
Systematic Usage of Embedded Modelling

Languages in Automated Model Transformation
Chains

Mathias Fritzsche1,3, Jendrik Johannes2, Uwe Aßmann2, Simon Mitschke1,2,
Wasif Gilani1, Ivor Spence3, John Brown3, and Peter Kilpatrick3

1 SAP Research CEC Belfast
Shore Road, BT370QB Newtownabbey

United Kingdom
mathias.fritzsche@sap.com, simon.mitschke@sap.com, wasif.gilani@sap.com

2 Technische Universität Dresden
D-01062, Dresden, Germany

jendrik.johannes@tu-dresden.de, uwe.assmann@tu-dresden.de
3 Queen’s University Belfast

University Road, Belfast BT7 1NN
United Kingdom

i.spence@qub.ac.uk, tj.Brown@qub.ac.uk, p.kilpatrick@qub.ac.uk

Abstract. Annotation of programs using embedded Domain-Specific
Languages (embedded DSLs), such as the program annotation facility for
the Java programming language, is a well-known practice in computer
science. In this paper we argue for and propose a specialized approach
for the usage of embedded Domain-Specific Modelling Languages (em-
bedded DSMLs) in Model-Driven Engineering (MDE) processes that in
particular supports automated many-step model transformation chains.
It can happen that information defined at some point, using an embed-
ded DSML, is not required in the next immediate transformation step,
but in a later one. We propose a new approach of model annotation en-
abling flexible many-step transformation chains. The approach utilizes a
combination of embedded DSMLs, trace models and a megamodel. We
demonstrate our approach based on an example MDE process and an
industrial case study.

1 Introduction

The usage of Domain-Specific Modelling Languages (DSMLs) in Model-Driven
Engineering (MDE) is increasing in popularity. Traditionally, it is a common
practice to define and use Domain-Specific Languages (DSLs) by embedding
them into other languages [1]. Bravenboer et al [2] proposed a GUI definition
language embedded into Java. Another common example is the usage of SQL
statements as Strings in Java or PHP, which is effectively language embedding.
While this is in general not a new idea, new challenges emerge when this practice
is applied for DSMLs in the MDE domain.

D. Gašević, R. Lämmel, and E. Van Wyk (Eds.): SLE 2008, LNCS 5452, pp. 134–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Systematic Usage of Embedded Modelling Languages 135

The distinction between DSMLs and traditional DSLs is not formally defined.
There are, however, certain aspects which tend to be different. For example, the
metalanguages used to define language syntax tend to be different; DSMLs are
often defined through MOF-like [3] metamodelling languages while traditional
DSLs are often defined through Extended Backus-Naur Form (EBNF)-like gram-
mars. The syntax of DSMLs tends to be more graphical, while traditional DSLs
more often come with textual syntax. These are only some examples of how
DSMLs and traditional DSLs tend to differ in general.

In this paper we focus on embedded DSMLs and how semantic definition
and compilation of them differs compared with traditional embedded DSLs. We
identify problems that arise from these differences and propose solutions to tackle
the identified problems.

The difference between DSMLs and traditional DSLs is related to the differ-
ence between programming and modelling. Programs can be directly interpreted
or compiled into an executable system. Models—in the sense of MDE—on the
contrary are abstract descriptions that need to be enriched with additional in-
formation to obtain an executable system. Therefore, traditional DSLs—that
are special-purpose programming languages—require fully defined executable
semantics to be usable. DSMLs on the contrary can well be used without having
full executable semantics defined. There are different approaches to define the
semantics for a traditional embedded DSL:

1. Interpreter written in the host language: It is a common practice,
for instance, to define SQL statements as Strings in Java. Those are then
preserved during compilation and interpreted at runtime by a Java method.
The semantics are then defined inside the host language that embeds the
DSL.

2. Compiling to the host language: Another approach is to embed a DSL
into a host language by extending the host language with new syntax (e.g.,
[2]). The new constructs are then compiled down to constructs of the original
language.

3. Compiling embedded and host language to a common base lan-
guage: Quite similar is the approach to extend the host language, but then
compile both host and embedded into a common base language. In AspectJ
for instance Java classes and AspectJ aspects are both compiled to and in-
tegrated in Java byte code.

