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Preface

Multi-agent systems (MAS) are often understood as complex entities where a
multitude of agents interact, usually with some intended individual or collective
goals. Such a view usually assumes some form of organization, or set of norms or
conventions that articulate or restrain interactions in order to make them more
effective, certain, or predictable for participants. Engineering effective coordina-
tion or regulatory mechanisms is a key problem for the design of open complex
multi-agent systems.

In recent years, social and organizational aspects of agency have become a
major issue in MAS research especially in applications on service-oriented com-
puting, grid computing and ambient intelligence. These applications enforce the
need for using these aspects in order to ensure social order within these envi-
ronments. Openness, heterogeneity, and scalability of MAS pose new demands
on traditional MAS interaction models. Therefore, the view of coordination and
control has to be expanded to consider not only an agent-centric perspective but
also societal and organization-centric views.

However, agent autonomy is often needed for concretely implementing social
order, because autonomous agents can intelligently adapt the designed organiza-
tion to particular cases and can face unpredicted events. From this perspective
autonomy can also be a possible source of internal change in the designed orga-
nizational constructs. Differently, autonomous behavior can also originate forms
of self-organization which emerge out of local interactions and are only partially
externally programmed. In such situations the self-organized order and the ex-
ternally designed organization can even be in conflict.

These interdisciplinary issues have to be studied considering the analysis of
the social, legal, economic, and technological dimensions of multi-agent organi-
zations. In this context, the COIN workshops provide a space for the convergence
of concerns and developments of MAS researchers that have been involved with
these issues from the complementary perspectives of coordination, organizations,
institutions, and norms. This year, the COIN workshops were hosted during AA-
MAS 2008 (May 12, Estoril, Portugal) and AAAI 2008 (July 14, Chicago, USA).

The papers contained in this volume are the revised and extended versions
of a selection of papers presented and discussed in these two workshops. They
are organized in five parts. The first part (from coordination to organization)
groups papers focused on the coordination of agents where the organization is
a result of the overall coordination process. The second part (from organiza-
tion to coordination) takes the other direction. Considering that the system has
an organization, the question is how to coordinate the agents belonging to this
organization. In particular, how reputation can be used inside organizations to
help the agents to better coordinate themselves. While the third part (formaliza-
tion of norms and institutions) contains papers focused on the formalization of



VI Preface

important concepts related to norms and institutions, the papers of the fourth
part (design of norms and institutions) are more concerned with the design, in-
cluding the verification, of such concepts. The fifth part contains papers that
apply the concepts of the workshops in applications and simulations.

We would like to thank the COIN Steering Committee for presenting us
with the opportunity to organize these workshops. We also want to express our
gratitude to the Program Committee members and additional reviewers of both
events, to the participants of the workshops, and more particularly to the authors
for their original contributions and further revisions for this volume. We thank
the organizers of the AAMAS and AAAI events for hosting and supporting the
organization of the COIN workshops. Finally, we would also like to acknowledge
the support from Springer, in the person of Alfred Hofmann, for the publication
of the COIN workshops since the first edition in 2004.

December 2008 Jomi F. Hübner
Olivier Boissier

Eric Matson
Virginia Dignum
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Christian Lemâıtre Universidad Autónoma Metropolitana, Mexico
Christophe Sibertin-Blanc IRIT, France
Cristiano Castelfranchi ISTC/CNR, Italy



VIII Organization

Dan Corkill University of Massachusetts Amherst, USA
Daniel Moldt University of Hamburg, Germany
Eric Matson Purdue University, USA
Eric Platon National Institute of Informatics, Japan
Eugénio Oliveira Universidade do Porto, Portugal
Fuyuki Ishikawa National Insitute of Informatics, Japan
Guido Boella University of Turin, Italy
Harko Verhagen Stockholm University, Sweden
Jaime Simão Sichman University of São Paulo, Brazil
Javier Vázquez-Salceda Universitat Politecnica de Catalunya, Spain
John-Jules Meyer Utrecht University, The Netherlands
Juan Antonio R. Aguilar IIIA-CSIC, Spain
Julian Padget University of Bath, UK
Leon van der Torre University of Luxembourg, Luxembourg
Liz Sonenberg University of Melbourne, Australia
Luca Tummolini ISTC/CNR, Italy
Marina de Vos University of Bath, UK
Nicoletta Fornara University of Lugano, Switzerland
Olivier Gutknecht LPDL, France
Pablo Noriega IIIA-CSIC, Spain
Pinar Yolum Bogazici University, Turkey
Sascha Ossowski URJC, Spain
Stephen Cranefield University of Otago, New Zealand
Vincent Louis Orange Labs, France
Virginia Dignum University of Utrecht, The Netherlands
Viviane Torres Da Silva Universidad Complutense de Madrid, Spain
Wamberto Vasconcelos University of Aberdeen, UK

COIN@AAAI 2008
Alexander Artikis NCSR Demokritos, Greece
Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Rosaria Conte CNR and University of Siena, Italy
Ulisses Cortes UPC, Spain
Shaheen Fatima University of Liverpool, UK
Mario Verdicchio University of Bergamo, Italy
Nicoletta Fornara University of Lugano, Switzerland
Scott Harmon Kansas State University, USA
Henry Hexmoor Southern Illinois University, USA
Koen Hindriks Delft University of Technology,

The Netherlands
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Agreeing on Institutional Goals for Multi-agent
Societies

Dorian Gaertner1,2, Juan Antonio Rodŕıguez-Aguilar2, and Francesca Toni1

1 Dept. of Computing, Imperial College London, London SW7 2AZ, UK
{dg00,ft}@doc.ic.ac.uk

2 IIIA-CSIC, Campus de la UAB
08193 Bellaterra, Spain

{dorian,jar}@iiia.csic.es

Abstract. We present an argumentation-based approach to the prob-
lem of finding a set of institutional goals for multi-agent systems. The
behaviour of the autonomous agents we consider in this paper is goal-
directed, driven by either individual or common goals. When multiple
agents want to set up a collaboration framework (for themselves or oth-
ers to use), they do so by forming an institution (or organisation). The
goals of such institution must be agreed upon by the agents setting up
the framework before it can be executed.

We propose to use argumentation, and in particular assumption-based
argumentation, to facilitate the negotiation of institutional goals. We
first describe a centralised approach and then provide the rationale for
and detail our preliminary efforts at de-centralising the problem. We
propose to employ the argumentation system CaSAPI as a tool to reason
about the collaborative goals of the institution. Our approach mitigates
concerns about performance bottlenecks and vulnerability of the system
while providing, to some extent, privacy to the individual members of
the institution.

1 Introduction

One of the concerns of multi-agent systems (MAS) research is how to achieve
certain collective properties despite individual agents’ varying behaviour. Thus,
there is a wealth of approaches that consider how to get agents (with indi-
vidual preferences and goals) to interact in such a way that their interactions
lead to the desired global properties. Along these lines, economic-based ap-
proaches (e.g. coalition formation [25] and mechanism design [7]), cooperation-
based approaches (e.g. teamwork [27]), and organisation-based approaches (e.g.
organisations [8,13] and institutions [2]) provide MAS designers with techniques
to enact MAS aimed at achieving their global goals. Notice that most approaches
share the implicit assumption that there is some designer in charge of choosing
the interaction mechanism that agents with individual goals use so that some
global goals (or properties) are reached. Consider now that instead of a MAS de-
signer, a group of agents gather together to decide by themselves the interaction

J.F. Hubner et al. (Eds.): COIN 2008, LNAI 5428, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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rules of a MAS where they, or other agents, are to operate in. In fact, what we
envisage is that a subset of all agents agrees upon the rules and the goals that
constitute a regulatory environment (an institution or virtual organisation, see
e.g. [23]). Once such an agreement is reached, these agents may or may not be
part of the MAS they agreed upon while other agents that were not part of the
subset of agents that agreed upon the rules of the society may join said society.

One approach to structuring the interaction between agents recently proposed
is the notion of Electronic Institutions [2]. There, speech acts are considered as
actions and special institutional agents control what can be uttered. The con-
struction of such an institution and required institutional agents begins with the
definition of the goals the institution is meant to achieve. In this paper, we focus
on agent institutions defined as software environments composed of autonomous
agents that interact according to predefined conventions on language and pro-
tocol, guaranteeing that certain norms of behaviour are enforced. An electronic
institution is in a sense a natural extension of the social concept of institutions
as regulatory systems which shape human interactions.

We will not describe how such an institution is designed or executed (amongst
others, Esteva et al. [2] provide information on tools for such purposes and
Castelfranchi investigates social power [5]), or how norms and normative po-
sitions are handled (see [14] for information on this subject). Instead, we will
focus on an earlier stage of the development of such institutions, namely on the
question of how multiple agents can join efforts and agree on institutional goals.
Such agents would still have individual goals, in addition to their common, insti-
tutional goals1 for a particular collaboration. It is further worth noting that we
begin with the supposition that the agents want to form an institution. Prior to
entering into the argumentation process that we describe in this paper, they will
need to explore whether or not they want to collaborate and form an institution
at all. We assume that they have answered that question affirmatively.

We will describe two ways of constructing the set of common, institutional
goals, both employing the CaSAPI tool [15] for assumption-based argumentation
[4]. Firstly, a centralised approach is presented that combines the different goals
of all agents and all their individual knowledge bases in the best possible way.
Secondly, we detail an approach where each agent expresses its preference or
rejection of a goal. A mechanism is then presented where participating agents
use arguments based on their individual knowledge to defend their position.

This paper is structured as follows: Section 2 describes assumption-based ar-
gumentation as well as the CaSAPI tool and Section 3 introduces an example
scenario. We then present the centralised approach in Section 4, show how CaS-
API can realise this approach (in the context of the scenario), discuss the issue
of control and describe the disadvantages of the centralised approach before
detailing preliminary work on a distributed argumentation mechanism to find
common goals for the institution in Section 5. Finally, we look at related work
and conclude.

1 We will assume that the desired collaboration will take place in an institution and
hence we will equate collaboration goals and institutional goals in what follows.
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2 Assumption-Based Argumentation

This section provides the basic background on assumption-based argumentation
(ABA) and the CaSAPI tool, see [4,10,11,12,15,16] for details.

An ABA framework is a tuple 〈L, R, A, 〉 where

– (L,R) is a deductive system, consisting of a language L and a set R of
inference rules,

– A ⊆ L, referred to as the set of assumptions,
– is a (total) mapping from A into L, where x is referred to as the contrary

of x.

Intuitively, inference rules may be domain-specific or domain-independent [4].
They may correspond to causal information, to inference rules and axioms in a
chosen logic-based language [4] or to laws and regulations [24]. Assumptions are
sentences that can be questioned and disputed (as opposed to axioms that are
beyond dispute), for example uncertain or unsupported beliefs or decisions. The
contrary of an assumption, in general, stands for a reason why the assumption
may be undermined (and thus may need to be be dropped).

We will assume that the inference rules in R have the syntax l0 ← l1, . . . ln
(for n ≥ 0) where li ∈ L. We will represent the rule l ← simply as l. As in
[10,12,15,16,11], we will restrict attention to flat ABA frameworks, such that if
l ∈ A, then there exists no inference rule of the form l ← l1, . . . , ln ∈ R, for
any n ≥ 0. These frameworks are still quite general and admit many interesting
instances [4]. Furthermore, we will adopt a generalisation of ABA frameworks,
first given in [15], whereby assumptions allow multiple contraries, i.e.

– is a (total) mapping from A into ℘(L).

As discussed in [11], multiple contraries are a useful generalisation to ease
representation of ABA frameworks, but they do not really extend their expressive
power.

Given an ABA framework, an argument in favour of a sentence x ∈ L sup-
ported by a set of assumptions X , denoted X � x, is a (backward) deduction
from x to X , obtained by applying backwards the rules in R.

Example 1. Let us consider the following ABA framework 〈L, R, A, 〉 where:

L = {p, a,¬a, b,¬b},
R = {p← a;¬a← b;¬b← a},
A = {a, b} and
a = {¬a}, b = {¬b}.

Then, an argument in favour of p supported by {a} may be obtained by
applying p← a backwards (the argument is {a} � p).

In order to determine whether a conclusion (set of sentences) should be drawn,
a set of assumptions needs to be identified providing an “acceptable” support
for the conclusion. Various notions of “acceptable” support can be formalised,
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using a notion of “attack” amongst sets of assumptions whereby X1 attacks X2
iff there is an argument in favour of some y ∈ x supported by (a subset of)
X1 where x is in X2 (for example, given 〈L, R, A, 〉 above, {b} � ¬a attacks
{a} � p). Then, a set of assumptions is deemed

– admissible, iff it does not attack itself and it counter-attacks every set of
assumptions attacking it;

– complete, iff it is admissible and it contains all assumptions it can defend,
by counter-attacking all attacks against them;

– grounded, iff it is minimally (w.r.t. set inclusion) complete;
– ideal, iff it is admissible and contained in all maximally (w.r.t. set inclusion)

admissible sets.

All these notions are possible formalisations of the notion of “acceptable”
support for a conclusion. The first is a credulous notions, possibly sanctioning
several alternative sets as “acceptable” supports, the latter two are sceptical
notions, always sanctioning one single set as “acceptable” support. Different
computational mechanisms can be defined to match these notions of “acceptable”
support for given claims.

The CaSAPI system that we propose to use in this paper (CaSAPI version 2
[15]) allows to compute the computational mechanisms of GB-dispute derivations
for computing grounded supports [12], AB-dispute derivations for computing
admissible supports [10,12] and IB-dispute derivations for computing sceptical
supports [11,12]. In the case of example 1, there is an AB-dispute derivation
for the claim p, computing the admissible support {a}. However, GB- and IB-
dispute derivations fail to find grounded and ideal supports (respectively) for
p, since indeed p cannot be sceptically supported (as {a} and {b} are “equally
good” alternative sets of assumptions). If 〈L, R, A, 〉 in Example 1 is modified
so that both c and ¬c are added to L and the last inference rule in R is replaced
by the two rules:

¬b← c; ¬c
with c an additional assumption and c = {¬c}, then there exist AB-, GB- and
IB-dispute derivations for the claim p, all computing the support {a} (which is
now admissible, grounded and ideal).

Figure 1 illustrates how the rules, assumptions and contraries of the simple
ABA framework modifying Example 1, as given earlier, are entered into CaSAPI
using a graphical user interface. The user can enter a claim to be proved (p in
what follows), select the type of dispute derivation it requires and control various
other features of the computation such as the amount and format of the system’s
output. Once the input is entered, CaSAPI can be Run to determine whether
of not the claim admits an “acceptable” support, according to the chosen type
of dispute derivation. We will use CaSAPI with GB-dispute derivations only, as
this semantics best fits the needs of our application (cf. Section 4 for details).

Note that, compared to Dung’s conventional abstract argumentation [9], ABA
addresses three problems: (i) how to find arguments, (ii) how to determine attacks
and (iii) how to exploit the fact that different arguments may share premises.
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Fig. 1. Screenshot of the input process to CaSAPI

These problems are ignored by abstract argumentation, that sees arguments
and attacks as “black-boxes”. Instead, in ABA arguments are defined as back-
ward deductions (using sets of rules in an underlying logic) supported by sets
of assumptions, and the notion of attack amongst arguments is reduced to that
of contrary of assumptions. Moreover, (iii) is addressed by all forms of dispute-
derivations (AB-, GB- and IB-) by employing various forms of “filtering steps”
(for details, see [10,12]).

ABA can be seen as an instance of abstract argumentation, but is general-
purpose nonetheless (in that, e.g., it can be instantiated in many ways to get
many different frameworks for non-monotonic reasoning [4]). The relationship
between ABA and abstract argumentation is detailed in [12] and exploited by
versions 3 and 4 of CaSAPI [16,11]: we ignore these versions here because they
only support AB-dispute derivations and we chose the GB-dispute derivations
for our application (cf. Section 4 for details).

3 Scenario

Reaching agreements in a society of self-interested agents is a problem related to
the issue of cooperation. The capabilities of negotiation and argumentation are
paramount to the ability of agents to reach agreements but as far as we know, nei-
ther negotiation-based nor argumentation-based approaches have been explored
for the design of institutions. The automated design of (market) institutions has
relied so far on mechanism design, namely on the design of protocols for gov-
erning multi-agent interactions that have certain desirable properties. However,
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the use of mechanism design for some (non-financial) institutions where there is
a need for either justifying or changing negotiation stances is not sufficient.

Nobel laureate Ronald Coase in 1937 noted that in order to “make things”,
a collaboration is required and setting up such collaboration is costly. He used
this insight to justify the existence of big companies which otherwise would be
replaced by individuals operating in free and unregulated markets. In his recent
book [28], Don Tapscott describes how in an increasingly connected world, the
cost of collaborating is evaporating and the raison d’être of huge corporations
ceases to exist. He provides the following example2 to illustrate his claim:

Take the Chinese motorcycle industry, which has tripled its output to
15m bikes per year over the past decade. There aren’t really any Chinese
equivalents of the big Japanese and American firms - Honda or Harley.
Instead, there are hundreds of small firms [...]. Their representatives
meet in tea-houses, or collaborate online, each sharing knowledge, and
contributing the parts or services they do best. The companies that as-
semble the finished products don’t hire the other companies; assembling
the finished product is just another service. A ”self-organised system of
design and production” has emerged [...].

One can easily envisage that such ad-hoc collaborations will have a number of
generic goals such as good communication between collaborators, sustainability
of the collaboration (or the goal of achieving the objectives by a certain deadline),
quality leadership and a high degree of connectedness and unity between the
different participants. On a less generic dimension, business metrics can serve as
goals for the institution, too. For example, profit increases, reduction in risk and
rise of business value of the collaboration as a whole and/or of its participants
can be considered collaboration goals. Finally, domain (i.e. collaboration) specific
goals need to be considered such as the production of a certain amount of goods,
the maintenance of a certain level of employee satisfaction, a certain throughput,
a certain penalty on delivery delays and the return on capital employed.

Not all of these goals will be explicit goals of any given institution and the
collaborators can decide which ones they value most and should strive to embed
in their operational processes. If all collaborators have the same goals and they
are all achievable (i.e. the set of goals is consistent and acceptable) then this
set of goals will be the basis for the construction of the institution. However,
in most cases, individual collaborators have conflicting ideas of the goals of the
collaboration and as these goals must be shared by all collaborators, a mechanism
is needed that reaches an agreement. We present a solution to this problem based
on ABA.

In order to demonstrate our approach in this paper, we use a scenario of
three agents named Adrian, Betty and Carles, working in the Chinese motor-
cycle industry and intending to institutionalise a collaboration for themselves
to operate. They share a common language L in order to avoid ontological

2 The example is quoted from a review of the book which appeared in the Guardian
newspaper on September 5th, 2007.
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misunderstandings3. These three agents have some shared knowledge between
them (stored in the shared knowledge base SKB) and some individual knowl-
edge (stored in IKBA, IKBB and IKBC , respectively). Each agent has some
goals stored in its personal goal base (in this example, GBA = {g1, g2, g3},
GBB = {g2, g4, g5} and GBC = {g1, g6}) that it would like to see as the goals
of the collaboration, and an individual vision (represented as rules in the cor-
responding IKB) of how these goals can be achieved (i.e. what is required for
them to be reached). Each one wants its own goals to become common goals of
the institution.

g1: to produce 100 motorbikes this week
g2: to always clear the assembly line at the end of each day
g3: to produce 100 sidecars this week
g4: to improve/foster relations between the three collaborators
g5: to make the institution sustainable/repeatable
g6: to make Carles as the leader of this collaboration

Whether or not a goal is achievable depends on a number of facts to hold true
and a number of assumptions to be “assumable”. The individual visions of how
to achieve (relevant) goals are given in Table 1. Here the IKBs are represented
as sets of rules of ABA frameworks. To ease understanding, the rules for each
agent are partitioned into rules for achieving goals and rules for propositions and
beliefs needed to support goals. The CaSAPI tool that we propose to employ
treats all rules in the same way. Furthermore, it is a coincidence that each agent i
has goal rules for exactly the goals in its corresponding GBi as in general agents
may hold information about how to achieve goals they do not hold themselves.

Table 1. Example scenario as ABA framework

IKBA IKBB IKBC

g1 ← a1, x1 g2 ← q1, x5 g1 ← r1, c1, x8

g2 ← p1, x2 g4 ← b1, q2, x6 g6 ← r2, x9

g3 ← p2, a2, x3 g5 ← q3, b2, x7

g3 ← a3, x4

p1 q1 ← b3 r3

p2 ← a1 q2 ¬a3 ← r3

q3 ¬b1 ← r4

¬b2 r4 ← r5, c2

r5 ← c3

For example, goal g1 can be achieved in two ways — it can be achieved as-
suming sufficiently many spare parts are in stock (assumption a1) or it can be
achieved if a reliable third part producer exists (proposition r1) and it can be
assumed that outsourcing is acceptable to all collaborators (assumption c1). An-
other example is that goal g4 can be achieved when b1 can be assumed (everyone
3 In the future, ontology mapping methods (see e.g. [21]) can be used to align different

languages.
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is happy) and proposition q2 holds (the collaboration is profitable as a whole).
Finally4, goal g5 is achieved if all collaborators are trustworthy (proposition q3)
and assuming there is at least constant demand for motorcycles (assumption b2).

Betty’s individual knowledge base IKBB would therefore contain the rule
g4 ← b1, q2 as well as two other goal rules. In what follows, we treat all pi, qi

and ri as propositions (i.e. elements of a propositional language L that are not
assumptions) and all ai, bi and ci as assumptions for Adrian, Betty and Carles,
respectively. Assumptions can represent beliefs one cannot prove or disprove
or actions to be performed by an agent. The choice is left to the designer of
the agents. In addition to these ai, bi and ci’s, there are so-called applicability
assumptions that we denote with xi which are attached to each goal rule. Hence
a rule g6 ← r2, x9 can be read as “goal g6 (about Carles as leader) can (usually)
be achieved if proposition r2 (Carles is the most senior agent) holds” and this
rule is applicable if x9 is the case. An agent can dispute the applicability of this
rule (and thereby argue that g6 can not be achieved in this way) by showing the
contrary of x9 (e.g. that seniority is irrelevant when determining the leader of a
collaboration).

In addition to the individual knowledge bases, there is a shared knowledge
base SKB containing the fact that not sufficiently many spare parts are in stock
(¬a1) and the rule r1 ← r3, stating that a reliable third party producer exists if
MotoTaiwanInc has been reliable in the past.

When defining an ABA framework one must also specify the contraries of all
assumptions. For simplicity, we take the notion of contrary to be logical negation.
Therefore, we have x = ¬x for any assumption x. We can now define an ABA
framework for Betty where the inference rules areRB = IKBB∪SKB, the set of
assumptions is AB = {b1, b2, b3, x5, x6, x7} and the contrary of each assumption
is its logical negation. The language LB is made up of all literals that feature in
the rules in IKBB.

Using this ABA framework, Betty on her own can see that goal g2 is achiev-
able, if b3 can be assumed (since b3 ‘the deal with the external distributor is fair’
allows to deduce q1 ‘a working distribution channel exists’ and that proposition
is needed for goal g2). Furthermore, she can achieve g4 if b1 can be assumed. Since
¬b2 is a fact that Betty knows about, she can already see on her own that g5 is
not an acceptable goal for the collaboration and will thus never put it forward.
We can similarly construct ABAs 〈LA, RA, AA, 〉 and 〈LC , RC , AC , 〉 for
Adrian and Carles, respectively. Note, for each i ∈ {A, B, C}, Li ⊆ L.

We now look at two approaches to determine the set of common goals between
the three agents that can then be used to construct an institution from them.

4 Centralised Approach

Any agent-based institution requires a set of institutional goals which are used
to create the structure and elements of the institution. When human designers
4 We refrain from detailing how to achieve the remaining goals and leave it to the

reader’s imagination to fill the other elements of L (e.g. p2 and a3) with meaning.
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dictate these goals, the institution can be constructed from them. However, when
several autonomous agents come together to form an institution, they must agree
on a set of institutional goals that are acceptable to all of them. Note that within
ABA a goal is “acceptable” with respect to a given semantics if there exists an
acceptable set of assumptions according to that semantics supporting the goal.

Considering the semantics described in Section 2, we propose to use the scep-
tical grounded semantics for our scenario. As argued in [12], some domains such
as legal reasoning (where a guilty verdict must be obtained via sceptical rea-
soning) and multi-agent systems (where decisions must be made unanimously)
require sceptical semantics. In this paper we propose that agents argue about
goals for their future collaboration and such goals must be agreed upon scepically
— the set of acceptable goals must be unique. As justification consider the case
where two goals depend upon two conflicting assumptions. Credulous semantics
would allow to find support for either goal individually while sceptical reasoning
excludes both goals5. Using the former, the acceptance of goals would hence be
dependent on the order in which they are considered — which is a complication
we will leave for future work.

Assume n agents want to collaborate. An intuitive approach to find a set
of institutional goals consists of combining all the individual knowledge bases
IKBi of the n agents with the shared knowledge base SKB and reason with
this combined knowledge. We would have the following assumption-based argu-
mentation framework:

R = SKB′ = SKB ∪
⋃n

k=0 IKBk

A =
⋃n

k=0Ak where Ak are the assumptions of agent k including its applica-
bility assumptions.

The contrary of an element x of A can be constructed by using the fact that
the individual sets of assumptions are disjoint, as follows: find the agent i that
has x as an assumption and use the contrary function of agent i. If the require-
ment that two sets Ak are pair-wise disjoint is dropped, the combined contrary
function ′ is constructed as follows:

x′ = {y | y = xi and i is an agent }.

This combined contrary function returns sets of elements. For example, if
Betty and Carles have the assumption α that the sky is blue and Betty thinks
that α = {sky is grey} while Carles thinks that α = {sky is red}, then the
combined system would return as a set of contraries for the assumption α the
set {sky is grey, sky is red}. Showing that any one of these contraries holds,
is sufficient to disprove α. Whether or not the sets of assumptions are disjoint
depends on the kind of institution required.

Having constructed such an ABA framework, we can now run the argumen-
tation system CaSAPI and query it about one goal at a time. Those goals that

5 CaSAPI also supports the ideal semantics, which is less sceptical than the grounded
one. It also has a unique extension but the set of goals it accepts is a superset of those
accepted using grounded semantics. In future work, we will evaluate the differences.
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are acceptable according to the chosen semantics (see Section 2) are selected as
institutional goals.

In the example scenario with six individual goals, only goals g1 and g2 will
become institutional goals. Adrian’s rule g1 ← a1 is not helpful, since ¬a1 is
part of the shared knowledge base, but Carles has a way of showing g1 provided
c1 can be assumed. CaSAPI attempts (and fails) to use the rule g1 ← a1 before
backtracking and succeeding by using Carles’ way of showing g1. Goal g2 is
acceptable to Betty (as discussed in Section 3.1) and since nobody can attack
her argument (that from assumption b3 the goal is possible), it becomes an
institutional goal. Note, however, that Betty’s goal g4, which was acceptable to
her before, given that b1 can be assumed, is not an institutional goal. The reason
is that Carles has a way of showing ¬b1 (not everyone is happy) provided he can
assume c2 and c3. Since between the three agents nobody can attack either c2
or c3, Carles’ attack succeeds and Betty’s goal g4 is not acceptable.

4.1 Control Issues

Rather than using CaSAPI to query one potential goal at a time, we can also
use a meta-interpreter which will attempt to show that all goals are acceptable
at once. If this fails, the meta-interpreter will remove one goal at a time from the
set of all goals (and possibly backtrack) in order to find the biggest acceptable
subset of goals. If a reason is put forward to use a different semantics (e.g. admis-
sibility), then the meta-interpreter will need to make use of additional machinery
to control the order of querying. Finally, agents could express a preference of the
goals they would like to see adopted as goals of the collaboration. Again, the
meta-interpreter will have to handle these. We leave the construction of such a
meta-interpreter for future work.

4.2 Disadvantages

Applying the CaSAPI tool in a centralised manner, while being a computation-
ally straight-forward approach, comes with several disadvantages. Combining
the individual knowledge bases can lead to performance issues, since all the
computational burden needs to be carried by one central entity which computes
the optimal set of institutional goals. This agent (and the goal finding process)
will quickly become the bottleneck of the system. It also increases the system’s
vulnerability to attacks, since without this entity’s capability to execute the
centralised algorithm, the agents cannot continue their efforts to form a society.
Furthermore, this central agent needs to be trusted, which brings with it even
more challenges.

However, the biggest disadvantage of the centralised approach concerns pri-
vacy. The individual agents will have to share their individual rules, knowledge
and other internal details that they may want to keep secret from each other. For
example, if Adrian, Betty and Carles want to form a market-place institution
then while they need some common goals to make their venture happen, they
would be forgiven for being hesitant to share all their business knowledge (such
as detailed business rules) with one another.
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5 Distributed Approach

In order to allow the participating agents some privacy and to keep their indi-
vidual rules private, we propose a distributed approach which does away with a
central entity which amalgamates information. Instead, each of the agents needs
to be equipped with the CaSAPI engine in order to compute arguments and
their supporting assumptions. Communication between the agents will be used
to distribute arguments and attacks against these arguments are again computed
locally. The only prerequisite we insist on is a shared understanding of the notion
of contrary.

Initiator
broadcasts

AgentAgent Agent
 goal as 

argument

attack an
argument

Fig. 2. Schematic description of interaction protocol

Each single goal will be treated separately, in a new conversation. Each con-
versation starts with one agent, the initiator whose individual goal is concerned,
broadcasting a message with the goal in question and the supporting assump-
tions needed to defend this goal.

Every agent receiving this message then attempts to find an attack by looking
for some support for the contrary of one of the assumptions in the initial message.
This includes disputing one of the rules used to build the argument by showing
the contrary of the applicability assumption. An agent who finds such an attack,
broadcasts it (together with the assumptions needed to defend it). Everyone
is then trying to counter-attack this attack (again by searching for supporting
assumptions for an argument in support of a contrary of an assumption of the
attack). This collaborative process implicitly constructs a tree of arguments and
continues until no more attacks can be found and the initial argument either
prevails or is defeated. If it prevails, it becomes an institutional goal.

This process can be clarified with an example from the running scenario.
Imagine Betty initiates a new conversation by broadcasting her goal g4 with
the supporting set of assumptions {b1}. Now Adrian and Carles both attempt
to find an argument in favour of ¬b1 since this is the only possibility to attack
Betty’s argument. Adrian is unsuccessful, but Carles finds an attack, namely
an argument in favour of ¬b1 supported by {c2, c3}. Since neither Adrian nor
Betty can find arguments for either of ¬c2 or ¬c3, Carles’ attack prevails and
Betty’s initial argument is defeated. Note that Adrian may withhold an attack
consciously in order to help Carles. We leave the issue of collusion for future work.
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Betty
broadcasts

Adrian

Carles

 g_4 as 
argument

with support 
b_1

Adrian

Betty

broadcasts attack
on b_1 with 

support
{c_2,c_3}

Fig. 3. An instance of the interaction protocol from the scenario

Each individual agent only initiates conversations about goals that it considers
possible. Therefore, Betty will not propose goal g5 to the other agents, as she
herself is able to show its impossibility. Hence agents will never attack their own
proposals. Further implementation issues are discussed in Section 5.2 of this
paper but first we summarise the advantages of the distributed approach.

5.1 Advantages

The advantages of this distributed approach are three-fold:

Less vulnerability of the system as a whole, since even if an agent fails to
perform (e.g. is shut down), the other agents can still continue to look for
an agreement.

Privacy is maintained to the extent that rules in the individual knowledge
bases are not shared between agents. In the example above where Carles
successfully attacked Betty’s argument, he did not have to reveal his rule
r4 ← r5, c2, for example. This privacy is useful but requires that the agents
are honest. If this is not the case, an agent could counter-attack any attack
on his proposed goals with a fictional support set.

Efficiency is gained in two ways. ABA provides computational savings via sev-
eral filtering mechanisms (all of which employed in CaSAPI). Additionally,
each agent can locally store the successful and unsuccessful arguments from
the dialectical structure that is computed each time the argumentation sys-
tem is run. These stored arguments can then be re-used in future conver-
sations to save recomputing their support sets. Some of these savings will
however be offset by increased communication cost. A detailed investigation
into the comparative costs of the two approaches is part of our plan for
future work.

5.2 Implementation Issues

We want to briefly touch upon two issues that require further discussion. The
first one is the order of goal proposals. If a no meta-interpreter (cf. Section 4.1) is
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used, then in the simplest case, a token-based approach can be employed where
the n agents that want to reach an agreement form a circle and only the agent
in possession of the token can initiate a new conversation. After the initiation
it passes the token on to the next agent in clock-wise direction. An agent can
also pass the token on without initiating a new conversation, if all his goals have
been discussed or are in discussion. If the token moves n times without a new
conversation being started, then the process finishes.

This simple approach can be optimised in various ways that we do not want to
go into too deeply here. Suffice to say the order in which the goals are considered,
while not changing the final result6, has an impact on efficiency, since due to
the storing of (sub-)arguments described in Section 5.1 conversations can be
shortened significantly.

A second issue concerns the termination of a conversation. Above we said that
the arguing stops when no more attacks can be found. We consider two ways
in which this is implemented. If all agents operate on the same (or sufficiently
similar) clock, a time-out mechanism can be used. If no attack has been broadcast
within a specified number of seconds of the initiation of the conversation (or of
the broadcasting of the most recent attack), then the argument (or the attack)
prevails. A more elaborate approach has the agents explicitly stating that they
cannot find an attack on a given set of supporting arguments. It involves a
conversation protocol including messages to that effect. Further work is needed
to formalise these protocols.

6 Related Work and Conclusions

In this paper we present original but preliminary work on the problem of finding
a set of institutional goals for multi-agent systems from which institutions can
be constructed. Research on agent organisations and institutions has mainly
focused on specification languages (e.g. [2]), architectures and software tools
and frameworks (e.g.[2,18,19]), agent reasoning (e.g. [22]), and understanding
the evolution of norms [3]. Somewhat related approaches are found in [1] and
[26], but to the best of our knowledge, no efforts on automating institutional
design, from the conception of goals to the enactment of the rules, have been
carried out. In this paper we take the first steps along this direction.

We are proposing to use assumption-based argumentation [4,9,15] and have
lined-out two approaches to the problem of determining a set of institutional
goals. One may argue that institutional goals should be more general and ab-
stract than the goals of individual agents. For example, from the personal goal
“I want to finish negotiating by 8pm”, one can deduce the institutional goal “We
should all finish by 8pm”. We plan to investigate this in the future. For this paper
we assume the individual goals are sufficiently general (i.e. as the institutional
goal above).
6 When a credulous semantics is used, such as admissibility, correctness does become

an issue. For the GB-dispute derivations we use in this paper, the order in which the
goals are considered has no impact on correctness.
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A second line of investigation involves introducing trust and reputation into
the argumentation and interaction mechanism. One could place more importance
on the arguments of certain agents and then use a preference-based approach
to resolve conflicts between goals as well as arguments (we took a related ap-
proach for solving conflicts between norms in [17]). Another interesting notion
is favouritism (i.e. not attacking an argument even though one could).

Finally, one can extend the same process to reasoning about joint norms.
Some norms may be derived from institutional goals, others could be agreed
upon using a similar approach to the one sketched in this paper.

A somewhat related field is that of team formation. An agent team consists
of a number of cooperative agents which have agreed to work together toward
a common goal [20]. The challenges associated with team formation involve de-
termining how agents will be allocated to address the high-level problem, main-
taining consistency among those agents during execution, and revising the team
as the environment or agent population changes. In our case we focus on the
negotiation that occurs prior to the formation process, namely on the agreement
of high-level goals.

The work on joint intentions [6] can also be seen as relevant although it
has primarily focused on understanding the motivations for a team of agents to
jointly pursue/drop goals. Thus, the main focus has been on understanding coop-
eration as a collective (intentional) decision-making process that makes agents
adopt joint actions. The working assumption is that collective intentional be-
haviour cannot be analysed in terms of individual intentions. In our case, we are
not concerned on agents’ collective mental state or decision-making, but on the
argumentation machinery employed to eventually reach a collective agreement.
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Abstract. Agents in an organization need to coordinate their actions in order
to reach the organizational goals. Organizational models specify the desired be-
haviour in terms of roles, relations, norms and interactions. In this research, we
show how organizational rules can be adopted by autonomous agents. We have
developed a method to translate norms into reasoning rules for agents. However,
since the agents are autonomous they will have their own reasoning rules next to
the organizational rules. We propose a modular reasoning model to make organi-
zational rules explicit. This allows for meta-reasoning about these rules. We show
that this stimulates bottom-up dynamics in the organization.

1 Introduction

Organizations benefit from autonomous decisions by their participants. This is visible
in human organizations. Not only the formal organizational structure but also the infor-
mal circuit of communication and interaction determines the success of an organization.
In human organizations a participant’s contribution is evaluated based on the organiza-
tional requirements as well as the extra achievements. Someone who takes initiative and
builds up a personal network is often more appreciated than someone who sticks to the
official rules and does not do anything extra. The capability to act and make decisions in
unexpected situations, is usually perceived as a positive characteristic of human actors.

How does the observation that organizations benefit from participants’ initiatives
translate to multi-agent coordination that are based on organizational theory? Every or-
ganization is created for a specific objective. The organizational model describes the
desired global behaviour using abstract concepts such as roles, relations and norms. Its
specification is meant to guarantee certain requirements, for example, about the infor-
mation flow. However, since the agent is assumed to be an autonomous entity, decision
making is a local process of the agent. Therefore, it is important to maintain agent
autonomy within the multi-agent coordination model. The organizational rules should
guide the choices of the agent, but the organization cannot control the agent’s decision-
making process.

In this research, we investigate how to make agents aware of organizational rules.
At the same time we allow them to take initiatives besides the formal structure. We

J.F. Hubner et al. (Eds.): COIN 2008, LNAI 5428, pp. 17–32, 2009.
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propose a modular approach with which agents can adopt organizational rules into their
reasoning model. The reasoning model separates the organizational rules from the ac-
tual decision-making process. This way, the agent’s decision-making process can be
defined separately from the coordination mechanism.

At the same time, the modular approach allows for meta-reasoning about different
behavioural rules, which makes the agent independent from the organizational structure.
The agent is not limited in its decision-making. It knows how to follow the organiza-
tional norms and it is able to take other initiatives. Therefore, the model guarantees
agent autonomy.

The paper is structured as follows. In Sect. 2 we discuss related work on agent or-
ganizations. We motivate our choice to use the OperA model to describe organizations
and in Sect. 3 we give an example of the use of OperA. Section 4 describes a reasoning
model with which an agent can adopt organizational constraints to its decision making.
In Sect. 5 we show how the organizational rules are adopted by the agent. In Sect. 7, we
investigate bottom-up dynamics in organizations using the autonomy of agents and we
give examples.

2 Agent Organizations: Related Work

Researchers in multi-agent systems have introduced the organizational metaphor to
achieve coordination between autonomous agents. Organizational models specify co-
ordination mechanisms between agents in abstract concepts, such as roles, relations
and norms. In this section we discuss related work on organizational models. As agents
are expected to be autonomous entities it is not straightforward to operationalize orga-
nizations. We describe how different approaches allow agents to take up organizational
tasks. We motivate our choice to use OperA [1] for organizational description and we
briefly explain the model.

2.1 Models for Agent Organizations

Several organizational descriptions have been proposed. One of the first was the Agent
Group Role (AGR) model [2], that introduced the concepts of roles, groups and in-
teraction between roles. The model focuses on defining the structural aspects of the
organization. The interaction between agents is defined within the role description. The
AGR model does not consider abstract behaviour rules, such as norms.

The OperA model [1] proposes a more expressive way for defining organizations
by introducing an organizational model, a social model and an interaction model. This
approach explicitly distinguishes between the organizational model and the agents that
act in it. Agents become aware of the organizational rules via contracts that specify
these rules. The agents are still fully autonomous in making decisions.

Other models, such as Moise+ [3], create an organizational middleware that checks
whether actions of agents are allowed or not according to the governing organizational
rules. The organization becomes an active entity that has the possibility to interfere in
the agents decisions.

In our research we use human organizations as inspiration. From this point of view,
we consider an organization as a description of roles, relations and interactions to
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achieve certain coordination. The OperA approach fits well in that picture because of the
expressive semantics and the distinction between organizational description and agent
design.

2.2 Autonomous Agents in Organizations

We assume that the agents fulfilling organizational roles are autonomous entities; they
have control over their internal state and their behaviour [4]. This implies that the or-
ganizational model specifies behavioural guidelines for the agents to assure desired
features such as task coordination or information flow. The agents should follow those
guidelines, but they are not forced to do so by definition. Previous studies have sug-
gested several ways to let agents take up organizational rules.

The middleware of Moise+ [3] checks whether choices of agents are compatible with
the organizational specification. The agents make decision locally, but the middleware
can overrule the decisions of the agents. Therefore the agents are not fully autonomous
in executing their choices.

Other organizational models, such as [5], are based on formal semantics and transi-
tion rules. The possible states of the organization are described by state transitions. The
states include internal knowledge of the agents. Because agents have control over their
internal state, this is not appropriate for our aims.

OperA [1] specifies contracts that describe the behavioural guidelines of a specific
role. The internals of the agents are separated from the organizational specification.
The only requirement is that the agents need to be able to understand the contracts. The
agents are still fully autonomous in making decisions.

The OperA approach is compatible with our notion of autonomous agents. Further-
more, it has expressive semantics to define organizations. Therefore, we have chosen to
use OperA for the organizational specification. In order to use OperA, we still need a
mechanism to describe the adoption of organizational contracts into an agent’s reason-
ing model. In Sect. 4 we show how autonomous agents can adopt organizational rules
into their reasoning. In the following section we will describe the OperA model in more
detail.

2.3 The OperA Model

OperA [1] provides a formalized specification language for agent organizations. OperA
describes an operational organization in three parts:

– The organizational model: roles, relations, interactions
– The social model: population of organization, linking agents to roles
– The interaction model: interactions given the organizational model and the agents

The organizational model contains the description of the roles, relations and interactions
in the organization. It is constructed based on functional requirements of the organiza-
tion. The social model and the interaction model are the link between the organizational
description and the executing agents. Here the organizational rules are translated to con-
tracts for the agents fulfilling the roles. OperA includes a formal language to describe
those contracts.
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In an operational organization the social model and the interaction model can be
dynamic, because of agents entering or leaving the organization. The organizational
model is in principal static as long as no structural changes are carried through. The
administrative tasks to keep track of the different organizational models are specified in
organizational roles.

Agents enacting roles in a organization are expected to have some minimal knowl-
edge about the concepts that are used to set up social contracts. The contracts are
described in deontic expressions. The agents need to know the deontic concepts per-
mission, obligation and prohibition. Furthermore, the description includes relations be-
tween roles. The agent needs to know the meaning of such a relation. For example, a
hierarchical relation between role r1 and r2 implies that a request from r1 is interpreted
as an obligation by r2. OperA presents a formal description of the relevant concepts.

3 Example of an Organizational Description

In this section we present an example of an organizational model in OperA. We use a
fire brigade to illustrate how an organization is specified and how the behaviour rules
for the agents are constructed.

The fire brigade operates in a world where fires appear that need to be extinguished.
In the organization we define two roles; coordinator and firefighter. The coordinator
makes a global plan and tells the firefighters which fire they should extinguish. The
coordinator has a global view of the world. The firefighters perform the actual tasks in
the environment; they move to a fire location and extinguish the fires. They have only
local views.

There is a hierarchical relation between the two roles, the coordinator is the superior
of the firefighters and can send orders to the firefighters, which fire they have to ex-
tinguish. We want to show different forms of coordination within this organization. In
our implementation, we achieve this by changing the autonomy level of the decision-
making process of the firefighters.

A generic methodology to analyze a given domain and determine the type and struc-
ture of an application domain resulting in a OperA agent organization model is

Table 1. Methodology for designing agent organizations
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described in [6]. The methodology provides generic facilitation and interaction frame-
works for agent societies that implement the functionality derived from the coordination
model applicable to the problem domain. Standard organization types such as market,
hierarchy and network, can be used as starting point for development and can be ex-
tended where needed and determine the basic norms and facilitation roles necessary for
the society. A brief summary of the methodology is given in table 1.

We focus on the organizational model or our firefighter organization. Below we de-
fine the coordination level, environment level and behaviour level.

3.1 Coordination Level

At the coordination level, the coordination type of the society is determined. There
are several possibilities, for example a hierarchical model, a market based model or a
network model. We have chosen for a hierarchical organization, since this is the most
common structure in crisis management organizations such as our group of firefighters.
The following characteristics are typical for a hierarchical organization:

– The leading goals for agents are global, organizational goals
– Relations between agents are fixed
– Communication is specified by design

Based on the choice for a hierarchical model we define the environment level and be-
haviour level.

3.2 Environmental Level

In the environment level, interaction between the organization and the environment is
analyzed. Ontologies are needed to define organizational concepts and to define com-
munication. Furthermore, the functional requirements of the organization are specified.
This includes the global organizational purpose and the local objectives of the roles. We
define coordination rules in terms of norms.

Organizational function. The purpose of our firefighter organization is to detect fires
in the environment and extinguish them as soon as possible.

Ontologies. Besides OperA concepts to specify the organizational model, we need a
communication language between the agents. We will use four performatives for the
communication between the agents: Request, Accept, Reject, Inform.

Secondly we need a domain-level ontology to describe all objects in the environment,
and the actions that the agents can communicate and reason about. Our domain ontology
consists of one object, Fire, and one action, Extinguish and three states that describe the
status of an agent with respect to its tasks: Busy, Done, Free. Furthermore the agents
can send messages.

Roles. We do not consider external stakeholders of our organization. The roles in our
organization are based on a functional analysis of their tasks. The roles are described in
Table 2.
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Table 2. Role table of the firefighter organization

Role Relation to Society Role Objectives Role Dependencies
Applicant Potential Member Join Organization Root
Root From hierarchy model Assign role to applicant Applicant
Coordinator From hierarchy model Monitor Fires

Assign firefighter role Applicant
Monitor status of firefighters Firefighter
Assign fires to firefighters Firefighters

Firefighter Realization of Extinguish fires
extinguishing fires Inform about status Coordinator

Announce assistance Coordinator

A hierarchical organization needs a root role to take care of delegation of roles. The
root role will give the role definitions to the agent highest in hierarchy and provide it
with a social contract to specify the required behaviour. In our case, the highest role is
the coordinator role.

The coordinator role has as objective to hire firefighters. It will assign the fire-
fighter role to applicant agents. Furthermore it has the objectives to monitor the fires
in the world, to monitor the firefighters, and to assign fires to firefighters. For the last
two objectives the coordinator is dependent on the firefighters. We specify the fire-
fighter role with the objectives to extinguish fires, to inform the coordinator about its
status.

Dependencies between the roles appear from the description of the role objectives.
We have defined the coordinator as the highest role in the organization. Therefore it has
a hierarchical relation with the firefighter role, where the coordinator is the superior of
the firefighters.

Table 3. The norms of the firefighter organization

Norm
Situation Handling extinguish-request
Responsibilities Initiator: coordinator

Action: firefighter
Triggers Pre: coordinator sends extinguish-request

Post: coordinator is informed about accept
Norm Specification Whenever extinguish-request from coordinator then firefighter

is obliged to do accept-request

Norm
Situation Announce status
Responsibilities Initiator: firefighter

Action: firefighter
Triggers Pre: status change

Post: inform coordinator about status
Norm Specification Whenever status-change then firefighter

is obliged to do inform-coordinator-about-status
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Norms. We specify the norms that hold between the coordinator and the firefighter
roles in table 3. In the first we describe how a firefighter agent handles requests to
extinguish fires. The firefighter is obliged to accept the request from the coordinator.
This norm follows directly from the hierarchical relation between the two roles.

We define a second norm telling that the firefighter should keep the coordinator in-
formed about its status. The information is needed by the coordinator in order to do
its tasks properly. This norm guarantees the required information sharing within our
organization.

3.3 Behaviour Level

Here, we describe the social model and the interaction model as defined in OperA. Typ-
ically, a hierarchical organization has a relatively detailed social model and interaction
model. This implies that the norms in the social model and the communication proto-
cols in the interaction model do not leave much space for individual contracts with the
agents. We assume that the behaviour rules as described in this level of the development
of the organization match with the contracts with the agents.

Social Model. In the social model we define the social contract for the agents that
fulfill the roles. The coordinator role just specifies the role objectives, with no further
obligations. For the firefighter role we have defined some additional norms:

(1) Whenever extinguish-request from coordinator then firefighter is obliged to do
accept-request

(2) Whenever status-change then firefighter is obliged to do inform-coordinator-about-
status

As we explained, the first norm follows directly from the hierarchical relation between
the two roles. Therefore, the social contracts for firefighter agents should only capture
the second norm.

Interaction Model. The interaction model describes interaction contracts. An inter-
action contract between two agents describes a protocol that is followed by the agents
during interaction scenes. Therefore all agents have interaction contracts for all interac-
tion scenes.

There should be interaction scenes and contracts between applicant and root and be-
tween applicant and coordinator roles. However, they are only relevant to set up the
organization. Therefore we just specify the interaction contracts between the coordina-
tor and firefighter roles. This interaction scene will occur during the execution.

Interaction contracts are agreed upon by agents playing the roles and encountering
interaction scenes. We assume the following interaction contracts between agents play-
ing firefighter and coordinator, Table 4.

The first contract specifies the interaction between the firefighter and coordinator
for the situation where the coordinator sends a request to the firefighter to extinguish
a certain fire. The contract specifies that the firefighter is obliged to answer whether it
accepts or rejects the request. The second contract specifies the interaction for the scenes
in which the firefighter informs the coordinator about its status. The agents agreed that
the coordinator does not need to respond.
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Table 4. The interaction contracts of the firefighter organization

Interaction Contract
Parties Coordinator C, Firefighter F
Scene Extinguish request
Clauses If received( F, C, extinguish-request(fire) ) then

F is obliged to do answer( F, C, accept-refuse)

Interaction Contract
Parties Coordinator C, Firefighter F
Scene Announce Status
Clauses If received( C, F, status-report ) then nothing

The interaction contract also poses a behaviour rule on the agent:

(3) Whenever extinguish-request from coordinator then firefighter is obliged to do
answer-accept/refuse

3.4 Towards an Operational Organization

We have specified the organizational model in terms of roles, relations and interaction
and we have defined contracts for agents that want to participate in the organization.
Although agents are autonomous entities we expect them to follow the organizational
rules. Therefore the agents should adopt the contract into their reasoning process. In
the next section we describe how such a contract can be adopted by an agent using the
reasoning model we described in [7].

4 Agents in Organizations

In Sect. 2, we have discussed other research concerning coordination of autonomous
agents. The organizational middleware of Moise+ [3] can overrule choices of the agents,
and therefore the agents are not fully autonomous in their choices. The organizational
models based on formal transition rules [5] does not meet our requirement that the
agent’s internals have to be defined separately from the organization.

In this section we explain how autonomous agents can adopt organizational rules
into their reasoning model. We believe that a modular approach in the agent’s reasoning
model is a promising way to adopt organizational rules into agent decision-making. By
separating the organizational rules from the decision-making process of the agent we
can guarantee the autonomy of the agent.

An autonomous agent should make its own decisions, and it decides how other agents
can influence its decision-making process. In this section we introduce a component in
the agent’s reasoning model to deal with external events. We show how organizational
rules can be adopted in this reasoning component.

4.1 Event Processing in the Agent Reasoning-Model

Here we explain briefly the reasoning model we described in a earlier paper [7] and we
show how it can be used to adopt organizational rules into the reasoning process. In the
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Fig. 1. Two phases in the agent’s reasoning model

agent’s reasoning-process we distinguish a phase for event processing and a phase for
decision making as shown in Fig. 1. The event-processing phase gives the agent control
over how it is being influenced by external events. The decide phase focuses on the
decision of action.

In the event-processing phase the agent prepares the decision-making phase. Exter-
nal influences are processed here. External influence can be an agent’s observations or
messages from other agents. We have chosen to implement the event-processing phase
with reasoning rules of the format same format as reasoning rules in BDI implementa-
tions such as 3APL [8] and AgentSpeak(L) [9]:

<HEAD> <- <GUARD> | <BODY>

The head of a rule is the event that triggers the rule. The guard should match the beliefs
of the agent. The body of the rule expresses the influence of the event on the agent’s
reasoning process. For example, the following message describes that a request of a
superior is to be accepted:

message(SENDER, request, TASK) <- superior(SENDER) |
AddGoal(TASK)

The message is the trigger of the rule and the guard verifies with the agent’s belief base
whether the sender is a superior of the agent. If so, the request is accepted by adding
the task to the agent’s goals.

4.2 From Organizational Rules to Event-Processing Rules

We use the rules for event processing to specify how an agent’s internal state is in-
fluenced by external events. The organizational specification describes behaviour rules
that are meant to guide the agent’s decision-making process. We propose to translate
the organizational rules from the organizational description to event-processing rules
for agent decision-making.

We have to define the set of required elements to translate organizational rules to
event-processing rules. The way norms are specifies in OperA shows that norms are
based on triggers. The triggers, which can be messages or observations, are external
events, and therefore can be used as head of the event-processing rules. In the following,
we propose to use a general message format consisting of a sender, a performative and
the actual content. Observations must have the same format as agent beliefs.
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Table 5. An ontology of event-processing rules that describe organizational rules

Rule element Description Possible values
Head External event that - message( Sender, Performative, Content )

triggers the rule - observation( Content )
Guard Situational Any belief set of the agent

constraints
Body Effect on agent’s - AddGoal( Goal )

mental state - AddBelief( Belief )
- IgnoreEvent( )

The guards of the event-processing rules are restrictions based on internal beliefs of
the agent. A guard can contain any set of beliefs. The example event-processing rule of
the previous paragraph shows an example.

The body contains the effect of the external event on the internal state of the agent.
This is of course dependent on how the internals of an agent are represented. We use
the example of BDI agents. The effect of external events can then be described in term
of belief changes and goal changes of the agent.

We describe behavioural rules as event-processing rules that result in a change of the
agent’s mental state. In Table 5, we give an example of how to translate organizational
rules into event-processing rules. We show the values of the elements of the event-
processing rules. We assume that we can translate all organizational rules into event-
processing rules of the agent’s reasoning process.

4.3 Prior Organizational Knowledge

In Sect. 2.3 we explained that some minimal prior knowledge is required. An agent tak-
ing up a role in the organization should know the meaning of deontic concepts and of
relational terms. The meaning of the deontic concepts obligation, permission and pro-
hibition are part of the ontology for event-processing rules. We translate an obligation
for the agent using the AddGoal predicate. This predicate adds the task directly to the
goal base of the agent.

We propose to translate permissions and prohibitions with the AddBelief predicate
to describe that the task is permitted or prohibited. One could choose to define a pred-
icate RemoveGoal to remove a prohibited goal. We prefer the addition of a belief that
describes the prohibition, because removed information can not be recovered when the
situation changes (e.g. when a goal is permitted again later on).

The agent should know the meaning of relational concepts, such as the hierarchical
relation that we use in our example organization. The meaning of a hierarchical relation
between an agent and its superior can be described by the following behaviour rule:

– Whenever an agent receives a request from a superior then the agent is obliged to
accept the request

When we translate this behavioural rule to an event-processing rule using the above
described elements we get:
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(r1) message(SENDER, request, TASK) <- superior(SENDER) |
AddGoal(TASK)

We gave this rule as example of an event-processing rule in Sect. 4.1. The above rule is
considered to be general knowledge of the agent. The rule does not belong to a specific
organization or a specific role.

5 Adopting Organizational Rules

Taking up a role in an organization means that an agent is expected to act following the
constraints described in the role specification. In this section we show how organiza-
tional rules can be translated to event-processing rules for the agents. In the previous
section we have shown how the required organizational prior knowledge is captured by
the language specification and by some event-processing rules.

We continue with specific organizational rules using the example of the fire brigade.
The firefighter organization shows three behavioural rules that a firefighter agent has to
follow in that role. The rules are described by the norms in the social contracts and in
the interaction contracts. The behavioural rules as described in Sect. 3.3 are:

1. Whenever extinguish-request from coordinator then firefighter is obliged to do
accept-request

2. Whenever status-change then firefighter is obliged to do inform-coordinator-about-
status

3. Whenever extinguish-request from coordinator then firefighter is obliged to do
answer-accept/refuse

The first rule directly follows from the semantic meaning of the hierarchical relation
between coordinator and firefighter. Therefore it is not part of the social contract. The
other two rules are organization-specific and need to be described explicitly. As dis-
cussed in Sect. 4.2 the rules are triggered by events. They hold when certain conditions
are true, and they result in expected reaction of the agents. We can translate those rules
directly to reasoning rules for event processing using the language elements presented
in 4.2.

(r2) observe( status-change ) <- TRUE |
AddGoal( send(coordinator, inform, new-status) )

(r3) message( coordinator, request, extinguish(F) ) <- TRUE |
AddGoal(send-answer(coordinator, request, extinguish(F)))

Organizational rules are part of the social contracts and interaction contracts that the
agent agrees upon when its joins an organization. They can directly be transferred to
event-processing rules. These reasoning rules capture all behavioural rules that belong
to the role which the agent has taken up. We show that adopting those reasoning rules
are a way make the agent aware of the organizational constraints.

The agent adds those reasoning rules to the event-processing phase that we have de-
fined previously. This phase determines the autonomy of the agent’s reasoning process;
it determines the degree of external influence an agent allows into its reasoning. The
agent limits the autonomy level of the decision-making phase with the organizational
constraints.
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6 Guarantee of Autonomy

The agent adds the event-processing rules derived from the organizational contracts
to its own event-processing rules. We assume that, when an autonomous agent agrees
with a contract, it deliberately chooses to do so. We further assume, that the rules for
event-processing are possible and correct representations of organizational norms, so if
the agent follows the event-processing rules it automatically follows the organizational
norms.

In our reasoning model we have separated the event-processing rules from the actual
decision-making process. This modularity has the advantage that it can reason about
those rules. The agent knows the origin of the event-processing rules. Because the agent
can make this distinction, it has the possibility to prioritize the event-processing rules
and therewith it deliberately chooses to follow specific norms.

When organizational rules are embedded in the actual decision-making process, the
agent will follow the norms implicitly. It might not be aware anymore of which norms it
follows and it might not be aware of which norm belongs to which organization or role.
Another advantage of the modular approach is that it becomes easy to add or change
the event-processing rules, and thus change organizational norms.

Our approach allows for meta-reasoning about the event-processing rules. We claim
that this guarantees autonomy of the agent; it knows how to follow the organizational
rules, but it still has the possibility reason about them and take the chance to violate
organizational norms. In the next section we give examples of meta-reasoning.

7 Bottom-Up Dynamics in Organizations

All static coordination mechanisms have their advantages and drawbacks. In a dynamic
situation it is not possible to choose one coordination type that will always lead to the
best performance. The main reason is that unexpected situations can occur that were
not known at design time and that may not fare well with the selected coordination
mechanism.

We have described a mechanism based on organizational concepts that specifies the
coordination rules at an abstract level. At the same time, it preserves the actors’ auton-
omy. However, the specified interaction rules in organizational models are static. When
we follow the adoption of organizational rules from the previous sections, there are two
ways to achieve dynamics in an organizational model:

– Top-down: a new organizational model is defined, and the agents change their con-
tracts with the organization. As a consequence they adopt different reasoning rules
for influence control, which will change the coordination.

– Bottom-up: the agents change the priority of reasoning rules for influence control
by themselves if they notice that the organizational model fails. They adjust their
autonomy to repair the organizational failure.

The top-down dynamics can be achieved by carrying out structural changes. Specific
roles are required to start reorganizations. Bottom-up dynamics originate in autonomous
choices of the agents. Our interest is in the bottom-up dynamics of the organization.
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[7] showed dynamic coordination by allowing the agents choose their autonomy
level. The agents acted following organizational rules, but also decided not to follow the
rules in specific situations. Organizations in complex environments can benefit from ad-
justable autonomy of agents. In this section we argue how meta-reasoning about event-
processing rules can achieve bottom-up dynamics in the organization.

Furthermore, an organization can benefit from the pro-activeness of agents and from
the ’informal’ actions and communication. Every organization is created for an objec-
tive. Its specification is meant to guarantee certain requirements, for example, about the
information flow. The agents are often able to do many things outside of organizational
specifications without violating any organizational rule.

Both issues, meta-reasoning and informal processes, are directly related to the au-
tonomy of the agents. We discuss them in more detail and show the dynamics in orga-
nizations using example scenarios.

7.1 Meta-reasoning about Event-Processing Rules

An autonomous agent controls its internal state. Therefore, it should have control over
external influences. The modular feature of our approach allows that, as it can reason
about the event handling. The event-processing rules are derived from a contract with
an organization. They can be role specific. At the same time an agent can have event-
processing rules from other roles, or from itself.

We can tag the event-processing rules with their origin. For example, rule r1 from
Sect. 4.3 is part of the agent’s knowledge. It is not organization- or role-specific. Rules
r2 and r3 from Sect. 5 are adopted via a contract with the firefighter organization. The
agent can distinguish between different rules based on their origin. It knows that if it
gives full priority to the organizational rules, it follows the organizational norms. It still
has the possibility to prefer its own event-processing rules; however, this may lead to
violation of organizational norms.

In [7] situations are described where organizations benefit from violation of norms.
An agent’s local observations can conflict with organizational rules. For example, if a
firefighter is in danger he could ignore a request from the coordinator and give priority
to his own goals in order to stay safe. He deliberately gives priority to his own goals,
and therewith risks to violate the organizational norm.

The ability to distinguish between the reasoning rules can be used for prioritization
of the rules. This can be done by applying machine-learning techniques. A learning
agent can learn the situations in which specific rules should have priority, such as the
danger-example.

Another option is to prioritize based on heuristics. Prioritization is studied in ar-
gumentation logics [10]. Argumentation as been applied to reason about interaction
between agents [11] as well as to reason about norms [12]. Our rule-based approach of
event-processing fits very well with this type of meta-reasoning.

Situation-based prioritization is an example of meta-reasoning. Given that an agent
can reason about norms, it can use meta-reasoning to take different attitudes with re-
spect to the organization. For example, an agent can adopt the organizational goals and
drop its private goals, or it can still prefer its own goals above the organizational ones.
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[13] and [14] describe several possible attitudes. The model presented in this paper
allows those different types of agents.

7.2 Informal Processes

Meta-reasoning about event-processing rules guarantees agent autonomy and allows
for norm violation. We argued that participant’s initiatives besides the organizational
guidelines structure are another benefit for the organization that follows from agent
autonomy.

An organization is always specified for a certain purpose, possibly conflicting with
the agents’ individual purposes. Furthermore, the organizational rules guarantee re-
quired features, such as information flow, in order to optimize its performance. How-
ever, the agents are free to do what they want beside the organizational guidelines. For
example, interaction protocols are defined to guarantee an certain distribution of infor-
mation, but the agents can chat with each other and exchange knowledge without vio-
lating the norms. These informal processes are especially interesting when unexpected
events occur that affect the organizational coordination mechanism.

We give the following example of a scenario of the firefighter organization that
demonstrates the use of informal communication between firefighter clearly helps the
organizational performance. The organizational rules specify the communication be-
tween the coordinator and the firefighters. Nothing is said about mutual communication
between the firefighters. This implies that it is not forbidden to communicate. There-
fore, we consider communication between the firefighters as informal communication.
If two firefighters share their knowledge about a fire while extinguishing it, the extin-
guishing process might go faster. As a consequence, the organization performs better
due to the informal communication.

Unexpected events that undermine the coordination can be overcome by informal
processes. If, for example, the communication between some of the firefighters and
the coordinator falls out, the organizational specification fails. The information flow as
defined by the interaction protocols does not lead to the optimal knowledge for the co-
ordinator; he misses the status of some of the firefighters. The informal communication
between firefighters can be used by an individual firefighter to restore the information
flow. If one firefighter tells another firefighter about its status, and this firefighter com-
municates it to the coordinator, the information flow in the organization is restored.

8 Conclusion and Future Research

Agents in an organization need to coordinate their actions in order to reach the organiza-
tional goals. Organizational models specify the desired behaviour in terms of roles, re-
lations, norms and interactions. However, the actors in an organization are autonomous
entities that control their internal state and their behaviour. In this research we have
shown how organizational rules can be adopted by autonomous agents. We have devel-
oped a way to translate norms into reasoning rules for event-processing. The reasoning
rule contains a trigger, situational constraints and an effect on the agent’s mental state
that are derived from the norm specification.
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We have proposed a modular reasoning model to make organizational rules explicit.
Since the agents are autonomous entities they will have their own reasoning rules next
to the organizational rules. The modular approach makes that the agents can distinguish
between different event-processing rules and that they are aware of the organizational
rules. This allows for meta-reasoning about event processing, and gives the agent con-
trol over its internal state. It guarantees the autonomy of the agent and at the same time
makes group coordination possible.

An important aspect of our method is the translation from the norms to reasoning
rules of the agent. We have used a simple example of a firefighter organization to il-
lustrate our ideas. More complex organizations might introduce complex behavioural
rules and we have to evaluate whether we can express them in our language for event-
processing rules. Furthermore, we argued that the possible effects on an agent’s mental
state are dependent on its decision-making process. This has implications for the trans-
lation as well.

We have presented some advantages of using modularity in the reasoning model.
In our approach, the agent can do meta-reasoning reason about the event-processing
rules, and thus about norms. We have used prioritization of event-processing rules as
example of meta-reasoning. As future work we want to investigate different methods of
meta-reasoning, such as argumentation-based techniques.
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Abstract. In open markets and within business and government organizations, 
selfish agents often face the question of what tasks to work on, and what part-
ners to work with. Optimal solutions are particularly difficult to find in large-
scale, unpredictably dynamic environments. Previous work has examined the 
use of separate job selection and team selection heuristics to guide agent deci-
sions in these domains, but did not explore how these decisions influence each 
other, and how these heuristics should therefore be used together. Accordingly, 
this paper presents a mechanism for combining job and team selection heuris-
tics for agents operating in a large-scale, unpredictably dynamic environment. 
An experimental analysis of this new job/team selection mechanism demon-
strates significant improvements in agent performance, both in terms of credit 
earned and in percentage of jobs successfully completed. 

