user request. One may consider additional
complexity measures such as the alphabet size (the size of words in the public
memory), and more measures such the checker’s and public memory’s running
times, the amount of public storage, etc. See Section 2 for formal definitions and
a fuller discussion.

In this work we revisit the question of designing efficient memory checkers.
Our main result is a lower bound on the query complexity of deterministic and
non-adaptive online memory checkers. We also present new upper bounds for
both online and off-line memory checking.

Online Memory Checkers. The strong verification guarantee given by online
memory checkers makes them particularly appealing for a wide variety of

How Efficient Can Memory Checking Be? 505

applications. Blum et al. construct efficient online memory checkers with space
complexity that is proportional to the size of a cryptographic key, and loga-
rithmic query complexity. Their construction(s) assume that a one-way function
exists and that the adversary who controls the public memory is efficient and
cannot invert the function. In fact, this assumption was shown to be essential
by Naor and Rothblum [15], who showed that any online memory checker with
a non-trivial query-space tradeoff can only be computationally secure and must
be based on the existence of a one-way function. Even in the computational set-
ting, the space complexity of Blum et al.’s online memory checkers is intuitively
optimal, since if the secret memory is s bits long, an (efficient) adversary can
guess it (and fool the memory checker) with probability at least 2−s. What is
less clear, however, is whether the logarithmic query complexity is essential (in a
computational setting). This is an important question, since while this logarith-
mic overhead is reasonable, in many applications it remains a significant price
to have to pay for data verification.

Where then does this overhead come from? The logarithmic query complex-
ity is needed to avoid replay attacks, in which the correct public memory is
swapped for some older version of it. In most applications replay attacks are
a serious threat, and Blum et al. (and all other solutions we know of) use a
tree structure to overcome this devastating class of attacks. This tree structure
incurs a logarithmic overhead which is basically the depth of the tree. We begin
by asking whether it is possible to avoid the logarithmic overhead and construct
memory checkers with lower query complexity. We show that the answer is nega-
tive (even in the cryptographic setting!) for all known and/or practical methods
of designing memory checkers.

A Query Complexity Lower Bound. Consider online memory checkers, where for
each store or retrieve request made by the user, the locations that the checker
accesses in the public memory are fixed and known. We call such a checker a
deterministic and non-adaptive checker. Known checker constructions are all de-
terministic and non-adaptive, indeed tree authentication structures all have this
property. Our main result is a new lower bound, showing that any deterministic
non-adaptive memory checker must have query complexity Ω(logn/ log logn).
Thus the logarithmic query complexity overhead is (almost) unavoidable for on-
line memory checking. This is stated more fully (but still informally) below, see
Section 3 for the full details.

Theorem 1. Let C be a non-adaptive and deterministic memory checker for an
n-index boolean database, with space complexity s ≤ n1−ε for some ε > 0, query
complexity q and a polylog-length alphabet (public memory word size). It must
be that q = Ω(log n

log log n).

Let us examine the above theorem more closely. Considering only checkers that
are deterministic and non-adaptive may seem at first glance to be quite restric-
tive. We argue, however, that practical checkers will likely have to conform to
this restriction:

506 C. Dwork et al.

An adaptive checker is one that chooses sequentially which locations in the
remote storage it reads and writes, and chooses these locations based on the
contents of earlier read locations. This means that the checker needs to conduct,
for every user request, several rounds of communication with the remote storage
(the checker needs to know the contents of a location before deciding which
location it accesses next). Since this communication happens over a network,
it may very well lead to latency which results in more of an overhead than
the logarithmic query complexity of non-adaptive checkers. In addition, in cases
where the memory contents are encrypted non-adaptive memory access may be
especially desirable, as the set of locations accessed reveals nothing about the
(decrypted) contents of the memory.

Another problem with adaptive checkers is that they make caching the results
much more difficult, since the actual locations needed to be stored in the faster
memory change between accesses.

A non-deterministic checker may also result in worse performance. Such a
checker strategy, with queries that are either significantly randomized or hard
to predict (depending on the secret memory), destroys locality in the user’s
queries and makes it hard to utilize caching mechanisms. In particular, user
accesses to neighboring database indices would not necessarily be mapped to
checker accesses to neighboring locations in the remote storage, and repeated
user accesses to the same database index would not necessarily be mapped to the
same locations in the remote storage. For many of the applications of memory
checking, this will result in an unacceptable overhead for the remote storage
server. We note that Blum et al.’s constructions, as well as all of the constructions
we present in this work, have the important property that they do preserve (to
a large extent) the locality of a user’s data accesses.

Finally, we note that the restriction on sub-linear space is essential, as the
problem of memory checking makes very little sense with linear secret memory;
the checker can simply store the entire database in reliable memory! Finally, it is
interesting to ask whether the lower bound can be extended to larger alphabets
(we focus on polylog word lengths or quasi-polynomial alphabet size). We do note
that the best parameters attained both in our work and in [6] can be attained
with words of poly-logarithmic length.

Trading Off Reads and Writes. Is all hope of improving the performance of
online memory checkers lost in light of Theorem 1? We argue that this is not the
case. While we cannot improve the query complexity of online checkers beyond
logarithmic, we observe that in many applications read operations are far more
numerous than write, and vice versa. One example for frequent read operation
is a database that is read frequently but updated only periodically. An example
for frequent write is a repository of observed data (say climate measurements)
that is constantly updated but polled much less frequently.

For these settings we show how to trade off the query complexity of read
and write operations. For any desired logarithm base d, we show how to build
an online checker where the frequent operation (read or write) is inexpensive
and has query complexity O(logd n), and the infrequent operation (write or read

How Efficient Can Memory Checking Be? 507

respectively) has query complexity O(d · logd n). The space complexity is propor-
tional to a security parameter (it can be poly-logarithmic under an exponential
hardness assumption), and the alphabet size is the logarithm of the desired
soundness. The construction uses a pseudo-random function (see [12]), and can
thus be based on the existence of any one-way function. This means, for exam-
ple, that if one is willing to have a polynomial (nε) write complexity, then we
can get a constant (O(1/ε)) read complexity (and vice versa). This may be very
useful for a database that is read frequently but only updated infrequently.

To achieve this tradeoff, we provide two constructions: one for efficient write
and one for efficient read. Both of these use a tree-based authentication structure,
where the tree’s depth is logd n. The efficient-write construction can viewed as a
generalization of Blum et al.’s tree-based online memory checker. The efficient-
read construction is different in the way it stores authentication information.
Intriguingly, we do not know how to get a good read-write trade-off based on
UOWHFs where the checker’s memory only needs to be reliable (and not neces-
sarily private). Blum et al. were able to present such a construction (albeit with
a nearly exponential-size alphabet) with logarithmic query complexity, but their
construction does not easily yield itself to a read-write tradeoff. See Section 4
for the full details.

While we believe that these trade-offs are very useful for many applications,
we still cannot beat the lower bound of Theorem 1: the sum of read and write
complexities is still at least logarithmic in n (not surprisingly, since the above
checkers are deterministic and non-adaptive). For many other applications this
may still be prohibitively expensive. This leads us then to revisit Blum et al.’s
notion of offline memory checking, where the verification guarantee of the checker
is weaker, but it is possible to achieve better performance.

An Off-Line Alternative. Blum et al. suggested the notion of an offline memory
checker. Such a memory checker gives the relaxed guarantee that after a (long)
sequence of operations it can be used to check whether there was an error. In
other words, whether any value retrieved from public memory was different from
the last value stored at that location. The advantage of offline memory checkers
is that they allow much better parameters. Specifically, Blum et al. gave a con-
struction where for any long sequence of user operations (at least n operations)
the amortized query complexity is O(1) and the space complexity is logarithmic
in n and in the soundness parameter. Remarkably, the security of their checker
is information theoretic, and does not rely on any cryptographic assumptions.

We conclude that for applications in which the offline guarantee suffices, say
when the user does not mind that some of the data may be retrieved incorrectly
as long as this is eventually detected, the query complexity of both read and
write can be reduced to O(1). It is natural to ask what can possibly be improved
in the above construction, as the (amortized) query and space complexity seem
optimal. One place for improvement is that Blum et al.’s construction is highly
invasive: the checker stores a significant amount of additional information in the
public memory on top of the database. Ajtai [2] showed that this invasiveness
cannot be avoided (see the full version for an overview of Ajtai’s results).

508 C. Dwork et al.

We focus on a different parameter. The above off-line checker only guarantees
good amortized performance for long sequences of at least n operations. We
observe that for shorter operation sequences, the amortized performance will
be quite bad, as their checker needs to always scan the entire public memory
before deciding whether there were any errors. So for a k operation sequence,
the amortized query complexity will be O(n/k). In Section 5 we overcome this
obstacle. We present a simple and inexpensive offline memory checker where
the amortized query complexity for any sequence of operations (even a short
one) is O(1). Moreover, we show that similar ideas can be used to decrease
the invasiveness of the checker, and that the invasiveness (the amount of extra
information stored in public memory on top of the database) only needs to
be proportional to the number of database locations that the checker actually
accesses (instead of always being proportional to the entire database size as in
Blum at al.). We note that we can overcome Ajtai’s invasiveness lower bound
in this setting because the proof of that lower bound considers sequences of
operations that access every location in the database (again, see the full version
for the details).

Organization. We begin in Section 2 with definitions of memory checkers (we
refer the reader to Goldreich [10,11] for standard cryptographic definitions). In
Section 3 we state and prove our lower bound for the query complexity of
online memory checkers. Constructions of read-write tradeoffs are presented in
Section 4. Finally, in Section 5 we present a new and improved construction
of offline checkers.

2 Memory Checkers: Definitions

A memory checker is a probabilistic Turing machine C with five tapes: a read-
only input tape for receiving read/write requests from the user U to the RAM
or database, a write-only output tape for sending responses back to the user, a
read-write work tape (the secret reliable memory), a write-only tape for sending
read/write requests to the memory M and a read only input tape for receiving
M’s responses.

Let n be the size of the database (the RAM) U is interested in using. A
checker is presented with “store” (write) and “retrieve” (read) requests made by
U to M. After each “retrieve” request C returns an answer or outputs that M’s
operation is BUGGY. C’s operation should be both correct and complete for all
polynomial (in n) length request sequences. Formally, we say that a checker has
completeness c (2/3 by default) and soundness s (1/3 by default) if:

– Completeness. For any polynomial-length sequence of U-requests, as long as
M answers all of C’s “retrieve” requests correctly (with the last value that C
stored at that location), C also answers all of U ’s “retrieve” requests correctly
with probability at least c.1

1 In fact in all our constructions we get perfect completeness; the checker answers all
requests correctly with probability 1.

How Efficient Can Memory Checking Be? 509

– Soundness. For any polynomial-length sequence of U-requests, for any (even
incorrect or malicious) answers returned by M, the probability that C an-
swers a user request incorrectly is at most s. C may either recover the correct
answer independently or answer that M is “BUGGY”, but it may not answer
a request incorrectly (beyond probability s).

Note that the completeness and soundness requirements are for any request
sequence and for any behavior of the unreliable memory. Thus we think of U
and M as being controlled by a malicious adversary. A memory checker is secure
in the computational setting if the soundness property holds versus any PPTM
adversary. In this setting, if one-way functions exist, then they can be used to
construct very good online memory checkers (see [6]).

As previously noted, [6] make the distinction between memory checkers that
are online and offline. An offline checker is notified before it receives the last
“retrieve” request in a sequence of requests. It is only required that if at some
point in the sequence a user retrieve request was answered incorrectly, then the
checker outputs BUGGY (except with probability s). The task of an online
checker is more difficult: if M’s response to some request was incorrect, C must
immediately detect the error or recover from it (with high probability). C is not
allowed (beyond a small probability) to ever return an erroneous answer to U .
Note that after the memory checker informs the user that M’s operation was
BUGGY, there are no guarantees about the checker’s answers to future queries.

Recall that the two important measures of the complexity of a memory checker
are the size of its secret memory (space complexity) and the number of requests
it makes per request made by the user (query complexity). The query complexity
bounds the number of locations in public memory accessed (read or written) per
user request. We would prefer memory checkers to have small space complexity
and small query complexity. A memory checker is polynomial time if C is a
PPTM (in n).

A deterministic and non-adaptive memory checker is a checker C where
the locations it queries in public memory are set and depend (deterministically)
only on the database index being stored or retrieved. We call such a checker non-
adaptive because it chooses the entire list of locations to access in public memory
without knowing the value of the public (or secret) memory at any location. We
note, though, that even a non-adaptive checker can decide which values to write
into those (non-adaptively chosen) locations in an adaptive manner, based on
values it reads and the secret memory. One way to think of a deterministic non-
adaptive checker is by associating with each index in the database a static set
of locations that the checker accesses when storing or retrieving that index.

Similarly, for a deterministic and non-adaptive checker, each location in the
public memory can be associated with the set of database indices that “access”
it. We say that a location in public memory is t-heavy if there are at least t
database indices that access it (for store or retrieve requests).

We say that C is a (Σ,n,q, s)-checker if it can be used to store a (binary)
database of n indices with query complexity q and space complexity s, where

510 C. Dwork et al.

the secret and public memory are over the alphabet Σ (we allow this alphabet
to be non-binary).

3 Lower Bounds

Throughout this section we obtain a lower bound for memory checking by using
restrictions of memory checkers. When we talk about restricting a mem-
ory checker to a subset of database indices, we start with a checker C say for
databases with n indices, and obtain from it a checker C′ for databases with
n′ < n indices. This is done simply by selecting a subset I of the indices that
C works on (|I| = n′) and ignoring all of the rest. Naturally, the completeness
and soundness of C carry over to C′. Intuitively, this may also mean that we can
ignore some of the locations in public memory or some of the secret memory,
but we make no such assumptions in this work. It may seem that this is a bad
bargain: the number of indices is decreased without gaining anything. However,
when performing the restrictions below we gain (reduce) something in other
complexity measures such as the query complexity. Sometimes this will require
making additional changes to the checker, such as moving some locations from
public to secret memory.

We will assume without loss of generality that the read and the write oper-
ations access the same locations. This involves at most doubling the number of
accesses per operation.

We now present our lower bound for non-adaptive and deterministic checkers.

Theorem 1. Let C be a (Σ,n, q, s) deterministic and non-adaptive online mem-
ory checker, with s ≤ n1−ε for some ε > 0 and |Σ| ≤ npoly log n. It must be that
q = Ω(log n

log log n).

Proof (of Theorem 1). Let q0 = q be the query complexity of the checker C. The
proof proceeds by iteratively restricting the checker, gradually lowering its query
complexity until a lower bound can be obtained. This is done by examining the
memory checker and determining whether there is a relatively large set of “heav-
ily queried” locations in the public memory. I.e. whether there is a polynomial
size set of locations in the public memory, each of which is queried when reading
or writing many database indices. Recall that we call such heavily-queried loca-
tions in the public memory “heavy locations”.2 If there is such a set of heavy
locations, then those public memory locations are moved into the secret memory
and the query complexity of the checker is reduced significantly. In this case we
advance towards our goal of lower bounding the query complexity. This intuition
is formalized by Lemma 1 (the proof appears below):

Lemma 1. Let C be a (Σ,n, q, s) deterministic and non-adaptive online mem-
ory checker. For every threshold t ∈ N such that n > t the following holds: If
there exists m ∈ N such that there are m or more t/m-heavy locations in public

2 I.e. locations accessed by many indices - more formally a location is t-heavy if there
are t different queries i ∈ [n] that access it.

How Efficient Can Memory Checking Be? 511

memory, then for some i ∈ [q] the memory checker C can be restricted to a
(Σ, t/2i+2, q − i, s+m)-checker.

Lemma 1 is used iteratively as long as there are heavy public memory locations,
restricting the memory checker to only a (large) subset of its indices while low-
ering its query complexity (q). This comes at the cost of only a modest drop in
the number of indices (n) and a moderate increase in the space complexity (s).
We repeat this iteratively, reducing the query complexity until there is no set of
“heavy” locations in the public memory. If we can apply the lemma many times,
then we get a lower bound on the checker’s query complexity: each application
of the lemma reduces the query complexity, so if we applied the lemma many
times the initial query complexity had to have been high.

The reason that we can apply Lemma 1 many times is that otherwise we are
left with a checker on many indices with no set of “heavy” locations. If there is
no set of “heavy” public memory locations, then the (possibly reduced) public
memory can be partitioned into relatively many parts that are disjoint in the
sense that each part is queried only by a single index of the database. We can
restrict the checker again, but this time to obtain a checker with many indices,
relatively small secret memory and query complexity 1. This is formalized in
Lemma 2 (proof below):

Lemma 2. Let C be a (Σ,n, q, s) deterministic and non-adaptive online memory
checker. Then, for every α ∈ N such that α < n, and for every threshold t ∈ N
such that n > 4t · q · logn, the following holds:

If for every integer m ∈ {1, . . . , α}, there are fewer than m locations in public
memory that are t/m-heavy, then the memory checker C can be restricted to a
(Σq, n · α/(2q · t), 1, s/q)-checker.
Finally, we show that such a “disjoint” checker implies a contradiction. In par-
ticular, it must have space complexity that is more or less proportional to the
number of disjoint parts. Unless the memory checker has already been restricted
to very few indices (in which case we have a query complexity lower bound), this
results in a contradiction, since the checker’s space complexity is bounded (by
a small polynomial in n). The intuition that a disjoint checker must have large
space complexity is formalized in Lemma 3 (proof below):

Lemma 3. Let C be a (Σ,n, q = 1, s) deterministic and non-adaptive online
memory checker, i.e. a checker that makes only a single query, where the location
that each index queries in public memory is different. Then, s ≥ n

log |Σ| − 1.

We postpone proving the lemmas and proceed with a formal analysis. We take
α = nd, for a constant 0 < d < 1 to be specified later. We iteratively examine
and restrict the memory checker. Let Ci be the checker obtained after the i-th
iteration (C0 = C is the original checker), let ni be the number of indices in its
database and si its space complexity. Taking a threshold ti = ni

logc n , where c > 1
is a constant specified below, we check whether or not the “new” checker Ci has
a set of heavy indices in its public memory. We only iterate as long as ni > α.
Formally, there are two possible cases:

512 C. Dwork et al.

1. If Ci has a set ofm ≤ α public memory locations that are at least ti/m-heavy,
then by Lemma 1:
For some j ∈ {1, . . . , q}, we can build from Ci a (Σ, ti/2j+2, q − j, si + α)
deterministic and non-adaptive online memory checker Ci+1.

2. If for every integer m ≤ α the checker Ci does not have a set of m public
memory locations that are ti/m-heavy, and choosing c, d such that ni >
4ti · q · logα, by Lemma 2:
We can build from Ci a (Σq, ni · α/(2q · ti), 1, si/q) deterministic and non-
adaptive online memory checker. If ni is reasonably large, i.e. has not been
reduced by repeated iterations of Case 1, then this will imply a contradiction.

Recall that q0 denotes the query complexity of the initial checker C, before any
application of Lemmas 1 and 2. Assume for a contradiction that q0 ≤ logn/(3c ·
log logn). Let j ∈ [q+ 1] be the total number of queries reduced by the iterative
applications of Lemma 1, i.e., the number of queries reduced by the iterations
in which Case 1 occurred. Since we assumed q ≤ log n/(3c · log logn), we know
that j < logn/(3c · log logn). Thus, in the first iteration in which Case 2 applies
(say the i-th iteration in total), it must be the case that

ni ≥ n/(logc·j n · 23 log n/3c·log log n) = n/(logc·j n · 2log n/c log log n) > n1−ε/2.

Recall that we only iterate so long as ni > α, so we can choose any α < n1−ε/2.
The space si used by this restricted checker is at most s + i · α ≤ s+ logn · α.
As usual, ti = ni/ logc n, and choosing c > 2 we get that

4ti · q · logα ≤ ni/(logc n · logn · d logn) < ni

Applying Lemma 2, we obtain a (Σq, ni · α/(2q · ti), 1, si/q)-checker. Now, by
Lemma 3, which bounds the space complexity of one-query checkers, we get
that it must be the case that:

si ≥ ni · α/(2q · ti · log |Σ|) ≥ logc−1 n · α/(2 log |Σ|)
But on the other hand we know that

si ≤ s+ logn · α.
We know |Σ| ≤ 2poly log n, and choose c such that logc−1 n/(2 log |Σ|) > 2 logn.
We also set α > 2s = 2n1−ε. Recall that we also needed α < ni, but this is fine
since ni > n

1−ε/2. In conclusion, we set α by choosing d such that 1 − ε < d <
1 − ε/2, i.e. such that

2s = 2n1−ε < α = nd < ni = n1−ε/2

We get that

s > logc−1 n · α/(2 · log |Σ|) − logn · α > logn · α > 2s

This is a contradiction!

How Efficient Can Memory Checking Be? 513

Proof (of Lemma 1). If there is a set M of m locations in public memory that
are all t/m-heavy (i.e. each accessed by at least t/m indices), then we “restrict”
the memory checker to only work for some of the indices that access one or more
of the heavy locations. Let I ⊆ [n] be the set of database indices that access at
least one of the locations in M (the “heavy” locations).

We claim that for some i ∈ {1, . . . , q}, there are at least t/2i+2 indices in I
that each access at least i locations in M . To see this, assume for a contradiction
that this is not the case. Then the sum of the number of locations in M that are
accessed by each database index (and in particular by the indices in I) is less
than:

q∑
i=1

i · t/2i+2 = t ·
q∑

i=1

i/2i+2 < t

On the other hand, since there are m locations in M that are at least t/m-
heavy, the sum of locations in M read by database indices must be at least t
and we get a contradiction.

We restrict the checker to the indices in I that read at least i locations in
M , and move these locations to the secret memory. This increases the space
complexity (size of the secret memory) from s to s + m. By the above, there
are at least t/2i+2 such indices. For each of them, we have reduced their query
complexity from q to q − i. The alphabet size remains unchanged.

Proof (of Lemma 2). If there are only a few relatively heavy locations in the
public memory, then we eliminate indices and split the public memory in “dis-
joint chunks”: subsets of the public memory that are disjoint in the sense that
no location in any chunk is accessed by two different indices. This is done in a
greedy iterative manner. We go over the locations in public memory one by one;
for each of them we choose one index (say j) that accesses them and eliminate
any other index that accesses a location in public memory also accessed by j.
This is repeated iteratively (for the analysis, we think of this as being done from
the heavy public memory locations to the lighter ones). After the checker can-
not be restricted any more we are left with a checker for which no two indices
access the same location in public memory, and we will show that the number
of remaining indices is reasonably high.

More concretely, for any value i ∈ [1 . . . logα], we know that there are at
most 2i − 1 locations that are between t/2i-heavy and 2t/2i-heavy. In fact, in
the iterative restriction process, when we consider i we have already restricted
the memory checker so that no location in the public memory is more than
2t/2i-heavy.

We go over these (at most 2i − 1) locations one by one, say in lexicographic
order. For each of them, we examine one index that accesses that location, say
index j. We restrict the checker by eliminating all “intersecting” indices: indices
k such that there is a public memory location queried by both j and k. Index j
queries at most q locations in the public memory, and these in turn are queried
by at most 2t/2i indices each (since we have already restricted the checker so
that there is no 2t/2i-heavy location in the public memory). Thus, we eliminate

514 C. Dwork et al.

at most 2t · q/2i indices per heavy location in the public memory, or at most
2t · q indices in all.

Repeating this for i ← 1 . . . logα, in the i-th iteration there are at most 2i

locations that are at least t/2i-heavy, and none of these locations can be more
than 2t/2i-heavy. We go over these locations one by one, and if they have an
index accessing them that has not been eliminated yet we restrict the checker
as above. This eliminates at most 2t · q/2i indices per heavy public memory
location, or 2t · q indices in all.

In total, in all of these logα iterations, with their restrictions, the number of
indices eliminated is at most:

log α∑
i=1

2t · q = 2t · q · logα

If n > 4t · q · logα then we have only eliminated at most n/2 indices. Now,
after all the restrictions, there are no locations in the public memory that are
t/α-heavy. We go over the remaining indices in lexicographic order, and for each
of them we restrict the checker by eliminating all other indices that intersect
its public memory accesses. Since there are no more t/α-heavy locations in the
public memory, each such restriction eliminates at most q · t/α indices.

In the end, we are left with a memory checker on at least n ·α/(2q · t) indices,
with the property that no two indices access the same location in public memory.
We can thus re-order the public memory into “chunks”, of q symbols each, such
that each chunk is queried only by a single index and each index queries only
that chunk. If we enlarge the alphabet to be comprised of these q-symbol chunks,
we get a checker with query complexity 1. The “price” is restricting the checker
to only n · α/(2q · t) indices and increasing the alphabet size to Σq. Since we
have increased the alphabet size, we can represent the secret memory as fewer
symbols of the new larger alphabet, so the secret memory is of size s/q new
alphabet symbols.

Proof (of Lemma 3). The intuition is that the public memory has a single loca-
tion for storing information about each database index. When reading or writing
the value of the database at that index, the only information read from public
memory is the information held in that index’s location. Further, for two differ-
ent database indices, their locations in public memory are different. To achieve
soundness the checker must (intuitively) store, for every index in the database,
separate “authentication information” in the secret memory about the value at
that index’s location. There are n indices (say holding boolean data base values),
and only s · log |Σ| bits of secret memory, and thus s should be at least on the
order of n

log |Σ| .
To prove this we examine an adversary A, who begins by storing the all 0

database into the memory checker. This yields some public memory p1. A then
picks a random database r ∈ {0, 1}n and stores it into the checker: for every
index in r which has value 1, A uses the checker to store the value 1 into that
index. Say now that at the end of this operation sequence, the public memory is

How Efficient Can Memory Checking Be? 515

p2 and the secret memory is s2. The important thing to note is that for indices
of r whose values are 0, the value of their locations in the public memory has not
changed between p1 and p2 (since each index has a unique location in public
memory that it accesses).

The adversary A now replaces the public memory p2 with the “older” infor-
mation p1.3 Now the adversary tries to retrieve some index of the database, say
the i-th (i ∈ [n]). The checker runs with secret memory s2 and public memory
p1 to retrieve the i-th bit of r. Note that if r[i] = 0, then the value of the i-th
index’s location in public memory is unchanged between p1 and p2. By com-
pleteness, the checker should w.h.p. output 0 (the correct value of r[i]). On the
other hand, if r[i] = 1, then by its soundness guarantee the memory checker
should w.h.p. output either 1 or ⊥ - we take either of these answers as an indi-
cation that r[i] = 1. We conclude that for each index i ∈ [n], the checker can be
used to retrieve the i-th bit of r w.h.p. The checker achieves this using only the
public memory p1, which is completely independent of r, and the secret memory
s2. Intuitively, s2 holds nearly all the information about the (randomly chosen)
vector r, and thus s2 cannot be much smaller than r, an n-bit vector.

More formally, suppose that s < n
log |Σ| − 1. We can view the above procedure

as allowing us to transmit a random n-bit string using only s log |Σ| bits and
succeeding with high probability: the sender and the receiver share the initial
assignment to the secret memory s1 and the public memory p1 resulting from
writing the all 0 vector (all this is independent of r). Given the string r ∈ {0, 1}n

the sender simulates writing r to the memory as above and the resulting secret
memory at the end is s2. This is the only message it sends to the receiver. The
receiver runs the above reconstructing procedure for each 1 ≤ i ≤ n, i.e. using
secret memory s2 and public memory p1 tries to read location i and decides
that r[i] = 0 iff it gets as an answer a 0 (1 or ⊥ are interpreted that r[i] = 1).
Since for each i the procedure the receiver is running is just what the memory
checker will run with the above adversary, the probability of error in any of the
i’s is small. Therefore we get that the receiver reconstructs all of r correctly with
high probability. But by simple counting this should happen with probability at
most 2s log |Σ|

2n < 1/2.

4 Read-Write Tradeoffs for Online Checking

In this section we present two read-write tradeoffs for the query complexity of
online memory checking. These can be viewed as counterparts to the lower bound
of Theorem 1 (all of the memory checkers in this section are deterministic and
non-adaptive). While Theorem 1 states that the sum of the query complexities of
read and write operations cannot be low, in this section we show that the query
complexity of either read or write can be made significantly lower, at the cost of
increasing the query complexity of the other operation (write or read respectively).

3 Note that this is a “replay attack”. As noted above, the Lemma and this section’s
query complexity lower bounds do not hold for checkers that are not required to
work against replay attacks.

516 C. Dwork et al.

We present two trade-offs. The first gives an memory checker with efficient
write operations but expensive read operations. The second is a checker with
efficient read but expensive write. In particular, in both these tradeoffs, for
any well-behaved function d(n) : N → N, the “efficient” operation (write or
read) has query complexity O(logd(n) n), and the “inefficient” operation (read
or write respectively) has query complexity O(d(n) · logd(n) n). In both cases the
space complexity is polynomial in the security parameter, and the checker uses a
pseudo-random function. For desired soundness ε the length of alphabet symbols
is O(log(1/ε) + logn).

Overview of the Constructions. We proceed with an overview of the common
elements of both constructions, the details are in the full version. Following
Blum et al. (Section 5.1.2), we construct a tree structure “on top” of the memory.
Where they constructed a binary tree, we construct instead a d(n)-ary tree. Each
internal node has d(n) children, so the depth of the tree is logd(n) n. The n leaves
of the tree correspond to the n database indices. We assume for convenience
w.l.o.g that n is a power of d(n).

In both constructions we associate a time-stamp with each node in the tree.
The time-stamp of a leaf is the number of times that the user wrote to the
database index that the leaf represents. The time-stamp of an internal node is
the sum of its children’s time-stamps, and thus the time-stamp of the root is
the total number of times that the user has written to the database. We use
tu to denote the current time-stamp of tree node u. The time-stamps are used
to defeat replay attacks (where the adversary “replays” an old version of the
public memory). If the adversary replays old information, then the replayed
time-stamps will have smaller values than they should.

For each tree node u, we store in public memory its value vu ∈ V and its time-
stamp tu ∈ [T]. For an internal node u, its value is simply 0, for a leaf �, its value
represents the value that the user stored in the database index associated with
that leaf. The root’s time-stamp is stored in the secret reliable memory, together
with the seed of a pseudo-random function (PRF). This simply a generalization
of Blum et al.’s construction (the tree is d(n)-ary and not binary).

Our two construction differ from each other and from [6] in their use of au-
thentication tags to authenticate different nodes’ values and time-stamps. In the
first construction (efficient write), we store for each node u an authentication
tag which is the PRF evaluated on (u, tu, vu). When writing a new value to a
leaf, we verify the tags of all the nodes on the path from the root to that leaf
and then update the leaf’s value and the time-stamps of all the nodes on the
path to the leaf. Thus the write complexity is proportional to the tree depth, or
O(logd(n) n). To read the value from some leaf, we read the values, time-stamps
and tags of that leaf, all nodes on the path from the root to the leaf and all
their children, a total of O(d(n) · logd(n) n) public memory locations. We verify
the consistency of all the tags, and that the time-stamp of every internal node
is the sum of its children’s time-stamps. This prevents replay attacks, as the
root’s time-stamp is in the reliable memory and thus always correct. The sec-
ond construction (efficient read) is different. For each tree edge connecting a

How Efficient Can Memory Checking Be? 517

node u and one of its d(n) children w, we store in public memory a tag which
is the PRF evaluated on (u, tu, vu, w, tw , vw). Now, to read the value from a leaf
we read the values and time-stamps of all nodes on the path from the root, and
the tags of the edges. For each edge we verify that the tag is consistent. This
requires making O(logd(n) n) queries to public memory. To write a new value to
a leaf, read and write the values and time-stamps at the leaf and all nodes on
the path from the root to the leaf, as well as all their children and edge tags, a
total of O(d(n) · logd(n) n) queries. Verify that all tags are consistent and that
the time-stamp of each internal node is the sum of its children’s time-stamps. If
all checks pass, update the proper time-stamps and the leaf’s value. See the full
version for details.

5 Offline Checking of RAMs

In this section we describe how to check “offline” the operation of a RAM, that
is a sequence of read and write (or store and retrieve) operations. To check
that a RAM operates correctly we must verify that the value we obtain from
reading an address in public memory is equal to the last value we wrote to that
address. Blum et al. [6] showed an (invasive) scheme, where if one scans the
whole memory at the end of the sequence of operations, then it is possible to
detect (with hight probability) any malfunction. The cost (in query complexity)
is O(1) per operation, plus the final scan. Thus, for sequences of n operations or
more, the amortized query complexity is O(1). As discussed in the introduction,
our goal is to improve upon that, by not running a final scan of all the memory.
Instead, we scan only the locations that were changed. This implies that at any
point, after t operations, we can check that the memory worked appropriately
by investing time O(t), so for any sequence of operations (not only for long
ones) the amortized query complexity is O(1). This result can be viewed as a
generalization of those in Amato and Loui [3].

Our ideas follow closely those of Blum et al. [6]. First, add to each memory
address a slot for the time it was written - a “timestamp”. The “time” can be
any discrete variable that is incremented whenever a write or read operation
is performed. The timestamp of each location is actually updated after either
read or write. So one can view each operation as read followed by write. The
offline checker needs to verify that the set of (value, address, time) triples which
are written equals the set of (value, address, time) triples which are read. More
precisely, consider the following two sets:

R = {(v, a, t)|location a was read with value v and timestamp t}
W = {(v, a, t)|location a was written with value v and timestamp t}

Suppose that at no point in time did a read operation return a timestamp
larger than the current time (call this the timestamp condition), a clear mal-
function, and suppose that the memory is scanned (i.e. read completely) at the
end of the sequence of operations. Then Blum et al [6] showed

518 C. Dwork et al.

Claim. W = R iff the memory functioned properly.

In other words, a procedure that checks online for the timestamp condition plus
an offline test for W = R results in an offline checker for the RAM. It is useful
to note that the proof actually implies that if the timestamp condition was not
violated, then actually W � R.

We modify slightly the above and note that if we scan only those locations that
were actually modified, then we can similarly say that W = R iff the memory
functioned properly. This is true, since the locations that were not written do
not affect W and hence whether we access them or not does not make R =W .

Now the question is, how do we scan only the locations that were modified? For
this we keep a linked list of all locations that were accessed. When a new location
is read it is added to the end of the list. The starting and ending locations of
the list are stored in the secure memory. To scan the locations accessed we trace
the list, see below on possible implementations of the list, the important thing
is that adding a memory location to the list and checking whether a memory
location is already in the list can be done with O(1) queries (possibly amortized).

A natural question now is how to authenticate the list to ensure that an
adversary did not tamper with it (i.e. who guards the guard?). The point here
is that the list itself need not be authenticated. To address the issue of faults in
the linked list, observe that as indicated above to make the checker accept the
adversary needs to “cover” W by R. If the adversary tampers with the list, and
a wrong set of locations is accessed in the final scan, then it will not cover W .
Since we do not authenticate the list, the one remaining concern is that a faulty
memory can even lead the scanning process into loops (by putting loops into
the list). To prevent this, we use a simple counter that bound the number of
locations we traverse in the list.

To check whetherW and R are the same or not, we can use the same methods
as described in Blum et al. The problem can be thought of as one in streaming,
since the sets are accessed one value at a time. We assume there is a secret hash
function h mapping sets to some range and we can compute on the fly h(R) and
h(W) and compare the results. That is, h can be updated incrementally in each
operation (read or write).

Specifically, we require that where for every k there exists a family H where:
(i) representing a member h ∈ H of the family takes O(k + logn) bits (ii) the
range of h ∈ H can be represented by O(k) bits (iii) the probability that two
different sets hash to the same value is at most 1/2k (the probability is over the
choice of the function in the family) and (iv) given h ∈ H an element x and
the value of H(S), the value of h(S ∪ {x}) can be computed in O(1) operations.
There are constructions of such functions (see e.g. Naor and Naor [14] and the
analysis in [6]). The procedures for reading and writing are now as follows:

Write of value v to address a

– read the value v′ and time t′ stored in address a.
– verify that t′ is less than the current time.
– update the hash h(R) of set R with (v′, a, t′).

How Efficient Can Memory Checking Be? 519

– write the new value v and current time t to address a.
– update the hash h(W) of set W with (v, a, t).
– if location a is not in the linked list add it to the end and update the endpoint

in the secure memory.

Read of address a

– read the value v′ and time t′ from address a.
– verify that t′ is less than the current time t.
– update the hash h(R) of set R with (v′, a, t′).
– write v′ and t to address a.
– update the hash h(W) of set W with (v′, a, t).
– if location a is not in the linked list add it to the end and update the endpoint

in the secure memory.

To check the functioning of the RAM at the end of any sequence of operations,
the checker reads all the memory locations in the linked list, starting from the
first location in the list, which is stored in the secure memory. As the scan
proceeds h(R) is updated accordingly. Assuming initially W = R = 0 and the
RAM is empty, h(W) should equal h(R) if the memory functioned correctly,
and should be different from h(R) with high probability if the memory was
faulty. To maintain the list of modified locations, we can use a simple linked
list (see below for a more efficient alternative). It is enough to add a pointer to
each address in public memory (together with the value and timestamp of that
address). The pointer is initially NULL (or 0), and whenever we access a public
memory location for the first time we modify the pointer of the current list tail
to point to the new list end and update the list end (there is no need to update
R and W for list maintenance operations, faults in the list will be detected).

Note that we do not have to assume that the memory is initialized to be all 0
before the beginning of the operations, since it is possible to use the “uninitialized
memory trick”, where one keeps a list of pointers to the modified locations and
all other locations are 0. See [1], exercise 2.12 or [5,9,7].