If we look at embedding DSMLs in modelling languages in a first and using the
embedded information in a second step, compilation steps might be involved—
which are called model transformations. The most prominent example is the
application of a profile in UML. A UML profile defines a DSML that can be
injected into UML in a standard way. The information defined in the profile ap-
plication (that is in the embedded DSML) is then interpreted in a model trans-
formation. This transformation can also produce another UML model (e.g., Plat-
form Independent Models (PIM) to Platform Specific Models (PSM) in MDA
[4]) that resolves the information in the profile into ordinary UML elements.

136 M. Fritzsche et al.

This is in fact a compilation to the host language (see 2 above). The trans-
formation can also produce instances of another modelling language which is
similar to compiling host and embedded language into a common base language
(3 above).

Consider now the case that the result of the compilation is, after further
enrichment, again automatically compiled (i.e., transformed) and so on. Such
an automated many-step transformation chain is more systematic than a single
transformation, e.g. to realize modularity or, in other words, to achieve separa-
tion of concerns [5] for complex transformations. In such an automated many-
step transformation chain, it might well happen that information defined in an
embedded DSML at some point is not required in the next compilation step, but
in a later one. Since the information is required at some point, it needs to be
preserved throughout the transformation chain. This has the drawback that the
information that is not of interest in a particular intermediate model has to be
put directly into the model anyway to be picked-up by the next transformation.

This is, however, not desired in MDE, because the target languages of trans-
formation are actually DSMLsshould only provide constructs that are of interest
for the particular domain they are specified for.

We identified this problem in a concrete MDE process called Model-Driven
Performance Engineering (MDPE) [6]. The process defines an automated
many-step transformation chain and requires the annotation of additional in-
formation at certain points in the process that is only evaluated by a transfor-
mation later in the chain and not of interest in intermediate models. As we will
see, the languages in which the annotations are defined are in fact embedded
DSMLs, where the language of the annotated models is the host DSML. Pro-
filing in UML, for instance, is a specific type of annotation where UML is the
host language and the annotation language (i.e., the profile) is the embedded
DSML.

In this paper we propose a methodology that traces any information de-
fined in any embedded DSML in a many-step transformation chain in such
a way that it can be accessed at any point in the chain when it is needed.
The approach can be applied for automated transformation chains where no
human interaction is required. For this, we unify the way in which DSMLs
for annotations are defined. Using this methodology, transformations and in-
termediate models do not need to be polluted by handling locally unnecessary
metadata.

The rest of the paper is structured as follows: Section 2.2 introduces MDPE as
an example of a process and a use case applying that process. Section 3 discusses
the problems that occur in the application of the MDPE process with respect
to handling annotations defined in embedded DSLs. In Section 4 we propose a
system architecture based on MDE technologies that systematises the handling
of annotations and unifies the definition and usage of embedded DSMLs for
annotations. Section 5 gives details of our implementation of the architecture
and discusses its advantages based on experience gained so far. In Section 6 we
give pointers to related work and conclude.

Systematic Usage of Embedded Modelling Languages 137

2 Scenario: Language Engineering in Model-Driven
Performance Engineering

In this section we introduce Model-Driven Performance Engineering (MDPE) as
one example of MDE process implementing an automated many-step transfor-
mation chain.

MDPE has been defined in order to enable performance engineering based on
development models1 and additional performance related data [6]. The process
therefore provides performance-related2 decision support to business domain ex-
perts [7,8], i.e. support decisions for resource scheduling problems via business
simulations.

In the following subsection we give an overview of the industrial case study
that we employed to gain experiences with the MDPE process. A brief overview
of the stepwise process follows in subsection 2.2.

2.1 Use Case

In our special case, a business domain expert uses SAP NetWeaver Business
Process Management (aka SAP NetWeaver BPM) to define business process
extensions by applying MDE concepts. A Business Process Modelling Notation
[9] based tool called Galaxy, announced in May 2008, is intended to be used
for this purpose[10]. We assume the Business Process Modelling Notation as an
example for a DSML.

In [11], we presented a SAP NetWeaver BPM based case study called Wine
UndeR Special Treatment (xWURST). There, an already running back-end
business process called “Sales Order Processing” is extended with a so-called
front-end process [11] to meet the specific needs of a wine seller. The behaviour
of both, the back-end as well as the front-end process, is assumed to be avail-
able as a model. For the back-end processes, SAP proprietary models are used
whereas front-end processes are modelled in BPMN using the previously men-
tioned SAP NetWeaver BPM (see Figure 1). We used this case study to gain
firsthand experience with the approach described in this paper.

