


Lecture Notes in Physics
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Preface

These lecture notes are based on a graduate course given at the “Ludwig-
Maximilians-Universität München” during the winter term 2007/2008 as part of the
“Theoretical and Mathematical Physics” master programme‡. Although the main
target group of this course were master students, we decided to prepare these notes
for a more general audience including Ph.D. students and Postdocs.

These lecture notes are intended to give an introduction to conformal field the-
ories in two dimensions with special emphasis on computational issues important
for applications in string theory. We assume the reader to be familiar with Quantum
Mechanics on the level of a graduate course and to have some basic knowledge
of quantum field theory, even though the later is not a necessity. The notions of
conformal field theory will be introduced in due course, however, string theory is
not introduced in a self-contained manner. While familiarity with string theory is
not a prerequisite for understanding these notes, for students intending to appreciate
the presented techniques we highly recommend to study an introductory book on
string theory in parallel.

München, Germany Ralph Blumenhagen
Erik Plauschinn

‡ http://www.theorie.physik.uni-muenchen.de/TMP/
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Chapter 1
Introduction

These lecture notes are mainly concerned with the study of conformal quantum
field theories in two dimensions. Over the last 20 years, the understanding and
mathematical formulation of such theories has developed to a very mature state,
and conformal field theory (CFT) has influenced both mathematics and physics. As
such, it can be considered a prototype example for a constructive interplay between
these two subjects.

Compared to ordinary quantum field theories in four dimensions, conformal field
theories in two dimensions can be defined in a rather abstract way via operator alge-
bras and their representation theory. In fact, there are many examples of CFTs where
the usual description in terms of a Lagrangian action with resulting perturbative
expansion is not even known. Instead, following a so-called boot-strap approach,
one can define these theories without making reference to an action and sometimes
one can even solve them exactly. Such a procedure is possible because the algebra of
infinitesimal conformal transformations in two dimensions is very special: in con-
trast to its higher dimensional counterparts, it is infinite dimensional and therefore
highly constraining.

The main feature of a conformal field theory is the invariance under conformal trans-
formations. Roughly speaking, these are transformations leaving angles invariant
and a particular example is the scaling

→
x �→ a

→
x of a point

→
x by some constant a.

A field theory exhibiting such a symmetry has no preferred scale and one can only
expect a physical system to have this property, if there are no dimensionful scales
involved.

At first sight, it seems hard to find examples for such systems. However, the field
theory of a free boson encounters a conformal symmetry for the case of vanish-
ing mass. And even for interacting theories it is known that at the fixed point of a
renormalisation group flow, there are only long-range correlations. Therefore, the
natural mass scale at this point, that is, the inverse of the correlation length, van-
ishes and a conformal field theory description might be available. Physical systems
with a conformal symmetry are thus more common than one would have naively
expected.

More concrete examples featuring a conformal symmetry are the following. For
statistical models in two dimensions, the continuum description at a second-order

Blumenhagen, R., Plauschinn, E.: Introduction. Lect. Notes Phys. 779, 1–3 (2009)
DOI 10.1007/978-3-642-00450-6 1 c© Springer-Verlag Berlin Heidelberg 2009



2 1 Introduction

phase transition is given by a conformal field theory. The prime example is the
so-called Ising model which is a two-dimensional model of a ferromagnet. It has
been shown to be integrable and to have a critical temperature where a second-order
phase transition occurs.

Another important instance featuring conformal symmetry is string theory, which
is a candidate theory for the unification of all interactions including gravity. Here,
the CFT arises as a two-dimensional field theory living on the world-volume of a
string which moves in some background space–time. The dynamics of this string
is governed by a so-called non-linear sigma model whose condition for conformal
invariance, that is, the vanishing of the β-functional, gives the string equations of
motion. The sigma model perturbation theory is governed by an expansion in �s/R,
where �s is the natural string length and R a typical length scale of the background
geometry. With the help of CFT techniques, one can solve this theory exactly to all
orders in perturbation theory and one can sum all contributions of so-called world-
sheet instantons. Therefore, conformal field theory is a very powerful tool for string
theory, not only in the perturbative regime �s/R � 1 but also at small length scales
R ∼ �s where genuine string effects become important and geometric intuition often
fails.

These lecture notes are based on a 30 × 1.5 hours of graduate course for master
students and thus provide only a first introduction into the broad field of conformal
field theory. In particular, the main emphasis of this course was on applications of
CFT techniques to string theory and so we will neither attempt to give an axiomatic
approach to CFTs nor are we giving a complete survey of the many advances in
this field. Instead, we are going to present some topics important for string theory
which are usually not covered in the standard CFT literature. This includes super-
conformal field theories (SCFTs), a very powerful class of exactly solvable string
compactifications known as Gepner models, and boundary conformal field theory
(BCFT), which in string theory appears for the description of so-called D-branes. A
more detailed overview is the following:

• In Chap. 2 of these notes, we study the basic properties of conformal field theories
including the discussion of the conformal group, primary fields, radial quantisa-
tion, the operator product expansion, the operator algebra of chiral quasi-primary
fields and the representation theory of the Virasoro algebra. However, due to our
personal selection of priorities, not all mathematical details are proven in a rigor-
ous way. Instead, we put more emphasis on providing computational techniques
which have been proven to be useful in string theory.

• In Chap. 3, we discuss in more detail symmetries of conformal field theories
which are crucial for their solvability. In particular, we study infinite-dimensional
generalisations of Lie algebras known as Kač–Moody algebras, and we see how
they define concrete examples of CFTs. This involves a presentation of the Sug-
awara and coset constructions. Moreover, we also explain non-linear extensions
of the Virasoro algebra, the so-called W algebras.



1 Introduction 3

• In Chap. 4, we move forward and study CFTs on the torus where new consistency
conditions arise from the action of the modular group. We present some simple
but important examples such as the free boson, the free fermion, orbifold CFTs
and the parafermionic CFT. We also state the Verlinde formula and discuss the
simple current construction which is important for string theory.

• In Chap. 5, we present the generalisations of our previous findings to Supersym-
metric conformal field theories. In particular, N = 2 SCFTs have important
applications in string theory as they are the underlying structure for compact-
ifications preserving supersymmetry in four space–time dimensions. We will
discuss the spectral flow operator, the chiral ring and the so-called Gepner mod-
els which are exactly known backgrounds in string theory valid beyond the
perturbative level.

• In Chap. 6, we finally discuss boundary conformal field theories which in string
theory describe open strings ending on D-branes. We show that these BCFTs can
be defined in an abstract two-dimensional way without referring to the space–
time notion of D-branes, we discuss the computation of partition functions for
BCFTs and we introduce CFTs defined on non-orientable surfaces. With all this
structure available, as the last result of this lecture, we derive the condition that
the orientifold of the bosonic string has gauge group SO(8192) in 26 dimensions.



Chapter 2
Basics in Conformal Field Theory

The approach for studying conformal field theories is somewhat different from the
usual approach for quantum field theories. Because, instead of starting with a clas-
sical action for the fields and quantising them via the canonical quantisation or the
path integral method, one employs the symmetries of the theory. In the spirit of
the so-called boot-strap approach, for CFTs one defines and for certain cases even
solves the theory just by exploiting the consequences of the symmetries. Such a pro-
cedure is possible in two dimensions because the algebra of infinitesimal conformal
transformations in this case is very special: it is infinite dimensional.

In this chapter, we will introduce the basic notions of two-dimensional conformal
field theory from a rather abstract point of view. However, in Sect. 2.9, we will study
in detail three simple examples important for string theory which are given by a
Lagrangian action.

2.1 The Conformal Group

We start by introducing conformal transformations and determining the condition
for conformal invariance. Next, we are going to consider flat space in d ≥ 3 di-
mensions and identify the conformal group. Finally, we study in detail the case
of Euclidean two-dimensional flat space R

2,0 and determine the conformal group
and the algebra of infinitesimal conformal transformations. We also comment on
two-dimensional Minkowski space R

1,1 in the end.

2.1.1 Conformal Invariance

Conformal Transformations

Let us consider a flat space in d dimensions and transformations thereof which lo-
cally preserve the angle between any two lines. Such transformations are illustrated
in Fig. 2.1 and are called conformal transformations.

In more mathematical terms, a conformal transformation is defined as follows.
Let us consider differentiable maps ϕ : U → V , where U ⊂ M and V ⊂ M ′ are

Blumenhagen, R., Plauschinn, E.: Basics in Conformal Field Theory. Lect. Notes Phys. 779, 5–86
(2009)
DOI 10.1007/978-3-642-00450-6 2 c© Springer-Verlag Berlin Heidelberg 2009



6 2 Basics in Conformal Field Theory

Fig. 2.1 Conformal transformation in two dimensions

open subsets. A map ϕ is called a conformal transformation, if the metric tensor
satisfies ϕ∗g′ = �g. Denoting x ′ = ϕ(x) with x ∈ U , we can express this condition
in the following way:

g′
ρσ

(

x ′) �x ′ρ

�xμ

�x ′σ

�xν
= �(x) gμν(x) ,

where the positive function �(x) is called the scale factor and Einstein’s sum con-
vention is understood. However, in these lecture notes, we focus on M ′ = M which
implies g′ = g, and we will always consider flat spaces with a constant metric of
the form ημν = diag(−1, . . . ,+1, . . .). In this case, the condition for a conformal
transformation can be written as

ηρσ

�x ′ρ

�xμ

�x ′σ

�xν
= �(x) ημν . (2.1)

Note furthermore, for flat spaces the scale factor �(x) = 1 corresponds to the
Poincaré group consisting of translations and rotations, respectively Lorentz trans-
formations.

Conditions for Conformal Invariance

Let us next study infinitesimal coordinate transformations which up to first order in
a small parameter ε(x) � 1 read

x ′ρ = xρ + ερ(x) + O(ε2) . (2.2)

Noting that εμ = ημνε
ν as well as that ημν is constant, the left-hand side of Eq. (2.1)

for such a transformation is determined to be of the following form:
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ηρσ

�x ′ρ

�xμ

�x ′σ

�xν
= ηρσ

(

δρ
μ + �ερ

�xμ
+ O(ε2)

)(

δσ
ν + �εσ

�xν
+ O(ε2)

)

= ημν + ημσ

�εσ

�xν
+ ηρν

�ερ

�xμ
+ O(ε2)

= ημν +
(

�εμ

�xν
+ �εν

�xμ

)

+ O(ε2) .

The question we want to ask now is, under what conditions is the transformation
(2.2) conformal, i.e. when is Eq. (2.1) satisfied? Introducing the short-hand notation

�
�xμ = �μ, from the last formula we see that, up to first order in ε, we have to demand
that

�μεν + �νεμ = K (x) ημν ,

where K (x) is some function. This function can be determined by tracing the equa-
tion above with ημν

ημν
(

�μεν + �νεμ

)

= K (x) ημνημν

2 �μεμ = K (x) d .

Using this expression and solving for K (x), we find the following restriction on the
transformation (2.2) to be conformal:

�μεν + �νεμ = 2

d

(

� · ε
)

ημν , (2.3)

where we employed the notation �μεμ = � · ε. Finally, the scale factor can be read
off as �(x) = 1 + 2

d (� · ε) + O(ε2).

Some Useful Relations

Let us now derive two useful equations for later purpose. First, we modify Eq. (2.3)
by taking the derivative �ν and summing over ν. We then obtain

�ν
(

�μεν + �νεμ

)

= 2

d
�ν
(

� · ε
)

ημν

�μ

(

� · ε
) + � εμ = 2

d
�μ

(

� · ε
)

with � = �μ�μ. Furthermore, we take the derivative �ν to find

�μ�ν

(

� · ε
) + � �νεμ = 2

d
�μ�ν

(

� · ε
)

. (2.4)
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After interchanging μ ↔ ν, adding the resulting expression to Eq. (2.4) and using
Eq. (2.3) we get

2 �μ�ν

(

� · ε
) + �

(

2

d

(

� · ε
)

ημν

)

= 4

d
�μ�ν

(

� · ε
)

,

⇒
(

ημν � + (d − 2) �μ�ν

)

(� · ε) = 0 .

Finally, contracting this equation with ημν gives

(d − 1) � (� · ε) = 0 . (2.5)

The second expression we want to use later is obtained by taking derivatives �ρ

of Eq. (2.3) and permuting indices

�ρ�μεν + �ρ�νεμ = 2

d
ημν �ρ(� · ε) ,

�ν�ρεμ + �μ�ρεν = 2

d
ηρμ �ν(� · ε) ,

�μ�νερ + �ν�μερ = 2

d
ηνρ �μ(� · ε) .

Subtracting then the first line from the sum of the last two leads to

2 �μ�νερ = 2

d

(−ημν�ρ + ηρμ�ν + ηνρ�μ

)(

� · ε
)

. (2.6)

2.1.2 Conformal Group in d ≥ 3

After having obtained the condition for an infinitesimal transformations to be con-
formal, let us now determine the conformal group in the case of dimension d ≥ 3.

Conformal Transformations and Generators

We note that Eq. (2.5) implies that (�·ε) is at most linear in xμ, i.e. (�·ε) = A+Bμxμ

with A and Bμ constant. Then it follows that εμ is at most quadratic in xν and so we
can make the ansatz:

εμ = aμ + bμνxν + cμνρ xνxρ , (2.7)

where aμ, bμν, cμνρ � 1 are constants and the latter is symmetric in the last two
indices, i.e. cμνρ = cμρν . We now study the various terms in Eq. (2.7) separately
because the constraints for conformal invariance have to be independent of the
position xμ.
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• The constant term aμ in Eq. (2.7) is not constrained by Eq. (2.3). It describes in-
finitesimal translations x ′μ = xμ + aμ, for which the generator is the momentum
operator Pμ = −i�μ.

• In order to study the term of Eq. (2.7) which is linear in x , we insert (2.7) into
the condition (2.3) to find

bνμ + bμν = 2

d

(

ηρσ bσρ

)

ημν .

From this expression, we see that bμν can be split into a symmetric and an anti-
symmetric part

bμν = α ημν + mμν ,

where mμν = −mνμ. The symmetric term αημν describes infinitesimal scale
transformations x ′μ = (1 + α) xμ with generator D = −i xμ�μ. The anti-
symmetric part mμν corresponds to infinitesimal rotations x ′μ = (δμ

ν + mμ
ν) xν

with generator being the angular momentum operator Lμν = i(xμ�ν − xν�μ).
• The term of Eq. (2.7) at quadratic order in x can be studied by inserting Eq. (2.7)

into expression (2.6). We then calculate

� · ε = bμ
μ + 2 cμ

μρ xρ ⇒ �ν

(

� · ε
) = 2 cμ

μν ,

from which we find that

cμνρ = ημρbν + ημνbρ − ηνρbμ with bμ = 1

d
cρ

ρμ .

The resulting transformations are called Special Conformal Transformations
(SCT) and have the following infinitesimal form:

x ′μ = xμ + 2
(

x · b
)

xμ − (

x · x
)

bμ . (2.8)

The corresponding generator is written as Kμ = −i
(

2 xμ xν�ν − (

x · x
)

�μ

)

.

We have now identified the infinitesimal conformal transformations. However, in or-
der to determine the conformal group, we will need the finite conformal transforma-
tions which are summarised in Table 2.1 together with the corresponding generators.

Focus on Special Conformal Transformations

For the finite Special Conformal Transformation shown in Table 2.1, one can check
that expression (2.8) is its infinitesimal version by expanding the denominator for
small bμ. Furthermore, the scale factor for SCTs is computed as

�(x) =
(

1 − 2 (b · x) + (b · b)(x · x)
)2

.
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Table 2.1 Finite conformal transformations and corresponding generators

Transformations Generators

translation x ′μ = xμ + aμ Pμ = −i �μ

dilation x ′μ = α xμ D = −i xμ�μ

rotation x ′μ = Mμ
ν xν Lμν = i

(

xμ�ν − xν�μ

)

SCT x ′μ = xμ−(x ·x)bμ

1−2(b·x)+(b·b)(x ·x) Kμ = −i
(

2xμxν�ν − (x · x)�μ

)

Let us also note that for finite Special Conformal Transformations, we can re-write
the expression in Table 2.1 as follows:

x ′μ

x ′ · x ′ = xμ

x · x
− bμ .

From this relation, we see that the SCTs can be understood as an inversion of xμ,
followed by a translation bμ, and followed again by an inversion. An illustration in
two dimensions is shown in Fig. 2.2.

Finally, we observe that the finite Special Conformal Transformations given in
Table 2.1 are not globally defined. In particular, for a given non-zero vector bμ, there
is a point xμ = 1

b·b bμ such that

1 − 2 (b · x) + (b · b)(x · x) = 0 .

Taking into account also the numerator, one finds that xμ is mapped to infinity which
does not belong to R

d,0 or R
d−1,1. Therefore, in order to define the finite conformal

transformations globally, one considers the so-called conformal compactifications
of R

d,0 or R
d−1,1, where additional points are included such that the conformal

xµ

xµ

x · x

x′µ

x′µ

x′ · x′
−bµ

− 1+1

Fig. 2.2 Illustration of a finite Special Conformal Transformation
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transformations are globally defined. We will not go into further detail here, but
come back to this issue in Sect. 2.1.3.

The Conformal Group and Algebra

Before we identify the conformal group and the conformal algebra for the case of
dimensions d ≥ 3, let us first define these objects and point out a subtle difference.

Definition 1. The conformal group is the group consisting of globally defined,
invertible and finite conformal transformations (or more concretely, conformal dif-
feomorphisms).

Definition 2. The conformal algebra is the Lie algebra corresponding to the con-
formal group.

Note that the algebra consisting of generators of infinitesimal conformal transfor-
mations contains the conformal algebra as a subalgebra, but it is larger in general.
We will encounter an example of this fact in the case of two Euclidean dimensions.

Determining the Conformal Group

Let us finally determine the conformal group for dimensions d ≥ 3. Since the group
is closely related to its algebra, we will concentrate on the later. With the help of
Table 2.1, we can fix the dimension of the algebra by counting the total number
of generators. Keeping in mind that Lμν is anti-symmetric, we find N = d + 1 +
d(d−1)

2 + d = (d+2)(d+1)
2 . Guided by this result, we perform the definitions

J μ,ν = Lμν , J−1,μ = 1
2

(

Pμ − Kμ

)

,

J−1,0 = D , J 0,μ = 1
2

(

Pμ + Kμ

)

.

One can then verify that Jm,n with m, n = −1, 0, 1, . . . , (d−1) satisfy the following
commutation relations:

[

Jmn, Jrs
] = i

(

ηms Jnr + ηnr Jms − ηmr Jns − ηns Jmr
)

. (2.9)

For Euclidean d-dimensional space R
d,0, the metric ηmn used above is ηmn =

diag(−1, 1, . . . , 1) and so we identify Eq. (2.9) as the commutation relations of
the Lie algebra so(d + 1, 1). Similarly, in the case of R

d−1,1, the metric is ηmn =
diag(−1,−1, 1, . . . , 1) for which Eq. (2.9) are the commutation relations of the Lie
algebra so(d, 2). These two examples are illustrations of the general result that

For the case of dimensions d = p + q ≥ 3, the conformal group of R
p,q

is SO(p + 1, q + 1).
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2.1.3 Conformal Group in d = 2

Let us now study the conformal group for the special case of two dimensions. We
will work with an Euclidean metric in a flat space but address the case of Lorentzian
signature in the end.

Conformal Transformations

The condition (2.3) for invariance under infinitesimal conformal transformations in
two dimensions reads as follows:

�0 ε0 = +�1 ε1 , �0 ε1 = −�1 ε0 , (2.10)

which we recognise as the familiar Cauchy–Riemann equations appearing in com-
plex analysis. A complex function whose real and imaginary parts satisfy Eq. (2.10)
is a holomorphic function (in some open set). We then introduce complex variables
in the following way:

z = x0 + i x1 , ε = ε0 + iε1 , �z = 1
2

(

�0 − i�1
)

,

z = x0 − i x1 , ε = ε0 − iε1 �z = 1
2

(

�0 + i�1
)

.

Since ε(z) is holomorphic, so is f (z) = z + ε(z) from which we conclude that

A holomorphic function f (z) = z + ε(z) gives rise to an infinitesimal
two-dimensional conformal transformation z �→ f (z).

This implies that the metric tensor transforms under z �→ f (z) as follows:

ds2 = dz dz �→ � f

�z

� f

�z
dz dz ,

from which we infer the scale factor as
∣

∣
� f
�z

∣

∣

2
.

The Witt Algebra

As we have observed above, for an infinitesimal conformal transformation in two
dimensions the function ε(z) has to be holomorphic in some open set. However, it is
reasonable to assume that ε(z) in general is a meromorphic function having isolated
singularities outside this open set. We therefore perform a Laurent expansion of
ε(z) around say z = 0. A general infinitesimal conformal transformation can then
be written as
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z′ = z + ε(z) = z +
∑

n∈Z

εn
(−zn+1

)

,

z′ = z + ε(z) = z +
∑

n∈Z

εn
(−zn+1) ,

where the infinitesimal parameters εn and εn are constant. The generators corre-
sponding to a transformation for a particular n are

ln = −zn+1�z and ln = −zn+1�z . (2.11)

It is important to note that since n ∈ Z, the number of independent infinitesimal
conformal transformations is infinite. This observation is special to two dimensions
and we will see that it has far-reaching consequences.

As a next step, let us compute the commutators of the generators (2.11) in order
to determine the corresponding algebra. We calculate

[

lm, ln
] = zm+1�z

(

zn+1�z
) − zn+1�z

(

zm+1�z
)

= (n + 1) zm+n+1�z − (m + 1) zm+n+1�z

= −(m − n) zm+n+1�z

= (m − n) lm+n ,

[

lm, ln
] = (m − n) lm+n ,

[

lm, ln
] = 0 .

(2.12)

The first commutation relations define one copy of the so-called Witt algebra, and
because of the other two relations, there is a second copy which commutes with the
first one. We can then summarise our findings as follows:

The algebra of infinitesimal conformal transformations in an Euclidean
two-dimensional space is infinite dimensional.

Note that, since we can identify two independent copies of the Witt algebra gener-
ated by Eq. (2.11), it is customary to treat z and z as independent variables which
means that we are effectively considering C

2 instead of C. We will come back to
this point in Sect. 2.2.

Global Conformal Transformations

Let us now focus on the copy of the Witt algebra generated by {ln} and observe that
on the Euclidean plane R

2 � C, the generators ln are not everywhere defined. In
particular, there is an ambiguity at z = 0 and it turns out to be necessary not to work
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on C but on the Riemann sphere S2 � C∪{∞} being the conformal compactification
of R

2.
But even on the Riemann sphere, not all of the generators (2.11) are well defined.

For z = 0, we find that

ln = −zn+1�z, non-singular at z = 0 only for n ≥ −1 .

The other ambiguous point is z = ∞ which is, however, part of the Riemann sphere
S2. To investigate the behaviour of ln there, let us perform the change of variable
z = − 1

w
and study w → 0. We then observe that

ln = −
(

− 1

w

)n−1

�w, non-singular at w = 0 only for n ≤ +1 ,

where we employed that �z = (−w)2�w. We therefore arrive at the conclusion that

Globally defined conformal transformations on the Riemann sphere S2 =
C ∪ ∞ are generated by {l−1, l0, l+1}.

The Conformal Group

After having determined the operators generating global conformal transformations,
we will now determine the conformal group.

• As it is clear from its definition, the operator l−1 generates translations z �→ z+b.
• For the operator l0, let us recall that l0 = −z �z . Therefore, l0 generates trans-

formations z �→ a z with a ∈ C. In order to get a geometric intuition of such
transformations, we perform the change of variables z = reiφ to find

l0 = −1

2
r�r + i

2
�φ , l0 = −1

2
r�r − i

2
�φ .

Out of those, we can form the linear combinations

l0 + l0 = −r�r and i
(

l0 − l0
) = −�φ , (2.13)

and so we see that l0 + l0 is the generator for two-dimensional dilations and that
i(l0 − l0) is the generator of rotations.

• Finally, the operator l+1 corresponds to Special Conformal Transformations
which are translations for the variable w = − 1

z . Indeed, c l1z = −c z2 is the
infinitesimal version of the transformations z �→ z

c z+1 which corresponds to
w �→ w − c.

In summary, we have argued that the operators {l−1, l0, l+1} generate transforma-
tions of the form
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z �→ az + b

cz + d
with a, b, c, d ∈ C . (2.14)

For this transformation to be invertible, we have to require that ad − bc is non-
zero. If this is the case, we can scale the constants a, b, c, d such that ad − bc =
1. Furthermore, note that the expression above is invariant under (a, b, c, d) �→
(−a,−b,−c,−d). From the conformal transformations (2.14) together with these
restrictions, we can then infer that

The conformal group of the Riemann sphere S2 = C ∪ ∞ is the Möbius
group SL(2, C)/Z2.

Virasoro Algebra

Let us now come back to the Witt algebra of infinitesimal conformal transforma-
tions. As it turns out, this algebra admits a so-called central extension. Without
providing a mathematically rigorous definition, we state that the central extension
g̃ = g ⊕ C of a Lie algebra g by C is characterised by the commutation relations

[

x̃, ỹ
]

g̃
= [

x, y
]

g
+ c p(x, y) , x̃, ỹ ∈ g̃ ,

[

x̃, c
]

g̃
= 0 , x, y ∈ g ,

[

c, c
]

g̃
= 0 , c ∈ C ,

where p : g × g → C is bilinear. Central extensions of algebras are closely re-
lated to projective representations which are common to Quantum Mechanics. In
the following, we are going to allow for such additional structure.

More concretely, let us denote the elements of the central extension of the Witt
algebra by Ln with n ∈ Z and write their commutation relations as

[

Lm, Ln
] = (m − n) Lm+n + cp(m, n) . (2.15)

Of course, a similar analysis can be carried out for the generators ln ↔ Ln . The
precise form of p(m, n) is determined in the following way:

• First, from Eq. (2.15) it is clear that p(m, n) = −p(n, m) in order for p(m, n) to
be compatible with the anti-symmetry of the Lie bracket.

• We also observe that one can always arrange for p(1,−1) = 0 and p(n, 0) = 0
by a redefinition

̂Ln = Ln + cp(n, 0)

n
for n �= 0 , ̂L0 = L0 + cp(1,−1)

2
.

Indeed, for the modified generators we see that the p(n, m) vanishes
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[

̂Ln,̂L0
] = n Ln + cp(n, 0) = n ̂Ln ,

[

̂L1,̂L−1
] = 2 L0 + cp(1,−1) = 2̂L0 .

• Next, we compute the following particular Jacobi identity:

0 = [[

Lm, Ln
]

, L0
] + [[

Ln, L0
]

, Lm
] + [[

L0, Lm
]

, Ln
]

0 = (m − n) cp(m + n, 0) + n cp(n, m) − m cp(m, n)

0 = (m + n) p(n, m)

from which we infer that in the case n �= −m, we have p(n, m) = 0. Therefore,
the only non-vanishing central extensions are p(n,−n) for |n| ≥ 2.

• We finally calculate the following Jacobi identity:

0 = [[

L−n+1, Ln
]

, L−1
] + [[

Ln, L−1
]

, L−n+1
] + [[

L−1, L−n+1
]

, Ln
]

0 = (−2n + 1) cp(1,−1) + (n + 1) cp(n − 1,−n + 1) + (n − 2) cp(−n, n)

which leads to a recursion relation of the form

p(n,−n) = n + 1

n − 2
p(n − 1,−n + 1) = . . .

= 1

2

(

n + 1

3

)

= 1

12
(n + 1)n(n − 1)

where we have normalised p(2,−2) = 1
2 . This normalisation is chosen such that

the constant c has a particular value for the standard example of the free boson
which we will study in Sect. 2.9.1.

The central extension of the Witt algebra is called the Virasoro algebra and the
constant c is called the central charge. In summary,

The Virasoro algebra Virc with central charge c has the commutation
relations

[

Lm, Ln
] = (m − n) Lm+n + c

12
(m3 − m) δm+n,0 . (2.16)

Remarks

• Without providing a rigorous mathematical definition, we note that above we
have computed the second cohomology group H 2 of the Witt algebra. It is gen-
erally true that H 2(g, C) classifies the central extensions of an algebra g modulo
redefinitions of the generators. However, for semi-simple finite dimensional Lie
algebras, one finds that their second cohomology group vanishes and so in this
case there do not exist any central extensions.
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• Since p(m, n) = 0 for m, n = −1, 0,+1, it is still true that L−1 generates
translations, L0 generates dilations and rotations, and that L+1 generates Spe-
cial Conformal Transformations. Therefore, also {L−1, L0, L1} are generators of
SL(2, C)/Z2 transformations. This just reflects the above mentioned fact that the
finite-dimensional Lie algebras do not have any non-trivial central extensions.

• By computing ||L−m | 0〉||2 = 〈0 |L+m L−m | 0〉 = c
12 (m3 − m), one observes that

only for c �= 0 there exist non-trivial representations of the Virasoro algebra. We
have not yet provided the necessary techniques to perform this calculation but we
will do so in the rest of this chapter.

• In this section, we have determined the conformal transformations and the
conformal algebra for two-dimensional Euclidean space. However, for a two-
dimensional flat space–time with Lorentzian signature, one can perform a similar
analysis. To do so, one defines light-cone coordinates u = −t +x and v = +t +x
where t denotes the time direction and x the space direction. In these variables,
we find

ds2 = −dt2 + dx2 = du dv ,

and conformal transformations are given by u �→ f (u) and v �→ g(v) lead-
ing to ds ′2 = �u f �vg du dv. Therefore, the algebra of infinitesimal conformal
transformations is again infinite dimensional.

2.2 Primary Fields

In this section, we will establish some basic definitions for two-dimensional confor-
mal field theories in Euclidean space.

Complexification

Let us start with an Euclidean two-dimensional space R
2 and perform the natural

identification R
2 � C by introducing complex variables z = x0 + i x1 and

z = x0 − i x1. From Eq. (2.12), we have seen that we can identify two commuting
copies of the Witt algebra which naturally extend to the Virasoro algebra. Since the
generators of the Witt algebras are expressed in terms of z and z, it turns out to be
convenient to consider them as two independent complex variables. For the fields φ

of our theory, this complexification R
2 → C

2 means

φ
(

x0, x1
) −→ φ

(

z, z
)

,

where {x0, x1} ∈ R
2 and {z, z} ∈ C

2. However, note that at some point we have to
identify z with the complex conjugate z∗ of z.



18 2 Basics in Conformal Field Theory

Definition of Chiral and Primary Fields

Definition 3. Fields only depending on z, i.e. φ(z), are called chiral fields and fields
φ(z) only depending on z are called anti-chiral fields. It is also common to use
the terminology holomorphic and anti-holomorphic in order to distinguish between
chiral and anti-chiral quantities.

Definition 4. If a field φ(z, z) transforms under scalings z �→ λz according to

φ
(

z, z
) �→ φ′(z, z

) = λh λ
h
φ
(

λ z, λz
)

,

it is said to have conformal dimensions (h, h).

Definition 5. If a field transforms under conformal transformations z �→ f (z) ac-
cording to

φ
(

z, z
) �→ φ′(z, z

) =
(� f

�z

)h(� f

�z

)h
φ
(

f (z), f (z)
)

, (2.17)

it is called a primary field of conformal dimension (h, h). If Eq. (2.17) holds only for
f ∈ SL(2, C)/Z2, i.e. only for global conformal transformations, then φ is called a
quasi-primary field.

Note that a primary field is always quasi-primary but the reverse is not true.
Furthermore, not all fields in a CFT are primary or quasi-primary. Those fields are
called secondary fields.

Infinitesimal Conformal Transformations of Primary Fields

Let us now investigate how a primary field φ(z, z) behaves under infinitesimal
conformal transformations. To do so, we consider the map f (z) = z + ε(z) with
ε(z) � 1 and compute the following quantities up to first order in ε(z):

(

� f

�z

)h

= 1 + h �zε(z) + O(ε2) ,

φ
(

z + ε(z), z
) = φ(z) + ε(z) �zφ(z, z) + O(ε2) .

Using these two expressions in the definition of a primary field (2.17), we obtain

φ(z, z) �→ φ(z, z) +
(

h �zε + ε�z + h �zε + ε�z

)

φ(z, z) ,

and so the transformation of a primary field under infinitesimal conformal transfor-
mations reads

δ ε,ε φ(z, z) =
(

h �zε + ε �z + h �zε + ε �z

)

φ(z, z) . (2.18)
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2.3 The Energy–Momentum Tensor

Usually, a Field Theory is defined in terms of a Lagrangian action from which one
can derive various objects and properties of the theory. In particular, the energy–
momentum tensor can be deduced from the variation of the action with respect to
the metric and so it encodes the behaviour of the theory under infinitesimal trans-
formations gμν �→ gμν + δgμν with δgμν � 1.

Since the algebra of infinitesimal conformal transformations in two dimensions
is infinite dimensional, there are strong constraints on a conformal field theory. In
particular, it turns out to be possible to study such a theory without knowing the
explicit form of the action. The only information needed is the behaviour under
conformal transformations which is encoded in the energy–momentum tensor.

Implication of Conformal Invariance

In order to study the energy–momentum tensor for CFTs, let us recall Noether’s
theorem which states that for every continuous symmetry in a Field Theory, there is
a current jμ which is conserved, i.e. �μ jμ = 0. Since we are interested in theories
with a conformal symmetry xμ �→ xμ + εμ(x), we have a conserved current which
can be written as

jμ = Tμν εν , (2.19)

where the tensor Tμν is symmetric and is called the energy–momentum tensor. Since
this current is preserved, we obtain for the special case εμ = const. that

0 = �μ jμ = �μ
(

Tμν εν
) = (

�μTμν

)

εν ⇒ �μTμν = 0 . (2.20)

For more general transformations εμ(x), the conservation of the current (2.19) im-
plies the following relation:

0 = �μ jμ = (

�μTμν

)

εν + Tμν

(

�μεν
)

= 0 + 1

2
Tμν

(

�μεν + �νεμ
) = 1

2
Tμνη

μν
(

� · ε
) 2

d
= 1

d
Tμ

μ
(

� · ε
)

,

where we used Eq. (2.3) and the fact that Tμν is symmetric. Since this equation has
to be true for arbitrary infinitesimal transformations ε(z), we conclude

In a conformal field theory, the energy–momentum tensor Tμν is trace-
less, that is, Tμ

μ = 0.
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Specialising to Two Euclidean Dimensions

Let us now investigate the consequences of a traceless energy–momentum tensor
for two-dimensional CFTs in the case of Euclidean signature. To do so, we again
perform the change of coordinates from the real to the complex ones shown on p. 12.
Using then Tμν = �xα

�xμ
�xβ

�xν Tαβ for x0 = 1
2 (z + z) and x1 = 1

2i (z − z), we find

Tzz = 1

4

(

T00 − 2i T10 − T11
)

,

Tzz = 1

4

(

T00 + 2i T10 − T11
)

,

Tzz = Tzz = 1

4

(

T00 + T11
) = 1

4
Tμ

μ = 0 ,

where for Tzz we used that ημν = diag(+1,+1) together with Tμ
μ = 0. Employing

the latter relation also for the left-hand side, we obtain

Tzz = 1

2

(

T00 − i T10
)

, Tzz = 1

2

(

T00 + i T10
)

. (2.21)

Using finally the condition for translational invariance (2.20), we find

�0T00 + �1T10 = 0 , �0T01 + �1T11 = 0 , (2.22)

from which it follows that

�zTzz = 1

4

(

�0 + i�1
)(

T00 − iT10
) = 1

4

(

�0T00 + �1T10 + i�1 T00
︸︷︷︸

= −T11

− i�0 T10
︸︷︷︸

= T01

) = 0 ,

where we used Eq. (2.22) and Tμ
μ = 0. Similarly, one can show that �zTzz = 0

which leads us to the conclusion that

The two non-vanishing components of the energy–momentum tensor are
a chiral and an anti-chiral field

Tzz(z, z) =: T (z) , Tzz(z, z) =: T (z) .

2.4 Radial Quantisation

Motivation and Notation

In the following, we will focus our studies on conformal field theories defined on
Euclidean two-dimensional flat space. Although this choice is arbitrary, for con-
creteness we denote the Euclidean time direction by x0 and the Euclidean space
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direction by x1. Furthermore, note that theories with a Lorentzian signature can be
obtained from the Euclidean ones via a Wick rotation x0 → i x0.

Next, we compactify the Euclidean space direction x1 on a circle of radius R
which we will mostly choose as R = 1. The CFT we obtain in this way is thus de-
fined on a cylinder of infinite length for which we introduce the complex coordinate
w defined as

w = x0 + i x1 , w ∼ w + 2π i ,

where we also indicated the periodic identification. Let us emphasise that the theory
on the cylinder is the starting point for our following analysis. This is also natu-
ral from a string theory point of view, since the world-sheet of a closed string in
Euclidean coordinates is a cylinder.

Mapping the Cylinder to the Complex Plane

After having explained our initial theory, we now introduce the concept of radial
quantisation of a two-dimensional Euclidean CFT. To do so, we perform a change
of variables by mapping the cylinder to the complex plane in order to employ the
power of complex analysis. In particular, this mapping is achieved by

z = ew = ex0 · eix1
, (2.23)

which is a map from an infinite cylinder described by x0 and x1 to the complex
plane described by z (see Fig. 2.3). The former time translations x0 �→ x0 + a are
then mapped to complex dilation z �→ eaz and the space translations x1 �→ x1 + b
are mapped to rotations z �→ eibz.

As it is known from Quantum Mechanics, the generator of time translations is
the Hamiltonian which in the present case corresponds to the dilation operator.

x0

x1
x0

x1

z

Fig. 2.3 Mapping the cylinder to the complex plane
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Similarly, the generator for space translations is the momentum operator corre-
sponding to rotations. Recalling Eq. (2.13) together with the observation that the
central extension for L0 and L0 vanishes, we find that

H = L0 + L0 , P = i
(

L0 − L0
)

. (2.24)

Asymptotic States

We now consider a field φ(z, z) with conformal dimensions (h, h) for which we can
perform a Laurent expansion around z0 = z0 = 0

φ(z, z) =
∑

n,m∈Z

z−n−h z−m−h φn,m , (2.25)

where the additional factors of h and h in the exponents can be explained by the
map (2.23), but also lead to scaling dimensions (n, m) for φn,m . The quantisation of
this field is achieved by promoting the Laurent modes φn,m to operators. This pro-
cedure can be motivated by considering the theory on the cylinder and performing a
Fourier expansion of φ(x0, x1). As usual, upon quantisation the Fourier modes are
considered to be operators which, after mapping to the complex plane, agree with
the approach above.

Next, we note that via Eq. (2.23) the infinite past on the cylinder x0 = −∞ is
mapped to z = z = 0. This motivates the definition of an asymptotic in-state |φ〉 to
be of the following form:

∣

∣φ
〉 = lim

z,z→0
φ(z, z)

∣

∣0
〉

. (2.26)

However, in order for Eq. (2.26) to be non-singular at z = 0, that is, to be a well-
defined asymptotic in-state, we require

φn,m

∣

∣0
〉 = 0 for n > −h, m > −h . (2.27)

Using this restriction together with the mode expansion (2.25), we can simplify
Eq. (2.26) in the following way:

∣

∣φ
〉 = lim

z,z→0
φ(z, z)

∣

∣0
〉 = φ−h,−h

∣

∣0
〉

. (2.28)

Hermitian Conjugation

In order to obtain the hermitian conjugate φ† of a field φ, we note that in Euclidean
space there is a non-trivial action on the Euclidean time x0 = i t upon hermitian
conjugation. Because of the complex conjugation, we find x0 �→ −x0 while the
Euclidean space coordinate x1 is left invariant. For the complex coordinate z =
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exp(x0+i x1), hermitian conjugation thus translates to z �→ 1/z, where we identified
z with the complex conjugate z∗ of z. We then define the hermitian conjugate of a
field φ as

φ†(z, z) = z−2h z−2h φ

(

1

z
,

1

z

)

. (2.29)

Performing a Laurent expansion of the hermitian conjugate field φ† gives us the
following result:

φ†(z, z) = z−2h z−2h
∑

n,m∈Z

z+n+h z+m+h φn,m =
∑

n,m∈Z

z+n−h z+m−h φn,m , (2.30)

and if we compare this expression with the hermitian conjugate of Eq. (2.25), we
see that for the Laurent modes we find

(

φn,m
)† = φ−n,−m . (2.31)

Let us finally define a relation similar as Eq. (2.26) for an asymptotic out-states
of a CFT. Naturally, this is achieved by using the hermitian conjugate field which
reads

〈

φ
∣

∣ = lim
z,z→0

〈

0
∣

∣ φ†(z, z) = lim
w,w→∞

w2h w 2h
〈

0
∣

∣ φ(w,w) ,

where we employed Eq. (2.29) together with z = w−1 and z = w−1. However, by
the same reasoning as above, in order for the asymptotic out-state to be well defined,
we require

〈

0
∣

∣ φn,m = 0 for n < h, m < h .

Recalling for instance Eq. (2.30), we can then simplify the definition of the out-state
as follows:

〈

φ
∣

∣ = lim
w,w→∞

w2h w 2h
〈

0
∣

∣ φ(w,w) = 〈

0
∣

∣ φ+h,+h . (2.32)

2.5 The Operator Product Expansion

In this section, we will study in more detail the energy–momentum tensor and
thereby introduce the operator formalism for two-dimensional conformal field the-
ories.
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Conserved Charges

To start, let us recall that since the current jμ = Tμνε
ν associated to the conformal

symmetry is preserved, there exists a conserved charge which is expressed in the
following way:

Q =
∫

dx1 j0 at x0 = const. . (2.33)

In Field Theory, this conserved charge is the generator of symmetry transformations
for an operator A which can be written as

δA = [

Q, A
]

,

where the commutator is evaluated at equal times. From the change of coordinates
(2.23), we infer that x0 = const. corresponds to |z| = const. and so the integral
over space

∫

dx1 in Eq. (2.33) gets transformed into a contour integral. With the
convention that contour integrals

∮

dz are always counter clockwise, the natural
generalisation of the conserved charge (2.33) to complex coordinates reads

Q = 1

2π i

∮

C

(

dz T (z) ε(z) + dz T (z) ε(z)
)

. (2.34)

This expression allows us now to determine the infinitesimal transformation of a
field φ(z, z) generated by a conserved charge Q. To do so, we compute δφ = [Q, φ]
which, using Eq. (2.34), becomes

δ ε,ε φ(w,w) = 1

2π i

∮

C
dz

[

T (z)ε(z), φ(w,w)
] + 1

2π i

∮

C
dz

[

T (z)ε(z), φ(w,w)
]

.

(2.35)

Radial Ordering

Note that there is some ambiguity in Eq. (2.35) because we have to decide whether
w and w are inside or outside the contour C. However, from quantum field theory
we know that correlation functions are only defined as a time ordered product. Con-
sidering the change of coordinates (2.23), in a CFT the time ordering becomes a
radial ordering and thus the product A(z)B(w) does only make sense for |z| > |w|.
To this end, we define the radial ordering of two operators as

R
(

A(z) B(w)
)

:=
{

A(z) B(w) for |z| > |w| ,

B(w) A(z) for |w| > |z| .

With this definition, it is clear that we have to interpret an expression such as
Eq. (2.35) in the following way:
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∮

dz
[

A(z), B(w)
] =

∮

|z|>|w|
dz A(z) B(w) −

∮

|z|<|w|
dz B(w) A(z)

=
∮

C(w)
dz R

(

A(z) B(w)
)

,

(2.36)

where we employed the relation among contour integrals shown in Fig. 2.4. With
the help of this observation, we can express Eq. (2.35) as

δ ε,ε φ(w,w) = 1

2π i

∮

C(w)
dz ε(z) R

(

T (z)φ(w,w)
)

+ anti-chiral . (2.37)

However, we have already computed this quantity for a primary field at the end
of Sect. 2.2. By comparing with our previous result (2.18), that is,

δ ε,ε φ(w,w) = h
(

�wε(w)
)

φ(w,w) + ε(w)
(

�w φ(w,w)
) + anti-chiral ,

we can deduce a relation for the radial ordering of the energy–momentum tensor
and a primary field. In particular, employing the identities

h
(

�wε(w)
)

φ(w,w) = 1

2π i

∮

C(w)
dz h

ε(z)

(z − w)2
φ(w,w) ,

ε(w)
(

�wφ(w,w)
) = 1

2π i

∮

C(w)
dz

ε(z)

z − w
�wφ(w,w) ,

(2.38)

for a bi-holomorphic field φ(w,w), we obtain that

R
(

T (z)φ(w,w)
)

= h

(z − w)2
φ(w,w) + 1

z − w
�wφ(w,w) + . . . , (2.39)

where the ellipsis denote non-singular terms. An expression like (2.39) is called an
operator product expansion (OPE) which defines an algebraic product structure on
the space of quantum fields.

∮
dz

∮
dz

∮
dz

www

0 ° 0 ° 0 °– =

Fig. 2.4 Sum of contour integrals corresponding to Eq. (2.36)
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To ease our notation, in the following, we will always assume radial ordering for
a product of fields, i.e. we write A(z)B(w) instead of R(A(z)B(w)). Furthermore,
with the help of Eq. (2.39) we can give an alternative definition of a primary field:

Definition 6. A field φ(z, z) is called primary with conformal dimensions (h, h), if
the operator product expansion between the energy–momentum tensors and φ(z, z)
takes the following form:

T (z) φ(w,w) = h

(z − w)2
φ(w,w) + 1

z − w
�wφ(w,w) + . . . ,

T (z) φ(w,w) = h

(z − w)2
φ(w,w) + 1

z − w
�wφ(w,w) + . . . ,

(2.40)

where the ellipsis denote non-singular terms.

Operator Product Expansion of the Energy–Momentum Tensor

After having defined the operator product expansion, let us now consider the exam-
ple of the energy–momentum tensor. We first state that

The OPE of the chiral energy–momentum tensor with itself reads

T (z)T (w) = c/2

(z − w)4
+ 2 T (w)

(z − w)2
+ �wT (w)

z − w
+ . . . (2.41)

where c denotes the central charge and |z| > |w|.

A similar result holds for the anti-chiral part T (z), and the OPE T (z) T (w) contains
only non-singular terms.

Let us now prove the statement (2.41). To do so, we perform a Laurent expansion
of T (z) in the following way:

T (z) =
∑

n∈Z

z−n−2Ln where Ln = 1

2π i

∮

dz zn+1 T (z) . (2.42)

If we use this expansion for the conserved charge (2.34) and choose a particular
conformal transformation ε(z) = −εnzn+1, we find that

Qn =
∮

dz

2π i
T (z)

(−εnzn+1
) = −εn

∑

m∈Z

∮

dz

2π i
Lm zn−m−1 = −εn Ln .

Referring to our discussion in Sect. 2.1.3, we can thus identify the Laurent modes
Lm of the energy–momentum tensor (2.42) with the generators of infinitesimal con-
formal transformations. As such, they have to satisfy the Virasoro algebra for which
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we calculate

[

Lm, Ln
] =

∮

dz

2π i

∮

dw

2π i
zm+1 wn+1

[

T (z), T (w)
]

=
∮

C(0)

dw

2π i
wn+1

∮

C(w)

dz

2π i
zm+1 R

(

T (z)T (w)
)

=
∮

C(0)

dw

2π i
wn+1

∮

C(w)

dz

2π i
zm+1

(

c/2

(z − w)4
+ 2 T (w)

(z − w)2
+ �wT (w)

z − w

)

=
∮

C(0)

dw

2π i
wn+1

(

(m + 1)m(m − 1) wm−2 c

2 · 3!

+ 2 (m + 1) wm T (w) + wm+1�wT (w)
)

=
∮

dw

2π i

(

c

12

(

m3 − m
)

wm+n−1

+ 2 (m + 1) wm+n+1 T (w) + wm+n+2 �wT (w)

)

= c

12

(

m3 − m
)

δm,−n + 2 (m + 1) Lm+n

+ 0 −
∮

dw

2π i
(m + n + 2) T (w) wm+n+1

︸ ︷︷ ︸

= (m + n + 2) Lm+n

= (m − n) Lm+n + c

12

(

m3 − m
)

δm,−n ,

where we performed an integration by parts to evaluate the �wT (w) term. Therefore,
we have shown that Eq. (2.41) is the correct form of the OPE between two energy–
momentum tensors.

Conformal Transformations of the Energy–Momentum Tensor

To end this section, we will investigate the behaviour of the energy–momentum
tensor under conformal transformations. In particular, by comparing the OPE (2.41)
with the definition (2.40), we see that for non-vanishing central charges, T (z) is not
a primary field. But, one can show that under conformal transformations f (z), the
energy–momentum tensor behaves as

T ′(z
) =

(

� f

�z

)2

T
(

f (z)
) + c

12
S
(

f (z), z
)

, (2.43)

where S(w, z) denotes the Schwarzian derivative
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S(w, z) = 1

(�zw)2

(

(

�zw
)(

�3
zw

) − 3

2

(

�2
zw

)2
)

.

We will not prove Eq. (2.43) in detail but verify it on the level of infinitesimal
conformal transformations f (z) = z +ε(z). In order to do so, we first use Eq. (2.37)
with the OPE of the energy–momentum tensor (2.41) to find

δ ε T (z) = 1

2π i

∮

C(z)
dw ε(w) T (w) T (z)

= 1

2π i

∮

C(z)
dw ε(w)

(

c/2

(w − z)4
+ 2 T (z)

(w − z)2
+ �z T (z)

w − z
+ . . .

)

= c

12
�3

zε(z) + 2 T (z) �zε(z) + ε(z) �zT (z) . (2.44)

Let us compare this expression with Eq. (2.43). For infinitesimal transformations
f (z) = z + ε(z), the leading order contribution to the Schwarzian derivative reads

S
(

z + ε(z), z
) = 1

(1 + �zε)2

(

(

1 + �zε
)

�3
zε − 3

2

(

�2
zε
)2
)

� �3
zε(z) .

The variation of the energy–momentum tensor can then be computed as

δ ε T (z) = T ′(z) − T (z)

=
(

1 + �zε(z)
)2(

T (z) + ε(z) �zT (z)
)

+ c

12
�3

zε(z) − T (z)

= c

12
�3

zε(z) + 2 T (z) �zε(z) + ε(z) �zT (z) ,

which is the same as in Eq. (2.44). We have thus verified Eq. (2.43) at the level of
infinitesimal conformal transformations.

Remarks

• The calculation on p. 27 shows that the singular part of the OPE of the chiral
energy–momentum tensors T (z) is equivalent to the Virasoro algebra for the
modes Lm .

• Performing a computation along the same lines as on p. 27, one finds that for a
chiral primary field φ(z), the holomorphic part of the OPE (2.40) is equivalent to

[

Lm, φn
] = (

(h − 1)m − n
)

φm+n (2.45)

for all m, n ∈ Z. If relations (2.40) and (2.45) hold only for m = −1, 0,+1, then
φ(z) is called a quasi-primary field.
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• Applying the relation (2.45) to the Virasoro algebra (2.16) for values
m = −1, 0,+1, we see that the chiral energy–momentum tensor is a quasi-
primary field of conformal dimension (h, h) = (2, 0). In view of Eq. (2.25), this
observation also explains the form of the Laurent expansion (2.42).

• It is worth to note that the Schwarzian derivative S(w, z) vanishes for SL(2, C)
transformations w = f (z) in agreement with the fact that T (z) is a quasi-primary
field.

2.6 Operator Algebra of Chiral Quasi-Primary Fields

The objects of interest in quantum field theories are n-point correlation functions
which are usually computed in a perturbative approach via either canonical quan-
tisation or the path integral method. In this section, we will see that the exact two-
and three-point functions for certain fields in a conformal field theory are already
determined by the symmetries. This will allow us to derive a general formula for the
OPE among quasi-primary fields.

2.6.1 Conformal Ward Identity

In quantum field theory, so-called Ward identities are the quantum manifestation of
symmetries. We will now derive such an identity for the conformal symmetry of
two-dimensional CFTs on general grounds. For primary fields φi , we calculate

〈

∮

dz

2π i
ε(z) T (z) φ1(w1, w1) . . . φN (wN , wN )

〉

(2.46)

=
N
∑

i=1

〈

φ1(w1, w1) . . .
(

∮

C(wi )

dz

2π i
ε(z) T (z) φi (wi , wi )

)

. . . φN (wN , wN )
〉

=
N
∑

i=1

〈

φ1(w1, w1) . . .
(

hi �ε(wi ) + ε(wi ) �wi

)

φi (wi , wi ) . . . φN (wN , wN )
〉

where we have applied the deformation of the contour integrals illustrated in Fig. 2.5
and used Eq. (2.37). Employing then the two relations shown in Eq. (2.38), we can
write

0 =
∮

dz

2π i
ε(z)

[

〈

T (z) φ1(w1, w1) . . . φN (wN , wN )
〉

(2.47)

−
N
∑

i=1

(

hi

(z − wi )2
+ 1

z − wi
�wi

)

〈

φ1(w1, w1) . . . φN (wN , wN )
〉

]

Since this must hold for all ε(z) of the form ε(z) = −zn+1 with n ∈ Z, the integrand
must already vanish and we arrive at the Conformal Ward identity
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= =
0

w1
w2

w3

wN

∮
dz

0

w1
w2

w3

wN

dz

dz

dz

dz

∮
∮

∮

∮

Fig. 2.5 Deformation of contour integrals

〈

T (z) φ1(w1, w1) . . . φN (wN , wN )
〉

=
N
∑

i=1

(

hi

(z − wi )2
+ 1

z − wi
�wi

)

〈

φ1(w1, w1) . . . φN (wN , wN )
〉 .

(2.48)

2.6.2 Two- and Three-Point Functions

In this subsection, we will employ the global conformal SL(2, C)/Z2 symmetry to
determine the two- and three-point function for chiral quasi-primary fields.

The Two-Point Function

We start with the two-point function of two chiral quasi-primary fields

〈

φ1(z) φ2(w)
〉 = g

(

z, w
)

.

The invariance under translations f (z) = z + a generated by L−1 requires g to be
of the form g(z, w) = g(z −w). The invariance under L0, i.e. rescalings of the form
f (z) = λz, implies that

〈

φ1(z) φ2(w)
〉 → 〈

λh1φ1(λz) λh2φ2(λw)
〉 = λh1+h2 g

(

λ(z − w)
) != g

(

z − w
)

,

from which we conclude

g
(

z − w
) = d12

(z − w)h1+h2
,
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where d12 is called a structure constant. Finally, the invariance of the two-point
function under L1 essentially implies the invariance under transformations f (z) =
− 1

z for which we find

〈

φ1(z) φ2(w)
〉 → 〈 1

z2h1

1

w2h2
φ1

(−1

z

)

φ2
(− 1

w

)〉

= 1

z2h1w2h2

d12
(− 1

z + 1
w

)h1+h2

!= d12

(z − w)h1+h2

which can only be satisfied if h1 = h2. We therefore arrive at the result that

The SL(2, C)/Z2 conformal symmetry fixes the two-point function of
two chiral quasi-primary fields to be of the form

〈

φi (z) φ j (w)
〉 = di j δhi ,h j

(z − w)2hi
. (2.49)

As an example, let us consider the energy–momentum tensor T (z). From the
OPE shown in Eq. (2.41) (and using the fact that one-point functions of conformal
fields on the sphere vanish), we find that

〈

T (z) T (w)
〉 = c/2

(z − w)4
.

The Three-Point Function

After having determined the two-point function of two chiral quasi-primary fields
up to a constant, let us now consider the three-point function. From the invariance
under translations, we can infer that

〈

φ1(z1) φ2(z2) φ3(z3)
〉 = f (z12, z23, z13) ,

where we introduced zi j = zi − z j . The requirement of invariance under dilation
can be expressed as

〈

φ1(z1) φ2(z2) φ3(z3)
〉 → 〈

λh1φ1(λz1) λh2φ2(λz2) λh3φ3(λz3)
〉

= λh1+h2+h3 f ( λz12, λz23, λz13 )
!= f ( z12, z23, z13 )

from which it follows that
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f (z12, z23, z13) = C123

za
12 zb

23 zc
13

,

with a + b + c = h1 + h2 + h3 and C123 some structure constant. Finally, from the
Special Conformal Transformations, we obtain the condition

1

z2h1
1 z2h2

2 z2h3
3

(z1z2)a (z2z3)b (z1z3)c

za
12 zb

23 zc
13

= 1

za
12 zb

23 zc
13

.

Solving this expression for a, b, c leads to

a = h1 + h2 − h3 , b = h2 + h3 − h1 , c = h1 + h3 − h2 ,

and so we have shown that

The SL(2, C)/Z2 conformal symmetry fixes the three-point function of
chiral quasi-primary fields up to a constant to

〈

φ1(z1) φ2(z2) φ3(z3)
〉 = C123

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

. (2.50)

Remarks

• Using the SL(2, C)/Z2 global symmetry, it is possible to map any three points
{z1, z2, z3} on the Riemann sphere to {0, 1,∞}.

• The results for the two- and three-point function have been derived using only
the SL(2, C)/Z2 � SO(3, 1) symmetry. As we have mentioned before, the con-
formal group SO(3, 1) extends to higher dimensions R

d,0 as SO(d + 1, 1). By
analogous reasoning, the two- and three-point functions for CFTs in dimensions
d > 2 then have the same form as for d = 2.

• In order for the two-point function (2.49) to be single-valued on the complex
plane, that is, to be invariant under rotations z �→ e2π i z, we see that the conformal
dimension of a chiral quasi-primary field has to be integer or half-integer.

2.6.3 General Form of the OPE for Chiral Quasi-Primary Fields

General Expression for the OPE

The generic form of the two- and three-point functions allows us to extract the gen-
eral form of the OPE between two chiral quasi-primary fields in terms of other
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quasi-primary fields and their derivatives1. To this end we make the ansatz

φi (z) φ j (w) =
∑

k,n≥0

Ck
i j

an
i jk

n!

1

(z − w)hi +h j −hk−n
�nφk(w) , (2.51)

where the (z−w) part is fixed by the scaling behaviour under dilations z �→ λz. Note
that we have chosen our ansatz such that an

i jk only depends on the conformal weights
hi , h j , hk of the fields i, j, k (and on n), while Ck

i j contains further information about
the fields.

Let us now take w = 1 in Eq. (2.51) and consider it as part of the following
three-point function:

〈 (

φi (z) φ j (1)
)

φk(0)
〉

=
∑

l,n≥0

Cl
i j

an
i jl

n!

1

(z − 1)hi +h j −hl−n

〈

�nφl(1) φk(0)
〉

.

Using then the general formula for the two-point function (2.49), we find for the
correlator on the right-hand side that

〈

�n
z φl(z)φk(0)

〉

∣

∣

∣

z=1
= �n

z

(

dlk δhl ,hk

z2hk

)∣

∣

∣

∣

z=1

= (−1)n n!

(

2hk + n − 1

n

)

dlk δhl ,hk .

We therefore obtain

〈

φi (z) φ j (1) φk(0)
〉 =

∑

l,n≥0

Cl
i j dlk an

i jk

(

2hk + n − 1

n

)

(−1)n

(z − 1)hi +h j −hk−n
. (2.52)

However, we can also use the general expression for the three-point function (2.50)
with values z1 = z, z2 = 1 and z3 = 0. Combining then Eq. (2.50) with Eq. (2.52),
we find

∑

l,n≥0

Cl
i j dlk an

i jk

(

2hk + n − 1

n

)

(−1)n

(z − 1)hi +h j −hk−n
!= Ci jk

(z − 1)hi +h j −hk zhi +hk−h j
,

∑

l,n≥0

Cl
i j dlk an

i jk

(

2hk + n − 1

n

)

(−1)n (z − 1)n != Ci jk
(

1 + (z − 1)
)hi +hk−h j

.

Finally, we use the following relation with x = z − 1 for the term on the right-hand
side of the last formula:

1 The proof that the OPE of two quasi-primary fields involves indeed just other quasi-primary
fields and their derivatives is non-trivial and will not be presented.
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1

(1 + x)H
=

∞
∑

n=0

(−1)n

(

H + n − 1

n

)

xn .

Comparing coefficients in front of the (z − 1) terms, we can fix the constants Cl
i j

and an
i jk and arrive at the result that

The OPE of two chiral quasi-primary fields has the general form

φi (z) φ j (w) =
∑

k,n≥0

Ck
i j

an
i jk

n!

1

(z − w)hi +h j −hk−n
�nφk(w) (2.53)

with coefficients

an
i jk =

(

2hk + n − 1

n

)−1(hk + hi − h j + n − 1

n

)

,

Ci jk = Cl
i j dlk .

General Expression for the Commutation Relations

The final expression (2.53) gives a general form for the OPE of chiral quasi-primary
fields. However, as we have seen previously, the same information is encoded in
the commutation relations of the Laurent modes of the fields. We will not derive
these commutators but just summarise the result. To do so, we recall the Laurent
expansion of chiral fields φi (z)

φi (z) =
∑

m

φ(i)m z−m−hi ,

where the conformal dimensions hi of a chiral quasi-primary field are always integer
or half-integer. Note that here i is a label for the fields and m ∈ Z or m ∈ Z + 1

2
denotes a particular Laurent mode. After expressing the modes φ(i)m as contour
integrals over φi (z) and performing a tedious evaluation of the commutator, one
arrives at the following compact expression for the algebra:

[

φ(i)m, φ( j)n
] =

∑

k

Ck
i j pi jk(m, n) φ(k)m+n + di j δm,−n

(

m + hi − 1

2hi − 1

)

(2.54)

with the polynomials
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pi jk(m, n) =
∑

r,s ∈ Z
+
0

r+s=hi +h j −hk−1

Ci jk
r,s ·

(−m + hi − 1

r

)

·
(−n + h j − 1

s

)

,

Ci jk
r,s = (−1)r

(

2hk − 1
)

!
(

hi + h j + hk − 2
)

!

s−1
∏

t=0

(

2hi − 2 − r − t
)

r−1
∏

u=0

(

2h j − 2 − s − u
)

.

(2.55)

Remarks

• Note that on the right-hand side of Eq. (2.54), only fields with conformal dimen-
sion hk < hi + h j can appear. This can be seen by studying the coefficients
(2.55).

• Furthermore, because the polynomials pi jk depend only on the conformal di-
mensions hi , h j , h j of the fields i, j, k, it is also common to use the conformal
dimensions as subscripts, that is, phi h j h j .

• The generic structure of the chiral algebra of quasi-primary fields (2.53) is ex-
tremely helpful for the construction of extended symmetry algebras. We will
consider such so-called W algebras in Sect. 3.7.

• Clearly, not all fields in a conformal field theory are quasi-primary and so the
formulas above do not apply for all fields! For instance, the derivatives �nφk(z)
of a quasi-primary field φ(z) are not quasi-primary.

Applications I: Two-Point Function Revisited

Let us now consider four applications of the results obtained in this section. First,
with the help of Eq. (2.54), we can compute the norm of a state φ(i)−n|0〉. Assuming
n ≥ h, we obtain

∣

∣

∣

∣ φ(i)−n

∣

∣0
〉 ∣

∣

∣

∣

2 = 〈

0
∣

∣ φ
†
(i)−n φ(i)−n

∣

∣0
〉

= 〈

0
∣

∣ φ(i)+n φ(i)−n

∣

∣0
〉

= 〈

0
∣

∣

[

φ(i)+n, φ(i)−n
]∣

∣0
〉

= C j
ii phi hi h j (n,−n)

〈

0
∣

∣ φ( j)0

∣

∣0
〉 + dii

(

n + hi − 1

2hi − 1

)

= dii

(

n + hi − 1

2hi − 1

)

.

