

Lecture Notes in Artificial Intelligence 5348
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Doron A. Peled
Michael J. Wooldridge (Eds.)

Model Checking and
Artificial Intelligence

5th International Workshop, MoChArt 2008
Patras, Greece, July 21, 2008
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Doron A. Peled
Bar Ilan University
Ramat Gan, 52900, Israel
E-mail: doron.peled@gmail.com

Michael J. Wooldridge
University of Liverpool
Liverpool L69 3BX, UK
E-mail: mjw@liverpool.ac.uk

Library of Congress Control Number: 2009921993

CR Subject Classification (1998): I.2.3, I.2, F.4.1, F.3, D.2.4, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-00430-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00430-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12623488 06/3180 5 4 3 2 1 0

Preface

Model checking is a branch of software and hardware verification that involves
developing algorithms for the automatic verification of systems. Originating from
mathematical logic, “model checking” stands for the process of determining
whether or not a formula of some logic is satisfied by a model for the logic.
Initiated two and a half decades ago, with papers that have gained their authors
the 2007 Turing award, this active research area has resulted in rich theory, and
the development of a number of widely used model-checking tools. These include
Carnegie-Mellon’s SMV, Cadence-SMV, and Bell Laboratories’ SPIN. Some of
the main activities in model checking involve development of expressive specifi-
cation formalisms, in particular, temporal logics, the modeling of systems, and
finding efficient algorithms for automatically checking that a model of a system
satisfies its temporal specification.

The success of model checking in the computer-aided verification commu-
nity has led to a growth of interest in the use of model checking in AI. One
common interest between these two fields is verification of autonomous sys-
tems. Logics for autonomous systems can express properties that are not com-
monly used for reactive systems, expressing properties related to the knowledge
and belief of components (agents) of the system about other components. New
model-checking algorithms, for such specification properties, are challenging and
useful for various applications, including online auction mechanisms, which are
embedded in various Internet services, and autonomous robots.

Conversely, results in AI are applicable for model checking. The main chal-
lenge in model checking is to address the time and space complexity of analyzing
realistic systems. Thus, some AI heuristic search techniques can be used as a basis
for model checking. SAT-solving is another interface between these two research
areas; while being the focus of AI research for many years, a new model-checking
technique called “Bounded Model Checking” makes use of it as a basis for faster
analysis and for analyzing bigger systems.

The MOCHART workshop brings together both researchers in AI with an
interest in model checking and researchers in model checking who are interested
in AI techniques.

Previous editions of the workshop were held in Riva del Garda, Italy in 2006
(as a satellite workshop of ECAI), San Francisco in 2005 (as a satellite workshop
of Concur), Acapulco in 2003 (as a satellite workshop of IJCAI03), and Lyon in
2002 (as a satellite workshop of ECAI02).

MOCHART 2008 was held as a satellite workshop of the ECAI 2008
conference.

June 2008 Doron Peled
Michael Wooldridge

Workshop Organization

Co-chairs

– Doron Peled (Israel)
– Michael Wooldridge (UK)

Program Committee

– Rajeev Alur (USA)
– Massimo Benerecetti (Italy)
– Rafael Bordini (UK)
– Kousha Etessami (UK)
– Michael Fisher (UK)
– Gerard Holzmann (USA)
– Hadas Kress-Gazit (USA)
– Orna Kupferman (Israel)
– Alessio Lomuscio (UK)
– Ron van de Meyden (Australia)
– Peter Niebert (France)
– Charles Pecheur (USA)
– Wojciech Penczek (Poland)
– Franco Raimondi (UK)
– Mark Ryan (UK)
– Farn Wang (China)

Table of Contents

Verifying Time and Communication Costs of Rule-Based Reasoners 1
Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and
Abdur Rakib

Solving µ-Calculus Parity Games by Symbolic Planning 15
Marco Bakera, Stefan Edelkamp, Peter Kissmann, and
Clemens D. Renner

Verifying Robocup Teams . 34
Clara Benac Earle, Lars-Åke Fredlund, José Antonio Iglesias, and
Agapito Ledezma

Scaling Search with Pattern Databases . 49
Stefan Edelkamp, Shahid Jabbar, and Peter Kissmann

Survey on Directed Model Checking (Invited Talk) 65
Stefan Edelkamp, Viktor Schuppan, Dragan Bošnački, Anton Wijs,
Ansgar Fehnker, and Husain Aljazzar

Automated Testing of Planning Models . 90
Klaus Havelund, Alex Groce, Gerard Holzmann, Rajeev Joshi, and
Margaret Smith

Towards Partial Order Reduction for Model Checking Temporal
Epistemic Logic . 106

Alessio Lomuscio, Wojciech Penczek, and Hongyang Qu

Model Checking Driven Heuristic Search for Correct Programs
(Invited Talk) . 122

Gal Katz and Doron Peled

Experimental Evaluation of a Planning Language Suitable for Formal
Verification . 132

Radu I. Siminiceanu, Rick W. Butler, and César A. Muñoz

Relaxation Refinement: A New Method to Generate Heuristic
Functions (Invited Talk) . 147

Jan-Georg Smaus and Jörg Hoffmann

Model Checking Strategic Equilibria (Invited Talk) 166
Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge

Author Index . 189

Verifying Time and Communication Costs of
Rule-Based Reasoners

Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib�

University of Nottingham, Nottingham, UK
{nza,bsl,hnn,rza}@cs.nott.ac.uk

Abstract. We present a framework for the automated verification of time and
communication requirements in systems of distributed rule-based reasoning
agents which allows us to determine how many rule-firing cycles are required
to solve the problem, how many messages must be exchanged, and the trade-offs
between the time and communication resources. We extend CTL∗ with belief
and communication modalities to express bounds on the number of messages
the agents can exchange. The resulting logic, LCRB , can be used to express both
bounds on time and on communication. We provide an axiomatisation of the logic
and prove that it is sound and complete. Using a synthetic but realistic example
system of rule-based reasoning agents which allows the size of the problem and
the distribution of knowledge among the reasoners to be varied, we show the
Mocha model checker [1] can be used to encode and verify properties of systems
of distributed rule-based agents. We describe the encoding and report results of
model checking experiments which show that even simple systems have rich pat-
terns of trade-offs between time and communication bounds.

1 Introduction

A key application of multi-agent systems research is distributed problem solving. Dis-
tributed approaches to problem solving allow groups of agents to collaborate to solve
problems which no single agent could solve alone (e.g., because no single agent has all
the information necessary to solve the problem), and/or to solve problems more effec-
tively, e.g., in less time than a single agent. For a given problem and system of reason-
ing agents, many different solution strategies may be possible, each involving different
commitments of computational resources and communication by each agent. For dif-
ferent multi-agent systems, different solution strategies will be preferred depending on
the relative costs of computational and communication resources for each agent. These
tradeoffs may be different for different agents (e.g., reflecting their computational capa-
bilities or network connection) and may reflect the agent’s commitment to a particular
problem. For example, an agent may be unable to commit more than a given portion
of its available computational resources or its available communication bandwidth to
a particular problem. For a given system of agents with specified inferential abilities
and resource bounds it may not be clear whether a particular problem can be solved at

� This work was supported by the Engineering and Physical Sciences Research Council [grant
number EP/E031226].

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 N. Alechina et al.

all, or, if it can, what computational and communication resources must be devoted to
its solution by each agent. For example, we may wish to know whether a goal can be
achieved if a particular agent, perhaps possessing key information or inferential capa-
bilities, is unable (or unwilling) to contribute more than a given portion of its available
computational resources or bandwidth to the problem.

There has been considerable work in the agent literature on distributed problem solv-
ing in general (for example, [2,3,4,5]) and on distributed reasoning in particular ([6,7]).
Much of this work analyses the time and communication complexity of distributed rea-
soning algorithms. However, while we have upper (and some lower) bounds on time re-
quirements for reasoning in distributed systems, possible trade-offs between resources
such as time and communication are less clear. In previous work, e.g., [8,9,10] we have
investigated time vs. memory trade-offs for single reasoners, or just time requirements
in [11], and in [12], we investigated resource requirements for time, memory and com-
munication for systems of distributed resolution reasoners.

In this paper, we focus on a more detailed investigation of time and communication
trade-offs for rule-based reasoners. We present a framework for the automated veri-
fication of time and communication requirements in systems of distributed rule-based
reasoning agents. We extend CTL∗ with belief and communication modalities to ex-
press bounds on the number of messages the agents can exchange. Communication
modalities are a novel logical concept (the only related work we are aware of is [13]
which introduced nullary modalities for expressing the number of formulas in agent’s
memory), and considerably simplify the logic expressing communication bounds pre-
sented in [12]. The resulting logic, LCRB , can be used to express both bounds on time
and on communication. We provide an axiomatisation of the logic and prove that it is
sound and complete. Using LCRB to specify bounds on the number of messages the
agents can exchange, we can investigate trade-offs between time and communication
resources, and we show how the Mocha model checker [1] can be used to encode and
verify properties of such systems.

The structure of the paper is as follows. In section 2 we describe systems of commu-
nicating rule-based reasoners that we want to verify. In section 3 we introduce the epis-
temic logic LCRB . We describe the Mocha encoding of the transition systems which are
models of the logic in section 4. Model-checking experiments are described in section 5
and we conclude in section 6.

2 Systems of Communicating Rule-Based Reasoners

In this section, we describe the systems of communicating rule-based agents which we
investigate.

The system consists of nA agents, where nA ≥ 1. We will assume that each agent has
a number in {1, . . . , nA}, and use variables i and j over {1, . . . , nA} to refer to agents.
Each agent has a program, consisting of propositional Horn clause rules, and a working
memory, which contains facts (propositions).1 If an agent i has a rule A1, . . . , An → B,

1 The restriction to propositional rules is not a very drastic assumption: if the rules do not contain
functional symbols and we can assume a fixed finite set of constant symbols, then any set of
first-order Horn clauses and facts can be encoded as propositional formulas.

Verifying Time and Communication Costs of Rule-Based Reasoners 3

the facts A1, . . . , An are in the agent’s working memory and B is not in the agent’s
working memory in state s, then the agent can fire the rule which adds B to the agent’s
working memory in the successor state s′.

In addition to firing rules, agents can exchange messages regarding their current be-
liefs. We assume that there is a bound on communication for each agent i which limits
agent i to at most nC(i) messages. Each agent has a communication counter, ci, which
starts at 0 and is not allowed to exceed the value nC(i). The exchange of information be-
tween agents is modelled as an abstract Copy operation: if a fact A is in agent i’s working
memory in state s, A is not in the working memory of agent j, and agent j has not ex-
ceeded its communication bound (cj < nC(j)) then in the successor state s′, A can be
added to agent j’s working memory, and cj incremented. Intuitively, this corresponds to
the following operations rolled into one: j asking i for A, and i sending A to j. This is
guaranteed to succeed and takes one tick of system time. The only agent which pays the
communication cost is j. These assumptions are made for simplicity; it is straightforward
to modify our definition of communication so that the ‘cost’ of communication is paid
by both agents, communication takes more than one tick of time, and communication is
non-deterministic. An agent can also perform an Idle operation (do nothing).

A problem is considered to be solved if one of the agents has derived the goal. The
time taken to solve the problem is taken to be the total number of steps by the whole
system (agents firing their rules or copying facts in parallel, at most one operation exe-
cuted by each agent at every step). The communication cost for each agent is the value
of communication counter for that agent.

As an example, consider a system of two agents, 1 and 2. The agents share the same
set of rules:

RuleB1 A1, A2 → B1
RuleB2 A3, A4 → B2
RuleB3 A5, A6 → B3
RuleB4 A7, A8 → B4
RuleC1 B1, B2 → C1
RuleC2 B3, B4 → C2
RuleD1 C1, C2 → D1

Time Agent 1 Agent 2
t0 {A1, A2, A3, A4} {A5, A6, A7, A8}

operation: RuleB2 RuleB4
t1 {A1, A2, A3, A4, B2} {A5, A6, A7, A8, B4}

operation: RuleB1 RuleB3
t2 {A1, A2, A3, A4, B1, B2} {A5, A6, A7, A8, B3, B4}

operation: RuleC1 RuleC2
t3 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C2}

operation: Idle Copy (C1 from agent 1)
t4 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C1, C2}

operation: Idle RuleD1
t5 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C1, C2, D1}

Fig. 1. Example 1

4 N. Alechina et al.

Fig. 2. Binary tree example

The goal is to derive D1. Figure 1 gives a simple example of a run of the system starting
from a state where agent 1 has A1, A2, A3 and A4 in its working memory, and agent
2 has A5, A6, A7, A8. In this example, the agents require one communication and five
time steps to derive the goal. (In fact, this is an optimal use of resources for this problem,
as verified using Mocha, see section 5).

Throughout the paper, we will use variations on this synthetic ‘binary tree’ problem,
with Ais being the leaves and the goal formula being the root of the tree, as exam-
ples (see Figure 2). We vary the number of rules and the distribution of ‘leaf’ facts
between the agents. For example, a larger system can be generated using 16 ‘leaf’ facts
A1, . . . , A16, adding extra rules to derive B5 from A9 and A10, etc., and the new goal
E1 derivable from D1 and D2. We will refer to it as ‘16 leaf example’. Similarly, we will
consider systems with 32, 64, 128 etc. leaf facts. We have chosen this form of example
because it is typical of distributed reasoning problems and can be easily parameterised
by the number of leaf facts and the distribution of facts to the agents.

3 Extending CTL∗ with Belief Operators and Communication
Counters

In this section we introduce the formal models of the systems informally described in
the previous section. Essentially, they correspond to infinite tree structures (representing
branching time), where each state consists of the states of the agents (and the state
of each agent corresponds to the contents of its working memory and a record of the
number of copy actions it has performed). Transitions between states correspond to all
agents executing one of their possible transitions in parallel, where possible transitions
include applicable rule firings, copy actions, or idling.

Verifying Time and Communication Costs of Rule-Based Reasoners 5

Such structures can be directly encoded in Mocha, by encoding the contents of each
agent’s memory as boolean variables and the communication counter as an enumeration
type variable, as described in section 4. However, this does not give us a precise logical
description of systems of distributed rule-based reasoners and an appropriate logical
language to describe such systems. We have therefore developed a language in which
we can express the properties of the system, including agent’s beliefs and communi-
cation bounds. This language is an extension of CTL∗, and contains a belief operator
for each agent and communication modalities. (Although the belief operators are in-
terpreted syntactically, we still refer to them as modalities, as is common in syntactic
epistemic logics, see e.g., [14].) We provide an axiomatisation of the tree structures de-
scribed above in this logical language. This gives us a precise way of reasoning about
resource bounds in the resulting logic, LCRB . In particular we can reason about the
interaction of temporal, belief and communication modalities, and the logical proper-
ties of communication modalities. It also provides us with a high-level specification
language which can be translated in CTL∗ (in fact, all the properties of interest are ex-
pressible in CTL, but for technical reasons—to make the completeness proof easier—
we based our axiomatisation on CTL∗).

We begin by defining an internal language for each agent. This language includes all
possible formulas that the agent can store in its working memory. Let A = {1, . . . , nA}
be the set of all agents, and P a finite common alphabet of facts. Let Π be a finite set
of rules of the form p1, . . . , pn → p, where n ≥ 0, pi, p ∈ P for all i ∈ {1, . . . , n}
and pi �= pj for all i �= j. For convenience, we use the notation pre(ρ) where ρ ∈ Π
for the set of premises of ρ and con(ρ) for the conclusion of ρ. For example, if ρ =
p1, . . . , pn → p, then pre(ρ) = {p1, . . . , pn} and con(ρ) = p. The internal language
IL, then, includes all the facts p ∈ P and rules ρ ∈ Π . We denote the set of all formulas
of IL by Ω = P ∪ Π . Note that Ω is finite.

The syntax of LCRB includes the temporal operators of CTL∗ and is defined induc-
tively as follows:

– � (tautology) and start (a propositional variable which is only true at the initial
moment of time) are well-formed formulas (wff) of LCRB ,

– cp=n
i (which states that the value of agent i’s communication counter is n) is a wff

of LCRB for all n ∈ {0, . . . , nC(i)} and i ∈ A,
– Bip (agent i believes p) and Biρ (agent i believes ρ) are wffs of LCRB for any

p ∈ P , ρ ∈ Π and i ∈ A,
– If ϕ and ψ are wffs of LCRB , then so are ¬ϕ and ϕ ∧ ψ,
– If ϕ and ψ are wffs of LCRB , then so are Xϕ (in the next state ϕ), ϕUψ (ϕ holds

until ψ), Aϕ (on all paths ϕ).

Other classical abbreviations for ⊥, ∨, → and ↔, and temporal operations: Fϕ ≡
�Uϕ (at some point in the future ϕ) and Gϕ ≡ ¬F¬ϕ (at all points in the future
ϕ), and Eϕ ≡ ¬A¬ϕ (on some path ϕ) are defined as usual. For convenience, we
also introduce the following abbreviations: CPi = {cp=n

i | n = {0, . . . , nC(i)}} and
CP =

⋃
i∈A CPi.

The semantics of LCRB is defined by LCRB transition systems which are based on
ω-tree structures. Let (T, R) be a pair where T is a set and R is a binary relation on T .
(T, R) is a ω-tree frame iff the following conditions are satisfied.

6 N. Alechina et al.

1. T is a non-empty set.
2. R is total, i.e. for all t ∈ T , there exists s ∈ T such that tRs.
3. Let < be the strict transitive closure of R, namely {(s, t) ∈ T × T | ∃n ≥ 0, t0 =

s, .., tn = t ∈ T such that tiRti+1∀i = 0, . . . , n − 1}.
4. For all t ∈ T , the past {s ∈ T | s < t} is linearly ordered by <.
5. There is a smallest element called the root, which is denoted by t0.
6. Each maximal linearly <- ordered subset of T is order-isomorphic to the natural

numbers.

A branch of (T, R) is an ω-sequence (t0, t1, . . .) such that t0 is the root and tiRti+1
for all i ≥ 0. We denote B(T, R) to be the set of all branches of (T, R). For a branch
σ ∈ B(T, R), σi denotes the element ti of σ and σ≤i is the prefix (t0, t1, . . . , ti) of σ.

A LCRB transition system M is defined as a triple (T, R, V) where:

– (T, R) is a ω-tree frame,
– V : T ×A → ℘(Ω∪CP) such that for all s ∈ T and i ∈ A: V (s, i) = Q∪{cp=n

i }
for some Q ∈ ℘(Ω) and cp=n

i ∈ CPi. We denote V ∗(s, i) = V (s, i) \ CPi.

The truth of a LCRB formula at a point n of a path σ ∈ B(T, R) is defined inductively
as follows:

– M, σ, n |= �,
– M, σ, n |= start iff n = 0,
– M, σ, n |= Biα iff α ∈ V (s, i),
– M, σ, n |= cp=m

i iff cp=m
i ∈ V (s, i),

– M, σ, n |= ¬ϕ iff M, σ, n �|= ϕ,
– M, σ, n |= ϕ ∧ ψ iff M, σ, n |= ϕ and M, σ, n |= ψ,
– M, σ, n |= Xϕ iff M, σ, n + 1 |= ϕ,
– M, σ, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n, m) M, σ, k |= ϕ and M, σ, m |= ψ,
– M, σ, n |= Aϕ iff ∀σ′ ∈ B(T, R) such that σ′

≤n = σ≤n, M, σ′, n |= ϕ.

The models of LCRB satisfy a set of constraints on the accessibility relation. Intuitively,
each R is composed of an nA-tuple of agents’ actions performed in parallel. We will
next define precisely the set of actions that each agent can perform. They are Rulei,ρ,
Copyi,α and Idlei where i ∈ A, ρ ∈ Π and α ∈ Ω. Rulei,ρ is the action of an agent i
firing ρ; Copyi,α the action of copying α from another agent and Idlei is when agent i
does nothing and moves to the next state.

We set constraints on the set of models such that the two following conditions are
satisfied: (i) any transition between two states of the model corresponds to the effect of
actions done by all agents in A and (ii) for any action of an agent in A that is applicable
at a state s of the model, then there exists another state s′ and a transition from s to
s′ which corresponds to the effect of the action. To formalise those two conditions, we
have the following definitions.

Definition 1. Let (T, R, V) be a tree model. The set of effective transitions Ra for
an action a is defined as a subset of R and satisfies the following conditions, for all
(s, t) ∈ R

Verifying Time and Communication Costs of Rule-Based Reasoners 7

1. (s, t) ∈ RRulei,ρ iff ρ ∈ V (s, i), V (s, i) ⊇ pre(ρ), con(ρ) /∈ V (s, i) and V (t, i) =
V (s, i)∪{con(ρ)}. This condition says that s and t are connected by agent i’s rule-
fired transition if the following is true: ρ is a rule of i, V (s, i) contains all premises
of ρ but not its conclusion and the conclusion of ρ is added to the next state t of i.

2. (s, t) ∈ RCopyi,α iff α ∈ V (s, j) where some j ∈ A and j �= i, cp=n
i ∈ V (s, i)

such that n < nC , α /∈ V (s, i) and V (t, i) = V (s, i) \ {cp=n
i }∪{cp=n+1

i }∪{α}.
In this condition, s and t are connected by a Copy transition of agent i iff i has
copied so far at most nC(i) − 1 messages from other agents, at s, i does not have
α in its working memory while another agent j does and at the next state t, α is
added into the working memory of i and its message counter is increased by one.

3. (s, t) ∈ RIdlei iff V (t, i) = V (s, i). The Idle transition does not change the state.

Below, we specify when an action is applicable. Note that we only enable deriving a
formula if this formula is not already in the agent’s working memory.

Definition 2. Let (T, R, V) be a tree model. The set Acts,i of applicable actions that
an agent i can perform at a state s ∈ T is defined as follows:

1. Rulei,ρ ∈ Acts,i iff ρ ∈ V (s, i), pre(ρ) ⊆ V (s, i) and con(ρ) /∈ V (s, i).
2. Copyi,α ∈ Acts,i iff n < nC(i) where n is from cp=n

i ∈ V (s, i), α �∈ V (s, i),
α ∈ V (s, j) for some j ∈ A.

