
Solving µ-Calculus Parity Games by Symbolic

Planning

Marco Bakera, Stefan Edelkamp, Peter Kissmann, and Clemens D. Renner

Department of Computer Science
Dortmund University of Technology

{firstname.lastname}@cs.tu-dortmund.de

Abstract. This paper applies symbolic planning to solve parity games
equivalent to µ-calculus model checking problems. Compared to explicit
algorithms, state sets are compacted during the analysis. Given that
diam(G) is the diameter of the parity game graph G with node set V ,
for the alternation-free model checking problem with at most one fixpoint
operator, the algorithm computes at most O(diam(G)) partitioned im-

ages. For d alternating fixpoint operators, O(d ·diam(G) ·(|V |+(d−1)
d−1

)d−1)
partitioned images are required in the worst case.

Practical models and properties stem from data-flow analysis, with
problems transformed to parity game graphs, which are then compiled
to a general game playing planner input.

1 Introduction

Symbolic μ-calculus model checking with BDDs [8] has been applied as a general
framework for various verification problems like model checking of LTL and CTL
formulas or testing for bi-simulation equivalence and language containment. One
successful tool is μcke [3]. On the other hand, μ-calculus model checking problems
have been converted to parity games [22]. Different tools like Omega [40] and
MetaGame [43] have been developed.

Specialized game playing is one of the major successes in AI [29]. In gen-
eral game playing [26], strategies are computed domain-independently without
knowing which game is played. Best policies result in perfect play. The oppo-
nents can take actions alternately and independently and attempt to maximize
the outcome. The game description language (GDL) is designed for use in defin-
ing complete information games. It is a subset of first order logic, using the
syntax of the knowledge interchange format (KIF) [18].

This paper attempts to close the gap between general symbolic game play-
ing and model checking, which is based on checking the satisfiability of formu-
las [25,4]. Here, we refer to symbolic exploration in the context of using binary
decision diagrams (BDDs) [6].

For parity games, strategy improvement [39] and progress measure algorithms
[23] are prominent. The latter one has been translated to a symbolic setting
by providing an algorithm with O(|V |d+3 log(|V |)) (ADD) images [7]. In this

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 15–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

16 M. Bakera et al.

paper, we improve the results for the μ-calculus to O(d·diam(G)·(|V |+(d−1)
d−1)d−1)

possibly partitioned (BDD) images, where diam is the diameter of G and d is
the fixpoint alternation depth of the formula. We also provide a theoretically
faster algorithm for full alternation.

The paper is structured as follows. First, we review the symbolic classification
algorithm for two-player zero-sum games that is included in our general game
playing tool. Next, we introduce the basics of game-based model checking and
the transformation of μ-calculus model checking problems to parity games. The
transformation is illustrated with a simple example. We then show how the
classification algorithm solves the problem of parity games that are generated by
formulas in the alternation free μ-calculus. The extension to larger fragments of
the μ-calculus is discussed together with a transformation of an existing explicit-
state strategy synthesis algorithm. Independent proofs of correctness are given
for both algorithms. In the empirical part, we analyze model checking problems
from data-flow analysis and convert them to parity games and general game
playing inputs, on which our planner is applied. Finally, we draw conclusions.

2 Symbolic Analysis of Two-Player Games

A two-player zero-sum game (with perfect information) is given by a set of states
S, move-rules to modify states and two players, called player 0 and player 1. Since
exactly one player is active at any given time, the entire state space of the game
is S × {0, 1}. A game has an initial state and some predicate Goal to determine
whether the game has come to an end. For now, we assume that every path
from the initial state is finite. Assuming optimal play and starting with all lost
goal positions of one player, all previous lost positions have to be computed. A
position is lost if all moves lead to an intermediate position in which the other
player can force a move back to a lost position.

In symbolic search with BDDs, states are manipulated in form of sets by
computing images. The image of a state set States wrt. the transition relation
Trans(x, x′) is equal to computing WeakImage(Trans,States) := ∃x.Trans(x, x′)
∧ States(x), where x and x′ are vectors of Boolean state variables. The result of
this image operation is a representation of all states reachable from States in one
step. In order to repeat the process, we substitute x with x′. In an interleaved rep-
resentation this operation reduces to a textual replacement of node labels in the
BDD. For computing the image, a monolithic transition relation is not required.
Instead, a sub-relation Transa is stored together with every move a ∈ {1, . . . , k}.
The image of a state set States is partitioned into WeakImage(Trans,States) =
∃x.(Trans1(x, x′) ∧ States(x)) ∨ . . . ∨ ∃x.(Transk(x, x′) ∧ States(x)).

In contrast to reachability analysis (which can be invoked to initialize the classi-
fication algorithm), the direction of the symbolic retrograde analysis is backwards.
Fortunately, symbolic backward search causes no problem, as the representation
of all moves is defined as a relation. With symbolic search, two-player games with
perfect information can be classified iteratively using BDDs. For it we further-
more need to calculate strong preimages: StrongPreImage(Trans,States) := ∀x′.

Solving µ-Calculus Parity Games by Symbolic Planning 17

Algorithm 1. Symbolic classification of two-player zero-sum games
Data: Transition Relation Trans, Initial State Set Init, Goal Sets Goal, Leaf

evaluation Eval.
Result: Four Classification Sets.