Keywords: Coalition formation, Task selection, Partner selection, Fault-tolerance, 
Dynamic environments, Large-scale environments, Request for Proposal. 

1   Introduction 

The Request For Proposal (RFP) domain is a widely applicable model wherein prob-
lems are divided into a set of required subtasks, which are in turn worked on by a 
team of agents. RFPs are often found in business-to-business environments, where 
specialized expertise providers can focus on different aspects of complex problems in 
a market environment. Furthermore, the combination of RFPs with peer-to-peer level 
services such as the Amazon Mechanical Turk [2] suggest markets on a far larger 
scale, where both businesses and individuals submit RFPs for almost every type of 
problem imaginable. 

Work by Kraus et al. in the RFP domain focused on static problems, where a prob-
lem’s required subtasks did not change once the problem was submitted [12]. How-
ever, incomplete information and bounded rationality may contribute to a faulty initial 
perception of a problem’s requirements. Real world problems also involve inherent 
environmental dynamics that may change a problem’s requirements over time. Fur-
thermore, fully autonomous agents in large-scale, open environments such as the 
Internet may operate without enforceable contracts, meaning that sudden defections 
by team members are possible. 
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Accordingly, recent work in the field has focused on dynamic RFP environments, 
where subtasks are added and subtracted from the set of problem requirements as the 
problem is being worked on [9]. Specifically, algorithms have been proposed to select 
problems (jobs), teams, and task assignments so that sudden changes, such as added 
task requirements or team defections, could be adapted to. For example, by maximiz-
ing the number of auxiliary skills found in a team, agents on the team may better cope 
with the addition of new subtasks. 

However, this prior work did not adequately explore how job selection and team 
selection decisions influence each other. For example, based purely on expected earn-
ings an agent might greedily select a job requiring skills that no potential partners 
possess. Alternatively, a job that may initially appear unattractive may be decom-
posable in a way that fits perfectly with the skill set of available partners.  

This paper therefore presents a mechanism for combining job selection and team 
selection heuristics for agents operating in a large-scale, unpredictably dynamic envi-
ronment. Particularly, the paper conducts an experimental analysis that compares an 
earlier mechanism found in [9], where job selection and team selection heuristics 
were used separately, to a new protocol where job and team selection heuristics are 
used in combination. The analysis is conducted in the context of a large-scale agent 
simulation (1000 agents) and examines multiple metrics of agent performance across 
a range of agent heuristics and levels of environmental dynamicism. 

This paper is organized as follows. In section two, it discusses related work in the 
multi-agent systems community. In section three, it presents a new mechanism for com-
bining job and team selection heuristics, and compares this mechanism to an earlier 
mechanism for selecting jobs and teams separately. In section four, it describes the setup 
and parameters of a simulation to test the relative utility of the proposed selection 
mechanisms. In section five it discloses the results of the simulation, and analyzes those 
results. Finally, section six suggests several ideas to expand upon those strategies. 

2   Related Work 

Coalition formation has been studied both inside and outside of the multi-agent systems 
community for some time. Some research has focused on the formation of optimal coa-
litions by a centralized authority, [19] while other research has focused on the formation 
of coalitions to solve jobs by a hierarchical structure of agents [1], or the formation of 
institutions through assumption-based argumentation mechanisms [5]. Still further re-
search has been focused coalition formation between selfless agents in a dynamic [15] 
or open environment, [20] or between agents willing to delegate their autonomy to a 
centralized controller or consensus decisions among groups of agents [14].  

However, such research has limited applicability to decentralized selfish agents, 
which may be unwilling or unable to take direction from a centralized authority. 
Other work has therefore examined selfish agents operating in various environments. 
Research has focused on building coalitions of agents who lack a common view of a 
coalition’s value, [7] as well as coalitions developed between rationally-bounded 
agents, [18] or agents who lack full knowledge about the abilities of potential partner 
agents [19]. Others have examined the interaction between agents in market environ-
ments [23]. Such research frequently focuses on relatively small groups of agents, 
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although still other research has focused on the use of congregations, [3] adaptive 
social networks, [6] and even physics-motivated mechanisms to allow large groups of 
agents to form large, mutually beneficial coalitions [13]. It should be noted, however, 
that such work is frequently focused on only one possible task at a time, or does not 
occur in dynamic, unpredictable environments.  

In contrast, Klusch and Gerber focus on the formation of coalitions of agents to work 
on multiple possible tasks in dynamic environments, by utilizing a simulation-based 
scheme to determine the utility of various potential coalitions in a given state of a 
dynamic environment [11]. This work allows for complex negotiations between the 
different potential partners of a coalition, and takes risk vs. reward considerations into 
account when considering different potential coalitions. However, it differs substantially 
from the work below in that the coalitions formed are not adaptive once formed, nor are 
jobs selected based on the potential teams available to solve a given job. 

Oren et al. have recently proposed an argumentation-based mechanism for allow-
ing agents to minimize the number of norms they violate as changing circum-stances 
demand [16]. Such work may be very useful in shaping long term agent behavior, as 
agents that follow norms are rewarded and those that violate norms are punished or 
ostracized, but norms have limited usefulness in improving the robustness of a one-
shot team, since agents who defect from the team may never be encountered again, 
and thus face no penalty for their defection.  

Tambe et al.’s work is likewise relevant, wherein selfish agents are collected into a 
team by an initial authority, often a human programmer. The agents may then be 
delegated by software algorithms into roles which pursue various sub-goals critical to 
the overall mission [22]. As will be shown in further detail below, the strategies de-
scribed in this paper build on this research by allowing agents to form adaptive teams 
without the need for an initial organizing authority.  

In addition, Soh and Tsatsoulis have focused on the possibility of hastily-formed 
coalitions in response to new problems or events [21]. This research forms the basis 
for one of our heuristics for job selection, as will be described in further detail below. 

3   Job and Team Selection 

This paper introduces a new mechanism for combining job selection and team selec-
tion heuristics, which operates using the same general experimental model and agent 
protocol as [9]. More specifically, section 3.1 below reviews the formal model for 
agents and jobs, while section 3.2 discusses a new mechanism named Combined 
Job/Team selection (CJT) for selecting potential jobs and teams, as well as how CJT 
compares to a previous job and team selection mechanism, referred to here as Sepa-
rate Job/Team selection (SJT). Section 3.3 reviews specific job and team selection 
heuristics used by both the old and new selection mechanisms. 

3.1   Agents and Jobs 

Consider a set of general tasks T = {Ti}, where 1 ≤ i ≤ α. Each general task Ti repre-
sents a type of job that an agent might carry out: if T is limited to tasks involved in 
building construction, for example, T1 might be building a driveway, while T2 might 
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be constructing a roof, and so on. Each general task Ti is therefore a set of task in-
stances {Tij}, where each Tij is a specific instance of general task Ti associated with a 
job Jj, and where each job Jj is part of a set of jobs J = {Jj}, where 1 ≤ j ≤ β. For ex-
ample, if T represents the set of all tasks associated with building a building, and if J 
is the set of all buildings under construction, then T11 might be building a driveway at 
a first building under construction, T12 might be building a driveway at a second 
building under construction, T21 is constructing a roof at the first building, and so on. 

Each job Jj in set J contains a potential task instance Tij of every possible task Ti in 
T, but only a subset of these tasks need to be completed to finish the job. Again, re-
turning to the building example, every building in existence could conceivably have a 
swimming pool, or a loading dock, or a conference room, but in practice factories and 
offices rarely have swimming pools, and houses rarely have loading docks. Accord-
ingly, within each job Jj, task instances Tij are separated into a set of active task in-
stances ActiveTasksj, all of which must be completed for the job to be finished, and a 
set of inactive task instances InactiveTasksj, which are irrelevant to the job’s comple-
tion status. For any job Jj, ActiveTasksj ∪ InactiveTasksj  = {Tij} for all i, and Active-
Tasksj ∩ InactiveTasksj = ∅.  

 
Skills, Credit and Dynamic Jobs. Continuing on, a set of skills S = {Si} and a set of 
self-interested agents A = {Ak} are introduced, where once again 1 ≤ i ≤ α and 1 ≤ k ≤ 
χ. Each skill Si is associated with a general task Ti, and may be used to work on and 
eventually complete any task instance Tij in Ti. Furthermore, each agent Ak has an 
associated set of skills AgentSkillsk that Ak is capable of doing, where AgentSkillsk is a 
subset of S. Each agent Ak has the same number of skills, and each skill in S equally 
common among agents in A. 

Agents use associated skills to complete tasks associated with various jobs, and earn 
credit by completing all active tasks in a given job. More specifically, each task instance 
Tij has an associated TaskLengthij, where 1 ≤ TaskLengthij ≤ γ. To complete task in-
stance Tij, an agent Ak must use an appropriate skill Si on the task instance for Task-
Lengthij timesteps. Accordingly, function C(Tij) is defined as a value ranging from 0 to 
TaskLengthij, and represents the amount of time that one or more agents have worked 
on Tij. Different tasks are worth the same amount of credit, but agents earn rewards 
proportional to the TaskLengthij of any task instance Tij they have finished. For exam-
ple, an agent that completes a task over five timesteps earns five credit points, while an 
agent that completes a task over eight timesteps earns eight credit points. 

To simulate the end results of uncertain information, bounded agent rationality and 
dynamic, unpredictable environments, jobs in J are dynamic and unpredictable. More 
particularly, task instances Tij in Ji are randomly moved between ActiveTasksi and 
InactiveTasksi on a periodic basis. This may be best understood as a sudden change to 
a job’s solution requirements. For example, despite the best efforts of project man-
agement and requirements engineering, software development projects frequently 
change their required functionality in the middle of development, making some al-
ready-completed portions of the project obsolete and requiring new modules to be 
built from scratch. Similarly, task instances Tij which are moved from InactiveTasksj 
to ActiveTasksj must be done from scratch, while only active task instances which 
have been fully completed are immune from being moved to InactiveTasksj. (Admit-
tedly, it is not unheard-of for fully-completed portions of many different types of 
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projects to be discarded, but it is also reasonable to argue that work which has been 
fully completed is often used in some way, somehow, whereas partially completed 
work is often abandoned entirely.) Note that the number and types of tasks that must 
be completed for an individual job to be completed is therefore continually changing. 

3.2   Selection Mechanism 

Agents operating in the environment described above face two primary decisions: 
what jobs to work on, and what agents to partner with. More precisely, freelance 
agents fulfill one of two roles at any given moment, and make different decisions in 
each of these roles. In the first role, an agent takes a proactive “foreman” role and has 
the ability to select both an available job to work on, and a team of agents capable of 
solving the currently active tasks associated with that job. The foreman then attempts 
to assemble a selected team of agents to work on a selected job by sending proposal 
messages to one or more potential partners. Alternatively, in the second role, agents 
act in a reactive “worker” role and must decide whether to accept the proposal offers 
sent out by a foreman agent, or whether to continue with the current job they are 
working on, if any. 

Agents in either role utilize paired job and team selection heuristics, described in 
further detail below, to compare and rank different jobs and potential teams. For ex-
ample, a Greedy job selection heuristic might rank the potential profitability of differ-
ent jobs based on how much credit an agent could earn by completing assigned tasks 
in a job, while a Redundant team selection heuristic might rank the robustness of 
different teams by how many redundant skills each team has to be utilized in case an 
agent defects from a team. 

However, of greater interest in this paper is the mechanism by which heuristic in-
formation is utilized to select jobs and teams. More precisely, the newly proposed job 
and team selection mechanism CJT uses the product of a normalized job and a nor-
malized team selection heuristic for almost every selection decision, as opposed to the 
earlier SJT mechanism from [9], which used only one heuristic at a time. 

 

CJT Mechanism. Agents acting in the foreman role initially look at all jobs in J that 
are not currently being worked on by another team. (As a simplifying assumption, 
both jobs and agent skills are globally accessible data.) Under CJT, the foreman util-
izes a job selection heuristic to select δ available, top-ranked jobs from J, thereby 
creating set P = {Jw}, where 1 ≤ w ≤ δ. For each Jw in P, each foreman agent then 
generates ε agent teams capable of solving Jw. More specifically, these agent teams 
each include the foreman agent which generated the team, and one or more other 
agents Ak, such that the combined skills of all the agents in the team are capable of 
completing the task instances in ActiveTasksw of associated job Jw. These teams thus 
form a set of teams Q = {Teamx}, where 1 ≤ x ≤ δε. Furthermore, each agent Ak in a 
Teamx is associated with AssignedInstanceskw, which, after a team has been formed, 
represents the set of task instances Tiw that each agent Ak in the team is assigned to 
complete in job Jw. Teams are currently assembled via a semi-random approach that 
seeks to satisfy the various solution requirements one at a time, but nearly any con-
straint satisfaction solver could also be used.  



38 C.L.D. Jones and K. Suzanne Barber 

Under the CJT mechanism, once Q is generated each foreman agent uses a selec-
tion heuristic R to rank each team in Q, where R is the product of a normalized job 
selection heuristic and team selection heuristic. R accordingly contains information 
about both the value of Jw to the foreman agent, via the job selection heuristic, and the 
potential robustness of Teamx, via the team selection heuristic.  

Likewise, an agent acting in the worker role under CJT uses R to decide between in-
coming proposals and the job and team it is currently part of, if any. Note that, since 
teams must successfully adapt to sudden changes in ActiveTasks and team composition 
to earn credit, as will be described in further detail below, a job/team selection mecha-
nism such as CJT that takes both potential job profit and team robustness into account is 
hypothesized to provide a significant improvement in credit earned by an agent. 

 

SJT Mechanism. In comparison, SJT the selection mechanism described in [9] utilizes 
only one heuristic at a time. For example, like CJT, a foreman agent using SJT uses a 
job selection heuristic to rank top-ranked jobs from J. However, unlike CJT, SJT selects 
only the one or more jobs that “tie” for the top ranking, according to the job selection 
heuristic, meaning that size of the generated set P is at most δ, and often less. Set Q is 
again created by generating ε teams for each job in P. These teams are then ranked only 
by a team selection heuristic, and the foreman agent selects the top rank team to propose 
to other agents. Note that because each job in P is tied according to the job selection 
heuristic, the potential profitability of all jobs in Q is the same, and only the structure of 
the team distinguishes job/team pairings. However, because SJT does not consider 
slightly lower-ranked jobs, it may not consider job/team pairings where the lower rank-
ing value of the job is offset by the increased adaptability of the team. 

Furthermore, worker agents under SJT use only a job selection heuristic to decide 
between new proposals and their current job/team assignments. Agents using SJT 
may therefore overlook job/team pairings where increased team adaptability offsets 
lower potential job profit. In contrast, because CJT considers both job and team heu-
ristics, a worker agent is likely to leave its current assignment only if the new 
job/team pairing shows a significant increase in R. 

3.3   Selection Heuristics 

As described above, agents utilize job and team selection heuristics to select jobs to 
work on and teams to work with. Each agent is associated with one job selection heu-
ristic and one team selection heuristic, which are used by the selection mechanisms 
described above. More particularly, job and team selection heuristics are normalized, 
so that each heuristic produces a value between 0 and 1 which describes how desir-
able that job or team is, with 0 being completely undesirable and 1 being completely 
desirable. Job heuristics attempt to maximize agent profit by selecting attractive jobs, 
while team heuristics attempt to select teams that are structured to handle sudden 
changes in the environment or inside the team itself. 

The first job selection heuristic is the pre-normalized Greedy heuristic (Eqn. 1) that 
maximizes the expected reward from a job Jj. While a naive heuristic would simply 
choose jobs that require the greatest amount of work (and thus the greatest amount of 
associated reward), the Greedy heuristic takes the dynamicism of the environment 
into account by giving double weight to portions of a task that have already been 
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completed, thereby giving preferential treatment to large jobs that are less likely to 
undergo changes before the job is complete. The heuristic is normalized by dividing 
an agent’s potential profit by the number of skills per agent times the maximum 
length of each task, which represents the maximum theoretical profit an agent could 
earn from a job. 

         max
J j ∈J

(TaskLengthij +C(Tij ))
Tij ∈AssignedInstanceskj

∑                   (1) 

The second job selection heuristic is the normalized Lean heuristic (Eqn. 2) that 
minimizes the amount of work needed to complete a job, thereby letting agents oppor-
tunistically form teams to quickly solve simpler problems, similar to [21].  

        
1

min
J j ∈J

(TaskLengthij − C(Tij ))
Tij ∈AssignedInstanceskj

∑
               (2) 

Note that these mechanisms stand in contrast to previous work in task selection 
under uncertain conditions, such as Hannah and Mouaddib [8], where a problem’s 
uncertain elements are explicitly modeled probabilities. Instead, the heuristics de-
scribed here operate under any level of uncertainty, from any source. However, future 
work is possible where the above heuristics are adaptive based on a known or sus-
pected level of uncertainty in the environment, or in a specific problem. 

The first team selection heuristic is a Null heuristic that does not rank the teams, 
but rather keeps teams ordered according to how the strategy’s job selection heuristic 
ranked the jobs associated with each team. This effectively eliminates the team selec-
tion heuristic from both selection mechanisms.  

The second team selection heuristic is the normalized Fast heuristic (Eqn. 3) that 
minimizes the maximum amount of work that any member of a Teamx needs to com-
plete. Alternatively, the Fast heuristic could be said to minimize the amount of time 
needed before the entire team has completed work on associated job Jw.  

1

minx max
Ak ∈Teamx

(TaskLengthiw − C(Tiw ))
Tiw ∈AssignedInstanceskw

 

 
 
 

 

 
 
 
 

(3) 

The third team selection heuristic is the normalized Redundant heuristic (Eqn. 4) that 
seeks to maximize the number of redundant skills in Teamx. In other words, the Redun-
dant heuristic prefers teams with multiple agents capable of working on active task in-
stances, thereby increasing the ability of a team to deal with the defection of an agent. 

maxx

1 < Tiw ∩ AgentSkillsk

Ak ∈Teamx

,  1

Otherwise,                          0

 
 
 

  Tiw ∈ActiveTasksw

ActiveTasksw

 

 

(4) 
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The fourth team selection heuristic is the normalized Auxiliary heuristic that seeks 
to maximize the number of auxiliary skills in Teamx. In other words, the Auxiliary 
heuristic (Eqn. 5) tries to maximize the combined skills of a team that are not imme-
diately applicable to task instances in ActiveTasksw, thereby increasing the ability of 
the team to deal with newly added task instances.  

 
maxx

InactiveTasksw ∩ AgentSkillsk
Ak ∈Teamx

U

InactiveTasksw

             (5) 

Note that, intuitively, the Fast, Redundant, and Auxiliary heuristics each prefer a 
greater number of partners in a team, since this increases the amount of work that can 
be done in parallel and the number of unused skills for each partner. Alternatively, the 
normalized MinPartner heuristic (Eqn. 6) prefers teams with the smallest number of 
partners, thereby implicitly using a greater number of skills per partner and thus a 
greater amount of potential profit per partner.  

1
min TeamX

                         (6) 

Each of these five team selection heuristics is combined with each of the job selection 
heuristics for experimental comparisons, as described in further detail below. 

4   Experimental Setup 

To evaluate the relative utility of CJT and SJT, both mechanisms are tested in a simu-
lation environment wherein agents compete to form teams and solve jobs according to 
the described strategies. More particularly, the experimental setup described below 
was executed twice, once for CJT and once for SJT. Agent performance under each 
mechanism was evaluated under multiple metrics described below, with statistical 
methods used to detect significant differences. 

Agents in set A were divided into ten different classes, each of which contains an 
identical number of agents, and each of which implements a different team formation 
strategy consisting of a paired job and team selection heuristic. By assigning agents 
credit for each task instance completed, the relative utility of each strategy may be 
determined by comparing the average amount of credit earned by each class of agents. 
Furthermore, by varying the rate of change of the solution requirements for different 
jobs (“dynamicism”), the relative performance of these strategies in a dynamic envi-
ronment can be determined. 

Agents in set A operate in a simulation environment that is divided into discrete 
timesteps, or rounds. During each round, each agent may coordinate with other agents in 
A to form teams, or, if it is part of a team, may work on a task instance associated with a 
specific job in J. Each agent in A can belong to, at most, one team at a time, and each 
team works on only one job at a time. This is arguably a simplistic assumption, since real 
world providers of valuable skills or expertise frequently multitask between different 
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projects at the same time. However, many problem solutions require complete focus from 
the workers involved, or security or other constraints may require exclusivity. Further-
more, requiring each agent to be part of only one team at a time allows us to clearly de-
lineate where an agent is making a contribution. Determining to what degree an agent’s 
partial efforts require task reassignments touches on complex multidimensional trust 
issues [7], and as such is too complex to be addressed here. 

During each round, an agent Ak may work on a job Jj by utilizing a skill Si found in 
AgentSkillsk to work on a task instance Tij found in set ActiveTasksj. Each agent util-
izes only one skill in any given round. After Ak has worked on Tij for a given number 
of rounds, Tij is completed.  
 

Credit. Credit is distributed to agents when a job Jj is completed, which, in turn, occurs 
when all task instances in ActiveTasksj are completed. Upon job completion, credit 
points for each active, completed task are given to the agent which completed the task. 
As described above, these credit points are proportional to the length of the completed 
task (e.g. a completed task of length five would give five credit points). No credit is 
given for work on task instances that were moved to InactiveTasksj before completion, 
or to agents who worked on, but did not finish, a completed task instance. Accordingly, 
agents in the simulation may be said to work in a “pay-for-play” environment, where 
credit is distributed directly to those who have fully completed a given job.  

Once a job Ji has been completed and paid out its credit, it is removed from J and a 
new Jj is created and inserted in J. Each new Jj starts with the same number of task in-
stances randomly placed in ActiveTasksj, and task instance in the new job must be com-
pleted from scratch.  

As described above, the simulation incorporates unpredictability by shuffling task in-
stances between ActiveTasksj and InactiveTasksj. More particularly, each round a given 
percentage of jobs in J are randomly selected to be shuffled. This percentage is referred to 
as the dynamicism of the simulation. Each task instance in each selected job Jj has a ran-
dom chance of being selected for shuffling between ActiveTasksj and InactiveTasksi, such 
that, on average, one task instance per selected job is shuffled. However, as described 
above, task instances that have been fully completed cannot be moved from ActiveTasksj. 

4.1   Team Formation 

As described above, teams are formed by a foreman agent. The opportunity to act as a 
foreman agent is randomly distributed among agents, such that any given round of the 
simulation a given percentage of agents will have the opportunity to form teams. 
Once the foreman agent has used its associated team formation strategy to select a 
potential team Teamx and job Jw, the foreman claims the job so that no other foreman 
can work on it and sends proposal messages to potential partners in Teamx indicating 
the AssignedInstanceskw that a potential partner would work on. Note that, to encour-
age agents to form teams, |AgentSkillsk| is constant for all k, and the initial value of 
|ActiveTasksi| > |AgentSkillsk|. 

When these proposal messages are received, each agent ranks the AssignedInstanceskw 
it is currently working on (if any) against one or more proposed AssignedInstanceskw 
using the SJT or CJT mechanisms described above. If the agent finds that its current 
assigned tasks are preferable to any of the proposals, it continues working on its current 
job, and the lack of a response is taken as a decline message by the foreman which sent 



42 C.L.D. Jones and K. Suzanne Barber 

the proposal. If the agent receives a proposal it finds more attractive than its current job 
assignment, the agent returns an accept message to the foreman which sent the proposal.  

Accordingly, it is noted that agents may stop work on their current assignments at any 
time upon receiving a more attractive proposal (or, if they become a foreman agents, upon 
finding a more attractive job to work on). This obviously runs counter to a significant 
amount of existing work in contract negotiation and breaking contracts, wherein contracts 
are unbreakable or explicit penalties are calculated beforehand. [4]. However, such work 
usually assumes some viable mechanism for contract enforcement. In contrast, the scheme 
described here better simulates many environments where contracts are largely nonexis-
tent or unenforceable (i.e. informal task forces and many Internet transactions). This lack 
of commitment between agents, combined with the dynamicism and unpredict-ability of 
jobs within the simulation, also makes it desirable for agents to assemble teams that can 
survive agent defections and changes in the task instances required to finish the job.  

If the foreman does not receive accept messages back from all potential partners 
within one time step, the team formation process has failed and the foreman, as well as 
the agents which accepted the team proposal, must wait for new team proposals or for 
their next chance to be a foreman. Claimed job Jw is freed so other agent can work on it. 

Once agents have successfully formed Teamx, they begin to work on the task instances 
associated with Jw. Non-foreman agents may work on Jw until they have completed all 
task instances in AssignedInstanceskw. In contrast, the foreman agent may stay with Jw 
until the job is complete, even if the foreman has completed its assigned tasks. While Jw 
is incomplete, if a non-foreman agent defects from the job, or a new task instance is 
moved into ActiveTasksw set, the foreman is responsible for finding an agent to work on 
the new or abandoned task instance. The foreman may therefore assign the new task 
instance to the AssignedInstanceskw set of itself or a partner agent, in a manner similar to 
the team reformation strategies in [22]. If no team member has the skill required to han-
dle the new task, the team has failed and dissolves with the job uncompleted. A new team 
which later tries to claim the job must begin the job from scratch. It therefore follows that 
teams must handle defections and new task instances to be successful. 

Experiments were conducted using the basic parameters in Table 1, which were se-
lected to broadly model a moderately large problem-solving market. The experiments 
 

Table 1. Experimental parameters 

Parameter Value 
Number of classes 10 
Agents per class 250 
Per round chance of agent acting as foreman 1% 
Jobs 1000 
|T| 20 
|AgentSkills| 5 
Initial size of |ActiveTasks| 10 
Range of TaskLength 1 to 10 rounds 
Credit received per round of completed task instance 1 
Number of potential teams examined per top-rank 
job 

15 

Dynamicism range 0% to 100%, 25% increment 
Number of rounds per simulation 2500 
Number of simulations per dynamicism step 20 
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tested all strategies against each other simultaneously to better understand their rela-
tive performance in a field of heterogeneous agents. Furthermore, agents were as-
signed randomly to each class with a flat distribution to ensure that the results were 
not specific to a precisely equal distribution of agents.  

5   Results and Discussion 

Figure 1 displays the credit earned by the various classes of agents as both foremen 
and workers as the level of dynamicism and the job/team selection mechanism are 
 
 

 
Fig. 1. Comparison of foreman and worker credit earned by dynamicism, strategy, and selec-
tion mechanism 
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Fig. 2. Comparison of job completion rates by dynamicism, strategy, and selection mechanism 

varied. As can be seen from the graphs, the credit earned by foremen agents utilizing 
the Combined Job and Team (CJT) selection mechanism equaled or exceed the credit 
earned by foremen agents utilizing Separate Job and Team (SJT) selection in most 
cases. More precisely, a pair-wise t-test comparison (alpha = .05 for all statistical 
comparisons) of credit earned by agents using the old and new job selection mecha-
nisms shows that in all cases, the credit earned by the foremen agents using CJT sig-
nificantly exceeded or statistically tied credit earned by agents utilizing SJT. 

Furthermore, broadly speaking, agents utilizing the Lean job selection heuristic 
benefited more from the use of CJT than did agents utilizing the Greedy job selection 
heuristic; all Lean agent classes at 0%, 25% and 50% dynamicism earned signifi-
cantly more with CJT than with SJT. This may be due to a “halo” effect that has less 
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to do with the foreman’s decisions made using CJT, and more do to with the decisions 
of worker partner agents made using CJT, since worker agents would be less likely to 
leave a robust team for a job that could be completed more quickly.  

A stronger trend can be seen in the earnings of worker agents utilizing CJT. As can 
be clearly seen from the graphs in Figure 1, all worker agents earned more with CJT. 
Furthermore, t-test comparisons indicate that all agent classes at all dynamicism 
levels earned significantly more using CJT than SJT. Again, this makes sense if we 
consider a potential halo effect, where the combined use of job and team selection 
heuristics may make agents less likely to immediately abandon one team for another, 
based purely on a difference in the job rankings. 

More support for this idea may be found in Figure 2, which shows the job comple-
tion success rate of agent teams after formation. As with Figure 1, a clear trend can be 
seen wherein agent classes using CJT complete a greater or equal percentage of jobs 
than agent classes using SJT. 

T-test comparisons between success rates for CJT and SJT show that, for all data 
points, agent classes using CJT either statistically tied or significantly improved on 
the success rate of agents using SJT. It is noted that, because the job completion suc-
cess rate depends directly in part on the proclivity of partner agents to stay with a 
formed team, an improvement in the job success rate is strongly indicative that part-
ner agents are less likely to leave a formed team when using a combination of job and 
team selection heuristics. 

It is also noted that, while variations in the amount of credit earned by different 
agent classes may depend largely on various protocol assumptions (e.g. how much 
credit an agent earns for completing a task abandoned by another agent) the success  
rate of a formed team is a direct measure of how successful various agent classes are 
at forming teams which can successfully adapt to sudden changes job requirements 
and team formation. Furthermore, agents using CJT maintained a consistent advan-
tage, even as dynamicism increased to very high levels (at 100% dynamicism, each 
job, on average, added or dropped one subtask per timestep). 

Finally, statistical comparisons of the total number of jobs completed and credit 
earned by all agents at all dynamicism levels shows that agents utilizing CJT invaria-
bly completed significantly more jobs and earned significantly more credit than 
agents using SJT. 

6   Conclusions and Future Work 

This paper presented a novel mechanism for combining job selection and team 
selection heuristics for agents operating in a large-scale, unpredictably dynamic envi-
ronment. This mechanism allowed agents to decide between potential job/team com-
binations when acting in a “foreman” role, and to better weigh new job offers against 
current assignments when acting in a “worker” role by utilizing the product of nor-
malized job and team selection heuristics. In comparison, earlier selection mecha-
nisms used job and team selection heuristics in isolation. 

The paper then conducted an experimental comparison of different classes of 
agents utilizing the new job/team selection mechanism with agents using the old 
job/team selection mechanism while varying environmental dynamicism. Results 
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indicated that the new mechanism equaled or significantly improved the performance 
of agents in both the worker and foreman roles, both in terms of credit earned and in 
terms of percentage of jobs successfully completed. 

This paper therefore proved that a job/team selection mechanism which takes both 
job and team selection heuristics into account when making decisions improves 
mechanisms which make these decisions in isolation. This new mechanism works for 
agents in a large-scale environment (>1000 agents) and allows agents to successfully 
complete jobs even in highly dynamic and unpredictable circumstances. 

A number of possible avenues of investigation suggest themselves, the most obvi-
ous of which is to further investigate if other mechanisms for combining job and team 
selection heuristics would improve agent performance even further. For example, 
heuristics could be combined with either a static or dynamic weighting. Other poten-
tial work includes a deeper theoretical investigation of how specific job and team 
selections interact with each other. Finally, the experimental environment could be 
broadened to give different tasks different reward values, or take different and/or 
changeable quality of service from different agents into account. 
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Abstract. In open societies such as multi-agent systems, it is important
that coordination among the several actors is achieved efficiently. One
economical way of capturing that aspiration is consensus: social conven-
tions and lexicons are good examples of coordinating systems, where uni-
formity promotes shared expectations of behavior and shared meanings.
We are particularly interested in consensus that is achieved without any
central control or ruling, through decentralized mechanisms that prove
to be effective, efficient, and robust. The nature of interactions and also
the nature of society configurations may promote or inhibit consensual
emergence. Traditionally, preference to adopt the most seen choices (the
majority option) has dominated the emergence convention research in
multi-agents, being analyzed along different social topologies.

Recently, we have introduced a different type of interaction, based on
force, where force is not defined a priori but evolves dynamically. We
compare the Majority class of choice update against Force based inter-
actions, along three dimensions: types of encounters, rules of interaction
and network topologies. Our experiments show that interactions based
on Force are significantly more efficient (fewer encounters) for group de-
cision making.

Keywords: Convention emergence, collective decision making, consen-
sus, coordination, strategy update rules.

1 Introduction

Shoham and Tennenholtz [14] have argued that in multi-agent systems agents
have to agree on common rules to decrease the number of conflicts and pro-
mote cooperative behavior. These rules take the form of conventions that the
agents share to favor coordination. One path of research has been developed
around the idea of on-line convention design where an agreement can emerge
from within a population of autonomous agents by using only local available in-
formation. “The key problem is to design a strategy update function, representing
an agent’s decision making process, that when used by every agent in the soci-
ety, will bring the society to a global agreement as efficiently as possible” [22].
For example, language demands agreement and convention and there has been
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significant research on the emergence of a common language inside multi-agent
systems [6, 17, 10]. The emergence of conventions can be considered an example
of Multi-Agreement Problems [9].

We are going to consider only competition between potential conventions of
equal intrinsic value. Essentially, the problem can be stated as follows. A group
of homogeneous agents has to decide to adopt a behavioral strategy out of a
given set. There are no good reasons to prefer one strategy over the other,
the individual decision, and even the collective selection are arbitrary. What is
important is that everyone adopts the same strategy. We can think of examples
such as the direction in which traffic flows: it is quite unimportant whether it
is right or left, as long as everyone uses the same lane. Other authors have
studied convention emergence considering situations where there are strategies
of different intrinsic values [6, 12, 13].

In dynamical systems this problem proves intractable to solve beforehand or
in a centralized fashion [16], so efforts have been concentrated in developing
emergent co-learning processes that allow consensus to be achieved among all
the agents (actually, usually only 90% of consensus defines convergence, to allow
for isolated agents to exist without any mind-changing interactions).

Agents have a chance to change their convention when they interact with other
agents, in a decentralized and locally confined manner. Shoham and Tennenholtz
[15,16] have studied the efficiency of convergence in these conditions, and selected
the highest cumulative reward (HCR) as the most efficient individual update
rule.

In the initial research on convention emergence [14, 15, 16], there were no re-
strictions on interactions; any agent could interact by chance with any other
individual. Kittock [7] introduced interaction graphs in order to specify restric-
tions on interactions and experimented with the HCR update rule over different
interaction graphs. Based on his experiments with regular and fully connected
graphs, he conjectured that efficiency depends on the diameter of the graph.
Regarding the number of interactions needed to accomplish consensus, Kittock
observed a variation with the number of agents of O(N3) for regular graphs and
O(NlogN) for fully connected ones.

However, regular graphs are not very realistic. “If we pay attention to real
networks, we find out that most of them have a very particular topology, they are
complex networks. (. . . ) Complex networks are well characterized by some special
properties, such as the connectivity distribution (either exponential or power-
law) or the small-world property” [4]. Delgado et al [4, 5] have experimented
with HCR update rule for fully connected, regular, scale-free and small-world
graphs and their results were consistent with Kittock’s, confirming the relation
between efficiency and graph diameter. Delgado observed also that scale-free and
small-world networks were as efficient as fully connected ones, but small-world
networks were slower to converge to a unique choice.

In all of the above mentioned experiments, agents only interact through a
succession of pair-wise encounters, i.e, they apply their strategy update rule after
meeting one agent, randomly chosen inside the group of its “neighbors”. Walker
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and Wooldridge [22] introduced the deterministic Simple Majority (SM) strategy
update rule, adapted to simultaneous encounters, where each agent has access to
the strategies of all its neighbors before strategy update. Delgado [4] introduced
a stochastic variation to SM, named the Generalized Simple Majority (GSM).

In [21] a new rule for strategy update was introduced, named Recruitment
based on Force with Reinforcement (RFR). This rule showed faster convergence
than HCR in the case of fully connected networks. In RFR, agents have different
power to influence others, but their force is not defined a priori in a hierarchical
network as in [8], rather it evolves dynamically as a result of interactions. Agents
submit to stronger agents, copying their strategies, but also inheriting their force,
in a double mimetic process where there is also a reinforcement process whenever
two agents with the same strategy meet. Force reflects the agents’ perception
of their strategy diffusion in the population, through their experience and the
experiences of the agents they have interacted with. Experience (strategy +
force) is transferred between agents by mimicry. We have applied RFR to the
coordination of artificial agents for the generation of swarm paintings [19]. In
another work, where we considered the co-existence of several concomitant social
networks, and mechanisms permitting permeability (some kind of information
transfer) among the contexts in different networks, convergence is not always
guaranteed. But RFR has allowed for a more frequent and quicker convergence
that were not possible in some of the hardest cases (networks types in which
convergence occurs fewer times) [2, 3].

In [20] we compared Recruitment based on Force against HCR for different
topology graphs and RFR proved to be more efficient for Fully connected, Small-
world, Scale-free, Regular and Random networks.

In the present paper, we advance research on the emergent collective adop-
tion of a common strategy. We expand and summarize our results concerning
RFR versus HCR/EM, and introduce a new behavior called Recruitment of the
Strongest with Reinforcement, adapted to simultaneous encounters.

This paper is organized as follows: in the next section we describe the differ-
ent network topologies used in the experiments. Then we introduce two strategy
update rules (one based on force, and the other on majority) for pair-wise encoun-
ters and compare them across the different social graphs. Then we continue by
describing strategy update rules (one based on force, and the other on majority)
for simultaneous interactions, which are compared. Finally we conclude pointing
some future directions. Since this works extends previous work presented in [20]
it is unavoidable to describe the results of that research here.

All experiments were conducted using the most recent version of the Netlogo
platform [25], version 4.0.2, released in December 2007.

2 Interaction Graph Topologies

An interaction graph is a general way of modeling restrictions on interactions.
Restrictions could be due to spatial barriers, communicating links, different
castes, social groups, etc. We have experimented with five network topologies:
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fully connected, regular, scale-free, small-world and random. These topologies
cover a wide spectrum of values regarding three important network properties:
average path length, network diameter and clustering coefficient.

The average path length is calculated by finding the shortest path between all
pairs of nodes, adding them up, and then dividing by the total number of pairs.
This indicates, on average, the number of steps it takes to get from one member
of the network to another. The diameter of a graph is the longest shortest-path
between nodes. The clustering coefficient is a measure of “all-my-friends-know-
each-other” property. When it is high, we may say: “the friends of my friends
are my friends.” The clustering coefficient of a node is the ratio of existing links
connecting a node’s neighbors to each other to the maximum possible number
of such links. The clustering coefficient for the entire network is the average of
the clustering coefficients of all the nodes.

2.1 Regular Graphs

By definition, a graph is considered regular when every node has the same num-
ber of neighbors. We are going to use a special kind of regular graph, explored
in [7] and named Contract Net with Communication Radius K in [18]. CN,K is
the graph (regular ring lattice) on N nodes such that node i is adjacent to nodes
(i + j) mod N and (i− j) mod N for 1 ≤ j ≤ K. In a CN,K graph, every node
has connectivity 2 ∗ K. These are highly clustered graphs but have very long
path lengths (average path length and diameter grow linearly with the number
of nodes).

2.2 Fully Connected Graphs

In this type of graph topology, named KN , there are no restrictions on the
pattern of interactions: each agent is connected to every other agent in the
society. This means that an agent can potentially interact with any other agent.
KN is a special case of a regular graph where each agent has N − 1 neighbors,
in a group of N agents.

2.3 Random Graphs

RN,K are random graphs with N nodes and average connectivity of K. Every
node, has on average, K neighbors chosen randomly. The clustering coefficient of
RN,K tends to 0 and the average path length is small and grows logarithmically
with N .

2.4 Scale-Free Graphs

This network type, SN,γ has a large number of nodes connected only to a few
nodes and a small number of well-connected nodes called hubs. The power law
distribution highly influences the network topology. It turns out that major hubs
are closely followed by smaller ones. These ones, in turn, are followed by other
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nodes with an even smaller degree, and so on. As the network changes in size, the
ratio of hubs to the number of nodes in the rest of network remains constant —
this is why it is named scale-free. The connectivity of a scale-free network follows
a power law P (k) ∼ k−γ . Such networks can be found in a surprisingly large
range of real world situations, ranging from the connections between websites to
the collaborations between actors.

To generate the scale-free graphs we have used the Albert and Barabsi ex-
tended model [1], since Delgado argues that it allows some control over the
exponent (γ) of the graph [4]. The inspiration of this algorithm is that of “pref-
erential attachment”, meaning that the most “popular” nodes get most of the
links. The construction algorithm relies on four parameters: m0 (initial number
of nodes), m (number of links added and/or rewired at every step), p (probabil-
ity of adding links), and q (probability of edge rewiring). The algorithm starts
with m0 isolated nodes and at each step performs one of these three actions until
the desired number N of nodes is obtained:

1. with probability p, add m (≤ m0) new links. Pick two nodes randomly. The
starting point of the link is chosen uniformly and the end point of the link
is chosen according to the probability distribution:

Πi =
(ki + 1)∑
j(kj + 1)

where Πi is the probability of selecting the ith node and ki is the number of
edges of node i. This process is repeated m times.

2. with probability q, m edges are rewired. That is, repeat m times: choose
uniformly at random one node i and one link lij . Delete this link and choose
a different node k with probability {Πl}l=1,...,N and add the new link lik.

3. with probability 1−p− q add a new node with m links. These new links will
connect the new node to m other nodes chosen according to {Πl}l=1,...,N .
Using this algorithm, the parameter γ is a function of m and p:

γ =
(2m(1− p) + 1)

m + 1

2.5 Small-World Graphs

The Small World graphs are highly clustered graphs (like regular graphs) with
small average path lengths (like random graphs, described above). To generate
small world graphs we use the Watts-Strogatz model [24, 23]. It depends on
two parameters, connectivity (K) and randomness (P ), given the size of the
graph (N).

This model starts with a CN,K graph and then every link is rewired at random
with probability P , that is, for every link lij we decide whether we change the
“destination” node with probability P ; if this is the case, we choose a new node k
uniformly at random (no self-links allowed) and add the link lik while erasing link
lij . In fact, for P = 0 we have WN = CN,K and for P = 1 we have a completely
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random graph (but not scale-free). For intermediate values of P there is the
“small-world” region, where the graph is highly clustered (which means it is not
random) but with a small characteristic path length (a property shared with
random graphs).

Albert-Barabsi model graphs do not have the small-world property and recip-
rocally the Watts-Strogatz model does not generate scale-free graphs (it gener-
ates an exponential connectivity distribution, not a power law).

3 Strategy Update Rules in Pair-Wise Interactions

Agent societies consist of N agents on a graph, where every agent is located
on a node of the graph. Its adjacent nodes are its neighbors. In order to make
experiments and simulations we have adopted a simple agent model where they
have at their disposal a finite repertoire of strategies. We only deal with the two
strategies case. We use here the concept strategy in a very abstract way: it can
be a social norm, like driving on the left or on the right lane, the meaning of a
word, an orientation for flocking, etc. In order to focus on the essential features of
agent interactions, the agent environment consists solely of other agents, which
in turn depend on the network topology. So, each agent has to adopt one of the
strategies from the repertoire and through mutual interactions they can change
their adopted strategies over time. A consensus, or collective choice, exists when
all the agents are using the same particular strategy.

From the point of view of each agent, there is an interaction scenario of a
sequence of pair-wise asymmetric encounters, where it meets randomly one of
its neighbors. After an encounter, each agent updates its strategy, i.e., it selects
the strategy it will use in the next interaction — the result need not necessar-
ily be a change in strategy adoption. Therefore, agents need strategy update
rules (behaviors). We assume that each agent updates its strategy at each en-
counter. Shoham and Tennenholtz [14, 16] have studied the effects of updating
less frequently on the efficiency of global choice emergence. We only consider
asymmetric encounters, where only one of the agents applies its strategy update
rule, based on the strategies used by all the individuals involved in the inter-
action. Thus, interactions are always considered from the point of view of one
particular agent. We now describe the two strategy update rules whose perfor-
mance we subsequently compare. In the first scenario the agent and its selected
partner strategies are crucial for the update, and in the second case, it is the
simultaneous strategies of its neighbors and its own strategy that influence the
update rule.

3.1 External Majority/Highest Cumulative Reward/Feedback
Positive with Score

The External Majority strategy update rule (EM) was introduced by Shoham
and Tennenholtz [14] and is the following: adopt the strategy that was observed
more often in other agents in the last m interactions, and remain with your
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current strategy otherwise — in case of a draw do not change. In EM, a memory
of size m is used to register the strategies observed during the last m interactions.
An agent updates its memory after observing its partner strategy and then
decides to change to a new strategy only in case it was more frequently observed
than the current one.

In the context of lexical emergence, Kaplan [6] introduced a strategy update
rule called Positive Feedback with Score, which is pretty much the same as EM.
The only difference is that, in case of equality, the agent does not necessarily
remain with its current strategy but chooses randomly one of the previously
most seen strategies. Kaplan considered the full history of encounters for strategy
update.

Probably the most cited strategy update rule is the Highest Cumulative Re-
ward update rule (HCR), which was developed in the context of game theory
by Shoham and Tennenholtz [15]. Intuitively, a game involves a number of play-
ers each of which has available to it a number of strategies. Depending on the
strategies selected by each agent, they each receive a certain payoff. The payoffs
are captured in a payoff matrix.

Thus, returning to the context of this paper, when two agents meet they play
a pure coordination game, which is an instance of the class of coordination games
introduced by Lewis [11]. The pure coordination game is defined by the following
symmetric payoff matrix:

A B
A +1,+1 -1,-1
B -1,-1 +1,+1

Suppose that every player has two available strategies, say A and B. If both
players play A, both players receive a payoff of 1. If they play B they receive a
payoff of 1. When the players do not agree, for example, player 1 plays A and
player 2 plays B, they will both receive a payoff of -1; the remaining situation
is symmetric. The condition on the entries of the payoff matrix makes it clear
that the best action consists in playing the same strategy, i.e., coordinating.

According to the HCR update rule, an agent switches to a new strategy if and
only if the total payoff obtained from that strategy in the latest m interactions
is greater than the payoff obtained from the current strategy in the same last
m interactions. The m parameter may not have limit, implying that the full
history of pair-wise meetings will play a role in the strategy selection process, or
we can implement a forgetting mechanism by limiting m. The agents’ memories
register the payoffs that each strategy has received during the last m encounters.
When an agent receives new feedback it discards its old memory to maintain the
memory at a fixed size.

Shoham and Tenneholtz [16] showed that EM and HCR are equivalent strategy
update rules in the case there is a repertoire of two strategies from which to
select.
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3.2 Recruitment Based on Force with Reinforcement

In this strategy update rule there is a new attribute, besides the strategy, called
force. Thus, agents are characterized by two attributes: strategy and force. Both
attributes can be observed during encounters and are subject to imitation. There
are three main mechanisms incorporated in RFR behavior. During interactions
(1) weaker agents always adopt the strategies of the stronger ones; (2) weaker
agents always adopt the force of the stronger ones, independently of the strate-
gies involved; and (3) there is a positive reinforcement when an agent faces an-
other with the same strategy, which is the amplification mechanism for strategy
diffusion.

During a dialogue (asymmetric), involving two agents, one is the observing
agent and the other is the observed one. The observing agent “fights” metaphor-
ically with its partner, comparing its force with the partner’s force. If the ob-
serving agent is the stronger one, or if they have identical force, it will loose
the fight; otherwise it will be the winner. The winner’s behavior is: (1) if they
have the same current strategy its force is reinforced by 1 unit, otherwise (2) it
does nothing. The loser behavior is: (1) it imitates both strategy and force in
case they have different current strategies, otherwise (2) imitates the force of the
winner agent and increments its force by 1 unit. In summary, stronger agents
recruit weaker agents for their parties, enlarging the influence of their options.
As the recruited agents will be at least as strong as the winners, they will be
better recruiters. The more the strategy is diffused the more it will have stronger
representatives. This is due to the behavior’s reinforcement and imitation com-
ponents. So when a player observes a stronger agent it is recruited, by adopting
the stronger strategy, inheriting its force, i.e., updating the information about
the strategy it is now adopting.

The force attribute can be interpreted not as the strength of an individual
because, being imitated, it is diffused along agents, and it is not private to any
agent, but as the force of the strategy the player is adopting, seen from its local
history of interactions. The force of an individual reflects the diffusion strength
of the strategy adopted and this diffusion strength is transferred and amplified
between individuals. RFR possesses something extra when compared with EM.
In EM, agents just register their partners strategies while in RFR they can
transfer their experiences, exchanging the diffusion strength of their strategies.
The idea of exchanging of experiences was introduced in [14], in the context of
HCR where agents exchange their memories.

At the beginning of an experiment, we have to face a situation of maximal
competition: every agent has the same value of force (0) and each agent adopts
randomly one of two strategies. Their forces and strategies will evolve along with
interactions. Therefore, there is no a priori (off line) power hierarchy. This shows
a clear contrast with the work of Kittock on authority [8], where agents have fixed
different influences on one another’s behavior, modeled by the probability of re-
ceiving feedback during encounters: the more influential agents receive feedback
with some probability, while the less influential agents always receive feedback.
RFR does not try to simulate any natural behavior and it was introduced in [21]
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as the best outcome of experimenting with several strategies involving the idea of
emergence of hierarchies in consensus emergence. We think it is simpler than the
EM as agents do not need to maintain the recent history of encounters in spite
of using force as an extra attribute. It maintains the essential properties of EM,
which is the capability to adapt, locality (an agent relies only is the information
gathered in interactions), and no more cognitive skills than the capability to
imitate.

4 Experiments and Results for the Pair-Wise Strategy
Update Rules

The system starts with half of the agents adopting randomly one of the strategies
(50% possibilities for each). At each step, every agent, in an asynchronous way,
is selected and chosen for asymmetric strategy updating. The order of selected
agents is completely random and changes in each iteration. (In fact, it is the
natural scheduling of Netlogo agents, but we think that the order of agents
for strategy update is not an issue, because strategies are randomly adopted
initially).

We use in this paper the same measure of performance as in [4, 7]: average
number of interactions to a fixed convergence, where convergence means the frac-
tion of agents using the majority strategy. We made 100 runs for each parameter
setting and in each run we have measured the number of encounters until 90%
convergence and calculated the average performance of the different runs.

Our main goal was to compare the performance of the two strategy update
rules: External Majority (EM) and Recruitment based on Force with Reinforce-
ment (RFR). In order to choose the size of memory (parameter m, see 3.1) of
the EM update rule we have conducted many experiments with different types of
networks. The best performances were obtained with m = 3. Both Kittock [7,8]
and Delgado [4, 5] used a memory size of 2 in their convention experiments, but
size 3 EMs out-performed size 2 EMs in our own tests. So we will only present
the comparison between RFR and the best EM (EM with a memory size of 3).
The comparison between these two behaviors was made over the different kinds
of networks described earlier, using different parameter settings. Again, we only
present here the most representative experiments.

For all settings we made the number of agents range from 100 to 1000, using
a step of 100.

In figure 1, we can see a comparison between the average number of meetings
needed for a 90% convergence using the two behaviors in fully connected (dashed
lines) and random networks (K = 20, solid lines), and with RFR (diamonds)
and EM (squares) as update rules. In both cases RFR clearly outperforms EM,
since consensuses are reached in a much lower number of meetings. Besides,
the difference appears to increase with N . In fact, in the above experiments,
improvements vary between 26% and 37%.

Using other types of networks, the difference between the two behaviors is
even clearer. In figure 2 we compare the performance of the two behaviors in



Force Versus Majority: A Comparison in Convention Emergence Efficiency 57

Fig. 1. RFR vs EM in random networks (with 40 neighbors per agent on average —
RN,20) and fully connected networks (KN )

Fig. 2. RFR vs EM in small-world, WN(K = 12; P = 0, 1), regular, CN,20, and scale-
free networks, SN,2.15

small-world networks (with P = 0.1, dashed lines), regular networks (with K =
20, each agent with 40 neighbors, solid lines) and scale-free networks (with γ =
2.5, dotted lines). In these cases we need to use a logarithmic scale in the y axis.
The average number of meetings needed to reach a consensus is again much
lower when RFR (diamonds) is used. In Scale-free networks, the performance is
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improved between 25% and 37%; in Small-world networks improvements reach
80%. Using regular networks the difference with N greater than 500 is so huge
that it is not represented.

5 Strategy Update Rules in Simultaneous Interactions

Now, in a clear contrast with previous experiments, an agent interacts, in each
encounter, not only with a randomly chosen neighbor but with all its neighbors
at the same time. Interaction is again asymmetric, seen from the point of view
of an agent — the simultaneous state of neighbors is used to update agents’
strategy, and naturally will have to be taken into account in the strategy update
rules. Again, each agent updates its strategy at each encounter.

5.1 Generalized Simple Majority

The natural strategy update rule to use in simultaneous interactions with all
neighbors, equivalent to EM, for the pair-wise encounter, would be the Simple
Majority created by Walker and Wooldridge [22]. Following this rule, an agent
only changes strategy when more than half of the neighboring agents adopt a
different strategy than its current one. This deterministic rule does not guarantee
convergence to a consensual situation for some networks, especially the regular
ones. In some cases, even in small groups, agents get stuck in a deadlock, never
reaching a situation of full convergence or even 90% convergence. Delgado [4]
developed a stochastic version of Simple Majority, which they named the Gener-
alized Simple Majority (GSM). We are going to describe GSM, but not exactly
the same way as was originally defined by Delgado.

Suppose we have N agents in an interaction graph. If agent j has K neighbors
it will adopt state S with a probability that depends on the number of neighbors
adopting S (KS ):

fβ(KS) =
1

1 + e2β(2(1−KS/K)−1)

The formula above is a corrected version of the one introduced by [4]. This rule
generalizes Simple Majority since, for β →∞, an agent adopts state S only when
at least half of the neighbors are in that state. Note that when a tie occurs, the
probability of changing is 50%. In our experiments, we used β = 10, which is
was also used in [4].

As illustrated in figure 3, the probability of adopting S is positive even when
the neighbors adopting S are not in majority. This is true for values greater
than 38%. Conversely, it is possible to adopt a state that is adopted by the
minority of the neighbors, which can happen if the majority is no greater than
a percentage of 62%. Note that when a tie occurs, the probability of changing
is 50%. Delgado provided some analytical evidence for the convergence of GSM,
but no theorem exists that guarantees it. In our experiments, GSM has always
converged to a consensual situation of 90%, in all types of networks, varying the
number of agents until 1000.
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Fig. 3. Probability of changing to a new state S, for β = 10, given the percentage of
neighbors that are adopting S

5.2 Recruitment by the Strongest with Reinforcement

In order to adapt the RFR update rule to simultaneous interactions, partners in
encounters will not be chosen randomly as before. Now an agent can access the
strategies of all its neighbors — it will choose the strongest to interact with in
a pair-wise way. The interaction behavior is pure Recruitment based on Force
with Reinforcement (RFR), but with the strongest of its neighbors, not with
a randomly chosen neighbor. We name this strategy update rule Recruitment
by the Strongest with Reinforcement (RSR). There is simultaneous access to all
neighbors but actual interaction (applying RFR) is only with the strongest. In
the RSR behavior agents begin with the same force value zero.

6 Experiments and Results for the Simultaneous Strategy
Update Rules

The comparison between RSR and GSM was made over the different kinds of
networks described in section 2, using different parameter settings. Again, we
only present here the most representative experiments and for all settings we
made the number of agents range from 100 to 1000, using a step of 100. We
counted the number of encounters necessary for 90% consensus along 100 runs
for each parameter setting and values were averaged.

In figure 4, we can see a comparison between the average number of meetings
needed for a 90% convergence using the two behaviors in random networks (K =
20, dotted lines) and scale-free networks (with γ = 2.15, solid lines) with RSR
(squares) and GSM (diamonds) as update rules.

RSR clearly outperforms GSM, since consensuses are reached in a much lower
number of meetings (the improvement in regular networks is remarkable).

In the fully connected case, GSM is slightly better, around 1%, which is
marginal and would not be perceptible in the chart. The results are
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Fig. 4. RSR vs GSM in random networks (with 40 neighbors per agent on average —
RN,20) and scale-free networks, SN,2.15.

Fig. 5. RSR vs GSM in small-world, WN(K = 12; P = 0.1), and regular networks,
CN,20

understandable in this type of networks, because as initially every agent chooses
its strategy in a random way, there will be almost certainly a majority and ev-
ery agent will chose the winning strategy in just one encounter. On average, we
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won’t need N interactions, because unless the last agent belongs to the minority,
consensus will be attained earlier (in less encounters). This way, it would be very
hard to beat GSM in fully connected networks, but never the less, RSR attained
a very good result (only 1% later). Note that we are using time to refer to the
number of interactions needed to achieve consensus.

In the Random networks case, we have an improvement for RSR around 16%
for N = 100 and gradually the difference increases, and stabilizes around 35%
for N greater than 500.

In the Scale-free case, RSR, again, exceeds GSM, with an improvement that
varies between 33% and 48% (N > 500).

Using other types of networks, the difference between the two behaviors is
even clearer. In figure 5, we compare the performance of the two behaviors in
small-world networks (with K = 12, P = 0.1, dashed lines) and regular networks
(with K = 20, solid lines). In these cases we need to use a logarithmic scale in
the y axis. The average number of meetings needed to reach a consensus is now
much lower when RSR (squares) is used. In Regular networks, the performance
is improved in 99%, reaching 99,9% for N above 600; in Small-world networks
improvements reach 93% for N = 100, reaching 98% for N bigger than 300.

7 Conclusions and Future Work

Regarding our main goal of comparing strategy update rules based on majority
against ones based on force, the main conclusion is that those based on force al-
most always perform better (converge in fewer interactions) than the ones based
on majority. This conclusion is valid for all types of networks with different
parameter settings, except the case of fully connected graphs in simultaneous
encounters. Even considering that we did not exhaust all type of networks and
its parameters, this is an impressive result. According to our experiments, strat-
egy update rules based on force, show at least a 25% improvement over the
majority one, but is much higher in many settings, and extreme in regular net-
works. An interesting point is that our results for the RFR strategy update rule
show that the network diameter strongly influences the performance, as noted
in other settings by authors such as Kittock [7] and Delgado [4]. The smaller
the network diameter is, the better. Also, the performance of fully connected
networks and scale-free ones seems to be quite similar (as can be observed in
figure 1, comparing lines with similar marks, that correspond to the same be-
havior). This is a very important result since scale-free networks are much less
expensive than fully connected ones. Nevertheless, we must perform experiments
with greater values of N in order to obtain definite conclusions on this matter.
Besides performing experiments with larger values of N , three other aspects are
scheduled for short-term future work. One is to let the agents choose between
more than two strategies. The other is to explore the performance of these be-
haviors in networks with a dynamical structure, and finally we want to see force
strategy update rules applied to situations where agents can choose between
differently-valued strategies.
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5. Delgado, J., Pujol, J.M., Sangüesa, R.: Emergence of coordination in scale-free
networks. Web Intelligence and Agent Systems 1(2), 131–138 (2003)

6. Kaplan, F.: L’Emergence D’un Lexique Dans Une Population d’Agents Autonomes.
PhD thesis, Université de Paris 6 (2000)
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Michael Köhler-Bußmeier and Matthias Wester-Ebbinghaus

University of Hamburg, Department of Informatics
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Abstract. Software systems are subject to ever increasing complexity
and in need of efficient structuring. The concept of organization as an ex-
pressive and abstract real-world reference presents a promising starting
point. Organizational concepts have particularly been studied within the
multi-agent systems community. However, there exists a conceptual gap
between organizational specifications and their multi-agent implementa-
tion. We address this problem by presenting an integrated approach to
formalize organizational models with Petri nets and to directly deploy
these specifications in a multi-agent system. The operational semantics
of Petri nets establishes a close link between organizational specification
and deployment that eases system development and maintenance. As an
important example, we are able to describe the formation of multi-agent
teams in an organizational scenario in terms of Petri net dynamics.

1 Introduction

Inspiration from organization theory serves to handle phenomena in multi-agent
systems that carry a supra-individual character. Especially in the past few years
multi-agent system researchers have begun to comprehend the organizational
metaphor as the central instrument to combine local agent autonomy with reli-
ability and predictability on the system level (we provide a detailed overview of
recent and current work concerning modelling approaches, development method-
ologies and middleware in [1]). This combination is achieved by imposing “or-
ganizational facts” onto the system. Boissier [2] identifies several organizational
dimensions that different approaches incorporate to varying degrees. Among
these dimensions, the most prominent are the structural, functional and interac-
tional (dialogical) dimensions. They respectively carry specifications concerning
the structure of the collective level of a multi-agent system, its global functioning
and the interactions between agents in terms of communication.

One central questions is how to close the conceptual gap between high-level or-
ganizational specifications of a software system to be and its multi-agent system
implementation. The above mentioned organizational dimensions are not mu-
tually independent. Only in concert they draw a coherent picture. Thus agents
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are embedded in a system of interrelated organizational specifications and left
with the task of operationalizing them. One possibility to deal with this problem
is to introduce organizational dimensions with the specific purpose to establish
an explicit link between other dimensions. For example, Moise+ [3] and Is-
lander [4] exhibit deontic and normative dimensions respectively. These enrich
an agent’s structural embedding with obligations and permissions towards func-
tional and dialogical specifications. Some approaches with a particular emphasis
on teamwork go even further. They link agents to an organizational framework
in terms of the agents’ (joint) mental states [5,6]. Depending on the structural
embedding of the agents (which roles they occupy) team and team plan forma-
tion are carried out by establishing mutual beliefs, joint commitments and joint
intentions concerning the following joint team activity.

In this paper we present a related but distinctive approach. We propose an
approach to model organizations based on Petri nets. It integrates a structural,
a functional and an interactional dimension. However, the peculiarity of using
Petri nets as a modelling technique renders additional dimensions or mechanisms
for paving the way to operationalization obsolete. The operational semantics of
Petri nets allows them to be directly utilized in a software implementation. We
exemplify this idea by defining teams solely in terms of Petri net dynamics
and specifically elaborate on the case of team formation in an organizational
setting. In Section 2 we present our formal Petri net model of organizations. In
Section 3 we demonstrate how the formal specifications may be instantiated in
the form of a multi-agent system and how they directly lead to a distributed
algorithm for team formation to be carried out by the agents. In Section 4 we
give full particulars on the role of each individual agent in the course of the
team formation procedure and thus link the organizational coordination plans
with individual action plans. We conclude our results in Section 5 and relate
them to the wider context of our current work.

2 Formal Model of Organizations

We present a Petri net model of organizations. It is intentionally lean and open
to be extended or specialized for specific purposes. Our model focuses on the two
fundamental (and opposing) requirements for every organized activity postulated
by Mintzberg [7], the division of labour into various tasks to be performed and
the coordination of carrying out these tasks in order to accomplish the overall
activity. Accordingly, our model basically includes tasks, roles included in the
accomplishment of these tasks and (hierarchical as well as horizontal) task-based
relationships between roles for the coordination. Our Petri net-based approach to
formalize these concepts allows to elegantly combine both the structural (through
the structure of a Petri net model itself) and the behavioural (through the op-
erational semantics of Petri nets) properties of organizational models.

In this section we address the formal organization without reference to the
organization’s members [8]. It is not until Section 3 that we turn to multi-
agent system deployment and thus to the informal organization with reference
to agents as members of the organization.
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Petri nets offer both a graphical representation and formal semantics. In [9]
we present our model in more detail together with formal theorems and proofs.
In this paper we just assume a general understanding of Petri nets in terms of
places, transitions and arcs as their basic elements. For a thorough introduction
into Petri nets we refer to [10].

Definition 1. A Petri net is a tuple N = (P, T, F ) where P is a set of places, T
is a set of transitions, disjoint from P , i.e. P ∩T = ∅, and F ⊆ (P ×T ∪T ×P )
is the flow relation.

The preset of a node y is •y := ( F y) and postset is y• := (y F ). For a
set A ⊆ P ∪ T we define •A =

⋃
a∈A

•a and A• =
⋃

a∈A a•.
The minimal nodes are ◦N = {x ∈ P ∪ T |•x = 0}, the maximal are N◦ =

{x ∈ P ∪ T |x• = 0}.
A finitely branching Petri net N = (P, T, F ) is called a causal net iff the

transitive closure F+ is acyclic and for all p ∈ P the conditions |•p| ≤ 1 and
|p•| ≤ 1 hold.

Turning to Petri net dynamics, we have to consider markings and transition
firing. We define the mappings pre,post : T → (P → N) by pre(t)(p) :=
|F ∩ {(p, t)}| and post(t)(p) := |F ∩ {(t, p)}|. A marking of a Petri net (P, T, F )
is a multiset (or: a vector) of places: m ∈ NP . A transition t ∈ T of N is enabled
in marking m iff m(p) ≥ pre(t)(p) holds for all p ∈ P . The successor marking m′

obtained after firing t is defined m′(p) = m(p)−pre(t)(p)+post(t)(p). Firing is
denoted m

t−→ m′. The notation extends to firing sequences the usual way. The
set of all reachable markings is RS(m) = {m′ | m ∗−→ m′}.

2.1 Roles and Services

We begin by introducing roles and services in the context of our model.
Roles describe specific expectation structures with respect to the behaviour of

agents. Technically speaking, roles are some kind of type for an agent describing
its behaviour. Given a set of atomic roles Rol the set R := 2Rol \ ∅ is the role
universe. Each R ∈ R is called a role. The structure of roles is modelled by the
partially ordered set (R,⊆). The singletons sets {r} are identified with r itself.

Services in our model are accompanied by service nets that represent the
model’s interactional dimension. A service net is a Petri net that describes the
interactions that take place between agents in order to carry out the correspond-
ing service. Each transition models a task and places connect tasks in order to
form life lines and message exchanges. However, service nets abstract away from
particular agents and identify the interacting roles instead. We assume a unique
assignment of roles to service nets.

Definition 2. A service net D = (N, r) is a Petri net N = (P, T, F ) with a role
assignment r : T → Rol. Define R(D) := r(T ).

Given a service net D and a role R ⊆ R(D) we can restrict D to the subnet
D[R] = (PR, TR, FR) of D, called the R-component of D, defined by the nodes
related to R: TR := r−1(R) and PR := (•TR ∪ TR

•).
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A set of service nets D is called service universe, whenever R∈R(D1) ∩R(D2)
for D1, D2 ∈ D then D1[R] is bisimilar to D2[R].1

Service nets are very similar to agent UML (AUML) interaction diagrams. Two
examples are shown in Figures 2 and 3 (details concerning the content of these
services are delayed until the following subsection). Each transition t of a service
net D is assigned to the atomic role r(t) ∈ Rol with the meaning, that only
agents that implement this role r are able to execute the task t. Whenever a
place p connects two transitions t1 and t2 with r(t1) = r(t2) the transitions are
drawn vertically on the so called life line of the role. Whenever r(t1) �= r(t2)
then the place p models a message exchange which is drawn horizontally (for
details cf. [11]). In Figure 2 all transitions drawn below one of the role names
(producer, consumer) are assigned to it. The subnet PC [producer ] is indicated
by the filled nodes.