3. It is always the case that Idlei ∈ Acts,i.

Finally, the definition of the set of models corresponding to a system of rule-based
reasoners is given below:

Definition 3. M(nC) is the set of models (T, R, V) which satisfies the following
conditions:

1. cp=0
i ∈ V (t0, i) where t0 is the root of (T, R) for all i ∈ A.

2. R =
⋃

∀a Ra.
3. For all s ∈ T , ai ∈ Acts,i, there exists t ∈ T such that (s, t) ∈ Rai for all i ∈ A.

Below are some abbreviations which will be used in the axiomatisation:

– ByRulei(p, n) = ¬Bip ∧ cp=n
i ∧∨ρ∈Π∧con(ρ)=p(Biρ ∧∧p∈pre(ρ) Bip).

This formula describes the state before the agent comes to believe formula p by the
Rule transition. n is the value of i’s communication counter.

– ByCopyi(α, n) = ¬Biα ∧ Bjα
′ ∧ cp=n−1

i .

Let us now introduce the axiomatisation systems.

A1. All axioms and inference rules of CTL∗ [15].
A2. Biρ∧

∧
p∈pre(ρ) Bip∧cp=n

i ∧¬Bicon(ρ) → EX(Bicon(ρ)∧cp=n
i) for all ρ ∈ Π

and i ∈ A.
Intuitively, this axiom says that it is always possible to make a transition to a

state where agent i believes the conclusion of a rule ρ in its working memory. In
addition, the communication counter of the agent does not increase.

The next axiom A3 similarly describes transitions made by copy with commu-
nication counter increased).

8 N. Alechina et al.

A3. cp=n
i ∧ ¬Biα ∧ Bjα → EX(Biα ∧ cp=n+1

i) for any α ∈ Ω, j ∈ A, j �= i,
n < nC(i).

A4. EX(Biα ∧ Biβ) → Biα ∨ Biβ.
This axiom says that at most one new belief is added in the next state.

A5. Biα → AXBiα for any α ∈ Ω.
This axiom says that an agent always believes in what it already believed before.

A6. EX(Biα ∧ cp=n
i) → Biα ∨ ByRulei(α, n) ∨ ByCopyi(α, n) for any α ∈ ∪Ω.

This axiom says that a new belief can only be added by one of the valid reasoning
actions.

A7a. start → cp=0
i for all i ∈ A.

At the start state, the agent has not performed any Copy actions.
A7b. ¬EX start

start only holds at the root of the tree.
A8.

∨
n=0...nC

cp=n
i for all i ∈ A.

There is always a number n between 0 and nC corresponding to the number of
Copy actions agent i has performed.

A9. cp=n
i → ¬cp=n′

i for all i ∈ A and n′ �= n.
The number of previous Copy actions by i in each state is unique.

A10. ϕ → EXϕ, where ϕ does not contain start.
This describes an Idle transition by all agents.

A11.
∧

i∈A EX(
∧

α∈Qi
Biα ∧ cp=ni

i) → EX
∧

i∈A(
∧

α∈Qi
Biα ∧ cp=ni

i) for any
Qi ⊆ Ω.

If each agent i can separately reach a state where it believes formulas in Qi, then
all agents together can reach a state where for each i, agent i believes formulas in
Qi.

Let us now define the logic obtained from the above axiomatisation system.

Definition 4. L(nC) is the logic defined by the axiomatisation A1 - A11.

We have the following result.

Theorem 1. L(nC) is sound and complete with respect to M(nC).

Proof Sketch. As usual, soundness is proved by showing that all axioms are valid and
inference rules preserve validity. The proofs for axioms and rules included in A1 are
given in [15]. The validity of axioms A2-A11 can be proved using the properties of
models in M(nC). In the following, we provide the proof for A2. The proofs for other
axioms are similar.

Let M = (T, V, R) ∈ M(nC), σ ∈ B(T, R) and n ≥ 0. Assume that M, σ, n |=
Biρ ∧ ∧p∈pre(ρ) Bip ∧ cp=m

i ∧ ¬Bicon(ρ) for some ρ ∈ Π . Then p ∈ V (σn, i) for
all p ∈ pre(ρ) and con(ρ) �∈ V (σn, i). This means that Rulei,ρ ∈ Actσn,i. According
to the definition of M(nC), there exists a t′ ∈ T such that σnRt′ and V (t′, i) =
V (σn, i)∪{con(ρ)}. Let σ′ be a branch in B(T, R) such that σ′

≤n = σ≤n and σ′
n+1 =

t′. Then we have that M, σ′, n + 1 |= Bicon(ρ) ∧ cp=m
i . It is obvious, then, that

M, σ, n |= EX(Bicon(ρ) ∧ cp=m
i).

Completeness is shown by constructing a tree model for a consistent formula ϕ. The
construction is the one introduced in [15]. Since the initial state of all agents does not

Verifying Time and Communication Costs of Rule-Based Reasoners 9

restrict the set of formulas they may derive in the future, for simplicity we conjunctively
add to ϕ a tautology that contains all the potentially necessary formulas and message
counters, in order to have enough sub-formulas for the construction. We construct a
model M = (T, R, V) for

ϕ′ = ϕ ∧
∧

α∈Ω

(XBiα ∨ ¬XBiα) ∧
∧

n=0...nC ,i∈A
(Xcp=n

i ∨ ¬Xcp=n
i)

We then prove that M is in M(nC) by showing that it satisfies all properties listed
in Definition 3.

By axiom A8, it is straightforward that at a state t of M there exists cp=n
i for some

n ∈ {0, . . . , nC} and any i ∈ A such that cp=n
i ∈ V (t, i). Moreover, A9 ensures that

one and only one such n can be presented in V (t, i).
At the root t0 of (T, R), the construction of the model implies that there exists a

MCS2 Γ0 such that Γ0 ⊇ V (t0, i) and start ∈ Γ0. By axiom A7, it is trivial that
cp=0

i ∈ V (t0, i).
We then need to prove that at a state t of M , if an action ai of agent i ∈ A is

applicable, then there exists t′ ∈ M such that tRt′ and V (t′, i) is the result of V (t, i)
after i performs action ai. The proof is done by induction on the cases of ai. Let us
consider the case when ai is Rulei,ρ for some ρ ∈ Π . Since Rulei,ρ is applicable
at t, con(ρ) �∈ V (t, i) and p ∈ V (t, i) for all p ∈ pre(ρ). Therefore there exists a
MCS Γ such that Γ ⊇ V (t, i). Then we obtain

∧
p∈pre(ρ) Bip ∧ cp=n

i ∧ ¬Bicon(ρ) ∈
Γ for some n ∈ {0, . . . , nC}. By axiom A2 and MP3, EX(Bicon(ρ) ∧ cp=n

i) ∈
Γ . Therefore, according to the construction, there exists t′ ∈ T such that tRt′ and
V (t′, i) ⊆ Γ ′ for some Γ ′ such that Bicon(ρ) ∧ cp=n

i ∈ Γ ′. Therefore V (t′, i) =
V (t, i) ∪ {con(ρ)}.

For other cases of ai, the proofs are similar by using MP and axioms A3 and axiom
A10. Then, axiom A11 enables us to show that, for any tuple of actions (a1, . . . , anA)
such that all ai are applicable at a state t of M , there exists t′ ∈ T such that V (t′, i)
is the result of performing ai at t for all i ∈ A. The proof is similar to that above,
except that each case under consideration is a tuple of actions, and by using axiom
A11 and MP.

Finally, we prove that for any t′ ∈ T such that tRt′, there exists a tuple of actions
(a1, . . . , anA) and V (t′, i) is the result of V (t, i) when agent i performs ai for all i ∈ A.
By axioms A4 and A5, V ∗(t′, i) is different from V ∗(t, i) by at most one formula added
and no formula removed. If no formula is added (and no formula is removed), we set
ai to be Idlei. Let us now consider the case where a formula α is added. By axiom A6,
if cp=n

i ∈ V (t, i) for some n ∈ {0, . . . , nC} then either cpn
i or cpn+1

i ∈ V (t′, i). If
cpn

i ∈ V (t′, i) then set ai to be Rulei,ρ for some ρ ∈ V (t, i) such that α = con(ρ) (this
must happen according to A6). If cpn+1

i ∈ V (t′, i) then set ai to be Copyi,α (this must
happen according to A6 that α ∈ V (t, j) for some j ∈ A). Thereby, we have proved the
existence of the tuple (a1, . . . , anA) for tRt′. Then, we conclude that M ∈ M(nC). �

2 MCS stands for maximally consistent set.
3 MP stands for Modus Ponens.

10 N. Alechina et al.

4 Mocha Encoding

It is straightforward to encode a LCRB model for a standard model checker, and to
verify resource bounds using existing model checking techniques. For the examples re-
ported here, we used the Mocha model checker [1] due to the ease with which we can
specify concurrently executing agents in reactive modules, the description language
used by Mocha. Note that since belief operators in our logic are interpreted syntac-
tically, we do not need to use a model-checker for temporal epistemic logic such as
MCMAS [16].

The state of the system is described by a set of state variables and each system state
corresponds to an assignment of values to the variables. The presence or absence of
each fact in the working memory of an agent is represented by a boolean state variable
aiAj which represents the fact that agent i believes fact Aj . The initial values of these
variables determines the initial distribution of facts between agents.4 In the experiments
reported below (which used the binary tree example, see Figure 2), all derived (non-leaf)
variables were initialised to false, and only the allocation of leaves to each agent was
varied.

The actions of firing a rule, copying a fact from another agent and idling were en-
coded as a Mocha atom which describe the initial condition and transition relation for a
group of related state variables. Inference is implemented by marking the consequent of
a rule as present in working memory at the next cycle if all of the antecedents of the rule
are present in working memory at the current cycle. A rule is only enabled if its con-
sequent is not already present in working memory at the current cycle. Communication
is implemented by copying the value representing the presence of a fact in the working
memory of another agent at the current cycle to the corresponding state variable in the
agent performing the copy at the next cycle. Copying is only enabled if the fact to be
copied is not already in the working memory of the agent performing the copy. In the
experiments, we assumed that all rules are believed by all agents in the initial state, and
did not implement copying rules. However, this can be done in a straightforward way
by adding an extra boolean variable to the premises of each rule, and implementing
copying a rule as copying this variable. To express the communication bound, we use
a counter for each agent which is incremented each time a copy action is performed
by the agent. To allow an agent to idle at any cycle, the atoms which update working
memory in each agent are declared to be lazy.

The evolution of the system’s state is described by an initial round followed by an
infinite sequence of update rounds. The variables are initialised to their initial values
in the initial round and new values are assigned to the variables in the subsequent up-
date rounds. At each update round, Mocha non-deterministically chooses between the
enabled rules and copy operations and idling.

Mocha supports hierarchical modelling through composition of modules. A module
is a collection of atoms and a specification of which of the state variables updated

4 We can also leave the initial allocation of facts undetermined, and allow the model checker
to find an allocation which satisfies some property, e.g., that there is a proof which takes less
than 7 steps. However for the experiments reported here, we specified the initial assignment of
facts to agents.

Verifying Time and Communication Costs of Rule-Based Reasoners 11

by those atoms are visible from outside the module. In our encoding, each agent is
represented by a module. A particular distributed reasoning system is then simply a
parallel composition of the appropriate agent modules.

The specification language of Mocha is ATL, which includes CTL. We can express
properties such as ‘agent i may derive belief φ in n steps’ as EXn tr(Biα), where
EXn is EX repeated n times, and tr(Biα) is a state variable encoding of the fact that
α is present in the agent’s working memory (e.g. tr(Biα) = aiAj if α = Aj). To obtain
the actual derivation, we can verify an invariant which states that tr(Biα) is never true,
and use the counterexample trace to show how the system reaches the state where α is
proved. To bound the number of messages used, we can include a bound on the value of
the message counter of one or more agents in the property to be verified. For example,
EXn (tr(Biα)∧tr(cp=0

i ∨cp=1
i)), where tr(cp=0

i ∨cp=1
i) is translated to the statement

ai counter < 2, bounds the number of messages used by agent i to be at most 1. The
encoding of the models and translation of the properties from LCRB into the Mocha
specification language does not involve a significant overhead in comparison to other
model-checking problems.

5 Experimental Results

In this section we describe the results of experiments for different sizes of the binary
tree example (see Figure 2) and different distributions of leaves between the agents.
The experiments were designed to investigate trade-offs between the number of steps
and the number of messages exchanged (a shorter derivation with more messages or a
longer derivation with fewer messages).

First, as a ‘base case’ and also to get an idea of the size of examples which can be
model-checked in a reasonable time using our Mocha encoding, we ran experiments
with just one agent, varying the size of the tree. The results are shown in Figure 3. As
one would expect, the number of steps equals to the total number of rules in the example.
While for our binary tree example the results are unsurprising, in a less uniform rule-
based system such a result may be difficult to establish by a simple inspection of rules.

We then investigated different distributions of leaf facts between the agents. Figure 4
shows the number of derivation steps and the number of messages for each agent for
varying distributions of 8 leaves. Note that there are several optimal (non-dominated)
derivations for the same initial distribution of leaves between the agents. For example,
when agent 1 has all the leaves apart from A8, and agent 2 has A8, the obvious solution
is case 5, where agent 1 copies A8 from agent 2, and then derives the goal in 7 steps, as

Case # leaves # steps
1. 8 7
2. 16 15
3. 32 31
4. 64 63
5. 128 127

Fig. 3. Resource requirements for one agent

12 N. Alechina et al.

Case Agent 1 Agent 2 # steps # messages agent 1 # messages agent 2
1. A1 − A8 7 - -
2. A1 − A7 A8 6 0 3
3. A1 − A7 A8 6 1 2
4. A1 − A7 A8 7 1 1
5. A1 − A7 A8 8 1 0
6. A1 − A6 A7, A8 6 0 2
7. A1 − A6 A7, A8 6 1 1
8. A1 − A6 A7, A8 7 1 0
9. A1 − A4 A5 − A8 5 1 0

10. A1, A3, A5, A7 A2, A4, A6, A8 7 2 3
11. A1, A3, A5, A7 A2, A4, A6, A8 11 0 4

Fig. 4. Resource requirements for optimal derivation in 8 leaf cases

in case 1. This derivation requires 8 time steps and one message. However, the agents
can solve the problem in fewer steps by exchanging more messages. For example, case
2 describes the situation when agent 2 copies A7 from agent 1, while agent 1 derives
B3 (step 1). Then agent 2 derives B4 while agent 1 derives B2 (step 2). Then agent
2 copies B3 from agent 1, while agent 1 derives B1 (step 3). At the next step agent 1
derives C1 and agent 2 derives C2 (step 4). Then agent 2 copies C1 from agent 1 (step
5) and agent 1 idles; finally at step 6 agent 2 derives D1. The effect of the bound on
messages varies with the distribution, as can be seen in cases 10 and 11: if agent 1 has
all the odd leaves and agent 2 all the even leaves, then to derive the goal either requires
7 steps and 5 messages, or 11 steps and 4 messages.

Similar trade-offs are apparent for a problem with 16 leaves, as shown in Figure 5.
However in this case there are a larger number of possible distributions of leaves, and,
in general, more trade-offs for each distribution. For example, when one of the agents
has all the leaves but one, we again have the obvious solution where agent 1 copies
the missing leaf and derives the goal on its own, which takes 16 steps and 1 message
(case 7). In addition there are 15, 14, 13 and 12 step derivations, where the shorter
the derivation the more messages the agents have to exchange (cases 2-7). We also see
interesting trade-offs when agent 2 has two leaves (cases 8-13) or four leaves in the same
subtree (cases 14-17). When agent 1 has 3 leaves in each subtree and agent 4 the fourth
leaf in each subtree, there is again an obvious derivation in which agent 1 copies the
4 missing leaves and completes the derivation in 19 steps and 4 copy operations, and
a more interesting one which takes 13 steps and the agents exchange more messages
(agent 2 copies 3 leaves to complete a part of the proof, and then copies variables from
higher up in the tree). The difference is also more marked in the ‘odd and even’ case
(cases 20 and 21), where agent 1 has all the odd leaves and agent 2 all the even leaves,
where increasing the message bound by 1 reduces the length of the proof by 10 steps.

Although these examples are very simple, they point to the possibility of complex
trade-offs between time and communication bounds in systems of distributed reasoning
agents. For more complex examples, we would anticipate that such trade-offs would
be harder to predict a priori, and our framework would be of correspondingly greater
utility.

Verifying Time and Communication Costs of Rule-Based Reasoners 13

Case Agent 1 Agent 2 # steps # m 1 # m 2
1. A1 − A16 15 - -
2. A1 − A15 A16 12 0 6
3. A1 − A15 A16 12 1 4
4. A1 − A15 A16 13 1 3
5. A1 − A15 A16 14 1 2
6. A1 − A15 A16 15 1 1
7. A1 − A15 A16 16 1 0
8. A1 − A14 A15, A16 11 0 5
9. A1 − A14 A15, A16 11 1 4
10. A1 − A14 A15, A16 12 1 3
11. A1 − A14 A15, A16 13 1 2
12. A1 − A14 A15, A16 14 1 1
13. A1 − A14 A15, A16 15 1 0
14. A1 − A12 A13, A14, A15, A16 11 0 4
15. A1 − A12 A13, A14, A15, A16 11 1 2
16. A1 − A12 A13, A14, A15, A16 12 1 1
17. A1 − A12 A13, A14, A15, A16 13 1 0
18. A1-A3, A5-A7, A9-A11, A13-A15 A4, A8, A12, A16 13 2 6
19. A1-A3, A5-A7, A9-A11, A13-A15 A4, A8, A12, A16 19 4 0
20. A1, A3, A5, A7, A9, A11, A13, A15 A2, A4, A6, A8, A12, A14, A16 13 4 5
21. A1, A3, A5, A7, A9, A11, A13, A15 A2, A4, A6, A8, A12, A14, A16 23 0 8

Fig. 5. Resource requirements for optimal derivation in 16 leaf cases

6 Conclusions

In this paper, we proposed an approach to modelling and verifying resource require-
ments of distributed rule-based reasoners. We showed how to reason about time and
communication bounds in such systems, and defined a sound and complete logic,
LCRB , in which such reasoning can be expressed. The models of the logic can be
encoded as an input to a standard model-checker such as Mocha and properties of inter-
est translated into CTL, without a significant overhead in comparison to other model-
checking problems. We described results of some experiments on a synthetic example
which show interesting trade-offs between time required by the agents to solve the
problem and the number of messages they need to exchange.

References

1. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: MOCHA:
Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–
525. Springer, Heidelberg (1998)

2. Faltings, B., Yokoo, M.: Introduction: Special issue on distributed constraint satisfaction.
Artificial Intelligence 161, 1–5 (2005)

3. Jung, H., Tambe, M.: On communication in solving distributed constraint satisfaction prob-
lems. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS, vol. 3690, pp.
418–429. Springer, Heidelberg (2005)

14 N. Alechina et al.

4. Provan, G.M.: A model-based diagnosis framework for distributed embedded systems. In:
Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.-A. (eds.) Proceedings of the 8th
International Conference on Principles and Knowledge Representation and Reasoning (KR
2002), Toulouse, France, April 22-25, 2002, pp. 341–352. Morgan Kaufmann, San Francisco
(2002)

5. Wooldridge, M., Dunne, P.E.: On the computational complexity of coalitional resource
games. Artif. Intell. 170, 835–871 (2006)

6. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed reasoning in
a peer-to-peer setting. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, ECAI 2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, August 22-27, 2004, pp. 945–946. IOS Press, Amsterdam
(2004)

7. Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and propositional
theories. Artificial Intelligence 162, 49–88 (2005)

8. Albore, A., Alechina, N., Bertoli, P., Ghidini, C., Logan, B., Serafini, L.: Model-checking
memory requirements of resource-bounded reasoners. In: Proceedings of the Twenty-First
National Conference on Artificial Intelligence (AAAI 2006), pp. 213–218. AAAI Press,
Menlo Park (2006)

9. Alechina, N., Bertoli, P., Ghidini, C., Jago, M., Logan, B., Serafini, L.: Verifying space and
time requirements for resource-bounded age nts. In: Stone, P., Weiss, G. (eds.) Proceedings
of the Fifth International Joint Conference on Aut onomous Agents and Multi-Agent Sys-
tems (AAMAS 2006), Hakodate, Japan, pp. 217–219. IEEE Computer Society Press, Los
Alamitos (2006)

10. Alechina, N., Bertoli, P., Ghidini, C., Jago, M., Logan, B., Serafini, L.: Verifying space and
time requirements for resource-bounded agents. In: Edelkamp, S., Lomuscio, A. (eds.) Pro-
ceedings of the Fourth Workshop on Model Checking and Artificial Intelligence (MoChArt
2006), pp. 16–30 (2006)

11. Alechina, N., Jago, M., Logan, B.: Modal logics for communicating rule-based agents. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI 2006), pp. 322–326. IOS Press, Amsterdam
(2006)

12. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time, memory and communication
bounds in systems of reasoning agents. In: Padgham, Parkes, Muller, Parsons (eds.) Pro-
ceedings of the Seventh International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal (May 2008)

13. Ågotnes, T., Alechina, N.: Knowing minimum/maximum n formulae. In: Brewka, G.,
Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European Conference
on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, pp. 317–321. IOS Press, Ams-
terdam (2006)

14. Ågotnes, T., Alechina, N.: The dynamics of syntactic knowledge. Journal of Logic and Com-
putation 17, 83–116 (2007)

15. Reynolds, M.: An axiomatization of full computation tree logic. J. Symb. Log. 66, 1011–
1057 (2001)

16. Lomuscio, A., Raimondi, F.: Mcmas: A model checker for multi-agent systems. In: Her-
manns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Hei-
delberg (2006)

Solving µ-Calculus Parity Games by Symbolic
Planning

Marco Bakera, Stefan Edelkamp, Peter Kissmann, and Clemens D. Renner

Department of Computer Science
Dortmund University of Technology

{firstname.lastname}@cs.tu-dortmund.de

Abstract. This paper applies symbolic planning to solve parity games
equivalent to µ-calculus model checking problems. Compared to explicit
algorithms, state sets are compacted during the analysis. Given that
diam(G) is the diameter of the parity game graph G with node set V ,
for the alternation-free model checking problem with at most one fixpoint
operator, the algorithm computes at most O(diam(G)) partitioned im-
ages. For d alternating fixpoint operators, O(d ·diam(G) ·(|V |+(d−1)

d−1
)d−1)

partitioned images are required in the worst case.
Practical models and properties stem from data-flow analysis, with

problems transformed to parity game graphs, which are then compiled
to a general game playing planner input.