Within the case study, the back-end process is extended so that it is possible
to add as compensation a free bottle of wine only to orders of those customers
who notified a quality issue for their previous order. The decision about which
wine will be added for free has to be taken manually by a wine specialist based
on the wine rating and the customer’s purchase history over the last 12 months.
Additionally, the selection has to be approved by a manager.

We claim that the business domain expert needs support from the business
performance perspective, since there are several steps within the business ap-
plications which have to be processed by human resources. The decision about

1 We use the term development model to distinguish between models as development
artefacts and formal performance models.

2 Performance is defined as the “degree to which an application or component meets
its objectives for timeliness”.

138 M. Fritzsche et al.

��������	
�����
�����
��	��
������
�����
��	������
���������

�������	
�����
�����
��	��
����
�����������
��	������
���������

Fig. 1. Extension of an already existing back-end business process modelled with the
Business Process Modelling Notation (BPMN)

which human resource performs which step in a business process is not trivial
to make. In addition, the former difficulty is further increased by the flexibility
introduced by the possibility of extending the back-end processes with front-
end processes by a domain expert, with no performance related skills. This can
dramatically change the behaviour of already running and stable processes.

Therefore, the necessity of providing performance related decision support for
a domain expert, i.e. a business domain expert, is obvious. Such support can be
provided through an MDE process that involves multiple modelling languages—
including embedded DSMLs for annotations—and that is realised by various
transformation, annotation, and tracing tools. MDPE is such a process, and is
described in the following subsection.

2.2 Stepwise Transformation for Performance Engineering

With the MDPE process [6,11], we implemented an extensible approach which
can be applied to different use cases, not only to the one presented in the previous
subsection. A brief description of the latest version of the MDPE process is given
in order to provide an example for the need of a systematic approach for model
annotation with embedded DSMLs in transformation chains.

Most parts of the MDPE process are implemented within the MDPE Work-
bench (see figure 2). This workbench is developed based on Eclipse and the Eclipse
Modelling Framework (EMF) in order to provide a widely usable framework. How-
ever, we developed a MDPE Workbench Adapter4SAP in order to use the MDPE
Workbench in integration with the SAP NetWeaver BPM tooling, which is mainly
based on SAP’s proprietary Modelling Infrastructure (MOIN) [12].

Within the MDPE process, we do not directly transform development mod-
els, such as the model shown in figure 1, into Tool Specific Performance Models
(TSPMs) but stepwise via intermediary Tool Independent Performance Models
(TIPMs). Thus, we decided to implement our transformation in a modular way.
This enables us to deal not only with other proprietary modelling languages, such

Systematic Usage of Embedded Modelling Languages 139

Fig. 2. Model-Driven Performance Engineering as block diagram ([14])

as the languages for the purpose of back-end process modelling, but also well-
known modelling languages, such as UML. Additionally, tool independence is of
high value for business software vendors, such as SAP, in order to be indepen-
dent of one specific simulation tool, such as the one employed in the case study
called AnyLogic [13]. The TIPM metamodel represents behaviour information,
available resources and consumption of resources.

However, the current implementation of the so-called MDPE Workbench
Adapter4SAP is not transforming proprietary models directly to the TIPM but
to UML models in order to build a bridge between the TIPM and SAP pro-
prietary models. We use this approach as it enables SAP to share proprietary
models with partners of research projects without publishing the metamodels.
Additionally, we are able to modify the content of the proprietary models slightly
within a transformation to UML models in order to avoid publishing confidential
details of the implemented business processes.

It is obvious that we are required to annotate performance parameters (see
Figure 2), such as resource demands, branch probabilities, and factors due to
contention for resources in order to transform our development models stepwise
so as to prepare them for performance simulation.

In the use case, introduced in the previous subsection, we are required to
annotate the average resource demands. Annotations have to be done in terms
of employee time, for each manually processed step and the resource mapping,
in particular, how many employees are working on which manual step in our
behaviour models. This data can be extracted from the past history if the process
has already been productive, and assumed values have to be annotated for newly
defined parts of a business process.

140 M. Fritzsche et al.

In [7] we described the need to model not only the performance parameters,
but also Modification Constraints, Performance Requirements and Performance
Objectives in order to provide performance related decision support for business
domain experts who generally lack performance expertise. Therefore, we addi-
tionally need to annotate development models with this kind of information, as
shown in Figure 2. The information is used in order to compute the Performance
Assessment Computation view to be presented to the domain expert. Based on
the annotated information, the Performance Assessment View can, for instance,
contain a proposal guiding a business domain expert to the optimal resource
mapping or optimized design solution.