(Reached, L(0), L(1))← Reachable(Init,Trans, Goal,Eval);1

foreach i ∈ {0, 1} do2

New← Lose(i)← L(i);3

Win(1− i)← ⊥;4

repeat5

Weak← Move(1− i) ∧WeakPreImage(Trans,New) ∧ Reached;6

Win(1− i)←Win(1− i) ∨Weak;7

Strong← Move(i) ∧ StrongPreImage(Trans,Win(1− i)) ∧ Reached;8

New← Strong ∧ ¬Lose(i);9

Lose(i)← Lose(i) ∨New;10

until New = ⊥ ;11

return (Win(0),Lose(0), Win(1),Lose(1));12

Trans(x, x′) ⇒ States(x′). Fortunately, with it a partitioned computation also
applies. Since StrongPreImage(Trans,States) = ¬WeakPreImage(Trans,¬States)
with WeakPreImage(Trans,States) := ∃x′.Trans(x, x′) ∧ States(x′), we can in-
duce StrongPreImage(Trans,States) = ∀x′.(Trans1(x, x′) ⇒ States(x′)) ∧ . . . ∧
∀x′.(Transk(x, x′) ⇒ States(x′)).

Algorithm 1 shows the classification algorithm for computing strategies in
turn-taking games as mentioned in [12]. The idea of attractors, however, goes
back to [44]. First of all, we calculate all the reachable states through forward
reachability analysis; a backward exploration can result in states that are un-
reachable from the initial state. Next, we construct four sets: The lost states
Lose(i) for each player and the won states Win(i) for each player. The lost
states for player i are initialized with the BDDs L(i). From these we only take
those goal states that are reachable. Won states are initialized with the BDD ⊥
for the false function, representing the empty set. Now we construct the prede-
cessors of the lost states. Here, the last move has to be made by player (1 − i),
the opponent of player i; this predicate is denoted by Move(1− i). These prede-
cessors are then added to the won states of the opponent. Starting from those
won states we calculate their predecessors. Here, the last move has to be made
by the current player i. These new states are added to the lost states. If there are
no new states at this point, the calculation terminates (for the current player).

Once the algorithm has ended for both players, we can simply check in which
set the initial state resides. If it is in one of the sets of won states, the correspond-
ing player can assure a victory; if it is in one of the lost states, the opponent can
assure victory (independent of the other player’s moves). If the initial state is in
none of these four sets, a finite game surely ends in a draw – always assuming
both players perform optimal play.

The number of images for determining all reachable states and the number of
images for their classification is linear in the maximal BFS layer, known as the

18 M. Bakera et al.

radius of the problem r. By introducing no-ops, one can transform any (non si-
multaneous) game into a turn-taking game by at most doubling the game graph.
For games with loops and no draws, the classification algorithm (started for each
player) still might leave a set of positions unclassified. These sets correspond to
an infinite game play without further progress. Note that by applying retrograde
analysis, some states may be classified despite the fact that they lie on a cycle.

Extensions of the algorithm to games with arbitrary costs are proposed
in [14,15].

3 Preliminaries: Model Checking Based on Parity Games

Model checking is a procedure for the automated verification of software and
hardware systems. The system model (e.g., in form of a Kripke transition sys-
tem1) is checked for the validity of a formula in temporal logic.

3.1 µ-Calculus Model Checking

Modal μ-calculus formulas φ are built from propositions (basic properties of the
system’s states) p ∈ AP, standard Boolean operators, 〈a〉φ (possibility) and [a]φ
(necessity) modal operators on actions a ∈ A, as well as minimal and maximal
fixpoint operators μX.φ and νX.φ. The μ and ν operators act as binders for
fixpoint variables. The following (minimal) syntax denotes the modal μ-calculus
with X being a fixpoint variable (the dual operators can be derived from this
base set of operators):

φ ::= true | p | ¬φ | φ1 ∨ φ2 | 〈a〉φ | X | μX.φ

For brevity, we write 〈·〉φ :=
∨

a∈A〈a〉φ and [·]φ :=
∧

a∈A[a]φ.

3.2 Parity Games

A parity game graph G = (V�, V�, E, p) is composed of two disjoint sets of
vertices V� and V�, an edge set E ⊆ V × V , where V = V� ∪ V�, and a priority
function p : V → {1, 2, . . . , d}, for some integer d, defined on its vertices. The
game is played by two players: diamond and box. The game starts at some vertex
v0 ∈ V . The players construct a possibly infinite path as follows: Let u be the
last vertex added so far to the path. If u ∈ V�, then diamond chooses an edge
(u, v) ∈ E. Otherwise, if u ∈ V�, then box chooses an edge (u, v) ∈ E. In either
case, vertex v is added to the path, and a new edge is then chosen by either
diamond or box. Let v0, v1, . . . be the path constructed by the two players, and
p(v0), p(v1), . . . the sequence of the priorities of the vertices on the path. Diamond
wins the game if the path ends in a leaf node in V� or the smallest priority seen
infinitely many times is even, while box wins otherwise.
1 The model M := (S, A,AP,→, I) is composed of a set of states S, a set of actions

A (from labeled transition systems), a set of atomic propositions AP (from Kripke
structures), a transition relation → ⊆ S × A × S, and an interpretation function
I : S → 2AP (assigning propositions to states).

Solving µ-Calculus Parity Games by Symbolic Planning 19

4 Solving Parity Games for Alternation-Free Formulas

It has been shown that model checking systems with property specification in
the μ-calculus is equivalent to solving a parity game, with the maximal priority
roughly corresponding to the alternation depth of the μ-formula φ [9]. For each
play there is a unique partitioning of the parity game in two winning sets, see
for example [16].