2.2 R/D Nets and Formal Organizations

Based on the former specifications of roles and services we define R/D nets
(role/delegation), which are used to describe formal organizations and embody
both the structural and functional dimension of our model. R/D nets are Petri
nets where each place models a role and each transition models a task. Each
place p is labelled with a role R(p) and each transition t with a service net
D(t) that describes how the corresponding task is to be carried out. For the net
models it is a natural restriction to allow exactly one place in the preset of a
task since each task is related to the role it can be used by.

Definition 3. A R/D net is the tuple (N, R, D) where

1. N = (P, T, F ) is a Petri net with p• �= ∅ for all p ∈ P and |•t| = 1 for all
t ∈ T .

2. R and D are a role universe and a service universe respectively.
3. R : P →R is the role assignment.
4. D : T → D is the service net assignment.

An organizational structure in our model is built up by organizational positions
(OP). OPs roughly correspond to a positions in real-world organizations. An OP
may encompass several roles by being responsible for several tasks. In addition,
it is possibly allowed to delegate role parts for the accomplishment of these tasks
to other OPs. OPs are modelled as disjoint subsets of P ∪ T of an R/D net. We
request the connectivity property. Whenever a task t belongs to an OP, then all
used roles p ∈ t• belong to it, whenever p belongs to an OP, so do all using tasks
t ∈ •p.

1 We omit a formal definition of bisimilarity. Its informal meaning in this context is
that bismilar role components of service nets cannot be distinguished with respect
to input/output behaviour.
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Definition 4. An organization net is a pair (N,O) where N is a Petri net
N = (P, T, F ) and O is a partitioning on the set P ∪ T where for all O ∈ O the
following holds (with Ō = (P ∪ T ) \O):

∀p ∈ O ∩ P : •p ⊆ O ∧ p• ⊆ Ō ∧ ∀t ∈ O ∩ T : •t ⊆ Ō ∧ t• ⊆ O

An element O ∈ O is called organizational position (OP). By O(y) we denote
the unique OP for each y ∈ P ∪ T .

A formal organization is the tuple Org = (N,O, R, D) where (N, R, D) is a
R/D net and (N,O) is an organization net.

Example 1. An organization net is given in Figure 1 (the purpose of the dashed
lines will not be addressed until the following subsection).
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Fig. 1. Producer/Consumer organization net

OPs are depicted as filled rectangles. The OPs O1, O2, O3, O9 are complex, the
OP O0 is an initial one, and the other OPs are final ones. The organization net
models a simple producer/consumer example. The place p0 is the starting point
of activity which has to start with t1 ∈ O1. In O1 the work is divided into its
producing and consuming parts, resulting in the roles Producer and Consumer
respectively. The implementation of these roles is delegated to other positions.
O2 is the only OP to implement the role Producer. It does so by further dividing
the work into two parts and delegating the resulting two roles Producer1 and
Producer2 to the OPs O4 and O5 respectively, which finally implement their
share of the work themselves. Turning to the consuming part of the work, OP
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Fig. 3. Refined Producer/Consumer: PC3

O3 may decide to implement the role Consumer itself via task t3 or to further
divide the work and delegate the implementation of the resulting roles. Finally,
OP O9 is able to implement all variants of roles for consuming work. It might
for example be considered an emergency OP for the case where the regular OPs
responsible for consuming tasks are overloaded with work.

Formal models can be used to analyze structure and behaviour. As an ex-
ample of this benefit to our approach we refer to well-formedness of R/D nets.
In a well-formed R/D net, all service nets and all roles are consistently related
to the structure of the organization net. We do not provide a formal definition
here (cf. [9]) but give an example. Figure 2 shows the service net PC that is
assigned to transition t4 and describes the interaction between the two roles
of Producer and Consumer. First the producer executes the transition produce,
then sends the produced item to the consumer, who receives it. The consumer
sends an acknowledge to the producer before he consumes the item. Figure 3
presents the service net PC 3 that is assigned to the transitions t7, t8 and t9
and refines the role Consumer from the net PC of Figure 2: The role Decision
Maker decides whether Consumer1 or Consumer2 receives the item. Basically,
well-formedness in this case means that the refinement of the role Consumer
into the roles Consumer1, Decision Maker and Consumer2 that is modelled
in the organization net is also mirrored in the corresponding service nets accord-
ingly. The refinement concerns communication between the refining roles while
input/output behaviour from the perspective of the producer remains the same.

2.3 Teams as Processes of Organization Nets

Organization nets capture all possibilities of task delegation and hence service ac-
complishment. In order to actually carry out organizational services, temporary
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structures that are cleansed from ambiguities are required. We call these struc-
tures teams and formally define them as follows.

Definition 5. A R/D net N = (P, T, F ) is called a team if N is causal net
with exactly one minimal node: ◦N = {p0}, p0 ∈ P , and all maximal nodes are
transitions: N◦ ⊆ T .

In Figure 1 one possible team is framed by the dashed lines. This R/D net is ded-
icated to the specific purpose modelled by its only minimal node. All delegation
ambiguities are resolved, resulting in a fixed allocation of task responsibilities
to positions along with a fixed and fully elaborated (composed) interaction pat-
tern for carrying out the corresponding organizational service. In this sense, the
participating positions stand ready to act as a team.

In the following we characterize teams as the result of a team formation pro-
cedure that is controlled by the organizational structure. In particular, we relate
teams to processes of organization nets. Petri net processes are a recognized al-
ternative for describing the behaviour of Petri nets by firing sequences [12,13].
Processes are themselves Petri nets from the class of causal nets. A process of a
net N is defined as a causal net K together with a pair of mappings φ = (φP , φT ).
For a mapping f : D → D′, let f � : ND → ND′

denote its extension to a homo-
morphism on multisets: f � (

∑n
i=1 xi) =

∑n
i=1 f(xi).

Definition 6. Let N = (P, T, F ) be a Petri net with the initial marking m,
K = (B, E, �) a causal net and φ = (φP : B → P, φT : E → T ) a pair of
mappings. Then (K, φ) is a process of (N, m) if the following holds:

1. Preservation of the flow relation: x � y =⇒ (φ(x), φ(y)) ∈ F .
2. Representation of the initial marking: φ�

P (◦K) = m.
3. Preservation of localities: φP

�(•e) = •(φT (e)) and φP
�(e•) = (φT (e))•.

4. Each node x ∈ B ∪ E has only finitely many predecessors.

A process has the progress property iff no transition is enabled in K◦, i.e. for
each subset A ⊆ K◦ there is no transition t ∈ T such that φ(A) = •t. The set of
all finite processes with the progress property is denoted K(N, m).

Alternatively, a process (K, φ) can be constructed from the possible firings, i.e.
the enablement of transitions, of the net N . The construction is inductively
defined for a process net, by adding transitions according to the enablement
condition of the net N . The starting point is given by the initial marking, which
defines a simple process without any transitions, but only a place for each token
in the initial marking. For the progress property this unfolding is continued until
no transition is enabled.

In [9] we prove a practical property: Each process with the progress property
introduces a team.

Theorem 1. Let Org = (N,O) be an organization net with N = (P, T, F ).
Then for each p ∈ P and each process (K, φ) ∈ K(N, {p}) we have that K is a
team.
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This theorem allows us to characterize team formation processes in terms of the
theory of Petri net processes: Each Petri net process (with the progress property)
of an organization net generates a team.

3 Multi-agent System Deployment

In this section we turn from formal organizations (without reference to members
of the organization) as defined in Section 2 to their deployment inside multi-
agent systems where agents populate an organization as its members. In order
to benefit from the operational semantics of our Petri net-based approach, we
require that the modelling of a formal organization does not just serve an offline
design purpose but is directly operationalized within the software system and
takes on steering and controlling responsibility. By this means, the formal spec-
ifications along with certain desired (provable) properties are directly mapped
onto the resulting software system.

Consequently, our proposal specifically aims at multi-agent system architec-
tures that allow for the direct deployment of Petri net models as software compo-
nents. One particular candidate that most smoothly satisfies this requirement is
the Mulan-architecture [14]. It models agents and multi-agent systems through
the higher-order Petri net formalism of reference nets.2 As reference nets may
carry complex Java-instructions as inscriptions and thereby offer the possibility
of Petri net-based programming, the Mulan models have been extended to a
fully elaborated and running software architecture.

However, we consider our proposal not to be restricted to Mulan-deployment
or to other target platforms that allow for the integration of Petri nets as exe-
cutable software components. Instead, our Petri net models may be regarded as
a special form of algorithmic description to be implemented in any desired way.
In this case they still retain their character of being directly derived from the
properties of the underlying Petri net-based organizational models.

3.1 Multi-agent System Design

In the following we regard a multi-agent system as an instance of a formal orga-
nization Org = (N,O, R, D). Each organizational position O ∈ O is allocated to
an organizational position agent (OPA) Ag(O). Figure 4 displays an example.

Position agents integrate the structural and behavioural organizational spec-
ifications associated with their respective positions into their local reasoning.
Thus, organizational coordination plans and individual action plans are mutu-
ally related. The organizational coordination plans imprint the individual action
plans and conversely the individual actions of the position agents produce and
2 Reference nets show some extensions compared to conventional coloured Petri

nets [15]. They implement the nets-within-nets paradigm where a surrounding net
(the system net) can have nets as tokens (the object nets). Reference semantics is
applied, so these tokens are references to net instances. Synchronous channels allow
for communication between net instances.
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Fig. 4. Multi-agent system design derived from an organization net

reproduce the organization’s global behaviour. In this sense we arrive at a du-
alistic relationship between micro and macro perspective within the multi-agent
organization.

Position agents are connected through the delegation relationships of the un-
derlying organization net (N,O) with N = (P, T, F ). As O is a partition on the
set P ∪ T each task t ∈ T is assigned to exactly one position agent (Ag ◦O)(t).
If t• = ∅ holds, the corresponding position agent carries out the task itself.
If t• �= ∅, the corresponding position agent delegates the task. Two agents
Ag(O1) and Ag(O2) are connected through a directed delegation relationship
if ∃p ∈ P : p ∈ O1 ∧ p ∈ •O2 holds.

3.2 Operationalizing Organization Nets: The Team Formation Case

Besides guiding the design of corresponding multi-agent systems, organization
nets may be directly operationalized in the implementation. Organizational pro-
cesses are basically teamwork processes to carry out organizational services.3

Teamwork encompasses the stages of team formation, team plan formation
and team plan execution [16]. The formal Petri net organizational models may
guide all three stages and in the paper at hand we exemplarily elaborate on the
case of team formation.

In our model, teams are formed through an iterated delegation procedure
resting on the underlying organization net (N,O) with N = (P, T, F ). Whenever
a position agent Ag(O) (O ∈ O) has been chosen as a team member to implement
the role belonging to a place p ∈ •O ∩ P it applies an internal team formation
function to select one of the implementation possibilities from the set

Impl(p, O) = {t ∈ T ∩O | t ∈ p•} .

3 In the context of this paper, we leave aside further aspects like for example processes
for re-organization.
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After choosing one element t ∈ Impl(p, O) and if t• �= ∅ holds the agent Ag(O)
further applies an external team formation function for all p ∈ t•. For each p, it
selects one of the possible team members from the set

TM (p) = {O ∈ O | p ∈ •O} .

This delegation process as a whole corresponds to firing sequences of the orga-
nization net and thus constructs the net’s processes and hence teams.

The distributed team formation algorithm is given in pseudo-code in Fig-
ure 5. In accordance with Subsection 2.3, the algorithm generates a finite process
with the progress property (K, φ) ∈ K(N, {p}) for p ∈ P as the starting point.
Distribution is denoted by the different selection functions τ1 and τ2 where
τ1
A(K, φ, b) ∈ TM(φ(b)) denotes the team member that an agent A selects and

τ2
A(K, φ, b) ∈ Impl(φ(b), Ag−1(A)) denotes the task that an agent A selects.

4 A Petri-Net Model of Team Formation

The iterated delegation procedure for team formation according to the algorithm
from Figure 5 is realized through a conversation between the involved position
agents. We propose to utilize deployment versions of organization nets for each
agent in order that they guide and control the conversation flow. Such a de-
ployment version for a position agent basically takes the corresponding position
fragment of the organization net and enriches it with inscriptions and additional
net components for the operationalization. Deployment versions need not be
modelled manually but can be generated automatically as all information that
is needed rests in the initial corresponding organization net.

For the Mulan-architecture this approach is straightforward. In [14], it is
described in detail how Mulan-agents participate in conversations. Each agents
hosts an instantiated protocol net that implements the agent’s role in the con-
versation by receiving and sending messages along a predefined pattern of com-
munication. So deployment versions of organization nets may be integrated in

function Kτ (N, p) is
(K, φ) := (({b0}, ∅, ∅), {(b0, p)})
while (K◦ ∩B) �= ∅ do

foreach b ∈ (K◦ ∩ B) do
(K, φ) := ((B′, E′, F ′), φ′) where

TM = τ 1
A(K, φ, b) where A = (Ag ◦O ◦ φ)(b)

t = τ 2
TM (K, φ, b)

B′
t = {bp | p ∈ t•}; φ′ = φ ∪ {(e, t)} ∪ {(bp, p) | p ∈ t•}

B′ = BK 	B′
t; E′ = EK 	 {e}; F ′ = FK ∪ {(b, e)} ∪ ({e} ×B′

t)
return (K, φ)

Fig. 5. The Team Formation Algorithm
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protocol nets as object net tokens in order that they guide and control the conver-
sation. For multi-agent system architectures other than Mulan the integration
is likely to be more complicated. However, it does not differ conceptually as
defining agent interaction patterns and distributing parts of them among agents
according to different participating roles is common practice.

4.1 Team Formation: Position-Specific Deployment Version

Deployment fragments of organization nets for the case of team formation will
now be examined in more detail. To begin with, we refer to our example from
Section 2.2 illustrated in Figure 1. The deployed organization net for the position
agent assigned to OP O3 is shown in Figure 6.4 It contains the subnet for O3 as
a substructure.
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Fig. 6. Team formation: Deployment version for OP O3 from Figure 1

Upon receiving the delegation call to implement the role Consumer (receive
cons delegation), the team formation status is initialized (team formation sta-
tus).5 The team formation status encapsulates information about delegation
4 To avoid overloading the figure with too many details it does not contain all inscrip-

tions that would be necessary for operationalization. This holds especially for the
transitions whose function is only given by their name.

5 The twofold circuited places are virtual places. Reference nets offer virtual places as
exact copies of the original ones for the sake of readability, avoiding arcs all across
the diagram. In this case the virtual places tfs are copies of the place team formation
status and the virtual places rst are copies of the place required subteams.
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partners (both higher and lower in delegation authority), team formation pa-
rameters (requirements, constraints), selected tasks and recursively generated
subteams. The team formation status is updated when one of the two possi-
ble implementations for Consumer is chosen (select implementation). Depending
on the selected task (t3 or t4), different subteams are required (required sub-
teams). If the position agent decides to implement the role itself (t3) no further
subteams are required. If the position agent decides to further delegate the im-
plementation of the task (t4) the work is divided into further roles for delega-
tion (Consumer1, DecisionMaker, Consumer2) and each of these requires its
own subteam. Delegation partners have to be selected among possibly multi-
ple options (select delegation partner) and the team formation status has to be
updated accordingly. Eventually, the roles are delegated to the selected team
members (delegate to Ox).

Whenever a subteam for a formerly delegated role is received (receive sub-
team), the team formation status is updated and the subteam is removed from
the list of required subteams. If this list is empty, all required subteams have
been received. Now the team formation status contains all information that is
required to generate the team for the delegation level of O3 and can be forwarded
to the higher level of delegation authority (in this case O1) as an implementation
for the role Consumer (propagate team).

Finally, the position agent will receive the complete team description from its
higher level of delegation authority (receive complete team) and forwards it to
its lower level team members (propagate complete team).

Recall that deployment versions of organization nets are to be utilized inside
protocol nets (or some other mechanism to implement agent participation in
conversations). It is not at the level of the deployed organization net that issues
like mapping of agents to positions, addressing or message generation are dealt
with. These are deferred to the next higher level of conversation management.
Deployed organization nets only contain information that can directly by derived
from the underlying organization net.

It should be obvious that the transitions select implementation and select dele-
gation partner are the most prominent options for refinement. Different scenarios
are imaginable. For example a position agent might have to accept all delegations
at all odds. Otherwise it might be allowed to negotiate performance conditions
depending on its own workload and that of its lower delegation partners. Or it
might even be allowed to reject delegation calls.

4.2 Team Formation: General Deployment Version

The deployed organization net from Figure 6 is specifically tailored for OP O3
from Figure 1. It is a very simple example with just one partner of higher del-
egation authority and only two implementation variants. Still, the deployment
version is a quite large net due to operationalization overhead. More complex
organizational positions would lead to very large and probably hard to arrange
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Fig. 7. Team formation: General deployment version for organizational positions

deployment versions. Instead, Figure 7 shows a coloured version of the former
deployment version that can be used for an arbitrary organizational position.

Basically, the generalized version introduces associations between delegated
roles and tasks (implementations), tasks and roles to delegate (role parts for tasks),
and roles and organizational positions (positions for roles) as side conditions for
the selection of implementations, the determination of role parts for an imple-
mentation and the selection of delegation partners respectively. Each association
is simply a tuple that rests as a token on the corresponding place. Consequently,
an organizational position might be arbitrarily complex and still be tackled by
the deployment version from Figure 7 for the sake of team formation. A rise in
complexity does only result in additional tokens on the places implementations,
role parts for tasks and positions for roles.

This deployment version is still only usable for one occurrence of a delegation
call. If the tokens related to specific delegations would be arranged as tuples
with an identification number as a further element, the net from Figure 7 could
even be used as a permanent component that all protocol nets (or some other
mechanism to implement agent participation in conversations) could use jointly
and simultaneously.
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5 Outlook

We presented an approach to use Petri nets to both specify and deploy organi-
zational models. The result is an integrated approach to develop organization-
oriented software systems that especially focuses on closing the conceptual gap
between design and implementation. Moreover, the approach explicitly facilitates
change. As the specification is immediately used to structure and operational-
ize the multi-agent system and deployment versions of organization nets can
be generated at run time, changing the specifications consequently changes the
structure and behaviour of the software system.

Turning to future work, we put a strong focus on expanding the software
technical framework that supports multi-agent organizations according to our
mathematical model. In particular, our approach follows the common organiza-
tion implementation architecture for open multi-agent systems introduced in [2].
This approach distinguishes between the organizational and the domain layer
of applications. Our interpretation of this concept is illustrated in Figure 8. We
distinguish the already mentioned organizational position agents (OPA) from
organizational member agents (OMA) (cf. also [17]). The organization contracts
each position to a member agent that carries out actions and makes decisions.
But member agents must connect to the corresponding position agents and use
them as (controlling and coordinating) gateways to the organization. Thus, the
position agents embody a distributed middleware that constrains the member
agents’ impact on the organization while at the same time supporting them by
providing organizational services (more specifically, automated support for team
formation, team plan formation and teamwork execution).

This middleware approach is particularly helpful in the case of an open multi-
agent system environment with agents belonging to different stakeholders enter-
ing and leaving on a continual basis. It also aims at incorporating our model into
existing multi-agent systems. No matter what the predominant structures and
relationships are, our model can introduce a new organizational level (or just
selected organizational features/domains) by means of a position agent infras-
tructure to which existing agents connect as members and which they use for
coordination. The former structures and relationships of course do not become
obsolete but correspond to the informal channels besides the formal ones defined
by the organization.

A further valuable prospect of the OPA/OMA distinction opens up with re-
spect to hierarchical nesting of whole organizational units. In this paper we
defined the conceptual and operational connection of positions to their organi-
zational embedding. As one next step we want to regard a position as possibly
being occupied by a complex organizational unit in itself like it is shown in Fig-
ure 8. This step facilitates a more modular conception of large organizational
settings where the need arises to distinguish between different system levels and
to abstract away from lower-level issues at each level respectively. We have pre-
sented a particular proposal for a multi-level architecture following this concep-
tion of nested organizational units in [1,18]. Four levels of organizational units are
distinguished according to different degrees of abstraction, namely department,
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Fig. 8. Nested multi-agent system deployment

organization, organizational field and society. These levels are analogous to the
levels of analysis that Scott proposes in [8] for organizations in human societies.
We consider this architecture to accompany a shift in paradigm from agent-
oriented to organization-oriented software engineering. It is no longer the agent
that represents the central design metaphor and software building block but the
organization.
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14. Köhler, M., Moldt, D., Rölke, H.: Modelling the structure and behaviour of Petri
net agents. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075,
pp. 224–241. Springer, Heidelberg (2001)

15. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
16. Wooldridge, M., Jennings, N.: The cooperative problem-solving process. Journal

of Logic and Computation 9(4), 563–592 (1999)
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Abstract. Robustness is the ability of a multiagent system to recover from fail-
ures and exceptions. In particular, the system should be able to recover from task
and agent failures and the failure of any single agent or group of agents should
allow the graceful, predictable degradation of performance. Hence, designing ro-
bust systems is a critical challenge facing many multiagent designers.

Organizational Self-Design (OSD) has been proposed as an approach to con-
structing suitable organizations at runtime in which the agents are responsible for
constructing their own organizational structures. OSD has also been shown to be
especially suited for environments that are dynamic and semi-dynamic. However,
the problem of making these self-designed organizations robust is still an open
research problem that has not been studied to any considerable extent. In this pa-
per, we focus on developing and evaluating robustness mechanisms that can be
used by the agents in conjunction with OSD.

1 Introduction

Robustness may be defined as the ability of a multiagent system to recover from failures
and exceptions. An exception may be defined as a departure from an “ideal” system
behavior [1]. Recovery would then involve the execution of some corrective measures
to reinstate the ideal system behavior.

Achieving robustness is particularly challenging in dynamic and semi-dynamic en-
vironments, since the problem characteristics, available resources or agent capabilities
may change over time. Multiagent organizations for such environments must include
two components — the first component is responsible for monitoring the performance
of the organization and for discerning whether or not the measured performance falls
within the design parameters of the organization. The second component is responsible
for explicitly changing the organization if it fails to meet its design goals.

This monitoring and design may be done by an entity external to the organization (i.e.
by the multiagent designer) or by the constituent agents themselves. In an extreme form
of the latter approach, the agents come up with a new, implicit, one-off organization for
each new problem instance. This is what happens in the contract net protocol (CNP) [2].

This latter approach is referred to in the literature as organizational self-design
(OSD) [3,4] and in this approach the agents are responsible for designing their own
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organizational structure at run-time. Any OSD approach needs to provide answers to
questions like how many agents are needed, how are the tasks and resources divided
amongst the agents and what coordination mechanisms are suitable for the problem at
hand. OSD is especially suited in situations where the environment is semi-dynamic
as the agents can adapt to changes in the task structures and environmental conditions,
while still being able to generate relatively stable organizational structures that exploit
the common characteristics across problem instances.

One application of OSD is to allocate resources in grid/cloud/volunteer computing
systems. Volunteer computing [5,6] is a form of distributed computing in which a group
of volunteers donate their computing resources to a cause, such as folding proteins, pre-
dicting climate change, etc. In order to do this, the volunteers have to download a client,
which then connects to one or more centralized servers and requests jobs that make use
of the volunteer’s computing resources. The jobs are then executed on the volunteers’
machines and the results are sent back to the servers. The centralized servers, in turn,
need to figure out a scheduling policy that tries to perform an optimal allocation of jobs
to the clients (for some definition of optimality).

The clients running on the volunteer machines can be thought of as agents. This leads
to a direct mapping from the problem of determining a suitable scheduling policy for
the clients to the problem of determining a suitable organization for the agents. Hence,
the solution to the organizational issues, such as the allocation of agents to the subtasks
of the problem being solved and the coordination of inter-agent activities, will generate
a scheduling policy that can be used to allocate jobs to the agents.

One of the consequences of using volunteer computing is that the availability of any
volunteer client (i.e. agent) cannot be guaranteed as (a) volunteers are free to leave
at any time without any warning or penalty; and (b) the volunteers’ computers might
crash or be switched off. We define the non-availability of a volunteer client as an
agent failure. Hence, if OSD is to be used to allocate tasks and resources in a volunteer
computing environment, it should be able to survive agent failures.

In this paper we would like to study various approaches that can be used to increase
the robustness of organizations generated through the use of OSD. Furthermore, we
primarily focus on agent failures1 in worth-oriented domains. Our approach is geared
towards real-world applications in grid/volunteer/cloud computing where a large pool
of agents is available though the availability of any single agent cannot be guaranteed.

A primary challenge to incorporating robustness in the OSD process is the continu-
ously changing set of agents and the roles that they enact. This leads to a continuously
changing (and distributed) organizational knowledge that must be preserved across
agent failures. Furthermore, one of the principal reasons for using OSD is the amorti-
zation of organizational costs across problem instances. This amortization might come
at a price — such generated organizations might be particularly susceptible to agent
failure. This is because the constituent agents are responsible for enacting particular

1 Another aspect to robustness in multiagent systems is task failures. We won’t be concerned
with task failures because — (a) agent failure is significantly harder than task failure be-
cause the failure of an agent results in a loss of both its organizational knowledge and its
contextual problem-solving state; and (b) our approach can easily handle task failures through
rescheduling[7].
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goals within the organization; and the failure of a single agent, performing a critical
role, could bring down the whole organization. Hence, such organizations might be less
robust than the one-off organizational schemes (such as CNP).

We feel that robustness has not been studied in the context of OSD to any significant
extent. Whereas we [4] alluded to this problem in our previous paper, we did not present
any algorithms and did not discuss the problem in any depth. The algorithm presented in
[8] would respond to a single agent failure by performing a complete reorganization —
an extremely expensive process. [9] also address robustness by reorganizing, however
their approach is specific to the distributed sensor network and would have to be adapted
for general purpose worth oriented domains. Other approaches to OSD [3,10,11] tend
to completely skim over the problem.

This paper will present and evaluate algorithms for both of the two commonly used
approaches to robustness:

1. the Citizen Approach [1,12], which involves the use of special monitoring agents
(called Sentinel Agents) in order to detect agent failure and dynamically startup new
agents in lieu of the failed ones.

2. the Survivalist Approach [13], which involves using the domain agents to monitor
themselves. The domain agents may (a) restart failed agents and (b) create addi-
tional replica agents which may take over should the original agents fail.

Our goal is to allow the organization, at its best, to function without any performance
degradation in the face of failures. At its worse, the organization should degrade grace-
fully in proportion to the number of failures.

Note that we do not present any new approach to OSD in this paper. Instead we add
robustness to the OSD approach presented in [4]. Also, we are not trying to develop
any new and general approaches to robustness. Instead we were trying to address the
robustness issues that arise when using OSD. Our primary contribution is an analysis
of the different approaches to robustness when using OSD to design organizations, so
that a multiagent user can select the most suitable approach for their application.

The organization of the rest of this paper is as follows. In the next section we discuss
the task model that we use for worth-oriented domains. This is followed by a discussion
of our approach to OSD. Finally, we evaluate the presented algorithms.

2 Task Model

We use TÆMS as the underlying representation for our tasks (problem instances).
TÆMS [14] (Task Analysis, Environment Modeling and Simulation) is a computational
framework for representing and reasoning about complex task environments in which
tasks (problems) are represented using extended hierarchical task structures [15]. The
root node of the task structure represents the high-level goal that the agent is trying
to achieve. The sub-nodes of a node represent the subtasks and methods that make up
the high-level task. The leaf nodes are at the lowest level of abstraction and represent
executable methods – the primitive actions that the agents can perform. The executable
methods, themselves, may have multiple outcomes, with different probabilities and dif-
ferent characteristics such as quality, cost and duration. TÆMS also allows various
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mechanisms for specifying subtask variations and alternatives, i.e. each node in TÆMS
is labeled with a characteristic accumulation function that describes how many or which
subgoals or sets of subgoals need to be achieved in order to achieve a particular higher-
level goal. TÆMS has been used to model many different problem-solving environ-
ments including distributed sensor networks, information gathering, hospital schedul-
ing, EMS, and military planning. [16,17,15,18].

For a more formal description of our task and resource model, please refer to [4,16].

3 Organizational Self Design

In our approach, problem solving requests arrive at the organization continuously at
varying rates and with varying deadlines. To gain utility, the agents in the organization
need to solve the problems by the given deadlines. The organizational design is directly
contingent on the task structure of the problems being solved and the environmental
conditions under which the problems need to be solved. Here, the environmental condi-
tions refer to such attributes as the task arrival rate, the task deadlines and the available
resources. We assume that all problems have the same underlying task structure, hence-
forth called the global task structure.

To participate in the organization, each agent must maintain some organizational
knowledge. This knowledge is also represented using TÆMS task structures, called the
local task structures. These local task structures are obtained by rewriting the global
task structure and represent the local task view of the agent vis-a-vis its role in the orga-
nization and its relationship to other agents. Hence, all reorganization involves rewriting
of the global task structure. However, note that the global task structure is NOT stored
in any one agent, i.e. no single agent has a global view of the complete organization.
Instead each agent’s organizational knowledge is limited to the tasks that it must per-
form and the other agents that it must coordinate with — it is this information that is
represented using the local task structures.2

To allow the agents to store information about other agents in the task structure,
we augment the basic TÆMS task representation language by adding organizational
nodes. To differentiate organizational nodes from “regular” TÆMS nodes, we refer to
non-organizational nodes as domain nodes. The four organizational nodes are:

1. Non-Local-Nodes are used to represent a domain node in some other agent’s lo-
cal task structure. Non-Local-Nodes are used to represent nodes in the global task
structure that the agent knows the identity (label) of but does not know the charac-
teristics (e.g. quality, cost duration) of3.

2. Container-Nodes are aggregates of domain nodes and other organizational nodes.
Container nodes also have a type which determines their purpose. For the purposes

2 Note that rewriting the local task structure results in a change in the goals and commitments of
an agent. After every rewrite of a task structure, the agents that change usually renegotiate the
coordination mechanism used to coordinate between themselves. The exact details are beyond
the scope of this paper.

3 At least initially at the time of breakup. It can however learn these characteristics through some
coordination mechanism.
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of this paper, there are only two types of container nodes: (a) ROOT nodes are used
to store the high-level goals of an agent and the non-local nodes; and (b) CLONE
nodes are used to store cloned portions of a TÆMS subtree.

3. Clone Selectors are used to select amongst the clones of a node. The purpose of
a selector node within a clone-container is to enable one or more of the clones, so
that the enabled nodes can be “executed” by the agents owning those clones.

4. NLE-Inheritors are methods whose sole purpose is to transfer the non-local effect
from a non-cloned node to a cloned node or vice versa.

Algorithm 1. CHANGEORGANIZATION

1. if ISAGENTOVERLOADED() then
2. SPAWNAGENT()
3. else if ISAGENTUNDERLOADED() then
4. COMPOSEAGENT()
5. end if

To allow for a change in an agent’s organizational knowledge, we define three rewrit-
ing operations on a task structure:

Breakup: Breakup involves dividing the local task structure of an agent so that it
can be allocated to another agent. When a spawning agent divides a local task
structure, A into two subparts B (for itself) and C (for the spawned agent), it still
needs to maintain some knowledge about the tasks/methods in C while, at the same
time, allowing the spawned agent to have as much autonomy as possible about
the execution of C. Specifically the agent will need to know about the subset of
nodes in C that are interrelated to the nodes in B, either through NLEs or through
subtask relations. These interrelated nodes are represented using Non-Local-Nodes
that have the same label as the domain nodes and correspond to the domain nodes.
The algorithm for breakup is shown in Algo. 2 and an example is shown in Figure 1.
In this example, the task structure represented by Root-1 is broken twice — once
at node D to generate Root 2 and a third time at Node E to generate Root 3.

Merging: Merging involves combining two different local task structures from two
different agents to form one local task structure. The algorithm for merging is
shown in Algo. 3 and an example is shown in Figure 1. The core of the merging
algorithm (lines 3 –12) involves finding “overlapping” nodes, i.e. identical nodes
that are represented in both the task structures being merged. The merge algorithm
goes through all the nodes in the second task structure and tries to find the cor-
responding nodes in the first task structure. If a corresponding node is found, the
algorithm decides which of the two nodes should be kept and which of the nodes
should be discarded.

Cloning: Cloning involves creating a complete copy of a substructure, so that it can
be allocated to another agent. Cloning serves two purposes: (a) it can be used for
load balancing similar to the work of [19]; and (b) it can be used to increase the
robustness capacity of an agent by having multiple agents work on the same task
simultaneously.
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Fig. 1. Task rewriting: Fig (a) shows the global TÆMS task structure: The polygons (labelled
A – D) represent tasks and the circles (labelled E – K) represent executable methods. The +
iconography indicates a SUM CAF while
 represents a MIN CAF. The arrows represent NLEs
— the thick arrows represent hard constraints such as Enables (represented by a solid arrow from
J to I) and Disables (represented by a broken arrow from H to E). The thin arrows show soft
constraints such as Facilitates (solid arrow from K to F) and Hinders (broken arrow from D to
E). Method characteristics and other details are omitted. Fig (b) shows the breakup of Root-1 at
nodes D and E. The diamonds represent non-local nodes, that are the responsibility of some other
agent. Fig (c) shows the merging of Root-3 and Root 2.

Algorithm 2. BREAKUP (τ, υ)
1. τ ⇐ DESCENDENTS(τ )− DESCENDENTS(υ)
2. υ ⇐ DESCENDENTS(υ)
3. for all { N | N ∈ NLES(τ ) } do
4. if (SOURCE(N ) ∈ τ and SINK(N ) ∈ υ) or (SOURCE(N ) ∈ υ and SINK(N ) ∈ τ ) then
5. x⇐ GETNONLOCALNODE(SOURCE(N ))
6. y ⇐ GETNONLOCALNODE(SINK(N ))
7. M ⇐ COPYNLE(N )
8. REPLACENODE(N , SOURCE(N ), x)
9. REPLACENODE(M , SINK(N ), y)

10. end if
11. end for
12. x⇐ GETNONLOCALNODE(υ)
13. REPLACENODE(τ,υ, x)
14. return CreateRootNode(υ)

The algorithm for cloning is given in Algo. 4 and an example is shown in
Figure 2. Lines 4–7 of this algorithm involve creating a copy of all the nodes
in the subtree being cloned. Lines 8–21 are used to take care of NLEs in the
cloned subtree that have a source or destination as a non-clone node. Such NLEs
that transcend clone boundaries have to handled carefully in order to (a) preserve
their original semantics and (b) allow the presence of clones to be transparent to the
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Algorithm 3. MERGE (τ, υ)

1. for all { y | y ∈ DESCENDENTS(υ) } do
2. x⇐ FINDNODE(τ,x)
3. if NULL(x) then
4. DELETENODE(υ,y)
5. ADDNODE(τ, y)
6. else if TYPE(τ, x) = NonLocal and TYPE(υ, y) = NonLocal then
7. MERGENODES(τ,x, y)
8. else if TYPE(τ, x) = Local and TYPE(υ, y) = NonLocal then
9. DELETENODE(υ,y)

10. else if TYPE(τ, x) = NonLocal and TYPE(υ,y) = Local then
11. REPLACENODE(τ,x, y)
12. end if
13. end for
14. return τ

Algorithm 4. CLONE (τ, υ)

1. τ ⇐ DESCENDENTS(τ )− DESCENDENTS(υ)
2. υ ⇐ DESCENDENTS(υ)
3. φ⇐ CREATECLONECONTAINER(υ)
4. for all { x | x ∈ υ } do
5. y ⇐ COPYNODE(x)
6. ADDNODE(φ,y)
7. end for
8. for all { N | N ∈ NLES(υ) } do
9. if SOURCE(N ) ∈ τ then

10. x⇐ CREATEINHERITINGNODE()
11. ADDNODE(φ,x)
12. L⇐ COPYNLE(N )
13. M ⇐ COPYNLE(N )
14. REPLACENODE(N , SINK(N ), x)
15. REPLACENODE(L, SOURCE(L), x)
16. REPLACENODE(M , SOURCE(M ), x)
17. y ⇐ FINDNODE(φ, SINK(M ))
18. REPLACENODE(M , SINK(M ), y)
19. else if SINK(N ) ∈ τ then
20. {Similar to the source}
21. end if
22. end for
23. ADDNODE(φ,υ)
24. return φ

non clone nodes. In order to achieve this effect, we create special methods called
NLE-Inheritors. These methods are simply conduits for the effects from the cloned
nodes to the non-clone nodes.
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Fig. 2. Task Rewriting (cont.): Figure showing the cloning of Node C in Root 4. The � node
(Node C(C)) is used to represent a clone container, a node created for storing the “clones” of a
node; the ⊥ node (Node S(C)) is used to select which clone to “execute” — for the purposes
of robustness, all the clones will be executed; finally the × nodes represent the NLE-inheriting-
methods — these nodes form a conduit for NLEs to the non-clone parts of the task structure.

Our approach to OSD involves starting with a single agent responsible for the global
task structure (i.e. the local task structure is equal to the global task structure). Each
agent in the organization follows the algorithm presented in 1:

– If an agent is overloaded it either breaks or clones its local task view and then
spawns a new agent. We define an overloaded agent as one that cannot complete
the tasks in its task queue by their given deadlines.

– If the agent is underloaded, on the other hand, it composes with another agent,
merging the local task structures of the two organizations. We define an under-
loaded agent as one that is idle for an extended period of time.

For more details on the precise mechanism used to detect overload and underload please
refer to [4].

4 Robustness Mechanisms

Both of our robustness mechanisms involve three parts: (a) monitoring for agent failure;
(b) maintaing state information for all the agents; and (c) restarting failed agents.

Furthermore, the underlying mechanism for monitoring and restarting is the same
across the robustness mechanisms. Monitoring is achieved by sending out periodic Are-
You-Alive messages to the set of monitored agents and waiting for Alive reply messages.
If a reply is not received within a certain interval, we assume that the agent is dead and
send a restart message to the environment. The individual mechanisms, however, differ
in who is responsible for the monitoring and which set of agents are monitored.
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State information is needed to restart a failed agent. At a minimum, this state in-
formation should contain the organizational state (i.e. the local task structure) of the
agent being restarted. However, the local task information is not sufficient for restarting
an agent in a complex domain. The restarted agent will still need information about
the execution context, i.e. information about the outstanding task instances, information
about the methods of a task instance that have already been executed (so that the agent
does not try to re-execute them) and information about coordination commitments (be-
cause the subtasks have non-local effects and are interdependent on each other). The
coordination mechanisms also differ in how they keep a track of this execution context.

4.1 Citizens Approach

The citizens approach involves creating a special monitoring agent (called a sentinel
agent), which is responsible for all the robustness related responsibilities of the organi-
zation. This approach is the simplest to execute — the sentinel agent is the sole monitor
that is responsible for monitoring all the agents in the organization. However, to main-
tain state information, the sentinel needs to listen to all the messages exchanged by all
the other agents, since it needs to store both the set of spawning/composition messages
(in order to track the changes to the local task structures of the agents) and the set of
execution/coordination messages between the agents (in order to keep a track of the
execution context).

Hence, not only does the sentinel effectively becomes a conduit for all the messages,
it also has global knowledge about the complete organization — a problem we were
trying to avoid by using the OSD approach in the first place. Furthermore, the sentinel
can (a) quickly become overwhelmed by all the messages that it needs to track and (b)
become a central point of failure4. The solution might be to add multiple sentinel agents
— we will now need to create an organization for the sentinels (for which we could,
again, use OSD) and a way of monitoring the monitors.

Hence, we focus on developing algorithms for the survivalist approach and use the
citizens approach for comparison.

4.2 Survivalist Approach

In the survivalist approach, there are no special agents responsible for monitoring and
restarting failed agents. Instead the domain agents divide the monitoring responsibilities
amongst themselves. Furthermore, some/all domain agents may be replicated in order
to (a) increase the robustness capacity of the organization; (b) decrease the response
time to a failure, and (c) process task instances in parallel, thus helping to balance the
load.

The obvious advantage of the survivalist approach is that no one agent is overbur-
dened with the monitoring responsibilities. Also there is no central point of failure and
no agent with global knowledge of the organization. Furthermore, the survivalist ap-
proach can take into account the interplay between a satisficing organizational structure
and probability of failure. For example, one way of achieving a higher level of robust-
ness in the survivalist approach, given a large numbers of agent failures, would be to

4 It’s unreasonable to assume that the other agents might fail, but the sentinel will never fail.
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relax the task deadlines. However, such a relaxation would result in the system using
fewer agents in order to conserve resources, which in turn would have a detrimental
effect on the robustness. These advantages come at a cost of increased complexity of
the monitoring mechanism.

Creating a monitoring set of agents. The monitoring set of an agent, Agent A, is
defined as the set of agents that are responsible for monitoring Agent A for failures.
We assume that the minimum cardinality of this set, N is an input to the organization5.
Also in our approach, all monitoring is mutual, i.e. if Agent A is in the monitoring set of
Agent B (i.e. if Agent A is responsible for monitoring the health of Agent B), then Agent
B is in the monitoring set of Agent A. This is by design, because Agent A on receiving
an are-you-alive request from Agent B, already knows that Agent B is alive and does not
need to send Agent B a separate request.

Each agent is responsible for determining its monitoring set. At the time an agent,
say Agent A, is first spawned, it runs the following algorithm:

1. Agent A determines its related set. The related set of Agent A is the set of agents
that have a coordination relationship with Agent A. (This coordination relationship
would exists because of interdependent tasks and NLEs in the task structures of the
agents).

2. If the number of agents in the related set of Agent A is greater than N, Agent A
sends a message to each of the related agents, requesting the cardinality of their
respective monitoring sets, and then goes to Step 3. If this number is less than N,
Agent A adds all of the related agents to its monitoring set and then jumps to Step 4.

3. Agent A picks the N related agents with the lowest monitoring-set cardinalities to
be in its monitoring set.

4. Agent A sends messages to all the other non-related agents, requesting their
monitoring-set cardinalities. (This can be done using a single broadcast message).
Agent A then iteratively selects agents with the lowest monitoring-set cardinalities
until either (a) it has N agents in its monitoring set or (b) until all the agents have
been exhausted (i.e. there are less than N agents in the whole organization).

Finally, once Agent A has determined its monitoring set, it can send a message to each
of the agents in its set requesting them to monitor its health. In addition to being dis-
tributed, other advantages of this algorithm are: (a) Steps 1–3, can be piggy-backed
onto the coordination-mechanism negotiation messages exchanged with the agents in
the related set and (b) This scheme will reduce the frequency of are-you-alive messages
transmitted since the agents will be communicating in-band as a part of their normal
tasks processing.

Augmenting the robustness capacity of an organization. The robustness capacity of
an organization is defined as the number of agent failures that an organization can with-
stand. The robustness capacity is equal to the kill count minus 1, where the kill count
is the minimum number of agent that need to be killed in order to kill the organization

5 It should be possible to develop an algorithm for learning the optimal value of N given the
environment conditions — i.e. the probability of failure. We plan to incorporate this into our
future work.
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Fig. 3. Computing Robustness Capacity: Figure showing how the global task structure and its
breakup amongst the agents affects the robustness capacity. The crosses on the agents show which
agents need to be killed in order to kill the organization.

(i.e. ensure that the remaining agents cannot complete tasks without having to restart
more agents).

The robustness capacity of an organization is dependent on (a) the underlying global
task structure and (b) the way it has been divided amongst the agents. The CAFs of the
global task structure, especially the root CAF, determines the number of alternatives
available for achieving a task. For example, a one-level deep task structure with a MAX
CAF and three subtasks would have three alternative ways of achieving the task. If each
of these three alternatives was divided amongst three agents, the resultant organization
would have a kill count of 3 and a robustness capacity of 2.

Figure 3 shows how the global task structure and its breakup amongst the agents af-
fects the robustness capacity of an organization. The first task structure has a MIN CAF
as its root, so either of Agents 1, 2 or 3 can be killed in order to kill the organization. The
kill count is 1 and, hence, the robustness capacity is 0. The second task structure has a
SUM as its root, so all the three agents need to be killed in order to kill the organization.
Hence, the kill count is 3 and the robustness capacity is two. The third task structure
is similar to second one except that it has an enablement from Method J to F. With the
task structure divided amongst the agents as shown, if Agent 3 is killed, there is no way
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to complete Method J. This, in turn, means that Method F will never be enabled, i.e. the
quality of Method F will always be 0. Since Task B has a MIN CAF, the quality of Task
B will also be 0 and, as a result, Agent 1 has effectively been poisoned. Hence, only
Agents 2 and 3 need to be killed to kill the organization and the kill count is 2.

Augmenting the robustness capacity of an organization is the process of adding
agents to the organization so as to increase its kill count. Again, we are assuming that
the desired kill count, K is an input to the organization. A trivial way to do this would
be to replicate each agent K-1 times. However, this would be inefficient as it does not
take into account the existing kill-count of the organization.

The first step towards increasing the robustness capacity of an organization would be
to compute the existing kill-count, and then to “add” agents by breaking up the global
task structure and spawning agents in a way that increments this kill-count. Unfortu-
nately, the bad news is that computing the kill-count of an organization based on an
underlying TÆMS task structure is NP-hard. An informal proof follows:

This proof is based on the reduction of a minimum set covering problem to a TÆMS
based organization, where the kill-count of that organization would be the solution to
this problem. Assume a ground set M consisting of m elements, {e1, e2, ..., em} and n
subsets {s1, s2, ..., sn}. Create a TÆMS task structure, with a MAX CAF as the root
and the subsets, {s1, s2, ..., sn} as its subtask nodes. Finally replace each node si with
a MIN CAF task, the subtasks of which will be the methods, {ei,1, ei,2, ..., ei,j}, where
each method corresponds to an element of si. Finally, assign m agents to the organi-
zation, where each method corresponding to ei is assigned to agent ai. This reduction
will provably take polynomial time.

Since, (a) the problem of computing the kill count/robustness capacity of a problem
is NP-hard and (b) augmenting the organization by spawning agents at specific places
will interfere with other desirable characteristics such as balancing the execution time
and maximizing quality, we chose an alternative approach to augmenting the robustness
capacity.

In our approach, the initial root node of the global task view is cloned K−1 times and
each clone is allocated to a separate agent. These agents are responsible for individually
forming their own independent organizations and spawning and composing with agents
independently.

Frequency of are-you-alive messages. Ideally, we want each agent in the monitoring
set of an agent A to send an are-you-alive request at a different time. To achieve this,
we initialize each agent with a random seed. The next-poll-time is initialized to the poll-
interval plus this random seed. Also the next-poll-time is recalculated on receiving any
message from the monitored agent.

5 Evaluation

To evaluate the two robustness mechanisms, we ran a series of experiments that simu-
lated the operation of the OSD organization when those mechanisms were employed.
We tested the performance of the survivalist approach against the citizens approach with
the following (per agent/per cycle) probabilities of agent failures: 0.000, 0.002, 0.006
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and 0.010. Here a probability of 0.006 means that on every clock cycle, each agent has
a 0.6 % chance of failing. Note that despite these seemingly low probabilities of failure,
the rate of failure is actually greater than can be expected for any real world application.
For example, a probability of failure of 0.006 implies that every agent can be expected
to fail 15 times during a 2500 cycle run.

We used a randomly generated TÆMS task structure with a maximum depth of 4,
branching factor of 3, and NLE count of 10 to seed the experiments. We were careful
to use the same task structure, task arrival times, task deadlines and random numbers
for each of the (robustness-mechanism, failure probability) pairs. Each experiment was
repeated 15 times using a different randomly generated task structure. The experiments
were run for 2500 clock cycles. For the survivalist approach we used 3 as the value
of K , i.e. the root node is cloned twice. We used the following performance criteria to
evaluate our two approaches to robustness:

1. The average number of agents used.
2. The number of tasks completed.
3. The average turnaround time. The turnaround time is defined as the difference be-

tween the time at which a task is either completed or failed and the time at which
the task was generated (the generation time). The average turnaround time is the
turnaround time divided by the total number of tasks.

4. The average quality accrued. The average quality is defined as the total quality
accrued during the experimental run divided by the sum of the number of tasks
completed and the number of tasks failed.

5. The total messages sent by all the agents.
6. The total resource cost of the organization.

The average results for these measured performance criteria are shown in Figure 4.
We also tested the statistical significance of the obtained results using the Wilcoxon

Matched-Pair Signed-Rank tests with p < 0.05. Matched-Pair signifies that we are
comparing the performance of each robustness approach on precisely the same ran-
domized task set, environmental conditions and failure probabilities within each sepa-
rate experiment. Some interesting observations are:

– We were pleasantly surprised by the overall performance of these approaches. In par-
ticular there was no statistical difference between the number of tasks completed in
the absence of agent failure and all the situations in which the citizens approach was
employed. Only the survivalist approaches at probabilities of failure of 0.006 and
0.010 performed statistically worse than the no failure case. This result shows that
the survivalist approach is a credible distributed alternative to the citizens approach.

– As expected the fewest number of agents were used when the probability of failure
was 0. Surprisingly, not only did the survivalist approach use fewer agents than the
citizens approach, this result was statistically significant for failure probabilities
of 0.006 and 0.010. This results is surprising because we expected the survivalist
approach to use more agents since the survivalist approach pro-actively replicates
agents to increase the robustness capacity of the organization. The reasoning be-
hind this result becomes obvious once we look at the percentage of the total tasks
completed by the survivalist organizations. The survivalist organizations complete
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Fig. 4. Graph showing the various measured parameters for the different robustness mechanisms.
The numbers below the mechanisms indicate the probability of agent failure per agent per cycle.

fewer tasks for failure probabilities of 0.006 and 0.010. This is because the sur-
vivalist organizations are being overwhelmed by the failure rate – the agents are
failing much faster than the rate at which the organization can detect the failures
and restart the failed agents.

Using a higher value of K , should allow the survivalist approach to perform
as well as the citizens approach. As a part of our future work, we would like to
automatically determine the best value of K at run-time.
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– The citizens approach used a significantly larger number of messages to achieve
similar levels of robustness. This is primarily because of the monitor agent has to
record all the messages exchanged by the agents.

– Finally, the turnaround time is statistically significantly lower for the survivalist
approaches with probabilities of 0.002 and 0.006 than all the other approaches in-
cluding the no failure approach. This is probably the result of extra agents better
balancing the load of the organization.

6 Conclusion

This paper was primarily concerned with the robustness of organizations, generated at
run-time through the use of organizational-self design (OSD), in the presence of agent
failures. We have incorporated the two commonly used approaches to robustness, that
is, the citizens approach and the survivalist approach into our OSD system. The citizens
approach is simpler and more effective than the survivalist approach but suffers due to
the use of a single centralized and omniscient monitoring agent to achieve its robustness.
The survivalist approach, on the other hand, is truly distributed and we have shown it
to be a credible alternative to the citizens approach since it uses fewer agents and fewer
(communication) resources to achieve similar levels of robustness.

In our future work, we would like to develop a more fine-grained method for aug-
menting the robustness capacity of an organization in the survivalist approach — one
that will use some heuristic to compute or underestimate the current robustness capac-
ity of the organization and then augment the robustness capacity by cloning specific
agents. We would like to see if such a fine-grained approach will use even fewer agents
than the currently presented survivalist approach.

References

1. Dellarocas, C., Klein, M.: An experimental evaluation of domain-independent fault handling
services in open multi-agent systems. In: Proceedings of the International Conference on
Multi-Agent Systems (ICMAS 2000) (July 2000)

2. Smith, R.G.: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. In: Distributed Artificial Intelligence, pp. 357–366. Morgan Kauf-
mann Publishers Inc., San Francisco (1988)

3. Ishida, T., Gasser, L., Yokoo, M.: Organization self-design of distributed production systems.
IEEE Transactions on Knowledge and Data Engineering 4(2), 123–134 (1992)

4. Kamboj, S., Decker, K.S.: Organizational self-design in semi-dynamic environments. In:
AAMAS 2007, pp. 1220–1227 (2007)

5. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: Fifth
IEEE/ACM International Workshop on Grid Computing (GRID 2004), pp. 4–10 (2004)

6. Shirts, M., Pande, V.S.: COMPUTING: Screen Savers of the World Unite! Sci-
ence 290(5498), 1903–1904 (2000)

7. Wagner, T., Raja, A., Lesser, V.: Modeling uncertainty and its implications to sophisticated
control in taems agents. Autonomous Agents and Multi-Agent Systems 13(3), 235–292
(2006)

8. DeLoach, S., Oyenan, W., Matson, E.: A capabilities-based model for adaptive organizations.
Autonomous Agents and Multi-Agent Systems 16(1), 13–56 (2008)



Exploring Robustness in the Context of Organizational Self-design 95

9. Sims, M., Goldman, C.V., Lesser, V.: Self-organization through bottom-up coalition forma-
tion. In: AAMAS 2003, pp. 867–874. ACM Press, New York (2003)

10. So, Y., Durfee, E.H.: Designing tree-structured organizations for computational agents. Com-
putational and Mathematical Organization Theory 2(3), 219–245 (1996)

11. Frederic, G., Jacqueline, A.: Logical reorganization of DAI systems. LNCS. Springer, Hei-
delberg (1995)

12. Klein, M., Rodriguez-Aguilar, J.A., Dellarocas, C.: Using domain-independent exception
handling services to enable robust open multi-agent systems: The case of agent death. Journal
for Autonomous Agents and Multi-Agent Systems 7(1-2), 179–189 (2003)

13. Marin, O., Sens, P., Briot, J., Guessoum, Z.: Towards adaptive fault tolerance for distributed
multi-agent systems. In: Proceedings of European Research Seminar on Advances in Dis-
tributed Systems (ERSADS 2001) (May 2001)

14. Lesser, V.R., Decker, K., Wagner, T., et al.: Evolution of the GPGP/TÆMS Domain-
Independent Coordination Framework. Autonomous Agents and Multi-Agent Systems 9(1-
2), 87–143 (2004)

15. Chen, W., Decker, K.S.: The analysis of coordination in an information system application -
emergency medical services. In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G.,
Winikoff, M. (eds.) AOIS 2004. LNCS, vol. 3508, pp. 36–51. Springer, Heidelberg (2005)

16. Decker, K.S.: Environment centered analysis and design of coordination mechanisms. Ph.D.
Thesis, Department of Computer Science, University of Massachusetts, Amherst (May 1995)

17. Decker, K.S., Li, J.: Coordinating Mutually Exclusive resources using GPGP. Autonomous
Agents and Multi-Agent Systems 3(2), 133–157 (2000)

18. Zimmerman, T.L., Smith, S., Gallagher, A.T., Barbulescu, L., Rubinstein, Z.: Distributed
management of flexible times schedules. In: Sixth AAMAS (May 2007)

19. Shehory, O., Sycara, K., Chalasani, P., Jha, S.: Agent cloning: an approach to agent mobility
and resource allocation. IEEE Communications Magazine 36(7), 58–67 (1998)



Instrumenting Multi-agent Organisations with
Artifacts to Support Reputation Processes
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Abstract. Reputation is often cited as an instrument to enforce norm
compliance: agents that do not follow the norms have their reputation
decreased. Conceiving reputation as a collective process, i.e. a kind of
shared voices as proposed by Conte & Paolucci, is not a simple task.
In this paper, we propose a first step in this direction by instrumenting
multi-agent organisation with an artifact that publishes some objective
evaluations of the performance of the agents with respect to their be-
haviour within the organisation. The members of the organisation can
then read these evaluations and build up their reputation of others. The
artifact serves thus as an instrument that aid in the building of the rep-
utation of the agents. We propose that the evaluation of the agents is
not simply based on their obedience to norms, but also considers their
pro-activeness and their contribution to the success of collective tasks
that are being executed in the organisation. This proposal is detailed
and exemplified in the context of theMoise+ organisational model sup-
ported by a set of organisational artifacts as proposed in the ora4mas
approach.

Keywords: organisation, artifacts, norm enforcement, reputation.

1 Introduction

The concept of multi-agent organisation is becoming widely accepted as an in-
strument for open systems not only to help the coordination of autonomous
agents but also to control their autonomy [3,13]. For example, when someone
adopts the role of master student in a laboratory, she remains autonomous to
perform its research but should follow some rules of the laboratory organisation.
These rules vary from ‘the access to computers requires an username’ to ‘a mas-
ter thesis should be written in two years’. The agent is free to adopt the role,
but once adopted the organisation expects her autonomy to be limited.

An important feature of this approach when applied to multi-agent systems
(MAS) is the flexibility: the agents are neither completely autonomous to do
whatever they want nor completely constrained to pre-defined behaviours. The
� Supported by ANR Project ForTrust (ANR-06-SETI-006).
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organisation serves as a kind of ‘tuning’ of the autonomy level. To find out a
good degree of allowed autonomy is indeed a challenge, specially in the case
where the agents have to organise the system themselves [11].

The success of this organisational approach depends on how the compliance to
the rules is ensured inside the system. An approach to deal with this issue is to
use the agent’s reputation as an instrument to enforce the compliance to organ-
isational rules. The general proposal is that the agent’s behaviour is constantly
evaluated by the organisation with respect to the roles it plays and the result of
this evaluation is published to other members (phase i). This information helps
then the agents to construct the reputation of others inside the organisation
(phase ii). Hence the reputation influences decision processes (e.g. when agents
have to select partners to cooperate with), agents take care of their reputation
and behave accordingly (phase iii). While phases ii and iii are concerned with
how the agents will use the published information, the first phase can be con-
ceived outside the agents. The main contribution of this work is to describe how
this first phase of the process can be instrumented in a multi-agent organisation
by using artifacts as proposed in ora4mas [15].

The next section presents a general analysis of the norm enforcement in the
context of organisations and the main concepts used in this paper. In the se-
quence (Sec. 3), these concepts are reified on theMoise+ organisational model
on which our proposal is based both at the modelling language level and at the
organisation management level. Our proposal (to use artifacts for supporting
reputation processes in open organisations) is then detailed in Sec. 4. We finish
the paper discussing related works, specially those that consider the relation
between organisation and reputation.

2 Norms in Multi-agent Organisations

To illustrate the concepts used in the sequence of this section, we will use the
following scenario:

Alice has recently started her master’s course in a French research lab-
oratory in computer science. As a master student she has thus several
norms to follow: write a technical report from state of the art in the
thesis’ subject; write a paper in English, code programs to experiment
ideas, be friendly with colleagues, use only computers allocated to the
master course, do not break equipments, etc. Alice also plans to continue
her studies in a PhD course in the same laboratory. She is thus concerned
about her reputation during the masters because it is normally used in
the PhD selection process.

In this scenario, we can identify several norms that limit the autonomy of
Alice and that she accepted when entered in the master course. Roughly a norm
is an obligation, permission, or interdiction to perform some action or achieve
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some goal. A norm may also have a condition that states when it is active and a
deadline to be fulfilled (write a thesis in three years).1 Despite the disposition of
the agents to follow these norms or not, the organisation should have instruments
to ensure that they are followed. Before presenting these instruments, the next
subsection presents two types of mechanism to implements them.

2.1 Regimentation and Enforcement

In the above scenario, we can distinguish a sort of norms that can be ensured by
the organisation itself. For example, the norm ‘use only computers allocated to
the master course’ can be ensured by user’s profiles and passwords. In this exam-
ple, the login procedure to access computers is the instrument that implements
that norm. However, norms like ‘write a paper in English’ do not need to (or
cannot) be forced by the organisation. The organisation cannot force students
to write a paper in the same way it can force them to access only authorised
computers. We are thus considering two main mechanisms to implement norm
in a MAS:2

– Regimentation is a mechanism that simply prevents the agents to perform
actions that are forbidden by a norm. More precisely, we regiment some
actions in order to preserve important features of the system (e.g. the access
to the computers).

– Enforcement is a mechanism which is applied after the detection of the
violation of some norm. While regimentation is a preventive mechanism,
enforcement is a reactive one. From the point of view of the agents, they
may decide to obey or not the norm according to their local view of the
organisation. From a system point of view, the fulfilled/unfulfilled of the
norms should be detected, evaluated as a violation or not, and then judged
as worth of sanction/reward or not.

These two mechanisms allow us to balance (i) the ensuring of very important
properties of the system by means of regimentation and, by means of enforce-
ment, (ii) the agents’ autonomy required to keep the possibility to adapt and
evolve. The norms of the MAS can be instrumented either as regimentations
or enforcement mechanisms depending on which side the designer wants to give
more weight. Briefly, regimentation should be used to fully constrain the actions
of the agents and enforcement should be used when some violation is allowed
(or even desired).

1 We are aware that the concept of norm is broader and more complex than that
used in this paper (e.g. [21] and the Deontic Logic in Computer Science workshop
series [7]). For the present paper however this simple and informal definition is
enough to discuss the proposal.

2 This classification is based on the proposal described in [9,6]. However, we present
them in a more specific context: regimentation is applied only to the interdiction of
organisational actions and enforcement is applied to the other cases.
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2.2 Norm Management

In the context of platforms for MAS organisation the regimentation mechanism
is often used. Agents run on an infrastructure that ensures that all norms will
be respected, as in the case of Ameli [5] where norms are ensured by means
of governors, S-Moise+ [12] by organisational proxies, and ora4mas [15] by
organisational artifacts. For example, when an agent sends a message in the
context of a protocol execution, if the message does not follow the rules stated
by the protocol, the message is not indeed sent. The action of the agent is not
executed since it cannot violate the norm entitled by the protocol. Organisational
infrastructures normally use regimentation as an instrument to implement its
norms.

Some organisational models have however norms that cannot be implemented
by regimentation. In theMoise+ model, for example, two roles may be related
by an authority link: the agent playing the role ρ1 has to obey orders from
the agent playing the role ρ2 [13]. It is very difficult to have instruments that
regiment this norm in a MAS, specially in open systems where the internal state
of the agents is neither visible nor controllable by the organisation. Enforcement
mechanisms are thus required to implement the norms in cases like that.

The enforcement mechanism normally considers two main steps: violation de-
tection and sanction application. The detection of violation is certainly a hard
task in MAS and several proposals have been presented (e.g. [22]). However, as
stressed in [9] detection without sanction is worthless. The problem we identi-
fied and that motivated our work is that, as far as we know, no organisational
platform consider the sanction issue.

In this paper, we propose to instrument the organisation with an artifact
that could help in the first phase of a sanction system based on reputation, as
described in the introduction: evaluation of the behaviours of agents within an
organisation. The proposed artifact is detailed on a particular organisational
model:Moise+. The next section thus briefly describes this model based on an
example and identifies some of its norms. The section also describes how they
are managed within the ora4mas approach.

3 The Moise+ Organisational Model and Its Artifacts

TheMoise+ model proposes an organisational modelling language that explic-
itly decomposes the specification of organisation into structural, functional, and
deontic dimensions [13]. The structural dimension specifies the roles, groups, and
links of the organisation. The definition of roles states that when an agent de-
cides to play some role in a group, it is accepting some behavioural constraints
related to this role. The functional dimension specifies how the global collective
goals should be achieved, i.e. how these goals are decomposed (in global plans),
grouped in coherent sets (by missions) to be distributed to the agents. The
decomposition of global goals results in a goal-tree, called scheme, where the
leaves-goals can by achieved individually by the agents. The deontic dimension
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is added in order to bind the structural dimension with the functional one by
the specification of the roles’ permissions and obligations for missions.

As an illustrative and simple example of an organisation specified using
Moise+, we consider agents that aim at writing a paper and therefore have
an organisational specification to help them to collaborate. The structure of this
organisation has only one group (wpgroup) with two roles (editor and writer)
that inherit all properties defined for the role author. The cardinalities and
links of this group are specified, using the Moise+ notation, in Fig. 1(a): the
group wpgroup can have from one to five agents playing writer and exactly one
playing editor; the editor has authority over writer and every agent playing
author (and by inheritance everyone playing writer or editor) has the pos-
sibility to communicate with every agent playing author (communication link
from author to author). In this example, the editor and the author roles are
not compatible. To be compatible, a compatibility relation must be explicitly
added in the specification.

To coordinate the achievement of the goal of writing a paper, a scheme is
defined in the functional specification of the organisation (Fig. 1(b)). In this
scheme, a draft version of the paper has to be initially defined (identified by the
goal fdv in Fig. 1(b)). This goal is decomposed into three sub-goals: write a title,
an abstract, and the section titles. Other agents then ‘fill’ the paper’s sections
to get a submission version of the paper (identified by the goal sv). The goals
of this scheme are distributed in three missions which have specific cardinalities
(cf. Fig. 1(c)): mMan for the general management of the process (one and only
one agent can commit to it), mCol for the collaboration in writing the paper’s
content (from one to five agents can commit to it), and mBib for getting the
references for the paper (one and only one agent can commit to it). A mission
defines all goals an agent commits to when participating in the execution of a
scheme, for example, commit to the mission mMan is indeed a commitment to
achieve four goals of the scheme. Goals without an assigned mission are satisfied
by the achievement of their subgoals. The deontic relation from roles to missions
is specified in Fig. 1. For example, any agent playing the role editor is permitted
to commit to the mission mMan.

The specification of an organisation is written in a suitable language, that the
agents are supposed to interpret. This language is founded on components repre-
sented by predicates and functions. We present here only those components that
are used in the sequel of the paper. Considering an organisational specification,
G is the set of all group specifications, R is the set of all roles, S is the set of all
scheme specifications,M is the set of all missions, and Φ is the set of all goals.