Employing then Eq. (2.28) as well as Eq. (2.32), we see that the norm of a state
|φ〉 = φ−h |0〉 is equal to the structure constant of the two-point function

〈

φ
∣

∣φ
〉 = 〈

0
∣

∣φ+h φ−h

∣

∣0
〉 = dφφ . (2.56)
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Applications II: Three-Point Function Revisited

Let us also determine the structure constant of the three-point function between
chiral quasi-primary fields. To do so, we write Eq. (2.50) as

C123 = zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

〈

φ1(z1) φ2(z2) φ3(z3)
〉

,

and perform the limits z1 → ∞, z3 → 0 while keeping z2 finite. Using then again
(2.28) as well as (2.32), we find

C123 = lim
z1→∞ lim

z3→0
zh1+h2−h3

12 zh2+h3−h1
23 zh1+h3−h2

13

〈

φ1(z1) φ2(z2) φ3(z3)
〉

= lim
z1→∞ lim

z3→0
z2h1

1 zh2+h3−h1
2

〈

φ1(z1) φ2(z2) φ3(z3)
〉

=zh2+h3−h1
2

〈

0
∣

∣ φ(1)+h1 φ2(z2) φ(3)−h3

∣

∣0
〉

.

Because the left-hand side of this equation is a constant, the right-hand side can-
not depend on z2 and so only the z0

2 term does give a non-trivial contribution. We
therefore conclude that

C123 = 〈

0
∣

∣ φ(1)+h1 φ(2)h3−h1 φ(3)−h3

∣

∣0
〉

. (2.57)

Applications III: Virasoro Algebra

After studying the two- and three-point function, let us now turn to the Virasoro
algebra and determine the structure constants Ck

i j and di j . From the general expres-
sion (2.54), we infer the commutation relations between the Laurent modes of the
energy–momentum tensor to be of the following form:

[

Lm, Ln
] = C L

L L p222(m, n) Lm+n + dL L δm,−n

(

m + 1

3

)

,

where in view of the final result, we identified Ck
L L = 0 for k �= L . Note also that the

subscripts of pi jk denote the conformal weight of the chiral fields involved. Using
the explicit expression (2.55) for pi jk and recalling from p. 29 that the conformal
dimension of T (z) is h = 2, we find

p222(m, n) = C222
1,0

(−m + 1

1

)

+ C222
0,1

(−n + 1

1

)

with coefficients C222
r,s of the form

C222
1,0 = (−1)1 · 3!

4!
· 2 = −1

2
and C222

0,1 = (−1)0 · 3!

4!
· 2 = +1

2
.

Putting these results together, we obtain for the Virasoro algebra
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[

Lm, Ln
] = C L

L L

m − n

2
Lm+n + dL L δm,−n

m3 − m

6
.

If we compare with Eq. (2.16), we can fix the two unknown constants as

dL L = c

2
, C L

L L = 2 . (2.58)

Applications IV: Current Algebras

Finally, let us study the so-called current algebras. The definition of a current in a
two-dimensional conformal field theory is the following:

Definition 7. A chiral field j(z) with conformal dimension h = 1 is called a current.
A similar definition holds for the anti-chiral sector.

Let us assume we have a theory with N quasi-primary currents ji (z) where i =
1, . . . , N . We can express these fields as a Laurent series ji (z) = ∑

n∈Z
z−n−1 j(i)n in

the usual way and determine the algebra of the Laurent modes j(i)n using Eq. (2.54)

[

j(i)m, j( j)n
] =

∑

k

Ck
i j p111(m, n) j(k)m+n + di j m δm,−n . (2.59)

From Eq. (2.55), we compute p111(m, n) = 1 and so it follows that Ck
i j = −Ck

ji due
to the anti-symmetry of the commutator.

Next, we perform a rotation among the fields such that the matrix di j is diag-
onalised, and by a rescaling of the fields we can achieve di j → k δi j where k is
some constant. Changing then the labels of the fields from subscript to superscript
and denoting the constants Ck

i j in the new basis by f i jk , we can express the algebra
Eq. (2.59) as

[

j i
m, j j

n

] =
∑

l

f i jl j l
m+n + k m δi j δm,−n , (2.60)

where f i jl are called structure constants and k is called the level. As it turns out,
the algebra (2.60) is a generalisation of a Lie algebra called a Kač–Moody algebra
which is infinite dimensional. conformal field theories based on such algebras pro-
vide many examples of abstract CFTs which we will study in much more detail in
Chap. 3.

2.7 Normal Ordered Products

Operations on the field space of a theory are provided by the action of derivatives
�φi , �2φi , . . . and by taking products of fields at the same point in space–time. As
known from quantum field theory, since the φi are operators, we need to give an
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ordering prescription for such products. This will be normal ordering which in
QFT language means “creation operators to the left”.

In this section, we will illustrate that the regular part of an OPE provides a notion
of normal ordering for the product fields.

Normal Ordering Prescription

Let us start by investigating what are the creation and what are the annihilation
operators in a CFT. To do so, we recall Eq. (2.27) which reads

φn,m

∣

∣0
〉 = 0 for n > −h, m > −h . (2.61)

From here we can see already that we can interpret operators φn,m with n > −h or
m > −h as annihilation operators.

However, in order to explore this point further, let us recall from Eq. (2.24) that
the Hamiltonian is expressed in terms of L0 and L0 as H = L0 + L0, which moti-
vates the notion of “chiral energy” for the L0 eigenvalue of a state. For the special
case of a chiral primary, let us calculate

L0 φn

∣

∣0
〉 = (

L0 φn − φn L0
) ∣

∣0
〉 = [

L0, φn
] ∣

∣0
〉 = −n φn

∣

∣0
〉

, (2.62)

where we employed Eq. (2.45) as well as L0 |0〉 = 0. Taking into account (2.61),
we see that the chiral energy is bounded from below, i.e. only values (h + m) with
m ≥ 0 are allowed. Requiring that creation operators should create states with
positive energy, we conclude that

φn with n > −h are annihilation operators ,

φn with n ≤ −h are creation operators .

The anti-chiral sector can be included by following the same arguments for L0.
Coming then back to the subject of this paragraph, the normal ordering prescription
is to put all creation operators to the left.

Normal Ordered Products and OPEs

After having discussed the normal ordering prescription for operators in a conformal
field theory, let us state that

The regular part of an OPE naturally gives rise to normal ordered prod-
ucts (NOPs) which can be written in the following way:

φ(z) χ (w) = sing. +
∞
∑

n=0

(z − w)n

n!
N
(

χ�nφ
)

(w) . (2.63)
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The notation for normal ordering we will mainly employ is N (χφ), however, it is
also common to use : φχ :, (φχ ) or [φχ ]0. In the following, we will verify the
statement above for the case n = 0.

Let us first use Eq. (2.63) to obtain an expression for the normal ordered product
of two operators. To do so, we apply 1

2π i

∮

dz(z − w)−1 to both sides of Eq. (2.63)
which picks out the n = 0 term on the right-hand side leading to

N
(

χ φ
)

(w) =
∮

C(w)

dz

2π i

φ(z)χ (w)

z − w
. (2.64)

However, we can also perform a Laurent expansion of N (χφ) in the usual way
which gives us

N
(

χ φ
)

(w) =
∑

n∈Z

w−n−hφ−hχ

N
(

χ φ
)

n ,

N
(

χ φ
)

n =
∮

C(0)

dw

2π i
wn+hφ+hχ −1 N

(

χ φ
)

(w) , (2.65)

where we also include the expression for the Laurent modes N (χ φ)n . Let us now
employ the relation (2.64) in Eq. (2.65) for which we find

N
(

χ φ
)

n =
∮

C(0)

dw

2π i
wn+hφ+hχ−1

∮

C(w)

dz

2π i

φ(z)χ (w)

z − w
(2.66)

=
∮

dw

2π i
wn+hφ+hχ−1

(∮

|z|>|w|

dz

2π i

φ(z)χ (w)

z − w
︸ ︷︷ ︸

I1
︸ ︷︷ ︸

I2

−
∮

|z|<|w|

dz

2π i

χ (w)φ(z)

z − w

)

where we applied the deformation of contour integrals formulated in Eq. (2.36).
Expressing φ and χ as a Laurent series, the term I1 can be evaluated as

I1 =
∮

|z|>|w|

dz

2π i

1

z − w

∑

r,s

z−r−hφ

w−s−hχ

φr χs

=
∮

|z|>|w|

dz

2π i

1

z

∑

p≥0

(

w

z

)p
∑

r,s

z−r−hφ

w−s−hχ

φr χs

=
∮

|z|>|w|

dz

2π i

∑

p≥0

∑

r,s

z−r−hφ−p−1w−s−hχ +p φr χs .

Note that we employed 1
z−w

= 1
z(1−w/z) as well as the geometric series to go from

the first to the second line and that only the z−1 term gives a non-zero contribution.
Thus, performing the integral over dz leads to a δ-function setting r = −hφ − p and
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so the integral I2 reads

I2 =
∮

dw

2π i

∑

p≥0

∑

s

w−s−hχ +p+n+hφ+hχ−1 φ−hφ−p χs ,

for which again only the w−1 term contributes and therefore s = p + n + hφ . We
then arrive at the final expression for the first term in N (χφ)n

I2 =
∑

p≥0

φ−hφ−p χhφ+n+p =
∑

k≤−hφ

φk χn−k .

For the second term, we perform a similar calculation to find
∑

k>−hφ χn−kφk , which
we combine into the final result for the Laurent modes of normal ordered products

N
(

χ φ
)

n =
∑

k>−hφ

χn−k φk +
∑

k≤−hφ

φk χn−k . (2.67)

Here we see that indeed the φk in the first term are annihilation operators at the right
and that the φk in the second term are creation operators at the left. Therefore, the
regular part of an OPE contains normal ordered products.

Useful Formulas

For later reference, let us now consider a special case of a normal ordered product.
In particular, let us compute N (χ�φ)n and N (�χφ)n for which we note that the
Laurent expansion of say �φ can be inferred from φ in the following way:

�φ(z) = �
∑

n

z−n−h φn =
∑

n

(−n − h) z−n−(h+1) φn . (2.68)

Replacing φ → �φ in Eq. (2.66), using the Laurent expansion (2.68) and performing
the same steps as above, one arrives at the following results:

N
(

χ �φ
)

n =
∑

k>−hφ−1

(−hφ − k
)

χn−k φk +
∑

k≤−hφ−1

(−hφ − k
)

φk χn−k ,

N
(

�χ φ
)

n =
∑

k>−hφ

(−hχ − n + k) χn−k φk +
∑

k≤−hφ

(−hχ − n + k) φk χn−k .

(2.69)

Normal Ordered Products of Quasi-Primary Fields

Let us also note that normal ordered products of quasi-primary fields are in general
not quasi-primary, but can be projected to such. To illustrate this statement, we
consider the example of the energy–momentum tensor. Recalling the OPE (2.41)
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together with Eq. (2.63), we can write

T (z)T (w) = c/2

(z − w)4
+ 2 T (w)

(z − w)2
+ �T (w)

z − w
+ N

(

T T
)

(w) + . . . . (2.70)

However, using the general expression for the OPE of two quasi-primary fields
shown in Eq. (2.53), we observe that there is a �2T term at (z −w)0 with coefficient

CT
T T

a2
222

2!
where a2

222 =
(

5

2

)−1(3

2

)

= 3

10
and CT

T T = 2 .

(2.71)

But, since the index k in Eq. (2.53) runs over all quasi-primary fields of the theory,
we expect also other terms at order (z − w)0. If we denote these by N (T T ), we find
from Eq. (2.70) that

N
(

T T
) = N

(

T T
) + 3

10
�2T .

One can easily check that �2T is not a quasi-primary field, and by computing for
instance [Lm, N (T T )n] and comparing with Eq. (2.45), one arrives at the same con-
clusion for N (T T ). However, we note that

N
(

T T
) = N

(

T T
) − 3

10
�2T (2.72)

actually is a quasi-primary normal ordered product. Moreover, it turns out that this
procedure can be iterated which allows one to write the entire field space in terms
of quasi-primary fields and derivatives thereof.

2.8 The CFT Hilbert Space

In this section, we are going summarise some general properties of the Hilbert space
of a conformal field theory.

The Verma Module

Let us consider again the chiral energy–momentum tensor. For the Laurent expan-
sions of T (z) and �T (z) as well as for the corresponding asymptotic in-states, we
find
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T (z) =
∑

n∈Z

z−n−2 Ln ←→ L−2

∣

∣0
〉

,

�T (z) =
∑

n∈Z

(−n − 2) z−n−3 Ln ←→ L−3

∣

∣0
〉

,

where we employed the relation (2.28). The state corresponding to the normal
ordered product of two energy–momentum tensors can be determined as follows.
From the Laurent expansion

N
(

T T
) =

∑

n∈Z

z−n−4 N
(

T T
)

n
,

we see that only the mode with n = −4 gives a well-defined contribution in the
limit z → 0. But from the general expression for the normal ordered product (2.67),
we obtain

N
(

T T
)

n =
∑

k>−2

Ln−k Lk +
∑

k≤−2

Lk Ln−k ,

where the first sum vanishes when applied to |0〉 and the second sum acting on the
vacuum only contributes for n − k ≤ −2. Taking into account that n = −4 from
above, we find

N
(

T T
)

−4

∣

∣0
〉 = L−2 L−2

∣

∣0
〉

and N
(

T T
) ←→ L−2 L−2

∣

∣0
〉

.

Finally, we note that using Eq. (2.69), one can similarly show N
(

T �T
) ↔ L−3L−2|0〉.

These examples motivate the following statement:

For each state |�〉 in the so-called Verma module

{

Lk1 . . . Lkn

∣

∣0
〉

: ki ≤ −2
}

,

we can find a field F ∈ {

T, �T, . . . , N (. . .)
}

with the property that
limz→0 F(z) |0〉 = |�〉.

Conformal Family

Let us consider now a general (chiral) primary field φ(z) of conformal dimension h.
This field gives rise to the state |φ〉 = |h〉 = φ−h |0〉 which, due to the definition of
a primary field (2.45), satisfies

Ln

∣

∣φ
〉 = [

Ln, φ−h
] ∣

∣0
〉 =

(

h (n + 1) − n
)

φ−h+n

∣

∣0
〉 = 0 , (2.73)
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for n > 0. Without providing detailed computations, we note that the modes of
the energy–momentum tensor with n < 0 acting on a state |h〉 correspond to the
following fields:

Field State Level

φ(z) φ−h |0〉 = |h〉 0

�φ L−1φ−h |0〉 1

�2φ L−1L−1φ−h |0〉 2

N
(

T φ
)

L−2φ−h |0〉 2

�3φ L−1L−1L−1φ−h |0〉 3

N
(

T �φ
)

L−2L−1φ−h |0〉 3

N
(

�T φ
)

L−3φ−h |0〉 3

. . . . . . . . .

(2.74)

The lowest lying state in such a tower of states, that is |h〉, is called a highest weight
state. From Eq. (2.74), we conclude furthermore that

Each primary field φ(z) gives rise to an infinite set of descendant fields
by taking derivatives �k and taking normal ordered products with T . The
set of fields

[

φ(z)
]

:=
{

φ , �φ , �2φ , . . . , N
(

T φ
)

, . . .
}

is called a conformal family which is also denoted by
{

L̂k1 . . . L̂kn φ(z) :
ki ≤ −1

}

.

Remarks

• Referring to the table in Eq. (2.74), note that there are P(n) different states at
level n where P(n) is the number of partitions of n. The generating function for
P(n) will be important later and reads

∞
∏

n=1

1

1 − qn
=

∞
∑

N=0

P(N ) q N .

• For unitary theories, we know that the norm of all states has to be non-negative. In
particular, recalling Eq. (2.56), for the structure constant of a two-point function
this implies dφφ ≥ 0, where φ is a primary field. Let us then consider the norm
of the state L−1|φ〉 for which we compute
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∣

∣

∣

∣ L−1

∣

∣φ
〉 ∣

∣

∣

∣

2 = 〈

φ
∣

∣ L+1 L−1

∣

∣φ
〉 = 〈

φ
∣

∣

[

L+1, L−1
]∣

∣φ
〉 = 〈

φ
∣

∣ 2L0

∣

∣φ
〉 = 2 h dφφ,

where we employed Eq. (2.73) as well as the Virasoro algebra (2.16). In order for
this state to have non-negative norm, we see that h ≥ 0. Therefore, a necessary
condition for a theory to be unitary is that the conformal weights of all primary
fields are non-negative.

2.9 Simple Examples of CFTs

So far, we have outlined part of the generic structure of conformal field theories
without any reference to a Lagrangian formulation. In particular, we introduced
CFTs via OPEs, respectively, operator algebras which, as we will see later, is ex-
tremely powerful for studying CFTs and in certain cases leads to a complete solution
of the dynamics. However, to make contact with the usual approach to quantum field
theories and because they naturally appear in string theory, let us consider three
simple examples of conformal field theories given in terms of a Lagrangian action.

2.9.1 The Free Boson

Motivation

Let us start with a real massless scalar field X (x0, x1) defined on a cylinder given
by x0 ∈ R and x1 ∈ R subject to the identification x1 � x1 + 2π . The action for
such a theory takes the following form:

S = 1

4πκ

∫

dx0 dx1
√

|h| hαβ �α X�β X

= 1

4πκ

∫

dx0 dx1
(

(

�x0 X
)2 + (

�x1 X
)2
)

(2.75)

where h = det hαβ with hαβ = diag(+1,+1), and κ is some normalisation constant.
This is the (Euclideanised) world-sheet action (in conformal gauge) of a string mov-
ing in a flat background with coordinate X . Since in this theory there is no mass term
setting a scale, we expect this action to be conformally invariant.

In order to study the action (2.75) in more detail, as we have seen in Sect. 2.4, it
is convenient to map the cylinder to the complex plane which is achieved by

z = ex0 · eix1
. (2.76)

Performing this change of variables for the action (2.75) and denoting the new fields
by X (z, z), we find
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S = 1

4πκ

∫

dz dz
√

|g| gab �a X�b X (2.77)

= 1

4πκ

∫

dz dz �X · �X (2.78)

with a, b standing for z and z. Note that here and in the following we will use the
notation � = �z and � = �z interchangeably. Furthermore, in going from Eq. (2.77)
to Eq. (2.78), we employed the explicit form of the metric gab which we obtained
via gab = �xα

�xa
�xβ

�xb hαβ and which reads

gab =
[

0 1
2zz

1
2zz 0

]

, gab =
[

0 2zz
2zz 0

]

.

Basic Properties

In the last paragraph, we have provided a connection between the string theory
naturally defined on a cylinder and the example of the free boson defined on the
complex plane. From a conformal field theory point of view, however, we do not
need this discussion but can simply start from the action (2.78)

S = 1

4πκ

∫

dz dz �X · �X . (2.79)

The equation of motion for this action is derived by varying S with respect to X .
We thus calculate

0 = δX S

= 1

4πκ

∫

dz dz

(

�δX · �X + �X · �δX

)

= 1

4πκ

∫

dz dz

(

�
(

δX · �X
)

− δX · ��X + �
(

�X · δX
)

− ��X · δX

)

= − 1

2πκ

∫

dz dz δX
(

��X
)

which has to be satisfied for all variations δX . Therefore, we obtain the equation of
motion as

� � X (z, z) = 0 ,

from which we conclude that

j(z) = i �X (z, z) is a chiral field,

j(z) = i �X (z, z) is an anti-chiral field.
(2.80)
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Next, we are going to determine the conformal properties of the fields in the
action (2.79). In particular, this action is invariant under conformal transformations
if the field X (z, z) has vanishing conformal dimensions, that is, X ′(z, z) = X (w,w).
Let us then compute

S −→ 1

4πκ

∫

dz dz �z X ′(z, z) · �z X ′(z, z)

= 1

4πκ

∫

�z

�w
dw

�z

�w
dw

�w

�z
�w X (w,w) · �w

�z
�w X (w,w)

= 1

4πκ

∫

dw dw �w X (w,w) · �w X (w,w)

which indeed shows the invariance of the action (2.79) under conformal transforma-
tions if X (z, z) has conformal dimensions (h, h) = (0, 0). Moreover, by considering
again the calculation above, we can conclude that the fields (2.80) are primary with
dimensions (h, h) = (1, 0) and (h, h) = (0, 1) respectively. Finally, because we are
considering a free theory, the engineering dimensions of the fields argued for above
is the same as the dimension after quantisation.

Two-Point Function and Laurent Mode Algebra

Let us proceed and determine the propagator K (z, z, w,w) = 〈X (z, z)X (w,w)〉 of
the free boson X (z, z) from the action (2.79). To do so, we note that K (z, z, w,w)
in the present case has to satisfy

�z �z K (z, z, w,w) = −2πκ δ(2)(z − w) .

Using the representation of the δ-function 2πδ(2) = �z z−1, one can then check that
the following expression is a solution to this equation:

K (z, z, w,w) = 〈

X (z, z) X (w,w)
〉 = −κ log

∣

∣z − w
∣

∣

2
, (2.81)

which gives the result for the two-point function of X (z, z). In particular, by com-
paring with Eq. (2.49), we see again that the free boson itself is not a quasi-primary
field. However, from the propagator above we can deduce the two-point function of
say two chiral fields j(z) by applying derivatives �z and �w to Eq. (2.81)

−〈

�z X (z, z) �w X (w,w)
〉 = −κ�z�w

(

− log
(

z − w
) − log

(

z − w
)

)

〈

j(z) j(w)
〉 = κ

(z − w)2
, (2.82)

and along similar lines we obtain the result in the anti-chiral sector as well as
〈 j(z) j(w)〉 = 0. We can then summarise that the normalisation constant of the
two-point function is d j j = κ .
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Let us finally recall our discussion on p. 37 about current algebras and determine
the algebra of the Laurent modes of j(z). Since we only have one such (chiral)
current in our theory, the anti-symmetry of Ck

i j = −Ck
ji implies C j

j j = 0 which
leads us to

[

jm, jn
] = κ m δm+n,0 . (2.83)

The Energy–Momentum Tensor

We will now turn to the energy–momentum tensor for the theory of the free boson.
Since we have an action for our theory, we can actually derive this quantity. We
define the energy–momentum tensor for the action (2.77) in the following way:

Tab = 4πκ γ
1√|g|

δ S
δgab

, (2.84)

where we have allowed for a to be determined normalisation constant γ and a, b
stand for z and z respectively. Performing the variation of the action (2.77) using

δ
√

|g| = −1

2

√

|g| gab δgab ,

we find the following result:

Tzz = γ �X�X , Tzz = Tzz = 0 , Tzz = γ �X�X .

However, for a quantum theory we want the expectation value of the energy–
momentum tensor to vanish and so we take the normal ordered expression. Fo-
cussing only on the chiral part, this reads

T (z) = γ N
(

�X�X
)

(z) = γ N
(

j j
)

(z) .

The constant γ can be fixed via the requirement that j(z) is a primary field of
conformal dimension h = 1 with respect to T (z). To do so, we expand the energy–
momentum tensor as T (z) = ∑

n∈Z
z−n−2 Ln and find for the Laurent modes

Ln = γ N
(

j j
)

n = γ
∑

k>−1

jn−k jk + γ
∑

k≤−1

jk jn−k , (2.85)

where we used the expression for normal ordered products derived in Sect. 2.7.
Recalling the Laurent expansion (2.84) of j(z), we can compute the following com-
mutator:
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[

Lm, jn
] = γ

[

N
(

j j
)

m, jn
]

= γ
∑

k>−1

(

jm−k
[

jk, jn
] + [

jm−k, jn
]

jk
)

+ γ
∑

k≤−1

(

jk
[

jm−k, jn
] + [

jk, jn
]

jm−k

)

= γ κ
(
∑

k>−1

jm−k k δk,−n + (m − k) δm−k,−n jk

+
∑

k≤−1

jk (m − k) δm−k,−n + k δk,−n jm−k

)

= − 2γ κn jm+n ,

where we employed Eq. (2.83). If we compare this expression with Eq. (2.45), we
see that for 2γ κ = 1 this is the commutator of Lm with a primary field of conformal
dimension h = 1. Therefore, we can conclude that the energy–momentum tensor
reads

T (z) = 1

2κ
N
(

j j
)

(z) . (2.86)

The Central Charge

After having determined the energy–momentum tensor T (z) up to a constant, we
can now ask what is the central charge of the free boson conformal field theory. To
determine c we employ the Virasoro algebra to compute

〈

0
∣

∣L+2L−2

∣

∣0
〉 = 〈

0
∣

∣

[

L2, L−2
]∣

∣0
〉 = c

2
, (2.87)

where we used that Ln|0〉 = 0 for n > −2. Next, we recall L∓2 = 1
2κ

N ( j j)∓2 from
which we find

L−2

∣

∣0
〉 = 1

2κ
j−1 j−1

∣

∣0
〉

,
〈

0
∣

∣L+2 = 1

2κ

〈

0
∣

∣

(

j2 j0 + j1 j1
)

= 1

2κ

〈

0
∣

∣ j1 j1 ,

where we used that
〈

0
∣

∣ j2 j0 = −〈

0
∣

∣ j0 j2 = 0. Employing these expressions in
Eq. (2.87), we obtain
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c

2
= 1

4κ2

〈

0
∣

∣ j1 j1 j−1 j−1

∣

∣0
〉

= 1

4κ2

(

〈

0
∣

∣ j1 j−1 j1 j−1

∣

∣0
〉 + 〈

0
∣

∣ j1
[

j1, j−1
]

︸ ︷︷ ︸

κ

j−1

∣

∣0
〉

)

= 1

4κ2

(

〈

0
∣

∣

[

j1, j−1
][

j1, j−1
]∣

∣0
〉 + κ

〈

0
∣

∣

[

j1, j−1
]∣

∣0
〉

)

= 1

4κ2
2κ2 = 1

2

where we employed [ j1, j−1] = κ as well as that jk |0〉 = 0 for k > −1 and that
〈0| jk = 0 for k < 1. We have therefore shown

The conformal field theory of a free boson has central charge c = 1.

Remarks

• Let us make contact with our discussion in Sect. 2.6.3 and compare our results
to Eq. (2.58). First, by recalling equation (2.56) we obtain from Eq. (2.87) that
dL L = c

2 . Second, with the help of Eq. (2.57) we can determine CL L L as follows:

CL L L = 〈

0
∣

∣L2 L0 L−2

∣

∣0
〉 = 〈

0
∣

∣L2
[

L0, L−2
]∣

∣0
〉 = 2

〈

0
∣

∣L2 L−2

∣

∣0
〉 = 2

c

2
= c

where we also employed Eq. (2.87). Finally, referring to p. 34, we use Ck
i j =

Ci jl (dlk)−1 to find C L
L L = 2 which is in agreement with Eq. (2.58). Therefore, as

expected, the Laurent modes of the energy–momentum tensor (2.86) of the free
boson satisfy the Virasoro algebra.

• Note that on p. 16, we have chosen the normalisation of the central extension
p(2,−2) in such a way that we obtain c = 1 for the free boson.

• Usually, one chooses the normalisation constant κ to be κ = 1 in order to
simplify various expressions such as

〈

j(z) j(w)
〉 = 1

(z − w)2
and T (z) = 1

2
N
(

j j
)

(z) . (2.88)

Centre of Mass Position and Momentum

Let us come back to the chiral and anti-chiral currents from Eq. (2.80) and recall
once more their Laurent expansion

j(z) = i �X (z) =
∑

n∈ Z

jnz−n−1 , j(z) = i �X (z) =
∑

n∈ Z

j nz−n−1 ,

which we can integrate to find
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X (z, z) = x0 − i
(

j0 ln z + j0 ln z
)

+ i
∑

n �=0

1

n

(

jn z−n + j n z−n
)

. (2.89)

If we identify z with the complex conjugate z∗ of z, then the field X is defined on
the complex plane. As such, it has to be invariant under rotations z �→ e2π i z which,
referring to Eq. (2.89), implies that

j0 = j0 . (2.90)

However, as we will see in Sect. 4.2.2, for the free boson X (z, z) compactified on a
circle, this relation will be modified.

Let us furthermore recall from the beginning of this section that the example of
the free boson can be related to string theory. In particular, using the mapping (2.76),
we can express Eq. (2.89) in terms of coordinates x0 and x1 on the cylinder

X
(

x0, x1
) = x0 − i

(

j0 + j0

)

x0 + (

j0 − j0

)

x1

+ i
∑

n �=0

1

n

(

jn e−n(x0+i x1) + j n e−n(x0−i x1)
)

.

Computing the centre of mass momentum π0 of a string, we obtain

π0 = 1

4π

∫ 2π

0
dx1 �X

(

x0, x1
)

�
(−i x0

) = j0 + j0

2
= j0 , (2.91)

where the additional factor of (−i) is due to the fact that we are working with
Euclidean signature. Similarly, the following expression

1

2π

∫ 2π

0
dx1 X

(

x0 = 0, x1
) = x0

shows that x0 is the centre of mass coordinate of a string. Performing then the usual
quantisation, not only jn and j n are promoted to operators but also x0. Since x0 and
π0 are the position, and momentum operator, respectively, we naturally impose the
commutation relation

[

x0 , π0
] = i . (2.92)

Vertex Operator

As we have mentioned earlier, the free boson X (z, z) is not a conformal field since
its conformal dimensions vanish (h, h) = (0, 0). However, using X (z, z) we can
define the so-called vertex operators which have non-vanishing conformal weights.
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The vertex operator V (z, z) =: eiαX (z,z) : is a primary field of confor-
mal dimension (h, h) = ( α2

2 , α2

2 ) with respect to the energy–momentum
tensors T (z) = 1

2 N ( j j)(z) and T (z) = 1
2 N ( j j)(z).

Here we have used the notation : . . . : to denote the normal ordering which is also
common in the literature. In the following, we will verify that this vertex operator
has indeed the conformal dimensions stated above.

To do so, we start by making the expression for the vertex operator more concrete
using Eq. (2.89). Keeping in mind that jn for n > −1 are annihilation operators, we
can perform the normal ordering to obtain

V (z, z) = exp

(

iαx0 − α
∑

n≤−1

jn
n

z−n

)

· exp

(

απ0 ln z − α
∑

n≥1

jn
n

z−n

)

· v(z) ,

(2.93)

where for convenience we have put all the anti-holomorphic dependence into v(z).
Next, let us compute the j0 eigenvalue of this vertex operator which we can infer
from [ j0, V ]. Because of [ jm, jn] = m δm,−n , we see that j0 commutes with all jn
and so we only need to evaluate

[

j0, eiαx0
] =

∞
∑

k=0

(iα)k

k!

[

j0, xk
0

]

︸ ︷︷ ︸

= k (−i) xk−1
0

= −
∞
∑

k=1

i (iα)k

(k − 1)!
xk−1

0 = −i (iα) eiαx0 ,

(2.94)

where we employed Eq. (2.92). We therefore find that [ j0, V ] = αV . Recalling then
our definition Eq. (2.28) of an asymptotic state and computing

j0
∣

∣α
〉 = lim

z,z→0

[

j0, Vα(z, z)
] ∣

∣0
〉 = lim

z,z→0
α V (z, z)

∣

∣0
〉 = α

∣

∣α
〉

,

we see that the j0 eigenvalue of the vertex operator (2.93) is α.
Now, we are going to determine the conformal dimension of the vertex opera-

tor (2.93) by computing the commutator [L0, V ]. To do so, let us first recall from
Eq. (2.88) the explicit form of L0

L0 = 1

2
j0 j0 + 1

2

∑

k≥1

j−k jk + 1

2

∑

k≤−1

jk j−k .

Next, we note again that only j0 has non-trivial commutation relations with x0 so
we find for the first factor in Eq. (2.93)

[

L0, eiαx0
] = 1

2

[

j0 j0, eiαx0
] = α

2

(

j0 eiαx0 + eiαx0 j0
)

. (2.95)
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For the terms in Eq. (2.93) involving the modes jn with n �= 0, let us define

J− = −
∑

n≤−1

jn
n

z−n , J+ = −
∑

n≥1

jn
n

z−n ,

for which we calculate using [L0, jn] = −n jn

[

L0, J−] =
∑

n≤−1

jn z−n = z �z J− ,
[

L0, J+] = z �z J+ .

Performing then the series expansion of the exponential and employing our findings
from above, we can evaluate

[

L0, eα J−] =
∞
∑

k=0

αk

k!

[

L0,
(

J−)k
]

=
∞
∑

k=0

αk

k!
k z

(

�J−) (J−)k−1

=
∞
∑

k=0

αk

k!
z �

(

(

J−)k
)

= z �
(

eα J−)
,

and we find a similar result for J+. Observing finally that [L0, v(z)] = 0, we are
now in the position to calculate the full commutator of L0 and V (z, z) to determine
the conformal dimension of V (z, z)

[

L0, V (z, z)
] = [

L0, eiαx0
]

eα J−
zαπ0 eα J+

v + eiαx0
[

L0, eα J−]
zαπ0 eα J+

v

+ eiαx0 eα J−[
L0, zαπ0

]

eα J+
v + eiαx0 eα J−

zαπ0
[

L0, eα J+]
v

= α

2

(

j0eiαx0 + eiαx0 j0
)

eα J−
zαπ0 eα J+

v + eiαx0
(

z�ze
α J−)

zαπ0 eα J+
v

+ 0 + eiαx0 eα J−
zαπ0

(

z�ze
α J+)

v

= α

2

(

j0eiαx0 + eiαx0 j0
)

eα J−
zαπ0 eα J+

v + z�V (z, z)

− eiαx0 eα J−(
z�z zαπ0

)

eα J+
v

= α

2

(

j0eiαx0 + eiαx0 j0
)

eα J−
zαπ0 eα J+

v + z�V (z, z)

− α eiαx0 j0 eα J−
zαπ0 eα J+

v

= α

2

[

j0, eiαx0
]

eα J−
zαπ0 eα J+

v + z�V (z, z)

= α2

2
V (z, z) + z �V (z, z)

where we used Eqs. (2.94) and (2.95). Let us then again recall our definition (2.28)
of an asymptotic state in terms of an operator and compute
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L0

∣

∣α
〉 = lim

z,z→0

[

L0, Vα(z, z)
] ∣

∣0
〉 = lim

z,z→0

(

α2

2
V (z, z) + z �V (z, z)

)

∣

∣0
〉

= α2

2
lim

z,z→0
V (z, z)

∣

∣0
〉 = α2

2

∣

∣α
〉

.

The conformal weight of a vertex operator Vα(z, z) therefore is h = α2

2 , and a sim-
ilar result is obtained in the anti-chiral sector. This verifies our statement from the
beginning of this paragraph regarding the conformal weights of the vertex operator.
In order to show that V (z, z) is a primary field, one can compute along similar lines
the commutator [Lm, V (z, z)] |0〉 and compare with the definition of a primary field
given in Eq. (2.45).

Next, let us note that the action of a free boson (2.79) is invariant under trans-
formations X (z, z) �→ X (z, z) + a where a is an arbitrary constant. In order for the
correlator of two vertex operators 〈 Vα Vβ 〉 to respect this symmetry, we infer from
the definition Vα = : eiαX : the condition α + β = 0. Recalling then our discussion
in Sect. 2.6.2 and keeping in mind that Vα(z, z) is a primary field, for the two-point
function of two vertex operators we find

〈

V−α(z, z) Vα(w,w)
〉 = 1

(z − w)α2 (z − w)α2 .

Here we have included the result for the anti-holomorphic sector, which can be
obtained in a similar fashion as the holomorphic part. However, we will study non-
holomorphic OPEs in much more detail in Sect. 2.12. Since α + β = 0, for the
two-point function of vertex operators with equal j0 eigenvalues, we have

〈

V+α V+α

〉 = 〈

V−α V−α

〉 = 0 .

Let us also mention that the current j(z) = i�X (z, z) is conserved and that the
conserved charge is Q = ∮

dz
2π i j(z) = j0. We can thus interpret α as the charge of

an vertex operator Vα(z, z) and the requirement α + β = 0 as charge conservation.
In passing, we note that vertex operators play a very important role in string

theory, where the charge α is interpreted as the space–time momentum along the
space–time direction X . The condition of charge conservation then corresponds to
momentum conservation in space–time.

Current Algebra

After having verified the conformal dimension of the vertex operator Vα =: eiαX :
to be (h, h) = ( α2

2 , α2

2 ), let us now turn to the special case α = ±√
2 for which

V±√
2(z, z) has conformal dimension (h, h) = (1, 1). Therefore, following our def-

inition from p. 37, these fields are currents. In order to simplify our discussion in
this paragraph, let us focus only on the holomorphic part of the vertex operator
(including the position operator x0) which we write as
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j±(z) = : e±i
√

2X : ,

and study the current algebra of j±(z) and j(z) = i(�X )(z). On p. 37, we have
given the general form of a current algebra of quasi-primary fields which we recall
for convenience

[

j(i)m, j( j)n
] =

∑

k

Ck
i j j(k)m+n + di j m δm,−n , Ck

i j = −Ck
ji .

Let us then determine the normalisation constants of the two-point function di j . By
the argument that the overall j0 charge in a correlation function should vanish, we
see that

d j j = d+− = d−+ = 1 , d j± = d± j = 0 ,

where we use subscripts ± for j±(z) and employed the usual normalisation. Next,
using Eq. (2.57) as well as relations (2.26) and (2.28), we can compute

C+ j− = 〈

0
∣

∣ j+
1 j0 j−

−1

∣

∣0
〉 = lim

z→0

〈

0
∣

∣ j+
1 j0 V−√

2(z)
∣

∣0
〉

= −
√

2
〈

0
∣

∣ j+
1 j−

−1

∣

∣0
〉

= −
√

2 d+− = −
√

2 ,

and a similar computation leads to C− j+ = +√
2. Noting that also for the three-

point function the overall j0 charge has to vanish and using the relation Ci jk =
Cl

i j dlk together with the anti-symmetry of Ck
i j , we can determine the non-vanishing

structure constants to be

C+
j+ = −C+

+ j = +
√

2 , C−
j− = −C−

− j = −
√

2 , C j
+− = −C j

−+ .

The only unknown constant C j
+− can be fixed using the relation Ci jk = Cl

i j dlk from
p. 34 in the following way:

C j
+− = C+− j d j j = C−

− j d−+ d j j =
√

2 · 1 · 1

1
=

√
2 .

Combining all these results, we can finally write down the current algebra of j±(z)
and j(z) which reads

[

jm, jn
] = m δm+n,0 ,

[

j±
m , j±

n

] = 0 ,

[

jm, j±
n

] = ±√
2 j±

m+n ,
[

j+
m , j−

n

] = √
2 jm+n + m δm+n,0 .

(2.96)
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However, in order to highlight the underlying structure, let us make the following
definitions:

j1 = 1√
2

(

j+ + j−) , j2 = 1√
2i

(

j+ − j−) , j3 = j .

The commutation relations for the Laurent modes of the new currents are deter-
mined using the relations in Eq. (2.96). We calculate for instance

[

j1
m, j2

n

] = 1

2i

(

−[

j+
m , j−

n

] + [

j−
m , j+

n

]

)

= 1

2i

(−2
√

2 jm+n
) = +i

√
2 j3

m+n ,

[

j3
m, j1

n

] = 1√
2

[

j3
m, j+

n + j−
n

] = 1√
2

(√
2 j+

m+n −
√

2 j−
m+n

) = +i
√

2 j2
m+n ,

[

j1
m, j1

n

] = 1

2

(

[

j+
m , j−

n

] + [

j−
m , j+

n

]

)

= 1

2
(m − n) δm+n,0 = m δm+n,0 ,

from which we infer the general expression

[

j i
m, j j

n

] = +i
√

2
∑

k

εi jk j k
m+n + m δi j δm,−n

where εi jk is the totally anti-symmetric tensor. These commutation relations define

the su(2) Kač–Moody algebra at level k = 1, which is usually denoted as ŝu(2)1.
These algebras are discussed in Chap. 3 in more generality. Furthermore, this current
algebra is related to the theory of the free boson X compactified on a radius R = 1√

2
which we will study in Sect. 4.2.2.

Hilbert Space

Let us note that the Hilbert space of the free boson theory contains for instance the
following chiral states:

level 1 : j−1

∣

∣0
〉

,

level 2 : j−2

∣

∣0
〉

, j−1 j−1

∣

∣0
〉

,

level 3 : j−3

∣

∣0
〉

, j−2 j−1

∣

∣0
〉

, j−1 j−1 j−1

∣

∣0
〉

,

. . . . . .

(2.97)

where we have used that [ j−m, j−n] = 0 for m, n ≥ 0. Taking also the anti-chiral
sector as well as [ jm, j n] = 0 into account, we can conclude that the Hilbert space
of the free boson theory is

H = {

Fock space freely generated by j−n, j−m for n, m ≥ 1
}

.
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The number of states at each level N is given by the number of partitions P(N ) of
N whose generating function we have already encountered at the end of Sect. 2.8.
The generating function for the degeneration of states at each level N in the chiral
sector therefore is

Z(q) =
∏

n≥1

1

1 − qn
=

∞
∑

N=0

P(N ) q N . (2.98)

Combining now the chiral and anti-chiral sectors, we obtain

Z(q, q) =
∏

n≥1

1

(1 − qn)(1 − qn)
.

In Chap. 4, we will identify such expressions with partition functions of conformal
field theories and relate them to modular forms.

2.9.2 The Free Fermion

Motivation

As a second example for a conformal field theory, we will study the action of a
free Majorana fermion in two-dimensional Minkowski space with metric hαβ =
diag(+1,−1)

S = 1

4πκ

∫

dx0 dx1
√

|h| (−i) � γ α �α � , (2.99)

where κ is a normalisation constant. Here, � is defined as � = �†γ 0 where †
denotes hermitian conjugation and the {γ α} are two-by-two matrices satisfying the
Clifford algebra

γ α γ β + γ β γ α = 2 hαβ 12 ,

with 12 the two-by-two unit matrix. There are various representations of γ -matrices
satisfying this algebra which are, however, equivalent. We make the following
choice:

γ 0 =
(

0 1
1 0

)

, γ 1 =
(

0 1
−1 0

)

,

for which the Majorana condition becomes that the components ψ,ψ of the spinor
� are real. We then perform a Wick rotation x1 → i x1 under which the partial
derivative transforms as �1 → −i�1. Effectively, the Wick rotation means choosing
the γ -matrices
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γ 0 =
(

0 1
1 0

)

, γ 1 =
(

0 −i
i 0

)

,

and we furthermore note that the Wick rotation introduces an additional factor of i
for Eq. (2.99). We can simplify the action (2.99) by observing

γ 0 γ μ �μ = γ 0
(

γ 0�0 + γ 1�1
) =

(

�0 + i�1 0
0 �0 − i�1

)

= 2

(

�z 0
0 �z

)

,

where we have defined z = x0 + i x1. As we have seen before, it is convenient
to work with fields depending on complex variables and so we write the Majorana
spinors as

� =
(

ψ(z, z)

ψ(z, z)

)

.

Note that ψ(z, z) and ψ(z, z) are still real fields, in particular ψ† = ψ and ψ
† = ψ .

Employing then the various arguments above, we can write the action (2.99) after a
Wick rotation in the following way:

S = 1

4πκ

∫

dz dz
√

|g| 2 �†
(

�z 0
0 �z

)

�

= 1

4πκ

∫

dz dz
(

ψ � ψ + ψ � ψ
)

(2.100)

where we used that the components of the metric g, obtained from hαβ via the
change of coordinates z = x0 + i x1, read

gab =
[

0 1
2

1
2 0

]

, gab =
[

0 2
2 0

]

. (2.101)

Basic Properties

From a conformal field theory point of view, we do not necessarily need the deriva-
tion above but can simply start from the action (2.100)

S = 1

4πκ

∫

dz dz
(

ψ � ψ + ψ � ψ
)

. (2.102)

The equations of motion for this theory are obtained by varying the action with
respect to the fields ψ and ψ which reads
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0 = δψ S = 1

4πκ

∫

d2z
(

δψ �ψ + ψ�
(

δψ
)

)

= 1

4πκ

∫

d2z
(

δψ �ψ + �
(

ψδψ
) − (

�ψ
)

δψ
)

= 1

2πκ

∫

d2z δψ �ψ

where we performed a partial integration on the second term and noted that fermionic
fields anti-commute. Since the equation above has to be satisfied for all variations
δψ , we find for the equations of motion

�ψ = �ψ = 0 , (2.103)

where we also included the result for the variation with respect to δψ obtained along
similar lines. We can then conclude that ψ = ψ(z) is a chiral field and ψ = ψ(z) is
an anti-chiral field.

Next, we will determine the conformal properties of the fields ψ(z) and ψ(z). By
performing similar steps as for the example of the free boson, we see that the action
(2.102) is invariant under conformal transformations if the fields ψ and ψ are pri-
mary with conformal dimensions (h, h) = ( 1

2 , 0), and (h, h) = (0, 1
2 ) respectively.

Let us verify this observation by computing

S −→ 1

4πκ

∫

dz dz
(

ψ ′(z, z) �z ψ ′(z, z) + ψ
′
(z, z) �z ψ

′
(z, z)

)

= 1

4πκ

∫

�z

�w
dw

�z

�w
dw

(

(

�w

�z

) 1
2

ψ(w,w)
�w

�z
�w

(

�w

�z

) 1
2

ψ(w,w)

+
(

�w

�z

) 1
2

ψ(w,w)
�w

�z
�w

(

�w

�z

) 1
2

ψ(w,w)

)

= 1

4πκ

∫

dw dw
(

ψ(w,w) �w ψ(w,w) + ψ(w,w) �w ψ(w,w)
)

which shows that the action is indeed invariant under conformal transformations if
ψ and ψ are primary fields of conformal dimension 1

2 . Furthermore, because we are
studying a free theory, the engineering dimension 1

2 agrees with the dimension in
the quantum theory.

Finally, let us note that due to the fermionic nature of fields in our theory, there
are two different possibilities for their behaviour under rotations by 2π . In particular,
focussing on the chiral sector, on the complex plane we have

ψ(e2π i z) = +ψ(z) Neveu–Schwarz sector (NS),

ψ(e2π i z) = −ψ(z) Ramond sector (R).
(2.104)
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Radial Ordering and Laurent Expansion

Let us recall that our theory of the free fermion is defined on the complex plane
with coordinate z = x0 + i x1, where x0 and x1 are coordinates of R

2. However, we
have seen in Sect. 2.4 and explicitly for the example of the free boson, the quantum
theory is usually defined on a cylinder of infinite length. Without providing a de-
tailed derivation, let us just assume we started on a cylinder and have performed the
mapping to the complex plane giving us our present theory.

This allows us in particular to introduce the concept of radial ordering also for
the fermions. Taking into account the fermionic nature of the fields, we define

R
(

�(z)�(w)
)

:=
{+�(z) �(w) for |z| > |w| ,

−�(w) �(z) for |w| > |z| .
(2.105)

Next, keeping in mind the conformal weight 1
2 of our fields, we can perform a Lau-

rent expansion of ψ(z) in the usual way

ψ(z) =
∑

r

ψr z−r− 1
2 , (2.106)

and similarly for the anti-chiral field. However, due to the two possibilities shown
in Eq. (2.104), the values for r differ between the Neveu–Schwarz and Ramond
sectors. It is easy to see that the following choice is consistent with Eq. (2.104):

r ∈ Z + 1
2 Neveu–Schwarz sector (NS),

r ∈ Z Ramond sector (R).

OPE and Laurent Mode Algebra

Recalling our discussion on p. 34 together with the observation that ψ(z) is a pri-
mary field of conformal dimension 1

2 , we can determine the following OPE:

ψ(z) ψ(w) = κ

z − w
+ · · · , (2.107)

where the ellipsis denote non-singular terms. The normalisation constant of the
two-point function κ is the same as in the action (2.102) which can be verified by
computing the propagator of Eq. (2.102). Note furthermore that this OPE respects
the fermionic property of ψ since interchanging z ↔ w leads to a minus sign on the
right-hand side which is obtained on the left-hand side by interchanging fermions.
This fact also explains why there is no single fermion ψ(z) on the right-hand side
because (z − w)−

1
2 ψ(z) would not respect the fermionic nature of the OPE.

Let us now determine the algebra of the Laurent modes of ψ(z). To do so, we
recall that the modes in Eq. (2.106) can be expressed in the following way:
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ψr =
∮

dz

2π i
ψ(z) zr− 1

2 .

Because the fields under consideration are fermions, we are going to evaluate
anti-commutators between the modes ψr and not commutators. Knowing the OPE
(2.107), keeping in mind the radial ordering (2.105) and the deformation of contour
integrals illustrated in Fig. 2.4, we calculate

{

ψr , ψs
} =

∮

dz

2π i

∮

dw

2π i

{

ψ(z), ψ(w)
}

zr− 1
2 ws− 1

2

=
∮

dw

2π i
ws− 1

2

(∮

|z|>|w|

dz

2π i
ψ(z)ψ(w) zr− 1

2

−
∮

|z|<|w|

dz

2π i
− ψ(w)ψ(z) zr− 1

2

)

=
∮

dw

2π i
ws− 1

2

∮

C(w)

dz

2π i
R
(

ψ(z)ψ(w)
)

︸ ︷︷ ︸

κ
z−w

zr− 1
2

= κ

∮

dw

2π i
wr+s−1

= κ δr+s,0 . (2.108)

Energy–Momentum Tensor

Let us also determine the energy–momentum tensor from the action (2.102). For
fermionic theories, the definition of Tab differs from the bosonic expression (2.84)
and we would have to introduce additional structure to state the explicit form. Let
us therefore provide a different but equivalent way to obtain the energy–momentum
tensor. The canonical energy–momentum tensor for a theory with fields φi and
Lagrangian L is defined as

T c
μν = 8πκ γ

(

−ημν L +
∑

i

�L
�
(

�μφi
)�νφi

)

,

where we allowed for a to be determined normalisation constant γ . However, in
general T c is not symmetric but can be made so using the equations of motion.

For the action (2.102), we can compute the canonical energy–momentum tensor
using the metric (2.101) together with the observation that �z = 2 �z as well as
�z = 2 �z . We then find

Tzz = γ ψ �ψ , Tzz = −γ ψ �ψ , Tzz = −γ ψ �ψ , Tzz = γ ψ �ψ .

We see that so far, the energy–momentum tensor is not symmetric, but using
Eq. (2.103) shows that Tzz = Tzz = 0. In this way, we have arrived at the result
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which we would have obtained using a modified form of Eq. (2.84). Focussing then
only on the chiral part T (z) = Tzz and using at the quantum level the normal ordered
expression, we find

T (z) = γ N
(

ψ �ψ
)

. (2.109)

To compute the Laurent modes Lm = γ N (ψ�ψ)m of T (z), we note that the deriva-
tion in Sect. 2.7 leading to expressions for normal ordered products was done for
bosonic fields. For fermionic fields, we need to take into account the modified ra-
dial ordering prescription (2.105). Performing then the same analysis, we find for
Eq. (2.67) in the case of fermionic fields

N
(

ψ θ
)

r = −
∑

s>−hθ

ψr−s θs +
∑

s≤−hφ

θs ψr−s . (2.110)

However, employing the same reasoning also for our expression involving deriva-
tives (2.69), we can express the Laurent modes of the energy–momentum tensor
(2.109) in the following way:

Lm = γ
∑

s>− 3
2

ψm−s ψs

(

s + 1

2

)

− γ
∑

s≤− 3
2

ψs ψm−s

(

s + 1

2

)

. (2.111)

Let us now fix the constant γ by requiring ψ(z) to be a primary field of conformal
dimension 1

2 with respect to the energy–momentum tensor (2.109). We therefore
calculate the commutator between the modes Lm and the Laurent modes of the field
ψ(z)

[

Lm, ψr
] = + γ

∑

s>− 3
2

[

ψm−sψs, ψr
]

(

s + 1

2

)

− γ
∑

s≤− 3
2

[

ψsψm−s, ψr
]

(

s + 1

2

)

= + γ
∑

s>− 3
2

(

s + 1

2

)(

ψm−s
{

ψs, ψr
} − {

ψm−s, ψr
}

ψs

)

− γ
∑

s≤− 3
2

(

s + 1

2

)(

ψs
{

ψm−s, ψr
} − {

ψs, ψr
}

ψm−s

)

= + γ κ
∑

s>− 3
2

(

s + 1

2

)(

ψm−s δs,−r − ψs δm−s,−r

)

− γ κ
∑

s≤− 3
2

(

s + 1

2

)(

ψs δm−s,−r − ψm−s δs,−r

)
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= + γ κ

((

−r + 1

2

)

ψm+r −
(

m + r + 1

2

)

ψm+r

)

= + γ κ
(−m − 2r

)

ψm+r .

If we then choose γ κ = 1
2 , we find

[

Lm, ψr
] =

(

−m

2
− r

)

ψm+r ,

and by comparing with Eq. (2.45), we indeed see that ψ(z) is a primary field of
conformal dimension h = 1

2 with respect to the energy–momentum tensor (2.109).
In order to simplify the following formulas, let us in the following choose the usual
normalisation:

κ = +1 .

The Central Charge

We will now compute the central charge c of the free fermion theory and start by
recalling a general expression derived previously from the Virasoro algebra

〈

0
∣

∣ L2 L−2

∣

∣0
〉 = c

2
.

From Eq. (2.111), we then infer that

L−2 |0〉 = 1

2
ψ− 3

2
ψ− 1

2

∣

∣0
〉

,
〈

0
∣

∣ L2 = 1

2

〈

0
∣

∣

(

ψ 3
2
ψ 1

2
+ 2 ψ 1

2
ψ 3

2

)

= 1

2

〈

0
∣

∣

(

{

ψ 3
2
, ψ 1

2

} + ψ 1
2
ψ 3

2

)

= 1

2

〈

0
∣

∣ ψ 1
2
ψ 3

2
,

and so we calculate using the anti-commutation relations (2.108)

c

2
= 〈

0
∣

∣ L2 L−2

∣

∣0
〉 = 1

4

〈

0
∣

∣ ψ 1
2

ψ 3
2

ψ− 3
2

ψ− 1
2

∣

∣0
〉

= 1

4

〈

0
∣

∣ ψ 1
2

{

ψ 3
2
, ψ− 3

2

}

ψ− 1
2

∣

∣0
〉 − 0

= 1

4

〈

0
∣

∣

{

ψ 1
2
, ψ− 1

2

}∣

∣0
〉 − 0 = 1

4
.

We therefore conclude that

The central charge of the conformal field theory given by a real free
fermion is c = 1

2 .
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Complex Fermions and Bosonisation

Let us now turn to a system with two real chiral fermions ψ (1)(z) and ψ (2)(z) which
we combine into a complex chiral fermion in the following way:

�(z) = 1√
2

(

ψ (1)(z) + iψ (2)(z)
)

. (2.112)

Note that we will always work with chiral quantities so we can denote the complex
conjugate of �(z) by �(z) which has, however, no relation with the anti-chiral part
or the notation in Eq. (2.99). Furthermore, similarly to the real case, we can expand
�(z) in a Laurent series as �(z) = ∑

r �r z−r− 1
2 and we can easily check that the

modes satisfy

{

�r , �s
} = {

�r , �s
} = 0 ,

{

�r , �s
} = δr+s,0 ,

where we applied the same expansion also for �(z). However, besides these two
chiral fields of conformal dimension h = 1

2 , we find now an additional field in the
theory which is expressed as

j(z) = N
(

� �
)

(z) = −i N
(

ψ (1)ψ (2)
)

(z) . (2.113)

In order to write j(z) in terms of the real fermions ψ (1,2)(z), we have used that
N (ψ (a)ψ (b)) = −N (ψ (b)ψ (a)) with a, b = 1, 2. To verify this relation at the level
of Laurent modes, we write out the normal ordered product (2.110) and perform the
change s → −s + r in the summation index

N
(

ψ (a)ψ (b)
)

r = −
∑

s>− 1
2

ψ
(a)
r−sψ

(b)
s +

∑

s≤− 1
2

ψ (b)
s ψ

(a)
r−s

= −
∑

s<r+ 1
2

ψ (a)
s ψ

(b)
r−s +

∑

s≥r+ 1
2

ψ
(b)
r−sψ

(a)
s

= −
∑

s≤− 1
2

ψ (a)
s ψ

(b)
r−s +

∑

s>− 1
2

ψ
(b)
r−sψ

(a)
s −

r− 1
2

∑

s= 1
2

{

ψ (a)
s , ψ

(b)
r−s

}

= −N
(

ψ (b)ψ (a)
)

r .

Note that the sum over {ψ (a), ψ (b)} = δab δr,0 in the last line gives no contribution
since the summand is only non-zero for r = 0 for which the sum disappears. Fur-
thermore, because the modes in general do not (anti-)commute, one has to be careful
when changing the summation index.
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Let us proceed and perform a series expansion of Eq. (2.113) as j(z) =
∑

n jnz−n−1 and investigate the algebra of the modes jn . Writing out the normal
ordered product and noting that ψ (1)

r and ψ (2)
s anti-commute, we find

jm = −i
∑

r∈Z+ 1
2

ψ
(1)
m−rψ

(2)
r .

Here and in the rest of this paragraph, we concentrate on fermions in the Neveu–
Schwarz sector with half-integer modes but the result in the Ramond sector is ob-
tained in a similar fashion. Employing then that the energy–momentum tensor of
�(z) is a sum of the individual ones, we calculate

[

Lm, jn
] =

∑

s∈Z+ 1
2

[

L (1)
m + L (2)

m ,−i ψ
(1)
n−s ψ (2)

s

]

=
∑

s∈Z+ 1
2

(

−i
[

L (1)
m , ψ

(1)
n−s

]

ψ (2)
s − i ψ

(1)
n−s

[

L (2)
m , ψ (2)

s

]

)

=
∑

s∈Z+ 1
2

(

−
(

−m

2
− n + s

)

i ψ
(1)
m+n−s ψ (2)

s − i ψ
(1)
n−s

(

−m

2
− s

)

ψ
(2)
m+s

)

= − n jm+n ,

where in going from the third to the last line we performed a redefinition s → s −m
in the last summand. Note that this equation is the statement that j(z) defined above
is a primary field of conformal dimension h = 1 and thus a current. Let us then
move on and determine the current algebra

[

jm, jn
] =

∑

r,s∈Z+ 1
2

−[

ψ
(1)
m−s ψ (2)

s , ψ
(1)
n−r ψ (2)

r

]

=
∑

r,s∈Z+ 1
2

(

ψ
(1)
m−sψ

(1)
n−r

{

ψ (2)
s , ψ (2)

r

} − ψ (2)
r ψ (2)

s

{

ψ
(1)
n−r , ψ

(1)
m−s

}

)

=
∑

r∈Z+ 1
2

(

ψ
(1)
m+rψ

(1)
n−r − ψ (2)

r ψ
(2)
n+m−r

)

.

In order to proceed, we have to perform a careful analysis of the first term in the
sum above. As mentioned above, because of the fermions do in general not anti-
commute, we cannot simply shift the summation index but have to also take care of
the normal ordering. We find
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∑

r∈Z+ 1
2

ψm+rψn−r =
∑

r≤− 1
2 +n

ψm+r ψn−r +
∑

r≥ 1
2 +n

ψm+r ψn−r

=
∑

r≤− 1
2 +n

ψm+r ψn−r −
∑

r≥ 1
2 +n

ψn−r ψm+r +
∑

r≥ 1
2 +n

{

ψm+r , ψn−r
}

=
− 1

2 +n
∑

r= 1
2 −m

ψm+r ψn−r +
∑

r≥ 1
2 +n

δm+n,0 =
∑

r≥ 1
2 +n

δm+n,0 ,

where the step from the second to the third line can be understood by relabelling
r → −r + n − m in the second sum. Furthermore, the last step is easily verified
using the anti-commutation relation for fermions. With this result, we arrive at

[

jm, jn
] =

∑

r≥ 1
2 +n

δm+n,0 −
∑

r≥ 1
2 +m+n

δm+n,0 =
− 1

2 +m+n
∑

r= 1
2 +n

δm+n,0 = m δm+n,0 .

A current satisfying this algebra is called a U (1) current and we will study such
theories in more detail in Chap. 3. However, let us finally determine the U (1) charge
of the complex fermion �(z) and its complex conjugate �(z). To do so, we calculate

[

jm, �s
] =

∑

r∈Z+ 1
2

[

−iψ (1)
m−rψ

(2)
r ,

1√
2

(

ψ (1)
s + iψ (2)

s

)

]

= 1√
2

∑

r∈Z+ 1
2

(

i
{

ψ
(1)
m−r , ψ

(1)
s

}

ψ (2)
r + ψ

(1)
m−r

{

ψ (2)
r , ψ (2)

s

}

)

= +�m+s ,

and for �(z), we find along the same lines that [ jm, �s] = −�m+s . Therefore, the
complex fields carry charge ±1 under the current j(z). Let us now summarise the
algebra generated by the complex fermions �(z) and �(z) defined in Eq. (2.112)
and the current j(z) defined in Eq. (2.113) as

{

�m, �n
} = δm+n,0 ,

{

�m, �n
} = {

�m, �n
} = 0 ,

[

jm, jn
] = m δm+n,0 ,

[

Lm, jn
] = −n jm+n ,

[

jm, �s
] = +�m+s ,

[

jm, �s
] = −�m+s .

(2.114)

Note that this algebra can also be realised by a free boson X (z, z) compactified
on a circle of radius R = 1 for which, focussing only on the holomorphic part, we
have the following fields:
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j(z) = i �X (z, z) , j±(z) = V±1(z) =: e±i X : .

As we have seen before, the chiral field j(z) has conformal dimension h = 1 and
for the vertex operators j±(z), we find h = 1

2 using h = α2

2 with α = ±1. The
algebra of j(z) and j±(z) can be determined using the general expressions (2.54)
and (2.55) for the commutation relations of quasi-primary fields. In particular, the
only non-vanishing constants pi jk(m, n) of Eq. (2.55) are found to be

p 1
2 1 1

2
(m, n) = 1 , p111(m, n) = 1 ,

where the subscripts label the conformal dimension of the fields. By the same argu-
ment as before, since the overall charge in a correlation function has to vanish, we
find for the two-point functions that

d j j = d+− = d−+ = 1 , d j± = d±± = 0 ,

where we employed the usual normalisation. Applying the same argument to the
three-point function, we find that C− j+ = −C+ j− = 1. Together with the anti-
symmetry Ck

i j = −Ck
ji and the relation Cl

i j dlk = Ck
i j , we conclude that the non-

vanishing structure constants are

C+
j+ = −C+

+ j = +1 , C−
j− = −C−

− j = −1 .

Using these results in the general expression (2.54), we can easily write the down
the algebra of Laurent modes of the fields j(z) and j±(z)

[

jm, jn
] = m δm+n ,

[

j+
m , j−

n

] = δm+n,0 ,

[

jm, j±
n

] = ± j±
m+n ,

[

j±
m , j±

n

] = 0 .

By comparing with Eq. (2.114), we see that the algebra of a complex fermion can
indeed be realised in terms of a free boson.

It is not surprising that a theory of a boson can equivalently be expressed as a
theory of two fermions, but it is very special to conformal field theories that we can
also express the fermions in terms of the boson. This is called the bosonisation of a
complex fermion. We note in passing that this intriguing relation has been used in
the so-called covariant lattice approach to string theory model building.

Hilbert Space

Let us finally turn to the Hilbert space H of the free fermion theory. For the Neveu–
Schwarz sector, we find the following chiral states:
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∣

∣0
〉

, ψ− 1
2

∣

∣0
〉

, ψ− 1
2
ψ− 1

2
︸ ︷︷ ︸

= 0

∣

∣0
〉

, ψ− 3
2

∣

∣0
〉

, ψ− 3
2
ψ− 1

2

∣

∣0
〉

, . . . ,

where we have used that {ψr , ψs} = δr,−s . In particular, due to Fermi-statistics, each
mode ψr can only appear once. Taking also the anti-chiral sector into account, we
can conclude that in the Neveu–Schwarz sector, the Hilbert space is

HNS = {

Fock space freely generated by ψ−r , ψ−s for r, s ≥ 1
2

}

.