Local model checking approaches like [9] generate a node for each state in
the system and each sub-formula of φ. In the following we generally assume
alternation-free μ-formulas. The transformation of ν-formulas is dual (changing
the roles of box and diamond).

We transform the model and the μ-calculus formula into a parity game as
implemented in the tool GEAR [1,2]. Figure 1 shows a simple model with respect
to an alternation-free μ-calculus formula μX.(good∨ [·]X) and its translation to
a parity game graph (nodes are of type either box or diamond, node priorities
are all 1). The color shading will be explained below.

Marking a node won corresponds to a definite win for player diamond, marking
it lost corresponds to a definite win for player box (assuming optimal play).
For the recursive winning set computation we may apply the following rules
(assuming player diamond’s point of view).

– v is a � node
• v is a leaf ⇒ v is marked lost

μX.(good ∨ [·]X)

[·]X

X

good ∨ [·]X

good

good

Fig. 1. A model (bottom) wrt. the alternation-free µ-calculus formula µX.(good∨ [·]X)
and the classified parity game graph (top). Here, good is an atomic proposition.

20 M. Bakera et al.

v1 v2
e1

v3

e2 e3

1 0

2

Fig. 2. Example game graph (left) and backward BFS layers (right)

• there is a successor u of v marked won ⇒ mark v won
• all successors u of v are marked lost ⇒ mark v lost

– v is a � node
• v is a leaf ⇒ v is marked won
• there is a successor u of v marked lost ⇒ mark v lost
• all successors u of v are won ⇒ mark v won

If there is a lasso in the graph, it is not immediate to determine a strategy de-
fined as a subset of edges completely classifying optimal play of player diamond.
Consider the parity game graph given in Fig. 2 (left). All states belong to the
diamond player’s winning set, but if he chooses to take the vertical edge leading
to the state on the bottom of the graph, the box player will win, as the game
results in an infinite cycle, which is won by the box player.

The idea to remedy this is to store the backward BFS layer each state was
classified in. The player then has to take an edge that leads to a state that was
detected earlier in the backward search and thus is stored in a smaller layer
(smaller by 1). In the example game in Fig. 2 (right), the numbers in the nodes
denote the backward layers. Following the strategy to take only actions to layers
with smaller numbers, the diamond player easily wins – he just has to take the
horizontal edge to the terminal state.

Theorem 1. For the case of alternation-free parity games, given the backward
layers of the classification from the calculation of the winning sets, it is possible
to calculate the diamond player’s strategy.

Proof. Let Li denote the set of states found in the ith layer of the backward
search and W� =

⋃
i>0 Li the winning set of the diamond player as determined

by the algorithm. We define the optimal strategy for player diamond as E� :=
{(u, v) ∈ W� × W� | ∃i > 0. u ∈ Li ∧ v ∈ Li−1}.

We prove the correctness of this by induction on the BFS layer i > 0. For the
states from the set L1, it is clear that the diamond player will win by taking the
edge to the terminal state (within L0). For the states in Li, the player can take
an edge leading to a state in Li−1. From there, we inductively already have a
strategy.

Formulas in Hennessy-Milner logic [20] have no fixpoint operators. The cor-
responding game is finite and the classification algorithm will end up with a

Solving µ-Calculus Parity Games by Symbolic Planning 21

complete strategy for both players. The search for a strategy in a parity game
matches the one in a two-player zero-sum game given that one player is box and
the other player is diamond.

As only one reachability step and one call to the classification algorithm
is executed, backward analysis is restricted to the reachable set in form of a
DAG which is traversed bottom-up. Thus we obtain that the symbolic classi-
fication algorithm for parity games arising from model checking problems with
temporal logic properties in Hennessy-Milner logic is correct and amounts to
O(radius(G, Init)) possibly partitioned (BDD) images, where radius(G, Init) is
the maximum BFS-layer of the forward search of G starting from Init.

If one μ fixpoint operator is present in the according parity game, we have
to search for strategies in which diamond must avoid a cycle. Otherwise, box
can establish a cycle and wins the game. The translation to an ordinary game
graph for cyclic solutions may become involved, as infinite games are played. In
order to detect cycles, one might try adopting the state recording method for
transforming safety into liveness [32]. However, an application is not immediate.

Next, we recognize that all states that remain unmarked lie on a cycle that
player diamond cannot avoid; according to the winning condition, these states
can be marked lost. Figure 1 displays the result of such a complete classification
of the parity game graph. Black shading indicates that player box wins from
there, white indicates nodes won by player diamond and gray denotes nodes
won by player box due to an infinite cycle. The respective other player loses due
to the zero-sum character of the game.

For alternation-free formulas, all priorities in the graph are the same. W.l.o.g.
we consider μ formulas only, such that all priorities are 1 and player box wins
the game (assuming optimal play) if he2 can force player diamond to stay on
a cycle. The remaining unclassified nodes all lie on a lasso3. Moreover, we need
to show that player diamond cannot escape the cycle unless he navigates to
some black node (where he loses). Let us assume that one of the remaining
nodes is not on a lasso. This implies that the node would be on a path to a
sink that can be marked won for one of the players. Therefore, the node itself
could have been marked as well and would not be unclassified, contrary to our
assumption.

Why can diamond not escape from this cycle (lasso)? Any diamond node v on
the cycle must have at least one unclassified successor. It cannot have a white
successor (marked ’won by diamond’) because in that case v would have been
marked ’won by diamond’ as well. Diamond would not pick a black successor
as this implies that he will lose eventually. The case for player box is analogous
(no black successors, white successors are avoided). Therefore, only unclassified
nodes are played. As an infinite path in a finite graph will eventually lead to
a cycle, the unclassified nodes can be marked black. Therefore, all nodes are
classified.