– compat(g, ρ, C): is a predicate that is true when the role ρ (ρ ∈ R) is com-
patible with all roles in the set C (C ⊆ R) when played in the group g
(g ∈ G);

– mission scheme(m, s) is a predicate that is true when the mission m (m ∈
M) belongs to the scheme s (s ∈ S);

– goal mission(ϕ, m): is a predicate that is true when the goal ϕ (ϕ ∈ Φ)
belongs to the mission m (m ∈ M);
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(a) Structural Specification (b) Functional Specification

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

(c) Missions

role deontic relation mission

editor permitted mMan
writer obliged mCol
writer obliged mBib

(d) Deontic Specification

Fig. 1. Graphical representation of the organisational specification for the writing pa-
per example with the Moise+ OML

– obl(ρ, m): is a predicate that is true when the role ρ has an obligation relation
to the mission m;

– goal role(ϕ, ρ): is a predicate that is true when the role ρ is obliged to the
goal ϕ, this predicate is defined as follows

goal role(ϕ, ρ)↔ goal mission(ϕ, m) ∧ obl(ρ, m)

3.1 ORA4MAS: Managing Organisation with Organisational
Artifacts

TheMoise+ model is implemented, on one hand, by an organisational modelling
language to program declarative organisation specifications, and, on the other
hand, by organisational artifacts, as those proposed in ora4mas approach [15],
that interpret the specification and manage the organisation. The conception of
the artifacts follows the A&A (Agents and Artifacts) model [18]. In this model,
the environment is not a merely passive source of agent perceptions and target
of agent actions, but a first-class abstraction that can be suitably designed to
encapsulate some fundamental functionalities and services, supporting MAS di-
mensions such as coordination and organisation. In particular A&A introduces
a notion of artifact as first-class abstraction representing function-oriented dy-
namic entities and tools that agents can create and use to perform their individ-
ual and social activities. Thus, while agents are goal-oriented pro-active entities,
artifacts are function-oriented passive entities, designed by MAS designers to
encapsulate some kind of functionality, by representing (or wrapping existing)
resources or instruments mediating agent activities.
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Fig. 2. Agents and Organisational Artifacts

Each artifact is mainly
composed of two interfaces:
usage and link interfaces. The
usage interface include (1) a
set of operations that agents
can trigger to get artifact ser-
vices and behaviours, and (2)
a set of observable proper-
ties that the agents can in-
spect (observe) without nec-
essarily executing operations
on it. The execution of an
operation upon an artifact
can result both in chang-
ing the artifact’s inner (i.e.
non-observable) state, and in
the generation of a stream
of observable events that can
be perceived by agents that
are using or simply observ-
ing the artifact. The link in-
terface provides operations to
another artifact enabling composed functionalities. Agents exploit artifacts func-
tionality (that is, they use artifacts) by acting on artifact usage interface which
functions as a control panel, and can be aware of artifact observable state by
observing observable properties.

As depicted in Fig. 2, agents are situated in an environment with artifacts
that they can use for different services. In the particular case of ora4mas, we are
emphasising the organisational artifacts that offer all organisational services re-
quired in an organisational management platform. There are three main types of
artifacts in the figure: group, scheme, and artifacts for the reputation processes.
The latter will be explained in the next section. Group artifacts maintains the
state of an instance of group type and offer operations related to this group. For
example, when an agent wants to adopt a role in a group, she should go to the
corresponding artifact and trigger the adoptRole operation. Similarly, a scheme
artifact offers operations related to the execution of an instance of a scheme, e.g.
commitment to missions. As observable properties, the group artifact shows the
current players of the group and the scheme shows the players and possible goals.
More precisely, from the observable properties of all organisational artifacts, we
can define the following sets, predicates, and functions:

– A: the set of all agents inside the organisation;
– plays(α, ρ, g): it is true that the agent α plays the role ρ in the group g (g

is an instance of a group in G);
– committed(α, m, s) it is true that the agent α is committed to the mission

m in the scheme s (s is an instance of a scheme in S);
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– achieved(ϕ, α): it is true that the goal ϕ is already achieved by the agent α;
– possible(ϕ): it is true that the goal ϕ is possible. Possible goals are those

that are not achieved yet and that all pre-condition goals are satisfied. For
example, the goal ‘to write the conclusion of the paper’ can be achieved only
after the goal of writing sections was achieved;

– succeeded(s) it is true that the scheme s has finished successfully.

Besides providing operations and information to the agents, ora4mas arti-
facts are also responsible to (i) ensure that all regimented norms are followed by
the agents and (ii) detect the violation of norms. However they do not implement
the violation policies that conclude to sanctions (these policies are delegated to
organisational agents). All violated norms can be both displayed as observable
properties of the artifact and sent to the reputation artifact. As well as a clear
separation of concerns between agents and artifacts, the A&A approach simpli-
fies the decentralisation of the infrastructure once one artifact is loosely coupled
to others.

3.2 Moise+ Norms

Based on theMoise+ specification and a platform like ora4mas that provides
runtime information of the current state of the organisation, we can write several
norms to constrain the agent’s behaviour. However it is not the focus of this paper
to present how the overall organisational specification is translated to norms.
Two examples are thus presented to illustrate the use of norms in a Moise+

based organisation. In the following these norms are represented as a pair where
the first argument is the condition part stating when the norm is active and
the second argument is the action part stating an obligation, permission, or
interdiction.

Example 1: roles are incompatible unless explicitly stated the contrary in the
specification. Thus, if it is stated that two roles ρ1 and ρ2 are compatible inside a
group g (compat(g, ρ1, {ρ2})), it implies that an agent that plays ρ1 in the group
g cannot perform the operation adoptRole(ρi, g) for any i �= 2. This constraint
on role adoption is formalised by the following norm:

(plays(α, ρ, gb) ∧ compat(g, ρ, C),
∀ρi∈R\C forbiden(α, adoptRole(ρi, g)))

(1)

The condition of the norm (the first line) is a conjunction of predicates.
Its evaluation is given by the particular circumstance of the group (that de-
fines whether plays(α, ρ, gb) holds or not) and the structural specification being
used (that defines whether compat(g, ρ, C) holds or not). The action part of the
norm (the last line) states that it is forbidden for agent α to execute the action
adoptRole on any role that does not belong to the set of compatible roles C.
Based on this norm, as soon as an agent adopts a role (activating the norm), the
adoption of other roles that are not explicitly stated compatible are forbidden
for it.
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Once this two norm is of the type ‘action interdiction’, they can be easily
implemented by regimentation: whenever the adoptRole operation is requested
by the agent α, if the condition of the norm holds, the execution of the corre-
sponding operation is denied.

Example 2: once an agent α is committed to a mission m, it is obliged to fulfil
the possible goals of the mission. The norm below specifies that rule.

(committed(α, m, s) ∧ goal mission(ϕ, m) ∧ possible(ϕ, s),
obliged(α, ϕ))

(2)

While the first norm can be easily implemented in the organisational artifacts
(adopt role(ρ, g) is an organisation action under the control of the artifact),
the implementation of this latter example is not so easy: how can we detect that
some agent is not pursuing a goal without accessing its internal state; how can
we enforce agents to follow their organisational obligations. The next section
deal with these problems.

4 Instrumenting Reputation Processes with Artifacts

The reputation is widely cited as an instrument to enforce norms [8,9,16,22].
However few proposals are detailed in the context of an organisational infras-
tructure that aims to enforce its norms. Inspired by the concept of reputation
artifact proposed in [2, p. 101], this section details such artifact in the context
of the ora4mas approach. It provides first class constructs which can be easily
used to enrich the support of reputation processes.

4.1 Agent’s Reputation

The new artifact that we propose to add in the system serves as an indirect
sanction instrument for norms enforcement. While direct sanctions are applied
when the violation is detected, indirect sanctions have long term results, as is
the case of reputation.

This very artifact is linked to all organisational artifacts of the ora4mas and
can be observed by all agents inside the organisation. Other artifacts notify it
about the current state of the organisation and then this information is used to
compute an evaluation for each agent inside the organisation. This evaluation is
published as an observable property of the artifact. It is important to notice that
the evaluation is not the reputation of the agent, as remarked in [2], reputation
is a shared voice circulating in a group of agents. This artifact is indeed an
instrument to influence the reputation of the agent.

Several criteria may be used to evaluate an agent inside an organisation.
Herein we choose to evaluate an agent in the context of the roles and missions
she is engaged. Three criteria are used: obedience, pro-activeness, and result.

The obedience of an agent is computed by the number of obliged goals an
agent achieves. The goals an agent is obliged to achieve are defined by norms
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(as that presented in the Example 2). All obliged goals that were not yet achieved
are considered as a violation.3 The general mission obedience function (o : A →
[0, 1]) and the obedience in the context of a particular mission (om : A×M→
[0, 1]) and role (or : A ×R → [0, 1]) are calculated as follows (in the equations
# is a function that returns the size of a set):

o(α) =
#{ϕ | obliged(α, ϕ) ∧ achieved(α, ϕ)}

#{ϕ | obliged(α,ϕ)}

om(α, m) =
#{ϕ | obliged(α,ϕ) ∧ goal mission(ϕ, m) ∧ achieved(α, ϕ)}

#{ϕ | obliged(α, ϕ) ∧ goal mission(ϕ, m)}

or(α, ρ) =
#{ϕ | obliged(α,ϕ) ∧ goal role(ϕ, ρ) ∧ achieved(α,ϕ)}

#{ϕ | obliged(α, ϕ) ∧ goal role(ϕ, ρ)}

o(α) = 1 means that the agent α achieved all its obligation and o(α) = 0 means
she achieved none. om(α, m) = 1 means that the agent achieved all goals when
committed to the mission m, and or(α, ρ) = 1 means that the agent achieved all
goals when playing the role ρ.

The pro-activeness of an agent is computed by the number of goals an agent
achieves such that she is not obliged to fulfil that goal in a scheme. The general
pro-activeness function (p : A → [0, 1]) and the pro-activeness in the context of
a particular mission (pm : A ×M → [0, 1]) and role (pr : A × R → [0, 1]) are
calculated as follows:

p(α) =
#{ϕ | achieved(α, ϕ) ∧ ¬obliged(α, ϕ)}

#Φ #S

pm(α, m) =
#{ϕ | achieved(α, ϕ) ∧ ¬obliged(α,ϕ) ∧ goal mission(ϕ, m)}

#{ϕ | committed(α,m, ) ∧ goal mission(ϕ, m)}

pr(α, ρ) =
#{ϕ | achieved(α, ϕ) ∧ ¬obliged(α, ϕ) ∧ goal role(ϕ, r)}

#{ϕ | committed(α,m, ) ∧ goal mission(ϕ, m) ∧ goal role(ϕ, r)}

p(α) = 1 means that the agent achieved all goals she is not obliged to (a highly
pro-active behaviour) and p(α) = 0 means the contrary.

The results of an agent is computed by the number of successful execution
of scheme where she participates. It does not depend on the achievement of the
goals in the scheme. It means the agent somehow share the success of the scheme
execution and likely has helped for the success. The general results function
(r : A → [0, 1]) and the results in the context of a particular mission (rm :
A×M→ [0, 1]) and role (rr : A×R→ [0, 1]) are calculated as follows:

3 We still do not consider the temporal dimension of the obligations. For instance, once
an obliged goal is possible for an agent, it is violating the corresponding norm until
the achievement of the goal because there is not timeout assigned to the obligation.
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r(α) =
#{s | committed(α, , s) ∧ succeeded(s)}

#{s | committed(α, , s)}

rm(α, m) =
#{s | committed(α,m, s) ∧ succeeded(s)}

#{s | committed(α, m, s)}

rr(α, ρ) =
#{s | committed(α,m, s) ∧ succeeded(s) ∧ obl(ρ, m)}

#{s | committed(α, m, s) ∧ obl(ρ, m)}

r(α) = 1 means that all schemes the agent participated have finished successfully
and r(α) = 0 means the contrary.

Unlike the previous two criteria, the results value of an agent cannot be in-
creased by the agent itself. This evaluation depends on the performance of all
agents committed to the same scheme, creating thus a dependence among them.
The selection of good partners is therefore important and the reputation artifact
could be used for that purpose.

The aforementioned criteria are combined into a single overall evaluation of
an agent (e : A → [0, 1]) by the following weighted mean:

e(α) =
γ o(α) + δ p(α) + ε r(α)

γ + δ + ε

em(α, m) =
γ o(α, m) + δ p(α, m) + ε r(α, m)

γ + δ + ε

er(α, ρ) =
γ o(α, ρ) + δ p(α, ρ) + ε r(α, ρ)

γ + δ + ε

The factors γ, δ, and ε are used to define the importance of the obedience,
pro-activeness, and results values respectively.

All these objective values provided by the reputation artifact can then be
used by agents to compute the reputation of others. It is possible that in one
organisation where violation is the rule, if you are a strong violator of norms,
your reputation is perhaps greater that in an organisation where violation is not
at all the rule.

4.2 Example

This subsection illustrates the evaluations performed by the reputation artifact
based on a small history of the organisation created to write papers and presented
in the second section. Three instances of the scheme were executed as shown in
Table 1, the first and third executions have finished with a paper written, but
the second has failed. In the first scheme Bob has chosen Alice as a partner
and in the second scheme the partner was Marc. Even though all goals were
achieved in the second scheme, the overall scheme failed. One possible reason is
the competence of Marc to achieve his goals. In the third scheme Bob decided to
work with both Alice and Marc. The scheme finished successfully. Note however
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Table 1. Example of an history of the organisation

Scheme Agent Role Mission Achieved Goals Unachieved goals

s1 Bob editor mMan wtitle, wabs, wsectitle, wcon
Alice writer mCol wsec
Alice writer mBib wref

s2 Bob editor mMan wtitle, wabs, wsectitle, wcon
Marc writer mCol wsec
Marc writer mBib wref

s3 Bob editor mMan wtitle, wabs, wsectitle, wcon
Alice writer mCol wsec, wref
Marc writer mCol wsec
Marc writer mBib wref

Table 2. Example of observable properties of the reputation artifact

Agent omMan omCol omBib oeditor owriter o p r e

Bob 12/12 – – 12/12 – 12/12 0/18 2/3 0.29
Alice – 2/2 1/1 – 3/3 3/3 1/18 2/2 0.41
Marc – 2/2 1/2 – 3/4 3/4 0/18 2/3 0.26

that Marc did not achieve the goal of compiling the references. This task was
done by Alice, even though wref was not her goal.

In the Table 2 the evaluation of the three agents are shown. Only the obligation
criteria is presented in all contexts (missions and roles), for the others the general
evaluation is included in the table. The values used for γ, δ, and ε are respectively
1, 5, and 2. With these parameters, pro-activeness is the more important criteria
resulting in Alice as having the best evaluation since she was the only one that
performed not obliged goals.

5 Related Works

Some works that consider both the organisation and the reputation are con-
cerned to the problem of how an agent can use the position of another agent
in a organisation as an evaluation criteria. This approach is well illustrated in
the example cited by [4] where a police uniform gives some reputation to an
agent wearing it because of the organisation represented by the uniform. The
REGRET [19] and FIRE [14] reputation models also take this direction and
use the organisation as yet another source of information (as direct interaction
and witness) to form the reputation of a target agent. The organisation gives a
kind of ‘label’ (as an uniform or a role) to the agents. Summing up, they have
an agent centred approach and thus collective issues like norm enforcement and
sanctions are not considered.
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On one hand, our proposal is complementary to the approach used in the
works cited above given an organisation centred view of the problem. Although
we do not consider how the agents build the reputation of others, we provide an
objective and detailed source of information to the agents’ reputation model. The
information published in the reputation artifact has two important features: (i)
it is not a simple label assigned to agents (‘Bob plays editor’) but an evaluation of
the performance of the agent in an organisational context (role or mission); and
(ii) it does not depend on a subjective evaluation, but is rather precisely com-
puted. On the other hand, we differ from the agent centred approach placing the
reputation artifact inside the organisation. It is supposed to be used by agents
of the organisation to chose partners and to improve the overall organisational
performance, working as norm enforcement instrument.

Another important work in the domain is presented in [10]. They also take
an agent centred approach and propose to consider the place of an agent in the
organisation in different contexts. The three levels of evaluation described in our
evaluation mechanism (general, role, mission) are inspired by their work.

In a recent work, Da Silva et al [20] proposed an approach that considers
both an agent and an organisation centred approach. Agents evaluate others
regarding the compliance of their behaviour vis-à-vis the norms. The evaluation
and the reasons for such evaluation are then sent to the organisation. One ad-
vantage of their proposal is that the agents’ evaluations are distributed, since
they are performed by agents. This feature requires however that the system is
also concerned of the reputation of the agent as ‘evaluators’. As in our approach
the evaluation is performed by the infrastructure, we can assume the correctness
and objectiveness of the information. Another difference is that our evaluation
is not based only on norm conformity, the pro-activeness of the agents is also
taken into account.

Our approach also shares one property with traditional reputation systems
as eBay: the centralisation and publication of the information. Although the
evaluations of our proposal are published in one artifact, they are computed by
several distributed artifacts (scheme and group artifacts). Another difference is
that the evaluation is not performed by users but based on precise metrics with
a clear meaning.

Although several authors comment that reputation can be increased or
decreased as a kind of sanction, they do not tackle the problem of how to in-
crease/decrease reputation. It is a problem specially when considering the def-
inition of reputation as proposed by [2] – reputation is something outside the
agents, but known by them. In this case, to change the reputation is neither to
simply change a value in a database nor to answer this value when requested
(serving as a witness). The public character of the value is important, and it is
achieved by our proposal of reputation artifact.

6 Conclusion and Perspectives

This paper presented work in progress that includes reputation as an instrument
to enforce norms inside organisations. Its contribution is twofold: (i) a detailed
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agent evaluation process that considers the agents obedience, pro-activeness and
results in three levels (general, role, mission); and (ii) the use of artifacts as
instruments for an indirect sanction system. The inclusion of pro-activeness leads
us to a system that is not based only on obedience, as pointed out for example
by [1], sometimes the agents should break the rules. The inclusion of results
forces the agents to choose good partners in the execution of collective tasks. To
choose good partners, the reputation artifact can be used, improving thus the
importance and effect of this artifact. Although we have presented the concept
of reputation artifact in the case of ora4mas and Moise+, its application on
other infrastructures is straightforward.

As future work, we intend to study “the agents’ side” (phases ii and iii cited
in the introduction): how the information provided by the reputation artifact
can be concretely used by the reasoning mechanisms of the agents and how the
reputation of the agents are formed. We also plan to implement our proposal
in an agent programming language where artifacts are well integrated, as those
proposed in [17], and perform an evaluation in a real scenario.
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Abstract. In this paper we present a hybrid reputation model focused
on organizational structures that attempts to solve problems associated
with both centralized and decentralized reputation models. Agents in our
approach are able not only to evaluate the behavior of others and store
reputations values but also to send such information to a centralized
mechanism and ask for reputations to this one and to other agents. The
main objective of our approach is to allow agents to reason about the
reputation values that they receive. Therefore, together with the reputa-
tion values, agents store and send information about norms violated and
fulfilled and about the facts that contributed to such behavior. Further-
more, this model provides two different types of reputations, as service
provider that is related to the behavior of an agent while providing a
service to other agents and as reputation source that is related to the
behavior of an agent while providing reputation of others.

1 Introduction

Several reputation models have been proposed with the aim to make available
the reputations of agents interacting in multi-agent systems (MAS). The central-
ized approaches [2,3] provide mechanisms that aggregate the feedback about the
behavior of the agents and make available their reputations. Agents executing
in those systems are able to a) evaluate the behavior of others with whom they
have interacted and b) provide testimonies to the reputation model about such
behavior. This kind of models presents some problems, such as: i) scalability,
since it could be necessary to store too much information, and ii) most of those
models does not allow the agents to know the reputation providers, since usually
this type of social information is not stored.
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On the contrary, the decentralized reputation models such as [7,9,15] emerged
in order to solve the problems of centralized models. They usually have no cen-
tral authority and allow agents to assess reputation values by asking other agents
about their past experiences, so solving i. Furthermore, agents can reason about
those that behave as reputation source, i.e., those that are requested to pro-
vide reputation about third parties (solving ii). However those mechanisms still
present some problems, such as: iii) how agents find out “good” reputation
sources - what can become a problem as difficult to solve as finding a “good”
counterpart to interact with. And iv) how to give incentives (and what kind of
incentive) to agents in order to share their opinions with others.

As we have pointed out, there exist some pros and cons from using both cen-
tralized and decentralized reputation models. Nevertheless, they also present a
problem shared by both of them: the interpretation of reputation values is never
provided when agents exchange reputation values (decentralized models) or even
when they ask for them to the system (centralized models). Only the reputation
values themselves are presented and no information about fulfilled and violated
norms or about the facts that have contributed to such fulfillments or viola-
tions are shared. Since two different agents can evaluate the same situation in
different ways, it is really a hard task to interpret the reputation values and dis-
tinguish trustworthy and untrustworthy agents without additional information
about their behavior.

In this paper we propose a hybrid reputation system that uses a centralized
and a decentralized mechanism by taking the benefits provided by them while
trying to solve some of their drawbacks. The main characteristics of our approach
are: a) agents are able to evaluate the behavior of other agents, store such in-
formation, and provide to the organizations (they are not forced to do this) the
reputations evaluated and the reasons for such evaluations (violated and fulfilled
norms and the facts that have violated or fulfilled the norms); b) organizations
implement centralized mechanisms and, therefore, are able to store and to pro-
vide the reputation values and related information, and also the identification of
the agents that have provided the information; c) together with the reputation
values, agents store and send information about norms violated and fulfilled and
about the facts that contributed to such behavior and in addition d) the model
allows considering two different dimensions for reputation: agents’ reputation as
service providers and agents’ reputation as reputation sources. While the rep-
utation as service provider represents the degree of satisfaction an agent has
obtained after performing an interaction, the reputation as reputation source is
related to the degree of satisfaction an agent obtains after requesting reputa-
tion about other agents to a third party, it evaluates the behavior of an agent
while providing information about the reputation of others. Our hybrid model
tries to solve the underlined problems mentioned above by giving more semantic
meaning to traditional reputation techniques.

Our approach is supported by the scope of organizations, where agents enact
some roles in different interactions in order to achieve some goals. Some bene-
fits can be obtained from using this approach (i.e. in [6]), since organizational
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structures provide a semantically richer information when dealing with reputa-
tion values and their reasons.

The paper is organized as follows. In Section 2 we present an overview of the
proposed hybrid reputation model. Section 3 details the decentralized mechanism
and Section 4 presents the centralized one. Section 5 presents some discussions
about related work and Section 6 summarizes and points out some future work.

2 Hybrid Model Overview

Organizational approaches are more and more used in order to build Multi-
Agent Systems (MAS) since they allow facing complex problems using simple
abstractions [8]. Those abstractions can be concepts that structure relationships
among organization members, such as roles that agents can play and interactions
that agents can use to communicate to each other, and also constraints, such as
norms that establish undesirable agents’ behavior. In this paper an organization
is specified by the following definition:

Definition 1. Let O ≡ (R, I,A,ON ) be an organization formed by the follow-
ing essential elements:

1. A set R of roles that are involved in these interactions and can be played by
agents in O.

2. A set I of interactions available for agents within O.
3. A set A of agents (or organization members) that play the roles in O.
4. A set ON of organizational norms that regulate the behavior of the agents

playing roles in O.

A typical organization establishes a set R of roles as positions that agents have
to put themselves in order to achieve some specific goals while interacting with
other agents. Therefore, organizations have to be capable of providing a set I of
interactions that can be used by agents to interact with each other. In addition,
organizations can define a set ON of organization norms that regulate agents
behavior by establishing how agents are expected to fulfill their roles in the
organizations in terms of rights and duties.

Although our model assumes that norms can sometimes be violated. Those
norms describe actions that agents are prohibited, permitted or obligated [13] to
do and the sanctions to be applied in the case of violations and rewards to be
provided in the case of fulfillment [14].

Reputation mechanisms are well-known techniques to fight against unexpected
behavior (i.e. norm violations) since they provide agents with relevant informa-
tion about the trustworthiness of others. The aim of this work is twofold: i) to
present a hybrid reputation model that, based on the organizational structures
(i.e. roles, norms, ...), tries to improve the performance of the organization; and
ii) to improve the accuracy of reputation mechanisms by using these structures,
taking into account the semantics they provide.
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2.1 Model Architecture

In order to endow agents with a hybrid behavior concerning reputation mecha-
nisms within the organization, we propose the architecture described in Figure 1.
There we can observe:

Fig. 1. Model architecture

– A Centralized Reputation Mechanism that contains the following entities:
1. A service that allows agents to send information about others’ reputa-

tion.
2. A service that allows the organization to inform agents about others’

behavior.
3. A module that deals with the aggregation of information provided by

agents.
4. A central repository where the information is stored.

– A Decentralized Reputation Mechanism composed of the data agents gather
by interacting with others.

2.2 Definition of Model Elements

Previous paragraphs pointed out our intention to present a reputation model
based on the advantages provided by organizational structures. In this section
we stress the relationship between the essential model elements defined in orga-
nizations and the agents’ reputations.

Reputation of agents is usually associated with the behavior of an agent while
playing a role in a given interaction. Therefore, we have defined the concept of
situation in order to relate agents, interactions and roles, three essential elements
of organizations. A similar approach is described in [5,6].
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Definition 2. Let S ≡ 〈Ai,Rj , Ik,Oo, t〉 be a situation where Ai ∈ A is an
agent member of the organization Oo ∈ O, Rj ∈ R represents a role enacted by
Ai and Ik ∈ I represents an interaction performed by Ai playing the role Rj,
at instant t.

A situation can be related to the violation or to the fulfillment of a norm. Both
violations and fulfillments are associated with facts that were executed or with
facts that should have been executed. In order to state such type of situations
we have defined the concept of (il)legal situation (I)LS.

Definition 3. Let (I)LS ≡ 〈Sl,Nm,Fn〉 be a illegal situation ILS if the situa-
tion Sl - 〈Ai, Rj , Ik, Oo, t〉 - entails a violation of a norm Nm broken by Ai due
to some facts represented by Fn or a legal situation LS if the situation Sl entails
a fulfillment of a norm Nm by Ai due to the facts represented by Fn .

Most of the reputation systems use quantitative values (opinions) to indicate the
reputation of agents. However, such information is not sufficient to understand
the behavior of the agents since such values are subjective, i.e. the same norm
violation or fulfillment can be differently evaluated by two different agents. The
subjective opinion of each agent about the same third party behavior could
entail the problem of interpreting the meaning of the agent reputation. In order
to tackle this, we propose a reputation model that not only takes into account a
numerical value as the opinion an agent provides about a third party behavior,
but also the set of norms that the latter has violated or fulfilled and the facts
associated with them as a justification of the former’s evaluation. This could be
viewed as a single-step argumentation about how an agent evaluates the opinion
about others.

Definition 4. Let RI ≡ 〈Pq, (I)LSr, Rep〉 be a reputation information pro-
vided by the agent provider Pq ∈ A about an (il)legal situation (I)LSr ∈ (I)LS
associated with the reputation value Rep.

The reputation Rep of an agent can vary from [−1, +1]. Norm violations are
described by illegal situations and are represented by negative reputation values
[−1, 0). Norm fulfillments are described by legal situations and are represented
by positive reputation values [0, +1].

In order to illustrate the need for stating the norm violated and the facts asso-
ciated with such violation while informing the reputation of an agent, consider
the following example. Alice is looking for a seller to purchase a new guitar.
In order to choose the most trustworthy one, she decides to ask other agents
for opinions about sellers that have sold guitars (or musical instruments) to
them. Note that she is searching for opinions about similar situations such as
Si = 〈Bob, Seller, SellInstruments, 〉, where Bob is one of the available sellers
with whom Alice is interested to interact using a SellInstruments interaction.
In the case of seller Bob three agents have sent the following reputation values
〈−0.4,−0.1,−0.5〉. By analyzing such reputations she can only conclude that Bob
has violated norms while interacting with those agents but she cannot under-
stand why there exist different reputation values. She has received three different



116 V.T. da Silva, R. Hermoso, and R. Centeno

reputation values about the same agent in similar situations and she does not
know what has happened when those agents have interacted with Bob.

If Alice had received not only the reputation values but also the information
about the norms violated and the facts that have violated the norms, Alice
would be able to understand the different agents’ opinions. She would be able to
understand that similar violations can be evaluated in different ways and diverse
punishments can, thus, be applied by different reputation sources.

2.3 Types of Reputation

In the previous section we have only presented the definition of reputation but we
have not stressed the different types of reputation we consider in our approach.
We distinguish between two different dimensions of reputation:

– Reputation as a service provider. This value represents the degree of satisfac-
tion an agent has obtained after using a service provided by another agent,
i.e., it indicates the quality of the service provided in the point of view of
the agent using such service. This reputation reflects the fulfillment and vi-
olations of organizational norms (ON ) in an interaction playing a specific
role.

– Reputation as a reputation source. This kind of reputation is related to the
degree of satisfaction that an agent obtains after requesting opinions about
others to a third party. The reputation of an agent as a reputation source
evaluates the behavior of such agent while providing information about the
reputation of others. If an agent has a bad reputation as reputation source,
the opinions it has provided about other agents should not be trustworthy.
The reputation of an agent as a reputation source is related to the role
reputation provider and to a unique norm that prohibits the agent from
lying when informing others about a counterpart’s reputation.

It is fundamental to distinguish these two different dimensions of reputation
since, on the one hand, the former deals with the quality, competence, availabil-
ity, etc. of the agent which is requested for some kind of interaction to provide a
service. On the other hand, the second reputation is calculated in order to mea-
sure how popular and accurate is another agent providing reputation information
about third parties1. Both values are important depending on the information
the agent needs in each moment.

2.4 Organizational and Individual Norms

At the beginning of this section we have defined an organization as an entity
which is formed, among others, by a set of organizational norms (ON ) that
regulate the behavior of agents in different situations.
1 Reputation as a reputation source could be seen as a particular case of the first type

of reputation. It is the agent’s reputation when providing the service of informing
others about reputation of another one. We distinguish both types in order to make
clear the different natures they have and the different ways of assess them.
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Definition 5. Let ONOo(Rj , Ik) be an organizational norm of the organization
Oo ∈ O applied to the members of the organization playing the role Rj ∈ R in
the interaction Ik ∈ I. If Rj is not specified, the norms are applied to all agents
playing any role in the interaction Ik. If Ik is not defined, the norms are applied
to all agents playing the role Rj in any interaction. If neither Rj nor Ik are
specified, the norms are applied to all members of the organization Oo.

Note that when describing an (il)legal situation, the norm being mentioned in the
situation must be a valid norm, i.e., must be a norm that is defined for the role
being mentioned and for the interaction being described. From a social point of
view - macro level - ON are global norms commonly accepted by all organization
members. They are imposed by the organization and are publicly advertised. On
the other hand, from an individual point of view - micro level - agents may define
their own norms by specializing the organization norms and making them more
restrict. Such norms, called individual norms, reflect the relevance the global
norms represent to the agents and cannot be used as a mechanism to modify
or delete organization norms. In contrast to organizational norms, individual
norms are not public but can be shared with anyone according to the agent
decision. While evaluating the behavior of agents, an agent may consider both
the organizational and individual norms. An individual norm that specializes an
organizational norm ON x is also related to the same (Rj , Ik) tuple defined by
ON x, that is, the individual norm is applied to the same interaction and role as
the organizational norm that it specializes.

Definition 6. Let INAi(Rj , Ik) be an individual norm applied by agent Ai to
the agents playing the role Rj ∈ R in the interaction Ik ∈ I.

The reputation RepAi→Aj resulting from applying agent Ai’s assessment about
other agent Aj regarding to violations and fulfillment of norms is as follows:

– If Aj has fulfilled the organizational norm2, then RepAi→Aj ∈ [0, +1]. The
specific value will be generated by the agent according to the fulfillments of
the individual norms. If no individual norm has been fulfilled then RepAi→Aj

= 0.
– If the organizational norm has been fulfilled and so have the individual ones,

then RepAi→Aj = +1.
– On the other hand, the violation of the organizational norm entails that

RepAi→Aj ∈ [−1, 0). The adjustment of the specific value calculated in this
range will result from checking individual norms.

– If the organizational norm and the individual norms have been violated, then
RepAi→Aj = −1.

By using this approach we allow agents, on the one hand, to specify at their
will the reputation values to be associated with the agents behavior, and, on the
other hand, to use a one-step argumentation when sending all the information
related to a reputation value to others (included in the organization).
2 Here the organizational norm refers to that from which the individual norm is spe-

cialized.
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3 Decentralized Mechanism

In order to make use of our proposed reputation mechanism, the agents must
be able to individually evaluate (as well as storing) the behavior of other agents
with whom they have interacted and also of providing such information to the
organization they belong to (centralized part) or to other agents if requested.
Such evaluation must be made according to the set of organizational norms
defined in the organization and also according to the set of individual norms
defined by the agent itself.

3.1 Evaluating Agents’ Behavior When Providing a Service

We are assuming that agents are able to interpret norms and also to identify
that an action is violating a norm. In order to help agents in doing such tasks,
approaches such as [10], can be used.

While evaluating the behavior of other agents, an agent must focus on the
service being provided, i.e., on the interaction being checked and on the role be-
ing played by the other agent. A reputation value should be generated for each
〈Rj , Ik〉 tuple by separately considering each norm that regulates such interac-
tion and/or role. Note that there may be norms applied to all agents regardless
of the role being played and the interaction where the agent is participating.
Those norms must also be considered.

An agent should start its evaluation by checking if the organizational norms
have been fulfilled. The agent must check if the other agent has fulfilled the
obligations and has not violated the prohibitions defined by the organization.
The organizational norms are public to all agents executing in the organization.
Every time an agent enters in the organization, it is informed about i) the norms
to be fulfilled related to the role to be played, and ii) other norms applied to all
agents in the organization regardless of the role they play. Agents must request
for both types of norms to the organization before starting any interaction.

After verifying if the organizational norms have been fulfilled or violated3,
the agent may verify if its individual norms were fulfilled, in the case they have
been defined. The individual norms to be analyzed are those applied to the same
〈Rj , Ik〉 tuple and also those that do not dependent on the role or interaction
being analyzed.

To illustrate such idea, consider the following example. Let’s suppose that
Alice playing role Flight Customer has made a reservation of a flight ticket and
that Bob, playing the role Flight Provider, has cancelled such reservation since
the deadline for paying it has expired. The organization Travel Agency where
both agents are involved has defined an organizational norm ON 1 stating that
flight providers can only cancel a reservation after the deadline for paying it.

ON 1 : PROHIBITION FlightProvider EXECUTE ticket.cancelTicket IF
ticket.deadlineForPaying ≤ TODAY

3 Note that verifying if a norm has been fulfilled is an objective action, while the
interpretation of a violation of a norm - calculus of reputation - is clearly subjective.
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If Bob cancels the flight after the deadline for paying the reservation, he has
not violated the organizational norm and its reputation will thus vary from
[0, +1]. However, Alice can still be dissatisfied. Alice expects Bob to cancel the
reservation only 5 days after the deadline, described by the individual norm
INAlice1 .

INAlice1 PROHIBITION FlightProvider EXECUTE ticket.cancelTicket IF
ticket.deadlineForPaying+5 ≤ TODAY

Such expectation characterizes an individual norm defined by Alice. If Bob
cancels the reservation only 1 day after the deadline, he has violated such indi-
vidual norm and, therefore, his reputation will be automatically lower than +1.

In order to be able to fulfil the individual norms defined by Alice, Bob can
ask her about them. Note that we consider that all individual norms defined
by Alice are specializations of organizational norms define by the Travel Agency
organization, since they are more restricted.

3.2 Evaluating Agents’ Behavior as Reputation Sources

The behavior of agents while providing information about the reputation of
other agents is regulated by only one organizational norm. Such norm states
that the agent playing role ReputationSource in the interaction ReputationIn-
formationExchange cannot lie while providing that information. The norm that
regulates such behavior is described by ON (ReputationSource, ReputationIn-
formationExchange)4:

ON (ReputationSource, ReputationInformationExchange) : PROHIBITION
ReputationSource EXECUTE sendingWrongInformation

In contrast with other organizational norms, this is the unique norm that is
domain-independent since it neither depends on the roles nor interactions defined
in the organization.

The reputation of the agent as a reputation source can only be evaluated
after the agent that is receiving the information has interacted with the desired
agent (the third party it requested for). After the interaction, the agent that
has received the information is able to evaluate if the reputation value it has
received is consistent with the counterpart’s behavior (from agent’s individual
view). This evaluation will form the reputation value for the agent that played
the role ReputationSource.

Let’s suppose Alice has never interacted with Bob before; then she asks Carol
about how “good” is Bob playing role Flight Customer. After interacting with
Bob, Alice evaluates his behavior and compares it with the information she has
received from Carol. In the case the reputation values are similar, the reputation
of Carol as a reputation source will be good, i.e., will be in the range [0, +1]. In

4 Although we are not describing sanctions to the norms used in this paper as exam-
ples, punishments and rewards can be specified.
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the other case, Carol’s reputation as reputation source will be bad from Alice’s
point of view, i.e., will be in the range [−1, 0). The specific reputation value will
depend on how different the reputation being informed is from the reputation
being evaluated by the agent herself. To present the equation to be used by the
agent is out of the scope of the paper, since we consider this is a function every
agent should define by itself.

3.3 Sending and Receiving Agents’ Reputations

Our proposed decentralized mechanism makes possible the sharing of reputation
values between the agents. Agents can send and receive reputation values by
using the reputation information (RI) tuple defined in 2.2. Such information is
composed by the following contents 〈Pq, ((Ai,Rj , Ik, t),Nm,Fn), RepPq→Ai〉:

– Provider (Pq): the agent providing the evaluation about another agent’s
behavior;

– (Il)legal Situation: a legal or illegal situation evaluated according to a norm:
• Situation: the situation being evaluated;
∗ Client (Ai): the agent whose behavior is being evaluated;
∗ Client role (Rj): the role that the client was playing and that is

related to the behavior being evaluated;
∗ Interaction (Ik): the relation between the provider and the client

associated with the evaluation;
∗ Time (t): the time where the situation has occurred;

• Norm (Nm): the organizational or individual norm that is being consid-
ered. It can be a violated or fulfilled norm;
• Fact (Fn): the action(s) that was(were) executed (that is fulfilling the

norm, in the case of an obligation, or violating the norm, in the case
of a prohibition) or the action(s) that was(were) not executed (that is
fulfilling the norm, in the case of an prohibition, or violating the norm,
in the case of an obligation) during the interaction.

– Reputation (RepPq→Ai): a value that represents the evaluation about the
agent’s behavior;

In the case of reputations related to reputation sources, it is not necessary to
state the norm since there is only one norm associated with such value, as stated
in section 3.2. It is also not necessary to state the client role and interaction since
it is always the same interaction type.

4 Centralized Mechanism

As we have introduced in section 2, our centralized mechanism should be im-
plemented in organizations and, thus, be common to all participants in such
organizations. The main objective of the mechanism is to receive the agents’
past experiences as reputation values together with the information used to jus-
tify such value. The mechanism puts together such information and can provide
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it to any agent, including to new ones. The main advantage of our proposed
centralized mechanism is its ability of pointing out the violated and fulfilled
norms and the facts related to such violations and fulfillments while informing
the agents’ reputations. In addition, the mechanism is also able to inform who
are the agents that have provided the information and also to inform about their
reputations as reputation sources.

4.1 Sending and Receiving Agents’ Reputations

Every time an agent evaluates the behavior of another one, it may send such
evaluation as reputation information (RI) to the organization. The organization
is able to put together all reputations and provide them to any other agent.5 As a
passive entity, the organization aggregates RI tuples and makes rankings using
such information. Therefore, agents cannot call the organization as an entity
capable of lying, since it only acts as a means for publicizing information.

In order to illustrate that idea we show some examples of reputation in-
formation provided by the organization using the format of the tuple RI :
〈Pq, ((Ai,Rj , Ik, t),Nm,Fn), RepPq→Ai〉

– Overall reputation of an agent Ai as a service provider from the agent Pq

point of view. It gives a value representing aggregated opinions provided by
Pq about the agentAi in all situations in which it has participated regardless
of the norms it has violated or fulfilled.

〈Pq, ((Ai, , , ), ,Fn), RepPq→Ai〉

– Reputation of an agent Ai playing the role Rj from the point of view of
the agent provider Pq. All reputation values provided by Pq related to all
situations where the agent Ai is playing the role Rj are grouped.

〈Pq, ((Ai,Rj , , ), ,Fn), RepPq→Ai〉

– Reputation of an agentAi while providing a specific service from the point of
view of the agent provider Pq. It gives the reputation of the agent in a given
situation, i.e., while playing a role Rj in an interaction Ik. Such reputation
value represents how trustworthy an agent is while providing a service from
the point of view of the agent Pq.

〈Pq, ((Ai,Rj , Ik, ), ,Fn), RepPq→Ai〉

– Overall reputation of an agentAi as reputation source from the point of view
of the agent provider Pq. It gives a value representing all opinions provided by
Pq about the agent Ai while providing reputation values about other agents
behavior, i. e. how the agent Ai is regarding to the organizational norm
ON l which describes that an agent cannot lie when providing reputation
information.

〈Pq, ((Ai, , , ),ON l,Fn), RepPq→Ai〉
5 Note that organizations must not modify the information that they receive.



122 V.T. da Silva, R. Hermoso, and R. Centeno

– Also, the organization could provide rankings6 such as the best agents pro-
viding any kind of service, the best agents being reputation sources, the
agents with the highest social prestige (see section 4.2), the most collabora-
tive agents based on the agents which send more opinions to the organization,
etc.

Note that organizations are not limited to provide only the above mentioned
services, other services can also be included. In addition, organizations can im-
plement different algorithms to provide this information. For example, some can
only consider the most recent reputations while others can consider all reputa-
tions they have received over time.

4.2 Agents Motivations

An agent can contribute to the organization by providing information about
other agents as services providers and by providing information about other
agents as reputation sources. The main goal of an agent on sending such infor-
mation is to increase its social prestige, i.e., the image that the agent can offer
about itself. The social prestige of an agent is increased when it advertises other
agents about the ones they can trust as services providers. Such information
helps then on distinguishing trustworthy agents from others. Its social prestige
also increases when the agent provides information about the others that can be
trusted as reputation sources. Such information helps the agents on distinguish-
ing the ones that are sending trustful information about the services provided
by other agents7.

In order to make public the social prestige of the agents, the organization
provides a ranking of the best agents on sending trustful informations to the
organizations (section 4.1). Since such ranking can be used by agents while se-
lecting the ones to interact with, the definition of the concept of social prestige
in our model motivates the agents to provide information to the organization.

5 Discussion

Our proposed approach is based on the benefits provided by the two most com-
mon mechanisms used for implementing reputation systems while trying to solve
some of their drawbacks. The advantages of centralized mechanisms such as [2,3]
are i) the availability of the reputations to any agent in the system and ii) the
use of global reputation values. Agents that have recently joined the organiza-
tion or agents that have been playing roles can ask the centralized mechanism
for reputations of other agents. It is not necessary to search for agents that
could provide such information - since it is available in the organization -, or to

6 All rankings are built based on the opinions received by the agents.
7 In order to avoid cheating agents increase their social prestige at the expense of

others, agents should implement their aggregation functions - for received values -
as an average value weighted by the reputation of the reputation source.
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ask for different testimonies in order to decrease the risk of misunderstanding
- since the organization aggregates all provided reputation information about
every agent. Some drawbacks of centralized mechanisms are (C1) they simply
put the reputation values together - there is no reasoning about them, (C2) they
may not be scalable, (C3) the agents that has provided the information might
be unknown and (C4) there is not any information about what has influenced
the agent reputation value.

Trying to solve the problems pointed out in C2 and C3, some authors have
proposed the use of decentralized mechanisms [1,9,15,16]. However, those mech-
anisms had a serious problem: (D0) in order to know the reputation of a possible
future partner, the agent should search for other agents that had previously in-
teracted with the former, so providing their testimonies about such interactions.
In large-scale MAS we can consider that the process of searching for those agents
may be difficult and take a lot of time.

This problem was solved in decentralized mechanism that have adopted cer-
tified reputations [4,7,12]. Each agent has numeral certified reputations (or ref-
erences) provided by the agents they have interacted with and, thus, can offer
those references to the agents that intend to interact with it. The main ad-
vantages of those decentralized mechanism are i) the high availability of the
reputations since any agent can easily learn the reputation of any other, ii) the
fact that reputations are individually stored making the solution scalable and
iii) the knowledge about the source agents that are providing the reputation
values. The main disadvantages of such approaches are (D1) it may be difficult
to find the agents that are trustworthy as reputation sources, (D2) agents must
meet frequently in order to establish strong links among them and to pass on
consistent reputations and (D3) there is not any information about what has
influenced the agent reputation value.

In order to overcome some of those problems, the hybrid reputation system
presented in [11] provides a centralized mechanism that may store the recently
reputation values (solving problem C2) where agents can ask for reputations of
other agents provided by several agents in different experiences (solving problem
D2 since one single agent does not need to meet frequently with other agents to
be able to have a consistence evaluation of their behavior). In addition, the agents
executing in this system are also able to evaluate the past behavior of other
agents and store the reputation values. Different from the centralized approaches,
the proposed centralized mechanism groups the reputations according to the vi-
olated norms and the roles being played (solving problem C1). The mechanism
is able to provide the reputation of an agent considering a specific norm or one
of the roles of the agent. But it is not able to provide information about the facts
that characterize the violations and about the agents that have provided the rep-
utation values (it cannot solve problems C3, C4, D1 and D3). Since agents make
a personal evaluation about the behavior of other agents, it is fundamental to
know the facts that violated the norms in order to interpret the reputation values.

The hybrid reputation model proposed in this paper solves the problems
pointed out in this section. The agents using the decentralized mechanism are
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able to evaluate the behavior of other agents, to store such evaluation (con-
tributing to solve problem C2 since the centralized mechanism will probably
store only the recent reputation information) and to provide to the organiza-
tions where they are involved information about their reputations, norms vio-
lated and fulfilled and facts violating and fulfilling the norms (solving problem
D3). The organizations implement the centralized mechanisms that are able to
store the (recent) reputation values (solving problem C2), the information re-
lated to such values (solving problem C4) and the identification of the agents
that have provided them (solving problem C3). The centralized mechanism is
able to provide such information (grouped in many different ways) to any agent
in the system (solving problems C1 and D2). The reputations are evaluated
according to the norms that regulate a situation (role + interaction) where the
agent being evaluated is involved. The model distinguishes between two different
types of reputation: reputation as service providers and reputation as reputation
sources. Therefore, it is easy to know the agents that are trustworthy as reputa-
tion sources (solving problem D1).

6 Conclusions

In this paper we have presented a hybrid reputation model for organizations
which try to solve problems usually associated with centralized and decentralized
reputation mechanisms.

The main advantages of our proposed model are: i) the reputation values are
exchanged together with the violations and fulfillments of norms and the facts
related which those violations or fulfillments (as a single-step argumentation
process); ii) the organizations are able to provide non-manipulated information
about the reputations of agents; iii) our proposed model distinguishes between
two types of reputation: reputation as a service provider and reputation as a
reputation source; and iv) the model motivates agents on sending information to
the organization by making available a ranking stating the agents with highest
social prestige.

As future work we plan to test our reputation model in some organizational
domain such as travel agencies. We also intend to compare our model with other
centralized or decentralized reputation models to observe the advantages of the
hybrid proposals, as well as with other hybrid models to observe the benefits of
our model opposite to others. Finally, we want to integrate our proposal in some
proposed trust model in order to observe how it behaves working together with
a confidence model.
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14. López y López, F.: Social power and norms: Impact on agent behavior. PhD thesis,
Univ. of Southampton, Faculty of Engineering and Applied Science, Department
of Electronics and Computer Science (2003)

15. Yu, B., Singh, M.: Distributed reputation management for electronic commerce.
Computational Intelligence 18(4), 535–549 (2002)

16. Yu, B., Singh, M.: An evidential model of distributed reputation management. In:
Proceedings of First International Joint Conference on Autonomous Agents and
Multi-Agent Systems, vol. 1, pp. 294–301 (2002)

http://www.ebay.com


Formalising Situatedness and Adaptation in
Electronic Institutions
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Abstract. Similarly to institutions in human societies, an Electronic
Institution (EI) provides a structured framework for a Multi-Agent Sys-
tem (MAS) to regulate agents’ interactions. However, current EIs cannot
regulate a previously existing dynamic social system and deal with its
agent population behaviour changes. This paper suggests a solution con-
sisting of two EI extensions to incorporate situatedness and adaptation
to the institution. These two properties are usually present at an agent
level, but this paper studies how to bring them to an organisational
level. While exposing our approach, we use a traffic scenario example to
illustrate its concepts.

1 Introduction

Historically, societies have been organised based on conventions that individuals
conform and expect others to conform [1]. Within organisations, conventions are
explicit and are stated in terms of rules, protocols or both. In the context of
Multi-Agent Systems (MAS), Electronic Institutions [2] try to follow the same
principles.

An Electronic Institution (EI) is a MAS framework designed to guarantee
previously defined social conventions. These conventions are designed to let the
whole system achieve certain implicit goals. For instance, traffic rules try to
improve traffic flow and to avoid accidents. These social conventions support
agent coordination which typically has been handled from two main approaches
[3][4][5]: considering the individual perspective of agents –so conventions can
emerge– or a global organisational perspective —using infrastructure to support
them. An EI provides an organisational approach that regulates the agent inter-
action, thus the institution follows a global coordination perspective instead of an
individual approach. More concretely, an EI is a self-contained and static organ-
isational framework. By self-contained we mean agent interaction solely occurs
inside the institution. Thus, we assume an EI mediates all messages among its
participants. Also, an EI’s social conventions do not change during its execution,
so we consider it is static.
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A problem arises when we have a dynamic social system –we call it world–
and we want to enhance it by adding an EI: the fact of being self-contained and
static becomes a limitation. Instead of being self-contained, we need the institu-
tion to be aware of the world it is added to. Even more, the institution should
adapt to changes of this dynamic social system. In this manner, we pursue the
enhancement of the existing dynamic social system by addition of EI’s regulating
capabilities.

Our proposed solution to cope with this limitation is to extend an EI into a
situated autonomic organisational framework. By situated we mean it is aware
and can induce changes in the external social system (it is bound to world). And
by autonomic we mean it can autonomously adapt to changes in the dynamic
existing social system. We envisage the EI as a whole, autonomic and situated
in a world. This vision at organisational level is very similar to autonomous
situated agents at individual level. Thus, we conceive our proposed extension to
EI as bringing to an organisational level two agent properties: situatedness and
adaptation.

Specifically, we consider the institution situatedness as an awareness of its
world (society, organisation or MAS) and its capacity to induce changes on it.
In this paper, we formalise and extend some concepts used in a previous approach
[6] to situate an EI. Besides, we envision adaptation as a goal-driven mechanism
to change conventions. Societal changes, such as changes in agent behaviours
or properties, may affect negatively in the fulfilment of organisational goals.
Just as agents must adapt in order to succeed, Electronic Institutions should be
able to adapt to fulfil their own global goals —which may differ from individual
ones. Thus, an extended institution is able to modify its conventions to improve
the system’s effectiveness to accomplish the organisational goals —it may also
improve the system’s efficiency. This adaptation can also be seen as a reconfig-
uration aspect of autonomic computing, where systems are able to reconfigure
themselves without human intervention [7]. In this paper, we formalise and ex-
tend some concepts used in previous approaches to situate an EI [6] and to adapt
it [8].

Along this paper we use a traffic scenario as an example to illustrate intro-
duced concepts (see Figure 2). In this scenario, an Electronic Institution acts as
a Traffic Regulation Authority. Most agents play the role of cars, but we also
consider policemen agents which act on behalf of the institution. These agents
interact in a two-road junction, each road having two lanes in opposite direc-
tions. Lanes entering the junction have traffic lights controlled by our institution.
When driving, cars enter and leave these crossroads at/from random sides. More-
over, cars may decide not to stop at red traffic lights, if this is the case and a
policeman sees this traffic violation, it will sanction the car by subtracting points
from its driving license. Finally, cars can collide. Collisions have an associated
emergency protocol, in which a tow truck takes them from the crossroads to a
garage to be repaired.

The rest of the paper is structured in five sections. Section 2 introduces Elec-
tronic Institutions to settle the basis for subsequent sections, which are devoted
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to situatedness and adaptation. Section 3 presents the so-called Situated Elec-
tronic Institution, and section 4 defines the notion of Autonomic Electronic Insti-
tution. Next, both approaches are compared with their related work in section 5.
Finally, section 6 exposes the conclusions and outlines paths to future research.

2 Electronic Institutions (EI)

An Electronic Institution (EI [2]) is an interaction framework for Multi-Agent
Systems (MAS). One of the main objectives is to guarantee that its conventions
–interaction protocols and rules– are followed by participant agents, which inter-
act via dialogical actions. This is achieved by communication mediation, so that
EIs filter out non-permitted actions. Figure 1 depicts this scheme. Participant
agents are considered to be external to the institutional framework, and they
interact through an institution wrapper called governor. Nevertheless, the insti-
tution delegates its functions to a special kind of agents, the so called staff agents.
Accordingly, the definition of an EI is shown below and some of its components
are discussed in next subsections:

Definition 1. An Electronic Institution is a tuple EI = 〈DF, DC〉 [9]:

– DF = 〈O, MI , ST, LCL, LE〉 stands for Dialogical Framework and provides
a context for agent interactions, which are speech acts. Its components are:
an Ontology O, a set of Information Models MI –to keep information about
EI’s participants and activities at run time–, a Social structure ST –roles
and their relationships–, a Communication Language LCL –detailed in sec-
tion 2.1–, and an Expression Language LE —to specify conditions with a
constraint language and their consequences in an action language.

– DC = 〈PS, NS〉 stands for a Deontological Component which is a set of
conventions that constrains possible illocutionary exchanges and manages
the responsibilities established within the institution. Its components are: PS

Fig. 1. Within an EI, participant agents interact through illocution messages medi-
ated by their Governors. A Deontological Component and Staff agents guarantee the
compliance of conventions.
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as a Performative Structure and NS as a Normative Structure, both are
described in subsequent sections.

2.1 Communication Language

The Communication Language (LCL) is the language used by agents to utter
their messages. Its expressions, called illocutions (I), are defined in terms of:

I ::= ι(orgAi : orgRi, [dstAj :] dstRj , msg, t)

where there is an illocutionary particle ι (e.g. request, accept, inform . . . ), its
sender (an agent identifier orgAi and the role orgRi it plays), its receivers (an
agent identifier dstAj or its role dstRj), a message content msg = f(params)
and a time stamp t1. As an illustration, the following message could appear in
the traffic scenario when police officer ‘Bond’ informs car ‘Shiny’ that it has a
10-point fine at time 1: inform (Bond : policeman, Shiny : car, fine(10), 1)

2.2 Performative Structure

A Performative Structure (PS) defines those conventions that regulate the flow
of illocutions in an institution. The whole activity of an EI is a composition of
multiple, concurrent dialogic activities –the so called scenes– involving different
groups of agents playing different roles.

Each scene is specified by means of a finite-state directed graph, with nodes
representing states and arcs defining those relevant actions that imply state
transitions. It also includes some restrictions about time variables or how many
agents can play a given role.

2.3 Normative Structure

The Normative Structure (NS) [10] defines a normative level in our Deontologi-
cal Component. As described in [10] PS and NS are distributed and controlled
by staff agents, called Scene Managers and Normative Managers. Briefly, a NS
consists of a Normative State (S) and a set of Rules (R) that can update this
state2:

NS = 〈 S, R 〉
S = { p1 . . . pnS }, pi := utt(I) | NP, NP ::= per(I) | prh(I) | obl(I)
R = { r1 . . . rnR }, ri is a Rule ::= Cond⇒ Conseq

ri : S× Cond→ S

Cond ::= utt(I) | NP | Cond, Cond
Conseq ::= add(NP ) | remove(NP )

1 EIs have a distributed architecture assuming a synchronised time.
2 We use uppercase letters to denote sets of elements (e.g. R is a set of rules) and

lowercase letters to denote their elements (e.g. ri is a single rule). In addition, when
defining functions, we use blackboard letters to denote their domains (e.g. S is the
domain of all possible normative states S).
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Normative State (S) contains a set of statements called Normative Positions
(NP ), which represent obligations (obl), prohibitions (prh) and permissions
(per) associated to illocutions (I). This state can be updated by agents utter-
ances (utt) and rules (R) [11]. A Rule consists of a condition and its conse-
quences. When it is triggered by any combination of uttered illocutions (utt)
and NP , it adds or removes NP s to S. See section 3.2 for a normative example
in the traffic scenario.

3 Situated Electronic Institutions

An Electronic Institution is an open MAS3 that provides an interaction medi-
ated environment within the institution itself, so we can refer to it as EI inner
environment. In fact, an EI have total control over this EI inner environment
thanks to its governors.

In this paper, we propose to extend an EI to be able to interact with a
previously existing environment, so that we relax total control in favour of in-
teroperability. We call this extended institution a Situated Electronic Institution
(SEI). The existing environment –we call it world– can be any social system
–society, organisation or MAS– having individual actions and interactions that
are relevant to our institution. These actions and interactions in the world can be

Fig. 2. A Situated Electronic Institution (SEI) in our traffic example. There is a com-
munication Bridge between our SEI and the World it is situated in. This bridge allows
staff agents to access certain world elements as properties (about modelled agents PA,
institutional issues PI , or environment facts PE). Modellers are specialised governors
that model a world entity as if it was a regular external agent in an EI.
3 By open MAS we mean systems populated by heterogeneous and self-interested

agents, that are not known beforehand, may vary over time and can be both hu-
man and software agents developed by different parties. Hence, we can not expect
participants to follow the social conventions established by an EI.
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illocutions and non-verbal actions. The SEI-world relationship is accomplished
by attaching a SEI on top of a world (see Figure 2). In this way, a SEI can
perceive world facts and induce changes on it.

We say that a SEI is situated in this existing environment because it receives
information about the environment, processes it, and induces some changes in the
world to try to enhance its performance given some goals —they are implicit in
protocol and rule definitions. We consider a SEI has a model of the world, which
maintains –according to external inputs– and updates —translating changes to
external environment. Similarly to agent level, at organisational level world may
be also partially observable by a SEI. We also assume SEI’s control over this
world is quite limited, since it can only induce a limited amount of changes in
it. Hence, a SEI can be defined as an extension of previous EI.

Definition 2. A Situated Electronic Institution is a tuple SEI = 〈DF ′, DC, B〉:

– DF ′ stands for a previous Dialogical Framework extended with what we call
world’s entity Modellers and Properties.

– DC corresponds to the Deontological Component of an EI.
– B stands for a Bridge, a communication channel with the world.

3.1 Modellers and Staff Agents

Since a basic EI is a persistent SW framework, it uses its Information Model
(MI) to keep information about EI’s computational state in the form of at-
tributes. Now, in a SEI, we call Agent Properties (PA ⊆ MI) those attributes
that keep the institutional state of each external agent (e.g. agent’s credit or posi-
tion), Environment Properties (PE ⊆MI) to those attributes about global facts
independent of the institution activity (e.g. date or weather) and Institutional
Properties (PI) to attributes related with global facts directly or indirectly influ-
enced by the institution (e.g. the number of collisions which may be influenced
by traffic lights’ colours).

Some external agents of a SEI are represented by relevant world entities that
are not controlled by the institution. Thus, a SEI has specialised governors, we
name Modellers, in charge of modelling and interacting with these world entities.
Thus, a world entity can be treated by the SEI as if it was a regular participant
agent.

The information between SEI and world flows in two directions. On the
one hand, a Modeller models a world entity by accessing the world and ex-
tracting relevant information about a certain entity. As a result, a Modeller
keeps track of its corresponding entity Agent properties (PA) and utters il-
locutions when its entity performs actions that are relevant to the institu-
tion. On the other hand, a Modeller translates interactions from SEI into
changes in its world entity’s Agent properties (PA). Figure 2 illustrates this
process in our traffic scenario. First, the “Car modeller” gets its car location
(PApos) by processing the camera information. If this car (c) is entering the
road junction through a given lane (laneid), the modeller generates the illocu-
tion ‘inform (c : car, : policeman, entryJunction(laneid), t)’. This illocution
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informs all policemen in the ‘Crossroads’ scene that the modelled car has per-
formed the entryJunction relevant action. Later, if modeller is asked to decrease
car’s driving license points (PApoints , see section 3.2), it will contact the Traffic
Regulation Authority to perform this operation.

We see the institution situatedness as an awareness of the world where it
is situated. Thus, we consider a SEI is aware of its world in the sense that
it models and affects it. However, its world may or may not be aware of this
SEI, depending on the domain. Domains present some restrictions on which
information can be accessed and/or updated, which determines the level of SEI-
world interaction and awareness. For example, in our traffic scenario, if the car’s
position is retrieved with camera’s image processing, this car may probably not
be aware of the SEI. In contrast, if the car is equipped with a Global Positioning
System sensor device and sends its position to the Traffic Regulation Authority,
it may probably be aware of the existence of a surveillance system like the SEI.

On the other hand, there may be some world entities directly controlled by
the institution. In this case, instead of a Modeller, a SEI has staff agents in
charge of them. Figure 2 depicts an example in the traffic scenario. where a staff
agent called “Signals” sends information to the world to set a traffic light colour
(PI). Staff agents can also interact with Modellers to access to Agent Properties
(PA) or read Environment Properties (PE , e.g. the wind’s direction).

3.2 Norms

We call relevant actions those actions –or interactions– in a SEI’s external en-
vironment (world) that affect its institutional model. Consequently, a SEI per-
ceives or induces these relevant actions and bind them to the world. Within
relevant actions, we distinguish between: allowed actions –those that follow so-
cial conventions– and non-allowed actions —the rest of relevant actions.

Moreover, we use a norm to refer to a social convention regarding an agents’
interaction. Thus, allowed actions are those that follow norms. Accordingly, we
consider that a norm can be violated if agents do not follow its convention, that
is, if agents perform non-allowed actions. On the other hand, we use rule to
identify an expression that defines the consequences of agents’ actions. Hence,
we can use a rule to define the consequences of a norm violation.

In an EI, most social conventions are specified through protocols so that
governors filter out those illocutions not following them (non-allowed actions).
In this way, an EI grants no participant can violate these conventions. In contrast,
a SEI does not have such control over the world since it cannot prevent world
entities from performing actions (or interactions). Thus, when designing a SEI,
we have to pay special attention to the fact that it cannot prevent participants
from violating norms. Consequently, a SEI needs to specify the consequences of
violating these conventions with rules added to its Normative Structure (NS,
see section 2.3).

As an illustration, Figure 3 contains an example in our traffic scenario. First,
it exposes a social convention (n) about respecting traffic lights. Next, taking
into account that a SEI cannot hinder agents in performing non-allowed actions,
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S.Conventions: n = “cars cannot go through a red light”
Specification: NS = 〈S0 = {}, R = {r}〉

r = utt ( inform(x, policeman, y, car, noStop(T light), ti) )
⇒ add ( obl ( inform(x, policeman, y, car, fine(5), ti+1) ) )

Execution: S1 = {utt ( inform(p, policeman, c, car, noStop(T light), t1) )}
S2 = {utt ( inform(p, policeman, c, car, noStop(T light), t1) ) ,

obl ( inform(p, policeman, c, car, fine(5), t2) ) }

Fig. 3. A Normative Structure example in a SEI situated in our traffic scenario

the institution’s Normative Specification (NS) includes a rule r to define the
consequences of violating this norm. This rule should say that “any car violating
the norm will be fined”. However, our example delegates violation judgements
to staff agents (“Policemen”, in this case). Therefore, the corresponding rule
codifies the obligation of a “Policeman” to fine a car when it informs the car
went through a red light. Finally, the example shows an execution case. It starts
with the empty normative state S0. Then, when a “Policeman” informs that
a car has gone through a red traffic, the original normative state incorporates
the corresponding illocution, resulting in S1. Afterwards, a Normative Manager
applies rule r by adding an obligation to normative state S2.

3.3 Bridge

The Bridge (B) is an asynchronous bi-directional communication channel be-
tween our institution and the world (in [6] it was conceived as a channel con-
nected to a multi-agent simulator). This channel is used by Staff agents and
Modellers to obtain information from the external environment and to induce
changes in world as explained previously. It provides access to manage Agent,
Institutional and Environment properties.

Basically, this Bridge comes from an implementation requirement since it
binds our SEI and its world. From an implementation perspective, although it
is a single concept, it may be distributed among different APIs (Application
Program Interfaces) to access different programming objects that interact with
world elements.

4 Autonomic Electronic Institutions

The aim of an Electronic Institution is to guarantee that its defined protocols
and rules are followed by its participant agents. These protocols and rules have
been designed to pursue some implicit goals. However, as the profile of agents
may differ among different populations, original protocols and rules may not
lead to design goals. We can avoid this by extending EIs with an adaptation
mechanism that allows institutions to adapt to these societal changes. Hence,
we define an Autonomic Electronic Institution (AEI) as an electronic institution
that can autonomously adapt to achieve a set of defined goals. We propose goal
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Fig. 4. An Autonomic Electronic Institution (AEI): feedback mechanism compares
observations (prop. P ) with their expected values (Goal G) and self-reconfigures
(Perf.Struct. PS & Norm. Struct. NS) using Transition Func. (TF ). External agents
exchange illocutions (I) through the institution.

fulfilment to become the driving force for adaptation within the context of a
rational world assumption. In this manner, an AEI has a feedback mechanism –
centralised or distributed– with three main components: (1) an objective to define
expected values of certain properties, (2) the corresponding observed properties
and (3) a mechanism to specify how to reconfigure the institution to accomplish
its objective depending on these observations (see Figure 4). Thus, we can define
an AEI as an extension to an EI with these new elements.

Definition 3. An Autonomic Electronic Institution is a tuple AEI =
〈DF, DC, G, TF 〉

– DF and DC stand for a Dialogical Framework and Deontological Component
– G stands for institutional Goals
– TF stands for Transition Functions

4.1 Institutional Goals

Institutional Goals (G) specify desired values for observed properties P . These
properties belong to the information model (P ⊆MI), and correspond to infor-
mation about agents, the environment or the institution itself (see section 3.1).
Goals have the following components: G = 〈GS, Γ 〉

GS = { gsP1 . . . gsP|GS| }, gsPi = 〈rangePi , γPi〉 , γPi : P→ R ∈ [0..1]
Γ : GS× P→ R ∈ [0..1]

– Goal Specifications (GS): is a set of goal specifications over each observed
property (P ). Each goal specification (gsPi) is a definition of a property
value expected range (rangePi) and a function that evaluates its fulfilment
grade (γPi). This grade is a normalised real value between 0 and 1, being
1 the completely satisfied grade. In our Traffic Scenario GS tries to keep
the number of norm violations below ten (0 ≤ PIv ≤ 10) and a minimum
number of policemen (0 ≤ PIp ≤ 1).
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– Objective Function (Γ ): function that computes overall goal satisfaction (a
real value between 0 and 1, 1 meaning completely satisfied goals) from de-
fined goals and current observations. Following our example, we would get
maximum goal satisfaction having no violations while no policemen are de-
ployed in our traffic scene with a weighted aggregation function [12] (it is an
utopian situation, however).