1 Introduction

Symbolic µ-calculus model checking with BDDs [8] has been applied as a general
framework for various verification problems like model checking of LTL and CTL
formulas or testing for bi-simulation equivalence and language containment. One
successful tool is µcke [3]. On the other hand, µ-calculus model checking problems
have been converted to parity games [22]. Different tools like Omega [40] and
MetaGame [43] have been developed.

Specialized game playing is one of the major successes in AI [29]. In gen-
eral game playing [26], strategies are computed domain-independently without
knowing which game is played. Best policies result in perfect play. The oppo-
nents can take actions alternately and independently and attempt to maximize
the outcome. The game description language (GDL) is designed for use in defin-
ing complete information games. It is a subset of first order logic, using the
syntax of the knowledge interchange format (KIF) [18].

This paper attempts to close the gap between general symbolic game play-
ing and model checking, which is based on checking the satisfiability of formu-
las [25,4]. Here, we refer to symbolic exploration in the context of using binary
decision diagrams (BDDs) [6].

For parity games, strategy improvement [39] and progress measure algorithms
[23] are prominent. The latter one has been translated to a symbolic setting
by providing an algorithm with O(|V |d+3 log(|V |)) (ADD) images [7]. In this

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 15–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

16 M. Bakera et al.

paper, we improve the results for the µ-calculus to O(d·diam(G)·(|V |+(d−1)
d−1)d−1)

possibly partitioned (BDD) images, where diam is the diameter of G and d is
the fixpoint alternation depth of the formula. We also provide a theoretically
faster algorithm for full alternation.

The paper is structured as follows. First, we review the symbolic classification
algorithm for two-player zero-sum games that is included in our general game
playing tool. Next, we introduce the basics of game-based model checking and
the transformation of µ-calculus model checking problems to parity games. The
transformation is illustrated with a simple example. We then show how the
classification algorithm solves the problem of parity games that are generated by
formulas in the alternation free µ-calculus. The extension to larger fragments of
the µ-calculus is discussed together with a transformation of an existing explicit-
state strategy synthesis algorithm. Independent proofs of correctness are given
for both algorithms. In the empirical part, we analyze model checking problems
from data-flow analysis and convert them to parity games and general game
playing inputs, on which our planner is applied. Finally, we draw conclusions.

2 Symbolic Analysis of Two-Player Games

A two-player zero-sum game (with perfect information) is given by a set of states
S, move-rules to modify states and two players, called player 0 and player 1. Since
exactly one player is active at any given time, the entire state space of the game
is S × {0, 1}. A game has an initial state and some predicate Goal to determine
whether the game has come to an end. For now, we assume that every path
from the initial state is finite. Assuming optimal play and starting with all lost
goal positions of one player, all previous lost positions have to be computed. A
position is lost if all moves lead to an intermediate position in which the other
player can force a move back to a lost position.

In symbolic search with BDDs, states are manipulated in form of sets by
computing images. The image of a state set States wrt. the transition relation
Trans(x, x′) is equal to computing WeakImage(Trans,States) := ∃x.Trans(x, x′)
∧ States(x), where x and x′ are vectors of Boolean state variables. The result of
this image operation is a representation of all states reachable from States in one
step. In order to repeat the process, we substitute x with x′. In an interleaved rep-
resentation this operation reduces to a textual replacement of node labels in the
BDD. For computing the image, a monolithic transition relation is not required.
Instead, a sub-relation Transa is stored together with every move a ∈ {1, . . . , k}.
The image of a state set States is partitioned into WeakImage(Trans,States) =
∃x.(Trans1(x, x′) ∧ States(x)) ∨ . . . ∨ ∃x.(Transk(x, x′) ∧ States(x)).

In contrast to reachability analysis (which can be invoked to initialize the classi-
fication algorithm), the direction of the symbolic retrograde analysis is backwards.
Fortunately, symbolic backward search causes no problem, as the representation
of all moves is defined as a relation. With symbolic search, two-player games with
perfect information can be classified iteratively using BDDs. For it we further-
more need to calculate strong preimages: StrongPreImage(Trans,States) := ∀x′.

Solving µ-Calculus Parity Games by Symbolic Planning 17

Algorithm 1. Symbolic classification of two-player zero-sum games
Data: Transition Relation Trans, Initial State Set Init, Goal Sets Goal, Leaf

evaluation Eval.
Result: Four Classification Sets.

(Reached, L(0), L(1)) ← Reachable(Init,Trans, Goal,Eval);1

foreach i ∈ {0, 1} do2

New ← Lose(i) ← L(i);3

Win(1 − i) ← ⊥;4

repeat5

Weak ← Move(1 − i) ∧ WeakPreImage(Trans,New) ∧ Reached;6

Win(1 − i) ← Win(1 − i) ∨ Weak;7

Strong ← Move(i) ∧ StrongPreImage(Trans,Win(1 − i)) ∧ Reached;8

New ← Strong ∧ ¬Lose(i);9

Lose(i) ← Lose(i) ∨ New;10

until New = ⊥ ;11

return (Win(0),Lose(0), Win(1),Lose(1));12

Trans(x, x′) ⇒ States(x′). Fortunately, with it a partitioned computation also
applies. Since StrongPreImage(Trans,States) = ¬WeakPreImage(Trans,¬States)
with WeakPreImage(Trans,States) := ∃x′.Trans(x, x′) ∧ States(x′), we can in-
duce StrongPreImage(Trans,States) = ∀x′.(Trans1(x, x′) ⇒ States(x′)) ∧ . . . ∧
∀x′.(Transk(x, x′) ⇒ States(x′)).

Algorithm 1 shows the classification algorithm for computing strategies in
turn-taking games as mentioned in [12]. The idea of attractors, however, goes
back to [44]. First of all, we calculate all the reachable states through forward
reachability analysis; a backward exploration can result in states that are un-
reachable from the initial state. Next, we construct four sets: The lost states
Lose(i) for each player and the won states Win(i) for each player. The lost
states for player i are initialized with the BDDs L(i). From these we only take
those goal states that are reachable. Won states are initialized with the BDD ⊥
for the false function, representing the empty set. Now we construct the prede-
cessors of the lost states. Here, the last move has to be made by player (1 − i),
the opponent of player i; this predicate is denoted by Move(1− i). These prede-
cessors are then added to the won states of the opponent. Starting from those
won states we calculate their predecessors. Here, the last move has to be made
by the current player i. These new states are added to the lost states. If there are
no new states at this point, the calculation terminates (for the current player).

Once the algorithm has ended for both players, we can simply check in which
set the initial state resides. If it is in one of the sets of won states, the correspond-
ing player can assure a victory; if it is in one of the lost states, the opponent can
assure victory (independent of the other player’s moves). If the initial state is in
none of these four sets, a finite game surely ends in a draw – always assuming
both players perform optimal play.

The number of images for determining all reachable states and the number of
images for their classification is linear in the maximal BFS layer, known as the

18 M. Bakera et al.

radius of the problem r. By introducing no-ops, one can transform any (non si-
multaneous) game into a turn-taking game by at most doubling the game graph.
For games with loops and no draws, the classification algorithm (started for each
player) still might leave a set of positions unclassified. These sets correspond to
an infinite game play without further progress. Note that by applying retrograde
analysis, some states may be classified despite the fact that they lie on a cycle.

Extensions of the algorithm to games with arbitrary costs are proposed
in [14,15].

3 Preliminaries: Model Checking Based on Parity Games

Model checking is a procedure for the automated verification of software and
hardware systems. The system model (e.g., in form of a Kripke transition sys-
tem1) is checked for the validity of a formula in temporal logic.

3.1 µ-Calculus Model Checking

Modal µ-calculus formulas φ are built from propositions (basic properties of the
system’s states) p ∈ AP, standard Boolean operators, 〈a〉φ (possibility) and [a]φ
(necessity) modal operators on actions a ∈ A, as well as minimal and maximal
fixpoint operators µX.φ and νX.φ. The µ and ν operators act as binders for
fixpoint variables. The following (minimal) syntax denotes the modal µ-calculus
with X being a fixpoint variable (the dual operators can be derived from this
base set of operators):

φ ::= true | p | ¬φ | φ1 ∨ φ2 | 〈a〉φ | X | µX.φ

For brevity, we write 〈·〉φ :=
∨

a∈A〈a〉φ and [·]φ :=
∧

a∈A[a]φ.

3.2 Parity Games

A parity game graph G = (V�, V�, E, p) is composed of two disjoint sets of
vertices V� and V�, an edge set E ⊆ V × V , where V = V� ∪ V�, and a priority
function p : V → {1, 2, . . . , d}, for some integer d, defined on its vertices. The
game is played by two players: diamond and box. The game starts at some vertex
v0 ∈ V . The players construct a possibly infinite path as follows: Let u be the
last vertex added so far to the path. If u ∈ V�, then diamond chooses an edge
(u, v) ∈ E. Otherwise, if u ∈ V�, then box chooses an edge (u, v) ∈ E. In either
case, vertex v is added to the path, and a new edge is then chosen by either
diamond or box. Let v0, v1, . . . be the path constructed by the two players, and
p(v0), p(v1), . . . the sequence of the priorities of the vertices on the path. Diamond
wins the game if the path ends in a leaf node in V� or the smallest priority seen
infinitely many times is even, while box wins otherwise.
1 The model M := (S, A,AP,→, I) is composed of a set of states S, a set of actions

A (from labeled transition systems), a set of atomic propositions AP (from Kripke
structures), a transition relation → ⊆ S × A × S, and an interpretation function
I : S → 2AP (assigning propositions to states).

Solving µ-Calculus Parity Games by Symbolic Planning 19

4 Solving Parity Games for Alternation-Free Formulas

It has been shown that model checking systems with property specification in
the µ-calculus is equivalent to solving a parity game, with the maximal priority
roughly corresponding to the alternation depth of the µ-formula φ [9]. For each
play there is a unique partitioning of the parity game in two winning sets, see
for example [16].

Local model checking approaches like [9] generate a node for each state in
the system and each sub-formula of φ. In the following we generally assume
alternation-free µ-formulas. The transformation of ν-formulas is dual (changing
the roles of box and diamond).

We transform the model and the µ-calculus formula into a parity game as
implemented in the tool GEAR [1,2]. Figure 1 shows a simple model with respect
to an alternation-free µ-calculus formula µX.(good∨ [·]X) and its translation to
a parity game graph (nodes are of type either box or diamond, node priorities
are all 1). The color shading will be explained below.

Marking a node won corresponds to a definite win for player diamond, marking
it lost corresponds to a definite win for player box (assuming optimal play).
For the recursive winning set computation we may apply the following rules
(assuming player diamond’s point of view).

– v is a � node
• v is a leaf ⇒ v is marked lost

µX.(good ∨ [·]X)

[·]X

X

good ∨ [·]X

good

good

Fig. 1. A model (bottom) wrt. the alternation-free µ-calculus formula µX.(good∨ [·]X)
and the classified parity game graph (top). Here, good is an atomic proposition.

20 M. Bakera et al.

v1 v2
e1

v3

e2 e3

1 0

2

Fig. 2. Example game graph (left) and backward BFS layers (right)

• there is a successor u of v marked won ⇒ mark v won
• all successors u of v are marked lost ⇒ mark v lost

– v is a � node
• v is a leaf ⇒ v is marked won
• there is a successor u of v marked lost ⇒ mark v lost
• all successors u of v are won ⇒ mark v won

If there is a lasso in the graph, it is not immediate to determine a strategy de-
fined as a subset of edges completely classifying optimal play of player diamond.
Consider the parity game graph given in Fig. 2 (left). All states belong to the
diamond player’s winning set, but if he chooses to take the vertical edge leading
to the state on the bottom of the graph, the box player will win, as the game
results in an infinite cycle, which is won by the box player.

The idea to remedy this is to store the backward BFS layer each state was
classified in. The player then has to take an edge that leads to a state that was
detected earlier in the backward search and thus is stored in a smaller layer
(smaller by 1). In the example game in Fig. 2 (right), the numbers in the nodes
denote the backward layers. Following the strategy to take only actions to layers
with smaller numbers, the diamond player easily wins – he just has to take the
horizontal edge to the terminal state.

Theorem 1. For the case of alternation-free parity games, given the backward
layers of the classification from the calculation of the winning sets, it is possible
to calculate the diamond player’s strategy.

Proof. Let Li denote the set of states found in the ith layer of the backward
search and W� =

⋃
i>0 Li the winning set of the diamond player as determined

by the algorithm. We define the optimal strategy for player diamond as E� :=
{(u, v) ∈W� ×W� | ∃i > 0. u ∈ Li ∧ v ∈ Li−1}.

We prove the correctness of this by induction on the BFS layer i > 0. For the
states from the set L1, it is clear that the diamond player will win by taking the
edge to the terminal state (within L0). For the states in Li, the player can take
an edge leading to a state in Li−1. From there, we inductively already have a
strategy.

Formulas in Hennessy-Milner logic [20] have no fixpoint operators. The cor-
responding game is finite and the classification algorithm will end up with a

Solving µ-Calculus Parity Games by Symbolic Planning 21

complete strategy for both players. The search for a strategy in a parity game
matches the one in a two-player zero-sum game given that one player is box and
the other player is diamond.

As only one reachability step and one call to the classification algorithm
is executed, backward analysis is restricted to the reachable set in form of a
DAG which is traversed bottom-up. Thus we obtain that the symbolic classi-
fication algorithm for parity games arising from model checking problems with
temporal logic properties in Hennessy-Milner logic is correct and amounts to
O(radius(G, Init)) possibly partitioned (BDD) images, where radius(G, Init) is
the maximum BFS-layer of the forward search of G starting from Init.

If one µ fixpoint operator is present in the according parity game, we have
to search for strategies in which diamond must avoid a cycle. Otherwise, box
can establish a cycle and wins the game. The translation to an ordinary game
graph for cyclic solutions may become involved, as infinite games are played. In
order to detect cycles, one might try adopting the state recording method for
transforming safety into liveness [32]. However, an application is not immediate.

Next, we recognize that all states that remain unmarked lie on a cycle that
player diamond cannot avoid; according to the winning condition, these states
can be marked lost. Figure 1 displays the result of such a complete classification
of the parity game graph. Black shading indicates that player box wins from
there, white indicates nodes won by player diamond and gray denotes nodes
won by player box due to an infinite cycle. The respective other player loses due
to the zero-sum character of the game.

For alternation-free formulas, all priorities in the graph are the same. W.l.o.g.
we consider µ formulas only, such that all priorities are 1 and player box wins
the game (assuming optimal play) if he2 can force player diamond to stay on
a cycle. The remaining unclassified nodes all lie on a lasso3. Moreover, we need
to show that player diamond cannot escape the cycle unless he navigates to
some black node (where he loses). Let us assume that one of the remaining
nodes is not on a lasso. This implies that the node would be on a path to a
sink that can be marked won for one of the players. Therefore, the node itself
could have been marked as well and would not be unclassified, contrary to our
assumption.

Why can diamond not escape from this cycle (lasso)? Any diamond node v on
the cycle must have at least one unclassified successor. It cannot have a white
successor (marked ’won by diamond’) because in that case v would have been
marked ’won by diamond’ as well. Diamond would not pick a black successor
as this implies that he will lose eventually. The case for player box is analogous
(no black successors, white successors are avoided). Therefore, only unclassified
nodes are played. As an infinite path in a finite graph will eventually lead to
a cycle, the unclassified nodes can be marked black. Therefore, all nodes are
classified.

2 For the sake of simplicity, we stay with he and him instead of he / she and
him / her.

3 A lasso is a cycle and a prefix of nodes (stem) leading to that cycle.

22 M. Bakera et al.

As only one reachability analysis and one call to the classification algorithm
is executed, and given that backward analysis is restricted to the reachable set,
the complexity of the algorithm in the number of images is linear in diam(G)
and diam(G−1) = diam(G), where G−1 is the inverse graph of G (all edges are
reversed).

Therefore, we observe that the symbolic classification algorithm for parity
games arising from model checking problems wrt. temporal logic properties in
alternation-free µ-calculus formulas is correct and amounts to O(diam(G)) pos-
sibly partitioned (BDD) images, where diam is the maximal shortest path length
between every two states.

5 Extension to Full Alternation Depth

We now address an extension of our symbolic planning approach to cover parity
games for µ-calculus model checking problems with alternation. No polynomial-
time algorithm is to be expected, since according to [41] only the solution of
games with so-called Büchi winning condition can currently be done in poly-
nomial time. There are sub-exponential algorithms [5,24] with a complexity of
nO(
√

n/ log n), which are to be preferred only if the alternation depth is larger
than Ω(

√
n). Even specialized problems like finite-state controller synthesis for

r request-response constraints [41] require an exponential time algorithm in r.
In adaptation of the notation used in the literature [42], we define the alterna-

tion depth d as the number of alternations between the fixpoint operators ν and
µ plus 1 (resulting in the counter-intuitive result that alternation-free µ-calculus
formulas have a value of d = 1).

In the following, we devise an efficient symbolic algorithm following the explicit-
state strategy synthesis algorithm documented in [42], which re-assembles ideas
from [9] and [28]. The strategy synthesis algorithm has a time complexity of
O(|E|(|V |/d)d−1) (assuming a uniform distribution of priorities). Compared to
the algorithm of [23], the exponent d− 1 matches the value �d/2� as obtained in
the small progress measure algorithm for d = 2 and d = 3. With further refine-
ments, the results of [42] indicate that for these cases the strategy improvement
algorithm will be faster for formulas with small alternation depth (which appear
in practice).

Let Vi be the set of nodes for player i. The strategy synthesis algorithm relies
on an iterative calculation of forcing sets. A forcing set for some subset V ′ ⊆ V
towards some fixed node set A ⊆ V for player i ∈ {0, 1} is defined by the
condition that for each node u in V ′ player i can force player (1 − i) to play
towards the node set A. A maximal forcing set from V ′ to A for player i does
not include an edge (v, w) with v ∈ V ′ ∩ V1−i and w ∈ V \ (V ′ ∪A).

On acyclic game graphs, the computation of winning sets reduces to the com-
putation of forcing sets as mentioned above. Otherwise, cycles are handled in
the synthesis algorithm 5.

First, the nodes are partitioned with respect to their priority (l. 5). There is
no need for deeper recursion and refinement of the resulting winning sets when

Solving µ-Calculus Parity Games by Symbolic Planning 23

Algorithm 2. Main
Result: Winning Sets W0 and W1.

(R, W0, W1) ← Initialize();1

(W0, W1) ← Synthesize(R ∧ ¬(W0 ∨ W1));2

return (W0, W1);3

Algorithm 3. Initialize
Result: Reachable set R, winning Sets W0 and W1.

(R, W1, W0) ← Reachable(Init,Trans,Goal, Eval);1

W0 ← Force(R, W0, 0);2

W1 ← Force(R, W1, 1);3

return (R, W0, W1);4

all nodes share the same priority. In this case, winning sets are computed that
respect the player that is currently predominating the game when considering
priorities (ll. 5-5). Afterwards, an assumption of the winning set for the other
player is made (ll. 5-5). The subsequent repeat loop tries to consolidate this
assumption (ll. 5-5). The partitioning that emerges either breaks down into ex-
actly two or more classes of nodes with the same priority. In the former case,
the assumption is computed as in the cycle-free case (ll. 5-5). The latter case
requires refining the assumption – by a new assumption based on the current
one – in the recursive call (ll. 5-5). The remainder of the loop (ll. 5-5) collects
the results and assigns them to the appropriate player until there is no more
need for refinement (l. 5).

Following the presentation in [42], we show symbolic equivalents of the al-
gorithms Main (Algorithm 2), Initialize (Algorithm 3), Force, (Algorithm 4),
and Synthesize (Algorithm 5). For the ease of presentation, we assume that the
parity game graph is consistent, such that priorities are consecutive (there is
no gap). For game graphs that are translated from model checking tasks, this
assumption is necessarily true. We further assume the transition relation Trans,
the initial state set Init, the goal predicate Goal, the priority evaluation function
Priority, and the leaf evaluation predicate Eval to be globally accessible.

After initialization, the synthesis algorithm refers to computing the forcing
sets and a recursive call to itself. As shown before, all explicit state operations
to determine the winning sets for both players can be performed symbolically.
The initialization that computes the maximal forcing set for both players on
the entire graph towards the terminal nodes matches the classification in Algo-
rithm 1. For computing the forcing sets, the classification algorithm needs to be
executed only for one player. Computing the subgraph can either be done in the
game description language by specifying different graph and goal conditions (see
Appendix B for an example) or via restricting the disjunctive representation of
the transition relation to the part that corresponds to the remaining edges.

24 M. Bakera et al.

Algorithm 4. Force
Data: Set V ′, Target Set A, Player i.
Result: Forcing Set F .

Trans′ ← Trans ∧ (V ′ × (V ′ ∪ A));1

New ← Lose(1 − i) ← (A ∧ Move(1 − i));2

Win(i) ← (A ∧ Move(i));3

repeat4

Weak ← Move(i) ∧ WeakPreImage(Trans′,New) ∧ V ′;5

Win(i) ← Win(i) ∨ Weak;6

Strong ← Move(1 − i) ∧ StrongPreImage(Trans′,Win(i)) ∧ V ′;7

New ← Strong ∧ ¬Lose(1 − i);8

Lose(1 − i) ← Lose(1 − i) ∨ New;9

until (New = ⊥) ;10

return (Lose(1 − i) ∨ Win(i));11

Lemma 1. The worst-case number of partitioned images of the symbolic classifi-
cation algorithm for parity games with d alternating fixpoint operators is bounded
by 2 · diam(G) · d ·∏d−1

k=1(|Levelk|+ 1).

Proof. Let T (G) denote the running time for the synthesis algorithms on the graph
with V = Support, for the number of images we have T (G) = 2·diam(G), if d = 1.