Since the scheme is invasive (has to change the memory), it makes the most
sense when the basic unit we read is relatively large. Suppose the length of
a database word is µ, then the additional timestamp takes logn bits and the
pointer to the linked list takes another logn bits. We summarize the results in
the following theorem.

Theorem 2. For a RAM with n words of size µ there exists an invasive, offline
memory checker using n memory locations storing µ + 2 logn-bit words, which
uses O(log n+log 1/ε) private memory. Each read or write operation takes O(1)
queries, and a procedure for detecting error can be executed after any sequence
of t steps at the cost of O(m) where m is the actual number of locations that
were used. An error is detected with probability at least 1 − ε.
Finally, we re-examine the issue of invasiveness. We note that in fact we do not
need to store time-stamps and list-pointers for all of the database indices, just
for those that are accessed. This leads to a method for reducing the invasiveness

520 C. Dwork et al.

of the checker (the total number of non-database bits that it stores in public
memory). We can maintain the timestamps and the list itself as a separate data
structure, whose size is proportional (say linear) to the number of database
indices which have been accessed. Any data structure that supports insertion
and membership queries in amortized O(1) time work. We note once more that
Ajtai [2] proved a lower bound on the invasiveness of offline memory checkers,
but his proof uses long sequences of operations that access every database index,
and thus it does not apply to our setting of short sequences of operations that
access only a few locations in the database.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Al-
gorithms. Addison-Wesley Series in Computer Science and Information Processing.
Addison Wesley, Reading (1974)

2. Ajtai, M.: The invasiveness of off-line memory checking. In: STOC, pp. 504–513
(2002)

3. Amato, N.M., Loui, M.C.: Checking linked data structures. In: Proceedings of the
24th Annual International Symposium on Fault-Tolerant Computing (FTCS), pp.
164–173 (1994)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. Cryptology ePrint Archive, Re-
port 2007/202 (2007)

5. Bentley, J.: Programming Pearls. ACM, New York (1986)
6. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-

ness of memories. Algorithmica 12(2/3), 225–244 (1994)
7. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Letters on

Programming Languages and Systems 2, 59–69 (1993)
8. Clarke, D.E., Suh, G.E., Gassend, B., Sudan, A., van Dijk, M., Devadas, S.: To-

wards constant bandwidth overhead integrity checking of untrusted data. In: IEEE
Symposium on Security and Privacy, pp. 139–153 (2005)

9. Cox, R.: http://research.swtch.com/2008/03/
using-uninitialized-memory-for-fun-and.html

10. Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University
Press, Cambridge (2001)

11. Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University
Press, Cambridge (2004)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct pseudorandom func-
tions. Journal of the ACM 33(2), 792–807 (1986)

13. Juels, A., Kaliski, B.: Pors: proofs of retrievability for large files. In: CCS 2007: Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pp. 584–597. ACM, New York (2007)

14. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM J. Comput. 22(4), 838–856 (1993)

15. Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: FOCS,
pp. 573–584 (2005)

16. Oprea, A., Reiter, M.K.: Integrity checking in cryptographic file systems with con-
stant trusted storage. In: USENIX Security Symposium (2007)

17. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html

Goldreich’s One-Way Function Candidate and
Myopic Backtracking Algorithms

James Cook1,�, Omid Etesami1,��, Rachel Miller2,� � �, and Luca Trevisan1,†

1 Computer Science Division, U.C. Berkeley
{jcook,etesami,luca}@cs.berkeley.edu

2 University of Virginia
rachel.an.miller@gmail.com

Abstract. Goldreich (ECCC 2000) proposed a candidate one-way func-
tion construction which is parameterized by the choice of a small pred-
icate (over d = O(1) variables) and of a bipartite expanding graph of
right-degree d. The function is computed by labeling the n vertices on
the left with the bits of the input, labeling each of the n vertices on
the right with the value of the predicate applied to the neighbors, and
outputting the n-bit string of labels of the vertices on the right.

Inverting Goldreich’s one-way function is equivalent to finding solu-
tions to a certain constraint satisfaction problem (which easily reduces
to SAT) having a “planted solution,” and so the use of SAT solvers con-
stitutes a natural class of attacks.

We perform an experimental analysis using MiniSat, which is one
of the best publicly available algorithms for SAT. Our experiment shows
that the running time required to invert the function grows exponentially
with the length of the input, and that such an attack becomes infeasible
already with small input length (a few hundred bits).

Motivated by these encouraging experiments, we initiate a rigorous
study of the limitations of back-tracking based SAT solvers as attacks
against Goldreich’s function. Results by Alekhnovich, Hirsch and Itsyk-
son imply that Goldreich’s function is secure against “myopic” back-
tracking algorithms (an interesting subclass) if the 3-ary parity predicate
P (x1, x2, x3) = x1 ⊕ x2 ⊕ x3 is used. One must, however, use non-linear
predicates in the construction, which otherwise succumbs to a trivial
attack via Gaussian elimination.

We generalized the work of Alekhnovich et al. to handle a more general
class of predicates, and we present a lower bound for the construction
that uses the predicate Pd(x1, . . . , xd) := x1⊕x2⊕· · ·⊕xd−2⊕(xd−1∧xd)
and a random graph.

� Work supported by the National Science Foundation under grant No. CCF-0729137
and by the National Sciences and Engineering Research Council of Canada under
a PGS award.

�� Work supported by the National Science Foundation under grant No. CCF-
0729137.

� � � Work done at U.C. Berkeley, supported by an NSF SUPERB fellowship.
† Work supported by the National Science Foundation under grant No. CCF-0729137

and by the BSF under grant 2002246.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 521–538, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

522 J. Cook et al.

1 Introduction

Goldreich [11] proposed in 2000 a candidate one-way function construction
based on expanding graphs. His construction is parameterized by the choice of
a bipartite graph with n vertices per side and right-degree d (where d is either
a constant independent of n, or grows very moderately as O(log n)) and of a
boolean predicate P : {0, 1}d → {0, 1}. To compute the function, on input
x ∈ {0, 1}n we label the vertices on the left by the bits of x, and we label each
vertex on the right by the value of P applied to the label of the neighbors. The
output of the function is the sequence of n labels of the vertices on the right.

Goldreich’s Function and Cryptography in NC0. A function is com-
putable in NC0 if every bit of the output depends only on a constant number of
bits of the input. One can see any NC0-computable function as a generalization
of Goldreich’s function in which the graph is allowed to be arbitrary, subject to
having bounded right-degree, and in which different predicates can be used for
different bits of the output.

Cryan and Miltersen [7] first raised the question of whether cryptographic
primitives (their work focused on pseudorandom generators) can be computed in
NC0. Mossel, Shpilka and Trevisan [13] construct, for arbitrarily large constant
c, a function f : {0, 1}n → {0, 1}cn based on a bipartite graph of right-degree 5
and the fixed predicate P (x1, · · · , x5) := x1 ⊕x2 ⊕x3 ⊕ (x4 ∧x5), and show that
the function computes a small-bias generator. Such a construction may in fact
be a pseudorandom generator, and hence a one-way function.1

Applebaum, Ishai and Kushilevtiz [4,5] show that, under standard assump-
tions, there are one-way functions and pseudorandom generators that can be
computed in NC0; their one-way function is computable with right-degree 3.2

In their construction, the graph encodes the computation of a log-space machine
computing a one-way function that is used as a primitive.

In this paper, we are interested in the security of Goldreich’s original proposal,
implemented using a random graph and a fixed predicate.

Goldreich’s Function and DPLL Algorithms. Inverting Goldreich’s one-
way function (and, indeed, inverting any one-way function that is computable
in NC0) can be seen as the task of finding a solution to a constraint satisfaction
problem with a planted solution. A plausible line of attack against such a con-
struction is thus to employ a general-purpose SAT solver to solve the constraint
satisfaction problem. We performed an experimental study using MiniSat, which
is one of the best publicly available SAT solvers, and has solved instances with
several thousand variables. Using a random graph of right-degree 5, and the

1 The graph used in this construction, however, is not a random graph or a strong
expander graph of right-degree 5, so this is not an instantiation of Goldreich’s pro-
posal.

2 This is the best possible, because it is easy to show that no function based on a
bipartite graph of right-degree 2 can be one-way, by reducing the problem of finding
the inverse to a 2SAT instance.

Goldreich’s One-Way Function Candidate 523

predicate (x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5)), we observed an exponential increase of
the running time as a function of the input length, and an attack with MiniSat
appears infeasible already for moderate input lengths (a few hundred bits). See
Appendix A.

Our goal in this paper is to provide a rigorous justification for these experi-
mental results, and to show that “DPLL-style” algorithms based on backtracking
(such as most general SAT solvers) cannot break Goldreich’s construction in sub-
exponential time. We restrict ourselves to algorithms that instantiate variables
one at a time, in an order chosen adaptively by a “scheduler” procedure, and
then recurse on the instance obtained by by fixing the variable to zero and then
to the instance obtained by fixing the variable to one, or viceversa (the scheduler
decides which assignment to try first). The recursion stops if the current partial
assignment contradicts one of the constraints in the instance, or if we find a
satisfying assignment.

When such an algorithm runs on an unsatisfiable instance, then a transcript of
the algorithm gives a “tree-like resolution proof” of unsatisfiability; a number of
techniques are known to prove exponential lower bounds on the size of tree-like
resolutions proofs of unsatisfiability, and so such proofs give lower bounds to the
running time of any such algorithm, regardless of how the scheduler is designed.

When dealing with satisfiable instances, however, one cannot prove lower
bounds without putting some restriction on the scheduler. (If unrestricted in
complexity, the scheduler could compute a satisfying assignment, and then as-
sign the variables accordingly, making the algorithm converge in a linear number
of steps.)

The Lower Bound of Alekhnovich et al. Alekhnovich, Hirsch and Itsyk-
son [3] consider two such restrictions: they consider (i) “myopic” algorithms in
which the scheduler chooses which variable to assign based on only a bounded
number of variables and clauses of the current formula, and (ii) “drunken” algo-
rithms in which the order of variables is chosen arbitrarily by the scheduler, but
the choice of whether to assign first zero or one to the next chosen variable is
made randomly with equal probability. The result of the second type is proven
for carefully designed instances, and it remains an open question to prove a
lower bound for drunken algorithms on a random satisfiable constraint satisfac-
tion problem. Lower bounds of the first type are proven for random instances,
and they are proved via a reduction to the problem of certifying unsatisfiability:
Alekhnovich et al. show that a myopic algorithm, with high probability, after
assigning a certain number of variables will be left with an instance that is unsat-
isfiable, but for which there is no sub-exponential size tree-like resolution proof
of unsatisfiability. Hence the algorithm will take an exponential amount of time
before it realizes it has chosen a bad partial assignment.

Our Results. The result of Alekhnovich et al. applies to myopic algorithms
for random instances of 3XOR with a planted solution, and provided a lower
bound for myopic DPLL inversion algorithms for the instantiation of Goldreich’s
proposal using the 3XOR predicate.

524 J. Cook et al.

Unfortunately, the use of 3XOR as a predicate in Goldreich’s construction
leads to a total break via Gaussian elimination, so our goal is to extend the result
of Alekhnovich et al. to a setting in which we have either a random predicate or
the predicate (x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)) which is inspired by the work of
Mossell et al.

In order to extend the work of Alekhnovich et al. to the setting of Goldreich’s
one way functions, we need to make the following changes:

– The proof in [3] uses the fact that all constraints have arity 3. It is not difficult
to adapt it to handle linear constraints of larger constant arity, by relying on
the strong expansion properties which are true of random constraint graphs.

– The proof in [3] uses the linearity of the constraints. We show that it is
sufficient for the predicate to be such that it remains nearly balanced even
after many variables have been fixed to arbitrary values. For example, a d-
ary parity remains perfectly balanced even after d− 1 variables are assigned
arbitrary variables. The predicate (x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)) remains
perfectly balanced even after d−3 variables are assigned arbitrary variables,
and a random predicate remains ε-close to balanced after any d−O(log d/ε)
variables are fixed to arbitrary values. (Those parameters are sufficient for
our proof to go through.)

– The proof in [3] assumes that there is a unique solution, and this is not true
in our setting. We show that the proof carries over if one assumes that the
total number of pairs x, y such that f(x) = f(y) is at most 2(1+ε)n for small
ε. We are able to show that such a condition is satisfied by the predicate
(x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)) and by the choice of a highly-expanding
graph, with ε = 2−Ω(d). We believe that the same result holds with high
probability if we choose a random d-ary predicate, but we have not been
able to prove it.

With such results, we are able to show an exponential lower bound for myopic
algorithms in a construction that uses a random graph and the predicate (x1 ⊕
· · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)). If we consider the construction that uses a random
graph and a random predicate, then we have a conditional exponential lower
bound under the assumption that the resulting function is nearly injective.

Goldreich’s Analysis. Goldreich [11] considered the following algorithm for
computing x given y = f(x). The algorithm proceeds in n steps, revealing the
output bits one at a time. Let Ri be the set of inputs connected to the first i
outputs. Then in the ith step, the algorithm computes the list Li of all strings
in {0, 1}Ri which are consistent with the first i bits of y. Goldreich proves that
if the graph satisfies an expansion condition, then for a random input x, the
expected size of one of the sets Li is exponentially large.

Since Goldreich’s algorithm is forced to consider all consistent assignments
to the bits in each set Ri, it takes no less time than a (myopic) backtracking
algorithm that chooses the input bits in the same order, and possibly much more
time. For this reason, our new lower bounds are more general.

Goldreich’s One-Way Function Candidate 525

Open Questions. We believe that there is motivation for further experimental
and rigorous analysis of Goldreich’s construction.

The main limitation of the present work is the somewhat artificial setup of
myopic algorithms, which fails to capture certain natural “global” heuristics
used in SAT solvers. Since the algorithm is required to work only with partial
information on the object given as an input, negative results for myopic algo-
rithms are similar in spirit (but very different technically) to results on “space
bounded cryptography.” It would be very interesting to have a lower bounds for
drunken algorithms, which are restricted in a way that is more computational
than information-theoretic. As a first step, it would be interesting to show that
drunken algorithms take exponential time to find planted solutions in a random
3XOR instance.

It would also be interesting to show that no “variation of Gaussian elim-
ination” can invert Goldreich’s function when non-linear predicates are used.
Unfortunately it is not clear how to even formalize such a statement.

2 Preliminaries

2.1 Goldreich’s Function

Goldreich [11] constructs a function f : {0, 1}n → {0, 1}n parameterized by a
d-ary predicate P and a bipartite graph G = (V,E) connecting n input nodes ui

on the left to n output nodes vi on the right. The output nodes all have degree
d. To compute the function, on input x ∈ {0, 1}n, we label the input nodes with
the bits of x, and label each output node by the value of P applied to the labels
of its neighbors. The output of the function is the sequence of n labels of the
output nodes. For example, if the neighborhood of vi is {uj1 , uj2 , . . . , ujd

}, then

(f(x))i = P (xj1 , xj2 , . . . , xjd
).

We denote by A the n × n matrix adjacency matrix of G, whose columns
correspond to input nodes and whose rows correspond to output nodes:

Aij =

{
1 (uj , vi) ∈ E
0 (uj , vi) �∈ E

.

Goldreich suggests using a random predicate P , and a graphG with expansion
properties.

2.2 Myopic Backtracking Algorithms

We consider the class of algorithms that might invert Goldreich’s function by
backtracking.

First, we need a notion of a partial truth assignment.

Definition 2.1 (partial assignment). Taken from [2]. A partial assignment
is a function ρ : [n] → {0, 1, ∗}. Its set of fixed variables is Vars(ρ)=ρ−1({0, 1}).

526 J. Cook et al.

Its size is defined to be |ρ| = |Vars(ρ)|. Given f : {0, 1}n → {0, 1}n, the restric-
tion of f by ρ, denoted f |ρ, is the function obtained by fixing the variables in
Vars(ρ) and allowing the rest to vary.

Definition 2.2. A backtracking algorithm for solving an equation f(x) = b for
x is defined by two procedures N and T. N takes a partial assignment ρ and
returns the index of a new variable N(ρ) ∈ [n] to assign, and T chooses a truth
value T(ρ) ∈ {0, 1} for xN(ρ). More precisely, the algorithm has the form:

– Initialize ρ to the empty truth assignment (∗, ∗, . . . , ∗).
– While not all variables in ρ are fixed,

• j ← N(ρ).
• Update ρ by assigning xj the truth value T(ρ).
• If there is row i such that f(ρ)i is determined by ρ but f(ρ)i �= bi then

backtrack.

We study a special class of backtracking algorithms which we call myopic back-
tracking algorithms, after [1].

Definition 2.3. A myopic backtracking algorithm for f(x) = b is a backtracking
algorithm where procedures N and T are restricted in that they are not allowed to
see all the output bits in vector b. More precisely, myopic backtracking algorithm
of parameter K have the following properties:

– In the beginning of the algorithm, the algorithm does not have the value of
any of b.

– At each step of fixing a new variable, the algorithm is allowed to ask the value
of K output bits corresponding to K equations chosen by the algorithm.

– When we backtrack from a step we have already taken, we lose the value of
the output bits that were revealed to us at that step.

Thus, in the middle of the algorithm, when the partial assignment is ρ, the algo-
rithm sees the values of K|Vars(ρ)| output bits, and the outputs of procedures N
and T are allowed to depend only on these K|Vars(ρ)| output bits. But notice
that procedures N and T can use the structure of the function f ; they have
restricted access to only b.

Notice that in the above definitions, there is no restriction on the computa-
tional complexity of procedures N and T. Therefore without the myopic con-
straint, there is no way to prevent T from guiding the algorithm immediately
towards the correct solution.

The work in [3] gives a lower bound for myopic backtracking algorithms
for SAT instances. They translate a system of linear equations Ax = b into
a CNF formula. Similarly, for inverting Goldreich’s function f(x) = b for a fixed
b ∈ {0, 1}n, we can define a d-CNF formula Φb(x) which is logically equivalent
to the statement f(x) = b. The i-th bit of b translates to a set of at most 2d

clauses that enforce the constraint P (xSi) = bi. Then the problem of inverting
f can be reduced to finding a solution to the SAT instance Φb. Notice that (my-
opic) backtracking algorithms for solving Φb are similar to (myopic) backtracking
algorithms for solving f(x) = b.

Goldreich’s One-Way Function Candidate 527

In [3] the authors consider a notion of myopic backtracking algorithms that
is slightly more powerful, called myopic DPLL algorithms after [12,8,1], which
might get more information about b using two new rules called Unit Clause Prop-
agation and Pure Literal Elimination. It can be seen that when the equations of
f(x) = b are linear, these two rules do not give an advantage to the backtracking
algorithm. However, the same reduction from DPLL to ordinary backtracking
does not apply to the more general case f(x) = b which we consider. Therefore,
in this paper we restrict ourselves to backtracking algorithms.

2.3 Random Predicates

We follow Goldreich’s suggestion in choosing P : {0, 1}d → {0, 1} uniformly at
random. Here we define two useful properties that most random predicates have.

Definition 2.4 (robust predicate). P : {0, 1}d → {0, 1} is h-robust iff every
restriction ρ such that f |ρ is constant satisfies d − |ρ| ≤ h [2, Definition 2.2].
For example, the predicate that sums all its inputs modulo 2 is 0-robust.

Definition 2.5 (balanced predicate). P : {0, 1}d → {0, 1} is (h, ε)-balanced
if, after fixing all variables but h+ 1 of them,

|Pr[P (x) = 0] − 1
2
| ≤ ε.

For example, predicates of the form Pd(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) are
(2, 0)-balanced and (1, 1

4)-balanced. The predicate that sums all its inputs is
(0, 0)-balanced.

Lemma 2.6. A random predicate on d variables is (Θ(log d
ε), ε)-balanced with

probability 1 − exp[−poly(d/ε)].

(We omit the proof to save space.)

Corollary 2.7. A random predicate on d variables is Θ(log d)-robust with prob-
ability 1 − exp[−poly(d)].

2.4 Expansion Properties

Let G be a bipartite graph with n nodes on each side and right-degree d. Equiv-
alently, let A be an n× n matrix with d ones and n− d zeros in each row.

Definition 2.8 (Boundary and Neighborhood). Taken from [3, Definition
2.1]. Let I be a set of output nodes. Its boundary, denoted ∂I, is the set of all
nodes j ∈ U such that there is exactly one edge from j to I. The neighborhood
of I, Γ (I) ⊆ U is the set of all nodes connected to I.

Definition 2.9 (Expansion). Taken from [3, Definition 2.1]. G (or A) is an
(r, d, c)-boundary expander if for all I ⊆ V, (|I| ≤ r ⇒ |∂I| ≥ c|I|). G (or A) is
an (r, d, c)-expander if ∀I ⊆ V, (|I| ≤ r⇒ |Γ (I)| ≥ c|I|).

528 J. Cook et al.

Lemma 2.10. Analogous to [3, Lemma 2.1]. Every (r, d, c)-expander is an
(r, d, 2c− d)-boundary expander.

Throughout our paper, we will use c to denote neighborhood expansion, and c′

to denote boundary expansion, with c′ = 2c− d.

2.5 Closure Operation

We define the closure of a set of input nodes, or columns of A.

Definition 2.11 (closure). Analogous to [3, Definition 3.2]. For a set of
columns J ⊆ [n], define the following relation on 2[n]:

I 'J I1 ⇐⇒ I ∩ I1 = ∅ ∧ |I1| ≤ r

2
∧
∣∣∣∣∣∂(I1) \

[⋃
i∈I

Ai ∪ J
]∣∣∣∣∣ < c/2|I1|.

Define the closure of J , Cl(J), as follows. Let G0 = ∅. Having defined Gk,
choose a non-empty Ik such that Gk 'J Ik, set Gk+1 = Gk ∪ Ik, and remove
equations Ik from matrix A. (Fix an ordering on 2[n] to ensure a deterministic
choice of Ik.) When k is large enough that no non-empty Ik can be found, set
Cl(J) = Gk.

We omit the proofs in this section, since similar facts are proved in Section 3
of [3].

Lemma 2.12. Analogous to [3, Lemma 3.5]. If |J | < cr
4 , then |Cl(J)| < 2c−1|J |.

Lemma 2.13. Analogous to [3, Lemma 3.4]. Assume that A is an arbitrary
matrix and J is a set of its columns. Denote by Â the matrix that results from A
by removing the rows in Cl(J) and the columns in

⋃
i∈Cl(J)Ai. If Â is non-empty

then it is an (r/2, d, c/2)-boundary expander.

Definition 2.14. From [3, Definition 3.4]. A substitution ρ is said to be locally
consistent w.r.t. the function f(x) = b if and only if ρ can be extended to an
assignment on X which satisfies the equations corresponding to Cl(Vars(ρ)):

(f(x))Cl(Vars(ρ)) = bCl(Vars(ρ))

Lemma 2.15. Analogous to [3, Lemma 3.6]. Assume that f employs a (r, d, c)-
boundary expander and a h-robust predicate with c > 2h. Let b ∈ {0, 1}n and ρ be
a locally consistent partial assignment. Then for any set I ⊆ [n] with |I| ≤ r/2,
ρ can be extended to an assignment x which satisfies the subsystem (f(x))I = bI.

3 Myopic Algorithms Use Exponential Time in the
Average Case

Theorem 3.1. Assume A is an n× n (r, d, c)-boundary expander with left and
right degree d and that P is an (h, ε)-balanced predicate. Let f be Goldreich’s

Goldreich’s One-Way Function Candidate 529

function for A and P , and assume f is M -to-one-on-average, in the sense that
the number of pairs (x, y) such that f(x) = f(y) is at most M2n. Let A be any
myopic backtracking algorithm. Choose x ∈ {0, 1}n uniformly at random and let
b = f(x). Let F = �2c−d−h�−1, and s = F/(F+d(d−1)). Then the probability
that A solves f(x) = b in time 2O(r(c−h)) is at most

M2−s$ cr
4dK %

(
1 + 2ε
1 − 2ε

)r/2

. (1)

(We can relax the degree requirement to say that A has right degree dright, and
the nodes in every set of s$ cr

4dK % input nodes have average degree at most dleft,
where in this case s = F/(F + dleft(dright − 1)).)

Applications of Theorem 3.1

1. Use the predicate Pd(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) and a random
graph of right-degree d. Then h = Θ(1), ε = 0, c = d/2 + Θ(d) and r =
Θ(n/d). This gives F = Θ(d) and s = Θ(1/d). In Section 4, we show that
with high probability M = 2n2−Ω(d)

. Furthermore, the average degree of any
set of s$ cr

4dK % input nodes is at most 3d with high probability. With these
parameters, Theorem 3.1 says that for constant K, the myopic algorithm
takes time 2Θ(n) with probability 1 − 2−Cn, where C depends on d and K.

2. Use a random predicate P and a random graph of right-degree d. Then with
high probability, P is (h, ε) balanced, with h = Θ(log d) and ε = 1/poly(d).
Conditioned on the assumption M = 2nO(d−C0) for C0 > 2, Theorem 3.1
says as before that for constant K, the myopic algorithm takes time 2Θ(n)

with probability 1 − 2−C1n, where C1 depends on d and K.

The rest of this section is devoted to proving Theorem 3.1. First in Section 3.1
we show how it is possible to assume that after a fixed number of steps, the
partial truth assignment ρ made by the algorithm will be locally consistent.
Then in Section 3.2 we show that the algorithm can only have selected one of
many possible locally consistent partial truth assignments – and for any fixed
b ∈ {0, 1}n, most of these partial assignments will be wrong. Thus, with high
probability, the algorithm will have selected globally inconsistent values that
lead to an unsatisfiable formula. We then show in Section 3.3 that any resolution
proof showing that this new formula is unsatisfiable has size 2Ω(r(c−h)), so the
algorithm must take that many steps before correcting its mistake.

3.1 Clever Myopic Algorithms

Without loss of generality, we allow our algorithm to be a “clever” myopic algo-
rithm in the sense that, as defined in [3], it satisfies these two properties.

1. Let J be the set of indices of all variables xj that appear in equations whose
output bit bi has been revealed. Then the algorithm may also read all clauses
in Cl(J) for free and reveal the corresponding new variables.

530 J. Cook et al.

2. The algorithm never makes stupid guesses: whenever the equations corre-
sponding to the revealed output bits bi determine the value of a variable xj ,
the algorithm will never make the wrong assignment for xj .

Property 2 can only reduce the number of backtracking steps taken. Property 1
is justified by the following proposition.

Proposition 3.2. Analogous to [3, Proposition 3.1]. After the first $ cr
4dK % steps

a clever myopic algorithm reads at most r/2 bits of b.

Proof. At each step, the algorithm makes K clause-queries, asking for dK vari-
able entries. This sums to at most dK(cr/4dK) = cr/4 variables, which by
Lemma 2.12 will result in at most r/2 bits of b. �

Once we have assumed that our algorithm is clever, the following proposition
shows that we can further assume the algorithm only makes locally consistent
assignments in its first $cr/4dK% steps.

Proposition 3.3. Analogous to [3, Proposition 3.2]. During the first $ cr
4dK %

steps the current partial assignment made by a clever myopic algorithm is locally
consistent, and so the algorithm will not backtrack.

Proof. This statement follows by repeated application of Lemma 2.15. Note that
clever myopic algorithms are required to select a locally consistent choice of vari-
ables if one is available. The proof is accomplished through induction. Initially,
the partial assignment is empty, and so is locally consistent. For each step t
(with t < cr

4dK) with a locally consistent partial assignment ρt, a clever myopic
algorithm will extend this assignment to ρt+1 which is also locally consistent if
possible. By Lemma 2.15 it can always do so as long as |Cl(Vars(ρt))∪{xj}| ≤ r/2
for the newly chosen xj . �

3.2 The Probability of a Correct Guess Is Small

Now choose b randomly from the set of attainable outputs of f(x); more formally,
let x ∼ Unif({0, 1}n) and b = f(x). Initially, the value of b should be hidden
from the algorithm. Whenever the algorithm reveals a clause corresponding to
the ith row of A, the ith-bit of b should be revealed to the algorithm. We consider
the situation after $ cr

4dK % steps of the algorithm. By Proposition 3.3, the current
partial assignment must be locally consistent, and no backtracking will have
occurred. Thus, at this point in time we observe the algorithm in the $ cr

4dK %-th
vertex v in the leftmost branch of its backtracking tree. By Proposition 3.2, the
algorithm has revealed at most r/2 bits of b.

Define random variable Iv ⊆ [n] to be the set of output bits revealed after
$ cr

4dK % steps. Similarly define random variable ρv to be the the partial truth
assignment given by the algorithm at that time. Define Rv = Vars(ρv). Hence
|Rv| = $ cr

4dK %.

Goldreich’s One-Way Function Candidate 531

Definition 3.4. Let I ⊆ [n], R ⊆ [n], ι ∈ {0, 1}I and ρ ∈ {0, 1}R. We say
(I, R, ι, ρ) is a consistent state if

Pr[Iv = I ∧Rv = R ∧ bIv = ι ∧ ρv = ρ] > 0.

Put another way, (I, R, ι, ρ) is a consistent state iff there exists some x ∈ {0, 1}n

such that after $ cr
4dK % steps, I is exactly the set of revealed bits, R is exactly the

set of assigned variables, ρ is the values assigned those variables, and bI = ι.

Our first attempt at a proof is to show that there are many choices for ρv that
are locally consistent. Intuitively, if the number of those possible choices for ρ is
large compared to M , we expect the algorithm to make the wrong choice with
high probability. This line of reasoning would need a result of the following form.

Lemma 3.5. Analogous to [3, Lemma 3.10]. Assume that an n × n matrix A
is an (r, d, c)-boundary expander and P is an (h, ε)-balanced predicate, and let
f be Goldreich’s function corresponding to A and P . Let X̂ ⊆ [n] be a set of
input variables with |X̂| < r. Choose x uniformly at random from {0, 1}n and
let b = f(x). Let Y ⊆ [n] be a set of output variables, |Y | < r. For i ∈ Y let �i
be the constraint (f(x))i = bi, and let L = {�i : i ∈ Y }. Denote by L the set of
partial assignments who assign values to the variables in X̂ and can be extended
to complete truth assignments that satisfy L.

Let s be defined as in Theorem 3.1. Then log |L| ≥ s|X̂|.
In fact, our proof requires the following stronger lemma instead of Lemma 3.5,
which states that conditioned on what the algorithm has seen, the minimum
entropy of xRv is high.

Lemma 3.6. Let x, X̂, L, and s be as in Lemma 3.5. Then for any x̂ ∈
{0, 1}|X̂|,

Pr[x|X̂| = x̂|L] ≤ 2−s|X̂|
(

1 + 2ε
1 − 2ε

)|L|
.

We postpone the proof of Lemma 3.6 (and do not prove Lemma 3.5, since we do
not use it). We are now prepared to complete the proof of the main theorem.

Proof (Theorem 3.1). Our goal is to bound the probability of the following event:

E = {ρv ∈ (f−1(b))Rv}.
We first condition on the state of the algorithm, considering all consistent states
in the sense of Definition 3.4:

Pr[E]

=
∑

(I,R,ι,ρ) consistent

Pr[E|Iv = I ∧Rv = R ∧ bIv = ι ∧ ρv = ρ]·

Pr[Iv = I ∧Rv = R ∧ bIv = ι ∧ ρv = ρ]
=E[Pr[E|Iv, Rv, bIv , ρv]].

532 J. Cook et al.

Since the algorithm is deterministic and only observes the bits in bIv , the event
[Iv = I ∧Rv = R ∧ ρv = ρ] is implied by the event [bIv = ι] – put another way,
if bits of b outside the set of observed bits Iv are changed, the behavior of the
algorithm will not be affected, so the values of Iv, Rv and ρv will not change.
This gives us:

Pr[E]
=E[Pr[E|bIv]]

=E[Pr[ρv ∈ (f−1(b))Rv |bIv]]

≤E
[

max
ρ∗

v∈{0,1}Rv
|f−1(b)|Pr[ρ∗v = xv|bIv]

]
≤E[|f−1(b)|] max

Iv ,bIv ,ρ∗
v

Pr[ρ∗v = xv|bIv]

≤M2−s

(
1 + 2ε
1 − 2ε

)r/2

.

In the last step, we applied Lemma 3.6, replacing X̂ by Rv, L by Iv and x̂ by ρ.
Note that |Iv| < r/2, so |L| < r/2 in the hypothesis of the lemma.

We have shown that it will be likely that ρv, though locally consistent, can not
be extended to satisfy b, and an unsatisfiable instance will occur. In Section 3.3,
we explore the running time of backtracking algorithms on unsatisfiable cases to
show if E does not occur, the algorithm will take time 2Ω(r(c−h)).

Proof of Lemma 3.6

Lemma 3.7. Fix any g ⊆ X̂. If each output in L has at most F = �2c−d−h�−1
of its d inputs in g, then ∀I ⊆ L, |∂I \ g| > h|I|.
Proof. Consider any subset I ⊆ L. By Lemma 2.10, |∂I| ≥ (2c−d)|I|, so |∂I\g| ≥
(2c− d− F)|I| > h|I|.
Lemma 3.8. Fix any g ⊆ X̂. If ∀I ⊆ L, |∂I \ g| > h|I|, then any par-
tial assignment ρ : g → {0, 1} can be extended to a complete assignment that
satisfies L.

Proof. We make our proof by contradiction; assume ρ cannot be extended to
satisfy the equations in L. Let k be a minimal set of unsatisfiable equations.
We assume our predicate is h-robust. ∀I ⊆ L, |∂I \ g| > h|I| implies that some
equation in I must have at least h+1 boundary elements outside of g. However,
no equation in k should have more than h boundary variables; otherwise, those
h+1 boundary variables could be set to a value that satisfies that equation, and
it should not be in the minimal set k.

Lemma 3.9. Let s and F be as in Theorem 3.1. We can find g ⊆ X̂ with
|g| ≥ s|X̂ |, such that no output has more than F inputs in g.

Goldreich’s One-Way Function Candidate 533

Proof. Construct g using the following algorithm:
– g ← ∅.

– ni ←
{
F i ∈ X̂
0 i �∈ X̂ .

– while ∃i, ni > 0,
• Invariant: If an output has F − a inputs in g, then for every input i

connected to it, ni ≤ a.
• g ← g ∪ {i}.
• ni ← ni − F .
• ∀j, if dist(i, j) = 2, then nj ← nj − 1.

We start with F |X̂| counters, and remove on average F+dleft(dright−1) counters
at every step. (Recall that output nodes have degree dright, and as long as |g| ≤
s$ cr

4dK %, the average degree of g is at most dleft.) In the end,

|g| ≥ F |X̂|
F + dleft(dright − 1)

.

�
Proof (Lemma 3.6). Choose g ⊆ X̂ with |g| ≥ s|X̂ | as in Lemma 3.9. By
Lemma 3.7, every subset of L has a row with at least h + 1 boundary vari-
ables that are not in g. Therefore we can order the rows of L as �1, . . . , �|L| such
that setting Li = {�1, . . . , �i}, for all i we have |Γ (�i) \ (Γ (Li−1) ∪ g)| ≥ h + 1.
Then

Pr[x|g = g1|Li+1]
Pr[x|g = g2|Li+1]

=
Pr[Li+1|x|g = g1] Pr[x|g = g2]
Pr[Li+1|x|g = g2] Pr[x|g = g1]

=
Pr[Li|x|g = g1] Pr[�i+1|Li, x|g = g1]
Pr[Li|x|g = g2] Pr[�i+1|Li, x|g = g2]

(Use the fact that the predicate is (h, ε)-balanced.)

≤
(1

2 + ε
1
2 − ε

)
Pr[Li|x|g = g1]
Pr[Li|x|g = g2]

.

Observe that
Pr[x|g = g1|L0]
Pr[x|g = g2|L0]

= 1.

It follows that
Pr[x|g = g1|L]
Pr[x|g = g2|L]

≤
(

1 + 2ε
1 − 2ε

)|L|
.

Take g1 ∈ {0, 1}g that minimizes Pr[x|g = g1|L]. There are 2|g| possible values
for g1, so Pr[x|g = g1|L] ≤ 2−|g| ≤ 2−s|X̂|. For any x̂ ∈ {0, 1}X̂,

Pr[x|X̂ = x̂|L] ≤Pr[x|g = x̂|g|L]

=Pr[x|g = g1|L]
Pr[x|g = x̂|g|L]
Pr[x|g = g1|L]

≤ 2−s|X̂|
(1

2 + ε
1
2 − ε

)|L|
.

�

534 J. Cook et al.

3.3 Backtracking Algorithms Use Exponential Running Time on
Unsatisfiable Formulas

In Section 3.2, we showed that with high probability a myopic backtracking
algorithm will choose a partial assignment to x that cannot be extended to
satisfy f(x) = b. We now prove that once this happens, the algorithm must run
for exponential time:

Theorem 3.10. Analogous to [3, Lemma 3.9]. Let f be Goldreich’s function
for predicate P and graph G, where G is an n × n (r, d, c)-boundary expander
with right-degree d and P is h-robust with h < c/2. Fix b ∈ {0, 1}n. Let ρ be a
locally consistent partial assignment such that |V ars(ρ)| ≤ cr/4. If ρ cannot be
extended to any input x satisfying f(x) = b, then every backtracking algorithm
that makes the partial assignment ρ will run for time 2Ω(r(c−h)).

We will make use of the following lemma from [6, Corollary 3.4]. The width of
a resolution proof is the greatest width of any clause that occurs in it, and the
width of a clause is the number of variables in it.

Lemma 3.11. The size of any tree-like resolution refutation of a formula Ψ is
at least 2w−wΨ , where w is the minimal width of a resolution refutation of Ψ ,
and wΨ is the maximal width of a clause in Ψ .