4.2 Transition Functions

Transition Functions (TF ) specify how the institution can change its organ-
isational structure with the aim of increasing its overall goal satisfaction. Our
approach is that the institution contains one or more staff agents in charge of the
adaptation (Adaptation Managers4). These staff agents reason following these
transition functions given the observations and goals, and induce the changes
in the institution according to the decided adaptation measure. We define two
different transition functions depending on what they can adapt5. All of them
receive a set of observed properties (P ) and their expected values (e.g., insti-
tutional goal G). These properties can be any of the attributes described in
section 3.1.

– Normative Structure adaptation (ν : P× G × NS → NS): it is a function in
charge of updating rules (NS) if current observed properties (P ) differ from
expected values (G). In our traffic example, fines increase if there are a lot
of traffic violations. Normative structure (NS) will be updated (NS′), by
increasing the fine parameter (e.g. from 5 to 10) of rule ra (see section 3.2):

NS = 〈 S, R = {ra} 〉
ra : utt ( inform(x, policeman, y, car, noStop(T light), ti) )
⇒ add ( obl ( inform(x, policeman, y, car, fine(5), ti+1) ) )

NS′ = 〈 S, R′ = {r′a} 〉
r′a : utt ( inform(x, policeman, y, car, noStop(T light), ti) )
⇒ add ( obl ( inform(x, policeman, y, car, fine(10), ti+1) ) )

– Performative Structure adaptation (ψ : P × G × PS → PS): it is a function
in charge of updating protocols and/or role flows (PS) if current observed
properties (P ) differ from expected values (G). For example, a possible PS

4 The distribution of the adaptation mechanism is out of the scope of this paper.
Nonetheless, we think it would have two main axis: task decomposition (e.g. having
an agent in charge of each adaptable norm or scene) and goal decomposition (e.g.
distributed planning).

5 Although this paper takes a formal approach, in a related work with a similar scenario
[8], we study how these transition functions can be learnt if it is not possible to
define them in advance. There, we apply a Genetic Algorithm (GA) technique to
evaluate goal satisfaction with specific rules (NS) for a given participant population.
Afterwards, rules (NS′) of best GA individuals are stored in a Case-Based Reasoning
(CBR) system, which substitutes the NS adaptation function.
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adaptation is to update the number of agents playing a given role allowed in
a certain scene (see section 2.2). Thus, in our traffic scenario, if there are a
lot of accidents, function ψ would change the number of allowed policemen
deployed in our ‘Crossroads’ scene.

5 Related Work

Multi-Agent System (MAS) approaches can be viewed [3][5] as agent centred or
organisation centred. In general, previous work follows an agent centred approach
[4]. However, the aim of this paper is to study two common individual agent
properties –situatedness and adaptation– at an organisation level. In order to
do it, we extend the notion of Electronic Institution (EI), which already is an
organisation centred MAS.

The closest approach –that also uses an organisational approach– is
MoiseInst [13]. It provides a mechanism similar to EI Governors called Wrapper
Manager. Hence, each agent uses its own Wrapper Manager to communicate with
OrgManager. This OrgManager only changes the Organisational Entity state if
Wrapper Manager petition does not violate any organisational constraint. Thus,
we can establish several equivalences with EIs: OrgManager deals with a Con-
textManager that is equivalent to EI’s Scene Managers ; Organisational Entity
states can be mapped into EI’s Information Model ; and the organisational con-
straints of their Organisational Specification correspond to our scene protocols.
In addition, they also have a normative layer. Instead of extending original or-
ganisational framework with a new component –like EI’s Normative Structure–,
they conceive a Global Normative Organisation composed by two organisations:
a domain one –the original organisation– plus a supervision one —a new or-
ganisation to supervise the original one. And all supervision organisation roles
have authority to control domain organisation roles. Hence, they reuse mecha-
nisms they already had defined instead of adding new ones. GivenMoiseInst-EI
similarity, applying SEI and AEI’s extensions toMoiseInst seems feasible.

Regarding the concept of situatedness at organisation level, most of literature
interprets it as providing a location notion to MAS participants. This idea was
introduced by Weyns et. al. [14] as a way to allow local synchronisation of agents
in the first Situated MAS approach [15]. The key point is to restrict participants’
perceptions depending on their virtual location. CArtAgO [16] is also an exam-
ple of this perception paradigm. It provides direct interaction among agents, and
also indirect interaction through artifacts. But, in both cases, the scope of these
interactions is limited to workspaces where these elements are located. It uses
an agent body to situate an agent inside those workspaces ; then its location de-
termines which artifacts can be perceived or manipulated by its corresponding
agent. In this sense, EI’s scenes can be regarded as a way of grouping agents
that can interact together, which can be interpreted as a virtual location that
restricts their perception. EASI model [17] goes a step further, and addition-
ally lets agents determine which element they want to perceive. They sustain
this approach exposing that awareness is an active state. Precisely, we see EI’s
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situatedness as an awareness of the world where it is situated. A SEI, as a whole,
determines its world perception and interaction. A first approach to this EI’s sit-
uatedness was the Simulator Bridge [6]. However, we go further by assuming all
external agents’ interactions are performed in the world. A similar approach is
detailed in [18], where they explore the idea of controlling physical entities with
a MAS. They perform a global overview, without detailing changes in EIs, but
provide additional ideas like augmentation –providing extra information– of real
world elements to MAS agents. Our notion of situatedness could be used to pro-
vide the same normative environment to different existing systems –updating
the Bridge–, like in [19] where they consider using the same Normative Struc-
ture in different Contexts. However, they study the adaptation of such normative
context depending on individual goals, while we perform it according to institu-
tional goals. These institutional goals could be initially agreed by participants
as suggested in [20], so they will have a connection with the individual goals.

Adaptation has been usually envisioned as an agent capability where agents
learn how to reorganise themselves. Thus, most works explore agent adaptation
driven by individual goals. For instance, Sen an Airiau [21] study the emergence
of social norms via learning from interaction experiences. The closest approach
to our proposal can be found in [22] and [23]. Their agents can decide its com-
mitment to obey norms in order to achieve associated institutional goals. In
contrast, in our Autonomic Electronic Institution (AEI) is the organisation the
one adapting itself. There are also works that include reputations models, like
[24] where they collect information about norm violation/fulfilment. This infor-
mation is provided to other participants, so they can adapt their social relations.
Similarly, our proposal offers a third party institution that could provide this
information. Currently it collects norm violations and adapts itself at system
level but it could also collect and use norm fulfilment data and even provide it
to participants.

6 Conclusions and Future Work

In this paper, we focus on defining adaptation and situatedness for Electronic In-
stitutions (EI). This brings two separated agent properties to an organisational
level, or, in other words, we bring up individual level capacities to global –or
system– capabilities. As we have seen, we can extend EIs separately: Autonomic
Electronic Institutions –described in section 4– include adaptation whereas Situ-
ated Electronic Institutions –in section 3– incorporate situatedness. Nevertheless,
since both capacities are compatible, it is also possible to extend EIs with both
of them simultaneously. This yields to the concept of Situated Autonomic Elec-
tronic Institution (SAEI) which incorporates all previously defined elements6.

We described –in section 3– how an EI can be situated over an existing social
system to try to regulate it with previously defined conventions. Moreover, we

6 SAEI = 〈DF ′, DC, B, G, TF 〉, DF ′&B are described in section 3, DC is explained
in section 2 and G&TF are defined in section 4.
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also suggested –in section 4– how its adaptation capacity may be used to up-
date such original conventions depending on institutional goals. Thus, a SAEI
can be used as a tool to analyse an existing social system behaviour, and au-
tonomously decide to modify its agent coordination to enhance its performance
upon certain defined goals. Accordingly, we see a SAEI as an adaptive coordi-
nation support layer for social systems with two instruments: (1) supervision
of social conventions and (2) adaptation of these conventions, both to enhance
agent coordination, and thus, overall performance.

As future work, we envision the institution having another coordination sup-
port instrument: to provide assistance to its participants in form of suggestions.
These suggestions would be indications about what participants should do dur-
ing their interactions. Thus, for example, if an agent is trying to perform an
action that is not currently allowed, suggestions may inform about those vio-
lated restrictions it is not taking into consideration that are preventing it to do
the action. This mechanism would also contribute to improve agent coordina-
tion to enhance global performance. We also plan to include artifacts in the real
world, like intelligent objects –objects with delegated control capacities [25]– to
support this suggestion mechanism in situated institutions.
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8. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Self-adaptation in autonomic
electronic institutions through case-based reasoning. In: Proceedings of MA4CS
Workshop of ECCS 2007 (2007)
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A Context-Based Institutional Normative
Environment

Henrique Lopes Cardoso and Eugénio Oliveira

LIACC, DEI / Faculdade de Engenharia, Universidade do Porto
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

{hlc,eco}@fe.up.pt

Abstract. We explore the concept of an agent-based Electronic Institu-
tion including a normative environment that supports electronic contract
formation by providing a contextual normative background. We formal-
ize the normative state using first-order logic and define institutional
rules and norms operating on that state. A suitable semantics regarding
the use of norms within a hierarchical context structure is given, based
on norm activation conflict and defeasibility. Norm activation relies on
substitution as in first-order logic. Reasoning about the fulfillment and
violation of deadline obligations is formalized using linear temporal logic;
implementation with institutional rules is discussed. Examples exploit-
ing the normative environment are given.

Keywords: Normative Environment, Context, Norm Activation, De-
feasibility.

1 Introduction

Electronic Institutions [1][2][3] have been proposed and developed as frameworks
embedding normative environments for open multi-agent systems, where hetero-
geneous and independently developed agents interact. Differences exist concern-
ing the conceptual views of the “institutional environment”. In [1] a restrictive
“rules of the game” approach is followed, where the institution fixes what agents
are allowed to do; norms are in this case a set of interaction conventions that
agents must conform to. In [2] the institution is seen as an external entity that
ascribes institutional powers and normative positions, while admitting norm vi-
olations and prescribing appropriate sanctions.

In our perspective [3], an Electronic Institution (EI) is a software framework
embracing a set of services and a normative environment. Those services are
meant to assist software agents in the process of creating organizational struc-
tures ruled by a set of mutual commitments, which in the end are translated into
norms. Such norms are part of the normative environment that is maintained
by the EI. In fact, one of the core services that we consider is the provision
of a supportive normative framework in the institutional environment, which
agents can exploit in order to establish their contracts in a more straightforward
fashion. Contracts [4] can be underspecified, relying on a structured normative
framework that fills in any omissions.

J.F. Hubner et al. (Eds.): COIN 2008, LNAI 5428, pp. 140–155, 2009.
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The purpose of this paper is to formalize this normative environment. We
define the notion of normative context, based on which a hierarchical structure
provides a normative background for electronic contracts. Within that struc-
ture, we characterize the normative state of the system and define rules and
norms operating on that state. We give a proper semantics for norms in our
system by defining norm activation conflict and by providing an approach for
conflict resolution based on defeasibility. We also detail the semantics of deontic
statements (namely obligations with deadlines) using temporal logic, and discuss
implementation issues.

The paper is organized as follows. Section 2 presents our institutional norma-
tive environment, based on context structures, including the normative state,
rules and norms. Section 3 describes the semantics associated with norms, in-
cluding defeasibility; deadline obligation semantics is also explored and imple-
mented with rules. In Section 4 we illustrate the exploitation of the normative
environment. Section 5 concludes and discusses related work.

2 An Institutional Normative Environment

We explore the concept of an agent-based EI including a normative environment
as its core component. In the following definitions we try to provide a sound pre-
sentation of concepts in order to explain the use of norms within the normative
environment.

Definition 1. Normative Environment NE = 〈NS , IR,N 〉
The normative environment NE of an EI is composed of a normative state NS,
a set IR of institutional rules that manipulate that normative state and a set N
of norms, which can be seen as a special kind of rules.

While norms (see Def. 8) define the normative positions of each agent, the main
purpose of institutional rules (see Def. 7) is to relate the normative state with the
standing normative positions. A typical use of institutional rules is illustrated in
subsection 3.2, where they are employed to implement the semantics of deadline
obligations – rules monitor the normative state NS in order to detect the fulfill-
ment or violation of deontic statements. On the other hand, norms “produce”
those deontic statements upon certain normative state conditions.

2.1 Contexts

Our model is based on a contextualization of both the normative state and
norms. In this subsection we properly introduce the notion of context and context
organization.

Definition 2. Context C = 〈PC ,CA,CI ,CN 〉
A context C is an organizational structure within which a set CA of agents
commits to a joint activity partially regulated by a set CN ⊆ N of appropriate
norms. A context includes a set CI of contextual info that makes up a kind of
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background knowledge for that context (see Def. 4). PC is the parent context
within which context C is formed. Let PCA be the set of agents in context PC:
we have that CA ⊆ PCA.

Contexts allow us to organize norms according to a hierarchical normative struc-
ture. Norm set N is partitioned into the several contexts that may exist, that is,
sets CN for each context are mutually disjoint. Typically, we will have CN ⊂ N ,
in which case more than one context has a non-empty set CN ; only if all norms
in N are defined in the same context we may have CN = N . A norm inheritance
mechanism, as explained later, justifies the fact that the locally-defined set CN
of norms only partially regulates the activity of agents in set CA. We identify
a top level context from which all other contexts are (directly or indirectly)
formed; every agent is committed to the top context.

We now introduce the notion of sub-context.

Definition 3. Sub-context C ′ = 〈PC ′,CA′,CI ′,CN ′〉
A context C′ is a sub-context of a context C = 〈PC ,CA,CI ,CN 〉, denoted C′ �
C, if PC ′ = C or if PC ′ � C. When C′ is either a sub-context of C or C itself,
we write C′ � C. From Def. 2 we also have that CA′ ⊆ CA.

A sub-context defines a sub-activity committed to by a subset of the original
context’s agents. Notice that the sub-context relationship is an explicit one.
Every context is a sub-context of the top context.

We now turn to the definition of background information that may be defined
as a foundational element of a context.

Definition 4. Contextual info InfoC

Contextual info InfoC is a fully-grounded atomic formula in first-order logic,
which comprises founding information regarding a context C = 〈PC ,CA,CI ,
CN 〉. InfoC ∈ CI .

The CI component in a context definition is therefore composed of first-order
logic formulae that provide background information for that context.

A B2B analogy to this kind of context/sub-context relationship comes from
the virtual organizations realm, wherein a group of enterprises seeks to build
a mutually beneficial relationship regarding a specific business domain. They
would form a contractual agreement within the top institutional context. Of-
ten, a contract is dependent on the existence of another business relation, which
forms the business context for the new contract. Each contract must contain
a set of definitions regarding the role of the participants, the values to be ex-
changed (products or services) and their provision. In our model, these comprise
information that is intrinsic and foundational to the context associated with this
contract – hence the term contextual info.

In Section 4 a supply-agreement contract is described, in which a set of agents
agrees to supply certain resources under certain conditions. In that context, con-
textual info is expressed as first-order formula relating each agent with a resource
it supplies, together with an associated price: supply–infoC (Ag,Res ,UPr).
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2.2 Normative State

The normative state is organized through contexts. The normative state concerns
the description of what is taken for granted in a model of so-called institutional
reality [5]. Therefore, we call every formula in NS an institutional reality element,
or IRE . Each IRE refers to a specific context within which it is relevant. There
can be more than one IRE pertaining to the same context.

Definition 5. Contextual institutional reality element IREC

A contextual institutional reality element IREC is an IRE regarding context C.
We distinguish the following kinds of IREC with the following meanings:

ifactC (f , t) – institutional fact f has occurred at time t
timeC (t) – instant t has elapsed

oblC (a, f , d) – agent a is obliged to bring about fact f until deadline d
fulf C (a, f , t) – a has fulfilled, at time t, his obligation to bring about f
violC (a, f , t) – a has violated, at time t, his obligation to bring about f

Note that the use of context C as a superscript is only a syntactical convenience –
both contextual info and institutional reality elements are first-order formulae (C
could be used as the first argument of each of these formulae). While contextual
info is confined to background information that is part of the context definition,
contextual institutional reality elements represent occurrences taking place after
the context’s creation, during its lifetime.

We consider institutional facts as agent-originated, since they are obtained as
a consequence of some agent action [4]. The remaining elements are environment
events, asserted in the process of norm application and monitoring. Our model
of institutional reality is based on a discrete model of time. The time elements
are used to signal instants that are relevant to the context at hand. Obligations
are deontic statements, and we admit both their fulfillment and violation.

Definition 6. Normative State NS = {IREC1
1 , IREC2

2 , ..., IRECm
n }

The normative state NS is a set of fully-grounded atomic formulae IRECj
i , 1 ≤

i ≤ n, in first-order logic.

The normative state will contain, at each moment, all elements that characterize
the current state of affairs in every context. In that sense, NS could be seen
as being partitioned among the several contexts, as is the case with norms;
however, IRE ’s are not part of a context’s definition, since they are obtained at
a later stage, during the context’s operation. Some of the IRE ’s are interrelated:
for instance, a fulfillment connects an obligation to bring about a fact with
its achievement as an institutional fact. These interrelations are captured with
institutional rules.

2.3 Rules and Norms

Given the “contextualization” of the normative state, we are now able to define
rules and norms. Institutional rules allow us to maintain the normative state
of the system. They are not contextualized, but yet they operate on contextual
IRE ’s.
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Definition 7. Institutional rule R ::= Antecedent → Consequent
An institutional rule R defines, for a given set of conditions, what other elements
should be added to the normative state. The rule’s Antecedent is a conjunction
of patterns of IREC (see Def. 5), which may contain variables; restrictions may
be imposed on such variables through relational conditions. We also allow the
use of negation (as failure):

Antecedent ::= IREC | Antecedent ∧ Antecedent | ¬Antecedent |
RelCondition

The rule’s Consequent is a conjunction of IREC which are not deontic state-
ments (IRE–C ), and which are allowed to contain bounded variables:
Consequent ::= IRE–C | Consequent ∧ Consequent

When the antecedent matches the normative state using a first-order logic sub-
stitution Θ, and if all the relational conditions over variables hold, the atomic
formulae obtained by applying Θ to the consequent of the rule are added to the
normative state as fully-grounded elements.

Besides institutional reality elements, the norms themselves are also contextual.

Definition 8. Norm N C ::= Situation → Prescription
A norm NC is a rule with a deontic consequent, defined in a specific context C.
The norm is applicable to a context C′�C. The norm’s Situation is a conjunction
of patterns of InfoC ′

and IRE–C ′
(no deontic statements). Both kinds of patterns

are allowed to contain variables; restrictions may be imposed on such variables
through relational conditions:

Situation ::= InfoC ′ | IRE–C ′ | Situation ∧ Situation | RelCondition

The norm’s Prescription is a (possibly empty) conjunction of deontic statements
(obligations) which are allowed to contain bounded variables and are affected to
the same context C′:

Prescription ::= ε | OblConj
OblConj ::= oblC

′
(...) ∧OblConj | oblC ′

(...)

Conceptually, the norm’s Situation can be seen as being based on two sets of
elements: background (Sb) and contingent (Sc). Background elements are those
that exist at context creation (the founding contextual info), while contingent
elements are those that are added to the normative state at a later stage. This
distinction will be helpful when describing norm semantics.

Observe the distinction between the context where the norm is defined, and
the context to which the norm applies. While, in order to make the model as
simple as we can, we define a norm as being applicable to a specific context, in
Section 3.1 we relax this assumption, which will in part clarify the usefulness of
the model.

3 Semantics

After defining each component of our normative environment, we now proceed
to defining the semantics of norms and deontic statements.
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3.1 Norms and Contexts

We now turn our attention to norm applicability according to the normative
state. For that, we make use of the notion of substitution in first-order logic. We
denote by f ·Θ the result of applying substitution Θ to atomic formula f .

Definition 9. Norm activation
A norm NC = S → P , applicable to a context C ′ = 〈PC ′,CA′,CI ′,CN ′〉, is
said to be activated if there is a substitution Θ such that:

– ∀c∈Sc c ·Θ ∈ NS, where Sc is the set of contingent conjuncts (IRE–C ′
pat-

terns) in S; and
– ∀b∈Sb b ·Θ ∈ CI ′, where Sb is the set of background conjuncts (InfoC ′

pat-
terns) in S; and

– all the relational conditions over variables hold.

We are now able to define the notion of conflicting norm activations, as follows.

Definition 10. Norm activation conflict
Let Act1 be the activation of norm NC1

1 = S1 → P1 obtained with substitution
Θ1 and Act2 the activation of norm NC2

2 = S2 → P2 obtained with substitution
Θ2. Let NS1 = {c ·Θ1 |c ∈ Sc1}, and NS2 = {c ·Θ2 |c ∈ Sc2}, where Sc1 and
Sc2 are the sets of contingent conjuncts of S1 and S2, respectively. Both NS1

and NS2 represent fractions of the whole normative state NS. Norm activations
Act1 and Act2 are in conflict, written Act1

⊗
Act2 , if NS1 = NS2 and either

C1 � C2 or C2 � C1.

Succinctly, we say there is a norm activation conflict if we have two applicable
norms activated with the same fraction of the normative state and defined in
different contexts. Notice that the fact that both norms are activated with the
same contextual IRE ’s already dictates that the norm contexts, if different,
have a sub-context relationship (there is no multiple inheritance mechanism in
our normative structure). This becomes clearer when taking into account the
sub-context (Def. 3) and norm (Def. 8) definitions: a context has a single parent
context, and a norm NC applies to a context C′ � C.

In principle, all norm activations are defeasible, according to the following
definition.

Definition 11. Norm activation defeasance
A norm activation Act1 for norm NC1

1 defeats a norm activation Act2 for norm
NC2

2 if Act1
⊗

Act2 and C1 � C2.

A defeated norm activation is discarded, that is, the defeated activation is not
applied to the normative state fraction used for activating the norm. Only unde-
feated norm activations will be applied: the substitution that activated a norm
is applied to its prescription part and the resulting fully-grounded deontic state-
ments are added to the normative state (recall that there are no free variables in
the prescription part of norms). Observe that we do not talk about norm defea-
sance, but rather norm activation defeasance. Thus, the defeasance relationship
may only materialize on actual norm applicability.
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Norm Contextual Target. A question that may arise when going through
the previous definitions can jeopardize the purpose of having defeasible norms
as those in the model presented. Why should there be norms that, while being
applicable to the same context, are defined in different contexts that have a sub-
context relationship? Why not have all norms applicable to context C defined
inside context C?

The reason for our approach becomes apparent when considering the stated
aim of a supportive normative environment: to have a normative background
that can fill-in details of sub-contexts that are created later and that can benefit
from this setup by being underspecified. This leads us to the subject of “default
rules” in the law field [6]. Thus, part of the normative environment’s norms will
typically be predefined, in the sense that they are pre-existent to the applicable
contexts themselves. What we need is to typify contexts in order to be able to
say that a norm applies to a certain type of contexts. This way, a norm might
be defined at a super-context and applicable to a range of sub-contexts (of a
certain type) to be subsequently created.

We can do this adaptation by considering context identifier C as a pair id:type ,
where id is a context identifier and type is a predefined context type. In a norm
NC = S → P (see Def. 8), patterns of InfoC ′

and IREC ′
inside S, as well

as obligations inside P , will be rewritten to accommodate this kind of context
reference, eventually using a variable in place of the context id . For instance, an
IRE Id:x pattern, where Id is a variable, would match IRE ’s of any sub-context
of type x. When activating a norm with this kind of pattern, the substitution
Θ (as used in Def. 9) would have to bind Id to a specific sub-context identifier;
every further occurrence of Id is thus a bounded-variable.

This approach allows us to maintain our definitions of norm activation conflict
and defeasance, with minor syntactical changes.

3.2 Deadline Obligations

Our definition of norm includes the set of conditions upon which one or more
deontic statements come into being. As such, obligations being added to the
normative state are no longer conditional: they are deadline obligations, in the
sense discussed in [7].

In the following explanation we borrow some operators from linear temporal
logic (LTL) [8]. In LTL time is assumed to be discrete, has an initial moment
with no predecessors, and is infinite into the future. Let x = (s0, s1, s2, ...) be a
timeline, defined as a sequence of states si. The syntax x |= p reads that p is
true in timeline x. We write xk to denote state sk of x, and xk |= p to mean that
p is true at state xk.

The following operators shall be used:

– until (U): x |= (p U q) iff ∃j (x j |= q and ∀k<j (x k |= p))
– before (B): x |= (p B q) iff ∀j (x j |= q implies ∃k<j (x k |= p))
– henceforth (G): x |= Gq iff ∀j (x j |= q)
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The fulf and viol terms in Def. 5 allow us to reason about the fulfillment and
violation of obligations. Using these terms, a deadline obligation oblC (a, f , t)
has the following semantics in LTL1:

(¬ifactC (f , ) ∧ ¬timeC (t) ∧ ¬fulf C (a, f , ) ∧ ¬violC (a, f , ))
U

(ifactC (f , t ′) ∧ ¬timeC (t) ∧Gfulf C (a, f , t ′) ∧G¬violC (a, f , ))∨
(¬ifactC (f , ) ∧ timeC (t) ∧G¬fulf C (a, f , ) ∧GviolC (a, f , t)) (1)

This means that no violations can occur before the deadline, nor fulfillments
before accomplishments; also, fulfillments and violations are mutually exclusive
and persist over time.

In order to make the above formalization more tractable, we relate a deadline
obligation with conditions for its fulfillment and violation. In LTL we express
these relationships with:

oblC (a, f , t) ∧ (ifactC (f , t ′) B timeC (t))⇒ Gfulf C (a, f , t ′) (2)

oblC (a, f , t) ∧ (timeC (t) B ifactC (f , ))⇒ GviolC (a, f , t) (3)

With this approach, we are basically depending on which comes first: the
deadline or the accomplishment of the fact. But in a model of discrete time,
they can occur simultaneously (which is captured by operator @ defined below).
In this case none of the above implications apply, therefore we add:

oblC (a, f , t) ∧ (ifactC (f , t) @ timeC (t))⇒ Gfulf C (a, f , t) (4)

where2 (ρ @ δ) ≡ (¬ρ U δ) ∧ (¬δ U ρ) ≡ ¬(ρ B δ) ∧ ¬(δ B ρ).
We want obligations not to persist after the deadline. This allows us to model,

within this framework, both cases of legal obligations, namely obligations that
stand even when violated and those that do not. For instance [7], an obligation
to pay for a fine will persist if it is not fulfilled until the deadline, while an
obligation to submit a conference paper will not persist after the submission
deadline (because submitting makes no sense at that stage). For modeling a
standing obligation, the obligation can be reinstated after a violation is detected.

This property can be stated in a more general way: a fulfilled obligation cannot
be violated anymore, and a violated obligation cannot be fulfilled anymore.

oblC (a, f , t) ∧ fulf C (a, f , )⇒ G¬violC (a, f , ) (5)

oblC (a, f , t) ∧ violC (a, f , t)⇒ G¬fulf C (a, f , ) (6)

These relationships weaken the obligation’s power after it has been fulfilled
or violated.
1 The time arguments in ifact , fulf and viol are omitted except when they have a

correspondence, as expressed in (2) and (3).
2 (ρ @ δ) could also be defined as x |= (ρ @ δ) iff ∃j (x j |= (ρ ∧ δ) and ∀k<j (x k |=

(¬ρ ∧ ¬δ))).
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Implementation with Institutional Rules. As mentioned before, the nor-
mative environment (Def. 1) includes a set IR of institutional rules (Def. 7) that
manipulate the normative state. Such rules allow us to implement the semantics
of deontic statements, as defined above. The fulf and viol terms in Def. 5 are
meant to allow us to reason about the fulfillment and violation of obligations
as soon as they occur, by defining norms that take these elements into account
in their antecedent. Institutional rules enable the specification of conditions for
fulfillment and violation detection.

According to the deadline obligation semantics described above, namely (2)
and (3), we may have the following institutional rules (where variables begin
with an upper-case letter):

oblC (A,F ,T ) ∧ ifactC (F ,T ′) ∧ ¬timeC (T )→ fulf C (A,F ,T ′) (7)

oblC (A,F ,T ) ∧ timeC (T ) ∧ ¬ifactC (F , )→ violC (A,F ,T ) (8)

But what if both the fact and the deadline hold at some point in time?
If (ifactC (f , ) B timeC (t)), then rule (7) asserted a fulfillment; on the other
hand, if (timeC (t) B ifactC (f , )) then rule (8) asserted a violation. But what if
(ifactC (f , ) @ timeC (t))? A rule like:

oblC (A,F ,T ) ∧ ifactC (F ,T ′) ∧ timeC (T )→ fulf C (A,F ,T ′) (9)

is not acceptable, as it would apply if (timeC (t) B ifactC (f , )). We need to keep
the property that after being violated, the obligation cannot be fulfilled anymore
(as in (6) above). We may say:

oblC (A,F ,T ) ∧ ifactC (F ,T ′) ∧ ¬violC (A,F , )→ fulf C (A,F ,T ′) (10)

It is tempting to also explicitly state that violations can only occur if no
fulfillment was achieved before. Something like:

oblC (A,F ,T ) ∧ timeC (T ) ∧ ¬fulf C (A,F , )→ violC (A,F ,T ) (11)

However, when taken together with (10), this would imply that a simulta-
neous occurrence of ifactC (f , ) and timeC (t) (that is, ifactC (f , ) @ timeC (t))
could bring either a fulfillment or a violation! We therefore must join (8) with
(10). (Notice that the pairing of (7) with (11) would bring a violation in the
simultaneity case.)

Practical Issues. If we cannot assume that the above rules are evaluated at
every normative state update, we may get unwanted results. For instance, as-
sume that the following are elements of the current normative state: oblC (a, f , t),
timeC (t) and ifactC (f , t + 1 ). If rules are applied only at time t′ > t, the viola-
tion would go unnoticed: rule (10) would apply, while rule (8) would not.
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This problem can be overcome by referring explicitly to the time references
of IRE ’s:

oblC (A,F ,T ) ∧ timeC (T ) ∧ ¬(ifactC (F ,T ′) ∧ T ′ ≤ T )→ violC (A,F ,T )
(12)

oblC (A,F ,T ) ∧ ifactC (F ,T ′) ∧ T ′ ≤ T → fulf C (A,F ,T ′) (13)

If we are to relax the rule evaluation policy, the two rules for fulfillment and
violation detection must become independent. The shortcoming of this approach
is that it is directly applicable only when considering temporal deadlines.

Another problem that we do not consider is that we are assuming an instant
recognition of each IRE . That is, an institutional fact occurring at time t is
added at that same instant t to the normative state. Were that not the case, we
could get into situations where certain violations would need to be retracted as
new knowledge is acquired, otherwise inconsistencies might be obtained (which
could be avoided with an extra ¬violC (A,F , ) test in rule (13) above).

4 Examples

In this section we sketch some examples towards the exploitation of the nor-
mative environment. The examples are necessarily simple, in order to focus on
the important aspects of our approach; in the following we adopt the convention
that variables begin with an upper-case letter.

Suppose that a group of companies provide household appliance solutions to
their customers. However, while these solutions involve several kinds of equip-
ment, each of the companies manufactures only a subset of them. They agree to
form a virtual organization in order to better serve their customers.

This organization will define a supply-agreement that translates into a context
sa3:sa in the normative environment, where sa3 is the context id and sa is the
context type (see end of Section 3.1). Notice that sa3:sa � top, where top is the
top context.

Suppose we have, at the top context, the following norm:

N top
1 = ifactX:sa (order(A1 ,Res ,Qt ,A2 ),T )∧

supply–infoX:sa (A2 ,Res ,Upr)
→
oblX:sa (A2 , delivery(A2 ,Res ,Qt ,A1 ),T + 2 )∧
oblX:sa (A1 , payment(A1 ,Qt ∗Upr ,A2 ),T + 2 )

The norm states that for any supply-agreement, when an order is made that
corresponds to the supply information of the receiver, he is obliged to deliver
the requested goods and the sender is obliged to make the associated payment.
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Table 1. Different normative states and norm activation conflicts

NS {ifactsa3:sa (order(jim, r3 ,5 , tom), 1 )}
Conflict none, Ntop

1 applies

NS ′ {ifactsa3:sa (order(jim, r3 ,5 , tom), 1 ), oblsa3:sa (tom, delivery(tom, r3 , 5 , jim), 3 ),
oblsa3:sa (jim, payment(jim, 5 , tom),3 )}

NS {ifactsa3:sa (order(tom, r1 , 5 , jim), 1 )}
Conflict none, Ntop

1 applies

NS ′ {ifactsa3:sa (order(tom, r1 , 5 , jim), 1 ), oblsa3:sa (jim, delivery(jim, r1 , 5 , tom), 3 ),
oblsa3:sa (tom, payment(tom, 5 , jim), 3 )}

NS {ifactsa3:sa (order(tom, r1 , 100 , jim), 1 )}
Conflict Nsa3:sa

1 defeats Ntop
1

NS ′ {ifactsa3:sa (order(tom, r1 , 100 , jim), 1 ), oblsa3:sa (jim, delivery(jim, r1 ,100 , tom), 6 ),
oblsa3:sa (tom, payment(tom, 100 , jim), 3 )}

NS {ifactsa3:sa (order(sam, r3 , 5 , tom),1 )}
Conflict Nsa3:sa

2 defeats Ntop
1

NS ′ {ifactsa3:sa (order(sam, r3 , 5 , tom),1 ), oblsa3:sa (tom, delivery(tom, r3 ,5 , sam), 3 )}

NS
{ifactsa3:sa (order(sam, r3 , 5 , tom),1 ), oblsa3:sa (tom, delivery(tom, r3 ,5 , sam), 3 ),
fulf sa3:sa (tom, delivery(tom, r3 , 5 , sam), 2 )}

Conflict none, Nsa3:sa
3 applies

NS ′ {ifactsa3:sa (order(sam, r3 , 5 , tom),1 ), oblsa3:sa (tom, delivery(tom, r3 ,5 , sam), 3 ),
fulf sa3:sa (tom, delivery(tom, r3 , 5 , sam), 2 ),oblsa3:sa (sam, payment(sam, 5 , tom), 4 )}

Now, suppose context sa3:sa includes the following norms.

N sa3 :sa
1 = ifactsa3 :sa (order(A1 ,Res ,Qt , jim),T )∧

supply–infosa3 :sa (jim,Res ,Upr) ∧Qt > 99
→
obl sa3 :sa (jim, delivery(jim,Res ,Qt ,A1 ),T + 5 )∧
obl sa3 :sa (A1 , payment(A1 ,Qt ∗Upr , jim),T + 2 )

This norm expresses the fact that agent jim , when receiving orders with more
than 99 units, has an extended delivery deadline.

N sa3 :sa
2 = ifactsa3 :sa (order(sam,Res ,Qt ,A2 ),T )∧

supply–infosa3 :sa (A2 ,Res , )
→
obl sa3 :sa (A2 , delivery(A2 ,Res ,Qt , sam),T + 2 )

N sa3 :sa
3 = fulf sa3 :sa(A2 , delivery(A2 ,Res ,Qt , sam),T )∧

supply–infosa3 :sa (A2 ,Res ,Upr)
→
obl sa3 :sa (sam, payment(sam,Qt ∗Upr ,A2 ),T + 2 )

These two norms express the higher position of agent sam who, as opposed
to other agents, only pays after receiving the merchandise. Suppose we have the
following founding contextual info for context sa3:sa :
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supply–infosa3 :sa (jim, r1 , 1 )
supply–infosa3 :sa (sam, r2 , 1 )
supply–infosa3 :sa (tom, r3 , 1 )

Table 1 shows what might happen in different normative states. Lines labeled
with Conflict in the first column show what norm activation conflicts come
about (and how they are resolved) when the institutional reality elements of
their previous line (labeled with NS) are present. Lines labeled with NS′ show
the normative state after applying the defeating norm activation. Notice that
in the second example there is no conflict, since norm N sa3 :sa

1 is not activated
because of a variable restriction.

Observe that the model is very flexible, allowing us to specify different con-
tracting situations where the concept of norm activation defeasibility is useful.

5 Conclusions and Related Work

Our model of Electronic Institution [3][4] is based on an environment with a
hierarchical normative structure, including norm inheritance as a mechanism to
facilitate contract establishment. This paper formalizes such an environment.

We rely on a common normative structure applicable to several “social sys-
tems”, where the institution is prior in existence to the specific social relation-
ships (which are mapped to contexts). A different perspective is taken in [9],
where an electronic institution is coupled (situated) with a previously existing
social system. The authors also explore the possibility of autonomic adaptation
of the institution’s rules to enhance performance. In our case, adaptability is ad-
dressed by having a normative environment that agents can exploit and adapt
to fit their purposes.

The idea of context for normative reasoning has been studied before. However,
in most cases the notion of context comes from the ‘counts-as’ relation [10][11]:
“X counts-as Y in context C”. For instance, in [12][13] a context gives an inter-
pretation to abstract norms of a broader context. There is a leveled structuring
of contexts, which broadly contemplates institutions, sub-institutions and orga-
nizations, from the most abstract to the most concrete level. However, concrete
norms (refined as rules and implemented as procedures) are used to model pre-
existent organizations. Concept abstraction is studied in [14]. In this case, it is
not the norm that is abstract, but instead the concepts in which it is expressed.
A norm based on abstract concepts may be further specified in a more specific
context. Our approach has a different concern: we use the context structure for
designing a model of defeasibility for norms, which may be added to the system
at runtime. We do not tackle with abstraction.

The “contextualization” of contracts within higher normative structures has
also been advanced in [15]. In this case, a contract is modeled as an institu-
tion itself (see also [16]), and can be governed by another (super) institution.
This relationship is expressed through a mechanism of empowerment. States are
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described by fluents and evolve according to rules expecting events. Empow-
erments are defined by normative fluents allowing the creation of events and
the initialization or termination of fluents. With this approach, a rule defined
in an institution may operate on another institution’s state if the rule’s effects
are explicitly empowered. In our approach, contracts are modeled as contexts
within a single institution. Norms can also operate in contexts other than the
one where they are defined, but this property is based on a structured normative
framework, and not on a discretionary basis that may be cumbersome to express.

From the law field, three normative conflict resolution principles have been
defined and traditionally used. The lex superior is a hierarchical criterion and
indicates that a norm issued by a more important legal entity prevails, when in
conflict with another norm (e.g. the Constitution prevails over any other legal
body). The lex posterior is a chronological criterion indicating that the most
recent norm prevails. The lex specialis is a specificity criterion establishing that
the most specific norm prevails. While not firmly adopting any of these options,
our approach resembles more the lex specialis principle. However, the defeating
norms are more specific in the sense that they are defined at (as opposed to
applied to) a more specific context (a kind of “lex inferior”). The lex specialis
flavor comes from the fact that in most cases a defeating norm should apply to
a narrower context-set.

These properties of our norm defeasance approach result from the fact that
the original aim is not to impose predefined regulations on agents, but instead
to help them in building contractual relationships by providing a normative
background (which can be exploited in a partial way). A feature of our approach
that exposes this aim is that all norms are defeasible. In this respect we follow
the notion from law theory of “default rules” [6]. We leave for future work the
possibility of defining non-defeasible norms, that is, norms that are not to be
overridden.

This notion of “default rules” might be misleading; it has not a direct corre-
spondence with default logic formalizations [17]. We do not handle the defeasi-
bility of conclusions of default rules in that sense, but instead model defeasibility
of the application of the rules themselves (which are called norms).

From a theoretical logical stance, norm defeasibility has been addressed in,
e.g., [18][19][20]. Typically, deontic reasoning guides these approaches, and thus
conflicts regard the deontic operators themselves. Our approach is centered in-
stead on the applicability of norms, not on their conclusions.

The work in [21] addresses the issue of conflict resolution in a structured
setup of compound activities. These resemble our context and sub-context re-
lationships. However, they model deontic conflicts (e.g. an action being obliged
and prohibited), while we model norm (activation) conflicts. They study the in-
heritance of normative positions (obligations, permissions, prohibitions), based
on an explicit stamping of each one of them with a priority value and a times-
tamp; the specificity criterion is based on the compound activities’ structure.
We address the inheritance of norms and provide a means to override norm
activations based on their defeasibility.
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Our approach of context and sub-context definitions, together with the pre-
sented norm defeasibility model, is similar to the notion of supererogatory defea-
sibility in [22]. They model defeasibility in terms of role and sub-role definitions.
In fact, they also consider express defeasibility, which is based on the specificity
of conditions for norm applicability, but this approach has been followed by
several others.

The problem of normative conflict resolution has been also studied in more
practical approaches. The application of business rules in e-commerce has been
addressed in [23], where courteous logic programs allow for an explicit definition
of priorities among rules. An extension based on defeasible and deontic logic
has been advanced in [24] for the representation of business contracts (and not
merely business rules). However, this approach does not consider defeasibility
of norms between a contract and an underlying normative framework. Finally,
[25] also addresses defeasible reasoning in the e-contracts domain, based on the
translation of contracts from event calculus to default logic, and on the definition
of dynamic priorities among rules (by using domain-dependent criteria). Conflics
are, in this case, based on the normative positions of agents.

We should also point out that [26] presents a grammar for rules that combines
both our rule and norm definitions. However, our concern is to distinguish a
priori rule definition as a normative state maintenance issue from norm definition
as a contracting activity. Furthermore, in [26] there is no attempt to solve any
disputes related with possibly conflicting norms.

From a software engineering perspective, we envisage the development of dif-
ferent “enterprise agents” that encapsulate the private interests of the electronic
institution participants, and that engage in (partially automated) negotiations in
order to obtain mutually beneficial contracts. We have a working platform that
incorporates the needed infrastructure for the concepts introduced in this paper,
based on Jess [27] – a very efficient rule engine based on the Rete algorithm
for pattern matching. Another major effort concerns the knowledge engineer-
ing of norms applicable to different business contexts, in order to maximize the
usefulness of the normative background.

Some open issues in our research include, as already mentioned, the possi-
bility of defining non-defeasible norms, which might be important in certain
contract domains. The development of multiple-inheritance mechanisms within
our contextual framework is also an interesting issue, although it poses additional
problems regarding norm defeasibility.
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Abstract. Clauses within contracts may be thought of as norms, specifying
permissions, obligations and prohibitions on contract parties. In this paper, we
present a formal representation of contracts, focusing on the specification of a
model of norms. With this model, a norm is associated with a status, which may
change as the environment, and the status of other norms, changes. We define a
normative environment, which may be used to track the status of a set of norms
throughout their lifecycle, and then describe a predicates that may be used to
evaluate a norm’s status. Agents are able to use these predicates to reason about
the status of norms, and how their actions will affect the normative environment.
Finally, we show the applicability of our framework to real world domains by
monitoring the execution of a contract taken from a real world scenario.

1 Introduction

With the increasing popularity of online transactions, the need for electronic contracting
has become apparent. While generic contracts are applicable in many situations, and
violations sufficiently rare that a human may resolve disputes, the appearance of web-
services, and the need to regulate interactions between them highlights the desirability
of fully automated contracting. Such fully automated contracting requires the ability
to describe a contract in a machine interpretable way, ideally in a form over which
inference may be performed. Additionally, techniques for automatically generating and
enforcing contracts are also required, as well as protocols allowing agents to create and
modify contracts.

Work dealing with some of these areas already exists; for example, [1] discusses
automated negotiation in various contexts, including in contracts, while [2,3] and [4] all
suggest different types of contracting languages. At their core, contracts are primarily
normative documents; that is they impose a set of (possibly conditional) requirements
on agent behaviour. These requirements may range from actions that the agent may,
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or should, undertake, to states of affairs within the environment that an agent may,
should, or should not, allow to occur. To formalise a contracting language, one must thus
first formalise its normative components. As discussed later, researchers have provided
many such formalisations, often in the context of deontic logic. Our interest in norms
is more focused; as part of a contracting language, we are interested in tracking the
changing state of norms (for example, when they are active, that is, have normative
force on an agent, as well as the more traditional violated). Furthermore, our application
domain requires slightly different philosophical assumptions when compared to those
made in the deontic tradition, as we assume that norms can be violated, but may then,
in some cases, be unviolated. For example, consider a norm stating that whenever it is
windy, Alice should ensure that the door is closed. When it is windy, the door may be
open, and Alice is thus in violation of the norm. Once she (or some other agent) closes
the door, the norm is unviolated. However, if the door blows open, the norm is again
violated. This norm may be violated and unviolated as long as it is active, that is, as
long as it is windy.

In this paper, we present a formal normative framework that allows us to track the
changing status of norms. The remainder of the paper is structured as follows: we begin
by providing an informal overview of our normative model. We then describe a typical
case in which norms may be used within a contract. This serves as a running example
throughout the remainder of the paper. The normative model is then formalised in two
parts. We begin by structurally describing the various elements of our model, and then
show how we may capture their dynamic behaviour. After illustrating our model via an
example, we conclude by discussing related and future work.

2 Norms for Modelling Contract Clauses

We assume that a contract is made up of various descriptive elements, for example
stating which ontologies may be used to explain the terms found within it. Most impor-
tantly, it specifies a set of clauses, each of which represents a norm.

Norms can be interpreted as socially derived prescriptions specifying that some set
of agents (the norm’s targets) may, or must, perform some action, or see that some state
of affairs occurs. Norms can thus be understood as regulating the behaviour of agents.
This is their role when encoded in contracts.

Norms are social constructs, and we argue that it is meaningless to consider norms
independently of their social aspect. This is because a norm is imposed on the target
by some other entity (the imposer) which must be granted, via the society, some power
to impose the norm. Without this power, the norm’s target is free to ignore the norm’s
prescriptions. With the presence of power, a penalty may be imposed on an agent violat-
ing a norm. These penalties take on the form of additional norms, giving certain agents
within a society permission to impose penalties (or obliging them to do so).

In designing our normative model, we are concerned with meeting the following
requirements, imposed upon us by the contracting domain in which we operate.

– The model should allow for the monitoring of norms. That is, it should allow for
the determination of whether a violation took place and, if possible, who was re-
sponsible for causing the violation.
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– Verification of norms should also be supported, i.e. determining whether conflicts
between norms could occur, or whether a norm could never or sometimes or always
be complied with.

– Agents should be able to make use of the normative model to support their own
practical reasoning, i.e. deciding which action they should undertake.

– Norms should be able to cope with contrary to duty obligations as well as conditions
based on the status of other norms. For example, consider the pair of norms “One
is obliged to park legally”, and “If one parks illegally, one is obliged to pay a fine”.
The second norm carries normative weight only if the first norm is violated. These
types of norms commonly appear within contracts, and it is thus critical that our
model is able to represent them.

– The model should be extensible, allowing different knowledge representations and
reasoning mechanisms to make use of it.

No requirement is placed on detecting and resolving normative conflict. Many such
techniques exist, each having a different view of what constitutes normative conflict
(e.g. [5,6]), and it is intended that these techniques make use of our framework for their
underlying representation of norms. Similarly, our model should not prescribe what
must occur when a violation is detected. Instead, we assume that the contract would
contain clauses dealing with such situations.

Norms typically have normative force only in certain situations. We therefore asso-
ciate norms with an activation condition. Norms which are not applicable to a situa-
tion are considered abstract, and are instantiated when the norm’s activation condition
holds. Once a norm has been instantiated, it remains active, irrespective of its activation
condition, until a specific expiration condition holds. When the expiration condition
occurs, the norm is assumed no longer to have normative force. Finally, independent of
these two conditions is the norm’s normative goal, which is used to identify when the
norm is violated (in the case of an obligation), or what the agent is actually allowed to
do (in the case of a permission). Obligations and permissions are the two norm types on
which our framework focuses. Like others, we assume that additional norm types may
be constructed from these basic types (for example, a prohibition could be seen as an
obligation with a negated normative goal).

Norms may be activated, met and discharged based on a number of factors including
the status of other norms, the state of the environment (and the actions performed by
other agents therein), and the status of contracts.

3 Example: Car Insurance Brokerage

As a running example, we make use of a simplified version of a use case scenario from
the IST-CONTRACT project1. This scenario models the agreements between several
parties in the car insurance domain. One party, the repair company, is responsible for

1 The IST-CONTRACT project, funded by the European Commission, aims to develop frame-
works, components and tools which make it possible to model, build, verify and monitor dis-
tributed electronic business systems on the basis of dynamically generated, cross-organisational
contracts. More information can be found at http://www.ist-contract.org.

http://www.ist-contract.org
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repairing damaged cars. The second party named in the contract, is a car insurance com-
pany which has damaged cars that need to be repaired. A third organisation, Damage
Secure, acts as a broker between the insurance company and repair company, facilitat-
ing all dealings between them. The goal of contracts between the parties in this use case
is to enhance the quality and efficiency of the total damage claims handling process
between parties.

A typical contract in this use case involves the repair of a damaged car. Here, after the
repair company receives a damaged car and consents to its repair, Damage Secure and
the repair company officially commit to a short term contract which specifies the details
of the repair procedure, including the invoice, etc. Then, the repair company repairs
the car and notifies Damage Secure when it is complete. Damage Secure handles the
payment agreed to in the contract, provided there is no dispute over the quality of the
repair (in which case an expert is called to perform a quality assessment). Additional
contracts would exist between Damage Secure and the insurance company on whose
behalf the repair is being carried out, but we ignore these contracts within this paper.

The focus of interest of this example is to show how a repair contract and a set of
instantiated norms over the repair of a car operate within the domain and normative en-
vironment. Such a case is useful to demonstrate how a contract and the norms attached
to it can be monitored throughout its execution.

4 Formalisation

In this section, we formalise our notions of norms. We do so in a number of steps:
first, we define their structure; after this is done, we show how the status of a norm
may change over time. Before examining norms, we must define a number of related
concepts.

4.1 Formal Preliminaries

We assume the use of a predicate based first order language L containing logical sym-
bols: connectives {¬,∧,∨,→}, quantifiers {∀, ∃}, an infinite set of variables, and the
non-logical predicate, constant and function symbols. The standard definitions for free
and bound variables, as well as ground formulae are assumed. Finally, the set of well
formed formulae of L are denoted as wff (L). A single well-formed formula from this
set is denoted wff.

We make use of the standard notions of substitution of variables in a wff , where
S = 〈t1/v1, . . . , tn/vn〉 is a substitution of the terms t1, . . . , tn for variables v1, . . . , vn

in a wff . If no variables exist in a wff resulting from a substitution, it is said to be fully
grounded, and is partially grounded otherwise.

Our model allows us to infer predicates based on the status of the environment,
clauses, and norms. We assume that other predicates may exist whose truth values may
be inferred from other sources such as ontologies, or an action model. Each of these
sources thus generates a theory, denoted by Γ . For example, we label the theory gener-
ated by the environment as ΓEnv. We label the union of all theories as Γ.
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Formally, a contract document contains a set of clauses representing norms imposed
on agents. A contract document that has been agreed to by those agents has normative
force, and the agents affected by a contract document’s norms are the parties to that
contract. Since a contract document may be instantiated more than once with different
agents playing similar roles, agents are identified within a contract using an indirec-
tion mechanism: a contract document imposes norms on a set of roles, and agents are
associated with these roles before the contract is agreed to.

While not mentioned in this document, additional types of contract documents, such
as contract proposals (which represent contract documents to be agreed upon and with
no normative weight), may exist. References to contracts in the rest of this paper refer
to contract documents which have been agreed upon, and thus carry normative weight.

4.2 Structural Definitions

We may now define the structure of norms and contract documents. Since these con-
cepts act upon agents, we begin by defining these entities, as well as roles, which are
names referenced to identify the agent upon which a norm acts.

Agent Names and Roles. Agents in our framework are left unspecified; we only as-
sume that they are associated with a unique agent name. This name is used to associate
them to specific norms.

Contracts associate agents with roles. For example, the car insurance brokerage con-
tract described earlier contains two roles, that of the broker, and that of the repairer.
One of the clauses obliges the repairer to repair a car, while another assigns a permis-
sion to the agent taking on the broker role, allowing it to demand a penalty from the
repairer if a car is not fixed by the end of a period specified within the contract. A spe-
cific agent (e.g. Bob’s car repair company) may then be associated with the repairer
role by the contract.

A contract role may have one or more parent roles. This means that whenever an
agent is assigned to a role, it is also assigned to that role’s parent roles, and so assumes
the clauses applying to those parents. If a role r1 is a parent of role r2, then r2 may be
referred to as the child role of r1.

If we would like to specify that the role of a car repairer exists in a contract, and
also include the fact that any car repairer also acts as a repairer (i.e. repairer is a
parent role of car repairer), then (repairer, carRepairer) would be contained within
RoleHierarchyDefinition.

Definition 1. (Roles) A role is a constant. We assume that the set of all roles is called
Roles. Then a role hierarchy definition RoleHierarchyDefinition is a binary rela-
tion of the form (Parent, Child) where Parent, Child ∈ Roles.

Norms. A contract contains a set of clauses, represented by norms. Norms may bind
an agent to a certain course of action in all situations, or may only affect an agent when
certain activation conditions apply. Similarly, once an agent achieves a certain state of
affairs, a norm may no longer apply. Finally, norms affect only a specific set of target
agents. A norm thus consists of the following components.
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– A type identifier, stating whether the norm is an obligation or a permission.
– An activation condition stating when the norm must be instantiated.
– A normative goal or state (condition) used to identify when the norm is violated (in

the case of obligations) or what the agent is allowed to do (in the case of permis-
sions).

– An expiration condition used to determine when the norm no longer affects the
agent.

– A target, identifying which agents the norm affects.

Norms may be activated, met, and discharged based on various factors including
the environment, the status of contracts, and the status of other norms. We assume the
existence of Γ, a theory (or possibly a set of theories) allowing one to interpret the status
of norms2. To represent the status of a norm, we define a normative environment theory
ΓNEnv below, and assume that it is part of Γ.

A norm that may apply to a number of situations is, in a sense, abstract. When a
situation to which it applies does arise, the norm is instantiated and exerts a normative
force on the agents that are beholden to it. We may thus informally define an abstract
norm as a norm that, when the conditions are right, comes into effect (i.e. is instantiated)
and only then has normative force over one or more agents. As the name suggests, an
instantiated norm is an instantiated abstract norm, which has normative power over a
set of agents, until it is discharged.

A group of abstract norms (which, in our case, are the clauses of a contract) is gath-
ered into an abstract norm store. Norms may be represented as a tuple of wffs.

Definition 2. (Abstract Norms and Abstract Norm Store) An Abstract Norm Store,
denotedANS , consists of a set of abstract norms, each of which is a tuple of the form

〈NormType, NormActivation, NormCondition,

NormExpiration, NormTarget〉

where:
1. NormType ∈ {obligation, permission}
2. for N∈{NormActivation, NormCondition, NormExpiration, NormTarget},
N is a wff (denoted by φN )

We may further divide NormCondition into a state based maintenance condition
(labelled SMaintenanceCondition) and an action based maintenance condition (la-
belled AMaintenanceCondition). A truth value for NormCondition may be com-
puted as the truth value of (AMaintenanceCondition∧SMaintenanceCondition).

NormActivation is some wff φNA which, when entailed by the theory, must be en-
tailed as the fully grounded φ′

NA in order that the abstract norm can be instantiated and
thus come into force. The substitution of variables S such that φ′

NA = S(φNA) is then
applied to the other components of the abstract norm, thus specifying the instantiated
norm.

2 For example, Γ may include references to the environment (a theory ΓEnv), an ontology, an
action model, and normative environment theory.
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Instantiating Abstract Norms. We now define how abstract norms are instantiated
with respect to the domain environment theory and normative environment theory.

An instantiated norm has the same overall form as an abstract norm but its activation
condition is grounded, and its remaining parameters are partially grounded using the
same grounding as the activation condition.

Definition 3. (Instantiation of Abstract Norms)

The abstract norm

〈NormType, NormActivation, NormCondition,

NormExpiration, NormTarget〉

instantiated by a theory Γ made up of sub theories including one representing the do-
main’s environment (ΓEnv) and Normative Environment Theory (ΓNEnv), obtains an
instantiated norm:

〈NormType, NormActivation′, NormCondition′,
NormExpiration′, NormTarget′〉

where:

– Γ � NormActivation′, where NormActivation′ is fully grounded such that
NormActivation′ = S(NormActivation)

– NormCondition′ = S(NormCondition)
– NormExpiration′ = S(NormExpiration).
– NormTarget′ = {X | Γ ∪ {NormActivation′} ∪ {S(NormTarget)} � X},

where NormTarget′ ⊆ AgentNames

Notice that NormTarget′ is the set of individuals X to whom the instantiated
norm applies. These individuals are identified with reference to (entailed by) the do-
main environment theory, normative environment theory3, and the NormActivation
and NormTarget wffs that are grounded with respect to the former environments.
In the context of a contract clause, the norm’s targets are identified by making use
of the RoleHierarchyDefinition relation. Note also that both NormCondition ′ and
NormExpiration ′ may only be partially grounded.

Given a set of abstract norms, ANS, together with a Γ, we define the set of norms
that may be instantiated from Γ as inst(ANS).

Contracts. Given the definition of roles, we may specify a contract document as fol-
lows.

Definition 4. (Contract Document) A Contract Document is a tuple

ContractDocument = 〈Γ, CDNorms, CDRoles,

CDRoleMapping〉
3 The normative environment theory may be used when a target should be identified based on

the status of another norm. For example, in the case of a contrary to duty obligation, a penalty
must be paid by the agent(s) violating some other norm.
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where CDNorms is a set of abstract norms. CDRoles is a set of role definitions, and
CDRoleMapping maps these role definitions to the set of agent names which are the
contract parties within the contract document. We identify a set ContractParties ⊆
AgentNames as those agents named within the contract. This means that the following
condition must be satisfied:

Γ ∪ CDRoles ∪CDRoleMapping � X where X ⊆ ContractParties.

The qualification on X requires that a contract document only imposes norms on con-
tract parties.

Being an identifiable data item, a contract document, or any element of it, may have
additional metadata which may be included in the contract document itself or stored
separately. One common piece of metadata associated with most contracts is a contract
status. Metadata may be viewed as an additional theory from which the agent can infer
information, and is labelled Γmetadata.

A contract may refer to other contracts, requiring that these additional contracts hold
when the referring contract holds. Such additional contracts may also be considered part
of the contract’s context, and may, among other things, represent societal regulations
imposed on the contracting parties.

Contexts (i.e. ontologies, descriptions and regulations imposed on contract parties)
may be shared between multiple contracts. Context provides full meaning to the terms,
actions and processes described in the contract.

When an agent reasons about a contract, it makes use of the contract’s context. Such
an agent is said to be operating within the appropriate context. Agents within a common
context share a common vocabulary. This implies that each context has to be associated
with a domain ontology defining the meaning of the terms used in the interactions.
Therefore, the ontology bound to a context must contain at least all the predicates,
roles, role hierarchies, actions and processes that are part of its domain.

However, the ontology may not be enough to express the whole context domain
semantics. An extra model is needed for dealing with all the aspects of the domain,
especially those that are dynamic. We call this the world model, which contains sets of
conditional rules that use predicates and actions from the ontology. The domain ontol-
ogy and world model also form part of Γ.

Contract Proposal. Until agreed to by the contract parties, a contract document has
no normative weight. At this stage, it is referred to as a contract proposal. Once agreed
to, the contract becomes binding, and its norms are then considered to come into effect.

4.3 Operational Semantics

So far, we have described the structure of contract documents and norms. Usually, we
will be interested not in the semantics of the documents themselves, but how they affect
the contract parties, i.e. how, given the evolution of the environment, various norms are
instantiated, fulfilled, violated and discharged.

To do this, we now describe the normative environment theory ΓNEnv , which defines
predicates that may be used to identify the status of norms as they progress through their
lifecycle. A normative environment theory is built around a normative environment,
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which is itself a (possibly infinite) sequence of normative states NS1, NS2, . . .. Each
normative state NSi in the sequence is defined with respect to the overarching theory
Γ (which includes ΓNEnv), and a given set of abstract norms ANS.

Each normative state keeps track of four basic events:

– when an abstract norm is instantiated;
– when an instantiated norm expires;
– when a norm’s normative condition holds; and
– when a norm’s normative condition does not hold.

In order to formally define a normative state we first define predicates based on an
instantiated norm’s NormCondition and ExpirationCondition attributes:

Definition 5. (The holds() Predicate) Let in be an instantiated norm

〈NormType, NormActivation, NormCondition,

NormExpiration, NormTarget〉

Then, for N ∈ {NormCondition, NormExpiration}: holds(in, N ) evaluates to
true if Γ � N ′, where N ′ is entailed with all variables in N grounded; otherwise
holds(in, N ) evaluates to false.

Our formal definition of a normative state then identifies those instantiated norms whose
normative condition evaluates to true, those whose normative condition evaluates to
false, and those whose expiration condition evaluates to true:

Definition 6. (Normative State) Let INS be a set of instantiated norms. A normative
state NS, defined with respect to a set INS of instantiated norms, and domain environ-
ment theory ΓEnv and normative environment theory ΓNEnv , is a tuple of the form:

〈NSTrue, NSFalse, NSExpires〉

where:

– NSTrue = {in ∈ INS | holds(in, NormCondition) is true}
– NSFalse = {in ∈ INS | holds(in, NormCondition) is false}
– NSExpires = {in ∈ INS | holds(in, NormExpiration) is true}

Since NSExpires ⊆ NSTrue ∪NSFalse, it is sufficient to identify the instantiated
norms in a normative state, denoted inst norms(NS), by the union of those norms
whose normative condition evaluates to true, and those whose normative condition
evaluates to false. That is to say:

inst norms(NS) = NSTrue ∪ NSFalse

Definition 7. (Normative Environment) A normative environment NE is a possibly
infinite ordered sequence NS1, NS2, . . . where for i = 1 . . ., we say that NSi is the
normative state prior to NSi+1.
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Given a normative state, the subsequent normative state is defined by removal of the
expired instantiated norms, addition of new instantiated norms, and checking the norm
state of all instantiated norms. We therefore define a minimal set of conditions that a
normative environment should satisfy:

Definition 8. (Normative State Semantics) Let ANS be an abstract norm store, NE
the normative environment NS1, NS2, . . ., and for i = 1 . . ., Γi a set of wffs denoting
the domain environment associated with NSi. For i = 1 . . ., we can define the set of
potential norms for NSi as

1. those that are instantiated in the previous state NSi−1 (inst norms(NSi−1))
2. those in the abstract norm store that are instantiated w.r.t. Γi (i.e., inst(ANS) as

defined in Definition 3).
3. And not those that have expired in the previous state, i.e., NSExpiresi−1.

That is to say, the set of potential norms PNormsi is defined as follows:

PNormsi = inst norms(NSi−1) ∪ inst(ANS) \ NSExpiresi−1

Then NSi = 〈NSTruei, NSFalsei, NSExpiresi〉 is defined (as in Definition 6) with
respect to the set PNormsi, and theory Γi.

Clearly, some initial normative state is required, and we define it as

NS0 = 〈NSTrue0, NSFalse0, NSExpires0〉

where NSTrue0 = {}, NSFalse0 = {} and NSExpires0 = {}.
We suggest the following basic set of predicates entailed by ΓNEnv , and in this way

characterise how ΓNEnv may be partially specified by the normative environment.4 In
the following definitions we assume a normative environment {NS1, NS2, . . .} where
NSi = 〈NSTruei ,NSFalsei ,NSExpiresi〉, and i > 0. We use the Gödelisation opera-
tor �.� for naming normative states in the object level language. That is, �NSi� names
normative state NSi and allows us to use it within wffs.

Definition 9. (The instantiated() predicate) ΓNEnv � instantiated(�NSi�,in) iff
in ∈ inst norms(NSi) and (in /∈ inst norms(NSi−1)∨ in /∈ NSExpiresi−1). We
define by default ΓNEnv �� instantiated(�NS0�,in).

Intuitively, instantiated(NSi, in) holds if the norm in becomes instantiated in NSi.
That is, instantiated(�NSi�, in) evaluates to true if norm in was instantiated in NSi,
and either was not instantiated in NSi−1 or expired in NSi−1 (and thus becomes in-
stantiated again in NSi).

Definition 10. (The expires() predicate) ΓNEnv � expires(�NSi�,in) if and only if
in ∈ NSExpiresi. We also define ΓNEnv �� expires(�NS0�,in).

4 In general, by stating the requirement that some first order theory Γ entails φ1, . . . , φn, we are
effectively providing a partial specification of Γ . In semantic terms, any model for Γ is also
model for φ1, . . . , φn.
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The expires() predicate holds if an instantiated norm in expired within a specific nor-
mative state.

Definition 11. (The active() predicate) ΓNEnv � active(�NSi�,in) if and only if
instantiated(�NSi�,in), or else (in ∈ inst norms(NSi−1)∧in /∈ NSExpiresi−1).
We also define ΓNEnv �� active(�NS0�,in).

active(�NSi�, in) holds if a norm in is instantiated within normative state NSi. This
could be because it was instantiated within that state, or because it was instantiated
earlier and has not yet expired.

Definition 12. (The becomesTrue() predicate) ΓNEnv � becomesT rue(�NSi�,in)
iff in ∈ NSTruei and, either in ∈ NSFalsei−1, or instantiated(�NSi�,in).

Intuitively, a norm in becomes true in NSi if its normative condition evaluates to true,
and either it was false in state NSi−1, or if not, then in is instantiated in NSi.

Definition 13. (The becomesFalse() predicate) ΓNEnv � becomesFalse(�NSi�,in)
iff in ∈ NSFalsei and, either in ∈ NSTruei−1 or instantiated(�NSi�,in).

Here, becomesFalse(. . .) is similar to becomesT rue(. . .), dealing with falsehood
rather than truth. The next two predicates check whether a norm is active and true,
respectively false, in some normative state.