2 For the sake of simplicity, we stay with he and him instead of he / she and
him / her.

3 A lasso is a cycle and a prefix of nodes (stem) leading to that cycle.

22 M. Bakera et al.

As only one reachability analysis and one call to the classification algorithm
is executed, and given that backward analysis is restricted to the reachable set,
the complexity of the algorithm in the number of images is linear in diam(G)
and diam(G−1) = diam(G), where G−1 is the inverse graph of G (all edges are
reversed).

Therefore, we observe that the symbolic classification algorithm for parity
games arising from model checking problems wrt. temporal logic properties in
alternation-free μ-calculus formulas is correct and amounts to O(diam(G)) pos-
sibly partitioned (BDD) images, where diam is the maximal shortest path length
between every two states.

5 Extension to Full Alternation Depth

We now address an extension of our symbolic planning approach to cover parity
games for μ-calculus model checking problems with alternation. No polynomial-
time algorithm is to be expected, since according to [41] only the solution of
games with so-called Büchi winning condition can currently be done in poly-
nomial time. There are sub-exponential algorithms [5,24] with a complexity of
nO(

√
n/ log n), which are to be preferred only if the alternation depth is larger

than Ω(
√

n). Even specialized problems like finite-state controller synthesis for
r request-response constraints [41] require an exponential time algorithm in r.

In adaptation of the notation used in the literature [42], we define the alterna-
tion depth d as the number of alternations between the fixpoint operators ν and
μ plus 1 (resulting in the counter-intuitive result that alternation-free μ-calculus
formulas have a value of d = 1).

In the following, we devise an efficient symbolic algorithm following the explicit-
state strategy synthesis algorithm documented in [42], which re-assembles ideas
from [9] and [28]. The strategy synthesis algorithm has a time complexity of
O(|E|(|V |/d)d−1) (assuming a uniform distribution of priorities). Compared to
the algorithm of [23], the exponent d − 1 matches the value �d/2� as obtained in
the small progress measure algorithm for d = 2 and d = 3. With further refine-
ments, the results of [42] indicate that for these cases the strategy improvement
algorithm will be faster for formulas with small alternation depth (which appear
in practice).

Let Vi be the set of nodes for player i. The strategy synthesis algorithm relies
on an iterative calculation of forcing sets. A forcing set for some subset V ′ ⊆ V
towards some fixed node set A ⊆ V for player i ∈ {0, 1} is defined by the
condition that for each node u in V ′ player i can force player (1 − i) to play
towards the node set A. A maximal forcing set from V ′ to A for player i does
not include an edge (v, w) with v ∈ V ′ ∩ V1−i and w ∈ V \ (V ′ ∪ A).

On acyclic game graphs, the computation of winning sets reduces to the com-
putation of forcing sets as mentioned above. Otherwise, cycles are handled in
the synthesis algorithm 5.

First, the nodes are partitioned with respect to their priority (l. 5). There is
no need for deeper recursion and refinement of the resulting winning sets when

Solving µ-Calculus Parity Games by Symbolic Planning 23

Algorithm 2. Main
Result: Winning Sets W0 and W1.

(R, W0, W1)← Initialize();1

(W0, W1)← Synthesize(R ∧ ¬(W0 ∨W1));2

return (W0, W1);3

Algorithm 3. Initialize
Result: Reachable set R, winning Sets W0 and W1.

(R, W1, W0)← Reachable(Init,Trans,Goal, Eval);1

W0 ← Force(R, W0, 0);2

W1 ← Force(R, W1, 1);3

return (R, W0, W1);4

all nodes share the same priority. In this case, winning sets are computed that
respect the player that is currently predominating the game when considering
priorities (ll. 5-5). Afterwards, an assumption of the winning set for the other
player is made (ll. 5-5). The subsequent repeat loop tries to consolidate this
assumption (ll. 5-5). The partitioning that emerges either breaks down into ex-
actly two or more classes of nodes with the same priority. In the former case,
the assumption is computed as in the cycle-free case (ll. 5-5). The latter case
requires refining the assumption – by a new assumption based on the current
one – in the recursive call (ll. 5-5). The remainder of the loop (ll. 5-5) collects
the results and assigns them to the appropriate player until there is no more
need for refinement (l. 5).

Following the presentation in [42], we show symbolic equivalents of the al-
gorithms Main (Algorithm 2), Initialize (Algorithm 3), Force, (Algorithm 4),
and Synthesize (Algorithm 5). For the ease of presentation, we assume that the
parity game graph is consistent, such that priorities are consecutive (there is
no gap). For game graphs that are translated from model checking tasks, this
assumption is necessarily true. We further assume the transition relation Trans,
the initial state set Init, the goal predicate Goal, the priority evaluation function
Priority, and the leaf evaluation predicate Eval to be globally accessible.

After initialization, the synthesis algorithm refers to computing the forcing
sets and a recursive call to itself. As shown before, all explicit state operations
to determine the winning sets for both players can be performed symbolically.
The initialization that computes the maximal forcing set for both players on
the entire graph towards the terminal nodes matches the classification in Algo-
rithm 1. For computing the forcing sets, the classification algorithm needs to be
executed only for one player. Computing the subgraph can either be done in the
game description language by specifying different graph and goal conditions (see
Appendix B for an example) or via restricting the disjunctive representation of
the transition relation to the part that corresponds to the remaining edges.