Our setup and proof strategy are similar to those found in [2, Section 3] and [3].
[2] measures robustness in terms of �, where � = d− h.
Proof (Theorem 3.10). Let I = Cl(ρ) and J = Γ (I). By Lemma 2.12 |I| ≤ r/2.
By Lemma 2.15, ρ can be extended to another partial assignment ρ′ on variables
xJ , such that ρ′ satisfies every equation in (f(x))I = bI . The restricted formula
(f(x) = b)|ρ′ still encodes an unsatisfiable system f ′(x) = b′. The underlying
graph G′ of f ′ is produced from G by removing every output node in I and every
input node in J . By Lemma 2.13, G′ is an (r/2, d, c/2)-boundary expander.

We can express the equation f ′(x) = b′ using a CNF formula Φ, by repre-
senting each equation (f ′(x))i = b′i by at most 2d clauses. The computation of
a backtracking algorithm as it discovers that f ′(x) = b′ is unsatisfiable can be
translated to a tree-like resolution refutation of the formula Φ, such that the size
of the refutation is the working time of the algorithm. Thus it is sufficient to
show that every tree-like resolution refutation of Φ is large.

We say a set of equations (f ′(x))I = b′I semantically implies a clause C iff
every truth assignment satisfying (f(x))I = bI also satisfies C. Following [2,
Section 3], we define the measure of C to be

µ(C) = min
I:(f ′(x))I=b′I |=C

|I|.

We omit the proofs of the following facts; similar facts are proved in [2].

1. For any D ∈ Φ, µ(D) = 1.
2. µ(∅) > r.

Goldreich’s One-Way Function Candidate 535

3. µ is subadditive: if C2 is the resolution of C0 and C1, then µ(C2) ≤ µ(C0) +
µ(C1).

4. For any clause C, if r
2 ≤ µ(C) ≤ r, then C has width at least (c/2−h)r

4 .

1, 2 and 3 together imply that any resulation proof will result in a clause C
whose width is between r

2 and r. By 4, C has width at least (c/2−h)r
4 , so by

Lemma 3.11, the resolution proof has size 2Ω(r(c−h)). �

4 The Size of Pre-images of Goldreich’s Function

In this section we prove that Goldreich’s function has pre-images sufficiently
small for Theorem 3.1 to work.

Theorem 4.1. For every degree d, let Pd(x1, . . . , xd) = x1⊕· · ·⊕xd−2⊕(xd−1∧
xd). Choose a random graph for Goldreich’s function by connecting each output
to d inputs chosen uniformly at random (with replacement). Then

E[#(x, y) : f(x) = f(y)] = 2(1+2−Ω(d))n,

where the expectation is over the choice of graph.

Proof. For x, y ∈ {0, 1}n and i, j ∈ {0, 1}, let nij(x, y) be the number of indices k
where xk = i and yk = j. We have n00(x, y)+n01(x, y)+n10(x, y)+n11(x, y) = n.

Since the input indices to the predicate are selected uniformly at random, the
probability that a single output bit will be equal for inputs x and y is only a
function of αij

def= nij(x, y)/n. We call this function the probability of equality,
PE(α00, α01, α10, α11).

Then

E[#(x, y) : f(x) = f(y)]

=
∑

x,y∈{0,1}n

Pr[f(x) = f(y)]

=
∑

n00+n01+n10+n11=n

(
n

n00, n01, n10, n11

)
Pr[f(x) = f(y)|nij]

≤n4 max
α00+α01+α10+α11=1

(
n

nα00, nα01, nα10, nα11

)
PE(α00, α01, α10, α11)n

= max
α00+α01+α10+α11=1

(2H(α00,α01,α10,α11)PE(α00, α01, α10, α11))n(1+o(1))

where H(αij) is the base-2 entropy of the distribution defined by αij . Thus, it
suffices to show that there is a constant ε > 0 such that for sufficiently large d,

∀αij H(αij) + log2 PE(αij) ≤ 1 + 2−εd.

It can be shown that for the predicate Pd which we have defined,

PE(αij) ≤ 1 + (α00 + α11 − α01 − α10)d−2

2
.

536 J. Cook et al.

Now, let p = α00 + α11 and q = α01 + α10 = 1 − p. Forcing α00 = α11 and
α01 = α10 can only increase H(αij), so without loss of generality, we assume
α00 = α11 = p/2 and α01 = α10 = q/2, and prove

∀p ∈ [0, 1] : H(p/2, p/2, q/2, q/2)+ log2

(
1 + (p− q)d−2

2

)
≤ 1 + 2−εd,

or equivalently,

∀q ∈ [0, 1
2] : H(q) + log2(1 + (1 − 2q)d−2) ≤ 1 + 2−εd.

We consider four cases for the value of q. (We will choose positive constants
ε, ε1, ε2, ε3 suitably as we go along.)

Case 1: q > ε1

H(q) + log2(1 + (1 − 2q)d−2) ≤ 1 + (1 − 2ε1)d−2 log2 e ≤ 1 + 2−εd,

for ε < − log2(1 − 2ε1) and sufficiently large d.

For the remaining three cases, q is small. Using the Taylor expansion of log2
around 2, we get

log2(1 + (1 − 2q)d−2) ≤ 1 +
(1 − 2q)d−2 − 1

2 ln 2
≤ 1 +

e−2qd − 1
2 ln 2

.

Case 2: ε1 ≥ q > ε2/d

H(q) + log2(1 + (1 − 2q)d−2) ≤ H(ε1) + 1 +
e−2ε2 − 1

2 ln 2
≤ 1

if we choose ε1 small enough that H(ε1) < 1−e−2ε2

2 ln 2 .

For the remaining two cases we fix ε2, say ε2 = 1
2 . Now, qd ≤ 1

2 , and we have
the approximation

H(q)+1+
e−2qd − 1

2 ln 2
≤ (q log2(1/q)+ 2q)+1− qd

2 ln 2
= q(log2(1/q)−Θ(d))+1.

Case 3: ε2/d ≥ q > 2−ε3d

For ε3 < 1
ln 2 and sufficiently large d: log2(1/q) −Θ(d) < 0.

Case 4: 2−ε3d ≥ q

For ε < ε3 and sufficiently large d: q log(1/q) ≤ ε3d2−ε3d ≤ 2−εd.
This completes our proof. �

Goldreich’s One-Way Function Candidate 537

References

1. Achlioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random 3-SAT. In:
FOCS, pp. 590–600 (2000)

2. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom
generators in propositional proof complexity. SIAM Journal on Computing 34(1),
67–88 (2004)

3. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning 35,
51–72 (2005)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. on
Computing 36(4), 845–888 (2006)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in NC0 . In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX
2006 and RANDOM 2006. LNCS, vol. 4110, pp. 260–271. Springer, Heidelberg
(2006)

6. Ben-Sasson, Wigderson: Short proofs are narrow–resolution made simple. J. ACM:
Journal of the ACM 48 (2001)

7. Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, p. 272. Springer, Heidelberg
(2001)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

9. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Goldreich, O.: Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC) 7(90) (2000)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201–215 (1960)

13. Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased generators in NC0. Random
Structures and Algorithms 29(1), 56–81 (2006)

A MiniSat Experiment

Inverting Goldreich’s function can be seen as the task of solving a constraint
satisfaction problem with a planted solution. This suggests the use of a general-
purpose SAT solver to solve the constraint satisfaction problem. We performed
an experiment using MiniSat version 2.0 beta [10,9], which is one of the best
publicly available SAT solvers. We always use the degree-five predicate P5(x) =
x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5). For each trial, we choose a new random graph of right-
degree 5. MiniSat requires a boolean formula in conjuctive normal form as input,
so we represent each constraint P (xj1 , xj2 , xj3 , xj4 , xj5) = vi by 16 clauses: one
for each truth assignment to xj1 , · · · , xj5 that would violate the constraint.

538 J. Cook et al.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

tim
e

in
 s

ec
on

ds

n

Fig. 1. Number of seconds taken by MiniSat to invert Goldreich’s function for different
values of n. We use the degree-five predicate P5(x) = x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5) and a
random bipartite graph of right-degree five.

We ran MiniSat on a Lenovo T61 laptop with 2GB of RAM and a 2.00GHz
Intel T7300 Core Duo CPU. Fig. 1 plots the number of seconds taken to find
a solution versus the input size n. The graph is plotted on a logarithmic scale.
The time appears to grow exponentially in n.

Secret Sharing and Non-Shannon Information
Inequalities�

Amos Beimel and Ilan Orlov

Dept. of Computer Science, Ben-Gurion University Be’er-Sheva, Israel

Abstract. The known secret-sharing schemes for most access structures
are not efficient; even for a one-bit secret the length of the shares in the
schemes is 2O(n), where n is the number of participants in the access
structure. It is a long standing open problem to improve these schemes
or prove that they cannot be improved. The best known lower bound is by
Csirmaz (J. Cryptology 97), who proved that there exist access structures
with n participants such that the size of the share of at least one party is
n/ log n times the secret size. Csirmaz’s proof uses Shannon information
inequalities, which were the only information inequalities known when
Csirmaz published his result. On the negative side, Csirmaz proved that
by only using Shannon information inequalities one cannot prove a lower
bound of ω(n) on the share size. In the last decade, a sequence of non-
Shannon information inequalities were discovered. This raises the hope
that these inequalities can help in improving the lower bounds beyond n.
However, in this paper we show that all the inequalities known to date
cannot prove a lower bound of ω(n) on the share size.

1 Introduction

A secret-sharing scheme is a mechanism for sharing data among a set of par-
ticipants such that only pre-defined authorized subsets of participants can re-
construct the data, while any other subset has absolutely no information on
the data. The collection of authorized subsets is called an access structure. For
example, in a t-out-of-n threshold secret-sharing scheme, the access structure
contains all subsets of size at least t. As an interesting “real-world” illustration
of this situation: According to Time Magazine control of the nuclear weapon
in Russia in the early 1990s depended upon a similar “two-out-of-tree” access
mechanism, where the three parties were the President, the Defense Minister,
and the Defense Ministry. Secret-sharing schemes, introduced by [40, 8, 30], are
nowadays used in many cryptographic protocols, e.g., Byzantine agreement [38],
secure multiparty computations [6, 14, 17], threshold cryptography [20], access
control [36], and attribute-based encryption [27, 43].

An important issue in secret-sharing schemes is the size of the shares dis-
tributed to the participants. For most access structures, even the best known

� Partially supported by the Frankel Center for Computer Science at the Ben-Gurion
University.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 539–557, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

540 A. Beimel and I. Orlov

secret-sharing schemes (e.g., [7, 11, 21, 31, 42, 31]) are not efficient; the length
of the shares for sharing an �-bit secret is � · 2O(n), where n is the number of
participants in the access structure. The best lower bound was proved by Csir-
maz [18]; he proved that for each n there exists an access structure with n
participants such that any secret-sharing scheme with an �-bit secret requires
shares of length Ω(�n/ logn). There is a large gap between the upper bounds
and the lower bounds. Closing this gap is a major open problem.

The entropy of a random variable, which was introduced by Shannon in the
landmark paper [41], is a measure of the amount of uncertainty associated with
the value of the random variable. Starting from the works of Karnin et al. [32]
and Capocelli et al. [12], the entropy was used to prove lower bounds on the share
size in secret sharing schemes [9, 22, 18, 19]. Specifically, Csirmaz’s proof [18]
uses only Shannon information inequalities, which were the only information
inequalities known when Csirmaz published his result (this is true also for all the
previous works mentioned above). On the negative side, Csirmaz proved that by
using only Shannon information inequalities one cannot prove a lower bound of
ω(n) on the share size. In the last decade, a sequence of non-Shannon information
inequalities were discovered. This raises the hope that these inequalities can help
in improving the lower bounds beyond n. However, in this paper we show that
all the inequalities known to date cannot prove a lower bound of ω(n) on the
share size.

1.1 Related Work

Threshold secret-sharing schemes, in which a subset is authorized iff its size is
larger than some threshold, were independently introduced by Shamir [40] and
Blakley [8] about thirty years ago. General secret sharing schemes were presented
by Ito, Saito, and Nishizeki [30]; they presented a construction of a secret-sharing
scheme for every monotone access structure. More efficient schemes for specific
access structures were presented in, e.g., [7, 11, 21, 42, 31]. However, even these
better constructions are not efficient and, for most access structure, the shares’
size is exponential. Lower bounds for secret-sharing schemes were presented in [9,
22, 18, 19]; however, as stated above, there is a big gap between the upper and
lower bounds. Super-polynomial lower bounds for linear secret-sharing schemes
were presented in [1, 26].

In this work, we discuss using information inequalities for proving lower
bounds on the share size in secret-sharing schemes. An information inequal-
ity is a linear inequality over the entropy of subsets of variables that holds for
any random variables (for a formal definition see Section 2.1). For example,
H(X1) + H(X2) ≥ H(X1X2) is an information inequality. Many inequalities
can be expressed as a linear combination of a single inequality involving the
conditional mutual information, namely, I(X ;Y |Z) ≥ 0. Such inequalities are
known as Shannon inequalities. It was an open problem for many years if there
are information inequalities that are not implied by Shannon inequalities, i.e., if
there are non-Shannon inequalities. The first non-Shannon inequality was given
by Zhang and Yeung [47]. In the last decade, several additional non-Shannon

Secret Sharing and Non-Shannon Information Inequalities 541

inequalities were discovered [33, 46, 23, 44]. In particular, an interesting tech-
nique for deriving non-Shannon inequalities, called projection, was presented
in [44]. Several papers have dealt with the characterization of information in-
equalities. Chan and Yeung [13] have characterized information inequalities us-
ing group-theoretic inequalities. Matúš [34] has proved that there are infinitely
many independent information inequalities. Guille et al. [28] have given results
concerning the structure of information inequalities and, more specially, results
describing the minimal set of information inequalities when all the coefficient
are 1 or −1, called Ingleton inequalities.

The information inequality of Zhang and Yeung [47] was used in several ar-
eas. It was used by Dougherty, Freiling, and Zeger [24] to prove bounds on
the capacity of network coding, by Matúš [35] to prove that a function is not
asymptotically entropic, and by Riis [39] to prove bounds on graph entropy of
certain graphs. Furthermore, it was used by Beimel, Livne, and Padró [4] to
prove lower bounds on the size of shares in secret-sharing schemes; they proved
that there is a matroidial access structure – the Vamos access structure – that
is not nearly ideal. We observe that this result can be proved using other infor-
mation inequalities, e.g., the information inequalities of [23]. Furthermore, the
information inequalities of [47, 23] can be used to prove that other matroidial
access structures are not nearly ideal, e.g., the access structures induced by the
matroids AG32r, F8, Q8 (for the definitions of these matroids see [37]).

This paper deals with limitations of the techniques for proving lower bounds
on the size of shares in secret-sharing schemes, continuing the work of [3]. Beimel
and Franklin [3] considered weakly-private secret-sharing schemes, in which any
unauthorized set can never rule-out any secret (however, it might deduce, for
example, that one secret is much less likely than other secrets). They show
efficient constructions of weakly-private secret-sharing schemes (for large secret
domains), implying that to prove lower bounds on the shares’ size in secret-
sharing schemes one must use the strong privacy requirement of secret-sharing
schemes.

1.2 Our Results

In contrast to the success of applying the known information inequalities to
proving lower bounds in several areas, we show that they cannot help in proving
lower bounds of ω(n) on the share size in secret-sharing schemes. Let us elaborate
on our proof. Csirmaz [18] in 1994 has proven his lower bound by translating the
question of proving lower bounds on share size to proving that a certain linear
programming instance does not have a small solution. Csirmaz constructed the
linear program by using Shannon inequalities, which were the only information
inequalities known in 1994. He proved a lower bound of Ω(n/ logn) times the
secret size for an access structure with n parties. Furthermore, all previous lower
bounds [32, 12, 9, 22] can be restated using Csirmaz’s framework using Shannon
inequalities. On the other hand, Csirmaz proved that for every access structure
the linear program has a solution in which the objective function has value O(n),
implying that his framework cannot prove better lower bounds than Ω(n).

542 A. Beimel and I. Orlov

In the last decade, a sequence of non-Shannon information inequalities were
discovered [47, 33, 46, 23, 44]. This gives hope that adding these inequalities
to the linear program, one could prove better lower bounds on the share size.
However, in this work we show that Csirmaz’s solution to the linear program
remains valid even after adding all the known information inequalities. That
is, all the information inequalities known to date cannot prove lower bounds
better than Ω(n) even if used simultaneously. Our proof that Csirmaz’s solution
remains valid after adding the new inequalities is much more involved than
Csirmaz’s proof for Shannon inequalities. We present a brute-force algorithm
that checks if Csirmaz’s solution remains valid given an information inequality.1

We executed this algorithm, using a computer program, on all known information
inequalities of [47, 33, 46, 23]. For [47, 46, 33, 44], which also give an infinite
sequence of information inequalities, we manually executed the algorithm on a
symbolic representation of the inequalities. The conclusion is that all the known
information inequalities cannot help in proving better lower bounds than Ω(n).

We end the introduction with a few remarks. First, one cannot interpret our
result as suggesting that information inequalities cannot help in improving the
lower bounds. To the contrary, the conclusion of our paper is that new informa-
tion inequalities should be sought. Hopefully, these new information inequalities
would not be ruled-out by our algorithm. However, not failing the test in our
algorithm is only the first step. Our algorithm only gives a necessary condition
for an information inequality to be helpful in proving lower bounds of ω(n) on
the share size. To use new inequalities, one has to prove that for some access
structure the linear program with the new inequalities, and possibly with all the
known inequalities, has only large solutions.

2 Preliminaries

In this section we review the relevant definitions from information theory and
define secret-sharing schemes.

2.1 Basic Definitions from Information Theory and Information
Inequalities

In this section, we review the basic concepts of Information Theory used in this
paper. For a complete treatment of this subject see, e.g., [16]. All the logarithms
here are of base 2.

The entropy of a random variable X is H(X) def= −∑x,Pr[X=x]>0 Pr[X =
x] log Pr[X = x]. It can be proved that 0 ≤ H(X) ≤ log |supp(X)| , where
|supp(X)| is the size of the support of X (the number of values with probability
greater than zero). The upper bound |supp(X)| is obtained if and only if the
distribution of X is uniform and the lower bound is obtained if and only if X is
1 Our algorithm is highly inefficient. However, most known non-Shannon information

inequalities have 4 or 5 variables, thus, executing the computer program returns an
answer in a reasonable time (less than a minute).

Secret Sharing and Non-Shannon Information Inequalities 543

deterministic. Given two random variables X and Y (possibly dependent), the
conditioned entropy of X given Y is defined as H(X |Y) def= H(X,Y) − H(Y).
From the definition of the conditional entropy, the following properties can be
proved: 0 ≤ H(X |Y) ≤ H(X), where H(X |Y) = H(X) if and only if X and Y
are independent, and H(X |Y) = 0 if the value of Y completely determines the
value of X . The mutual information between X and Y is defined as I(X ;Y) def=
H(X) − H(X |Y), and the conditional mutual information between X and Y
given Z is defined as I(X ;Y |Z) def= H(X |Z)−H(X |Y, Z). Entropies, conditional
entropies, mutual information, and conditional mutual information are called
Shannon’s information measures.

Let {Xi}i∈[m] be a set of m jointly distributed random variables. For any
subset I of [m], let XI = (Xi)i∈I .

Definition 1 (Information Inequality). An information inequality over m
variables is defined by 2m constants {αA}A⊆[m], where αA ∈ R, such that∑

A⊆[m] αAH(XA) ≥ 0 for every m random variables X1, . . . , Xm.

For example, H(X1) + H(X2) ≥ H(X1X2) is an information inequality. Many
inequalities can be expressed as a linear combination of a single inequality in-
volving the conditional mutual information, namely, I(X1;X2|X3) ≥ 0 (this in-
equality can be stated asH(X1, X3)+H(X2, X3)−H(X1, X2, X3)−H(X3) ≥ 0).
Such inequalities are known as Shannon-type inequalities. Information inequal-
ities that cannot be deduced from Shannon inequalities are called non-Shannon
inequalities. For more background on information inequalities the reader may
consult [45].

2.2 Secret Sharing

Definition 2 (Access Structure and Distribution Scheme). Let P =
{p1, . . . , pn} be a finite set of parties, and let p0 /∈ P be a special party called the
dealer.A collection A ⊆ 2P is monotone if B ∈ A and B ⊆ C imply that C ∈ A.
An access structure is a monotone collection A ⊆ 2P of non-empty subsets of
P . Sets in A are called authorized, and sets not in A are called unauthorized.

A distribution scheme Σ = 〈Π,µ〉 with domain of secrets K is a pair, where µ
is a probability distribution on some finite set R (the set of random strings) and
Π is a mapping from K ×R to a set of n-tuples K1 ×K2 × · · · ×Kn, where Ki

is called the share-domain of pi. A dealer distributes a secret s ∈ K according to
Σ by first sampling a string r ∈ R according to µ, computing a vector of shares
Π(s, r) = (s1, . . . , sn), and privately communicating each share si to party pi.

We next define secret-sharing schemes using the entropy function. It is convenient
to view the secret as the share of the dealer p0, and for every set T ⊆ P ∪{p0} to
consider the vector of shares of T . Any probability distribution on the domain of
secrets, together with the distribution scheme Σ, induces, for any T ⊆ P ∪{p0},
a probability distribution on the vector of shares of the parties in T . We denote
the random variable taking values according to this probability distribution on

544 A. Beimel and I. Orlov

the vector of shares of T by ST , and by S the random variable denoting the
secret (i.e., S = S{p0}).

Definition 3 (Secret-Sharing Scheme). We say that a distribution scheme
is a secret-sharing scheme realizing an access structure A with respect to a given
probability distribution on the secrets, denoted by a random variable S, if the
following conditions hold.

Correctness. For every authorized set T ∈ A, the shares of the parties in T
determine the secret, i.e., H(S|ST) = 0.

Privacy. For every unauthorized set T /∈ A, the shares of the parties in T do
not disclose any information on the secret, that is, H(S|ST) = H(S).

Remark 1. Although the above definition considers a specific distribution on the
secrets, Blundo et al. [10] proved that its correctness and privacy are actually
independent of this distribution: If a scheme realizes an access structure with
respect to one distribution on the secrets, then it realizes the access structure
with respect to any distribution with the same support. Furthermore, the above
definition is equivalent to the definition of [15, 2, 5], where there is no probability
distribution associated with the secrets and it is required that the probability of
every vector of shares of an unauthorized set is the same given any secret.

Karnin et al. [32] have showed that for each non-redundant party (that is, a
party that appears in at least one minimal authorized set) H(Si) ≥ H(S), which
implies that the size of the share of the party is at least the size of the secret.

Notation 1. We use the following notation for two sets A and Â. The set Â is
a subset of P ∪{p0} and the set A is a subset of P , where A = Â \ {p0}, that is,
if p0 /∈ Â, then A = Â, otherwise A is obtained by removing p0 from Â.

3 Csirmaz Framework for Proving Lower Bounds and Its
Limitations

3.1 Csirmaz Framework for Proving Lower Bounds

Csirmaz [18] has proved the best known lower bounds on the size of the shares
in secret-sharing schemes. Towards this goal, he presented a framework for prov-
ing lower bounds and showed how to implement this framework to prove lower
bounds for a specific access structure. The idea of the framework of Csirmaz is
to construct a linear program such that lower bounds on the value of the objec-
tive function in this program imply lower bounds on the share size. Specifically,
given an access structure A and a secret-sharing scheme realizing it, define the
function f(Â) = H(SÂ)/H(S) for every Â ⊆ P ∪ {p0}. The correctness and
privacy of the secret-sharing scheme can be translated to constrains on the func-
tion f . Namely, (1) if A ∈ A, then f(A ∪ {p0}) = f(A), and (2) if A /∈ A, then
f(A∪{p0}) = f(A)+1. Proving lower bounds on the size of the shares is equiv-
alent to proving that any n random variables S1, . . . , Sn (i.e., shares) satisfying
the above equalities imply that

∑n
i=1H(Si) is large.

Secret Sharing and Non-Shannon Information Inequalities 545

These constrains are translated to a linear program using known properties
of the entropy function, namely, information inequalities. That is, we get a set
of linear inequalities, where we want to minimize

∑n
i=1 f({pi}).

Csirmaz has constructed an access structure A that implies a linear pro-
gram in which

∑
f({pi}) = Ω(n2/ logn), thus, for at least one party f({pi}) =

Ω(n/ logn). This implies that in every secret-sharing scheme realizing A with
an �-bit secret, the share of at least one party is an Ω(� ·n/ logn)-bit string. We
next formally define and describe Csirmaz’s framework.

Definition 4. Given a secret sharing scheme over n parties, define the function
f : 2P∪{p0} → R as follow: f(Â) = H(SÂ)/H(S) for every Â ⊆ P ∪ {p0}.
The properties of the entropy function implies that f is a polymatroid as defined
below.

Definition 5. Let Q be a finite set, and g : 2Q → R be a function assigning real
numbers to subsets of Q. The system (Q, g) is a polymatroid if g satisfies the
following conditions:

non-negative: g(A) ≥ 0 for all A ⊆ Q and g(∅) = 0,
monotone: if A ⊆ B ⊆ Q, then g(A) ≤ g(B),
submodular: g(A) + g(B) ≥ g(A ∪B) + g(A ∩B) for every A,B ⊆ Q.

Proposition 1 ([25]). The function f defined in Definition 4 is a polymatroid.

Combining Proposition 1 and the properties of secret-sharing scheme we get:

Proposition 2. The function f defined in Definition 4 satisfies the following
additional inequalities for every sets A,B ⊆ P :

1. If A ⊆ B,A /∈ A, and B ∈ A, then f(B) ≥ f(A) + 1,
2. If A ∈ A, B ∈ A, but A∩B /∈ A, then f(A)+f(B) ≥ f(A∩B)+f(A∪B)+1.

3.2 Limitation of Shannon Inequalities

Csirmaz [18] has proved that using his framework with only Shannon inequalities
(which were the only information inequalities known when he published his re-
sult) one cannot prove lower bounds better than Ω(n). That is, his lower bound
is the best possible up to a factor of logn using only Shannon inequalities.

In this section we explain how Csirmaz proved this limitation. Since Csirmaz
proved his result in 1994, some non-Shannon information inequalities were dis-
covered. In Section 6 we will show that these inequalities cannot prove better
lower bounds than Ω(n) using Csirmaz’s framework.

Theorem 1. Given any access structure A on the n-element set P , there is a
polymatroid ĝ : 2P∪{p0} → R so that

1. For every A ⊆ P , ĝ(A ∪ {p0}) = ĝ(A) if A ∈ A and ĝ(A ∪ {p0}) = ĝ(A) + 1
if A /∈ A.

2. ĝ satisfies the conditions of Proposition 2,
3. ĝ({pi}) ≤ n for every pi ∈ P .

546 A. Beimel and I. Orlov

In order to prove this theorem, Csirmaz has defined a polymatroid ĝ that, on one
hand, satisfies all the conditions and, on the other hand, ĝ({pi}) = n. In other
words, Csirmaz has shown that for every access structure the linear program has
a small solution.

Definition 6 (The Csirmaz function). Let n ∈ N. Define the the Csirmaz
function Cn : {0, . . . , n}→N as follows

Cn(k) def= n+ (n− 1) + ...+ (n− k + 1) = nk +
k

2
− k2

2
.

To prove Theorem 1, Csirmaz defined g : 2P→N as g(A) def= Cn(|A|). Next, he
extended g to ĝ : 2P∪{p0}→N, where for every A ⊆ P he defined ĝ(A) = g(A),
and ĝ(A ∪ {p0}) = g(A) if A ∈ A, and ĝ(A ∪ {p0}) = g(A) + 1 if A /∈ A. It can
be checked that ĝ satisfies the conditions of the theorem. The Csirmaz function
is universal; it is used to construct a polymatroid for every access structure. We
next prove that any such universal function is at least as large as the Csirmaz
function. This lemma sheds some light why Csirmaz chose this function.

Lemma 1. Let yn : {0, . . . , n}→R be a function satisfying the following in-
equalities:

1. If A ⊆ B ⊆ Q, then yn(|B|) ≥ yn(|A|) + 1 and yn(0) = 0,
2. If A and B are subsets of Q such that A �⊆ B and B �⊆ A, then yn(|A|) +
yn(|B|) ≥ yn(|A ∩B|) + yn(|A ∪B|) + 1.

The Csirmaz Function Cn(k) is the minimal function that satisfies these require-
ments, i.e., for each 1 ≤ k ≤ n, Cn(k) ≤ yn(k).

Proof. Let A,B be two sets of k elements each that are different in exactly one
element. Thus, |A ∩B| = k−1 and |A ∪B| = k+1. From Item (2) in the lemma,
for each 0 ≤ k ≤ n

yn(k) − yn(k − 1) ≥ yn(k + 1) − yn(k) + 1.

This implies that yn(k)−yn(k−1) ≥ yn(n)−yn(n−1)+n−k for every 0 ≤ k ≤ n.
By Item (1) in the lemma, yn(|B|) ≥ yn(|A|) + 1. Thus, yn(n) − yn(n− 1) ≥ 1.
Therefore,

yn(k) − yn(k − 1) ≥ n− k + 1. (1)

By the requirement in the lemma yn(0) = 0, thus, Inequality (1) with k = 1
implies yn(1) ≥ n = Cn(1). By induction and by (1), yn(k) ≥ yn(k − 1) + n −
k + 1 ≥ Cn(k − 1) + n− k + 1 = Cn(k). �

4 When Can Information Inequalities Help?

In this section, we will define when information inequalities can help in improv-
ing lower bounds beyond Ω(n). We start with some notation; using this notation

Secret Sharing and Non-Shannon Information Inequalities 547

we will define two quantities for an information inequality, ∆ and Λ. These
quantities are used to define when an information inequality can help.

Notation 2. Let A1, . . . , Am be m (not necessarily disjoint) sets. For I ⊆ [m],
denote AI =

⋃
i∈I Ai.

Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality. Given an access struc-
ture A, we fix some secret-sharing scheme realizing it. Therefore, the function
f(Â) = H(SÂ)/H(S) where Â ⊆ P ∪ {p0} is well defined. Then, for every sets
Â1, . . . , Âm ⊆ P ∪ {p0}, the following inequality is valid

∑
I⊆[m] αIf(ÂI) ≥ 0.

Recall that for every 1 ≤ i ≤ m, we defined Ai = Âi \ {p0}. Using this notation,
f(ÂI) = f(AI) + 1 if p0 ∈ ÂI and AI /∈ A, otherwise, f(ÂI) = f(AI).

Definition 7. For an information inequality
∑

I⊆[m] αIH(XI) ≥ 0, an access

structure A, and sets Â1, . . . , Âm, define ∆ as ∆ def= −∑I:p0∈ÂI ;AI /∈A αI .

Claim 1. Let Â1, . . . , Âm be m sets,
∑

I⊆[m] αIH(XI) ≥ 0 be an information
inequality, and A be an access structure. Then,

∑
I⊆[m] αIf(AI) ≥ ∆.

Proof. Applying the rules f(ÂI) = f(AI) if p0 /∈ ÂI or AI ∈ A, and f(ÂI) =
f(AI) + 1 otherwise, the inequality

∑
I⊆[m] αIf(ÂI) ≥ 0 implies∑

I⊆[m]

αIf(ÂI) =
∑

I : p0 /∈ÂI∨AI∈A
αIf(AI) +

∑
I : p0∈ÂI∧AI /∈A

αI(f(AI) + 1)

=
∑

I⊆[m]

αIf(AI) −∆ ≥ 0. �

Observe that ∆ can be negative, positive, or equal to zero, but, as we will see
later, the information inequality can be useful only when ∆ > 0.

Definition 8. Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality. For sets

A1, . . . , Am ⊆ P define Λ as Λ def=
∑

I⊆[m] αICn(|AI |).

For every I ⊆ [m], the size |AI | depends on some of the sizes of the intersections
between the sets A1, . . . , Am. Therefore, we define additional notation in order
to represent these intersections. For an illustration of this notation see Fig. 1.

Notation 3. Let A1, . . . , Am be m (not necessarily disjoint) sets. Denote δI
def=⋂

i∈I Ai \
⋃

i/∈I A{i} and tI
def= |δI | for I ⊆ [m]. In addition, for I ⊆ 2[m], denote

δI
def=
⋃

I∈I δI .

Observation 1. δJ ⊆ Ai if and only if i ∈ J , that is, Ai = ∪i∈JδJ and AI =
∪i∈IAi = ∪I∩J 	=∅δJ .

548 A. Beimel and I. Orlov

δ{1} δ{2}

δ{3}δ{4}

δ{1,2}

δ{3,4}

δ{1,4} δ{2,3}δ{1,2,3,4}

δ{1,2,3}δ{1,2,4}

δ{1,3,4} δ{2,3,4}

A1 A2

A3
A4

(a) δ{1,2} = (A1 ∩ A2) \ (A3 ∪ A4).

δ{1} δ{2}

δ{3}δ{4}

δ{1,2}

δ{3,4}

δ{1,4} δ{2,3}δ{1,2,3,4}

δ{1,2,3}δ{1,2,4}

δ{1,3,4} δ{2,3,4}

A1 A2

A3
A4

(b) δ{{1,2},{1,3,4}} = δ{1,2} ∪ δ{1,3,4}.

Fig. 1. An illustration of Notation 3 for m = 4. For clarity of the illustration, we
assume that δ{2,4} = δ{1,3} = ∅.

Csirmaz has suggested a specific function defined in Definition 6 in order to show
the limitations of Shannon information inequalities. We will prove in Lemma 4
that any information inequality remains valid after plugging in the Csirmaz
function. That is, if

∑
I⊆[m] αIH(XI) ≥ 0 is an information inequality, then∑

I⊆[m] αICn(|AI |) ≥ 0. So, our only hope is that ∆ is “big” for some sets

Â1, . . . , Âm ⊆ P ∪ {p0} and the corresponding sets A1, . . . , Am ⊆ P , but, Λ =∑
I⊆[m] αICn(|AI |) is negative (or “small”). If this condition does not hold, then

the inequality cannot help.

Definition 9. We say that an information inequality
∑

I⊆[m] αIH(XI) ≥ 0 can

at most γ-help if ∆ ≤ γΛ for every sets Â1, . . . , Âm ⊆ P ∪ {p0} and for every
access structure A, where ∆ = −∑I:p0∈ÂI ;AI /∈A αI and Λ =

∑
I⊆[m] αICn(|AI |).

Theorem 2. Let γ > 0 be a constant. Consider a collection of information
inequalities, where each information inequality in the collection can at most γ-
help. Then, this collection of information inequalities cannot help improving the
lower bounds beyond γn even if all inequalities are used simultaneously.

Proof. Consider an access structure A and the “huge” linear program obtained
for this access structure by applying each information inequality to every choice
of subsets of the parties. We take the polymatroid g(AI) = γCn(|AI |), and we get
a solution that satisfies each inequality in the program, where g({pi}) = γn. �
When dealing with a finite collection of information inequalities, one can use a
rougher notion than an information inequality that can at most γ-help.

Secret Sharing and Non-Shannon Information Inequalities 549

Definition 10. We say that an information inequality
∑

I⊆[m] αIH(XI) ≥ 0
cannot help (in improving the lower bounds beyond Ω(n)) if for every sets
Â1, . . . , Âm ⊆ P ∪ {p0} and for every access structure A, if ∆ > 0 then Λ > 0.

Observation 2. Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality that
cannot help. Observe that∆ = −∑I:p0∈ÂI ;AI /∈A αI ≥ −∑I:p0∈ÂI ;AI /∈A;αI<0 αI .
In addition, using Lemma 3 (proved later), if Λ > 0 then there exists a constant
β > 0 that depends only on the coefficients of the information inequality (and,
therefore, independent of the access structure and the number of parties in the
access structure) such that Λ ≥ β.2 Thus, the information inequality can at most
γ-help for some constant γ > 0. If we consider a finite collection of information
inequalities, such that each inequality in the collection cannot help, then there is
a constant γ > 0 such that each inequality in the collection can at most γ-help,
and we can apply Theorem 2. Therefore, when dealing with a finite collection
of information inequalities, we will check that each inequality in the collection
cannot help; this is easier than calculating the maximal γ for each inequality.

5 Examples of Information Inequalities That Cannot Help

In this section, we demonstrate our method for proving that an information
inequality cannot help by considering two example. First, we will demonstrate
the calculations and the technique that we will use later on a simple Shannon
inequality with two random variables. The fact that this inequality cannot help
follows from Csirmaz’s proof that using only Shannon inequalities one cannot
prove better lower bounds. We reprove this result in order to supply a simple
example of our method.

We consider the inequality f(Â1)+ f(Â2) ≥ f(Â1 ∪ Â2) + f(Â1 ∩ Â2) for two
sets Â1, Â2 ⊆ P ∪ {p0}. This inequality follows from the fact that the condi-
tional mutual information is non-negative. We should calculate Λ = Cn(|A1|) +
Cn(|A2|) − Cn(|A1 ∪A2|) − Cn(|A1 ∩A2|). By Obseration 1, |A1| = t1 + t1,2,
|A2| = t2 + t1,2, |A1 ∪A2| = t1 + t1,2 + t2, and |A1 ∩A2| = t1,2.3 Furthermore,
n = t1 + t1,2 + t2. Therefore, for every A1, A2 ⊆ P

Cn(|A1|) + Cn(|A2|) − Cn(|A1 ∪A2|) − Cn(|A1 ∩A2|)
= (t1 + t1,2)

[
(t1 + t1,2 + t2) +

1
2
− (t1 + t1,2)

2

]
+ (t2 + t1,2)

[
(t1 + t1,2 + t2) +

1
2
− (t2 + t1,2)

2

]
− (t1 + t1,2 + t2)

[
(t1 + t1,2 + t2) +

1
2
− (t1 + t1,2 + t2)

2

]
− t1,2

[
(t1 + t1,2 + t2) +

1
2
− (t1,2)

2

]
= t1t2.