The generating function for the degeneration of states at each level N in the chiral
sector can be shown to be of the form

ZNS(q) =
∏

r≥0

(

1 + qr+ 1
2

)

=
∑

N∈ 1
2 Z

P(N ) q N .

We will perform a detailed study of these expressions in Chap. 4. In the Ramond
sector, that is, for r ∈ Z, there will be fermionic zero modes ψ0 which deserve a
special treatment. This issue will be discussed in Sect. 4.2.4.

2.9.3 The (b,c) Ghost Systems

After having studied the free boson and the free fermion conformal field theories,
we will now briefly consider the (b, c) ghost system which plays an important role
in the covariant quantisation of the bosonic string.

Basic Properties

Let us start on the complex plane for which we have the metric shown in Eq. (2.101).
The action of the (b, c) ghost system reads

S = 1

4π

∫

d2z
(

bzz �zcz + bzz �zcz
)

, (2.115)

where �z = 2�z and �z = 2�z due to the metric (2.101). Here the fields b and c are
primary free bosonic fields of conformal dimension hb = 2 and hc = −1 satisfying
the wrong spin-statistics relation, that is, they are anti-commuting bosons.

The equation of motion is obtained in the usual way by varying the action above
with respect to b and c. Since the calculation is similar to the ones we have presented
previously, we just state the results
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�z bzz = 0 ⇒ bzz = b(z) ,

�z bzz = 0 ⇒ bzz = b(z) ,

�z cz = 0 ⇒ cz = c(z) ,

�z cz = 0 ⇒ cz = c(z) ,

where we also indicated a new notation for the holomorphic and anti-holomorphic
fields. Taking into account the conformal dimensions of these fields, we perform a
Laurent expansion in the following way:

b(z) =
∑

n∈Z

bn z−n−2 , c(z) =
∑

n∈Z

cn z−n+1 ,

and similarly for the anti-chiral fields. Note also that the modes satisfy bn |0〉 = 0
for n > −2 and cn |0〉 = 0 for n > 1.

Let us finally determine the propagator of this theory given by the action (2.115).
The condition to be satisfied for the propagator as well as its solution read

�z
〈

b(z)c(w)
〉 = 4π δ(2)(z − w) ⇒ 〈

b(z)c(w)
〉 = 1

z − w
.

Recalling Eq. (2.53) and taking into account the anti-commuting property of the
fields, we can conclude that the OPE has the form

b(z)c(w) = 1

z − w
+ . . . ,

from which we can determine the anti-commutation relation of the Laurent modes
by employing bn = 1

2π i

∮

dz zn+1b(z) as well as cn = 1
2π i

∮

dz zn−2c(z). We then
find

{

bm, cn
} = δn+m,0 ,

{

bm, bn
} = 0 ,

{

cm, cn
} = 0 . (2.116)

Energy–Momentum Tensor and Central Charge

As we have argued on general grounds, the energy–momentum tensor has conformal
dimension h = 2 which of course also applies to the (b, c) ghost system. Without
providing a detailed derivation for the energy–momentum tensor, we simply make
an ansatz for T (z) similar to the free fermion

T (z) = α N
(

b �c
) + β N

(

�b c
)

,

and fix the constants α and β by requiring hb = 2 and hc = 1. Using our formula
for the Laurent modes of normal ordered products involving derivatives (2.69) and
keeping in mind the anti-commuting property of the fields, we find
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Lm = + α

(

−
∑

k>0

bm−k ck (+1 − k) +
∑

k≤0

(+1 − k) ck bm−k

)

+ β

(

−
∑

k>1

bm−k ck (−2 − m + k) +
∑

k≤1

ck bm−k (−2 − m + k)

)

.

(2.117)

With the help of the anti-commutation relations (2.116), we can then compute

L0

∣

∣b
〉 = L0 b−2

∣

∣0
〉 = {

L0, b−2
}∣

∣0
〉 = α b−2

{

c2, b−2
}∣

∣0
〉 = α

∣

∣b
〉

L0

∣

∣c
〉 = L0 c1

∣

∣0
〉 = {

L0, c1
}∣

∣0
〉 = −β c1

{

b−1, c1
}∣

∣0
〉 = −β

∣

∣c
〉

from which we conclude that α = 2 and β = 1. Knowing the energy–momentum
tensor, we can finally compute the central charge of the (b, c) ghost system. As in
the previous examples, we first note that L2L−2|0〉 = c

2 |0〉. From Eq. (2.117), we
find

L−2

∣

∣0
〉 = 2 c0 b−2

∣

∣0
〉 + c1 b−3

∣

∣0
〉

.

Furthermore, we have

L2 = 2

(

−
∑

k>0

b2−k ck (−k + 1) +
∑

k≤0

(−k + 1) ck b2−k

)

+
(

−
∑

k>1

(−(2 − k) − 2) b2−k ck +
∑

k≤1

(−(2 − k) − 2) ck b2−k

)

.

The only terms in L2 which do not commute with L−2 and therefore do not anni-
hilate |0〉 are those involving (c2, b0) as well as those with (c3, b−1). We therefore
extract the relevant expressions from L2 in the following way:

L2 = 2
(

b0c2 + 2 b−1c3
) + (

2 b0c2 + b−1c3
) + . . . = 4 b0 c2 + 5 b−1 c3 + . . .

from which we calculate

L2 L−2

∣

∣0
〉 = 8 b0 c2 c0 b−2

∣

∣0
〉 + 5 b−1 c3 c1 b−3

∣

∣0
〉 = (−8 − 5)

∣

∣0
〉 = −13

∣

∣0
〉

.

Comparing now with L2L−2|0〉 = c
2 |0〉, we arrive at the result that

The central charge of the (b, c) ghost system conformal field theory is
c = −26.
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Remark

The result that the (b, c) ghost system has central charge c = −26 is the reason
for the statement that the bosonic string is free of anomalies only in D = 26 flat
space–time dimensions, because the CFT of a single free boson has central charge
c = 1. For Superstring Theory, each free boson Xμ is paired with one free fermion
ψμ, where μ = 0, . . . , D. In this case, in addition to the (b, c) ghost system, also
commuting fermionic ghosts (β, γ ) of conformal dimensions (3/2,−1/2) have to
be included. The central charge of this sector is determined as c = 11, so that the
superstring can be consistently quantised in D = 2

3 (26−11) = 10 dimensions where
the factor 2

3 comes from the central charge c = 1+ 1
2 = 3

2 of a single boson–fermion
pair.

2.10 Highest Weight Representations of the Virasoro Algebra

After having studied in detail three examples of conformal field theories, our aim
in the present section is to study the representation theory of the symmetry algebra
A ⊕ A on general grounds. Here, A denotes the chiral sector, while A stands for
the anti-chiral part. In particular, we will focus on the minimal case with A and A
being the Virasoro algebra generated by T (z) and T (z), respectively. However, it is
possible for CFTs to have larger symmetry algebras, for instance the so-called W
algebras, which we will consider in Sect. 3.7.

Highest Weight Representations and Verma Module

Analogously to the su(2) spin algebra in Quantum Mechanics, we want to construct
highest weight representations (HWR) of the Virasoro algebra. As we have seen in
Eqs. (2.62) and (2.73), a highest weight state |h〉 corresponding to a primary field
of conformal dimension h has the property

Ln

∣

∣h
〉 = 0 for n > 0 ,

L0

∣

∣h
〉 = h

∣

∣h
〉

,
(2.118)

so that the action of Ln for n < 0 on the state |h〉 creates new states. The set of all
these states is called the Verma module Vh,c, where h stands for the highest weight
state |h〉 and c is the central charge of the Virasoro algebra. The lowest level states
in the Verma module Vh,c are

L−1

∣

∣h
〉

, L−2

∣

∣h
〉

, L−1L−1

∣

∣h
〉

, L−3

∣

∣h
〉

, . . . .

Roughly speaking, the Verma module Vh,c is the set of states corresponding to the
conformal family

[

φ(z)
]

of a primary field φ(z) with conformal dimension h.
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Depending on the combination (h, c), there can be states of vanishing or even of
negative norm in a Verma module. For unitary theories, the later should be absent
and vanishing norm states should be removed from Vh,c. However, it turns out that
states of vanishing norm generate an independent Verma module which is “orthog-
onal” to the parent one. We will not go into further detail but refer to the existing
literature.

Null States and the Kač-Determinant

To illustrate how to determine zero-norm states in a Verma module, we are going
to consider a simple example from linear algebra. Suppose we have a vector |v〉
in a real n-dimensional vector space with basis vectors |a〉. Note that in particular,
this basis does not need to be orthonormal. We then express our vector as |v〉 =
∑n

a=1 λa |a〉 where not all λa are zero. The condition for |v〉 to have vanishing
norm is

0 = || v ||2 =
n

∑

a,b=1

λa 〈 a | b 〉 λb =
n

∑

a,b=1

λa Mab λb = →
λ

T
M

→
λ

where we defined the elements of the matrix M as Mab = 〈a|b〉. This expression

is zero if
→
λ is an eigenvector of M with eigenvalue zero. The number of such (lin-

early independent) eigenvectors is given by the number of roots of the equation
det M = 0.

Let us now come back to the null states in the Verma module. Analogously to
the example above, to decide whether there exist zero-norm states, we are going to
compute the so-called Kač-determinant at level N . We denote the corresponding
matrix as MN (h, c) where the entries are defined as the product of states in the
Verma module

〈

h
∣

∣

∏

i

L+ki

∏

j

L−m j

∣

∣h
〉

,
∑

i

ki =
∑

j

m j = N ,

with all ki , m j ≥ 0. Note that the condition on the right-hand side guarantees
that we are considering only states at level N . For two states at different level,
the corresponding matrix element vanishes because the net number of operators
∑

i ki − ∑

j m j is non-zero and so only creation or only annihilation operators
survive.

Let us illustrate this procedure for the first and second level. For N = 1, we have
only one state in the Verma module and so we find

M1(h, c) = 〈

h
∣

∣ L1 L−1

∣

∣h
〉 = 2

〈

h
∣

∣ L0

∣

∣h
〉 = 2 h .

The Kač-determinant is therefore trivially
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det M1(h, c) = 2 h .

Here we see that for h = 0, we have one null state at level N = 1. At level N = 2,
there are the two states L−2 |h〉 and L−1 L−1 |h〉 in the Verma module. For the
elements of the two-by-two matrix M2(h, c), we use Eq. (2.118) to calculate

〈

h
∣

∣ L2 L−2

∣

∣h
〉 = 〈

h
∣

∣

c

2
+ 4 L0

∣

∣h
〉 = 4 h + c

2
,

〈

h
∣

∣ L1 L1 L−2

∣

∣h
〉 = 〈

h
∣

∣ L1 · 3 L−1

∣

∣h
〉 = 6 h ,

〈

h
∣

∣ L2 L−1 L−1

∣

∣h
〉 = 〈

h
∣

∣ 3 L1 · L−1

∣

∣h
〉 = 6 h ,

〈

h
∣

∣ L1 L1 L−1 L−1

∣

∣h
〉 = 〈

h
∣

∣ L1
[

L1, L−1
]

L−1

∣

∣h
〉 + 〈

h
∣

∣ L1 L−1 L1 L−1

∣

∣h
〉

= 〈

h
∣

∣ L1 2 L0 L−1

∣

∣h
〉 + 〈

h
∣

∣

[

L1, L−1
] [

L1, L−1
] ∣

∣h
〉

= 2
〈

h
∣

∣ L1
[

L0, L−1
] ∣

∣h
〉 + 4 h2 + 4 h2

= 4 h + 8 h2 .

For the Kač-determinant at level N = 2, we then find

det M2(c, h) = det

(

4h + c
2 6h

6h 4h(2h + 1)

)

= 32 h

(

h2 − 5

8
h + 1

8
hc + 1

16
c

)

.

The roots of det M2(c, h) are the following:

h1,1 = 0 ,

h1,2 = 5 − c

16
− 1

16

√

(

1 − c
)(

25 − c
)

,

h2,1 = 5 − c

16
+ 1

16

√

(

1 − c
)(

25 − c
)

,

where our notation will become clear in the following. We can then write the Kač-
determinant as

det M2(c, h) = 32
(

h − h1,1(c)
) (

h − h1,2(c)
) (

h − h2,1(c)
)

.

In summary, at level N = 2, we found three states of vanishing norm where the root
h1,1 = 0 is due to the null state at level 1. This is a general feature: if a null state
|h + n〉 occurs at level n, then at level N > n there are P(N − n) resulting null
states. Here P(n) is again the number of partitions of n.

V. Kač found and proved the general formula for the determinant det MN (c, h) at
arbitrary level N .
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The so-called Kač-determinant at level N reads

det MN (c, h) = αN

∏

p,q≤N
p,q>0

(

h − h p,q (c)
)P(N−pq)

with

h p,q (m) =
(

(m + 1) p − mq
)2 − 1

4 m (m + 1)
, m = −1

2
± 1

2

√

25 − c

1 − c
.

Here, αN is a positive constant and we note that in general, m is not an integer but
complex. For c < 1, one conventionally chooses the branch m ∈ (0,∞); however,
h p,q possesses the symmetry {p → m − p, q → m + 1 − q} so that det MN is
independent of the choice of branch in m as it can be compensated by p ↔ q.

Unitary Representations

So far, we have focused on the null states in a Verma module. However, to find
unitary representations we have to exclude also the regions in the (h, c)-plane where
states of negative norm appear. We will not discuss all the details but just summarise
the results.

h

c

h3,1

h1,3

h2,1

h3,2

h1,2

h2,3

h2,4

h4,2

1

1
4

1
2

1

Fig. 2.6 Some curves h p,q (c) of vanishing Kač-determinant. Unitary representations are labelled
by a dot
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• For c > 1 and h ≥ 0, there are no zeros and all eigenvalues of MN are positive.
Therefore, unitary representations can exist.

• In the case of c = 1, one finds det MN = 0 for h = n2

4 where n ∈ Z.
• The region c < 1 and h ≥ 0 is much more complicated. It can be shown that all

points which do not lie on a curve h p,q (c) where det MN = 0 are non-unitary. A
more careful analysis reveals that in fact non-negative states are absent only on
certain intersection points of such vanishing curves. This is illustrated in Fig. 2.6
where the dots stand for unitary representations.

We can summarise the results as follows:

For the case of c < 1 and h ≥ 0, the discrete set of points where unitary
representations are not excluded occur at values of c

c = 1 − 6

m(m + 1)
m = 3, 4, . . . .

To each c there are only
(m

2

)

allowed values of h

h p,q (m) =
(

(m + 1) p − mq
)2 − 1

4 m (m + 1)
(2.119)

with 1 ≤ p ≤ m − 1 and 1 ≤ q ≤ m.

So far, this condition is only necessary. But we will see later that concrete con-
formal field theories can indeed be found.
Because of the severe constraints on unitary CFTs, only a discrete set of values
c with a finite number of highest weight representations survive. conformal field
theories with this latter property are known to exist only for rational values of the
central charge and are therefore called Rational CFTs or RCFTs.

Examples

To close this section, let us consider some examples for the case c < 1 and h ≥ 0.
For m = 3, we find c = 1

2 as well as 1 ≤ p ≤ 2 and 1 ≤ q ≤ 3. The possible values
of h p,q are then conveniently organised in the so-called conformal grid

q ↑
1
2 0
1

16
1

16

0 1
2 → p
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which in the present case describes the critical point of the second-order phase tran-
sition of the Ising model. For the case of m = 4, we find c = 7

10 which is the
tri-critical Ising model. The conformal grid is displayed below.

3
2

7
10 0

3
5

3
80

1
10

1
10

3
18

3
5

0 7
16

3
2

Finally, for m = 5, we get c = 4
5 which is the three states Potts model.

Remarks

• Note that for deriving the results in this section, we have not referred at any stage
to a concrete realisation of a CFT, but have solely exploited the consequences of
conformal symmetry. This shows the far-reaching consequences of the conformal
symmetry in two dimensions.

• For Euclidean CFTs and their application to statistical models, unitarity, that is,
reflection positivity, is not a necessary condition. Weakening this constraint and
allowing for states with negative norm, the representation theory of the Virasoro
algebra contains a more general discrete series of RCFTs. These are given by the
central charges

c = 1 − 6
(p − q)2

p q
(2.120)

with the p, q ≥ 2 and p, q relatively coprime. The finite set of highest weights
is given by

hr,s(p, q) = (p r − q s)2 − (p − q)2

4 p q

with 1 ≤ r ≤ q − 1 and 1 ≤ s ≤ p − 1. Unless |p − q| = 1, there always
exist highest weight states of negative norm, and the unitary series is precisely
given by p = m + 2, q = m + 3 with m ≥ 1. As an example, note that the
model (p, q) = (5, 2) with central charge c = −22/5 describes the Yang–Lee
edge singularity.

• Note that the theories defined by Eq. (2.120) are called minimal models. In the
case of p = m + 2, q = m + 3 with m ≥ 1, i.e. if the theory is unitary, they are
called unitary (minimal) models.
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2.11 Correlation Functions and Fusion Rules

In this section, we are going to discuss one of the most powerful results of the
boot-strap approach to CFTs. We will see that the appearance of null states in the
unitary models with 0 < c < 1 severely restricts the form of the OPEs between the
primary fields φ(p,q).

Null States at Level Two

We start by discussing the null states at level N = 2. Note that in the previous
section, we did not determine their precise form, however, in general such a state is
a linear combination written in the following way:

L−2

∣

∣h
〉 + a L−1 L−1

∣

∣h
〉 = 0 . (2.121)

If we apply L1 to this equation, we can fix the constant a as

0 = [

L1, L−2
] ∣

∣h
〉 + a

[

L1, L−1 L−1
] ∣

∣h
〉

= 3 L−1

∣

∣h
〉 + a

(

2 L0 L−1 + 2 L−1 L0
)∣

∣h
〉

= (

3 + 2a
(

2h + 1
) )

L−1

∣

∣h
〉 ⇒ a = − 3

2(2h + 1)

where we used that L−1|h〉 �= 0 for h �= 0. Next, we apply L2 to Eq. (2.121) in order
to determine the allowed values for h

0 = [

L2, L−2
] ∣

∣h
〉 + a

[

L2, L−1 L−1
] ∣

∣h
〉

=
(

4 L0 + c

2

)

∣

∣h
〉 + a L−1

[

L2, L−1
] ∣

∣h
〉 + a

[

L2, L−1
]

L−1

∣

∣h
〉

=
(

4 h + c

2

)

∣

∣h
〉 + 6ah

∣

∣h
〉

=
(

4h + c

2
+ 6ah

)

∣

∣h
〉 ⇒ c = 2h

2h + 1

(

5 − 8h
)

.

Therefore, we have shown that for a theory with central charge c = 2h
2h+1 (5 − 8h)

the null state at level N = 2 satisfies

(

L−2 − 3

2(2h + 1)
L2

−1

)

∣

∣h
〉 = 0 . (2.122)

Let us quickly check Eq. (2.122) for the unitary series from the last section. We
found that in theories with central charges c = 1 − 6

m(m+1) , m ≥ 3, there is a highest
weight at level two characterised by

h2,1(m) =
(

2(m + 1) − m
)2 − 1

4 m (m + 1)
= (m + 2)2 − 1

4 m (m + 1)
.
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Solving this equation for m leads to m = 3
4h−1 , which gives a central charge c =

2h(5−8h)
2h+1 in agreement with our result above.

Descendant Fields and Correlation Functions

We already mentioned that the fields in the Verma module obtained by acting with
Lm are called descendant fields and we will now formalise the concept of descen-
dants to some extend. Given a primary field φ(w), the descendant fields L̂−nφ for
n > 0 are defined to be the fields appearing in the OPE

T (z) φ(w) =
∑

n≥0

(z − w)n−2
̂L−n φ(w) .

Performing a contour integration, we find for the descendant fields

̂L−n φ(w) =
∮

dz

2π i

1

(z − w)n−1
T (z) φ(w) . (2.123)

If the conformal dimension of φ is integer, we can determine the descendant fields
for the first values of n from Eq. (2.40) as

̂L0 φ(w) = h φ(w) , ̂L−1 φ(w) = �φ(w) , ̂L−2 φ(w) = N
(

φ T
)

(w) . (2.124)

Let us now derive an expression for the correlator of a descendant field with
a number of other primaries. For convenience, we work with chiral primaries,
however, the result for the anti-chiral part is obtained along similar lines. We use
Eq. (2.123) for the descendant field and the deformation of contours illustrated in
Fig. 2.7 to find

〈

̂L−n φ(w) φ1(w1) . . . φN (wN )
〉

=
∮

C(w)

dz

2π i
(z − w)1−n

〈 (

T (z) φ(w)
)

φ1(w1) . . . φN (wN )
〉

= −
N
∑

i=1

∮

C(wi )

dz

2π i
(z − w)1−n

〈

φ(w) φ1(w1) . . .
(

T (z) φi (wi )
)

. . . φN (wN )
〉

= −
N
∑

i=1

∮

C(wi )

dz

2π i
(z − w)1−n ×

×
(

hi

(z − wi )2
+ 1

z − wi
�wi

)

〈

φ(w) φ1(w1) . . . φN (wN )
〉

= −
N
∑

i=1

(

(1 − n)
(

wi − w
)−n

hi + (

wi − w
)1−n

�wi

)

〈

φ(w) φ1(w1) . . . φN (wN )
〉

,
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= =

Fig. 2.7 Transformation of contour integrals on the sphere. Note that the orientation on the very
right is clock-wise so the residue picks up a minus sign

where from the third to the fourth line we used the OPE of a primary field and in the
last step we employed the residue theorem. We have therefore shown that

The correlator involving a descendant field ̂L−nφ can be computed from
the correlator involving the corresponding primary field φ by applying
the differential operator L−n in the following way:

〈

̂L−n φ(w) φ1(w1) . . . φN (wN )
〉 = L−n

〈

φ(w) φ1(w1) . . . φN (wN )
〉

where the operator L−n has the form

L−n =
N
∑

i=1

(

(n − 1) hi

(wi − w)n
− 1

(wi − w)n−1
�wi

)

. (2.125)

Two Particular Examples

Let us consider again Eq. (2.122) for a null state at level two. We see that the corre-
sponding descendant field

̂L−2 φ(z) − 3

2 (2h + 1)
̂L2

−1 φ(z)

is a null field where ̂L2
−1 φ(z) is understood as

(

̂L−1(̂L−1φ)
)

(z) = �2φ(z). Further-
more, this relation implies an expression for the differential operators L−n acting on
correlation functions involving φ(z), i.e.

0 =
(

L−2 − 3

2 (2h + 1)
L2

−1

)

〈

φ(w) φ1(w1) . . . φN (wN )
〉

.

From Eq. (2.124), we recall that ̂L−1 φ(w) = �w φ(w) and therefore L−1 acts as �w.
Employing then the definition (2.125) for L−2, we find
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0 =
(

N
∑

i=1

(

hi

(wi − w)2
− 1

wi − w
�wi

)

− 3

2 (2h + 1)
�2

w

)

〈

φ(w) φ1(w1) . . . φN (wN )
〉

.

(2.126)

Working out this differential equation for the example of the two-point function
yields

0 =
(

h

(w1 − w)2
− 1

w1 − w
�w1 − 3

2 (2h + 1)
�2

w1

)

d

(w − w1)2h

0 =
(

h + 2h − 3

2 (2h + 1)
2h (2h + 1)

)

d

(w − w1)2h+2
,

and we realise that it is trivially satisfied. However, for the three-point function we
will find a non-trivial condition. Recalling the precise form of this correlator

〈

φ(w) φ1(w1) φ2(w2)
〉 = Cφ φ1 φ2

(w − w1)h+h1−h2 (w1 − w2)h1+h2−h (w − w2)h+h2−h1
,

and inserting it into the differential equation (2.126), after a tedious calculation one
obtains the following constraint on the conformal weights {h, h1, h2}:

2 (2h + 1) (h + 2h2 − h1) = 3 (h − h1 + h2) (h − h1 + h2 + 1) .

This expression can be solved for h2 leading to

h2 = 1

6
+ h

3
+ h1 ± 2

3

√

h2 + 3hh1 − 1

2
h + 3

2
h1 + 1

16
. (2.127)

Fusion Rules for Unitary Minimal Models

Next, let us apply Eq. (2.127) to the primary fields φ(p,q) of the rational mod-
els with central charges c(m) studied in Sect. 2.10. In particular, if we choose
h = h2,1(m) and h1 = h p,q (m) then the two solutions for h2 are precisely
{h p−1,q (m), h p+1,q (m)}. Therefore, at most two of the coefficients Cφφ1φ2 of a three-
point function will be non-zero. The OPE of φ2 = φ(2,1) with any other primary field
φ(p,q) in a unitary minimal model is then restricted to be of the form

[

φ(2,1)
] × [

φ(p,q)
] = [

φ(p+1,q)
] + [

φ(p−1,q)
]

, (2.128)
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where [φ(p,q)] denotes the conformal family descending from φ(p,q)
2. Still, the co-

efficients Cφφ1φ2 could be zero, but at most two other conformal families appear on
the right-hand side of Eq. (2.128).

This strategy can be generalised to higher level null states. Without detailed
derivation, we note the final result that the conformal families in a unitary minimal
model form a closed algebra

[

φ(p1,q1)
] × [

φ(p2,q2)
] =

p1+p2−1
∑

k=1+|p1−p2|
k+p1+p2 odd

q1+q2−1
∑

l=1+|q1−q2|
l+q1+q2 odd

[

φ(k,l)
]

.
(2.129)

These are the so-called fusion rules for the conformal families in the unitary minimal
models of the Virasoro algebra.

Let us briefly illustrate these rules for the Ising model, i.e. for m = 3. We label
the relevant fields φ(p,q) as

φ(1,1) = 1 , φ(1,2) = σ , φ(1,3) = ε ,

φ(2,3) = 1 , φ(2,2) = σ , φ(2,1) = ε .

Using the formula above, we then find

[1] × [σ ] = [σ ] , [ε] × [ε] = [1] , [σ ] × [σ ] = [1] + [ε] ,

[1] × [ε] = [ε] , [ε] × [σ ] = [σ ] .

Fusion Algebra

The fusion rules (2.129) for the unitary minimal models of the Virasoro algebra
can be generalised to arbitrary RCFTs. In particular, the OPE between conformal
families [φi ] and [φ j ] gives rise to the concept of a Fusion algebra

[ φi ] × [ φ j ] =
∑

k

N k
i j [ φk ] (2.130)

where N k
i j ∈ Z

+
0 . Furthermore, one finds N k

i j = 0 if and only if Ci jk = 0, and for
unitary minimal models of Vir(h,c), we get N k

i j ∈ {0, 1}.
Let us note that the algebra (2.130) is commutative as well as associative and

that the vacuum representation [1] containing just the energy–momentum tensor as

2 Let us make clear how to interpret Eq. (2.128). This equation means that the OPE between a
field in the conformal family of φ(2,1) and a field in the conformal family of φ(p,q) involves only
fields belonging to the conformal families of φ(p+1,q) and φ(p−1,q). However, more work is needed
to determine the precise form of the OPE.
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well as its descendants is the unit element because N k
i1 = δik . Commutativity of

Eq. (2.130) implies N k
i j = N k

ji , and for the consequences of associativity consider

[ φi ] × (

[ φ j ] × [ φk ]
) = [ φi ] ×

∑

l

N l
jk [ φl ] =

∑

l,m

Nl
jk N m

il [ φm ]

(

[ φi ] × [ φ j ]
) × [ φk ] =

∑

l,m

Nl
i j N m

lk [ φm ] ,

from which we conclude that

∑

l

N l
k j N m

il =
∑

l

N l
i j N m

lk .

Defining finally the matrices (N i ) jk := N k
i j , we can write this formula as

N i N k = N k N i . (2.131)

We will come back to these fusion rules in the discussion of one-loop partition
functions, where we will find an intriguing relation between the fusion coefficients
N k

i j and the so-called modular S-matrix.

2.12 Non-Holomorphic OPE and Crossing Symmetry

In this chapter, so far we have mainly focussed on the chiral sector of two-
dimensional conformal field theories. However, for non-chiral fields the structure
is very similar and so we can briefly summarise it here.

Two- and Three-Point Functions

In particular, the results for the two- and three-point functions of chiral quasi-
primary fields φi (z) carry over directly to non-chiral fields φi (z, z). The two-point
function is determined by the SL(2, C)/Z2 × SL(2, C)/Z2 conformal symmetry up
to a normalisation factor as

〈

φ1(z1, z1) φ2(z2, z2)
〉 = d12

zh1+h2
12 zh1+h2

12

δh1,h2 δh1,h2
,

where again z12 is defined as z12 = z1 − z2 and similarly for z12. The three-point
function is fixed up to the structure constant C123 in the following way:
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〈

φ1(z1, z1) φ2(z2, z2) φ3(z3, z3)
〉 =

= C123

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13 zh1+h2−h3

12 zh2+h3−h1
23 zh1+h3−h2

13

.

OPE of Primary Fields

The general form of the OPE of two non-chiral quasi-primary fields can be deter-
mined following the same steps as for the case of chiral fields studied in Sect. 2.6.3.
The OPE takes the form

φi (z, z) φ j (w,w) =
∑

p

∑

{k,k}
C p

i j

β
p,{k}

i j β
p,{k}

i j φ
{k,k}
p (w,w)

(z − w)hi +h j −h p−K (z − w)hi +h j −h p−K
, (2.132)

where the multi-index {k, k} labels all the descendant fields

{

L̂−k1 . . . L̂−kn L̂−k1 . . . L̂−kn φp(z, z)
}

in the conformal family of the primary field φp(z, z). Moreover, we have introduced
K = ∑

i ki and K = ∑

i ki as well as the coefficients β
p,{k}

i j and β
p,{k}

i j . The later
govern the coupling of the descendants and depend only on the central charge of the
theory as well as on the conformal dimensions of the fields involved3. Therefore, in
principle, the only unknown parameters are the structure constants C p

i j among the
primary fields.

Four-Point Functions and Crossing Symmetry

However, from the operator algebra point of view there are additional constraints for
the structure constants C p

i j coming from Jacobi identities (see also Sect. 3.7). At the
level of the OPE, these constraints arise from what is called crossing symmetries.
These appear first at the level of four-point functions to which we turn now. Due to
the SL(2, C)/Z2 × SL(2, C)/Z2 symmetry, a general four-point function

G
(

z, z
) = 〈

φi (z1, z1) φ j (z2, z2) φl(z3, z3) φm(z4, z4)
〉

(2.133)

can only depend on the so-called crossing ratios

x = z12 z34

z13 z24
, x = z12 z34

z13 z24
.

3 We will compute some of these coefficients in Sect. 3.7, when we discuss the construction of W
algebras.
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∑
p

Cp
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p
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∑
q

Cq
imCq

jl

j

i

l

m

p

j

i

l

m

q

Fig. 2.8 Illustration of the crossing symmetry for four-point functions

This can be made plausible for instance by using the conformal symmetry to map
the four points zi to z1 = 0, z2 = x , z3 = 1 and z4 = ∞ and similarly for zi . One
can then evaluate the amplitude (2.133) in several different ways.

• First, one can employ the OPE for φi (z1, z1) φ j (z2, z2) and then the one for
φl(z3, z3) φm(z4, z4). As a result, the amplitude (2.133) can be expressed as

G
(

z, z
) =

∑

p

C p
i j C p

lm F lm
i j (p | x) F lm

i j (p | x) , (2.134)

where the contributions of the descendants of the primary field φp factorise into a
holomorphic and an anti-holomorphic piece. These in general quite complicated
expressions F lm

i j (p | x) are called conformal blocks and depend only on the con-
formal dimensions of the primary fields involved and on the central charge of the
CFT.

• One can evaluate the four-point function (2.133) also by first using the OPE for
φ j (z2, z2) φl(z3, z3). Effectively this means exchanging φ j (z2, z2) and φm(z4, z4)
which on the level of crossing ratios is achieved by x �→ 1 − x . The resulting
four-point amplitude can now be expressed as

G
(

z, z
) =

∑

p

C p
im C p

jl F
jl

im(p | 1 − x) F jl
im(p | 1 − x) . (2.135)

• Similarly, one can first evaluate the OPE φ j (z2, z2) φm(z4, z4) which leads to the
following form of the four-point amplitude:

G
(

z, z
) = x−2h j x−2h j

∑

p

C p
il C p

jm F jm
il

(

p | 1

x

)

F jm
il

(

p | 1

x

)

. (2.136)

Equating the three expressions (2.134), (2.135) and (2.136) for the four-point func-
tion gives a number of consistency conditions for the structure constants C p

i j among
the primary fields. These so-called crossing symmetry conditions are depicted in
Fig. 2.8.
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In the boot-strap approach to quantum field theories the hope is that these condi-
tions eventually determine all such structure constants, so that the whole theory is
solved. In the case of chiral fields with necessarily (half-)integer conformal dimen-
sions, these crossing symmetry conditions are equivalent to the Jacobi-identity for
the corresponding operator algebra.

2.13 Fusing and Braiding Matrices

In the previous section, we have discussed the crossing symmetry of the four-point
function of primary fields. For RCFTs a simplification occurs, as there are only
a finite number of conformal families which can propagate as intermediate states.
This means that the conformal blocks for the three different channels form a finite-
dimensional vector space. The crossing symmetry then says that the different classes
of conformal blocks are nothing else than three different choices of basis which must
be related by linear transformations. We can therefore write

F kl
i j (p | x) =

∑

q

B
[

j k
i l

]

p,q
F jl

ik

(

q | 1

x

)

. (2.137)

The matrices B are called braiding matrices and in the example above {i, j, k, l}
are indices of B while (p, q) denote a particular matrix element. For the second
crossing symmetry, one similarly defines the so-called fusing matrices

F kl
i j (p | x) =

∑

q

F
[

j k
i l

]

p,q
F jk

il (q | 1 − x) . (2.138)

It is very useful to introduce a graphical notation for these two transformations,
which also clarifies the choice of name for them. The braiding matrices defined in
Eq. (2.137) are depicted as

i l

j k

p
=

q

Bpq i l

k j

q

∑

and the fusing matrices defined in Eq. (2.138) as

i l

j k

p
=

∑
q

Fpq i l
q j

k
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These matrices satisfy two important identities which can be derived by considering
a five-point function and successively applying the braiding, and fusing operations,
respectively. Again the origin of these relation is more transparent using the graphi-
cal notation. First, the commutativity of the diagram

mi

j l k

r q

mi

j k l

r s

mi

k j l

p s

mi

l j k

u q

mi

l k j

u t

mi

k l j

p t

leads to the so-called hexagon identify for the braiding matrices

∑

p

B
[

j k
i s

]

rp
B
[

j l
p m

]

st
B
[

k l
i t

]

pu
=

∑

q

B
[

k l
r m

]

sq
B
[

j l
i q

]

ru
B
[

j k
u m

]

qt
,

which is very similar to the Yang–Baxter equation arising for integrable models.
Similarly, the commutativity of the diagram

mi

l

t
k

j

s

mi

lkj

r s

mi
r

j

p
l

k

mi

k

u

t

l

j

mi

j

u p
l

k
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implies a pentagon identity for the fusing matrices

F
[

j k
i s

]

r t
F
[

t l
i m

]

su
=

∑

p

F
[

k l
r m

]

sp
F
[

j p
i m

]

ru
F
[

j k
u l

]

pt
.

We will see in Sect. 4.3 that the pentagon identity also plays a very important role
in the proof of the so-called Verlinde formula.
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Chapter 3
Symmetries of Conformal Field Theories

In the last chapter, we have seen how conformal symmetry can be used as a tool
for studying, and in some cases even “solving”, conformal field theories. In par-
ticular, we identified the chiral and the anti-chiral sector of a CFT whose structure
is severely constrained by the conformal symmetry Vir ⊕ Vir. Most notably, for
theories with central charges 0 < c < 1, only a discrete series of unitary CFTs, the
so-called unitary minimal models, can exist for which we determined the operator
algebra in terms of fusion rules. Let us emphasise that for all these results, we never
needed a concrete realisation of the CFT!

Therefore, conformal symmetry has far-reaching consequences for a Field The-
ory and it is worthwhile studying what other symmetries conformal field theories
can have.

3.1 Kač–Moody Algebras

We already came across conformal field theories where not only the energy–
momentum tensor generates the Virasoro algebra, but also other fields satisfy a
symmetry algebra. Indeed, as we have seen on p. 37, currents form a closed algebra
called a Kač–Moody algebra.

On general grounds, a Kač–Moody algebra ĝk is defined via the commutation
relations

[

j a
m, j b

n

] = i
∑

c

f abc j c
m+n + k m δab δm+n,0 , (3.1)

where f abc are the structure constants of the Lie algebra g and k denotes its central
extension called the level of the Kač–Moody algebra ĝk . Furthermore, from Eq. (3.1)
we see that the zero modes j a

0 of the currents j a(z) form a finite subalgebra of ĝk

which precisely is the Lie algebra g

[

j a
0 , j b

0

] = i
∑

c

f abc j c
0 .

Blumenhagen, R., Plauschinn, E.: Symmetries of Conformal Field Theories. Lect. Notes
Phys. 779, 87–111 (2009)
DOI 10.1007/978-3-642-00450-6 3 c© Springer-Verlag Berlin Heidelberg 2009
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For a concrete example, let us recall Sect. 2.9.1 where we considered the
Kač–Moody algebra of currents expressed in terms of the free boson. In particular,
we found a realisation of ŝu(2)1 via

j(z) = i �X (z) , j±(z) =: e±i
√

2X (z) : .

The usual su(2) relations were then recovered via the linear combinations j1 =
1√
2
( j+ + j−), j2 = 1√

2i
( j+ − j−) and by j3 = j .

As we have already seen several times, the algebra expressed in terms of the
commutation relations of the Laurent modes is equivalent to the operator product
expansion of the corresponding fields. Using the usual Laurent expansion of a chiral
field with conformal dimension h = 1

j a(z) =
∑

n∈Z

j a
n z−n−1 , j a

n =
∮

dz

2π i
zn ja(z) , (3.2)

one finds that the commutation relations (3.1) of the Kač–Moody algebra ĝk are
equivalent to the OPE

j a(z) j b(w) = k δab

(z − w)2
+

∑

c

i f abc

z − w
j c(w) + · · · .

3.2 The Sugawara Construction

The symmetry algebra of the CFTs studied in the last chapter was the Virasoro
algebra generated by the energy–momentum tensor. Now, we want to consider sym-
metry algebras realised by currents which of course have to be compatible with
the Virasoro algebra. This implies there should exist an inherent definition of the
energy–momentum tensor such that with respect to T (z), the currents j a(z) have
conformal dimension h = 1. This is the subject of the present section.

The Energy–Momentum Tensor

Guided by the example of the free boson, we make the following ansatz for the
energy–momentum tensor T (z)1:

T (z) = γ

dim g
∑

a=1

N
(

j a ja
)

(z) ,

1 The expression for T (z) can be derived from the action of the corresponding Wess–Zumino–
Witten model. However, taking a different point of view, we can also define the CFT via the energy–
momentum tensor and in principle also allow for a more general quadratic ansatz for T (z) in terms
of the currents.
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where γ is some constant which we will determine in the following. By requiring
that the j a are primary fields of conformal dimension h = 1, we can write the ansatz
above in terms of the Laurent modes as

Lm = γ

dim g
∑

a=1

(

∑

l≤−1

j a
l j a

m−l +
∑

l>−1

j a
m−l j a

l

)

. (3.3)

In order to determine the conformal weight of a primary field, let us then recall
Eq. (2.45) from the previous chapter

[

Lm, φn
] = (

(h − 1) m − n
)

φm+n , (3.4)

with φm the Laurent modes of a chiral primary φ(z). In order to fix γ by demanding
that j a has conformal weight h = 1, we calculate

[

Lm, j a
n

]

= γ
∑

b

(

∑

l≤−1

[

j b
l j b

m−l , j a
n

] +
∑

l>−1

[

j b
m−l j b

l , j a
n

]

)

= γ
∑

b

(

∑

l≤−1

(

j b
l

[

j b
m−l , j a

n

] + [

j b
l , j a

n

]

j b
m−l

)

+
∑

l>−1

(

j b
m−l

[

j b
l , j a

n

] + [

j b
m−l , j a

n

]

j b
l

)

)

= −2 γ n k ja
m+n + γ

∑

b,c

i f bac
∑

l≤−1

(

j b
l j c

m+n−l + j c
l+n jb

m−l

)

+ γ
∑

b,c

i f bac
∑

l>−1

(

j c
m+n−l j b

l + j b
m−l j c

l+n

)

.

Because of the anti-symmetry of the structure constants of a Lie algebra, i.e. f bac =
− f cab, we have

∑

b,c f bac j b
m jc

n = −∑

b,c f bac j c
m jb

n and so we can write for the
last two terms in the expression above

∑

l≤−1

(

j b
l j c

m+n−l − j b
l+n j c

m−l

) =
∑

l≤−1

j b
l j c

m+n−l −
∑

l≤−1+n

jb
n j c

m+n−l = −
n−1
∑

l=0

j b
l j c

m+n−l ,

∑

l>−1

(

j c
m+n−l j b

l − j c
m−l jv

l+n

) =
∑

l>−1

j c
m+n−l j b

l −
∑

l>−1+n

j c
m+n−l j b

l = +
n−1
∑

l=0

j c
m+n−l j b

l ,

where we assumed without loss of generality that n > 0. Using these expressions,
the commutator [Lm, j a

n ] above becomes
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[

Lm, j a
n

] = −2 γ n k ja
m+n − γ

∑

b,c

i f bac
n−1
∑

l=0

[

j b
l , j c

m+n−l

]

= −2 γ n k ja
m+n − γ

∑

b,c

i f bac
n−1
∑

l=0

∑

d

i f bcd jd
m+n

= −2 γ n k ja
m+n + γ n

∑

b,c,d

f bac f bcd jd
m+n .

For the structure constants f abc, let us note the following relation:

∑

b,c

f bac f bcd = −2 Cg δad , (3.5)

where Cg is the dual Coxeter number of the Lie algebra g. For su(N ), which we will
mostly consider, we have for instance Cg = N . Using Eq. (3.5), we can express the
commutator above as

[

Lm, j a
n

] = −2 γ n
(

k + Cg

)

j a
m+n .

Demanding that the current j a(z) has conformal weight h = 1 and comparing with
Eq. (3.4), we find γ −1 = 2(k +Cg). We thus have obtained the following expression
which is the so-called Sugawara energy–momentum tensor of a CFT given by the
current algebra ĝk :

T (z) = 1

2 (k + Cg)

dim g
∑

a=1

N
(

j a ja
)

(z) . (3.6)

The Central Charge

Next, we will determine the central charge of the conformal field theory defined by
the energy–momentum tensor (3.6). Let us start by recalling from Sect. 2.7 that

L−2

∣

∣0
〉 = γ

∑

a

ja
−1 j a

−1

∣

∣0
〉

and j a
0

∣

∣0
〉 = 0 ,

where in favour of readability we have not written out the constant γ . Along the
lines we have followed already several times, we calculate
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c

2
= 〈

0
∣

∣ L+2 L−2

∣

∣0
〉

= γ 2
∑

a,b

〈

0
∣

∣ j b
1 j b

1 j a
−1 j a

−1

∣

∣0
〉

= γ 2
∑

a,b

(

〈

0
∣

∣ j b
1

[

j b
1 , j a

−1

]

j a
−1

∣

∣0
〉 + 〈

0
∣

∣

[

j b
1 , j a

−1

][

j b
1 , j a

−1

]∣

∣0
〉

)

= γ 2
∑

a,b

(

i
∑

c

f bac
〈

0
∣

∣ j b
1

[

j c
0 , j a

−1

]∣

∣0
〉 + k

〈

0
∣

∣ j b
1 j a

−1

∣

∣0
〉

δba + k2δba

)

= γ 2
∑

a,b

(

−
∑

c,d

f bac f cad
〈

0
∣

∣

[

j b
1 , j d

−1

]∣

∣0
〉 + 2 k2δba

)

= γ 2
∑

a,b

(

−
∑

c,d

f bac f cad k δbd + 2 k2δba

)

= γ 2

(

∑

d

2 Cg k +
∑

a

2 k2

)

= k dim g

2 (k + Cg)
,

where we employed Eq. (3.5). Therefore, we can conclude that

The central charge of the conformal field theory defined by the current
algebra ĝk with respect to the Sugawara energy–momentum tensor is

c = k dim g

k + Cg

. (3.7)

Remarks

• For ŝu(2)k , the dimension of the corresponding Lie algebra is dim g = 3 and the
dual Coxeter number reads Cg = 2 which leads to c = 3k

k+2 . The case k = 1 gives
c = 1, which can be realised via the CFT of the free boson.

• For ŝu(3)k , we have dim g = 8 and Cg = 3 leading to c = 8k
k+3 . The case k = 1

has central charge c = 2 which reflects the fact that ŝu(3)1 can be realised by two
free bosons compactified on the root lattice of su(3).2

• In general, for ŝu(N )k we find dim g = N 2 − 1 and Cg = N . Therefore, the

central charge is given by c = (N 2−1)k
k+N . For the case k = 1, we have c = N − 1

which can be realised by (N − 1) free bosons.

2 The (N − 1)-dimensional root lattice of su(N ) is spanned by the simple roots of the algebra. For
the special case when the bosons are compactified on such root lattices, the symmetry among the
currents is enhanced to ŝu(N )1.
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• For the A-D-E Lie algebras su(N ), so(2N ), e6, e7 and e8, the corresponding
current algebra ĝ1 at level one naturally appears in the heterotic string. Indeed,
compactifying the heterotic string in the bosonic left-moving sector on the root
lattice of the Lie algebra g gives the free-field realisation of ĝ1 and leads to
massless spin 1 string excitations transforming in the adjoint representation of
the Lie algebra g. From the space–time point of view, these are nothing else than
non-abelian gauge fields in the gauge group G.

3.3 Highest Weight Representations of ŝu(2)k

Analogously to the Virasoro algebra, let us now study the representation theory of
Kač–Moody algebras. However, we will not present a rigorous analysis but only
illustrate the main features at the example of the most common ŝu(2)k algebra.
Implementing more structure from the theory of Lie algebras, the generalisation
to other simple Kač–Moody algebras is fairly straightforward.

Highest Weight Representations

Let us recall the current algebra (3.1) but use instead of f abc the usual structure
constants

√
2 εabc of the Lie algebra su(2) where εabc is the anti-symmetric tensor

[

j a
m, j b

n

] = i
√

2
∑

c

εabc j c
m+n + k m δm+n,0 δab . (3.8)

Next, we define the raising and lowering operators

ĵ3
m = 1√

2
j3
m , ĵ±

m = 1√
2

(

j1
m ± i j2

m

)

to rewrite the commutation relations (3.8). The non-trivial commutators in the new
basis read

[

ĵ3
m, ĵ3

n

] = m k

2
δm+n,0 ,

[

ĵ3
m, ĵ±

n

] = ± ĵ±
m+n ,

[

ĵ+
m , ĵ−

n

] = k m δm+n,0 + 2 ĵ3
m+n .

Similar to Sect. 2.10, we can now define a highest weight state |h, q〉 via the re-
quirements

ĵ3
n

∣

∣h, q
〉 = ĵ±

n

∣

∣h, q
〉 = 0 for n > 0 ,

ĵ3
0

∣

∣h, q
〉 = q

2

∣

∣h, q
〉

,

ĵ+
0

∣

∣h, q
〉 = 0 .

(3.9)
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In the following, we will study the properties of the highest weight representations
in more detail.

1. For each primary field with conformal dimension h, the corresponding high-
est weight state |h〉 forms a finite-dimensional representation of the Lie algebra
su(2) which is the subalgebra of the zero modes. We thus define

∣

∣h, qα

〉

:= (

ĵ−
0

)α ∣

∣h, q
〉

.

As is known from Quantum Mechanics, for a spin l
2 representation of su(2) with

l = 0, 1, 2, . . . we have α = 0, 1, 2, . . . , l as well as q = l and qα = l − 2α. We
therefore conclude that

The eigenvalues of 2 ĵ3
0 are integer, that is, q ∈ Z.

2. The zero modes ĵ±
0 and ĵ3

0 form only one particular su(2) subalgebra of ŝu(2)k .
There exist other su(2) subalgebras which can be used to further constrain high-
est weight representations of ŝu(2)k . To investigate this point, let us define

j̃+ = 1√
2

(

j1
−1 + i j2

−1

)

, j̃− = 1√
2

(

j1
+1 − i j2

+1

)

, j̃3 = 1√
2

j3
0 − k

2
,

which satisfy an s̃u(2) algebra. Indeed, using Eq. (3.8) one observes that these
operators obey the commutation relations

[

j̃3, j̃3
] = 0 ,

[

j̃3, j̃±] = ± j̃± ,
[

ĵ+, ĵ−] = 2 j̃3 .

Therefore, each unitary representation of ŝu(2)k must be a (reducible) unitary
representation not only of ŝu(2) but also of s̃u(2). Similarly as above, 2 j̃3 then
has integer eigenvalues and since we know already that 2 ĵ3

0 has integer eigenval-
ues, it follows from the definition of j̃3 that k ∈ Z.

To summarise, unitary highest weight representations of ŝu(2)k can exist only
for k ∈ Z.

3. Let us now consider the L0 eigenvalue of |h, qα〉 which is the conformal weight
or the (chiral) ground state energy. Using for instance Eq. (3.3), the Laurent mode
L0 of the energy–momentum tensor (3.6) is determined to be of the form

L0 = 1

2 (k + 2)

3
∑

a=1

(

∑

l≤−1

j a
+l j a

−l +
∑

l>−1

j a
−l j a

+l

)

.

Here, we also employed that Cg = 2 and dim g = 3 for su(2). Computing the
action of L0 on a highest weight state |h, qα〉 we find
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L0

∣

∣h, qα

〉 = 1

2 (k + 2)

3
∑

a=1

j a
0 j a

0

∣

∣h, qα

〉

= 1

k + 2

3
∑

a=1

ĵ a
0 ĵ a

0

∣

∣h, qα

〉 = l(l + 2)

4(k + 2)

∣

∣h, qα

〉

(3.10)

for |h, qα〉 a spin l
2 representation of ŝu(2). Here, we observed that

∑

a ĵ a
0 ĵ a

0 is
the Casimir operator of ŝu(2) with eigenvalue l(l+2)

4 .

In conclusion, because L0|h, qα〉 = h |h, qα〉, we have found that the
conformal dimension of a highest weight state |h, qα〉 in the spin l

2 rep-
resentation has to be

h = l(l + 2)

4(k + 2)
. (3.11)

4. Let us finally take the highest ĵ3
0 state in |h, qα〉 which is |h, l〉. It is in a spin

l
2 representation of the ground state and we have ĵ+

0 |h, l〉 = 0. Computing the
norm of j̃+|h, l〉 we obtain

〈

h, l
∣

∣ j̃− j̃+ ∣

∣ h, l
〉 = 〈

h, l
∣

∣

[

j̃−, j̃+] ∣
∣ h, l

〉

= 〈

h, l
∣

∣−2 j̃3
∣

∣ h, l
〉

= −2
〈

h, l
∣

∣ ĵ3
0 − k

2

∣

∣ h, l
〉

= −l + k ,

where we employed Eq. (2.31) to observe that the hermitian conjugate of j̃+

is j̃−. Because in a unitary representation the norm of all states has to be non-
negative, we have to require that 0 ≤ l ≤ k.

To summarise, unitary highest weight representations of ŝu(2)k are only
allowed for 0 ≤ l ≤ k with k ∈ Z

+.

Subalgebras of ŝu(2)k and Generating Functions

In the last paragraph, we have studied two particular subalgebras of the ŝu(2)k Kač–
Moody algebra. However, one can even find an infinite set of s̃u(2)(n) ⊂ ŝu(2)k

subalgebras defined by the following operators:
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˜j+
(n) = 1√

2

(

j1
−n + i j2

−n

)

,

˜j−
(n) = 1√

2

(

j1
+n − i j2

+n

)

,

˜j3
(n) = 1√

2
j3
0 − n k

2
,

with n ∈ Z. Using these, one can deduce a lot of information about highest weight
representations of ŝu(2)k . We explain this at the example of ŝu(2)1 which is illus-
trated in Fig. 3.1.

• We start with the highest weight state |h, q〉 = |0, 0〉 transforming in the singlet
representation of the zero mode ŝu(2) algebra, i.e. ĵ3

0 |0, 0〉 = 0.
• Relative to the s̃u(2)(1) algebra, this state has j̃3

(1) eigenvalue −1/2 which we infer

from the definition of j̃3
(1). Therefore, |0, 0〉 must be in the spin 1

2 representation
of s̃u(2)(1). Working out the definition of j̃−

(1), we see that j̃−
(1)|0, 0〉 = 0 and so

1 2 3−1−2−3

1

2

3

4

9

q

h

j̃3
(1)=− 1

2

j̃3
(1)=+ 1

2 , j̃3
(2)=0, j̃3

(3)=− 1
2

j̃3
(3)=+ 1

2 , j̃3
(4)=0, j̃3

(5)=− 1
2

j̃+
(1)

j̃+
(3)

j̃+
(5)

Fig. 3.1 Highest weight representations of ŝu(2)1. The arrows represent various raising operators,
and for some representations the j̃3

(n) eigenvalues can be found. The empty dots indicate that the
action of some j̃+

(n) vanishes
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there is precisely one other state in this representation, namely j̃+
(1)|0, 0〉, which

has (h, q) = (1, 1) in our notation from Eq. (3.9).
• We can continue with this type of arguments and observe that with respect to

s̃u(2)(2), the state j̃+
(1)|0, 0〉 is a singlet representation and with respect to s̃u(2)(3)

it is in a spin 1
2 representation. Therefore, there exists one other state in the

s̃u(2)(3) representation, namely j̃+
(3) j̃+

(1)|0, 0〉, with (h, q) = (4, 2).
• This structure continues in steps of two so that on the boundary of the diagram in

the (h, q)-plane, there are states (h, q) = (m2, m) with m ∈ Z.

In the case of ŝu(2)1, it turns out that knowing just the states on the boundary in
the (h, q)-plane is sufficient for extracting the degeneracies of states on each level
(h, q). In particular, at the end of Sect. 2.9.1, we have seen that ŝu(2)1 can be realised
in terms of a free boson X (z, z) via the currents

j(z) = i �X (z, z)
(

h, q
) = (

1, 0
)

,

V±√
2 = : e±i

√
2 X :

(

h, q) = (

1,±1
)

,

where we have also written down the conformal weight h and the ĵ3
0 = 1√

2
j0

eigenvalue obtained for instance from the commutator [ j0, V±√
2]. However, we can

construct additional bosonic fields as

V±√
2m = : e±i

√
2m X :

(

h, q) = (

m2,±m
)

, (3.12)

where m ∈ Z. By comparing with Fig. 3.1, we observe that the values (h, q) of
Eq. (3.12) describe the boundary of the diagram in the (h, q)-plane. In fact, this
equivalence between the fields (3.12) and ŝu(2)1 states with (h, q) = (m2, m) can be
proven. We will come back to the vertex operators (3.12) and explain their relation
to the free boson compactified on a circle of radius R = √

2 in Sect. 4.2.3.
Since we are familiar with the creation operators j−n of the free boson theory,

we know how to construct the Hilbert space on each state |m2, m〉 with m ∈ Z.
As it turns out, the generating function for the degeneracy of states built upon the
l = q = 0 highest weight representation of ŝu(2)1 can be written as

Z0,1(q) = 1
∏∞

n=1

(

1 − qn
)

∑

m∈Z

qm2
, (3.13)

where q keeps track of the L0 eigenvalues h. Unfortunately, there is a clash between
two common notations so let us emphasise that q in Eq. (3.13) is not to be confused
with the 2 ĵ3

0 eigenvalue q. The prefactor in Eq. (3.13) is the result for one free
boson stated in Eq. (2.98), and the sum includes the states on the boundary (h, q) =
(m2, m). For the l

2 = 1
2 highest weight representations, one finds similarly
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Z1,1(q) = 1
∏∞

n=1

(

1 − qn
)

∑

m∈Z

q(m+ 1
2 )2

. (3.14)

We will come back to these expressions in Chap. 4 and explain their meaning and
notation in more detail.

Remark

The structure of the highest weight representations of ŝu(2)1 generalises to higher
levels k. For these cases, one does not have a simple realisation in terms of one free
boson but using the infinite set of su(2)(n) subalgebras, one can deduce the states on
the boundary of the HWRs in the (h, q)-plane. On top of each of these states, one
finds only a finite set of different generating functions C (k)

l,m(q). It turns out that the
complete generating function can be written as

Zl,k
(

q
) =

k
∑

m=−k+1
l+m=0 mod 2

C (k)
l,m

(

q
)

�m,k(q) ,

with

�m,k(q) =
∑

n∈ Z+ m
2k

qkn2
.

We will discuss these expressions and in particular the so-called string functions
C (k)

l,m(q) in more detail in Sect. 4.6.

3.4 The ŝo(N)1 Current Algebra

Due to their ubiquity in superstring models, let us briefly discuss the ŝo(N )1 current
algebra. This algebra can be realised by N real free fermions ψ i transforming in
the vector representation of SO(N ), for which we have the usual operator product
expansion

ψ i (z) ψ j (w) = δi j

z − w
+ · · · . (3.15)

In analogy to the example of two real fermions studied in Sect. 2.9.2, we construct
the currents for the present theory as

j a(z) = 1

2
N
(

ψ i t a
i j ψ j

)

, (3.16)
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where (ta)i j with a = 1, . . . , N (N−1)
2 are the representation matrices corresponding

to the vector representation of SO(N ), and a sum over i, j is understood. Note that
the prefactor has been fixed by demanding that the currents satisfy the Kač–Moody
algebra (3.1).

We will now compute the level k of this current algebra. The Laurent modes of
j a(z) can be determined with the help of Eq. (2.110) and read

j a
m = 1

2

⎛

⎝−
∑

s>− 1
2

ψ i
m−s ta

i j ψ j
s +

∑

s≤− 1
2

ψ j
s ta

i j ψ i
m−s

⎞

⎠ ,

from which we compute the action of j a
−1 and j a

+1 on the vacuum as

j a
−1

∣

∣0
〉 = 1

2
ψ

j
− 1

2
ta
i j ψ i

− 1
2

∣

∣0
〉

,
〈

0
∣

∣ j a
+1 = −1

2

〈

0
∣

∣ψ i
1
2

ta
i j ψ

j
1
2

.

Let us mention that the OPE (3.15) implies the usual anti-commutation relation
{ψ i

r , ψ
j

s } = δi j δr,−s for the Laurent modes ψ i
r and so we can calculate

〈

0
∣

∣ j a
+1 j a

−1

∣

∣0
〉 = −1

4

〈

0
∣

∣ψ i
1
2

ta
i j ψ

j
1
2
ψk

− 1
2

ta
lk ψ l

− 1
2

∣

∣0
〉

= −1

4
ta
i j ta

lk

(〈

0
∣

∣ψ i
1
2
δ jk ψ l

− 1
2

∣

∣0
〉 − 〈

0
∣

∣

{

ψ i
1
2
, ψk

− 1
2

} {

ψ
j
1
2
, ψ l

− 1
2

} ∣

∣0
〉)

= −1

4
ta
i j ta

lk

(

δ jk δil − δik δ jl
) = 1

2
Tr

(

ta
)2

= +1 ,

where we implicitly summed over repeated indices and used Tr (ta)2 = 2 for SO(N )
representation matrices. Recalling the Kač–Moody algebra (3.1), we see that the
left-hand side of the expression above is equal to k which implies k = 1 for the
level of the current algebra given by the OPE (3.15).

Using our formula (3.7) with k = 1, dim g = 1
2 N (N − 1) and Cg = N − 2, we

find for the central charge that c = N
2 . In summary,

The current algebra constructed out of N free real fermions transforming
in the vector representation of SO(N ) satisfies the Kač–Moody algebra
ŝo(N )1 with c = N

2 .

Note that the representation theory of ŝo(N )1 can be traced back to the representa-
tion theory of N free fermions which we will discuss in more detail in Sect. 4.2.4.
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3.5 The Knizhnik–Zamolodchikov Equation

Analogous to the differential equations to be satisfied for correlation functions of
Virasoro primary fields due to null states, the correlation functions of Kač–Moody
primaries have to satisfy a first-order differential equation. In this section, we will
derive this so-called Knizhnik–Zamolodchikov equation.

Kač–Moody Primary Fields

To start with, let us define Kač–Moody primary fields. In Chap. 2, we have stud-
ied the conformal symmetry generated by the energy–momentum tensor and we
identified (Virasoro) primary fields transforming in a distinguished way under the
conformal symmetry. Since now we are studying Kač–Moody symmetries generated
by currents, we can define primary fields with respect to the Kač–Moody currents.

Definition 1. A Kač–Moody (chiral) primary field transforming in a representation
R of a group G is characterised by the OPE

ja(z) φr
R(w) = 1

z − w

∑

s

(

ta
R

)r

s φs
R(w) + · · · , (3.17)

where ja(z) are currents generating the group G and ta
R are the corresponding rep-

resentation matrices.

Let us remark that here we have written out the components φr
R of the representation

φR explicitly; however, we will also employ the notation ta
R φR where a matrix prod-

uct is understood. Furthermore, because the Sugawara energy–momentum tensor is
constructed out of Kač–Moody currents, we expect a Kač–Moody primary field also
to be a Virasoro primary, but the reverse is not true in general.

Ward Identity for Kač–Moody Symmetries

After having given the definition of a Kač–Moody primary field, we will now de-
termine the Ward identities for the Kač–Moody symmetry. Similar to the conformal
Ward identity (2.48) describing the behaviour of correlation functions under con-
formal symmetry transformations, the Kač–Moody Ward identity describes its be-
haviour under the Kač–Moody symmetry. In analogy to Eq. (2.35), we observe that
under infinitesimal Kač–Moody transformations described by a function εa(z) � 1,
a field φ(w) changes as

δε φ(w) =
∮

C(w)

dz

2π i

∑

a

ja(z) εa(z) φ(w) . (3.18)

Next, we compute the variation of a correlation function involving N primary fields.
Using the formulas above, we find
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δε

〈

φR1 (w1, w1) . . . φRN (wN , wN )
〉

=
∮

C(w1,...,wN )

dz

2π i

∑

a

εa(z)
〈

j a(z) φR1 (w1, w1) . . . φRN (wN , wN )
〉

=
N
∑

i=1

∮

C(wi )

dz

2π i

∑

a

εa(z)
〈

φR1 (w1, w1) . . .
(

j a(z) φRi (wi , wi )
)

. . . φRN (wN , wN )
〉

=
N
∑

i=1

∮

C(wi )

dz

2π i

∑

a

εa(z)
ta
Ri

z − wi

〈

φR1 (w1, w1) . . . φRN (wN , wN )
〉

,

where we employed the deformation of contour integrals illustrated in Fig. 2.5 and
it is understood that ta

Ri
only acts on φRi . Since the variations εa(z) are arbitrary,

we obtain from the second and last line of this expression the Ward identity for the
Kač–Moody symmetry

〈

j a(z) φR1 (w1, w1) . . . φRN (wN , wN )
〉

=
N
∑

i=1

ta
Ri

z − wi

〈

φR1 (w1, w1) . . . φRN (wN , wN )
〉 .