In [8] we described the tracing of simple simulation results back to the develop-
ment models by using Trace Models, storing the information about which source
element(s) is mapped to which target element(s) via a model transformation.
We use the same approach in order to trace the more beneficial Performance
Assessment View.

The additional step in the chain (transforming SAP models to UML), but
also the modelling of Modification Constraints, Performance Requirements and
Performance Objectives, which was not considered in [8], introduces new chal-
lenges with respect to annotation and tracing of the annotated information in
the chain. The following section discusses these challenges.

3 Problem Motivation

It is obvious that we are required to annotate additional data, such as perfor-
mance parameters (cf. Figure 2) to the business process models (cf. Figure 1),
as described in the previous section.

The interesting point about the annotated information is that it is accessed
only after a number of automated transformation steps. It can be seen in Figure 2
that we use the Performance Parameter information initially in the second trans-
formation step to generate a TIPM. The annotated Modification Constraints,
Performance Requirements, and Performance Objectives are initially used for
the Assessment Computation (cf. upper part of Figure 2) after the TIPM has
been generated. However, all annotations are performed based on the develop-
ment models as the business process modeller does not wish to access models
which are pure performance analysis models, such as the TIPM. For our ini-
tial UML-based implementation of a preliminary version of the transformation
chain we used UML Profiles as a UML embedded DSML for the annotation
of the Modification Constraints, Performance Requirements and Performance
Objectives, as they are well supported by UML-based tools [7].

However, we identified a number of shortcomings with this approach when we
started to work with a longer transformation chain and with modelling languages
other than UML.

Non-UML modelling languages, such as models conforming to the Business
Process Modelling Notation and SAP proprietary languages used for our current
case study (see subsection 2.1), do not normally support a profiling mechanism
which is an extension mechanism on the meta-level.

Systematic Usage of Embedded Modelling Languages 141

However, modifying the metamodel of proprietary models is not a systematic
solution as it would require polluting the host DSML with information that is
not domain-specific. This turns out to be a problem especially if models are
provided by a third party. This is true for back-end business processes in our
case study (cf. Subsection 2.1), which may partly be provided by SAP and partly
by a third party. In such cases we might not be able to extend the modelling
language of the third party process, and, therefore, cannot annotate the third
party models if they do not provide any extension mechanism.

In addition, transformations that do not require access to the annotated in-
formation, such as the transformation from development models to UML (cf.
left side of Figure 2), obviously should not be polluted with the annotated in-
formation, since the annotated information is only needed in the UML to TIPM
transformation. Alternatively, it would be possible to use the originally extended
development model as an additional input for the UML to TIPM transforma-
tion. However, both options are not effective as in both cases more data is used
as an input for a transformation than required. Hence, metamodel extensions,
such as provided by UML profiles, do not support chains of transformations
systematically.

Therefore, an approach that enables host model extensions without manipu-
lating them in an MDE process where the metamodels do not support systematic
model extensions and the metamodel can or should not be changed is needed
here. Furthermore, the approach needs to explicitly support tracing of annotated
information in transformation chains such that information can be accessed di-
rectly only when it is needed and not earlier for preservation reasons. In the next
section we define such an approach.

4 Proposed Solution

Figure 3 gives an overview of our proposed architecture enabling systematic
annotations for model transformation chains, namely the MDPE transformation
chain in our case.

Our approach takes the following three model types into account in order to
annotate development models (cf. left side of Figure 3):

1. Annotation Models, as described in [15,16], are instance of a specific iso-
lated metamodel. Such a metamodel effectively defines an embedded DSML
and consists of two parts: one for the annotation itself, and one for the infor-
mation about how annotations are composed with the original host models,
such as the development models in the MDPE case. The first (annotation)
part defines the domain of the embedded DSML—for example, performance
parameters or performance objectives. The second (weaving) part, defines
how the language is embedded into the host language—that is, which anno-
tations are linked to which elements in the development models. Due to the
fact that this linkage information is included in the Annotation Model, it is
not necessary to pollute the original development models with this data or
to extend their metamodel(s).