2 The value of β can be calculated by assigning tI = 1 whenever tI > 0.
3 For simplicity of our notation, in the rest of the paper we sometimes write t1,2 instead

of t{1,2} (and similarly for other sets).

550 A. Beimel and I. Orlov

Assume that p0 ∈ Â1, Â2. Thus, p0 ∈ Â1 ∪ Â2, Â1 ∩ Â2. Before calculating ∆ we
have to decide which sets are in the access structure. If A1 ∪A2 /∈ A, then also
A1, A2, A1∩A2 /∈ A. Thus, f(A1∪{p0}) = f(A1)+1, f(A2∪{p0}) = f(A2)+1,
f(A1 ∪A2 ∪ {p0}) = f(A1 ∪A2) + 1, and f(A1 ∩A2 ∪ {p0}) = f(A1 ∩A2) + 1.
Therefore,∆ = 0 and the inequality cannot help using these selections. However,
ifA1, A2 ∈ A, butA1∩A2 /∈ A, then f(A1∪{p0}) = f(A1), f(A2∪{p0}) = f(A2),
f(A1 ∪ A2 ∪ {p0}) = f(A1 ∪ A2), and f((A1 ∩ A2) ∪ {p0}) = f(A1 ∩ A2) + 1.
Therefore,∆ = 1 > 0 as needed. But the selection of A1, A2 ∈ A and A1∩A2 /∈ A
implies A1 \ (A1 ∩A2), A2 \ (A1 ∩A2) �= ∅ which means that t1 > 0 and t2 > 0,
thus, Λ = t1 · t2 ≥ 1 > 0 as well. In other words using these selections the
inequality cannot help. Moreover, every other set of selections cannot help to
achieve ∆ > 0 while Λ = 0.

To conclude, given an information inequality we want ∆ > 0 while Λ = 0.
By different choices of which sets are in the access structure and which sets
contain the dealer we get different values of ∆. We want choices that maximize
∆. However, notice that by choosing, for example, A1 ∈ A while A2 /∈ A, we
must have that A1 \ A2 �= ∅. Thus, the choices of which sets are in the access
structure force that certain sets are non-empty, which might imply that Λ > 0.

5.1 The Zhang and Yeung Information Inequality Cannot Help

We next consider the Zhang and Yeung information inequality [47] – the first
Non-Shannon inequality that was discovered – and prove that this inequality
cannot help in proving lower bounds of ω(n).

Theorem 3 (The Zhang and Yeung Information Inequality [47, The-
orem 3]). For every four discrete random variables X1, X2, X3, and X4 the
following inequality holds:

3 [H(X3X4) +H(X2X4) +H(X2X3)] +H(X1X3) +H(X1X2) −H(X4)
− 2 [H(X3) +H(X2)] −H(X1X4) − 4H(X2X3X4) −H(X1X2X3) ≥ 0. (2)

For every secret-sharing scheme and for every four sets Â1, Â2, Â3, Â4 ⊆ P ∪{p0}
we can consider the random variables Xi = SÂi

for i = 1, . . . , 4. Thus,

3
[
f(Â3Â4) + f(Â2Â4) + f(Â2Â3)

]
+ f(Â1Â3) + f(Â1Â2) − f(Â4)

− 2
[
f(Â3) − f(Â2)

]
− f(Â1Â4) − 4f(Â2Â3Â4) − f(Â1Â2Â3) ≥ 0. (3)

By choosing which sets contain the dealer and which sets are in the access
structure we get different values of ∆. We next apply the Csirmaz function on
Inequality (3). We use the same process described above on each one of the
terms of (3). After simplifications, we get the following polynomial Λ, which is
a multivariate polynomial whose variables are {tI : I ⊆ [m]}.

Secret Sharing and Non-Shannon Information Inequalities 551

︷ ︸︸ ︷
t1,2,3 + t21,2,3

2
+t1t1,2,3 + t1,2t1,2,3 +

︷ ︸︸ ︷
t1,2,4 + t21,2,4 +2t1t1,2,4 + 2t1,2t1,2,4 + t1,2t1,3

+ t1,2,3t1,3 +
︷ ︸︸ ︷
t1,3,4 + t21,3,4 +2t1t1,3,4 + 2t1,3t1,3,4 +

︷ ︸︸ ︷
t1,4 + t21,4

2
+t1t1,4 + 2t1,2t1,4

+2t1,2,4t1,4 + 2t1,3t1,4 + t1,3,4t1,4 + t1,2,3t2 + 2t1,2,4t2 + t1,3t2 + 2t1,4t2 + t1,2t2,3

+
︷ ︸︸ ︷
t2,3 + t22,3 +t1t2,3 + t1,2,3t2,3 + t1,3t2,3 + 2t2t2,3 +

︷ ︸︸ ︷
t2,4 + t22,4

2
+2t1t2,4 + t2t2,4

+2t1,2t2,4 + 2t1,2,4t2,4 + 2t1,4t2,4 + t1,2t3 + t1,2,3t3 + 2t1,3,4t3 + 2t1,4t3 + 2t2t3

+2t2,3t3 +

︷ ︸︸ ︷
t3,4 + t23,4

2
+2t1t3,4 + 2t1,3t3,4 + 2t1,3,4t3,4 + 2t1,4t3,4 + t3t3,4 + +t1t4

+2t1,2t4 + 2t1,2,4t4 + 2t1,3t4 + 2t1,3,4t4 + t1,4t4 + t2t4 + t2,4t4 + t3t4 + t3,4t4.

After applying the Csirmaz function we get a polynomial of degree 2 such that
all its coefficients are non-negative. We are looking for the following situation:
Λ = 0 while ∆ > 0. Since all coefficients are non-negative and tI ≥ 0 for every
I ⊆ [m], the value of Λ is zero if every monomial in Λ is zero. In particular, every
term β ·tI or β ·t2I in Λ has to be equal to zero. If the coefficient β is positive, then
tI = 0 must hold. Thus, t1,2,3 = t1,2,4 = t1,3,4 = t1,4 = t2,3 = t2,4 = t3,4 = 0. Let
Λ′ be the polynomial after setting these variables to be zero, that is,

Λ′ = t1,2t1,3 + t1,3t2 + t1,2t3 + 2t2t3 + t1t4 + 2t1,2t4 + 2t1,3t4 + t2t4 + t3t4.

The polynomial Λ′ should be zero, therefore, in the inequality above one of the
variables (i.e., set size) in each monomial has to be zero (e.g., t1,2 = 0 or t1,3 = 0).

We use a brute-force algorithm for checking if it is possible that ∆ > 0 while
Λ = 0. We have two decisions to make:

– For each i ∈ {1, . . . , 4} we should decide if p0 ∈ Âi or not.
– We have to decide which sets are in the access structure. Specifically, for each
I ⊆ [m] such that αI �= 0 in the information inequality, we need to decide
whether AI /∈ A or AI ∈ A. These decisions should be consistent with the
constrains that some sets δJ are of size zero.

Example 1. Assume thatA4 is the only minimal set in the in the access structure.
Thus, the sets that are in the access structure are exactly those that include A4.
We add the dealer to Â2 and do not add it to any other set. After committing to
these decisions we compute ∆ as specified in Definition 7, ∆ = −∑2∈I,4/∈I αI =
−(3 + 1 − 2 − 1) = −1 < 0. Thus, these decisions cannot help.

Example 2. Assume that A{1,2} and A{2,3} are the only minimal sets in the in
the access structure. This means that the sets that are in the access structure are
exactly those that include A{1,2} or A{2,3}. For example, A{1,2,3} ∈ A. We also
add the dealer to every Âi, 1 ≤ i ≤ 4. After committing to these two decisions
we compute ∆ = −∑{1,2}	⊆I∧{1,3}	⊆I αI = −(3+3+3−1−2−2−1−4) = 1 > 0.
Observe that ∆ > 0 as needed. But, A{1,2} ∈ A while A{1,3} /∈ A. This means

552 A. Beimel and I. Orlov

that A{1,2} \ A{1,3} = δ{{2},{2,4}} �= ∅. However, we have set t2,4 = 0, thus,
t2 �= 0. In a similar way, A{2,3,4} ∈ A while A{2,3} /∈ A. This means that
A{2,3,4} \ A{2,3} = δ{{4},{1,4}} �= ∅. However, we have set t1,4 = 0, thus, t4 �= 0.
Combining these two constraints we get t2 · t4 > 0, which implies Λ > 0. Thus,
as before, these decisions cannot help.

We have written a computer program that checks all the possibilities for includ-
ing the dealer in the sets and for which sets are in the access structure. The
computer program showed that for each possible combination either ∆ ≤ 0 or
Λ > 0 (or both). This means that the Csirmaz function is still a solution to the
linear program and this inequality cannot help.

6 All Known Information Inequalities Cannot Help

In this section we describe an algorithm that checks if an information inequality
cannot help. We executed this algorithm on all known information inequalities,
except for two infinite collections of inequalities, and verified that they cannot
help. Thereafter, we consider the two known infinite collections of information
inequalities and show that they can at most γ-help for some constant γ > 0.
Before presenting these results, we show how to compute the polynomial Λ effi-
ciently and analyze its properties.

6.1 Properties of the Polynomial Λ

For every information inequality
∑

I⊆[m] αIH(XI) ≥ 0 and for every sets A1, . . . ,
Am we consider the quantity Λ =

∑
I⊆[m] αICn(|AI |). By Obseration 1, |AI | =∑

I∩J 	=∅ tJ . Thus, we consider Λ =
∑

I⊆[m] αICn(
∑

I∩J 	=∅ tJ) as a polynomial
in the variables {tJ}J⊆[m]. We start with proving a property of information
inequalities that we use in the analysis of our algorithm.

Lemma 2. Let
∑

I αIH(XI) ≥ 0 be an information inequality. Then, for every
J ⊆ [m],

∑
I∩J 	=∅ αI ≥ 0.

Proof. Define a random variable Y which is uniformly distributed in {0, 1}; in
particular H(Y) = 1. Now define X1, . . . , Xm, where Xj = Y iff j ∈ J and
Xj = 0 otherwise (that is, in the latter case Xj is a deterministic variable whose
entropy is 0). This implies that H(XI) = 1 iff I ∩ J �= ∅ and H(XI) = 0
otherwise. Since the information inequality holds for every random variables,
the lemma follows. �
Lemma 3. For every information inequality the polynomial Λ is a multivariate
polynomial with total degree 2. Furthermore, the coefficient of every monomial in
Λ is non-negative and can be efficiently calculated from the information inequality
(without applying the Csirmaz function).

Proof. The fact that the polynomial Λ is a multivariate polynomial with total
degree 2 can be deduced from the structure of the Csirmaz function (see Defi-
nition 6), that is, Λ is a sum of polynomials Cn(|AI |) = Cn(

∑
I∩J 	=∅ tJ), where

Secret Sharing and Non-Shannon Information Inequalities 553

Cn(k) is polynomial of degree 2. Next, we compute the coefficients of Λ. Recall
that n =

∑
I⊆[m] tI .

Λ =
∑

I⊆[m]

αICn(|AI |) =
∑

I⊆[m]

αI

[
n |AI | + |AI |

2
− |AI |2

2

]

=
∑

I⊆[m]

αI

⎛⎝ ∑
J:I∩J 	=∅

tJ +
∑

J:I∩J=∅
tJ

⎞⎠⎛⎝ ∑
J:I∩J 	=∅

tJ

⎞⎠+
∑

I⊆[m]

αI

∑
J:I∩J 	=∅ tJ

2

−
∑

I⊆[m]

αI

(∑
J:I∩J 	=∅ tJ

)2

2

=
∑

I⊆[m]

αI

⎛⎜⎝
∑

J:I∩J 	=∅ tJ +
(∑

J:I∩J 	=∅ tJ
)2

2
+

∑
J:I∩J 	=∅

tJ ·
∑

J:I∩J=∅
tJ

⎞⎟⎠ .
We can now compute the coefficients of the monomials of the polynomial Λ:

1. βtJ : In this case β =
∑

I∩J 	=∅ αI

2 , i.e., the sum of the coefficients of sets that
include δJ . By Lemma 2 this sum is non negative.

2. βt2J : In this case β =
∑

I∩J 	=∅ αI

2 , again, this is the sum of the coefficients of
sets that include δJ .

3. βtJ tK : In this case β =
∑

I : I∩(J∪K) 	=∅ αI . That is, β is the sum of co-
efficients of sets that include at least one of tJ and tK , and by Lemma 2,
β ≥ 0. �

As all the coefficients in Λ are non-negative and all the values of tI are non-
negative, its value is always non-negative. That is,

Lemma 4. Let
∑

I⊆[m] αIH(XI) ≥ 0 be an information inequality. Then, for
every sets A1, . . . , Am ⊆ P ,

∑
I⊆[m] αICn(|AI |) ≥ 0.

6.2 An Algorithm for Checking If an Information Inequality
Cannot Help

We next present the algorithm that checks if an information inequality cannot
help. The algorithm is a brute-force algorithm that checks, for each possible
choice of adding the dealer or not adding the dealer to each set Ai and for each
possible choice AI ∈ A or AI /∈ A for each I ⊆ [m], if ∆ > 0 while it is possible
that Λ = 0. To check if Λ can equal 0 under some a specific choice, we check for
each choice tI = 0 and tI > 0 for each I ⊆ [m] if (1) Λ = 0 under this choice,
and (2) this choice is consistent with the choice of sets that are in the access
structure. The algorithm is formally described in Algorithm 1.

554 A. Beimel and I. Orlov

Input : An information inequality
∑

A⊆[m] αAH(XA) ≥ 0.
Output: “NO” if the information inequality cannot help, “YES” otherwise.

Calculate the polynomial Λ using Lemma 3;1

foreach monomial in Λ of the form βtJ where β
= 0 do set tJ = 0;2

Let Λ′ be the resulting polynomial after setting these variables.;3

foreach choice of setting AI ∈ A or AI /∈ A for each αI
= 0 in the4

information inequality do
/* If there are q terms with non-zero coefficient in∑

I⊆[m] αIH(XI) ≥ 0, there are 2q combinations. */

foreach choice of setting p0 ∈ Âi or p0 /∈ Âi for every 1 ≤ i ≤ m do5

/* There are 2m combinations. */

Calculate ∆ = −∑I:p0∈ÂI ;AI /∈A αI ;6

if ∆ ≤ 0 then go to (5);7

/* Check if it is possible that Λ = 0: */

foreach choice of setting tI = 0 or tI > 0 for every I ⊆ [m] do8

/* There are 22m

such combinations. */

foreach monomial βtJ tK in Λ′, where β
= 0 do9

if tJ > 0 and tK > 0 in the current explored combination10

then go to (8);
end11

foreach I, J where αI
= 0 and αJ
= 0 in the information12

inequality
∑

I⊆[m] αIH(XI) ≥ 0 do

if in the current explored combination AI ∈ A, AJ /∈ A, and13

there is no K ⊆ [m] such that I ∩ K
= ∅, J ∩ K = ∅, and
tK > 0 in the current explored combination then go to (8);

end14

return “YES”15

end16

end17

end18

return “NO”19

Algorithm 1. A brute-force algorithm that checks if an information inequality
cannot help.

We have executed Algorithm 1 on the following non-Shannon inequalities:

– The first Non-Shannon inequality with four variables that was discovered by
Zhang and Yeung in [47].

– The six Non-Shannon inequalities with four variables and anther one with
five variables in [23].

– The five Non-Shannon inequalities with four variables in [44].
– The inequality of Ingleton in [29].4

For each of these inequalities the result is the same – the information inequality
cannot help in proving lower bounds of ω(n).
4 The inequality of Ingleton [29] holds only for linear-algebraic spaces.

Secret Sharing and Non-Shannon Information Inequalities 555

Remark 2. The algorithm written above is not efficient. However, for our purpose
– checking information inequalities with four or five variables – the algorithm
is good enough. To be precise, the running of the computer program executing
the algorithm takes less than a minute even for an information inequality of [23]
that contains five variables. All other inequalities contain 4 variables and the
running time is better.

Remark 3. Our algorithm gives a necessary condition for an information inequal-
ity to be helpful. We do not know of an information inequality that fulfills this
necessary condition. We do have an example of a potential inequality that sat-
isfies it: H(X1X2) +H(X1X3) +H(X2X3) +H(X4) ≤ H(X1X2X3) +H(X1) +
H(X2) + H(X3X4). We stress that we do not know if this is an information
inequality. It does satisfy Lemma 2 and some stronger conditions for being an
information inequality.

6.3 Dealing with the Known Infinite Collections of Information
Inequalities

There are a few examples for infinite sequences of Non-Shannon inequalities.
The first infinite sequence of Non-Shannon inequalities was discovered by Zhang
and Yeung in [47]; they show for every n ∈ N an information inequality with n
variables. A sequence of Non-Shannon information inequalities generalizing the
result of [47] appears in [33, 46]. Finally, an infinite sequence of Non-Shannon
information inequalities with four variables was given in [44].

In [44] there is a symbolic inequality with four variables, where some of the
coefficients are a function of a parameter s. This inequality is an information
inequality for every assignment s ∈ N+. For example, for s = 2 it yields the
Zhang and Yeung information inequality [47]. For this symbolic information
inequality, we computed the symbolic polynomial Λ and proved that there is
a constant γ > 0 such that for every s ∈ N+ the information inequality with
parameter s can at most γ-help. We used a similar technique to deal with the
infinite sequence presented in [46] that is more general than the infinite sequences
presented in [47, 33]. For these sequences the result is that there is a constant
γ > 0 such that every inequality in the sequence can at most γ-help.

Using Theorem 2 we conclude that all the known information inequalities
cannot help in proving lower bounds of ω(n) on the size of the shares in secret-
sharing schemes.
Theorem 4. The information inequalities of [29, 47, 33, 46, 23, 44] cannot
help in proving lower bounds of ω(n) even if they are used simultaneously.

Acknowledgment. We thank the anonymous TCC referees for valuable com-
ments.

References
[1] Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone

span programs. Combinatorica 19(3), 301–319 (1999)
[2] Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. on

Info. Theory 40(3), 786–794 (1994)

556 A. Beimel and I. Orlov

[3] Beimel, A., Franklin, M.: Weakly-private secret sharing schemes. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 253–272. Springer, Heidelberg (2007)

[4] Beimel, A., Livne, N., Padró, C.: Matroids can be far from ideal secret sharing. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 194–212. Springer, Heidelberg
(2008)

[5] Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified ac-
count of classical secret-sharing goals. In: 14th CCS, pp. 172–184 (2007)

[6] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: 20th STOC, pp. 1–10 (1988)

[7] Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

[8] Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the 1979 AFIPS
National Computer Conference, pp. 313–317 (1979)

[9] Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. Theoretical Computer Science 154(2), 283–306 (1996)

[10] Blundo, C., De Santis, A., Vaccaro, U.: On secret sharing schemes. Inform. Pro-
cess. Lett. 65(1), 25–32 (1998)

[11] Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combin. Math. and
Combin. Comput. 6, 105–113 (1989)

[12] Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares
for secret sharing schemes. J. of Cryptology 6(3), 157–168 (1993)

[13] Chan, T.H., Yeung, R.W.: On a relation between information inequalities and
group theory. IEEE Trans. on Info. Theory 48(7), 1992–1995 (2002)

[14] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols. In: 20th STOC, pp. 11–19 (1988)

[15] Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. of Cryptol-
ogy 6(2), 87–96 (1993)

[16] Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Chichester (1991)

[17] Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computa-
tion from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

[18] Csirmaz, L.: The size of a share must be large. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg (1995)

[19] Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia
Sci. Math. Hungar. 32(3–4), 429–437 (1996)

[20] Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer,
Heidelberg (1992)

[21] van Dijk, M.: A linear construction of perfect secret sharing schemes. In: De Santis,
A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 23–34. Springer, Heidelberg
(1995)

[22] van Dijk, M.: On the information rate of perfect secret sharing schemes. Designs,
Codes and Cryptography 6, 143–169 (1995)

[23] Dougherty, R., Freiling, C., Zeger, K.: Six new non-Shannon information inequal-
ities. In: ISIT 2006, pp. 233–236 (2006)

[24] Dougherty, R., Freiling, C., Zeger, K.: Networks, matroids, and non-Shannon in-
formation inequalities. IEEE Trans. on Info. Theory 53(6), 1949–1969 (2007)

[25] Fujishige, S.: Polymatroidal dependence structure of a set of random variables.
Information and Control 39(1–3), 55–72 (1978)

Secret Sharing and Non-Shannon Information Inequalities 557

[26] Gál, A.: A characterization of span program size and improved lower bounds for
monotone span programs. Computational Complexity 10(4), 277–296 (2002)

[27] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: 13th CCS, pp. 89–98 (2006)

[28] Guille, L., Chan, T.H., Grant, A.: The minimal set of Ingleton inequalities. Tech-
nical Report 0802.2574, arxiv.org (2008), http://arxiv.org/abs/0802.2574

[29] Ingleton, A.W.: Conditions for representability and transversability of matroids.
In: Proc. Fr. Br. Conf. 1970, pp. 62–67. Springer, Heidelberg (1971)

[30] Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Globecom 1987, pp. 99–102 (1987)

[31] Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th IEEE
Structure in Complexity Theory, pp. 102–111 (1993)

[32] Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. on Info. Theory 29(1), 35–41 (1983)

[33] Makarychev, K., Makarychev, Y., Romashchenko, A., Vereshchagin, N.: A new
class of non-Shannon type inequalities for entropies. Communications in Informa-
tion and Systems 2(2), 147–166 (2002)

[34] Matúš, F.: Infinitely many information inequalities. In: IEEE International Sym-
posium on Information Theory 2007, pp. 41–44 (2007)

[35] Matúš, F.: Two constructions on limits of entropy functions. IEEE Trans. on Info.
Theory 53(1), 320–330 (2007)

[36] Naor, M., Wool, A.: Access control and signatures via quorum secret sharing.
IEEE Transactions on Parallel and Distributed Systems 9(1), 909–922 (1998)

[37] Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
[38] Rabin, M.O.: Randomized Byzantine generals. In: Proc. of the 24th IEEE Symp.

on Foundations of Computer Science, pp. 403–409 (1983)
[39] Riis, S.: Graph entropy, network coding and guessing games. Technical Report

0711.4175, arxiv.org (2007), http://arxiv.org/abs/0711.4175
[40] Shamir, A.: How to share a secret. Comm. of the ACM 22, 612–613 (1979)
[41] Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical

Journal 28(4), 656–715 (1949)
[42] Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret

schemes. Bulletin of the ICA 1, 71–88 (1991)
[43] Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. Technical Report 2008/290, Cryptology ePrint
Archive (2008), http://eprint.iacr.org/

[44] Xu, W., Wang, J., Sun, J.: A projection method for derivation of non-Shannon-
type information inequalities. In: ISIT 2008, pp. 2116–2120 (2008)

[45] Yeung, R.W.: A First Course in Information Theory. Springer, Heidelberg (2006)
[46] Zhang, Z.: On a new non-Shannon type information inequality. Communications

in Information and Systems 3(1), 47–60 (2003)
[47] Zhang, Z., Yeung, R.W.: On characterization of entropy function via information

inequalities. IEEE Trans. on Info. Theory 44(4), 1440–1452 (1998)

http://arxiv.org/abs/0802.2574
http://arxiv.org/abs/0711.4175
http://eprint.iacr.org/

Weak Verifiable Random Functions

Zvika Brakerski1, Shafi Goldwasser1,2,�,
Guy N. Rothblum2,��, and Vinod Vaikuntanathan2,3,� � �

1 Weizmann Institute of Science
2 CSAIL, MIT
3 IBM Research

Abstract. Verifiable random functions (VRFs), introduced by Micali,
Rabin and Vadhan, are pseudorandom functions in which the owner of
the seed produces a public-key that constitutes a commitment to all val-
ues of the function and can then produce, for any input x, a proof that
the function has been evaluated correctly on x, preserving pseudoran-
domness for all other inputs. No public-key (even a falsely generated
one) should allow for proving more than one value per input.

VRFs are both a natural and a useful primitive, and previous works
have suggested a variety of constructions and applications. Still, there
are many open questions in the study of VRFs, especially their relation
to more widely studied cryptographic primitives and constructing them
from a wide variety of cryptographic assumptions.

In this work we define a natural relaxation of VRFs that we call weak
verifiable random functions, where pseudorandomness is required to hold
only for randomly selected inputs. We conduct a study of weak VRFs,
focusing on applications, constructions, and their relationship to other
cryptographic primitives. We show:

– Constructions. We present constructions of weak VRFs based on
a variety of assumptions, including general assumptions such as (en-
hanced) trapdoor permutations, as well as constructions based on
specific number-theoretic assumptions such as the Diffie-Hellman as-
sumption in bilinear groups.

– Separations. Verifiable random functions (both weak and stan-
dard) cannot be constructed from one-way permutations in a black-
box manner. This constitutes the first result separating (standard)
VRFs from any cryptographic primitive.

– Applications. Weak VRFs capture the essence of constructing non-
interactive zero-knowledge proofs for all NP languages.

� Supported by NSF grants CCF-0514167, CCF-0635297, NSF-0729011, the Israel
Science Foundation 700/08 and the Chais Family Fellows Program.

�� Supported in part by NSF grants CCF-0635297, CNS-0430336, NSF-0729011, Is-
rael Science Foundation 700/08 and a Symantec Graduate Fellowship.

� � � Supported in part by NSF grants CCF-0635297 and Israel Science Foundation
700/08.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 558–576, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

Weak Verifiable Random Functions 559

1 Introduction

Verifiable random functions (VRFs) were introduced by Micali, Rabin and Vad-
han [1]. A VRF is a pseudorandom function (see Goldreich, Goldwasser and
Micali [2]), that also enables a verifier to verify, given input x, output y and
a proof, that the function has been computed correctly on x. The VRF’s seed
(or secret key) SK is associated with a public key PK. As usual, SK can be
used to compute the function’s output y = FSK(x) on input x, but it is also
used to generate a proof of correctness π = ΠSK(x). This proof can be used in
conjunction with PK to convince a verifier that y is indeed the correct output
on input x with respect to the public-key PK. Further, it is guaranteed that
the verifier cannot accept two different values for an input x, even if PK is gen-
erated dishonestly. In other words, any string interpreted as a public-key of a
VRF constitutes a commitment to at most one output per input.

VRFs are a natural primitive that combines the properties of pseudorandom-
ness and verifiability; however, constructions of VRFs have been few and far
between (see related work). In particular, unlike many central and natural cryp-
tographic primitives, there are no known constructions of VRFs based on more
general assumptions, such as the existence of a one-way function, or even the
strong assumption of trapdoor permutations.

1.1 This Work

We propose a relaxation of VRFs, which we call weak verifiable random func-
tions (or WVRF). Informally, a weak VRF is similar to a VRF, except that
while VRFs require the output to be pseudo-random for adversarially chosen in-
puts, weak VRFs only require pseudorandomness to hold for random inputs (see
Section 2 for the formal definition). Thus, weak VRFs are a natural relaxation
of VRFs, analogous to the relaxation of weak pseudorandom functions (without
verifiability), proposed by Naor and Reingold [3].

This work is a study of the power of weak VRFs. We present applications
to building non-interactive zero-knowledge proofs by showing that the existence
of non-interactive zero-knowledge proofs for all of NP in the common random
string model is essentially equivalent to the existence of weak verifiable ran-
dom functions in the standard model (i.e. without setup assumptions). Thus,
we provide a new and conceptually simpler methodology for constructing and
analyzing non-interactive zero-knowledge proof systems. We proceed by showing
constructions of weak verifiable random functions from a variety of cryptographic
assumptions (ones that are not known to imply standard VRFs). Finally, we
present a black-box separation from other widely-studied cryptographic primi-
tives (namely one-way permutations). These separations are also the first known
separations of standard VRFs from any other cryptographic primitive. We pro-
ceed with an overview of each of these contributions.

Weak VRFs and NIZK. We begin by showing an intimate connection between
weak VRFs and the study of non-interactive zero-knowledge proofs (NIZKs) for
all NP languages (with an efficient-prover and in the common random string

560 Z. Brakerski et al.

model). In one direction, we show that a weak VRF can be used to construct
a NIZK for any NP language. This construction is based on the methodology
of Feige, Lapidot and Shamir [4], and shows that weak VRFs can be used to
implement their hidden-bits model. In a nutshell, to implement the hidden-
bits model, we need a method for a prover (with a secret key) and a verifier
(with a public key) to interpret a common random string as a sequence of bit
commitments. Towards this end, we give the verifier a public key that guarantees
that the commitments are binding, and the prover a secret key that allows non-
interactive de-commitment. Weak VRFs are a natural solution to this problem.
Modulo the technical details, we can implement the hidden-bits model by taking
a random bit sequence x to be a commitment to the output of the weak VRF on
input x. The verifier, given the weak VRF’s public key, is guaranteed binding, and
the pseudo-randomness (even though it only holds for random inputs) guarantees
hiding. There is a subtle technical problem with the above construction, where
the prover may choose a particularly badly formed public key, this is resolved
using a certification technique due to Bellare and Yung [5].

Lemma 1. If there is a family of weak verifiable random functions, then there
are efficient-prover non-interactive zero-knowledge proofs in the common random
string model for all of NP.

In the other direction, we show that given a construction of (efficient-prover)
NIZKs for all NP languages, and given also an injective one-way function, we
can construct a weak VRF.1 First recall that the existence of injective OWFs
implies the existence of (ordinary) pseudorandom functions (PRFs) and non-
interactive perfectly binding commitment schemes. The WVRF is as follows:
the generator produces a seed for a PRF and uses it as secret key. The public
key is a commitment to that seed. For a random input we use a part of the
input as an input to the PRF. The weak VRF’s output will be the output of the
PRF on this input. The second part of the input is used as a CRS for a NIZK
proof. The novelty of this construction is observing that since pseudorandomness
should only hold when the adversary sees randomly distributed samples, the
input can be used as an “honest” source of randomness (CRS in this case).
Weak pseudorandomness follows, therefore, from the zero-knowledge property.

Lemma 2. If there exist injective one-way functions and efficient-prover non-
interactive zero-knowledge proofs in the common random string model for all of
NP, then there is a family of weak verifiable random functions.

Thus, weak VRFs and efficient prover NIZK proof systems are essentially equiv-
alent. We hope that weak VRFs, being a “clean” and natural primitive, will
prove to be a useful tool or abstraction leading to new constructions of NIZK
proof systems. See Section 3 for all details of the above relationship.

1 In fact, we can replace the injective one-way function with a standard one-way
function by either (a) allowing the prover and verifier to be non-uniform or (b)
using derandomization assumptions (see Barak, Ong and Vadhan [6]).

Weak Verifiable Random Functions 561

Constructing Weak VRFs. We show efficient constructions of weak VRFs based
on a variety of assumptions. We consider both general assumptions, such as
the existence of enhanced trapdoor permutations, and specific number-theoretic
assumptions such as the bilinear decisional Diffie-Hellman (BDDH) assumption.
We note that none of the assumptions we use to construct weak VRFs are known
to imply the existence of (strong) VRFs.

The first construction is a black-box construction using any (enhanced) trap-
door permutation, obtaining WVRFs with arbitrary long (polynomial) output
length.2 The second construction (with a single output bit) is based on the bilin-
ear Diffie-Hellman assumption. In contrast, all known constructions of (strong)
VRFs from bilinear maps make substantially stronger assumptions.

We note that these constructions are implicit in known constructions of non-
interactive zero-knowledge proofs from trapdoor permutations in [4] and based
on bilinear maps on elliptic curves in [7]. This is not surprising in light of the
equivalence to NIZK proof systems, and in fact further reinforces our belief that
weak VRFs are a natural primitive to focus on when constructing non-interactive
zero-knowledge proofs.

See Section 4 for the full details of all the above constructions.

Black-Box Separations. Finally, we initiate a study of the relationship between
weak VRFs and more extensively studied cryptographic primitives. We show that
there are no black-box constructions of weak VRFs from one-way permutations
(OWPs). We note that, given that both pseudorandom functions and signature
schemes can be (black-box) constructed even from one-way functions [2,8,9,10],
one might have hoped that it is possible to combine both the pseudorandomness
and the verifiability properties and to construct weak VRFs (or even standard,
strong VRFs) from one-way functions. However, while in signature schemes ver-
ifiability is guaranteed if the public-key has been selected properly, in VRFs we
require verifiability even for adversarial ones. Indeed, our result shows that this
cannot be done. We note that this is also the first separation result for (strong)
VRFs, and thus sheds light on their complexity as well.

Formally, we show a black-box separation (see related work) between weak
VRFs and OWPs. In fact we show this even for weak verifiable unpredictable
functions, where pseudo-randomness is replaced with unpredictability.

Theorem 1 (informal). There is no black-box construction of weak VRFs from
OWPs.

We prove this theorem by showing that any black-box construction of weak VRF
fails with respect to some oracle implementing a OWP. From this result it follows
immediately that VRFs also cannot be black-box reduced to OWPs.

This result differs from previous work on black-box separations (see related
work below) in several ways. Unlike the seminal result of Impagliazzo and Rudich
separating one-way permutations and key agreement protocols [11], we do not

2 Note that we can always increase the output length of weak VRFs by concatenating
multiple instances, but here this is done without increasing the key lengths.

562 Z. Brakerski et al.

show a relativizing separation. That is, we do not prove that there exists a oracle
relative to which OWPs exist but weak VRFs do not. Moreover, our method is
also different from the one introduced by Gertner, Malkin and Reingold [12] for
proving a separation between trapdoor predicates and trapdoor functions. There,
each construction is tailored with an oracle relative to which it is proved insecure.
Informally speaking, we show that there exists an oracle O (that implements a
OWP and encodes an NP-hard oracle) such that any construction that is correct
(namely, both complete and sound) with respect to all one-way permutation
oracles, fails to be pseudorandom with respect to O (see the proof intuition
below for more details).

We remark that since we show that (enhanced) trapdoor permutations imply
weak VRFs, it also follows from our separation that there is no black-box con-
struction of such trapdoor permutations from one-way permutations. While this
was already known as a corollary from [11], our proof is simpler (albeit somewhat
more restricted).

Proof Intuition. Our adversary works by “reverse engineering” the oracle queries
made by the secret and public key generator of the weak VRF. Essentially, what
we want to do, is use the oracle (that can solve NP-hard problems) to find a
“fake” secret-key corresponding to the given public key. This fake secret key
will later be used (by the adversary) to predict the outputs of the weak VRF.
The intuition is that these predictions (by the fake secret key) should be correct
because they match the same public key as the one used with the “real” secret
key. Note that this holds because we are assuming here strong “completeness”
of the key generation algorithm: namely, it always (with probability 1) generates
a valid secret-public key pair, and so even the fake secret key that we found
“should” generate correct outputs. We need this completeness property (which
all our constructions possess) to prove our separation result.

The problem we face is that the key-generator is itself an oracle circuit, and
thus we cannot simply find a fake secret key that corresponds to the given public
key and the given OWP oracle. We can, however, use our ability to solve NP-
hard problems (via the given oracle) to find a fake secret key that matches the
given public key and a (slightly) different oracle, by changing the oracle’s answers
on queries made by the key generator. Consider an oracle query that was made
by the generator, and consider the case of changing the answer for this query in
a way that does not affect the public key. This change may affect some values
of the function, and so we are no longer guaranteed that the function’s output
on the real and fake secret key are the same. Note, however, that the function’s
output can only change when the verification algorithm makes an oracle query to
a value whose output has changed. This follows from the weak VRF’s soundness:
the verification algorithm must make such an oracle query in order to tell the two
cases apart. Therefore, if we take enough random samples, run the verification
algorithm and “collect” its OWP oracle queries, we’d have a bank of “common”
queries that holds all queries that affect a large portion of the values of the
function. Then we can find, using the NP-hardness of the oracle, a secret key
and simulated values to all other queries made by the generator (answers to

Weak Verifiable Random Functions 563

the “common” queries are unchanged) that yield the same public-key. Changing
these “uncommon” values, however, would not affect the value of the function
almost anywhere, and thus we can use the fake secret key we found to predict
the value of the function on a random point.

1.2 Related Work

Verifiable Random Functions. Bellare and Goldwasser [13] present a signature
scheme based on combining a PRF and a NIZK proof system. While their scheme
implies a PRF with verifiability properties, a falsely generated verification-key
may enable the prover to make the verifier accept more than one output per input.
Thus this construction falls short of the soundness requirement for a VRF.

Known constructions of VRFs are due to [1] based on strong RSA, Lysyan-
skaya [14] based on a strong version of the Diffie-Hellman assumption in bi-
linear groups, Dodis [15] based on the sum-free generalized DDH assumption,
and Dodis and Yampolskiy [16] based on the bilinear Diffie-Hellman inversion
assumption.3

Variants of VRFs have also been proposed and used for various applica-
tions, for instance the notion of of simulatable VRFs, introduced by Chase and
Lysyanskaya [17], which were used to compile any single-theorem non-interactive
zero-knowledge proof for a language L into a many-theorem non-interactive
zero-knowledge proof for the same L. We stress that simulatable VRFs are de-
fined in the public-parameters model and are incomparable to standard VRFs.

Non-Interactive Zero-Knowledge and Related Primitives. Non-interactive zero-
knowledge proofs (NIZK)4, introduced by Blum, Feldman and Micali [18], are
proof systems where the prover P sends a single message to the verifier V to
convince V of an (NP) statement, while conveying no more knowledge to the ver-
ifier except that the statement is true. NIZK proof systems have been immensely
useful, including in the construction of non-malleable and chosen-ciphertext se-
cure encryption schemes [19,20,21,22,23,24,25], signature schemes [13] and more.
There have been a handful of constructions of NIZK proof systems from the time
they were introduced, based on specific number theoretic assumptions and based
on general assumptions (see below).