Kač–Moody Descendant Fields

In this paragraph, let us cover some structure needed for the following. First, we
recall Eq. (2.123) for a Virasoro descendant field

̂L−n φ(w) =
∮

dz

2π i

1

(z − w)n−1
T (z) φ(w) ,

together with our results from Chap. 2 for the relation between states and fields

L−1

∣

∣φ
〉 ←(2.74)−−−→ �φ(w)

(2.124)= ̂L−1 φ(w) . (3.19)

In the same way as the Virasoro descendants are constructed, we define the descen-
dant fields for the Kač–Moody symmetry as

j a(z) φR(w) =
∑

n≥0

(z − w)n−1
(

̂j a
−n φR

)

(w) ,

(

̂j a
−n φR

)

(w) =
∮

dz

2π i

1

(z − w)n
ja(z) φR(w) . (3.20)

Using the Laurent expansion (3.2), we can compute the following expression:

lim
w→0

(

̂j a
−n φR

)

(w)
∣

∣0
〉 =

∮

dz

2π i

1

zn
ja(z)

∣

∣φR
〉 = j a

−n

∣

∣φR
〉

, (3.21)
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where we employed the definition of asymptotic states (2.28). From Eq. (3.21) we
can then identify

j a
−1

∣

∣φR
〉 ←→ (

̂j a
−1 φR

)

(z) . (3.22)

Finally, let us employ relation (3.21) and the OPE (3.18) to compute the action of
j a
0 on a state |φ〉 to be of the following form:

j a
0

∣

∣φR
〉 = lim

w→0

∮

dz

2π i
j a(z) φR(w)

∣

∣0
〉

= lim
w→0

∮

dz

2π i

(

1

z − w
ta
R φR(w) + · · ·

)

∣

∣0
〉 = ta

R

∣

∣φR
〉

. (3.23)

Derivation of the Knizhnik–Zamolodchikov Equation

We will now derive the Knizhnik–Zamolodchikov equation. To do so, we determine
the L−1 Laurent mode of the Sugawara energy–momentum tensor as

L−1 = 1

2 (k + Cg)

∑

a

(

∑

l≤−1

j a
l j a

−1−l +
∑

l>−1

j a
−1−l j a

l

)

,

and for its action on a highest weight state |φr
R〉 in the representation R we compute

L−1

∣

∣φr
R

〉 = 1

2 (k + Cg)

∑

a

(

∑

l≤−1

j a
l j a

−1−l +
∑

l>−1

j a
−1−l j a

l

)

∣

∣φr
R

〉

= 1

2 (k + Cg)

∑

a

(

j a
−1 j a

0 + j a
−1 j a

0

)∣

∣φr
R

〉

= 1

k + Cg

∑

a

ja
−1

∑

s

(

ta
R

)r

s

∣

∣φs
R

〉

,

where we employed Eq. (3.23). Writing this expressing using the correspondences
(3.19) and (3.22) in terms of fields, we obtain

(

̂L−1 − 1

k + Cg

∑

a

̂j a
−1 ta

R

)

φR(z) = 0 .

Note that in order to make sense of this matrix equation, there is an identity matrix
implied for ̂L−1. We can then insert this zero into a correlation function leading to
the trivially satisfied equation
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0 = 〈

φR1 (w1) . . .

(

̂L−1 − 1

k + Cg

∑

a

̂j a
−1 ta

Ri

)

φRi (wi ) . . . φRN (wN )
〉

, (3.24)

for each i = 1, . . . , N . From Eq. (3.19) we recall that ̂L−1 acting on φRi (wi ) gives
̂L−1 φRi (wi ) = �wi φRi (wi ), and for the second term in Eq. (3.24) we use Eq. (3.20)
to calculate

〈

φR1 (w1) . . .
(

̂j a
−1 φRi

)

(wi ) . . . φRN (wN )
〉

=
∮

C(wi )

dz

2π i

1

z − wi

〈

j a(z) φR1 (w1) . . . φRN (wN )
〉

= −
∑

j �=i

∮

C(w j )

dz

2π i

1

z − wi

1

z − w j
t a
R j

〈

φR1 (w1) . . . φRN (wN )
〉

= −
∑

j �=i

1

w j − wi
t a
R j

〈

φR1 (w1) . . . φRN (wN )
〉

.

Note that here we employed the deformation of contour integrals shown in
Fig. 2.7. Using these results in Eq. (3.24), we arrive at the celebrated Knizhnik–
Zamolodchikov equation

⎛

⎝�wi − 1

k + Cg

∑

j �=i

∑

a ta
Ri

⊗ ta
R j

wi − w j

⎞

⎠

〈

φR1 (w1) . . . φRN (wN )
〉 = 0 ,

for i = 1, . . . N where the tensor product again indicates that ta
Ri

acts on φRi and ta
R j

on φR j .
The solutions to these equations are the correlation functions of Kač–Moody

primary fields; however, they are difficult to solve in full generality. But for four-
point correlators, solutions in a closed form in terms of hypergeometric functions
are known.

3.6 Coset Construction

The conformal field theories based on Kač–Moody algebras contain currents, that
is, fields of conformal dimension h = 1, which is in contrast to the minimal unitary
models of Vir(c,h) with 0 < c < 1 not containing any such fields. We will now
present the so-called Coset construction, also known as the Goddard–Kent–Olive
(GKO) construction, that provides many minimal model CFTs from Kač–Moody
algebras. Again, we will discuss the su(2) case as an illustrating example.
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Quotient Theories

We start with the Kač–Moody algebra ĝkg
originating from the Lie algebra g which

contains a subalgebra h ⊂ g. As usual, we will denote the Kač–Moody algebra
corresponding to h by ĥkh

. Referring to Eq. (3.6), the Sugawara energy–momentum
tensors read

Tg(z) = 1

2 (kg + Cg)

dim g
∑

a=1

N
(

j a
g j a

g

)

(z) ,

Th(z) = 1

2 (kh + Ch)

dim h
∑

b=1

N
(

j b
h j b

h

)

(z) ,

and since the current j b
h

corresponding to ĥkh
is a primary field of dimension h = 1

with respect to both Tg and Th, the OPEs with the energy–momentum tensors have
the form

Tg(z) j b
h(w) = j b

h
(w)

(z − w)2
+ �w j b

h
(w)

z − w
+ · · · ,

Th(z) j b
h(w) = j b

h
(w)

(z − w)2
+ �w j b

h
(w)

z − w
+ · · · .

Taking the difference of these two equations and observing that Th is constructed
only from j b

h
, we arrive at the OPEs

(

Tg − Th

)

(z) j b
h(w) = regular ,

(

Tg − Th

)

(z) Th(w) = regular . (3.25)

Therefore, the splitting

Tg = (

Tg − Th

) + Th = Tg/h + Th with Tg/h := Tg − Th

gives a decomposition of the Virasoro algebra generated by Tg into two mutually
commuting Virasoro subalgebras since (Tg − Th)(z)Th(w) is regular. Employing
then Eq. (3.25), we obtain the relations

Tg/h Tg/h = Tg/h Tg = Tg Tg − Th Tg = Tg Tg − Th Th

up to regular terms. Therefore, the energy–momentum tensor Tg/h satisfies the Vi-
rasoro algebra with central charge

cg/h = cg − ch = kg dim g

kg + Cg

− kh dim h

kh + Ch

. (3.26)
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We finally state that the quotient (or coset) theory contains all operators of ĝkg

which have a non-singular OPE with the operators of ĥkh
. In the present context, this

property just means that the two algebras commute. Simple examples for such coset
theories are the parafermions ŝu(2)k /̂u(1)1. Since the central charge of any û(1)k

theory is one, using the results from p. 91, the central charge for the parafermions is
found as

c = 3k

k + 2
− 1 = 2 (k − 1)

k + 2
. (3.27)

Special Coset Constructions

Another important class of coset construction is (ĝk1 ×ĝk2 )/ĝk where the algebras ĝki

are generated by j a
(i) and ĝk is generated by j a = j a

(1) + j a
(2). Note that by definition,

the Laurent modes of j a
(1) and j a

(2) commute, and so the commutation relations for
the combined currents j a are found as

[

j a
m, j b

n

] = i
∑

c

f abc j c
m+n + (

k1 + k2
)

m δab δm+n,0 ,

with f abc = f abc
(1) + f abc

(2) and so the level of the Kač–Moody algebra ĝk is k = k1+k2.
Such cosets are also called diagonal cosets and their energy–momentum tensor has
the form

T(gk1 ×gk2 )/gk1+k2
= Tgk1

+ Tgk2
− Tgk1+k2

analogously to the previous paragraph. One of the simplest example for a diagonal
coset is

ŝu(2)k × ŝu(2)1

ŝu(2)k+1
, (3.28)

with k ≥ 1. Noting that by definition the OPE Tgk1
Tgk2

is regular, the central charge
is found using Eq. (3.26) as

c = 3k

k + 2
+ 1 − 3 (k + 1)

k + 3
= 1 − 6

(k + 2)(k + 3)
. (3.29)

Recalling our results from Sect. 2.10, we see that these are precisely the val-
ues 0 < c < 1 from the unitary series of the Virasoro algebra. Since for unitary
representations of just the Virasoro algebra there are no currents, we expect them
to be absent also in the coset construction. And indeed, there is no subalgebra of
currents j a

(1) + j b
(2) commuting with all j c = j c

(1) + j c
(2) and so the coset theory

does not contain any currents. In summary, although not proven rigorously here,
the theories determined by the coset (3.28) are the unitary minimal models of the
Virasoro algebra studied in Sect. 2.10.
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Hilbert Space and Branching Rules

Let us now turn to the Hilbert space. Under the decomposition Tg = Th + Tg/h,
a highest weight representation (�g) of ĝ must decompose into a direct sum of tensor
products of highest weight representations of ĥ and the coset theory ĝ/ĥ

(

�g

) =
⊕

�h

(

�h

) ⊗ (

�g/h

)

. (3.30)

These relations are the so-called branching rules. In the case of the coset (3.28), one
finds that a highest weight representation of ĝ = ŝu(2)k × ŝu(2)1 decomposes into
highest weights of ĥ = ŝu(2)k+1 and ĝ/ĥ = (ŝu(2)k × ŝu(2)1)/ŝu(2)k+1 as

(

p − 1
)

k ⊗ (

ε
)

1 =
⊕

0≤(q−1)≤k+1

p−q+ε=0 mod 2

(

q − 1
)

k+1 ⊗ (

h p,q (m)
)

,

(3.31)

with ε = 0, 1, m = k + 2 and 0 ≤ (p − 1) ≤ k. Here, (l)k denotes a spin l
2 rep-

resentation of ŝu(2)k whose conformal dimension is determined using the relation
below Eq. (3.10). Note furthermore that all highest weights h p,q (m) of the Virasoro
unitary model appear and that p − q is even for ε = 0 and it is odd for ε = 1.

Before we turn to more general examples, let us illustrate the decomposition
(3.31) for the Ising model with k = 1 and thus m = 3. A highest weight representa-
tion of ŝu(2)1 × ŝu(2)1 decomposes into HWRs of ŝu(2)2 and Virc= 1

2
as

(0)1 ⊗ (0)1 =
[

(0)2 ⊗ (h1,1)(0)
]

⊕
[

(2)
( 1

2 )
2 ⊗ (h(1,3))( 1

2 )
]

,

(0)1 ⊗ (1)
( 1

4 )
1 =

[

(1)
( 3

16 )
2 ⊗ (h1,2)( 1

16 )
]

,

(1)
( 1

4 )
1 ⊗ (0)1 =

[

(1)
( 3

16 )
2 ⊗ (h2,2)( 1

16 )
]

,

(1)
( 1

4 )
1 ⊗ (1)

( 1
4 )

1 =
[

(0)2 ⊗ (h2,1)( 1
2 )
]

⊕
[

(2)
( 1

2 )
2 ⊕ (h(2,3))(0)

]

,

where (0), (1) and (2), respectively, denote the singlet, spin 1/2 and spin 1 represen-
tation of ŝu(2)1 and ŝu(2)2. The superscript stands for the conformal weight of the
particular highest weight representation.

Examples

The coset construction allows to define many rational CFTs. In closing this section,
we will briefly consider two examples which will be important later.

• The first example is (ŝu(2)k × ŝu(2)2)/ŝu(2)k+2 with central charge
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c = 3k

k + 2
+ 3

2
− 3 (k + 2)

k + 4
= 3

2

(

1 − 8

(k + 2)(k + 4)

)

.

As we will see in Chap. 5, this is the unitary series of the N = 1 supersymmetric
extension of the Virasoro algebra.

• The second example is (ŝu(3)k × ŝu(3)1)/ŝu(3)k+1 with central charge

c = 8 k

k + 3
+ 2 − 8 (k + 1)

k + 4
= 2

(

1 − 12

(k + 3)(k + 4)

)

.

It is an interesting question whether these theories also arise as a unitary discrete
series of rational CFTs for an extended symmetry algebra. In fact, it turns out that
the vacuum representation in this case contains besides the energy–momentum
tensor T (z) another chiral primary field which has conformal dimension h=3.
We will investigate such extensions of the Virasoro algebra in the following
section.

3.7 W Algebras

The symmetry algebras we have studied so far are the Virasoro algebra and Kač–
Moody algebra generated by currents j(z) of conformal dimension h = 1. However,
in the last section we also considered coset constructions of CFTs where in partic-
ular the diagonal coset (ŝu(3)k × ŝu(3)1)/ŝu(3)k+1 appeared. A detailed analysis
shows that it does not contain any currents but of course the energy–momentum
tensor T (z). In addition, the coset contains a chiral primary with conformal dimen-
sion h = 3 which happens to be the order of the second Casimir operator of su(3).

It is natural to ask the question if there exist extensions of the Virasoro algebra by
chiral primary fields of conformal dimension h > 2, and if yes, what the structure
of the algebra is. In Sect. 2.6, we have worked out in fair generality the structure of
such operator algebras. In the present section, we will apply these techniques to the
construction of extended chiral algebras A.

The Minimal Extension

We start with extending the usual Virasoro algebra generated by L(z) by including
a chiral primary of conformal dimension h = 3 denoted as W3(z)3. We then obtain
the following commutation relations:

[

Lm, Ln
] = (

m − n
)

Lm+n + c

12

(

m3 − m
)

δm+n,0 ,

[

Lm, Wn
] = (

2m − n
)

Wm+n , (3.32)

3 In the present context, it is customary to write L(z) instead of T (z).
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where the first line describes just the Virasoro algebra and Wm are the Laurent modes
of W3(z). Recalling Eq. (2.45), the second line is the statement that W3 is a primary
field of conformal dimension h = 3. The commutator of the Laurent modes of W3(z)
can be determined using the general expression (2.54)

[

Wm, Wn
] = C L

W W p332(m, n) Lm+n + CW
W W p333(m, n) Wm+n

+ CN (L L)
W W p334(m, n) N

(

L L
)

m+n
+ dW W

(

m + 2

5

)

δm+n,0 .

Let us have a closer look at the terms appearing on the right-hand side of this equa-
tion.

• Similar to the Virasoro algebra where we have chosen the normalisation of the
two-point function to be dL L = c

2 , we will now choose the normalisation dW W to
be dW W = c

3 .
• From the explicit formulas (2.55), we find p��(2k+1)(m, n) = p��(2k+1)(n, m),

where � denotes some field of the theory. In order for the commutator to respect
the (anti-)symmetry, it follows that C (2k+1)

�� = 0 and thus only fields of even con-
formal dimension h can appear on the right-hand side of [Wm, Wn]. In particular,
this means that CW

W W = 0.
• From Eq. (2.55), we find that p233(m, n) = 2m−n

3 and by comparing with
Eq. (3.32), we obtain CW

LW = 3. We then recall from p. 34 that Ci jk = Cl
i j dlk

which allows us to calculate

C L
W W = CW W L

(

dL L
)−1 = CW

LW dW W
(

dL L
)−1 = 3 · c

3
· 2

c
= 2 .

• Finally, above we have employed the quasi-primary projection of N (L L) defined
in Eq. (2.72) which reads N (L L)(z) = N (L L)(z) − 3

10 �2L .

Combining these results, we can become more concrete about the commutator of
two W3(z) Laurent modes

[

Wm, Wn
] = 2 p332(m, n) Lm+n + CN (L L)

W W p334(m, n) N
(

L L
)

m+n

+ c

3

(

m + 2

5

)

δm+n,0 .

Determining the Constant CN (LL)
WW

We will now determine the constant CN (L L)
W W via the relation Ci jk = Cl

i j dlk . To do
so, we have to compute CW WN (L L) and dN (L L)N (L L) where the latter is essentially
the two-point function of the field N (L L). From Sect. 2.8 we recall that

N (L L)−4

∣

∣0
〉 =

(

L−2L−2 − 3

10
· 2 L−4

)

∣

∣0
〉

,
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and the norm of this state is evaluated by applying the commutation relations of the
Virasoro algebra. Specifically, with the help of the usual techniques and Eq. (2.56)
we find

〈

0
∣

∣ L2 L2 L−2 L−2

∣

∣0
〉 = c2

2
+ 4 c ,

〈

0
∣

∣ L4 L−4

∣

∣0
〉 = 5 c ,

〈

0
∣

∣ L4 L−2 L−2

∣

∣0
〉 = 3 c ,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⇒ dN (L L)N (L L) =
(

5c + 22
)

c

10
.

For the three-point function 〈W W N (L L)〉, we note that the state corresponding
to the field W3(z) is W−3|0〉. Utilising Eqs. (2.56) and (2.57) and using the commu-
tation relation (3.32), we calculate

CW WN (L L) =
〈

0

∣

∣

∣

∣

W3 W1

(

L−2L−2 − 3

5
L−4

) ∣

∣

∣

∣

0

〉

= 〈

0
∣

∣ W3
[

W1, L−2 L−2
] ∣

∣0
〉 − 3

5

〈

0
∣

∣ W3
[

W1, L−4
] ∣

∣0
〉

= 5
〈

0
∣

∣ W3
(

L−2 W−1 + W−1 L−2
) ∣

∣0
〉 − 27

5

〈

0
∣

∣ W3 W−3

∣

∣0
〉

= 5
〈

0
∣

∣ W3
[

W−1, L−2
] ∣

∣0
〉 − 27

5

〈

0
∣

∣ W3 W−3

∣

∣0
〉

= 48

5

〈

0
∣

∣ W3 W−3

∣

∣0
〉 = 48

5
dW W = 16

5
c .

Employing the inverse of the relation Ci jk = Cl
i j dlk and our result for dN (L L)N (L L),

we obtain

CN (L L)
W W = CW WN (L L)

(

dN (L L)N (L L)
)−1 = 32

5c + 22
.

In passing we note that here we have computed nothing else than one of the coeffi-
cients β

L ,{k}
W W introduced in Sect. 2.12.

The Algebra W(2,3)

We can now write down the full expression for the commutator of two W3(z) Laurent
modes as

[

Wm, Wn
] = 2 p332(m, n) Lm+n + 32

5c + 22
p334(m, n) N

(

L L
)

m+n

+ c

3

(

m + 2

5

)

δm+n,0 .
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However, one still needs to check whether the algebra defined by these relations sat-
isfies the Jacobi identities, which at the level of OPEs are equivalent to the crossing
symmetry. In particular, one has to check that

0 = [ [

Wm, Wn
]

, Wq
] + [ [

Wq , Wm
]

, Wn
] + [ [

Wn, Wq
]

, Wm
]

,

which in our present case is automatically satisfied for all values of the central
charge. Thus, there are no further constraints and the so-called W(2, 3) algebra
closes for all values of c.

The generators L(z) and W3(z) form an algebra which is not linear in L and
W3 but involves normal ordered products in the commutation relation of the Lau-
rent modes. This implies that in general the algebra closes only in the so-called
enveloping algebra of Lm and Wm . Such algebras are called W algebras and they
naturally appear as extended chiral algebras of CFTs. The extension of the Virasoro
algebra by chiral primaries of conformal dimensions {�1, . . . , �N } is denoted as
W(2, �1, . . . , �N ).

In this section, we have constructed the W(2, 3) algebra. Computing the Kač-
determinant for this theory, one finds a discrete series of unitary rational models
with central charges

c = 2

(

1 − 12

(k + 3)(k + 4)

)

(3.33)

for k ≥ 1. However, it can be shown that the chiral algebra of the GKO coset

ŝu(3)k × ŝu(3)1

ŝu(3)k+1
(3.34)

precisely is the W(2, 3) algebra. We will not proof this statement but only point out
that the central charges for the su(3) diagonal coset (3.34) agree with the central
charges (3.33) of W(2, 3).

An example for theories with W(2, 3) symmetry is the three-state Potts model
with k = 1 and c = 4

5 also appearing in the unitary series of just the Virasoro
algebra. We will see later how the relation between the W(2, 3) algebra and the
Virasoro algebra can be made more precise.

Generalisations

Let us ask the question how to generalise these ideas. We note that su(N ) has
independent Casimir operators of degree {2, 3, . . . , N }, which is in relation to
the fact that the diagonal coset (ŝu(N )k × ŝu(N )1)/ŝu(N )k+1 has an extended
W(2, 3, . . . , N ) symmetry. Up to N = 5, the corresponding algebras have been
constructed explicitly using the methods above and the central charges for these
models are given by the unitary minimal series
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c = (

N − 1
)

(

1 − N (N + 1)

(m + N ) (m + N + 1)

)

with m ≥ 1 .

Therefore, one might envision that the classification of W algebras leads to a clas-
sification of rational models; however, such a programme has not been completed
up to now. Here, let us give just one more example of which is the next natural
candidate for an extended symmetry algebra, namely W(2, 4).

The Algebra W(2,4)

We note that the higher the degree � of W�(z) is, the more the normal ordered prod-
ucts appear in the commutator [Wm, Wn]. If W4(z) is a chiral primary of conformal
dimension h = 4, then the commutator of the Laurent modes with the energy–
momentum modes reads

[

Lm, Wn
] = (

3m − n
)

Wm+n .

For the commutator of the Wm modes, we use the general formula (2.54) from
Sect. 2.6 to obtain

[

Wm, Wn
] = C L

W W p442(m, n) Lm+n + CW
W W p444(m, n) Wm+n

+ CN (L L)
W W p444(m, n) N

(

L L
)

m+n

+ CN (L�2 L)
W W p446(m, n) N

(

L�2L
)

m+n

+ CN (N (L L)L)
W W p446(m, n) N

(

N (L L)L
)

m+n

+ CN (W L)
W W p446(m, n) N

(

W L
)

m+n
+ c

4

(

m + 3

7

)

δm+n,0 ,

where we normalised the two-point function in analogy to our previous cases as
dW W = c

4 . The fields appearing on the right-hand side are restricted by the require-
ment from p. 35 that h < 2 · 4 and by our previous observation that all fields on the
right-hand side need to have even conformal dimensions.

The constants pi jk(m, n) can be calculated using Eq. (2.55) and the structure
constants of the descendants are determined as

C L
W W =2 ,

CN (L L)
W W = 42

5c + 22
,

CN (L�2 L)
W W = 3 (19c − 524)

10 (7c + 68) (2c − 1)
,
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CN (N (L L)L)
W W = 24 (72c + 13)

(5c + 22) (7c + 68) (2c − 1)
,

CN (W L)
W W = 28

3 (c + 24)
CW

W W .

Here, the central charge c and the self-coupling of the primary field CW
W W are still

free parameters. However, they can be fixed by the Jacobi identity of three Wm

modes giving one constraint

(

CW
W W

)2 = 54
(

c + 24
) (

c2 − 172c + 196
)

(

5c + 22
) (

7c + 68
) (

2c − 1
) .

Remarks

• For higher W algebras W(2, �), the structure becomes more and more in-
volved. For instance, W(2, 5) closes only for a finite number of values c =
6
7 ,−7,− 350

11 , 134 ± 60
√

5.
• The algebra W(2, 6) closes for all values of c.
• The Casimir operators of a Lie algebra form itself a closed algebra called the

Casimir algebra. For instance, as we have seen in Sect. 3.3, the Casimir operators
of su(2) are the identity and the zero modes of the Sugawara energy–momentum
tensor (3.6). We then note that the algebra W(2, 4) studied in the last paragraph
is the Casimir algebra of so(5), and W(2, 6) is the Casimir algebra of g2.
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Chapter 4
Conformal Field Theory on the Torus

So far, we have been discussing conformal field theories defined on the complex
plane respectively the Riemann sphere. In string theory, such theories correspond
to the tree-level in perturbation theory which is illustrated in Fig. 4.1(a). As a char-
acteristic feature of CFTs on the complex plane, we observed that the chiral and
anti-chiral sectors decouple; in particular, in many cases we were able to treat both
sectors independent of each other. We also saw that the chiral and anti-chiral CFTs
can have extended symmetry algebras A and A, and we studied the allowed highest
weight representations [φhi ] respectively [φhi

] as well as their fusion rules.
Except the computationally quite involved boot-strap method, we did not en-

counter any consistency condition restricting how the chiral and anti-chiral fields are
combined into fields φhi ,h j

(z, z). However, as is known for quantum field theories,
a natural way to see which fields are actually present in a theory is to consider loop
diagrams where all possible states can propagate in the loops. For conformal field
theories, the equivalent is to study CFTs on higher genus Riemannian surfaces. The
one-loop diagram corresponds to a torus, and we will see that indeed a new con-
sistency condition, namely the so-called modular invariance, arises already for the
vacuum diagram severely constraining the appearing non-chiral fields φhi ,h j

(z, z).
Note that here and in the following, we employ the jargon customary in string theory
where the higher genus Riemannian surfaces correspond to string-loop diagrams as
is illustrated in Fig. 4.1(b). In the present chapter, we will not consider arbitrary sur-
faces but focus on conformal field theories defined on the torus which is a Riemann
surface of genus g = 1.

(a) String tree-level amplitude (b) String one-loop amplitude

⇒ ⇒

Fig. 4.1 A tree-level and a one-loop amplitude in string theory. The string diagrams with four
closed strings stretching to infinity correspond, respectively, to a sphere and a torus with four
vertex operators inserted

Blumenhagen, R., Plauschinn, E.: Conformal Field Theory on the Torus. Lect. Notes Phys. 779,
113–167 (2009)
DOI 10.1007/978-3-642-00450-6 4 c© Springer-Verlag Berlin Heidelberg 2009
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4.1 The Modular Group of the Torus and the Partition Function

To start with, let us recall that in Chap. 2 we considered conformal field theories
defined on the complex plane C respectively the Riemann sphere S2 = C ∪ ∞. As
we explained in Sect. 2.4, the theory on C can be obtained from the theory defined
on a cylinder via the mapping (2.23)

z = ew = ex0 · eix1
,

where z is the coordinate on C and w = x0 +i x1 is the coordinate on the cylinder. In
this way, we motivated the concept of radial quantisation and we introduced radial
ordering for the evaluation of correlation functions as well as for operator product
expansions. Let us emphasise that by studying the CFT on the complex plane, we
were able to employ the power of complex analysis allowing us to deduce many
features of two-dimensional CFTs.

In this chapter, we are going to study CFTs defined on a torus. The easiest way
to obtain such a theory while using our previous results is to cut out a finite piece of
the infinite cylinder described by w = x0 + i x1 and to identify the boundaries.

From the Complex Plane to the Cylinder

More precisely, the transition from the complex plane with coordinate z to the
cylinder with coordinate w is achieved as follows. Recalling the definition (2.17), a
primary field φ(z, z) defined on C transforms under the conformal mapping z = ew

as

φcyl.
(

w,w
) =

(

�z

�w

)h ( �z

�w

)h

φ
(

z, z
) = zh zh φ

(

z, z
)

. (4.1)

Concentrating on the chiral sector, the mode expansion of a chiral field on the
cylinder can then be inferred from the result on the complex plane using z = ew.
Concretely, we find

φcyl.
(

w
) =

(

�z

�w

)h

φ
(

z
) = zh

∑

n

φn z−n−h =
∑

n

φn e−n w . (4.2)

Furthermore, from Eq. (4.1) we see that fields invariant under z �→ e2π i z on the
complex plane pick up a phase e2π i(h−h) on the cylinder. If (h − h) is not an integer,
the type of boundary condition of a field is changed. Indeed, using Eq. (4.1), the
Laurent expansion of a chiral fermion with (h, h) = ( 1

2 , 0) on the cylinder reads

ψcyl.
(

w
) =

∑

r

ψr e−r w ,
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so that the Neveu–Schwarz sector with r ∈ Z + 1
2 is anti-invariant under w �→

w + 2π i while the Ramond sector with r ∈ Z is invariant. This is just opposite to
the boundary conditions on the complex plane given in Eq. (2.104).

Focus on the Energy–Momentum Tensor

Let us next consider the chiral part of the energy–momentum tensor. Since T (z) is
not a primary field, we cannot employ Eq. (4.1) to map it from the sphere to the
cylinder. However, we have seen in Sect. 2.5 that under transformations z �→ f (z)
the energy–momentum tensor behaves as

T ′(z
) =

(

� f

�z

)2

T
(

f (z)
) + c

12
S
(

f (z), z
)

, (4.3)

with the Schwarzian derivative defined as

S(w, z) = 1

(�zw)2

(

(

�zw
)(

�3
zw

) − 3

2

(

�2
zw

)2
)

.

Using Eq. (4.3) with z = f (w) = ew, we obtain

Tcyl.(w) =
(

� f (w)

�w

)2

T
(

f (w)
) + c

12
S
(

f (w), w
) = z2 T (z) − c

24
, (4.4)

where we employed that S(z, w) = − 1
2 . The Laurent mode expansion of the energy–

momentum tensor on the cylinder therefore reads

Tcyl.(w) =
∑

n∈Z

Ln z−n − c

24
=

∑

n∈Z

(

Ln − c

24
δn,0

)

e−n w ,

so that in particular the zero mode gets shifted as

(

Lcyl.
)

0 = L0 − c

24
. (4.5)

Modular Group of the Torus

After having arrived on the cylinder, we will now perform the compactification to
the torus. The torus T

2 is obtained by cutting out a finite piece from the infinite
cylinder and identifying the ends so that not only the space coordinate but also
the time coordinate becomes periodic. However, before gluing together, there is the
possibility to twist the ends of the cylinder.

As it turns out, it is useful to formalise this compactification from the plane to
the torus in the following way. We note that a torus can be defined by identifying
points w in the complex plane C as



116 4 Conformal Field Theory on the Torus

Fig. 4.2 Lattice of a torus
generated by (α1, α2)
conveniently chosen as (1, τ ).
The shaded region indicates
the fundamental domain of
the torus, and the torus itself
is obtained by identifying
opposite edges thereof

τ1

iτ2

α1

α2

w ∼ w + m α1 + n α2 , m, n ∈ Z ,

where (α1, α2) is a pair of complex numbers. As illustrated in Fig. 4.2, this pair
spans a lattice whose smallest cell is called the fundamental domain of the torus.
From a geometrical point of view, the torus is then obtained by identifying opposite
edges of the fundamental domain. The quantity describing the shape of the torus is
called the complex structure or the modular parameter which is defined as

τ = α2

α1
= τ1 + iτ2 . (4.6)

However, there are different choices of (α1, α2) giving the same lattice and thus
the same torus. To investigate this point further, let us assume that (α1, α2) and
(β1, β2) both describe the same lattice. This means we can write the pair (β1, β2) in
the following way:

(

β1

β2

)

=
(

a b
c d

)(

α1

α2

)

, a, b, c, d ∈ Z . (4.7)

Clearly, in a similar fashion (α1, α2) should also be expressible in terms of (β1, β2)
which amounts to the computation of the inverse relation

(

α1

α2

)

= 1

ad − bc

(

d −b
−c a

)(

β1

β2

)

.

In general, for the inverse matrix to also have integer entries, we have to require that
ad−bc = ±1 which just means that the unit cells in each basis should have the same
volume (up to a sign). Furthermore, the lattice spanned by (α1, α2) is equal to the one
spanned by (−α1,−α2) and so we can divide out a Z2 action. Matrices with these
properties are elements of SL(2, Z)/Z2 which implies that two pairs (α1, α2) and
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(β1, β2) are related by SL(2, Z)/Z2 transformations. Finally, by choosing (α1, α2) =
(1, τ ) we can simplify Eq. (4.7) and summarise:

The modular group of the torus is an isometry group acting on the mod-
ular parameter τ as

τ �→ aτ + b

cτ + d
with

(

a b
c d

)

∈ SL(2, Z)/Z2 .

Let us now take a closer look at some particular modular transformations which
will be important in the following.

• First, we consider a transformation from the torus lattice (α1, α2) = (1, τ ) to
(1, τ + 1) as illustrated in Fig. 4.3(a). Under this change the lattice is invariant,
but the modular parameters are related by a so-called modular T -transformation

T : τ �→ τ + 1 .

• Second, as illustrated in Fig. 4.3(b), two lattices given by (α1, α2) = (1, τ ) and
(α1, α2) = (1 + τ, τ ) also define the same torus. They are related by a so-called
U -transformation acting on the modular parameter τ as

U : τ �→ τ

τ + 1
.

• However, it turns out to be more convenient not to work with U but with S
defined in the following way:

S : τ �→ − 1

τ
.

Note that this operation interchanges (α1, α2) ↔ (−α2, α1).

1

τ τ+1

(a) Modular T-transformation
1

τ τ+1

(b) Modular U-transformation

Fig. 4.3 Modular transformations of the torus generating the modular group SL(2, Z)/Z2
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Next, writing the modular transformations in terms of SL(2, Z)/Z2 matrices acting
on two vectors similarly as in Eq. (4.7), one can easily show that

S = U T −1 U , S2 = 1 ,
(

S T
)3 = 1 . (4.8)

In the following, we will mainly consider T - and S-transformations which is suf-
ficient for studying the behaviour under modular transformations since T and S
are the generators of the modular group SL(2, Z)/Z2. However, this statement is
non-trivial to prove.

Partition Function

Let us now define the partition function. For conformal field theories this is essen-
tially the same object as in statistical mechanics where it is defined as a sum over all
possible configurations weighted with the Boltzmann factor exp(−βH ). Similarly, it
corresponds to the generating functional in quantum field theory which is expected
since the thermodynamic expression can be deduced from an Euclidean quantum
field theory with time compactified on a circle of radius R = β = 1/T .

For the present situation on the torus, we slightly change our convention and
choose Re w to be the space direction and Im w to be the time direction. This is no
severe modification since an S-transformation exchanges both directions. Referring
to Fig. 4.2, on a torus with non-trivial modular parameter τ = τ1 + iτ2, we see that a
time translation of length τ2 does not end up at the starting point but is displaced in
space by a τ1. Therefore, a “closed loop in time” on the torus involves also a space
translation. This observation motivates the following definition of the CFT partition
function1:

Z(τ1, τ2) = TrH
(

e−2πτ2 H e+2πτ1 P
)

, (4.9)

where H is the Hamiltonian generating time translations and P denotes the momen-
tum operator generating translations in space. The trace is taken over all states in the
Hilbert space H of the theory.

Next, let us determine the Hamiltonian for the CFT on the torus from the theory
on the cylinder. The ground state energy is calculated from the zero–zero component
of the energy–momentum tensor in the following way:

E0 = 〈(

Tcyl.
)

00

〉 (2.21)= 〈Tcyl.〉 + 〈T cyl.〉 (4.4)= − c + c

24
,

where c and c denote the central charges. Since H is the generator for time transla-
tions, it is plausible to write

1 Note that we are working in Euclidian space–time which results in an unusual form of the time
and space translation operators.
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Hcyl. � − �

�t
+ E0 = −(

�w + �w

) − c + c

24
= (

Lcyl.
)

0 + (

Lcyl.
)

0 ,

where we used that L0 = −z�z = −�w together with Eq. (4.5). Performing the
same steps for the momentum operator, we arrive at

Pcyl. = i
(

(

Lcyl.
)

0 − (

Lcyl.
)

0

)

.

Employing these observations, we can express the partition function (4.9) in the
following way:

Z(τ1, τ2) = TrH
(

e−2πτ2((Lcyl.)0+(Lcyl.)0) e+2πτ1i((Lcyl.)0−(Lcyl.)0)
)

= TrH
(

e2π iτ (Lcyl.)0 e−2π iτ (Lcyl.)0

)

.

Utilising finally the relation between (Lcyl.)0 and L0 given in Eq. (4.5), we can
conclude the following:

The partition function for a conformal field theory defined on a torus with
modular parameter τ is given by

Z(τ, τ ) = TrH
(

q L0− c
24 q L0− c

24

)

where q = e2π iτ . (4.10)

Note that since SL(2, Z)/Z2 transformations of the modular parameter τ do not
change the torus, the CFT and in particular the partition function Z(τ, τ ) have to be
invariant under the action of the modular group. It is the main goal of this chapter to
study this question which imposes strong constraints on the combination of chiral
and anti-chiral fields. In order to get accustomed to this concept, in the following
we will discuss some important examples in detail.

Remark

Let us finish this section with one remark. By using the Coleman–Weinberg formula
for an effective action, it can be shown that the one-loop cosmological constant in
string theory is given by

� ∼
∫

d2τ

Im(τ )
Z(τ, τ ) . (4.11)

This indicates that in string theory, the product of the partition function and the
measure factor has to be modular invariant. Furthermore, in string theory physical
states |φphys.〉 have to satisfy

L0

∣

∣φphys.
〉 = L0

∣

∣φphys.
〉

,
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which is ensured by the integration measure in Eq. (4.11) since
∫

dτ1 exp (2πτ1 P)
leads to a δ-function for L0 − L0.

4.2 Examples for Partition Functions

In the following subsections, we are going to discuss and construct modular invari-
ant partition functions for some important examples. By doing so, we will illustrate
the main concepts and techniques necessary to understand also more involved con-
formal field theories. A summary of all partition functions considered in this chapter
can be found in Table 4.2 on p. 155.

4.2.1 The Free Boson

Partition Function

We start with the partition function of a single free boson. Since Eq. (4.10) is for-
mulated in terms of L0 and L0 defined on the complex plane, we can employ our
results from Sect. 2.9.1. We thus recall some expressions needed in the following.

For the free boson, the Laurent modes of the energy–momentum tensor are writ-
ten using the modes of the current j(z) = i �X (z). In particular, we have

L0 = 1

2
j0 j0 +

∑

k≥1

j−k jk .

Since the current j(z) is a field of conformal dimension one, we find that jn|0
〉 = 0

for n > −1 and that states in the Hilbert space have the following form:

∣

∣n1, n2, n3, . . .
〉 = j n1

−1 j n2
−2 j n3

−3 . . .
∣

∣0
〉

with ni ≥ 0 (4.12)

and ni ∈ Z. The current algebra for the Laurent modes reads

[

jm, jn
] = m δm,−n .

Next, let us compute the action of L0 on a state (4.12). Clearly, j0 commutes with
all j−k and annihilates the vacuum. For the other terms we calculate

[

j−k jk , j nk
−k

] = nk k jnk
−k , (4.13)

and so we find for the zero Laurent mode of the energy–momentum tensor that

L0

∣

∣n1, n2, n3, . . .
〉 =

∑

k≥1

j n1
−1 j n2

−2 . . .
(

j−k jk
)

j nk
−k . . .

∣

∣0
〉 =

∑

k≥1

k nk

∣

∣n1, n2, n3, . . .
〉

.
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We will utilise this last result in the calculation of the partition function where for
simplicity we only focus on the holomorphic part. We compute

Tr
(

q L0− c
24

)

= q− 1
24

∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

. . .

〈

n1, n2, n3, . . .

∣

∣

∣

∣

∣

∣

∞
∑

p=0

1

p!

(

2πτ
)p (

L0
)p

∣

∣

∣

∣

∣

∣

n1, n2, n3, . . .

〉

= q− 1
24

∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

. . .

〈

n1, n2, n3, . . .

∣

∣

∣

∣

∣

∣

∞
∑

p=0

1

p!

(

2πτ
)p

( ∞
∑

k=1

k nk

)p
∣

∣

∣

∣

∣

∣

n1, n2, n3, . . .

〉

= q− 1
24

∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

. . .

(

q1·n1 · q2·n2 · q3·n3 · · · ·
)

= q− 1
24

⎛

⎝

∞
∑

n1=0

q1 n1

⎞

⎠ ·
⎛

⎝

∞
∑

n2=0

q2 n2

⎞

⎠ ·
⎛

⎝

∞
∑

n3=0

q3 n3

⎞

⎠ · · · ·

= q− 1
24

∞
∏

k=1

∞
∑

nk=0

qk nk = q− 1
24

∞
∏

k=1

1

1 − qk
,

where in the last step we employed the result for the infinite geometric series and the
ellipses indicate that the structure extends to infinity. We then define the Dedekind
η-function as

η(τ ) = q
1

24

∞
∏

n=1

(

1 − qn
)

,

so that, including also the anti-holomorphic part, the partition function of a single
free boson reads

Z ′
bos.(τ, τ ) = 1

∣

∣η(τ )
∣

∣

2 . (4.14)

Modular Forms I: Modular Transformations of the η-Function

As we have mentioned above, the partition function has to be invariant under mod-
ular transformations. Since T and S generate the modular group, it is sufficient to
require that Z(τ, τ ) is invariant under T - and S-transformations. Let us therefore
first check the invariance of Eq. (4.14) under modular T -transformations for which
we find T : q �→ e2π i q leading to

η(τ + 1) = e
2π i
24 q

1
24

∞
∏

n=1

(

1 − e2π inqn
) = e

2π i
24 η(τ ) .
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Since the partition function (4.14) involves the absolute value squared of η(τ ), we
see that it is invariant under T -transformations. The modular S-transformation of
the Dedekind η-function is more difficult to derive and we postpone the calculation
until the end of Sect. 4.2.4. Let us, however, state that

The Dedekind η-function behaves under modular T - and S-transfor-
mations as

η
(

τ + 1
) = e

π
12 i η

(

τ
)

, η

(

− 1

τ

)

= √−iτ η
(

τ
)

. (4.15)

Modular Invariance of the Partition Function

Using Eq. (4.15), we observe that the partition function (4.14) is invariant under
T -transformations but not under S-transformations, in particular, we find that S :
Z ′

bos.(τ, τ ) �→ |τ |−1Z ′
bos.(τ, τ ). However, one can easily check that

Zbos.(τ, τ ) = 1√
τ2

1
∣

∣η(τ )
∣

∣

2 ,

with τ2 defined in Eq. (4.6) is indeed modular invariant. In string theory, the ad-
ditional factor of τ

−1/2
2 has a natural origin, as it stems from the integral over the

unbounded centre of mass momentum of the string. We will become more concrete
about this point in Sect. 6.7.

4.2.2 The Free Boson on a Circle

As a second example, let us now consider a free boson X (z, z) compactified on a
circle of radius R. This means, we identify the field X (z, z) in the following way:

X (z, z) ∼ X (z, z) + 2π Rn , n ∈ Z , (4.16)

and so we can interpret X (z, z) as an angular variable. However, let us emphasise
that the field X (z, z) in Eq. (4.16) characterising a circle has no direct relation with
the manifold described by the variables z, z. The latter is the space the theory is
defined on, which in our case is the Riemann sphere respectively a torus. The calcu-
lation of the partition function in the present case is similar to the previous section.
But, as we will see in a moment, the Hilbert space has changed slightly compared
to the original theory due to new properties for the modes j0 and j0.
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Partition Function

Our starting point is again the theory in the complex plane where also for the case
that X (z, z) is defined on a circle, the currents j(z) and j(z) have the mode expansion

j(z) = i �X (z, z) =
∑

n∈Z

jn z−n−1 , j(z) = i �X (z, z) =
∑

n∈Z

j n z−n−1 .

As we have already done in Eq. (2.89), we can integrate these two equations to find
an expression for the free boson X (z, z) which reads

X (z, z) = x0 − i
(

j0 ln z + j0 ln z
)

+ i
∑

n �=0

1

n

(

jn z−n + j n z−n
)

. (4.17)

Next, we require that under rotations z �→ e2π i z in the complex plane the field
X (z, z) is invariant, but now, up to the identifications (4.16) on the circle

X
(

e2π i z, e−2π i z
) = X

(

z, z
) + 2π Rn .

Evaluating this relation for Eq. (4.17), we find that

j0 − j0 = R n , n ∈ Z ,

which is in contrast to our result (2.90) for the original free boson. Thus, from this
equation we infer that in general the ground state is non-trivially charged under j0
and j0 which we write as

j0
∣

∣�, n
〉 = �

∣

∣�, n
〉

, j0

∣

∣�, n
〉 =

(

� − Rn
)

∣

∣�, n
〉

,

where � denotes the j0 charge to be determined in the following. Because only the
action of j0 and j0 is changed, we can use our results from the previous section to
calculate the partition function. We find

Zcirc.(τ, τ ) = Z ′
bos.(τ, τ ) ·

∑

�,n

〈

�, n
∣

∣ q
1
2 j2

0 q
1
2 j

2
0
∣

∣�, n
〉

= 1
∣

∣η(τ )
∣

∣

2

∑

�,n

q
1
2 �2

q
1
2 (�−Rn)2

,

where it is understood that a sum is performed for discrete values of � whereas for
continuous values one has to perform an integral.

However, as mentioned before, the partition function has to be invariant under
modular transformations. In particular, for the modular T -transformation T : τ �→
τ + 1 we compute
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Zcirc.(τ + 1, τ + 1) = 1
∣

∣η(τ )
∣

∣

2

∑

�,n

q
1
2 �2

q
1
2 (�−Rn)2 · e2π in

(

�R− R2n
2

)

,

and by demanding modular invariance it follows that � = m
R + Rn

2 where m ∈ Z.
We can then become more concrete about the action of j0 and j0 on the ground state
which now reads

j0
∣

∣m, n
〉 =

(

m

R
+ Rn

2

)

∣

∣m, n
〉

, j0

∣

∣m, n
〉 =

(

m

R
− Rn

2

)

∣

∣m, n
〉

. (4.18)

In string theory, states with n �= 0 are called winding states because they correspond
to strings winding n times around the circle given by X (z, z). States with m �= 0 are

called momentum or Kaluza–Klein states because, as seen in Eq. (2.91), j0+ j0
2 is

the centre of mass momentum of the string which is quantised in a compact space.
Finally,

The partition function of a single free boson compactified on a circle of
radius R reads

Zcirc.(τ, τ ) = 1
∣

∣η(τ )
∣

∣

2

∑

m,n

q
1
2 ( m

R + Rn
2 )2

q
1
2 ( m

R − Rn
2 )2

. (4.19)

Modular Forms II: Poisson Resummation Formula

We have already seen that the invariance of the partition function (4.19) under mod-
ular T -transformations is ensured by the transformation properties of η(τ ) and by
the requirement that 1

2 ( j0 + j0) = m
R with m ∈ Z. Proving the invariance under

modular S-transformation is more involved and requires the following expression
known as the Poisson resummation formula:

∑

n∈Z

exp
(

−πa n2 + bn
)

= 1√
a

∑

k∈Z

exp
(

−π

a

(

k + b

2π i

)2)

. (4.20)

This relation can be derived by using the discrete Fourier transform of the periodic
function

∑

n δ(x − n)

∑

n∈Z

δ(x − n) =
∑

k∈Z

e2π i k x .

Employing this expression for the left-hand side of Eq. (4.20), we can write
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∑

n∈Z

∫ ∞

−∞
dx e−πa x2+bx δ(x − n) =

∑

k∈Z

∫ ∞

−∞
dx e−πa x2+bx e2π i k x

=
∑

k∈Z

∫ ∞

−∞
dx e− π

a

(

k+ b
2π i

)2

e−πa
(

x− b
2πa − ik

a

)2

=
∑

k∈Z

e− π
a

(

k+ b
2π i

)2 1√
a

,

where from the first to the second line we completed a perfect square in the exponent
and from the second to the third line we performed a Gaussian integration2. This
proves the Poisson resummation formula (4.20).

In order to show that the partition function is invariant under a modular S-
transformation

Zcirc.

(

− 1

τ
,− 1

τ

)

= Zcirc.
(

τ, τ
)

,

one has to employ the Poisson resummation formula twice. Since the calculation is
straightforward, we will not present it here and leave it as an exercise.

Remarks

• Let us mention that the partition function (4.19) has an interesting property
known as T-duality

Zcirc.

(

τ, τ ,
2

R

)

= Zcirc.

(

τ, τ , R
)

. (4.21)

For string theory, T-duality implies that a closed string propagating in a back-
ground space which is a circle cannot distinguish whether the size of the circle is
R or 2/R. Since R = √

2 is a fixed point of Eq. (4.21), this self-dual radius can
be interpreted as a minimal length scale a string can resolve.

• We can also investigate what are the allowed vertex operators for the theory of the
free boson compactified on a circle of radius R. For a vertex operator to respect
the symmetry of the theory, using Eq. (4.16) we have to demand

Vα = : eiαX (z,z) :
!= : eiα

(

X (z,z)+2π R n
)

: = Vα e2π i αR n,

where n ∈ Z. It therefore follows that

α = m

R
with m ∈ Z . (4.22)

2 The Gaussian integral
∫

dxe−a(x+ib) = √

π
a with imaginary offset can be evaluated using

∮

dz e−a(z+ib) = 0, z ∈ C with rectangular contour specified by (−∞,+∞,+∞ + ib,−∞ + ib).
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4.2.3 The Free Boson on a Circle of Radius R = √
2k

In this section, we consider the theory of the free boson compactified on a circle
with special values for the radius.

Partition Function

Let us study the partition function (4.19) for R = √
2k with k ∈ Z

+. To do so, we
start with chiral states which by definition have to satisfy

L0

∣

∣m, n
〉 = h

∣

∣m, n
〉 = 1

2

(

m√
2k

−
√

2k n

2

)2
∣

∣m, n
〉 = 0 ,

where we employed Eq. (4.18). A chiral state |m, n〉 is thus specified by m = kn.
For the sum in the partition function (4.19), we then define

∑

m,n∈Z

q
1
2 ( m

R + Rn
2 )2

q
1
2 ( m

R − Rn
2 )2

∣

∣

∣

∣m = kn
R = √

2k

=
∑

n∈Z

qkn2 =: �0,k (τ ) . (4.23)

As we will see below, under a modular S-transformation the chiral part �0,k(τ ) of
the partition function transforms into a finite sum of more general �m,k-functions
defined as

�m,k(τ ) :=
∑

n∈Z+ m
2k

qkn2
, −k + 1 ≤ m ≤ k . (4.24)

It thus directly follows from modular invariance that the partition function for one
free boson on a circle of radius R = √

2k is expressed in terms of the finite set of
�m,k-functions. Indeed, referring to Eq. (4.19), it turns out that the partition function
is written as

Zû(1)k (τ, τ ) = 1
∣

∣η(τ )
∣

∣

2

k
∑

m=−k+1

∣

∣

∣�m,k(q)
∣

∣

∣

2
, (4.25)

which can be verified by using R = √
2k and rearranging the summation in

Eq. (4.19). The conformal field theories corresponding to these partition func-
tions are commonly denoted as û(1)k . Note, however, in view of our notation from
Chap. 3, the level of an abelian Kač–Moody algebra does not have any invariant
meaning as it can be changed by rescaling the generators. Therefore, the notation
û(1)k by definition denotes the CFT of one free boson compactified on circle of
radius R = √

2k.
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In Sect. 3.3, we have studied the Kač–Moody algebra ŝu(2)1 which can be re-
alised in terms of a free boson using the vertex operators V±√

2. Recalling Eq. (4.22),
we see that such vertex operators are consistent with X (z, z) compactified on a circle
of radius R = 1√

2
. Employing then the T-duality relation stated in Eq. (4.21), we see

that (the partition function of) ŝu(2)1 can be realised by one free boson compactified
on a circle of radius R = √

2. And indeed, using k = 1 in Eq. (4.25) we find

Zû(1)1 (τ, τ ) = 1
∣

∣η(τ )
∣

∣

2

(

∣

∣�0,1

∣

∣

2 + ∣

∣�1,1

∣

∣

2
)

, (4.26)

which contains the two generating functions shown in Eqs. (3.13) and (3.14) for the
two irreducible representations of ŝu(2)1.

Definition of Characters

The example above illustrates the fact that the partition function of a Rational con-
formal field theory can be expressed in terms of the generating functions of the
highest weight representations of the underlying chiral algebra. This motivates the
following definition which will be important for studying modular invariant partition
functions:

Definition 1. The character of an irreducible representation |hi 〉 with highest weight
hi is defined as

χi (τ ) := TrHi

(

q L0− c
24

)

, (4.27)

where Hi denotes the Hilbert space built upon the (irreducible) highest weight state
|hi 〉.
This definition, together with our observation in Eq. (4.23), allows us to write
Eq. (4.26) as

Zû(1)1 (τ, τ ) = ∣

∣χ
(1)
0

∣

∣

2 + ∣

∣χ
(1)
1

∣

∣

2
where χ (1)

m = �m,1(τ )

η(τ )
. (4.28)

Modular Forms III: Modular Transformations of the �-Functions

As we have seen for instance in Eq. (4.26) and used in Eq. (4.25), partition func-
tions are expressed in terms of �-functions. Therefore, it is important to know their
behaviour under modular transformations which we will study now.

For the T -transformation T : τ �→ τ +1, using the definition (4.24) it is straight-
forward to compute

�m,k(τ + 1) = eπ i m2

2k �m,k(τ ) .



128 4 Conformal Field Theory on the Torus

However, the modular S-transformation S : τ �→ − 1
τ

is more involved. To deter-
mine its form, we write out the expression for the transformed �m,k-function and
employ (the opposite direction of) the Poisson resummation formula (4.20) with
a = τ

2ki and b = 2π i m
2k

�m,k

(

− 1

τ

)

=
∑

n∈Z

exp

(

−2π ik

τ

(

n + m

2k

)2
)

=
√

−iτ

2k

∑

n′∈Z

exp

(

2π iτk

(

n′

2k

)2

+ π i
n′m

k

)

.

Substituting then n′ = −(2kn + m ′) and summing over n ∈ Z and m ′ = −k +
1, . . . , k, we find for the expression above

�m,k

(

− 1

τ

)

=
√

−iτ

2k

∑

n∈Z

k
∑

m ′=−k+1

exp

(

2π iτk

(

n + m ′

2k

)2

− π i
m ′ m

k

)

.

Introducing a new notation, we can summarise that

The modular S-transformation of the �-functions takes the following
form:

�m,k

(

− 1

τ

)

= √−iτ
k

∑

m ′=−k+1

Sm,m ′ �m ′,k(τ ) , (4.29)

with the definition of the modular S-matrix

Sm,m ′ = 1√
2k

exp

(

−π i
m m ′

k

)

. (4.30)

Note that in general, the matrix S does not square to the identity matrix but

S2 = C with C2 = 1 . (4.31)

This is not in conflict with Eq. (4.8) since here we are considering characters and
not modular parameters. The matrix C is called the charge conjugation matrix and
maps representations i to the charge conjugate representation i+ denoted by + in the
following.

Modular Invariance of the Partition Function Revisited

Let us now study the modular invariance of Eq. (4.28) respectively Eq. (4.26) from
a different perspective. Of course, as shown in the beginning of the previous sub-
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section, a partition function of the form (4.19) is always invariant under modular T -
and S-transformations. However, Eq. (4.28) serves as an example for more general
theories.

The modular S-transformation of the characters defined in Eq. (4.28) can be in-
ferred from the transformation properties of the �- and η-functions to be of the
form

χ (1)
m =

1
∑

m ′=0

Sm,m ′ χ
(1)
m ′ with Sm,m ′ = 1√

2

(

1 1
1 −1

)

.

Furthermore, we observe that the partition function (4.28) can be written as

Zû(1)1 (τ, τ ) = (

χ
(1)
0 , χ

(1)
1

)

(

1 0
0 1

)(

χ
(1)
0

χ
(1)
1

)

= →
χ

T
M

→
χ ,

where M in the present case is the identity matrix. Writing the modular
S-transformation as a matrix multiplication, we find

Zû(1)1

(

− 1

τ
,− 1

τ

)

= →
χ

T
ST M S∗ →

χ ,

where S∗ denotes the complex conjugate of S. Since S is symmetric, that is,
ST = S (see the definition (4.30)), the condition for invariance under modular
S-transformations for the partition function above reads

S M S† = M , (4.32)

which is of course satisfied in our present example. Because under T -transfor-
mations the characters χ (1)

m only acquire a phase, we have shown in a somewhat
more abstract way that the partition function Zû(1)1 (τ, τ ) is modular invariant.

By the same arguments as for the case k = 1, a modular invariant partition
function for arbitrary k can be written as

Zû(1)k (τ, τ ) =
k

∑

m=−k+1

∣

∣χ (k)
m

∣

∣

2
with χ (k)

m = �m,k(τ )

η(τ )
. (4.33)

However, in more general situations where M is not the identity matrix, clearly not
all choices of M satisfy Eq. (4.32). Thus, modular invariance imposes strong condi-
tions on the couplings of the left- and right-moving sector in a partition function.
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Remark

Let us take a closer look at the characters of û(1)k and employ the definitions of η(τ )
and �m,k(τ ) to expand χ (k)

m in the following way:

χ (k)
m = �m,k(τ )

η(τ )
= q− 1

24

∞
∏

l=0

∞
∑

Nl=0

ql Nl
∑

n∈Z+ m
2k

qk n2

= q− 1
24

(

q
m2

4k + q
m2

4k +1 + · · ·
)

.

By comparing with the definition (4.27) of a character and keeping in mind that for
the free boson the central charge is c = 1, we see that the lowest L0 eigenvalue is
m2

4k . Therefore, the highest weight state corresponding to the û(1)k character χ (k)
m has

conformal dimension

h = m2

4k
. (4.34)

4.2.4 The Free Fermion

Besides the free boson, the CFT of a free fermion is the other main building block for
most string theory applications of conformal field theory. Therefore, let us also quite
explicitly work out the corresponding partition function. Here, modular invariance
will be our main guiding principle from which the necessity of the GSO projection
and the introduction of various boundary conditions (Neveu–Schwarz and Ramond)
directly follow.

Computation of the Character

We first consider a free fermion ψ(z) in the Neveu–Schwarz sector with mode
expansion

ψ(z) =
∑

r∈Z+ 1
2

ψr z−r− 1
2 .

Note that on the torus with variable w, this corresponds to anti-periodic boundary
conditions. States in the Fock space F of this theory are obtained by acting with
creation operators ψ−s on the vacuum |0〉

∣

∣n 1
2
, n 3

2
, n 5

2
, . . .

〉 = (

ψ− 1
2

)n 1
2
(

ψ− 3
2

)n 3
2
(

ψ− 5
2

)n 5
2 . . .

∣

∣0
〉

, ns = 0, 1 .

Next, from Eq. (2.111) in Sect. 2.9.2, we recall the form of the energy–momentum
tensor and write it in the present case as
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L0 =
∞
∑

s= 1
2

s ψ−s ψs ,

where the sum is over half-integer s = 1
2 , 3

2 , . . .. The action of L0 on a general
state in the Fock space F is then computed using the anti-commutation relation
{ψr , ψs} = δr,−s for fermions

L0

∣

∣n 1
2
, n 3

2
, . . .

〉 = L0
(

ψ− 1
2

)n 1
2
(

ψ− 3
2

)n 3
2 . . .

∣

∣0
〉

=
∞
∑

s= 1
2

s
(

ψ− 1
2

)n 1
2 . . . ns

(

ψ−s ψs ψ−s
)

. . .
∣

∣0
〉

=
∞
∑

s= 1
2

s ns

∣

∣n 1
2
, n 3

2
, . . .

〉

.

Using this expression, it is easy to compute the following character:

χNS,+(τ ) = TrF
(

q L0− c
24

)

= q− 1
48

1
∑

n 1
2
=0

1
∑

n 3
2
=0

1
∑

n 5
2
=0

. . .
〈

n 1
2
, n 3

2
, n 5

2
, . . .

∣

∣ q L0
∣

∣n 1
2
, n 3

2
, n 5

2
, . . .

〉

= q− 1
48

1
∑

n 1
2
=0

1
∑

n 3
2
=0

1
∑

n 5
2
=0

. . .

(

q
1
2 ·n 1

2 · q
3
2 ·n 3

2 · q
5
2 ·n 5

2 · · · ·
)

= q− 1
48

(

1 + q
1
2

)

·
(

1 + q
3
2

)

·
(

1 + q
5
2

)

· · · · (4.35)

= q− 1
48

∞
∏

r=0

(

1 + qr+ 1
2

)

=:

√

ϑ3(τ )

η(τ )
,

where the ellipses again indicate that there are infinitely many sums respectively
infinitely many factors in the products. Furthermore, we introduced a new modular
function denoted as ϑ3(τ ) which takes the form

ϑ3(τ ) = η(τ ) q− 1
24

∞
∏

r=0

(

1 + qr+ 1
2

) (

1 + qr+ 1
2

)

=
∑

n∈Z

q
n2

2 . (4.36)

The first part in Eq. (4.36) is the representation of ϑ3 as an infinite product while the
second part gives a representation as an infinite sum. This equality is not obvious
but we will prove it in the following.
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Modular Forms IV: Jacobi Triple Product Identity

To do so, let us recall our discussion about complex fermions and bosonisation
from p. 63. In particular, we have seen that the algebra generated by two fermions
�(z) and �(z) in the NS sector with j0 eigenvalues ±1 is equivalent to the algebra
generated by

j(z) = i �X (z, z) , j±(z) = V±1(z) = : e±i X : . (4.37)

Using Eq. (4.22), we observe that the vertex operators in Eq. (4.37) correspond to
a free boson compactified on a circle of radius R = 1. Therefore, besides the fields
in Eq. (4.37) the remaining primary fields for such a theory are given by the vertex
operators

V±N (z) = : e±i N X : with
(

h, α
) =

(

N 2

2
, N

)

, N ∈ Z ,

where h is the conformal weight of Vα and α denotes the j0 charge of the vertex
operator.

Let us next consider a charged character χ (τ, z) which contains the information
not only about the conformal weight h but also about the j0 charge. The definition
reads as follows:

χ (τ, z) = TrHi

(

q L0− c
24 w j0

)

with w = exp
(

2π i z
)

. (4.38)

For the two complex fermions �(z) and �(z), the charged character is computed fol-
lowing the same steps as in Eq. (4.35) with the (anti-)commutation relations (2.114)
taken into account. Since the Hilbert spaces of �(z) and �(z) are independent of
each other, one finds

χ(�,�)(τ, z) = q− 1
24

∏

r≥0

(

1 + qr+ 1
2 w

)(

1 + qr+ 1
2 w−1

)

. (4.39)

For the theory of the boson compactified on a circle of radius R = 1, we have the
character corresponding to the primary field j(z) leading to the familiar result

χ(0)(τ, z) = 1

η(τ )
.

Here, there is no dependence on z since j0 commutes with all jn and annihilates the
vacuum. For the characters corresponding to the primary fields Vα with (h, α) =
( N 2

2 , N ), let us note that the states in the Hilbert space can be written as

∣

∣α, n1, n2, n3, . . .
〉 = lim

z,z→0
j n1
−1 j n2

−2 j n3
−3 . . . Vα(z, z)

∣

∣0
〉

,
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with ni ≥ 0. Using our results from Sect. 2.9.1, the action of L0 and j0 on such
states is determined to be of the following form:

L0

∣

∣α, n1, n2, n3, . . .
〉 = lim

z,z→0

(

∑

k≥1

k nk jn1
−1 j n2

−2 j n3
−3 . . . + L0

)

Vα(z, z)
∣

∣0
〉

=
(

∑

k≥1

k nk + α2

2

)

∣

∣α, n1, n2, n3, . . .
〉

.

j0
∣

∣α, n1, n2, n3, . . .
〉 = lim

z,z→0
j n1
−1 j n2

−2 j n3
−3 . . . j0 Vα(z, z)

∣

∣0
〉

= α
∣

∣α, n1, n2, n3, . . .
〉

.