24 M. Bakera et al.

Algorithm 4. Force
Data: Set V ′, Target Set A, Player i.
Result: Forcing Set F .

Trans′ ← Trans ∧ (V ′ × (V ′ ∪A));1

New← Lose(1− i)← (A ∧Move(1− i));2

Win(i)← (A ∧Move(i));3

repeat4

Weak← Move(i) ∧WeakPreImage(Trans′,New) ∧ V ′;5

Win(i)←Win(i) ∨Weak;6

Strong← Move(1− i) ∧ StrongPreImage(Trans′,Win(i)) ∧ V ′;7

New← Strong ∧ ¬Lose(1− i);8

Lose(1− i)← Lose(1− i) ∨New;9

until (New = ⊥) ;10

return (Lose(1− i) ∨Win(i));11

Lemma 1. The worst-case number of partitioned images of the symbolic classifi-
cation algorithm for parity games with d alternating fixpoint operators is bounded
by 2 · diam(G) · d · ∏d−1

k=1(|Levelk| + 1).

Proof. Let T (G) denote the running time for the synthesis algorithms on the graph
with V = Support, for the number of images we have T (G) = 2·diam(G), if d = 1.

Given that Upper ∪ Lower ⊆ Layer and W1 ⊆ Layer we obtain a recursive
equation for the asymptotic complexity of

T (G) = 1 +
r∑

j=0

2 · diam(G|Layer
j
) + T (G|Upper

j
)

images, where r is the number of iterations of the repeat loop, Layerj is the
set representing Layer and Upperj is the set representing Upper ∧ ¬W in the
j-th iteration. Both calls to the Force function induce at most diam(G|Layerj

)

many images and the plus 1 is due to the weak pre-image in line 5. G|V ′ is the
subgraph restricted to V ′ ⊆ V , more precisely G|V ′ := (V ′, E ∩ (V ′ × V ′)).

The next step is to rewrite the equation to avoid recursion. Following the
inductive argument in [42], see Appendix A, we have

T (G) ≤ 2 ·
d−1∑

j=1

diam(G) ·
j∏

k=1

(|Levelk| + 1)

many images in the worst case, where Levelk is the set of nodes in graph G with
priority k.

T (G) ≤ 2 ·
d−1∑

j=1

diam(G) ·
d−1∏

k=1

(|Levelk| + 1)

Solving µ-Calculus Parity Games by Symbolic Planning 25

Algorithm 5. Synthesize
Data: Node Set Support.
Result: Winning Sets Z0, Z1.

if (Support = ⊥) then1

return (⊥,⊥);2

m← MinPriority(Priority ∧ Support);3

m′ ← m + 1;4

i← (m mod 2);5

if MaxPriority(Priority ∧ Support) = m then6

if (i = 0) then7

return (Support,⊥);8

else9

return (⊥,Support);10

Layers← Support;11

Lower← Priority<m′ ∧ Layers;12

Upper← Support ∧ ¬Lower;13

repeat14

if (Lower = ⊥) then15

W ← Force(Upper,Lower, i);16

else17

W ← ⊥;18

if (i = 0) then19

(W0, W1)← Synthesize(Upper ∧ ¬W);20

else21

(W1, W0)← Synthesize(Upper ∧ ¬W);22

Upper← Upper ∧ ¬W1;23

Layers← Layers ∧ ¬W1;24

Z1 ← Z1 ∨W1;25

if (Lower
= ⊥∧W1
= ⊥) then26

W ′ ← Force(Layers, W1, 1− i) ;27

Lower← Lower ∧ ¬W ′;28

Upper← Upper ∧ ¬W ′;29

Layers← Layers ∧ ¬W ′;30

else31

W ′ ← ⊥;32

until (W ′ = ⊥) ;33

Z0 ←W ∨W0 ∨ (Lower ∧Move(i) ∧WeakPreImage(Trans, W ∨W0 ∨ Lower));34

if (i = 0) then35

return (Z0, Z1);36

else37

return (Z1, Z0);38

≤ 2 · diam(G) · d ·
d−1∏

k=1

(|Levelk| + 1).

26 M. Bakera et al.

Theorem 2. The symbolic classification algorithm for parity games arising
from model checking problems wrt. temporal logic properties in μ-calculus for-
mulas with d alternating fixpoint operators is correct. For d > 1, the worst-case
number of partitioned images is O(d · diam(G) · (|V |+(d−1)

d−1)d−1)).

Proof. The correctness of the algorithm is inherited from the correctness of the
explicit-state variant documented in [42].

The number of images for initialization is O(radius(G, Init)) for computing
the reachable set and O(diam(G)) for computing the two forcing sets. Let T (G)
denote the running time for the synthesis algorithms on the graph with V =
Support.

For d > 1, we have

T (G) ≤ 2 · diam(G) · d ·
d−1∏

k=1

(|Levelk| + 1)

≤ 2 · diam(G) · d ·
(∑d−1

k=1(|Levelk| + 1)
d − 1

)d−1

= 2 · diam(G) · d ·
(|V | + (d − 1)

d − 1

)d−1

partitioned images in the worst case. For the penultimate step we used the
inequality for the geometric wrt. the arithmetic mean.

The worst-case number of BDD images beats the value of O(|V |d+3 log(|V |))
images obtained by [7]. For the important subclass d = 2, our algorithm reduces
to only O(diam(G) · |V |) (BDD) images compared to O(|V |5 log(|V |)) (ADD)
images [7].