Given that Upper ∪ Lower ⊆ Layer and W1 ⊆ Layer we obtain a recursive
equation for the asymptotic complexity of

T (G) = 1 +
r∑

j=0

2 · diam(G|Layer
j
) + T (G|Upper

j
)

images, where r is the number of iterations of the repeat loop, Layerj is the
set representing Layer and Upperj is the set representing Upper ∧ ¬W in the
j-th iteration. Both calls to the Force function induce at most diam(G|Layerj

)

many images and the plus 1 is due to the weak pre-image in line 5. G|V ′ is the
subgraph restricted to V ′ ⊆ V , more precisely G|V ′ := (V ′, E ∩ (V ′ × V ′)).

The next step is to rewrite the equation to avoid recursion. Following the
inductive argument in [42], see Appendix A, we have

T (G) ≤ 2 ·
d−1∑

j=1

diam(G) ·
j∏

k=1

(|Levelk|+ 1)

many images in the worst case, where Levelk is the set of nodes in graph G with
priority k.

T (G) ≤ 2 ·
d−1∑

j=1

diam(G) ·
d−1∏

k=1

(|Levelk|+ 1)

Solving µ-Calculus Parity Games by Symbolic Planning 25

Algorithm 5. Synthesize
Data: Node Set Support.
Result: Winning Sets Z0, Z1.

if (Support = ⊥) then1

return (⊥,⊥);2

m ← MinPriority(Priority ∧ Support);3

m′ ← m + 1;4

i ← (m mod 2);5

if MaxPriority(Priority ∧ Support) = m then6

if (i = 0) then7

return (Support,⊥);8

else9

return (⊥,Support);10

Layers ← Support;11

Lower ← Priority<m′ ∧ Layers;12

Upper ← Support ∧ ¬Lower;13

repeat14

if (Lower = ⊥) then15

W ← Force(Upper,Lower, i);16

else17

W ← ⊥;18

if (i = 0) then19

(W0, W1) ← Synthesize(Upper ∧ ¬W);20

else21

(W1, W0) ← Synthesize(Upper ∧ ¬W);22

Upper ← Upper ∧ ¬W1;23

Layers ← Layers ∧ ¬W1;24

Z1 ← Z1 ∨ W1;25

if (Lower 	= ⊥∧ W1 	= ⊥) then26

W ′ ← Force(Layers, W1, 1 − i) ;27

Lower ← Lower ∧ ¬W ′;28

Upper ← Upper ∧ ¬W ′;29

Layers ← Layers ∧ ¬W ′;30

else31

W ′ ← ⊥;32

until (W ′ = ⊥) ;33

Z0 ← W ∨ W0 ∨ (Lower ∧ Move(i) ∧ WeakPreImage(Trans, W ∨ W0 ∨ Lower));34

if (i = 0) then35

return (Z0, Z1);36

else37

return (Z1, Z0);38

≤ 2 · diam(G) · d ·
d−1∏

k=1

(|Levelk|+ 1).

26 M. Bakera et al.

Theorem 2. The symbolic classification algorithm for parity games arising
from model checking problems wrt. temporal logic properties in µ-calculus for-
mulas with d alternating fixpoint operators is correct. For d > 1, the worst-case
number of partitioned images is O(d · diam(G) · (|V |+(d−1)

d−1)d−1)).

Proof. The correctness of the algorithm is inherited from the correctness of the
explicit-state variant documented in [42].

The number of images for initialization is O(radius(G, Init)) for computing
the reachable set and O(diam(G)) for computing the two forcing sets. Let T (G)
denote the running time for the synthesis algorithms on the graph with V =
Support.

For d > 1, we have

T (G) ≤ 2 · diam(G) · d ·
d−1∏

k=1

(|Levelk|+ 1)

≤ 2 · diam(G) · d ·
(∑d−1

k=1(|Levelk|+ 1)
d− 1

)d−1

= 2 · diam(G) · d ·
(|V |+ (d− 1)

d− 1

)d−1

partitioned images in the worst case. For the penultimate step we used the
inequality for the geometric wrt. the arithmetic mean.

The worst-case number of BDD images beats the value of O(|V |d+3 log(|V |))
images obtained by [7]. For the important subclass d = 2, our algorithm reduces
to only O(diam(G) · |V |) (BDD) images compared to O(|V |5 log(|V |)) (ADD)
images [7].

6 Empirical Analysis

We draw experiments with our general game playing planning tool [14], which
itself uses CUDD4 by Fabio Somenzi as the underlying BDD library. The models
and formulas were generated from data-flow analysis problems and translated
into parity game graphs using GEAR. The export format of GEAR was adapted
to suit the game-based planner. Moreover, we introduced no-operators to allow
the game to be turn-taking. Parts of the specification of the GDDL encoding5

for the example problem is provided in appendix B.
One important fact about our tool is the minimization of the state encoding

by building groups of mutually exclusive propositions [13,19]. As a result, we can
apply a binary state encoding. This is the key to a space-efficient representation
of the states, since in a BDD many states share nodes and exponentially many
nodes may be represented in a polynomially sized graph.
4 http://vlsi.colorado.edu/∼fabio/CUDD
5 GDDL is a language introduced by [14]; a hybrid of GDL (Game Description Lan-

guage) and PDDL (Planning Domain Definition Language).

Solving µ-Calculus Parity Games by Symbolic Planning 27

6.1 Data-Flow Analysis as Model Checking

Data-flow analysis (DFA) is one step at the compile time of a program, prior to
its optimization. Many DFA demands have been transformed into model check-
ing problems [34]. The main idea is to interpret control flow graphs as Kripke
transition systems with program steps labeling nodes and edges. Basic proposi-
tions at a node are isDefined(x), denoting that variable x is written or changed,
and isUsed(x), denoting that variable x is read. A variable is live if it is used
and was not redefined before – in terms of temporal logics this can be expressed
as µX.isUsed(x) ∨ ¬isDefined(x) ∧ 〈·〉X .

Many such formulas are free of alternation as shown in [31]. This makes data-
flow analysis via model checking a good testbed for our search algorithms.

6.2 Experiments

We have performed three experiments, obtaining matching results wrt. GEAR.
The first example is based on the Java byte code of an implementation of

the Fast Fourier Transformation. The byte code has been transformed into a
control-flow graph using Soot6. For its liveness analysis, 749 states are reachable
in 366 steps. For these, 141 BDD nodes are needed. The classification algorithm
can classify 517 states: 343 states are won for the diamond player, which are
represented by 155 BDD nodes. These are found after 39 iterations through the
loop. For the box player, 174 states are classified as won. Here, 11 iterations
and 112 BDD nodes are needed. These states contain the initial state, i.e., it is
surely won for the box player. The remaining 232 states are not classified by our
algorithm, so they must lie on one or more lassos from which the diamond player
cannot escape. Thus, they are also won for the box player. The total runtime of
the forward and backward analysis was 0.8 seconds.

The second example consists of automatically generated code as described in
[21], also used as an input to Soot. We expect that this leaves more room for
data-flow analysis wrt. possible optimizations. We reached a total of 4, 590 states
after 3, 086 steps and need 619 BDD nodes to represent them all. In this case, all
states are also reachable in backward direction: The algorithm classifies 3, 888
as won for the diamond player. For these, it needs 128 iterations and 770 BDD
nodes. Within two steps it classifies the remaining 702 states as won for the
box player using 350 BDD nodes. The initial state is contained within the set of
states won for the box player. The total runtime for the forward and backward
analysis was 24 seconds.

Instead of source code, the third example for the DFA-MC paradigm consid-
ers process graphs edited by the jABC tool7, where a model is converted to a
characteristic formula, which is checked together with a failure specification. The
explicit model had 49,141 nodes in the parity graph. The reachability analysis
converts the graph into a turn-taking game with 96,616 states and 13,110 BDD
nodes, generated in 63 steps. The number of states (BDD nodes) that are won

6 http://www.sable.mcgill.ca/soot
7 http://jabc.cs.uni-dortmund.de

28 M. Bakera et al.

for diamond are 22,682 (12,198); the number of states directly won by player
box are 26,510 (12,736). The remaining 43,421 non-classified states correspond
to the situation that box can enforce player diamond to stay on a cycle. The
entire classification took 123 seconds.

7 Conclusion and Discussion

We have seen a fruitful approach for the symbolic analysis of parity games that
arise when transforming µ-calculus model checking problems. The algorithms for
the Hennessy-Milner and alternation-free µ-calculus are efficient and have been
implemented. Testbeds arose during data-flow analysis. Moreover, an implemen-
tation for formulas with large alternation depth has been presented.

The historical roots of the work are as follows. As a winning condition for
games, the parity condition was already considered by Emerson and Jutla [16].
It was shown that parity games always result in memoryless winning strate-
gies – determinicity of parity games follows directly from the determinicity of
Borel games. The algorithmic presentation of McNaughton [28] and the early
analyses of Zielonka [44] lay the basis for algorithms based on recursive reach-
ability. No implementation was provided. Thomas [37] realized the importance
of parity games. One of the first implementations is the (explicit-state) fixpoint
analysis machine [35], which provides a tool based on [9], which was in turn
the basis for (explicit-state) strategy synthesis algorithm by [42]. For uniform
priorities, [42] shows an advantage wrt. FAM, and d ≤ 3 (the practical cases)
an advantage to Jurdzinski [42]. There are two recent improvements for enu-
meration we are aware of: the O(|E| · |V |d/3) algorithm by [30], and an accel-
eration for the 3-priorities [11]. A distributed implementation for parity games
shows a rather direct adaption of Jurdzinski’s small progress measurement al-
gorithm for multi-core architectures based on different state-space partitioning
functions [38].

Applying symbolic game playing has different advantages. First, the represen-
tation of the winning sets (e.g., in a binary encoding of the nodes) is implicit
and can be much smaller than the explicit one. Wrt. space consumption for
progress measures, no vectors have to be stored together with each state. More-
over, the analysis can be extended to implicit parity game graphs. Last but
not least, BDDs show advantages to SAT and QBF solvers in combinatorial
games [27].

Given a symbolic parity game graph representation in a BDD, the above al-
gorithm is capable of solving much larger problems. In other words, we cover a
more powerful input language, which allows the succinct specification of nontriv-
ial game graphs using Boolean formulas. So far we have extracted explicit-state
models from the GEAR model checker [1,2]. In the future we will likely inte-
grate our implementation to the global model checker in the jABC framework
to access the model checking problem, prior to the explicit graph construction.

Solving µ-Calculus Parity Games by Symbolic Planning 29

References

1. Bakera, M., Margaria, T., Renner, C.D., Steffen, B.: Game-based model checking
for reliable autonomy in space. Journal of the American Institute of Aeronautics
and Astronautics (AIAA) (to appear)

2. Bakera, M., Margaria, T., Renner, C.D., Steffen, B.: Verification, diagnosis and
adaptation: Tool supported enhancement of the model-driven verification process.
In: Revue des Nouvelles Technologies de Information (RNTI-SM-1), pp. 85–98 (to
appear) ISBN 2854288148

3. Biere, A.: µcke – efficient µ-calculus model checking. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 468–471. Springer, Heidelberg (1997)

4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. Tools and Algorithms for the Construction and Analysis of
Systems (1999)

5. Björklund, H., Sandberg, S., Vorobyov, S.G.: A discrete subexponential algorithm
for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp.
663–674. Springer, Heidelberg (2003)

6. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In: ACM/IEEE Design Automation Conference, pp. 688–694 (1985)

7. Bustan, D., Kupferman, O., Vardi, M.Y.: A measured collapse of the modal µ-
calculus alternation hierarchy. In: Diekert, V., Habib, M. (eds.) STACS 2004.
LNCS, vol. 2996, pp. 522–533. Springer, Heidelberg (2004)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

9. Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal µ-
calculus. Theoretical Computer Science 663, 410–422 (1992)

10. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design 2(2), 121–
147 (1993)

11. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with
an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

12. Edelkamp, S.: Symbolic exploration in two-player games: Preliminary results. In:
AIPS-Workshop on Model Checking, pp. 40–48 (2002)

13. Edelkamp, S., Helmert, M.: Exhibiting knowledge in planning problems to min-
imize state encoding length. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS,
vol. 1809, pp. 135–147. Springer, Heidelberg (2000)

14. Edelkamp, S., Kissmann, P.: Symbolic exploration for general game playing in
PDDL. In: ICAPS-Workshop on Planning in Games (2007)

15. Edelkamp, S., Kissmann, P.: Symbolic classification of general two-player games.
In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R.
(eds.) KI 2008. LNCS, vol. 5243, pp. 185–192. Springer, Heidelberg (2008)

16. Emerson, E.A., Jutla, C.S.: Tree automata µ-calculus and determinacy. In: Foun-
dations of Computer Science, pp. 368–377 (1991)

17. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the proposi-
tional mu-calculus. In: Symposium on Logic in Computer Science, pp. 267–278
(1986)

18. Genesereth, M.R.: Knowledge interchange format. In: Second International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 238–249
(1991)

30 M. Bakera et al.

19. Helmert, M.: A planning heuristic based on causal graph analysis. In: International
Conference on Automated Planning and Scheduling, pp. 161–170 (2004)

20. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980)

21. Jørges, S., Kubczak, C., Pageau, F., Margaria, T.: Model driven design of reliable
robot control programs using the jabc. In: 4th IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems (EASe), March 2007, pp.
137–148 (2007)

22. Jurdzinski, M.: Deciding the winner in parity games is UP∩co-UP. Information
Processing Letters 68(3), 119–124 (1998)

23. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

24. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: SODA, pp. 117–123 (2006)

25. Kautz, H., Selman, B.: Pushing the envelope: Planning propositional logic, and
stochastic search. In: European Conference on Artificial Intelligence, pp. 1194–
1201 (1996)

26. Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game de-
scription language specification. Technical Report LG-2006-01, Stanford Logic
Group (April 2006)

27. Madhusudan, P., Nam, W., Alur, R.: Symbolic computational techniques for solv-
ing games. Electronic Notes in Theoretical Computer Science 89(4) (2004)

28. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and
Applied Logic 65, 129–284 (1993)

29. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Solving checkers. In: International Joint Conference on Artificial
Intelligence, pp. 292–297 (2005)

30. Schewe, S.: Solving parity games in big steps. In: CAV, pp. 449–460 (2007)
31. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.

In: Conference Record of POPL 1998: The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Diego, California, Janary
19–21, 1998, pp. 38–48 (1998)

32. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. STTT 5(2-3), 185–204 (2004)

33. Seidl, H.: Fast and simple nested fixpoints. Information Processing Letters 59(6),
119–124 (1996)

34. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)

35. Steffen, B., Classen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis
machine. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp.
72–87. Springer, Heidelberg (1995)

36. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

37. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

38. van de Pol, J., Weber, M.: A multi-core solver for parity games. In: PDMC 2008
(to appear, 2008)

Solving µ-Calculus Parity Games by Symbolic Planning 31

39. Vöge, J., Jurdzinski, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

40. Vöge, J., Ulbrand, S., Matz, O., Buhrke, N.: The automata theory package omega.
In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 228–231. Springer,
Heidelberg (1998)

41. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state con-
trollers for request-response specifications. In: H. Ibarra, O., Dang, Z. (eds.) CIAA
2003. LNCS, vol. 2759, pp. 11–22. Springer, Heidelberg (2003)

42. Yoo, H.: Fehlerdiagnose beim Model-Checking durch animierte Strategiesynthese.
PhD thesis, Universität Dortmund (2007)

43. Yoo, H., Müller-Olm, M.: MetaGame: An animation tool for model-checking
games. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
163–167. Springer, Heidelberg (2004)

44. Zielonka, W.: Infinite games on finite coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)

32 M. Bakera et al.

A Compiling Away the Recursion

We have to show that

T (G) = 1 +
r∑

j=0

2 · diam(G|Layerj
) + T (G|Upperj

).

induces

T (G) ≤ 2 ·
d−1∑

j=1

diam(G)
j∏

k=1

(|Levelk|+ 1)

Proof. For the induction we observe that r ≤ |Lower0| (at least a one-element
set is processed in each iteration) and G|Layer|Lower0| = ∅ (no forcing sets in the
last iteration) we induce

T (G) ≤ 1 +
|Lower0|∑

j=0

2 · diam(G|Layerj
) +

|Lower0|∑

j=0

T (G|Upperj
)

≤ 1 +
|Lower0|−1∑

j=0

2 · diam(G) +
|Lower0|∑

j=0

T (G|Upperj
)

≤ 1 + |Lower0| · 2 · diam(G) +
|Lower0|∑

j=0

T (G|Upperj
)

We additionally observe that Level1 = Lower0 and that
∑|Lower0|

j=0 T (G|Upperj
)

is bounded by (|Lower0| + 1) · T (G|Uppers
) for some 0 ≤ s ≤ |Lower0|. Hence,

by inserting the induction hypothesis (Ind.) we have

T (G) ≤ 1 + |Level1| · 2 · diam(G) +
|Level1|∑

j=0

T (G|Uppers
)

≤ 1 + |Level1| · 2 · diam(G) + (|Level1|+ 1) · T (G|Uppers
)

Ind.≤ (1+|Level1|)· 2 · diam(G)+(|Level1|+1)· 2 ·
d−1∑

j=2

diam(G)
j∏

k=2

(|Levelk|+ 1)

≤ (1 + |Level1|) · 2 · diam(G) + 2 ·
d−1∑

j=2

diam(G)
j∏

k=1

(|Levelk|+ 1)

≤ 2 ·
d−1∑

j=1

diam(G)
j∏

k=1

(|Levelk|+ 1)

Solving µ-Calculus Parity Games by Symbolic Planning 33

B GDDL Encoding

The parity games have been translated to GDDL. The domain model for the
problem looks as follows.

(define (domain alternation-free)

(:types state role)

(:predicates (at ?s - state) (connect ?s1 ?s2 - state)

(box ?s - state) (diamond ?s - state) (control ?player - role))

(:action move-box

:parameters (?player - role ?s1 ?s2 - state ?nextplayer - role)

:precondition (and (at ?s1)(connect ?s1 ?s2)(control ?player) (box ?s1)

(= ?player box_player)(not (= ?player ?nextplayer)))

:effect (and (not (at ?s1)) (at ?s2)

(not (control ?player))(control ?nextplayer)))

(:action noop-box

:parameters (?player - role ?s - state ?nextplayer - role)

:precondition (and (at ?s) (box ?s) (control ?player)

(= ?player diamond_player)(not (= ?player ?nextplayer)))

:effect (and (not (control ?player)) (control ?nextplayer)))

(:action move-diamond ...)

(:action noop-diamond ...)

(:lost (?player - role)

(exists (?s - state) (and (at ?s) (= ?player diamond_player)

(not (control ?player)))))

(:won (?player - role)

(exists (?s - state) (and (at ?s) (= ?player diamond_player)

(not (control ?player)))))

(:lost ...)

(:won ...)

The example problem from Fig. 1 is encoded as follows.

(define (problem check)

(:domain modelcheck)

(:objects box_player diamond_player - role

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 - state)

(:init

(diamond s1) (diamond s6) (diamond s11) (diamond s2) (diamond s7)

(diamond s12) (diamond s3) (diamond s8) (diamond s13) (diamond s4)

(diamond s9) (box s14) (box s5) (box s10) (box s15)

(connect s2 s1) (connect s1 s3) (connect s3 s5) (connect s3 s4)

(connect s5 s7) (connect s5 s2) (connect s6 s8) (connect s7 s6)

(connect s8 s10) (connect s8 s9) (connect s10 s12) (connect s11 s13)

(connect s12 s11) (connect s13 s15) (connect s13 s14)

(at s1) (control box_player))

(:goal (exists (?s1 - state)

(and (at ?s1)

(or (and (control box_player) (box ?s1))

(and (control diamond_player) (diamond ?s1)))

(forall (?s2 - state) (not (connect ?s1 ?s2)))))))

Verifying Robocup Teams�

Clara Benac Earle2, Lars-Åke Fredlund1, José Antonio Iglesias2,
and Agapito Ledezma2

1 LSIIS, Facultad de Informática, Universidad Politécnica de Madrid
fred@babel.ls.fi.upm.es

2 grupo CAOS, Universidad Carlos III de Madrid
{cbenac,jiglesia,ledezma}@inf.uc3m.es

Abstract. Verification of multi-agent systems is a challenging task due
to their dynamic nature, and the complex interactions between agents.
An example of such a system is the RoboCup Soccer Simulator, where
two teams of eleven independent agents play a game of football against
each other. In the present article we attempt to verify a number of prop-
erties of RoboCup football teams, using a methodology involving testing.
To accomplish such testing in an efficient manner we use the McErlang
model checker, as it affords precise control of the scheduling of the agents,
and provides convenient access to the internal states and actions of the
agents of the football teams.

1 Introduction

The analysis and verification of multi-agent systems is not an easy task due to
their dynamic nature, and the complex interactions between agents. One method
that is often advocated to verify such systems is model-checking. However, in
performing model-checking on multi-agent systems two main issues arise: i) a
model needs to be constructed, and ii) the state space is bound to grow too
large. In this paper we propose an alternative approach to the verification of
properties in multi-agent systems by means of testing, in particular we use a
model checker to simulate RoboCup teams and verify properties during such
simulation runs. The tool we use, McErlang [6], permits precise control of con-
currency and communication, and detailed access to the internal states of agents
and communication channels.

The RoboCup Soccer Simulator, the soccer server [4], is a research and ed-
ucational tool for multi-agent systems and artificial intelligence. It enables two
teams of eleven simulated autonomous players to play a game of football. A
match is carried out in client/server style: the server provides a virtual field
and simulates all movements of a ball and the players, and each client controls

� This work has been partially supported by the FP7-ICT-2007-1 project ProTest
(215868), a Ramón y Cajal grant from the Spanish Ministerio de Educación y Cien-
cia, and the Spanish national projects TRA2007-67374-C02-02, TIN2006-15660-C02-
02 (DESAFIOS) and S-0505/TIC/0407 (PROMESAS).

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 34–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Verifying Robocup Teams 35

the movements of one player. Communication is done via UDP/IP sockets, en-
abling players to be written in any programming language that supports UDP
communication.

Erlang [1] is a programming language developed at Ericsson for implementing
telecommunication systems. The principal characteristics of Erlang, i.e., a clear
separation between data and processes and a high level of abstraction thanks to
its functional style, together with excellent support for developing distributed
applications, makes writing code for RoboCup teams in Erlang an easy task.
Indeed, undergraduate students at the IT university of Gothenburg have been
developing such teams to compete in their local RoboCup simulation tourna-
ment. Given the rather complex nature of the application, and the availability
of capable verification tools for Erlang such as e.g. McErlang[6] , it seemed natu-
ral to try to use these verification tools in the task of analyzing some interesting
properties of multi-agent RoboCup teams.