Specific number-theoretic assumptions that imply NIZKs include quadratic
residuosity [18], the computational Diffie-Hellman assumption on (prime-order)
bilinear groups due to Canetti, Halevi and Katz [7], and constructions due to
Groth, Ostrovsky and Sahai based on the subgroup-decisional assumption on
composite-order bilinear groups [26], and on the decisional linear assumption on
(prime-order) bilinear groups [27].

3 We note that both [1] and [16] construct VRFs with polynomial-size domains and
later extend it to arbitrary domains via a tree-based construction, which impacts
their efficiency.

4 We stress that here we are dealing with computational NIZK proofs, as opposed to
statistical NIZK arguments. In the latter, the soundness property holds only against
cheating provers that are computationally bounded.

564 Z. Brakerski et al.

Many works have investigated constructions of NIZK proofs based on general
assumptions – these include the construction of [4] based on (enhanced) trapdoor
permutations (improved by Kilian and Petrank [28] for better efficiency), and
more recently, the construction of [7] based on what they call verifiable trapdoor
predicates. Both these constructions use primitives that have an explicit trapdoor
structure which may not be inherent. Dwork and Naor [29] showed that NIZK
proof systems can be constructed using a (strong) VRF (Dodis and Puniya [30]
show an alternative construction by going through their notion of a verifiable
random permutation). Our construction is from a weak VRF and is much more
direct.

Goldwasser and Ostrovsky [31] proposed a new primitive called invariant sig-
nature schemes and showed that in the CRS model they are equivalent to non-
interactive zero-knowledge proofs for all of NP. In [29], verifiable pseudorandom
generators (VPRGs) are presented and shown to be equivalent to NIZK proofs in
the CRS model. A VPRG is essentially a pseudorandom generator, such that the
owner of the seed can post proofs of correctness for subsets of the generated bits,
while maintaining hiding of the rest of them. It is shown that the existence of
VPRGs in the CRS model is equivalent to the existence of NIZK in that model.
Approximate VPRG is a variant of this notion, where the soundness requirement
of the proof is relaxed. Approximate VPRGs in the standard model exist if and
only if NIZK exists in the CRS model.

Black-Box Separations. A black-box reduction from primitive A to primitive B
is essentially a construction of A that uses an oracle to B, such that the security
of B implies the security of A. Most known reductions between cryptographic
primitives are black-box. In [11], it was shown for the first time that it is possible
to rule out the existence of black-box reductions between some primitives.5 Such
proofs of impossibility are referred to as black-box separations. Their result has
been followed by many others, showing impossibility of various classes of black-
box reductions between various cryptographic primitives and protocols. For a
classification of black-box reductions (and separations), we refer the reader to
the work of Reingold, Trevisan and Vadhan [32].

2 Preliminaries and Definitions

Verifiable Random Functions. We use the definition of verifiable random func-
tions from Micali, Rabin and Vadhan [1]. A key feature of VRFs is their sound-
ness property: soundness requires that no two distinct values can be proven to be
FSK(x), for any PK, and any x, even ones that are adversarially chosen. This
is a crucial difference between VRFs and other cryptographic primitives such as
encryption and digital signatures, where the public/secret-keys are assumed to
be chosen correctly. For a formal definition of VRFs, we refer the reader to [1].
5 Specifically, [11] show that there is no relativizing reduction from secure key-

agreement protocols to one-way permutations, thus ruling out black-box reductions
where the proof of correctness is also black box. This has been improved by [32] to
also rule out cases where the proof of correctness has “some” non-black-boxness.

Weak Verifiable Random Functions 565

Weak Verifiable Random Functions. Weak verifiable random functions maintain
the key feature of VRFs, namely that even if the public-key PK is adversarially
chosen, it is impossible for the adversary (even one who knows SK) to prove
that y = FSK(x) and y′ = FSK(x) for two different y and y′. However, in the
case of weak VRFs, we relax this condition slightly by saying that for every
PK, the completeness and soundness conditions hold for most inputs x (and
not necessarily all the inputs, as in the case of standard VRFs). We stress that
there are no public-keys PK for which the completeness and/or the soundness
conditions fail on a large fraction of inputs.

The other major difference between the definitions of weak VRFs and stan-
dard VRFs is in the pseudorandomness condition: whereas in the case of VRFs,
pseudorandomness holds against an adversary that can adaptively choose inputs
x and obtain evaluations FSK(x), the weak VRF adversary gets evaluations of
FSK(x) on random values x. This is in the spirit of weak PRFs presented in [3].

Definition 1 (Weak Verifiable Random Function). A family of functions
F = {fs : {0, 1}n(k) → {0, 1}m(k)}s∈{0,1}k is a family of weak verifiable random
functions with security parameter k if there exist algorithms (G,F,Π, V) such
that: the key-generation algorithm G(1k) is a PPT algorithm that outputs a pair
of keys (PK,SK); the function-evaluator FSK(x) is a deterministic algorithm
that outputs fSK(x); the Prover ΠSK(x) is a deterministic algorithm that outputs
a proof of correctness π and the Verifier V (PK, x, y, π) is a PPT algorithm that
either accepts or rejects a purported proof π of the statement “y = FSK(x)”.

We require the following:

1. (Relaxed) Completeness: for all (PK,SK) ← G(1k) and for all but a 2−k

fraction of x’s, if y = FSK(x) and π = ΠSK(x), then Pr[V (PK, x, y, π) =
accept] ≥ 1− 2−k. The probability here is taken over the random coins of V .

2. (Relaxed) Soundness: for all PK and for all but a 2−k fraction of x’s, and
for all y1, y2, π1, π2 such that y1 �= y2, Pr[V (PK, x, yi, πi) = accept] ≤ 2−k

for at least one i ∈ {1, 2}.
3. Weak Randomness: let A be a PPT algorithm, and let p(k) be any polynomial.

Then, the probability that A succeeds in the following experiment is at most
1
2 + negl(k):

(PK,SK) ← G(1k)
Choose x1, x2, . . . , xp(k)

R← {0, 1}n(k), x∗ R← {0, 1}n(k) and b R← {0, 1}.
If b = 0, set y∗ = FSK(x∗), otherwise set y∗ R← {0, 1}m(k)

b′ ← A(1k, PK, {xi, FSK(xi), ΠSK(xi)}p(k)
i=1 , x

∗, y∗)
A succeeds if b′ = b.

Weak verifiable unpredictable functions (VUF) are the same as the above, ex-
cept that the weak randomness requirement is replaced by the weak unpredictabil-
ity requirement below.

3′. Weak Unpredictability: Consider the following experiment with the adversary
A, and let p(k) be any polynomial.

566 Z. Brakerski et al.

(PK,SK) ← G(1k)
Choose x1, x2, . . . , xp(k) ← {0, 1}n(k), x∗ ← {0, 1}n(k).
y∗ ← A(1k, PK, {xi, FSK(xi), ΠSK(xi)}p(k)

i=1 , x
∗)

A succeeds if y∗ = FSK(x∗). We require that the probability that A succeeds
is at most negl(k).

3 Weak Verifiable Random Functions and NIZK Proofs

In this section, we show that weak verifiable random functions and non-interactive
zero-knowledge proofs are essentially equivalent. First, in Lemma 2, we construct
a weak VRF given a non-interactive zero-knowledge (NIZK) proof system for all
of NP (with an efficient prover, in the common random string model) and an in-
jective one-way function. Secondly, in Lemma 1, we construct NIZK proof systems
for every NP language, given any weak VRF.

Lemma 2 (restated). If there exist injective one-way functions and efficient-
prover non-interactive zero-knowledge proofs in the common random string model
for all of NP , then there is a family of weak verifiable random functions.

Proof. The construction is very similar to the construction of a signature scheme
from (enhanced) trapdoor permutations, due to [13]: the difference is that in [13],
the common random string for the NIZK proof system is part of the public-key
of the resulting signature scheme, whereas in our case, it is part of the input.
Informally speaking, the reason for this difference is that in a signature scheme,
the public-key is completely trusted, whereas this is not the case for (both strong
and weak) VRFs.

The key-generation algorithm picks s and s′, two independent seeds for a
pseudorandom function. The public-key PK for the WVRF is the commitment
of the seed s, using randomness ρ. The secret-key SK is (s, ρ, s′). Namely, PK =
com(s; ρ) and SK = (s, ρ, s′). The function FSK(r||x) parses its input as r and
x and outputs fs(x). The proof generator Π does the following: define the NP
language

L = {(PK, x, y) | ∃s, ρ such that PK = com(s; ρ) AND y = fs(x)}
Π runs the prover algorithm for the NIZK proof system for the language L using
r as the common random string. The randomness of the prover is fs′(x), and the
output of the prover is the proof π. It is easy to see that given SK and x, the
proof-generator Π is deterministic. The verifier V , given PK, x, y and π, runs
the NIZK verifier on input the statement (PK, x, y) and the proof π and accepts
if and only if the NIZK verifier accepts.

This construction assumes a pseudorandom function (which can be constructed
from any one-way function [2,8]) and a non-interactive commitment scheme (which
can be constructed from any injective one-way function, see Blum and Micali [33]).

Completeness of the WVRF follows from the perfect completeness of the NIZK
proof system. Pseudorandomness follows via a standard hybrid argument, which
we omit for lack of space.

Weak Verifiable Random Functions 567

Relaxed soundness follows from the perfect binding of the commitment scheme
and the soundness of the NIZK proof system. Slightly more precisely, given any
PK, there is at most one s such that PK ∈ com(s; ·) (where com(s; ·) denotes
the set of all commitments of the string s). Thus, for all y′ �= fs(x), it follows
that (PK, x, y′) /∈ L. By the soundness of the NIZK proof system, this means
that with high probability over the input (that is, over r) the verifier will not
accept any purported proof of the statement (PK, x, y′) with high probability
over its coin-tosses. �
Next, we show how to construct NIZK proofs for all of NP from any weak VRF.
We do this by implementing the hidden-bit model of [4] using any weak VRF.

Lemma 1 (restated). If there is a family of weak verifiable random functions,
then there are efficient-prover non-interactive zero-knowledge proofs in the com-
mon random string model for all of NP.

Informally, the idea for implementing the hidden-bits proof system is to let
the prover P choose a pair of keys (PK,SK) for the weak verifiable random
function, and let the hidden bits (b1, . . . , bm) (for some m = poly(n)) be defined
as bi = FSK(ri), where (r1, . . . , rm) is the first part of the common random
string. The prover can reveal any subset of the bits, simply by giving the verifier
the proof ΠSK(ri) for the corresponding bits.

One potential problem is that the prover can select (PK,SK) depending on
the common random string and potentially violate soundness. This is solved in
the standard way of [4] by reducing the soundness error of the NIZK proof in
the hidden-bit model.

A more subtle problem is that the prover may select (PK,SK) such that
FSK(·) is heavily unbalanced, thus introducing a bias into the distribution of the
hidden bits. We handle this in a way that is similar to a certification procedure
developed in [5].

We refer the reader to the full version [34] for a complete proof of this lemma.

4 Constructions of Weak Verifiable Random Functions

In this section, we show two efficient constructions of weak verifiable random
functions (WVRF), as outlined in the introduction.

Construction from Trapdoor Permutations. For simplicity, we describe the con-
struction from any (enhanced) certified trapdoor permutation, namely given a
function f , it is possible in polynomial time to check that f indeed defines a
one-to-one and onto function. This construction can be made to work with any
(enhanced) trapdoor permutation, using a certification procedure of Bellare and
Yung [5].

Let (f, f−1) be an enhanced certified trapdoor permutation. Then, the con-
struction of a WVRF (G,F,Π, V) is as follows: The key-generation algorithm
G, on input 1k, outputs PK = f , and SK = f−1, where (f, f−1) is a random
trapdoor permutation together with its trapdoor. Let f−i(x) denote the result

568 Z. Brakerski et al.

of f−1 applied i times to the input x. FSK parses its input as (x, r), and outputs
(b1, . . . , b�) where bi = 〈f−i(x), r〉. ΠSK(x, r) outputs f−(�+1)(x). The verifica-
tion algorithm V , given PK, (x, r) and y, accepts if and only if 〈f i(π), r〉 = b�−i+1
for all 1 ≤ i ≤ � and f �+1(π) = x.

To sketch the proof of this construction, observe that perfect completeness is
immediate. Soundness follows from the fact that f is a (certified) permutation.
Pseudorandomness follows from the one-wayness of f , as well as the fact that
we use the Goldreich-Levin hardcore bit.

Construction from the Computational Diffie-Hellman Assumption in Gap-DDH
groups. Let G and G′ be groups of prime order q, with a bilinear map e : G×G →
G′. Let g be a generator of G. The WVRF (G,F,Π, V) is defined as follows: the
key-generation algorithm G(1k) outputs PK = ga and SK = a, where a is a
random element in Zq. FSK(r) uses r to sample a random element R in G, 6

and outputs a hardcore bit of Ra (for example, the most significant bit of Ra).
ΠSK(r) simply outputs Ra. The verification algorithm, on input PK, x, y and
π, accepts if e(PK, x) = e(g, π) and y is the hardcore bit of π.

The fact that this is a weak VRF follows from the Diffie-Hellman assumption.
The formal proof is omitted from this extended abstract.

5 Separations

In this section, we show a black-box separation between weak verifiable unpre-
dictable functions (weak VUFs) and one-way permutations. Recall that both
weak and standard VRFs are in particular also weak VUFs, and that weak
VRFs can be constructed in a fully black-box manner from (enhanced) trapdoor
permutations (eTDPs, see Section 4). This result, therefore, implies a separation
between weak VRFs, standard VRFs and eTDPs and one-way permutations.

Technically, we show that there is no semi black-box reduction (a notion de-
fined in [32], included below) from a weak VUF to a one-way permutation. In
other words, we show that for every construction of a weak VUF from a one-way
permutation, there is an oracle (which possibly depends on the construction)
such that the construction fails with respect to the oracle.7

Definition 2 ([32]). A tuple of oracle algorithms (G,F,Π, V) is a Semi-BB
reduction from weak verifiable unpredictable functions to one-way permutations:

– Correctness. For every permutation O, (GO, FO, ΠO, V O) has (relaxed)
completeness and soundness as in Definition 1.

– Security. For every permutation O, if there exists a PPT oracle machine
A such that AO predicts (GO, FO, ΠO, V O) in the sense of Definition 1,
then there exists a PPT oracle machine S such that SO inverts O with
non-negligible probability.

6 In the case where G is a subgroup of an elliptic curve group, the sampling can be
done efficiently. See the full version [34] for details.

7 We note that our reduction does not preclude a relativizing reduction. Ruling out a
relativizing reduction involves constructing an oracle relative to which no secure weak
VUF exists. For more details on the different types of black-box reductions, see [32].

Weak Verifiable Random Functions 569

Using the definition above, we can formally state our claim. We show that the
following holds.

Theorem 1 (formally stated). There is no semi black-box reduction from a
weak VUF to a one-way permutation. Namely, for every construction (G,F,Π, V)
of a weak VUF, there is an oracle O such that (GO, FO, ΠO, V O) is, in the terms
of Definition 2, either incorrect or insecure.

In the remaining of this section, we provide a sketch of the proof of Theorem 1
(Section 5.1, for the full proof, see the full version of this paper) and conclude
with some remarks on limits and extensions of the proof (Section 5.2).

5.1 Proof Sketch of Theorem 1

The proof proceeds by contradiction. Fix (towards contradiction) some semi
black-box reduction (see Definition 2) (G,F,Π, V). For any oracle O that im-
plements a one-way permutation, (GO, FO, ΠO, V O) is a weak VUF. For any
such reduction, we show an oracle O and an adversary AO that breaks the weak
unpredictability of the defined weak VUF (w.r.t O). Throughout the proof, let
tG (resp. tV) denote the (polynomial in k) running times of GO (resp. V O). For
simplicity, we will assume that the verifier V O is deterministic, throughout the
rest of this proof.8

The oracle O is similar to the one presented in [32].9 Roughly speaking, O
both implements a one-way permutation (that is, no adversary with oracle access
to O can compute x given O(x), for a random x ∈ {0, 1}n), and is NP-hard
(namely, with oracle access to O, it is possible to decide every language in NP).
A formal statement follows.

Proposition 1 (implicit in [32]). There exists an oracle O which is (i) A
length preserving permutation; (ii) One-way: there exists no PPT oracle ma-
chine A s.t. AO inverts O; and (iii) NP-hard: for any NP relation R, there
exists a polynomial-time oracle machine B that for any x where ∃y.(x, y) ∈ R,
BO finds such a y, namely: (x,BO(x)) ∈ R.

We want to use the power of O to construct an adversary that predicts the
weak VUF. Given a public-key PK, this can be done by finding a secret-key
SK′ such that (PK,SK′) is a possible output of GO(1k) (this follows from
completeness and soundness of the weak VUF). However, this requires finding
a witness for an NPO relation, a task beyond the powers of our oracle. We
thus relax the requirement. We present an NP relation that enables finding a
secret-key SK′ and an oracle O′ such that (PK,SK′) is a possible output of
GO′

(1k). Furthermore, O′ is only a slight modification of O: O′ and O agree on

8 However, see remark on handling probabilistic verifiers in Section 5.2.
9 In [11], two oracles are used: a random oracle and a PSPACE-complete oracle. [32]

show how this can be simplified into one oracle that is both a one-way permutation
and is PSPACE-hard (the same argument holds for NP-hardness as well).

570 Z. Brakerski et al.

almost all inputs, and particularly on a set of “significant” inputs. We then show
that such SK′,O′ can be used to predict the weak VUF. A detailed description
follows.

We define an NP-relation R that will enable us to find SK′ and a transcript
of oracle query/answers (which will define O′) that are consistent with PK
and with a predefined query bank (a set of queries and answers from O). The
query bank will formally be represented by a set of queries Q ⊆ {0, 1}∗ and a
function fQ : Q→ {0, 1}∗ mapping them to answers. The input of R, therefore,
is formally denoted z = (1k, PK,Q, fQ) (where 1k is the security parameter).
The corresponding witness consists of the new secret key SK′, along with the
rest of the information that enables simulating the generation of (PK,SK′): the
randomness r that G uses, and the queries not in Q that G made, along with
their respective answers. These are represented by D ⊆ {0, 1}∗, fD : D → {0, 1}∗
(the same way as Q). We require that |r| , |D| ≤ tG(k). Formally, the witness
for relation R is denoted w = (r, SK ′, D, fD) and (z, w) ∈ R if (PK,SK′) are
produced by an execution of G with security parameter 1k and randomness r,
which makes oracle queries in Q∪D, and gets answers according to fQ, fD. The
verification procedure VerR(z, w) for R simply simulates G for at most tG(k)
steps and checks that (z, w) are consistent with the above.

Using an NP-hard oracle, we can compute a witness of R for any input, if
such exists. We further note that if fQ is consistent with O, and if PK was
in fact generated by GO(1k), then there always exists at least one witness for
that input: the one that contains the actual random tape, secret key and oracle
query/answers that were used in the generation of PK.

We are now ready to describe the adversary algorithm AO (recall that A has
oracle access to O). For the remainder of the proof, fix the (PK,SK) generated
by G(1k) for the unpredictability challenge.

The Adversary Algorithm. The adversary A operates in two stages. In the
first stage, the “exploration stage”, the adversary receives a public-key PK for
the weak VUF, as well as polynomially many evaluations of FO

SK , Π
O
SK on ran-

dom inputs xi. The adversary tries to learn the random-oracle queries that are
“significant” in computing the function, and outputs a bank of oracle queries
and answers. In the second stage, the “conquering stage”, the adversary (using
the bank of queries) constructs a secret-key SK′ and an (implicit) oracle O′ for
the same PK such that FO′

SK′ and FO
SK coincide on most inputs. This enables the

adversary to predict the value of FO
SK on most inputs, in turn. The description

of A follows.

The exploration stage of the adversary A.
input: 1k, PK and {xi, yi, πi}k2tG(k)

i=1 , where (PK,SK)←GO(1k), yi =FO
SK(xi)

and πi = ΠO
SK(xi).

output: A bank of queries consisting of a set of queries Q and a mapping
fQ : Q→ {0, 1}∗ matching answer fQ(q) = O(q) to every answer q.

algorithm:
1. Initialize the bank of queries Q, fQ = ∅.

Weak Verifiable Random Functions 571

2. For i = 1, . . . , k2 ·tG(k) run V O(PK, xi, yi, πi). Save all the query-answer
pairs made by V to the oracle O into the query bank (Q, fQ). Output
(Q, fQ).

The conquering stage of the adversary A.
input: PK, query bank (Q, fQ) and a challenge x∗ R← {0, 1}n(k).
output: y∗ ∈ {0, 1}m(k).
algorithm:

1. Let z = (1k, PK,Q, fQ) be an input for NP relation R described
above, we can use O (which is NP-hard) to compute a witness w =
(r, SK ′, D, fD) such that (z, w) ∈ R (as we mentioned, such witness
must exist).

2. For all q ∈ {0, 1}∗, define

O′(q) =
{
fD(q), q ∈ D,
O(q), otherwise.

Note that O′(q) can be computed in polynomial time given access to
O, D, fD. Using SK ′ and O′, return y∗ = FO′

SK′(x∗).10

Analysis of the Adversary. Recall that we fixed PK,SK. We first define a
notion of “frequent oracle queries” of the verification algorithm (with respect
to PK and SK) and show that the bank of queries (Q, fQ) that the adversary
outputs in the exploration stage contains all the frequent oracle queries of the
verification algorithm, with high probability.

We define the frequency freq(q) of a query q to the oracle O (with respect to
PK and SK) to be the fraction of x’s for which the verification algorithm, on
input PK, x, FSK(x) and ΠSK(x), makes the query q to the oracle O during
its execution. More precisely,

freq(q) = Pr
x∈{0,1}n(k)

[
V O(PK, x, FO

SK(x), ΠO
SK(x)) makes query q to O]

A query q is called α-frequent if freq(q) ≥ 1/α. Let Fα(k) be the set of all
α(k)-frequent queries. That is, Fα(k) = {q : freq(q) ≥ 1/α(k)}. The following
lemma states that the exploration stage succeeds in finding all frequent queries
with very high probability.

Lemma 3 (exploration stage). Let α(k) = k · tG(k). With probability at least
1 − poly(k) · e−k, at the end of the exploration stage of A, Q ⊇ Fα(k).

Proof. Consider an α(k)-frequent query q ∈ Fα(k). By definition, freq(q) ≥
1/α(k). That is, for at least 1/α(k) fraction of x’s, V O(PK, x, fSK(x), ΠSK(x))

10 We remark that O′ as defined is not necessarily a permutation, so FO′
SK′(x∗) may

not be well defined. In the full version [34] we show how this is fixed by defining a
permutation O′ s.t. |{q : O(q)
= O′(q)}| ≤ 2 |D|. For the remaining of the analysis,
we assume that O′ is a permutation.

572 Z. Brakerski et al.

makes the query q to the oracle O. Since the bank of queries Q contains all the
oracle queries made by V on kα(k) random inputs xi, the probability that q is
not in the bank of queries is exponentially small. More precisely,

Pr[q �∈ Q] ≤ (1 − 1/α(k))kα(k) ≤ e−k

Union bounding over all queries in Fα(k) shows that with probability all but∣∣Fα(k)
∣∣ · e−k, Q contains FktG(k) (where the probability is over the randomness

of xi). Now,
∣∣Fα(k)

∣∣ ≤ α(k) · tV (k) = k · tG(k) · tV (k) by simple counting. This
completes the proof. �
The next lemma states that assuming the exploration stage completed properly,
in the conquering stage A breaks the weak unpredictability of the VUF. We note
that O′ is one-way because it only differs from O on polynomially many inputs.

Lemma 4 (conquering stage). Let Q, fQ be an output of the exploration stage
of A s.t. Q ⊇ FktG(k). Then the conquering stage runs in poly(k) time and
predicts FO

SK(x∗) with probability at least 1 − 1/k.

Proof. We define an input x ∈ {0, 1}n(k) to be indifferent (with respect to PK
and SK) if the execution of the verification algorithm (with oracle access to O),
on input (PK, x, FO

SK(x), ΠO
SK(x)) makes no oracle query q ∈ D (recall that D

is the set of queries computed in step 1 of the conquering stage). In other words,
this execution of the verification algorithm is indifferent to whether it is given
oracle access to O or O′.

The following claims establish that all but a 1/k fraction of the inputs x
are indifferent; and that for every indifferent input x, FO

SK(x) = FO′
SK′(x). In

other words, if x∗ is an indifferent input, then the adversary (which outputs
FO′

SK′(x∗)) succeeds in predicting FO
SK(x∗). It follows that the adversary succeeds

with probability 1 − 1
k .

Claim. Let I denote the set of indifferent inputs (with respect to O, PK and
SK). Then, Prx∈{0,1}n(k) [x ∈ I] ≥ 1 − 1/k.

Proof: By definition of our NP relation R, Q ∩ D = ∅. Thus, if Q ⊇ FktG(k)
then FktG(k) ∩D = ∅. If we fix some query q ∈ D, then q �∈ FktG(k), meaning

freq(q)= Pr
x∈{0,1}n(k)

[
V O(PK, x, FO

SK(x), ΠO
SK(x)) makes query q

]≤1/(ktG(k)) .

Applying the union bound over all |D| ≤ tG(k) queries in D yields

Pr
x∈{0,1}n(k)

[
V O(PK, x, FO

SK(x), ΠO
SK(x)) makes any query q∈D]≤ |D|

ktG(k)
≤ 1
k
,

and the claim follows. �

Claim. For all x∗ ∈ I, FO
SK(x∗) = FO′

SK′(x∗).

Weak Verifiable Random Functions 573

Proof: For simplicity, assume that for every one-way permutation O, the con-
struction (GO, FO, ΠO, V O) is correct for every input x.11

By the completeness of the weak VUF with respect to O, we have that
V O(PK, x∗, FO

SK(x∗), ΠO
SK(x∗)) accepts. Since no queries in D are made during

this computation, then clearly it would run in the exact same way with oracle
access to O′ rather than to O. Thus,

V O′
(PK, x∗, FO

SK(x∗), ΠO
SK(x∗)) = V O(PK, x∗, FO

SK(x∗), ΠO
SK(x∗)) = accept .

Since O′ is a OWP, (GO′
, FO′

, ΠO′
, V O′

) is a weak VUF, which in partic-
ular, means that it satisfies the completeness and soundness properties. By its
completeness, we get that V O′

(PK, x∗, FO′
SK′(x∗), ΠO′

SK′(x∗)) accepts. Soundness
with respect to O′ guarantees, therefore, that FO

SK(x∗) = FO′
SK′(x∗). �

Combining Lemmas 3, 4 (using the union bound) yields that A succeeds in
predicting FO

SK(x∗) with probability at least 1−1/k−poly(k)·e−k, contradictory
to the alleged security of the reduction. Theorem 1 follows. �

5.2 Additional Remarks

– Handling Probabilistic Verifiers. The analysis above disregarded the
fact that the verifier V may not return the correct answer, with some small
probability. Essentially, we handle this issue by using amplification by apply-
ing sequential repetition and then using a single random tape for all inputs.
For details, we refer the reader to the full version [34].

– On Requiring Perfect Completeness. In the definition of VRF and weak
VRF, we required that completeness holds for any (PK,SK) generated by
G. When allowing relaxed completeness in Definition 1, the relaxation was
over the inputs and not the keys. While this definition is frequently used,
in some cases (e.g. [1]) the definition is so that the generator is allowed to
output “bad” keys (ones that have no completeness for almost any input)
with very small probability.

While our proof does not cover such constructions, we notice that all
known constructions (including that of [1]), can be presented as having per-
fect completeness in a ZPP sense. That is, where the generator is allowed to
run for expected polynomial time rather than worst-case. Our construction
can be slightly altered to work for such constructions as well.

– Separating Trapdoor Permutations from OWPs. As mentioned above,
since there is a black-box reduction from weak VRFs to eTDPs, our sepa-
ration also implies a Semi-BB separation of eTDPs from OWPs. The work
of [11] implies a result that is stronger in two aspects: their separation (ap-
pended with a modification due to [32]) implies a ∀∃Semi-BB separation
(see definition in [32]), and they show a separation from key-agreement. Our
result, on the other hand, seems simpler and does not use heavy probability-
theoretic machinery.

11 This is as opposed to relaxed completeness and soundness as in Definition 1 which
hold for almost all inputs.

574 Z. Brakerski et al.

– Other Types of Black-box Separations. Our result as presented does
not rule out a relativizing reduction. To rule out a relativizing reduction,
we must exhibit an oracle O relative to which no weak VUF exists. We
show, essentially, that for every construction, there is an oracle that makes
the construction fail as a weak VUF. Our adversary, however, works by
generating a slightly different OWP, which is efficiently computable from
the old one, and plugging it into the same construction. To get a separation,
we require correctness (but not necessarily security) for the modified oracle.
Therefore, while our separation only rules out Semi-BB reductions in the
general case, it can also be interpreted as ruling out ∀∃Semi-BB reductions
if correctness holds for any OWP.

– Inefficient Proof Generators. We notice that while the adversary uses the
code of oracle algorithms G,F, V , its use of Π is black-box only. Therefore,
we additionally obtain that a semi-BB reduction is impossible even when
the proof generator Π is allowed to be inefficient. 12

References

1. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS, p. 120
(1999)

2. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

3. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2) (1999)

4. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

5. Bellare, M., Yung, M.: Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptology 9(3), 149–166 (1996)

6. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptology 20(3), 265–294 (2007)

8. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

9. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43 (1989)

10. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

11. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC 1989: Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pp. 44–61. ACM, New York (1989)

12 We note that there is a construction of a weak VRF from one-way permutations,
using inefficient-prover non-interactive zero-knowledge for NP [4]. However, this
construction is inherently non-black-box. Our separation result shows that this must
be the case.

Weak Verifiable Random Functions 575

12. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: FOCS 2001: Proceedings of the 42nd IEEE
symposium on Foundations of Computer Science, Washington, DC, USA, p. 126.
IEEE Computer Society, Los Alamitos (2001)

13. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

14. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002)

15. Dodis, Y.: Efficient construction of (Distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2002)

16. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

17. Chase, M., Lysyanskaya, A.: Simulatable vRFs with applications to multi-theorem
NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322.
Springer, Heidelberg (2007)

18. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112 (1988)

19. Blum, M., Feldman, P., Micali, S.: Proving security against chosen cyphertext
attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268.
Springer, Heidelberg (1990)

20. Rackoff, C., Simon, D.R.: Cryptographic defense against traffic analysis. In: STOC,
pp. 672–681 (1993)

21. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC, pp. 427–437 (1990)

22. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

23. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

24. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

25. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

26. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

27. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

28. Kilian, J., Petrank, E.: An efficient non-interactive zero-knowledge proof system
for np with general assumptions. Journal of Cryptology 11, 1–27 (1998)

29. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

576 Z. Brakerski et al.

30. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007)

31. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993)

32. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

33. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: FOCS, pp. 112–117 (1982)

34. Brakerski, Z., Goldwasser, S., Rothblum, G., Vaikuntanathan, V.: Weak verifiable
random functions. MIT CSAIL Technical Report (2008)

Efficient Oblivious Pseudorandom Function with
Applications to Adaptive OT and

Secure Computation of Set Intersection

Stanisław Jarecki and Xiaomin Liu

University of California, Irvine

Abstract. An Oblivious Pseudorandom Function (OPRF) [15] is a two-party
protocol between sender S and receiver R for securely computing a pseudoran-
dom function fk(·) on key k contributed by S and input x contributed by R, in
such a way that receiver R learns only the value fk(x) while sender S learns
nothing from the interaction. In other words, an OPRF protocol for PRF fk(·) is
a secure computation for functionality FOPRF : (k, x) → (⊥, fk(x)).

We propose an OPRF protocol on committed inputs which requires only O(1)
modular exponentiations, and has a constant number of communication rounds
(two in ROM). Our protocol is secure in the CRS model under the Composite
Decisional Residuosity (CDR) assumption, while the PRF itself is secure on a
polynomially-sized domain under the Decisional q-Diffie-Hellman Inversion as-
sumption on a group of composite order, where q is the size of the PRF domain,
and it has a useful feature that fk is an injection for every k.

A practical OPRF protocol for an injective PRF, even limited to a polynomially-
sized domain, is a versatile tool with many uses in secure protocol design. We
show that our OPRF implies a new practical fully-simulatable adaptive (and com-
mitted) OT protocol secure without ROM. In another example, this oblivious PRF
construction implies the first secure computation protocol of set intersection on
committed data with computational cost of O(N) exponentiations where N is the
maximum size of both data sets.

1 Introduction

PRF and Oblivious PRF. A pseudorandom function (PRF) [17] is an efficiently com-
putable keyed function fk(·) whose values are indistinguishable, for a randomly chosen
key k, from random elements in the function range. The oblivious PRF, or OPRF [15],
is a protocol that allows the sender S, on input the key k, to let the receiver R compute
the value fk(x) of a PRF fk(·) on any input x ofR’s choice without releasing any other
information to R, and do so obliviously in the sense that sender S learns nothing from
the protocol, similarly as in oblivious transfer [28,14] or oblivious polynomial evalua-
tion [24]. In other words, an OPRF protocol corresponding to a PRF function fk(·) is a
secure computation protocol for functionalityFOPRF : (k, x) → (⊥, fk(x)). To enforce
consistency between several protocol instances it is helpful to extend the above fuction-
ality FOPRF to include verification whether k and x contributed by S andR correspond
to some previously committed values. We call this extended functionality a committed

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 577–594, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

578 S. Jarecki and X. Liu

OPRF, and in parallel to public-key primitives we refer to the commitment to a PRF key
k as a corresponding public key pk.

Examples of Oblivious PRF Applications: Keyword Search, Adaptive OT, SFE for
Set Intersection. An oblivious PRF has numerous exciting applications. It was intro-
duced as a primitive by Freedman et al. [15] with an application to privacy-preserving
Keyword Search. This protocol problem is otherwise known as symmetrically-private
Keyword PIR [12] or “Keyword OT”, and it can be defined as a secure computation for
the following functionality: Sender S contributes a set of (keyword,data) pairs
{xi, yi}i=1..N , where all xi’s are unique, receiver R contributes a keyword x, and the
functionality gives data item yi to R if xi = x, or a symbol ⊥ if all xi’s differ from
x. The reduction of Keyword OT to Oblivious PRF is very simple provided that fk is
an injection for every k and that the keyword domain is polynomial-sized: The sender
S picks two PRF keys k1, k2, publishes a set of pairs {(fk1(xi), fk2(xi) ⊕ yi)}i=1..N

together with commitments pk1, pk2 and a proof of knowledge of the corresponding
k1, k2. (The restriction that the keyword domain is polysized is needed for simulatabil-
ity because it enables extraction of sender’s inputs given keys k1, k2.) ThenR computes
z1 = frm[o]−−fk1(x) and z2 =fk2(x) via two instances of the oblivious PRF protocol,
uses z1 to check if there exists an xi in S’s set s.t. xi = x, and if so then it uses z2 to
recover the corresponding yi.

Essentially the same protocol is also a solution to the Adaptive OT problem, intro-
duced by Naor and Pinkas [22]. A (fully simulatable) adaptive OT is a secure com-
putation protocol for a reactive functionality where S contributes a sequence of N
values Y = {yi}i=1..N , and then S and R can engage in any number of 1-out-of-N
OT protocol instances on these values and any index i contributed by R. An adaptive
OT can be implemented using oblivious (committed) PRF if S publishes a sequence
{fk(i)⊕ yi}i=1..N , a commitment pk and a ZK proof of knowledge of the correspond-
ing k, and for each OT instance the two parties run an OPRF protocol on S’s key k and
R’s adaptively chosen index i, which lets R compute fk(i) and thus retrieve yi. (This
protocol is related to the ROM-based adaptive OT scheme of Camenisch, Neven, and
Shelat [8], as we explain in subsection below.)

Another application of oblivious PRF’s was recently shown by Hazay and Lindell
[19], who use an oblivious PRF to construct a very simple protocol for a set intersection
function, where S andR contribute their respective sets ofN data items,X and Y , and
the protocol letsR compute the intersectionX ∩ Y without revealing anything else. As
in any secure function evaluation (SFE), if the protocol ensures that both parties enter
previously committed inputs then both parties can compute the output (without guaran-
teeing fairness) if the SFE protocol is run in both directions. In Hazay-Lindell protocol,
S picks a PRF key k, sends to R a commitment pk to k and a set of outputs of the PRF
function fk(·) on all its inputs, X ′ = {fk(x)}x∈X . Note that these PRF values are in-
distinguishable from n random values in f ’s range, and hence in particularX ′ cannot be
efficiently correlated withX . Players S and R engage then in n OPRF instances on re-
spective inputs k and y for all y ∈ Y , allowingR to compute the set Y ′ = {fk(y)}y∈Y .
If fk is an injection thenR can conclude that y ∈ X∩Y iff y ∈ X ′∩Y ′. Moreover, if we
use committed OPRF and S proves that values fk(x) correspond to committed inputs x,
the result is an SFE protocol for set intersection on committed data sets.