6 Empirical Analysis

We draw experiments with our general game playing planning tool [14], which
itself uses CUDD4 by Fabio Somenzi as the underlying BDD library. The models
and formulas were generated from data-flow analysis problems and translated
into parity game graphs using GEAR. The export format of GEAR was adapted
to suit the game-based planner. Moreover, we introduced no-operators to allow
the game to be turn-taking. Parts of the specification of the GDDL encoding5

for the example problem is provided in appendix B.
One important fact about our tool is the minimization of the state encoding

by building groups of mutually exclusive propositions [13,19]. As a result, we can
apply a binary state encoding. This is the key to a space-efficient representation
of the states, since in a BDD many states share nodes and exponentially many
nodes may be represented in a polynomially sized graph.
4 http://vlsi.colorado.edu/∼fabio/CUDD
5 GDDL is a language introduced by [14]; a hybrid of GDL (Game Description Lan-

guage) and PDDL (Planning Domain Definition Language).

Solving µ-Calculus Parity Games by Symbolic Planning 27

6.1 Data-Flow Analysis as Model Checking

Data-flow analysis (DFA) is one step at the compile time of a program, prior to
its optimization. Many DFA demands have been transformed into model check-
ing problems [34]. The main idea is to interpret control flow graphs as Kripke
transition systems with program steps labeling nodes and edges. Basic proposi-
tions at a node are isDefined(x), denoting that variable x is written or changed,
and isUsed(x), denoting that variable x is read. A variable is live if it is used
and was not redefined before – in terms of temporal logics this can be expressed
as μX.isUsed(x) ∨ ¬isDefined(x) ∧ 〈·〉X .

Many such formulas are free of alternation as shown in [31]. This makes data-
flow analysis via model checking a good testbed for our search algorithms.

6.2 Experiments

We have performed three experiments, obtaining matching results wrt. GEAR.
The first example is based on the Java byte code of an implementation of

the Fast Fourier Transformation. The byte code has been transformed into a
control-flow graph using Soot6. For its liveness analysis, 749 states are reachable
in 366 steps. For these, 141 BDD nodes are needed. The classification algorithm
can classify 517 states: 343 states are won for the diamond player, which are
represented by 155 BDD nodes. These are found after 39 iterations through the
loop. For the box player, 174 states are classified as won. Here, 11 iterations
and 112 BDD nodes are needed. These states contain the initial state, i.e., it is
surely won for the box player. The remaining 232 states are not classified by our
algorithm, so they must lie on one or more lassos from which the diamond player
cannot escape. Thus, they are also won for the box player. The total runtime of
the forward and backward analysis was 0.8 seconds.

The second example consists of automatically generated code as described in
[21], also used as an input to Soot. We expect that this leaves more room for
data-flow analysis wrt. possible optimizations. We reached a total of 4, 590 states
after 3, 086 steps and need 619 BDD nodes to represent them all. In this case, all
states are also reachable in backward direction: The algorithm classifies 3, 888
as won for the diamond player. For these, it needs 128 iterations and 770 BDD
nodes. Within two steps it classifies the remaining 702 states as won for the
box player using 350 BDD nodes. The initial state is contained within the set of
states won for the box player. The total runtime for the forward and backward
analysis was 24 seconds.

Instead of source code, the third example for the DFA-MC paradigm consid-
ers process graphs edited by the jABC tool7, where a model is converted to a
characteristic formula, which is checked together with a failure specification. The
explicit model had 49,141 nodes in the parity graph. The reachability analysis
converts the graph into a turn-taking game with 96,616 states and 13,110 BDD
nodes, generated in 63 steps. The number of states (BDD nodes) that are won

6 http://www.sable.mcgill.ca/soot
7 http://jabc.cs.uni-dortmund.de

28 M. Bakera et al.

for diamond are 22,682 (12,198); the number of states directly won by player
box are 26,510 (12,736). The remaining 43,421 non-classified states correspond
to the situation that box can enforce player diamond to stay on a cycle. The
entire classification took 123 seconds.

7 Conclusion and Discussion

We have seen a fruitful approach for the symbolic analysis of parity games that
arise when transforming μ-calculus model checking problems. The algorithms for
the Hennessy-Milner and alternation-free μ-calculus are efficient and have been
implemented. Testbeds arose during data-flow analysis. Moreover, an implemen-
tation for formulas with large alternation depth has been presented.

The historical roots of the work are as follows. As a winning condition for
games, the parity condition was already considered by Emerson and Jutla [16].
It was shown that parity games always result in memoryless winning strate-
gies – determinicity of parity games follows directly from the determinicity of
Borel games. The algorithmic presentation of McNaughton [28] and the early
analyses of Zielonka [44] lay the basis for algorithms based on recursive reach-
ability. No implementation was provided. Thomas [37] realized the importance
of parity games. One of the first implementations is the (explicit-state) fixpoint
analysis machine [35], which provides a tool based on [9], which was in turn
the basis for (explicit-state) strategy synthesis algorithm by [42]. For uniform
priorities, [42] shows an advantage wrt. FAM, and d ≤ 3 (the practical cases)
an advantage to Jurdzinski [42]. There are two recent improvements for enu-
meration we are aware of: the O(|E| · |V |d/3) algorithm by [30], and an accel-
eration for the 3-priorities [11]. A distributed implementation for parity games
shows a rather direct adaption of Jurdzinski’s small progress measurement al-
gorithm for multi-core architectures based on different state-space partitioning
functions [38].