Definition 14. (The isTrue() predicate) ΓNEnv � isT rue(�NSi�,in) if and only if
becomesT rue(�NSi�,in), or else, active(�NSi�,in) and in ∈ NSTruei−1.

Definition 15. (The isFalse() predicate) ΓNEnv � isFalse(�NSi�,in) if and only if
becomesFalse(�NSi�,in), or else, active(�NSi�,in) and in ∈ NSFalsei−1

Definition 16. (Properties of ΓNEnv) ΓNEnv � ¬x iff ΓNEnv �� x. This implies that:

– ΓNEnv � ⊥.
– ¬ is given a negation as failure semantics.

Apart from these low level predicates, we may define additional useful predicates. Some
of these determine the status of a norm, while others allow access to its operation.

Definition 17. (Norm access predicates) Given a norm N with norm type Type, acti-
vation condition NormActivation, expiration condition NormExpiration, a norm
target set NormTarget, and a normative condition made up of a state component
SMaintenanceCondition and an action component AMaintenanceCondition, the
following predicates (which may operate on both abstract and instantiated norms) may
be defined:

type(N, X) = true iff X = Type, and false otherwise.
normActivation(N ,X ) = true iff NormActivation unifies to X , and false otherwise.
normSCondition(N ,X ) = true iff SMaintenanceCondition unifies to X , and false
otherwise.
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normACondition(N ,X ) = true iff AMaintenanceCondition unifies to X , and false
otherwise.
normExpiration(N ,X ) = true iff NormExpiration unifies to X , and false other-
wise.
normTarget(N ,A) = true iff there is a unification between some element of A and
NormTarget .

We may define the following predicates based on the normative environment. These
predicates form a basis for our normative environment theory ΓNEnv:

Definition 18. (the violated() predicate)
violated(�NSi�, in) = normType(in, obligation)∧ isFalse(�NSi�, in)

The fulfilled predicate checks whether a norm has been fulfilled at a specific point in
time.

Definition 19. (the fulfilled() predicate)
fulfilled((�NSi�, in) = expires(�NSi�, in) ∧ ¬violated(�NSi�, in)

unfulfilled((�NSi�, in) = expires(�NSi�, in) ∧ violated(�NSi�, in)

We may also be interested in determining whether a norm is a violation handler; that is,
if it detects and handles the violation of some other clause. We make the simplifying as-
sumption that a violation handler contains only the violated() predicate in its activating
condition.

Definition 20. (the violationHandler() predicate)
violationHandler(N) = normActivation(N, �violated(X, Y )�) for any X, Y .

Finally, we may want to determine which norm (N1) is the violation handler for another
norm (N2):

Definition 21. (the handlesViolation() predicate)
handlesV iolation(N1, N2) = normActivation(N1, �violated(X, N2)�) for any X

As we will discuss later, we intend to make use of these semantics when evaluating the
status of contracts. Before doing so, we illustrate the use of our framework within an
example.

5 Example

Building on the Car Insurance Brokerage example presented above, we now show how
the normative environment theory evolves, together with its attendant normative states.
We assume a contract over the repair of a car has been signed between a repair com-
pany (“Bob Repairs”) and the broker (Damage Secure). For simplicity, we have directly
placed the agent’s names within the norm targets, rather than using roles. This contract
contains the two clauses5:

5 Due to space constraints, we do not describe the temporal predicates used in the clauses, in-
stead assuming that they are derived from some standard temporal logic.
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Fig. 1. Domain Environment and Normative Environment lifecycle

The first clause consists of norm nm1 =

〈obligation, atRepairShop(Car), onT ime(T )∧ atRepairShop(Car),
done(repairCar(Car)), BobRepairs〉

Where onT ime(T ) = before(T, contractStartT ime + 7days). Here, T represents
the current time.

The second clause contains norm nm2 =

〈obligation, violated(nm1), done(payF ine()),
f inePaid(), BobRepairs〉

The first clause expresses the obligation imposed on Bob Repairs to repair a car
within the first 7 days of the contract start date, provided the car is at the repair shop.
The second expresses the obligation on the Repair Company to pay a fine in case it
violates the first obligation. At this stage, it must be noted that the obligation on the
Repair Company to repair the car holds even if the seven day deadline has passed.
Alternatively, if we wanted to model the obligation in such a way that, if after the seven
days pass and the car is still not repaired, a fine should be paid and no repair must
be made, then we would have to modify the first NormExpiration attribute to read
carRepaired(Car) ∨ after(T, contractStartT ime + 7days).

Figure 1 shows the values of several of predicates belonging to a domain the-
ory ΓDom (atRepairShop, onT ime, done, finePaid) and ΓNEnv (instantiated(),
violated(), expires(), ...). Some predicates for nm2, the value of which can easily be
inferred, are omitted from the figure, due to limited space.

By default, NS0 contains empty sets for all its elements. In the next normative state,
NS1, nm1’s NormCondition becomes true, as the car is at the shop. This event
causes nm1 to become instantiated. The norm’s NormCondition element evaluates
to true (and thus nm1 ∈ NSTrue1) until 7 days from the contract start date have
passed. At that point (NS3), the predicate before(T, contractStartT ime + 7days)
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no longer holds, and NormCondition becomes false (and thus nm1 ∈ NSFalse1).
By definition, this means that the violated() predicate for nm1 evaluates to true. This
causes the instantiation of the second norm, as seen by its NormActivation parameter.
By paying the fine at the next normative state NS4, the repair company fulfils nm2’s
NormExpiration condition, and this brings nm2 to a fulfilled() state. Finally, we
assume that the car is repaired at NS5, meaning that violated() evaluates to false for
nm1. This means that nm1 is also fulfilled, as its NormExpiration now evaluates to
true.

6 Discussion and Conclusions

The normative framework we have described fulfils all of the requirements described
earlier. Not only are we able to determine whether a violation took place (via the
violation(. . .) predicate), but we may also detect the occurrence of additional criti-
cal states at which some normative event related state change took place. These critical
states correspond to the various predicates described above. Additional, domain depen-
dent critical states may be defined using the information found within the normative
environment. Verification of a normative system may be performed by forward simula-
tion over the domain and normative environments.

We assume that any norm aware agent capable of being affected by norms, is associ-
ated with its own normative environment (and resulting normative environment theory).
In fully observable environments, each agent’s theory would be identical, but in other
domains, these theories may diverge. In the context of contracting, we assume that the
contract may state which agent’s theories should be used when determining whether
penalties (or rewards) should be imposed.

Our model does not describe what should occur if an obligation is violated. Instead,
we assume that agents make use of the normative model to undertake their own practical
reasoning. An agent may determine which norms affect it at any stage, and base its
decisions on these.

One interesting aspect of our model (as illustrated by norm nm1 in the example) is
that norms may be violated for a certain period of time, after which they may return to
an unviolated state. This is particularly useful when dealing with contracts, as penalties
may be assessed over the duration of a violation, with the norm still having normative
force over an agent. This differs from the way most deontic theories deal with norms
(for example [7]).

While a large variety of electronic contracting languages exist, many only specify
an informal [8], or programming language based [3] semantics. Conversely, formal
languages, such as LCR [4] have limited expressibility. In contrast, our approach of
defining a rich contracting language, and then constructing its semantics, is intended to
overcome these weaknesses.

The work presented here has been inspired by a number of other researchers. For
example, [9] described the use of landmarks as abstract states which “are defined as a set
of propositions that are true in a state represented by the landmark”. These landmarks
may thus be seen as similar to critical states. The framework described by [10] shares
some similarities with our approach. Their focus on sanctions (which, in our model,
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are implemented via additional norms) means that they only allow for very specific,
predefined normative states, and that violations in their framework may only occur once.

[11] described a predicate based event calculus approach to keeping track of nor-
mative state in contracts. However, their work focused on specifying an XML based
representation of event calculus, and made use of event calculus primitives to specify
their contracts, resulting in a very unwieldy and unrealistic contract representation, and
very few norm related predicates. Finally, [12] showed how petri-nets could be used
to perform contract monitoring, but her representation is best suited for those contracts
which can be expressed as workflows.

In this paper, we have presented the normative underpinnings of our contract model,
showing how norms are represented, and how we can determine their state as the en-
vironment changes. We have successfully migrated this approach to the contract level,
allowing us to identify the state of a contract (e.g. drafted, active, etc.) at any point
in time. IST-CONTRACT intends to create an entire contracting ecosystem, and we
are currently using the normative model to define the behaviour of various contract-
supporting components of the system such as the contract store and contract managers.
In the near-term, we intend to see whether we can migrate the semantics described here
to additional levels of the framework, for example to specify the form of inter-agent
protocols. In the long-term, we are interested in examining how norm-conflict mecha-
nisms may best make use of the framework, and are also looking at the effects of partial,
and conflicting information on the semantics.
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2 Università degli studi di Bergamo, Italy
mario.verdicchio@unibg.it

Abstract. In open multi-agent systems (MASs) we cannot assume
agents to be developed in a centralized fashion. Recent proposals of
commitment-based communication frameworks aim at increasing such
openness. Interaction with agents whose behavior does not follow a uni-
versal standard raises the need for some means of protection for each
agent. In this work we propose an automata-based monitoring module
that continuously supports an agent during its life in a MAS. Such mod-
ule includes a Word Composer that observes exchanged messages and
keeps track of significant past interactions to express an agent’s input in
the form of time-stamped words, and a Word Analyzer that processes
such words and matches them against some properties expressed in linear
temporal logic which are supposed to hold throughout the interactions.

1 Introduction

Communication may be considered as playing a fundamental role in increasing
the openness of multi-agent systems (MASs), as interaction standards that need
not take agents’ internal architecture into account allow for systems populated
by heterogeneous, independently developed entities.

The most significant agent communication language (ACL) standard proposed
so far, FIPA ACL, despite some minor changes throughout the years, has always
been providing mental-state-based specifications. Among the issues that rise
from such an approach, the most compelling is probably the fact that program-
mers are supposed to create software with a specific architecture implementing
such prescribed mental states.

To counter this limitation to MASs’ openness, some researchers have pro-
posed ACL standards with a commitment-based semantics [4, 14], according to
which every communicative act is seen as the creation or the modification of a
commitment binding the agent to the others. While mental states are subjective
and private, commitments are objective and public, and can be stored in public
records for further reference.

These advantages come with a cost, dealing with different aspects of a com-
mitment based open MAS. Firstly, if agent interaction is expressed in terms of
public commitments, every agent needs to check whether such commitments are
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fulfilled or not on the basis of the events that have occurred in the system. We
might assume such task to be performed by a centralized service to which all
agents subscribe, but as one of the commitment proposal’s main aims is to in-
crease openness in MASs, we might as well prescribe that each agent be provided
with a monitoring module. Moreover, openness means also that an agent cannot
rely on any assumption about the agents it interacts with other than a common
communication framework.

This raises the need for a way to protect the agent from potentially harmful
interactions which might end up with contradictory commitments (which would
inevitably lead to a violation of one of them) or with commitments to actions
that are not compatible with the agent’s characteristics or resources. The agent’s
monitoring module, thus, would also help keep its interactions in an open system
safe, by checking whether the events are compatible with the properties that are
part of the agent’s specifications.

We propose that such a module be implemented as a component comprised of
two submodules: a Word Composer elaborates exchanged messages in the form
of timestamped words, which are in turn processed by a Word Analyzer that,
exploiting finite state automata on infinite words, analyzes the state of the MAS
and checks whether some properties, expressed in linear temporal logic, hold.

We present our proposal in the remainder of this work, which is organized
as follows. Section 2 provides the theoretical background about the concepts
supporting commitment-based agent interactions and the monitoring module,
which is illustrated in detail in Section 3; in Section 4 some of the most significant
related work is referred to; finally, Section 5 concludes.

2 Background

Let us start with some linear temporal operators, their definitions, and
some abbreviations, followed by a suitable content language to represent the
commitment-based domain the agents are working in. Then, we illustrate the
theoretical background on Büchi and alternating automata, which our monitor-
ing module is based on.

2.1 LTL±

The monitored properties are expressed using the notion of time as introduced by
Linear Temporal Logic with both past and future modalities (LTL±) [12]. In the
following we describe a propositional version of LTL, supposing that the atomic
propositions belong to a specific Content Language (CL). LTL± is a modal logic
in which modalities refer to time and, considered a set of atomic propositions
CL, its syntax is given over it in BNF as follows:

ϕ ::= true|p|¬ϕ|ϕ ∨ ϕ| Xϕ |G+ϕ |F+ϕ |Until(ϕ, ϕ)
Pϕ |G−ϕ |F−ϕ |Since(ϕ, ϕ) | WUntil(ϕ, ϕ) | Z+(ϕ, ϕ)

where the modal operators X, P, F+, F−, G+, G−, Until, Since, WUntil, Z+ are
called next(time), previous(time), eventually in the future, eventually in the past,
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always in the future, always in the past, until, since, weak until and until and no
longer, respectively. The boolean operators ∧ and ⇒ are obtained, as usual, by
composing ∨ and ¬.

The semantics of LTL± is given on a Kripke structure M , that consists of a
tuple 〈S, R, L〉, where S is a finte set of states, R ⊆ S × S is the transition
relation, and L : S → 2CL is a labeling function that labels each state with the
propositions in CL that are true in that state. A path π = s0, s1, . . . is an
infinite sequence of states in S such that, ∀i ≥ 0, (si, si+1) ∈ R.

We give the semantics of LTL± formula on a Kripke structure M using the
following notation. Let πi in a path π = s0 s1, . . . be the suffix of π that starts
from si. If ϕ is a formula, M, π |= ϕ means that ϕ holds in the state initial
state s0 of the path π in the Kripke structure M . The relation |= is then defined
inductively as follows:

– M, π |= p iff p ∈ L(s0);
– M, π |= ¬ϕ iff M, π � ϕ;
– M, π |= ϕ1 ∨ ϕ2 iff M, π |= ϕ1 or M, π |= ϕ2;
– M, π |= Xϕ iff M, π1 |= ϕ;
– M, π |= Until(ϕ1, ϕ2) iff there exists k > 0 such that M, πk |= ϕ2 and, for

all 0 ≤ j < k, M, πj |= ϕ1;
– M, π |= Pϕ iff there is a path π∗ s. t. π1

∗ = π and M, π∗ |= ϕ;
– M, π |= Since(ϕ1, ϕ2) iff there is a path π∗ s. t. πn

∗ = π and there is a
0 ≤ k < n such that M, πk

∗ |= ϕ2 and, for all 0 ≤ j < k, M, πj
∗ |= ϕ1;

The rest of the temporal modalities can be expressed using the ones
above as follows: F+ϕ=Until(true, ϕ), G+ϕ= ¬F+¬ϕ, F−ϕ=Since(true, ϕ),
G−ϕ= ¬F−¬ϕ, WUntil(ϕ1, ϕ2)=G+ϕ1∨Until(ϕ1, ϕ2), (without a mandatory oc-
currence of ϕ2) Z+(ϕ1, ϕ2)=WUntil(ϕ1, ϕ2)∧G+(ϕ2 ⇒G+¬ϕ1).

Notice that the operators X and P give also a quantitative notion of time,
since they can identify temporal instants in the domain of natural numbers.

Given an integer K > 1, we allow also a more concise form to express the
boolean combination of nested X (and P, respectively), in the following way:

– XKϕ (PKϕ) stands for K nested Xϕ (Pϕ) operators.
– F+

•Kϕ (F−
•Kϕ) with • ∈ {<,≤} stands for

ϕ∨Xϕ ∨ . . .∨XK−1ϕ (ϕ∨Pϕ ∨ . . .∨PK−1ϕ) or
ϕ∨Xϕ ∨ . . .∨XKϕ (ϕ∨Pϕ ∨ . . .∨PKϕ)
for • =< and • =≤ respectively.

– G+
•Kϕ (G−

•Kϕ) with • ∈ {<,≤} stands for
ϕ∧Xϕ ∧ . . .∧XK−1ϕ (ϕ∧Pϕ ∧ . . .∧PK−1ϕ) or
ϕ∧Xϕ ∧ . . .∧XKϕ (ϕ∧Pϕ ∧ . . .∧PKϕ)
for • =< and • =≤ respectively .

Notice that we are working using natural numbers as domain and, in this sce-
nario, past modalities do not add any expressive power with respect to classical
LTL [11], but allow us to represent the required properties in a shorter and more
elegant fashion.
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The LTL± temporal operators may be considered as the domain-independent
part of the language that allows for the description of the properties an agent
needs to monitor, while the context of the MAS where the agent is running
determines the domain the propositional atoms refer to. As our proposal deals
with MASs with a commitment-based communication framework, let us briefly
provide a language which is expressive enough to describe such type of interac-
tion. In this perspective, a message exchange is viewed as an action performed
by an agent to create or modify the commitments that bind it to other agents.

Events are reified, and each event token belongs to at least an event type. An
event brought about by an agent is called an action, and we write Done(e, x, τ)
to mean that event e of type τ is brought about by agent x. We use the
“m-dash” character as a shorthand for existential quantification. For instance,
Done(e,−, τ) is defined as ∃xDone(e, x, τ).

A commitment is a social state between agents comprised of four components:
an event e that has created the commitment, a debtor x which is the agent who
is committed, a creditor y which is the agent the debtor is committed to, and a
content u which represents the state of affairs the debtor is committed to bring
about, and the relevant predicate is Comm(e, x, y, u). By including event e in
the parameters of a commitment, we make it linkable to the event that generated
it for further reference. As we do not intend to depart from classical first-order
logic, we let the content of a commitment be represented by a term u, and we
write �u� to refer to the relevant LTL± formula.

Intuitively, a commitment is fulfilled when its content, or, more precisely, the
LTL± formula corresponding to its content is true, and is violated when its con-
tent is false. Allowing for more expressive contents including commitments them-
selves would easily lead to situations in the likes of the “liar paradox”, which are
far from automatically manageable. Investigating the allowable extent of content
language expressiveness lies beyond the scope of this work. In our view, an agent’s
monitoring module gathers the truth values of the propositional atoms included
in a commitment’s content �u� at all the needed states, as prescribed by the tem-
poral operators in �u�. As soon as the module is able to calculate a truth value
for the whole formula, the agent knows whether the relevant commitment has
been fulfilled or violated. This process is described in detail in the next section.

Agents create commitments by performing suitable tokens of commitment
manipulation action types, like make commitment (mc). The reader may refer
to [18] for further details about commitment manipulation. The effects of the
performance of a commitment manipulation action are illustrated in the form
of axioms. The scope of the validity of formulae is limited to the class of LTL±

models that fulfill the constraints imposed by such axioms. For instance, if an
agent (not necessarily x or y) performs an action of making a commitment with
x as debtor, y as creditor, and u as content, then the relevant commitment holds
until it is either fulfilled, or violated, after which it no longer exists:

Done(e,−, mc(x, y, u))⇒Comm(e, x, y, u)Z+Fulf (e, x, y, u)∨Viol(e, x, y, u).

In many cases, a possible content language CL that allows for a significant de-
scription of a domain must exploit first-order logic’s expressiveness. However, to
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be able to write the properties to be monitored in the form of LTL± formulae,
we need to translate the first-order logic sentences into propositions. Current
propositional encodings (naive propositionalizations) result in extremely large
propositional encodings even for moderate applications. No more efficient solu-
tion has been found yet, even though some promising proposals can be found in
the literature [13]. For our purposes in this work, we assume that the monitor-
ing agent lives in a system where at each interaction a finite domain is in place,
and all the relevant identifiers are agreed upon by the participating agents. This
allows for the above-mentioned propositional encodings.

2.2 Finite Automata on Infinite Words

Let us remind here the definitions of classical and alternating Büchi automata
(BAs [16] and AAs [3], respectively), which consitute the basis for our monitoring
module. Formally, a BA A is a tuple 〈Σ, S, s0, δ, F 〉, where: Σ is the finite set
of the input symbols, S is a finite set of states, s0 ∈ S is the initial state,
δ : S×Σ → 2S is the transition relation, and F ⊆ S is the set of accepting states.
Differently from classical finite state automata on finite words, these automata
will accept infinite words, using the Büchi condition, i.e., a word w = a0, a1, . . .
(for each i ≥ 0, ai ∈ Σ) is accepted by a BA A if exists an infinite sequence
s = s0s1s2 . . . where, s0 is the initial state, for each i ≥ 0, δ(si, ai) = si+1 and
at least one state s ∈ F appears on π infinitely many times.

AAs can be defined as BAs with the only difference in the transition func-
tion that becomes δ : S × Σ → B+(S), where B+(S) is the positive boolean
combination of the elements in S, i.e., a boolean combination using ∧ and ∨
but not ¬. These automata allow two modalities: nondeterminism, also called
existential modality, and parallelism, also called universal modality. As seen in
the definition above, the former, given an input letter, allows the automaton to
fire the transition choosing where to move among different possible targets. A
word is accepted if at least one of these alternatives generates an acceptance run.
Symmetrically, the latter makes the automaton move with just one transition in
more than one state. This can be seen as the creation of as many copies of the
automaton as the states to reach with a universal branch. In this case a word is
accepted if it is accepted by all the generated copies.

LTL only with future modality is strongly correlated to BA and AA [3]. In
the following we will show how we exploit this correlation.

3 The Monitoring Module

Figure 1 provides an overview of the monitoring module we are proposing. It
is comprised of two submodules: the Word Composer (WCS) and the Word
Analyzer (WAS), which support an agent during its interactions in the MAS.
The WCS includes a sniffing functionality to get a copy of every message that the
agent exchanges. Among the sniffed messages, only those dealing with the atomic
propositions that appear in the monitored property are selected. Not only the
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Word Composer Word
Analyzer

Fig. 1. The monitoring module

WCS processes the received data to prepare the input for the next component,
but, should the monitored property contain past tense operators, the WCS is
also in charge of keeping track of the relevant information for future evaluation
of the truth value of formulae of this kind. Subsection 3.2 provides more details
about the construction of the input in the form of a time-stamped word and
the processing of past-directed temporal operators. Once the input is ready, it
is sent to the WAS, which consists of an alternating automaton functioning as
a language acceptor. An unaccepted WCS word means that the state of the
MAS does not satisfy the property expressed by the monitored formula, and
such violation is notified to the agent. In accordance with the criticality level of
the task the agent is supposed to carry out, it will consider the notification from
the WAS as a warning or it will abandon the MAS.

3.1 Managing Temporal Aspects

LTL± allows for the creation of formulae with an arbitrary nesting of past and fu-
ture tense operators. Nevertheless, the two temporal modalities can be processed
separately. Gabbay [8] shows that a formula with nested operators can always
be algorithmically broken down into subformulae only with future- and past-
directed operators. This procedure is performed at a cost of a non-elementary
blow up in the number of nested alternated modalities, and this complexity may
result in a significant impact on the dimensions of the automaton needed to
monitor the formula in worst case scenarios.

However, our approach mainly addresses formulae which are already separated
or have a rather small number of nestings, as these are easier to relate with.
Gabbay illustrates this technique by providing eight fundamental rules that are
to deal with all the possible nesting combinations of the Since and Until operators,
which are taken by the author as primitive. By exploiting the relations between
these two operators and all the others, we can elaborate similar rules for our
temporal language, which may be implemented as a formula preprocessor.

Moreover, as illustrated in more detail in Section 3.2, past operators that
do not include any future operator can be processed into simple propositional
atoms. In fact, with the evolving of time and the changing of data, the past can
be iteratively evaluated on the basis of the previous input, hence its truth value
can always be available at the present time as the value of propositional letters.
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This means that we do not need to separate formulae in which past operators
are embedded in future operators, but only need to take care of the opposite
nesting (future operators nested in past operators).

Let us introduce an example of a simple formula to illustrate this approach:
G+(F−F+a ⇒ F+

<10b). In this formula the future tense operator F+ is placed
within the scope of the past tense operator F−. By exploiting the well known
equivalences F+a⇔ Until(true,a) and F− a⇔ Since(true,a) and Gabbay’s rule

Since(q,p∧ Until(B,A)) ⇔ (Since(q,p) ∧ Since(B,p) ∧ B ∧ Until(B,A)) ∨
(A ∧ Since(B ∧ q,p)) ∨
(Since(q,A ∧ q∧ Since(B,p) ∧ Since(q,p))),

F-F+aF+a

a a a

Fig. 2. Possible models for F−F+a

By matching q, p, and B with true, and A with a, and by equivalences
Since(true,true) ⇔ true and true ∧ p ⇔ p, we obtain

F−F+a⇔ Until(true,a) ∨ a ∨ Since(true,a) ⇔ F+a ∨ a ∨ F−a.

More intuitively, F−F+a holds at present time tp if and only if there exists a
t < tp where F+a holds, which means that there must exist a t′ > t where a
holds. Nothing is said about t′ with respect to tp, so that we could have t′ > tp,
t′ = tp, or t′ < tp, which correspond to the three subformulae in the disjunction
we obtained by Gabbay’s rule. Some models for F−F+a are depicted in Figure 2,
while a model for the complete example is in Figure 3.

+10

b a

Fig. 3. A sequence of events that satisfies the example

The outmost G+ operator is not processed as part of the formula like the
other operators, but taken as a procedural directive that prescribes that the
monitoring task be continually performed.
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3.2 The Word Composer

The input alphabet on which our monitoring module works is composed by
propositions, which are either sniffed CL formulae translated into propositions or
past subformulae evaluated on the basis of previously sniffed data and eventually
flagged with a truth value. As our temporal model has a starting point, the input
words are infinite on the right (in the future) but finite on the left (in the past),
which means that a past subformula always relies on a finite support. These
considerations have helped to prove the set of past-directed LTL± subformulae
to be a language accepted by a deterministic BA1 [15]. Our monitoring module
exploits these results and relies on deterministic BAs to compute the truth value
of past subformulae. In the following, we omit to represent these BAs and assume
that the results of their computation is kept in a finite memory, which means
that past subformulae can be treated as simple propositions.

Let us focus on the unbounded operator Since(ϕ, ψ), with ϕ and ψ either
present or past formulae (since we are working under the hypothesis of a sep-
arated form, we can ignore future-directed examples).The formula is true at a
certain instant if in the past ψ was true and since then ϕ has been true. In order
to evaluate this formula at the present time, we would need to keep track of all
the previous literals back to the first ψ or, even worse, back to the origin of the
system. This problem can be overcome by evaluating Since at all instants, also if
its truth value is not immediately required, for future evaluation in combination
with other propositions describing the states of the system.

Since(a1,a2)Since(a1,a2) = F
Past_a2=F

not a1 Since(a1,a2)=F

a1 && 
Past_a2Since(a1,a2)=T

Read a1 and 
a2 current 

values

Past_a2=a2

Y Y

NN

N

Y

Fig. 4. Flow Diagram of the algorithm to evaluate Since(a1, a2)

More precisely, the truth value of Since(ϕ, ψ) is evaluated using the algorithm
represented by the flow diagram in Figure 4. An analogous function can be
directly defined for G− and F− or, alternatively, these operators can be expressed
in terms of Since.

A difference between the evaluation of formulae with bounded and unbounded
operators is that in the former case not only the truth values of the arguments,
but also the simple ticking of time influences the final result. To evaluate a
bounded operator, in fact, we need a counter that is activated when the argument
of the operator becomes true and expires after as many instants as indicated
1 A deterministic BA is a BA such that the transition function is limited: δ : S×Σ→S.
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by the numerical constant accompanying the bounded operator. For instance,
consider F−

<K(a). The evaluation procedure is activated when a is sniffed and
it evaluates F−

<K(a) to true until K time instants have passed without a being
detected to hold again.

Taking these considerations into account, the example G+((a ∧ F−c)→ F+
<10b)

can be seen as G+((a ∧ evalF(c)) → F+
<10b), with evalF(c) computed using

the algorithm represented in Figure 5.

not F_p(arg) F_p(arg) = F
Past_arg=F

Past_arg F_p(arg)=T
Read arg 

current value

Past_a2=a2

Y Y

NN

Fig. 5. Flow Diagram of the algorithm to evaluate F−(arg)

3.3 The Word Analyzer

To illustrate how the MWA works, let us first focus on its input. The words
composed as explained in Section 3.2 are timestamped, and the temporal dis-
tance between two adjacent literals (i.e. the numerical difference between the
relevant timestamps) is not constant, but depends on when each data item has
been sniffed. Our logic, on the contrary, is based on a model with a uniform
distribution of time between successive states. To overcome this lack of tempo-
ral uniformity between the events that create the literals in the word and the
flow of time in the system, we define an information preserving filling procedure.
The basic idea is the following: under the hypothesis of choosing a small enough
time unit2, at each instant the atomic propositions are assigned the value they
had the last time they were sniffed. Before the first sniffing, the propositions
are assigned an initialization value. Notice that past operators are considered as
atomic propositions, hence, the changing of their evaluation is equivalent to a
new sniffed value.

Figure 6 illustrates the filling procedure. The channel attached to the an-
tenna carries the sniffed values of the propositions, which fill the word (the linear
structure below the channel) until the successive sniffing. Under this hypothe-
sis, our input words are coherent with the AA model presented in Section 2.2.
As already mentioned, a strong correlation between AA and LTL exists which
can be effectively exploited after the past subformulae elimination process (see
Section 3.2) turns the monitored LTL± formula into an LTL sentence. A method-
ology to translate an LTL formula into an AA is presented in [17]. It consists
in interpreting the subformulae with temporal operators as states, and the for-
mula itself as the initial state, and in defining a particular transition function

2 The time unit has to be small enough to guarantee no two changes of any atomic
proposition values occur in the same time unit.
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Fig. 6. An example of word filling

that preserves the composition relations between subformulae. We can exploit
this approach for our monitoring purposes, but the following drawback must
be taken into account. The concise operators built with a boolean combination
of nested X operators lead to as many subformulae as the elements in the set
we obtain from the transitive closure of the relation of being a subformula of
the initial one. This may cause the construction of an AA with a large num-
ber of states, negatively impacting on the monitoring module’s performance. To
overcome this limitation, we follow the approach based on Alternating Modulo
Counting Automata (AMCAs), AAs enriched with a finite set of finite counters,
as proposed in [15].

An AMCA is a tuple 〈Σ, S, s0, μ, δ, F 〉, where: Σ is a finite set of the input
symbols, S is a finite set of states, s0 ∈ S is the initial state, μ is a positive integer
such that Cnt = [0, . . . , μ] is a finite set of finite counters, δ : S × Σ × Cnt →
B+(S×Cnt) is the transition relation, F ⊆ S is the set of accepting states. These
automata do not add any expressive power to AAs, but they allow for a more
concise representation of bounded operators. Thus, following the idea illustrated
in [17], an LTL formula with metric operators can be translated into an AMCA
with an algorithm which is depicted in the form of pseudo-code in Figure 7.

For the sake of simplicity, we suppose that all negations have been pushed
to the most inner level of the atomic propositions using well-known transfor-
mation procedures. The basic idea is that the algorithm builds as many states
of the automaton as the number of temporal subformulae in the formula, pos-
sibly including the formula itself, which corresponds to the initial state, and
two additional states, false and true. Function TransitionFrom(s,p,s.Counter)
computes the transitions from state s labelled with p and associated with
value of the counter at state s. Function Non det Branch(〈s1,assignmentOn
(s1.Counter)〉, 〈s2,assignmentOn(s2.Counter)〉) (Universal Branch(〈s1,assign-
mentOn(s1.Counter)〉, 〈s2,assignmentOn(s2.Counter)〉)) creates a nondetermin-
istic (universal) branch between two transitions from the current state s to
s1 and s2, respectively. Both transitions are labeled with the relevant counter
value assignments.

Let us consider an example with an agent joining a MAS with a service
provider. Before the agent’s deployment, we can only verify the properties which
deal solely with the agent’s behavior. Once the agent joins the MAS, as we cannot
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Automaton(Phi){
    for all temporal subformulae f of Phi
        new_state(f);
    new_state(false);
    new_state(true);
    set_initial_state(Phi);
    for all states s 
        if(s has the form Until)
            set_final_state(s);
    Phi.Counter=0;
    put Phi in reachedState;
    for all states s in reachedState
        for all propositions p in Phi

TransitionFrom(s,p,s.Counter) goes to
            PositiveBooleanCombination((st,assignmentOn(st.Counter)));
            delete s from reachedState;
            put s in processedState;
            for all st in PositiveBooleanCombination((st,assignmentOn(st.Counter)))
                if(st not in processedState && st!=false && st!=true)
                    put st in reachedState;
   }

TransitionFrom(Phi,proposition,Phi.Counter){
    if(Phi == s1 OR s2)

TransitionFrom(Phi,proposition,Phi.Counter)=
         Non_det_Branch(TransitionFrom(s1,proposition,Phi.Counter),

TransitionFrom(s2,proposition,Phi.Counter));
    if(Phi == s1 AND s2)

TransitionFrom(Phi,proposition,Phi.Counter)=
        Universal_Branch(TransitionFrom(s1,proposition,Phi.Counter),

TransitionFrom(s2,proposition,Phi.Counter));
    if(Phi is an atom)
        if(Phi == proposition)

TransitionFrom(Phi,proposition,Phi.Counter) goes to (true, Phi.Counter=0);
        else

TransitionFrom(Phi,proposition,Phi.Counter) goes to (false, Phi.Counter=0);
    if(Ph == Until(s1,s2))

TransitionFrom(Phi,proposition,Phi.Counter)=
        Non_det_Branch(TransitionFrom(s2,proposition,Phi.Counter),
                                    Universal_Branch(TransitionFrom(s1,proposition,Phi.Counter),
                                                                                           (Phi,no_assignment)));
    if(Phi=X(s,K))
        if(Phi.Counter<K && Phi.Counter+inc(t)<K)

TransitionFrom(Phi,proposition,Phi.Counter) goes to (Phi, Phi.Counter+=inc);
        if(Phi.Counter==K || Phi.Counter+inc(t)>K)

TransitionFrom(Phi,proposition,Phi.Counter) goes to (s, s.counter=0);
}

Fig. 7. Pseudo-code for the translation of a formula φ into an AMCA. X(s,K) stands
for XK(s).

make any assumption on the behavior of the other agents, we need to rely on
the monitoring module to ensure that also more general properties involving all
the entities in the MAS hold. For instance, we may be interested in the fact that
all the commitments made by the service provider sp towards our agent x are
fulfilled within 10 time units:

P(¬Comm(−, sp, x, u)) ∧ Comm(e, sp, x, u)⇒ F+
<10(Fulf(e, sp, x, u)),

where �u� = φ. Taking the definition of fulfillment into account, after the propo-
sitionalization of the formulae we obtain:

Cu∧ P(¬Cu)⇒ F+
<10(Fu) and Fu ⇔ φ,

that can be substituted by Cu∧ P(¬Cu) ⇒ F+
<10(φ). For the sake of simplicity

we assume φ to be a propositional letter b ∈ CL. The task then boils down
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f

NOT(a AND evalP(c))

a AND evalP(c)|
      reset(t)

AND
F+b

True False

NOT(b) AND
t<10 | inc(t)

b AND
t<10

NOT b 
OR t=10

Fig. 8. The AMCA for the formula in the example. AND states for ∧, OR for ∨, NOT
for ¬, f is the formula G+((a ∧ evalP(c)) → F+

<10b), and t is the counter associated
with F+

<10b.

to monitor (G+((a ∧ evalP(c)) → F+
<10b)), by means of the relevant AMCA,

depicted in Figure 8.
The automaton has four states: the initial state representing the formula, the

state representing the temporal subformula F+
<10b and True and False, which in-

dicate termination in an acceptance and a non-acceptance state, respectively. The
automaton cycles on the initial state as long as a ∧ evalP(c) is false. When this
subformula becomes true, the automaton duplicates itself and a copy keeps on cy-
cling on the initial state, while the other goes in F+

<10b to check whether the conse-
quent is satisfied. This second copy terminates after at most 10 time instants in an
acceptance state, if b is true by this deadline, in a non-acceptance state otherwise.

Notice that nothing prevents the system from generating another copy for
F+

<10b while one is still active. Indeed, the automaton will produce a copy every
time a ∧ evalP(c) is true. Since the copies in F+

<10b will be active at most 10
time units, this means there may be as many as 10 active copies at the same
time. This is very costly, but it could be much worse when unbounded operators
F+ , G+ or Until are involved. For instance, with a slightly different formula
G+((a ∧ evalP(c)) → F+b), as before, every time a ∧ evalP(c) is true the
automaton generates a copy to check the consequent, but, in this case, F+b has
no constraint on termination, so that infinitely many copies of the automaton
may be created. This problem, which seems to seriously affect the feasibility of
our approach, can be efficiently overcome without loss of expressive power. In
many cases the duplication turns out to be unnecessary, especially in critical
systems, where ending in a non-acceptance states is to trigger the agent’s exit
from the system. Exiting the system at the first failure actually guarantees that
the maximum number of needed copies of the ACMA is C = N +ΣM

i=0Ki, where
N is the number of temporal subformulae, not including nested X operators,
which are as many as M , with Ki being the relevant level of nesting. In other
words, the monitoring module just needs one automaton for every temporal
operator, except for XKi , for which Ki copies are required. Let us provide a
more detailed account by analyzing each temporal operator.

– F+ϕ: when there is an active automaton waiting for ϕ to be true, a new copy
would be useless, in that it would also wait for the same condition.

– G+ϕ: the existing automaton keeps on being active as long as ϕ is true, and
this is exactly the same task that a new copy would perform.
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– Until(ϕ, ψ): again, a second copy would have the same behavior of the existing
one, in that a state with ψ true would satisfy both, a state with ϕ true and
ψ false would keep them both active and waiting for the next instant to
perform a new evaluation, and a state in which both propositions are false
would lead both copies to a non-acceptance state.

– XKϕ: this operator is punctual, in that, the relevant truth value is determined
by a single state. Thus, if a new copy of the automaton is required, it is
to evaluate a state which lies on the outside of the scope of the currently
active automaton. No optimization is then possible. However, each copy will
be active for exactly K time instants, which means that no more than K
automata will be active at the same time.

– G+
•Kϕ: let us supposed that in the situation depicted in Figure 9, with an au-

tomaton launched at instant 1, a new copy is required at instant 2. Automata
1 and 2 aim at checking whether ϕ is going to be true at all K instants of the
intervals starting at 1 and 2, respectively. Resetting automaton 1’s counter
to zero at instant 2 is a way to achieve the same result without the need for
the creation of automaton 2.

– F+
•Kϕ: referring again to Figure 9, if at instant 2 automaton 1 is still active, it

means that ϕ has not become true yet. A new copy created at instant 2 would
look for an occurrence of ϕ in interval [2, 2 + K]. It should be noticed that
if K does not become true by 1 + K, automaton 1 ends in a non-accepting
state. Thus, the only interval that counts at instant 2 is [2, 1 + K], which
means that automaton 1 suffices for the monitoring purposes.

K

K
21

Fig. 9. Timeline to show the multiple copies

Notice that the upper limit proposed for the number of copies of the au-
tomaton holds only for critical systems, where the agent is supposed to quit
the monitoring process as soon as the first violation occurs. When the level of
criticality is not an issue and the monitoring process is performed for statistical
purposes, i.e., the monitoring module has to find all the violations and not only
the first one, the number of needed copies becomes C = U + ΣB

i=0Ki, where U
is the number of unbounded subformulae and B is the number of bounded ones.
The idea is that, since now we are interested in all the errors, when a bounded
operator is involved, we want to know where the error occurs within the its
scope, in order to associate the failure with the relevant event.

4 Related Work

Great interest in monitoring techniques arose in software engineering, and in par-
ticular in web services. Among the multitude of works in this field, particularly
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related to our work is Dynamo [2], a monitoring framework to assist the execution
of workflow processes. This work presents a special purpose monitoring language,
called WSCoL (Web Service Constraint Language), used to constrain processes by
means of proper monitoring rules, expressed in terms of pre- and post-conditions
on the interaction with external partner services. Dynamo adopts a synchronous
integration of business and monitoring logics. In fact, the monitoring execution is
blocking, i.e., the execution of the business process is suspended every time the
monitoring process checks the validity of a rule.

Moreover, in [1] the authors proposed a temporal extension to allow for the mon-
itoring ofmore complexproperties,both functional andnon-functional. In thisnew
version the authors define temporal operators exploiting the characteristics of their
input language, hence, their semantics is defined on time-stamped words.

Dix et al. [7] propose adding a monitoring agent to a given MAS for debugging
purposes. Given a planning problem, the monitoring agent generates all other
possible plans to reach the same goal, then continuously checks and compares
the messages exchanged by the other agents with all the plans. Should any
incompatibility be detected, the monitoring agent generates an error file and
reports to the MAS designer.

Guessoum et al. [9] regard monitoring as a process relying on a graph. Each
node represents an agent in the MAS, and a weighted arc between two nodes
stands for the communication load between the relevant agents. For each node
there is a monitoring agent constantly updating the weights of the arcs the node
belongs to, and notifying a supervisor agent whenever a significant change in a
weight occurs. The supervisor thus has a general view on the communication in
the MAS, and may prescribe the replication of some agents to avoid overload.

Kaminka et al. [10] propose a system which, following a non-intrusive ap-
proach, bases the monitoring process on overhearing of routine communication
between agents which are members of a team aiming at the completion of a
specific plan. The team is supposed to be geographically distributed, and the
monitoring system sets off inference based on plan recognition against uncer-
tainty due to non-perfect overhearing.

Cranefield [5] presents hyMITL±, a rule language for specifying social expec-
tations, and outlines an algorithm for rule compliance monitoring. hyMITL±

relies on a branching model of time and is more expressive than the language we
propose, which makes the monitoring process more complex a task. The current
status of our work calls for a detailed comparison of the two approaches to es-
tablish the correct balance between expressiveness and efficiency. In particular,
we hope that our automata-based operational approach will help tackle some
of the technical issues in hyMITL± related to the evaluation of the formulae’s
truth value. No implementation detail is explicitly provided in Cranfield’s work,
but it may be implied that his language is to be used by an inference engine that
provides a monitoring service to all subscribing agents.

Cranefield took some further steps along this research path and, together with
Winikoff, proposed the model checking of truncated paths as a means to verify
social expectations [6]. The authors correctly state that our procedural approach
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is not easily comparable to their declarative one, but in our opinion some discus-
sion is still worth because it might shed some light on interesting issues about
the design of multi-agent systems. According to the authors, their latest work
provides a logical account that their previous efforts were lacking. They tackle
two different types of logical issues. First, they deal with the expressiveness of
the formal language, which they enrich not only with modal operators dealing
with expectations (which roughly correspond to our commitments) but also with
nominals that allow references to the states of the model itself, thus making their
logic hybrid. Secondly, as a linear model of time is considered, a problem with
contingencies rises: classic truth evaluation would show that a future-directed
expectation is fulfilled or violated as soon as such expectation is instantiated.
To avoid this type of logical omniscience, the authors rely on a semantics based
on truncated paths, according to which sentences must be evaluated only up to
specific points of the linear model.

Our approach, on the contrary, is much less ambitious on both accounts. First
of all, all deontic aspects are not explicitly modeled in the semantics: commit-
ments are treated as propositions whose truth value changes due to specific
actions by the agents in the system; their fulfillment and violation boil down to
the truth value of specific sentences. Although lacking a complete formal defini-
tion, Cranefield and Winikoff’s expectations are modeled in the form of a modal
operator Exp. A question thus immediately rises, about whether a modal opera-
tor is needed to formalize commitments or expectations. Our point is definitely
not that Cranefield and Winikoff have endowed their model with an unneces-
sary burden: as they remark, our approach is operational, so that we need take
much less into account. With an aim to a full fledged formal semantics, the
use of instruments such as modal operators or truncated path might become
inevitable. However, there is another and more interesting question: if a formal
logical model is introduced with the final aim to build automata to model check
truncated paths, does the bigger effort pay off, if compared to an operational con-
struction of automata that are used to monitor a MAS? The latter solution seems
less demanding (i.e. without modal operators, without rather tricky semantical
definitions for truncated paths) although guaranteeing the same results.

5 Conclusions and Future Work

In this work we have proposed a monitoring module for analyzing the interaction
of a single agent in a MAS. Our monitoring system is based on automata theory
and takes advantage of research on model checking and web service monitoring
systems. Our monitoring module contains two main components: a Word Com-
poser, devoted to collect data from MAS communication and elaborate them in
order to evaluate immediately present and past components, and a Word An-
alyzer, that analyzes such results to monitor the system during its evolution.
There are still some interesting issues to tackle. First, we would like to enrich
the logic used to state the properties, in order to define new classes of moni-
toring problems (e.g.: dense time, data aggregation functions), then, we aim at
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investigating the possibility to add a recovery mechanism, so that our monitor-
ing module not only can detect errors, but it may also suggest possible ways to
counter them.
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Abstract. In the last 10 years several approaches and technologies other than
MAS (such as Web services and Grid computing) have emerged, with the sup-
port of the industry, providing their own solutions to distributed computation. As
both Web services and Grid computing are based in the concept of service orien-
tation, where all computation is split in independent, decoupled services, there is
an opportunity for MAS researchers to test and extend their mechanisms and tech-
niques in these emerging technologies. In this paper we describe a way to adapt the
HARMONIA framework to be applied in highly regulated Web services and Grid
computing scenarios. To do so we include a provenance mechanism as part of our
norm enforcement mechanisms, which can be integrated into a SOA Governance
workflow. We will show with an example how provenance allows the observation
of both service interactions and (optionally) extra information about meaningful
events in the system that cannot be observed in the interaction messages.

Keywords: MAS, provenance, web services, SOA, SOA Governance, architec-
ture, electronic institutions, norm enforcement, monitoring.

1 Introduction

With the growth of the Internet and the World Wide Web over the last fifteen years,
previous metaphors for computation have been superseded by a new metaphor, of com-
putation as interaction, where computing is not an action of a single computer but the
result of a network of computers. Multi-Agent Systems (MAS) are one of the technolo-
gies that have emerged in this new metaphor. But they are not the only one. In the last 7
years other technologies such as Web services [1] and Grid computing [2] have emerged
and matured, with the support of both the research community and the industry. These
technologies are based in the concept of service-orientation [3]: a distributed system
is comprised of units of service-oriented processing logic (the services) which hide
their internal logic from the outside world and minimize dependencies among them.
Recently some of these service-oriented technologies are converging into a single over-
arching framework, called Service-Oriented Architectures (SOA). Such framework is
creating a collection of best practices principles1. But there are still deeper questions in

1 Some of these principles are service abstraction (beyond what is described in the service con-
tract, services hide logic from the outside world), service loose coupling (services maintain a
relationship that minimizes dependencies and only requires that they maintain an awareness of
each other) and service autonomy (services have control over the logic they encapsulate). See
[3] for more details and patterns in service-oriented design.

J.F. Hubner et al. (Eds.): COIN 2008, LNAI 5428, pp. 188–203, 2009.
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the SOA community regarding the functioning of distributed systems using automated
components. Many of these issues have been tackled in the research areas of Artificial
Intelligence, Distributed Artificial Intelligence and, in particular, Multi Agent Systems
research.

Thanks to the closeness between agent oriented and service-oriented approaches,
some cross-fertilization between both technologies is feasible. The SOA community
already has identified some potential to integrate agent research in SOA. For in-
stance, Paurobally et. al have proposed to adapt and to refine Multi-Agent Systems
research community results to facilitate the dynamic and adaptive negotiation be-
tween Semantic Web Services [4]. Foster, Jennings and Kesselman already identi-
fied in [5] the opportunity to have some joint research between the Grid and Agents
communities.

In our view, there are also opportunities to apply both organizational and institutional
approaches in SOA technologies in order to create a social layer on top of existing Web
services and Grid platforms. To do so there are two main extensions to be done to SOA
platforms:

– The introduction of additional semantics to the communication between services, in
order to be able to check the actual behaviour of the actors in a distributed scenario
from the intended behaviour.

– The introduction of higher-level behavioral control mechanisms, based in the ex-
traction of some concepts such as commitments, obligations and violations, which
can be derived thanks to some intentional stance extracted from the communication
semantics.

There have been already some attempts for the first extension. An example is the
work presented in [6], where a connection between Agent Communication Languages
and Web Service Inter-Communication is proposed, to then extend service communica-
tion with some FIPA performatives. The architecture we present in this paper uses this
approach.

In the case of the second extension (introducing higher-level behavioral control
mechanisms in SOA) it is necessary to have a language and a framework with which to
model and manage the commitments. In this paper we present an approach that tackles
this issue by defining a provenance-aware norm enforcement framework which com-
bines agents and web services from an institutional approach, using substantive norms
and landmarks.

2 SOA behaviour Control and Monitoring

2.1 Provenance

The aim of the IST-funded EU Provenance project was to conceive a computer-based
representation of provenance in distributed service-oriented applications that allows
users to perform useful analysis and reasoning. The provenance of a piece of data is
the documentation of the process that produced the data. This documentation can be
complete or partial (for instance, when the computation has not terminated yet); it can
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be accurate or inaccurate; it can present conflicting or consensual views of the actors
involved; it can be detailed or not.

The Provenance architecture assumes that provenance is investigated in open, large-
scale systems composed by services, seen as actors, that take inputs and produce out-
puts. In this abstract view, interactions between actors take place using messages. Actors
may have internal states that change during the course of execution. An actor’s state is
not directly observable by other actors; to be seen by another actor, the state (or part of
it) has to be communicated within a message sent by its owner actor. This architecture
has formal foundations in the π-calculus [7] and asynchronous distributed systems [8].
The π-calculus is of interest in this context because of its approach to defining events
that are internal to actors as hidden communications. This view also allows to formally
define mappings with a) Grid applications, b) Web Services and c) Agent-Mediated
Services and Applications.

Elements of the Provenance Architecture. The provenance of a data item is repre-
sented in a computer system by a set of p-assertions made by the actors involved in
the process that created it. A p-assertion is a specific piece of information document-
ing some step of the process made by an actor and pertains to the process. There are
three kinds of p-assertions that capture an explicit description of the flow of data in
a process. An interaction p-assertion is an assertion of the contents of a message by
an actor that has sent or received that message. A relationship p-assertion is an as-
sertion about an interaction, made by an actor that describes how the actor obtained
output data or the whole message sent in that interaction by applying some func-
tion to input data or messages from other interactions. An actor state p-assertion
is an assertion made by an actor about its internal state in the context of a specific
interaction.

The long-term facility for storing the provenance representation of data items is the
provenance store. The provenance store is used to manage and provide controlled access
to the provenance representation of a specific data element.

Provenance Life-Cycle. The provenance life-cycle is composed of four different
phases. First, actors create p-assertions represent their involvement in a computation.
After their creation, p-assertions are stored in a provenance store, with the intent they
can be used to reconstitute the provenance of some data. After a data item has been
computed, users or applications can query the provenance store. At the most basic level,
the result of the query is the set of p-assertions pertaining to the process that produced
the data. More advanced query facilities may return a representation derived from p-
assertions that is of interest to the user. Finally the provenance store and its contents
can be managed through a specific interface (subscription management, content reloca-
tion, etc).

Provenance Awareness. By transforming a MAS into a provenance-aware MAS,
the resulting system gets the capability to produce at execution-time an explicit rep-
resentation of the distributed processes that take place. Such representation can be
then queried and analyzed in order to extract valuable information to validate, e.g.,
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the basis of decisions taken in a given case, or to make an audit of the system over
a period of time.

2.2 SOA Governance

SOA Governance2 is an emergent concept in the SOA community used for activities
related to exercising control over services [9]. It is a form of electronic governance that
has its focus on distributed services and composite architectures, more concretely on
SOA scenarios.

In the last years many companies have started to switch to Service-Oriented Archi-
tectures for flexibility reasons and to adapt to technologies and practices under contin-
uous growth and standardization. After adopting services as a kind of business asset,
SOA Governance has appeared in the form of a methodology which affects the full life-
cycle of the services in terms of specification, design, implementation, deployment,
management, control, monitoring, maintenance, intercommunication, and redesign. Its
aim is to give guidelines on how to establish shared policies, processes, architecture and
policies across each layer of an organization.

SOA Governance tries to solve several issues, including: uncontrolled development
of services that adapt usual process, usually leading to fragile services less robust than
the previous implementation counterparts; lack of reusability, either because they are
not designed with reusability in mind, or because they are not seen as valuable compo-
nents in themselves; security compromise; and unexpected performance.

In summary, SOA Governance is intended to give the methodology and the tools
needed to maintain the order in SOA environments. Some reports already try to identify
how the community is doing at heading in this direction and which companies are on
the good track and what do they lack of [10,11].

There are three steps that define SOA Governance management [9]. Design-Time
Governance deals with the definition and application of policies that will govern the de-
sign and implementation of Web services in the organization, prior to their deployment
in the actual business environment. During Run-Time Governance, policies are defined
and enforced in order to govern the deployment, execution, and use of the Web services.
Eventually, web services are supposed to be redesigned and reimplemented in order to
adapt to business evolving requirements. Change-Time Governance focuses on how the
changes on the services affect the behaviour of a whole SOA environment.

The approach currently used in SOA Governance management is based on adding
additional Web services in the SOA environment. The main components are:

– Registry: a central catalog for business services.
– Repository: a database of governance policies and metadata.
– Policy enforcement points: services responsible for the enactment of the policies.
– Rules engine: automatic system that manages the enforcement of the policies.
– Configuration environment: user interface for the configuration and definition of

policies and governance workflows.

2 SOA Governance should not be confused with E-Governance. E-Governance can be defined as
the use of Information and Communication Technology as a means to improve transparency,
quality and efficiency of service delivery in the public administration.
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Fig. 1. Actors in the OTMA system. Each medical unit is represented by an agent (circle in figure).

3 Use Case: The Organ Transplant Management Application

The Organ Transplant Management Application (OTMA) is an Agent-Mediated
e-Institution for the distribution of organs and tissues for transplantation purposes. It
extends CARREL [12], the aim of which was to help speeding up the allocation pro-
cess of solid organs for transplantation to improve graft survival rates. As opposed to
CARREL, OTMA uses standard web service technology and is able to interact with
provenance stores in order to keep track of the distributed execution of the allocation
process for auditing purposes.

Figure 1 summarizes the different administrative domains (solid boxes) and units
(dashed boxes) that are modeled in the OTMA system. Each of these interact with
each other through agents (circles in the figure) that exchange information and requests
through messages. In a transplant management scenario, one or more hospital units
may be involved: the hospital transplant unit, one or several units that provide labora-
tory tests and the Electronic Healthcare Record (EHCR) subsystem which manages the
health care records for each institution. The diagram also shows some of the data stores
that are involved: apart from the patient records, these include stores for the transplant
units and the Organ Transplant Authority (OTA) recipient waiting lists (WL). Hospitals
that are the origin of a donation also keep records of the donations performed, while
hospitals that are recipients of the donation may include such information in the recipi-
ent’s patient record. The OTA has also its own records of each donation, stored case by
case.

4 A Normative Framework Based in Norms and Landmarks

We use HARMONIA[13] as the basis for our normative framework, although the connec-
tion between the ideal states in the norms and the actual execution states of the system
is done through the concept of landmarks, as in [14].
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Norm OT M :N37
Condition OBLIGED(hospital

DO ensure compatibility(organ, recipient))
BEFORE (allocator DO assign(organ, recipient)))

V iolation NOT(done(ensure compatibility(organ, recipient))
condition AND done(assign(organ, recipient))
Sanction inform(board, “NOT(done(ensure compatibility(organ,

recipient)) AND done(assign(organ, recipient))”)
Repairs {stop assignation(organ);

assert(
NOT(done(ensure compatibility(organ, recipient))
BEFORE done(assign(organ, recipient)), p store

);
wait(asserted(
ensure compatibility(organ, recipient)));
resume assignation(organ); }

Fig. 2. Example of an OTMA norm

In our normative framework we propose that enforcement of norms should not be
made in terms of direct control of a central authority over the goals or actions that
the agents may take, but through the detection of the violation states that agents may
enter into and the definition of the sanctions that are related to the violations. With this
approach we do not make strong assumptions about the agents’ internal architecture,
as the e-Institution only monitors the agent behaviour (that is, agents are seen as black
boxes.). The enforcement of the norms in an e-Institution is achieved through a special
kind of agents, the Enforcement Agents, which monitor the behaviour of the agents,
detect violations and check the compliance of the sanctions.

4.1 Norms in Organ Transplant Management

We use a language for substantive norms [15] which is an evolution of the original norm
language in HARMONIA. Its central element is the norm condition, based in deontic
concepts (OBLIGED, PERMITTED, FORBIDDEN) which can be conditional (IF) and
can include temporal operators (BEFORE, AFTER). The violation is a formula derived
from the norm to express when a violation occurs. The sanction field is a set of actions
which should be executed when a violation occurs (e.g. imposing a fine, expulsion of
an agent), while the repairs field contains a set of actions to undo the negative effects of
the violation. The language also included the specification of the detection mechanism,
but in our provenance-based enforcement architecture this is no longer needed.

An example (extracted from organ and tissue allocation regulations) is presented in
Figure 2. It expresses the obligation of the hospital to carry on the compatibility tests for
a potential recipient of a given organ before assigning the organ to that recipient. The
violation condition defines when the violation of that norm occurs. In this scenario, the
sanctions field applies an indirect punishment mechanism (reputation) to the hospital, by
informing about the incident to the board members of the transplant organization.The re-
pair plan consists of stopping the assignation process, recording the incident in the prove-
nance store (which acts as a log) and then wait for the compatibility test to be performed.

It is important to note that the combination of violation and sanction handling pro-
vides a flexible way to implement safety control of a medical system’s behaviour (i.e.,
avoid the system to enter in a undesirable, illegal state because of a failure in one of the
agents).
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Norm OT M :N37
V iolation NOT(done(ensure compatibility(organ, recipient)) AND
condition done(assign(organ, recipient))
Detection (NOT(
condition asserted(ensure compatibility(organ, recipient), t1)

AND asserted(assign(organ, recipient), t2)
) OR
((asserted(ensure compatibility(organ, recipient), t1)
AND asserted(assign(organ, recipient), t2)
AND (< t2 t1))

Fig. 3. Example of a violation handling rule

4.2 Control Landmarks

Landmarks [16] are often used with similar purposes in order to provide abstract spec-
ifications of organizational interaction in general. Landmarks are formalized as state
descriptions, which are partially ordered in directed graphs to form landmark structures
which are called landmark patterns.

In our case we extend the use of landmarks to represent highly relevant positive and
negative states of the system (positive and negative landmarks) and the partial ordering
between those states imposed by the regulations or practices. For instance, in the norm
in Figure 2 we can identify two critical states as landmarks, the one where ensure
compatibility happens and the one where assign happens. The norm also im-
poses a partial ordering where the former should always happen before the latter.

Given the set of landmark patterns coming from the institution, agents may reason
about the exact sequencing of actions or the protocol to use to pass from one landmark
state to the other. This even allows an agent to create acceptable variations of a prede-
fined protocol that are legal and that allow them to fulfill their interests or to cope with
an unexpected situation not foreseen in the protocol. Given some landmarks, agents
may even negotiate the protocol to use.

Landmarks can be used as checkpoints by the enforcing agents (e.g. whenever the
assignation is done, it should be the case that previously the compatibility check was
done). In short, norm enforcement can be done by checking that the system as a whole
passes only through positive landmarks during its execution and in the proper order.
In our system, landmarks are mapped into conjunctions of p-assertions, and landmark
ordering is expressed in rules by means of the time stamps attached to each p-assertion.
Figure 3 shows an example of how these p-assertions can be then used to detect a
violation of the norm in Figure 2.

5 An Architecture Proposal for Norm Enforcement in
e-Institutions Based in Provenance

In this section we introduce our proposal for a generic Provenance-based norm enforce-
ment architecture. Although current version is mainly designed for Web service and
Grid platforms, it can be easily adapted to be used also by agents in an agent platform.
The global picture of this architecture is shown in Figure 4. When application agents
enter for the first time in the e-institution, they can access the norms, the ontological
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Fig. 4. A generic Provenance-based norm enforcement architecture

definitions and the landmark definitions in the context manager module. Agents log the
relevant events by creating p-assertions that are sent to the observer agent, which is the
one that keeps the Provenance store that acts as a log for all the reported events. The
observer agent sends some of those reported p-assertions to one or more Enforcement
agents (each of those should have previously registered the list of p-assertions they need
to be notified, according to the norms each of them has to enforce). Each enforcement
agent combining the reported events in the p-assertions with the norms and landmarks
that such agent is responsible to enforce. If a violation is detected, then the enforcement
agent should execute the sanction and repair plans, as specified in the norms.

It should be noted that the e-Institution framework, HARMONIA, does not need to be
modified for using Provenance. Provenance is only a different way to observe the state
of a distributed system, which records and provides inputs (events and actions) that can
be used for norm enforcement.

The following sections describe in detail each of the actors in our proposed architec-
ture, focusing on their main roles and components.

5.1 Context Manager

In the approach taken for the architecture, every e-institution defines a normative con-
text. This context gathers all the elements needed for understandability and interoper-
ation between the agents belonging to a specific institution. The Context Manager is
a registry responsible for the management of these elements and for providing to the
agents any information related to the normative context.

An instance of this registry will represent a specific normative context, and will
contain:

– a specific vocabulary defining the meaning of the terms used in the interactions
between the agents of the institution,

– shared descriptions about processes and actions in the domain, and
– the norms that may affect the interactions between parties bound to the context.
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To fulfill its responsibilities, the Context Manager has three main components, ex-
plained in the next subsections.

Ontology. The Ontology is a repository which stores definitions of terms, as well as
references to definitions, for the data models of the context. This ontology should de-
fine, for a given domain, terms such as objects and entities (e.g. patient, doctor, organ,
kidney), predicates (e.g. compatible(organ, recipient)) and actions (e.g. assign(organ,
recipient)). In our architecture the ontology plays an important role as it should fix the
interpretation for all terms that appear in the norms to be enforced.

Norm Repository. This module is responsible for storing and managing the norms
of the e-institution. Each norm includes not only the deontic expression but also the
violation condition, the sanction plan and the repairs plan.

Landmark Mapping. This module is responsible for storing the mapping between
landmarks and p-assertions. Such mappings can be used by both a) the application
agents, to use the same p-assertion structure when reporting a relevant event that is
listed as a landmark in the normative context of the e-institution; and b) the enforcement
agents, that can use these mappings to translate the p-assertions they receive from the
observer agent into landmarks.

5.2 Application Agent

The Application Agents are those agents that interact within each other inside the e-
institution and its context. They have the same generic role as the agents in any typical
multi-agent system and they do not necessarily have an active role in norm enforcement,
but they should report all relevant events to the observer agent by creating p-assertions,
which will be used by the enforcement agents to enforce the norms applying to the
application agents’ behaviour. P-assertion creation and reporting is handled by the p-
assertion plug-in, a middleware component common to all Application Agents.

Before an Application Agent can start its activity within the e-institution, it has to
retrieve the definitions, norms and landmarks of the context from the Context Manager.
In this paper we make no assumption about the internal architecture of the agent and
how this knowledge can be incorporated in the agent reasoning cycle. We also make no
assumption about the exact technological platform in which it is implemented: it can
be either a Web service, a Grid service or even a FIPA-compliant agent with a service
wrapper that allows the agent to interact with the other actors in the architecture. Our
only assumption is that the agents internal reasoning cycle has been modified to be able
to report meaningful events (landmarks) through the Assertion Plug-in.

Assertion Plug-In. This component is a middleware plug-in which manages the in-
teraction between the application agents and the Provenance Store, ensuring a safe,
reliable, and accurate recording of the events and landmarks generated by the agents
execution. Whenever an agent wants to report the occurrence of a landmark:

1. The Assertion Plug-in translates this landmark into one or more p-assertions, by
following the landmark mapping rules retrieved from the Context Manager.

2. The Assertion Plug-in sends the p-assertion(s) to the Observer Agent by using the
Provenance Client API.
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To avoid that p-assertions stop the execution of the agent or that some p-assertions get
lost due to temporary unavailability communication problems between the Application
Agent and the Observer Agent, the plug-in uses a p-assertion queue, which allows the
p-assertion submission to be completely asynchronous and loosely coupled to the core
of the agent, avoiding critically blocks in its execution.

5.3 Observer Agent

An Observer Agent has the responsibility to safely register and maintain the environ-
mental events and state changes of the e-institution. The information gathered is then
used in the norm enforcement, by providing selected pieces of information to the inter-
ested Enforcement Agents.

The gathering and the selection are critical processes. Some possible errors which de-
pend on the Observer Agent and could compromise norm enforcement can take place,
for example, if the events logged are not complete or reliable enough, or if the informa-
tion provided to the Enforcement Agents doesn’t match with their needs or arrives too
late.

The gathering is handled by the Provenance Store which, along with the Assertion
Plug-in, offers the proper recording functionalities. The Monitor acts as a link between
this repository and the Enforcement Agents, offering registering and notification mech-
anisms. Both Observer Agent components are described in the subsections below.

Monitor. The Provenance Store works only in a push way. The Enforcement Agents
preferably need a real-time accurate representation of the e-institution, so the Observer
Agent, as an actor, should behave in a pull way. That is why we have implemented the
Monitor, layered on top of the Provenance Store. This component will keep an accurate
real-time representation of the p-assertions being recorded in the Provenance Store.

Of course, this job should be handled efficiently, not only in time, but also in space,
only keeping pointers to the p-assertions that are for some interest for the other agents.
A registry is therefore incorporated to the Monitor, to which the Enforcement Agents
subscribe with a list of mapped landmark patterns. While continuously reconstructing
the real-time picture of the e-institution, the Monitor will just query those p-assertions
which match with the patterns of the Enforcement Agents registered. As soon as a p-
assertion has appeared in the Provenance Store that matches a registration pattern of an
Enforcement Agent, this p-assertion is sent to the registrant.

Provenance Store. The Provenance Store is usually an independent service, but we
consider it as part of the Observer Agent, as these will be the only actors of the e-
institution which will make use of them. As a repository of raw p-assertions, it will
only receive one kind of input, provided by the Assertion Plug-ins of the Application
Agents. As well, it will only generate one kind of output, in this case the result of the
queries made by the Monitor, as sets of p-assertions.

5.4 Enforcement Agent

The Enforcement Agents are responsible for the fulfillment of a subset of the norms of
the context in the e-institution. This requires them to have a complete knowledge of the
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context, by retrieving the descriptions and the norms from the Context Manager, as well
as a complete knowledge of all the events in the system related to the norms they have
to enforce. These enforcement is then guaranteed by a) firstly detecting the violations,
and then b) applying the corresponding sanctions.