142 M. Fritzsche et al.

Fig. 3. Proposed Architecture

2. Tracing Models as described in [17,18,19] contain information about which
source model elements have been transformed to which target model ele-
ments in a transformation chain (cf. centre of Figure 3). Hence, tracing mod-
els contain associations between models conforming to two different meta-
models. We use tracing models in our approach as input for tools which are
actually using the annotated information. The trace model is required in or-
der to know at any position p in a model transformation chain, which model
element(s) elp are associated with which source model element(s) elsource.
This is necessary in order to know which annotation is (indirectly) linked
with which model element elp.

3. A Navigation Modelis used to associate models in a transformation chain
with the related tracing models, such as described in [20]. This is required since
we assume that the models in a transformation chain are non-changeable and
therefore cannot be polluted with the tracing model linkage information.

5 Implementation

A description of an implementation of the concepts mentioned in the previous
section is provided in this section.

5.1 Annotation Models

The annotation of models in transformation chains, such as the development
models shown in Figure 1, is done based on Annotation Models as briefed in the
previous section.

We have developed a generic approach which is, for instance, usable for the
annotation of development models in the MDPE process. For this process, we
are required to support a number of different embedded DSMLs used at different
steps in the MDPE transformation chain as shown in Section 2.

It can be seen in the upper part of Figure 4 that our approach inherits from the
weaving metamodel MWCore provided by the ATLAS group [21]. We selected
this metamodel due to its integration in the Eclipse framework.

Systematic Usage of Embedded Modelling Languages 143

In comparison to other model annotation approaches based on the MWCore
metamodel ([15] and [16]), our annotation approach is based on a generic meta-
model for model annotations, the Annotation Meta Model (AMM, see middle
part of Figure 4). It refines the meta-class WLink from the MWCore metamodel
with the meta-class Annotation. The WLink class is indirectly associated with
an attribute “ref” of type String that is used to represent references into our
proprietary modelling repository MOIN. Hence, the Annotation model elements
represent the weaving link to the host DSML elements, which can be defined
in any kind of modelling repository, which includes the SAP proprietary MOIN
repository for our MDPE case. Additionally, an Annotation contains references
to AnnotationProperties which represent the annotated information to the source
model elements.

An AnnotationProperty can be further refined for the specific needs of a
specific annotation metamodel (that is a specific embedded DSML). In order to
well integrate our work in the Eclipse workbench, the extension of the Annotation
Meta Model can be done by implementing an Eclipse Extension-Point which is
provided by the plug-in implementing the Annotation Meta Model.

This architecture of loose coupling is employed by our generic editor for model
annotations in order to support navigation through a specific annotation meta-
model. Thus, based on the Annotation Meta Model our generic editor is usable
for all kinds of metamodels which are extending the Annotation Meta Model,
and is integrated in the Eclipse Workbench.

Additionally, the generic editor currently allows annotation of all kinds of
AnnotationProperties to all kinds of model elements in the MDPE development
models. In future, we anticipate to configure this mapping in a separate con-
straint model. However, in our current implementation we have hard coded the
required constraints.

Additionally, we are able (through an extension point) to refine some classes
of our generic editor in order to make it even more suitable for users. Figure 5
depicts the user interface of our editor for the Business Performance Annotation
Meta Model, as one embedded DSML example.

The metamodel of this embedded DSML is depicted by the package called
“BPAMM” at the lower part of Figure 4. It enables the specification of multiple
business Scenarios in order to separate multiple cases for performance simula-
tion, for instance, different locations of the Wine Seller company, introduced
in subsection 2.1, such as “LocationChicago” and “LocationDenver” (see Fig-
ure 5). A business scenario is additionally related with a number of Workloads,
ExecutionPaths and ResourceUsages.

Additionally, Resources can be defined which are aligned with a ResourceRe-
sponsibility. We use this in order to annotate a BusinessResource, such as the hu-
man resource “WineSpecialist RayBiggs”, to a development model in the MDPE
transformation chain (see figure 1). For each BusinessResource, one or multiple
ResourceResponsibilities have to be defined in order to specify operation times
for different Scenarios in a business. It is, for instance, possible to specify an op-
eration time of “8 HoursPerWorkingDay” for the “WineSpecialist RayBiggs”.