Applying symbolic game playing has different advantages. First, the represen-
tation of the winning sets (e.g., in a binary encoding of the nodes) is implicit
and can be much smaller than the explicit one. Wrt. space consumption for
progress measures, no vectors have to be stored together with each state. More-
over, the analysis can be extended to implicit parity game graphs. Last but
not least, BDDs show advantages to SAT and QBF solvers in combinatorial
games [27].

Given a symbolic parity game graph representation in a BDD, the above al-
gorithm is capable of solving much larger problems. In other words, we cover a
more powerful input language, which allows the succinct specification of nontriv-
ial game graphs using Boolean formulas. So far we have extracted explicit-state
models from the GEAR model checker [1,2]. In the future we will likely inte-
grate our implementation to the global model checker in the jABC framework
to access the model checking problem, prior to the explicit graph construction.

Solving µ-Calculus Parity Games by Symbolic Planning 29

References

1. Bakera, M., Margaria, T., Renner, C.D., Steffen, B.: Game-based model checking
for reliable autonomy in space. Journal of the American Institute of Aeronautics
and Astronautics (AIAA) (to appear)

2. Bakera, M., Margaria, T., Renner, C.D., Steffen, B.: Verification, diagnosis and
adaptation: Tool supported enhancement of the model-driven verification process.
In: Revue des Nouvelles Technologies de Information (RNTI-SM-1), pp. 85–98 (to
appear) ISBN 2854288148

3. Biere, A.: µcke – efficient µ-calculus model checking. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 468–471. Springer, Heidelberg (1997)

4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. Tools and Algorithms for the Construction and Analysis of
Systems (1999)

5. Björklund, H., Sandberg, S., Vorobyov, S.G.: A discrete subexponential algorithm
for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp.
663–674. Springer, Heidelberg (2003)

6. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In: ACM/IEEE Design Automation Conference, pp. 688–694 (1985)

7. Bustan, D., Kupferman, O., Vardi, M.Y.: A measured collapse of the modal µ-
calculus alternation hierarchy. In: Diekert, V., Habib, M. (eds.) STACS 2004.
LNCS, vol. 2996, pp. 522–533. Springer, Heidelberg (2004)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

9. Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal µ-
calculus. Theoretical Computer Science 663, 410–422 (1992)

10. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design 2(2), 121–
147 (1993)

11. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with
an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

12. Edelkamp, S.: Symbolic exploration in two-player games: Preliminary results. In:
AIPS-Workshop on Model Checking, pp. 40–48 (2002)

13. Edelkamp, S., Helmert, M.: Exhibiting knowledge in planning problems to min-
imize state encoding length. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS,
vol. 1809, pp. 135–147. Springer, Heidelberg (2000)

14. Edelkamp, S., Kissmann, P.: Symbolic exploration for general game playing in
PDDL. In: ICAPS-Workshop on Planning in Games (2007)

15. Edelkamp, S., Kissmann, P.: Symbolic classification of general two-player games.
In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R.
(eds.) KI 2008. LNCS, vol. 5243, pp. 185–192. Springer, Heidelberg (2008)

16. Emerson, E.A., Jutla, C.S.: Tree automata µ-calculus and determinacy. In: Foun-
dations of Computer Science, pp. 368–377 (1991)

17. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the proposi-
tional mu-calculus. In: Symposium on Logic in Computer Science, pp. 267–278
(1986)

18. Genesereth, M.R.: Knowledge interchange format. In: Second International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 238–249
(1991)

30 M. Bakera et al.

19. Helmert, M.: A planning heuristic based on causal graph analysis. In: International
Conference on Automated Planning and Scheduling, pp. 161–170 (2004)

20. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980)

21. Jørges, S., Kubczak, C., Pageau, F., Margaria, T.: Model driven design of reliable
robot control programs using the jabc. In: 4th IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems (EASe), March 2007, pp.
137–148 (2007)

22. Jurdzinski, M.: Deciding the winner in parity games is UP∩co-UP. Information
Processing Letters 68(3), 119–124 (1998)

23. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

24. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: SODA, pp. 117–123 (2006)

25. Kautz, H., Selman, B.: Pushing the envelope: Planning propositional logic, and
stochastic search. In: European Conference on Artificial Intelligence, pp. 1194–
1201 (1996)

26. Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game de-
scription language specification. Technical Report LG-2006-01, Stanford Logic
Group (April 2006)

27. Madhusudan, P., Nam, W., Alur, R.: Symbolic computational techniques for solv-
ing games. Electronic Notes in Theoretical Computer Science 89(4) (2004)

28. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and
Applied Logic 65, 129–284 (1993)

29. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Solving checkers. In: International Joint Conference on Artificial
Intelligence, pp. 292–297 (2005)

30. Schewe, S.: Solving parity games in big steps. In: CAV, pp. 449–460 (2007)
31. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.