Using these results and following the same steps as in the calculation on p. 121, one
arrives at

χ(α)(τ, z) = TrHα

(

q L0− c
24 w j0

)

= 1

η(τ )
q

α2

2 wα .

Employing again Eq. (4.22), the sum of all characters for the theory of the free
boson compactified on a circle of radius R then reads

χ (τ, z) =
∑

α

χ(α)(τ, z) = 1

η(τ )

∑

N∈Z

q
N2

2R2 w
N
R .

Due to bosonisation described above, for R = 1 this expression has to be equal to
Eq. (4.39). We have therefore established the relation

q− 1
24

∏

r≥0

(

1 + qr+ 1
2 w

)(

1 + qr+ 1
2 w−1

) = 1

η(τ )

∑

N∈Z

q
N2

2 wN , (4.40)

which is called the Jacobi triple product identity. Using finally Eq. (4.40) with w =
1 yields exactly Eq. (4.36).

Turning our argument of this paragraph around, the mathematically well-known
Jacobi triple product identity in conformal field theory reflects nothing else than the
Bose–Fermi correspondence.

Modular Transformations of the Character

The character χNS,+(τ ) we have computed in Eq. (4.35) is part of the partition func-
tion of a free fermion in the Neveu–Schwarz sector. Since we want to construct
a modular invariant partition function, we have to study the modular properties of
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χNS,+(τ ). In particular, the character is not invariant under modular transformations
but new terms are generated.

1. As we have observed previously, the modular T -transformation is achieved sim-
ply by replacing q �→ e2π i q which leads to

T
(

χNS,+(τ )
) = e− iπ

24 q− 1
48

∏

r≥0

(

1 − qr+ 1
2
) =: e− iπ

24

√

ϑ4(τ )

η(τ )
, (4.41)

where we have defined a new modular function denoted as ϑ4. Writing out this
definition and using the Jacobi triple product identity (4.40) with w = −1, we
find

ϑ4(τ ) = η(τ ) q− 1
24

∞
∏

r=0

(

1 − qr+ 1
2

) (

1 − qr+ 1
2

)

=
∑

n∈Z

(−1)nq
n2

2 .

Next, we introduce the fermion number operator f via the anti-commutation
relation {(−1) f , ψr } = 0 and define a new character χNS,−(τ ) as

χNS,−(τ ) = TrF
(

(−1) f q L0− c
24

)

=
√

ϑ4(τ )

η(τ )
, (4.42)

where the final result is obtained by performing a computation along the same
lines as in Eq. (4.35). Note that the new character is (up to a phase) the T -
transform of χNS,+(τ ).

2. For the modular S-transformation of our first character χNS,+(τ ), let us focus first
only on ϑ3(τ ) for which we find

ϑ3

(

− 1

τ

)

=
∑

n∈Z

e− 2π i
τ

n2

2
(4.20)= √−iτ

∑

m∈Z

eiπτ m2 = √−iτ ϑ3(τ ) ,

where we employed the Poisson resummation formula (4.20) with a = i
τ

and
b = 0. Since the η-function transforms as S : η(τ ) �→ √−iτ η(τ ), we see that
χNS,+(τ ) is invariant under modular S-transformations

S
(

χNS,+(τ )
) = χNS,+(τ ) .

3. So far, we have determined how the character χNS,+(τ ) transforms under S and
T . However, in order to construct a modular invariant partition function, we also
need to know the modular transformations of χNS,−(τ ) displayed in Eq. (4.42).
To this end, we calculate for the S-transformation
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ϑ4

(

− 1

τ

)

=
∑

n∈Z

e− π i
τ

n2+π i n (4.40)= √−iτ
∑

m∈Z

eiπτ(m+ 1
2 )2 = √−iτ ϑ2

(

τ
)

,

where we used again the Poisson resummation formula with a = i
τ

and b = π i .
Furthermore, we have yet defined another modular function as

ϑ2(τ ) =
∑

m∈Z

q
1
2 (m+ 1

2 )2

.

Since for the other ϑ-functions we found a product representation, we expect a
similar expression also for ϑ2. And indeed, choosing w = q

1
2 in Eq. (4.40) leads

to

q− 1
24

∏

r≥0

(

1 + qr+1
)(

1 + qr
) = 1

η(τ )

∑

n∈Z

q
n2

2 + n
2

2 q− 1
24

∏

r≥1

(

1 + qr
)2 = 1

η(τ )

∑

n∈Z

q
1
2 (n+ 1

2 )2− 1
8 ,

from which we conclude that

ϑ2(τ ) = η(τ ) 2 q
1
12

∏

r≥1

(

1 + qr
)2 =

∑

n∈Z

q
1
2 (n+ 1

2 )2

.

We summarise the modular S-transformation of the character (4.42) and define
a new character as

χR,+(τ ) = S
(

χNS,−(τ )
) =

√
2 q

1
24

∏

r≥1

(

1 + qr
) =

√

ϑ2(τ )

η(τ )
. (4.43)

Note that here the exponent of q takes integer values r which indicates that this
is a partition function for fermions ψr with r ∈ Z, that is, for fermions in the
Ramond sector.

4. Finally, we still have to perform a modular T -transformation on the character
(4.42) and a T - and S-transformation on Eq. (4.43). Without going into detail,
we just state the results which are easily verified

T
(

χNS,−(τ )
) = e− iπ

24 χNS,+(τ ) , T
(

χR,+(τ )
) = e

iπ
12
(

χR,+(τ )
)

,

S
(

χR,+(τ )
) = χNS,−(τ ) .

The Partition Function

In the last paragraph we have computed the various modular transformations of the
character (4.35) from which we now can construct a modular invariant partition
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function. In particular, starting from a free fermion in the Neveu–Schwarz sector,
we have seen that modular invariance requires us to also take the Ramond sector
into account as well as the operator (−1) f . Concretely, the partition function is
written as

Zferm.(τ, τ ) = 1

2

(∣

∣

∣

∣

ϑ3

η

∣

∣

∣

∣

+
∣

∣

∣

∣

ϑ4

η

∣

∣

∣

∣

+
∣

∣

∣

∣

ϑ2

η

∣

∣

∣

∣

)

,

T T

S S

(4.44)

where we have indicated how the modular T - and S-transformations interchange
the various terms. The overall factor of 1/2 is necessary to ensure that the non-
degenerate Neveu–Schwarz ground state only appears once. This factor cancels
against the

√
2 factor appearing in

√
ϑ2/η, so that the Ramond ground state (for

a single free fermion) is also non-degenerate.
However, we have seen that it is convenient to express partition functions in terms

of characters. Although not explicitly needed in the following, to this end we define

χ0 = 1

2

(√

ϑ3

η
+

√

ϑ4

η

)

= TrNS

(

1 + (−1) f

2
q L0− c

24

)

,

χ 1
2

= 1

2

(√

ϑ3

η
−

√

ϑ4

η

)

= TrNS

(

1 − (−1) f

2
q L0− c

24

)

,

χ 1
16

= 1√
2

√

ϑ2

η
= TrR

(

q L0− c
24

)

,

(4.45)

where the subscripts indicate the conformal weight of the highest weight represen-
tations and the traces are over states in the Neveu–Schwarz respectively Ramond
sector. Using these expressions, we can write the partition function (4.44) for a
single free fermion as

Zferm.(τ, τ ) = χ0χ0 + χ 1
2
χ 1

2
+ χ 1

16
χ 1

16
. (4.46)

Remarks

• Note that Eq. (4.46) is the partition function of the Ising model introduced in
Sect. 2.10.

• The structure of the free fermion partition function also appears when studying
the superstring in flat backgrounds. There, the projection given by the operator
1
2 (1 + (−1) f ) is known as the Gliozzi–Scherk–Olive (GSO) projection.
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Modular Forms V: The ϑ-Functions

In this paragraph, let us briefly summarise and extend our findings about the ϑ-
functions introduced previously. For this purpose, we define

ϑ
[

α

β

]

(τ, z) =
∑

n∈Z

q
1
2 (n+α)2

e2π i(n+α)(z+β) ,

which can be shown to also have a representation as an infinite product

ϑ
[

α

β

]

(τ, z)

η(τ )
= e2π iα(z+β) q

α2

2 − 1
24

∞
∏

n=1

(

1 + qn+α− 1
2 e2π i(z+β)

)(

1 + qn−α− 1
2 e−2π i(z+β)

)

.

The ϑ2-, ϑ3- and ϑ4-functions can then be expressed as

ϑ1(τ ) = ϑ
[1/2

1/2

]

(τ, 0) ≡ 0 ,

ϑ2(τ ) = ϑ
[1/2

0

]

(τ, 0) =
∑

n∈Z

q
1
2 (n+ 1

2 )2 = η(τ ) 2 q
1

12

∞
∏

r=1

(

1 + qr
)2

,

ϑ3(τ ) = ϑ
[ 0

0

]

(τ, 0) =
∑

n∈Z

q
n2

2 = η(τ ) q− 1
24

∞
∏

r=0

(

1 + qr+ 1
2
)2

,

ϑ4(τ ) = ϑ
[ 0

1/2

]

(τ, 0) =
∑

n∈Z

(−1)nq
n2

2 = η(τ ) q− 1
24

∞
∏

r=0

(

1 − qr+ 1
2
)2

,

where for completeness we introduced ϑ1 which, however, vanishes identically. For
the modular transformations, we simply state that

ϑ
[

α

β

](

τ + 1, z
) = e−iπα(α−1) ϑ

[

α

α+β−1/2

](

τ, z
)

,

ϑ
[

α

β

]

(

− 1

τ
,

z

τ

)

= √−iτ e2π iαβ+iπ z2

τ ϑ
[

β

−α

](

τ, z
)

,
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from which we find

ϑ1
(

τ + 1
) = e

π i
4 ϑ1

(

τ
)

, ϑ1

(

− 1

τ

)

= e
π i
2

√−iτ ϑ1
(

τ
)

,

ϑ2
(

τ + 1
) = e

π i
4 ϑ2

(

τ
)

, ϑ2

(

− 1

τ

)

= √−iτ ϑ4
(

τ
)

,

ϑ3
(

τ + 1
) = ϑ4

(

τ
)

, ϑ3

(

− 1

τ

)

= √−iτ ϑ3
(

τ
)

,

ϑ4
(

τ + 1
) = ϑ3

(

τ
)

, ϑ4

(

− 1

τ

)

= √−iτ ϑ2
(

τ
)

.

Modular Forms VI: S-Transformation of the η-function

Finally, using the ϑ-functions it is a simple exercise to determine the behaviour of
the Dedekind η-function under modular transformations. Let us compute

√

ϑ3 ϑ4ϑ2

2 η3
=

∞
∏

n=1

(

1 + qn− 1
2
)(

1 − qn− 1
2
)(

1 + qn
)

=
∞
∏

n=1

(

1 − q2n−1
)(

1 + qn
)

=
∞
∏

n=1

(

1 − qn
)

(

1 − q2n
)

(

1 + qn
)

= 1 ,

from which we can infer the modular properties of η(τ ) using the transformations
of the ϑ-functions. In particular, we find

η
(

τ + 1
) = e

π i
12 η

(

τ
)

, η

(

− 1

τ

)

= √−iτ η
(

τ
)

,

which proves Eq. (4.15).

4.2.5 The Free Boson Orbifold

In string theory, one is interested in describing strings moving in a compact back-
ground manifold. One of the simplest example is the free boson on a circle studied in
Sect. 4.2.2, however, usually more involved constructions are needed. In general, an
exact CFT description of curved backgrounds is very complicated, but there exists a
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=⇒

Fig. 4.4 Illustration of the Z2-orbifold of the circle. Effectively, the circle becomes a line with a
fixed point at each end

construction which, though being a quotient of a torus, nevertheless captures some
of the features of genuine compactifications on highly curved background geome-
tries. These are the so-called orbifold models which we are going to study in this
section.

Concretely, we consider the Z2-orbifold of the free boson on the circle. Here, we
not only perform the identification of the circle X ∼ X + 2π R, but we also impose
a Z2 symmetry R acting as

R : X (z, z) �→ −X (z, z) .

As illustrated in Fig. 4.4, this amounts to identifying the fields X (z, z) and −X (z, z)
which means that effectively the circle becomes a line with a fixed point at each end.

Calculation of the Partition Function

For conformal field theories on orbifolds, in general the Hilbert space will be
changed compared to the original theory. In particular, the Hilbert space contains
only states which are invariant under the orbifold action and for the calculation of
the partition function, one therefore projects onto invariant states. In the present
case, the orbifold action is R and the projector reads 1

2 (1 + R) for which we find

Z(τ, τ ) = TrH

(

1 + R
2

q L0− c
24 q L0− c

24

)

= 1

2
Zcirc.(τ, τ ) + 1

2
TrH

(

R q L0− c
24 q L0− c

24

)

.

(4.47)

The first term contains the partition function of the free boson on the circle which
we already computed in Eq. (4.19). Let us therefore focus on the second term. The
action of R on the Laurent modes jn of the current j(z) = i �X (z, z) is easily found
to be R jnR = − jn and similarly for the anti-holomorphic part. From this we can
infer the action on a general state defined in Eq. (4.12) as
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R
∣

∣n1, n2, n3, . . .
〉 = (

R j−1 R
)n1

(

R j−2 R
)n2

. . . R
∣

∣0
〉

= (−1)n1+n2+n3+...
∣

∣n1, n2, n3, . . .
〉

,
(4.48)

where we have chosen the action of R such that |0〉 is left invariant. For the momen-
tum and winding states |m, n〉 introduced in Eq. (4.18), we calculate

j0 R
∣

∣m, n
〉 = R

(

R j0 R
)∣

∣m, n
〉 = R

(− j0
)∣

∣m, n
〉 = −

(m

R
+ Rn

2

)

R
∣

∣m, n
〉

,

and similarly for j0 from which we find that

R
∣

∣m, n
〉 = ∣

∣−m,−n
〉

.

Therefore, in the calculation of the partition function only states with |m = 0, n =
0〉 will contribute and we are left with a computation similar to the one in Sect. 4.2.1.
Taking into account the action (4.48) and following the same steps as on p. 121, we
find that we can replace the result of the free boson as

q− 1
24

∏

n

1

1 − qn
−→ q− 1

24

∏

n

1

1 − (−qn)
=

√
2

√

η(τ )

ϑ2(τ )
,

where we employed the definition of ϑ2 from p. 137. We thus express Eq. (4.47) in
the following way:

Z(τ, τ ) = 1

2
Zcirc.(τ, τ ) +

∣

∣

∣

∣

η(τ )

ϑ2(τ )

∣

∣

∣

∣

. (4.49)

Modular Invariance and Twisted Sectors

However, Eq. (4.49) cannot be the full partition function because the second term
is not invariant under modular transformations. In particular, recalling our results
from Sect. 4.2.4, we have

T

∣

∣

∣

∣

η

ϑ2

∣

∣

∣

∣

S←→
∣

∣

∣

∣

η

ϑ4

∣

∣

∣

∣

T←→
∣

∣

∣

∣

η

ϑ3

∣

∣

∣

∣

S ,

so that a so-called twisted sector has to be added

Ztw(τ, τ ) =
∣

∣

∣

∣

η(τ )

ϑ4(τ )

∣

∣

∣

∣

+
∣

∣

∣

∣

η(τ )

ϑ3(τ )

∣

∣

∣

∣

. (4.50)

In order to explain this terminology, let us note the following explicit form of√
η/ϑ4:
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√

η(τ )

ϑ4(τ )
= q

1
16 − 1

24

∞
∏

n=0

1

1 − qn+ 1
2

.

We can interpret this expression as the partition function in a sector with ground
state energy L0|0〉 = 1

16 |0〉 and half-integer modes jn+ 1
2

in a Laurent expansion,
that is,

j(z) = i �X (z, z) =
∑

n∈Z

jn+ 1
2
z−

(

n+ 1
2

)

−1
.

Next, we observe that this mode expansion respects the symmetry

j
(

e2π i z
) = − j(z) = R j(z)R,

and therefore the free boson X (z, z) is invariant under rotations in the complex plane
up to the action of the discrete symmetry R. In general, if a field in a CFT is invariant
only up to an action of the orbifold, it is said to be in a twisted sector. The partition
function in the twisted sector can be defined as

Ztw(τ, τ ) = TrHtw

(

1 + R
2

q L0− c
24 q L0− c

24

)

=
∣

∣

∣

∣

η(τ )

ϑ4(τ )

∣

∣

∣

∣

+
∣

∣

∣

∣

η(τ )

ϑ3(τ )

∣

∣

∣

∣

, (4.51)

which also makes the meaning of the second term in Eq. (4.50) evident. Let us
emphasise that modular invariance again forced us to introduce this new sector into
the theory.

To summarise, the modular invariant partition function of the Z2-orbifold of the
free boson on the circle reads

Zorb.(τ, τ ) = 1

2
Zcirc.(τ, τ ) +

∣

∣

∣

∣

η(τ )

ϑ2(τ )

∣

∣

∣

∣

+
∣

∣

∣

∣

η(τ )

ϑ4(τ )

∣

∣

∣

∣

+
∣

∣

∣

∣

η(τ )

ϑ3(τ )

∣

∣

∣

∣

,

and we note that the states in the twisted sector have an overall two-fold degeneracy.
This can be understood from the fact that the twisted sectors are localised at the fixed
point of the orbifold action, which in our case are the two fixed points at the ends of
the line segment shown in Fig. 4.4.

Remarks

• This example demonstrates the beautiful stringy relationship between the CFT
on the world-sheet and the background geometry it is moving in. Just following
the consistency condition for the two-dimensional CFT, we were able to extract
geometric information about the background space the free boson took values in.
Here we discussed an almost trivial example; however, more involved configura-
tions can be understood along the same lines.
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• In general, for an orbifold with abelian symmetry group G the partition function
takes the form

Z(τ, τ ) = 1
∣

∣G
∣

∣

∑

g,h∈G

Tr h

(

g q L0− c
24 q L0− c

24

)

, (4.52)

where |G| denotes the order of the group G and the trace is over all twisted
sectors for which the fields φtw.(z, z) obey

φtw.

(

e2π i z, e−2π i z
) = h φtw.(z, z) h−1 .

• Note that in the Z2-orbifold partition function, only Zcirc. depends on the radius
R of the circle. Therefore, the orbifold partition function is also invariant under
T-duality, i.e. Zorb.(R) = Zorb.(2/R). Moreover, one can show that Zorb.(R =√

2) = Zcirc.(R = 2
√

2), so that the moduli spaces of the circle and orbifold
partition function intersect, that is, they agree in one point. In fact, the moduli
space of conformal field theories with central charge c = 1 has been classified
which shows an A-D-E-type structure. For more details we refer to the literature.

4.3 The Verlinde Formula

In this section, we are going to study an intricate relationship between the modular
properties of a conformal field theory and its fusion rules. In particular, for Rational
conformal field theories the behaviour of the theory under modular transformations
is much easier to extract than the fusion rules. The latter are determined via the
methods shown in Sect. 2.11 which can become quite involved. However, the so-
called Verlinde formula allows to compute the fusion rule coefficients in terms of
the modular S-matrix elements.

S-Matrix and Fusion Algebra

Let us consider a Rational conformal field theory (RCFT) with central charge c and
a finite number of HWRs φi with characters χi where i = 0, . . . , N − 1. Then, as
we have seen previously, there exists a representation of SL(2, Z)/Z2 on that space
of characters, in particular, there is a matrix Si j such that

χi

(

− 1

τ

)

=
N−1
∑

j=0

Si j χ j (τ ) . (4.53)

As encountered in Sect. 4.2.2, for the �-functions generically S2 �= 1 but S2 = C
with the charge conjugation matrix C satisfying C2 = 1. Furthermore (in all known
cases), the S-matrix is unitary and symmetric
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SS† = S†S = 1 , S = ST . (4.54)

One of the deepest results in CFT is that there exists an intricate relation between the
modular S-matrix (torus partition function) and the fusion algebra for the OPE on
the sphere (tree-level). Namely, the fusion coefficients N k

i j ∈ Z
+
0 can be computed

from the S-matrix via the Verlinde formula

N k
i j =

N−1
∑

m=0

Sim S jm S∗
mk

S0m
, (4.55)

where S∗ denotes the complex conjugate of S and the subindex 0 labels the identity
representation. It is quite remarkable that the above combination of Si j ∈ C always
gives non-negative integers.

Another way of stating the Verlinde formula is as follows. We have seen in
Eq. (2.131) that the fusion matrices (N i ) jk = N k

i j commute among each other.
Therefore, they can be diagonalised simultaneously, that is, there exists a matrix
S such that

N i = S Di S−1,

where Di is a diagonal matrix. Using the unitarity and symmetry of the modular
S-matrix, the Verlinde formula (4.55) states that S = S with the entries of the
diagonalised fusion matrices given by (Di )mm = Sim/S0m .

Remark

Similar to Eq. (4.53), on the space of characters of an RCFT there exists also a
matrix Ti j such that a modular T -transformation can be written as

χi
(

τ + 1
) =

N−1
∑

j=0

Ti j χ j
(

τ
)

.

Without detailed derivation, we note furthermore that one can choose a basis such
that the matrix Ti j takes the following form:

Ti j = δi j e2π i(hi − c
24 ) , (4.56)

where hi denotes the conformal weight of the highest weight representation corre-
sponding to the character χi (τ ).
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Fusion Rules for û (1)k

Before we present a rough sketch of the proof of the Verlinde formula, we will
discuss the rational CFTs û(1)k from Sect. 4.2.2 as a simple example. Recalling the
corresponding modular S-matrix (4.30)

Spq = 1√
2k

exp
(

−π i
p q

k

)

, p, q = −k + 1, . . . , k ,

and using the Verlinde formula (4.55), we can write for the fusion coefficients

N c
ab =

k
∑

m=−k+1

1

2k
e− π i

k (ma+mb−mc) = 1

2k

k
∑

m=−k+1

e− 2π im
2k (a+b−c) = δ(2k)

(

a + b − c
)

,

where we defined δ(N )(x) = 1 if x = 0 mod N and zero otherwise. For the fusion
algebra [φi ] × [φ j ] = ∑

k N k
i j [φk], we then have

[

φm
] × [

φn
] = [

φm+n mod 2k
]

.

Finally, recalling that the partition function of û(1)1 is the same as for ŝu(2)1, we
have also found the fusion rules for the two highest weight representations of the
ŝu(2)1 Kač–Moody algebra

[

φ0
] × [

φ0
] = [

φ0
]

,
[

φ0
] × [

φ1
] = [

φ1
]

,
[

φ1
] × [

φ1
] = [

φ0
]

,

where the subscripts l = 0, 1 label the spin l
2 highest weight representation of

ŝu(2)1.

Sketch of the Proof of the Verlinde Formula3

We do not intend to give a full proof of the Verlinde formula but only want to present
the main idea. For further details we refer to the original literature.

The proof of the Verlinde formula includes monodromy transformations on the
space of conformal blocks introduced in Sect. 2.12, which shows that indeed the
modular S-transformation diagonalises the fusion rules. Moreover, the pentagon
identity for the fusing matrices from Sect. 2.13 is at the heart of the proof.

• The characters χ j can be viewed as the conformal blocks for the zero-point am-
plitude on the torus, which is identical to the one-point amplitude of the identity
operator. Writing the identity as the result of the fusion of φi × φ∗

i , where φ∗
i

denotes the conjugate operator of φi , the character can also be written as a certain
scaling limit of the conformal block of the two-point function 〈φi (z) φ∗

i (z)〉T2 on
the torus

3 This paragraph can be omitted in a first reading.
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χ j = lim
z→w

(z − w)2hiF i,i∗
j (z − w) .

• Next, one defines a monodromy operator �i (C) acting on the characters in the
following way:

�i (C) χ j = lim
z→w

(z − w)2hi Mφi ,C

(

F i,i∗
j (z − w)

)

.

Here Mφi ,C is defined by taking φi , moving it around the one-cycle C on the torus
T

2 and computing the effect of that monodromy on the conformal block. A basis
of homological one-cycles is given by the fundamental cycles on T

2, denoted as
A and B (see Fig. 4.5). Note that A is the space-like cycle 0 ≤ Re w ≤ 2π and
that B is the time-like cycle in the τ direction. Moreover, we recall from Sect. 4.1
that the modular S-transformation exchanges A and B.

• Moving φi around the A-cycle does not change the conformal family φ j cir-
culating along the time-like direction. Therefore, �i (A) acts diagonally on the
characters

�i (A) χ j = λ
j
i χ j .

• The action �i (B) is more involved as φi is moved around the one-cycle where
φ j is circulating. We thus do expect a non-trivial monodromy action. However,
this action can be separated into essentially two transformations on the conformal
blocks, and after employing the pentagon identity from Sect. 2.13, one arrives at
the result that

�i (B) χ j = N k
i j χk .

• Since the S-transformation exchanges the A with the B cycle, it also acts as
�i (B) = S �i (A) S−1, which means it diagonalises the fusion rules. We can
therefore write

Fig. 4.5 Basis of
homological one-cycles on
the torus T

2

τ

A

B
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N k
i j =

∑

m

Sjm λm
i Smk .

Choosing j = 0 and using N k
i0 = δi,k , we can determine λm

i = Sim/S0m which
eventually gives the Verlinde formula.

4.4 The ŝu(2)k Partition Functions

In Sect. 3.3, we have considered unitary highest weight representations of conformal
field theories with ŝu(2)k symmetry which can only exist for k ∈ Z

+ and 0 ≤ l ≤ k
where l determines the su(2) spin as s = l

2 . In the present section, we will study the
corresponding one-loop partition functions.

Character and S-Matrix for ŝu(2)k

In order to determine the partition function, let us consider the charged characters
of ŝu(2)k whose general form we defined in Eq. (4.38). These characters contain not
only the degeneracies for a particular conformal weight, but also the information
about the ĵ3

0 charge. Without derivation, we note that the ŝu(2)k characters can be
determined from the so-called Weyl–Kač character formula to be of the following
form:

χ
(k)
l (τ, z) = �l+1,k+2(τ, z) − �−l−1,k+2(τ, z)

�1,2(τ, z) − �−1,2(τ, z)
, (4.57)

with 0 ≤ l ≤ k. This expression involves the generalised �-functions

�l,k(τ, z) =
∑

n∈Z+ l
2k

qk n2
e−2π inkz ,

(4.58)

which for z = 0 reduce to the usual �-functions introduced in Eq. (4.24).
Note that in Eq. (4.57), the differences in the numerator and denominator vanish

for z → 0. However, to derive the modular properties of χ
(k)
l (τ, z) this form is very

appropriate. In particular, for the modular S-transformation of χ
(k)
l (τ, z), we can use

the results for �l,k(τ, z = 0) from Sect. 4.2.2. Let us calculate
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�l+1,k+2

(

− 1

τ
, 0

)

− �−l−1,k+2

(

− 1

τ
, 0

)

= √−iτ
k+2
∑

l ′=−k−1

(

Sl+1,l ′ − S−l−1,l ′
)

�l ′,k+2(τ )

= √−iτ

( k
∑

l ′=0

(

Sl+1,−l ′−1 − S−l−1,−l ′−1
)

�−l ′−1,k+2(τ )

+(

Sl+1,0 − S−l−1,0
)

�0,k+2(τ )

+
k

∑

l ′=0

(

Sl+1,l ′+1 − S−l−1,l ′+1
)

�l ′+1,k+2(τ )

+(

Sl+1,k+2 − S−l−1,k+2
)

�k+2,k+2(τ )

)

,

where from the second to the last line we performed a particular rewriting of the
sum. Next, we recall from Eq. (4.30) the S-matrix of the �-functions which in the
present case reads

Sl,l ′ = 1√
2(k + 2)

exp
(

−π i
l l ′

k + 2

)

.

Using Eq. (4.29), we see that in the calculation above the terms involving �0,k+2(τ )
and �k+2,k+2(τ ) vanish while the other terms can be simplified to

�l+1,k+2

(

− 1

τ
, 0

)

− �−l−1,k+2

(

− 1

τ
, 0

)

=−2i
√−iτ√

2(k + 2)

k
∑

l ′=0

sin

(

π

k + 2

(

l + 1
)(

l ′ + 1
)

)

(

�l ′+1,k+2(τ, 0) − �−l ′−1,k+2(τ, 0)
)

.

For the denominator in Eq. (4.57), we use this expression with k = 0 and l = 0 to
find

�1,2

(

− 1

τ
, 0

)

− �−1,2

(

− 1

τ
, 0

)

= −2i
√−iτ

2
sin

(π

2

) (

�1,2(τ, 0)−�−1,2(τ, 0)
)

,

from which we infer the modular S-matrix for the character (4.57) as

S(k)
l l ′ =

√

2

k + 2
sin

(

π

k + 2

(

l + 1
)(

l ′ + 1
)

)

with l, l ′ = 0, . . . , k .

(4.59)
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Fusion Coefficients for ŝu(2)k

Having determined the explicit form of the S-matrix, we can now apply the Verlinde
formula (4.55) to compute the fusion coefficients of ŝu(2)k appearing in the algebra

[

φl1

] × [

φl2

] =
k

∑

l3=0

Nl3
l1 l2

[

φl3

]

.

We expect the fusion coefficients to be consistent with the tensor product of spins
( l1

2 , l2
2

)

, and indeed, one finds

Nl3
l1 l2

=

⎧

⎪

⎨

⎪

⎩

1 if |l1 − l2| ≤ l3 ≤ min
(

l1 + l2 , 2k − l1 − l2
)

and l1 + l2 + l3 = 0 mod 2 ,

0 otherwise .

(4.60)

Partition Functions

Out of the characters (4.57), we can now construct modular invariant partition func-
tions. As we have already indicated around Eq. (4.32), this amounts to determining
all matrices Ml l ′ such that

Z (k)
(

τ, τ
) =

∑

l,l ′
χ

(k)
l (τ ) M (k)

l l ′ χ
(k)
l ′ (τ ) (4.61)

is modular invariant, that is, S(k)T M (k)S(k)∗ = M (k). Since the entries M (k)
l l ′ have the

interpretation as the number of degeneracies of states in the Hilbert space, they must
be non-negative integers. In addition, for the vacuum to only appear once, we have
to require M (k)

00 = 1. Since in the present case S(k) shown in Eq. (4.59) is symmetric
and real, we find the condition S(k) M (k)S(k) = M (k) which can be written as

[

M (k), S(k)
] = 0 .

Furthermore, it turns out that in order for Eq. (4.61) to be invariant under T -
transformations, one has to satisfy the level-matching condition hl − hl ′ ∈ Z.

Clearly, the identity matrix M = 1 gives rise to a modular invariant partition
function, but Cappelli, Itzykson and Zuber found the complete classification of all
matrices M with the properties above. The corresponding partition functions are
listed in Table 4.1 which is known as the A-D-E classification. Note that the sub-
scripts of the characters label again the highest weight representation. Furthermore,
the name of each class corresponds to a Lie group to which the partition function
can be associated, and the dual Coxeter number of each algebra is k + 2.
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Table 4.1 All ŝu(2)k modular invariant partition functions. For ease of notation, the (k)-labels on
the characters and partition functions have been omitted

Level Partition function Name

k = n Z =
n

∑

l=0

∣

∣χl

∣

∣

2
An+1 , n ≥ 1

k = 4n Z =
n−1
∑

l=0

∣

∣χ2l + χk−2l

∣

∣

2 + 2
∣

∣χ k
2

∣

∣

2
D2n+2 , n ≥ 1

k = 4n − 2 Z =
k
2

∑

l=0

∣

∣χ2l

∣

∣

2 +
2n−2
∑

l=0

χ2l+1 χ k−2l−1 D2n+1 , n ≥ 2

k = 10 Z = ∣

∣χ0 + χ6

∣

∣

2 + ∣

∣χ3 + χ7

∣

∣

2 + ∣

∣χ4 + χ10

∣

∣

2
E6

k = 16 Z = ∣

∣χ0 + χ16

∣

∣

2 + ∣

∣χ4 + χ12

∣

∣

2 + ∣

∣χ6 + χ10

∣

∣

2
E7

+(

χ2 + χ14
)

χ8 + χ8
(

χ2 + χ14

) + ∣

∣χ8

∣

∣

2

k = 28 Z = ∣

∣χ0 + χ10 + χ18 + χ28

∣

∣

2
E8

+∣

∣χ6 + χ12 + χ16 + χ22

∣

∣

2

Remarks

• Note that only for ŝu(3)k a similar classification has been achieved. There one
finds the An+1 and Dn series and, in addition, five exceptional invariants at levels
k = 51, 52, 91, 92, 21.

• Note also that the A-D-E classification of ŝu(2)k invariants is via string theory
compactifications related to the A-D-E classifications of singularities. The latter
are via Type IIA–heterotic string duality related to the A-D-E classification of
simple Lie algebras.

4.5 Modular Invariants of Virc<1

In this section, we will construct modular invariant partition functions for the unitary
models of the Virasoro algebra with central charges c < 1.

Branching Functions and S-Matrix

We start by recalling from p. 105 that the GKO coset (ŝu(2)k × ŝu(2)1)/ŝu(2)k+1

allows to determine the following decomposition of ŝu(2)k × ŝu(2)1 HWRs into
highest weight representations of ŝu(2)k+1 and Virc:
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(

p − 1
)

k
⊗ (

ε
)

1 =
⊕

0≤(q−1)≤k+1

p−q+ε=0 mod 2

(

q − 1
)

k+1 ⊗ (

h p,q (m)
)

,
(4.62)

where ε = 0, 1, m = k + 2 and 0 ≤ (p − 1) ≤ k. Next, we deduce the characters
which are given by a trace over the corresponding Hilbert space. Noting the relation
TrA⊗B(. . .) = TrA(. . .) · TrB(. . .), that is, the trace over A ⊗ B is equal to the trace
over A times the trace over B, we find

χ
(k)
(p−1)(τ ) χ

(1)
(ε) (τ ) =

∑

0≤(q−1)≤k+1

p−q+ε=0 mod 2

χ
(k+1)
(q−1) (τ ) χVir

(p,q)(τ ) ,
(4.63)

where χVir
(p,q)(τ ) are the so-called branching functions we are interested in.

Let us now apply a modular S-transformation to both sides of Eq. (4.63) in order
to extract the modular S-transformation of the branching function χVir

(p,q)(τ ). We then
find

S(k)
p−1,p′−1 S(1)

ε,ε′ = S(k+1)
q−1,q ′−1 SVir

(p,q),(p′,q ′) ,

with the restrictions p − q + ε = 0 mod 2 as well as p, p′ = 1, . . . , k + 1,
q, q ′ = 1, . . . , k + 2 and ε, ε′ = 0, 1. Since the S-matrix for ŝu(2)k is real and
symmetric, using Eq. (4.54) we find (S(k))−1 = S(k). Utilising the explicit form of
S(k) from Eq. (4.59), we then obtain

SVir
(p,q),(p′,q ′) = S(k)

p−1,p′−1S(1)
ε,ε′ S

(k+1)
q−1,q ′−1 (4.64)

SVir
(p,q),(p′,q ′) =

√

2

(k + 2) (k + 3)

(−1
)(p−q)(p′−q ′)

sin

(

π

k + 2
p p′

)

sin

(

π

k + 3
q q ′

)

.

Let us remark that equating the Verlinde formula (4.55) for the present case gives
precisely the fusion coefficients from Sect. 2.11 with all non-vanishing coefficients
taking values N k

i j = 1.

Modular Invariant Partition Functions

As we can see from Eq. (4.64), the S-matrix for the branching functions is essen-
tially the product of an ŝu(2)k and an ŝu(2)k+1 S-matrix. Therefore, the classification
of modular invariant partition functions boils down to combining modular invariants
of ŝu(2)k and ŝu(2)k+1. Looking at Table 4.1, we see that the D and E invariants all
have even level k. But since one of the ŝu(2)k factors in Eq. (4.62) has necessarily
odd level, the partition function has to involve precisely one odd A invariant. The
only possible combinations are therefore (AA), (AD), (D A), (AE) and (E A).

In order to illustrate the construction, let us now quickly state some examples for
modular invariant partition functions of unitary models without a precise derivation.
One finds for instance
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ZAk+1,Ak+2 = 1

2

k+1
∑

p=1

k+2
∑

q=1

∣

∣χp,q

∣

∣

2
,

ZD k
2 +2

,Ak+2 = 1

2

k+2
∑

q=1

⎛

⎝

k−4
4

∑

p=0

∣

∣χ2p+1,q + χk−2p+1,q

∣

∣

2 + 2
∣

∣χ k
2 +1,q

∣

∣

2

⎞

⎠

k=4n

,

ZAk+1,D k+1
2 +2

= 1

2

k+1
∑

p=1

⎛

⎝

k−3
4

∑

q=0

∣

∣χp,2q+1 + χp,k−2q+2

∣

∣ + 2
∣

∣χp, k+1
2 +1

∣

∣

2

⎞

⎠

k=4n−1

,

ZE6,A12 = 1

2

12
∑

q=1

(

∣

∣χ1,q + χ7,q

∣

∣

2 + ∣

∣χ4,q + χ8,q

∣

∣

2 + ∣

∣χ5,q + χ11,q

∣

∣

2
)

.

Example with W Symmetry

Let us now take a closer look at the three-state Potts model. This is a unitary minimal
model of the Virasoro algebra with central charge c = 4

5 which, using Eq. (3.29),
implies that k = 3. In this case, we see from above that besides the diagonal ZA4,A5

modular invariant partition function, there is also ZA4,D4 with the following explicit
form:

ZA4,D4 = 1

2

4
∑

p=1

0
∑

q=0

(

∣

∣χp,2q+1 + χp,5−2q

∣

∣

2 + 2
∣

∣χp,3

∣

∣

2
)

= 1

2

(

∣

∣χ1,1 + χ1,5

∣

∣

2 + 2
∣

∣χ1,3

∣

∣

2 + ∣

∣χ2,1 + χ2,5

∣

∣

2 + 2
∣

∣χ2,3

∣

∣

2

∣

∣χ3,1 + χ3,5

∣

∣

2 + 2
∣

∣χ3,3

∣

∣

2 + ∣

∣χ4,1 + χ4,5

∣

∣

2 + 2
∣

∣χ4,3

∣

∣

2

)

= ∣

∣χ1,1 + χ1,5

∣

∣

2 + ∣

∣χ2,1 + χ2,5

∣

∣

2 + 2
∣

∣χ1,3

∣

∣

2 + 2
∣

∣χ2,3

∣

∣

2
.

The conformal weights of the primary fields in the characters of the first term are
computed using Eq. (2.119) with m = 5 as

h1,1 =
(

6 · 1 − 5 · 1
)2 − 1

4 · 5 · 6
= 0 , h1,5 =

(

6 · 1 − 5 · 5
)2 − 1

4 · 5 · 6
= 3 .

Therefore, χ1,1 corresponds to the vacuum representation φ1,1 and the character χ1,5

is built upon a primary field φ1,5 of conformal dimension h = 3. Since the primary
φ1,5 appears together with the vacuum, it has to be a chiral primary. Thus, besides the
Virasoro generator, there exists a further generator of the chiral symmetry algebra
and, following our discussion from Sect. 3.7, this symmetry algebra should be a
W(2, 3) algebra with central charge c = 4

5 . With respect to the W(2, 3) algebra,
that is, using Lm as well as Wm modes to construct states, the partition function
ZA4,D4 is then expected to be the diagonal partition function
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ZW(2,3) = ∣

∣χ0

∣

∣

2 + ∣

∣χ 2
5

∣

∣

2 + 2
∣

∣χ 2
3

∣

∣

2 + 2
∣

∣χ 1
15

∣

∣

2
.

In fact, the additional chiral fields in the general ZAk+1,D(k+1)/2+2 partition function
have conformal weights h1,k+2 = n (4n − 1) with k = 4n − 1, so that an off-
diagonal partition function with respect to the Virasoro algebra can be interpreted
as a diagonal partition function with respect to an W

(

2, n (4n − 1)
)

algebra.

4.6 The Parafermions

In this section, we will study in more detail the parafermionic models already en-
countered in Sect. 3.6. These theories are given by the coset construction

ŝu(2)k

û(1)k
with c = 2(k − 1)

k + 2
, (4.65)

where for the calculation of the central charge, we refer to Eq. (3.27). Note also that
for k = 2, we have c = 1

2 which is the Ising model, for k = 3 we get c = 4
5 being

the three-state Potts model, and for k = 4 we find c = 1.

Characters for Parafermionic Theories

Analogous to the previous section, the characters for the parafermionic theories can
be determined from the branching rules of highest weight representations given in
Eq. (3.30). In particular, from the decomposition of HWRs

(

λŝu(2)k

) =
⊕

λû(1)k

(

λû(1)k

) ⊗ (

λŝu(2)k/û(1)k

)

,

we find the following decomposition of ŝu(2)k characters into û(1)k characters stud-
ied in Sect. 4.2.3 and branching functions ˜C (k)

l,m(τ ):

χ
(k)
l (τ ) =

k
∑

m=−k+1

�m,k(τ )

η(τ )
˜C (k)

l,m(τ ) , l = 0, . . . , k . (4.66)

From Sect. 4.2.3, we also know that in the case k = 1 the characters of ŝu(2)1 are
equal to the characters of û(1)1

χ
(1)
0 (τ ) = �0,1(τ )

η(τ )
, χ

(1)
1 (τ ) = �1,1(τ )

η(τ )
.

Comparing with Eq. (4.66), we then see that for the branching functions ˜C (1)
l,m(τ ), we

have
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˜C (1)
0,0 = 1 , ˜C (1)

0,1 = 0 , ˜C (1)
1,0 = 0 , ˜C (1)

1,1 = 1 .

These relations for the case k = 1 suggest a more general selection rule for the
sum in Eq. (4.66). And indeed, in the spirit of our analysis in Sect. 3.3, let us decom-
pose an irreducible spin l

2 representation of su(2) into its individual components in
the following way:

(

l
)

su(2) = (

l
)

u(1) ⊕ (

l − 2
)

u(1) ⊕ · · · ⊕ (−l + 2
)

u(1) ⊕ (−l
)

u(1)

=
l

⊕

m=−l
m+l=0 mod 2

(

m
)

u(1) .
(4.67)

The individual components are by itself representations of u(1) factors which ex-
plains the subscript in the formula above. Also, we observe that the branching func-
tions ˜C (k)

l,m(τ ) should not carry any u(1) charge since they correspond to the coset
(4.65) in which, roughly speaking, the u(1) part has been divided out. Therefore,
including the branching rule of Eq. (4.67) in Eq. (4.66), we arrive at

χ
(k)
l (τ ) =

k
∑

m=−k+1
l+m=0 mod 2

�m,k(τ )

η(τ )
˜C (k)

l,m(τ ) . (4.68)

The coefficients C (k)
l,m(τ ) = ˜C (k)

l,m(τ )/η(τ ) are called the string functions of ŝu(2)k ,

whereas ˜C (k)
l,m(τ ) with l + m = 0 mod 2 are the characters of the parafermions

ŝu(2)k /̂u(1)k .
Note finally that from the decomposition (4.68) we can read off the conformal

weights of the branching functions ˜C (k)
l,m(τ ) as

h(l,m) = l(l + 2)

4(k + 2)
− m2

4k
,

l = 0, . . . , k ,

m = −k + 1, . . . , k ,

where we employed Eqs. (3.11) and (4.34).

Modular Transformation of the Parafermionic Representations

Let us now determine the modular S-transformation of the parafermionic represen-
tations ˜C (k)

l,m(τ ). Similar to the previous section, we are going to infer them from the
modular properties of the ŝu(2)k and û(1)k characters. In particular, performing an
S-transformation on Eq. (4.68), we find

S(k)
l,l ′ = Sm,m ′ ˜S(k)

(l,m),(l ′,m ′) ,
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where S(k) is the S-matrix (4.59) and Sm,m ′ denotes the S-matrix corresponding to
�m,k . Using their explicit expressions and noting that S−1 = S∗, we obtain for the
S-matrix of the parafermionic representations ˜C (k)

l,m(τ ) that

˜S(k)
(l,m),(l ′,m ′) = S∗

m,m ′ S(k)
l,l ′

˜S(k)
(l,m),(l ′,m ′) =

√

1

k(k + 2)
sin

(

π

k + 2

(

l + 1
)(

l ′ + 1
)

)

eπ i m m′
k , (4.69)

where l, l ′ = 0, . . . , k and m, m ′ = −k + 1, . . . , k.

Remarks

• Let us note that we can write the ŝu(2)k Kač–Moody algebra in the following
way:

ŝu(2)k = ŝu(2)k

û(1)k
× û(1)k .

We can therefore express the ŝu(2) currents as a combination of a so-called
parafermion ψpar(z) and a free boson X (z, z) on a circle of radius R = √

2k

j+(z) =
√

k ψpar(z) e+i
√

2
k X (z) ,

j−(z) =
√

k ψ†
par(z) e−i

√
2
k X (z) ,

j3(z) = i
√

2k �z X (z) .

For these currents to have conformal weight h = 1, the parafermionic fields have
to have conformal dimension hpar = 1 − 1

k = k−1
k , since the dimension of the

vertex operator of the free boson is h = α2

2 = 1
k . This explains also the name

parafermion since ψpar is neither a boson nor a fermion.
• The parafermions feature a so-called level rank duality given by the relation

ŝu(2)k

û(1)k
= ŝu(k)1 × ŝu(k)1

ŝu(k)2
.

The unitary models of the parafermions are thus equivalent to the first unitary
models of the GKO ŝu(k) coset. This could lead one to the conclusion that the W
algebra with k → ∞ of ŝu(2)/̂u(1) has infinitely many generators of conformal
dimension W(2, 3, 4, 5, 6, . . .). However, this is not the case as for the first uni-
tary models of WAk , the W algebra truncates to a W(2, 3, 4, 5) algebra, which is
different from the su(5) Casimir algebra.
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4.7 Simple Currents

In the previous sections, we have presented various techniques to obtain modular
invariant partition functions. In particular, for ŝu(2)k we have shown a classification
of matrices M in Z = χ M χ leading to modular invariants. But, although we did
not show the corresponding analysis, such a procedure is quite challenging. It would
thus be helpful to have a method which allows to generate modular invariant parti-
tion functions without explicitly classifying all matrices M satisfying ST M S∗ = M .

The D2n+2 Partition Function

To motivate how such a method might work, let us recall the D2n+2 modular invari-
ant partition function (MIPF) from Table 4.1 for ŝu(2)4n conformal field theories
with k = 4n and n ∈ Z

Z =
n−1
∑

l=0

∣

∣χ2l + χk−2l

∣

∣

2 + 2
∣

∣χ k
2

∣

∣

2
. (4.70)

The conformal weights of the characters χl can be found in Eq. (3.11) which we
recall for convenience here

hl = l(l + 2)

4(k + 2)
. (4.71)

Using this expression for the combination of characters in (χ2l + χk−2l), we find

h2l − hk−2l = 2l(2l + 2)

4(k + 2)
− (k − 2l)(k − 2l + 2)

4(k + 2)
= l − k

4
= l − n ∈ Z ,

where we utilised that k = 4n. Note in particular that the vacuum character χ0 is
combined with χk which has conformal dimension hk = n ∈ Z. Therefore, the
symmetry algebra is extended by a primary field of dimension h = n. Next, if we
would allow for characters χl in Eq. (4.70) with generic l ∈ Z, we would obtain

hl − hk−l = l

2
− n ∈ Z

2
,

which is non-integer for l odd. Since in Eq. (4.70) only even l appear, we con-
clude that the D2n+2 modular invariant partition function contains only characters
which are combined in such a way that the difference of conformal dimensions is
an integer.
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Generalisation

To formalise these findings, let us define the field J (z) as J (z) = φk(z) where φk(z)
is a primary field of conformal dimension hk = n ∈ Z. Using the fusion coefficients
from Eq. (4.60), we obtain

[

J
] × [

J
] = [

1
]

,
[

J
] × [

φl
] = [

φk−l
]

,
[

J
] × [

φ k
2

] = [

φ k
2

]

.

Therefore, J organises the conformal families in orbits of length one and two, that
is, there are orbits under the action of J with one or two elements. Moreover, we
observe that in the partition function (4.70) the characters belonging to the same
orbit appear together. Let us now define the so-called monodromy charge of φl in
the following way:

Q
(

φl
) = h(J ) + h(φl) − h

(

J φl
)

mod 1 . (4.72)

For our example D2n+2 from above, we see that Q(φl) = l
2 and that only combi-

nations (χl + χk−l) with integer monodromy charge Q(φl) appear in the modular
invariant partition function (4.70).

This observation can be generalised which leads to the concept of so-called sim-
ple currents. The definition of a simple current reads as follows:

Definition 2. Given a Rational conformal field theory with highest weight represen-
tations φi , corresponding conformal families [φi ] and fusion algebra

[

φi
] × [

φ j
] =

∑

k

N k
i j

[

φk
]

,

a HWR J is called a simple current if its fusion with any other highest weight takes
the simple form

[

J
] × [

φi
] = [

φJ(i)
]

,

which implies for the fusion coefficients that N k
J i = δk,J(i). Here, the notation J(i)

means that J permutes the indices of the fields φi
4.

However, as we have seen in the previous example, the action of J can have fixed
points. Note also that the “simple” action of J is the reason for the terminology
simple current which has, however, no relation to fields with conformal dimension
h = 1.

4 An example for such a permutation would be (φJ(1), φJ(2), φJ(3)) = (φ2, φ1, φ3).
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Simple Currents for RCFTs

In the following, we will now generalise the discussion from the previous paragraph
to Rational conformal field theories with simple currents satisfying

h(J ) ∈ Z .

We observe that for J , there always exists a conjugate field J ∗ such that [J ]×[J ∗] =
[1]. This immediately implies [J ] × [J ] = [J ] is not possible because multiplying
J ∗ from the right would lead to a contradiction. Therefore, either [J ]× [J ] = [1] or
there exists another field J 2 such that [J ] × [J ] = [J 2]. By associativity, the latter
is again a simple current. Finally, because we are considering RCFTs having only a
finite number of HWRs, there must exist a length L ∈ Z such that

[

J
]L = [

1
]

.

We can carry out similar arguments for a field φi leading to the conclusion that
there has to be an integer li such that [J ]li × [φi ] = [φi ]. Therefore, J organises all
highest weight representations into so-called orbits of length li = L/p where p is
some divisor of L

(

φi , Jφi , J 2φ , . . . , J li −1φi
)

.

Let us next consider the general form of the OPE of a simple current J and a
primary field φ

J (z) φ(w) ∼ 1

(z − w) Q(φ)

(

[J ] × [φ]
)

(w) , (4.73)

where Q(φ) denotes the monodromy charge from Eq. (4.72). Since [J ] × [φ] may
involve derivatives, the right-hand side may contain further factors of (z − w)n with
n ∈ Z which are, however, not important for the present discussion. Furthermore,
from Eq. (4.73), we see that when moving J (z) around φ(w) counterclockwise, that
is, sending (z − w) to e2π i (z − w), J (z)φ(w) acquires the factor exp (−2π i Q(φ))
which explains the notation monodromy charge for Q(φ).

In order to gain further insight into the monodromy charge, let us note that from
the general form of the OPE for quasi-primary fields (2.53), we infer that h(J 2) ∈ Z

because J (z) has integer conformal weight. For the monodromy charge (4.72) of the
simple currents, we therefore obtain

Q(J ) = 0 . (4.74)

Next, we are going to compute the monodromy charge of Jφ in two different ways.
First, as illustrated in Fig. 4.6, we move J (u) around J (z)φ(w) which leads to
the monodromy Q(Jφ). However, by deforming the contour as depicted on the
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φ(w) φ(w) φ(w)

J(z) J(z)
J(z)

J(u) J(u)

J(u)

= +

Fig. 4.6 Illustration for the computation of monodromies

right-hand side of Fig. 4.6, we can alternatively compute the monodromy of Jφ by
moving J (u) around J (z) and around φ(w) separately. Therefore, the monodromy
charge satisfies

Q
(

Jφ
) = Q

(

J
) + Q

(

φ
) (4.74)= Q

(

φ
)

.

By iteration, we can conclude that all fields in the orbit of φi have the same mon-
odromy charge, that is,

Q
(

φ
) = Q

(

Jφ
) = Q

(

J 2φ
) = · · · .

Moreover, due to [J ]L = [1], it is clear that Q(φ) = Q(J Lφ) and so the monodromy
charges have to have the general form

Q(φi ) = t(φi )

L
with t(φi ) ∈ Z . (4.75)

Note that the integers t(φi ) can be different for each primary field φi and that we
will not need the explicit form of t(φi ) in the following.

Modular S-Transformation

We will now consider the modular S-transformation of characters in theories with
simple currents. To do so, we introduce the short-hand notation

Jαφi =: (αi) ,
∑

(αi)

=
∑

i

li −1
∑

α=0

. (4.76)

Without derivation, we note that in order for the fusion algebra to respect the mon-
odromy charge Q, the S-matrix has to have the form

S(αi)(δn) = exp
(

2π i
(

Q(φi ) δ + Q(φn) α
))

S(0i)(0n) . (4.77)
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In the following, we will now confirm that if the S-matrix is written in this way,
indeed the monodromy charge is preserved. However, before doing so, let us observe
that from the definition (4.76) we find (δn) = (δ + ln, n) where ln is the length of
the orbit containing φn . For the S-matrix (4.77), this implies that

S(αi)(δn) = S(αi)(δ+ln ,n) = e2π i Q(φi ) ln S(αi)(δn) .

Note that because of Eq. (4.75), for orbits with ln = L there is no ambiguity. But
for short orbits with li �= L , we can distinguish two cases

Q
(

φi
)

ln ∈ Z ⇒ no restriction ,

Q
(

φi
)

ln /∈ Z ⇒ S(αi)(δn) = 0 .

From this observation, we infer that sums over short orbits can be written in the
following way:

∑

(δn)

S(αi)(δn) . . . =
∑

n

ln−1
∑

δ=0

S(αi)(δn) . . . =
∑

n

ln

L

L−1
∑

δ=0

S(αi)(δn) . . .

where . . . stands either for other S-matrix elements or for characters χ(δn).
Let us now confirm that the S-matrix (4.77) preserves the monodromy charge. To

do so, we apply the Verlinde formula and compute the fusion coefficients as follows:

N (γ k)
(αi)(β j) =

∑

(δn)

S(αi)(δn)S(β j)(δn)S∗
(δn)(γ k)

S(00)(δn)

=
∑

n

S(0i)(0n)S(0 j)(0n)S∗
(0n)(0k)

S(00)(0n)
e2π i Q(φn )

(

α+β−γ

)

ln

L

L−1
∑

δ=0

e2π i δ

(

Q(φi )+Q(φ j )−Q(φk )
)

,

(4.78)

where we used that Q(1) = 0. Note that the sum over δ can be written as a δ-
function modulo L in the following way:

ln

L

L−1
∑

δ=0

e2π i δ

(

Q(φi )+Q(φ j )−Q(φk )
)

= ln

L−1
∑

δ=0

1

L
e

2π i
L δ

(

t(φi )+t(φ j )−t(φk )
)

= ln δ(L)
(

t(φi ) + t(φ j ) − t(φk)
)

. (4.79)

Here, we have employed that the δ-function modulo L can be expressed as

δ(L)
(

n
) =

L−1
∑

p=0

e
2π i
L p n for n ∈ Z .
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Using then Eq. (4.79) in Eq. (4.78), we see that the resulting fusion coefficients
agree with the definition of a simple current. Expressing the δ-function again in
terms of the monodromy charges, we find that for non-vanishing fusion coefficients
we have to require

Q(φk) = Q(φi ) + Q(φ j ) .

Therefore, the form of the S-matrix (4.77) leads to fusion rules where the total
monodromy charge on the left- and right-hand side of the fusion algebra agrees.
That is, the fusion algebra respects the monodromy charge.

Modular Invariant Partition Function

Now we will consider the modular S-transformation of an orbit with length li and
monodromy charge Q(J kφi ) ∈ Z for every k. Using the explicit form of the S-
matrix (4.77), we find

li −1
∑

α=0

χ(αi)

(

− 1

τ

)

= li

L

L−1
∑

α=0

χ(αi)

(

− 1

τ

)

= li

L

L−1
∑

α=0

∑

(δn)

S(αi),(δn) χ(δn)(τ )

= li

L

L−1
∑

α=0

∑

(δn)

exp
(

2π i
(

Q(φi ) δ + Q(φn) α
))

S(0i)(0n) χ(δn)(τ )

= li

L

∑

(δn)

L−1
∑

α=0

exp
(

2π i Q(φn) α
)

exp
(

2π i Q(φi ) δ
)

S(0i)(0n) χ(δn)(τ )

= li

L

∑

(δn)

L δ(1)
(

Q(φn)
)

S(0i)(0n) χ(δn)(τ )

=
∑

n
Q(φn )∈Z

li S(0i)(0n)

ln−1
∑

δ=0

χ(δn)(τ ) ,

where we expressed the sum over α as a δ-function and employed that by assump-
tion Q(φi ) ∈ Z. Furthermore, the δ-sum runs over the length of the orbit containing
φn . We have thus seen that orbits with Q(φi ) ∈ Z transform among themselves
under modular S-transformations.

We finally come to the main result of this section. For each simple current of inte-
ger conformal dimension, one can define a new modular invariant partition function
in the following way:
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ZJ (τ, τ ) = 1

N
∑

(αi)
Q(φi )∈Z

L−1
∑

β=0

χ(α+β,i)(τ ) χ (αi)(τ ) , (4.80)

where the normalisation constant N is fixed by the requirement that the vacuum
should only appear once in ZJ (τ, τ ). Note that the sum over α runs from one to the
length li of the orbit i , while the sum over β always runs over the maximal length
L . Because of this sum, we obtain the extra factors of L/ li in the partition function
for the shorter orbits. Moreover, we remark that this construction can be generalised
to initially non-diagonal partition functions with Mi j �= δi j in Eq. (4.80).

Let us now prove the modular invariance of this partition function. We start by
writing out the S-transform in terms of the S-matrix and employing the relation
(4.77) as S(α+β,i)(δn) = exp(2π iβQ(φn))S(αi)(δn) to find

ZJ

(

− 1

τ
,− 1

τ

)

= 1

N
∑

(αi)

δ(1)
(

Q(φi )
)

L−1
∑

β=0

∑

(δm)

S(α+β,i),(δm)χ(δm)(τ )
∑

(εn)

S∗
(αi),(εn)χ (εn)(τ )

= 1

N
∑

(αi)

1

L

L−1
∑

k=0

e−2π i Q(φi )k
L−1
∑

β=0

∑

(δm)

e2π i
(

Q(φi )δ+Q(φm )β
)

S(αi),(0m)χ(δm)(τ )

×
∑

(εn)

e−2π i Q(φi )ε S∗
(αi),(0n)χ (εn)(τ )

= 1

N
1

L

L−1
∑

k=0

L−1
∑

β=0

∑

(δm),(εn)

e2π i Q(φm )βχ(δm)(τ )χ (εn)(τ )

×
∑

(αi)

e2π i Q(φi )(δ−k−ε) S†
(0n),(αi)S(αi),(0m)

= 1

N
1

L

L−1
∑

k=0

L−1
∑

β=0

∑

(δm),(εn)

e2π i Q(φm )βχ(δm)(τ )χ (εn)(τ )
∑

(αi)

S†
(0n),(αi)S(αi),(δ−k−ε,m) .

Using Eq. (4.54) we see that the last sum in the last line gives a δ-function setting
m = n and (δ − k − ε) = 0. Writing then the β sum over the remaining exponential
again as a δ(1)-function, we obtain

ZJ

(

− 1

τ
,− 1

τ

)

= 1

N

L−1
∑

k=0

∑

(εn)

δ(1)
(

Q(φn)
)

χ(k+ε,n)(τ ) χ (εn)(τ ) = ZJ (τ, τ ) ,

and so we have shown that the partition function (4.80) is invariant under modular
S-transformations.
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Example

As an example, let us consider a CFT with ŝu(2)4 Kač–Moody symmetry. This
theory has five highest weight representations with characters denoted as χi (τ ), i =
0, . . . , 4. From Eq. (4.59), we determine the S-matrix to be of the following form:

S = 1√
3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2

√
3

2 1
√

3
2

1
2√

3
2

√
3

2 0 −
√

3
2 −

√
3

2

1 0 −1 0 1√
3

2 −
√

3
2 0

√
3

2 −
√

3
2

1
2 −

√
3

2 1 −
√

3
2

1
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.81)

Utilising then the explicit expression for the fusion coefficients (4.60), we find for
instance that N m

4,l = δl+m,4 which implies that the field φ4 is a simple current. Fur-
thermore, it follows that [J ]2 = 1 and so the maximal length of the orbits is L = 2.
Employing finally Eq. (4.71), the conformal dimension is easily found as h4 = 1.

As we illustrated previously, the partition function should contain only characters
of orbits with integer monodromy charge. In the present case we have Q

(

φl
) = l

2
for an orbit containing φl and so the possibilities which respect the condition above
are

χ̃0 = χ0 + χ4 , χ̃2 = χ2 .

Note that the second orbit has shorter length and is called a fixed point of the sim-
ple current construction. The S-matrix for these two orbits can be obtained from
Eq. (4.81) and has the simple form

˜S = 1√
3

(

1 2
1 −1

)

.

Note that˜S is not symmetric, which can be reconciled by “resolving” the short orbit.
However, we will not explain this method here. The partition function is found using
the general expression (4.80) to be of the following form:

˜Z J (τ, τ ) = 1

N

1
∑

β=0

(

1
∑

α=0

χ(α+β,0) χ (α,0) + χ(β,2) χ (0,2)

)

= χ0 χ0 + χ4 χ4 + χ4 χ0 + χ0 χ4 + 2 χ2 χ2

= ∣

∣ χ̃0

∣

∣

2 + 2
∣

∣ χ̃2

∣

∣

2
,

where we fixed the normalisation constant to be N = 1 because the vacuum repre-
sentation χ0 should only appear once. Writing this expression as
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˜Z J (τ, τ ) =
(

χ̃0

χ̃2

)T(
1 0
0 2

) (

χ̃0

χ̃2

)

and computing˜ST M˜S∗ = M with M = diag(1, 2), we see that the partition function
is indeed invariant under modular S-transformations.

Remark

The concept of simple currents can be generalised to the case h(J ) �= Z which does
not lead to the orbit partition functions studied in this section, but instead to so-called
automorphism invariants such as the D2n+1 series for ŝu(2)4n−2. However, not all
modular invariants are obtained via simple currents, for instance the E7 invariant for
ŝu(2)16 cannot be constructed in this way. But the techniques covered in this section
will become very valuable in Chap. 5 when constructing modular invariant partition
functions corresponding to Calabi–Yau compactifications.

4.8 Additional Topics

Although not important for the rest of this course, in this section we illustrate two
interesting questions in conformal field theory. This part can be omitted in a first
reading.

4.8.1 Asymptotic Growth of States in RCFTs

For various applications of CFT, it is important to have an estimate on the asymptotic
growth of the degeneracy of states in a partition function. In this section, we will
investigate this point.

To start with, let us assume we have a (not necessarily unitary) Rational confor-
mal field theory with central charge c and highest weight representations labelled
by i of conformal dimension hi . The characters corresponding to these HWRs have
the form

χi (τ ) = qhi − c
24

∑

N≥0

Pi (N ) q N . (4.82)

The question we want to ask is how the degeneracy of states P(N ) behaves for
N � 1. To determine this behaviour, we apply a modular S-transformation to χi (τ )
to find

χi (τ ) =
∑

j

Si j χ j

(

− 1

τ

)

=
∑

j

Si j e− 2π i
τ (h j − c

24 )
∑

N≥0

Pj (N ) e− 2π i
τ

N . (4.83)
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Next, we study χi (τ ) in the limit τ = iτ2 with τ2 → 0+, that is, τ2 goes to zero from
above. Equation (4.83) then becomes

χi (iτ2) ∼
τ2→0+

Si jmin e
π

12τ2
(c−24hmin)

(

1 + O
(

e− 2π
τ2
)

)

, (4.84)

where hmin denotes the minimal highest weight in the RCFT. For unitary theories,
we have of course hmin = 0. Thus, the exponential factor in Eq. (4.84) gives the
leading order contribution in the τ2 → 0+ limit.