144 M. Fritzsche et al.

AMM

������������	
� ���������� �������������
��

PAM

������	 ��
���������� ��
�

�
����
�
������������

�
����

��
����

�
����
����

MWCore

���	
� ���
�
��

�����

1 * 1 *

*

1

*

1

1

1..*

*

1

1

1..*
*

1

1

1

*1

Fig. 4. Example for an embedded DSML used for the MDPE process (simplified
metamodel)

The annotation of an ExecutionPath enables annotation of a probability based
on a modelled behaviour as depicted by Figure 1. In particular, it is possible to
model how often a specific path in a business process is executed in case there
are more than one possibilities. We used this in our case study (see subsection
2.1), for instance, to specify that 10 percent of all approvals regarding which
wine is added for free are rejected by the manager of the wine specialist.

BusinessSteps are used to annotate actions in our development models with
resource demands and to associate them to a Resource. As can be seen by the
screenshot in Figure 5, the manual action “SelectWineToBeAddedForFree” re-
quires 5 minutes of the resource “WineSpecialist RayBiggs” in “Chicago”.

5.2 Tracing Models

For the tracing issue we used the tracing metamodel by the ATLAS group [18].
There are other tracing metamodels available as well, such as [17]. However,

Systematic Usage of Embedded Modelling Languages 145

Fig. 5. Annotated action “SelectWineToBeAddedForFree”

for our MDPE case we have selected this metamodel since the ATLAS group
also developed the Higher-Order Transformation mechanism [22,18] that we have
employed for most transformations in our model chain. Higher-Order Transfor-
mations are transformations that are used to transform one transformation A to
a new transformation A∗. The approach enables us to generate tracing models
with minimal additional effort in our MDPE process, as presented in [8]. Higher-
Order Transformations can be integrated in a batch-job as described by Jouault
[18] in order to automatically extend the existing transformations in a way that
they additionally output tracing models. This approach is used in [18] to au-
tomatically extend rules, for instance, within ATL [23] transformations, with
code for additional information generation. This code creates a tracing model
when the transformation is executed. Hence, tracing is achieved with minimal
additional effort via Higher-Order Transformation.

5.3 Application of a Megamodel as Navigation Model

Based on the MDPE process, we experienced the requirement to be able to
navigate between the modelling artifacts by taking their interrelationships into
account. In particular, navigation from models in the transformation chain to
their related trace models is required in order to know at any step in a model
transformation chain which trace model is related to which model in the chain
in order to retrieve the corresponding annotation information.

To our knowledge, there is just one approach available fulfilling this require-
ment called Megamodelling [20]. A megamodel represents Models (see Figure 6)
and their Relationships (see Figure 6). Our current implementation defines the
megamodel [20] , and add not only the different MDPE models, i.e. the devel-
opment models (see Figure 1), and the generated UML model, the TIPM, the

146 M. Fritzsche et al.

�
���������� ������

��	
�

*
*

* *

Fig. 6. Simplified metamodel of the megamodel defined in [20]

AnyLogic Simulation model and the trace models, but also Relationships among
them, to it.

5.4 Use of Transformation Results and Annotated Information

Finally, there is a step within or after a transformation chain where the an-
notated information is required to be computed. A description about how this
computation is done, for instance, for the MDPE case, introduced in subsection
2.1, follows.

Use of an embedded DSML for the UML to TIPM transformation in
the MDPE process: Due to the tracing models and the megamodel, men-
tioned in the previous subsections, the transformation from UML to TIPM can
compute which UML model element is associated with which model element in
an initial MDPE development model (e.g., a Business Process Modelling Nota-
tion model). Therefore, the annotations, which are done on, for instance, busi-
ness process models in the MDPE process, can directly be associated with UML
model elements.

This association is computed in an imperative rule in our UML to TIPM
transformation code. In order to make that imperative rule work, a trace model
is required as an input for our UML to TIPM transformation. This trace model
specifies the direct trace links between the development model elements and
the UML model used as an input for the transformation. In the case of the
UML to TIPM transformation, we simply use the trace model between devel-
opment models of MDPE and UML generated with the help of a Higher-Order
Transformation.

It is obvious that our approach is only useful in the case related target model
element(s) are available for the annotated host model element(s) after the exe-
cution of an automated model transformation chain. If this is not the case then
the domain expert needs to be informed by the tooling we provide since the
annotation he did was useless for his purpose.

Use of embedded DSMLs for Performance Assessment Computation
in the MDPE process: A second step where annotated information is used

Systematic Usage of Embedded Modelling Languages 147

is after the Assessment Computation Actor (see Figure 2). At this step the
generated TIPM as well as the annotated Modification Constraints, Performance
Requirements and Performance Objectives are required as input. This input is
used to compute the Performance Assessment View, such as the computation,
etc., of an optimal configuration, as described in [7]. For instance, we wanted to
compute the optimal number of resources for the departments involved in the
back-end process used in our case study - Sell-From-Stock-Scenario, which was
extended with two additional manual steps to meet the specific needs of a wine
seller (see subsection 2.1).