In: Conference Record of POPL 1998: The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Diego, California, Janary
19–21, 1998, pp. 38–48 (1998)

32. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. STTT 5(2-3), 185–204 (2004)

33. Seidl, H.: Fast and simple nested fixpoints. Information Processing Letters 59(6),
119–124 (1996)

34. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)

35. Steffen, B., Classen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis
machine. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp.
72–87. Springer, Heidelberg (1995)

36. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

37. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

38. van de Pol, J., Weber, M.: A multi-core solver for parity games. In: PDMC 2008
(to appear, 2008)

Solving µ-Calculus Parity Games by Symbolic Planning 31

39. Vöge, J., Jurdzinski, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

40. Vöge, J., Ulbrand, S., Matz, O., Buhrke, N.: The automata theory package omega.
In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 228–231. Springer,
Heidelberg (1998)

41. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state con-
trollers for request-response specifications. In: H. Ibarra, O., Dang, Z. (eds.) CIAA
2003. LNCS, vol. 2759, pp. 11–22. Springer, Heidelberg (2003)

42. Yoo, H.: Fehlerdiagnose beim Model-Checking durch animierte Strategiesynthese.
PhD thesis, Universität Dortmund (2007)

43. Yoo, H., Müller-Olm, M.: MetaGame: An animation tool for model-checking
games. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
163–167. Springer, Heidelberg (2004)

44. Zielonka, W.: Infinite games on finite coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)

32 M. Bakera et al.

A Compiling Away the Recursion

We have to show that

T (G) = 1 +
r∑

j=0

2 · diam(G|Layerj
) + T (G|Upperj

).

induces

T (G) ≤ 2 ·
d−1∑

j=1

diam(G)
j∏

k=1

(|Levelk| + 1)

Proof. For the induction we observe that r ≤ |Lower0| (at least a one-element
set is processed in each iteration) and G|Layer|Lower0| = ∅ (no forcing sets in the
last iteration) we induce

T (G) ≤ 1 +
|Lower0|∑

j=0

2 · diam(G|Layerj
) +

|Lower0|∑

j=0

T (G|Upperj
)

≤ 1 +
|Lower0|−1∑

j=0

2 · diam(G) +
|Lower0|∑

j=0

T (G|Upperj
)

≤ 1 + |Lower0| · 2 · diam(G) +
|Lower0|∑

j=0

T (G|Upperj
)

We additionally observe that Level1 = Lower0 and that
∑|Lower0|

j=0 T (G|Upperj
)

is bounded by (|Lower0| + 1) · T (G|Uppers
) for some 0 ≤ s ≤ |Lower0|. Hence,

by inserting the induction hypothesis (Ind.) we have

T (G) ≤ 1 + |Level1| · 2 · diam(G) +
|Level1|∑

j=0

T (G|Uppers
)

≤ 1 + |Level1| · 2 · diam(G) + (|Level1| + 1) · T (G|Uppers
)

Ind.≤ (1+|Level1|)· 2 · diam(G)+(|Level1|+1)· 2 ·
d−1∑

j=2

diam(G)
j∏

k=2

(|Levelk| + 1)

≤ (1 + |Level1|) · 2 · diam(G) + 2 ·
d−1∑

j=2

diam(G)
j∏

k=1

(|Levelk| + 1)

≤ 2 ·
d−1∑

j=1

diam(G)
j∏

k=1

(|Levelk| + 1)

Solving µ-Calculus Parity Games by Symbolic Planning 33

B GDDL Encoding

The parity games have been translated to GDDL. The domain model for the
problem looks as follows.

(define (domain alternation-free)

(:types state role)

(:predicates (at ?s - state) (connect ?s1 ?s2 - state)

(box ?s - state) (diamond ?s - state) (control ?player - role))

(:action move-box

:parameters (?player - role ?s1 ?s2 - state ?nextplayer - role)

:precondition (and (at ?s1)(connect ?s1 ?s2)(control ?player) (box ?s1)

(= ?player box_player)(not (= ?player ?nextplayer)))

:effect (and (not (at ?s1)) (at ?s2)

(not (control ?player))(control ?nextplayer)))

(:action noop-box

:parameters (?player - role ?s - state ?nextplayer - role)

:precondition (and (at ?s) (box ?s) (control ?player)

(= ?player diamond_player)(not (= ?player ?nextplayer)))

:effect (and (not (control ?player)) (control ?nextplayer)))

(:action move-diamond ...)

(:action noop-diamond ...)

(:lost (?player - role)

(exists (?s - state) (and (at ?s) (= ?player diamond_player)

(not (control ?player)))))

(:won (?player - role)

(exists (?s - state) (and (at ?s) (= ?player diamond_player)

(not (control ?player)))))

(:lost ...)

(:won ...)

The example problem from Fig. 1 is encoded as follows.

(define (problem check)

(:domain modelcheck)

(:objects box_player diamond_player - role

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 - state)

(:init

(diamond s1) (diamond s6) (diamond s11) (diamond s2) (diamond s7)

(diamond s12) (diamond s3) (diamond s8) (diamond s13) (diamond s4)

(diamond s9) (box s14) (box s5) (box s10) (box s15)

(connect s2 s1) (connect s1 s3) (connect s3 s5) (connect s3 s4)

(connect s5 s7) (connect s5 s2) (connect s6 s8) (connect s7 s6)

(connect s8 s10) (connect s8 s9) (connect s10 s12) (connect s11 s13)

(connect s12 s11) (connect s13 s15) (connect s13 s14)

(at s1) (control box_player))

(:goal (exists (?s1 - state)

(and (at ?s1)

(or (and (control box_player) (box ?s1))

(and (control diamond_player) (diamond ?s1)))

(forall (?s2 - state) (not (connect ?s1 ?s2)))))))

	Solving μ-Calculus Parity Games by Symbolic Planning
	Introduction
	Symbolic Analysis of Two-Player Games
	Preliminaries: Model Checking Based on Parity Games
	μ-Calculus Model Checking
	Parity Games

	Solving Parity Games for Alternation-Free Formulas
	Extension to Full Alternation Depth
	Empirical Analysis
	Data-Flow Analysis as Model Checking
	Experiments

	Conclusion and Discussion
	Compiling Away the Recursion
	GDDL Encoding

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