Now, we have to find P(N ) in Eq. (4.82) such that for τ2 → 0+, we obtain
the same behaviour as in Eq. (4.84). To this end, we make the ansatz P(N ) ∼
exp(2

√
Nα) and write Eq. (4.82) as

χi (iτ2) ∼
τ2→0+

e−2πτ2(hi − c
24 )

∑

N≥0

e2
√

Nα e−2πτ2 N

∼
τ2→0+

∫ ∞

0
dy exp

(

−2πy + 2

√

α y

τ2

)

,

where we have neglected subleading terms in the limit τ2 → 0+ and performed
the change of variables Nτ2 → y together with replacing the sum by an integral.
Then, we complete a perfect square in the exponent and again change variables to

z = √
y − 1

2π

√

α
τ2

which gives

χi (iτ2) ∼
∫ ∞

0
dy exp

(

−2π

(√
y − 1

2π

√

α

τ2

)2)

exp

(

α

2πτ2

)

∼
∫ ∞−

(

α

4π2τ2

)1/2

−
(

α

4π2τ2

)1/2
dz

(

z + 1

2π

√

α

τ2

)

e−2π z2
exp

(

α

2πτ2

)

.

Let us now extract the leading order behaviour of this expression in the limit τ2 →
0+. Performing the integration for instance with the help of a computer algebra
package, one finds that the contribution of the integral over z is always subleading
compared to the exponential e

α
2πτ2 . But also at a less formal level, by changing the

integration domain to (−∞,+∞), we find

χi (iτ2) ∼
∫ +∞

−∞
dz

(

z + 1

2π

√

α

τ2

)

e−2π z2
exp

(

α

2πτ2

)

∼ 1√
τ2

exp

(

α

2πτ2

)

∼ exp

(

α

2πτ2

)

,

where we performed a Gaussian integration. Therefore, our ansatz from above gives
the same kind of divergence for τ2 → 0+ as Eq. (4.84) provided we identify α =
π2

6 ceff with the effective central charge defined as ceff = c − 24hmin. To summarise,
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the asymptotic growth of the number of states in a highest weight representation of
a RCFT with central charge c is of the form

P(N ) ∼ exp

(

π

√

2

3
ceff N

)

where ceff = c − 24 hmin .

This formula is often used in string theory for microstate counting for instance in
computations of the statistical entropy of a stringy black hole.

4.8.2 Dilogarithm Identities

Let us mention one nice curiosity for the ŝu(2)k unitary models with central charge
c = 3k

k+2 and highest weights h = l(l+2)
4(k+2) . Here, we will be satisfied with just

stating the result which involves the so-called Rogers–Ramanujan identities whose
derivation can be found in the literature. Let us start by first defining the Rogers
dilogarithm in the following way:

L(z) = Li2(z) + 1

2
log(z) log(1 − z) ,

with the poly-logarithm Li2(z) = ∑∞
n=1

zn

n2 which is well defined for z < 1. The
Rogers dilogarithm satisfies the relations

L(1 − z) + L(z) = L(1) , L
(

z2
) = 2 L(z) − 2 L

(

z

1 + z

)

,

L(1) = π2

6
, L(0) = 0 .

Furthermore, it can be analytically continued to the region z > 1 by using L(z) =
2 L(1) − L(1/z) which implies that limz→∞ L(z) = 2 L(1).

Let us now turn to the modular S-matrix and the Verlinde formula. In particular,
as mentioned in Sect. 4.3, we can diagonalise the fusion rules with the following
entries in the diagonal matrix D:

Dλ l = Slλ

S0λ

=
sin

(

π
k+1

(

l + 1
)(

λ + 1
)

)

sin
(

π
k+2

(

λ + 1
)

)

for l, λ = 0, . . . , k. Note that here we used the explicit form of the S-matrix for
ŝu(2)k given in Eq. (4.59). Without providing a derivation, we state that the follow-
ing k + 1 relations are satisfied for each λ = 0, . . . , k:
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1

L(1)

k
∑

l=1

L

(

1
(

Dλ l
)2

)

= c − 24 hλ + 6λ .

It is quite remarkable that the sum of dilogarithms evaluated at special irrational
values adds up precisely to the rational defining data of a Rational conformal field
theory. It was conjectured that similar dilogarithm identities hold for any RCFT and
might eventually be a way or a piece in the puzzle towards a classification of RCFTs.
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Chapter 5
Supersymmetric Conformal Field Theory

In the previous chapters, we have studied conformal field theories with only bosonic
or only fermionic fields. However, we can formulate CFTs containing both bosons
and fermions which may exhibit new symmetries. For instance, there can be symme-
tries exchanging bosonic and fermionic fields called supersymmetries, which have
been studied intensively in many instances. In fact, also two-dimensional conformal
field theories can be generalised to respect supersymmetry. These so-called super-
conformal field theories (SCFT) naturally appear in string theory; in particular, it
was shown that the pure bosonic string is unstable while a supersymmetric extension
can be stable.

In the present chapter, we will give a brief introduction to superconformal field
theories. But since many aspects are similar to bosonic CFTs, we will not present a
detailed discussion at all instances. Instead, we assume the reader to be sufficiently
accustomed to the structures of CFT that she or he will accept some straightfor-
wardly generalised features without a detailed derivation.

In view of string theory, in this chapter we will discuss so-called N = 2 SCFTs
and so-called Gepner models in some length, which exhibit new structures impor-
tant for compactifications of Superstring Theory. The Gepner model constructions
are extremely powerful and are maybe one of the most impressive applications of
conformal field theory at all. In particular, the metric on a Calabi–Yau manifold,
on which the superstring is compactified on, in general is not known explicitly,
and the non-linear sigma model governing the dynamics cannot be written down.
Nevertheless, at particular points in the moduli space, the Gepner models provide
exact solutions to the non-linear sigma model.

5.1 N = 1 Superconformal Models

Let us start exploring N = 1 superconformal field theories by considering the
simplest imaginable model consisting of just the free boson X (z, z) introduced in
Sect. 2.9.1 and the free fermion ψ(z, z) from Sect. 2.9.2. Here and in the following,
we are going to focus on fermions in the Neveu–Schwarz sector, but the results for
the Ramond sector are obtained along the same lines.

Blumenhagen, R., Plauschinn, E.: Supersymmetric Conformal Field Theory. Lect. Notes
Phys. 779, 169–204 (2009)
DOI 10.1007/978-3-642-00450-6 5 c© Springer-Verlag Berlin Heidelberg 2009
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The N = 1 Superconformal Extension of the Free Boson Theory

Since the free boson and free fermion theories are independent of each other, the
energy–momentum tensor is simply the sum of the bosonic and the fermionic one

T (z) = 1

2
N
(

j j
)

(z) + 1

2
N
(

ψ �ψ
)

(z) .

For convenience, here we have fixed the normalisation constants of the two-point
functions from Sect. 2.9 to be +1 which has no implications for the rest of our
calculations. As a next step, we expand the energy–momentum tensor in a Laurent
series T (z) = ∑

m∈Z
Lm z−m−2 in the usual way. This implies Lm = Lbos.

m + L ferm.
m

leading to

Lm = 1

2

(

∑

k>−1

jm−k jk +
∑

k≤−1

jk jm−k

)

+ 1

2

(

∑

s>− 3
2

(

s + 1
2

)

ψm−s ψs − ∑

s≤− 3
2

(

s + 1
2

)

ψs ψm−s

)

.

(5.1)

The bosonic Lbos.
m and the fermionic part L ferm.

m satisfy the Virasoro algebra with
central charges c = 1 and c = 1

2 , respectively. Because these algebras are indepen-
dent of each other, i.e.

[

Lbos.
m , L ferm.

n

] = 0, we see that Eq. (5.1) obeys the Virasoro
algebra with central charge

c = 1 + 1

2
= 3

2
.

So far, we have not encountered new structures due to the combination of the free
boson and free fermion CFT. However, out of the current j(z) = i �X (z, z) and the
fermion ψ(z), we can built a new fermionic field written as

G(z) = N
(

j ψ
)

(z) .

Here we have chosen the normalisation of G(z) to be 1 which turns out to be conve-
nient in the following. The normal ordered product is required to give a meaning to
this expression at the quantum level, but since the free boson and the free fermion
are independent of each other, their Laurent modes commute and so we can write

G(z) =
∑

r∈Z+ 1
2

Gr z−r− 3
2 with Gr =

∑

s∈Z+ 1
2

jr−s ψs .
(5.2)

Using then the definition of a conformal primary field from Eq. (2.45) and noting
that j(z) and ψ(z) are primary fields of conformal dimension h = 1 and h = 1

2 ,
respectively, we calculate
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[

Lm, Gr
] =

∑

s∈Z+ 1
2

(

[

Lbos.
m , jr−s

]

ψs + jr−s
[

L ferm.
m , ψs

]

)

=
∑

s∈Z+ 1
2

(−(

r − s
)

jm+r−s ψs + jr−s
(−m

2 − s
)

ψm+s
])

=
( m

2
− r

)

Gm+r ,

(5.3)

where from the second to the last line we changed the summation s → s − m in
the last term. Note that by comparing Eqs. (5.3) with (2.45), we see that G(z) is a
primary field of conformal dimension h = 3

2 .
After having determined the relation between Lm and Gr , let us also calculate the

anti-commutator of two Laurent modes Gr and Gs . We start again by using Eq. (5.2)
to write explicitly

{

Gr , Gs
} =

∑

p,q∈Z+ 1
2

{

jr−p ψp, js−q ψq
}

=
∑

p,q∈Z+ 1
2

(

jr−p js−q
{

ψp, ψq
} + [

js−q , jr−p
]

ψqψp

)

=
∑

p∈Z+ 1
2

(

jr−p js+p + (

p − r
)

ψr+s−pψp

)

.

(5.4)

Next, we will bring these sums into a form which can be expressed in terms of Lm
and Gr . To do so, we have to carefully arrange them into normal ordered expressions
in the following way:

{

Gr , Gs
} =

∑

p>−1−s

jr−p js+p +
∑

p≤−1−s

(

js+p jr−p + [

jr−p, js+p
]

)

+
∑

p>− 3
2

(p + 1
2 ) ψr+s−p ψp +

∑

p≤− 3
2

(p + 1
2 )

(

−ψp ψr+s−p + {

ψr+s−p, ψp
}

)

−
∑

p>− 1
2

(r + 1
2 ) ψr+s−p ψp −

∑

p≤− 1
2

(r + 1
2 )

(

−ψp ψr+s−p + {

ψr+s−p, ψp
}

)

= 2 Lbos.
r+s +

∑

p≤− 1
2

(r − p) δr+s,0 −
− 1

2
∑

p=−s

(r − p) δr+s,0 + 2 L ferm.
r+s

+
∑

p≤− 1
2

(p + 1
2 ) δr+s,0 − (r + 1

2 ) N
(

ψ ψ
)

r+s
−

∑

p≤− 1
2

(r + 1
2 ) δr+s,0 .

We then recall from Sect. 2.9.2 that the lormal ordered product of two identical
fermions vanishes and we note that the sums with summation index p ≤ − 1

2 cancel
among each other. After combining Lbos.

r+s and L ferm.
r+s into the Laurent mode of the

total energy–momentum tensor, we are left with computing
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− 1
2

∑

p=−s

(r − p) δr+s,0 =
s− 1

2
∑

n=0

(

n − (s − 1
2 )
)

δr+s,0 = −1

2

(

s2 − 1

4

)

δr+s,0 ,

which we utilise to arrive at

{

Gr , Gs
} = 2 Lr+s + 1

2

(

r2 − 1

4

)

δr+s,0 . (5.5)

An Alternative Way to Determine Eq. (5.5)

In the previous paragraph, we have employed the definition of G(z) as well as the
algebra of the jn and ψr modes to obtain the anti-commutation relations (5.5). How-
ever, utilising the general structure of quasi-primary fields studied in Sect. 2.6.3 can
help to shorten such computations considerably.

In particular, from Eq. (5.3) we know that G(z) is a primary field of conformal
dimension h = 3

2 . Generalising formula (2.54) from Sect. 2.6.3 to fermionic fields,
we can determine the anti-commutator of two G(z) modes to be of the form

{

Gr , Gs
} = C L

GG p 3
2 , 3

2 ,2(r, s) Lr+s + dGG δr+s,0

(

r + 1
2

2

)

.

In order to arrive at this equation, we have recalled the fact that the (anti-)commu-
tator of two identical fields contains only fields of even conformal dimension on the
right-hand side. Next, from Eq. (2.56) we determine

dGG = 〈

0
∣

∣ G+ 3
2

G− 3
2

∣

∣0
〉 = 〈

0
∣

∣ ψ 1
2

j1 j−1 ψ− 1
2

∣

∣0
〉 = 1 ,

and from Eq. (2.55) we compute p 3
2 , 3

2 ,2(r, s) = 1 as well as p2, 3
2 , 3

2
(r, s) = 1

3 (m−2r ).

The latter expression allows us to fix CG
LG = 3

2 via Eq. (5.3) and so, recalling from
Eq. (2.58) that dL L = c/2, we can calculate the last missing structure constant in
the following way:

C L
GG = CGGL d−1

L L = CG
LG dGG d−1

L L = 3

2
· 1 · 4

3
= 2 .

Note that here we employed that c = 3/2. In conclusion, we have determined the
anti-commutation relations (5.5) in a less involved way.

The N = 1 Super Virasoro Algebra

So far, we have studied in detail the algebra of the N = 1 superconformal extension
of the free boson theory. The structure we have found is an example for an N = 1
super Virasoro algebra where the specification N = 1 refers to the fact that there is
one so-called superpartner for each field. For instance, in the last paragraph the free
fermion is the superpartner of the free boson and G(z) is the superpartner of T (z).
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The defining relations for a general N = 1 super Virasoro algebra in terms of the
modes Gr and Lm read

[

Lm, Ln
] = (m − n) Lm+n + c

12

(

m3 − m
)

δm+n,0 ,

[

Lm, Gr
] =

(m

2
− r

)

Gm+r ,

{

Gr , Gs
} = 2 Lr+s + c

3

(

r2 − 1

4

)

δr+s,0 .

(5.6)

The first line characterises the bosonic Virasoro algebra, the second line is the state-
ment that G(z) is a primary field of conformal dimension 3

2 and the last line is the
defining relation for the supersymmetric generalisation of the Virasoro algebra. Note
that this algebra is also valid for the Ramond sector where G(z) is periodic and the
Laurent modes are integer labelled.

Mathematically, the relations (5.6) determine an infinite-dimensional super Lie
algebra. A finite algebra contained in the infinite-dimensional one is generated
by {L0, L±1, G± 1

2
} and turns out to be osp(1|2). The corresponding super group

O S P(1|2) plays the same role for SCFTs as SL(2, C)/Z2 does for usual CFTs.
Analogously to Sect. 2.6, O S P(1|2) can then be used to constrain the OPE for
super quasi-primary conformal fields.

Superspace

We will now present the so-called superspace formalism which allows us to express
certain equations for superconformal theories in a more compact way. However, we
will be brief and focus only on the structure needed here.

To start with, let us introduce the superspace via the pair Z = (z, �) where z ∈ C

is an ordinary variable and � is a so-called Grassmann variable with the property

{

�, �
} = 0 ,

from which it immediately follows that �2 = 0. We define the derivative on super-
space in the following way:

D = �� + � �z ,

and we observe that D2 = �z . Furthermore, we introduce the superfield �(Z )
written in terms of its bosonic and fermionic components φ(z) and ψ(z) as

�(Z ) = φ(z) + � ψ(z) .

A particular superfield is the combination of the energy–momentum tensor
T (z) together with its superpartner G(z) expressed as
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L(Z ) = 1

2
G(z) + � T (z) .

Without derivation, we now note that the N = 1 super Virasoro algebra (5.6) is
encoded in the following OPE of L(Z ) with itself:

L(Z1)L(Z2) = c/6

Z3
12

+
3
2 �12 L(Z2)

Z2
12

+
1
2 DL(Z2)

Z12
+ �12 D2L(Z2)

Z12
+ · · · , (5.7)

where Z12 is the superinterval defined as Z12 = z1 − z2 − �1�2 and �12 stands
for �12 = �1 − �2. Separating the �-dependent terms by using {�, G} = 0, we
recover the N = 1 algebra (5.6) from the super OPE (5.7). In a similar way, the
definition of a super primary field is given by

L(Z1) �(Z2) = � �12 �(Z2)

Z2
12

+
1
2 D�(Z2)

Z12
+ �12 D2�(Z2)

Z12
+ · · · ,

where � is the superconformal dimension of �(Z ) related to the component fields
as hφ = � and hψ = � + 1

2 . Separating again the �-dependent part, we find for the
Laurent modes the following equations defining an N = 1 super primary field:

[

Lm, φn
] = (

(h − 1) m − n
)

φm+n ,
[

Gr , φn
] = 2 ψn+r ,

[

Lm, ψr
] = (

(h − 1
2 ) m − r

)

ψm+r ,
{

Gr , ψs
} = (

r
2 − s

)

φr+s .

If these relations are only satisfied for the O S P(1|2) subalgebra with m = −1, 0, 1
and r = −1/2, 1/2, the superfield is called super quasi-primary.

Note that the structure we obtained here is very similar to the bosonic case. As
we have mentioned at the beginning of the chapter, we did not present a derivation
of these results in full detail but only gave an outline of how they are obtained.

Highest Weight States

Let us also define an N = 1 superconformal highest weight state in analogy to the
bosonic case. Concretely, if a state |h〉 satisfies

Ln

∣

∣h
〉 = 0 for n > 0 ,

Gr

∣

∣h
〉 = 0 for r > 0 ,

(5.8)

it is called a superconformal highest weight state. In a similar way as for the Virasoro
algebra, one can then study highest weight representations of the N = 1 super
Virasoro algebra. As it turns out, in the regime 0 < c < 3

2 unitary highest weight
representations are possible only for the following discrete values of the central
charge:
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c = 3

2

(

1 − 8

(m + 2)(m + 4)

)

. (5.9)

Remarks

Let us conclude our brief discussion of N = 1 superconformal field theories with
some remarks.

• Using m = 1 in Eq. (5.9), we obtain c = 7
10 which is the central charge of

the tri-critical Ising model mentioned at the end of Sect. 2.10. This observation
indicates that the tri-critical Ising model is actually supersymmetric.

• A concrete coset realisation leading to the discrete series (5.9) of the N = 1
super Virasoro algebra is given by

ŝu(2)k × ŝu(2)2

ŝu(2)k+2
. (5.10)

Similarly as in Chap. 4, this realisation can be used to determine the characters,
the modular S-matrix and the fusion rules of the N = 1 super Virasoro algebra.

• As in Sect. 3.7, one can study extensions of the super Virasoro algebra by chiral
super primary fields of conformal dimension �. This leads to the notion of a
super W algebra denoted as

SW
(

3

2
, �1, . . . , �N

)

.

5.2 N = 2 Superconformal Models

In the last section, we have studied N = 1 superconformal field theories where each
field has precisely one superpartner. However, especially for applications to string
theory, N = 2 superconformal theories with two superpartners for each field are
much more important. This will be the subject of the present section.

The N = 2 Superconformal Extension of the Free Boson Theory

Let us again start with the example of the free boson. We define a complex free
boson �(z, z) in terms of the two real fields X (1,2)(z, z) in the following way:

�(z, z) = 1√
2

(

X (1)(z, z) + i X (2)(z, z)
)

,

and similarly for a complex free fermion �(z). Because the free boson itself is not
an appropriate field in a conformal field theory, as usual, we will make use of the
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corresponding currents j(z) = i� �(z, z) and j(z) = i� �(z, z). Focussing then
only on the holomorphic part, the fields of interest are

(

i��
)

(z) = 1√
2

(

j (1)(z) + i j (2)(z)
)

, �(z) = 1√
2

(

ψ (1)(z) + i ψ (2)(z)
)

.

(5.11)

In order to avoid potential confusion with our notation, let us emphasise that j (1,2)(z)
are the holomorphic currents for X (1,2)(z, z) and that �(z) and ��(z) denote the
complex conjugate of �(z) and ��(z), respectively; however, they have no relation
with the anti-holomorphic part depending solely on the variable z.

The energy–momentum tensor for the present theory is again the sum of each
individual CFT because these are independent of each other. We can thus write T (z)
in terms of the complex fields (5.11) in the following way:

T (z) = −N
(

�� ��
)

(z) + 1

2
N
(

� ��
)

(z) + 1

2
N
(

� ��
)

(z) .

The Laurent modes Lm of the total energy–momentum tensor satisfy the usual
Virasoro algebra since this algebra is satisfied by each of the individual theories.
Therefore, the central charge is computed as

c = 1 + 1 + 1

2
+ 1

2
= 3 .

Next, we recall from p. 63 that the theory of a complex free fermion �(z) con-
tains a field of conformal dimension h = 1 expressed in the following way:

j(z) = −N
(

� �
)

(z) . (5.12)

Because we have already studied the algebra of this current, we can be brief and just
quote the results. Using that the two fermionic theories anti-commute, the Laurent
modes of j(z) are written as

jn = +i N
(

ψ (1)ψ (2)
)

n = −i
∑

s∈Z+ 1
2

ψ
(1)
n−s ψ (2)

s ,

where we consider the fermions to be in the Neveu–Schwarz sector. Noting then that
[Lbos.

m , ψ (1,2)
r ] = 0 and employing Eq. (2.114), we find for the commutation relations

that

[

jm, jn
] = m δm+n,0 and

[

Lm, jn
] = − n jm+n .

We proceed in analogy to the previous section where we found a new fermionic
field G(z). In the present case, it turns out that we can construct two such fields in
the following way:
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G+(z) =
√

2 i N
(

�� �
)

(z) , G−(z) =
√

2 i N
(

�� �
)

(z) , (5.13)

whose sum takes the form G+(z) + G−(z) = 1√
2

(

G(1)(z) + G(2)(z)
)

. Actually, there
are four independent combinations of a complex free boson with a complex free
fermion. However, the remaining two choices decouple from the algebra, that is,
they commute with every element of the N = 2 algebra. For the expansion of
G+(z) and G−(z) into a Laurent series, we note that the bosonic and fermionic
theories commute to find

G±
r = 1√

2

∑

s∈Z+ 1
2

(

j (1)
r−s ∓ i j (2)

r−s

)(

ψ (1)
s ± iψ (2)

s

)

.

Let us now explore the relations between G±(z) and the energy–momentum tensor
as well as the current (5.12). Employing that j (1,2)(z) are primary fields of conformal
dimension h = 1 and that ψ (1,2)(z) have dimension h = 1

2 , we find along the same
lines as in the previous section that

[

Lm, G±
r

] =
(m

2
− r

)

G±
m+r .

From this we see that G+(z) and G−(z) are primary fields of conformal dimension
h = 3

2 . With respect to the current j(z) defined in Eq. (5.12), we compute the charge

of G±(z) as follows:

[

jm, G±
r

] = ± G±
m+r .

We thus see that the fields G±(z) carry charge +1 and −1, respectively, with respect
to j(z). Finally, let us determine the anti-commutator between two modes of G±(z).
Performing a calculation along similar lines as above, we arrive at

{

G+
r , G+

s

} = {

G−
r , G−

s

} = 0 ,

{

G+
r , G−

s

} = 2 Lr+s + (

r − s
)

jr+s +
(

r2 − 1

4

)

δr+s,0 .

The N = 2 Superconformal Algebra

After having studied the example of the N = 2 superconformal extension of the
free boson, let us now generalise the appearing structure and write down the general
form of the N = 2 superconformal algebra. In particular, we express this algebra in
terms of the Laurent modes Lm of the energy–momentum tensor, its superpartners
G±

r and in terms of the modes jn of a U (1) current. For half-integer moding of G±
r ,

this algebra is also known as the Neveu–Schwarz algebra while for integer moded
G±

r , it is called the Ramond algebra. Concretely, we have
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[

Lm, Ln
] = (

m − n
)

Lm+n + c

12

(

m3 − m
)

δm+n,0 ,

[

Lm, jn
] = −n jm+n ,

[

Lm, G±
r

] =
( m

2
− r

)

G±
m+r ,

[

jm, jn
] = c

3
m δm+n,0 ,

[

jm, G±
r

] = ± G±
m+r ,

{

G+
r , G−

s

} = 2 Lr+s + (

r − s
)

jr+s + c

3

(

r2 − 1

4

)

δr+s,0 ,

{

G+
r , G+

s

} = {

G−
r , G−

s

} = 0 .

(5.14)

The first three equations of Eq. (5.14) state the usual Virasoro algebra and that j(z)
and G±(z), respectively, are primary fields of conformal dimension h = 1 and
h = 3

2 . The next two relations specify a U (1) current algebra and that G±(z) has
j(z) charge ±1. Finally, the last two lines are the relations among the fields G±(z).

From Eq. (5.14) we infer that the Cartan subalgebra of the N = 2 super Virasoro
algebra, that is the maximal set of commuting operators, is generated by L0 and j0.
Therefore, these operators can be diagonalised simultaneously and so each state in
the Hilbert space carries two labels determined as

L0

∣

∣h, q
〉 = h

∣

∣h, q
〉

, j0
∣

∣h, q
〉 = q

∣

∣h, q
〉

. (5.15)

Note that in the following, we will frequently refer to the charge q of a state with
respect to the U (1) current of the N = 2 superconformal algebra.

Representation Theory of the N = 2 Super Virasoro Algebra

Let us now turn to the representation theory of the N = 2 super Virasoro algebra.
Due to the U (1) current generically present in such a theory and the resulting ex-
tended Cartan subalgebra, the representation theory is different from the N = 0 and
N = 1 cases. Without going into detail, we simply state that there exists a discrete
series of rational unitary models in the regime 0 < c < 3 given by

c = 3 k

k + 2
, k ≥ 1 . (5.16)

Note that, in contrast to the usual N = 0 Virasoro algebra, no rational non-unitary
models such as Eq. (2.120) are known.

Next, for each value of k in the unitary series (5.16), there exists a finite number
of highest weight representations φl

m,s which are specified by their conformal weight
and j0 charge in the following way:
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hl
m,s = l (l + 2) − m2

4 (k + 2)
+ s2

8
, qm,s = − m

k + 2
+ s

2
. (5.17)

The constraints on the integers l, m and s take the following form:

0 ≤ l ≤ k , 0 ≤ |m − s| ≤ l , s =
{

0, 2 Neveu–Schwarz sector,
±1 Ramond sector,

and s is defined only modulo 4 while m is defined modulo 2(k + 2). Given these
restrictions on (l, m, s), one finds a Z2 identification which relates highest weight
representations as

φl
m,s ∼ φk−l

m+k+2,s+2 .

This reflection symmetry can be used to bring (l, m, s) into the regime 0 ≤ |
m − s| ≤ l.

Partition Function of the N = 2 Extension of the Free Boson

Let us now determine the partition function for the example of the N = 2 su-
perconformal extension of the free boson theory studied at the beginning of this
section. Similar to the non-supersymmetric case, the partition function is defined
via Eq. (4.10). By combining the result of the free boson (4.14) with that of the free
fermion (4.44), we obtain

ZN=2(τ, τ ) = 1

4

1
∣

∣η(τ )
∣

∣

4

(

∣

∣

∣

∣

ϑ3

η

∣

∣

∣

∣

2

+
∣

∣

∣

∣

ϑ4

η

∣

∣

∣

∣

2

+
∣

∣

∣

∣

ϑ2

η

∣

∣

∣

∣

2
)

, (5.18)

where the squares are due to the presence of two real bosons and two real fermions,
respectively.

However, let us observe the following relations among the �-functions intro-
duced in Eq. (4.24) and the ϑ-functions given on p. 137:

�0,2(τ ) = 1

2

(

ϑ3(τ ) + ϑ4(τ )
)

, �+1,2(τ ) = 1

2

(

ϑ2(τ ) + i ϑ1(τ )
)

,

�2,2(τ ) = 1

2

(

ϑ3(τ ) − ϑ4(τ )
)

, �−1,2(τ ) = 1

2

(

ϑ2(τ ) − i ϑ1(τ )
)

.

(5.19)

These expressions together with the fact that ϑ1(τ ) is identically zero allow us to
rewrite the partition function (5.18) in the following way:

ZN=2(τ, τ ) = 1
∣

∣η(τ )
∣

∣

4

(

∣

∣

∣

∣

�0,2

η

∣

∣

∣

∣

2

+
∣

∣

∣

∣

�2,2

η

∣

∣

∣

∣

2

+
∣

∣

∣

∣

�+1,2

η

∣

∣

∣

∣

2

+
∣

∣

∣

∣

�−1,2

η

∣

∣

∣

∣

2
)

, (5.20)
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and by comparing with Eq. (4.33), we see that the terms in the parenthesis constitute
the û(1)2 partition function. However, we know from Sect. 3.4 that two real fermions
satisfy an ŝo(2)1 Kač–Moody algebra. Guided by this observation, we state that the
characters for the ŝo(2)1 theory take the following form:

χ
(0,0)
O (τ ) = �0,2(τ )

η(τ )
(h, q) = (0, 0) ,

χ
( 1

2 ,1)
V (τ ) = �2,2(τ )

η(τ )
(h, q) = ( 1

2 , 1) ,

χ
( 1

8 ,+ 1
2 )

S (τ ) = �+1,2(τ )

η(τ )
(h, q) = ( 1

8 ,+ 1
2 ) ,

χ
( 1

8 ,− 1
2 )

C (τ ) = �−1,2(τ )

η(τ )
(h, q) = ( 1

8 ,− 1
2 ) ,

(5.21)

where the superscripts on χ denote the conformal weight h and the charge q with
respect to the current (5.12). In terms of these characters, the partition function
(5.19) then reads

ZN=2(τ, τ ) = 1
∣

∣η(τ )
∣

∣

4

(

∣

∣

∣χ
(0,0)
O

∣

∣

∣

2
+

∣

∣

∣χ
( 1

2 ,1)
V

∣

∣

∣

2
+

∣

∣

∣χ
( 1

8 ,+ 1
2 )

S

∣

∣

∣

2
+

∣

∣

∣χ
( 1

8 ,− 1
2 )

C

∣

∣

∣

2
)

.

(5.22)

Given the characters (5.21), it is straightforward to compute the modular S-
matrix employing the modular properties of the �-functions. In particular, one finds

Sŝo(2)1 = 1

2

⎛

⎜

⎜

⎝

1 1 1 1
1 1 −1 −1
1 −1 −i +i
1 −1 +i −i

⎞

⎟

⎟

⎠

, (5.23)

where this matrix is understood as acting on the vector χ = (χO , χV , χS, χC )T .
From the modular S-matrix, we can also determine the fusion rules of ŝo(2)1 via the
Verlinde formula (4.55) to be of the following form:

[ V ] × [ V ] = [ O ], [ S ] × [ S ] = [ V ] , [ C ] × [ C ] = [ V ] ,

[ S ] × [ C ] = [ O ] , [ S ] × [ V ] = [ C ] , [ C ] × [ V ] = [ S ] .
(5.24)

Remark

Let us finally remark that all notations from ordinary CFT can be generalised to
N = 2 superconformal field theories, for instance, we can study N = 2 super
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primaries, the N = 2 super OPE, N = 2 super normal ordered products and N = 2
super W algebras.

5.3 Chiral Ring

After having introduced N = 2 superconformal field theories, let us note that
such theories have distinctive new features which are not present for the cases with
N = 1 or N = 0 supersymmetry. These are the chiral ring and the spectral flow,
respectively, which we will study in the following two sections.

Chiral Primary Fields

We begin with the definition of chiral and anti-chiral states in the Neveu–Schwarz
sector of an N = 2 superconformal field theory.

Definition 1. States |h, q〉 in the Neveu–Schwarz sector of the Hilbert space of an
N = 2 SCFT satisfying G+

−1/2|h, q〉 = 0 are called (left-)chiral, while states satis-
fying G−

−1/2|h, q〉 = 0 are called (left-)anti-chiral.

Note that the adjective left refers to the holomorphic sector of the N = 2 super-
conformal algebra while right would correspond to the anti-holomorphic part with
G

±
−1/2 instead of G±

−1/2. However, in the following we will focus on the holomorphic
sector of the theory and usually omit the additional specification left. Next, N = 2
super primary states are defined similarly to the N = 1 case (5.8) via the following
equations:

G+
n+ 1

2

∣

∣h, q
〉 = G−

n+ 1
2

∣

∣h, q
〉 = 0 for n ≥ 0 . (5.25)

After having given these definitions, let us now deduce some properties of chiral
primary states.

• With the help of the superconformal algebra (5.14) and Eq. (5.15), we evaluate
the following two anti-commutators:

{

G+
− 1

2
, G−

+ 1
2

}∣

∣h, q
〉 = (

2L0 − j0
) ∣

∣h, q
〉 = (

2h − q
) ∣

∣h, q
〉

,

{

G+
+ 1

2
, G−

− 1
2

}∣

∣h, q
〉 = (

2L0 + j0
) ∣

∣h, q
〉 = (

2h + q
) ∣

∣h, q
〉

.
(5.26)

Note that for a chiral state, that is, G+
−1/2|h, q〉 = 0, the left-hand side of the first

equation vanishes and so we find that hchiral = + q
2 . Similarly, for an anti-chiral

state the second equation vanishes so we can deduce that hanti−chiral = − q
2 .

• Next, we determine a relation between the conformal weight h and j0 charge q
for any state in the Hilbert space. To do so, we note that in a unitary theory one
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necessarily has (G+
−1/2)† = G−

+1/2
1. With the help of Eq. (5.25), it then follows

that

〈

h, q
∣

∣

{

G+
− 1

2
, G−

+ 1
2

}∣

∣ h, q
〉 =

∣

∣

∣ G+
− 1

2

∣

∣ h, q
〉

∣

∣

∣

2
≥ 0 . (5.27)

A similar result holds for the second line in Eq. (5.26) and so we can conclude
that in a unitary theory, we have the relation h ≥ |q|

2 which is saturated precisely
by the chiral and anti-chiral states.

• We can even show the opposite direction of this statement. For this purpose, let
us assume that a state |h, q〉 satisfies h = q

2 . We then calculate

0 = 〈

h, q
∣

∣

{

G+
− 1

2
, G−

+ 1
2

}∣

∣ h, q
〉 =

∣

∣

∣ G−
+ 1

2

∣

∣h, q
〉

∣

∣

∣

2
+

∣

∣

∣ G+
− 1

2

∣

∣h, q
〉

∣

∣

∣

2
. (5.28)

By positivity of the norm, we see that each term on the right-hand side has to
vanish implying the definition of a chiral state, i.e. G+

−1/2|h, q〉 = 0. In order to
show that a state with h = q

2 is also a primary, we employ the following N = 2
commutation relation:

[

jn, G+
− 1

2

] ∣

∣ h, q
〉 = G+

n− 1
2

∣

∣ h, q
〉

for n > 0 . (5.29)

Now, we observe that jn|h, q〉 = 0 for n > 0, because the conformal weight of
the resulting state

L0 jn
∣

∣ h = q
2 , q

〉 =
(

q
2 − n

)

jn
∣

∣ h = q
2 , q

〉

would violate the unitarity bound h ≥ |q|
2 . Employing Eq. (5.29) together with

Eq. (5.28), we see that the first part of Eq. (5.25) is satisfied. In a similar fashion,
we can use [ jn, G−

+1/2] = −G−
n+1/2 for n > 0 which gives the second part of the

definition of a primary state. In summary, we have shown that

A state |h, q〉 is an N = 2 chiral primary if and only if h = q
2 .

Super Primary Fields

Let us now investigate what distinguishes a chiral primary field from a non-chiral
primary field. Similarly as for N = 1, in the present case the action of G±

−1/2 com-
bines various primary fields into a super primary field. While for N = 1 there were

1 This can for instance be explained by observing that the norm of a state
∣

∣G±
−r |h, q〉∣∣2 =

〈h, q| (G±
−r )† G±

−r |h, q〉, which is a number, should not carry any residual j0 charge.
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always two components arranged into one superfield, here we have in general four
components contributing to one N = 2 super primary field which can be depicted as

∣

∣ h, q
〉

G+
− 1

2

∣

∣ h, q
〉

↗ ↘
↘ ↗G−

− 1
2

∣

∣ h, q
〉

G+
− 1

2
G−

− 1
2

∣

∣ h, q
〉

.

However, in case of a chiral field, we have G+
−1/2 |h, q〉 = 0 so that the N = 2

super primary consists only of two components |h, q〉 and G−
−1/2 |h, q〉. Such super-

multiplets are called short supermultiplets and are often present in supersymmetric
theories.

In general, if a super algebra allows for non-trivial central charges, there exist
so-called BPS multiplets which are shorter than the average length of a supermul-
tiplet. These BPS multiplets contain states which saturate a BPS-bound such as
in Eq. (5.27). Thus, chiral primaries are a simple manifestation of this concept in
N = 2 superconformal field theories.

Chiral Ring

Let us now study the OPE of two chiral primary fields φa(z) and φb(w). Taking into
account the conformal dimensions, we can infer the general form of the OPE to be

φa(z) φb(w) =
∑

c

∑

n≥0

Cc
ab

�nφc(w)

(z − w)ha+hb−hc−n
, (5.30)

where Cc
ab are some constants. For the exponent of the singular term, we employ the

conservation of j0 charges q which reads qa + qb = qc and leads to

ha + hb − hc = qa

2
+ qb

2
− hc ≤ qc

2
− |qc|

2
≤ 0 , (5.31)

where we used that h ≥ |q|
2 for any state in the Hilbert space of a N = 2 SCFT.

From the inequality (5.31), we thus see that in the OPE (5.30) there are no singular
terms. We can then define a product among the chiral primaries as follows

(

φa · φb
)

(w) = lim
z→w

φa(z) φb(w) =
∑

c

Cc
ab φc(w) . (5.32)

Let us now remark on some properties of this product.

• There are no derivatives involved on the right-hand side of Eq. (5.32) because in
the limit z → w, the term (z − w)n vanishes for n > 0.

• In the product (5.32), only fields with hc = qa+qb

2 appear since these are the
only surviving terms in the limit z → w. However, from our discussion at the
beginning of the section, we know that these are again chiral primary fields.

• The product (5.32) defines a (finite) chiral ring among the primary fields.
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Along the same lines, one finds that there is a ring of anti-chiral fields, and we
note that the same structure can also be found in the anti-holomorphic sector of the
N = 2 superconformal algebra. So in total, there are four chiral rings.

We finally remark without formulas that the chiral ring gives also an example of
a topological field theory. This can be seen by introducing a so-called topological
twist to the N = 2 energy–momentum tensor, which makes one of the supersym-
metry generators a nilpotent BRST operator. The cohomology of this operator is
precisely given by the (finite) number of chiral primaries.

Example

As an example for a chiral ring, let us consider the N = 2 unitary models introduced
on p. 178 with central charges (5.16). Recalling Eq. (5.17) and equating h = q

2 , we
see that

chiral primaries in NS sector : φl
−l,0 for l = 0, . . . , k ,

while the anti-chiral ones are determined by h = − q
2 leading to φl

l,0. Employing then
charge conservation, that is, qa + qb = qc, in Eq. (5.32), we obtain the following
simple form of the chiral ring:

φl
−l,0 · φl ′

−l ′,0 =
{

φl+l ′
−l−l ′,0 for l + l ′ ≤ k ,

0 else .

5.4 Spectral Flow

Spectral Flow for the Algebra

Let us now turn to the second characteristic feature of N = 2 superconformal field
theories which is the so-called spectral flow. In particular, there exists a continuous
class of automorphisms of the N = 2 super Virasoro algebra, or in other words,
there is a continuous deformation of the N = 2 generators such that the deformed
operators still satisfy the algebra (5.14). Concretely, this deformation reads

Ln �→ L ′
n = Ln + η jn + η2

6
c δn,0 ,

jn �→ j ′
n = jn + c

3
η δn,0 ,

G±
r �→ G±

r
′ = G±

r±η ,

(5.33)

where η is a continuous parameter. We will not check thoroughly that the deformed
generators L ′

m , j ′
n and G±′ satisfy the algebra (5.14) but restrict ourselves to the

anti-commutator of two G±(z) modes. For those we calculate
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{

G+
r

′
, G−

s
′} = {

G+
r+η, G−

s−η

}

= 2 Lr+s + (

r − s + 2η
)

jr+s + c

3

(

(r + η)2 − 1

4

)

δr+s,0

= 2
(

Lr+s + η jr+s + η2

6
c δr+s,0

)

+ (

r − s
)

(

jr+s + c

3
η δr+s,0

)

+ c

3

(

r2 − 1

4

)

δr+s,0

= 2 L ′
r+s + (

r − s
)

j ′
r+s + c

3

(

r2 − 1

4

)

δr+s,0 ,

which indeed shows that this relation is invariant under the deformation (5.33).
From Eq. (5.33) we observe that via the spectral flow, the moding of the genera-

tors G±
r is changed. In particular, for η ∈ Z + 1

2 the flow interpolates between the
Neveu–Schwarz sector with half-integer modes and the Ramond sector with integer
moding. That is, there exists a one-to-one mapping between both sectors.

Spectral Flow for Representations

After having considered the invariance of the N = 2 superconformal algebra un-
der the spectral flow, we will now investigate the behaviour of the corresponding
representations. To do so, let us start by introducing some notation for the spectral
flow acting on the operators Lm and jm as well as on states |φ〉. Similar to Quantum
Mechanics, the spectral flow can be described by a unitary operator Uη in the fol-
lowing way:

L ′
m = Uη Lm U †

η , j ′
m = Uη jm U †

η ,
∣

∣φη〉 = Uη

∣

∣φ〉 .

Note that for η = 0, the operator Uη=0 is the identity operator. It is now easy to de-
termine the conformal weight and j0 charge of |φη〉 with respect to the transformed
operators. For the conformal weight we calculate

L ′
0

∣

∣φη〉 = UηL0 U †
η Uη

∣

∣φ〉 = Uη h
∣

∣φ〉 = h
∣

∣φη〉 ,

and for the j0 charge we find similarly

j ′
0

∣

∣φη〉 = Uη j0 U †
η Uη

∣

∣φ〉 = Uη q
∣

∣φ〉 = q
∣

∣φη〉 . (5.34)

This is of course what we expect, namely that the conformal weight h and j0 charge
q of the transformed state measured by the transformed operators do not change
compared to the original theory.

However, we are actually interested in how h and q of the transformed state
|φη〉 change with respect to the original theory. To determine this, we note that the
spectral flow has no effect on the moding of the generators Lm and jm and so we
can write
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L0

∣

∣φη

〉 = hη

∣

∣φη

〉

, j0
∣

∣φη

〉 = qη

∣

∣φη

〉

.

Using then Eq. (5.33), we find

L ′
0

∣

∣φη

〉 =
(

L0 + η j0 + η2

6
c
)

∣

∣φη

〉 =
(

hη + η qη + η2

6
c
)

∣

∣φη

〉

,

and

j ′
0

∣

∣φη

〉 =
(

j0 + c

3
η
)

∣

∣φη

〉 =
(

qη + c

3
η
)

∣

∣φη

〉

.

Combining these two equations with Eq. (5.34), we can express the conformal
weight and j0 charge of the transformed state with respect to the original operators
in the following way:

hη = h − η q + η2

6
c , qη = q − c

3
η . (5.35)

Transformation of Chiral Primaries

As we have mentioned above, for operators the spectral flow with η ∈ Z+ 1
2 interpo-

lates between the Neveu–Schwarz and Ramond sectors. Let us now investigate this
point for chiral primaries. In particular, using Eq. (5.35) with η = 1

2 and employing
h = q

2 for a chiral primary, we obtain

∣

∣

∣ h0 = q0

2
, q0

〉

NS

η= 1
2−−−→

∣

∣

∣ h 1
2

= c

24
, q 1

2
= q0 − c

6

〉

R
, (5.36)

where the subscripts label the Neveu–Schwarz and Ramond sectors, respectively.
The conformal weight of the state in the Ramond sector is h = c

24 which is indepen-
dent of the j0 charge q. Therefore, this state is degenerate since there are as many
different j0 charges as there are chiral primaries in the NS sector. Next, we show
that the state in the Ramond sector is actually a ground state. To do so, we recall
(

G+
0

)† = G−
0 for a unitary theory and compute using the algebra (5.14)

0 ≤
∣

∣

∣ G+
0

∣

∣h, q
〉

R

∣

∣

∣

2
= R

〈

h, q
∣

∣ G−
0 G+

0

∣

∣h, q
〉

R

= R
〈

h, q
∣

∣

{

G−
0 G+

0

}∣

∣h, q
〉

R − R
〈

h, q
∣

∣ G+
0 G−

0

∣

∣h, q
〉

R

= 2 h − c

12
−

∣

∣

∣ G−
0

∣

∣h, q
〉

R

∣

∣

∣

2
.

Since G−
0 |h, q〉R can be vanishing, the lowest possible value for the conformal

weight of a state is h = c
24 , which is satisfied by the state in the Ramond sector

in Eq. (5.36). Thus, it is a ground state. We finally note that the field which maps
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the NS vacuum with h = q = 0 to the Ramond sector is called the spectral flow
operator and has conformal weight h = c

24 and charge q = − c
6 .

Let us perform a further transformation with η = 1
2 mapping now the Ramond

sector again to the Neveu–Schwarz sector. Employing Eq. (5.35) with η = 1, we
find

∣

∣

∣ h0 = q0

2
, q0

〉

NS

η=1−−→
∣

∣

∣ h1 = −q1

2
, q1 = q0 − c

3

〉

NS
,

which is an anti-chiral primary in the NS sector. Therefore, the spectral flow with
η = 1 maps chiral states in the NS sector to anti-chiral states in the same sector.

Example

As an example for the spectral flow, we consider again the N = 2 unitary series
described on p. 178. As we have seen previously, the chiral primaries in the NS
sector are characterised by

φl
−l,0 with h = q

2
= l

2 (k + 2)
.

Applying then the spectral flow with η = 1
2 to the Ramond sector, the highest weight

representations above are mapped to

φl
−l−1,−1 with h = c

24
, q = 2l − k

2 (k + 2)
.

The spectral flow operator mapping the NS vacuum to the Ramond sector is char-
acterised by (h, q) = ( c

24 ,− c
6 ) which gives φ0

−1,−1. In summary, for the N = 2
minimal models, we identified the following states and operators:

chiral primaries in the NS sector φl
−l,0 ,

Ramond sector ground states φl
−l−1,−1 ,

spectral flow operator φ0
−1,−1 .

5.5 Coset Construction for the N = 2 Unitary Series

Coset Construction

In Sect. 4.5, we have studied the characters and corresponding S-matrices for the
unitary models of the Virasoro algebra via a coset construction. For the unitary
models of the N = 1 super Virasoro algebra, we only stated the coset construction
in Eq. (5.10) since the N = 1 theories will not be important in the following.
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However, the N = 2 unitary series will be of more interest to us. Let us therefore
consider the following coset:

ŝu(2)k × û(1)2

û(1)k+2
. (5.37)

Referring to Sect. 3.6, the central charge of this CFT is calculated as

c = cŝu(2)k + cû(1)2 − cû(1)k+2 = 3 k

k + 2
,

where we utilised that the central charge for any û(1)k Kač–Moody algebra is one, as
well as Eq. (3.7) giving the central charge of ŝu(2)k . By comparing with Eq. (5.16),
we see that the coset (5.37) has the same series of central charges as the unitary
series of the N = 2 Virasoro algebra.

Next, the decomposition of representations of the coset (5.37) is achieved via the
branching rules which in the present case read

(

λŝu(2)k

) ⊗ (

λû(1)2

) =
⊕

λû(1)k+2

(

λû(1)k+2

) ⊗ (

λŝu(2)k×û(1)2/û(1)k+2

)

. (5.38)

Similarly as in Sects. 4.5 and 4.6, we can now derive an expression for the corre-
sponding characters in the following way:

χ
ŝu(2)k
l (τ ) χ û(1)2

s (τ ) =
k+2
∑

m=−k−1

χ û(1)k+2
m (τ ) χ l

m,s(τ ) , (5.39)

where χ l
m,s are the branching functions we are interested in. The conformal di-

mension of the character can be calculated using the decomposition (5.38) and the
formulas for the weights of ŝu(2)k and û(1)k characters. Again, consistent with the
unitary N = 2 series, the conformal dimensions read

hl
m,s = hŝu(2)k

l + hû(1)2
s − hû(1)k+2

m = l (l + 2)

4 (k + 2)
+ s2

4 · 2
− m2

4 (k + 2)
.

This result gives us sufficient confidence that the coset (5.37) indeed gives rise to the
unitary series of the N = 2 super Virasoro algebra. Without presenting the details,
let us mention that one can also explicitly show that the coset contains the generators
of the N = 2 super Virasoro algebra.

Characters

For the actual computation of the N = 2 characters χ l
m,s , we recall our discussion

around Eq. (4.68) and express the ŝu(2)k characters in terms of the string functions
C (k)

l,m in the following way:
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χ
ŝu(2)k
l =

k
∑

m=−k+1
l+m=0 mod 2

C (k)
l,m(τ ) �m,k(τ ) .

We can then use this formula together with the explicit form of the û(1)k characters
in the decomposition (5.39) leading to

k
∑

m=−k+1
l+m=0 mod 2

C (k)
l,m(τ ) �m,k(τ )

�s,2(τ )

η(τ )
=

k+2
∑

m=−k−1

�m,k+2(τ )

η(τ )
χ l

m,s(τ ) .
(5.40)

In order to proceed, we note without proof the following identity among the �-
functions

�l,k �l ′,k ′ =
k+k ′
∑

j=1

�2k ′ j+l+l ′ , k+k ′ �2kk ′ j−lk ′+l ′k , kk ′(k+k ′) ,

where for ease of notation we suppressed the τ dependence. Applying this relation
to expression (5.40), we find

k
∑

m=−k+1
l+m=0 mod 2

k+2
∑

j=1

C (k)
l,m �4 j+m+s,k+2 �4 jk−2m+ks,2k(k+2) =

k+2
∑

m=−k−1

�m,k+2 χ l
m,s .

Finally, on the left-hand side of this formula, we extract the terms multiplying
�m,k+2(τ ) giving us the following explicit form of χ l

m,s :

χ l
m,s(τ ) =

k+2
∑

j=1

C (k)
l,m−4 j−s(τ ) �−2m+(4 j+s)(k+2) , 2k(k+2) ,

with the restriction that l + m + s ∈ 2 Z. These are the characters for the unitary
series of the N = 2 super Virasoro algebra.

Modular S-Matrix

From the decomposition (5.39), we can also read off the modular S-matrix for the
N = 2 characters χ l

m,s(τ ). In particular, we find

Sŝu(2)k
l,l ′ Sû(1)2

s,s ′ = Sû(1)k+2
m,m ′ SN=2

(lms)(l ′m ′s ′) .
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Employing then the explicit expression of the ŝu(2)k and û(1)k S-matrices, the mod-
ular S-matrix for χ l

m,s(τ ) is obtained as

SN=2
(lms)(l ′m ′s ′) = (

Sû(1)k+2
)−1

m,m ′ Sŝu(2)k
l,l ′ Sû(1)2

s,s ′

= 1√
2 (k + 2)

e+π i mm′
k+2

√

2

k + 2
sin

(

π

k + 2

(

l + 1
)(

l ′ + 1
)

)

1

2
e−π i ss′

2

= 1

2k + 4
sin

(

π

k + 2

(

l + 1
)(

l ′ + 1
)

)

e
−π i

(

ss′
2 − mm′

k+2

)

.

Similarly as in Sect. 4.5, a set of modular invariant partition functions automati-
cally follows by combining modular invariants of each individual theory. Thus, the
matrix M in Z(τ, τ ) = χT (τ )M χ (τ ) can be written as

MN=2
(lms)(l ′m ′s ′) = M ŝu(2)k

ll ′ M û(1)k+2
mm ′ M û(1)2

ss ′ ,

with M ŝu(2)k being one matrix out of the A-D-E classification for ŝu(2)k modular
invariant partition functions while the other matrices corresponds to û(1)k .

Fusion Rules

From the modular S-matrix, we finally determine the fusion coefficients via the
Verlinde formula. Combining the results of each individual theory, we find

[

φl1
m1,s1

] × [

φl2
m2,s2

] =
∑

l3,m3,s3

Nl3
l1l2

δ
(k+2)
m1+m2−m3,0

δ
(2)
s1+s2−s3,0

[

φl3
m3,s3

]

, (5.41)

where Nl3
l1l2

are the ŝu(2)k fusion coefficients (4.60). By comparing with the defini-
tion of a simple current from Sect. 4.7, we see that all fields φ0

m,s with m + s ∈ 2 Z

are in fact simple currents. In particular, the fields

φ0
−1,−1 and φ0

0,2 are simple currents. (5.42)

5.6 Gepner Models

In the previous sections and chapters of these lecture notes, we have studied and
collected all necessary prerequisites for presenting a beautiful and powerful appli-
cation of conformal field theory techniques to string theory. In particular, in the
following we will consider string theory compactifications from ten-dimensional to
four-dimensional space–time on so-called Calabi–Yau manifolds which are known
to preserve some supersymmetry in four dimensions. It is quite remarkable that the
two-dimensional non-linear sigma model governing the motion of a string moving
on such highly curved manifolds can be solved exactly, at least for special points
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in moduli space. The methods to study such backgrounds usually do not involve
the non-linear sigma model Lagrangian, but utilise advanced conformal field the-
ory techniques to define interacting SCFTs. The latter are then shown to have the
features expected from Calabi–Yau compactifications. These models have been pro-
posed by D. Gepner in 1988 and have been generalised and investigated in many
directions since then.

Because in these lecture notes on CFT we could not introduce all the string theory
material ideally needed, we will try to take just the minimal input from string theory
and employ mostly the CFT techniques developed so far.

Compactification

String theory has the remarkable feature to require a specific central charge for its
CFT in order to be consistent. As we just mentioned, it is beyond the scope of
these lecture notes to derive this fact from string theory. Instead, we only state that
for the bosonic string this result is very much related to the (b, c) ghost system
discussed in Sect. 2.9.3. In particular, these reparametrisation ghosts arise in the
BRST quantisation of the string action whose CFT, as computed, has central charge
c = −26. The cancellation of the conformal anomaly then requires the presence
of 26 free bosons each with central charge c = 1. For the superstring, in addition
there appear superconformal ghosts with total central charge c = 11 leading to
cghost = −26 + 11 = −15, so that one needs 10 free boson–fermion pairs with
c = 3

2 to cancel the conformal anomaly.
However, instead of this so-called covariant quantisation involving ghosts, one

can employ light-cone coordinates which remove two bosons (and fermions) from
the quantisation process. For bosonic string theory, the central charges of the left-
and right-moving sector, i.e. of the holomorphic and anti-holomorphic sector, then
have to be (cL , cR) = (24, 24). For superstring theory with N = (1, 1) supercon-
formal symmetry2 on the world-sheet, one finds (cL , cR) = (12, 12) while for the
heterotic string, a mixture between the bosonic and supersymmetric case, one ob-
tains (cL , cR) = (24, 12).

The starting point for the Gepner construction is the bosonic string in light-cone
gauge with central charges (cL , cR) = (24, 24) consisting of the following building
blocks.

• We assume a four-dimensional flat space–time with coordinates Xμ where μ =
0, . . . , 3. Two of these, say X0 and X1, are arranged into light-cone coordinates
X+ = 1√

2
(X0 + X1) and X− = 1√

2
(X0 − X1) which can be gauged away. We are

thus left with X2 and X3 to which we associate two copies of the free boson CFT
with central charge c = 1.

2 The notation N = (1, 1) means that there is N = 1 superconformal symmetry in the holomor-
phic and in the anti-holomorphic sector.
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• In addition to the four-dimensional part, for reasons that will become clear
later, we consider an N = 2 SCFT in the holomorphic and anti-holomorphic
sector with central charges (cL , cR) = (9, 9) describing six compact coordinates
together with the fermionic partners.

• Finally, the residual central charges are occupied by an ( ê8)1 × ŝo(10)1 Kač–
Moody algebra with (cL , cR) = (13, 13). This algebra is realised by 13 free
bosons compactified on the root lattice of e8 × so(10).

In summary, the construction of the bosonic string theory is achieved in the follow-
ing way:

two copies of the free boson CFT given by X2 and X3 : (cL , cR) = (2, 2)

an N = (2, 2) SCFT : (cL , cR) = (9, 9)

an (̂e8)1 × ŝo(10)1 Kač–Moody algebra : (cL , cR) = (13, 13)

The ( ê8 )1 × ŝo(10 )1 Kač–Moody Algebra

Let us now consider more closely the CFT determined by the Kač–Moody algebra
( ê8)1 × ŝo(10)1. From Sect. 3.4, we recall that ŝo(10)1 can be realised by 10 free
fermions transforming in the vector representation of SO(10). Completely analo-
gously to the case of one free fermion discussed in Sect. 4.2, the characters here can
be expressed in terms of Jacobi ϑ-functions. As for ŝo(2)1 in Eq. (5.22), there are
four irreducible highest weight representations for ŝo(10)1 with characters

χ
(0,0)
O = 1

2

(

(

ϑ3

η

)5

+
(

ϑ4

η

)5
)

, χ
( 5

8 , 1
2 )

S = 1

2

(

(

ϑ2

η

)5

+ i

(

ϑ1

η

)5
)

,

χ
( 1

2 ,1)
V = 1

2

(

(

ϑ3

η

)5

−
(

ϑ4

η

)5
)

, χ
( 5

8 ,− 1
2 )

C = 1

2

(

(

ϑ2

η

)5

− i

(

ϑ1

η

)5
)

.

(5.43)

Note that the superscripts on the characters indicate the conformal weight and the
charge with respect to the current

jŝo(10)1 (z) =
5

∑

α=1

N (�α �α)(z) ,

where the five complex fermions �α realise the ŝo(10)1 current algebra. From the
modular properties of the η- and ϑ-functions summarised for instance at the end of
Sect. 4.2.4, we can then deduce the modular S-matrix for ŝo(10)1 to be of the form
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Sŝo(10)1 = 1

2

⎛

⎜

⎜

⎝

1 1 1 1
1 1 −1 −1
1 −1 −i +i
1 −1 +i −i

⎞

⎟

⎟

⎠

. (5.44)

This matrix is again understood as acting on the vector χ = (χO , χV , χS, χC )T

which we will abbreviate as (O, V, S, C) in the following. From the modular S-
matrix, we can determine the fusion rules of ŝo(10)1 via the Verlinde formula given
in Eq. (4.55). Explicitly, they read

[ V ] × [ V ] = [ O ] , [ S ] × [ S ] = [ V ] , [ C ] × [ C ] = [ V ] ,

[ S ] × [ C ] = [ O ] , [ S ] × [ V ] = [ C ] , [ C ] × [ V ] = [ S ] ,
(5.45)

where O is the vacuum representation and thus the identity.

The Bosonic String Map

Let us now observe the interesting fact that the S-matrix (5.44) for ŝo(10)1 is the
same as for ŝo(2)1 given in Eq. (5.23). Furthermore, the difference between the
central charges of ( ê8)1 × ŝo(10)1 and ŝo(2)1 is determined to be

c( ê8)1×ŝo(10)1 − cŝo(2)1 = 13 − 1 = 12 .

Therefore, one might hope that replacing the ( ê8)1× ŝo(10)1 algebra by ŝo(2)1 could
map the partition function of the bosonic string with (cL , cr ) = (24, 24) to a partition
function of the superstring with (cL , cR) = (12, 12). Indeed, ŝo(2)1 is just the Kač–
Moody algebra formed by the two free fermions, which under such a mapping could
become the superpartners of the two free bosons X3 and X4 in four dimensions.
Schematically, this reads

(

2 × (X ) CFT
)

(2,2) × (

( ê8)1 × ŝo (10)1

)

(13,13) × (

N = (2, 2) SCFT
)

(9,9)

−−→ (

2 × (X ) CFT
)

(2,2)×
(

ŝo (2)1

)

(1,1) × (

N = (2, 2) SCFT
)

(9,9)

= (

2 × (X, ψ) SCFT
)

(3,3) × (

N = (2, 2) SCFT
)

(9,9) ,

where the subscripts indicate the central charges of the CFTs. Note finally that the
singlet O and the vector representation V of ŝo(2)1 lead to space–time bosons and
the spinor and anti-spinor ones S, C to space–time fermions.

O, V representations ⇔ Neveu–Schwarz sector ⇔ space–time bosons

S, C representations ⇔ Ramond sector ⇔ space–time fermions



194 5 Supersymmetric Conformal Field Theory

However, for the spinor representations the conformal weights in the ( ê8)1 × ŝo(10)1

theory and in the ŝo(2)1 theory are not equal, i.e.

h(Sŝo(10)1 ) − h(Sŝo(2)1 ) = 1
2 .

Therefore, in a modular invariant partition function, we cannot simply replace the
ŝo(10)1 characters (O, V, S, C)ŝo(10)1 by (O, V, S, C)ŝo(2)1 , as this would violate the
level-matching condition whenever say a left-moving (O, V ) character is combined
with a right-moving (S, C) character and vice versa. But, from Eq. (5.44) one can
see that there exists also the possibility to replace

(O, V, S, C)ŝo(10)1 −→ (V, O,−C,−S)ŝo(2)1 ,

which indeed maps a modular invariant ŝo(10)1 partition function to a ŝo(2)1 MIPF
without being in conflict with the level-matching constraint. This is the so-called
bosonic string map. Noting finally that ( ê8)1 has only the singlet representation (1)
with conformal weight h = 0 which is invariant under modular S-transformations,
we can replace

(1)( ê8)1 ⊗ (O, V, S, C)ŝo(10)1 −→ (V, O,−C,−S)ŝo(2)1 . (5.46)

As we will see more concretely later, this transforms a partition function of the
bosonic string to a supersymmetric one of either the heterotic string, when applying
the mapping only to the right-moving sector, or to the Type II string when applying it
both to the left- and right-moving sectors. We therefore have the possibility to obtain
partition functions of supersymmetric string theories from bosonic ones. Together
with the simple current construction, we thus have availability of a very powerful
technique to derive new MIPFs from existing ones.

Gepner’s Construction

Let us now turn to the say holomorphic N = 2 SCFT with central charge cL =
9. Doron Gepner proposed to choose for this SCFT the tensor product of unitary
N = 2 Virasoro models with 0 < c < 3 in the following way:

(N = 2)c=9 =
r

⊗

i=1

(N = 2)Vir
ci

with
r

∑

i=1

ci =
r

∑

i=1

3ki

ki + 2
= 9 .

Because the ki are integers, it turns out that there are only 168 combinations which
have total central charge c = 9. For example, one can choose r = 5 factors with
ki = 3 giving ci = 9

5 and thus in total c = 9. Let us mention that an explicit
classification shows that most cases have r = 4 or r = 5 with a few exceptions of
r = 6, 9.
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Except the two free bosons X2 and X3, the CFT in the holomorphic sector of
the bosonic string (before the bosonic string map) therefore has the following tensor
product structure:

r
⊗

i=1

(N = 2)Vir
ci

⊗ ŝo(10)1 ⊗ (

ê8
)

1 . (5.47)

The highest weight representations of this product CFT are again tensor products of
the individual HWRs which we will denote as

r
⊗

i=1

(

li , mi , si
) ⊗ (

s0
) ⊗ (

1
)

, (5.48)

where s0 labels O, V, C, S while the singlet representation of ( ê8)1 is usually omit-
ted. The energy–momentum tensor and U (1) current of the entire CFT is given by

T (z) =
r

∑

i=1

Ti (z) + Tŝo(10)1⊗( ê8)1 (z) ,

j(z) =
r

∑

i=1

ji (z) +
5

∑

α=1

N (�α �α)(z) ,

where Ti and ji are the energy–momentum tensor and the U (1) current for each
N = 2 tensor factor in Eq. (5.47), respectively, and the five complex fermions �α

realise the ŝo(10)1 current algebra.