The Modification Constraints, Performance Requirements and Objectives are
annotated on the original development models.

However, the Performance Assessment Computation is based on the TIPM,
which is simulated using the Anylogic tool as described before. This Performance
Assessment Computation needs knowledge about which model elements in the
TIPM are associated with the Modification Constraints, Performance Require-
ments and Objectives.

The megamodel enables us to navigate to the trace model between UML and
TIPM and the trace model between our TIPM development models and UML,
which are then used in order to generate a new trace model that directly links
proprietary and TIPM model elements. This is then utilized by the Performance
Assessment Computation in order to relate TIPM model elements with model
annotations.

Concluding, in many-step transformation chains, where a number of trace
models are required as input, we need the megamodel to be able to navigate
from models in a transformation chain to their trace models generated from
the Higher-Order Transformations. This is needed to generate a direct trace
model from, for instance, the models used as input for transformation step one
to models used as output of transformation step three, such as in the MDPE
case. Therefore, by making use of megamodel we are able to apply our approach
even for longer transformation chains.

6 Related Work

While the usage of DSMLs in MDE is commonly seen as a good thing, there
are many unresolved issues when it comes to semantics and the interoperability
of DSMLs. Often DSMLs only integrate “somehow” by model transformations.
More systematic approaches, like [24,25], propose more formal semantic integra-
tion of DSMLs. As the interest in this area increases, dedicated events emerge
just now [26].

On the other hand, model annotations, and in particular UML profiles, are
often used for the purpose of defining embedded DSMLs (also called language
extensions) [27]. There is also an awareness that these kind of embedded lan-
guages have different properties than languages defined from scratch, but there
is no common understanding what exactly the (dis)advantages of one or the
other are in which scenario.

148 M. Fritzsche et al.

We are currently not aware of any work that explicitly handles model annota-
tions as DSMLs and regards their specific properties in the context of many-step
model transformation chains. We believe that this is an important issue worth
investigating to understand beneficial usage scenarios of (embedded) DSMLs in
general.

7 Conclusion

We have pointed out the close relationship between the annotation capabilities
in classical programming languages with the help of embedded DSLs and model
transformation chains in a MDE process with the help of embedded DSMLs.
However, we showed that, in particular for automated many-step model trans-
formation chains, specific needs arise with regard to annotations in a MDE
process.

Thus, it might happen that information defined at some point is not required
in the next immediate transformation step, but in a later one. Also, a direct
manipulation of the host models and their metamodel(s) is not an option.

Our approach utilizes embedded DSMLs, trace models and a megamodel.
Based on our xWURST case study, concrete examples for each of these modelling
artefacts have been given.

We implemented the proposed approach in a tool providing business perfor-
mance related decision support. We experienced a high value of the approach
as we are now able to annotate host models, in particular models conforming to
the Business Process Modelling Notation and SAP proprietary models, with, for
instance, business performance parameters. This enables us to utilize the Eclipse
EMF based “MDPE Workbench” in combination with a SAP proprietary mod-
elling tool and therefore to provide performance related decision support based
on real-world business process models.

In future we anticipate gaining more experience with the proposed approach
based on other business processes. Furthermore, it is planned to extend the
current state of the MDPE process with functionality for guided business per-
formance simulations. An open source version of the “MDPE Workbench” is
planned as well.

Disclaimer

The information in this document is proprietary to the following MODELPLEX

consortium members: SAP AG and TU-Dresden. The information in this doc-
ument is provided “as is”, and no guarantee or warranty is given that the in-
formation is fit for any particular purpose. The above referenced consortium
members shall have no liability for damages of any kind including without lim-
itation direct, special, indirect, or consequential damages that may result from
the use of these materials subject to any liability which is mandatory due to
applicable law. Copyright 2008 by SAP Research TU-Dresden.