The use of tool support in the task of verifying multi-agent systems is recently
attracting significant interest from the agent community. In [2], for
example, a variant of the abstract agent-oriented programming language AgentS-
peak, AgentSpeak(F), is proposed. By translating AgentSpeak(F) programs into
Promela or Java, properties written in LTL can be model-checked with SPIN
or the Java Path Finder [11], a general purpose model checker for Java. A dif-
ference between their approach and ours is that AgentSpeak is based on the
BDI agent architecture while we do not consider any specific agent architecture.
In [7] a combination of UML statecharts and hybrid automata was proposed for
modeling multi-agent systems, and the method was applied to the task of model
checking agents of the RoboCup rescue simulation league. In [3] a trace based
approach is used to study a complex agent scenario.

This paper is organized as follows. In the next section we introduce the Erlang
programming language, and in Sect. 3 a description of the McErlang tool is given.
In Sect. 4 the implementation of a RoboCup soccer team in Erlang is explained.
Our approach to checking properties on the football players is explained in
Sect. 5, together with a discussion of the type of experiments we have car-
ried out. We conclude in Sect. 6 with a discussion on the present results, and
directions for future work.

2 The Programming Language Erlang

Erlang [1] is a programming language developed at Ericsson for implementing
concurrent, distributed, fault-tolerant systems. Erlang software is typically orga-
nized into modules, which at runtime execute as a dynamically varying number
of lightweight processes communicating through asynchronous message passing.

3 The McErlang Tool

The internal construction of the model checker is parametric, enabling a user to
easily change its configuration for different verification runs. The input to the

36 C. Benac Earle et al.

model checker is the name of an Erlang function which starts the execution of the
program to verify, together with a special call-back module also written in Erlang
which specifies the behavioral property to be checked (called the monitor). The
output of a verification can be either a positive answer saying that the property
holds, or a negative one together with a counterexample.

Moreover, a tool user can also specify:

– the name of a language module providing an operational semantics1,
– the particular verification algorithm to use, (e.g., a safety property checker, a

liveness property checker, or simulation of the program in conjunction with
a correctness property),

– the name of a state table implementation, that records encountered program
states (typically a hash table),

– the name of an abstraction module that abstracts program states, and
– the name of a stack module that implements the stack of program states

(storing all or some of the states occurring on the path from the initial
program state to the current one)

3.1 Programming Language Semantics for Erlang

The main idea behind McErlang is to re-use as much of a normal Erlang pro-
gramming language implementation as possible, but adding a model checking
capability. To achieve this, the tool replaces the part of the Erlang runtime sys-
tem which implements concurrency and message passing, while still using the
runtime system for the evaluation of the sequential part of the input programs.

The model checker has a complex internal state in which the current state
of the runtime system is represented. The structure that is maintained by the
model checker records the state of all alive processes (their process identifiers,
mailboxes, computation state, etc). Moreover the global state kept by the model
checker runtime system includes a structure to record process links, information
about registered process identifiers, etc.

McErlang has built-in support for some Erlang/OTP component behaviours
that are used in almost all serious Erlang programs such as the supervisor com-
ponent (for fault-tolerant applications) and the generic server component (imple-
menting a client–server component), and a module for programming finite-state
machines. The presence of such high-level components in the model checker sig-
nificantly reduces the gap between original program and the verifiable model,
compared to other model checkers.

3.2 Correctness Properties

The model checker implements full linear-temporal logic (LTL) checking. Cor-
rectness properties are represented as Büchi automatons (monitors coded in Er-
lang) which are checked using a standard on–the–fly dept–first model

1 Apart from Erlang, we have also for instance implemented a semantics for the web
service specification language WS-CDL, thus providing a WS-CDL model checker[5].

Verifying Robocup Teams 37

checking algorithm [8]. For efficiency, there is a dedicated safety property only
checker available. A monitor checks whether the correctness property holds for
the combination of the new program state and the monitor state. If successful,
the monitor returns an updated monitor state (for safety checking). A Büchi
monitor (automaton) is a monitor that additionally may mark certain states as
accepting states. As is well known [10], linear temporal logic formulas can be
automatically translated to Büchi automata. Correctness properties can be im-
plemented, therefore, as finite state machines where depending on the monitor
state, actions leading to new states. The Erlang/OTP programming environ-
ment is a comparatively rich programming environment for programming sys-
tems composed of (possibly) distributed processes that communicate by message
passing. Fault tolerance is implemented by means of failure detectors, a standard
mechanism in the distributed algorithms community. Moreover there is a process
fairness notion, something which often makes it unnecessary to explicitly specify
fairness in correctness properties. The language provides explicit control of dis-
tribution, and a clean model of distribution semantics. For distributed processes
(processes executing on separate nodes) the communication guarantees are far
weaker than for processes co-existing on the same processor node. are accepted
or not. Such correctness properties have full access to the internal state of the
program run (including message queues, state of processes, and so on).

The memory aspect of monitors is implemented by sending along the old
monitor state as an argument to the Erlang function implementing the mon-
itor. Concretely a monitor defines two callback functions: init (parameters)
and stateChange(programState,monitorState,runStack). The init function re-
turns {ok,monState} where monState is the initial state of the monitor.

The stateChange function is called when the model checker encounters a new
program state programState, and the current monitor state is monitorState, and
the execution history (a subset of the program states, and actions, between the
initial program state and the current one) is provided by the runStack parameter.
If a safety monitor finds that the combination of program and current monitor
state is acceptable, it should return a tuple {ok,newMonState} containing the
new monitor state. If future states along this branch are uninteresting the mon-
itor can return skip (e.g., to implement a search path depth limit), any other
value signals a violation of the correctness property implemented by the monitor.
A Büchi automatons should return a set of states, each state either accepting
{accepting,state} or not {nonaccepting,state}.

As an example, the code fragment below implements a simple safety monitor
that guards against program deadlocks: (a process is considered deadlocked if its
execution state as recorded by the process data structure in the run-time system
is blocked).

stateChange (State , MonState , RunStack) −>
case l i s t s : any (fun (P) −> P#proces s . s t a tu s =/= blocked end ,

S tate#s t a t e . p r o c e s s e s) of
t rue −> {ok , MonState} ;
f a l s e −> {deadlock , MonState}

end .

38 C. Benac Earle et al.

The syntax variable#recordName.field is used to access the field field of the
record variable variable , of type recordName.

The Erlang language standard requires that process schedulers must be fair.
The McErlang tool accordingly implements (weak) process fairness directly in
its (liveness) model checking algorithm by omitting non-fair loops (i.e., ones that
constantly bypass some enabled process) from the accepting runs.

3.3 Using the Model Checker for Simulation

Recently we have added a simulation facility to the model checker, whereby
instead of exploring the whole state space of an application only a single exe-
cution branch is followed. Which execution to branch to follow is by default a
random choice, however finer control can be exercised by the monitor module
above, which in addition to checking safety properties can mark certain states
an “uninteresting”, preventing the model checker to examine them and instead
choosing an alternative state in simulation mode.

The checking of the RoboCup agents has necessitated implementation of “real-
time support” for the McErlang model checker as well. The player agents are
time dependent, and have to respond in a timely fashion to information sent
from the soccer server by means of actuation commands.

Moreover the model checker had to be “opened up to the outside world”.
Agents send commands to the soccer server using UDP sockets, and the soc-
cer server regularly broadcasts sensory information to all agents. To support
sending UDP commands was trivial (we modified the Erlang API function that
supports UDP sending), whereas receiving messages was a bit more tricky. The
solution was to program a new Erlang process, constantly listening for incoming
UDP messages. This (real) Erlang process keeps a map of virtual (simulated)
Erlang processes to which incoming messages should be resent (using the virtual
message communication mechanism). Thus virtual processes wanting to receive
UDP messages on a certain UDP port communicates this to the UDP Erlang
process, which in turn starts receiving and forwarding incoming messages on
behalf of the virtual process.

4 RoboCup Teams in Erlang

The IT-university of Gothenburg has been organizing local RoboCup competi-
tions for their students2. Students were asked to developed in groups a RoboCup
soccer simulation team in Erlang to play against teams developed by other
groups. We have taken two such teams as a starting point for a case-study in
verifying properties of complex multi-agent systems.

In the case of the first team we have considered, each of the football players is
composed of four Erlang processes as shown in Fig. 1: a communicator process,
a planner process, an executor process and a timer process. All communication

2 See http://www.ituniv.se/˜jalm/ecc06/

Verifying Robocup Teams 39

Soccer

commands

sensory
data planner

executor timer

parsed data

plan

cycle data
action

Soccer

server

Agent

comm

Fig. 1. The soccer server and one player

between the processes uses Erlang’s built-in asynchronous message passing com-
munication facility. Thus the total Erlang application comprises around 11 ∗ 4
processes.

In each cycle, the player receives messages from the soccer server through an
UDP connection containing sensor information, for example, a message “(see
Time ObjectInfo)” reports the objects currently seen by the player in a simu-
lation cycle of the soccer server. The messages are parsed and sent to a process
which updates and stores the contextual knowledge of the agent, and also to the
planner process which elaborates a plan (a list of actions) and sends it to the
executor process. During each cycle of the game, each player can send a limited
number of action commands. The executor process sends the action commands
to the server, for example, the command “(kick Power Direction)” to accel-
erate the ball with the given power in the given direction. The soccer server
executes the commands at the end of the cycle and simulates the next cycle
using the received commands and data from the previous cycles.

In total the number of lines of codes for this RoboCup team comprises around
3500 lines of Erlang code (including parsing), whereas the more complex (and
better playing) team comprises around 8400 lines of Erlang code.

5 Checking Robocup Agents

Seen as a verification task, checking properties of a RoboCup team is very chal-
lenging. A team consists of eleven to a large extent independently acting agents
with complex internal states, that cooperate to solve a common task in real-time.
Unfortunately the hostile environment, i.e., the opponent team, strives to greatly
complicate the task of the “home” team. Moreover, the setting is not static, the
opponents will vary, and in addition the soccer simulation server contains random
features3 that will alter the outcome of various actions of the agents.

To apply model checking techniques to such a verification problem one would
have to construct, with substantial effort, a simplified model of the soccer server
and the agents (of both teams). Even so the real state space would be huge, and
a model checking run would be unlikely to cover more than a very tiny fragment
of that state space. For this reason we decided upon a different “verification”
strategy: to use the McErlang model checker for executing the agents, and to for-
mulate correctness properties to check as monitors, but instead of model checking

3 E.g. reporting all positional information to an agent with a possible slight error.

40 C. Benac Earle et al.

a team we used the model checker as a testing/simulation environment. What
we lose by not performing a complete verification, which could anyway never be
complete due to the abstractions needed to obtain a verifiable model, we hope
to gain by checking the actual source code of the agents.

Concretely to check a football team we ran a number of simulated football
matches against a number of opposition teams. Each match consisted of two
halves of 300 seconds each, with time ticks (events during which the soccer
server calculates game changes, and transmits positional information to every
player) every 100 milliseconds. These are configurable parameters in the soccer
server; McErlang was sufficiently quick to keep up at the default settings. If
time deadlines are not met, then football agents would not act timely on sensory
information resulting in bad playing; a symptom of such a problem is increasing
message queues of processes, a property we did check during games. To ac-
complish such real-time execution, with over 50 simulated Erlang processes and
checking safety monitors in every global system state, proves that the simulated
runtime implementation is not overly slow.

To check a team in varying situations the opposition teams were chosen
with care. To evaluate defensive play we matched the team to check against
good teams from previous international Robocup competitions4. Concretely such
teams include fcportugal2004 and tokyotech2004, both from the 2004 inter-
national Robocup competition5. For evaluating offensive play a particularly bad
student team was selected as an opponent. Finally, to evaluate the team in a
more fluctuating situation we played the team against itself. All games were
repeated multiple times, to increase the coverage of the verification experiment.

By using McErlang compared to using traditional testing frameworks we ob-
tain a number of advantages:

– correctness properties can be elegantly expressed as automatons rather than
sets of tests,

– compared to running a team under the normal Erlang runtime system, the
McErlang tool provides detailed control of the scheduling of processes, and
delivery of messages (which control a traditional runtime system does not
provide at all). Testing a multi-agent system under different scheduling as-
sumptions can often reveal errors that are difficult to reproduce using normal
testing procedures,

– no or very little source code modification is necessary to interpret testing
outcome (i.e., as all the team state – including all its agents, and all the
processes implementing an agent – can be inspected, there is generally little
need to export extra information from an agent).

– since we are using an untyped functional programming language (Erlang) we
can treat programs (e.g., pending function calls, sent messages, etc) as data,
and analyse such data using powerful data abstraction functions. Moreover
we can often reuse functions and data structures used in the program itself,
when formulating correctness properties.

4 As the level of play of the student teams is generally not very good, this was easy.
5 http://www.robocup2004.pt/

Verifying Robocup Teams 41

Soccer Server
(written in C)

Player agent 1 (in Erlang)
implemented by a number of
communicating subprocesses

Coach agent (in Erlang)

implemented by a number of
communicating subprocesses

Player agent 11 (in Erlang)

UDP: commands to server
and imprecise data to player

UDP: precise data to the coach agent

Executing inside the McErlang model checker

Fig. 2. RoboCup verification setup

We use the monitor concept of McErlang to check properties of a RoboCup team
programmed in Erlang during games with opponents. Monitors to check correct-
ness properties of the team are written in Erlang as well, and have full access to the
state of all agents (players), messages in communication channels, and so on.

However, the states of player agents may of course not reflect reality, as they
may have incorrect or simply insufficient knowledge of the state of the game.
Clearly to determine whether a property holds, in general we need access to the
state of the soccer server as well. As the server is not written in Erlang, McEr-
lang does not have direct access to its internal state. However, by programming
a “Coach agent” in Erlang6, that repeatedly gets truthful and complete situa-
tional information from the soccer server (e.g., ball position, and the position
and movement of all players), we gain access, using the McErlang tool, to the
complete simulation state.

In case a property violation is detected by a monitor, the complete trace of
the simulation up to that point, including the states and actions of all agents
and the coach, are available for further analysis in the McErlang debugger.

The experimental setup is depicted in Fig. 2; note that there is no direct
communication between agents comprising a team.

5.1 Correctness Property Classification

Roughly we can separate desirable properties of RoboCup teams into three kinds:

– observable properties can be evaluated by observing only the actions
(or inactions) of an agent and its external stimuli, without considering the
internal state of an agent

6 The coach interface is provided by the soccer simulation server.

42 C. Benac Earle et al.

– discrepancy properties concern the difference between an agents’s beliefs
and the objective reality

– internal properties concern the general consistency of an agent, and the
efficacy of its internal logic decisions

Externally observable properties can be decided solely by examining the data
the soccer server sends to the coach process, and the actions (UDP data) sent
from an agent to the soccer server. There are countless such properties that
can be formulated and checked. For example: “players stay inside the playing
field” (op1), “the goalie doesn’t leave the goal area” (op2), “a pass cannot be
intercepted by a player from the opponent team” (op3), and so on. An obvious
externally observable property is that an agent may never crash (nocrash).

If we find that such an observable property is violated, the cause can either be
that the internal logic of the agent is faulty, or that the agent is acting correctly
but on faulty data.

An example of a discrepancy property is: “the difference between the believed
position of a player and its real position must not exceed some safety margin”
(dp1). Discrepancy properties requires us to examine both the objective state
of the RoboCup simulation (the information sent to the coach process) as well
as the internal beliefs (internal data structures) of the processes comprising a
player agent.

Internal properties range from quite general properties such that: “the size
of a message queue is never greater than some limit l” (mq) to very specific
properties. As an example, we can reformulate the property about safe passes
(op3) above into a property about the internal state of agents: “the agent never
attempts a pass when it knows that an opponent player may intercept the ball”
(ip3). Note that it is perfectly possible for an agent to fail the property ip3 while
not failing op3 (or vice verse) if the knowledge of the position of the players of
the opposition team is particularly poor (a discrepancy property).

While it is easy to formulate such high-level properties in English, with much
ambiguity, the challenge is to formulate these properties precisely, and to provide
a framework for determining whether they are satisfied by Robocup teams or
not. Below we exemplify how this is achieved for two such teams.

5.2 Verification of the First RoboCup Team

The first RoboCup team analysed by us was rather simplistic in nature, generally
being reactive (every new sensor information causes a complete new plan to be
formed) rather than proactive (players have long term plans that they attempt
to realise).

We exemplify the specification of properties by formulating a simple observ-
able property, i.e., that no player strays far outside the playing area (op1). As
explained earlier, such a property can be checked by examining the accurate
information sent to the coaching process, without considering the internal states
of agents.

Verifying Robocup Teams 43

stateChange (State , MonState , Stack) −>
try

{ok , CoachState} = coach : getCoachState (State) ,
A l lP layer s = coach : getOwnPlayers (CoachState) ,

%% Ver i f y t ha t a l l p l a y e r s are in the a l l owed area
{LowerX , LowerY , UpperX , UpperY} = MonState ,
case l i s t s : any

(fun (P) −>
{PosX ,PosY} = P#player . pos i t i on ,
(PosX < LowerX) o r e l s e (PosX > UpperX) o r e l s e
(PosY < LowerY) o r e l s e (PosY > UpperY)

end , A l lP layer s) of
t rue −> e r r o r
f a l s e −> {ok , MonState}

end
catch −> {ok , MonState} end .

The function stateChange is called by the model checker every time a new
state is generated. Its arguments are the new state State, the previous monitor
state MonState (for this property the coordinates for the allowable area for a
player), and the entire stack of program states leading to the current state7.

The implemented monitor begins by extracting the state of the “coach” process
using the function coach:getCoachState. This function attempts to retrieve the
process datastructure of the coach process using its name “coach”, and from that
structure the internal datastructure that records the data sent from the soccer
server. This is achieved by accessing the expr field of a process datastructure, that
records the current state of the process (always waiting for a new UDP message
to arrive from the soccer server) together with the state data (a part of which is
the internal datastructure that records data sent by the soccer server).

getCoachState (State) −>
%% Retr i eve process named ”coach ”
P = findProcessByRegisteredName (” coach ” , State) ,
case P#proces s . expr of

{ recv , { , , { , CoachState}} , } −> CoachState
end .

If this fails (e.g., probably because the coach process has not been created
yet) the try ... catch statement ensures that the simulation continues. Given the
coach state, the coach:getOwnPlayers function returns the information sent by
the soccer server regarding the team players (e.g., position and so on). It is then
easy to compute whether any player strays outside the allowable area, and if so
the monitor returns error which indicates to the model checker that an error has
been encountered. As a result the simulator will offer the possibility to examine
in detail the trace leading to the erroneous state detected by the monitor. During
testing, the checker quickly produced a run leading to a violation of this property.
7 The stack implementation is also parametric and we frequently use a bounded stack

which forgets old states when runs become too large.

44 C. Benac Earle et al.

As another example, we formulated the op2 property, i.e., that the goalie
doesn’t leave the goal area, and attempted to verify that property. This property
is also easily checked using the knowledge from the coach process. Unfortunately
the first team fails even this simple property: the goalkeeper was very far from
his penalty area. However, from visual inspection (using the soccer monitor to
view a game progress) the goalie did not appear to have left his penalty area.
Program inspection found the source of the error: the team had assumed a fixed
assignment of player numbers to their processes, whereas the soccer server could
randomly assign player numbers. In other words, the player which resided in
the penalty area was in fact not the goal keeper, thus the player did not have
permission to handle the ball with his hands.

In conclusion, the first team analysed possessed grave problems indeed, and
we didn’t think it interesting to consider the analysis further at that point but
continued with the second team.

5.3 Verification of the Second RoboCup Team

The second RoboCup team analysed is far more complex, comprising more lines
of code, and having a much more complex internal state. Although generally
playing much better than the first team, we were able to discover a number of
bugs that had gone undetected using normal testing techniques. We illustrate
the kinds of properties checked, and the bugs found, using a number of small
examples below.

Observable properties. When trying to execute the second RoboCup team
under the McErlang model checker, and playing a game, the program sometimes
crashed with an error message. This had never been experienced when running
the team outside the model checker. The reason for the crash turned out to be
typical of a class of hard–to–reproduce errors which occur only for some very in-
tricate sequences of concurrent actions. Players of the second team are composed
of different processes; one such process responsible for executing plans have two
states: idle when it awaits a new plan, and execute when it executes a received
plan. The execution of each step of a plan is performed by a subordinate process,
which reports the success or failure of the step back to the executor process. The
executor process and its subordinates communicate using asynchronous message
passing. The error occurs when a second plan reaches the executor process before
it has finished executing a prior plan. In such a situation the process (correctly)
terminates the subordinate process, resends the second plan to itself, and enters
the idle state (awaiting the second plan sent to itself). However, it turns out
that the subordinate process may have sent a message to the executor process
that arrived after it was itself terminated, but arriving before the second plan
(when the executor process was in the idle state). Moreover the executor process
was not able to handle incoming messages from a subordinate process in its idle
state, leading it to crash.

A graphical depiction of the error is shown in Fig. 3, where the idle state (of
the executor process) is in white, and the executor state is in gray.

Verifying Robocup Teams 45

Executor Process Subordinate Process
plan0

plan step_0

plan step_n
response_0

response_nplan1

t e r m i n a t e

o
o
o

o
o
o

crash point

Fig. 3. RoboCup Agent Bug

During extensive testing of the team this error had never been seen, however
using McErlang (which has a much less deterministic agent scheduler compared
to the normal Erlang runtime system) the error was immediately discovered.

We also coded up the property of safe passes (op3); however, it turned out
that agents could attempt quite unsafe passes. A possible reason for such unsafe
behaviour is analysed below, in the formalisation of a logic property (lp3).

A discrepancy property. A central correctness property is whether the agent’s
beliefs of the position of the ball in the field are accurate or not.

To formulate the property we have to compare the belief about the ball po-
sition, as retrieved from the internal store of an agent, compared to the real
position of the ball as given by the coach agent. Clearly these values can be
substantially different, for instance if the ball is kicked away behind the back of
a player. However, we want to require the agent to eventually correct his ball
estimate.