Simple Current Construction I

For the theory given in Eq. (5.47), one can construct the trivial diagonal modular
invariant partition function. However, after applying the bosonic string map (5.46)
this partition function will not correspond to a space–time supersymmetric string
compactification. In particular, there are not the same number of states in the Neveu–
Schwarz as in the Ramond sector which leads to an unequal number of bosons
and fermions in the four-dimensional space–time described by X0, . . . , X3. What
is needed to ensure space–time supersymmetry is a Gliozzi–Scherk–Olive (GSO)
projection, which can be implemented by a simple current construction.

In addition, so far the tensor product theory (5.47) is lacking a clear definition
of the Neveu–Schwarz and Ramond sectors since there is no restriction on how
to combine the minimal N = 2 models with the ŝo(10)1 theory. Let us therefore
consider the set of simple currents given by

Ji = (0, 0, 0) . . . (0, 0, 2)
︸ ︷︷ ︸

i th pos.

. . . (0, 0, 0) (V ) , i = 1, . . . , r ,
(5.49)
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where the notation is as in Eq. (5.48). The conformal weight of the Ji is the sum of
each tensor factor. Therefore, recalling from Eq. (5.43) that V has conformal weight
hV = 1

2 and computing from Eq. (5.17) h0
0,0 = 0 and h0

0,2 = 3
2 , we find

h Ji = (r − 1) · h0
0,0 + h0

0,2 + hV = 2 .

We furthermore recall from Eq. (5.42) that for unitary N = 2 models, representa-
tions with (l, m, s) = (0, m, s) and m + s ∈ 2 Z are simple currents. Therefore, all
the Ji in Eq. (5.49) are orbit simple currents.

Let us next exemplify that the simple current construction with the currents
(5.49) indeed has the effect we are interested in, namely that only the combinations
(NS)Vir ⊗ (NS)ŝo(10)1 and (R)Vir ⊗ (R)ŝo(10)1 survive the projection. Here the two
specifications of the sector refer to the product theory of minimal N = 2 supersym-
metric models and to the factor of the ŝo(10)1 theory. We start by computing from
Eq. (5.41) the following fusion rules for the unitary N = 2 models:

[

φ0
0,0

] × [

φl
m,s

] = [

φl
m,s

]

,
[

φ0
0,2

] × [

φl
m,s

] = [

φl
m,s+2

]

,

where apparently the latter maps an NS state with conformal weight h to another
NS state with h′ = h + 1

2 as well as a Ramond state to another Ramond state with
h′ = h + Z. Recalling then the fusion rules (5.45) for ŝo(10)1, we compute for
instance

[

Ji
] ×

[

(

NS
)

Vir ⊗ (

O, V
)

ŝo(10)1

]

=
[

(

NS′)
Vir ⊗ (

V, O
)

ŝo(10)1

]

,

where NS denotes some state in the Neveu–Schwarz sector of the minimal model
theory and (O, V ) stands for the O or V representation of the ŝo(10)1 Kač–Moody
algebra. The monodromy charge (4.72) for the simple current construction of this
state then reads

Q
(

state
) = h

(

Ji
) + h

(

state
) − h

(

Ji × state
)

mod 1

= 2 +
(

hVir + (

0, 1
2

)

ŝo(10)1

)

−
(

hVir + 1
2 + (

1
2 , 0

)

ŝo(10)1

)

mod 1

= 0 ,

where “state” refers to (NS)Vir ⊗ (O, V )ŝo(10)1 in the theory determined by Eq. (5.47).
Since the monodromy charge is always zero, such states will survive the simple
current projection. But let us consider also the action of the simple current (5.49) on
a different state

[

Ji
] ×

[

(

R
)

Vir ⊗ (

O, V
)

ŝo(10)1

]

=
[

(

R′)
Vir ⊗ (

V, O
)

ŝo(10)1

]

,

for which we calculate the monodromy charge as follows
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Q
(

state
) = h

(

Ji
) + h

(

state
) − h

(

Ji × state
)

= 2 +
(

hVir + (

0, 1
2

)

ŝo(10)1

)

−
(

hVir + Z + (

1
2 , 0

)

ŝo(10)1

)

mod 1

= 1
2 .

Since the monodromy charge does not vanish, such a state is projected out by the
simple current construction.

In summary, we have illustrated the general result that the monodromy charges
with respect to the simple currents (5.49) satisfy

Q
(

(

NS
)

Vir ⊗ (

NS
)

ŝo(10)1

)

= 0 , Q
(

(

NS
)

Vir ⊗ (

R
)

ŝo(10)1

)

�= 0 ,

Q
(

(

R
)

Vir ⊗ (

R
)

ŝo(10)1

)

= 0 , Q
(

(

R
)

Vir ⊗ (

NS
)

ŝo(10)1

)

�= 0 .

Therefore, the simple current construction projects onto states which are in the
Neveu–Schwarz sector of the N = 2 factor and in the Neveu–Schwarz sector of
the ŝo(10)1 theory, respectively, onto states which are both in the Ramond sector.
This gives us a clear distinction between those two sectors.

Simple Current Construction II

What we are interested in are theories with space–time supersymmetry, that is,
we are looking for a symmetry exchanging bosonic and fermionic fields in the
four-dimensional theory. From string theory, we know that states in the Neveu–
Schwarz sector become space–time bosons and that states in the Ramond sector
become space–time fermions. Therefore, if we have a one-to-one map between the
Neveu–Schwarz and Ramond sectors, we have a good candidate for a space–time
supercharge. For N = 2 SCFTs, we have such a map available, namely the spectral
flow operator, which is the reason we started with N = 2 SCFTs in the first place.
In the following, we will now perform a second simple current projection such that
we achieve space–time supersymmetry.

In Sect. 5.4, we have determined the spectral flow operator for the minimal
models to be φ0

1,1, and from the fusion rules (5.45) we see that S maps states in
the Ramond sector to the Neveu–Schwarz sector and vice versa. For the combined
theory (5.47), we therefore find

Jsf = (0, 1, 1)r (S) . (5.50)

However, the spectral flow operator is also a simple current which can be seen for
the minimal model part from below Eq. (5.41). From the fusion rules (5.45), we see
that also S is a simple current and so Jsf is a simple current for the full tensor theory.
Let us now collect some more data about Jsf. The conformal weight of the simple
current (5.50) is computed as
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h
(

Jsf
) =

∑

i

(

h0
1,1

)

i + hS =
∑

i

( −1

4(ki + 2)
+ 1

8

)

+ 5

8
=

∑

i

ci

24
+ 5

8
= 1 ,

where we used that
∑

i ci = 9. Recalling from Eq. (5.43) the U (1) charges of the
ŝo(10)1 representations (O, V, S, C) as (0, 1, 1/2,−1/2), we similarly determine

q
(

Jsf
) =

∑

i

(

q1,1
)

i + qS =
∑

i

(

− 1

ki + 2
+ 1

2

)

+ 1

2
=

∑

i

ci

6
+ 1

2
= 2 .

Next, let us calculate the monodromy charge of a general state (5.48) with respect
to Eq. (5.50). To do so, we note that from the fusion rules (5.41) the action of the
spectral flow operator on a state

⊗

i (li , mi , si ) ⊗ (s0) is found as

Jsf
(

state
) =

⊗

i

(

li , mi + 1, si + 1
) ⊗ (

s0 + 1
)

,

where we also used that 0 ≤ |m − s| ≤ l. The conformal weights of such a state and
the one acted upon by Jsf are computed as follows

h
(

state
) =

∑

i

(

li (li + 2) − m2
i

4 (ki + 2)
+ s2

i

8

)

+
(

s2
0

8
+ 1

2
δ
(

S, C
)

)

,

h
(

Jsf(state)
) =

∑

i

(

li (li + 2) − (mi + 1)2

4 (ki + 2)
+ (si + 1)2

8

)

+
(

(s0 + 1)2

8
+ 1

2
δ
(

S, C
)

)

,

where δ(S, C) is one if the state contains a factor S or C and it is zero otherwise. The
monodromy charge (4.72) for a general state (5.48) is then obtained in the following
way:

Q
(

state
) =h

(

Jsf
) + h

(

state
) − h

(

Jsf × state
)

mod 1

=1 +
∑

i

(

2 mi + 1

4 (ki + 2)
− 2 si + 1

8

)

− 2 s0 + 1

8
− 1

2
+ δ

(

S, C
)

mod 1

=
∑

i

(

mi

2(ki + 2)
− si

4

)

− s0

4

+
∑

i

(

1

4(ki + 2)
− 1

8

)

− 1

8
+ 1

2
+ δ

(

S, C
)

mod 1

=
∑

i

(

mi

2(ki + 2)
− si

4

)

− s0

4
−

∑

i

ci

24
+ 3

8
+ δ

(

S, C
)

mod 1 .



5.6 Gepner Models 199

Before performing the last step and using that
∑

i ci = 9, let us note that the U (1)
charge of the state under consideration has the following form:

qstate =
∑

i

(

− mi

ki + 2
+ si

2

)

+ s0

2
,

where we employed again Eq. (5.17). With the help of this result, we see that the
monodromy charge above can be simplified as

Q
(

state
) = − qstate

2
mod 1 .

For the simple current construction this implies that only those states whose U (1)
charge satisfies qstate ∈ 2 Z appear in the modular invariant partition function. There-
fore,

The simple current Jsf projects onto states with charge qstate ∈ 2 Z.

Modular Invariant Partition Function

After having studied the simple currents and corresponding monodromy charges of
the states, let us now proceed and construct the modular invariant partition function
of the bosonic string. According to Sect. 4.7 and in particular Eq. (4.80), schemati-
cally it reads

Z(24,24) = 1

N
→
χ

T
(τ ) M

(

Jsf
)

K
∏

i=1

M
(

Ji
) →
χ(τ ) ,

where N is an overall normalisation constant fixed by the requirement that the
vacuum appears precisely once. Furthermore, in this compact notation we have
introduced the matrices M(J ) containing the information about which holomor-
phic characters couple to which anti-holomorphic ones due to the extension by the
simple current J . From this bosonic string partition function, we can generate a
supersymmetric one by applying the bosonic string map (5.46) from the beginning
of this section. Instead of dealing with a ŝo(10)1 × (̂e8)1 Kač–Moody algebra, we
thus work with ŝo(2)1.

In order to be more precise, let us introduce some notation to give an explicit
expression for the supersymmetric modular invariant partition function after the
bosonic string map has been applied. We define the characters and the so-called
charge vector as

χ
→
l

→
λ

(τ ) :=
r
∏

i=1

χ li
mi ,si

(τ ) · χ ŝo(2)1
s0

(τ ) with
→
λ = (

s0, m1, . . . , mr , s1, . . . , sr
)
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and
→
l = (l1, . . . , lr ). Between two charge vectors, a scalar product is given by

→
λ · →

μ = s0 s ′
0

4
+ 1

2

r
∑

i=1

(

− mi m ′
i

ki + 2
+ si s ′

i

2

)

,

and the charge vector for the simple currents Ji from Eq. (5.49) is determined to be

βi = (

2, 0, . . . , 0, 0, . . . , 2
↑

i th position

, . . . , 0
)

.

Let us then recall that for the N = 2 unitary models as well as for the ŝo(2)1 Kač–
Moody algebras, states with s = 0, 2 correspond to the Neveu–Schwarz sector while
those with s = ±1 correspond to the Ramond sector. As we have seen previously,
only states purely in the Neveu–Schwarz or purely in the Ramond sector will survive
the simple current projection with respect to Eq. (5.49). In terms of the charge vector
and after the bosonic string map has been applied, this is expressed as

→
β i · →

λ ∈ Z .

From Eq. (5.50), we see that the charge vector for the spectral flow simple current
Jsf reads

→
β0 = (−1, 1, . . . , 1, 1, . . . , 1

)

,

and the condition qstate ∈ 2 Z becomes

2
→
β0 · →

λ ∈ 2 Z + 1 ,

where the +1 is due to the bosonic string map. This projection is called the GSO
projection and corresponds to the fermion number operator (−1) f we have already
encountered in Sect. 2.9.2.

Finally, we can now write down the simple current extended, modular invariant,
supersymmetric partition function from above more concretely as

ZGepner(τ, τ ) = 1

N
∑

→
l ,

→
λ

∑

νi =0,1→
λ ·→β i ∈Z→

λ ·→β 0∈ 2Z+1

L−1
∑

ν0=0

χ
→
l

→
λ

(τ ) χ
→
l
→
λ+∑r

i=1 νi βi +ν0β0

(τ )
(−1

)ν0
, (5.51)

where L is the length of the simple current Jsf and N is again an overall normal-
isation constant. Due to the bosonic string map, states in the (NS,R) and (R,NS)
sector, which are space–time fermions, contribute a (−1) sign in this supersym-
metric partition function. Note that here (and in the following), (NS,R) refers to
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the Neveu–Schwarz sector of the holomorphic and to the Ramond sector of the
anti-holomorphic CFT, and similarly for the other three combinations.

Note also that by applying the bosonic string map only to the anti-holomorphic
sector, one can similarly define a heterotic string Gepner model. This was done in
the original work by D. Gepner, to which we refer the reader for further details.

5.7 Massless Modes of Gepner Models

In the last section of this chapter, we are going to discuss the Type IIB string the-
ory Gepner model partition function (5.51) in some more detail. In particular, in
string theory one is interested in the massless excitations of the string which in
the present situation correspond to states in the partition function with conformal
weight (h, h) = ( 1

2 , 1
2 ). Since the simple current construction has arranged all states

into orbits, we can distinguish for instance the massless vacuum orbit in the partition
function ZGepner(τ, τ ) from other massless orbits via the U (1) charge.

Let us also mention that because the partition function (5.51) is left–right sym-
metric, one obtains N = 2 space–time supersymmetry in four dimensions. For
the heterotic string, where the holomorphic sector remains bosonic, one only finds
N = 1 space–time supersymmetry and the holomorphic spectral flow extends the
manifest SO(10) × U (1) gauge symmetry to E6.

Massless Modes in the Vacuum Orbit

Let us consider first the vacuum orbit. The vacuum with (h, q) = (0, 0) in the
Neveu–Schwarz / Neveu–Schwarz of the bosonic string theory reads (0, 0, 0)r (O)⊗
(0, 0, 0)r (O) which is mapped to

(0, 0, 0)r (V ) ⊗ (0, 0, 0)r (V )

under the bosonic string map. Taking into account that the ground state (V ) of ŝo(2)1

is two-dimensional, these are four states corresponding in four dimensions to the
graviton gμν , the anti-symmetric two-form Bμν and the dilaton φ. However, due to
the simple current construction, there are further states in that orbit. In particular,
we find four additional massless states in the (R,R) sector

(0,+1,+1)r (C) ⊗ (0,+1,+1)r (C) , (0,−1,−1)r (S) ⊗ (0,−1,−1)r (S) ,

(0,+1,+1)r (C) ⊗ (0,−1,−1)r (S) , (0,+1,+1)r (C) ⊗ (0,−1,−1)r (S) ,

which are space–time bosons. Since [ C ] × [ C ] = [ S ] × [ S ] = [ V ] and [ S ] ×
[ C ] = [ C ]× [ S ] = [ O ], these four states are identified in four dimensions as one
massless vector and one massless complex scalar. Of course, we are also expecting
the fermionic superpartners of all these bosonic fields, which indeed arise in the
(NS,R) and (R,NS) sectors
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(0, 0, 0)r (V ) ⊗ (0,+1,+1)r (C) , (0,+1,+1)r (S) ⊗ (0, 0, 0)r (V ) ,

(0, 0, 0)r (V ) ⊗ (0,−1,−1)r (S) , (0,−1,−1)r (S) ⊗ (0, 0, 0)r (V ) .

These eight space–time bosons and eight space–time fermions constitute the con-
tents of the N = 2 gravity supermultiplet and one further N = 2 hypermultiplet.
Note that the gravity supermultiplet contains in addition to the spin = 2 graviton
one spin = 1 vectorfield. The hypermultiplet contains in particular the dilaton and
generically appears in string theory. For this reason it is also called the universal
hypermultiplet.

Massless Modes in Charged Orbits

The vacuum orbit is always present for all Gepner models whereas the structure
of the massless charged orbits depends on the specific details of the c = 9 tensor
product theory. However, since massless states have h = h = 1/2 and due to the
odd U (1) charge, all these states must be (anti-)chiral primary states in the N = 2
SCFT. Concretely, in the charged orbits we find massless states of the form

(

(

1
2 ,−1

)

(O) + (

3
8 ,+ 1

2

)

(S)
)

⊗
(

(

1
2 ,−1

)

(O) + (

3
8 ,+ 1

2

)

(S)
)

,

(

(

1
2 ,+1

)

(O) + (

3
8 ,− 1

2

)

(C)
)

⊗
(

(

1
2 ,+1

)

(O) + (

3
8 ,− 1

2

)

(C)
)

,

where we used (h, q) to denote the conformal weight and charge of the correspond-
ing state. For each such orbit, including all combinations of NS and R sectors, we
obtain one vector, one complex boson and four fermionic states forming one N = 2
vectormultiplet (φc, λα, Aμ).

However, it can also happen that in an orbit of ( 1
2 ,−1)(O), there appears a state

with

(

1
2 ,+1

)

(O) + (

3
8 ,− 1

2

)

(C),

which, by including all NS and R sectors, gives rise to an N = 2 hypermultiplet.
Whether this happens or not depends on the concrete model.

Example

Let us finally discuss the massless spectrum for the (k = 3)5 Gepner model in
some more detail. Each (k = 3) tensor factor has chiral states (0, 0, 0)0, (1,−1, 0) 1

5
,

(2,−2, 0) 2
5

and (3,−3, 0) 3
5
, where the subscript denotes the U (1) charge. We can

now make a list of all the combinatorial possibilities to form chiral states with
(h, q) = ( 1

2 , 1) in the tensor product (k = 3)5 theory. This list reads
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(3,−3, 0) (2,−2, 0) (0, 0, 0)3 20
(3,−3, 0) (1,−1, 0)2 (0, 0, 0)2 30
(2,−2, 0)2(1,−1, 0) (0, 0, 0)2 30
(2,−2, 0) (1,−1,−1)3(0, 0, 0) 20
(1,−1, 0)5 1

101

and by counting states, we see that there are 101 vectormultiplets. A more de-
tailed investigation reveals that only the orbit of (1,−1, 0)5(O) contains a state with
(h, q) = ( 1

2 ,−1), namely (1, 1, 0)5(O), giving one hypermultiplet.
As it turns out, Type IIB string theory compactified on a Calabi–Yau manifold

with Hodge numbers (h21, h11) gives rise to h21 vectormultiplets and h11 hypermul-
tiplets. A Calabi–Yau manifold with Hodge numbers (h21, h11) = (101, 1) is the
so-called Quintic defined via the constraint

5
∑

i=1

z5
i = 0 in CP

4 .

Apart from the counting of multiplets illustrated above, more evidence has been
collected that indeed the Gepner model (k = 3)5 exactly solves the non-linear sigma
model on the Quintic (at fixed size).

Remarks

• In the heterotic string (k = 3)5 Gepner model, one obtains in four dimensions
an N = 1 super Yang–Mills theory with gauge group E6 and N27 = 101 chiral
matter superfields in the fundamental representation of E6 and N27 = 1 chiral
superfields in the anti-fundamental representation. Here, the SCFT construction
can be generalised to also lead to other GUT gauge groups such as SO(10) or
SU (5).

• Without a detailed introduction into string theory, we could only present the basic
ingredients for the Gepner construction which we hope has convinced the reader
what powerful role abstract SCFTs can play. Also, as we have seen, many of the
techniques developed in the previous chapters find an interesting application in
the Gepner construction.
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Chapter 6
Boundary Conformal Field Theory

In the previous chapters, we have discussed conformal field theories defined on
(compact) Riemann surfaces such as the sphere or the torus. In string theory,
these CFTs are relevant for the sector of closed strings. However, string theory
also contains open strings whose world-sheets have boundaries. Therefore, in or-
der to describe the dynamics of open strings, it is necessary to study the so-called
boundary conformal field theories (BCFTs). Again in string theory, boundaries have
the interpretation of defects in the target space where open strings can end and
such objects are called D-branes (see Fig. 6.1). Furthermore, the concept of D-
branes can be generalised to abstract CFTs, which are neither free bosons nor free
fermions.

In this chapter, we give an introduction to the field of BCFT which is still an
active field of research. To do so, we focus on the example of the free boson and
then generalise the appearing structure to more general CFTs.

Fig. 6.1 Two-dimensional
surface with boundaries
which can be interpreted as
an open string world-sheet
stretched between two
D-branes

Blumenhagen, R., Plauschinn, E.: Boundary Conformal Field Theory. Lect. Notes Phys. 779,
205–256 (2009)
DOI 10.1007/978-3-642-00450-6 6 c© Springer-Verlag Berlin Heidelberg 2009
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6.1 The Free Boson with Boundaries

6.1.1 Boundary Conditions

We start by discussing the boundary conformal field theory of the free boson theory
introduced in Sect. 2.9.1 in order to illustrate the appearance of boundaries from a
Lagrangian and geometrical point of view.

Conditions for the Fields

The two-dimensional action for a free boson X (τ, σ ) was given in Eq. (2.75) which
we recall for convenience

S = 1

4π

∫

dσ dτ
(

(

�σ X
)2 + (

�τ X
)2
)

. (6.1)

Note that we fixed the overall normalisation constant and we slightly changed our
notation such that τ ∈ (−∞,+∞) denotes the two-dimensional time coordinate
and σ ∈ [0, π ] is the coordinate parametrising the distance between the boundaries.

The variation of the action (6.1) is obtained similarly as in section The Free
Boson, but now with the boundary terms taken into account. More specifically, we
compute the variation as follows:

δX S = 1

π

∫

dσ dτ
(

(

�σ X
) (

�σ δX
) + (

�τ X
) (

�τ δX
)

)

= 1

π

∫

dσ dτ
(

−(

�2
σ + �2

τ

)

X · δX + �τ

(

�τ X · δX
) + �σ

(

�σ X · δX
)

)

.

(6.2)

The equation of motion is obtained by requiring this expression to vanish for all
variations δX . The vanishing of the first term in the last line leads to �X = 0 which
we already obtained previously. The remaining two terms can be written as follows:

1

π

∫

dσ dτ
(

�τ

(

�τ X · δX
) + �σ

(

�σ X · δX
)

)

= 1

π

∫

dσ dτ
→∇ •

( →∇ X δX
)

= 1

π

∫

B
dlB

(→∇ X • →
n
)

δX,

where we introduced
→∇ = (�τ , �σ )T and used Stokes theorem to rewrite the integral

∫

dσdτ as an integral over the boundary B. Furthermore, dlB denotes the line ele-
ment along the boundary and

→
n is a unit vector normal to B. In our case, the boundary

is specified by σ = 0 and σ = π so that
→
n = (0,±1)T as well as dlB = dτ . The

vanishing of the last two terms in Eq. (6.2) can therefore be expressed as
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0 = 1

π

∫

dτ
(

�σ X
)

δX
∣

∣

∣

σ=π

σ=0
.

This equation allows for two different solutions and hence for two different bound-
ary conditions. The first possibility is a Neumann boundary condition given by
�σ X |σ=0,π = 0. The second possibility is a Dirichlet condition δX |σ=0,π = 0 for all
τ which implies �τ X |σ=0,π = 0. In summary, the two different boundary conditions
for the free boson theory read as follows:

�σ X |σ=0,π = 0 Neumann condition,

δX |σ=0,π = 0 = �τ X |σ=0,π Dirichlet condition.
(6.3)

Remark

Let us remark that in string theory, a hypersurface in space–time where open strings
can end is called a D-brane. In order to explain this point, let us consider a theory
of N free bosons Xμ(τ, σ ) with μ = 0, . . . , N − 1 which describe the motion of a
string in an N -dimensional space–time. We organise the fields in the following way:

(

X0, X1, . . . , Xr−1
︸ ︷︷ ︸

Neumann conditions

, Xr , . . . , X N−1
︸ ︷︷ ︸

Dirichlet conditions

)

,

where r denotes the number of bosons with Neumann boundary conditions leaving
(N − r ) bosons with Dirichlet conditions.

Let us now focus on one endpoint of the open string, say at σ = 0. A Dirichlet
boundary condition for Xμ reads δXμ|σ=0 = 0 which means that the endpoint of the
open string is fixed to a particular value xμ

0 = const. However, in case of Neumann
boundary conditions, there is no restriction on the position of the string endpoint
which can therefore take any value. Clearly, since the string moves in time, there are
Neumann conditions for the time coordinate X0. Then, the r -dimensional hypersur-
face in space–time described by Xμ = xμ

0 = const. for μ = r, . . . , N − 1 is called
a D(r − 1)-brane where the symbol D stands for Dirichlet.

As an example, take N = 3 and consider Fig. 6.1 where we see a world-sheet of
an open string stretched between two D1-branes.

Conditions for the Laurent Modes

Above, we have considered the BCFT in terms of the real variables (τ, σ ) which
was convenient in order to arrive at Eq. (6.3). However, as we have seen in all the
previous chapters, for more advanced studies a description in terms of complex vari-
ables is very useful. Similarly as before, a mapping from the infinite strip described
by the real variables (τ, σ ) to the complex upper half-plane H+ is achieved by
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τ

τ=0

σ

σ=0σ=π z=0 z=1

eτ+iσ

−−−−−→

Fig. 6.2 Illustration of the map z = exp(τ + iσ ) from the infinite strip to the complex upper
half-plane H+

z = exp(τ + iσ ). Note in particular, as illustrated in Fig. 6.2, the boundary σ = 0, π

is mapped to the real axis z = z.
Having this map in mind, we can express the boundary conditions (6.3) for the

field X (σ, τ ) in terms of the corresponding Laurent modes. Recalling that j(z) =
i �X (z, z), we find

�σ X = i
(

� − �
)

X = j(z) − j(z) =
∑

n∈Z

(

jn z−n−1 − j n z−n−1 ) ,

i · �τ X = i
(

� + �
)

X = j(z) + j(z) =
∑

n∈Z

(

jn z−n−1 + j n z−n−1 ) ,

where we used the explicit expressions for � and � from p. 12. For transforming the
right-hand side of these equations as z �→ ew with w = τ + iσ , we employ that j(z)
is a primary field of conformal dimension h = 1. In particular, recalling Eq. (2.17),
we have j(z) = (

�z
�w

)1
j(w) = z j(w) leading to

�σ X =
∑

n∈Z

(

jn e−n(τ+iσ ) − j n e−n(τ−iσ )
)

,

i · �τ X =
∑

n∈Z

(

jn e−n(τ+iσ ) + j n e−n(τ−iσ )
)

.
(6.4)

The Neumann as well as the Dirichlet boundary conditions at σ = 0 are then easily
obtained as

�σ X
∣

∣

σ=0 =
∑

n∈Z

(

jn − j n

)

e−n τ = 0 ,

�τ X
∣

∣

σ=0 =
∑

n∈Z

(

jn + j n

)

e−n τ = 0 .
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Since for generic τ the summands above are linearly independent, these two equa-
tions are solved by jn ± j n = 0 for all n, respectively. In summary, we note that
boundaries introduce relations between the chiral and the anti-chiral modes of the
conformal fields which read

jn − j n = 0 Neumann condition,

jn + j n = 0 , (π0 = 0) Dirichlet condition.
(6.5)

From a string theory point of view, Eq. (6.5) implies that an open string has only
half the degrees of freedom of a closed string.

Let us now recall from Eq. (2.91) our computation of the centre of mass mo-
mentum of a closed string. Since for open strings we have σ ∈ [0, π ] instead of
σ ∈ [0, 2π ], we obtain in the present case that

π0 = 1

2
j0 = 1

2
j0 . (6.6)

In view of Eq. (6.5), we thus see that there are no restrictions on π0 for Neumann
boundary conditions and so the endpoints of the string are free to move along the
D-brane. For Dirichlet conditions on the other hand, we have π0 = 0 implying that
the endpoints are fixed.

Combined Boundary Condition

In the previous paragraph, we have considered the boundary at σ = 0. Let us now
turn to the other boundary at σ = π . Performing the same steps as before, we see
that Neumann–Neumann as well as Dirichlet–Dirichlet conditions are characterised
by the constraints found in Eq. (6.5).

However, mixed boundary conditions, e.g. Neumann–Dirichlet, require a modi-
fication. In particular, jn − j n = 0 at σ = 0 and jn + j ne−2inσ = 0 at σ = π can
only be solved for n ∈ Z+ 1

2 . All possible combinations of boundary conditions are
then summarised as

jn − j n = 0 , n ∈ Z Neumann–Neumann,

jn − j n = 0 , n ∈ Z + 1
2 Neumann–Dirichlet,

jn + j n = 0 , n ∈ Z + 1
2 Dirichlet–Neumann,

jn + j n = 0 , n ∈ Z Dirichlet–Dirichlet.

Solutions to the Boundary Condition

Next, let us determine the solutions to the boundary conditions stated above. First,
we integrate Eq. (6.4) to obtain X (τ, σ ) in the closed sector
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X
(

τ, σ
)= x0−i

(

τ + iσ
)

j0−i
(

τ − iσ
)

j0 +
∑

n �=0

i

n

(

jne−n(τ+iσ )+ j ne−n(τ−iσ )
)

,

(6.7)

where x0 is an integration constant. We then implement the boundary conditions to
project onto the open sector. For the Neumann–Neumann case, we find

X (N,N)
(

τ, σ
) = x0 − 2 i τ j0 + 2 i

∑

n �=0

jn
n

e−n τ cos
(

nσ
)

,

and for the Dirichlet–Dirichlet case, we obtain along the same lines

X (D,D)
(

τ, σ
) = x0 + 2 σ j0 + 2

∑

n �=0

jn
n

e−n τ sin
(

nσ
)

.

Having arrived at this solution, we can become more concrete about the
Dirichlet–Dirichlet boundary conditions. We impose that X (τ, σ = 0) = xa

0 and
X (τ, σ = π ) = xb

0 , which means that the endpoints of the string are fixed at posi-
tions xa

0 and xb
0 . Using the explicit solution for X (D,D)(τ, σ ), we obtain the relation

j0 = xb
0 − xa

0

2π
. (6.8)

Finally, for completeness, the solutions for the case of mixed Neumann–Dirichlet
boundary conditions read as follows:

X (N,D)(τ, σ
) = x0 + 2 i

∑

n∈Z+ 1
2

jn
n

e−n τ cos
(

nσ
)

,

X (D,N)
(

τ, σ
) = x0 + 2

∑

n∈Z+ 1
2

jn
n

e−n τ sin
(

nσ
)

.

Note that the index of the Laurent modes in this sector is the same as for the twisted
sector of the free boson Z2-orbifold discussed in Sect. 4.2.5.

Conformal Symmetry

Let us remark that Eq. (6.5) apply to the Laurent modes of the two U (1) currents
j(z) and j(z) of the free boson theory leaving only a diagonal U (1) symmetry.
However, in addition there is always the conformal symmetry generated by the
energy–momentum tensor. Since boundaries in general break certain symmetries,
we expect also restrictions on the Laurent modes of energy–momentum tensor.
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Indeed, recalling that T (z) and T (z) can be expressed in terms of the currents
j(z) and j(z) in the following way:

T (z) = 1

2
N
(

j j
)

(z) , T (z) = 1

2
N
(

j j
)

(z) ,

we find that the Neumann as well as the Dirichlet boundary conditions (6.5) imply
for Ln = 1

2 N ( j j)n that

Ln − Ln = 0 . (6.9)

Let us emphasise that this condition can be expressed as T (z) = T (z) which in par-
ticular means the central charges of the holomorphic and anti-holomorphic theories
have to be equal, i.e. c = c. For string theory, this observation has the immediate
implication that boundaries, that is, D-branes, can only be defined for the Type II
Superstring Theories, as opposed to the heterotic string theories.

6.1.2 Partition Function

Definition

Let us now consider the one-loop partition function for BCFTs. To do so, we first
review the construction for the case without boundaries and then compare with the
present situation.

• In Sect. 4.1, we defined the one-loop partition function for CFTs without bound-
aries as follows. We started from a theory defined on the infinite cylinder de-
scribed by (τ, σ ), where σ was periodic and τ ∈ (−∞,+∞). Next, we imposed
periodicity conditions also on the time coordinate τ yielding the topology of a
torus.

• In the present case, the space coordinate σ is not periodic and thus we start from
a theory defined on the infinite strip given by σ ∈ [0, π ] and τ ∈ (−∞,+∞).
For the definition of the one-loop partition function, we again make the time
coordinate τ periodic leaving us with the topology of a cylinder instead of a
torus. This is illustrated in Fig. 6.3.

• Similarly to the modular parameter of the torus, there is a modular parameter t
with 0 ≤ t < ∞ parametrising different cylinders. The inequivalent cylinders
are described by {(τ, σ ) : 0 ≤ σ ≤ π, 0 ≤ τ ≤ t}.

For the partition function, we need to determine the operator generating transla-
tions in time circling the cylinder once along the τ direction. Because boundaries
lead to an identification of the left- and right-moving sector as required by Eq. (6.9),
we see that this operator is the Hamiltonian say in the open sector
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=⇒

τ

σ

τ

σ

Fig. 6.3 Illustration how the cylinder partition function is obtained from the infinite strip by cutting
out a finite piece and identifying the ends

Hopen = (Lcyl.)0 = L0 − c

24
,

which we inferred from the closed sector Hamiltonian Hclosed = (Lcyl.)0 + (Lcyl.)0.
In analogy to the case of the torus partition function, we then define the cylinder par-
tition function as Z = Tr exp(−2π t Hopen) which can be brought into the following
form:

ZC(t
) = TrHB

(

q L0− c
24

)

where q = e−2π t .

Here, the superscript C on Z indicates the cylinder partition function and HB de-
notes the Hilbert space of all states satisfying one of the boundary conditions (6.5).
Clearly, from a string theory point of view, this is just the Hilbert space of an open
string.

Free Boson I: Cylinder Partition Function (Loop-Channel)

We close this section by determining the cylinder partition function for the free
boson. Recalling our calculation from p. 121 and setting τ = i t , we obtain

TrHB

(

q L0− c
24

)

∣

∣

∣

∣

without j0

= 1

η (i t)
.

However, there we have assumed the action of j0 on the vacuum to vanish, which in
the case of string theory is in general not applicable. Taking into account the effect
of j0, we now study the three different cases of boundary conditions in turn.
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• For the case of Neumann–Neumann boundary conditions, the momentum mode
π0 = 1

2 j0 is unconstrained and in principle contributes to the trace. Since it is a
continuous variable, the sum is replaced by an integral

TrHB

(

q
1
2 j2

0

)

=
∑

n0

〈

n0

∣

∣ e−π t j2
0
∣

∣n0
〉 =

∑

n0

e−π t n2
0 −→

∫ ∞

−∞
dπ0 e−4π t π2

0 ,

where we utilised n0 = 2π0. Evaluating this Gaussian integral leads to the fol-
lowing additional factor for the partition function:

1

2
√

t
. (6.10)

• For the Dirichlet–Dirichlet case, we have seen in Eq. (6.8) that j0 is related to
the positions of the string endpoints. Therefore, we have a contribution to the
partition function of the form

q
1
2 j2

0 = exp

(

−2π t
1

2

(

xb
0 − xa

0

2π

)2)

= exp

(

− t

4π

(

xb
0 − xa

0

)2
)

.

• Finally, for the case of mixed Neumann–Dirichlet boundary conditions, we saw
that the Laurent modes jn take half-integer values for n. We do not present a
detailed calculation for this case but recall our discussion of the free boson
orbifold from Sect. 4.2.5. There, we encountered the twisted sector where the
Laurent modes jn also took half-integer values for n. From Eq. (4.51), we can
then extract Trn∈Z+ 1

2

(

q L0− c
24
)

giving us the partition function in the present case.

In summary, the cylinder partition functions for the example of the free boson read

ZC(D,D)
bos. (t) = exp

(

− t
4π

(

xb
0 − xa

0

)2
) 1

η (i t)
,

ZC(N,N)
bos. (t) = 1

2
√

t

1

η (i t)
, (6.11)

ZC(mixed)
bos. (t) =

√

η (i t)

ϑ4(i t)
.

6.2 Boundary States for the Free Boson

In the last section, we have described the boundaries for the free boson CFT implic-
itly via the boundary conditions for the fields. However, in an abstract CFT usually
there is no Lagrangian formulation available and no boundary terms will arise from
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a variational principle. Therefore, to proceed, we need a more inherent formulation
of a boundary.

In the following, we first illustrate the construction of the so-called boundary
states for the example of the free boson and in the next section, we generalise the
structure to Rational conformal field theories with boundaries.

6.2.1 Boundary Conditions

Boundary States

Let us start with the following observation. As it is illustrated in Fig. 6.4, by inter-
changing τ and σ , we can interpret the cylinder partition function of the boundary
conformal field theory on the left-hand side as a tree-level amplitude of the under-
lying theory shown on the right-hand side. From a string theory point of view, the
tree-level amplitude describes the emission of a closed string at boundary A which
propagates to boundary B and is absorbed there. Thus, a boundary can be interpreted
as an object, which couples to closed strings. Note that in order to simplify our
notation, we call the sector of the BCFT open and the sector of the underlying CFT
closed. The relation above then reads

(σ, τ )open ←→ (τ, σ )closed , (6.12)

which in string theory is known as the world-sheet duality between open and closed
strings.

The boundary for the closed sector can be described by a coherent state in the
Hilbert space H ⊗ H which takes the general form

τσ

τ

σ

⇐⇒

Fig. 6.4 Illustration of world-sheet duality relating the cylinder amplitude in the open and closed
sector
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∣

∣B
〉 =

∑

i, j∈H⊗H

αi j

∣

∣i, j
〉

.

Here i, j label the states in the holomorphic and anti-holomorphic sector of H⊗H,
and the coefficients αi j encode the strength of how the closed string mode |i, j〉
couples to the boundary |B〉. Such a coherent state is called a boundary state and
provides the CFT description of a D-brane in string theory.

Boundary Conditions

Let us now translate the boundary conditions (6.3) into the picture of boundary
states. By using relation (6.12), we readily obtain

�τ Xclosed|τ=0

∣

∣BN
〉 = 0 Neumann condition,

�σ Xclosed|τ=0

∣

∣BD
〉 = 0 Dirichlet condition.

(6.13)

Next, for the free boson theory we would like to express the boundary condi-
tions (6.13) of a boundary state in terms of the Laurent modes. To do so, we recall
Eq. (6.4) and set τ = 0 to obtain

i · �τ Xclosed

∣

∣

τ=0 =
∑

n∈Z

(

jn e−inσ + j n e+inσ
)

,

�σ Xclosed

∣

∣

τ=0 =
∑

n∈Z

(

jn e−inσ − j n e+inσ
)

.
(6.14)

We then relabel n → −n in the second term of each line and observe again that for
generic σ , the summands are linearly independent. Therefore, the boundary condi-
tions (6.13) expressed in terms of the Laurent modes read

(

jn + j−n

) ∣

∣BN
〉 = 0 ,

(

π0 |BN〉 = 0
)

Neumann condition,
(

jn − j−n

) ∣

∣BD
〉 = 0 Dirichlet condition,

(6.15)

for each n. Such conditions relating the chiral and anti-chiral modes acting on the
boundary state are called gluing conditions. Note that for the case of Neumann
boundary conditions, in the string theory picture the relation π0 = 0 means that
there is no momentum transfer through the boundary. On the other hand, for Dirich-
let conditions there is no restriction on π0.
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Solutions to the Gluing Conditions

Next, we are going to state the solutions for the gluing conditions for the example
of the free boson and verify them thereafter. For now, let us ignore the constraints
on j0. We will come back to this issue later.

The boundary states for Neumann and Dirichlet conditions in terms of the Lau-
rent modes jn and j n read

∣

∣BN
〉 = 1

NN
exp

(

−
∞
∑

k=1

1

k
j−k j−k

)

∣

∣ 0
〉

Neumann condition,

∣

∣BD
〉 = 1

ND
exp

(

+
∞
∑

k=1

1

k
j−k j−k

)

∣

∣ 0
〉

Dirichlet condition,

(6.16)

where NN and ND are normalisation constants to be fixed later. One possibility
to verify the boundary states is to straightforwardly evaluate the gluing conditions
(6.15) for the solutions (6.16) explicitly. However, in order to highlight the underly-
ing structure, we will take a slightly different approach.

Construction of Boundary States

In the following, we focus on a boundary state with Neumann conditions but com-
ment on the Dirichlet case at the end. To start, we rewrite the Neumann boundary
state in Eq. (6.16) as

∣

∣BN
〉 = 1

NN
exp

(

−
∞
∑

k=1

1

k
j−k j−k

)

∣

∣0
〉

= 1

NN

∞
∏

k=1

∞
∑

m=0

1√
m!

(

j−k√
k

)m
∣

∣0
〉 ⊗ 1√

m!

(− j−k√
k

)m
∣

∣0
〉

= 1

NN

∞
∑

m1=0

∞
∑

m2=0

. . .

∞
∏

k=1

1√
mk!

(

j−k√
k

)mk
∣

∣0
〉 ⊗ 1√

mk!

(− j−k√
k

)mk
∣

∣0
〉

,

(6.17)

where we first have written the sum in the exponential as a product and then we
expressed the exponential as an infinite series. Next, we note that the following
states form a complete orthonormal basis for all states constructed out of the Laurent
modes j−k :

∣

∣

→
m
〉 = ∣

∣m1, m2, . . .
〉 =

∞
∏

k=1

1√
mk!

(

j−k√
k

)mk
∣

∣0
〉

. (6.18)

The orthonormal property can be seen by computing
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〈→
n
∣

∣

→
m
〉 =

∞
∏

k=1

1√
nk! mk!

1√
k

nk+mk

〈

0
∣

∣ j nk
+k jmk

−k

∣

∣0
〉

k =
∞
∏

k=1

δnk ,mk ,

where we used that

〈

0
∣

∣ j n
+k jm

−k

∣

∣0
〉 = k n

〈

0
∣

∣ j n−1
+k jm−1

−k

∣

∣0
〉 = δm,n kn n! .

We now introduce an operator U mapping the chiral Hilbert space to its charge
conjugate U : H → H+ and similarly for the anti-chiral sector. In particular, the
action of U reads

U jk U−1 = − jk = −(

j−k
)†

, U jk U−1 = − j k = −(

j−k

)†
, U c U−1 = c∗ ,

where c is a constant and * denotes complex conjugation. In the present example,
the ground state |0〉 is non-degenerate and is left invariant by U 1. Knowing these
properties, we can show that U is anti-unitary. For this purpose, we expand a general
state as |a〉 = ∑

→
m

A→
m
|→
m〉 and compute

U
∣

∣a
〉 =

∑

→
m

U A→
m

U−1
∞
∏

k=1

1√
mk!

(

U j−k U−1

√
k

)mk

U
∣

∣0
〉

=
∑

→
m

A∗
→
m

∞
∏

k=1

(−1
)mk

∣

∣

→
m
〉

,

(6.19)

where
→
m denotes the multi-index {m1, m2, . . .}. By using that |→

m〉 and |→n〉 form an
orthonormal basis, we can now show that U is anti-unitary

〈

Ub
∣

∣Ua
〉 =

∑

→
n ,

→
m

〈→
n
∣

∣ B→
n

∞
∏

k=1

(−1
)nk+mk A∗

→
m

∣

∣

→
m
〉 =

∑

→
m

A∗
→
m

B→
m

= 〈

a
∣

∣ b
〉

.

After introducing an orthonormal basis and the anti-unitary operator U , we now
express Eq. (6.17) in a more general way which will simplify and generalise the
following calculations:

∣

∣B
〉 = 1

N
∑

→
m

∣

∣

→
m
〉 ⊗ ∣

∣U
→
m
〉

.

1 For degenerate ground states, appearing for instance for CFTs with extended symmetries studied
in Chap. 3, a non-trivial action on the ground state might need to be defined.
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Verification of the Gluing Conditions

In order to verify the gluing conditions (6.15) for Neumann boundary states, we note
that these have to be satisfied also when an arbitrary state 〈 a | ⊗ 〈 b | is multiplied
from the left. We then calculate

〈

a
∣

∣ ⊗ 〈

b
∣

∣ jn + j−n

∣

∣B
〉 = 1

N
∑

→
m

〈

a
∣

∣ ⊗ 〈

b
∣

∣ jn + j−n

∣

∣

→
m
〉 ⊗ ∣

∣U
→
m
〉

= 1

N
∑

→
m

〈

b
∣

∣ jn
∣

∣

→
m
〉 〈

a
∣

∣U
→
m
〉 + 〈

b
∣

∣

→
m
〉 〈

a
∣

∣ j−n

∣

∣U
→
m
〉

.

Next, due to the identifications on the boundary, the holomorphic and the anti-
holomorphic algebra are identical. We can therefore replace matrix elements in
the anti-holomorphic sector by those in the holomorphic sector. Using finally the
anti-unitarity of U and that

∑

→
m
|→
m〉〈→

m| = 1, we find

〈

a
∣

∣ ⊗ 〈

b
∣

∣ jn + j−n

∣

∣B
〉

= 1

N
∑

→
m

〈

b
∣

∣ jn
∣

∣

→
m
〉 〈

a
∣

∣U
→
m
〉 + 〈

b
∣

∣

→
m
〉 〈

a
∣

∣ j−n

∣

∣U
→
m
〉

= 1

N
∑

→
m

〈

b
∣

∣ jn
∣

∣

→
m
〉 〈 →

m
∣

∣U−1a
〉 + 〈

b
∣

∣

→
m
〉 〈 →

m
∣

∣

(− jn
) ∣

∣U−1a
〉

= 1

N

(

〈

b
∣

∣ jn
∣

∣U−1a
〉 − 〈

b
∣

∣ jn
∣

∣U−1a
〉

)

= 0 .

Therefore, we have verified that the Neumann boundary state in Eq. (6.16) is indeed
a solution to the corresponding gluing condition in Eq. (6.15).

For the case of Dirichlet boundary conditions, the action of U on the Laurent
modes jn and j n is chosen with a + sign while we still require U to be anti-
unitary, i.e. U c U−1 = c∗. The calculation is then very similar to the Neumann
case presented here. Note furthermore, the construction of boundary states and the
verification of the gluing conditions are also applicable for more general CFTs, for
instance RCFTs, which we will consider in Sect. 6.3.

Momentum Dependence of Boundary States

In Eq. (2.91), we have computed the momentum π0 in the closed sector which is
related to j0 and j0 as π0 = j0 = j0. This is in contrast to the result in the open
sector which we obtained in Eq. (6.6). In the following, the relation between j0, j0
and π0 should be clear from the context, but let us summarise that

(

π0
)

closed = j0 = j0 ,
(

π0
)

open = 1

2
j0 = 1

2
j0 . (6.20)
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From a string theory point of view, in addition to the boundary conditions (6.15)
there is a further natural constraint on a boundary state with Dirichlet conditions.
Namely, the closed string at time τ = 0 is located at the boundary at position xa

0 .
We therefore impose

Xclosed
(

τ = 0, σ
) ∣

∣BD
〉 = xa

0

∣

∣BD
〉

and similarly for τ = π . An easy way to realise this constraint is to perform a
Fourier transformation from momentum space |BD, π0〉 to the position space. Con-
cretely, this reads

∣

∣BD, xa
0

〉 =
∫

dπ0 eiπ0xa
0
∣

∣BD, π0
〉

.

For the boundary state with Neumann conditions, we have π0 = 0 and in position
space, there is no definite value for x0. We thus omit this label.

Conformal Symmetry

In studying the example of the free boson, we have expressed all important quanti-
ties in terms of the U (1) current modes jn and j n . However, in more general CFTs
such additional symmetries may not be present but the conformal symmetry gener-
ated by the energy–momentum tensors always is. In view of generalisations of our
present example, let us therefore determine the boundary conditions of the boundary
states in terms of the Laurent modes Ln and Ln .

Mainly guided by the final result, let us compute the following expression
by employing that T (z) = 1

2 N ( j j)(z) which implies Ln = 1
2

∑

k>−1 jn−k jk +
1
2

∑

k≤−1 jk jn−k :

(

Ln − L−n
) ∣

∣BN,D
〉

= 1

2

(

∑

k>−1

(

jn−k jk − j−n−k j k

) +
∑

k≤−1

(

jk jn−k − j k j−n−k

)

)

∣

∣BN,D
〉

= 1

2

(

jn j0 − j−n j0 +
∑

k≥1

(

jn−k jk − j−n−k j k + j−k jn+k − j−k j−n+k

)

)

∣

∣BN,D
〉

.

Note that here we changed the summation index k → −k in the second sum. Next,
we recall Eq. (6.15) and j0 = j0 to observe that the terms involving j0 and j0 vanish
when applied to |BN,D〉. The remaining terms can be rewritten as

1

2

∑

k≥1

(

jn−k
(

jk ± j−k

) ∓ jn−k j−k ∓ j−n−k

(

j−k ± j k

) ± j−n−k j−k

+ j−k
(

jn+k ± j−n−k

) ∓ j−k j−n−k ∓ j−k

(

jn−k ± j−n+k

)± j−k jn−k

)

∣

∣BN,D
〉

.
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By again employing the boundary conditions (6.15), we see that half of these terms
vanish when acting on the boundary state, while the other half cancels among them-
selves. In summary, we have shown that

(

Ln − L−n
) ∣

∣BN,D
〉 = 0 .

6.2.2 Tree-Level Amplitudes

Cylinder Diagram in General

We now turn to the cylinder diagram which we compute in the closed sector. Refer-
ring again to Fig. 6.4, in string theory, we can interpret this diagram as a closed string
which is emitted at the boundary A, propagating via the closed sector Hamiltonian
Hclosed = L0 + L0 − c+c

24 for a time τ = l until it reaches the boundary B where
it gets absorbed. In analogy to Quantum Mechanics, such an amplitude is given by
the overlap

˜ZC(l) = 〈�B| e−2πl (L0+L0− c+c
24 ) |B〉 , (6.21)

where the tilde indicates that the computation is performed in the closed sector (or
at tree-level) and l is the length of the cylinder connecting the two boundaries.

Let us now explain the notation 〈�B|. This bra-vector is understood in the sense
of Sect. 2.8 as the hermitian conjugate of the ket-vector |�B〉. Furthermore, we
have introduced the CPT operator � which acts as charge conjugation (C) defined
in (4.31), parity transformation (P) σ �→ −σ and time reversal (T) τ �→ −τ for
the two-dimensional CFT. The reason for considering this operator can roughly be
explained by the fact that the orientation of the boundary a closed string is emitted at
is opposite to the orientation of the boundary where the closed string gets absorbed.
For the momentum dependence of a boundary state |B, π0〉, this implies in particular
that

〈

πa
0

∣

∣πb
0

〉 = δ
(

πa
0 + πb

0

)

. (6.22)

Without a detailed derivation, we finally note that the theory of the free boson is
CPT invariant and so the action of � on the boundary states (6.16) of the free boson
theory (and on ordinary numbers c ∈ C) reads

�
∣

∣B, π0
〉 = 1

N ∗
∣

∣B, π0
〉

, � c �−1 = c∗ , (6.23)

where * denotes complex conjugation.
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Free Boson II : Cylinder Diagram (Tree-Channel)

Let us now be more concrete and compute the overlap of two boundary states (6.21)
for the example of the free boson. To do so, we note that for the free boson CFT we
have c = c = 1 and we recall from Sect. 4.2.1 that

L0 = 1

2
j0 j0 +

∑

k≥1

j−k jk ,

and similarly for L0. Next, we perform the following calculation in order to evaluate
Eq. (6.21). In particular, we use j−k jk jmk

−k |0〉 = mk k jmk
−k |0〉 which we obtained from

Eq. (4.13) to find

q
∑

k≥1 j−k jk
∣

∣

→
m
〉 =

∞
∏

k=1

∞
∑

p=0

(−2π iτ
)p

p!

(

j−k jk
)p

∞
∏

l=1

1√
ml!

(

j−l√
l

)ml
∣

∣0
〉

=
∞
∏

k=1

∞
∑

p=0

(−2π iτ
)p

p!

(

mk k
)p

∞
∏

l=1

1√
ml!

(

j−l√
l

)ml
∣

∣0
〉

=
∞
∏

k=1

q mk k
∣

∣

→
m
〉

.

(6.24)

The cylinder diagram for the three possible combinations of boundary conditions is
then computed as follows.

• For the case of Neumann–Neumann boundary conditions, we have j0|BN〉 =
j0|BN〉 = 0 and so the momentum contribution vanishes. For the remaining part,
we calculate using Eqs. (6.24) and (6.19)

˜ZC(N,N)
bos. (l) = e−2πl(− 2

24 )

N 2
N

∑

→
m

〈→
m
∣

∣ e−2πl
∑

k≥1 j−k jk
∣

∣

→
m
〉×

× 〈

U
→
m
∣

∣ e−2πl
∑

k≥1 j−k j k
∣

∣U
→
m
〉

= e−2πl(− 2
24 )

N 2
N

∑

→
m

∞
∏

k=1

e−2πl mk k
(−1

)

∑∞
l=1 ml e−2πl mk k

(−1
)

∑∞
l=1 ml

= e
πl
6

N 2
N

∞
∏

k=1

∞
∑

mk=0

(

e−4πl k
)mk = 1

N 2
N

e
πl
6

∞
∏

k=1

1

1 − e−4πl k
,

where in the last step, we performed a summation of the geometric series. Let us
emphasise that due to the action of the CPT operator � shown in Eq. (6.23), N 2

is just the square of N and not the absolute value squared. Then, with q = e2π iτ ,
τ = 2il and η(τ ) the Dedekind η-function defined in Sect. 4.2.1, we find that the
cylinder diagram for Neumann–Neumann boundary conditions is expressed as
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˜ZC(N,N)
bos. (l) = 1

N 2
N

1

η
(

2il
) . (6.25)

• Next, we consider the case of Dirichlet–Dirichlet boundary conditions. Noting
that U now acts trivially on the basis states, we see that apart from the momentum
contribution the calculation is similar to the case with Neumann–Neumann con-
ditions. However, for the momentum dependence, we compute using Eqs. (6.22)
and (6.23)

∫ ∞

−∞
dπa

0 dπb
0 e+i xa

0 πa
0 e+i xb

0 πb
0
〈

πa
0

∣

∣e−2πl( j0)2 ∣
∣πb

0

〉

=
∫ ∞

−∞
dπa

0 dπb
0 e+i xa

0 πa
0 e+i xb

0 πb
0 e−2πl(πb

0 )2

δ
(

πa
0 + πb

0

)

=
∫ ∞

−∞
dπa

0 e
−2πl

(

πa
0 +i

xb
0 −xa

0
4πl

)2

e− (xb
0 −xa

0 )2

8πl = 1√
2l

e− (xb
0 −xa

0 )2

8πl ,

where we completed a perfect square and performed the Gaussian integration.
In order to arrive at the result above, we also employed that in the closed sector
π0 = j0 = j0. The cylinder diagram with Dirichlet–Dirichlet boundary condi-
tions therefore reads

˜ZC(D,D)
bos. (l) = 1

N 2
D

exp

(

−
(

xb
0 − xa

0

)2

8πl

)

1√
2l

1

η
(

2il
) .

• Finally, for mixed Neumann–Dirichlet conditions, the boundary state satisfies
j0|BD〉 = j0|BD〉 = π0|BD〉 which leads us to

∫

dπ0 ei π0x0
〈

π0 = 0
∣

∣ e−2πl j2
0
∣

∣π0
〉 =

∫

dπ0 ei π0x0 e−2πl π2
0 δ

(

π0
) = 1 .

In the anti-holomorphic sector of the Dirichlet boundary state, the action of U on

the basis states |→
m〉 is trivial and so we obtain a single factor of (−1)

∑

k mk . For
the full cylinder diagram, this implies

˜ZC(mixed)
bos. (l) = e

πl
6

NNND

∞
∏

k=1

∞
∑

mk=0

(

−e−4πl k
)mk= e

πl
6

NNND

∞
∏

k=1

1

1 + e−4πl k
.

Recalling then the definitions of ϑ-functions from p. 137, we see that we can
express the cylinder diagram for mixed boundary conditions as

˜ZC(mixed)
bos. (l) =

√
2

NNND

√

η (2il)

ϑ2(2il)
.



6.2 Boundary States for the Free Boson 223

Loop-Channel – Tree-Channel Equivalence

Let us come back to Fig. 6.4. As it is illustrated there and motivated at the beginning
of this section, we expect the cylinder diagram in the closed and open sectors to be
related. More specifically, this relation is established by (σ, τ )open ↔ (τ, σ )closed,
where σ is the world-sheet space coordinate and τ is world-sheet time. However,
this mapping does not change the cylinder, in particular, it does not change the
modular parameter τ . In the open sector, the cylinder has length 1

2 and circumference
t when measured in units of 2π , while in the closed sector we have length l and
circumference 1. Referring then to Eq. (4.6) in Chap. 4, we find for the modular
parameter in the open and closed sectors that

τopen = α2

α1
= i t

1/2
= 2i t , τclosed = α2

α1
= i

l
.

As we have emphasised, the modular parameters in the open and closed sectors have
to be equal which leads us to the relation

t = 1

2l
.

This is the formal expression for the pictorial loop-channel–tree-channel equiva-
lence of the cylinder diagram illustrated in Fig. 6.4.

We now verify this relation for the example of the free boson explicitly which
will allow us to fix the normalisation constants ND and NN of the boundary states.
Recalling the cylinder partition function (6.11) in the open sector, we compute

ZC(N,N)
bos.

(

t
) = 1

2
√

t

1

η(i t)

t= 1
2l−−−−→

√

l

2

1

η
(− 1

2il

) = 1

2 η(2il)
= N 2

N

2
˜ZC(N,N)

bos.

(

l
)

,

where we used the modular properties of the Dedekind η function summarised in
Eq. (4.15). Therefore, requiring the results in the loop- and tree-channels to be re-
lated, we can fix

NN =
√

2 . (6.26)

Next, for Dirichlet–Dirichlet boundary conditions, we find

ZC(D,D)
bos.

(

t
) = exp

(

− t
4π

(

xb
0 − xa

0

)2
) 1

η (i t)
t= 1

2l−−−−→ exp
(

− 1
8πl

(

xb
0 − xa

0

)2
) 1

η
(− 1

2il

) = N 2
D

˜ZC(D,D)
bos.

(

l
)

,
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which allows us to fix the normalisation constant as

ND = 1 .

Finally, the loop-channel–tree-channel equivalence for mixed Neumann–Dirichlet
boundary conditions can be verified along similar lines. This discussion shows that
indeed the cylinder partition function for the free boson in the open and closed
sectors is related via a modular transformation, more concretely via a modular
S-transformation.

Summary and Remark

Let us now briefly summarise our findings of this section and close with some re-
marks.

• By performing the so-called world-sheet duality (σ, τ )open ↔ (τ, σ )closed, we
translated the Neumann and Dirichlet boundary conditions from the open sector
to the closed sector. In string theory, the boundary in the closed sector is inter-
preted as an object which absorbs or emits closed strings.

• Working out the boundary conditions in terms of the Laurent modes of the free
boson theory, we obtained the gluing conditions

(

jn ± j−n

)∣

∣BN,D
〉 = 0 ,

which imply that the two U (1) symmetries generated by j(z) and j(z) are broken
to a diagonal U (1).

• For the example of the free boson theory, we stated the solution |B〉 to the glu-
ing conditions and verified them. Along the way, we also outlined the idea for
constructing boundary states for more general theories.

• The cylinder amplitude in the closed sector (tree-level) is computed from the
overlap of two boundary states

˜ZC(l) = 〈�B| e−2πl (L0+L0− c+c
24 ) |B〉 .

We performed this calculation for the free boson and checked that it is related
to the cylinder partition function in the open sector via world-sheet duality. In
particular, this transformation is a modular S-transformation.

• Finally, the BCFT also has to preserve the conformal symmetry generated by
T (z). The boundary states respect this symmetry in the sense that the following
conditions have to be satisfied:

(

Ln − L−n
)∣

∣BN,D
〉 = 0 ,

which we checked for the example of the free boson theory.
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• Very similarly, one can generalise the concept of boundaries and boundary states
to the CFT of a free fermion which is very important for applications in Super-
string Theory.

As we mentioned already, in string theory boundary states are called D-branes
to emphasise the space–time point of view of such objects. They are higher di-
mensional generalisations of strings and membranes, and indeed they play a very
important role in understanding the non-perturbative sector of string theory. It
was one of the big insights at the end of the last millennium that such higher
dimensional objects are naturally contained in string theory (which started as
a theory of only one-dimensional objects) and gave rise to various surprising
dualities, the most famous surely being the celebrated AdS/CFT correspondence.

6.3 Boundary States for RCFTs

After having studied the Boundary CFT of the free boson in great detail, let us now
generalise our findings to theories without a Lagrangian description. In particular,
we focus on RCFTs and we will formulate the corresponding Boundary RCFT just
in terms of gluing conditions for the theory on the sphere.

Boundary Conditions

We consider Rational conformal field theories with chiral and anti-chiral symmetry
algebras A and A, respectively. As we have seen in Chap. 2, for the theory on the
sphere the Hilbert space splits into irreducible representations of A ⊗ A as

H =
⊕

i, j

Mi j Hi ⊗ H j ,

where Mi j are the same multiplicities of the highest weight representation appearing
in the modular invariant torus partition function. Note that for the case of RCFTs we
are considering, there is only a finite number of irreducible representations and that
the modular invariant torus partition function is given by a combination of chiral
and anti-chiral characters as follows (4.61):

Z(τ, τ ) =
∑

i, j

Mi j χi (τ ) χ j (τ ) .

Generalising the results from the free boson theory, we state without derivation
that a boundary state |B〉 in the RCFT preserving the symmetry algebra A = A has
to satisfy the following gluing conditions:
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(

Ln − L−n
) ∣

∣B
〉 = 0 conformal symmetry,

(

W i
n − (−1)hi

W
i
−n

) ∣

∣B
〉 = 0 extended symmetries,

(6.27)

where W i
n is the holomorphic Laurent mode of the extended symmetry generator

W i with conformal weight hi = h(W i ), and W
i

denotes the generator in the anti-
holomorphic sector. However, the condition for the extended symmetries can be
relaxed, so that also Dirichlet boundary conditions similar to the example of a free
boson are included

(

W i
n − (−1)hi

	
(

W
i
−n

)

)

∣

∣B
〉 = 0 ,

where 	 : A → A is an automorphism of the chiral algebra A. Such an automor-
phism 	 is also called a gluing automorphism and for our example of the free boson
with Dirichlet boundary conditions, it simply is 	 : j n �→ − j n .

Ishibashi States

Next, let us recall from (4.31) that the charge conjugation matrix C maps highest
weight representations i to their charge conjugate i+. Denoting then the Hilbert
space built upon the charge conjugate representation by H+

i , we can state the im-
portant result of Ishibashi:

For A = A and Hi = H+
i , to each highest weight representation φi of

A one can associate an up to a constant unique state |Bi 〉〉 such that the
gluing conditions are satisfied.