Systematic Usage of Embedded Modelling Languages 149

References

1. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28(4), 196–196 (1996)

2. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. In: OOPSLA 2004: Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pp. 365–383. ACM, New York (2004)

3. OMG: MetaObject Facility (MOF) specification version 2.0 (January 2006),
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

4. OMG: Mda guide version 1.0.1 (2003)

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communication of the ACM 15(12) (1972)

6. Fritzsche, M., Johannes, J.: Putting performance engineering into model-driven
engineering: Model-driven performance engineering. In: Giese, H. (ed.) MODELS
2008. LNCS, vol. 5002, pp. 164–175. Springer, Heidelberg (2008)

7. Fritzsche, M., Gilani, W., Spence, I., Brown, T.J., Kilpatrick, P., Bashroush, R.:
Towards performance related decision support for model driven engineering of en-
terprise soa applications, pp. 57–65. IEEE Computer Society, Los Alamitos (2008)

8. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application
of tracing techniques in model-driven performance engineering. In: 4th ECMDA
Traceability Workshop (ECMDA-TW) Proceedings, pp. 111–120 (2008)

9. OMG: Business Process Modeling Notation Specification, Final Adopted Specifi-
cation (2006)

10. SAP AG: Review: SAPPHIRE 2008 - A new star is born in the BPM Galaxy

11. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I.T.A., Kilpatrick, P., Brown, J.:
Towards utilizing model-driven engineering of composite applications for business
performance analysis. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 369–380. Springer, Heidelberg (2008)

12. Altenhofen, M., Hettel, T., Kusterer, S.: OCL support in an industrial environ-
ment. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 169–178. Springer,
Heidelberg (2007)

13. XJ Technologies: AnyLogic — multi-paradigm simulation software,
http://www.xjtek.com/anylogic/

14. Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. John Wiley & Sons, Chichester (2006)

15. ATLAS Group: AMW Use Case - Model annotations in Java 1.4 (2007),
http://www.eclipse.org/gmt/amw/usecases/annotation

16. Hillairet, G.: AMW Use Case - Metamodel Annotation for Ontology Design (2007),
http://www.eclipse.org/gmt/amw/usecases/oamusecase

17. Vanhooff, B., Van Baelen, S., Joosen, W., Berbers, Y.: Traceability as input for
model transformations. In: ECMDA-FA 3th workshop on traceability (2007)

18. Jouault, F.: Loosely Coupled Traceability for ATL. In: ECMDA-FA workshop on
traceability (2005)

19. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On-demand merging of traceability links
with models. In: Proceedings: 2. ECMDA-FA workshop on traceability (2006)

20. Barbero, Jouault, F., Bézivin, J.: Model driven management of complex systems:
Implementing the macroscope’s vision. In: 15th ECBS 2008, pp. 277–286. IEEE,
Los Alamitos (2008)

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.xjtek.com/anylogic/
http://www.eclipse.org/gmt/amw/usecases/annotation
http://www.eclipse.org/gmt/amw/usecases/oamusecase

150 M. Fritzsche et al.

21. The AMW Project Team: Atlas Model Weaver (June 2007),
http://eclipse.org/gmt/amw/

22. Sabetta, A., Petriu, D.C., Grassi, V., Mirandola, R.: Abstraction-raising transfor-
mation for generating analysis models. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS,
vol. 3844, pp. 217–226. Springer, Heidelberg (2006)

23. ATLAS Group: ATLAS transformation language (June 2007),
http://www.eclipse.org/m2m/atl/

24. Bräuer, M., Lochmann, H.: An ontology for software models and its practical im-
plications for semantic web reasoning. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 34–48. Springer, Hei-
delberg (2008)

25. Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring infrastructure
for domain-specific modeling languages. In: EMSOFT 2005: Proceedings of the 5th
ACM international conference on Embedded software, pp. 35–43. ACM, New York
(2005)

26. Beźivin, J., Pierantonio, A., Tratt, L. (eds.): Intl. Workshop on Coordination of
DSLs, L’Aquila, Italy (September 2008)

27. Atkinson, C., Kühne, T., Henderson-Sellers, B.: Systematic stereotype usage. Soft-
ware and System Modeling 2(3), 153–163 (2003)

http://eclipse.org/gmt/amw/
 http://www.eclipse.org/m2m/atl/

	Systematic Usage of Embedded Modelling Languages in Automated Model Transformation Chains
	Introduction
	Scenario: Language Engineering in Model-Driven Performance Engineering
	Use Case
	Stepwise Transformation for Performance Engineering

	Problem Motivation
	Proposed Solution
	Implementation
	Annotation Models
	Tracing Models
	Application of a Megamodel as Navigation Model
	Use of Transformation Results and Annotated Information

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