The formulation of the property should thus be parametric on two parame-
ters: i) what is a bad estimate, and ii) for how long time must an estimate be
continuously bad until an error is signalled.

The implementation of the property as a state monitor is as follows:

stateChange (State , , Mst={Time , Params={BadEstim , I n t v a l}}) −>
try

%% Fetch coach i n f o ; check i f game i s ha l t ed , g e t pos i n f o
{ok , CoachState} = coach : getCoachState (State) ,
p lay on == CoachState#coachIn fo . play mode ,
CurrentTime = CoachState#coachIn fo . time ,
CoachPlayer = coach : getOwnPlayer (Number , CoachState) ,
CoachPlayerPos = coach : p layerPos (CoachPlayer) ,
CoachBall = coach : ge tGa l l (CoachState) ,
CoachBallPos = coach : ba l lPos (CoachBall) ,

%% Fetch Agent i n t e r n a l data , wi th b a l l & p l a y e r p o s i t i o n
Player = kb : ask ({player , myse l f}) ,
Ba l l = kb : ask (b a l l) ,

46 C. Benac Earle et al.

%% Calcu l a te Players d i s t ance approximation and error
DistPlayer = d i s t (Player#p layer . pos i t i on , Ba l l#b a l l . p o s i t i o n) ,
DistCoach = d i s t (CoachPlayerPos , CoachBallPos) ,
Error = abs (DistCoach−DistPlayer)/ DistCoach ,

i f Error >= BadEstim −>
case Time of

%% Fi r s t time bad es t imate seen , s e t t imer
ok −> {ok , {{ unt i l , CurrentTime+In tv a l} , Params}} ;

%% Estim bad during i n t e r va l , r epor t error
{ unt i l , EndTime} when EndTime =< CurrentTime −> badEstim ;

%% Estim con t i nou s l y bad , not end o f i n t e r v a l
{ unt i l , EndTime} when EndTime > CurrentTime −> {ok , Mst}

end ;

%% Estim i s good
t rue −> {ok , {ok , Params}}

end
catch . . . end

The function dist calculates the distance between two points, and the function
kb:ask (present in the agent source code) returns the belief of the agent regard-
ing its parameter. Note that the kb:ask function is called without a parameter
specifying the player; this is because the monitor is executed in the context of
the agent that caused the last program step.

The error is calculated as the absolute difference between the believed
distance to the ball and the real distance to the ball, divided by the real
distance.

There are indeed dubious beliefs in the second agent. The model checker
found, for instance, a sequence of states where a player thought the distance
to be around 7.6 meters, for over a second, while the real distance hovered
around 17 meters (with an error of 0.5 meters and interval of 10 time units –
a second).

A logic property. To illustrate the coding of a logic property we considered
first the property (ip3): “the agent never attempts a pass when it knows that
an opponent player may intercept the ball”.

We can illustrate the idea of the property using Fig. 4; there may be no
opponent player in the gray zone around the (believed) path of the ball from its
originating player to the destination.

In each state the formalisation of the property has to determine whether a pass
attempt has been made. This turned out to be rather difficult, as the difference
between what is a pass, shooting or just clearing the ball in a dangerous situation
is hidden quite deep in the code (and all three operations are executed by sending
a “kick” command to the soccer server). In the end it turned out to be easier
to modify one line of the player program, by introducing a new (artificial) state

Verifying Robocup Teams 47

Source Player

Destination Player

Dan
gero

us a
rea

Fig. 4. Property ip3

labelled by a tuple encoding the operation of passing the ball, and the destination
position of the corresponding kick:

{do pass , TargetPos i t i on}

After the introduction of this “probe state”, the property is easily specified.
Essentially whenever a kick is made, it is necessary to retrieve from the player
agent its beliefs about the opponent players and calculate whether any of these
players are too close to the path of the ball between source and target.

Running an example quickly reveals that the second agent exhibits dubious
behaviour. We found a situation when, using as the unsafe distance 0.5 me-
ters, an agent could attempt a pass in the following situation: source player at
{−23.9,−24.27}, destination player at {−13.57,−8.4}, and an opposition player
at {−17.56,−14.59} which could quite easily intercept the pass.

6 Conclusions

In this paper we have used the McErlang model checking tool to perform run-
time verification on a set of agents comprising a RoboCup soccer simulation
team written in the Erlang programming language. Correctness properties were
specified as monitors (automatons) observing the detailed behavior and states of
all the players in the team, and the opponent team. The agents checked were not
modified nor abstracted for the purpose of the study, rather the standard source
code of the agents was used essentially unchanged. One of the key functionalities
of the McErlang tool is the capability to observe the inner state of agents, and
of coping with temporal agent behaviors.

The properties checked include a number of obvious correctness criteria for
football play (respecting playing field boundaries etc), including also a number
of properties that concern the inner logic of the agents. We aim to continue this
experiment in order to formulate further more detailed properties regarding the
internal state of agents (beliefs, plans, etc) of more RoboCup teams and agents,
to further illustrate the practicality of the approach.

48 C. Benac Earle et al.

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs (1996)

2. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12(2),
239–256 (2006)

3. Bosse, T., Lam, D.N., Barber, K.S.: Automated analysis and verification of agent
behavior. In: AAMAS 2006: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pp. 1317–1319. ACM Press, New
York (2006)

4. Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kos-
tiadis, K., Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Steffens, T.,
Wang, Y., Yin, X.: RoboCup Soccer Server (2003); Manual for Soccer Server Ver-
sion 7.07 and later (obtainable from sserver.sf.net)

5. Fredlund, L.: Implementing WS-CDL. In: Proceedings of the second Spanish work-
shop on Web Technologies (JSWEB 2006). Universidade de Santiago de Com-
postela (November 2006)

6. Fredlund, L., Svensson, H.: McErlang: a model checker for a distributed program-
ming language. In: Proceedings of the 2007 ACM SIGPLAN International Confer-
ence on Functional Programming (2007)

7. Furbach, U., Murray, J., Schmidsberger, F., Stolzenburg, F.: Model checking hy-
brid multiagent systems for the roboCup. In: Visser, U., Ribeiro, F., Ohashi, T.,
Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS, vol. 5001,
pp. 262–269. Springer, Heidelberg (2008)

8. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall, En-
glewood Cliffs (1991)

9. Torstendahl, S.: Open telecom platform. Ericsson Review 1 (1997)
10. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program

verification, pp. 332–344 (1986)
11. Visser, W., Havelund, K., Brat, G., Park, S.: Java pathfinder - second generation

of a java model checker (2000)

Scaling Search with Pattern Databases�

Stefan Edelkamp, Shahid Jabbar, and Peter Kissmann

Technische Universität Dortmund

Abstract. In this paper, we illustrate efforts to perform memory efficient large-
scale search. We first generate sets of disjoint symbolic pattern databases on
disk. These pattern databases are then used for heuristic guidance, while applying
explicit-state external-memory heuristic search. Different options for paralleliza-
tion to save time and memory are presented. The general techniques are mapped
to the (n2 − 1)-puzzle as a large-scale case study.

1 Introduction

Abstraction-directed search [35] joins abstraction-based search [4, 5, 30] and heuristic
search [13, 34]. An abstract state space model is obtained from a concrete one by grouping
together concrete states that share some common properties into abstract states. The
distances in the abstract model serve as heuristic estimates for the search in the original
one. A pattern database [6, 14, 25, 27, 36, 38] for an abstract state space model is a lookup
table that maps each abstract state to its shortest path distance to the closest abstract goal
state. For undirected and unweighted graphs, it is easiest to create a pattern database by
conducting a breadth-first search in backward direction. For a better time-space trade-off,
it is possible to fully traverse the abstract state space symbolically with binary decision
diagrams (BDDs), yielding symbolic pattern databases [2, 7]. These pattern databases
can then be used to obtain admissible and consistent heuristic estimates in order to guide
the search for errors in the concrete model.

Unfortunately, even with improved guidance, the space requirements for search in
concrete models are the major bottleneck while dealing with large real-world systems.
External-memory devices such as hard disks, on the other hand, provide bulk but cheaper
storage capacities. External-memory heuristic search has shown significant success in
dealing with large AI and model checking problems [10, 19]. In this paper, we extend
the scope of external-memory directed search by incorporating large symbolic pattern
databases for a more effective guidance. Besides this mixture of technologies, we study
a number of refinements to push the limits of pattern databases in practice, including
automated construction of super-database for control rule pruning, shared databases,
partitioned construction, and distributed usage. Furthermore, we propose the integra-
tion of iterative-deepening with external-memory A* search, the delayed generation of
successors, and an external-memory relay version of A* for computing approximate
solutions.

� This research was supported by the German Research Council (DFG) in the projects heuristic
search, directed model checking and algorithm engineering.

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 49–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

50 S. Edelkamp, S. Jabbar, and P. Kissmann

1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 23 23 24

1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

Fig. 1. The end position of the (n2 − 1)-puzzle for n = 4, n = 5 and n = 6

As a large-scale case study, we have chosen sliding tiles puzzles, a standard sample
in AI search1. Some instances of this puzzle are shown in Fig. 1. This puzzle, commonly
referred to as (n2 − 1)-puzzle, has been used as a testbed for model checkers2 that
successfully solve 8- but tend to fail on 15-puzzle instances. The game consists of
(n2−1) numbered tiles, squarely arranged, that can be slid into a single empty location,
called the blank. The goal is to re-arrange the tiles such that a specific layout (like in
Fig. 1) is reached. For modeling the puzzle, every state is represented as a state vector.
Each component of this vector corresponds to one location, indicating the tile (including
the blank) occupying it. The state spaces consist of 16!/2 ≈ 1.05·1013 for the 15-Puzzle,
and 25!/2 ≈ 7.75 · 1024 for the 24-Puzzle, while the set of reachable states for the 35-
Puzzle consists of 36!/2 ≈ 1.86 · 1041 states. Optimally solving the puzzle is infeasible
for current technology [37], so that it serves as a valid testbet for pushing the envelope of
state space search techniques. Due to its fast depth-first node generation and linear space
requirements, IDA* [24] is probably the best choice for solving this puzzle. However,
IDA* comes with no duplicate detection, which hinders its application to other model
checking problems.

The paper is structured as follows. First, we discuss external-memory explicit-state
A* search for solving problems that are larger than main memory. We then explain
pattern databases and give a brief overview of disjoint databases. We introduce sym-
bolic pattern databases based on BDDs and show how to improve their quality. Due
to better tie-breaking, the integration of IDA* to external-memory A* search exhibits
another time-space trade-off. We briefly discuss and analyze the impact of a delayed
generation of successors in terms of disk accesses. We then address the distributed,
space-efficient lookup, which on each client selectively loads only the pattern databases
that are needed to incrementally compute the heuristic estimate. This allows to load larger
pattern databases on individual processors. Last but not least, we propose an incremental
version of A* to generate approximate solutions.

2 External-Memory Heuristic Search

The limitation of main memory is the major bottleneck for practical model checking
applications. Relying on traditional virtual memory can drastically slow down the per-
formance. External-memory search algorithms explicitly manage the transfer of data
between fast RAM and slow hard disk, while minimizing the number of seek operations

1 See [29] for related large-scale search study in Rubik’s Cube.
2 http://anna.fi.muni.cz/models/cgi/model info.cgi?name=loyd

Scaling Search with Pattern Databases 51

on the disk. These algorithms are more informed about the future data accesses than the
virtual memory offered by the operating system. The complexity of these algorithms is
measured in terms of the asymptotic number of I/Os they incur. For simplicity, instead
of single I/Os, the complexity is often expressed in terms of number of external scanning
or sorting operations.

Search algorithms, such as breadth-first search (BFS), rely on a duplicate removal
mechanism, typically realized by a hash table, to avoid re-expansions of states. Naı̈vely
running internal-memory BFS in the same way on external memory may result in many
file accesses for removing duplicate nodes. The external-memory BFS algorithm [33]
operates on undirected explicit graphs (provided before-hand in the form of adjacency
lists). For implicit problem graphs (generated from a set of initial states and a set of
transformation rules), this technique has been termed as delayed duplicate detection [26].
For directed implicit graphs, a constant bound on the number of BFS levels required to
remove all the duplicates made the basis for internal sparse-memory algorithms, such
as breadth-first heuristic search [39].

A* is a famous best-first search algorithm that exploits heuristic guidance to arrive at
a goal state faster. It requires a priority queue to always select the state with the minimum
f = g + h value, where g is the depth, and h is the heuristic estimate of the state to the
goal. External-memory A* [10] combines delayed duplicate detection, frontier and best-
first search into one algorithm. It shares similarities with SetA* [21]. External-memory
A* (Algorithm 1) maintains the search space on disk in the form of a (g, h) matrix,
where each cell represents a bucket of states. The initial state (resp. set of target states) is
represented by I (resp. T). In the course of the algorithm, a bucket Open(i, j) contains
all states s with path length g(s) = i and heuristic estimate h(s) = j. It simulates
a priority queue by always selecting the buckets with the minimum f -value; ties are
broken by selecting the one with the minimum g-value.

Duplicate detection wrt. previous layers can be restricted to the buckets of the same
h-value. Each bucket, when active, is represented in RAM as a small buffer. If the buffer
becomes full, it is sorted and flushed to the disk; if it becomes empty while reading, it
is refreshed with new states from the disk. Duplicates are removed by first performing
external sorting, followed by a operation to remove the states from a bucket in a mere
scan. Next, the previous two buckets are subtracted to guarantee a duplicate-free bucket
file. The state sets addressed by A in the pseudo-code are temporary files used to collect
all the successor states generated by applying expansion rules Succ on a state set.

Using the Manhattan distance estimate, external-memory A* can optimally solve all
15-puzzle instances proposed in [24]. We furthermore exploited the property that due
to the undirected nature of the (n2 − 1)-puzzle and the parity condition, duplicates for
bucket Open(i, j) can only exist in the buckets Open(i, j) and Open(i− 2, j) and not in
Open(i− 1, j). For the hardest instance it expanded 999,442,568 nodes in less than an
hour using a single processor3 and 17,769 megabytes of disk space. In the subsequent
discussion, for the sake of brevity, we avoid prefix Open for accessing a bucket.

3 Experiments were carried out on a Linux cluster, equipped with Opteron 2.2-2.6GHz processor
nodes (2.6GHz 4-processor nodes with 16 GB RAM, 2.2GHz 2-processor nodes with 4 GB
RAM) and 3 terabytes hard disk connected via NFS. The time limit varied from 48h–480h.

52 S. Edelkamp, S. Jabbar, and P. Kissmann

Algorithm 1: External A* for Consistent and Integral Heuristics
Open(0, h(I)) ← {I}
fmin ← min{i | Open(0, i) 	= ∅} // Select the minimum fmin diagonal to expand
while (fmin 	= ∞) do

gmin ← min{i | Open(i, fmin − i) 	= ∅} // Select the first non-empty bucket
while (gmin ≤ fmin) do

// Loop for the whole fmin diagonal hmax ← fmin − gmin ;
if hmax = 0 and ∃u ∈ Open(gmin, hmax) s.t. u ∈ T then

return Path(u) // Return the path found from I to u
Open(gmin, hmax) ← external-sort(Open(gmin, hmax)) // External sorting
Open(gmin, hmax) ← remove-duplicates(Open(gmin,hmax)) ;
// Subtract the previous two buckets
Open(gmin, hmax) ←
Open(gmin, hmax) \ (Open(gmin − 1, hmax) ∪ Open(gmin − 2, hmax)) ;
// Generate and distribute the successors based on their f -values
A(fmin), A(fmin + 1), A(fmin + 2) ← Succ(Open(gmin, hmax)) ;
Open(gmin + 1, hmax − 1) ← A(fmin) ∪ Open(gmin + 1, hmax − 1) ;
Open(gmin + 1, hmax) ← A(fmin + 1) ∪ Open(gmin + 1, hmax) ;
Open(gmin + 1, hmax + 1) ← A(fmin + 2) ;
gmin ← gmin + 1 ;

fmin ← min{i + j > fmin | Open(i, j) 	= ∅} ∪ {∞} // New f diagonal
return ∅

3 Pattern Databases

Better search heuristics are the keys for solving large problems. A pattern database is
a lookup table containing the distance from any abstract state to the abstract error (the
abstract goal state). It serves as an admissible search heuristic for the concrete state
space. The size of a pattern database is the number of states it contains. The simplest
abstractions are state vector projections, the so-called patterns. For the (n2 − 1)-puzzle
domain, a pattern is a particular selection of tiles, while replacing the other tiles with
don’t-cares. The selection of tiles has been provided manually, but pattern selection can
be automated [9, 17].

Disjoint pattern databases [27] allow combining multiple abstraction databases, while
still preserving the consistency of the estimate. If the selected patterns (in our case,
the tiles) in each database are disjoint, the entries in each database can be added
to get a better estimate. As only one tile moves at a time, for the (n2 − 1)-puzzle,
the move action acts locally in one group only.4 Together with IDA* search, disjoint
explicit-state pattern databases suffice to solve fully random 24-puzzle instances [27].
Each of the 6-tile pattern databases consists of 127,512,000 abstract states; due to
structural regularities, only 2 of 4 pattern databases need constructed. In symmetric
pattern databases, automorphisms in the state vector are exploited to allow multiple
lookups. For the (n2 − 1)-puzzle, the reflection along the main diagonal leads to a pat-
tern database that is addressed twice for each state by additionally posing symmetric
state queries.

4 If an action modifies more than one group, one has to distribute its costs [12, 22, 23].

Scaling Search with Pattern Databases 53

Symbolic pattern databases [7] are compact representations of pattern databases.
The functional representation of state sets is maintained as a Binary Decision Diagram
(BDD) [3]. For a given state vector, the BDD evaluates to 1, if the corresponding state is
contained in the encoded set. The additional compaction refers to the two BDD reduction
rule, which lead to a unique diagram representation.

A symbolic pattern database is a sequence of BDDs H0, . . . , Hk with Hi covering
all abstract state vectors that have a heuristic h-value of i, i ∈ {0, . . . , k}. The symbolic
pattern databases are generated by traversing the abstract state space with BDDs. The
abstract operators are utilized to compute all successor sets of a state set in partitioned
form in an operation called image [31]. The other option would have been to generate
explicit-state pattern databases and then compact them into BDDs.

We observed that the symbolic construction 6-tile pattern databases for the 24-puzzle
(in about half an hour each) led to only about 30% savings wrt. the explicit-state storage.
One possible cause for this moderate reduction is that half of all possible permutations
over {0, . . . , n2 − 1} refer to reachable layouts in the (n2 − 1)-puzzle. Moreover, the
characteristic function fN of all permutations on 0, . . . , N − 1 has has more than 2N/2

BDD nodes for every variable ordering [11, 18].

4 Refined Database Construction

The quality of symbolic pattern databases can be improved. Consider a pattern database
for the sliding-tile puzzle with a set of tiles that surround the blank in the top-left corner.
We know that the last action necessarily has to move a tile that is adjacent to the blank.
The last but one action may also have restrictions.

Algorithm 2: Refinement for the construction of the pattern databases.

// Construction of the super-database
H−1 ← ⊥; H0 ← T ; step ← 1;
while step < maxStep and Hstep−1 	= ⊥ do

Hstep ← pre-image
�
Hstep−1

�
∧¬Hstep−2 ; // Remove duplicates from predecessors

step ← step + 1;
max ← step − 1;

foreach abstraction i do
// Construction of the database for the i-th abstraction
Hi

−1 ← ⊥; Hi
0 ← T i; step ← 1; super ← �;

while Hi
step−1 	= ⊥ do

H ← pre-image
�
Hi

step−1

�
∧ ¬Hi

step−2 ; // Remove duplicates from predecessors

if super and step ≤ max then
Hi

step ← H ∧ ∃v ∈ �
V \ V i

�
. Hstep ; // Retain only states also in super-database

if Hi
step 	= Hstep then

super ← ⊥ ; // Stop using the super-database
Hi

step ← H ; // Store all predecessors

else Hi
step ← H ;

step ← step + 1;

54 S. Edelkamp, S. Jabbar, and P. Kissmann

These restrictions can be calculated automatically (cf. Algorithm 2). To do this, we
construct a part of the super-database H , i.e., the database for the original space. This is
done by creating the set of predecessors (called pre-image in symbolic search), starting
at the target states T . As we do not need the complete database, maxStep backward steps
suffice; in case of the (n2 − 1)-puzzle, we need no more than three.

When constructing the pattern databasesHi we start at the abstract space’s target states
T i. During each backward step, we retain only those states that are also in the super-
database (in the same step), projected into the current abstraction. This projection is done
by existential-quantification over the variables not in the abstract space (V \ V i). This
may only be done until the result does not equal the projection of the super-database’s
step. From then onwards, we forget about the super-database and construct the pattern
database as before.

For a 5-tile (the 5 tiles nearest the top-left corner) pattern database of the 15-puzzle,
the use of the super-database leads to an increase of the radius (i.e., the number of
backward steps needed to construct the complete database) from 23 to 25. Similarly, for
a 6-tile pattern database of the 24-puzzle, the radius increases from 32 to 35. Thus, the
resulting databases are more accurate.

5 Incremental External Search

One disadvantage of external-memory A* is its unfortunate tie-breaking strategy.5 As it
processes the f -diagonal the with increasing depth, external-memoryA* expands almost
all the states with optimal f -value. In contrast, the depth-first order in iterative-deepening
A* search (IDA*) often results in fewer states to be explored. Moreover, IDA* does not
perform duplicate detection and thus trades time for space.

Therefore, we also tried to combine the advantages of IDA* and external-memory
A*. This is done by initiating IDA* runs from the states generated in external-memory
A*. For a fixed threshold on the f -value, external-memory A* is stopped. All states in
still unexpanded buckets are are processed by calling IDA*.6

Table 1. Combining IDA* with external-memory A* in a some 24-puzzle instance

Threshold Length Nodes Generated Time
68 (Pure IDA*) 82 9.47694 × 107 3m:06s

70 (Hybrid) 82 1.33633 × 108 4m:23s
72 (Hybrid) 82 1.27777 × 108 4m:03s
74 (Hybrid) 82 6.95716 × 107 2m:24s
76 (Hybrid) 82 6.37333 × 107 2m:22s
78 (Hybrid) 82 1.08334 × 108 3m:35s
80 (Hybrid) 82 9.66122 × 107 3m:36s
82 (Hybrid) 82 2.29965 × 108 8m:25s

84 (External-Memory A*) 82 1.71814 × 108 8m:48s

5 A similar problem can be observed in breadth-first heuristic search [39].
6 These runs are independent and can be distributed.