Note that since the CFTs we are considering are rational, there is only a finite num-
ber of highest weight states and thus only a finite number of such so-called Ishibashi
states |Bi 〉〉.

We now construct the Ishibashi states in analogy to the boundary states of the
free boson. Denoting by |φi ,

→
m〉 an orthonormal basis for Hi , the Ishibashi states

are written as

∣

∣Bi
〉〉 =

∑

→
m

∣

∣φi ,
→
m
〉 ⊗ U

∣

∣φi ,
→
m
〉

, (6.28)

where U : H → H+
is an anti-unitary operator acting on the symmetry generators

W
i

as follows:

U W
i
n U−1 = (−1)hi (

W
i
−n

)†
.
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The proof that the Ishibashi states are solutions to the gluing conditions (6.27) is
completely analogous to the example of the free boson and so we will not present it
here.

The Cardy Condition

For later purpose, let us now compute the following overlap of two Ishibashi states:

〈〈

B j

∣

∣ e−2πl
(

L0+L0− c+c
24

)

∣

∣Bi
〉〉

. (6.29)

Utilising the gluing conditions for the conformal symmetry generator (6.27), we
see that we can replace L0 by L0 and c by c. Next, because the Hilbert spaces of
two different HWRs φi and φ j are independent of each other, the overlap above
is only nonzero for i = j+. Note that here we have written the charge conjugate
j+ of the highest weight φ j because the hermitian conjugation also acts as charge
conjugation. We then obtain

〈〈

B j

∣

∣ e−2πl
(

L0+L0− c+c
24

)

∣

∣Bi
〉〉 = δi j+

〈〈

Bi

∣

∣ e2π i (2il)
(

L0− c
24

)

∣

∣Bi
〉〉

= δi j+ TrHi

(

q L0− c
24

)

= δi j+ χi
(

2il
)

,

(6.30)

with χi the character of the highest weight φi defined on p. 127. Performing a mod-
ular S-transformation for this overlap, by the same reasoning as for the free boson,
we expect to obtain a partition function in the boundary sector. However, because
the S-transform of a character χi (2il) in general does not give non-negative integer
coefficients in the loop-channel, it is not clear whether to interpret such a quantity
as a partition function counting states of a given excitation level.

As it turns out, the Ishibashi states are not the boundary states itself but only
building blocks guaranteed to satisfy the gluing conditions. A true boundary state in
general can be expressed as a linear combination of Ishibashi states in the following
way:

∣

∣Bα

〉 =
∑

i

Bi
α

∣

∣Bi
〉〉

. (6.31)

The complex coefficients Bi
α in Eq. (6.31) are called reflection coefficients and are

very constrained by the so-called Cardy condition. This condition essentially en-
sures the loop-channel–tree-channel equivalence. Indeed, using relation (6.30) and
choosing normalisations such that the action of the CPT operator � introduced in
Eq. (6.23) reads

�
∣

∣Bα

〉 =
∑

i

(

Bi
α

)∗ ∣
∣Bi+

〉〉

, (6.32)
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the cylinder amplitude between two boundary states of the form (6.31) can be ex-
pressed as follows:

˜Zαβ(l) = 〈 �Bα| e−2πl
(

L0+L0− c+c
24

)

|Bβ〉
=

∑

i, j

B j
α Bi

β

〈〈

B j+
∣

∣ e−2πl
(

L0+L0− c+c
24

)

∣

∣Bi
〉〉

=
∑

i

Bi
α Bi

β χi
(

2il
)

.

Performing a modular S-transformation l �→ 1
2t on the characters χi , this closed sec-

tor cylinder diagram is transformed to the following expression in the open sector:

˜Zαβ

(

l
) → ˜Zαβ

(

1
2t

) =
∑

i, j

Bi
α Bi

β Si j χ j
(

i t
) =

∑

j

n j
αβ χ j

(

i t
) = Zαβ(t) ,

where Si j is the modular S-matrix and where we introduced the new coefficients ni
αβ .

Now, the Cardy condition is the requirement that this expression can be interpreted
as a partition function in the open sector. That is, for all pairs of boundary states |Bα〉
and |Bβ〉 in a RCFT, the following combinations have to be non-negative integers:

n j
αβ =

∑

i

Bi
α Bi

β Si j ∈ Z
+
0 .

Construction of Boundary States

The Cardy condition just illustrated is very reminiscent of the Verlinde formula,
where a similar combination of complex numbers leads to non-negative fusion
rule coefficients. For the case of a charge conjugate modular invariant partition
function, that is, when the characters χi (τ ) are combined with χ i+ (τ ) as Z =
∑

i χi (τ ) χ i+(τ ), we can construct a generic solution to the Cardy condition by
choosing the reflection coefficients in the following way:

Bi
α = Sα i√

S0 i
.

Note, for each highest weight representation φi in the RCFT, there exists not only an
Ishibashi state but also a boundary state, i.e. the index α in |Bα〉 also runs from one to
the number of HWRs. Employing then the Verlinde formula (4.55) and denoting the
non-negative, integer fusion coefficients by Nα

jβ , we find that the Cardy condition

for the coefficients n j
αβ is always satisfied
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n j
αβ =

∑

i

Sαi Sβi Si j

S0i
=

∑

i

Sαi Sβi S∗
i j+

S0i
= N j+

αβ ∈ Z
+
0 .

Note that here we employed S∗
i j = Si j+ which is verified by noting that S−1 = S∗

as well as that S2 = C with C the charge conjugation matrix Ci j = δi j+ introduced
in (4.31).

Remark

For more general modular invariant partition functions, it is still an active area of
research to construct the boundary states. Again the concept of simple currents is
very helpful to find new solutions.

Without proof, we state one important result. If J is an orbit simple current of
length L in a RCFT with charge conjugate modular invariant partition function, then
the orbits of boundary states

∣

∣B J
α

〉 =
L−1
∑

k=0

∣

∣ J k Bα

〉

of the original RCFT define new boundary states for the simple current extension.
In this manner, one can construct boundary states for Gepner models which, as pre-
sented in Sect. 5.6, are simple current extensions of certain tensor products of N = 2
SCFTs. For further simple current extensions of Gepner models, these techniques
are also applicable and lead to a plethora of boundary states of Gepner models.

6.4 CFTs on Non-Orientable Surfaces

Up to this point, we have studied conformal field theories defined on the Riemann
sphere and the complex plane, respectively and on the torus. For Boundary CFTs,
the corresponding surfaces are the upper half-plane and the cylinder. We note that
all these surfaces are orientable, that is, an orientation can be chosen globally.

However, in string theory, it is necessary to also define CFTs on non-orientable
surfaces. One such surface is the so-called crosscap RP

2 which can be viewed as
a two-sphere with opposite points identified. Other non-orientable surfaces are the
Möbius strip and the Klein bottle, and a summary of all surfaces relevant for the
following is shown in Fig. 6.5.

Orientifolds

Before formulating CFTs on non-orientable surfaces, let us briefly explain the string
theory origin of such theories. Recalling the action for a free boson (6.1), we observe
that this theory has a discrete symmetry denoted as 	 which takes the form
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Complex Plane

Upper Half-Plane

Cylinder

Torus

Möbius Strip
(non-orientable)

Klein Bottle
(non-orientable)

Crosscap
(non-orientable)

Fig. 6.5 Two-dimensional orientable and non-orientable surfaces. On the left-hand side, the fun-
damental domain can be found and it is indicated how opposite edges are identified leading to the
surfaces illustrated on the right-hand side. Note that for the identification of opposite edges the
orientation given by the arrows is crucial

	 : X
(

τ, σ
) �→ ˜X

(

τ, σ
) = X

(

τ,−σ
)

, (6.33)

with τ and σ again world-sheet time and space coordinates. To see that the action
(6.1) is invariant under 	, observe that
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(

�σ X
)

(τ, σ ) 	−1 = −(

�σ X
)

(τ,−σ ) ,

	
(

�τ X
)

(τ, σ ) 	−1 = +(

�τ X
)

(τ,−σ ) .
(6.34)

Next, let us note that from the mapping (6.33), we see that 	 acts as a world-
sheet parity operator. In the string theory picture, this means that 	 changes the
orientation of a closed string. As with any other symmetry, we can study the quotient
of the original theory by the symmetry. We have already considered a quotient CFT
in Sect. 4.2.5, where we studied a Z2-orbifold of the free boson compactified on a
circle. Since 	 changes orientation, in analogy to orbifolds, such a quotient is called
an orientifold.

The Example of the Free Boson in More Detail

Let us further elaborate on the action of the orientifold projection 	 for the free
boson. We first note that −σ has to be interpreted properly because we normalised
the world-sheet space coordinate as σ ∈ [0, 2π ) for the closed sector and as σ ∈
[0, π ] in the open sector. The correct identification for −σ then reads

−σclosed ∼ 2π − σclosed , −σopen ∼ π − σopen .

Next, we consider the free boson in the closed sector and express �σ X in Eq. (6.34)
in terms of the Laurent modes jn and j n using Eq. (6.4)

	
(

�σ X
)

(τ, σ ) 	−1 = −(

�σ X
)

(τ,−σ )
∑

n∈Z

(

	 jn 	−1 e−n(τ+iσ ) − 	 j n 	−1 e−n(τ−iσ )
)

=
∑

n∈Z

(

− jn e−n(τ+i(2π−σ )) + j n e−n(τ−i(2π−σ ))
)

. (6.35)

From this relation, we can determine the action of 	 on the modes in the closed
sector as follows:

	 jn 	−1 = j n , 	 j n 	−1 = jn . (6.36)

For the open sector, we have to replace 2π on the right-hand side in Eq. (6.35) by
π which leads to an additional factor of (−1)n . Using then the boundary conditions
of an open string (6.5) which relate the Laurent modes as jn = ± j n , we obtain the
action of 	 in the open sector as

	 jn 	−1 = ±(−1)n jn, (6.37)
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where the two signs correspond to Neumann–Neumann, and Dirichlet–Dirichlet
boundary conditions, respectively. For the case of mixed boundary conditions, we
recall that the Laurent modes have labels n ∈ Z+ 1

2 and we note that 	 interchanges
the endpoints of an open string as well as the boundary conditions. In particular, we
find

	 j (N,D)
n 	−1 = −(−1)n j (D,N)

n , 	 j (D,N)
n 	−1 = +(−1)n j (N,D)

n . (6.38)

Partition Function: Klein Bottle

Let us now consider partition functions for general orientifold theories. We start
with the usual form of a modular invariant partition function in a CFT

Z(τ, τ ) = TrH×H

(

q L0− c
24 q L0− c

24

)

, (6.39)

where we indicated the trace over the combined Hilbert space H × H explicitly.
Next, we generalise our findings from the example of the free boson and define the
action of the world-sheet parity operator 	 on the Hilbert space as follows:

	 | i, j 〉 = ± | 	( j), 	(i) 〉 , (6.40)

where i denotes a state in the holomorphic sector of the theory and j stands for the
anti-holomorphic sector. The two different signs originate from the two possibilities
of 	 acting on the vacuum |0〉 compatible with the requirement that 	2 = 1. The
simplest choice for 	(i) is 	(i) = i , but also more general Z2 involutions are
possible, for instance 	(i) = i+, where + denotes charge conjugation introduced in
(4.31).

Since orientifold constructions are very similar to orbifolds, we can employ the
same techniques already introduced in Sect. 4.2.5 and summarised in Eq. (4.52).
More concretely, we project the entire Hilbert space H×H onto those states which
are invariant under 	, i.e. we introduce the projection operator 1

2 (1 + 	) into the
partition function (6.39). In analogy to Eq. (4.52), we therefore obtain

Z	(τ, τ ) = TrH×H

(

1 + 	

2
q L0− c

24 q L0− c
24

)

= 1

2
Z(τ, τ ) + 1

2
TrH×H

(

	 q L0− c
24 q L0− c

24

)

.

The first term is just one-half of the torus partition function which we already stud-
ied. Let us therefore turn to the second term

ZK(τ, τ ) = TrH×H

(

	 q L0− c
24 q L0− c

24

)

. (6.41)
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The insertion of 	 into the trace has the effect that by looping once around the
direction τ of a torus, the closed string comes back to itself up to the action of 	,
that is, up to a change of orientation. Geometrically, such a diagram is not a torus
but a Klein bottle illustrated in Fig. 6.5. This is also the reason for the superscript K
of the partition function and for its name: the Klein bottle partition function.

We will now specify the action of 	 as 	(i) = i and 	 |0〉 = +|0〉 in order to
make Eq. (6.41) more explicit. For this choice, we obtain

〈

i, j
∣

∣ 	
∣

∣ i, j
〉 = 〈

i, j
∣

∣ j, i
〉 = δi j , (6.42)

where we used Eq. (6.40). Therefore, only left–right symmetric states |i, i〉 con-
tribute to the trace in Eq. (6.41) and we can simplify the partition function as
follows:

ZK(τ, τ ) = TrH×H

(

	 q L0− c
24 q L0− c

24

)

=
∑

i, j

〈

i, j
∣

∣ 	 q L0− c
24 	−1 	 q L0− c

24 	−1 	
∣

∣ i, j
〉

=
∑

i

〈

i, i
∣

∣q L0− c
24 q L0− c

24
∣

∣ i, i
〉

,

where we employed Eq. (6.42). Since only the diagonal subset will contribute to the
trace, we see from this expression that effectively L0 and L0 as well as c and c can
be identified. Observing finally that qq = e−4πτ2 , we arrive at

ZK(τ, τ ) =
∑

i

〈

i, i
∣

∣

(

q q
)L0− c

24
∣

∣ i, i
〉 = TrHsym.

(

e−4π t(L0− c
24 )

)

, (6.43)

with t = τ2 and Hsym. denoting the states
∣

∣ i, i
〉

in the Hilbert space which are
combined in a left–right symmetric way.

Free Boson III: Klein Bottle Partition Function
(Loop-Channel)

Let us now determine the Klein bottle partition function for the example of the free
boson. As it is evident from Eq. (6.43), this partition function is the character of the
free boson theory with modular parameter τ = 2i t . However, for the momentum
contribution, we need to perform a calculation similar to the one in the open sector
shown on p. 213. In particular, from Eq. (6.43) we extract the j0 part, replace the
sum by an integral and compute

TrHsym.

(

e−4π t 1
2 j2

0

)

−→
∫ +∞

−∞
dπ0 e−4π t 1

2 π2
0 = 1√

2t
,
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where we observed that in the closed sector j0 = π0. Combining this result with the
character of the free boson theory, we obtain the following expression for the full
Klein bottle partition function:

ZK
bos.(τ, τ ) = 1√

2t

1

η
(

2i t
) . (6.44)

Partition Function: Möbius Strip

After having studied CFTs on non-orientable surfaces in the closed sector, let us
now turn to the open sector. Again, the partition function has to be projected onto
states invariant under the orientifold action 	. Following the same steps as for the
closed sector, we find

Z	(t) = TrHB

(

1 + 	

2
e−2π t(L0− c

24 )
)

= 1

2
ZC(t) + 1

2
TrHB

(

	 e−2π t(L0− c
24 )

)

.

The first term contains the cylinder amplitude, but the second term

ZM(t) = TrHB

(

	 e−2π t(L0− c
24 )

)

(6.45)

describes an open string whose orientation changes when looping along the t di-
rection. The geometry of such a surface is that of a Möbius strip also shown in
Fig. 6.5. The corresponding partition function is called the Möbius strip partition
function and hence the superscript M.

Free Boson IV: Möbius Strip Partition Function
(Loop-Channel)

We now calculate the Möbius strip partition function for the free boson. Recalling
our notation (4.12) from the beginning of Sect. 4.2.1 and the mapping (6.37), we
see that the action of 	 on a state is

	
∣

∣n1, n2, n3, . . .
〉 =

∞
∏

k=1

(±1)nk (−1)k nk
∣

∣n1, n2, n3, . . .
〉

.

Performing then the same steps as in the calculation on p. 121 with the action of 	
on the states taken into account, we arrive at

TrHB

(

	 q L0− c
24

)

∣

∣

∣

∣

without j0

= q− 1
24

∞
∏

k=1

∞
∑

nk=0

(±1)nk (−1)k nk qk nk

= e
π i
24
(−q

)− 1
24

∞
∏

k=1

1

1 ∓ (−q
)k .

(6.46)
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We also note that −q with modular parameter τ can be expressed as +q with mod-
ular parameter τ + 1

2 .
For Neumann–Neumann boundary conditions, i.e. for the upper sign in the ex-

pression above, we employ the definition of the Dedekind η-function. However,
since the momentum π0 is unconstrained, we compute

TrHB

(

	 e−2π t 1
2 j2

0

)

−→
∫ +∞

−∞
dπ0 e−2π t 1

2 (2π0)2 = 1

2
√

t
,

where we used that j0 is invariant under 	 as well as that in the open sector j0 =
2π0. The full Möbius strip partition function in the Neumann–Neumann sector then
reads

ZM(N,N)
bos. (t) = e

π i
24

1

2
√

t

1

η
(

1
2 + i t

) . (6.47)

For Dirichlet–Dirichlet conditions, that means the lower sign in Eq. (6.46), we find
for instance from Eq. (6.37) that j0 = 0 so that there is no additional factor from
the momentum integration. Recalling the definition of the ϑ2-function summarised
on p. 137, we obtain

ZM(D,D)
bos. (t) = e

π i
24

√
2

√

√

√

√

η
(

1
2 + i t

)

ϑ2
(

1
2 + i t

) . (6.48)

For mixed boundary conditions, the Möbius strip partition function vanishes as 	
exchanges Neumann–Dirichlet with Dirichlet–Neumann conditions and so there is
no contribution to the trace.

Loop-Channel – Tree-Channel Equivalence

For the cylinder partition function, we have seen that the result in the open and
closed sectors are related via a modular S-transformation. One might therefore
suspect that this equivalence between partition functions and overlaps of boundary
states can also be found for non-orientable surfaces.

This is indeed the case which we illustrate in Fig. 6.6 for the Klein bottle partition
function.

1. The fundamental domain of the Klein bottle shown in Fig. 6.6(a) is that of a torus
up to a change of orientation. However, as opposed to the torus, the modular
parameter of the Klein bottle is purely imaginary.

2. In Fig. 6.6(b), the fundamental domain is halved and the identification of seg-
ments and points is indicated explicitly by arrows and symbols.

3. Next, we shift one-half of the fundamental domain as shown in Fig. 6.6(c).
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1

iτ2

(a) Klein bottle

11
2

iτ2

(b) Divide

1
2

iτ2

(c) Shift

1
2

iτ2

2iτ2

(d) Flip (e) Tree-channel diagram

Fig. 6.6 Transformation of the fundamental domain of the Klein bottle to a tree-channel diagram
between two crosscaps

4. In Fig. 6.6(d), the shifted part has been flipped and the appropriate edges have
been identified.

5. A fundamental domain of this form can be interpreted as a cylinder between two
crosscaps as illustrated in Fig. 6.6(e).

Analogous to the cylinder diagram (6.21), we expect now that the Klein bottle am-
plitude can be computed as the overlap of two so-called crosscap states |C〉 in the
following way:

˜ZK(l) = 〈� C | e−2πl(L0+L0− c+c
24 ) |C〉 . (6.49)

Considering then again Fig. 6.6(d) and Eq. (4.6) from Chap. 4, we determine the
modular parameter in the tree- and loop-channels as

τopen = α2

α1
= 2i t

1
2

= 4i t , τclosed = α2

α1
= i

l
,

and because of the tree-channel–loop-channel equivalence, they have to be equal.
This implies that the length of the cylinder in Fig. 6.6(e) and Eq. (6.49) can be
expressed as l = 1

4t . We will elaborate on these crosscap states in more detail in the
next section.
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Fig. 6.7 Transformation of the fundamental domain of the Möbius strip to a tree-channel diagram
between an ordinary boundary and a crosscap

For the Möbius strip amplitude, we can apply the same cuts and shifts as for
the Klein bottle amplitude. As it is illustrated in Fig. 6.7, the resulting tree-channel
diagram is a cylinder between an ordinary boundary and a crosscap. We thus expect
that in the tree-channel, we can calculate the Möbius strip in the following way:

˜ZM(l) = 〈� C | e−2πl(L0+L0− c+c
24 ) |B〉 . (6.50)

Finally, for the modular parameters in the tree- and loop-channels, we obtain

τopen = α2

α1
= 4i t

1
2

= 8i t , τclosed = α2

α1
= i

l
,

which leads us to l = 1
8t .

Remarks

• A summary of the various loop-channel and tree-channel expressions together
with their modular parameters can be found in Table 6.1.

• Almost all 	 projected CFTs in the closed sector are inconsistent and require the
introduction of appropriate boundaries with corresponding boundary states. In
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string theory, these conditions are known as the tadpole cancellation conditions
which we will discuss in Sect. 6.7.

6.5 Crosscap States for the Free Boson

Similarly to boundary states which describe the coupling of the closed sector
of a CFT to a boundary, for orientifold theories there should exist a coherent
state describing the coupling of the closed sector to the crosscap. In particular,
analogous to the observation that a world-sheet boundary defines (or is confined to) a
space–time D-brane, we say that a world-sheet crosscap defines (or is confined to)
a space–time orientifold plane.

In this section, we will discuss crosscap states for the example of the free boson,
and in the next section, we are going to generalise the appearing structure to RCFTs.

Crosscap Conditions

We start our study of crosscap states by recalling the transformation of the Klein
bottle, and Möbius strip amplitude respectively, from the open to the closed sector
shown in Figs. 6.6 and 6.7. There, we encountered a new type of boundary, the
so-called crosscap, where opposite points are identified. For the construction of the
crosscap state, we will employ this geometric intuition, however, later we also com-
pute the tree-channel Klein bottle and Möbius strip amplitudes to check that they
are indeed related via a modular transformation to the result in the loop-channel.

As it is illustrated in Fig. 6.8, in an appropriate coordinate system on a crosscap,
we observe that points x on a circle are identified with −x . Parametrising this circle
by σ ∈ [0, 2π ), we see that the identification x ∼ −x corresponds to σ ∼ σ + π .

x ↔ σ

−x ↔ σ+π

(a) Identification of points on
a crosscap

(b) Closed string at a
crosscap

Fig. 6.8 Illustration of how points are identified on a crosscap, and how a closed string couples to
a crosscap
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For a closed string on a crosscap, we thus infer that the field X at (τ, σ ) should be
identified with the field X at (τ, σ + π ). More concretely, this reads

X
(

τ, σ
) ∣

∣C
〉 = X

(

τ, σ + π
) ∣

∣C
〉

, (6.51)

and for the derivatives with respect to τ and σ , we impose

(

�σ X
)

(τ, σ )
∣

∣C
〉 = +(

�σ X
)

(τ, σ + π )
∣

∣C
〉

,

(

�τ X
)

(τ, σ )
∣

∣C
〉 = −(

�τ X
)

(τ, σ + π )
∣

∣C
〉

.
(6.52)

Let us now choose coordinates such that τ = 0 describes the field X (τ, σ ) at the
crosscap |C〉. Using then the Laurent mode expansions (6.4) as well as Eq. (6.52)
with τ = 0, we obtain that

(

jn − j−n

) ∣

∣C
〉 = +(−1)n

(

jn − j−n

) ∣

∣C
〉

,

(

jn + j−n

) ∣

∣C
〉 = −(−1)n

(

jn + j−n

) ∣

∣C
〉

,

where, similarly as in the computation for the boundary states, we performed a
change in the summation index n → −n. By adding or subtracting these two ex-
pressions, we arrive at the gluing conditions for crosscap states

(

jn + (−1)n j−n

) ∣

∣CO1
〉 = 0 . (6.53)

Note that we added the label O1 which stands for orientifold one-plane. The
reason is that by inserting the expansion (6.7) of X (τ, σ ) into Eq. (6.51), we see that
the centre of mass coordinate x0 of the closed string is unconstrained. In the target
space, the location of the crosscap is called an orientifold plane which in the present
case fills out one dimension because there is no constraint on x0. This explains the
notation above.

Construction of Crosscap States

Apart from the factor (−1)n , the gluing conditions (6.53) are very similar to those
of a boundary state (6.15) with Neumann conditions. The solution to the gluing
conditions is therefore also similar to the Neumann boundary state and reads

∣

∣CO1
〉 = κ√

2
exp

(

−
∞
∑

k=1

(−1)k

k
j−k j−k

)

∣

∣ 0
〉

, (6.54)
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where we employed Eq. (6.26) and allowed for a relative normalisation factor κ

between the boundary state with Neumann conditions |BN〉 and the crosscap state
|CO1〉.

The proof that Eq. (6.54) is a solution to the gluing conditions (6.53) is analogous
to the one shown on p. 218. Note in particular, the crosscap state can be written as

∣

∣CO1
〉 = κ√

2

∑

→
m

|→
m〉 ⊗ |U →

m〉, (6.55)

with the anti-unitary operator U acting in the following way:

U jn U−1 = −(−1)n
(

j−n

)†
. (6.56)

Remark

Let us make the following remark. In Eq. (6.33), we have chosen a specific orien-
tifold action 	 for the fields X (τ, σ ) which leaves the action (6.1) invariant. How-
ever, we can also accompany 	 by another operation, for instance R : X (τ, σ ) �→
−X (τ, σ ), which also leaves Eq. (6.1) invariant. The combined action then reads

	R : X
(

τ, σ
) �→ ˜X

(

τ, σ
) = −X

(

τ,−σ
)

.

Note that this orientifold action describes a different theory and that there is no
direct relation to the results obtained previously.

Performing the same steps as before, we arrive at the following expressions for
the combined action 	R on the Laurent modes jn and j n:

closed sector 	R jn
(

	R
)−1 = − j n , 	R j n

(

	R
)−1 = − jn ,

open sector 	R jn
(

	R
)−1 = ∓(−1)n jn .

For the action of R on the states, we find

R
∣

∣

→
m
〉 = (−1

)

∑

k mk
∣

∣

→
m
〉

,

which results in additional factors of (−1) in various loop-channel amplitudes. Con-
cerning the construction of crosscap states, also the identification (6.51) receives a
factor of (−1) which results in gluing conditions of the form

(

jn − (−1)n j−n

) ∣

∣CO0
〉 = 0 ,

which is similar to the Dirichlet conditions for boundary states. The notation O0
indicates that the orientifold plane does not extend in one dimension but is only
a point. And indeed, using the expansion (6.7) of X (τ, σ ) for X (τ, σ )|C〉 =
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−X (τ, σ )|C〉, we see that the centre of mass coordinate x0 is constrained to x0 = 0.
Finally, we note that the solution to the gluing conditions in the present case reads

∣

∣CO0
〉 = κ exp

(

+
∞
∑

k=1

(−1)k

k
j−k j−k

)

∣

∣ 0
〉

.

After this remark about a different possibility for an orientifold projection, let
us continue our studies with our original choice (6.33) which leads to O1 crosscap
states |CO1〉.

Free Boson V: Klein Bottle Amplitude (Tree-Channel)

As we have argued in the previous section, from the overlap of two crosscap states
we can compute the Klein bottle amplitude (6.49) in the closed sector, that is, in the
tree-channel. In order to do so, we recall the crosscap state (6.55) with the action of
U given in Eq. (6.56). Noting for a basis state (6.18) that

U
∣

∣

→
m
〉 =

∞
∏

k=1

(−1
)mk

(−1
)mk k ∣

∣

→
m
〉

, (6.57)

and following the same calculation as in p. 221 for the overlap of two boundary
states in the Neumann–Neumann sector, we obtain

˜ZK(O1,O1)
bos.

(

l
) = 〈

� CO1

∣

∣ e−2πl(L0+L0− c+c
24 )

∣

∣CO1
〉 = κ2

2 η(2il)
. (6.58)

Note that � is again the CPT operator introduced in Eq. (6.23) which, in particular,
acts as complex conjugation on numbers. Finally, recalling from Table 6.1 the rela-
tion l = 1

4t between the tree-channel and loop-channel modular parameters, we find
the loop-channel amplitude to be of the form

˜ZK(O1,O1)
bos.

(

l
) = κ2

2 η(2il)

l= 1
4t−−−→ κ2

2 η
(− 1

2i t

) = κ2

2
√

2t

1

η(2i t)
,

where we employed the modular properties of the Dedekind η-function shown in
Eq. (4.15). By comparing with the loop-channel result (6.44), we can now fix

κ =
√

2 .

Free Boson VI: Möbius Strip Amplitude (Tree-Channel)

Eventually, we compute the overlap of a crosscap state and a boundary state giv-
ing the tree-level Möbius strip amplitude. Employing Eq. (6.57) and performing a
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similar calculation as in p. 221, we find for the Möbius strip diagram in the Neumann
sector that

˜ZM(O1,N)
bos.

(

l
) = 〈

� CO1

∣

∣ e−2πl(L0+L0− c+c
24 )

∣

∣BN
〉

= 1√
2

e
πl
6

∞
∏

k=1

1

1 − (−e−4πl
)k

= 1√
2

e
π i
24

1

η
(

1
2 + 2il

) ,

(6.59)

where we expressed (−1) as eπ i and absorbed the additional factor into the definition
of the modular parameter. The computation of the Möbius strip amplitude in the
Dirichlet sector is very similar to the Neumann sector. We find

˜ZM(O1,D)
bos.

(

l
) = 〈

� CO1

∣

∣ e−2πl(L0+L0− c+c
24 )

∣

∣BD
〉

= e
πl
6

∞
∏

k=1

1

1 + (−e−4πl
)k

=
√

2 e
π i
24

√

√

√

√

η
(

1
2 + 2il

)

ϑ2
(

1
2 + 2il

) ,

where we used again the definition of the ϑ-functions. The momentum integration
in this sector is trivial since j0 acting on the crosscap state vanishes. This is again
similar to the computation of the cylinder amplitude for mixed boundary conditions
shown in p. 222.

Modular Transformations

After having computed the tree-channel Möbius strip amplitudes, we would like to
transform these results to the loop-channel via the relation l = 1

8t . However, by
comparing with the loop-channel results Eqs. (6.47) and (6.48), we see that this
cannot be achieved by a modular S-transformation. Instead, we have to perform the
following combination of T - and S-transformations:

P = T S T 2 S . (6.60)

For the η-function with shifted argument, this transformation reads
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η
(

1
2 + 2il

) S−−−−→ η

(

− 1
1
2 + 2il

) √

i
1
2 + 2il

T 2−−−−→ η

(

+ 4il
1
2 + 2il

) √

i
1
2 + 2il

e− π i
6

S−−−−→ η

(

−
1
2 + 2il

4il

) √

i
1
2 + 2il

√

1
2 + 2il

4l
e− π i

6

T−−−−→ η

(

1

2
+ i

8l

)

1√
4l

√
i e− π i

6 e− π i
12

= η

(

1

2
+ i

8l

)

1√
4l

,

where in the last step we employed that
√

i = e
π i
4 . For the Möbius strip amplitude

with Neumann boundary conditions, we then compute the transformation from the
tree-channel to the loop-channel as follows:

˜ZM(O1,N)
bos.

(

l
) = e

π i
24√
2

1

η
(

1
2 + 2il

)

P−−−−→
l= 1

8t

e
π i
24

1

2
√

t

1

η
(

1
2 + i t

) .

By comparing with the loop-channel result (6.47), we have verified the loop-
channel–tree-channel equivalence for the Möbius strip amplitude in the Neumann
sector.

In passing, we note that the Möbius strip loop- and tree-channel amplitudes for
the Dirichlet sector are also related via a modular P-transformation. In the same
manner as above, one can then establish the loop-channel–tree-channel equivalence.

New Characters

In the last paragraph of this section, let us introduce a more general notation for
the Möbius strip characters. We define hatted characters χ̂(τ ) in terms of the usual
characters χ (τ ) as follows:

χ̂
(

τ
) = e−π i (h− c

24 ) χ
(

τ + 1
2

)

. (6.61)

The action of the P-transformation (6.60) for the new characters χ̂(τ ) can be de-
duced as follows. From the mapping of the modular parameter τ = 2il under the
combination of S- and T -transformations

2il
T

1
2−−−−−→ 2il + 1

2
T ST 2 S−−−−−−−→ i

8l + 1
2

T − 1
2−−−−−−→ i

8l ,
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we can infer the transformation of the hatted characters χ̂(τ ) as

χ̂i
(

i
8l

) =
∑

j

Pi j χ̂ j
(

2il
)

with P = T
1
2 S T 2 S T

1
2 ,

where T
1
2 is defined as the square root of the entries in the diagonal matrix Ti j shown

in Eq. (4.56). Note that the P-transformation corresponds to the S-transformation of
the usual characters, in particular, P realises the loop-channel–tree-channel equiva-
lence.

Finally, using the properties of the S-matrix (4.54) as well as the relation S2 =
(ST )3 = C with C the charge conjugation matrix introduced in Eq. (4.31), we can
show that

P2 = C , P2 = C , P P† = P†P = 1 , PT = P .

(6.62)

6.6 Crosscap States for RCFTs

Let us now generalise the construction of crosscap states to conformal field theories
without a Lagrangian description. In particular, we focus on RCFTs and we mainly
state the general structure without explicit derivation.

Construction of Crosscap States

The crosscap gluing conditions for the generators of a symmetry algebra A⊗A are
in analogy to the conditions (6.53) for the example of the free boson and read

(

Ln − (−1)n L−n
) ∣

∣C
〉 = 0 conformal symmetry,

(

W i
n − (−1)n (−1)hi

W
i
−n

) ∣

∣C
〉 = 0 extended symmetries,

(6.63)

with again hi = h(W i ). For A = A and Hi = H+
i , we can define crosscap Ishibashi

states |Ci 〉〉 satisfying the crosscap gluing conditions. A crosscap state |C〉 can then
be expressed as a linear combination of the crosscap Ishibashi states in the following
way:

∣

∣C
〉 =

∑

i


i | Ci 〉〉 . (6.64)

In fact, the crosscap Ishibashi states and the boundary Ishibashi states are related
via

| Ci 〉〉 = eπ i(L0−h(φi )) |Bi 〉〉 . (6.65)

Indeed, knowing that the boundary Ishibashi states |Bi 〉〉 satisfy the gluing condi-
tions (6.27), we can show that Eq. (6.65) satisfies the crosscap gluing conditions. To
do so, we compute
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e−π i L0 Ln e+π i L0 = (−1)n Ln , e−π i L0 W i
n e+π i L0 = (−1)n W i

n ,

where we used that W i is a primary field. For the generators of the conformal sym-
metry, we can then calculate

e−π i(L0−h(φi ))
(

Ln − (−1)n L−n
) | Ci 〉〉

= e−π i(L0−h(φi ))
(

Ln − (−1)n L−n
)

eπ i(L0−h(φi )) |Bi 〉〉
= (−1)n

(

Ln − L−n
) |Bi 〉〉

= 0 ,

and the condition for the extended symmetry generators is obtained along the same
lines. Therefore, the crosscap Ishibashi states (6.65) satisfy the gluing conditions
(6.63).

The Cardy Condition

Similarly to the boundary states, we expect generalisations of the Cardy condition
arising from the loop-channel–tree-channel equivalences of the Klein bottle and
Möbius strip amplitudes. In order to study this point, we compute the Klein bottle
amplitude in the following way:

˜ZK(l) = 〈

� C
∣

∣e−2πl(L0+L0− c+c
24 )∣∣C

〉

=
∑

i, j


i 
 j 〈〈Bi+| eπ i(L0−h(φi )) e2π i(2il)(L0− c
24 ) eπ i(L0−h(φ j )) |B j 〉〉

=
∑

i, j


i 
 j δi j e−2π i(h(φ j )− c
24 ) 〈〈B j | e2π i(2il+1)(L0− c

24 ) |B j 〉〉

=
∑

i

(


i
)2

e−2π i(h(φi )− c
24 ) χi (2il + 1)

=
∑

i

(


i
)2

e−2π i(h(φi )− c
24 )

∑

j

Ti j χ j (2il) =
∑

i

(


i
)2

χi (2il) ,

where � is again the CPT operator shown for instance in Eq. (6.32), and where we
employed Eq. (6.30) as well as the modular T -matrix given in Eq. (4.56). In the next
step, we perform a modular S-transformation to obtain the result in the loop-channel

˜ZK(l) =
∑

i

(


i
)2

χi (2il) =
∑

i, j

(


i
)2

Si j χ j (2i t) .

Now, the Cardy condition is again the requirement that the expression above can be
interpreted as a partition function. Since this partition function includes the action
of the orientifold projection 	, the coefficient in front of the character has to be
integer but does not need to be non-negative
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∑

i

(


i
)2

Si j = κ j ∈ Z .

For the Möbius strip amplitude, we compute along similar lines

˜ZM(l) = 〈

� C
∣

∣e−2πl(L0+L0− c+c
24 )∣∣Bα

〉

=
∑

i, j


i B j
α 〈〈Bi+| eπ i(L0−h(φi )) e2π i(2il)(L0− c

24 ) |B j 〉〉

=
∑

i, j


i B j
α δi j e−π i(h(φi )− c

24 ) 〈〈B j | e2π i(2il+ 1
2 )(L0− c

24 ) |B j 〉〉

=
∑

i


i Bi
α e−π i(h(φi )− c

24 ) χi
(

2il + 1
2

)

=
∑

i


i Bi
α χ̂i (2il) =

∑

i, j


i Bi
α Pi j χ̂ j

(

i t
)

,

where we employed the hatted characters (6.61) together with their modular trans-
formation. Interpreting this expression as a loop-channel partition function, we see
that the coefficients have to be integer:

∑

i


i Bi
α Pi j = mα j ∈ Z .

Similar to the Cardy boundary states, for the charge conjugate modular invariant
partition function explained in p. 228, one can show that these integer conditions
are satisfied for the reflection coefficients of the form


i = P0i√
S0i

, Bi
α = Sα i√

S0i
.

The Klein bottle and Möbius strip coefficients can then be written as two Verlinde
type formulas

κ j =
∑

i

P0i P0i Si j

S0i
= Y 0

j0 , mα j =
∑

i

Sαi P0i Pi j

S0i
= Y 0

α j .

From the relations (6.62), we can deduce P∗
i j = Pi j+ and in particular P∗

0i = P0i ,
which allows us to establish the connection to the general coefficients

Y k
i j =

∑

l

Sil Pjl P∗
kl

S0l
.

As it turns out, the coefficients Y k
i j are integer, guaranteeing that the loop-channel

Klein bottle and Möbius strip amplitudes contain only integer coefficients.
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Remark

With the techniques presented in this section, it is possible to construct many ori-
entifolds of conformal field theories. However, one set of essential consistency con-
ditions for the co-existence of crosscap and boundary states is still missing. These
are the so-called tadpole cancellation conditions which we are going to discuss in a
simple example in the final section of these lecture notes.

6.7 The Orientifold of the Bosonic String

We finally apply the techniques developed in this chapter to orientifold theories with
boundaries and crosscaps. In particular, we are going to consider a string theory mo-
tivated but still sufficiently simple orientifold model which is the 	 projection of the
bosonic string. More interestingly, this theory is actually analogous to the orientifold
construction of the Type IIB superstring leading to the so-called Type I superstring.
However, this needs a more detailed treatment of free fermions which we have not
presented here and which is not necessary to understand the mathematical structure
of such theories.

Details on the String Theory Construction

We have mentioned already on p. 70 that the bosonic string is only consistent in 26
flat space–time dimensions and is thus described by 26 free bosons Xμ(σ, τ ) with
μ = 0, . . . , 25. The quantisation of string theory in this description, the covariant
quantisation, is slightly involved. However, by defining

X+ = 1√
2

(

X0(σ, τ ) + X1(σ, τ )
)

, X− = 1√
2

(

X0(σ, τ ) − X1(σ, τ )
)

, (6.66)

imposing the so-called light-cone gauge and using constraint equations, we are only
left with the momentum p+ as a degree of freedom. For the computation of the char-
acters, we can therefore simply ignore the contribution from X0(σ, τ ) and X1(σ, τ )
so that we are left with the conformal field theory of 24 free bosons X I (τ, σ ) where
I = 2, . . . , 25. Since the bosonic string is made out of 24 copies of the free boson
CFT, for the computation of the partition functions we can use our previous results.
These have been summarised in Table 6.2 for later reference.

In our previous definition of the open and closed sector partition functions, we
employed the notion common to conformal field theory. However, for the relevant
quantities in string theory, we have to integrate over the modular parameter of the
torus, Klein bottle, cylinder and Möbius strip. After performing the integration over
the light-cone momentum p+, the expressions relevant for the following are
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Table 6.2 Summary of all loop- and tree-channel amplitudes for the example of the free boson
with orientifold projection (6.33)

Loop-channel Tree-channel

ZT
bos.(τ, τ ) = 1√

τ2

1
∣

∣η(τ )
∣

∣

2

ZK
bos.(t) = 1√

2t

1

η
(

2i t
)

˜ZK(O1,O1)
bos.

(

l
) = 1

η(2il)

ZC(N,N)
bos. (t) = 1

2
√

t

1

η (i t)
˜ZC(N,N)

bos. (l) = 1

2 η
(

2il
)

ZC(D,D)
bos. (t) = 1

η (i t)
e − t

4π (xb
0 −xa

0 )2
˜ZC(D,D)

bos. (l) = 1√
2l

1

η
(

2il
) e − 1

8πl (xb
0 −xa

0 )2

ZC(mixed)
bos. (t) =

√

η (i t)

ϑ4(i t)
˜ZC(mixed)

bos. (l) =
√

η (2il)

ϑ2(2il)

ZM(N,N)
bos. (t) = 1

2
√

t

1

η
(

1
2 + i t

) e
π i
24 ˜ZM(O1,N)

bos.

(

l
) = 1√

2

1

η
(

1
2 + 2il

) e
π i
24

ZM(D,D)
bos. (t) =

√
2

√

√

√

√

η
(

1
2 + i t

)

ϑ2
(

1
2 + i t

) e
π i
24 ˜ZM(O1,D)

bos.

(

l
) =

√
2

√

√

√

√

η
(

1
2 + 2il

)

ϑ2
(

1
2 + 2il

) e
π i
24

ZT =
∫

Teich

d2τ

τ 2
2

ZT (τ, τ ) , ZC =
∫ ∞

0

dt

4 t2
ZC(t) ,

ZK =
∫ ∞

0

dt

2 t2
ZK(t) , ZM =

∫ ∞

0

dt

4 t2
ZM(t) .

(6.67)

The domain of integration for the torus amplitude ZT is the so-called Teichmüller
space. It is the space of all complex structures τ of a torus T

2 which are not related
via the SL(2, Z)/Z2 symmetry. An illustration can be found in Fig. 6.9 and the
precise definition reads

Teich =
{

τ ∈ C : − 1
2 < τ1 ≤ + 1

2 ,
∣

∣τ
∣

∣ ≥ 1
}

. (6.68)
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Fig. 6.9 The shaded region
in this figure corresponds to
the Teichmüller space of the
two-torus T

2

+1−1

+i

Torus Partition Function for the Bosonic String

Let us now become more concrete and determine the torus partition function for the
bosonic string in light-cone gauge. Since this theory is a copy of 24 free bosons, we
recall from Table 6.2 the form of ZT

bos. and combine it into

ZT =
∫

Teich

d2τ

τ 2
2

(

ZT
bos.(τ, τ )

)24
=

∫

Teich

d2τ

τ 2
2

1

τ 12
2

1
∣

∣η24(τ )
∣

∣

2 . (6.69)

In order to become more explicit, let us expand the Dedekind η-function in the
following way:

1

η24(τ )
= q−1

(

1 + 24 q + 324 q2 + . . .
)

. (6.70)

Using this expansion in Eq. (6.69) together with the string theoretical level-matching
condition which leaves only equal powers of q and q , we arrive at

ZT =
∫

Teich

d2τ

τ 14
2

e+4πτ2

∣

∣

∣ 1 + 24 e2π iτ + . . .

∣

∣

∣

2

−→
∫

Teich

d2τ

τ 14
2

e+4πτ2

(

1 + (

24
)2

e−4πτ2 + . . .
)

.

(6.71)

Let us now study the divergent behaviour of this integral.

• Although the integrand in Eq. (6.71) diverges for τ2 → 0 due to the factor of
τ−14

2 , the whole integral is finite because the domain of integration (6.68) does
not include τ2 = 0. Therefore, this expression is not divergent in the ultraviolet,
i.e. there is no singularity for small τ2. Let us emphasise that the finiteness in this
parameter region is due to the modular invariance of the torus partition function
which restricts the domain of integration to the Teichmüller space.
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• Next, we turn to the behaviour of Eq. (6.71) for large τ2. We see that the first
term gives rise to a divergence in the region τ2 → ∞ which corresponds to a
state with negative mass squared, i.e. a tachyon. Thus, the theory of the bosonic
string is unstable. In more realistic theories, for instance the superstring, such a
tachyon should be absent and we do not expect problems due to divergences in
the infrared.

• In summary, the torus partition function of the bosonic string is finite in the
ultraviolet due to modular invariance. In the infrared, the partition function is
divergent due to a tachyon which renders the theory unstable.

Klein Bottle Partition Function for the Bosonic String

As the title of this section suggests, we want to study the orientifold of the bosonic
string and so we have to determine the Klein bottle amplitude. Following the same
steps as for the torus, we arrive at

ZK(t) = 1

2

∫ ∞

0

dt

t2

(

ZK
bos.(t)

)24
= 1

213

∫ ∞

0

dt

t14

1

η24(2i t)
.

In order to simplify the integrand, we perform a transformation to the tree-channel
with modular parameter t = 1

4l by employing the modular properties of the
Dedekind η-function (4.15)

ZK(t)
t= 1

4l−−−−→ ˜ZK(O25,O25)(l) = 1

213

∫ ∞

0

dl

4 l2
(4l)14 1

η24
(− 1

2il

)

= 2
∫ ∞

0
dl

1

η24(2il)
.

The notation O25 deserves some explanation. Since we are studying the bosonic
string in a 26-dimensional space–time, the orientifold projection naturally acts also
on the light-cone coordinates (6.66). By choosing the orientifold projection (6.33),
we have an orientifold plane extending over all 26 dimensions. However, the con-
vention in string theory is such that only the space dimensions are counted which
explains the term O25.

Similarly as for the torus partition function, let us now expand the tree-channel
Klein bottle amplitude. Using Eq. (6.70), we obtain

˜ZK(O25,O25)(l) = 2
∫ ∞

0
dl

(

e4π l + 24 + 324 e−4π l + . . .
)

. (6.72)

The first term in Eq. (6.72) corresponds again to the tachyon and should be absent
in more realistic theories. We therefore ignore this problematic behaviour. However,
the second term corresponds to massless states and gives rise to a divergence since
in the present case, the domain of integration includes t = 1

4l = 0. This term will not
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be absent in more refined theories and so at this point, the orientifold of the bosonic
string is not consistent at a more severe level.

A Stack of D-Branes

As it turns out, the divergence of the Klein bottle diagram can be cancelled by
introducing a to be determined number N of D25 branes. The notation D25 means
that these D-branes fill out 25 spatial dimensions and it is understood that they
always fill the time direction.

If we put a certain number of D-branes on top of each other, we call it a stack
of D-branes. However, since there are now multiple branes, we can have new kinds
of open strings. In particular, there are strings starting at D-brane i of our stack and
ending on D-brane j . We thus include new labels, the so-called Chan–Paton labels,
to our open string states

∣

∣

→
m , i, j

〉 = ∣

∣

→
m
〉 ⊗ ∣

∣i, j
〉

,

where |→
m〉 denotes the states for a single string and i, j = 1, . . . , N label the start-

ing, ending points, respectively. We furthermore construct the hermitian conjugate
〈i, j | in the usual way such that

〈

i, j
∣

∣ i ′, j ′ 〉 = δi i ′δ j j ′ . (6.73)

Next, we define the action of the orientifold projection acting on the Chan–Paton
labels. Since 	 changes the orientation of the world-sheet, it clearly interchanges
starting and ending points of open strings. But we can also allow for rotations among
the D-branes and so a general orientifold action reads

	
∣

∣ i, j
〉 =

N
∑

i ′, j ′=1

γ j j ′
∣

∣ j ′, i ′ 〉(γ −1
)

i ′i , (6.74)

where γ is a N × N matrix. Without presenting the detailed argument, we now
require that the action of 	 on the Chan–Paton labels squares to the identity. For
this we calculate

	2
∣

∣ i, j
〉 =

N
∑

i ′′, j ′′=1

γi i ′′
[

	
∣

∣ i, j
〉T
]

i ′′, j ′′

(

γ −1
)

j ′′ j

=
N
∑

i ′, j ′,i ′′, j ′′=1

γi i ′′
(

γ −1
)T

i ′′i ′
∣

∣ i ′, j ′ 〉 γ T
j ′ j ′′

(

γ −1
)

j ′′ j

=
N
∑

i ′, j ′=1

[

γ
(

γ −1
)T

]

i i ′

∣

∣ i ′, j ′ 〉
[

γ T γ −1
]

j ′ j
,



6.7 The Orientifold of the Bosonic String 253

from which we infer the constraint on the matrices γ to be symmetric or anti-
symmetric

γ T = ±γ . (6.75)

In string theory, the two different signs correspond to gauge groups SO(N ) and
S P(N ) living on the stack of D-branes.

Let us now come to the final part of this paragraph which is to determine the
contribution of the Chan–Paton labels to the partition function. For the cylinder
partition function, we calculate with the help of Eq. (6.73)

ZC(t
) = TrHB

(

q L0− c
24

)

=
∑

n

〈

n
∣

∣ q L0− c
24
∣

∣ n
〉 ×

N
∑

i, j=1

〈

i, j
∣

∣ i, j
〉

=
∑

n

〈

n
∣

∣ q L0− c
24
∣

∣ n
〉 × N 2 .

Therefore, the effect of N D-branes is taken care of by including the factor N 2

for the cylinder partition function. Let us next turn to the Möbius strip partition
function. Concentrating only on the Chan–Paton part, we find using Eqs. (6.73) and
(6.74) that

N
∑

i, j=1

〈

i, j
∣

∣ 	
∣

∣ i, j
〉 =

N
∑

i, j,i ′, j ′=1

〈

i, j
∣

∣ γ j j ′
∣

∣ j ′, i ′ 〉(γ −1
)

i ′i

=
N
∑

i, j,i ′, j ′=1

δi j ′ δ j i ′ γ j j ′
(

γ −1)

i ′i

= Tr
(

γ T γ −1
)

= ± N ,

where in the final step we also employed Eq. (6.75). In summary, by including a
factor of ±N in the Möbius strip partition function, we can account for a stack of N
D-branes.

Cylinder and Möbius Strip Partition Function
for the Bosonic String

After this discussion about stacks of D-branes, let us now compute the cylinder and
Möbius strip partition functions for a stack of N D25-branes. Since the D-branes
fill out the 26-dimensional space–time, the open strings always have Neumann–
Neumann boundary conditions.

For the cylinder, we recall from Table 6.2 the form of a single cylinder partition
function and combine it with the relevant expression from Eq. (6.67) to obtain
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ZC(N,N)(t) = N 2

4

∫ ∞

0

dt

t2

(

ZC(N,N)
bos. (t)

)24
= N 2

226

∫ ∞

0

dt

t14

1

η24(i t)
,

where we included the factor N 2 as explained above. In order to extract the diver-
gences, we perform a transformation from the loop- to the tree-channel via t = 1

2l
to find

ZC(N,N)(t)
t= 1

2l−−−−→ ˜ZC(N,N)(l) = N 2

226

∫ ∞

0

dl

2 l2
(2l)14 1

η24
(− 1

2il

)

= N 2

225

∫ ∞

0
dl

1

η24(2il)
.

With the help of Eq. (6.70), we can again expand this expression. The first terms
read as follows

˜ZC(N,N)(l) = N 2

225

∫ ∞

0
dl

(

e4π l + 24 + 324 e−4π l + · · ·
)

.

Next, we turn to the Möbius strip contribution. Along similar lines as above, we
recall from Table 6.2 the expression for the partition function of a single free boson
and combine 24 copies of it into the Möbius partition function

ZM(N,N)(t) = ± N

4

∫ ∞

0

dt

t2

(

ZM(N,N)
bos. (t)

)24
= ± N

226

∫ ∞

0

dt

t14

eπ i

η24( 1
2 + i t)

.

In order to extract the divergences more easily, we transform this expression into the
tree-channel via the relation t = 1

8t and the modular P transformation (6.60)

ZM(N,N)(t)
t= 1

8l−−−−→ ˜ZM(N,N)(l) = ± N

226

∫ ∞

0

dl

8 l2
(8l)14 eπ i

η24
(

1
2 + i

8l

)

= ± N

211

∫ ∞

0
dl

eπ i

η24( 1
2 + 2il)

.

Expanding this expression with the help of Eq. (6.70), we find

˜ZM(N,N)(l) = ± N

211

∫ ∞

0
dl

(

e4π l − 24 + 324 e−4π l − . . .
)

.

Tadpole Cancellation Condition

After having determined the divergent contributions of the one-loop amplitudes, we
can now combine them into the full expression. Leaving out the torus amplitude, we
find
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1

2

(

˜ZK(O25,O25)(l) + ˜ZC(N,N)(l) + ˜ZM(N,N)(l)
)

= 2−26
∫ ∞

0
dl

(

e4πl
(

226 ± 2 · 213 N + N 2
)

+24
(

226 ∓ 2 · 213 N + N 2
)

+324 e−4πl
(

226 ± 2 · 213 N + N 2
)

+ . . .

)

.

(6.76)

The first terms with prefactor e4πl stem again from the tachyon which in a more
realistic theory, e.g. Superstring Theory, should be absent. We will therefore ignore
this divergence. The next line with prefactor 24 corresponds to massless states which
will not be absent in more refined theories. However, we can simplify this expression
by noting that

(

226 ∓ 2 · 213 N + N 2
)

=
(

213 ∓ N
)2

.

We thus see that by taking N = 213 = 8192 D25-branes and choosing the minus
sign corresponding to SO(N ) gauge groups, the divergence is cancelled. In sum-
mary, we have found that

For the orientifold of the bosonic string with N = 8192 D25-branes
and gauge group SO(8192), the divergence due to massless states is can-
celled. This is the famous tadpole cancellation condition for the bosonic
string.

Finally, it is easy to see that the proceeding terms in Eq. (6.76) with prefactors e−4πl

and powers thereof do not give rise to divergences in the integral.

Remarks

• Here we have discussed a very simple example for a CFT with boundaries. The
next step is to generalise these methods for the superstring, in which case we
have to define boundary and crosscap states for the CFT of the free fermion. The
orientifold of the Type IIB superstring defines the so-called Type I string living
in ten dimensions and carrying gauge group SO(32) instead of SO(8192).

• Many examples of such orientifold models have been discussed for compactified
dimensions. These include orientifolds on toroidal orbifolds and also orientifolds
of Gepner models. For this purpose, one first has to find classes of boundary and
crosscap states for the N = 2 unitary models and then for Gepner models, in
which the simple current construction is utilised in an essential way. Finally, one
has to derive and solve the tadpole cancellation conditions. All this is a feasible
exercise but beyond the scope of these lecture notes.
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Concluding Remarks

Let us conclude these lecture notes with some remarks. Although we have covered
many aspects of conformal field theory, we could only scratch the surface and pro-
vide an introduction to a collection of CFT issues. For further reading and study, we
have provided a list of essential references at the end of these notes.

However, coming back to our introduction, this course was meant to accompany
a string theory lecture as part of the 2007 newly established “Theoretical and Math-
ematical Physics” master programme at the LMU Munich. As a consequence, we
put special emphasis on computational techniques in CFT which are important for
string theory and had to neglect directions in CFT which are also important but have
their roots in Statistical Physics or pure Mathematical Physics. For the interested
reader, let us give a (incomplete) list of developments not covered in these notes:

• We have focused on unitary CFTs, as they are important for string theory, though,
it is well known that non-unitary CFTs with negative central charge play a very
important role for statistical integrable models in two dimensions. These issues
are discussed for instance in the book by di Franceso, Matthieu, Sénéchal.

• We have only mentioned the basics about symmetry algebras in CFT. In particu-
lar, the field of Kač–Moody algebras would have deserved a much more detailed
discussion, as they also play a very important role in mathematics. Their gen-
eralisation to ê10 and ê11 might turn out to be essential for a non-perturbative
formulation of String and M-Theory, respectively. Similarly, the vast field of W
algebras could only be touched.

• We have discussed some aspects of free field CFT, however, interacting CFTs
can be constructed from free fields by allowing for a non-vanishing background
charge. This is the celebrated Feigin–Fuks construction which we also did not
cover.

• Again related to non-unitary CFTs, we did not touch the very much discussed
Logarithmic conformal field theories.

• There exist a number of interesting attempts to develop an axiomatic approach to
CFT which we did not mention, since our emphasis was on applications of CFT
techniques to string theory.
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ŝo(N )1, 97
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ŝo(2)1, 180
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conformal dimension, 58
energy-momentum tensor, 60
Hilbert space, 66
Laurent modes, 59
OPE, 59
partition function, 136
realisation of ŝo(N )1, 97

fusion algebra, 80, 143
fusion matrix, 84, 143
fusion rules, 80

for ŝo(10)1, 193
for ŝo(2)1, 180
for ŝu(2)1, 144
for ŝu(2)k , 148
for û(1)k , 144
N = 2 unitary series, 190

G
generator

modular group, 118
space translation, 22, 119
symmetry transformation, 24
time translation, 21, 118

Gepner model, 191, 194, 229
ghost system (β, γ ), 70, 191
ghost system (b, c), 67, 191

action, 67
central charge, 69
energy-momentum tensor, 68
OPE, 68

gluing automorphism, 226
gluing condition, 215

boundary state, 215
crosscap state, 240, 245
RCFT, 225

solution for crosscap, 240
solution for free boson, 216

GSO projection, 136, 195, 200

H
Hamiltonian, 21, 118

open sector, 211
hexagon identity, 85
highest weight

representation, 70, 92, 174, 178
state, 43, 70, 92, 174

Hilbert space, 41
free boson, 55
free fermion, 66
N = 2 super Virasoro, 178
ŝu(2)1 algebra, 96

I
Ishibashi state, 226

crosscap, 245

J
Jacobi triple product identity, 133

K
Kač-determinant, 71
Kač-Moody

algebra, 37, 55, 87
algebra, central charge, 91
correlation function, 99
current OPE, 88
descendant field, 100
primary field, 99, 102

Klein bottle, 230, 235
diagram, 236, 238
diagram free boson, 242
diagram RCFT, 246
fundamental domain, 236
modular parameter, 236
partition function, 232, 238
partition function bosonic string, 251

Knizhnik-Zamolodchikov equation, 99, 102

L
Laurent expansion, 22, 26, 59, 88, 114
loop-channel – tree-channel equivalence, 214,

223, 227, 235

M
Möbius strip, 230

diagram, 237, 238
diagram free boson, 242
diagram RCFT, 247
fundamental domain, 237
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modular parameter, 237
partition function, 234, 238
partition function bosonic string, 253

minimal model, see unitary series
model

Ising, 75, 105, 136
three states Potts, 75, 109, 151
tri-critical Ising, 75, 175

modular group, 117–119, 173
modular parameter

cylinder, 211
Klein bottle, 236
Möbius strip, 237
torus, 116, 117

modular transformation
S-transformation, 117, 224
T -transformation, 117
U -transformation, 117
Dedekind η-function, 122, 138
invariance under S, 129
P-transformation, 243
P-transformation, 245
�-function, 127, 128
ϑ-function, 138

momentum operator, 22, 119, 218
monodromy charge, 157, 158
multiplet

BPS, 183
gravity, 202
hyper, 202
vector, 202

N
N = 1

coset construction unitary series, 106, 175
energy-momentum tensor, 173
extension free boson, 170
SCFT, 169
super OPE, 174
super primary field, 174
super quasi-primary, 174
super Virasoro algebra, 172
superfield, 173
unitary series, 174

N = 2
coset construction unitary series, 187
extension free boson, 175
SCFT, 175
super chiral field, 181
super primary field, 181, 182
super Virasoro algebra, 177
unitary series, 178, 184, 187
unitary series, S-matrix, 189

unitary series, character, 189
unitary series, fusion rules, 190

Neveu-Schwarz sector, 58, 59, 115, 185, 193
Noether’s theorem, 19
normal ordered product, 38

quasi-primary, 40
normal ordering, 38

O
operator

annihilation, 38
anti-unitary, 226
Casimir, 94
CPT, 220, 227
creation, 38
fermion number, 134
spectral flow, 187
world-sheet parity, 231

operator product expansion, 25
energy-momentum tensor, 26, 174
free fermion, 59
general form, 34
ghost system (b, c), 68
Kač-Moody currents, 88
N = 1 super primary field, 174
non-chiral fields, 82
primary field, 26
simple current, 158

orbifold, 139
fixed point, 141
partition function, 142
twisted sector, 140

ordering
normal ordering, 38
radial ordering, 24, 59

orientifold, 231
action, 229, 241
plane, 239–241
projection of bosonic string, 248

P
P-matrix, 245
parafermion, 152, 154
partition function, 118, 119

bosonic string, 199
charge conjugate, 228
cylinder, 211, 212
free boson, 121, 122, 213
free boson on a circle, 124
free boson, N = 2 extension, 179
free fermion, 136
Gepner model, 200
Klein bottle, 232
Möbius strip, 234
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simple current, 161
summary, 155
torus, 119
û(1)k , 129
Z2-orbifold of free boson, 141

pentagon identity, 86
perturbation theory

one-loop, 113
tree-level, 113

Poisson resummation formula, 124
propagator, 46, 68

R
radial quantisation, 21
Ramond sector, 58, 59, 115, 135, 185, 193
reflection coefficient, 227, 247
Rogers di-logarithm, 166

S
S-matrix, 142, 229

for û(1)k , 128
for ŝo(10)1, 192
for ŝo(2)1, 180
for ŝu(2)k , 147
for Virc, 150
N = 2 unitary series, 189
parafermion, 153
simple current, 159
summary, 155

scale factor, 6, 9, 12
Schwarzian derivative, 27, 115
simple current

boundary state, 229
definition, 157
Gepner model, 195, 197
N = 2 unitary series, 190
OPE with primary field, 158
orbit, 158
partition function, 161
S-matrix, 159

special conformal transformation, 9
spectral flow, 184, 197
state

asymptotic, 22, 23
boundary, 214, 215
crosscap, 236
crosscap Ishibashi, 245
highest weight, 70
Ishibashi, 226
norm, 35
null, 71, 72

string theory
bosonic string, 248
Calabi-Yau manifold, 190, 203

central charges, 191, 248
compactification, 190, 203
gauge group, 253
heterotic string, 191, 203
space-time supersymmetry, 195, 197
tachyon, 251
Type I, 248, 255
Type IIB, 201, 211, 255

string-function, 97, 153, 188
Sugawara construction, 88
superspace, 173

T
T-duality, 125, 142
T -matrix, 143
tadpole cancellation condition, 254
Teichmüller space, 249
�-function, 126–128, 146, 179, 189
ϑ-function, 137–138, 179
torus, 230

compactification, 115
complex structure, 116
fundamental domain, 116
lattice, 116
modular group, 117
modular parameter, 116, 117
partition function, 119, 238
partition function bosonic string, 250

U
unitary representation, 73
unitary series

N = 1 super Virasoro, 106, 174
N = 2 super Virasoro, 178, 184, 187
Virasoro, 74, 80, 104
W(2, 3), 109

V
Verlinde formula, 86, 143, 144, 228
Verma module, 42, 70
vertex operator, 50, 65

charge, 51, 53
conformal dimension, 53
current, 53
free boson on a circle, 125
states in Hilbert space, 132
two-point function, 53

W
Ward identity, 29, 100
world-sheet duality, see loop-channel –

tree-channel equivalence
world-sheet parity operator, 231
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