In order to generate the knowledge about the events, these agents take profit of the
Observer Agent by registering the set of landmarks they are supposed to look after. Once
registered, they will be properly notified in the form of p-assertions. Therefore, there is
no need of a direct communication between an Enforcement Agent and the Application
Agents. The Translator converts these p-assertions into a format understandable by the
Enforcement Agent. Another component is needed for detecting the violations. In our
case we are using a Jess engine, which matches the events, in the form of Jess facts,
and the norms, in the forms of Jess rules. The Enforcement Engine is responsible for
registering to the Observer Agents and applying sanctions. A further explanation of how
this component works is also included below.

Translator. The Observer Agent sends p-assertions to the Enforcement Agent when
they are of any interest. However, the Violation Detection Engine is an instance of a
Jess engine. The Translator is a simple component which parses these p-assertions and
generates Jess facts.

The Translator obtains the translation rules from the Context Manager. In Figure 5
we show one example of a rule that obtains a Jess assertion of an organ assignment,
taking an organ assignment p-assertion as input. This rule parses the XML formatted
p-assertion, keeping only the relevant data for the system and generating an asserted
fact, which will be added to the Jess engine. In this case, the rule is involved in the
moment that the doctor of a hospital accepts the organ offer and therefore confirms the
assignment proposed by the OTA. According to the medical protocol being followed,
the relevant pieces of data in this step are the exact moment of the assignment, the
recipient patient identifier, and the organ. They are retrieved from the XML p-assertion
and written in a Jess fact.

(defrule OTM-RULES-MODULE::assertconfirmassignment
(MAIN::Element (LocalName "opencontent")
(ElementID ?content))

(MAIN::Element (LocalName "timestamp")(Text ?timestamp)
(ParentID ?content))

(MAIN::Element (LocalName "confirmassignment")
(ElementID ?confirmassignment)(ParentID ?content))

(MAIN::Element (LocalName "organ")(Text ?organ)
(ParentID ?confirmassignment))

(MAIN::Element (LocalName "pid")(Text ?pid)
(ParentID ?confirmassignment))

(not (OTM-RULES-MODULE::confirmassignment
(ElementID ?confirmassignment)(timestamp ?timestamp)
(organ ?organ)(pid ?pid)))

=>
(assert (OTM-RULES-MODULE::confirmassignment
(ElementID ?confirmassignment) (timestamp ?timestamp)
(organ ?organ)(pid ?pid))))

Fig. 5. An example of translation rule from p-assertion to Jess asserted fact
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When an agent records a p-assertion indicating the confirmation of an assignment,
it includes content compliant with the OTMA XML schema. On the left side, this rule
matches one by one the elements contained inside the opencontent element: the ex-
act moment of the action, the name of the event (confirmAssignment), and inside the
confirmAssignment element, the organ being proposed for reception and the ID of the
recipient. After the matching, the left side of the rule checks that there was no assertion
made yet for the same event. On the right side, the rule asserts the event confirmAssign-
ment into the base of facts.

He have implemented an automatic translator of rules, capable of parsing an schema
and generating one rule per each kind of event the content of the p-assertion might
contain, which right now we assume is once per each XML element defined. It will be
improved in future releases.

Violation Detection Engine. Once the Enforcement Engine has received the norms
from the Context Manager, it creates a set of Jess rules out of them and sends them to
the Violation Detection Engine. This component is, in fact, an instance of a Jess engine
which will execute these rules with the facts provided by the Translator. Whenever a
violation is detected, the Enforcement Engine is conveniently informed.

Enforcement Engine. The Enforcement Engine is the component of the Enforcement
Agent that takes decisions and plans actions whenever a violation is raised. In order
to interact with the Violation Detection Engine, this component needs to provide Jess
rules for each norm.

The violation for the norm N37 has to be raised whenever, in the confirmation of an
assignment, this assignment has been made before having checked for compatibility.
This might happen when the assignment is done but the compatibility is never ensured.
But also when both things are done, but in the wrong order. This second case is the
one depicted in Figure 6. The rule shown in the figure takes as input two facts: the fact
generated (using the translation rule shown in Figure 5) when the hospital confirmed
the assignment of the offered organ to the doctor, and the fact generated when the organ
was tested for compatibility. The third condition of the rule, (< t2 t1), will become
true if the assignment has been done before the compatibility test. Whenever the rule
gets executed, a violation fact for the norm N37 will be added to the Jess engine and the
Enforcement Agent will, at some point, take measures to repair the violation.

The Enforcement Agent will act accordingly to the type of measures needed. If the
sanction or the repair measures require that a specific Application Agent executes a cer-
tain action, that agent will be informed of that. On the other hand, the sanction or the

(defrule OTM-RULES-MODULE::eventOTM_N37_2
(OTM-RULES-MODULE::ensure_compatibility (organ ?organ)

(recipientID ?recipientID)(timestamp ?t1))
(OTM-RULES-MODULE::assign (organ ?organ)

(recipientID ?recipientID)(timestamp ?t2))
(< t2 t1)
=>
(assert (OTM-RULES-MODULE::violation (norm OTM_N37)

(organ ?organ)(recipientID ?recipientID)))

Fig. 6. An example of violation detection rule in Jess
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repair measures that involve the institution as itself will be carried into effect by the En-
forcement Agent. When an Enforcement Agent is initiated, the ontological definitions
and the norms of the context are stored in its Enforcement Engine. This component is
also the responsible for registering to the Monitor.

For the norm example shown in Figure 2, all the measures should be executed by the
Enforcement Agents, as they are all institutional.

6 Discussion

The use of norms as a mechanism to model the expected (proper) behaviour in a com-
putational system has led to the logical related issue of their enforcement. Several as-
pects of norm enforcement have been already studied in theory: some approaches use
sanctions imposed and enforced by specially empowered agents [17,18,19,13,15,20] to
reduce the likelihood that agents choose to perform unwanted behaviour, while others
use of some shared normative reputation mechanism [21,22,23] that reduces future in-
teraction with agents not behaving properly. In the former norm enforcement is usually
centered in special agents [13] or platform mechanisms [20] responsible for behaviour
monitoring to detect violations to the norms; these approaches put few requirements
on the rest of the agents in the system but require a high level of trust in the enforcer
agents. In the latter norm enforcement is usually distributed in all the agents in the
system, which collectively ostracise agents not abiding to the norms [23]. There are
also some distributed sanction-based approaches [18] where the monitorisation and en-
forcement are distributed in all agents. While in some setups distributed enforcement
may be effective (specially in society with simple normative models that are easy to
compute), these also reduce the openness of thew resulting system, as they may impose
strong assumptions on all the agents entering into the system (all them should under-
stand the norms and the norm enforcement mechanisms and be able to implement it).
In this work we have chosen to allocate behaviour monitoring and norm enforcement in
specially designed, trusted components and agents in order to reduce the requirements
in other agents’ and services’ internal architecture and reasoning capabilities.

Although there are lots of theoretical research on norm enforcement, there is far less
work on implementations of enforcement mechanisms that can be applied to substantive
norms in highly regulated environments. AMELI [24] is a toolkit for the specification
and verification of agent mediated e-institutions that based on a dialogical framework.
In this framework, all observable activities from the agents are seen as messages in the
context of a scene. In AMELI all norms are regimented through the specification of a
pre-defined protocol, guaranteeing norm-compliance of agents by restricting the set of
possible actions to the ones defined in the protocol.

In [15,16] there is a first exploration of substantive norms already applied to AMELI.
The main difference in our approach is that we can also include internal information
from agents which is not part of any interactions. On the other hand, the formalism
defined in [25] only considers messages as observable events.

[26] introduces integration of e-Institutions in Grid environments by extending the
GRIA framework, which is based on basic web services. Our solution gives more flexi-
bility to the behaviour of the services, as norms are substantive and not rigidly regulated.
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It is important to note that the provenance mechanism used here is an implementa-
tion of an open architecture [27] that ensures interoperability in heterogeneous systems
without compromising security or scalability. Other provenance mechanisms are mainly
based on a middleware layers which only capture interactions. This kind of provenance
mechanisms can be used in less regulated environments but bring little extra power to
the existing mechanisms in agent-mediated e-Institutions.

Academic research on SOA Governance is still not abundant, but there are already
some interesting proposals of models [28], methodologies [29,30] and frameworks [31].
In our paper we present a novel approach to the topic based on flexible normative en-
forcement via landmark monitoring.

7 Conclusions

The fact that the SOA business community is concerned about how to define and man-
age policies for the definition, deployment and change of Web services is a clear sign
that organizations need to translate and adapt their own business processes and method-
ologies of work in their SOA environments. Electronic Institutions respond to the need
of regulation in MAS that have to be bound to certain norms that apply in the context of
an institution. They provide a theoretical solution that could match many of the needs
of SOA Governance as, once the policies are defined, an e-Institution framework could
take care of their enforcement.

However, SOA Governance does not focus on MAS. With our architecture proposal
we aim at bridging this gap by combining Web services and agents inside a norma-
tive framework derived from HARMONIA, and deployed in heterogeneous (MAS, Web
services and/or Grid) platforms.

As next steps we will define a mapping between the operational representation of
norms and: 1) orchestration languages, which would allow us to better integrate our
proposed architecture into business processes, as well as 2) choreography languages,
which would give us the possibility of extending the uses of the interaction provenance
recording. By defining a mapping, norms could be instantiated in languages like WS-
BPEL or WS-CDL, which could be imported directly by web service workflow engines
which are currently widely used.
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Abstract. One approach to moderating the expected behaviour of agents in open
societies is the use of explicit languages for defining norms, conditional com-
mitments and/or social expectations, together with infrastructure supporting con-
formance checking. This paper presents a logical account of the fulfilment and
violation of social expectations modelled as conditional rules over a hybrid lin-
ear propositional temporal logic. Our semantics captures the intuition that the
fulfilment or violation of an expectation must be determined without recourse to
information from later states. We define a means of updating expectations from
one state to the next based on formula progression, and show how conformance
checking was implemented by extending the MCLITE and MCFULL algorithms
of the Hybrid Logics Model Checker.

1 Introduction

An electronic institution [1] is an explicit model of the rules, or norms, that govern the
operation of an open multi agent system. A given electronic institution provides rules
that agents participating in the institution are expected to follow. These rules can in-
clude more traditional protocols (e.g. a request message comes first, followed by either
an accept or a refuse), as well as properties that are expected to apply to complete inter-
actions, for example, the norm that any accepted request must be eventually fulfilled.

Since electronic institutions are open systems it is not possible to assume any control
over agents, nor is it reasonable to assume that all agents will follow the rules applying
to an interaction. Instead, the behaviour of participating agents needs to be monitored
and checked, with violations being detected and responded to in a suitable way, such as
“punishing” the agent by applying sanctions, or reducing the agent’s reputation.

There is therefore a need for mechanisms to check for the fulfilment or violation of
norms with respect to a (possibly partial) execution trace. Furthermore, such a mecha-
nism can also be useful for rules of social interaction that are less authoritative than
centrally established norms, e.g. conditional rules of expectation that an agent has
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established as its personal norms, or rules expressing learned regularities in the pat-
terns of other agents’ behaviour.

Thus in this paper we focus on modelling the general concept of social expectation
and demonstrate the use of model checking for detecting the fulfilment or violation of
such expectations by extending the MCLITE and MCFULL algorithms of the Hybrid
Logics Model Checker [2]. The advantages of building on model checking, rather than
implementing our own checking algorithm (as was done previously [3]) are that we
are working within a clearly defined and well studied verification framework, and that
it allows us to extend existing software including a range of optimisations that have
been developed for model checking. Although the problem of model checking, in its
full generality, is more complex than we need, the problem of model checking a path (a
finite or ultimately periodic sequence of states) has also been studied and “can usually
be solved efficiently, and profit from specialized algorithms” [4]. We have therefore
investigated the applicability of model checking as a way of checking for expectations,
fulfilments and violations over a model that is a linear history of observed states.

The theory underlying our approach is designed to apply equally well to both online
and offline monitoring of expectations, a distinction that has not been made in previous
work. For online monitoring, each state is added to the end of the history as it occurs,
and the monitoring algorithm works incrementally. The underlying formalism can as-
sume that expectations are always considered at the last state in the history. In contrast,
in the offline mode, expectations in previous states are also checked. At each past state,
the then-active expectations must be checked for fulfilment without recourse to infor-
mation from later states: the truth of a future-oriented temporal proposition φ at state s
over the full history does not imply the fulfilment at s of an expectation with content φ.

This paper is structured as follows. Section 2 outlines our intuitions about expecta-
tions, fulfilment and violation and sketches out our logical account of these concepts.
Section 3 describes the logic and semantic mechanisms we use to express fulfilment and
violation of an expectation. In Section 4 we give a brief description of formula progres-
sion, a technique used to express the evolution of an unfulfilled and non-violated ex-
pectation from one state to the next. Section 5 then describes the Hybrid Logics Model
Checker that we have used in this work and the extensions we have made to it. Exam-
ple output from the extended model checker for two example scenarios is presented in
Section 6. Finally we discuss related work in Section 7 and summarise the paper and
plans for future work in Section 8.

2 Formalising Expectations, Fulfilment and Violation

In this work we study the general notion of expectations. It is our position that the base-
level semantics of expectations with different degrees of force (expectations inferred
from experience, promises, formal commitments, etc.) are the same. The differences
between these lie in the pragmatics of how they are created and propagated, how their
fulfilment and violation is handled, and the type of contextual information associated
with them (e.g. the debtor and creditors associated with a commitment).

Our intuition behind expectations is that they are created in some context which may
depend on the current and recorded past states of an agent (including any representation
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¬Fulf(¬o U p) ¬Fulf(¬o U p) Fulf(¬o U p) ¬Fulf(¬o U p)

(¬o U p) ¬o U p ¬o U p

Exp(¬o U p) Exp(¬o U p) Exp(¬o U p) Exp(¬o U p)

o p o

s1 s2 s3 s4

Rule: o→ Exp(¬o U p)

Fig. 1. An example rule and scenario

it has of the external environment), and that the created expectation is a constraint indi-
cating the expected future sequences of states. We model this by conditional rules:

λ→ Exp ρ

where λ and ρ are linear temporal logic expressions with λ referring to the past and
present and ρ encoding the constraint on the future. The modality Exp is needed as it is
not guaranteed that ρ will hold; it will just be “expected” if the condition holds.

The question then arises of when an expectation should be considered to be fulfilled
(denoted Fulf(φ)) or violated (Viol(φ)). Consider Fig. 1. This shows a rule expressing
an expectation on the interaction between a merchant and a customer: a customer agent
that has placed an order (modelled as the proposition o) should not subsequently place
another order until its order has been paid for (proposition p). We formalise this as
o → Exp(¬oU p), i.e., when o holds, it is expected that, from the next state on, o
is false until p holds. In the figure, the bottom row of formulae show the propositions
that are observed in a segment of one possible history: o holds in states s1 and s4.
and p holds in s3. The row above this shows the expectations that are created by the
rule (in states s1 and s4) and then updated from one state to the next (in states s2 and
s3, using a technique discussed below). Above this we show the content formulae of
these expectations for the first three states, which can easily be seen to hold due to the
semantics of the temporal operators and U (a longer segment is needed to evaluate
the content of the expectation in s4). However, as indicated in the top row, we should
not necessarily conclude that these expectations are fulfilled just because their content
formulae are true. The determination of fulfilment and violation must be made without
recourse to future information. Thus, only in state s3, when payment is made (p holds),
should it be concluded that the current expectation is fulfilled. Section 3 presents a
temporal operator TruncS that allows us to express this restriction to past and present
information. For now, we will assume that we have suitable definitions of Fulf(φ) and
Viol(φ), and move on to consider how expectations evolve from one state to the next.

We assume that an expectation can be fulfilled or violated at most once and that
an expectation that is not fulfilled or violated in a state should persist (in a possibly
modified form) to the next state:

Expφ ∧ ¬Fulf φ ∧ ¬Violφ→ Expψ
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What should ψ be? Although at least one alternative approach exists (see Section 7), we
believe that the most intuitive representation of an expectation is for it to be expressed
in terms of the current state. Thus ψ should represent a change of viewpoint of the
constraint represented by the expectation φ from the current state to the next state. This
can be seen in Fig. 1 where Exp(¬oU p) from s1 becomes Exp(¬oU p) in s2 and
then remains as Exp(¬oU p) in s3 as p was not true in s2.

The transformation of φ into ψ should also take into account any simplification of
the expectation due to subformulae of φ that were true in the current state. Thus, an
expectation Exp(p∧q) should become Exp q in the next state if p holds currently. This
is precisely the notion of formula progression through a state [5]. Formula progression
(which will be explained in more detail in Section 4) allows us to complete our informal
characterisation of the evolution of expectations through time:

Expφ ∧ ¬Fulf φ ∧ ¬Violφ ∧ Progress(φ, ψ)→ Expψ

This conception of expectation, fulfilment and violation has been implemented in a
previous progression-based system using a logic combining future and past temporal
operators with the guarded fragment of first order logic, binders and a form of nominal
[3]. The logic allows the expression of temporally rich conditional expectations such as
“Once payment is made, the service-providing agent is committed to sending a report
to the customer once a week for 52 weeks or until the customer cancels the order”.
However, although this system used a logical notation for rules of expectation, the de-
tection of fulfilments and violations and the progression of expectations from one state
to the next were handled algorithmically, and there was not a logical account of these
notions. This paper provides such a logical account, elaborating on the intuition pre-
sented above, and demonstrates how to build semantics corresponding to this intuition
into a model checker for detecting expectations and their fulfilment and violation.

3 Formal Background

The logic we use to model social expectations is a hybrid temporal logic that is an ex-
tension of the one implemented by the Hybrid Logics Model Checker [2]. It is described
by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ | φ | φ1 U φ2 | φ1 S φ2 | x | n | @tφ | ↓xφ | E φ

where p is a proposition,  is the standard temporal “next” operator,  is the stan-
dard temporal “previous”, U is the standard temporal “until”, and S (“since”) is a
backwards-looking version of until. We assume the propositions include " (true) and
⊥ (false), with their usual meanings, and define as abbreviations the derived opera-
tors “eventually φ” (φ ≡ true U φ), and “always φ” (φ ≡ ¬¬φ), and similar
backwards-looking versionsφ ≡ true S φ and φ ≡ ¬¬φ. In some literature
is denoted by F,  by G, by F− and by G−.

The remaining cases are standard in hybrid logic [6]: we have so-called state vari-
ables, with typical element x, which can be bound to nominals, and we have nominals
n. A nominal is viewed as a logical proposition that is true in exactly one state, i.e. the
state “designated” by the nominal. The operator @tφ, where t is either a state variable
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M, g, i |= p iff mi ∈ V (p)

M, g, i |= ¬φ iff M, g, i �|= φ

M, g, i |= φ1 ∧ φ2 iff M, g, i |= φ1 andM, g, i |= φ2

M, g, i |= φ iff M, g, i + 1 |= φ

M, g, i |= φ iff M, g, i− 1 |= φ

M, g, i |= φ1 U φ2 iff ∃k ≥ i :M, g, k |= φ2 and ∀j such that i ≤ j < k :M, g, j |= φ1

M, g, i |= φ1 S φ2 iff ∃k ≤ i :M, g, k |= φ2 and ∀j such that i ≥ j > k :M, g, j |= φ1

M, g, i |= x iff mi = g(x)

M, g, i |= n iff V (n) = {mi}
M, g, i |= @tφ iff M, g, j |= φ where V (t) = {mj} if t is a nominal

and mj = g(t) if t is a state variable.

M, g, i |= ↓xφ iff M, g[x �→ mi], i |= φ

M, g, i |= Eφ iff there exists j s.t. mj ∈ M andM, g, j |= φ

Fig. 2. Infinite-path semantics of the logic

or a nominal, shifts evaluation to the state t and can be read as “φ holds in state t”.
The operator ↓xφ binds the state variable x to the current state. Finally, the existential
modality E φ says that there exists a state in which φ holds, and its dual is the universal
modality A. The use of nominals is important: we rely on each state having a unique
label in order to define our Exp modality (see Section 5.3).

The formal semantics for this logic is given in Fig. 2 with respect to a hybrid Kripke
structureM, which consists of an infinite sequence of states 〈m1, m2 . . .〉 and a valua-
tion function V that maps propositions and nominals to the set of states in which they
hold, i.e.M = 〈〈m1, m2 . . .〉, V 〉. We use the index i to refer to state mi. The function
g maps state variables x to states, and we write g[x #→ mi] to denote the function that
maps x to mi and otherwise behaves like g. Note that the rules of Fig. 2 only apply for
i ≥ 1. For i < 1 we haveM, g, i �|= φ.

When evaluating whether an expectation is fulfilled in a state mi we want to not only
determine whether the formula holds, but also whether an agent in state mi is able to
conclude that the formula holds. For example, if p is true in m2, then even throughp
holds in m1, an agent in m1 would not normally be able to conclude this, since it cannot
see into the future.

We deal with this by using a simplified form of the operator TruncS from Eisner
et al. [7]. A formula TruncS φ is true at a given state in a model if and only if φ can be
shown to hold without any knowledge of future states. We define this formally as:

M, g, i |= TruncS φ iff Mi, g, i |=+ φ

where |=+ represents the strong semantics of Eisner et al. (defined below), andMi is de-
fined as follows. LetM = 〈〈m1 . . .mi . . .〉, V 〉. We define V i(p) = V (p)\{mi+1 . . .},
that is, V i gives the same results as V , but without states mj for j > i. We then define
Mi = 〈〈m1 . . . mi〉, V i〉. We write i > |M| to test for states that have been pruned,
i.e. if i > |M| then there is no mi in M. We write i ≤ |M| to test for states that
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Condition M, g, i |=+ φ ? M, g, i |=−
φ ?

i > |M| false true
i ≤ |M| and

iffM, g, i �|=− ψ iff M, g, i �|=+ ψ
φ = ¬ψ

otherwise As for |=, but substitute |=+ or |=− (respectively) for |= in recursive definitions

Fig. 3. Strong and weak semantics on finite paths

do exist, i.e. if i ≤ |M| then mi ∈ M (where M = 〈M, V 〉). We need to use the
strong semantics (|=+) because the standard semantics is defined over infinite sequences
of states and does not provide any way to disregard information from future states. The
strong semantics is skeptical: it concludes thatM, g, i |=+ φ only when there is enough
evidence so far to definitely conclude that φ holds. To define negation, we also need its
weak counterpart, |=−. The weak semantics is generous: it concludes thatM, g, i |=− φ
whenever there is no evidence against φ so far.

Fig. 3 defines the strong and weak semantics. Note that the semantics of negation
switch between the strong and weak semantics: we can conclude strongly (respectively
weakly) that ¬φ holds if and only if we can conclude weakly (respectively strongly)
that φ does not hold.

We can now use the TruncS operator to define fulfilment and violation:

Fulf φ ≡ Expφ ∧ TruncS φ

Violφ ≡ Exp φ ∧ TruncS ¬φ

4 Formula Progression

As outlined in Section 2, we use the notion of formula progression to describe how
an unfulfilled and non-violated expectation evolves from one state to the next. Formula
progression was introduced in the TLPlan planner to allow “temporally extended goals”
to be used to control the system’s search for a plan. Rather than just describing the de-
sired goal state for the plan to bring about, TLPlan used a linear temporal logic formula
to constrain the path of states that could be followed while executing the plan. As plan-
ning proceeds, whenever a new action is appended to the end of the plan, the goal
formula must be “progressed” to represent the residual constraint left once planning
continues from the state resulting from executing that action.

Bacchus and Kabanza considered progression as a function mapping a formula and
state to another formula, and defined this function inductively on the structure of formu-
lae in their logic LT—a first-order version of LTL. They proved the following theorem.

Theorem (Bacchus and Kabanza [5]). Let M = 〈w0, w1, . . .〉 be anyLT model. Then,
we have for any LT formula f in which all quantification is bounded, 〈M, wi〉 |= f if
and only if 〈M, wi+1〉 |= Progress(f, wi).

In other words, the truth of a linear temporal logic formula at a given point on a his-
tory of states is equivalent to the truth of the progressed formula at the next state in
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M, g, i |= Progress(p,ψ) where

(
ψ = � if p ∈ V (mi)
ψ = ⊥ otherwise

M, g, i |= Progress(φ1 ∧ φ2, ψ1 ∧ ψ2) iff M, g, i |= Progress(φ1, ψ1) and
M, g, i |= Progress(φ2, ψ2)

M, g, i |= Progress(¬φ,¬ψ) iff M, g, i |= Progress(φ, ψ)

M, g, i |= Progress(φ, φ)

M, g, i |= Progress(φ1 Uφ2, ψ2 ∨ (ψ1 ∧ (φ1 Uφ2))) iff M, g, i |= Progress(φ1, ψ1) and
M, g, i |= Progress(φ2, ψ2)

M, g, i |= Progress(φ,φ)

M, g, i |= Progress(φ1 Sφ2,(φ1 Sφ2))

M, g, i |= Progress(x,ψ) where

(
ψ = � if mi = g(x)
ψ = ⊥ otherwise

M, g, i |= Progress(n, ψ) where

(
ψ = � if V (n) = {mi}
ψ = ⊥ otherwise

M, g, i |= Progress(↓xφ,ψ) iff M, g, i |= Progress(φ[x/n], ψ)
where V (n) = {mi}

M, g, i |= Progress(@tφ, @tφ)

M, g, i |= Progress(Eφ, Eφ)

Fig. 4. Recursive evaluation of the progression operator

the history. This provides an incremental way of evaluating future-oriented temporal
formulae.

In the theorem above, Progress(f, wi) is a meta-logical function. We wish to define
progression as an operator within the logic, and so adapt the above theorem to provide
a definition of the modal operator Progress(φ, ψ):

M, g, i |= Progress(φ, ψ) iff ∀M′ ∈M(i), M′, g, i |= φ ⇐⇒ M′, g, i+1 |= ψ

where M(i) is the set of all possible infinite models that are extensions of Mi (M
truncated at i) and which preserve all the nominals in M (including those at indices
past i). Apart from the requirement to agree on nominals, the models ofM(i) need not
agree withM on the truth of propositions for state indices j > i.

We can then obtain the theorems of Fig. 4, which define an inductive procedure
for evaluating progression, in conjunction with the use of Boolean simplification to
eliminate⊥ and" as subformulae. This procedure is similar to the function of Bacchus
and Kabanza, but extended to account for the hybrid features of our logic. The theorem
for the binder operator requires there to be a nominal naming the state mi (φ[x/n]
denotes subsitution of the nominal n for the free occurrences of x); however, for our
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model checking application, this can be easily ensured by preprocessing the model to
add nominals for states that lack them.

5 Applying Model Checking to Expectation Monitoring

Model checking is the problem of determining for a particular model of a logical lan-
guage whether a given formula holds in that model. Thus it differs from logical infer-
ence mechanisms which make deductions based on rules that are valid in all possible
models. This makes model checking more tractable in general than deduction.

Model checking is commonly used for checking that models of dynamic systems,
encoded as finite state machines, satisfy properties expressed in a temporal logic. How-
ever, model checking is also able to check paths, and we have therefore investigated the
applicability of model checking as a way of checking for expectations, fulfilments and
violations over a model which is a linear history of observed states. This was done by
extending an existing model checker, described in the next section.

5.1 The Hybrid Logics Model Checker

The Hybrid Logics Model Checker (HLMC) [2] implements the MCLITE and MC-
FULL labelling algorithms of Franceschet and de Rijke [8]. HLMC reads a model en-
coded in XML and a formula given in a textual notation, and uses the selected labelling
algorithm to determine the label, true (") or false (⊥), for the input formula in each
state of the model. It then reports to the user all the states in which the formula is true
(i.e. it is a global model checker).

The two labelling algorithms are defined over a propositional temporal logic with
the operators F (“some time in the future”), P (“some time in the past”), the binary
temporal operators U (until) and S (since), the universal modality A, and the following
features of hybrid logic: nominals, state variables, the operator @t, and the binding op-
erators ↓x and ∃x (“binding x to some state makes the following expression true”). The
duals of the modal operators are defined in the usual way. The underlying accessibility
relation is assumed to represent “later than” (the transitive closure of the “next state”
relation underlying many temporal logics), so the definitions of F and P in terms of the
accessibility relation are equivalent to those of our and, respectively, over a “next
state” accessibility relation. Time is not constrained to be linear.

The global model checking problem for any subset of this language that freely com-
bines temporal operators with binders is known to be PSPACE-complete [8]. MCLITE
is a bottom-up labelling algorithm for the sublanguage that excludes the two binding
operators, and it runs in time O(k.n.m) where k is the length of the formula to be
checked, n is the number of states in the model, and m is the size of the model’s acces-
sibility relation. MCFULL handles the full language, uses polynomial space, and runs
in time exponential on the nesting degree of the binders in the formula.

MCLITE works by labelling each subformula of the formula to be checked, for all
states in the model, in a bottom-up manner. Fig. 5 illustrates this process for an example
formula. For each subformula, its Boolean value in each state (its label) is calculated,
and a labelling function for the parent formula’s outermost operator is then used to gen-
erate the label for that formula as a function of the subformulae’s labels. Fig. 6 shows
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Fig. 5. Example label computation in HLMC

the semantics of some of the operators supported by HLMC together with the corre-
sponding definition of the label, denoted LM,g(φ, i). The presentation is adapted from
that of Franceschet and de Rijke [8] to correspond to the HLMC operators, and to pro-
vide a declarative rather than procedural account1. We use [V, g](a) as an abbreviation
for either the value of V (a) if a is a nominal or {g(a)} if a is a state variable. It can
be seen that in these cases the labelling function is a straightforward translation from
the semantics—a property we have sought to preserve where possible for our extended
notion of labels presented in Section 5.2.

The simple bottom-up procedure does not work when binders are included in the
language as there will be subformulae containing free state variables, and the val-
ues of these depend on the enclosing binding context. Instead, the recursive top-down
MCFULL procedure is used. A formula is labelled by first labelling its immediate
subformulae recursively, and then applying the appropriate labelling algorithm for the
formula’s operator. For operators in the MCLITE sublanguage, the MCLITE labelling
algorithm is used. When the recursion encounters a formula of the form ↓ xφx, the
recursive labelling is performed for each binding of x to a state in the model (consider
the formula G ↓x@xp : labelling this for any given state s requires the truth of @xp to
be known for all bindings of x to future states s).

5.2 Handling TruncS

We have adapted HLMC for checking the fulfilment and violation of expectations. We
assume (and verify) that the input model represents a linear path and thus contains a
single “next state” accessibility relationship.

1 For consistency with the rest of the paper we use the notation defined in Section 3 and assume
that models are sequences of states. HLMC does not, in fact, restrict models to be sequences,
but for our application to monitoring observed traces this is a valid restriction.
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Nominals and state variables

M, g, i |= a iff mi ∈ [V, g](a)

LM,g(a, i) =

(
� if mi ∈ [V, g](a)
⊥ otherwise

Operator @t

M, g, i |= @tφ iff M, g, j |= φ where [V, g](t) = {mj}
LM,g(@tφ, i) = LM,g(φ, j) where [V, g](t) = {mj}

Operator

M, g, i |= φ iff i< |M| ∧M, g, i+1 |= φ

LM,g(φ, i) = (i< |M| ∧ LM,g(φ, i+1))

Fig. 6. The MCLITE labelling function (partial definition)

To allow the checking of fulfilment and violation a labelling algorithm for TruncS

was developed. This was complicated by the presence of past-time operators. Consider
the label for TruncS¬φ. Based on the definitions of Section 3, we have:

M, g, i |= TruncS¬φ ⇐⇒ Mi, g, i |=+ ¬φ
⇐⇒ Mi, g, i−1 |=+ ¬φ
⇐⇒ Mi, g, i−1 �|=− φ

or equivalently:

LM,g(TruncS¬φ, i) = L+
Mi,g(¬φ, i)

= L+
Mi,g(¬φ, i−1)

= ¬L−
Mi,g(φ, i−1)

where L+
M,g and L−

M,g denote labelling under the strong and weak semantics, respec-
tively. Thus to label TruncS¬φ at model index i it is necessary to know the weak se-
mantics label for φ at index i−1 when the model is truncated at i. More generally, when
labelling a formula φ at a model index i it is necessary to store both weak and strong
labels with respect to all possible future truncation points: L−

Mj ,g(φ, i) and L+
Mj ,g(φ, i)

for j ≥ i. We therefore define a generalised label for a formula φ at model index i as a
sequence of pairs of weak and strong labels for each possible truncation point from i to
the final state in the model:

LM,g(φ, i) =
〈(

L−
Mj ,g(φ, i), L+

Mj ,g(φ, i)
)
| i ≤ j ≤ |M|

〉

where L−
Mj ,g(φ, i) is the value for φ at index i in the model under the weak semantics

assuming a truncation at index j, and L+
Mj ,g(φ, i) is the corresponding value under the

strong semantics. Note that LM,g(φ, i) is an empty sequence for i > |M|.
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Fig. 7. Example use of generalised labels

Figure 7 illustrates the representation and calculation of generalised labels. The fig-
ure shows generalised labels as rows in diagonal matrices that are indexed by the state
at which evaluation is to be done and a possible (future) truncation point for the model.
However, we represent and compute with each generalised label LM,g(φ, i) in an abbre-
viated form that can omit weak/strong value pairs if there has been no change in these
values since the previous truncation point in the sequence. Each entry in the sequence
is a truncation point associated with a pair of weak and strong values:

LM,g(φ, i) = 〈j1 : (wj1 , sj1), . . . , jn : (wjn , sjn)〉

where i=j1 < · · ·<jn <jn+1 = |M|+1 and ∀1≤k≤n∀jk≤l<jk+1L
−
Ml,g

(φ, i) = wjk
∧

L+
Ml,g

(φ, i)=sjk
.

Conjunction and disjunction apply to generalised labels in a straightforward way, act-
ing element-wise, while negation operates on the arguments and then exchanges the re-
sulting weak and strong values at each truncation point, e.g. ¬〈1: (",⊥), 2 : (",")〉 =
〈1: (",⊥), 2 : (⊥,⊥)〉. When ∧ and ∨ are applied to labels l = 〈i : (wi, si), . . . 〉 and
l′ = 〈j : (w′

i, s
′
i), . . . 〉where i < j, l′ is treated as if it had i : (⊥,⊥) prepended for∨ and

i : (",") prepended for ∧ (and l is treated similarly if i > j), i.e. the sequence starting
at a later truncation point is padded with default weak and strong labels for truncation
points i to j−1. We write indexed conjunctions and disjunctions, e.g. i∧1≤k≤|M|, with a
prefix superscript index i, indicating that the value if there are no conjuncts or disjuncts
is 〈i : (",")〉 or 〈i : (⊥,⊥)〉 respectively.

For the HLMC operators that are not future oriented, the declarative specifications of
the MCLITE labelling functions (as shown in part in Fig. 6) can then be applied to these
generalised labels. Labels for the temporal operators are computed using the definitions
in Fig. 8. We also support the derived operators, , and  defined in Section 3.
In the definition of the labelling function for U , the disjunct on the right captures the
intuition that under the weak semantics φU ψ is satisfied if φ holds weakly up to the
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Out of bound indices

LM,g(φ, i) =

(
〈1: (⊥,⊥)〉 for i < 1
〈〉 for i > |M|

Operators and (1 ≤ i ≤ |M|)
LM,g(φ, i) = i : (�,⊥) • LM,g(φ, i+1)

where • is the prepend operation

LM,g(φ, i) = LM,g(φ, i−1) � i

where σ � i is 〈j : (wj , sj) ∈ σ | j ≥ i〉
Operators U and S (1 ≤ i ≤ |M|)
LM,g(φU ψ, i) =

i_
i≤k≤|M|

“
LM,g(ψ, k) ∧ k^

i≤j<k

LM,g(φ, j)
”
∨

“
πw

i ∧
i^

i≤j≤|M|
LM,g(φ, j)

”

where πw
i = 〈i : (�,⊥)〉

LM,g(φSψ, i) =
“

1_
1≤k≤i

`
LM,g(ψ, k) ∧ k^

k<j≤i

LM,g(φ, j)
´ ”

� i

Fig. 8. Labelling temporal formulae in extended HLMC

end of the (finite) model, even if ψ never holds. The constant label πw
i is used as a mask

to ensure that this disjunct only applies for the weak semantics.

5.3 Defining Expectation, Fulfilment and Violation

We now show how the semantics of expectation, fulfilment and violation can be en-
coded within the extended HLMC. We elaborate on the intuitive account of these no-
tions given in Section 2. We wish to use the model checker to check for the existence of
rule-based conditional expectations, and their fulfilments and violations without requir-
ing the rules of expectation to be hard-coded in the model checker, or integrated into
the labelling procedure dynamically. Therefore, we define a hypothetical expectation
modality Exp(λ, ρ, n, φ). This means (informally) that if there were a rule λ→ Exp(ρ)
then λ would have been strongly true at a previous state named by nominal n, the rule
would have fired, and the expectation ρ would have progressed (possibly over multiple
intermediate states) to φ in the current state. This means that we do not have to hard-
code rules into the model checker, or provide a mechanism to read and internalise them.
Instead, a rule of interest to the user can be supplied as arguments to an input formula
using the ExistsExp modality. It is defined as follows.

M, g, i |=± Exp(λ, ρ, n, ψ) iffM, g, i |=± TruncS λ, V (n)={mi} and ψ=ρ

or ∃φ s.t.M, g, i−1 |=± Exp(λ, ρ, n, φ),
M, g, i−1 �|=± TruncS φ,
M, g, i−1 �|=± TruncS ¬φ and
M, g, i−1 |=± Progress(φ, ψ)
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where we write |=± to indicate that the choice between the weak or strong semantics is
immaterial as future states play no role in this definition.

The first conjunct in the definition expresses the case in which the hypothetical rule
matches the current state. Note that we use TruncS when evaluating the rule’s condition
λ to restrict it to present and past information only. The second conjunct expresses the
case of progressing a non-fulfilled and non-violated exectation from the previous state.
Note that in order to use nominals to name the state at which rules apply, we require
that the input model has been annotated with nominals for each state.

We also define hypothetical versions of Fulf and Viol as follows:

M, g, i |=± Fulf(λ, ρ, n, φ) iff M, g, i |=± Exp(λ, ρ, n, φ) andM, g, i |=± TruncS φ

M, g, i |=± Viol(λ, ρ, n, φ) iff M, g, i |=± Exp(λ, ρ, n, φ) andM, g, i |=± TruncS ¬φ

These modalities are not used directly by the model checker. Instead we define the
following existential version of Exp:

M, g, i |=± ExistsExp(λ, ρ) iff ∃n, φ s.t.M, g, i |=± Exp(λ, ρ, n, φ)

with similar definitions for ExistsFulf(λ, ρ) and ExistsViol(λ, ρ). These correspond to
the actual queries that we wish to make to the model checker: “are there any expecta-
tions (or fulfilments or violations) for the given rule, at any state in the model?”

To compute labels for these existential modalities, we first compute the following
witness function WM,g,i iteratively for i increasing from 1 to |M| (where labels for the
subformulae λ and ρ have already been computed due to HLMC’s top-down recursive
algorithm):

WM,g,i(ExistsExp(λ, ρ)) =

⎧⎨
⎩
{(n, ρ)} where V (n)={mi}

ifM, g, i |=± TruncS λ
∅ otherwise

⎫⎬
⎭∪

{(n, ψ) |∃φ.(n, φ) ∈ WM,g,i−1(ExistsExp(λ, ρ)),
M, g, i−1 �|=± TruncS φ,
M, g, i−1 �|=± TruncS ¬φ and
M, g, i−1 |=± Progress(φ, ψ)}

This collects all pairs (n, φ) making Exp(λ, ρ, n, φ) true at i for a given λ and ρ. The
corresponding label for this formula at i is then 〈i : (⊥,⊥)〉 if the witness set is empty,
and otherwise 〈i : (",")〉. Note that the generalised labels discussed in Section 5.2 are
necessary for evaluating the TruncS formulae.

Witness functions are also defined for ExistsFulf(λ, ρ) and ExistsViol(λ, ρ) by taking
the subset of pairs (n, φ) in ExistsExp(λ, ρ) for which TruncS φ strongly holds and
TruncS ¬φ strongly holds, respectively.

Finally, we can use the extended HLMC to check for expectations, violations and
fulfilments over a given model by performing the global model checking procedure with
an empty intial binding g for an input formula such as ExistsExp(λ, ρ), ExistsFulf(λ, ρ)
or ExistsViol(λ, ρ), where condition λ and expectation ρ correspond to some rule of
interest. The model checker will report all witnesses for the input formula for all states.



Verifying Social Expectations by Model Checking Truncated Paths 217

This can be easily generalised to apply to disjunctions of input formulae referring to
multiple rules. Note that although the witnesses for the ExistsExp modality could be
used to generate labels for Exp for a given rule, we do not currently support the use of
Exp to appear within rules, and so cannot handle interdependent expectations.

6 An Example

Consider the scenario shown in Fig. 1 of Section 2 (Scenario 1) and the modified sce-
nario (Scenario 2) in which o is also true in s2, i.e. a second order is placed before
payment for the first has been received. In Scenario 2, the expectation created in s1
and progressed to s2 is violated in that state, whereas there is no violation in Sce-
nario 1. The following witness lists are output from the model checker for these scenar-
ios, given the input formulae ExistsExp(o,(¬oU p)), ExistsFulf(o,(¬oU p)) and
ExistsViol(o,(¬oU p)). The list of witnesses (pairs) beside each state record the cur-
rent existing, fulfilled or violated expectations (depending on the input formula), along-
side a nominal naming the state in which the expectation was created. For example, in
the right hand column for Scenario 2 we can see that at state s2 the expection of ¬oU p,
created (in a more complex form) in state s1 and progressed to s2, is now violated.

Scenario 1

ExistsExp(o,(¬oU p))

s1: (s1,(¬oU p))
s2: (s1,¬oU p)
s3: (s1,¬oU p)
s4: (s4,(¬oU p))

ExistsFulf(o,(¬oU p))

s1:
s2:
s3: (s1,¬oU p)
s4:

ExistsViol(o,(¬oU p))

s1:
s2:
s3:
s4:

Scenario 2

ExistsExp(o,(¬oU p))

s1: (s1,(¬oU p))
s2: (s2,(¬oU p)), (s1,¬oU p)
s3: (s2,¬oU p)
s4: (s4,(¬oU p))

ExistsFulf(o,(¬oU p))

s1:
s2:
s3: (s2,¬oU p)
s4:

ExistsViol(o,(¬oU p))

s1:
s2: (s1,¬oU p)
s3:
s4:

7 Related Work

There have been a variety of approaches to modelling expectations and commitments
formally, some of which are outlined below.

Alberti et al. [9] represent conditional expectations as rules with an E modality in
their conclusion. Abductive inference is used to generate expectations, which are moni-
tored at run time. The temporal aspects of expectations are restricted to constraint logic
programming constraints relating variables representing the time of events.

Verdicchio and Colombetti [10] use a first order variant of CTL∗ with past-time op-
erators to provide axioms defining the lifecycle of commitments in terms of primitives
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representing the existence, the fulfilment, and the violation of a commitment in a state.
In their approach, commitments are always expressed from the viewpoint of the state
in which they were created, and the formula Comm(e, a, b, u), recording that event e
created a commitment from a to b that u holds, remains true in exactly that form from
one state to the next. Fulfilment is then defined by a temporal formula that searches
back in time for the event that created the commitment, and then evaluates the content
u at that prior state, for all paths passing through the current state.

Bentahar et al. [11] present a logical model for commitments based on a branching
time temporal logic in the context of semantics for argumentation. The semantics use
accessibility relations for different types of commitments. These encode deadlines that
are associated with commitments on their creation.

Model checking has been applied to statically verifying properties of closed systems
of agents (thus their programs are available to form the input model) and also for check-
ing desired properties of institution specifications. A recent example of the latter is the
work of Viganò and Colombetti [12]. Of more relevance to this paper is the application
of model checking to run-time compliance checking based on observed traces.

Endriss [13] discussed the use of generalised model checking for deciding whether
a trace of an agent dialogue conforms to a protocol expressed in propositional linear
temporal logic.

Spoletini and Verdicchio [14] addressed the online monitoring of commitments ex-
pressed in a propositional temporal logic with both past and future operators. They
proposed a distributed processing architecture that included formula analyser modules
based on alternating automata. The discussion is procedural rather than declarative, and
further analysis is needed to compare the technique to our approach.

8 Conclusions and Future Work

This paper has presented a logical account of the notions of conditional expectation,
fulfilment and violation in terms of a linear temporal logic. For offline monitoring of
expectations, the problem of determining fulfilment and violation of expectations with-
out recourse to future information was identified as a key problem, and a solution was
presented in terms of path truncation and the strong semantics of Eisner et al. [7]. It
was then shown how the MCLITE and MCFULL model checking algorithms can be
modified to support the truncation operator by using generalised labels that record for a
model state the truth values under both the weak and strong semantics for all possible
future states. An existing model checker (HLMC) has been modified using these tech-
niques to allow the existence of expectations, and fulfilments and violations of these
expectations to be detected.

A hybrid propositional temporal logic was used in this work as that is what was
implemented by HLMC. Including nominals allowed our Exp modality to record the
states in which expectations were created. However, with our focus on linear models,
the other hybrid constructs have limited value for defining conditional expectations. We
plan to extend our approach to apply to a real-time temporal logic interpreted over timed
paths. In this case, binders and state variables become useful for expressing timing
relations between states.



Verifying Social Expectations by Model Checking Truncated Paths 219

We also plan to investigate extending the technique to apply to some suitably con-
strained fragment of first order temporal logic (e.g. the guarded fragment). Other future
work includes modifying the internal data structures and labelling algorithms to support
incremental online monitoring of expectations, a detailed analysis of the complexity of
the modified algorithms and empirical evaluations.
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Abstract. In multi-agent applications, normative systems are usually
used to regulate the behavior of the agents. They provide an efficient
means to ensure limited deviations from an expected ideal behavior.
Many works have been done in this classical research direction, less fre-
quent are the works on norms in simulation. In this paper we focus
on the simulation of spatially situated agents, typically moving around
simulated physical environments. Our goal is to provide a mechanism
allowing an efficient generation of consistent agents characteristics. We
propose to model behavioral differentiation as violations of the norms,
and show its application to traffic simulation with the driving simulation
software used at Renault, scanerTM.

1 Introduction

Many multi-agent applications benefit greatly from the notion of normative sys-
tems. Such applications can exploit many characteristics of norms: they offer
regulation possibilities, and can help to introduce coordination and cooperation
improvements. The field of application has thus grown during the last years from
law and virtual societies to disaster management or transport, and is still widen-
ing. However, works mainly concern normative system architectures [1], norm
representations [2], norm adherence, or norm emergence among societies [3]. Less
common are works on norms in simulation.

Norms are usually used to specify the ideal behavior of the agents within the
system. Indeed, the autonomy left to the agents tends to move them away from
their ideal behavior. Normative systems provide an interesting regulation means:
when the ideal behavior is considered as a norm, the objective is to make the
agents comply with it. In Electronic Institutions [4,5,6] for instance, the institu-
tion uses norms to manage the social interactions of the agents. They interact
within the environment, and the institution provides authority and control in-
stances designed to regulate their behavior.

J.F. Hubner et al. (Eds.): COIN 2008, LNAI 5428, pp. 220–234, 2009.
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Some works have used norm in the context of simulation of spatially situated
agents by focusing on the regulation capabilities, and not on the organizational
structure. Bou et al. [7] study how traffic control strategies are improved by ex-
tending Electronic Institutions with autonomic capabilities. Depending on traffic
events, the institution optimizes its response, like the fines amount. In [8], the
authors show how the introduction of non-normative behaviors improves the re-
alism of microscopic traffic simulation. By allowing agents to break some of the
rules of the road, norms are implicitly taken into account in the decision model.

To improve the realism of the model, violations are sometimes allowed, or even
encouraged [9]. In such cases, the institution provides adapted sanctions to reg-
ulate agents behavior. We propose in this paper to describe the behaviors using
norms, and to use violations to efficiently create realistic and diversified behav-
iors. The normative system is thus not considered as a regulation means of the
agents internal state – as part of their decision model –, but as an environment’s
regulation means of the agents population.

This paper is organized as follows. First, we present the context of our study:
the simulation of spatially situated agents. Then we describe the institutional
environment, and present our approach: modeling behavioral differentiation in
simulations as norms violations. Finally, the application of the model to the driv-
ing simulation software used at Renault, scanerTM, is shown, and experimental
results demonstrating the interest of the approach are presented.

2 Simulation of Spatially Situated Agents

2.1 The Need of Behavioral Variety

In this paper, we consider the application of normative systems in a specific con-
text: the simulation of spatially situated agents. This kind of simulation includes
all simulations where individual characteristics result in different behaviors, like
for instance pedestrian simulations [10] or traffic simulations [11]. In such simu-
lations, agents move around the environment: they need to be able to compute
their positions and displacements. Besides, we consider here only microscopic
simulation. Agents behavior may be observed continuously, and we have to en-
sure that each of their actions is realistic.

In this context, the variety of behaviors is important to be able to observe real-
istic situations during the simulation. Indeed, group phenomena can emerge from
the microscopic interactions of the agents. These phenomena, observed in the
real world, are for instance the formation of lines in multidirectional pedestrians
flows, or the regrouping effects caused by the sociability of individuals (people
tend to approach a group rather than staying alone). Even if all the agents own
the same set of characteristics and use the same models (decision, displacement
models), these phenomena might be observed in the simulation. However, the
possibility to obtain individual behaviors, like people staying alone or with small
groups, is not intrinsically guaranteed without complementary mechanisms.

Creating a behavioral variety is crucial for the simulation’s realism. To achieve
this goal we have to provide the agents with different individual characteristics:
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for pedestrians it could be the size of the agents or the displacement model they
use; for drivers the desired speed or the safety time.

2.2 The Need of Behavioral Consistency

Another point is that we have to be able to control the consistency of agents be-
haviors. Indeed, if the simulation produces inconsistent ones when it is designed
to reproduce real world situations, the validity of the experimentation has to be
reconsidered.

In most simulations, sets of parameters characterize agents behaviors. Any set
can be generated and used, but only some of them result in meaningful behav-
iors: only those should be kept (Fig. 1). In Figure 2, a more specific example is
presented. We suppose that drivers are characterized by two parameters, accel-
eration a and safety time t, which can be picked out from continuous predefined
intervals. When generating randomly combinations of these parameters, drivers
using a high acceleration and a low safety time are created, as well as drivers
using a low acceleration and a high safety time. They can naturally be classified
as aggressive and cautious, matching usual classifications of real drivers. How-
ever, other associations are also produced: drivers using high acceleration and
safety time, or low ones. The behaviors resulting from these parameters are not
realistic, and a mechanism has to be provided to exclude them.

To be able to introduce accurately proportion of agents showing specific and
consistent behaviors, we need to be able to use only specific sets of parameters
and to quantify their validity.

2.3 Towards a Normative Model

The description capabilities of norms offer various assets to achieve the different
goals presented above. Indeed, they provide different means to create the variety

Fig. 1. Only some sets of parameters should be generated to produce consistent be-
haviors. A mechanism excluding inconsistent ones (like behavior 2) has to be provided.

Fig. 2. A similar example using real parameters. The only sets of parameters we want
to keep have to match meaningful behaviors.
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we are looking for. The first possibility is to exploit the definitions of the norms
themselves. They can be used as generic structures allowing describing any kind
of behavior: a wide variety of norms may coexist, using various parameters. The
second possibility is to allow violations of the defined norms, which can produce
interesting new and unexpected behaviors. As for the consistency, the generation
of the behaviors within the norms limits guarantees it. If violations are allowed,
the deviations have to be quantified to remain in predefined limits.

Finally, when dealing with simulation of spatially situated agents, the goal
is often to reproduce existing behaviors. The intuitive description of the world
provided by norms allows users and scenario designers to easily comprehend the
generation mechanism, which they can then configure and modify by themselves.

3 Institutional Environment

In our case, norms are used to build and control the context of the simulation,
and not as the decision model of the agents. We do not use here explicit authoring
structures: norms are only used to create agents characteristics.

3.1 Semantic

We made the choice to use the same terminology as in classical normative ap-
proaches, but voluntarily did not used the terms in their common acceptance.
The definitions are adapted to the context, as this redefinition allows describing
efficiently the model.

Institution. According to the choice we presented, the institution does not
handle authority and controller agents. Its role is to manage the norms in the
environment. However, the institution may be related to a particular context, so
we keep track of sets of institutional and environmental properties. The institu-
tional properties refer to criteria regarding law and obligations, environmental
ones are related to contextual elements. The institution is mainly used as a set of
parameters and definition domains. Parameter is used here with a wide meaning:
it can be an action rule associated to its pre-conditions.

Definition 1. We define an Institution as a tuple 〈P, DP , Pi, Pe〉 where:

– P is a finite set of parameters.
– DP = {dp, ∀p ∈ P} is a set of definition domains.
– Pi is a set of institutional properties.
– Pe is a set of environmental properties.

Norm. Norms are defined as a subset of the institution parameters, associated
to subsets of the definition domains. For instance, a norm can be described by a
parameter and the distribution function describing the values it can take. Norms
handle specific sets of institutional and environmental properties, which can spe-
cialize institution ones. Conflicting norms are allowed; their preference ordering
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and their interpretation is left to the agents decision model. At this step, en-
forcement strategies, like punishment, are not included. Several norms can be
defined for the same environment, and norms can have non-empty intersections.

Definition 2. We define a Norm as a tuple
〈
I, Pn, DnPn

, Pni , Pne

〉
where:

– I is the institution the norm refers to.
– Pn ⊂ P is the subset of parameters associated to the norm.
– DnPn

⊂ DP is the subset of definition domains:
∀pn ∈ Pn, ∃p ∈ P, pn = p, dnpn

⊂ dp

– Pni is a set of institutional properties.
– Pne is a set of environmental properties.

Behavior. A behavior describes the instantiation of a norm. Each element of
the behavior is described by a parameter taken from the corresponding norm,
and a value associated to this parameter. This value can be taken in or outside
the definition domain associated to this parameter in the norm. Note that the
definition domain can be a set of functions: the parameter’s associated value will
then be itself a function.

Definition 3. A Behavior is defined as a tuple 〈N, Pb, VPb
〉 where :

– N is a reference to the instantiated norm.
– Pb is a subset of the set of parameters defined in the instantiated norm.
– VPb

is the set of values associated to the parameters.

A detailed example using these definitions is presented in Section 4.4.

Fig. 3. The different elements of the institutional environment and their relationships

3.2 Behavioral Variety as Violation of the Norm

The violation of the norms offers possibilities to increase the behavioral variety.
For each agent, a behavior is instantiated. The set of parameters and associated
values is determined during the instantiation: they can either be in the defini-
tion domain defined by the norm, or outside. If the value is in the definition
domain, the parameter respects the norm. If not, it is a violation. The norm
being known, we are able to establish which parameters are in their definition
domain, and to determine the gap between the current value and its domain.
This characteristic allows quantifying the deviation from the norm. Two criteria
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Table 1. Two different ways to express the safety time norm

safety time definition domain
first expression singleton, ts

2nd expression normal distribution, μ = ts, σ2 = 0.25

can be used: firstly, the number of values of the behavior’s parameters outside
the limits defined in the norm; secondly, the gap between a generated value and
its original specification.

For instance, consider the behavior of drivers regarding the safety distance on
roads. In the Highway Code, only recommendations are provided: “allow at least
a two-second gap between you and the vehicle in front on roads carrying faster-
moving traffic and in tunnels where visibility is reduced” (rule 126 of the English
Official Highway Code [12]). You can be fined for dangerous driving if you drive
too close to the vehicle in front of you, but there is no obligation regarding this
point. We define this as a norm, which can be expressed in different ways with
our formalism (Table 1). Using the first expression, a behavior which instantiates
this norm can take the value ts, and belong to the norm. If it takes any other
value t = ts + δ, δ ∈ [−ts, +∞] we observe a violation. We are also able to
quantify the deviation: if ts = 2 s and δ = 0.5 s, a deviation of 25% is observed.
This way, too deviant behaviors can be excluded. With the second expression, if
ts = 2 s, a value of 1.5 s stays within the domain: no violation is observed. These
two norms illustrate how norms definition can provide different permissiveness
levels.

This quantification can be used to fulfill various needs. It allows us to exclude
too deviant behaviors, as we are able to quantify the deviance and set limits
on the potential gaps. It can also be used to create unexpected behaviors, even
aberrant ones, and study their influence on the simulations.

3.3 Generating Behavioral Variety

The simulation is managed using a nondeterministic mechanism: global param-
eters describe the randomization of agents behavior. These parameters are used
to generate every other randomized parameter in the simulation, and can them-
selves be randomly chosen.

With this mechanism, the randomization level of the simulation can be set.
If it is defined at the simulation level, all structures are randomized using the

Fig. 4. Randomization mechanism allowing generating the behaviors
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higher-level factor. However, if we decide to preserve more control on the agents
characteristics, a different factor can be defined for each of them (Fig. 4). In
addition, the degree of randomization of the simulation can also be chosen. The
simulation can be either fully determined, with a simulation’s level parameter
set to 1, or totally randomized, with a simulation’s level parameter set to 0. This
generation mechanism is further detailed in [13].

4 Application to Traffic Simulation

One of the applications of this work is to reproduce various kinds of behaviors in
traffic simulation. We present in the next section the first steps of the application
of our model in the driving simulation software used at Renault, scanerTM1.

4.1 Driving Simulators and Traffic Simulation

Traffic simulation can be approached in several ways, depending on the requested
level of detail. However, when dealing with a driving simulator, only a micro-
scopic representation is suited: the vehicles driving around the interactive one
should have a convincing behavior, which macroscopic models cannot provide.
Driving simulators are used at Renault for different studies: ergonomics of the
driver’s cab, validation of embedded systems, comfort, design, validation of car
lightings (Fig. 5). . . The environment has thus to be as realistic as possible to
allow the immersion of the users in the simulation and ensure results validity.

Various traffic management models have been developed in the driving sim-
ulators field during the last fifteen years. They use different decision models to
simulate drivers behavior [14,15,16]. However, behavioral differentiation is not
considered as a specific issue in these applications. In macroscopic simulations,
this kind of mechanism sometimes exists for traffic generation functions [17].

Fig. 5. The dynamic simulator Ultimate at Renault (left), and a screenshot of the
scanerTM software with two visuals outputs, the traffic and the supervisory modules
(right)

1 scanerTM has initially been developed by Renault, and is now distributed and co-
developed by Oktal (http://www.scaner2.com/).
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4.2 Road Traffic Context

The normative system we place ourselves in is the road system. Various elements
regulate it: the Highway Code first, which provides sets of rules, enforced by
laws, and sets of recommendations; and second the habits established by drivers
during their daily use of their vehicles.

The English Official Highway Code [12] explicitly presents a set of “must /
must not” rules. They are associated to advices and recommendations, for which
the code states that “although failure to comply with the other rules of the Code
will not, in itself, cause a person to be prosecuted, The Highway Code may be
used in evidence in any court proceedings under Traffic Acts to establish liabil-
ity”. Even if these additional rules are not subjected to automatic punishment,
they are explicitly provided to establish a framework for the normative system.
Other codes, like the French one, present the same kind of characteristics.

As for individual elements, several psychological factors are involved in drivers
behavior [18]: personality, emotion, motivation and social behavior. Psychologi-
cal based driver models have been developed [19], but the lack of links between
measurable and psychological parameters makes their concrete application dif-
ficult. Indeed, drivers take into account various rules encountered in the real
world [20]:

– formal rules (rules of the road),
– informal rules (practices or conventions which can be in contradiction with

the formal rules, like not yielding at crossroads or roundabouts),
– design of the road (which is often the origin of informal rules appearance),
– and other drivers behavior (their current behavior as well as the anticipated

one).

Driving presents several particularities: many rules are subject to interpreta-
tion, the road environment let people expose their personality, and the emotional
state can influence the behavior. For instance, a driver may be dangerous even
if he does not break any rule: over-cautious drivers interfering with the traffic
flow can endanger others road users. The application of the rules can even differ
from a country to another, or from a town to another, adding a dependence on
environmental factors. A wide multiplicity of behaviors can be observed, which
has to be reproduced in simulations to ensure the immersion of human drivers
in the simulations.

4.3 Parameters of the Traffic Model

In traffic simulation, the individual characteristics of the agents are usually de-
scribed by a set of numerical data used in the decision model. Among them
acceleration, braking, security distance, security margin, or even psychological
factors like time to collision or time to lane crossing are typically used.

In scanerTM, the autonomous vehicles use a decision model based on a
perception-decision-action architecture [11]. During the perception step,
the driver identifies the elements it may interact with. It includes the roads,
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the road signs, the other vehicles and the pedestrians. The decision step is built
on three levels. First, a strategic level plans the itinerary. Then, a tactical level
is applied to select the next maneuver to be executed: drive on, overtake, change
lane, or stop. This step uses a finite state automaton, which transitions are sen-
sible to different parameters. After the maneuver’s choice, an operational level
computes the resulting acceleration and wheel angles. Finally, the action model
computes the next position, using a dynamic model of the vehicle.

Six different pseudo-psychological parameters are taken into account in this
decision model:

– maximal speed: the maximal speed a driver will adopt,
– safety time: the security distance it will use, depending on its speed,
– overtaking risk: the risks a driver will accept to overtake, function of the

available gaps with oncoming vehicles,
– speed limit risk: a factor allowing bypassing speed limits,
– observe priority and observe signs: boolean parameters regarding the respect

of signalization and priorities.

Their values can be set without any consistency check, and no consistency of the
resulting behavior is guaranteed.

4.4 Implementation

We chose in this work to apply the proposed differentiation model on the ex-
isting pseudo-psychological parameters. Indeed, they influence the behaviors of
the drivers, and represent adapted inputs in the traffic model. This led to the
institution whose parameters and associated values are presented in Table 2. For
the purpose of our example, the institutional and environmental properties are
defined as follows: we consider the institution is valid in right driving countries
(Pi = {right driving}), and only in France and Italy (Pe = {France, Italy}).

Different norms can then be defined in the context of this institution. Two
examples are presented in Table 3: normal and aggressive driving on high-
ways. The norm normal highway driving uses all the parameters defined in
the institution (Pn = P ), the definition domains are restrictions of the in-
stitution ones. A driver applying this norm does not take risks to overtake,
drive within the speed limits, do not bypass them, and observe both priori-
ties and signalization. The second example represents the norm aggressive high-
way driving: again all parameters are used, but the definition domains are

Table 2. Institution with the existing parameters using the presented model

P = {pi, i ∈ [1, 6]} DP = {dpi , i ∈ [1, 6]}
p1 = maximal speed dp1 = [0, +∞]
p2 = safety time dp2 = [0, +∞]
p3 = overtaking risk dp3 = [0, 1]
p4 = speed limit risk dp4 = [0, +∞]
p5 = observe signs dp5 = {true, false}
p6 = observe priority dp6 = {true, false}
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Table 3. Norms describing normal and aggressive driving on a highway

normal highway driving aggressive highway driving
pn1 = maximal speed dpn1

= [100, 140] dpa1
= [140, 160]

pn2 = safety time dpn2
= [0.8, 5.0] dpa2

= [0.1, 1.2]
pn3 = overtaking risk dpn3

= [−0.5, 0.5] dpa3
= [1.0, 2.0]

pn4 = speed limit risk dpn4
= [0.0, 1.0] dpa4

= [1.0, 10.0]
pn5 = observe signs dpn5

= {true} dpa5
= {true, false}

pn6 = observe priority dpn6
= {true} dpa6

= {true, false}

Table 4. A normal and a violating instantiation of the aggressive highway driving
norm. Only one parameter, the maximal speed, is in violation.

aggressive driver violating aggressive driver
pb1 = maximal speed vpb1

= 150 km/h vpb1
= 210 km/h

pb2 = safety time vpb2
= 0.2 s vpb2

= 0.3 s
pb3 = overtaking risk vpb3

= 2.0 vpb3
= 1.8

pb4 = speed limit risk vpb4
= 1.6 vpb4

= 3.0
pb5 = observe signs vpb5

= false vpb5
= true

pb6 = observe priority vpb6
= false vpb6

= false

adapted to reflect that aggressive driver take more risks, drive faster and use
smaller security margins. The norm allows not respecting priorities or signal-
ization. As for the properties sets, the institutional one remains unchanged,
but the environmental properties now include a parameter to restrict its use
to highways only, and to France only: Pnormi = Paggri = {right driving} and
Pnorme = Paggre = {France, highway}.

These norms allow generating various behaviors. In Table 4, two instantiation
of the aggressive highway driving norm are presented. The first one does not
violate the norm: every value remains in the definition domain defined by the
norm. A driver using these parameters in the traffic model presents a consis-
tent behavior, while showing aggressive characteristics, like following closely the
vehicles in front of it. The second instantiation represents the kind of behavior
that may be created when violations are allowed. Here, only one parameter has
been generated outside the norms, the maximal speed. The generated value leads
to a coherent behavior, but if the value had led to an inconsistent behavior (for
instance 400 km/h), the behavior should have been excluded.

4.5 Experimental Results

To evaluate the improvements brought by the introduction of the normative
model, simulations using different sets of norms were realized.

A database representing an 11 km long section of highway was used (Fig. 6).
The vehicles were created at the beginning of the section, using a traffic demand
of 3800 veh/h (1900 veh/h per lane on both lanes). The recording of traffic data



230 B. Lacroix, P. Mathieu, and A. Kemeny

Fig. 6. 2D and 3D views of the highway database used for the experiment

was done using three detector placed on the highway, at kilometer 2.2, 6 and 10.8.
The vehicles were created using the normative model, and the traffic model of
the application then handled them during the simulation process. Three different
sets of norms were used:

– no norms: all the vehicles are created with the same parameters,
– normal driver only: one norm is used, normal highway driving. Only one

parameter is specified in the norm, the maximal speed. Its definition domain
is a normal distribution of mean μ = 125 and standard deviation σ = 10,
truncated at 100 and 140 km/h,

– all norms: three norms are used, cautious highway driving, normal highway
driving and aggressive highway driving. Each norm is defined with four pa-
rameters, which definition domains are truncated normal distributions. The
values used are presented in table 5. The vehicles are created with the fol-
lowing proportions: 10% cautious, 80% normal, and 10% aggressive.