Scaling Search with Pattern Databases 55

In Table 1, we show results of solving one simpler instance of the 24-puzzle (num-
ber 40 in [27]), according to different threshold values. The first entry shows that our
implementation of IDA* generates more nodes than [27] (65,099,578) – likely due to
different tie-breaking and further fine-tuning. Pure IDA* generated 94 million nodes,
while external-memory A* generated 171 million. With increasing threshold value, we
see a potential for a better algorithm in between the two.

Optimally solving another 24-puzzle instance (49 in [27]) with 100 moves and a split
value of 84 and 367,243,074,706 generated nodes in 217 hours, shows that even with
only one disjoint pattern database in use, hard instances are tractable. Therefore, we
concentrate on solving the 35-puzzle.

During the implementation we observed that IDA*’s pruning strategies such as not
re-generating predecessors save time for delayed duplicate detection.

6 External-Memory Symbolic Pattern Databases

External-memory pattern databases [8] are constructed in layers and maintained on the
hard disk. Each BFS level is flushed in form of a BDD to disk, so that the memory for
representing this level can be re-used. As the BDD representation of a state set is unique,
no effort for eliminating duplicates in one BFS-level is required. Before expanding a
state set in BFS-level i, however, we apply delayed duplicate detection, eliminating
states that have appeared in BFS-level i− 2. As the external construction of large-scale
pattern databases takes time, the process can be paused and resumed at any time.

For the 35-puzzle either seven 5-tile, five 6-tile + one 5-tile, or five 7-tile databases
complete a disjoint set. The cumulated space consumption for explicit-state disjoint
sets of pattern databases (without exploiting structural regularities) is 302 megabytes
(for seven 5-tile pattern databases), 6.9 gigabytes (for five 6-tile + one 5-tile pattern
databases), and 195 gigabytes (for five 7-tile pattern databases). For the disjoint 6-tile
pattern database in the 35-puzzle the results are shown in Fig. 2. In total, the additive set
consumes 2.6 gigabytes; a gain of factor 2.65 wrt. the explicit construction. We generated
four more additive 6-tile pattern databases with sizes 4.0, 2.3, 2.3, and 3.2 gigabytes.
The construction of all five disjoint 6-tile pattern databases took about 50h. Fig. 2 also
depicts the memory profile for generating one 7-tile pattern database7. The total size of
the database is 6.6 gigabytes, which compares well with the space needed for explicit
construction. When RAM became sparse, for constructing larger BFS levels, partitioned
images were calculated and unified.

Together with the space of about one gigabyte for the search buckets (5 · 106 entries),
one would expect a main memory requirement of more than 15 gigabytes when loading
all 5 disjoint pattern databases. However, about 13 gigabytes RAM were actually needed.
This additional memory gain is due to loading the different layers stored on disk into
a shared BDD [32]. There are also cross-pattern database savings, obtained by BDD
sharing. These savings are due to shifting the set of BDD variable indices for every
pattern database to the same range, i.e., all BDDs are rooted at index 0.

7 The full disjoint set of 7-tile databases has not been completed due to time limitation of more
than 48h for generating one BFS layer.

56 S. Edelkamp, S. Jabbar, and P. Kissmann

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 10 20 30 40 50 60

by
te

s

depth

29-30-31-32-33-34-35
1-2-3-4-5-6

7-8-9-10-11-12
13-14-15-16-17-18
19-20-21-22-23-24
25-26-27-28-29-30

31-32-33-34-35

Fig. 2. Memory profile for 5-, 6- and 7-tile symbolic pattern databases (logscale)

1

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

0 5 10 15 20 25

by
te

s

iteration

BDD
search tree
breadth-first

Fig. 3. Memory profile for backward search (logscale)

Scaling Search with Pattern Databases 57

For the construction of large pattern databases, we found that the intermediate result
for the image became too large to be completed in main memory. As a solution, we
computed all sub-images (one for each individual move), flushed them, and unified
them in the form of a binary tree using a separate program.

The question arises [28], whether or not symbolic pattern databases cooperate with
symbolic perimeter search, an issue that has recently been denoted as partial or perimeter
database [1, 12, 16]. For this we drew a small experiment constructing a limited-depth
pattern database for the full problem. The memory needs for explicit-state search tree,
breadth-first exploration, and symbolic exploration (residing on disk) are compared in
Fig. 3.

7 Delayed Successor Generation

First, we emphasize that for a search with large internal buffers, as in our case, a multi-
level merge-sort is not needed, such that external sorting is reduced to external scanning.
This is due to the fact that in most operating systems, the number of file pointers is larger
than the ratio between disk and main memory. Given that a single merging pass suffices,
the I/O complexity is bounded by O(|E|/B), with E = {(s, s′) | s′ is successor of s ∧
f(s) ≤ f∗} and B being the block size.

To save space and work on the last diagonal, we have extended external-memory A*
by expanding each f -diagonal twice. In the first pass, only the successors on the active

 0 10 20 30 40 50 60 70 80 0
 10

 20
 30

 40
 50

 60
 70

 80

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

Bytes External-A*

g-value

h-value

Bytes

Fig. 4. Memory profile external-memory A* (logscale) for solving a partially random instance of
the 35-puzzle with symbolic pattern databases

58 S. Edelkamp, S. Jabbar, and P. Kissmann

9 10 8 2 7
3 1 12 4 14 13
5 11 6 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

27 20 35 30 33 26
32 12 4 15 6 23
3 5 8 34 14 29
22 21 7 31 28
25 2 10 1 24 16
18 17 13 9 11 19

7 1 12 3 2
6 4 9 8 10 14
13 15 16 5 17 11
33 21 26 24 22 25
18 20 34 32 35 28
19 30 23 31 27 29

Fig. 5. Sample instances to the 35-puzzle, with rising level of difficulty

diagonal are generated, leaving out the generation of the successors on the (f + 2)-
diagonal. In the second pass, the remaining successors on the (f + 2)-diagonal are
generated. We can avoid computing the estimate twice, since all successor states that
do not belong to the bucket (g + 1, h − 1), belong to (g + 1, h + 1). In the second
pass we can, therefore, generate all successors and subtract bucket (g + 1, h− 1) from
the result. The I/O complexity of this strategy decreases to O(|E′|/B), with E′ =
{(s, s′) | s′ is successor of s ∧ f(s′) ≤ f∗}.

Fig. 4 shows the memory profile of external-memory A* for the partially random in-
stance in Fig.5 (left). The exploration starts in bucket (50, 0) and ends, while expanding
bucket (77, 1). For this experiment three disjoint 3-tile and three disjoint 5-tile pattern
databases were loaded, which, together with the buckets for reading and flushing con-
sumed about 4.9 gigabytes RAM. The total disk space taken was 1,298,389,180,652
bytes, or 1.2 terabytes, with a state vector of 188 bytes8. The exploration took about 2
weeks (cf. Table 2). As the maximum time for one process is 2 days, we had to resume
the algorithm six times – a facility offered by the external-memory A* algorithm.

As we explore on every f -diagonal twice, we avoid the generation of nodes for
diagonal f∗ +2. For the 35-puzzle, such delayed successor generation saved disk traffic
by a factor of about 2.22. As a consequence, external-memory A* without support for
delayed successor generation would have required about 3.9 terabytes disk space.

Table 2. External-memory A* for three disjoint 3- and three disjoint 5-tile databases

CPU Time Total Time RAM
12h:32m:20s 48h:00m:10s 4,960,976 kilobytes
9h:55m:59s 48h:00m:25s 4,960,980 kilobytes
8h:35m:43s 45h:33m:02s 4,960,976 kilobytes
8h:45m:53s 39h:36m:22s 4,960,988 kilobytes

10h:25m:31s 46h:31m:35s 4,960,976 kilobytes
11h:38m:36s 48h:00m:40s 4,960,988 kilobytes
8h:04m:14s 26h:37m:30s 4,960,984 kilobytes

66h:58m:16s 302h:19m:44s

8 32 + 2 × (6 × 12 + 6 × 1) = 188 bytes: 32 bytes for the state vector + information for
incremental heuristic evaluation: 1 byte for each value stored, multiplied by 6 sets of at most
12 pattern databases + 1 value each for their sum. Factor 2 is due to symmetry lookups.

Scaling Search with Pattern Databases 59

Table 3. External-memory A* for three disjoint 5- and five disjoint 6-tile databases

CPU Time Total Time RAM
20h:57m:43s 48h:00m:35s 13,164,060 kilobytes
2h:18m:47s 5h:08m:44s 13,164,068 kilobytes

18h:28m:38s 42h:23m:08s 13,164,064 kilobytes
22h:55m:48s 45h:33m:47s 13,164,068 kilobytes
12h:38m:31s 24h:16m:32s 13,164,068 kilobytes
77h:19m:27s 165h:22m:46s

In Table 3, we solved the instance again, now with the same three disjoint 5-tile pattern
databases and additionally with the five disjoint 6-tile databases. The total exploration
time reduces to about a week. The hard-disk consumption accumulated to 505 gigabytes
with a state of 160 bytes.

8 Distributed Pattern Database Evaluation

Concerning several large pattern databases our solver faced the problem of high mem-
ory consumption exceeding RAM resources on one machine. Lazy loading of pattern
databases on demand, however, significantly slowed down the performance9. Hence, we
decided to distribute the heuristic evaluation to multiple machines across the network.
We exploit the fact that the order of processing within a bucket does not matter. Different
to distributed expansion in [20], pattern database evaluation is distributed.

For solving the 35-Puzzle we chose one master to expand and distribute the states
in a bucket, and parallelized the heuristic evaluation for them to 35 client processes pi,
each one responsible for one tile i for i ∈ {1, . . . , 35}. All client processes operate
individually and communicate with the master via shared files.

During the expansion of a bucket (see Fig. 6), the master writes a file Ti for each
client process pi. The file Ti contains all the successors generated by moving the i-th
tile. Once it has finished the expansion of a bucket, the master pm announces that each
pi should start evaluating its file Ti. Additionally, the client is informed on the current
g- and h-value. After that, the master pm is suspended, and waits for all pi to complete
their task. To prevent the master from load, no sorting takes place in this phase.

Next, the client processes start evaluating the file Ti and distribute their results into
the files Ei(h−1) and Ei(h+1), depending on the observed difference in the h-values.
All files Ei are additionally sorted to eliminate duplicates; internally (when a buffer is
flushed) and externally (for each generated buffer). As only 3 buffers are needed (one
for reading and two for writing) internal buffers can be large.

After its evaluation, each processpi is suspended. When all clients are done, the master
pm is resumed to merge the individual Ei(h−1) and Ei(h+1) files into Em(h−1) and
Em(h + 1). The merging preserves the order in the files Ei(h − 1) and Ei(h + 1), so
that the files Em(h−1) and Em(h+1) are sorted with all bucket duplicates eliminated.

9 Reading the largest disjoint pattern database set from disk took about half an hour.

60 S. Edelkamp, S. Jabbar, and P. Kissmann

Pm

p1 p3

Pm

p34 p35p33

T1 T2 T3 T33 T34

p2

T35

E1 E2 E3 E33 E34 E35

(g, h)

(g + 1, h− 1)

distribute

merge

evaluate

subtract

expand

Em(h− 1)

(g + 1, h + 1)

Em(h + 1)

E1 E2 E3 E33 E34 E35

Pm

Pi

(g − 1, h− 1) (g − 1, h + 1)

Fig. 6. Distributed expansion/evaluation of one bucket

The subtraction of the bucket (g − 1, h− 1) from Em(h− 1) and (g − 1, h + 1) from
Em(h + 1) now eliminates duplicates using a parallel scan of both files10.

Besides the potential for speeding up the evaluation, the chosen distribution mainly
saves space. On the one hand, the master process does not need any additional memory
for loading pattern databases. It can invest all its available memory for internal buffers
required for the distribution, merging and subtraction of nodes. On the other hand, during
the entire lifetime of client process pi, it has to maintain only the pattern database Dj

that includes tile i in its pattern (see Fig. 7). This saves RAM by a factor of about 5.
We started two parallel external-memory A* explorations for solving the half in-

stances using 35 clients and one master process. The individual RAM requirements for
the clients reduced to 1.3 gigabytes so that 2 processes could be run on one node. This
proves that a considerable amount of RAM can be saved on a node using parallel exe-
cution - the most critical resource for the exploration with pattern databases. The first
exploration (first 17 tiles permuted) took 3h:34m and 4.3 gigabytes to complete, while
the second exploration (last 18 tiles permuted) took 4h:29m and 19 gigabytes.

As the above instance is moderately hard (the mean Manhattan distance in the puzzle
is about 135 [15]) we compared the single-process version with the distributed one in
the fully random instance in Fig.5 (right). The single-process version used the disjoint
5- and 6 tile pattern databases, while the parallel version took the 3- and 5-tile pattern

10 A refined implementation concatenates the E-files using the system command cat. As the
concatenated files are partially sorted, the merging and subtraction process used for the duplicate
elimination of the entire bucket then catches all duplicates.

Scaling Search with Pattern Databases 61

7-tiles additive PDB

D1 D2 D3D1 D2 D3 D4

p1 p2 p3 p33 p34 p35

6-tiles additive PDBs

D1 D2 D3D2 D3 D4

p1 p2 p3 p33 p34 p35

D0 D5 D0 D4

Fig. 7. Selection of pattern databases for evaluation

databases. In two days, the distributed version found its best solution at (87, 75) with
338, while the single version found (85, 77) with 270 gigabytes, so that node generation
in the distributed version was slightly faster even though it generated many intermediate
files. The masters’ CPU time accumulated to less than 1/6 of its total time (using 2.2
gigabytes RAM). For large buckets the partition based on the tile that gives an almost
uniform distribution of the state sets so that no additional load balancing between the
clients is needed. For the very small savings in time we blame the NFS file system for
being slow. The clients’ CPU time almost matches their total time, showing that they
mostly wait for the master, without wasting time for writing and reading data.

9 External-Memory Relay A*

We have also solved an instance consisting of a random permutation of the upper
and lower part with the mentioned three disjoint 3-tile and three disjoint 5-tile pat-
tern databases (Fig. 5, middle). We found optimal solutions for the first half using 55
steps in about 10 minutes, as well as for the second half of the puzzle using 66 steps
in about 40 minutes. As the other half remains untouched, this establishes a relay 2-
approximation of 121 steps. Additionally, we terminated external-memory A* with the
disjoint 5- and 6-tile pattern databases in solving the full instance at f = 121 after
generating 1.3 terabytes disk space (in about 8 days). The best two states in diagonal
f = 99 had a h-value of 22. When solving these remaining problems from scratch, we
established a minimum of 42 moves giving rise to a relay solution of 77 + 42 = 119
steps, such that the optimal solution length is an odd number in [101, 119].

Last, but not least, we solved the fully random problem in a relay fashion, restarting
external A* on a selection of buckets. When we terminate based on limited disk space,
we choose the ones with large g-value on the last completed f -diagonal. Successors of
the previous buckets with small g-values are discarded. Assuming an undirected search
graph, the problem remains solvable. Of course the solution quality degrades with each

62 S. Edelkamp, S. Jabbar, and P. Kissmann

 0 50 100 150 200 0

 50

 100

 150

 200

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

Bytes External-A*

g-value

h-value

Bytes

Fig. 8. Memory profile of external-memory relay A* for solving a fully random instance of the
35-puzzle with symbolic pattern databases (on a log-scale)

restart. We call the resulting procedure relay A*. As we have not implemented a resume
support for the distributed version yet, we invoked the single-process version three times
to finally find a valid solution.

Fig. 8 illustrates the memory profile for external-memory relay A* in the example.
We see three exploration peaks. When the search has consumed too much disk space
or time, it was restarted with the bucket having the lowest h-value. The initial h-value
is 152 and the remaining interval for the optimal solution length imposed by the first
iteration and established solution is [166, 214]. This large-scale exploration consumed
2,566,708,604,768+535,388,038,560+58,618,421,920 bytes≈ 2.9 terabytes in about
3 weeks.

10 Conclusion

Driven by a challenging case study, this paper opens a series of new research avenues to
improve the time-space trade-off in searching with pattern databases. External-memory,
iterative-deepening and distributed versions of A* have been engineered to solve in-
stances of the (n2 − 1)-puzzle with large symbolic pattern databases.

Although twisted to the (n2 − 1)-puzzle, some techniques likely generalize. For ex-
ample, the theory of the restricted number of layers for undirected search spaces has
been extended to directed graphs [38]. In retrospective, the choice of the (n2−1)-puzzle
was not always favorable. Only moderate memory savings have been achieved by using
BDDs. The succinctness of the state encoding of the (n2−1)-puzzle limits the structural
advantage of BDDs – much larger savings have been observed for other domains [11].

Scaling Search with Pattern Databases 63

References

1. Anderson, K., Holte, R., Schaeffer, J.: Partial pattern databases. In: Miguel, I., Ruml, W.
(eds.) SARA 2007. LNCS, vol. 4612, pp. 20–34. Springer, Heidelberg (2007)

2. Ball, M., Holte, R.: The compression power of symbolic pattern databases. In: International
Conference on Automated Planning and Scheduling (ICAPS), pp. 2–11 (2008)

3. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys 24(3), 142–170 (1992)

4. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Transactions
on Programming Language Systems 16(5), 1512–1542 (1994)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Principles of Programming
Languages (POPL), pp. 238–252 (1977)

6. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(4), 318–334
(1998)

7. Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: Artificial Intel-
ligence Planning and Scheduling (AIPS), pp. 274–293 (2002)

8. Edelkamp, S.: External symbolic heuristic search with pattern databases. In: International
Conference on Automated Planning and Scheduling (ICAPS), pp. 51–60 (2005)

9. Edelkamp, S.: Optimizing admissible planning pattern database heuristics with genetic pro-
gramming. In: Workshop on Model Checking and Artificial Intelligence (MoChArt), pp.
35–50 (2007)

10. Edelkamp, S., Jabbar, S., Schrödl, S.: External A*. In: Biundo, S., Frühwirth, T., Palm, G.
(eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 233–250. Springer, Heidelberg (2004)

11. Edelkamp, S., Kissmann, P.: Limits and possibilities of BDDs for state space search. In:
National Conference on Artificial Intelligence (AAAI), pp. 1452–1453 (2008)

12. Edelkamp, S., Kissmann, P.: Partial symbolic pattern databases for optimal sequential plan-
ning. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.)
KI 2008. LNCS, vol. 5243, pp. 193–200. Springer, Heidelberg (2008)

13. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Tech-
nology Transfer 5, 247–267 (2004)

14. Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In: ICAPS-
Workshop on Connecting Planning Theory with Practice (2004)

15. Felner, A., Korf, R., Hanan, S.: Additive pattern databases. Journal of Artificial Intelligence
Research 22, 279–318 (2004)

16. Felner, A., Ofek, N.: Combining perimeter search and pattern database abstractions. In:
Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS, vol. 4612, pp. 155–168. Springer, Heidelberg
(2007)

17. Haslum, P.: Domain-independent construction of pattern database heuristics for cost-optimal
planning (2007); Personal communications

18. Hung, N.N.W.: Exploiting symmetry for formal verification. Master’s thesis, Faculty of the
Graduate School, University of Texas at Austin (1997)

19. Jabbar, S., Edelkamp, S.: I/O efficient directed model checking. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 313–329. Springer, Heidelberg (2005)

20. Jabbar, S., Edelkamp, S.: Parallel external directed model checking with linear I/O. In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–251. Springer,
Heidelberg (2005)

21. Jensen, R.M., Bryant, R.E., Veloso, M.M.: SetA*: An efficient BDD-based heuristic search
algorithm. In: National Conference on Artificial Intelligence (AAAI), pp. 668–673 (2002)

64 S. Edelkamp, S. Jabbar, and P. Kissmann

22. Katz, M., Domshlak, C.: Optimal additive composition of abstraction-based admissible
heuristics. In: International Conference on Automated Planning and Scheduling (ICAPS),
pp. 174–181 (2008)

23. Katz, M., Domshlak, C.: Structural pattern heuristics via fork decomposition. In: Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pp. 182–189 (2008)

24. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence Journal 27(1), 97–109 (1985)

25. Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases. In: National
Conference on Artificial Intelligence (AAAI), pp. 700–705 (1997)

26. Korf, R.E.: Breadth-first frontier search with delayed duplicate detection. In: Workshop on
Model Checking and Artificial Intelligence (MoChArt), pp. 87–92 (2003)

27. Korf, R.E., Felner, A.: Disjoint Pattern Database Heuristics. In: Chips Challenging Champi-
ons: Games, Computers and Artificial Intelligence, pp. 13–26. Elsevier, Amsterdam (2002)

28. Korf, R.E., Felner, A.: Recent progress in heuristic search: A case study of the four-peg towers
of hanoi problem. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
2324–2329 (2007)

29. Kunkle, D., Cooperman, G.: Solving Rubik’s Cube: disk is the new RAM. Communications
of the ACM 51(4), 31–33 (2008)

30. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, Princeton (1994)

31. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)
32. Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges

for efficient boolean function manipulation. In: Design Automation Conference (DAC), pp.
52–57. IEEE Computer Society Press, Los Alamitos (1990)

33. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 687–694 (1999)

34. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, Reading (1984)

35. Qian, K.: Formal Verification Using Heuristic Search and Abstraction Techniques. PhD
thesis, Computer Science & Engineering, The University of New South Wales (2006)

36. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic
pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
497–511. Springer, Heidelberg (2004)

37. Ratner, D., Warmuth, M.K.: The (n2 − 1)-puzzle and related relocation problems. Journal
of Symbolic Computation 10(2), 111–137 (1990)

38. Zhou, R., Hansen, E.: External-memory pattern databases using structured duplicate detec-
tion. In: National Conference on Artificial Intelligence (AAAI), pp. 1398–1405 (2005)

39. Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artificial Intelligence Journal 170(4–
5), 385–408 (2006)

Survey on Directed Model Checking

Stefan Edelkamp, Viktor Schuppan, Dragan Bošnački, Anton Wijs,
Ansgar Fehnker, and Husain Aljazzar�

Dortmund University of Technology, Germany
FBK-IRST, Trento, Italy

Eindhoven University of Technology, Netherlands
INRIA/VASY, Montbonnot St Martin, France

National ICT, Sydney, Australia
University of Konstanz, Germany

Abstract. This article surveys and gives historical accounts to the al-
gorithmic essentials of directed model checking, a promising bug-hunting
technique to mitigate the state explosion problem. In the enumeration
process, successor selection is prioritized. We discuss existing guidance
and methods to automatically generate them by exploiting system ab-
stractions. We extend the algorithms to feature partial-order reduction
and show how liveness problems can be adapted by lifting the search
space. For deterministic, finite domains we instantiate the algorithms
to directed symbolic, external and distributed search. For real-time do-
mains we discuss the adaption of the algorithms to timed automata and
for probabilistic domains we show the application to counterexample
generation. Last but not least, we explain how directed model checking
helps to accelerate finding solutions to scheduling problems.