Efficient Oblivious Pseudorandom Function with Applications 579

Previous Work on Oblivious PRF’s. The first oblivious PRF construction was given
by Naor and Reingold [25], based on the PRF construction given in the same paper,
fk(x) = g

∏
xi=1 ri , where key k is the sequence of T random elements r1, ..., rT in

Zq , q is the order of the group 〈g〉 in which the Decisional Diffie-Hellman assump-
tion holds, and T is the bitlength of elements x in the PRF domain. This first oblivious
PRF protocol required O(t) rounds. Freedman et al. [15], based on the previous work
of Naor and Pinkas [21,22], improved this to a constant-round protocol, secure under
DDH. This protocol implements a “weak OPRF” notion (which is just as good in all the
applications listed above), where the receiver is allowed to learn additional information
about the PRF key as long as that information does not change the pseudorandomness
of the PRF function on any new inputs. This protocol uses T parallel OT instances, one
for each ri value, which using best known OT techniques, e.g. [23,1], translates into
O(T) exponentiations. The OT-batching techniques of Ishai et al. [20] do not seem to
reduce this overhead in the case of a single OPRF instance if the PRF domain size is
smaller or equal to the security parameter. The Hazay-Lindell set intersection proto-
col implemented with this OPRF involves NT parallel OT instances, but it is an open
problem to efficiently use the OT-batching techniques of [20] in this context because
the case of malicious adversaries seems to require batching committed OT instances
and proving that the committed OT inputs correspond to the PRF key.

The ROM-based Adaptive OT construction from any unique blind signature scheme
given by Camenisch et al. [8] relies on a weak OPRF protocol for fk defined as fk(m) =
H(SIGk(m)), which is a PRF in ROM if the signature scheme is CMA-secure, where
the weak OPRF functionality on inputs (k,m) releases the signature SIGk(m) in ad-
dition to the proper PRF value H(SIGk(m)). However, for the resulting protocol to be
secure computation of this functionality we need a secure computation protocol for the
blind signature functionality, FBlSg(k,m) → (⊥, Sigk(m)). While there exist efficient
unique blind signature schemes, e.g. by Chaum [10] or Boldyreva [3], these schemes
rely on non-standard “one more” type of security assumptions, and it is an open prob-
lem to extend such blind signature protocols to secure computation of FBlSg, and to
ensure that the computation proceeds on committed receiver’s inputm.

An Adaptive OT construction of Green and Hohenberger from blind IBE schemes
[18] can also be seen as variant of an OPRF protocol. Assuming the ROM model one
could define fk(ID) = H(skID) where k is the KDC’s master private key and skID

is the IBE decryption key corresponding to identity ID. If this is a blind IBE scheme
then we could use the blinded private-key retrieval protocol as an implementation of a
weak OPRF which releases skID in addition to the hash valueH(skID). However, effi-
cient IBE’s seem to require bilinear maps, which are not needed for the OPRF protocol
we present, and moreover it remains an open problem to upgrade such construction to
secure computation of the ideal OPRF functionality, and to further extend it to compu-
tation on committed inputs.

Our Result: Efficient (Committed) Oblivious PRF. We propose an OPRF construc-
tion which requires only O(1) modular exponentiations, and has a constant number
of communication rounds (two in ROM). The secure computation protocol for func-
tionality FOPRF : (k, x) → (⊥, fk(x)) for our PRF function family fk(·) builds on
the Camenisch-Shoup [9] version of Paillier encryption [26], and it is secure in the

580 S. Jarecki and X. Liu

CRS model under the Composite Decisional Residuosity (CDR) assumption. The PRF
fk(·) itself is a variant of the PRF construction of Dodis-Yampolskiy [13] based on the
Boneh-Boyen signature [4], but moved to a group of a composite order, the safe RSA
modulus on which the Camenisch-Shoup encryption operates. As far as we know, this
OPRF construction is the first constant-round efficient OPRF which is actually a secure
computation protocol for the ideal OPRF functionality FOPRF.

This PRF has a useful feature that fk is an injection for every key k, and it secure
on a domain of bitstrings of length |q| under the Decisional q-Diffie-Hellman Inversion
(q-DHI) assumption on a group whose order is a safe RSA modulus. Consequently,
by positive hardness results of [9,13] (see also related upper bounds on q-DHI hard-
ness given by Jung Hee Cheon [11]), the domain of this PRF is polynomially-sized,
but this restriction does not stop any of the OPRF applications we listed above. The
one application it constrains is the secure computation of set intersection, where the in-
puts must be encoded in a polynomially-sized domain. Note that in many applications
set intersection protocol might run on short inputs anyway, e.g. names, social security
numbers, etc. However, extending the domain of this OPRF construction would allow
secure computation of set intersection on larger input domains.

Another very useful feature of our OPRF construction is that it is an efficient com-
mitted OPRF, i.e. our secure computation protocol for extended version of the FOPRF

functionality which checks whether both parties contribute previously committed inputs
into the protocol.

Technical Roadmap: We give a brief intuition for constructing an OPRF protocol for
the Dodis-Yampolskiy PRF fk(x) = g1/(k+x) in group 〈g〉 of composite order n, and an
encryption scheme which is additively homomorphic on message domain Zn, like Pail-
lier encryption. We assume that this encryption allows for shared decryption. Namely,
one can form a “joint key” pk = pks · pkr from two public keys pks, pkr, and the cor-
responding private keys sks, skr allow for shared decryption of ciphertext encrypted
under pk. This is true of the Camenisch-Shoup version [9] of Paillier encryption. Us-
ing expressions like C(r)

v , C(s)
v , and Cv , to denote ciphertexts which encrypt variable

v under, respectively, pkr, pks, or pk, we have that partial decryption of Cv under skr

creates C(s)
v , and a partial decryption of Cv under sks creates C(r)

v .
The idea of our construction goes like this: Sender S and receiverR exchange public

keys pks and pkr and encrypt their inputs k and x under the joint key pk = pks · pkr

as Ck and Cx. Then by the homomorphism of the encryption Ck · Cx = Cα where
α = k+x. PlayerR then randomizes the encrypted value α by picking random a in Zn

and computingCβ = (Cα)a, for β = a ·α. R also encrypts a under pk, as Ca, partially

decrypts Cβ into C(s)
β , and sends (Ca, C

(s)
β) to S. Sender S decrypts C(s)

β to get β and

computesCσ = (Ca)1/β , for σ = a/β = 1/α = 1/(k+x). Finally, S picks an additive
share σs of σ, computes vs = gσs , encrypts it as Cσs and computes Cσr = Cσ/Cσs ,
for σr = σ − σs. S also partially decrypts Cσr into C(r)

σr and sends (vs, C
(r)
σr) to R. R

decrypts C(r)
σr and uses σr to compute v = vs · gσr = gσs+σr = g1/(k+x).

Our actual protocol streamlines these operations, and uses solely keys pkr, pks in-
stead of the joint key pk, but the above sketch is an idea behind our construction.

Efficient Oblivious Pseudorandom Function with Applications 581

Related ConcurrentWork: We note that independently from our work, Belenkiy et al.
[2] recently showed a different protocol for oblivious computation of the same function
fk(x) = g1/(k+x), also using Paillier encryption. Their protocol is somewhat similar to
ours but it uses multiplicative rather than additive sharing of the crucial exponent value
σ = 1/(k + x), and it is about twice faster than our protocol as a result. Moreover, the
protocol of [2] can work on groups with a 160-bit prime order unrelated to the RSA
modulus n, instead of a composite order we need, leading to further speed-ups in the
applications of this OPRF. While the initial version of this protocol published in [2] is
not a secure computation of the OPRF functionality, it is not difficult to modify this
protocol to secure computation in the CRS model using techniques similar to ours.

Organization: We introduce our notation, security assumptions, and important defini-
tions in Subsection 2.1. In Subsection 2.2 we show the main tool in our efficient OPRF
protocol construction, an additively homomorphic encryption scheme with verifiable
encryption and decryption, and in Subsection 2.3 we show an efficient instanciation of
such scheme, i.e. the Camenisch-Shoup encryption scheme. In Section 3 we present
our main contribution, a construction of an OPRF protocol. Finally we show two ap-
plications of a committed OPRF, to Adaptive OT and to secure computation of the Set
Intersection problem, in Sections 4 and 5 respectively.

2 Preliminaries and Tools

2.1 Notation, Definitions, and Security Assumptions

Notation. We use a ← A to denote that a is the output of the (randomized) algorithm
A and a ←R S if a is chosen uniformly at random from set S. If A is an algorithm
then we will sometimes use A(x) to denote a set of all possible outputs of A on input
x. We use P{b} to denote a zero-knowledge proof system that statement b holds, and
PoK{a | φ(a)} to denote a zero-knowledge proof of knowledge of value a that satisfies
a publicly computable relation φ. Finally, most numerical operations in the paper are
group operations unless specifically noted otherwise.

Factoring Assumption (Definition). Let RSAGen denote an algorithm that picks safe
RSA moduli with a given security parameter. Namely, RSAGen(1κ) chooses two ran-
dom primes p′1, p

′
2 s.t. |p′1| = |p′2| = κ and p1 = 2p′1 + 1 and p2 = 2p′2 + 1 are also

primes, and outputs n = p1 · p2. We say that factoring safe RSA moduli is hard if for
every efficient algorithm A the probability Pr[A(n) ∈ {p1, p2} | n← RSAGen(1κ)] is
a negligible function of κ.

Decisional q-Diffie-Hellman Inversion (q-DHI) Problem (Definition). The computa-
tional q-DHI problem in a group with generator g and order n is to compute g1/α given
the tuple (g, gα, . . . , g(αq)), for random α in Z∗

n. We define the hardness of the de-
cisional version of this problem for any fixed constant q as follows: Let gGen be an
algorithm which on input a security parameter κ picks a modulus n and a generator
g of a multiplicative group G of order n. For example gGen can be a composition of
RSAGen and an algorithm gGen′ which on input n output by RSAGen finds the first
prime p s.t. n|p − 1, and sets g as any element of order n in Z∗

p. We say that the

582 S. Jarecki and X. Liu

Decisional q-DHI Assumption holds on group (family) G, if for every efficient algo-
rithm A function εA(κ) = |RealA(κ) − RandomA(κ)| is negligible, where:

RealA(κ) = Pr
[A(g, gα, . . . , g(αq), g1/α) = 1 | (g, n) ← gGen(1κ); α← Z∗

n

]
RandomA(κ) = Pr

[
A(g, gα, . . . , g(αq), h) = 1

∣∣∣∣ (g, n) ← gGen(1κ); α← Z∗
n;

h ← G

]
Pseudorandom Function (Definition). For notational simplicity we consider a version
of the general PRF notion which is custom-made to fit the PRF implementation we
consider in this paper. Namely, the PRF function fk maps |q|-bit strings to elements
of group G. We say that function (family) fk defined by the key generation algorithm
KGen is a PRF if |RealA(κ) − RandomA(κ)| is a negligible function of κ, where:

RealA(κ) = Pr
[
Afk(·|¬x)(v, st) = 1

∣∣∣∣ (k, pk) ← KGen(1κ);
(x, st) ← Afk(·)(pk); v ← fk(x)

]
RandomA(κ) = Pr

[
Afk(·|¬x)(v, st) = 1

∣∣∣∣ (k, pk) ← KGen(1κ);
(x, st) ← Afk(·)(n, g, pk); v ← G

]
In the above experiments fk(·|¬x) denotes an oracle fk(·) modified to output ⊥ on x.

Dodis-Yampolskiy’s PRF and Boneh-Boyen’s Function in Composite-Order Groups.
Our OPRF construction relies on a variant of the PRF scheme of Dodis-Yampolskiy
[13], based on the Boneh-Boyen unpredictable function [4], with the sole modifica-
tion being a substitution of a prime-order group with a group whose order is a safe
RSA modulus. The Boneh-Boyen function [4] is fk(x) = g1/(k+x) where g generates
a group G of prime order p and k is a random element in Zp. This function is un-
predictable under the computational q-DHI assumption on G. Dodis-Yampolskiy [13]
considered the same function as a source of a verifiable pseudorandom function (VRF)
in a group with a bilinear map, and showed that it is secure under a decisional ver-
sion of the q-DHI assumption on the target group of the bilinear map. However, the
same argument also shows that the decisional q-DHI assumption on group G itself im-
plies that the Boneh-Boyen function is a PRF. Morevoer, the same arguments which
were done by [4,13] for prime-order groups also imply that (1) the Boneh-Boyen func-
tion in a composite-order group remains a PRF under the decisional q-DHI assumption
on such groups (and hardness of factoring) and (2) the same generic-group argument
which motivated trust in the q-DHI assumption on the prime-order groups carries to
composite-order groups as well.

Specifically, for security parameter κ we define the following PRF function family:
The key generation algorithm picks n ← RSAGen(1κ), g ← gGen′(n), k ← Z∗

n, and
computes pk ← gk. We define fk(x) for each x ∈ {0, 1}|q| as follows:

fk(x) =
{
g1/(k+x) if gcd(k + x, n) = 1
1 otherwise

Claim 1: The Decisional q-DHI Assumption holds on a generic group (family) with a
safe RSA order.

Argument Sketch: This claim can be verified by inspecting the generic-group argument
for the computational q-DHI problem on a prime-order group given in [4], because

Efficient Oblivious Pseudorandom Function with Applications 583

generic arguments for decisional rather than computational problems are identical, and
all that this specific argument requires is that the group order has only large factors.

Claim 2: The function (family) fk defined above is a PRF on the domain of q-domain
strings if factoring safe RSA moduli is hard and if the Decisional q-DHI Assumption
holds on group (family) G.

Argument Sketch: Assuming decisional q-DHI holds in group G of order a safe RSA
modulus n, the argument why fk(x) in G is a PRF follows from the argument of The-
orem 1 in [13] and the fact that under the assumption of hardness of safe RSA moduli,
efficient algorithms can encounter elements v s.t. gcd(v, n) �= 1 only with negligi-
ble probability. The reduction given in the proof of Theorem 1 in [13] uses inverses
(α − xi∗ + xi) in the exponent for all xi in the domain of fk, where xi∗ is the value
for which the adversary must distinguish fk(xi∗) from a random element in G. Note
that by the factoring assumption the probability that in this game there appears i s.t.
(α − xi∗ + xi) is not co-prime with n is negligible. Thus the argument for pseudo-
randomness of fk(x) = g1/(k+x) shown in [13] for prime-order groups extends to
groups whose order is hard to factor.

2.2 Additively Homomorphic Verifiable Encryption with Additional Properties

In order to construct an oblivious PRF, we need an additively homomorphic encryption
scheme with verifiable encryption and verifiable decryption.

– Setup(κ) on security parameter κ outputs the public parameter par to be used in all
subsequent algorithms. This par also defines the plaintext space M, a finite additive
group Zn for some n.
For notational simplicity, we omit explicit mention of par as the input to all the
following algorithms.

– KGen outputs a random public/secret key pair (pk, sk). Parameters par also defines
a relation KVal (for key validity) on all valid (pk, sk). We also require an efficient
proof system

PoK{sk | (pk, sk) ∈ KVal} (1)

– Encpk(m) on public key pk and message m outputs a ciphertext C which is a ran-
dom encryption ofm under pk. We require an efficient realization of the following
proof system given a public key pk and ciphertext C

PoK{m | C ∈ Encpk(m)} (2)

– Decsk(C) is a deterministic algorithm on secret key sk and ciphertext C that out-
puts a messagem. We require an efficient realization of the following proof system
given a public key pk and ciphertext C

P{∃ sk, s.t. m = Decsk(C) ∧ (pk, sk) ∈ KVal} (3)

Besides semantic security, we require the following properties of the above encryption
scheme:

584 S. Jarecki and X. Liu

– Additive Homomorphism: We require that there is an efficient operation on ci-
phertexts, which for convenience we denote as a multiplication, s.t. Encpk(m0) ·
Encpk(m1) ∈ Encpk(m0+m1). We can also define exponentiation and division op-
erations on ciphertexts, and by homomorphism of the encryption (Encpk(m))a =
Encpk(a ·m) and Encpk(m0)/Encpk(m1) ∈ Encpk(m0 −m1), for any a and any
m,m0,m1 in M.

– Verifiable Encryption: We require an efficient realization of the following proof
system, given public key pk, ciphertext C, and two elements g and y of some mul-
tiplicative group of order |M| = n:

PoK{m | C ∈ Encpk(m) ∧ y = gm)} (4)

In addition, we require an efficient realization of the following proof system, given
public keys pk and pk′ and ciphertexts C1, C2 and C′, where C1 and C2 are sup-
posed to be ciphertexts under public key pk.

PoK{m | ∃m′ ∈ Zn, s.t. C′ = Encpk′(m′) ∧ C2 ∈ (C1 · Encpk(m))m′} (5)

– Verifiable Decryption: We require an efficient realization of the following proof
system, given public keys pk and pk′ and ciphertexts C, C1 and C2, where C is
supposed to be ciphertext under public key pk and C1 and C2 are supposed to be
ciphertexts under public key pk′:

P

{∃m,m′ ∈ Zn,m
′′, sk s.t. m = Decsk(C) ∧ (pk, sk) ∈ KVal

∧ C1 ∈ (C2 · Encpk′(m′))m′′ ∧ y = gm′ ∧ m ·m′′ = 1 mod n

}
(6)

2.3 Efficient Instantiation Using Camenisch-Shoup Encryption

The above encryption scheme can be efficiently instantiated with just the semantically
secure version of Camenisch-Shoup Encryption [9].

– Setup(κ) generates public parameter par = (g, n), where n is safe RSA modulo,
i.e. n = p1 · p2, p1 = 2p′1 + 1, p2 = 2p′2 + 1, and p1, p2, p′1 and p′2 are all primes,
and g is of order p′1p

′
2. Let h = n+ 1 and n′ = p′1p

′
2. The message space M is the

additive group Zn.
– KGen(par) picks random x in [0, n

4], computes y ← gx, and sets pk = y and
sk = x.

– Ency(m) for m ∈ Zn, picks random r ∈ [0, n
4], and outputs a ciphertext C =

(u, e) = (gr, yrhm).
– Decx(u, e) computes m̂← (e/ux)2. If m̂ �∈ 〈h〉 (i.e. if n does not divides m̂− 1),

it rejects the ciphertext. Otherwise, it sets m̂′ ← m̂−1
n (over integers), computes

γ ← β−1 mod n, and outputsm = m̂′/2 · γ mod n

Semantic security of this encryption holds under the Composite Residuosity As-
sumption on Z∗

n2 [9]. It also satisfies all other properties listed in Section 2.2.
– This encryption scheme is additively homomorphic. The corresponding operation

on the ciphertext is a pair-wise multiplication of the two components, i.e. if C1 =
(u1, e1) and C2 = (u2, e2) then C1 · C2 = (u1 · u2, e1 · e2). Similarly C1/C2 =
(u1/u2, e1/e2) and (C1)a = ((u1)a, (e1)a).

Efficient Oblivious Pseudorandom Function with Applications 585

– All the proof systems listed in Section 2.2 can be realized for this encryption
scheme by proof systems requiringO(1) exponentiations from each party. We defer
description of these proofs to the full version of this paper, but all these proof sys-
tems are very similar to the verifiable encryption proof system given by Camenisch-
Shoup in [9]. Such HVZK proofs can be converted to ZK proof systems using
known compilation techniques, or into Non-Interactive ZK using the Fiat-Shamir
heuristic in the Random Oracle Model. We note that the proof systems resulting
from the last compilation are as efficient as the underlying HVZK proof systems,
and they remain zero-knowledge and simulation sound under parallel composition.

3 Construction of an OPRF Protocol
We show the construction of a secure computation protocol of the ideal OPRF func-
tionality for the PRF defined in the previous section, using the additively homomorphic
encryption scheme with verifiable encryption, decryption, and other useful properties
listed in Section 2.2. This protocol is illustrated in Figure 1, with all the proof systems
denoted non-interactively for notational simplicity.

Theorem 1. Assuming hardness of factoring of safe RSA moduli, a semantically secure
encryption scheme on Zn which satisfies the properties listed in Section 2.2, and assum-
ing that each proof (of knowledge) system in Figure 1 is zero-knowledge and (strong)
simulation-sound, the protocol in Figure 1 is a secure computation protocol for func-
tionality FOPRF.

Proof. Constructing an ideal-world sender SIMs from a malicious real sender S∗:
First, we show the construction of the ideal-world sender SIMs which interacts with the
real world sender S∗ and the ideal functionality FOPRF. SIMs proceeds as follows:

– If S∗ succeeds in the proof π1, then SIMs runs the extractor algorithm for π1 with
S∗ to extract k, s.t. pk = gk.

– Then SIMs simulates the real-world receiver R as follows:
1. (pkr, skr) ← KGen

2. a←R Z∗
n, C(r)

a ← Encpkr (a)
3. β ←R Z∗

n, C(s)
β ← Encpks(β)

4. C(s)
β ← Encpks(β)

5. Send (pkr, C
(r)
a , C

(s)
β) and simulate the proof π2.

– If the proof π3 verifies, then SIMs sends k to FOPRF. Note that FOPRF on SIMs’s
input k and ideal-world receiver R̄’s input x outputs fk(x) to R̄.

Let Z be a distinguisher that controls the sender S∗, feeds the input of the receiver R,
and also sees the output of R. Now we argue that Z’s view in the real world (S∗’s view
+ R’s output) and its view in the idea world (S∗’s view + ideal receiver R̄’s output) are
indistinguishable. This is done by showing a series of games Game0, . . . ,Game5, each
interacting with Z , where each Gamei+1 modifies Gamei slightly, and arguing that Z’s
views in Gamei and Gamei+1 are indistinguishable, where Game0 runs S∗ together
with the real receiver R’s protocol, while Game5 runs the above simulator SIMs (with

586 S. Jarecki and X. Liu

Common input: (n, g, pk, par)
S’s private input: k, s.t. gk = pk R’s private input: x

(pks, sks) ← KGen, C
(s)
k ← Encpks(k)

π1 ← PoK

{
k

∣∣∣∣C(s)
k ∈ Encpks(k)

pk = gk

}
pks,C

(s)
k

,π1 �� If π1 verifies, then (pkr, skr) ← KGen

a ←R Z∗
n, C

(r)
a ← Encpkr (a)

C
(s)
β ←

(
C

(s)
k · Encpks(x)

)a

π2←PoK

{
x

∣∣∣∣∣∃ a, s.t. C
(r)
a ∈Encpkr (a)

C
(s)
β ∈

(
C

(s)
k ·Encpks(x)

)a

}

If π2 verifies, then β ← Decsks(C(s)
β)

pkr ,C
(r)
a ,C

(s)
β

,π2��

If gcd(n, β)
= 1, send ⊥ to R and abort
γ ← (β)−1 mod n, σs ←R Zn, vs ← gσs

C
(r)
σr ← (C(r)

a)γ · Encpkr (−σs)

π3 ← P

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∃ β, σs, γ, sks, s.t.
β = Decsks(C(s)

β)
(pks, sks) ∈ KVal

C
(r)
σr ∈ (C(r)

a)γ · Encpkr (−σs)
vs = gσs , β · γ = 1 mod n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
vs,C

(r)
σr ,π3 �� Output ⊥ if receiving ⊥ from S, or if π3 fails.

σr ←Decskr (C(r)
σr), vr ←gσr , output vs · vr

Fig. 1. Construction of an OPRF Protocol

oracle access to S∗), which simulates an ideal world sender, the ideal functionality
FOPRF, and the ideal receiver R̄.

Game1: Same as Game0 except that instead of proving π2, R simulates it. By zero-
knowledge of the π2 proofs system, Z’s views in Game0 and Game1 are indistinguish-
able.

Game2: Same as Game1 except that (a.) If S∗ succeeds in the proof π1, then Game2
runs the extractor algorithm for π1 with S∗ to extract k, s.t. pk = gk; and (b) If the
proof π3 verifies, then Game2 outputs fk(x) = g1/(k+x) as its final output (or ⊥ if
gcd(k+x, n) �= 1). Note that Game2 knows both k and x. For (a), by strong simulation
soundness of the proof system π1,Game2 extracts kwith non-negligible probability. For
(b), by simulation soundness of proof system π3, Z’s views in Game1 and Game2 are
indistinguishable.

Game3: Same as Game2 except that as long as gcd(k + x, n) = 1, Game3 does the
following:

1. (pkr, skr) ← KGen

2. β ←R Z∗
n, C(s)

β ← Encpks(β)

3. a← β/(k + x), C(r)
a ← Encpkr (a)

4. Simulate the proof π2.

Efficient Oblivious Pseudorandom Function with Applications 587

Note that the probability that gcd(k + x, n) �= 1 is negligible if factoring safe RSA

moduli is hard, and if gcd(k + x, n) = 1 then the tuple (pkr, C
(r)
a , C

(s)
β) is distributed

identically in Game2 and Game3, so Z’s view of these two games are indistinguishable.

Game4: Same as Game3 except that in line 3 above, value a is replaced by random
a′ ∈ Z∗

n. We claim that by semantic security of the encryption scheme, Z’s view in
Game3 and Game4 are indistinguishable. A reduction Red can be constructed as fol-
lows. Getting the challenger’s public key pk∗, it sets pkr = pk∗ and follows Game3
except that when Ca is to be computed, it sends (a, a′) to the challenger and gets back

the challengeC∗. It setsC(r)
a ← C∗, and continue following Game3. If Z distinguishes

Game3 and Game4, then Red breaks the semantic security of the encryption scheme.

Game5: Game5 is the ideal world game between SIMs (with access to S∗), FOPRF, and
the ideal world receiver R̄. Instead of computing v = fk(x) as the last step of Game4
(this modification is shown in the description of Game2 Step b), in Game5, let SIMs

follow the protocol in Game4 until fk(x) is to be computed, then send k to FOPRF.
FOPRF computes v = fk(x) on k given by SIMs and x given by R̄, and sends v to R̄. It
is easy to see that Z’s view in Game4 and Game5 are identical.

Constructing an ideal-world receiver SIMr from a malicious real-world receiver R∗:
We first describe the construction of SIMr:

– SIMr picks (pks, sks) ←R KGen, random k′ in M, sets C(s)
k ← Encpks(k′), sends

pks and C(s)
k to R∗, and simulate the proof π1.

– If the proof π2 verifies, SIMr runs the extractor algorithm of π2 with R∗ to extract
x and sends it to FOPRF.

– Getting v = fk(x) from FOPRF, which computes v on ideal-world sender S̄’s input
k and SIMr’s input x, SIMr does the following:
1. If fk(x) = 1, then SIMr sends ⊥ to R∗ and aborts.
2. σr ←R Zn

3. vs ← v/gσr

4. C(r)
σr ← Encpkr (σr)

5. send (vs, C
(r)
σr) and simulate the proof π3.

Let Z be a distinguisher that controls the receiver R∗, feeds the input of the sender
S, and also sees the output of S. We still show a series of games to argue that the
environment Z’s view in the real protocol and its view in the ideal world protocol is
indistinguishable. Let Game0 be the protocol executed by the real world sender, and let
Game4 be the ideal world game.

Game1: Game1 is the same as Game0 except that S instead of proving π1 and π3, it
simulates the two proofs. By zero-knowledge (simulatability) of these proof systems,
Z’s view in Game0 and its view in Game1 are indistinguishable.

Game2: Game2 is the same as Game1 except that if the proof π2 verifies, Game2 ex-
tracts x from R∗ (The probability that Game2 extracts x is non-negligible because of
simulation soundness of the proof system π2). Z’s views in Game1 and Game2 are
indistinguishable.

588 S. Jarecki and X. Liu

Game3: Game3 is the same as Game2 except it does the following after extracting x:
1. v = fk(x); if v = 1, send ⊥ to R∗ and abort.
2. σr ←R Zn, vs ← v/gσr

3. C(r)
σr ← Encpkr (σr)

4. send (vs, C
(r)
σr) and simulate the proof π3.

Note that fk(x) = 1 if and only if gcd(k + x, n) �= 1, and if gcd(k + x, n) �= 1, then
β = a(k + x) for any a is not co-prime with n, i.e. gcd(β, n) �= 1, so the real sender
(as well as Game2) in this case will also send ⊥ to R∗ and abort. If v �= 1, the pair
(vs, C

(r)
σr) distributes identically in Game2 and Game3. Therefore, Z’s view in Game2

and Game3 are identical.

Game4: In Game4, we let the simulator SIMr to follow the protocol in Game3 except
that when v is to be computed, SIMr sends the extracted x to the ideal functional-
ity FOPRF which also gets input k from the ideal world sender S̄, and gets the value
v = fk(x) from the functionality FOPRF instead. Then SIMr continues following the
protocol in Game3. It is easy to see that Z’s view in Game2 and Game3 are identical,
and Game3 is in fact the ideal world game among ideal sender S, the ideal functionality
FOPRF and the ideal receiver SIMr who has oracle access to R∗ and simulates R∗ in the
ideal world.

Extension to secure computation of FOPRF on committed inputs. Note that in our
implementation of the OPRF functionality the sender’s input k is already committed
in the key pk = gk, but only a slight modification to the protocol is needed if we
extend the OPRF functionality so that the receiver’s input x is committed as well. The
receiver can commit to x using Pedersen commitment [27] in group 〈g〉 of order n, i.e.
Comx = gxhrx for random h ∈ 〈g〉 specified in the CRS (or picked by the sender) and
random rx ∈ Zn. The proof system π2 in receiver’s first step must then be extended
to a proof of knowledge of not just x but also rx s.t. Comx = gxhrx . Using the hiding
and binding properties of Pedersen commitment it is not difficult to extend our proof
of security of the basic OPRF protocol in Figure 1 to this case. Finally, such as proof
system is easy to realize because the order of group 〈g〉 is the same n which acts on
the plaintext in encryption Encpk(x). Using techniques for proving equality between
exponents in groups of different orders, e.g. [5,7], one can extend it to accommodate
commitments to x using more standard groups of smaller (and prime) order.

Parallel composition and re-using sender’s first message. This OPRF scheme can be
composed sequentially because it is a secure computation protocol. This directly im-
plies security of the adaptive OT protocol based on such OPRF, as explained in Section
4 below. However, by inspection of the proof, using standard hybrid arguments one
can argue that this OPRF scheme can also be composed in parallel, provided that the
ZK proof systems it uses remain zero-knowledge and simulation-sound under parallel
composition. The resulting protocol is a secure computation of the “parallel OPRF”
functionality, where the receiver enters a sequence of data items (x1, . . . , xt) and gets a
sequence of PRF values fk(x1), . . . , fk(xn) in return. The secure computation for this
parallel OPRF functionality enables constant-round secure computation protocol for set
intersection, as we explain in Section 5.

Efficient Oblivious Pseudorandom Function with Applications 589

It is also easy to see that one can reduce the round complexity and/or the sender’s
computation’s time in both of these applications if the sender re-uses the same pks,
sks, and C(s)

k values in each instance of the OPRF subprotocol. One can think of this
as a case of sender’s re-using the same randomness when executing the first step of
the protocol. Since we cannot prevent a malicious sender from doing so anyway, such
modified protocol remains secure against a malicious sender. For malicious receiver,
one can see by inspection of the proof of Theorem 1 that this re-use does not change
anything in the security proof. Note moreover that in the ROM model one can realize
the proof π1 non-interactively as a tuple of a few group elements. Therefore in ROM
the sender’s first message can be included as a common input to the protocol, which
results in a 2-round OPRF protocol in ROM.

4 Adaptive Oblivious Transfer from an OPRF Scheme

In this section, we show a construction of t-out-of-N OT protocol from an OPRF pro-
tocol, where the sender takesN messages (m1, . . . ,mN) as input, while receiver takes
t indices (i1, . . . , it) as input. At the end of the protocol, receiver gets {mij}j=1,...,t,
while sender gets nothing. An OT protocol is adaptive if receiver can query on indices
i1, . . . , it adaptively one after another. Using an OPRF protocol, we show below the
construction of an adaptive OT protocol and in Figure 2.

– Let (g, n) be the common input.
– Sender picks random k ∈ Zn, sets pk = gk, and then computes ci = mi · fk(i) for

every i = 1, . . . , N . It sends pk, {ci}i=1,...,N to the receiver.
– For j = 1, . . . , t:

• Sender and receiver interacts in an OPRF with sender’s input k and receiver’s
input ij;

• Receiver gets vij = fk(ij) and recoversmij by computing cij/vij .

As we point out at the end of Section 3, the OPRF protocol of that section takes
only two-rounds in ROM if the sender re-uses the first message of the OPRF protocol
in each instance. Therefore the combination of these two protocols results in an optimal
two-round adaptive OT.

Common input: (g, n)
S’s private input: R’s private input:
{mi}i=1,...,N {ij}j=1,...,t

k ←R Zn, pk = gk

∀i∈{1,...,N}, ci = mi · fk(i) pk, {ci}i=1,...,N ��

secure computation of fk(i1) �� output m′
i1 =ci1/fk(i1)

. . .

secure computation of fk(it) �� output m′
it

=cit/fk(it)

Fig. 2. Adaptive OT Protocol from an OPRF Protocol

590 S. Jarecki and X. Liu

Theorem 2. The above construction of OT is a secure computation of the ideal t-out-
of-N OT functionality

FOT ({mi}i=1,...,N , {ij}j=1,...,t) = (⊥ , {mij}j=1,...,t)

.Proof. We argue this theorem in the hybrid model using the secure computation of
OPRF as a blackbox.

Constructing ideal world sender SIMs from a malicious sender S∗ in the real world:
Getting k from S∗, SIMs computes vi = fk(i) for each i = 1, . . . , N , and sends
{m̄i = ci/vi}i=1,...,N to FOT, which on {m̄i}i=1,...,N from SIMs and {ij}j=1,...,t

from the ideal world receiver R, outputs {m̄ij}j=1,...,t to the receiver. In the real world,
what the receiver R outputs is {cij/fk(ij)}j=1,...,t, which is also {m̄ij}j=1,...,t. S∗

learns nothing either interacting with the real world receiverR via the ideal functionality
FOPRF or interacting with SIMs in the ideal world. Therefore, the environment Z’s
views in the real world and ideal world are indistinguishable.

Constructing ideal world receiver SIMr from a malicious receiver R∗ in the real world:
SIMr first sends to R∗ a random pk′ in 〈g〉 as well as a tuple of {ri}i=1,...,N where each
ri is random in the range of FOPRF. On getting each ij for j = 1, . . . , t, SIMr sends
{ij}j=1,...,t to FOT and gets back {mij}j=1,...,t. Then SIMr sends {rij/mij}j=1,...,t to
R∗. As FOPRF is a pseudorandom function,R∗’s view in the real protocol ({ci}i=1,...,N ,
{fk(ij)}j=1,...,t) is indistinguishable from ({ri}i=1,...,n, {rij/mij}j=1,...,t) for each
ri chosen at random in the range of FOPRF. Since both the real world sender S and ideal
world sender S̄ output a ⊥, the environmentZ’s views in the real world and ideal world
are indistinguishable.

5 Secure Computation of Set Intersection from an OPRF Scheme

Using the Hazay-Lindell construction [19] one can easily convert a secure computation
protocol for OPRF functionality into secure computation of the set intersection prob-
lem. Let Ms = {m(s)

i }i=1,...,N and Mr = {m(r)
i }j=1,...,N denote, respectively, the

sender’s and the receiver’s data sets. The secure set intersection protocol should allow
the receiver to compute Ms ∩Mr while the sender gets nothing from the interaction.
Using a secure computation protocol for parallel OPRF functionality for the PRF from
Section 3), the construction goes as follows, on common inputs (g, n):

– Sender picks random k ∈ Zn and sets pk = gk. Then it computes v(s)i = fk(m(s)
i)

for every i = 1, . . . , N , sets Vs = {v(s)i }i=1,...,N and sets V ′
s = Π(Vs), where Π

is a random permutation. It sends pk and V ′
s to the receiver.

– Sender and receiver interact in a parallel OPRF protocol with sender’s input k and
receiver’s inputs (m1

(r), ...,mN
(r)). Let (v1(r), ..., vN

(r)) be receiver’s outputs;

– Receiver outputs the set
{
m

(r)
j s.t. v(r)

j ∈ V ′
s

}
Theorem 3. The above construction is a secure computation protocol for functionality

FSI(Ms, Mr) = (⊥, Ms ∩Mr)

Proof. We argue this theorem in a hybrid model, where the sender and receiver com-
municate using the ideal functionality FOPRF when they invoke the OPRF protocol.

Efficient Oblivious Pseudorandom Function with Applications 591

Common input: (g, n)
S’s private input: R’s private input:
{m(s)

i }i=1,...,N {m(r)
j }j=1,...,N

k ←R Zn, pk = gk

∀i∈{1,...,N}, v
(s)
i ← fk(m(s)

i)
V ′

s ← Π({v(s)
i }i=1,...,N) pk, V ′

s ��
secure computation of{
v
(r)
j

=fk(m
(r)
j

)
}

j=1,...,N �� output
{

m
(r)
j s.t. v

(r)
j ∈ V ′

s

}
Fig. 3. Computing Set Intersection from an OPRF protocol

Constructing ideal world sender SIMs from a malicious sender S∗ in the real world:
SIMs first gets pk and the set V ′

s = {v(s)i }i=1,...,N from S∗. Then when getting the
key k from S∗, SIMs tries every possible input in the range of the PRF to reconstruct
the set M̄s = {m̄(s)

i }i=1,...,N from V ′
s = {v(s)i }i=1,...,N , and sends M̄s to FSI, which

computes M̄s ∩Mr on SIMs’s input M̄s and the ideal world receiver R̄’s inputMr, and
sends M̄s∩Mr to R̄. The real world receiverR in the hybrid model gets v(s)i = fk(m(s)

i)
for every m̄(s)

i ∈ M̄s as well as v(r)
j = fk(m(r)

j) for every j = 1, . . . , N . So R’s output
is also M̄s ∩Mr. S∗ learns nothing either interacting with the real world receiver R via
the ideal functionality FOPRF or interacting with SIMs in the ideal world. Therefore,
the environment Z’s views in the real world and ideal world are indistinguishable.