Table 5. Cautious, normal and aggressive norms parameters

parameter cautious normal aggressive
maximal speed [90, 125] [100, 140] [140, 160]

μ = 115 μ = 125 μ = 150
σ = 10 σ = 10 σ = 5

safety time [1.5, 5.0] [0.8, 5.0] [0.1, 1.2]
μ = 2.0 μ = 1.5 μ = 0.8
σ = 0.5 σ = 0.5 σ = 0.4

overtaking risk [−0.5, 0.5] [−0.5, 0.5] [1.0, 2.0]
μ = 0.0 μ = 0.0 μ = 1.5
σ = 0.25 σ = 0.25 σ = 0.5

speed limit risk [0.0, 1.1] [0.0, 1.1] [1.0, 10.0]
μ = 1.0 μ = 1.0 μ = 1.5
σ = 0.05 σ = 0.05 σ = 0.25
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Fig. 7. Distribution of vehicles speeds at kilometer 6
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Fig. 8. Total travel time on the database

For each set of norms, the data obtained during three different runs are pre-
sented (Figs. 7 and 8), the duration of each simulation being one hour. The
Figure 7 represents the distribution of vehicles speeds at the kilometer 6 (sec-
ond detector). The first case, where no norm is used, shows a concentration of
the speeds in two main areas: between 70 and 90 km/h for 46% of the vehi-
cles, and around 130 km/h for 40% of them. This distribution is explained by
the parameters similarity: vehicles are not able to take advantage of the traffic
flow variations, which results in a slow right lane and a fast left one with few
lane changes. In the second case, with one norm, 60% of the vehicles speeds are
between 90 and 115 km/h, and 30% between 115 and 140 km/h. The result-
ing distribution is more balanced, but the average speed remains quite low, at
100.4 km/h. The last case, with three norms, presents a wider distribution of
the speeds, and a slightly increased average speed (103.7 km/h).

The total travel time for each vehicle is presented in Figure 8, and provides
interesting complementary results. As for the speeds, the use of norms produces
more balanced distributions of results. In addition, the distributions widen when
the number of used norms increases: a higher variety of behaviors results in more
differentiated travel times. When studying the average travel times of the vehicles
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Table 6. Average travel times

avg travel time evolution
no norm 5 mn 35 s +13.2 %
normal only 4 mn 56 s ref.
all norms 5 mn 14 s +6.0%

through the whole section (Table 6), we can also note that even if the average
speed increases slightly when using more norms (+3.3 %), the travel time do
not decrease, but increase (+6 %). The variety of behaviors explains again this
result: more speeding vehicles are present, but the dynamicity of the traffic limits
their progression.

However, different elements concerning the experiment have to be discussed.
First, the norms choice, and the values used in the norms. The norms were
chosen to reflect classifications defined in driving psychology. They may change
to include more variety, or according to the population studied. As for the values
used, they have been chosen empirically. An important improvement would be
using calibration with real data, which is currently under work.

Second, the use of statistical data hides some of the characteristics of the
traffic. Even if some properties appear, the visual observation of the traffic flows
shows other particularities: increasing the variety increases highly the variety of
individual behaviors in the traffic (overtakings, speed choices. . . ). These results
do not appear in the measured data, and we need to introduce new indicators
allowing illustrating and quantifying these elements.

Finally, the possibility to generate violating behaviors was not exploited in
these simulations. Even when creating aggressive drivers, we remained in the
limits of the corresponding norm. This point will be introduced in further ex-
periments, to simulate for instance erratic behaviors in the traffic.

5 Conclusion

In this paper we have presented an approach to model behavioral differentiation
as deviations from the norm in simulations of spatially situated agents. Such
behavioral variety is needed in microscopic simulations, where it is an important
realism criterion. The institutional environment is composed of an institution,
norms and behaviors. The institution manages a set of parameters associated
to their definition domains. The norms are subsets of these parameters and
domains, and behaviors are instantiations of a norm. The values of behaviors
parameters can be in or outside the definition domain provided by the norm.
With this model, any kind of behavior can be generated, either matching or
violating the specified norms. We are also able to quantify the deviance rate of
these behaviors. Finally, this approach has been applied to traffic simulation.
In this first step, the existing parameters of the traffic model have been used
to generate various agents behaviors. Statistical experimental results showed
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that the introduction of different norms improves the behavioral variety in the
simulation, while allowing controlling the consistency of the behaviors.
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14. Espié, S., Saad, F., Schnetzler, B., Bourlier, F., Djemane, N.: Microscopic traffic
simulation and driver behaviour modelling: the Archisim project. In: Road Safety
in Europe and Strategic Highway Research Program, pp. 22–31 (1994)

15. Wang, H., Kearney, J., Cremer, J., Willemsen, P.: Steering behaviors for au-
tonomous vehicles in virtual environments. In: IEEE Virtual Reality Conference,
pp. 155–162 (2005)



234 B. Lacroix, P. Mathieu, and A. Kemeny

16. Olstam, J.: Simulation of rural road traffic for driving simulators. In: Transporta-
tion Research Board, Washigton D.C., USA (2005)

17. Barcelo, J., Casas, J.: Dynamic network simulation with AIMSUN. In: Interna-
tional Symposium on Transport Simulation, Yokohama, Japan (2002)

18. Dewar, R.E.: Individual differences. In: Dewar, R., Olson, P. (eds.) Human Factors
in Traffic Safety, pp. 111–142 (2002)

19. Keskinen, E., Hatakka, M., Laapotti, S., Katila, A., Peraaho, M.: Driver behaviour
as a hierarchical system. In: Rothengatter, T., Huguenin, R.D. (eds.) Traffic and
Transport Psychology, pp. 9–29. Elsevier, Amsterdam (2004)

20. Björklung, G.M., Aberg, L.: Driver behaviour in intersections: Formal and informal
traffic rules. Transportation Research Part F 8, 239–253 (2005)



Categorizing Social Norms in a Simulated
Resource Gathering Society

Daniel Villatoro and Jordi Sabater-Mir

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Bellatera, Barcelona, Spain
{dvillatoro,jsabater}@iiia.csic.es

Abstract. Our main interest research is focused on reaching a decen-
tralized form of social order through the usage of social norms in virtual
communities. In this paper, we analyze the effects of different sets of so-
cial norms within a society. The simulation scenario used for the exper-
iments is a metaphor of a resource-gatherer prehistoric society. Finally,
we obtain a qualitative ranking of all the possible sets of social norms in
our scenario performing agent-based simulation.

1 Introduction and Related Work

Social norms are part of our everyday life. They help people self-organizing in
many situations where having an authority representative is not feasible. On the
contrary to institutional rules, the responsibility to enforce social norms is not
the task of a central authority but a task of each member of the society. From the
book of Bicchieri [1], the following definition of social norms is extracted: “The
social norms I am talking about are not the formal, prescriptive or proscriptive
rules designed, imposed, and enforced by an exogenous authority through the ad-
ministration of selective incentives. I rather discuss informal norms that emerge
through the decentralized interaction of agents within a collective and are not
imposed or designed by an authority”. Social norms are used in human societies
as a mechanism to improve the behaviour of the individuals in those societies
without relying on a centralized and omnipresent authority. In recent years, the
use of these kinds of norms has been considered also as a mechanism to regulate
virtual societies and specifically societies formed by artificial agents ([2,3,4,5]).
From another point of view, the possibility of performing agent based simulation
on social norms helps us to understand better how they work in human societies.

One of the main topics of research regarding the use of social norms in vir-
tual societies is how they emerge, that is, how social norms are created at first
instance. This has been studied by several authors ([6,7,8,9,10,11]) who propose
different factors that can influence this emergence. We divide the emergence of
norms in two different stages: (a) how norms appear in the mind of one or sev-
eral individuals and (b) how these new norms are spread over the society until
they become accepted social norms. We are interested in studying the second
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stage, the spreading and acceptance of social norms, what Axelrod [6] calls norm
support. Our understanding of norm support deals with the problem of which
norm is established as the dominant when more than one norm exists for the
same situation. In the literature we can find several works ([7,9]) that address
with this problem, using a prisoner’s dilemma as evaluation function, converting
the problem of norm support in a coordination problem, where the agents have
to learn to cooperate with the rest of the society, otherwise any kind of social
punishment will be applied to them.

Our model, in contrast to those solving coordination problems, can deal with
social norms that are not representable in a decision table and the rewards for
following a certain norm are not known a priori. A similar approach can be found
in the work of Cecconi and Parisi [12], where they also deal with a simulated
resource consuming society. In their work, agents do not know beforehand how
good the sets of social norms they follow are, even though the authors only con-
sider two well differentiated sets of social norms (individual strategy or collective
strategy of resource consumption). However, a society can have several (more
than just two as we have already seen in the literature) sets of social norms
abided by different members of the society. In the work of Sen [13], we observe
that the authors present 6 different strategies (or sets of social norms), but they
study the behaviour of mixed populations of these kinds of agents. Nevertheless,
each of these sets of social norms, acting individually, can be of different quality
with respect the society’s goal. Therefore, it is useful to know beforehand the
quality of a set of norms in a society, assuming that all the agents share the
same set of social norms. In this paper we present a deep analysis of simulation
results and the statistical techniques used to establish a ranking of quality of all
the possible sets of social norms that members of a well-defined society can abide
by. The assumption addopted is that all the members share the same set of social
norms, with the hypothesis that, when agents find themselves in a socially mixed
society, they will tend to a common set of norms, and such set of norms should
be optimal. The research contained herein follows that performed by [14] where
a genetic algorithm was the mechanism in charge of finding the most efficient set
of norms in a given society. The main motivation (and part of future work) of
this research is, once the quality of each different set of social norms is defined,
to create simulations of heterogeneous societies. In these simulations agents will
be loaded with different sets of social norms, and agents will be provided with
the ability of changing their set of social norms. Therefore, we plan to observe a
convergence of all the agents into a set of social norms. Our final goal is to study
the mechanisms that favour that the final dominant set of social norms is the
best in the ranking we have previously established. The article is structured as
follows: firstly, we present the motivation of the problem and the inspiration we
are using for the simulation scenario. Secondly, it is described the problem we
deal with in this article, as well as the hipothesis. Subsequently all the details
of the simulation model are specified. Thirdly, the experimental setting is intro-
duced and the results of the experiments are analyzed. Finally, we draw some
conclusions from the results obtained.
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2 Reference Scenario

In order to design an scenario where the usage of social norms is significant, we
are inspired by real life examples ([15], [16]), where the usage of social norms is
vital for the survival of the society. The society we use for our experiments is a
resource-gatherer distributed and decentralized society. All the members of the
society survive by consuming resources that appear randomly in the environment
and exchanging the resources among them by abiding to a set of social norms.
Depending on the quality of these social norms, the society succeeds in the task
of increasing the average life expectancy of its members.

The application domain of this research is directly related to an ongoing re-
search which is carried out by a group of archaeologists. We are presented a
non-prehistoric society, already extinguished, known as ‘the Yámanas’. This so-
ciety was located in Southern Argentina and are one of the groups of the societies
commonly known as ‘canoeros’. They lived there for around 6000 years in a very
hostile environment. The main success, and reason of study, of this peculiar soci-
ety is their ability of auto-organization: the Yámanas were able to auto-organize
themselves as a hunter-gatherer society. The archaeologists consider as the hy-
pothesis that the key of success in this society was due to their strong respect
for a known set of social norms (represented as a set of myths). These social
norms regulated, amongst other behaviours, the resource exchange between the
Yámanas. From the study of Gusinde [17], we extract that social norms for re-
source exchange regulation only made sense in such societies when the resources
to be exchanged would appear sporadically although of a large contribution when
they appear (e.g. finding a whale on the beach was a huge amount of resources
but it would not happen frequently). Therefore, we adapt the parameters of the
simulation to this scenario.

We want to stress that even though we inspired our simulations by the
previously described society, the simulation scenario is a simplification of it.
Consequently, we do not intend to affirm that the results obtained out of our
simulations, as they are now, are directly applicable to real societies. Notwith-
standing, the results have relevance for societies of virtual agents.

3 Statement of the Problem

The problem to be faced in the following sections is a study of the effects of each
set of social norms within the society that uses them. We perform an exhaustive
analysis of every possible set of social norms in our resource-gatherer society,
forcing each time all the members to share the same set of social norms. This
analysis provides us with the necessary information to establish a classification
of sets of social norms depending on their quality. The quality measure used in
our experiments is the Average Life Expectancy of the agents. Having fixed the
ranking , we observe the characteristics that make a set of social norms optimal,
with the intention of applying this characteristics to different scenarios in the
future work. Our hypotheses are:
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- H1 - Different sets of social norms obtain different results on the quality
measure we are using.

- H2 - Environmental settings can affect the ranking of social norms.
- H3 - Social norms promoting selfishness generate heterogeneous societies (as

dictatorships).
- H4 - Homogeneous societies are obtained with sets of social norms that

promote altruism.

4 Simulation Model

We use a multi-agent system for our simulation. This multi-agent system is defined
as an undirected graph: MAS = 〈A, Rel〉, where A = {Ag1, Ag2, Ag3, . . ., Agn}
is a set of n agents representing the vertices of the graph, with n ≥ 1; and Rel the
set of relations (edges) between the agents. All the neighbours of distance 1 in the
graphMAS of a certain agent is defined as the neighbours network of this agent. All
the agents are initially loaded with 100 resource units. The simulation algorithm is
based on a discrete step timing model, where each time step the algorithm observes
the state and consequent actions of each agent before ticking another time step.
Every time step, the simulation algorithmruns over everyagent. The order inwhich
the algorithm runs over the agents is randomly changed each time step. In this way
all the agents are able to execute their actions, in a random order each time step,
anulling any kind of advantage of one agent over the rest.

Each agent consumes one resource unit each time step as energy consumption
for survival. When one agent exhausts its resources, it dies. After dying, agents
are able to ressurrect with the initial resource conditions, after recalculating its
Average Life Expectancy (ALE). This ALE is calculated by averaging the age of
death plus the previous ALE. At the beginning of the simulation, all agents are
loaded with an initial ALE of 100.

Firstly, in each time step, our algorithm evaluates (following continuous uni-
form probability distibution) if each of the agents have to find resources by
observing the agent Resource Gathering Probability, that is defined as:

ResourceGathering Probability (Prg) is ranked in the interval [0, 1]. Prg specifies
the probability an agent has to find resources each time step. In case the algorithm
evaluates that an agent has to find resources, the agent will receive a large amount
of resources that can either use for its own consumption or for donating.

Secondly, in each time step, our algorithm evaluates if an agent has to meet
another agent by observing the agent Interaction Probability, that is defined as:
Interaction Probability (Pint) is ranked in the interval [0, 1]. Pint specifies the
probability of an agent to meet another agent connected to it.

In case the algorithm evaluates positively that an agent has to meet another
one, it randomly chooses another agent from the agent’s neighbours network.
The interactions among agents are done always in pairs, and both agents have
to choose an action when interacting. This decision is taken following the set of
social norms that each agent has internalized. The set of norms specifies if the
agent has to give or not give resources to the other agent, depending on both
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Table 1. Situations and Actions. Structure of a set of social norms.

Situation Action

Starving(Me) Starving(You) To Give / Not To Give
Starving(Me) Plenty(You) To Give / Not To Give
Starving(Me) Normal(You) To Give / Not To Give
Plenty(Me) Starving(You) To Give / Not To Give
Plenty(Me) Plenty(You) To Give / Not To Give
Plenty(Me) Normal(You) To Give / Not To Give
Normal(Me) Starving(You) To Give / Not To Give
Normal(Me) Plenty(You) To Give / Not To Give
Normal(Me) Normal(You) To Give / Not To Give

agent’s resource levels. In order to formalize our concept of social norm, we first
need to define several terms.

All agents can perceive a finite set of observables O, and each element of the
set is denoted as ob. Every agent also has a finite set of actions A, and each
element of the set is denoted as a.

Every agent can find itself in a finite set of different situations S, and each
element of the set is denoted as sit ⊂ O. In other words, a situation is a combi-
nation of different observables.

Given that, a social norm SNi is a tuple formed by a situation and an action:
SNi = {〈sitg,ah〉 | sitg ∈ S, ah ∈ A}.

In our scenario, the set of observables is formed by the following propo-
sitional terms: O = { Plenty(Me), Plenty(You), Normal(Me), Normal(You),
Starving(Me), Starving(You)}, where: Plenty(X) indicates that Agent’s X re-
source level is over 100 units; Normal(X) indicates that Agent’s X resource level
is between 25 and 100 units; and, Starving(X) indicates that Agent’s X resource
level is below 25 units. The values that X can take are Me and You, represent-
ing the acting agent and the partner agent in the interaction. When two agents
meet, each agent is able to observe its own level of resources and its opponent
level. The whole list of possible situations (formed by two observables) in which
an agent may find itself can be seen in Table 1. The set of possible actions are
A = {Give Resources, Do not Give Resources}. The combination of all possible
situations associated to an action generates a set of social norms.

Each agent always abides by the set of social norms that it has internalized.
When the social norm indicates to give resources, the agent has to decide the
amount of resources it gives. Each agent has been provided with a Donation
Reasoning Process that allows it to calculate the amount of resources to donate.
The Donation Reasoning Process is the following:

if (AgeA ≥ ALEA) and (ResourcesA ≥ P lentyLevel) then
Donation = SharingFactor × (ResourcesA − P lentyLevel)

else
Donation = (1− SharingFactor)2 ×ResourcesA

end
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AgeA corresponds to how old Agent A is. ALEA refers to the Average Life
Expectancy of Agent A. ResourcesA is the amount of resources that Agent A
posses at that moment. PlentyLevel is the level in which the agent is considered
to be plenty. And SharingFactor is a factor applied to donate a relative amount
of the total. In the experiments studied herein this sharing factor is fixed on a
70%. In other words, when an agent has more resources than what it needs to
increase its average life expectancy, it donates more; when an agent do not have
enough resources, it donates a smaller amount. The donation reasoning process
has been designed in such a way so that it fulfils the motivation of the scenario
we are simulating that were introduced in previous sections.

5 Experiments and Results

Once the characteristics of the simulation platform have been grounded and the
architecture of the agents is clear, we make use of them to test our theories of
how efficient a set of social norms can be.

We suspect that depending on the amount of resources available in the envi-
ronment, a different set of social norms will be the most efficient in every scenario,
changing therefore the behaviour of the agents depending on the availability of
resources.

5.1 Experiment Design

We need to test every single set of social norms over a society where every
member of the society shares the same set of social norms. We have decided to
load into the simulation a society with the following characteristics:

– The number of agents loaded in the simulation has been fixed to 90. This
amount of agents allow us to approximate the society result to a normal
distribution, so that it fulfills the central limit theorem1.

– Fully Connected Neighbour Network: every agent is connected to all the
other agents in its neighbour network.

– All the agents have the same Interaction Probability, and it has been fixed
to PI(Agenti) = 0.1. This parameter is fixed to this value to avoid the con-
tinuous interactions among agents. A limited number of interactions makes
the result of this interaction more important when happening. 2

– All the agents have the same Resource Gathering Probability, and this pa-
rameter (PRG(Agenti)) is variable depending on the experiment.

– All the agents have the same set of social norms. Every possible set of social
norms is loaded into the agents, executed and analyzed its effect after a
period of time.

– When agents find resources, 250 units of resources are found. 2

1 The central limit theorem states that the re-averaged sum of a sufficiently large
number of identically distributed independent random variables each with finite
mean and variance will be approximately normally distributed [18].

2 This value has been chosen to fulfil the reference scenario previously presented and
obtained from [17].
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Apart from these parameters, we also have to specify the simulations param-
eters. All simulations are run for 250000 steps. In each simulation, a different
set of social norms is loaded, until all possible sets of social norms have been
executed. For each different set of norms, 20 simulations are run and certain
parameters are saved. These parameters are: Average Life Expectancy of each
agent, Standard Deviation of the Average Life Expectancies of the society, and
Median Average Life Expectancy of the society.

As it was explained in Section Simulation Model, each agent could find itself
in 9 possible different situations. In each of these situations, an agent always has
two options: to give or not to give resources. Therefore, 2 actions raised to the
power of 9 situations gives us a result of 512 different sets of social norms that
will be studied separately.

5.2 Experiment 1

In this first experiment we have fixed PRG(Agenti) = 0.0025. This value indi-
cates, for example, that in a grid world of 100 cells in each side, 25 cells (out
of 10000) would be loaded with resources every time step. We consider it a low
resource gathering probability, which do not allow the society to perpetuate.
Therefore, we are interested in finding out which are the sets of norms that
lengthen the average life expectancy of the society. After running an exhaustive
test over all the possible set of social norms, we can observe the results in the
following figure. The horizontal axis represents each one of the 512 possible sets
of social norms. The vertical axis represents the mean of the median average life
expectancy of the society from each of the 20 simulations.

H1 - Different sets of social norms obtain different results on the average
life expectancy of the agents is verified with the results. In same environmental
conditions, different sets of social norms produce different results in the agents

Fig. 1. Median Average Life Expectancy using different sets of social norms.
PRG(Agenti) = 0.0025.
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average life expectancy. The society, notwithstanding the social norms used,
does not get to perpetuate for the whole simulation in any of the simulations.
Therefore we observe which sets of norms obtain the best results. In Figure 1,
we can perfectly distinguish between three different levels:

1. In the first level (median average life expectancy (ALE) lower than 300) we
define the Bad sets of social norms.

2. In the second level (median ALE between 300 and 400) we define the Average
sets of social norms.

3. In the third level (median ALE higher than 400) we define the Good sets of
social norms.

In Figure 1, and in the levels aforementioned, we constantly refer to the mean
of the median ALE. This median ALE represents information from only one
member of the society, and does not provide us a with precise idea of how the rest
of the society has behaved. It could happen that in two different societies with the
same median ALE, the distance between the best and the worst member of the
society was very different: one very large, representing a heterogenous society;
and one very small, representing a homogenous society. In order to observe the
homogeneity of each society, produced by the sets of social norms, we observe
also the Average Standard Deviation of the simulations. If the Average Standard
Deviation is low, this shall mean that all the agents have obtained similar results,
obtaining consequently, an homogeneous society.

In Figure 2, we can observe four different data clusters:

– The lowest one (A) indicates a poor performance of these sets of social norms
that this cluster holds. Although the bad performance of the set of norms in
respect to the median average life expectancy of the society, it shows a very
low standard deviation. The average median life of the agents is relatively

Fig. 2. Median Average Life Expectancy VS Mean of Standard Deviation.
PRG(Agenti) = 0.0025.
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low, but, so it is the standard deviation, which means that all the agents
inside these societies obtain similar ALEs. The sets of norms in this cluster
are tagged as low.

– The following one (B) shows an average performance. Inside this cluster it
can be seen two smaller ones. One of the smaller clusters represents more
homogeneous (referring tothe resulting population) sets of norms than the
other one, although the median life of the agents is average with respect to
the rest of the social norms. The sets of norms in this cluster are medium.

– The third cluster (C) shows the sets of social norms that we define as high. So-
cieties using these sets of norms obtain a good median ALE, similar (slightly
smaller in this third cluster) to the best cluster. It also results in a more ho-
mogeneous society than the last one. The sets of norms in this cluster can
be tagged as high and homogeneous.

– The last cluster (D) is the most dispersed one. Although the performance in
the “Mean of Median” axis is the highest, it is also the cluster that shows a
higher standard deviation. These sets produce societies in which the “median
agent” obtains a very good ALE, although the rest of agents obtain very
different values. Therefore we can state that the sets of norms in this cluster
are high but heterogeneous.

The sets of norms that show a good (high) performance deserve a deeper study.
Consequently we extract such sets of norms and analyze the characteristics of
both high clusters (C and D).

The sets of norms obtained in the heterogeneous cluster are the ones with the
following IDs: 128 - 135, 192 - 199, 384 - 391, 448 - 455.

Each of the sets of social norms corresponds to a complete table of situations
and its corresponding action. For example, the sets of norms identified as 128 -
135 are represented in Fig. 3. In each of the columns we can identify the action
that is associated to the corresponding situation: To Give Resources (G) or Not
To Give Resources (N G).

The set of norms in Fig. 3 (128-135) can be simplified into a more generalized
one. This generalization is done following the theories of Karnaugh maps. By
observing the three middle rows, these correspond to the situations Plenty(Me)
and all the three possible observables for You. Therefore, and pursuant to the
theory of Karnaugh maps, we generalize that the corresponding action for the
situations with the observable Plenty(Me) is always Do not give, without consid-
ering the You observables (regardless of the value thay may hold, result would

Situation Set 128 Set 129 Set 130 Set 131 Set 132 Set 133 Set 134 Set 135

Starving(Me) Starving(You) N G G N G G N G G N G G
Starving(Me) Plenty(You) N G N G G G N G N G G G
Starving(Me) Normal(You) N G N G N G N G G G G G
Plenty(Me) Starving(You) N G N G N G N G N G N G N G N G
Plenty(Me) Plenty(You) N G N G N G N G N G N G N G N G
Plenty(Me) Normal(You) N G N G N G N G N G N G N G N G
Normal(Me) Starving(You) N G N G N G N G N G N G N G N G
Normal(Me) Plenty(You) G G G G G G G G
Normal(Me) Normal(You) N G N G N G N G N G N G N G N G

Fig. 3. Sets of Norms 128-135
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not vary). In a similar way we generalize the last three rows, corresponding to
the situations with the observable Normal(Me). Finally, the first three rows, cor-
responding to the situations with the observable Starving(Me), can be omitted.
This is also done following Karnaugh maps theory. Since all possible combina-
tions are covered, we can consider that that situation is not meaningful when
extracting the generalization. The resulting generalization is:

If Plenty(AgentA) Then Do Not give Resources to AgentB

If Normal(AgentA)
IfPlenty(AgentB ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

By repeating the previous generalization procedure with the rest of sets of
social norms, we obtain the following (“abstracted”) sets of social norms:

1. For the Sets of Norms (128-135):
If Plenty(AgentA) Then Do Not give Resources to AgentB

If Normal(AgentA)
IfPlenty(AgentB ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

2. For the Sets of Norms (192-199):
If Plenty(AgentA) Then Do Not give Resources to AgentB

If Normal(AgentA)
If (Plenty(AgentB ) or Starving(AgentB )) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

3. For the Sets of Norms (384-391):
If Plenty(AgentA) Then Do Not give Resources to AgentB

If Normal(AgentA)
If (Plenty(AgentB ) or Normal(AgentB)) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

4. For the Sets of Norms (448-455):
If Plenty(AgentA) Then Do Not give Resources to AgentB

If Normal(AgentA) Then Give Resources to AgentB

Moreover, the generalization process can be performed on these resulting four
generalized sets of social norms, obtaining just the last of the generalized set of
social norms, since this one represents the most general situation. One conclusion
that we may extract from this experiment is: when being an agent in resource-
scarce environments, do not consider the others state, give only when you are
normal and do not give when you are plenty of resources. This kind of norms
promote the enrichment of those who are Plenty, favouring from those that
continously die and ressurect, and not returning anything to the society. Thus,
we have obtained a selfish society, but remembering that obtains good results
although in an heterogeneous manner. Therefore, H3 - Social norms promoting
selfishness generate heterogeneous societies is confirmed.

We still have to analyze the homogeneous cluster. The norms extracted (fol-
lowing the same previous procedure) from the homogeneous-high cluster are the
following:

1. If (Plenty(AgentA) or Normal(AgentA))
If Plenty(AgentB ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB
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2. If Normal(AgentA)
If (Plenty(AgentB ) or Starving(AgentB )) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

If Plenty(AgentA)
If Plenty(AgentB ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

3. If Normal(AgentA)
If (Plenty(AgentB ) or Normal(AgentB)) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

If Plenty(AgentA)
If Plenty(AgentB ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

4. If Normal(AgentA) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

If Plenty(AgentA)
If Normal(AgentB) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

On the other hand, these norms, in contrast to the heterogeneous norms, do pay
attention on the other agents state to decide the action to take, confirming that
H4 - Homogeneous societies are obtained with sets of social norms that promote
altruism. Possibly, this refinement in the decision process is the cause of the
homogeneity.

5.3 Experiment 2

In this second experiment we have increased the amount of resources by fixing
PRG(Agenti) = 0.004. We consider it a probability where agents, depending on
the efficiency of the set of social norms, can achieve a good performance. There-
fore, in this experiment we pursue the same objective described in Experiment
1: to find which are the codes that lengthen the average life expectancy of the

Fig. 4. Median Average Life Expectancy using different sets of social norms.
PRG(Agenti) = 0.004.
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society. After running an exhaustive test over all the possible set of social norms,
we observe the results showed in Figure 4.

In Figure 4, we can observe a similar pattern of the distribution of the results
over the space search. Although the scale in the axis of mean of median is larger
this time, we can observe three levels as well:

1. In the first level (median ALE lower than 6000), we identify the Bad sets of
social norms.

2. In the second level (median ALE between 6000 and 14000), we identify the
Average sets of social norms.

3. In the third level (median ALE higher than 14000), we identify the Good
sets of social norms.

At this time we also study the results in terms of homogeneity. This can be
observed in the following figure.

As it happened in the first experiment, in Figure 5 we can observe four dif-
ferent data clusters. This time, it is more difficult to affirm which of them is the
best cluster with respect to the others. On the one hand we have sets (A and
B) that obtain poor results on the “mean of median” scale, but with a very low
standard deviation. On the other hand, we have the most dispersed cluster (D),
which obtains the best results, although showing a very high standard deviation.
Finally, the third cluster (C), which obtains lower results than the fourth one,
despite also having a lower standard deviation. However, when compared to the
second cluster, we can observe a significant raise in the standard deviation for
a not much significant raise in the “mean of median” scale. Accordingly, a de-
cision has to be taken; sets of norms that produce: either the wealthiest society
but with a high heterogeneity, or, a wealthy society (but not as wealthy as the
previous one) but with a lower heterogeneity too.

Fig. 5. Median Average Life Expectancy VS Mean of Standard Deviation.
PRG(Agenti) = 0.004.
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Despite this discussion, we would also like to observe the norms producing
the two highest clusters that previously we distinguished between homogeneous
and heterogeneous.

The sets of norms obtained in the heterogeneous cluster are exactly the same
that the ones obtained in the first experiment.

The sets of norms obtained in the homogeneous cluster are:

1. If (Plenty(AgentA) or Normal(AgentA)) Then Do Not give Resources to AgentB

2. If Normal(AgentA)
If Starving(AgentB ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

If Plenty(AgentA) Then Do Not give Resources to AgentB

3. If Normal(AgentA)
If Normal(AgentB) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

If Plenty(AgentA) Then Do Not give Resources to AgentB

4. If Normal(AgentA)
If (Starving(AgentB ) or Normal(AgentB) ) Then Give Resources to AgentB

Else Do Not give Resources to AgentB

If Plenty(AgentA) Then Do Not give Resources to AgentB

These norms are slightly different from those obtained in the first experiment.
In these sets of norms, the Starving agents might still get some resources from
other agents, while in the other example did not happen. These favouring to
the Starving agents is due to the amount of resources; in this scenario is easier
for the agents to find resources, therefore, makes sense to help them all. These
differences confirm H2 - Environmental settings can affect the ranking of social
norms. All the sets can be summarized into the last one. In these sets of norms
we can still confirm the theory proposed at the end of the first experiment: to
obtain a homogeneous society agents still have to pay attention on the other
agents state to succeed.

6 Conclusions and Future Work

We have presented in this article a simulated society and an exhaustive study of
social norms oriented to share resources that members of such society might use.
From this analysis, we are now able to establish a quality scale of the different
sets of social norms when acting separately.

We can conclude that selfish behaviours promote the proliferation of dicta-
torships of resources (some agents holding the majority of resources without
sharing them with the rest of the society), consequently obtaining an heteroge-
neous society. On the contrary, in order to obtain homogeneous societies, the
sets of norms have to promote altruism (making agents share resources in an
intelligent way).

In this article, we have assumed that all members of the society share the same
set of social norms. This assumption cannot be made when trying to simulate a
real-life environment where to apply social norms as it could be a peer-to-peer
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information market. In this kind of real problems, it might happen that each in-
dividual uses a different set of social norms. Once we know the qualities of all the
possible sets of norms, we intend to study the mechanisms that make a certain
set of social norms become the dominant and used by the vast majority of the
members of a society. Special attention will be paid on reputation mechanisms
as a mean to control fraudulent behaviours.
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Abstract. This paper presents an approach to modeling social trans-
gressions in agent based systems. The approach is intended to be abstract
enough that it may be used with many different theories of transgression,
apology, forgiveness, etc. In the first half of the paper, we consider what
features of transgressions, people’s emotional reactions to transgressions,
and forgiveness are important, primarily by surveying social sciences lit-
erature. In the second half, we discuss an implementation of our approach
in PMFserv, an agent based socio-cognitive modeling framework.

1 Introduction

In this paper we will present an approach to modeling social transgressions in agent
based systems. By “social transgression” we mean an offense an agent can commit
against social rules. Throughout this paper, the terms “transgression” and “of-
fense” (and, similarly, “transgressor”and “offender”)will be used interchangeably.

Our approach involves representing transgressions as abstract objects.
However, the transgression objects themselves are not the main focus. Rather,
they simply serve as a nexus for actions and relations between agents about the
transgressions they represent.

The layout of this paper is as follows. In §2, we will discuss transgressions in
general. In §3, we will discuss emotional reactions to transgressions. In §4, we
will discuss issues of forgiveness. In §5, we will give an overview of PMFserv in
preparation for the discussion of our implementation in §6.

2 Transgressions

In this section we will discuss issues with transgressions in general. One notable
issue that we will not consider is perceptual mistakes. For example, we will not
address situations in which an observer incorrectly blames an innocent party
for a transgression or underestimates the effects. Such mistakes are beyond the
scope of this paper.

All transgressions have a transgressor, a set of victims, and a set of effects.
Effects are to be understood as the direct effects of the offending action, not
the emotional effects on observers. Those are handled separately. For example, if
Alan sets fire to Brad’s house and burns it down, then the transgressor is Alan,

J.F. Hubner et al. (Eds.): COIN 2008, LNAI 5428, pp. 250–265, 2009.
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the victims are Brad and whoever else has a stake in his house,1 and the set
of effects is that Brad’s house has burned down and most everything inside has
been damaged or destroyed.2

Now, one might argue that a transgression may have multiple transgressors.
Take the example of a bank robbery executed by a gang with four members.
Prima facie, this seems to be just such a transgression. However, we would
consider it to be four separate transgressions – one for each robber. Or, in any
case, we represent it as four separate transgression objects.

Metaphysical issues aside, we have pragmatic reasons for this method of di-
viding transgressions. First, it allows us to distinguish the different roles and
levels of guilt of the different transgressors. For example, in a bank robbery, the
gang member whose only job was to drive the getaway car may be held to a
lower level of responsibility than the gang members who threatened the people
in the bank with weapons.

Second, it allows us to keep relations between the different transgressors and
the transgression separate. As we will discuss below, the transgression objects
are used to keep track of such things as whether the transgressor committed the
transgression intentionally. Since different transgressors may have had different
levels of intent, even in what may be considered the same transgression, we use
multiple objects to keep these relations separate.

Indeed, similar arguments can be made on the victim side. In many cases
it is reasonable to create a separate transgression for each transgressor-victim
pair. This allows for a very detailed level of accounting. However, in other cases
such an approach may be infeasible. In the bank robbery example, there is a
potentially very large number of victims, including the bank itself, all of its
shareholders, everyone in the bank at the time of the robbery, and everyone
whose money is lost. Whether to allow multiple victims is something that can
be decided on a model by model or even transgression by transgression basis.

Beyond these basic properties of transgressions themselves, our transgression
objects will keep track of some relations with the transgressor, relations with
observers, properties of the effects, and relations between the transgressor and
observers.

A transgression may be intentional or unintentional. That is, the transgressor
may have performed the offensive action intentionally or unintentionally. For
example, Alan may be angry at Brad and intentionally run his car into Brad’s
car. On the other hand, Alan may run into Brad’s car accidentally.3

1 Actually, the list of victims is much larger. For example, it may include owners of
nearby houses, whose houses may also catch fire or may simply be damaged by soot.
However, for the sake of simplicity, we will restrict the list of victims in our examples
to only the most direct ones.

2 Again, the list of effects is actually much larger, including such things as smoke
damage to nearby structures, but we leave them out for the sake of simplicity. Fur-
thermore, we do not count the emotional effects on Brad.

3 Notice that intention is distinct from responsibility. That Alan ran his car into Brad’s
unintentionally does not imply that he is not responsible. For example, he might have
been negligent in his driving.
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The effects of a transgression may be active or inactive. Let us assume in our
example of Alan crashing his car into Brad’s that Brad’s car is damaged and his
arm is broken. Until his car is fixed (or replaced) and his arm heals, the effects of
the transgression are active. Once those things happen, the effects are inactive.4

A related but separate issue is compensation. That is, some or all of the vic-
tims may have received compensation for the harm done to them. Compensation
may or may not come from the transgressor and may or may not cause effects
to become inactive. In our car crash example, compensation will probably come
from Alan’s insurance company rather than from Alan himself, and it will prob-
ably come in the form of money intended to cover repairs to or replacement of
Brad’s car as well as medical expenses. In this case, the compensation does not
make the effects inactive. As noted before, the effects remain active until Brad’s
car is repaired or replaced and his arm heals.

A transgressor may or may not have apologized for the transgression. Apology
is a complex subject, and there is much to say about it, both in terms of structure
and effects. For the purposes of this paper, we will consider apology to be a black
box. We will touch on the effects when we discuss forgiveness in §4.

A transgression may be forgivable or unforgivable. It seems that most people
view most transgressions as, at least in principle, forgivable. Indeed, many trans-
gressions are so minor that no one would consider them unforgivable. However,
some people may view some transgressions as unforgivable, at least until some
condition occurs (such as repentance of the transgressor).

Among forgivable transgressions, a transgression may be forgiven or unfor-
given. This means that the observer in question may have forgiven the trans-
gressor for the transgression. We will discuss forgiveness further in §4.

3 Emotional Reactions

Any observer could potentially have an emotional reaction to a transgression.
This includes direct observers (i.e., those who directly perceive the transgression)
and indirect observers (i.e., those who learn about the transgression by means
other than direct perception, such as newspapers or other observers). It also
includes those who have some relationship to those directly involved and those
who have no such relationship.

For any transgression, we should expect that there is someone who would have
a negative emotional reaction (e.g., anger or reproach) to observing it; otherwise,
it would not be a transgression. However, this does not imply that everyone would
have the same negative emotional reaction. For example, Wunderle points out
that “Arabs believe it is imperative that negotiating partners respect each other’s
honor and dignity. To an American, losing face may be embarrassing, but to an
Arab, it is devastating” [1, p. 36]. Even within a culture, there is considerable

4 It is worth noting that not all effects can be made inactive. For example, in the case
of a murder, the death may never be undone. However, the case of a transgression
with permanent effects should not be confused with the case of an unforgivable
transgression. Many transgressions with permanent effects may still be forgiven.
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variation between individuals in the severity of their emotional reactions to the
same transgression (see, e.g., [2,3,4]).

In addition to cultural and personality factors, the relationship between the
observer and those directly involved in the transgression may affect the extent of
the reaction. Gordijn et al. [5] and Yzerbyt et al. [6] studied emotional reactions
of uninvolved observers to transgressions. Both found that negative emotional
reactions to transgressions are significantly stronger when the victims are in the
same group as the observer.

For many transgressions, we should expect that there is someone who would
not view it as a transgression. For example, killing cattle is commonplace in
America but taboo in India. Indeed, what is an egregious transgression to one
may be a cause for celebration to another. Consider Bobby Fischer’s reaction to
the September 11, 2001 World Trade Center attack. During a radio interview in
the Philippines hours after the event, he is reported as describing news of the
attack as “wonderful” and saying that he “applaud[s] the act” [7].

In a nutshell, our framework must accommodate a wide variety of reactions
to a transgression. In particular, it must handle different individuals viewing the
same transgression as having different degrees of severity, as well as individuals
who do not view the act as a transgression at all. However, since it is a framework
for transgressions (and not acts in general), it need not handle the emotional
reactions of those who do not view the act as a transgression (though it must
not force a negative reaction upon them).

4 Forgiveness

We will consider what is sometimes called “offense-specific” forgiveness.5 This
is a relationship between three entities: a forgiver, a transgressor, and a trans-
gression. The forgiver forgives the transgressor for the transgression. We are not
concerned with whether or how the forgiver is connected to the transgressor or
the transgression. However, the forgiver must be aware of the transgression and
believe that the transgressor is in some way responsible for it.

We will divide forgiveness along two axes. The first axis is active versus passive
forgiveness. Active forgiveness is where someone has made a conscious decision
to forgive a transgressor; passive forgiveness is where no conscious decision has
been made.6

The second axis is effective versus ineffective forgiveness. Effective forgive-
ness is where the negative emotions toward the transgressor resulting from the
transgression have subsided; ineffective forgiveness is where the negative emo-
tions have not subsided.

There are three possible combinations of these: effective active forgiveness,
ineffective active forgiveness, and effective passive forgiveness. Ineffective passive
5 Berry et al. [8] distinguish three types of forgiveness. Offense-specific is forgiveness

of a specific person for a specific offense. Dyadic is forgiveness of a specific person
for a history of offenses. Dispositional is forgiveness as an enduring personality trait.

6 Active forgiveness should be understood as a private decision. Whether or not that
decision is communicated to anyone else is a separate issue.
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forgiveness is not really forgiveness, since neither the intent to forgive nor the
desired result of forgiving is present.

Many (and perhaps most) definitions of forgiveness reflect a type of effective
forgiveness.

– Subkoviak et al. define forgiveness as the “absence of negative affect, judg-
ment, and behavior toward an offender and the presence of positive affect,
judgment, and behavior toward the same offender” [9, p. 642].

– McCullough et al. define forgiveness as “the set of motivational changes
whereby one becomes (a) decreasingly motivated to retaliate against an
offending relationship partner, (b) decreasingly motivated to maintain es-
trangement from the offender, and (c) increasingly motivated by concilia-
tion and goodwill for the offender, despite the offender’s hurtful actions”
[10, pp. 321-322].

– Berry et al. define forgiveness as “the juxtaposition or superimposition of
strong, positive, other-oriented emotions over the negative emotions of un-
forgiveness” [8, p. 186].

Wohl et al. [11] caution against definitionally rejecting active ineffective forgive-
ness, describing it as failed forgiveness rather than non- or pseudo-forgiveness.7

We will follow their lead on this point.
Three things are notable about the above definitions. First, none requires a

conscious decision to forgive; thus, all are consistent with both active and passive
forgiveness. Second, only the first definition requires a behavioral change (though
we may expect behavioral changes to accompany the motivational or emotional
changes required by the other two). Third, all involve both a decrease in negative
emotions and an increase in positive emotions.

Regarding the third point, there is some evidence that the decrease in negative
emotions is a separate process from the increase in positive emotions (see [3]).
This is why an increase in positive emotions is not included in the definition of
effective forgiveness.

Now let us consider the three cases of forgiveness, beginning with passive
effective forgiveness. In this case, there has been no conscious decision to forgive
but the negative emotions resulting from the transgression have subsided. One
might expect that this state will occur with time, and there is evidence that this
is correct.

McCullough et al. [3] showed that negative emotions (specifically avoidance
and revenge motivation) associated with a transgression decrease linearly over
time.8 Moreover, while the rate of decrease varies from person to person, it does
7 They say that for their subjects, “this profile of activities constitutes forgiveness

even though forgiveness – as they conceive it – has failed to achieve the desired
consequences (including those that researchers might stipulate)” [11, p. 558].

8 Wohl and McGrath [4] confirmed these results and further noted that it is the per-
ceived rather than actual amount of time that has passed that affects forgiveness.
That is, avoidance and revenge motivation decrease with increases in perceived tem-
poral distance. Since perceived temporal distance fluctuates, so do avoidance and
revenge motivation.
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not depend on the severity of the transgression. (On the other hand, the initial
intensities of the negative emotions caused by the transgression do depend on its
severity.) Importantly, McCullough et al. provide not only a theory of whether
forgiveness will occur but also when.

Thus our framework must handle emotion decay, at least regarding the emo-
tions caused by transgressions. However, while McCullough et al. have suggested
that the rate of decay is linear and does not depend on the severity of the trans-
gression, these assumptions are not built into the framework. We will discuss
this in more detail in §5.3.

Next let us consider active effective forgiveness. This involves both a conscious
decision to forgive and subsidence of negative emotions. Azar et al. [2] studied
the effects of four factors on the propensity to forgive. The four factors were
(1) whether the transgressor apologized, (2) whether the effects were still active,
(3) whether the transgression was intentional, and (4) whether the transgressor
was in the same social group as the potential forgiver. They found that the first
two had major (and roughly equal) effects, the third a moderate effect, and the
fourth an insignificant effect. Moreover, the effects combined additively.

Our transgression objects, as described in §2, make available all the informa-
tion that Azar et al. designated as pertinent, including the social relationship
between the observer and transgressor. Unfortunately, while Azar et al. provide
insight into how these factors affect whether forgiveness will occur, they pro-
vide no insight into how the factors affect when it will occur. Nonetheless, our
framework must be able to accommodate different theories about how these (or,
indeed, other) factors affect both whether and when forgiveness will occur.

Finally, we will consider active ineffective forgiveness. This involves a con-
scious decision to forgive, but little or no subsidence of the negative emotions
resulting from the transgression in question. This case should not be confused
with the case in which the negative emotions caused by the transgression subside
but are replaced by further transgressions.

Wohl et al. [11] refer to this case as failed forgiveness. In their study on differ-
ent types of forgiveness, they identified a type in which the forgiver attempted
to resume a positive relationship with the transgressor without ignoring or for-
getting the transgression. In such cases, the relationships between forgiver and
transgressor tended to deteriorate in the long run.

Unfortunately, we have very little insight into how or why such failed forgive-
ness might occur or what its precise effects are, including how and under what
circumstances the relationship might deteriorate.

5 PMFserv

PMFserv (Performance Moderator Function Server) is a framework for modeling
socio-cognitive agents. It includes a synthesis of about 100 best-of-breed mod-
els of personality, culture, values, emotions, stress, social relations, and group
dynamics, as well as an integrated development environment for authoring and
managing reusable archetypes and their task sets. For each agent, PMFserv
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operates its perception, physiology, personality, and value system to determine
stressors, grievances, tension buildup, the impact of speech acts, emotions, and
various mobilization and collective and individual action decisions. PMFserv
also manages social relationship parameters and thus macro-behavior (e.g., in
collectives or crowds of agents) emerges from individuals interactions and micro-
decisions.

PMFserv is in use by an intelligence agency to model diplomatic decisions of
world leaders for which it has passed statistical correspondence tests showing
it is significantly in agreement with their decision making [12,13]. PMFserv has
also reached the level where it can realistically simulate ethno-political conflicts
among regional leaders and their followers vying over control of contested re-
sources and assets. For more detailed accounts of PMFserv, including validation
studies for application in the Far East, Middle East, Africa, and North America,
see [12,13,14,15].

5.1 Goals, Standards, and Preferences

Agents’ cultural values and personality traits are modeled in PMFserv by goal,
standard, and preference (GSP) trees. These are multi-attribute value structures
where each tree node is weighted with Bayesian importance weights.

Preferences are long term desires for world situations and relations. In the im-
plementation we describe below, relevant preferences include whether the agent
has a materialistic, symbolistic, or humanistic vision of the future.

Goals cover short-term needs and motivations that implement progress toward
preferences. Goals relevant to the implementation we describe below include
needs for belonging, esteem, and safety.

Standards define the methods an agent is willing to use to satisfy its goals and
preferences. These include concerns with conformance (to society), relationship
versus task focus, sensitivity to life, willingness to use violence, concern with
honesty, respect for authority, and narrow self-interest versus concern for the
greater good.

The example goals, standards, and preferences just mentioned are summa-
rized in Table 1. It should be noted that these are just examples which will be
relevant in §6 and by no means exhaust the set of possible goals, standards, and
preferences.

In addition to Bayesian importance weights, the nodes in the GSP trees
have positive and negative activations (represented by values in [0, 1], where

Table 1. Example goals, standards, and preferences

Goals Standards Preferences
Belonging Conformance Humanistic
Esteem Relationship vs. task focus Materialistic
Safety Sensitivity to life Symbolistic

Use of violence
Honesty
Respect for authority
Self-interest vs. greater good
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0 indicates no activation and 1 full activation). A node becomes activated when
an agent takes an action related to that node. For example, if an agent takes
an action involving deceit, then the node representing its standard of honesty
would be negatively activated. These activations are used to calculate the agent’s
current emotional state. GSP trees and how they relate to emotions in PMFserv
have been discussed at length elsewhere (e.g., [12,14]), and we will not reproduce
that discussion here.

5.2 Objects

In addition to managing agents, PMFserv manages objects (representing both
agents and non-agents, such as cars or locations), including when and how they
may be perceived and acted on by agents. PMFserv implements affordance the-
ory [16], meaning that each object applies perception rules to determine how it
should be perceived by each perceiving agent.9 Objects then reveal the actions
(and the potential results of performing those actions) afforded to the agent. For
example, an object representing a car might afford a driving action which can
result in moving from one location to another.

Notably, objects need not be concrete. PMFserv makes no metaphysical as-
sumptions about its objects. Abstract objects, such as plans and obligations,
may be represented just as easily as concrete objects.

Objects have a state, which is a set of properties. For example, an object
representing a car might have a make, model, color, sale price, etc. Additionally,
objects have a set of perceptual types. Each perceptual type has a perceptual rule
associated with it which is used to determine whether that type is perceived. For
example, a car might have a buyable perceptual type which indicates whether
an agent perceives the car as something it can purchase. The perceptual rule
associated with the type might compare the sale price of the car with the amount
of money the agent has (as well as considering whether the car is owned by
someone else and is for sale). Assuming that the agent perceives the car as
buyable, the action buy would be afforded with the result that the car changes
ownership, the current owner’s money increases, the agent’s money decreases,
and the agent’s emotional state changes appropriately.

In addition to binary perceptual types, there are “continuous” perceptual
types. Rather than an agent viewing an object as either having this sort of
perceptual type or not, agents view an object as having it to a certain degree
between 0 and 1. The degree of perception and the precise meaning of the degree
are determined by perceptual rules. For example, one agent might view another
agent as more or less of a friend.

Furthermore, groups of perceptual types for an object may be designated as
mutually exclusive. That is, at most one of such a group may be perceived at a
time by an agent. A perceptual type may be in at most one such group for an
object.

9 This approach was chosen for pragmatic rather than philosophical reasons. See [14]
for a discussion of the reasons.
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5.3 Emotion Decay

In PMFserv, whenever an event occurs which should elicit an emotional reaction
from an agent, the agent notes the event along with its initial emotional impact
and assigns a decay function to it. An agent’s emotional state at any given time
is determined by the initial impact, decay function, and age of each event that
it has stored.

Each decay function takes the initial impact and age of an event and returns
the decayed impact, i.e., the impact the event will have after a certain amount of
time has passed. In principle, there is no limitation to the nature of the function,
though under normal circumstances it should be monotonically decreasing.

Each agent has its own decay policy which assigns decay functions to events.
Like the decay functions, there are no real limits to their nature. A decay policy
could, for example, assign the same decay function to all events; or it could
assign decay functions based on properties of the events.

6 Implementation

In PMFserv, transgressions are represented as abstract objects. They are dynam-
ically created when an agent transgresses. This requires the scenario designer
(ideally in consultation with a subject matter expert) to decide which actions
count as transgressions and what impact they will have on observers. These may
vary significantly between scenarios since they depend on the actions that are
available and the sorts of agents being modeled.

In our current implementation, we are modeling Arab villagers and US sol-
diers in an Iraqi village. Emphasis in this article is on transgressions that US
soldiers can commit against villagers and how they may atone (though the im-
plementation also handles transgressions between villagers). While there are in
fact a vast number of such transgressions, for this discussion we will concentrate
on three examples: rude and untactful speech (adeb), searching a home without
dogs, and searching a home with dogs. Both cases of searching refer to soldiers
searching a villager’s home by force or the threat of force.

Before discussing the transgressions any further, we will discuss some simpli-
fying assumptions we are making, mostly with respect to perception and com-
munication.

The first assumption is that all transgressions are perceived immediately by
everyone. This does not necessarily mean that everyone directly perceives every
transgression, simply that everyone is immediately aware. Essentially, we are
assuming that communication about transgressions within the village is complete
and effectively instantaneous.

The second assumption is that transgression objects have only one victim.
Thus transgressions which have multiple victims will be represented by multiple
transgression objects each with one victim.

The third assumption is that only Arab villagers are offended. That is, we
are not representing transgressions that villagers can commit against soldiers or
soldiers against each other.
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Now let us put this into a more formal representation. Let T be the set of
transgressions, A be the set of agents, E be the set of effects, and 〈TP,≺, d〉 be
a structure representing time, where TP is the set of timepoints, ≺ is a linear
ordering, and d is a distance function. We will represent a transgression τ ∈ T
as a quadruple 〈o, v, e, t〉, where o ∈ A is the offender (or transgressor), v ∈ A
is the victim, e ⊆ E is the set of effects, and t ∈ TP is the time at which the
transgression occurred. For a transgression τ , we will denote these as τo, τv, τe,
and τt, respectively.

Based on the discussion in §2 we will define the following predicates. For
τ ∈ T , α ∈ A, and t0, t1 ∈ TP ,

– intentional(τ) is true iff τ was intentional,
– apologized(τ, t1) is true iff τo apologized for τ at some time t0 & t1,
– active(τ, t1) is true iff τe are still active at t1, and
– forgivable(τ, α) is true iff observer α views τ as forgivable.

We will define some more functions and predicates after further discussion.
Now that we have stated what our transgressions are, we must say what their

impact on observers will be. That is, we must associate each transgression with
a set of GSP activations that will be afforded to observers. We can represent
afforded activations as a vector in [0, 1]2n, where n is the number of GSP nodes.
(The vector is of length 2n because it must contain both positive and negative
activations for each node.)

To facilitate combination of such vectors, we define the bounded addition
operator, written ⊕. For x, y ∈ R, we define scalar bounded addition as follows.

x⊕ y = max(0, min(1, x + y)) (1)

We define vector bounded addition as element-wise scalar bounded addition.
As a convenient way to organize these in our implementation, each transgres-

sion is assigned an intensity in each of the following categories: faux pas, taboo,
violent, materialistic, and deceitful.10 Intensities range from zero to one, and it
is common for transgressions to have non-zero intensities in multiple categories.
For example, a mugging is both violent and materialistic. The meaning of each
category is summarized in Table 2.

Table 2. Transgression categories

Faux pas Taboo Violent Materialistic Deceitful
Relationship focus Relationship focus Sensitivity to life Self-interest Honesty
Conformance Conformance Use of violence Respect for authority
Belonging Belonging Belonging Materialistic
Esteem Esteem Safety

Symbolistic

10 These categories should not be taken as an authoritative taxonomy of transgressions.
They were chosen because they correspond well to nodes in the GSP trees used in
the current scenario. For research on moral categories, see, e.g., [17].
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Faux pas are comparatively minor transgressions related to etiquette. Exam-
ples include rude speech and inappropriate dress. These afford activations to
an observer’s GSP nodes related to focusing on relationships, conformance, and
concerns with belonging and esteem. Let fp ∈ [0, 1]2n be the activations afforded
by a faux pas transgression.

Taboo transgressions are similar in nature to faux pas, though they are gener-
ally more serious. Examples include marrying a sibling and making blasphemous
statements. These afford activations to the same GSP nodes as faux pas plus
those related to symbolistic concerns. Let tb ∈ [0, 1]2n be the activations afforded
by a taboo transgression.11

Violent transgressions can range from the relatively minor to the extremely
serious. Both actual violence and the threat of violence are included. Examples
include slapping someone in the face and setting off a bomb in a crowded market-
place. These afford activations to an observer’s GSP nodes related to sensitivity
to human life, the use of violence, and concerns with belonging and safety. Let
vi ∈ [0, 1]2n be the activations afforded by a violent transgression.

Materialistic transgressions are those having to do with property. This in-
cludes damaging, destroying, and stealing property. Examples include vandal-
ism and theft. These afford activations to an observer’s GSP nodes related to
self-interest, respect for authority, and materialistic concerns. Let ma ∈ [0, 1]2n

be the activations afforded by a materialistic transgression.
Deceitful transgressions are those relating to honesty. They include everything

from little white lies to major fraud. These afford activations to an observer’s
GSP nodes related to honesty. Let de ∈ [0, 1]2n be the activations afforded by a
deceitful transgression.12

Intensities for our example transgressions can be found in Table 3.13 Adeb is a
relatively minor faux pas. Searching a home (with or without dogs) involves the
threat of violence and offense against property. Searching a home with dogs also
involves elements of taboo, since dogs are considered unclean by many Arabs.

To denote the intensity of a transgression in each category, we will define five
functions from T to [0, 1]: fauxpas, taboo, violent, materialistic, and deceitful.
The base impact a transgression τ ∈ T will have on an observer is defined by
the following equation.

Ib(τ) = fauxpas(τ) · fp⊕ taboo(τ) · tb⊕ violent(τ) · vi⊕
⊕materialistic(τ) ·ma⊕ deceitful(τ) · de (2)

11 Faux pas and taboo are notably similar categories. The main difference is that taboo
transgressions violate deeply held convictions. While a faux pas transgression might
result in feelings of annoyance or perhaps even mild contempt, a taboo transgression
would more likely result in feelings of anger or even disgust. Consider the difference
between addressing someone in an inappropriate way and throwing feces at that
person.

12 This category is currently a placeholder. At this time, agents are not able to take
deceptive actions in PMFserv.

13 The intensities were assigned by our fourth author, an Arabist, who reviewed the
transgressions.
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Table 3. Example transgression intensities

Faux pas Taboo Violent Materialistic Deceitful
Adeb 0.1 0.0 0.0 0.0 0.0

Searching 0.1 0.0 0.2 0.1 0.0
a home

Searching 0.1 0.5 0.5 0.1 0.0
a home

with dogs

The initial impact is affected by two other factors: the relationship of the observer
to the victim and whether the transgression was intentional.

As noted in §3, the relationship of the observer to the victim can affect the
impact of a transgression. In particular, the closer the relationship, the more
severe the impact. We consider four types of relationships: whether the observer
is the victim, the victim’s kin, in the same group as the victim, or in a group
with at least neutral relations with the victim’s group. If the observer does not
share one of these relationships with the victim, then there will be no relationship
based impact. For τ ∈ T and α ∈ A, we will denote the impact of α’s relationship
to τv by Ir(τ, α) ∈ [0, 1]2n.

Based on studies by Azar et al. [2] (see the discussion in §4), we give additional
initial impact if the transgression was intentional. For τ ∈ T , we denote this
impact by In(τ) ∈ [0, 1]2n, where In(τ) = 〈0, . . . , 0〉 if intentional(τ) is not true.

Thus for τ ∈ T and α ∈ A, the initial impact Ii of α observing τ is described
by the following equation.14

Ii(τ, α) = Ib(τ) ⊕ Ir(τ, α)⊕ In(τ) (3)

Of course, the actual emotional effect τ will have on α is a function of Ii(τ, α),
α’s personality, and α’s prior emotional state. For example, adeb will not bother
someone who is not concerned with relationships, conformance, belonging, or
esteem. On the other hand, someone who is concerned with one or more of those
will likely be bothered, though probably not too much since adeb is a minor
transgression at worst.

All of these factors are implemented as perceptual types on the transgression
object. The categories are implemented as continuous perceptual types (where
the perception levels are the intensities from Table 3), the relationship is im-
plemented as a mutually exclusive group of binary perceptual types, and the
intentionality is represented as a single binary perceptual type. These percep-
tual types afford perceive actions, which are performed automatically when the
object is introduced.

There are two binary perceptual types on the transgression object which afford
substantive actions. The first is perceivable if the effects of the transgression are
still active and affords the action remove effects. The second is perceivable only
to the transgressor if he has not apologized and affords the action apologize.
14 We aggregate by addition for the sake of simplicity. It is not clear from the literature,

for example, whether the effect of the relationship is additive or multiplicative – we
know only that it increases the impact.
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The two actions are similar in effect. Both reduce the emotional impact of
the transgression on observers, thus decreasing the time it takes to forgive. This
is based on the claim of Azar et al. [2] (see the discussion in §4) that whether
the effects of the transgression are still active and whether the transgressor
has apologized significantly contribute to the likelihood of forgiveness. Notably,
neither action can be performed multiple times for the same transgression.

The apologize action has an added dimension in our model since some trans-
gressions require atonement more complicated than a simple verbal apology.
Consider, for example, the ritual of “blood money” paid for an offense resulting
in death in Arab cultures.15 To this end, we include atonement objects, which
encapsulate the steps necessary for atonement. Once all the steps have been
completed, the effect is that of having apologized.

Formally, performing the remove effects or apologize on transgression τ ∈ T
at time t ∈ TP has the effect of making active(τ, t

′
) false or apologized(τ, t

′
)

true for all t
′ ∈ TP such that t & t

′
. We implement the reduction in emotional

impact by associating coefficients with each as follows.

Ce(τ, t) =

{
0 if active(τ, t)
− 1

2 otherwise
(4)

Ca(τ, t) =

{
− 1

3 if apologized(τ, t)
0 otherwise

(5)

These are used to adjust the impact as follows.

I(τ, α, t) = (1 + Ce(τ, t) + Ca(τ, t)) · Ii(τ, α) (6)

In other words, removing the effects reduces the impact by half and apologizing
reduces it by one third.16

Furthermore, there is the question of how the impact decays over time. Each
agent is assigned a “grudge factor” ranging from 0 to 1 and indicating for how
long the agent will hold a grudge. The higher the grudge factor, the longer it
will take the agent to forgive a transgression. In practical terms, this determines
the emotion decay function for that agent. Following McCullough et al. [3], all
decay functions are linear, and the grudge factor simply serves to determine

15 The ritual may be fairly elaborate as, for example, described by Irani and Funk
[18]. In this case, the family of the offender must seek the help of a delegation of
local leaders, esteemed mediators, and other notables, who will hear the grievances
of the victim’s family and determine what constitutes an appropriate payment of
“blood money” in the case at hand. Then the offending and offended families gather
together for a ritual shaking of hands. Then the family of the victim serves bitter
coffee to the family of the offender to demonstrate forgiveness. Finally, the offending
family serves a meal to the offended family.

16 The coefficients are guesses on our part. Their additivity is supported by Azar
et al. [2]; however, we could find no support in the literature for particular values.
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the slope (with a lower grudge factor indicating a steeper slope).17 Slopes range
from −1 (indicating more or less instantaneous forgiveness) to 0 (indicating no
forgiveness).

The only exception is for unforgivable transgressions. For those transgressions,
emotions do not decay. Such transgressions are rare, and none of our examples
fall into this category. Whether a transgression is unforgivable is implemented
as a binary perceptual type on the transgression object.

For α ∈ A, let us denote the slope of α’s decay function by αd ∈ [−1, 0]. Thus
for τ ∈ T and t ∈ TP such that τt & t, the amount that the impact of τ should
have decayed by t is described by the following equation.

δ(τ, α, t) =

{
αd · d(t, τt) if forgivable(τ, α)
0 otherwise

(7)

(where d is a temporal distance function). Now we define the decayed impact of
τ on α at t as

D(τ, α, t) = I(τ, α, t)⊕ δ(τ, α, t) (8)

where δ(τ, α, t) is a vector in R2n whose elements are all δ(τ, α, t).
Once the emotional impact of a transgression has decayed to nothing, then

the agent has effectively forgiven the transgression. In other words, for τ ∈ T ,
α ∈ A, and t ∈ TP such that τt & t, α has effectively forgiven τo for τ at t if
D(τ, α, t) = 〈0, . . . , 0〉.

Consider a few examples with the sample transgressions mentioned earlier.
If a soldier commits adeb, most villagers will have a slightly negative emotional
reaction. However, for the most part they will get over it quickly, especially if
the soldier apologizes.

Searching a home is a more serious transgression, involving violent and ma-
terialistic elements as well as breaching etiquette. Villagers will have a much
stronger reaction than to adeb. However, once the effects become inactive and
the soldier apologizes, most villagers should forgive the soldier for that particular
transgression within a few weeks (though the villagers may still have negative
emotions about the soldier if he has committed further transgressions).

Searching a home with a dog is a considerably more severe transgression than
either of the previous two. In addition to the effects of simply searching a home,
this violates the taboo of bringing a dog into a home. Thus the emotional impact
on the villagers will be considerably stronger. Even once the effects have been
removed and the soldier has apologized, forgiveness may take quite some time,
perhaps several months (with the same qualification as before). And without an
apology forgiveness will take considerably longer.

17 Our assignment of grudge factors, and thus decay rates, to agents is somewhat
arbitrary. We made what we consider to be plausible guesses, but as far as we can
tell, the literature is largely silent on this issue.
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7 Conclusion

We have presented an approach to modeling transgressions in agent based sys-
tems. To this end we have discussed a number of considerations relevant to any
model of emotional reaction to and forgiveness of transgressions. And we have
described an implementation in PMFserv.

There are still many open issues on this topic. We did not consider the ques-
tion of observers having incomplete or incorrect information about a transgres-
sion. Similarly, there are issues we did not consider with communication, such
as agents (intentionally or unintentionally) introducing their own biases when
informing others of a transgression. In the real world these are very common
cases.

The issue of collective responsibility remains open. That is, how observers
attribute blame to groups for individual transgressions. For example, when a
US soldier commits a transgression, how much will observers blame the soldier
himself versus the US military versus the US as a whole?

Another interesting issue we did not consider is apology. There is a great deal
to say on the subject, particularly regarding the effectiveness of different apology
strategies and the likelihood of an apology being rejected.

Finally, beyond conceptual issues, for any approach to modeling transgressions
to be really useful, actual transgressions and their impacts must be cataloged.
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