Constructing ideal world receiver SIMr from a malicious receiver R∗ in the real world:
SIMr first sends to R∗ a random pk′ in 〈g〉 as well as a tuple of {ri}i=1,...,N where each

ri is random in the range of the pseudorandom function. On gettingMr={m(r)
i }j=1,...,N

from the receiver R∗, it sendsMr to the ideal functionality FSI, which computesMs ∩
Mr on the ideal world sender S’s inputMs and SIMr’s inputMr, and sends Ms ∩Mr

to SIMr. For each m(r)
j ∈ Mr, if m(r)

j ∈ Ms ∩Mr, then SIMr sets v̄(r)
j = ri for some

(previously not picked) i; otherwise it sets v̄(r)
j at random in the range of the pseudoran-

dom function. SIMr sends {v̄(r)
j }j=1,...,N to R∗. Because of FOPRF is a pseudorandom

function, R∗’s view in the real protocol ({Π(v(s)i }i=1,...,N), {v̄(r)
i }i=1,...,N) is indistin-

guishable from ({ri}i=1,...,n, {v̄(r)
i }i=1,...,N) in the simulated game above. Since both

the real world sender S and ideal world sender S̄ output a ⊥, the environmentZ’s views
in the real world and ideal world are indistinguishable.

Extension to computing on committed inputs: As in the OPRF protocol in Section
3, it is easy to extend this protocol so both parties execute on committed inputs. The
receiver can be forced to execute on committed inputs if we replace the basic OPRF
functionality by the committed OPRF, as sketched as the end of Section 3. And if
{Comi}i=1,...,N are Pedersen commitments on the sender’s inputs in the same group
〈g〉 of order n, then it is easy to extend the sender’s first message with a ZK proof of

knowledge of valuesmi, for each i, s.t. v(s)i = fk(mi) = g1/(k+mi) where pk = gk and
mi is committed in Comi. Note that since we use the same commitment for sender’s and

592 S. Jarecki and X. Liu

receiver’s inputs, both parties can securely (but not fairly) compute the set intersection
if they run the same protocol twice, with the roles reversed. Another use of computing
on committed data is for the sender to be able to verify that the receiver holds some au-
thorization on the values it enters into the computation, e.g. in the form of a signature,
or an unlinkable credential [6], on the commitments to these values.

Extension to transfer of associated data, or “Index OT”: In addition to letting the
receiver discover any item mi

(s) which it shares with the sender, the receiver can also
get some data di which the sender associates with this item. If the receiver has only a
single item then this protocol problem is known as “index OT”. The advantage of the
protocol given here is that it has O(N) complexity if both parties contribute N items.
Assume that each di is an element of group 〈g〉. The sender generates two PRF keys k1
and k2 and publishes (fk1(mi

(s)), fk2(mi
(s)) ∗ di) for each i. For each receiver’s item

mj
(r) the two parties engage in two instances of the OPRF protocol, on two sender’s

keys k1 and k2. The receiver then uses fk1(mj
(r)) to decide if there exists mi

(s) =
mj

(r), and fk2(mj
(r)) to retrieve the data di associated withmi

(s).

5.1 Efficiency Estimation of the Set Intersection Protocol

It is interesting to compare the set intersection protocol resulting from the oblivious
PRF protocol of Figure 1 with the FNP protocol by Friedman et al. [16], both in the
honest-but-curious and the malicious models. We compare only straightforward imple-
mentations of both schemes, and summarize this comparison in table 4. Clearly, it is
possible that either algorithm can be further optimized.

Let Ns, Nr denote the number of entries in, respectively, the sender’s and the re-
ceiver’s data sets, and let k be the number of bits needed for representing each entry.
Assume that the FNP protocol is implemented using ElGamal encryption over a 160-bit
subgroup of Z∗

p′ for a 1024-bit prime p′. Note that multiplications in the OPRF protocol
in Figure 1 are either modulo a 2048-bit Paillier modulus n2 or modulo the first prime
p s.t. n divides p− 1. Therefore if m is the cost of a single multiplication (or squaring)
modulo a 1024-bit modulus then we can assume that these two different mults in our
scheme cost about 3m and m, respectively.

In the honest-but-curious model the main bottleneck of the FNP protocol is the obliv-
ious evaluation of the receiver’s encrypted polynomial, with Nr coefficients, on Ns

points in the sender’s database. Using Horner’s rule, this would take 2NsNr of k-bit
exponentiations, i.e. 3kNsNrm. In the malicious model, using standard commitments
and zero-knowledge proofs of arithmetic relationships between committed values, it
seems that each k-bit exponentiation would have to be replaced by at least two 160-bit
exponentiations, so the total cost would grow by at least a factor of 320/k.

In the set intersection protocol of Figure 3, using the OPRF of Figure 1, the sender’s
costs in the honest-but-curious model consist of Ns evaluations of the PRF (Ns fixed-
base 1000-bit exponentiations, contributing 500Nsm), Nr Paillier decryptions (Nr

1000-bit exponentiations mod n2, contributing 4500Nrm), and Nr computations of
vs values (500Nrm) and C(r)

δr
values (this is a mixture of variable and fixed-base ex-

ponentiations which we estimate to amount to under 13000Nrm), for the total cost
of 18000Nrm. For the receiver we have Nr computations of C(r)

a and C(s)
β values

Efficient Oblivious Pseudorandom Function with Applications 593

FNP [16] our protocol
honest-but-curious model 3kNsNrm (500Ns + 32000Nr)m

malicious model ≥ 960NsNrm (1000Ns + 64000Nr)m

Fig. 4. Comparison of Efficiency between the FNP protocol [16] and the one proposed here

and Nr Paillier decryptions and computations of vr values. This is a mixture of vari-
able and fixed-base exponentiations modulo n2 and p, for the estimated total cost of
14000Nrm. Thus we estimate the total cost of this protocol in the passive model as
(500Ns + 32000Nr)m. In the malicious model this cost grows by only a factor of 2.

Summarizing these estimations, it seems that if Ns and Nr are comparable then the
new protocol is faster than FNP in the honest-but-curious model forNs on the order of
11000/k, while in the malicious model the new protocol should be faster for Ns ≥ 67.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 119. Springer, Heidelberg
(2001)

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.:
Delegatable anonymous credentials. Cryptology ePrint Archive, Report 2008/428 (2008)

3. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 31–46. Springer, Heidelberg (2002)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

5. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with fast or delayed
recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 87–102.
Springer, Heidelberg (1999)

6. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Hei-
delberg (2003)

7. Camenisch, J.L., Michels, M.: Separability and efficiency for generic group signature
schemes (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 413.
Springer, Heidelberg (1999)

8. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)

9. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

10. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO (1982)
11. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay, S. (ed.)

EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)
12. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Cryptology ePrint

Archive, 1998/003 (1998)
13. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:

Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

594 S. Jarecki and X. Liu

14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commu-
nications of ACM 28(6) (1985)

15. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudo-
random functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer,
Heidelberg (2005)

16. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (2004)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM, 33(4)
(1986)

18. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious trans-
fer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer,
Heidelberg (2007)

19. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)

21. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC (1999)
22. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO

1999. LNCS, vol. 1666, p. 573. Springer, Heidelberg (1999)
23. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
24. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5) (2006)
25. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-

tions. J. ACM 51(2) (2004)
26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:

Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)
27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:

Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

28. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report, Harvard Uni-
versity (1981)

Towards a Theory of Extractable Functions

Ran Canetti1,� and Ronny Ramzi Dakdouk2,��

1 Tel Aviv University, Tel Aviv, Israel
canetti@tau.ac.il

2 Yale University, New Haven, CT
dakdouk@cs.yale.edu

Abstract. Extractable functions are functions where any adversary that outputs
a point in the range of the function is guaranteed to “know” a corresponding
preimage. Here, knowledge is captured by the existence of an efficient extractor
that recovers the preimage from the internal state of the adversary. Extractability
of functions was defined by the authors (ICALP’08) in the context of perfectly
one-way functions. It can be regarded as an abstraction from specific knowledge
assumptions, such as the Knowledge of Exponent assumption (Hada and Tanaka,
Crypto 1998).

We initiate a more general study of extractable functions. We explore two
different approaches. The first approach is aimed at understanding the concept
of extractability in of itself; in particular we demonstrate that a weak notion of
extraction implies a strong one, and make rigorous the intuition that extraction
and obfuscation are complementary notions.

In the second approach, we study the possibility of constructing cryptographic
primitives from simpler or weaker ones while maintaining extractability. Results
are generally positive. Specifically, we show that several cryptographic reduc-
tions are either “knowledge-preserving” or can be modified to be so. Examples
include reductions from extractable weak one-way functions to extractable strong
ones, from extractable pseudorandom generators to extractable pseudorandom
functions, and from extractable one-way functions to extractable commitments.
Other questions, such as constructing extractable pseudorandom generators from
extractable one way functions, remain open.

1 Introduction

Extractability plays a central role in cryptographic protocol design and analysis. In its
basic form, it relates to two-party protocols where one of the parties (a “prover”) has
secret input, and tries to convince the other party (a “verifier”) that it holds the secret.
The idea is to argue that if the verifier accepts the interaction, then the prover indeed
“knows” the secret. More concretely, extractability makes the following requirement:
Given access to the internals of any (potentially malicious) prover, it is possible to
explicitly and efficiently compute the secret value as long as the verifier accepts an
interaction. (Many variants of this notion exist, of course. See e.g. [12].)

� Supported by NSF grant CFF-0635297 and US-Israel Binational Science Foundation Grant
2006317, a European Union Marie Curie grant, and the Check Point Institute for Information
Security.

�� Supported by NSF grant #0331548.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 595–613, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00457-5_36

http://dx.doi.org/10.1007/978-3-642-00457-5_36

596 R. Canetti and R.R. Dakdouk

The notion of extractable functions extends the concept of extractability to the
more basic setting of computing a function. Here the task of “convincing a verifier”
is replaced by “outputting a value in the range of the function”. More specifically, any
machine that generates a point in the range “knows” a corresponding preimage in the
sense that a preimage is efficiently recoverable given the internal state of the machine.

Extractable functions were coined in [8] for the specific goal of defining extractable
perfectly one-way (EPOW) functions.1 These functions were demonstrated to have
some interesting applications, such as new ways to realize Random Oracles and new
three-round Zero-Knowledge arguments based on weaker assumptions than previously
known. Furthermore, it was demonstrated that extractable functions can be viewed as an
abstraction from specific knowledge assumptions, such as the Knowledge of Exponent
(KE) assumption [16,3] or the Proof of Knowledge (POK) assumption [20], in much
the same way as the notion of one-way function is an abstraction of the Discrete Log
(DL) assumption.

This work attempts to initiate a more general study of extractable functions. Specif-
ically, we address two goals: First, we try to understand exactly what extraction means
and how different notions of extraction (and lack of it) are related. Second, we study
the possibility of constructing complex primitives from simpler ones while preserving
extractability. We note that the latter approach may help in basing cryptographic pro-
tocols that use or require specific knowledge assumptions, on a general computational
notion, which in turn may be concretely realized by alternative assumptions.

Before discussing this work in more detail, we provide a high level overview of
the two versions of knowledge extraction defined in [8]: interactive and noninteractive
extraction.

Noninteractive extraction. Noninteractive extraction is an abstraction of specific knowl-
edge assumptions as mentioned in the previous paragraph. Informally, there is a family
of functions and the adversary gets a description of a specific function from the family,
and tries to output a point in the range of this function. This function family is con-
sidered noninteractively extractable if whenever the adversary generates a point in the
range, it knows a corresponding preimage. In other words, for every such adversary
there is a corresponding extractor that computes a preimage from the private input of
the adversary. One extreme example of extractable functions is the identity function
where the output itself reveals the input. Obviously, such functions are of lesser interest
to cryptographic applications than functions with computational hardness properties.
On another extreme, if the function is a one-way permutation, then it is easy to output
a valid image without knowing a preimage; specifically, output a random string in the
range. In this work, we concentrate on functions that enjoy both properties, namely,
extractability and computational hardness.

Unlike proofs of knowledge [15,2], this notion of extraction does not require effi-
cient verification. In other words, the range of the function is not necessarily efficiently
verifiable. Therefore, it may not be possible to decide if the adversary generates a point
in the range (and consequently, knows a preimage). However, this notion guarantees the
implication: If the adversary generates an image, it knows a preimage. We mention that
the construction in [8] has a range that is efficiently verifiable in the presence of some
auxiliary information (about the function itself).

1 Informally, a probabilistic function is perfectly one-way if it hides all partial information about
the input [7].

Towards a Theory of Extractable Functions 597

Extraction can be studied with or without auxiliary information. We would like to
consider extraction in the presence of auxiliary information as this is a more useful
and meaningful notion. Auxiliary information can be either dependent or independent
[14] (here, the dependence is on the specific function under study). We remark that
dependent auxiliary information is inseparable from independent auxiliary information
when extraction is required for a single function, f . This is so because it is not possible
to prevent an adversary with access to auxiliary information from receiving dependent
auxiliary information, e.g., f(x). Moreover, the notion of a single extractable function
with auxiliary information is not realizable for one-way functions. Specifically, by the
one-wayness assumption, there is no extractor for the adversary that receives f(x), for a
uniform x, and simply outputs it. Consequently, we relax the requirement to extraction
for a family of functions, i.e., a function is chosen uniformly from the family. Indeed,
the KE assumption is already formulated in terms of function families.

In this work, we focus on extraction with independent auxiliary information only.
Formulating and realizing extraction with dependent auxiliary information is tricky.
For instance, it is possible that f(x) is hidden in the input in some clever way such
that it is easy to recover f(x) but not x. For example, the input of the adversary may
look like (r1, u1), . . . , (rn, un), where the ith bit of f(x) is 〈ri, ui〉. [8] addresses this
issue by restricting the dependency of auxiliary information so that only a sequence of
images under f can be part of dependent auxiliary information. Moreover, Zheng and
Seberry [25] follow the same approach under the notion of “sole-samplability”.

Interactive extraction. This notion is geared towards probabilistic functions, and can
work for single functions as well as families. In interactive extraction, the adversary
engages in a 3-round game with a challenger. The objective of the game is to show
that the adversary is capable of computing a function, f , on some point, x, that he
chooses, but using random coins for f that the challenger chooses. In other words, the
goal is to show that the adversary is capable of computing a “large” fraction of the
possible images of x under f (recall f is probabilistic). In more detail, the adversary,
A, sends, in the first round, a point, y0 = f(x, r0), where x and r0 are chosen by
A. The challenger responds with random coins, r1, in the second round and A has
to send back y1 = f(x, r1). In this setting, consistency means that y0 and y1 have
a common preimage x. Interactive extraction means if the adversary is able to answer
consistently, then it knows a common preimage. As in the noninteractive case, this form
of knowledge is captured computationally by the existence of an extractor that recovers
a preimage from the private input of the adversary. We emphasize that no verification of
consistency is assumed to occur. The knowledge requirement states that if the adversary
is consistent, it must know a preimage.

Unlike noninteractive extraction, interactive extraction is required to work for any
function. In other words, the function is fixed once and for all, and any auxiliary infor-
mation is allowed to depend on this function. Intuitively, this is realizable because the
challenge in the second round forces the adversary to compute an image “online”.

In interactive extraction, we focus mainly on probabilistic functions because for de-
terministic functions, this notion is equivalent to noninteractive extraction. (To use the
3-round game of interactive extraction on a deterministic function, f , view f as a prob-
abilistic function that simply ignores the random coins, i.e. f(x, r) = f(x) for any x
and r.)

598 R. Canetti and R.R. Dakdouk

It is worth mentioning that noninteractive extraction can be viewed as a two-round
interactive extraction analogous to the three-round extraction discussed above. Specif-
ically, in the first round the challenger sends a random function from the family and
the adversary responds with a point in the range of this function. That is, there is a
fixed function, g, the challenger sends a random r, and the adversary responds with
g(x, r) = fr(x).

1.1 Our Work

We approach extractable functions from two different angles.
First, we attempt to address the question: What makes a function extractable? More-

over, if a function is extractable with noticeable success, does this mean that it is ex-
tractable in a strong sense? Towards answering these questions, we show that every
function satisfies either a “mild” form of obfuscation [1] or a “mild” form of extraction.
In other words, lack of extractability can be viewed as inability to “reverse engineering”
or obfuscatability. This is indeed what one might naı̈vely expect - a function is either
extractable or obfuscatable, and we show that this naı̈ve thinking is correct to some
extent. We then address the second question posed at the beginning of this paragraph.
We find out that for a large class of functions, notably, POW functions with auxiliary
information, the answer to this question is positive.

Second, we try to construct complex extractable primitives from simpler ones. In
general, extractable functions exist, e.g., the identity function. However, extractable
functions are more useful in cryptographic applications if they satisfy certain hardness
assumptions. Thus, in the second line of work, we address the question: Is it possible to
build primitives with complex hardness properties from weaker hardness assumptions
while maintaining extractable properties? For instance, suppose we have an extractable
weak one-way function, can we build an extractable strong one-way function? Results
indicate that answers to such questions are mostly positive.

On the first line of work. We discuss interactive extraction before noninteractive ex-
traction.

On interactive extraction versus obfuscation. This line of work starts with an observa-
tion that extraction and obfuscation complement each other in a natural way. In other
words, if a function is not extractable, then this lack of extractability is some form of
obfuscation. Specifically, we call a function weakly (and interactively) extractable if
for any adversary that is consistent in the interactive game with noticeable probabil-
ity, there is a corresponding extractor that recovers a preimage with noticeable success.
Moreover, the obfuscation mentioned previously relates to inability to “reverse engi-
neer” an obfuscated program that produces images under the function. In other words,
there is an obfuscated code that receives r as input and computes f(x, r) for some x
“hidden” in the obfuscated code. In more detail, we call f weakly obfuscatable if the
following holds. There is an obfuscator that produces a program capable of correctly
computing the function fx(r) = f(x, r) with noticeable probability, where x is chosen
according to some well-spread distribution and then “hidden” in the program. Also, the
program is considered obfuscated in the sense that it is hard to recover x from the ob-
fuscated program, when x is drawn from the well-spread distribution mentioned above.
The corresponding theorem can be stated in words as:

Towards a Theory of Extractable Functions 599

Theorem 1: Every family of probabilistic functions is either weakly extractable or
weakly obfuscatable.

We emphasize that Theorem 1 is a general observation on any family of functions and
does not assume anything about the family, not even that it is efficiently computable. In-
formally, this theorem can be argued for as follows. Suppose a function, f , is not weakly
extractable. Then, there is an adversaryA that answers consistently in the 3-round game
of interactive extraction, and yet there is no extractor that recovers a preimage x. We use
A to construct an obfuscation for the function fx. The obfuscation simply contains the
description ofA and a corresponding private input that causesA to answer consistently.
To compute fx(r), simulate A, send r in the second round of the extraction game, and
output the response of A. Functionality of this obfuscation follows from consistency of
A while the hiding property follows directly from the assumption that no extractor is
able to recover x. We point out that finding an obfuscation of fx may not be efficient,
however, the obfuscation itself is efficient because A is.

Amplifying knowledge extraction. Theorem 1 is not entirely satisfactory because extrac-
tion is guaranteed to occur only noticeably often. So, we address the issue of amplifying
extraction. We show how to do so under a necessary (for the class of injective functions)
and sufficient assumption on the function. Specifically, we assume what we call “weak
verification”. Weak verification is a notion introduced to show that some form of verifi-
cation is necessary and sufficient for knowledge amplification. Moreover, it is implied
by common verification notions such as public verification for probabilistic functions
[7]. Informally, weak verification means for any adversaryA that outputs images in the
range of f , there is a corresponding verifier, V , which given some x and the private
input of A, decides whether the output of A is a valid image of x under f . In other
words, V has to decide whether there exists an r such that f(x, r) = A(z, rA), where z
and rA are the auxiliary information and random coins for A. Moreover, V is allowed
to fail with some arbitrary small, yet noticeable probability. We use the term “extraction
(respectively, verification) with vanishing but noticeable error” to mean that for every
polynomial, p, there is an extractor (respectively, verifier) that fails no more than 1

p

fraction of the time. The corresponding theorem can be stated in words as follows.

Theorem 2: Every weakly-verifiable family of probabilistic functions is either weakly
obfuscatable or extractable with vanishing but noticeable error. Moreover, if an in-
jective family of functions is extractable with vanishing but noticeable error, then it
is weakly verifiable.

At a very high level, the proof of Theorem 2 uses a variant of Impagliazzo’s hard-core
lemma [19] to amplify weak extraction to extraction with vanishing but noticeable error.
Informally, we use the lemma to construct a family, U, of machines that take the input of
A and attempt to extract a preimage, x, from it. This family has the property that when
all its members fail, no machine can succeed noticeably. We then construct a family
of distributions on the input of A, one distribution for each input length n, such that
any member of U succeeds only negligibly often (as n increases). Consequently, if U is
not a family of extractors with vanishing but noticeable error, then the distributions just
mentioned have a noticeable weight in proportion to the original one. Using Theorem
1 on A and the new distributions imply the existence of an extractor with noticeable
success. However, this contradicts the amplification lemma.

600 R. Canetti and R.R. Dakdouk

Interactively-extractable POW functions. An important corollary to Theorem 2 is that
every POW function with auxiliary information is interactively extractable (see Corol-
lary 2 for a more formal presentation). This supersedes the corresponding transfor-
mation of [8] from POW with auxiliary information to extractable POW function.
Moreover, the current result is more efficient in that the challenger needs to send a
single challenge instead of n.

Towards negligible error. We can obtain negligible failure probability if we relax the
notion of extraction so that it applies only to “reliably-consistent adversaries”. Intu-
itively, an adversary is reliably consistent if its consistency is noticeable. In other words,
disregarding input on which the adversary is consistent only negligibly often, there is
a fixed polynomial, p, such that 1

p is a lower bound on the probability of consistency
(here, the probability is taken over the random challenge). The corresponding theorem
can be stated as follows:

Theorem 3: Every weakly-verifiable family of probabilistic functions is either weakly
obfuscatable or extractable with negligible error for adversaries that are reliably
consistent.

Moreover, if an efficiently computable and verifiable family of functions is ex-
tractable with negligible error, then every corresponding adversary is reliably
consistent.

The proof this theorem is very similar to the previous one but it uses a stronger amplifi-
cation lemma in the uniform model. Informally, the lemma states that there is a family
of polynomial-time machine, U, such that no machine can succeed in inverting a func-
tion where all members of U fail. (Contrast this lemma with the previous one, where
the guarantee is that no machine can succeed noticeably where U fails.)

On noninteractive extraction versus obfuscation. Results similar to those for interac-
tive extraction hold in this case. However, they are weaker in the sense that functions
seem to be more likely to satisfy a weaker notion of obfuscation. Informally, the obfus-
cated program receives a function description, k, as input and outputs fk(x) for some
x hidden in the program that may depend on k. Moreover, it is hard to recover x from
the obfuscated code. The results and proofs are similar. Two issues are worth high-
lighting. First, following the discussion at the beginning of this introduction, the func-
tion is not fixed in advance. Rather, it is sampled from a well-spread distribution and
given to the adversary. Second, a corollary to these results states that injective functions
that are extractable with vanishing but noticeable error are extractable with negligible
error.

On the second line of research: Constructing extractable functions. Taking another
approach towards a theory of extractable functions, we study knowledge-preserving
reductions among cryptographic primitives. In other words, we address the question:
given a noninteractively extractable cryptographic primitive, is it possible to construct
another primitive while maintaining extraction? We attempt to answer this question by
reviewing the literature on cryptographic reductions and investigating whether these
reductions maintain extraction. Here, we focus solely on noninteractive extraction be-
cause deterministic one-way functions are not interactively extractable (Corollary 1).
The results are positive: Most reductions maintain extractability or can be modified to
do so. The following is a list of reductions that preserve extractability.

Towards a Theory of Extractable Functions 601

1. Extractable weak one-way functions =⇒ extractable strong one-way functions.
(This is the standard reduction [24,12].)

2. Extractable pseudorandom generators =⇒ extractable pseudorandom functions.
This reduction uses the construction of [13]. We assume, in addition to the ex-
tractable pseudorandom generator, G1, another pseudorandom generator, G2 that
is not necessarily extractable but remains pseudorandom in the presence ofG1, i.e.,
G1(x), G2(x) is pseudorandom when x is uniform.

3. Extractable one-way functions =⇒ extractable 1 − 1 trapdoor functions. This
construction assumes, in addition, the existence of a 1 − 1 trapdoor function that
remains one-way in the presence of the extractable function.

4. Extractable one-way functions =⇒ extractable public-key encryption. This re-
duction, assumes, in addition, a trapdoor permutation. Here, extractable public-key
encryption is against passive adversaries and it means that it is hard to generate a
ciphertext without knowledge of the plaintext and without seeing another cipher-
text. On the other hand, extractability against active adversaries, that is adversaries
that can see other ciphertext is known in the literature as plaintext-aware encryp-
tion [5,18,4,11]. We mention that this notion requires extraction with dependent
auxiliary information and is left for future work.

5. Extractable one-way functions =⇒ extractable 2-round commitments. Extractable
commitments means if the sender commits correctly (i.e., the commitment can be
opened) then it knows the message at the commit stage. This reduction uses ei-
ther the construction of [6] or of [21]. We note that [23] independently constructs
extractable 2-round commitments from plaintext-aware encryption.

The main reduction missing from this list is from one-way functions to pseudorandom
generators. Even though we give a reduction from the KE and DDH assumptions to
extractable pseudorandom generators, constructing such generators from extractable
one-way functions remains open. In this work, we take a step towards this goal by
giving a reduction from a “strongly” extractable one-way function, where extraction is
required to hold even when f(x) is represented unambiguously in a different way. Refer
to Section 4 for a detailed presentation of all results regarding knowledge-preserving
reductions.

Organization. We present the first approach in the context of interactive extraction in
Section 3 (the corresponding results on noninteractive extraction can be found in the full
version of the paper), and the second line of research in Section 4. Formal definitions of
extractable functions appear in Section 2. Due to space limitation, formal proofs appear
only in the full version of the paper.

2 Preliminaries

We define here interactive and noninteractive extraction. Note that these definitions re-
quire negligible extraction error. In Section 3, we study weaker forms of extraction,
where the extractor succeeds noticeably or fails with vanishing but noticeable proba-
bility.

Definition 1 (Noninteractive extraction). A randomized family ensemble, F =
{{Fk}k∈Kn}n∈N, is called noninteractively extractable if for any PPT A, any

602 R. Canetti and R.R. Dakdouk

well-spread distribution, Kn, on the function description, any distribution, ZR =
{ZRn}n∈N, on auxiliary information and the private input of A, there is polynomial-
time machines,K, such that:

Pr[(z, rA) ← ZRn, k ← Kn, y = A(k, z, rA), x = K(k, z, rA) :

∃r, fk(x, r) = y or ∀x′, r′, y �= fk(x′, r′)] > 1 − µ(n).
Definition 2 (Interactive Extraction). A randomized family ensemble, F =
{{Fk}k∈Kn}n∈N, is called interactively extractable if for any PPT A, any distribu-
tion, ZR = {ZRn}n∈N, on auxiliary information and the private input of A, there is
polynomial-time machines, K, such that for any k ∈ Kn:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fk(x, r0) = y0 or (∀x′, (∀r0, y0 �= fk(x′, r0)) or y1 �= fk(x′, r1))] > 1 − µ(n).

3 On Obfuscation Versus Interactive Extraction

We present the three theorems mentioned in the introduction concerning the connection
between obfuscation and interactive extraction with different extraction rates. Recall,
the first theorem says that every function is either weakly extractable or weakly obfus-
catable. The second theorem builds on the first one to imply that every weakly verifiable
function is either weakly obfuscatable or extractable with vanishing but noticeable er-
ror. The final theorem states that negligible-error extraction can be achieved if and only
if certain conditions on the adversary are met. These conditions, termed “reliable con-
sistency” in the introduction, are discussed and formalized in Section 3.2.

The statement that any function is either extractable or obfuscatable is to some degree
intuitive. After all, these two notions are complementary in some way. For instance,
suppose there is an obfuscated program that hides a license key inside it and is able to
compute a new hash of the key. If we look at such a program from an extractability point
of view, this means that there is a machine that simulates this program and computes the
functionality mentioned above. Moreover, no extractor can recover the license key by
the assumption that the obfuscated program hides it. Going in the reverse direction, it
seems intuitive that the existence of an extractor for every adversary implies the absence
of an obfuscation of such a functionality.

In the next theorem, we formalize and show that the intuition mentioned in the pre-
vious paragraph is sound. In more detail, statement 1 of this theorem (the obfuscation
clause) states that there is a well-spread distribution, X, on the input (think of this as the
license key of the previous example) and an obfuscator,Gn, that takes a license key, x,
and produces an obfuscated program, g(x). In turn, g(x) takes an input r and produces
a new image of x using r as random coins for the function, i.e., g(x)(r) = f(x, r).
Moreover, g(x) is required to be one-way in x but not required to succeed in computing
this functionality more than noticeably often. In the theorem, we use the terminology
g(x)(⊥) to refer to a fixed hash of x available in the clear in the obfuscated program.
On the other hand, statement 2 (the extraction clause) says that any adversary,A, with
any distribution on its input, z, rA (z is auxiliary information and rA is the random
coins for A), that is consistent in the 3-round game discussed in the introduction, there

Towards a Theory of Extractable Functions 603

is a corresponding extractor that recovers a preimage. In more detail, A is supposed to
produce, with noticeable success, an image, y0 in the first round and then again y1 in
the third round, such that there is a preimage common to both y0 and y1. Moreover, the
extractor is supposed to succeed only noticeably often.

Theorem 1. Let F = {fn}n∈N be any randomized family of functions and R =
{Rn}n∈N be any distribution on the randomness domain of F. Then, exactly one of
the following two statements should hold:

1. There is a well-spread distribution X on the input domain of F, a probabilistic
function, G = {Gn} such that for any nonuniform polynomial-time machine, A:
(Obfuscation)

Pr[x←Xn, g(x)←Gn(x), x′=A(g(x)) : ∃r′, g(x)(⊥)=fn(x′, r′)] ≤ µ(n). 2

(Functionality)

Pr[x← Xn, g(x) ← Gn(x), r ← Rn : ∃r′, g(x)(r) = fn(x, r) and g(x)(⊥)
= fn(x, r′)],

is nonnegligible in n. Moreover, g(x)(r) is efficiently computable, for any r.
2. For any probabilistic polynomial-time machine (PPT), A, any infinite subset of

security parameters, N′, any distribution, ZR = {ZRn}n∈N′ , on auxiliary infor-
mation and the private input of A, if:
(Consistency)

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))], (1)

is nonnegligible in n, then there exists a nonuniform polynomial-time machine, K,
such that:
(Extraction)

Pr[(z, rA) ← ZRn, (y0, s) = A(z, rA), x = K(z, rA) : ∃r0, y0 = fn(x, r0)],
(2)

is nonnegligible in n.

We emphasize that the previous theorem holds for any function. That is, it does not
assume anything about the function, not even that it is efficiently computable. At a
high level, the proof proceeds as follows. If f is not extractable, we take an adversary
that violates this property and construct from it a distribution on the input to f (for
clarity, refer to this as the license distribution) and an obfuscation on this distribution
such that the obfuscation hides the license but is able to compute new images of it.
In more detail, the license distribution is the distribution induced by A on preimages
of its consistent output. For instance, if A always outputs fn(0, r0) in the first round
and fn(0, r1) in the third round (in this case there is a straightforward extractor), then
the induced distribution always samples 0. Moreover, the corresponding obfuscation

2 Here and in the rest of the paper, µ denotes a negligible function.

604 R. Canetti and R.R. Dakdouk

is simply the input of A that causes A to output valid images of the license. Observe
that the license distribution is well-spread because otherwise the nonuniform extractor
can invert with noticeable probability. Therefore, using this license distribution with the
corresponding obfuscation, statement 1 follows from the negation of statement 2. The
other direction is easier to see and has been referred to in the second paragraph of this
section.

Corollary 1. Any deterministic one-way function is not even weakly extractable. That
is, any deterministic one-way function satisfies statement 1 of Theorem 1. Moreover,
this remains true if the function is not efficiently computable.

3.1 Amplifying Extraction

Theorem 1 says each function has a weakly extractable or weakly obfuscatable property.
Next, we investigate conditions that allow for amplifying knowledge extraction in the
interactive setting. In particular, the goal in this section is to reach a vanishing but
noticeable extraction error. Recall from the introduction, this term means that for every
polynomial, p, there is an extractor that may depend on p and fails at most 1

p of the time.
In Section 3.2, we address extraction with negligible error.

Not surprisingly, functions that admit such a property require more than the negation
of statement 1 of Theorem 1. Recall that Theorem 1 holds for any function, in particular,
not efficiently-computable functions. However, to decrease the extraction error, efficient
verification is needed. For the purpose of amplifying extraction, common notions of
verification (e.g., Definition 3) are sufficient. However, a weaker but contrived form of
verification is also sufficient, and, in the case of injective functions (i.e., for all y, there
is no more than one x such that y = fn(x, r) for some r), is also necessary. Thus, we
use this notion in the following theorem for the purpose of achieving a characterization
instead of an implication. Informally, weak verification means that there is a verifier
tailored for every adversary,A. It receives x and the input ofA and determines whether
the output of A is a valid image of x. Moreover, the verifier is allowed to fail, when A
is consistent, with noticeable probability.

Definition 3 (Efficient Verification, [7])
A function family , F = {fn}n∈N, satisfies efficient verification if there exists a deter-
ministic polynomial time algorithm, VF such that:

∀n ∈ N, x ∈ {0, 1}n, y ∈ range(fn), VF(x, y) = 1 iff ∃r, y = fn(x, r).

Definition 4 (Weak Verification)
A function family , F = {fn}n∈N, satisfies weak verification if for every PPT, A (with
input z, rA), any distribution, ZR = {ZRn}n∈N′ , on auxiliary information and the
private input of A, and any polynomial p, there exists a nonuniform polynomial-time
machine, VA,ZR,p, such that for sufficiently large n ∈ N′:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x, r0, VA,ZR,p(x, z, rA) �= 1 and fn(x, r0) = y0 or ∃x, VA,ZR,p(x, z, rA) = 1
and ∀r0, fn(x, r0) �= y0)

Towards a Theory of Extractable Functions 605

and (∃x, r0, fn(x, r0) = y0 and fn(x, r1) = y1)] <
1
p(n)

.

Theorem 2. Let F = {fn}n∈N be any randomized function family that is weakly ex-
tractable (satisfies statement 2 of Theorem 1). If F is weakly verifiable (as in Definition
4), then for any PPT A, any distribution, ZR = {ZRn}n∈N′ , on auxiliary information
and the private input of A, there exists a family of nonuniform polynomial-time ma-
chines, U = {Ui}i∈N such that for any polynomial p, there is an index ip where for all
i ≥ ip and sufficiently large n ∈ N′:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = Ui(z, rA) :

(∃r0, fn(x, r0)=y0 or (∀x′, (∀r0, y0 �= fn(x′, r0)) or y1 �= fn(x′, r1))] > 1− 1
p(n)

.

(3)
Moreover, this implication is an equivalence for injective functions.

The proof uses, in an essential way, an amplification lemma which is a version of Im-
pagliazzo’s hard-core lemma [19] applied to this setting. At a very high level, this
lemma asserts the existence of a family of machines, U, such that “no machine can
succeed noticeably where all of these machines fail”. Using this lemma, we then claim
that for every polynomial, p, there is a member Uip ∈ U that fails in extracting a preim-
age with a probability at most 1

p . If this were not to be the case, then this means that

there is some polynomial p, where every machine in U fails with probability at least 1
p .

This implies that there is a noticeable fraction of the domain where A is consistent yet
all members of U fail. Lets restrict the distribution on the input of A to those on which
such an event occurs. We then apply Theorem 1, in particular, statement 2, to obtain an
extractor with noticeable success contradicting the lemma.

The following corollary is one of the main applications of this result.

Corollary 2. Every POW function with auxiliary information that is collision resistant
and has public randomness is extractable with vanishing but noticeable error in the
interactive setting (as in Theorem 2).

3.2 Towards Extraction with Negligible Error

The previous section underscores the conditions that are necessary (at least for injective
functions) and sufficient for extraction with vanishing but noticeable error. Here, we
address the question of obtaining extraction with negligible error. As before, we show
necessary and sufficient conditions to achieve this objective. However, unlike the pre-
vious results, the conditions are on the adversary itself and not on the function under
study. Moreover, as we discuss later on, this result is in the uniform setting only.

Conditions for extraction with negligible error. As we mentioned in the introduction,
extraction with negligible error requires “reliable consistency” on the behalf of the ad-
versary. Informally, we show that negligible extraction error is possible for a particular
adversary, A, if it can answer challenges consistently with probability bounded from
below by the inverse of some fixed polynomial. Informally, it may be the case that A
answers consistently with noticeable probability. Yet, depending on its input, its corre-
sponding consistency probability (taken over the random coins of the challenger) can

606 R. Canetti and R.R. Dakdouk

be arbitrary small though still noticeable. In such a scenario, extraction can not achieve
negligible error because as answers are less likely to be consistent, extraction requires
more effort and time to find a preimage. On the other hand, if for almost all of its input,
A answers consistently with a probability bounded from below by an inverse poly-
nomial, this bound can be translated into an upper bound on the running time of the
extractor.

We elaborate on these conditions through a toy example. Suppose there is a function,
f and an adversaryA with the following properties.A outputs a consistent pair (y0, y1)
with probability 1

ni for every element in the ith 2n

n fraction of the input domain for
A. Here, the probability is taken over random coins sent by the challenger in round 2.
Formally, we have for every n, and every (z, rA) ∈ [i2n

n ,
(i+1)2n

n]:

Pr[r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) : ∃x, r0, fn(x, r0) = y0

and fn(x, r1) = y1] =
1
ni
.

Now, it may be the case that extraction depends on how successful A is in answering
challenges. If this is so, then extraction is proportional to consistency. In other words,
as A becomes less consistent (that is, as its input is chosen from the upper fraction of
the domain), extraction requires more time to achieve the same success rate. In such
a scenario, it turns out that overwhelming success requires super-polynomial time. In
other words, noticeable extraction error is unavoidable.

In the previous example, we assume that A has a noticeable success in every fraction
of the input domain. Also, we assume that A can not do any better. In other words, A
can not amplify its success rate. However, there are cases where A can indeed amplify
its success, e.g., A may provide wrong answers intentionally even though it can easily
compute the correct ones. In such a scenario, extraction with negligible error is possible.
As an example, consider an adversary, A, that provides wrong answers intentionally.
A receives x as input, computes i such that x ∈ [i2n

n ,
(i+1)2n

n], and gives the correct
answer only if r1 ∈ [0, 2n

ni]. Even thoughA satisfies the previous condition, an extractor
can easily recover x by reading it from the input. So, we need a meaningful way to
separate the notion of “truthful” failure from “intentional” failure. In the next theorem,
we capture the notion of intentional failure through the existence of another machine
A′ that behaves similarly to A, yet it amplifies its consistency.

Uniform Setting. The proof of Theorem 2 uses a diagonalization technique to show that
no machine can succeed “substantially” where the family U fails. The diagonalization
is over machines that succeeds noticeably over inputs of some length n. This technique
works because this set of machines is enumerable. (Specifically, there are at most n
machines that each succeeds exclusively with probability 1

n and so on.) However, this
technique fails when we try to use it to achieve negligible error in polynomial time.
Two factors seem to prevent this technique from working. First, the set of nonuniform
polynomial-time machines is not enumerable and so we can not diagonalize over this
set (as we discuss later on, we use the enumeration of uniform machines to prove this
result in the uniform setting). Second, if we instead consider machines that succeed
exclusively, as in the previous theorem, we need to take into account those that suc-
ceed with negligible probability, yet the probability is not “very negligible”, say, 1

nlogn .

Towards a Theory of Extractable Functions 607

However, this causes U to be slightly super-polynomial. Consequently, the next theo-
rem applies to the uniform setting only. It uses a uniform version of Theorem 1 which
can be found in the full version of the paper.

In words, reliable consistency in the next theorem refers to a new machine, A′, that
replaces an adversary,A, with the purpose of undoing any intentional failure on behalf
of A. The conditions on A′ are as follows: (1) the output of A′ is equivalent to A in the
first round, (2) the consistency of A′ is not any worse than that of A, and (3) there is a
fixed polynomial, pA′ , such that almost all inputs to A′ cause it to be either consistent
negligibly or with probability at least 1

pA′ . If there is such an A′ then extraction with
negligible extraction error is possible. Moreover, the converse is also true for efficiently
computable and verifiable functions.

Theorem 3. Let F = {fn}n∈N be any randomized function family that satisfies the
uniform version of statement 2 of Theorem 1 and is weakly verifiable (as in Definition
4, except with respect to uniform deterministic machines).

Let A be any PPT and ZR = {ZRn}n∈N′ be any distribution on auxiliary infor-
mation and the private input of A. If there is another PPT, A′, satisfying the following
three conditions of reliable consistency:

1. A′(z, rA) = A(z, rA) for all z, rA.
2.

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))]

≥ Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))] − µ(n)
3. There exists a polynomial pA′ , such that for any polynomial q > pA′ :

Pr[(z,rA)←ZRn:

1
q(n)≤Pr[r1←Rn, (y0,s)=A′(z,rA), y1=A′(s,r1,aA′): ∃x′, r0, y0=fn(x′,r0) and

y1=fn(x′,r1)]≤ 1
p

A′ (n)]≤µ(n)

then there is a deterministic polynomial-time machine,K such that for n ∈ N′:

Pr[(z, rA) ← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fn(x, r0) = y0 or (∀x′(∀r0, y0 �= fn(x′, r0)) or y1 �= fn(x′, r1))] > 1 − µ(n).
(4)

Moreover, if F is efficiently computable and verifiable (as in Definition 3), then the
converse is also true.

The proof is similar to that of Theorem 2. There are two points worth highlighting. The
proof uses a uniform version of the amplification lemma. Informally, this lemma pro-
vides a family of machines, U, such that any machine can not succeed even negligibly
where this family fails. At a high level, each Ui ∈ U contains the first i machines in an
enumeration of uniform polynomial-time machine. This ensures that every polynomial-
time machine is eventually included in the family. We claim that there is a member of

608 R. Canetti and R.R. Dakdouk

this family that achieves negligible extraction error. If this were not to be the case, then
for every member Ui there is a polynomial pi such that Ui fails with probability at least
1
pi

. Note that pi may increase as i increases. However, by the third condition on A′,
consistency of A′ is bounded from below by the inverse of a fixed polynomial which
is independent of pi. This is important because when we restrict the input distribution
to where A′ is consistent and U fails, A′ remains consistent with noticeable probabil-
ity. Consequently, we can apply Theorem 1 to get an extractor with noticeable success
contradicting the lemma.

Corollary 3. Any deterministic and efficiently-verifiable (i.e., given x and y, it is easy
to decide whether f(x) = y) function is extractable with negligible error if and only if
it is weakly extractable in the uniform setting.

4 Knowledge-Preserving Reductions

In Section 3, we investigate the relationships among different notions of extraction.
We address questions regarding the possibility that functions satisfy some extractabil-
ity properties, such as weak extraction, extraction with noticeable error, or extraction
with negligible error. Results in this line of work show equivalence among some no-
tions of extraction, e.g., extraction with noticeable error is equivalent to extraction with
nonnegligible success for deterministic and efficiently verifiable functions (Corollary3).

Here, we take a different approach. Specifically, we investigate building extractable
functions with additional hardness properties from extractable functions with simpler
computational assumptions. In particular, we revisit the literature on reductions among
primitives to see if these reductions or variations of preserve noninteractive extraction.

The results are mostly positive. In particular, reductions from weak one-way func-
tions to strong one-way functions, from one-way functions to 2-round commitments
and public-key encryption scheme (assuming in addition a trapdoor permutation) are
knowledge preserving or can be easily modified to be so. Moreover, extractable pseudo-
random generators imply extractable pseudorandom functions and extractable 2-round
commitments. One important open question is whether extractable one-way functions
imply extractable pseudorandom generators. In pursuit of answering this question, we
show that the HILL construction [17] is not knowledge preserving. On the other hand,
an extractable pseudorandom generator can be constructed from the KE and the DDH
assumptions.

Next, we provide a detailed presentation of these results. They address noninterac-
tive extraction with negligible error only. Interactive extraction is primarily useful for
probabilistic functions because by Corollary 1, deterministic one-way functions and
pseudorandom generators are not interactively extractable. As for probabilistic func-
tions, [8] provides a transformation from POW functions to interactively-extractable
POW functions. Moreover, every POW function with auxiliary information and public
randomness is interactively extractable (Corollary 2).

From extractable weak one-way to extractable strong one-way functions. The stan-
dard reduction from weak one-way functions to strong one-way functions [24,12] is
knowledge preserving. Specifically, let F = {{fk}k∈Kn}n∈N be a family of weak
functions with 1

p as a lower bound on the failure probability of all polynomial-time

Towards a Theory of Extractable Functions 609

machines. Furthermore, suppose that F is extractable with negligible error with re-
spect to some well-spread distribution, K, on the function description. Then, the family,
G = {{gk}k∈Kn}n∈N, where gk(x1, ..., xnp(n)) = fk(x1), ..., fk(xnp(n)), is also ex-
tractable with respect to K.

Let A be any adversary that receives k, z, rA as input (where z and rA are auxiliary
information and random coins of A, respectively) and outputs y in the range of Gk.
Let B be a machine that receives k, z, rA, i as input and outputs yi, where i is uniform
and A(k, z, rA) = y1, ..., ynp(n). Note that B outputs a valid image under fk with at
least the same probability as A outputs a valid image under gk. Therefore, there is a
corresponding extractor, KB , for B. Let KA be an extractor for A that runs KB on
k, z, rA, i for i = 1 to np(n). Except with negligible probability, if A outputs a valid
image, KB computes the correct images for all fk(xi). Thus, KA is a negligible-error
extractor for A.

From extractable one-way functions to extractable pseudorandomgenerators. First, we
point out that the HILL construction [17] of pseudorandom generator from even injec-
tive one-way functions is not knowledge preserving. Specifically, the family, G, is not
extractable, where Gk(x, h) = h(fk(x)), h, p(x), fk is an extractable, 1 − 1 one-way
function,h is a hash function, and p is a hardcore predicate for fk. This is so because the
adversary, that receives and outputs a random string, succeeds with noticeable proba-
bility in producing a valid image underGk. On the other hand, no extractor can recover
a preimage because Gk is pseudorandom.

Constructing extractable pseudorandom generators from extractable one-way func-
tions remains open. The obstacle seems to be that somehow, fk(x), should be easy to
compute from the output of the generator so that it is possible to use the original extrac-
tor to recover x. Consequently, forG to be a pseudorandom generator, it should also be
easy to compute fk(x) from a random string, for some x. However, the range of f may
be distinguishable from uniform, e.g., the first n bits may always be 0. So, it is not clear
how to put fk(x) in the output without compromising pseudorandomness.

A point worth mentioning here is that it is possible to construct extractable pseudo-
random generators from a stronger knowledge requirement on the one-way function.
The original knowledge assumptions states that any adversary that outputs fk(x) as a
sequence of bits “knows” x. Consider the following stronger version. Informally, if an
adversary outputs fk(x) specified in another representation, it should still know x. In
particular, the type of representation, R, we are interested in is a randomized represen-
tation of strings, where R(y, r) is indistinguishable from uniform and every R(y, r)
has a unique preimage (except with negligible probability). We give a concrete exam-
ple: Let π be a one-way permutation and b be a corresponding hardcore predicate. Then,
R(y, r1, ..., r|y|) = π(r1), ..., π(r|y|), y ⊕ b(r1), ..., b(r|y|). Note that R is pseudoran-
dom and unambiguous, in that there is a single y as a valid preimage of any output. Now,
if fk is extractable with respect to this representation, then the following construction
is an extractable family of pseudorandom generators.

Gk(x, r1, ..., r|fk(x)|) = R(fk(x), r1, ..., r|fk(x)|), G′(x) ⊕ r1, ..., r|fk(x)|,

where G′ is another pseudorandom generator with a suitable expansion factor that re-
mains pseudorandom in the presence of f (but G′ is not assumed to be extractable). In

610 R. Canetti and R.R. Dakdouk

other words, f(x), G′(x) is assumed to be indistinguishable from f(x), U|G′(x)| (in this
section, Ul denotes a uniform variable over strings of length l).3

Finally, we mention that the knowledge of exponent assumption [16] (with the DDH
assumption) imply the existence of extractable pseudorandom generators, specifically,
Gg,ga(x) = gx, gax, where g is a generator for the group for which these assumptions
apply.

From extractable pseudorandom generators to extractable pseudorandom functions.
The notion of extractable pseudorandom functions is slightly different from the notions
considered so far. Informally, a pseudorandom function is extractable if any adversary
that computes fk(x, r), for any r that a challenger chooses, has a corresponding extrac-
tor that recovers x.

Formally, for any PPT A, any well-spread distribution,Kn, on the function descrip-
tion, any distribution, ZR = {ZRn}n∈N′ , on auxiliary information and the private input
of A, there is polynomial-time machines, K, such that:

Pr[(z, rA) ← ZRn, k← Kn, x = K(k, z, rA) :

∃r, fk(x, r) �= A(k, z, rA, r) and ∃x′, ∀r′, fk(x′, r′) = A(k, z, rA, r′)] ≤ µ(n).
The construction of extractable pseudorandom functions uses the construction of

[13] on all input, except 0. On input 0, the output is exactly that of the extractable
generator in order to allow for successful extraction. Formally, let G1 be any injective
and extractable pseudorandom generator with a 2n2 (or more) expansion factor. Let
b a hardcore bit for G1 and G2

k(x1, . . . , xn) = G1
k(b(x1), . . . , b(xn)), where |x1| =

· · · = |xn| = n. W.l.o.g. assume G2 has a 2n expansion factor, otherwise, trim the
output to a suitable length. Let F′ be the family of pseudorandom functions obtained by
applying the construction of [13] onG2. Then, the extractable family of pseudorandom
functions, F = {{fk}k∈Kn}n∈N, is defined as follows:

fk((x1, . . . , xn), r) =

{
G1

k(x1), . . . , G1
k(xn) if r = 0

f ′k((x1, . . . , xn), r) otherwise

Let A be any PPT that receives k, z, rA, r and outputs fk(x1, . . . , xn, r) for some
x1, . . . , xn. Let B be a machine that receives k, z, rA, i (where i is uniform), computes
A(k, z, rA, 0) = G1

k(x1), . . . , G1
k(xn) and outputs G1(xi). Since G1 is extractable,

there is a machine, KB that recovers the corresponding xi on input k, z, rA, i. Then,
the extractor, KA, for A and F, simulates KB on input k, z, rA, i, for i = 1, . . . , n, and
outputs x1, . . . , xn.

From extractable one-way functions to extractable public-key encryption. Before we
discuss extractable public-key encryption, we briefly mention that private-key encryp-
tion with a “strong” extraction property (that is, plaintext-aware [5]) can be easily
constructed from standard computational assumptions without knowledge assumptions.
However, we emphasize that not all private-key encryption are extractable, e.g., a ran-
dom string is a valid ciphertext under Esk(m, r) = r,m ⊕ fsk(r) [12], where fsk is

3 Note that the machine that outputs a random string as a possible representation of fk(x) under
R does not succeed considerably better than the machine that output a random string as a
possible fk(x).

Towards a Theory of Extractable Functions 611

a pseudorandom function. However, the previous construction can be easily modified
to become extractable. Specifically, Esk=(sk1,sk2)(m, r) = r,m⊕ fsk1(r), fsk2 (m, r)
has the property that without knowledge of sk, it is hard to find a new ciphertext even
if the adversary sees encryption of multiple messages.

Extractable one-way functions can be used with a trapdoor permutation to construct
public-key encryption schemes with the property that any adversary that computes a
ciphertext without seeing another ciphertext “knows” the corresponding plaintext. This
notion is similar to plaintext-aware encryption [5,18,4,11]. Informally, the latter notion
says that no adversary, with access to ciphertext of messages it may not know, can pro-
duce a ciphertext without knowing the corresponding plaintext. In this work we focus
on extraction with independent auxiliary information only. So, we leave the study of
constructing plaintext-aware encryption from extractable functions to future work as it
requires extraction with dependent auxiliary information [8]. We note that [8] constructs
plaintext-aware encryption from extractable POW functions with dependent auxiliary
information.

Let F = {{fk}k∈Kn}n∈N and Π = {{πpk}pk∈PKn}n∈N be families of extractable
one-way functions and trapdoor permutations, respectively. Moreover, suppose that F
and Π remain one-way with respect to each other, specifically, for a uniform r, k, pk,
fk(r), πpk(r) is one-way. Let b be a hardcore predicate for the function gk,pk(r) =
fk(r), πpk(r). Note that g is extractable and injective. Let Ek,pk(m, (r1, . . . , rn)) =
gk,pk(r1), . . . , gk,pk(rn),m ⊕ b(r1), . . . , b(rn). It can be show that for any adversary
that computes a valid ciphertext, without seeing another ciphertext, there is an extractor
that recovers r1, . . . , rn and consequently,m.

From extractable one-way functions to extractable 1 − 1 trapdoor functions. Observe
that g, as defined above, is an extractable 1 − 1 trapdoor function if F and Π remain
one-way with respect to each other. Moreover, the same result holds whenΠ is a family
of 1 − 1 trapdoor functions.

Extractable commitments. Informally, an extractable commitments guarantee at the
commit stage that the sender knows the secret if the commitment is valid (that is, it can
be opened). Even though in a stand-alone protocol, this additional property may seem
irrelevant (because the sender reveals the secret in the decommit stage and nothing hap-
pens between these two stages), it is one of several important properties that come into
play in more complex protocols with stronger security requirement. Thus, extractable
commitments in the CRS model were introduced and studied in [22,9,10] as part of
zero-knowledge proofs and universally-composable commitments.

We show that known commitments constructions from injective one-way function
[6] and from pseudorandom generators [21] can be easily modified into 2-round ex-
tractable commitments if the underlying primitives are extractable. We note that Ven-
tre and Visconti [23], independently construct 2-round extractable commitments from
plaintext-aware encryption schemes (with additional assumptions).

Extractable commitments from 1 − 1 extractable, one-way functions. Let F be a
family of injective and extractable one-way functions. The 2-commitment starts with
the receiver sending a random function description, k, and the sender responds with
fk(u1), . . . , fk(un),m ⊕ b(u1), . . . , b(un), where b is a hardcore bit for fk. Note that
it is essential for the hiding property that the family, F be one-way with respect to any
function in the family.

612 R. Canetti and R.R. Dakdouk

Extractable commitments from extractable pseudorandom generators. We modify the
2-round commitment scheme of [21] to make it extractable. In the first round, the re-
ceiver sends random strings r1, . . . , rn and the description, k, for the pseudorandom
generator. In the second round, the senders responds with gk(u1)⊕ rm1

1 , . . . , gk(un)⊕
rmn
n , where rmi

i = ri if mi = 0 and rmi

i = 03n, otherwise. As in the previous con-
struction, every function in the family is assumed to be pseudorandom.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, p. 1. Springer, Heidelberg (2001)

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289.
Springer, Heidelberg (2004)

4. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without random ora-
cles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg
(2004)

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

6. Blum, M.: Coin flipping by phone. In: IEEE Computer conference (1982)
7. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial informa-

tion. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer,
Heidelberg (1997)

8. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg (2008)

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

10. Di Crescenzo, G.: Equivocable and extractable commitment schemes. In: Cimato, S., Galdi,
C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 74–87. Springer, Heidelberg (2003)

11. Dent, A.W.: The cramer-shoup encryption scheme is plaintext aware in the standard model.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307. Springer, Hei-
delberg (2006)

12. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cambridge (2001)
13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the

ACM 33 (1986)
14. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In:

FOCS (2005)
15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-

systems. In: STOC (1985)
16. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk,

H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 408. Springer, Heidelberg (1998)
17. Hastad, J., Levin, L., Impagliazzo, R., Luby, M.: Construction of a pseudorandom generator

from any one-way function. SIAM Journal on Computing (1999)
18. Herzog, J.C., Liskov, M., Micali, S.: Plaintext awareness via key registration. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)
19. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: FOCS (1995)

Towards a Theory of Extractable Functions 613

20. Lepinski, M.: On the existence of 3-round zero-knowledge proofs. M.S. Thesis (2002)
21. Naor, M.: Bit commitments using pseudorandom generators. Journal of Cryptology (1991)
22. De Santis, A., Di Crescenzo, G., Persiano, G.: Necessary and sufficient assumptions for non-

interactive zero-knowledge proofs of knowledge for all NP relations. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 451. Springer, Heidelberg
(2000)

23. Ventre, C., Visconti, I.: Message-aware commitment schemes (unpublished manuscript,
2008)

24. Yao, A.C.: Theory and application of trapdoor functions. In: FOCS (1982)
25. Zheng, Y., Seberry, J.: Immunizing public key cryptosystems against chosen ciphertext at-

tacks. Journal on Selected Areas in Communication (1993)

Erratum to: Theory of Cryptography

Omer Reingold

The Weizmann Institute of Science,
Faculty of Mathematics and Computer Science,

Rehovot 76100, Israel
omer.reingold@weizmann.ac.il

Erratum to:

O. Reingold (Ed.)

Theory of Cryptography

DOI: 10.1007/978-3-642-00457-5

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© Springer-Verlag
Berlin Heidelberg. The book has been updated with the changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-642-00457-5

O. Reingold (Ed.): TCC 2009, LNCS 5444, p. E1, 2009.
c© Springer-Verlag Berlin Heidelberg 2017

http://dx.doi.org/10.1007/978-3-642-00457-5
http://dx.doi.org/10.1007/978-3-642-00457-5

Author Index

Akavia, Adi 474
Amir, Yair 163

Beimel, Amos 539
Brakerski, Zvika 558
Bunn, Paul 163

Canetti, Ran 73, 595
Choi, Seung Geol 387
Cook, James 521

Dachman-Soled, Dana 387
Dakdouk, Ronny Ramzi 595
Damg̊ard, Ivan 315
Dodis, Yevgeniy 109, 128, 146
Dwork, Cynthia 496, 503

Etesami, Omid 521

Fehr, Serge 350

Gentry, Craig 437
Goldwasser, Shafi 474, 558
Gordon, S. Dov 19

Haitner, Iftach 202, 220
Halevi, Shai 437
Hauser, Sarah 274
Holenstein, Thomas 202

Impagliazzo, Russell 128
Ishai, Yuval 294

Jaiswal, Ragesh 128
Jarecki, Stanis�law 577

Kabanets, Valentine 128
Katz, Jonathan 19, 146
Künzler, Robin 238

Lindell, Yehuda 183
Liu, Xiaomin 577

Maji, Hemanta K. 256
Malkin, Tal 387
Maurer, Ueli 274
Micali, Silvio 54

Miller, Rachel 521
Moran, Tal 1
Müller-Quade, Jörn 238

Naor, Moni 1, 503
Nielsen, Jesper Buus 315, 368

Ong, Shien Jin 36
Orlandi, Claudio 368
Orlov, Ilan 539
Ostrovsky, Rafail 91, 163

Parkes, David C. 36
Pass, Rafael 403
Peikert, Chris 72
Persiano, Giuseppe 91
Prabhakaran, Manoj 256, 294

Raub, Dominik 238
Rosen, Alon 36, 220, 419
Rosulek, Mike 256
Rothblum, Guy N. 503, 558

Sahai, Amit 294
Schaffner, Christian 350
Segev, Gil 1, 419
Shaltiel, Ronen 220
shelat, abhi 54
Shen, Emily 457
Shi, Elaine 457
Smith, Adam 146

Trevisan, Luca 521

Vadhan, Salil 36, 109
Vaikuntanathan, Vinod 474, 503, 558
Varia, Mayank 73
Visconti, Ivan 91

Walfish, Shabsi 146
Waters, Brent 457
Wee, Hoeteck 387, 403
Wichs, Daniel 109, 315
Wullschleger, Jürg 332

Zarosim, Hila 183
Zikas, Vassilis 274

	Title Page
	Preface
	Organization
	Table of Contents
	An Optimally Fair Coin Toss
	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Coin-Flipping Protocols
	1/p-Indistinguishability and 1/p-Secure Computation
	Security with Abort
	One-Time Message Authentication

	A Simplified Protocol
	The Generalized Protocol
	OpenProblems
	References

	Complete Fairness in Multi-party Computation without an Honest Majority
	Introduction
	Our Results
	Outline of the Paper

	A Lower Bound on the Round Complexity of Majority
	Proof Overview
	Proof Details

	Fair Computation of Majority for Three Players
	Completely-Fair Computation of Boolean {\sf OR}
	References
	Proofs
	Proof of Security for Majority with a Single Corrupted Party

	Fairness with an Honest Minority and a Rational Majority
	Introduction
	The Cryptographic Paradigm
	The Economic Paradigm
	Secret Sharing
	Rational Secret Sharing
	Our Results
	Future Directions and Independent Work

	Definitions
	Games with Public Actions and Private Outputs
	Set Valued Strategies and Set Nash Equilibrium
	Trembling-Hand Perfect Set Equilibrium

	Secret Sharing
	Reconstruction Protocols
	Reconstruction Games

	Our Protocol
	Introducing an Honest Minority
	Main Result
	The Reconstruction Protocol
	Rational Strategies for Corresponding Reconstruction Games

	References

	Purely Rational Secret Sharing
	Introduction
	Rational Secret Sharing as a Special Form of Mechanism Design
	Prior Solutions
	Weaknesses of Prior Solutions
	Our Contributions

	Selected Modeling Issues
	Our Enriched Solution
	Dealer’s Instructions
	Reconstruction Instructions
	Analysis

	References
	The Ballot-Box Model
	Intuition
	Formalization

	The Notion of a Public Ballot-Box Mediator (VTP in Our Language)

	Some Recent Progress in Lattice-Based Cryptography
	Non-malleable Obfuscation
	Introduction
	Obfuscation
	Defining Non-malleable Obfuscation
	Functionally Non-malleable Obfuscation
	Verifiably Non-malleable Obfuscation
	Comparison

	Constructions of Functionally Non-malleable Obfuscators
	Constructions of Verifiably Non-malleable Obfuscators
	Random Oracle Model
	Common Reference String Model

	References

	Simulation-Based Concurrent Non-malleable Commitments and Decommitments
	Introduction
	Simulation-Based Non-malleable Commitments
	Simulation-Based cNM Commitments
	Commitment Scheme $c{\cal N}{\cal M}cd$

	References

	Proofs of Retrievability via Hardness Amplification
	Introduction
	The PoR Framework
	PriorWork
	Our Results

	Preliminaries
	PoRCodes
	Constructions of PoR Codes
	Efficient Erasure Decodability
	Efficient Error Decodability

	PoR Schemes from PoR Codes
	Bounded-Use Information-Theoretic Schemes
	Reducing Client Storage: Bounded-Use Computational Schemes
	An Unbounded-Use Computational Scheme

	References

	Security Amplification for {\it Interactive} Cryptographic Primitives
	Introduction
	Preliminaries
	Samplers

	DynamicWeakly Verifiable Puzzles
	Intuition
	Proof of Theorems 3 and 4

	XOR Lemmas for PRGs and PRFs
	Amplifying PRGs
	Amplifying PRFs

	Conclusions
	References

	Composability and On-Line Deniability of Authentication
	Introduction
	Our Results
	Previous Work in Relation to Our Own

	Defining Deniable Authentication
	The Basic Definition
	Deniable Authentication in the GUC Framework
	PKI Setup and Comparison with Prior Models
	Flavors of Protocols/Attackers

	Impossibility Result
	Proof Sketch for Impossibility (Theorem 1)

	Circumventing the Impossibility Result
	Deniability with Incriminating Abort

	References

	Authenticated Adversarial Routing
	Introduction
	Previous Work
	Our Results

	Challenges and Naïve Solutions
	Challenges in Dealing with Node-Controlling Adversaries
	Highlights of Our Solution

	Routing against a Node-Controlling + Edge-Scheduling Adversary
	Definitions
	Description of the Node-Controlling+Edge-Scheduling Protocol
	Analysis of Our Node-Controlling + Edge-Scheduling Protocol

	Conclusion and Open Problems
	References

	Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer
	Introduction
	Adaptive Zero-Knowledge Proofs
	Adaptive Oblivious Transfer
	Oracle Definitions
	Static OT^{2}_{1} Relative to Δ-Oracles from Adaptive OT^{2}_{1}
	No Static OT^{2}_{1} Relative to Oracles
	Concluding the Proof

	References

	On the (Im)Possibility of Key Dependent Encryption
	Introduction
	Related Work
	Contributions of This Paper
	Interpretation of Our Results
	Our Technique

	Preliminaries
	Notation
	Many-Wise Independence
	Encryption Schemes and KDI Security
	Cryptographic Games
	Black-Box Reductions
	Extending KDI-Secure Encryption Schemes

	From One-Way Permutations
	Breaker Violates the KDI-Security of the Scheme
	Breaker Does Not Invert Random Permutations
	Putting It Together

	From Arbitrary Assumptions
	Applying Our Technique to Other Primitives
	References
	Gennaro-Trevisan Style Proof of Lemma 3

	On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols
	Introduction
	Zero Knowledge
	Witness Indistinguishability
	Witness Hiding
	Our Contributions
	The Notion of Black-Box Witness Hiding
	Statement of Our Results
	Transcript Knowledge Extractors

	Definitions of Witness Hiding
	Preliminaries on Interactive Proofs
	The Concept of Witness Hiding
	Hiding Features of the Witness

	Black-Box Witness-Hiding and Our Results
	Weakly Black-Box Reductions
	Our Results on Weakly Black-Box Reductions
	Fully-Black-Box Reductions
	Transcript Knowledge Extractors
	Our Results on Fully-Black-Box Reductions
	Prevalence of Transcript Knowledge Extractors

	References

	Secure Computability of Functions in the IT Setting with Dishonest Majority and Applications to Long-Term Security
	Introduction
	Contributions
	RelatedWork

	Security Definitions and Notation
	The Class $\ensuremath{\mathfrak{F}_\pas^\chanAUT}}$ of Passively Computable Functions
	The Class $\ensuremath{\mathfrak{F}_\sh^\chanAUT}$ of Semi-honestly Computable Functions
	The Class $\ensuremath{\mathfrak{F}_\act^\chanAUT}$ of Actively Computable Functions
	Quantum Protocols
	Long-Term Security
	Long Term Security with Designated Aborter

	Classification of 2-Party Functions
	Conclusions
	References

	Complexity of Multi-party Computation Problems: The Case of 2-Party Symmetric Secure Function Evaluation
	Introduction
	Previous Work
	Our Results

	Preliminaries
	Structure of Functions and Protocols

	Simulation of Canonical Protocol in a General Protocol
	Characterizing Passive Security
	Characterizing Standalone Security
	Characterizing Concurrent Self-composition
	Finer Complexity Separations
	Conclusion and Open Problems
	References

	Realistic Failures in Secure Multi-party Computation
	Introduction
	The Model
	Security Definition
	Engineering the Network – Authenticated Channels
	Byzantine Agreement
	Consensus
	Broadcast

	Tools
	Secret Sharing
	Engineering the Network - Secure Channels
	Protocol {\sf SFE^{(BC)}}

	SFE
	Computing Reactive Circuits (MPC)
	(Full) Omission Corruption
	Extensions
	References

	Secure Arithmetic Computation with No Honest Majority
	Introduction
	Previous Work
	Our Contribution

	Preliminaries
	Arithmetic Computation with Passive Corruption
	Noisy Encodings
	Product-Sharing Secure against Passive Corruption

	Arithmetic Computation with Active Corruption
	Protocols from Homomorphic Encryption

	References

	Universally Composable Multiparty Computation with Partially Isolated Parties
	Introduction
	RelatedWork
	Our Contribution
	Overview of Construction

	The Formal Model of Our Setting
	The $\mathcal{F}_{\mathrm{isolate}$ Ideal Functionality
	PKI and Certificate Authorities
	Statement of Result

	Proofs of Knowledge and Isolated Proofs of Knowledge
	Construction
	The Commitment Scheme
	Security afterWI Proofs
	The Protocol
	Outline of Proof of Theorem 1

	References

	Oblivious Transfer from Weak Noisy Channels
	Introduction
	OT from (Unfair) Noisy Channels
	Limitations of Unfair Noisy Channels
	Contribution

	Preliminaries
	Statistical Distance and Maximal Bit-Prediction Advantage
	Adversaries
	Randomized Functionalities
	Oblivious Transfer Amplification
	Bit Commitment

	Weak Erasure Channel in the Semi-honest Model
	Simulation of {\sf PassiveWEC}
	{\sf WOT} from {\sf PassiveWEC}
	An Example: The Gaussian Channel

	Weak Binary Symmetric Channel in the Semi-honest Model
	Simulation of {\sf PassiveWBSC}
	{\sf PassiveWEC} from {\sf PassiveWBSC}

	WEC in the Malicious Model
	Simulation
	Bit Commitment
	Committed {\sf PassiveWEC} from {\sf ActiveWEC}

	Conclusions and Open Problems
	References

	Composing Quantum Protocols in a Classical Environment
	Introduction
	Notation
	Protocols and Functionalities
	Security for Two-Party Quantum Protocols
	The Security Definition
	Equivalent Formulations

	Composability
	Example: Secure Identification
	Conclusion
	References

	LEGO for Two-Party Secure Computation
	Introduction
	Ideal Functionalities
	LEGO Circuits
	The Protocol
	Analysis
	Corrupted Bob
	Corrupted Alice

	References

	Simple, Black-Box Constructions of Adaptively Secure Protocols
	Introduction
	Our Results

	Construction
	Achieving Security against a Malicious Receiver
	Malicious Sender and Semi-honest Receiver
	References

	Black-Box Constructions of Two-Party Protocols from One-Way Functions
	Introduction
	Overview of Our Constructions
	Preliminaries
	Extractable Commitment Schemes
	Zero-Knowledge Arguments for {\sf NP}
	Trapdoor Commitments
	Parallel Coin-Tossing
	Non-malleable Commitments
	References

	Chosen-Ciphertext Security via Correlated Products
	Introduction
	Our Contributions
	Security under Correlated Products
	Chosen-Ciphertext Security via Correlated Products
	A Black-Box Separation
	Related Work
	Paper Organization

	Security under Correlated Products
	A Simplified Construction
	A Black-Box Separation
	References

	Hierarchical Identity Based Encryption with Polynomially Many Levels
	Introduction
	Loose and Tight Reductions
	Constructing HIBE, Step 1: From IBBE to HIBE
	Constructing HIBE, Step 2: Constructing KR-IBBE

	HIBE and IBBE: Definitions
	Hierarchical Identity-Based Encryption
	Identity-Based Broadcast Encryption
	Key-Randomizable IBBE

	From Key-Randomizable IBBE to HIBE
	The Transformation

	Notations and Preliminaries
	Bilinear Maps and Our Additive Notations
	The BDHE-Set Assumption

	A Key-Randomizable IBBE System
	Correctness
	Key Randomization

	Security of Our System
	References

	Predicate Privacy in Encryption Systems
	Introduction
	Our Results
	Related Work

	Definitions
	Symmetric-Key Predicate-Only Encryption
	Security Definitions

	Background and Complexity Assumptions
	Bilinear Groups of Composite Order
	Our Assumptions

	Construction
	A Symmetric-Key Predicate Encryption Scheme
	Discussion
	Proof Overview

	Conclusions
	References
	A Proof of Theorem 2
	B KSW Predicate Encryption Scheme

	Simultaneous Hardcore Bits and Cryptography against Memory Attacks
	Introduction
	Security againstMemory Attacks
	Simultaneous Hard-Core Bits
	Other RelatedWork

	Preliminaries and Definitions
	Cryptographic Assumptions
	Defining Memory Attacks

	Public-Key Encryption Secure against Memory Attacks
	Security against Adaptive Memory Attacks
	Security against Non-adaptiveMemory Attacks

	Simultaneous Hardcore Bits
	Hardcore Bits for the GPV Trapdoor Function
	A New Setting of Parameters for the GPV Function

	Open Questions
	References

	The Differential Privacy Frontier
	Background
	Differentially Private Synthetic Data Sets and Coresets
	Coresets

	Connections to Other Fields of Study
	Concluding Remarks
	References

	How Efficient Can Memory Checking Be?
	Introduction
	Memory Checkers: Definitions
	Lower Bounds
	Read-Write Tradeoffs for Online Checking
	Offline Checking of RAMs
	References

	Goldreich’s One-Way Function Candidate and Myopic Backtracking Algorithms
	Introduction
	Preliminaries
	Goldreich’s Function
	Myopic Backtracking Algorithms
	Random Predicates
	Expansion Properties
	Closure Operation

	Myopic Algorithms Use Exponential Time in the Average Case
	Clever Myopic Algorithms
	The Probability of a Correct Guess Is Small
	Backtracking Algorithms Use Exponential Running Time on Unsatisfiable Formulas

	The Size of Pre-images of Goldreich’s Function
	References
	A MiniSat Experiment

	Secret Sharing and Non-Shannon Information Inequalities
	Introduction
	Related Work
	Our Results

	Preliminaries
	Basic Definitions from Information Theory and Information Inequalities
	Secret Sharing

	Csirmaz Framework for Proving Lower Bounds and Its Limitations
	Csirmaz Framework for Proving Lower Bounds
	Limitation of Shannon Inequalities

	When Can Information Inequalities Help?
	Examples of Information Inequalities That Cannot Help
	The Zhang and Yeung Information Inequality Cannot Help

	All Known Information Inequalities Cannot Help
	Properties of the Polynomial Λ
	An Algorithm for Checking If an Information Inequality Cannot Help
	Dealing with the Known Infinite Collections of Information Inequalities

	References

	Weak Verifiable Random Functions
	Introduction
	This Work
	Related Work

	Preliminaries and Definitions
	Weak Verifiable Random Functions and NIZK Proofs
	Constructions of Weak Verifiable Random Functions
	Separations
	Proof Sketch of Theorem 1
	Additional Remarks

	References

	Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection
	Introduction
	Preliminaries and Tools
	Notation, Definitions, and Security Assumptions
	Additively Homomorphic Verifiable Encryption with Additional Properties
	Efficient Instantiation Using Camenisch-Shoup Encryption

	Construction of an OPRF Protocol
	Adaptive Oblivious Transfer from an OPRF Scheme
	Secure Computation of Set Intersection from an OPRF Scheme
	Efficiency Estimation of the Set Intersection Protocol

	References

	Towards a Theory of Extractable Functions
	Introduction
	Our Work

	Preliminaries
	On Obfuscation Versus Interactive Extraction
	Amplifying Extraction
	Towards Extraction with Negligible Error

	Knowledge-Preserving Reductions
	References

	Erratum to: Theory of Cryptography
	Author Index