1 Introduction

The presence of a vast number of computing devices in our environment imposes
a challenge for designers to produce reliable software and hardware. Testing if a
system works as intended becomes increasingly difficult. Formal verification aims
to overcome this problem. The process of fully-automatic verification is referred
to as model checking [27, 63]. Given a formal model of a system and a property
specification in some form of temporal logic [45], the task is to validate, whether
the specification is satisfied. If not, a model checker returns a counterexample
for the system’s flawed behavior, helping the designer to debug the model.

The major disadvantage of model checking is that it scales poorly. For a com-
plete verification every state has to be looked at. Among the techniques to over-
come the state-explosion problem, directed model checking has been established
as one of the key technologies. It lessens the burden to find short counterex-
amples for design bugs quickly. Driven by the success of directed state-space

� The course of writing the article was initiated by forming a working group at the
Dagstuhl seminar on Directed Model Checking that took place in April 2006.

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 65–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 S. Edelkamp et al.

exploration in artificial intelligence, model checking algorithms exploit the prop-
erty specifications to orient the search towards their falsification.

In this paper we provide an overview of directed model checking with a focus
on algorithmic aspects. Section 2 presents the development of directed model
checking. In Sect. 3 we introduce notation and basic concepts. Section 4 covers
directed model checking algorithms for safety and Sect. 5 extends the discus-
sion to ω-regular properties. The implications of directed model checking on
partial-order reduction are explained in Sect. 6. Section 7 shows application of
directed model checking in external (disk-based) settings, for real-time systems,
for generation of probabilistic counterexamples, and for scheduling problems.

2 History of Directed Model Checking

Elements of Directed Search in Jan Hajek’s Approver. Some basic ideas of di-
rected model checking have been present since the very first days of the au-
tomated verification of concurrent systems. For instance, Approver, which was
probably the first tool for the automated verification of communication proto-
cols, used a directed search of the state space. Approver, from Algorithmic and
Proven PROtocol VERifier, was written in the second half of the 70’s [54, 55, 56]
by Jan Hajek from the Eindhoven University of Technology (at that time Tech-
nische Hogeschool Eindhoven). In fact the tool was capable of dealing with a
broader class of concurrent systems than the classical communication protocols,
like, for instance, mutual exclusion algorithms.

One of the most elaborate parts of Approver were the techniques for fast
bug finding. Instead of a depth- or breadth-first search of the state space, that
have been usually applied in model checkers, Approver used a general search
algorithm based on priority queue. For efficiency this queue was implemented
as a heap. Each element of the queue contained a pointer to the state vector in
the hash table and a priority field. The records were ordered and selected based
on this priority field. The value of the priority field was computed according to
the priority function that corresponded to the global invariant that was verified.
Directed search was used for the verification of safety properties.

Validation with Guided Search. Yang and Dill [113] wrote a seminal paper on the
validation with guided search of the state space. The SpotLight system already
applied the basic AI search algorithm A* [79] to combat the state explosion prob-
lem. A general search strategy, called the target enlargement analysis, computed
nodes around the goal by applying some pre-images starting from the target
description before starting the forward search, similar to perimeter search [35].

Symbolic Directed Model Checking. A first study of symbolic directed model
checking algorithm simulating the A* exploration in the symbolic µ-calculus
model checker µcke [17] has been given by Reffel and Edelkamp [88]. As an in-
put, the proposed BDDA* algorithm assumes a heuristic estimate function in
form of a BDD and operates on uniform cost graphs with integer-valued heuris-
tic relations H . This relation partitions the state space in regions of the same

Survey on Directed Model Checking 67

heuristic estimates and exploits the succinctness of BDDs to store large state
sets. The algorithm simulates the working of a bucket-based priority queue [32].
Instead of selecting only one element with best f = g + h value (where g is a
measure of the cost to reach that element from the initial states and h is an
estimation of the cost to reach the target), the BDDA* algorithms selects all
elements with minimal f -value and expands them in common. The successors
are computed in form of a symbolic image operation and evaluated using BDD
arithmetics. The resulting f -ordered state sets are put back into the queue. Later
on, different authors have extended the framework of symbolic heuristic search,
for example SetA* [66] introduces partitioned heuristics, ADDA* [59] employed
ADDs instead of BDDs, and in SA*, [82] studied the strength of symbolic esti-
mates.

While they can represent some sets compactly, BDDs still often grow too
large for reachability analysis to complete. Getting an element of DFS into the
default BFS exploration mode can help to alleviate that problem. When the BDD
holding the current search frontier becomes too large, high-density reachability
analysis [85] prunes away states that require relatively more BDD nodes to
represent than the other states, i.e., to increase the ratio of states per BDD
node. When the search frontier becomes empty the whole set of states reached
so far is used in the next image computation [85] to bring the states back in that
have been pruned away. As this step frequently exhausts the available resources,
[86] suggests some alternatives, e.g., storing the pruned states in a separate BDD.

In [87] user-supplied hints are used to restrict the transition relation such that
parts of the state space are avoided at first that are presumed to lead to a blow-
up and only added towards the end of the traversal. This limits the effect that
in a sequence of BDD operations such as computing the reachable set of states
the intermediate BDDs are often much bigger than the end result. Experimental
results show improved performance for both false and true properties.

Fraer et al. present an algorithm for reachability that employs frontier splitting
to keep BDDs small and selects the part of the frontier to be expanded next based
on BDD size [50].

Explicit-State Directed Model Checking. Edelkamp, Leue, and Lluch-Lafuente
[39] coined the term directed model checking and implemented a guided variant
of the explicit-state model checker SPIN [63]. In HSF-SPIN, safety violation
checking is handled by replacing standard search by A*. Besides some deadlock -
specific estimates, two generic estimates are supported. For liveness properties
an improved nested-DFS algorithm based on the classification of the automata
representation of the property in strongly-connected components has been pro-
posed. Later on, partial-order reduction was added [40]. Directed model checking
has also been applied to guide the search process to obtain a better counterex-
ample for the same error. This is particularly useful if, e.g. due to memory
constraints, suboptimal search algorithms were used to obtain a first counterex-
ample [76].

68 S. Edelkamp et al.

3 Concepts and Notation

State-Space Model. We assume a state-space model M to include S as the set
of states, T as the set of transitions, and I ⊆ S as the set of initial states. The
set S is often not known a priory, but generated on-the-fly. States are mapped
to a set of atomic propositions AP true in that state by a labeling function
L : S → 2AP . The set of transitions T induces a transition relation T on triples
(s, t, s′) where t leads from s to s′. We use the shorthand notation s

t→ s′. When
analyzing safety properties we additionally assume a set of bad states B ⊆ S.

Cost algebras. Cost algebras [38] generalize edge weights to more general cost
structures. A cost algebra is defined as 〈A,×,�,0,1〉, such that 〈A,×,1〉, is a
monoid,� is a total order, 0 = �A and 1 = �A, and A is isotone1. Intuitively,
A is the domain set of cost values, × is the operation used to cumulate values and
� is the operation used to select the best (the least) amongst values. Consider
for example, the following instances of cost algebras: 〈IR+∪{+∞}, +,≤, +∞, 0〉
(optimization), 〈IR+∪{+∞},min,≥, 0, +∞〉 (max/min), 〈[0, 1], ·,≥, 0, 1〉 (prob-
abilistic), or 〈[0, 1],min,≥, 0, 1〉 (fuzzy). Not all algebras are isotone, e.g. take
A ⊆ IR × IR with (a, c) × (b, d) = (min{a, b}, c + d) and (a, c) � (b, d) if a > b
or c < d if a = b. We have (4, 2) × (3, 1) = (3, 3) � (3, 2) = (3, 1) × (3, 1)
but (4, 2) ≺ (3, 1). However, the reader may easily verify that the related cost
structure implied by (a, c) × (b, d) = (a + b, min{c, d}) is isotone. For a path

p = (s0
t0→ s1

t1→ . . .
tk−2→ sk−1

tk−1→ sk) we define the cumulated cost c(p) as
c(t0) × c(t1) × . . .× c(tk−1). As there can be many paths between two states s
and s′, with δ(s, s′) we refer to the cost of an optimal one. We will also use the
shorthand notation δ(s, X) for the optimum of δ(s, s′) for any s′ in X .

Heuristics. Cost-algebraic heuristics h map S to A. We assume that h(e) = 1 for
each bad state e ∈ B saying that there is no cost estimated for reaching an error
when having encountered it. A heuristic function h : S → A is admissible, if for
all s ∈ S we have h(s) � δ(s,B), and consistent, if for each s, s′ ∈ S and t ∈ T

s.t. s
t→ s′, we have h(s) � c(t)× h(s′). If h is consistent, then it is admissible.

The formula-based heuristic Hf used is recursively defined on the (safety)
property specification. Let v be a Boolean variable, a some constant value in A,
and g and h logical predicates. The recursive definition of Hf is as follows.

f Hf (s) Hf (s) f Hf (s) Hf (s)
true 1 0 ¬g Hg(s) Hg(s)
false 0 1 g ∨ h �{Hg(s),Hh(s)} Hf (s) × Hg(s)

v if v then 1 else a if v then a else 1 g ∧ h Hg(s) × Hh(s) �{Hg(s),Hh(s)}

1 Isotonicity is the key property of the algebra. It states that the order relation between
the costs of any two paths is preserved if both of them are either prefixed or appended
by a common, third, path. It has been shown that isotonicity is both necessary and
sufficient for a generalized Dijkstra’s algorithm to yield optimal paths [101].

Survey on Directed Model Checking 69

In the definition of Hg∧h and Hg∨h, the use of × suggests that g and h are
independent, which may not be true. When choosing �{H(g), H(f)} instead,
(under some additional conditions on the value of a), the formula-based heuristic
is consistent. The main reason is that the greatest of two consistent estimates is
consistent, while the cumulation might not even be admissible.

The finite state machine (FSM) distance heuristic is based on projecting the
system state to the program counter. The abstract state spaces are analyzed
prior to the search to capture the shortest path distances of all local states to
the set of dangerous states. The distances are cumulated for each running pro-
cess. More formally, we assume that the global state space is generated based on
the asynchronous compositions of processes pi, i ∈ {1, . . . , n}. In other words,
each global system state is partitioned into n local states. The state of a lo-
cal process pi is called its program counter, i ∈ {1, . . . , n}, pci for short. The
FSM distance heuristic is defined as Hm(s, s′) = ×n

i=1δi(pci(s), pci(s
′)), where

δi(pci(s), pci(s
′)) denotes the least-cost path from pci(s) to pci(s

′) in the au-
tomaton representation of pi. The values for δi are computed prior to the search.
The FSM distance heuristic assumes that both states s and s′ are known to the
exploration module. It has mainly been used in trail-directed search. As the
product of different processes is asynchronous, it is not difficult to see [40] that
the FSM distance is consistent.

One option to derive a heuristic automatically is to take the optimal cost from
the current state to the error in an abstract space derived by any homomorphic
abstraction as an admissible estimate, where a homomorphic abstraction is an
over-approximation, for which each path in the concrete space induces a corre-
sponding path in the abstract [26, 74]. Abstractions may contract states into
one and merge edges accordingly. More precisely, if we contract states s1 and
s2 and there are transitions s1

t1→ s3, s2
t2→ s3 or transitions s3

t1→ s1, s3
t2→ s2,

we merge t1 and t2 to t3 with c(t3) = c(t1) � c(t2). Self-loops usually do not
contribute to an optimal solution and can be omitted. It is not difficult to see
that such abstraction heuristics are consistent. Unfortunately, re-computing the
heuristic estimate from scratch cannot speed-up the search [105]. A solution is to
completely evaluate the abstract space prior to the search in the concrete space.

For a model M with abstraction M̂, an abstraction database [41, 83] is a
lookup table indexed by ŝ ∈ Ŝ containing the shortest distance from ŝ to B̂.
The size of an abstraction database is the number of states in Ŝ. For undirected
graphs with uniform edge weights (usually equal to 1) it is easiest to create an
abstraction database by conducting a breadth-first search in backward direction,
starting at B̂. This assumes that for each (abstract) transition t we can devise

an inverse (abstract) transition t−1 such that ŝ
t→ ŝ′ iff ŝ′

t−1→ ŝ. To construct
an abstraction database for weighted and directed graphs, the shortest path ex-
ploration in abstract space uses inverse transitions and Dijkstra’s algorithm. If
inverse operators are not available, we reverse the state space graph as generated
in a forward chaining search. With each state ŝ′ we attach the list of all prede-
cessor states ŝ. In case a bad state is encountered, the traversal is not terminated
but the abstract bad states are collected in a (priority) queue. Next, backward

70 S. Edelkamp et al.

Failure

Abstraction

Abstract Model Checking Directed Model Checking

Model Checking Problem

Abstract Model Checking Problem

Success

No Error

Success

Error found

Failure

Abstraction Directed Model Checking

Fig. 1. Abstraction Directed Model Checking

traversal is invoked on the inverse of the state space graph, starting with the
queued set of abstract bad states. The shortest path distances to the abstract
bad states are stored with each state in a hash table. For a better time-space
trade-off it is possible to fully traverse the abstract state space symbolically,
yielding symbolic abstraction databases [36].

Abstraction directed model checking [81] combines model checking based on
abstraction [26, 29, 74] and directed model checking as follows. An initial model
checking run is performed on the abstract model. If the property holds, then
the model checker returns true. If not, in a directed model checking attempt,
the same abstraction is used to guide the search in the concrete state space to
falsify the property. If the property does not hold there, a counterexample is
returned; if it does, the property has been verified (see Fig. 1). If the abstraction
(heuristic) turns out to be too coarse, it is possible to iterate the process with a
refined abstraction.

4 Directed Model Checking Algorithms

Standard Forward Reachability A pseudo-code implementation of a forward
reachability model checking algorithm (for safety properties) based on sets is
provided in Fig. 2. In Line 1 the structures are initialized while Lines 2–7 per-
form the search for an error in a loop. If terminated without finding an er-
ror, Line 8 returns that the property is verified due to a complete exploration.
Line 3 is a generic selection mechanism that determines the search traversal pol-
icy. Line 4 moves the selected set from Open to Closed, while Line 5 detects and

Survey on Directed Model Checking 71

Procedure ModelCheck
Input: Model M = (S ,T , I,L), set of bad states B, cost algebra A
Output: true if property is satisfied or counterexample if not

1 Closed ← ∅; Open ← I
2 while (Open 	= ∅)
3 S ← SelectA(Open)
4 Open ← Open \ S; Closed ← Closed ∪ S
5 if (S ∩ B 	= ∅) return GeneratePath(S ∩ B)
6 Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T}
7 Succ ← Succ \ Closed; Open ← Open ∪ Succ
8 return true

Fig. 2. General Model Checking Algorithm

handles bad states. Line 6 generates the successor set from which Line 7 elimi-
nates duplicates. It also inserts the remaining elements into the search frontier.

In SelectA we can incorporate any specialized selection strategy. For BFS, we
select the states with smallest depth, while for DFS we select the one(s) with
the largest depth. For Dijkstra-like search we select one element with the least
cost. Let C be the cost relation that relates a state to a cost-algebraic value. In
such case, SelectA(Open) returns some s′ in Open with (s′, a) ∈ C and for all s
in Open with (s, b) ∈ C we have a � b. In the explicit-state version one candidate
is selected, while in the set-based version all states are selected.

Forward Reachability with Costs. The algorithm in Fig. 2 does not say anything
about updating the cost relation C, which is modified during the execution of the
algorithms. At invocation time, we have (s,1) ∈ C for all s ∈ I, and (s,0) ∈ C for
all s /∈ I. Whenever we reach a new state s′ from s via transition t we perform
cost relaxation, i.e., if a × c(t) ≺ b with (s, a) ∈ C and (s′, b) ∈ C we update
C ← C \ {(s′, b)}∪ {(s′, a× c(t))}. Strictly speaking, full initialization of the cost
relation is not possible for the on-the-fly analysis of the system. Therefore, cost
values are stored together with the states in the list Open and Closed.

The update of relation C depends on the search algorithm. We call a state
settled, if (s, a) ∈ C and a = δ(I, s). Moreover, a cost relation is called monotone,
if for (s, a) ∈ C and (s′, b) ∈ C and (s, t, s′) ∈ T , we have a � b.

The selection strategy in Dijkstra’s algorithm only considers settled states and
monotone cost relations [34]. If it is not monotone, different approaches have been
suggested. The main observation is that a cost update has to be executed more
than once for a transition. It can be shown that BFS settles at least one unsettled
state on an optimal path π∗ in the Open list, such that after |π∗| iterations of
ModelCheck without re-initializing C the bad state on π∗ is settled [15]. In k-best
first search [49] we select the k least-cost elements from Open and compute their
set of successors in common. The algorithm is complete but the counterexample
might not be optimal. k-beam search [19] additionally prunes away all states
from Open that are not among the k best ones. In this case, completeness is

72 S. Edelkamp et al.

sacrificed to search for errors in larger models. By iteratively performing k-beam
search with larger k we get iterative-broadening [51], by which we gain back
completeness.

Guided Forward Reachability. All exploration variants of the general model
checking algorithm that we have seen so far are blind in the sense, that they
do not incorporate any guidance towards a quicker falsification of the property.
Directed model checking algorithms reorder the states to be expanded in order
to accelerate error-detection in the case of choosing a different selection strategy.

The estimated cost of a counterexample at a given state s is the accumulation
of the costs of reaching s and the heuristic estimate for reaching a bad state
starting from s. For the latter we assume a static estimate relation H(s, b) that
associates a state s with its estimate b ∈ A. A* selects elements with least
estimated counterexample costs. In other words, SelectA(Open) returns some
s in Open with (s, a) ∈ C and (s, b) ∈ H such that for all s′ in Open with
(s′, a′) ∈ C and (s′, b′) ∈ H we have a × b � a′ × b′. The initialization and the
cost updates to the cost relation C remain unchanged. For consistent heuristics
the selection strategy of A* only considers settled states. More precisely, at
each extraction of a state s with (s, a) ∈ C and (s, b) ∈ H from the Open-
List we have a = δ(I, s) × b. At a bad state e ∈ B b is trivial, as H(e,1).
This implies a = δ(I, e). Therefore, A* with H(B,1) returns the cost-optimal
counterexample. Optimality is only granted, if the goal check is performed at
the expanded state. BFS is an exception, which terminates at a generated goal.

For inconsistent heuristics, it can happen that a better path to an already
expanded state is encountered during the search process. For such case a re-
opening strategy has been proposed [79]. It moves states from the set of already
expanded states Closed back to the search frontier Open. Although in theory an
exponential increase in the number of expanded nodes may happen, re-opening
produces optimal counterexamples for admissible heuristics and works well in
practice. The underlying problem of searching with non-consistent heuristics is
equivalent to the search with non-monotone paths in a problem graph.

Bounded Forward Reachability. In Fig. 3 we display a cost-bounded variant of
the general model checking algorithm. It extends the algorithm in Fig. 2 by an
additional pruning condition in Line 8. The algorithm includes cost threshold U
as an additional parameter. In the guided form shown here, it is based on the
relations C andH, as introduced above. There are various reasons for introducing
parameter U . An upper bound prevents the algorithm from searching too deep
e.g. when using depth-first selection strategies. Any generated counterexample
has a quality not worse than U . If U = δ(I,B) then up to tie-breaking and
the choice of H the optimal number of states are expanded [30]. The reason
is that any optimal exploration strategy has to explore all states with costs
smaller than δ(I,B). In some cases U = δ(I,B) is already known, the only task
is to generate a counterexample matching it. If U is not known, one may adjust
U interactively. Automated strategies are iterative-deepening [67] (increasing U
by the smallest amount possible), branch-and-bound [69] (decreasing U to the

Survey on Directed Model Checking 73

Procedure CostBoundedDirectedModelCheck
Input: Model M = (S ,T , I,L), set of bad states B, cost algebra A = 〈A,×,�,0,1〉,

bound on cost U , cost relation C, estimate relation H
Output: true if property satisfied on U cost-bounded paths or counterexample

1 Closed ← ∅; Open ← I
2 while (Open 	= ∅)
3 S ← SelectA(Open)
4 Open ← Open \ S; Closed ← Closed ∪ S
5 if (S ∩ B 	= ∅) then return GeneratePath(S ∩ B)
7 Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T}; Succ ← Succ \ Closed
8 Succ ← Succ \ {s ∈ Succ | ∃a, b ∈ A.C(s, a) ∧H(s, b)∧ U ≺ a × b}
9 Open ← Open ∪ Succ
10 return true

Fig. 3. Cost-Bounded Model Checking Algorithm

largest value smaller than the latest cost value obtained), or refined threshold
determination [107] (an exponential or binary search compromise between the
two). In memory-limited A* search [91], full duplicate elimination in the Closed -
list is sacrificed in order to gain space. U can control the memory needs. If the
cost-updates do not preserve monotonicity, the cost values of some states in
Closed are not optimal on the first visit and some nodes may remain unsettled.

According to the selection mechanism in SelectA we arrive at different branch-
and-bound strategies. Depth-bounded depth-first search imposes an upper bound
on the solution depth, to prevent the algorithms from searching too deep. As our
algorithm, it takes U as an additional input parameter. Admissible depth-first
search guarantees to find an error of cost smaller than the given threshold.

For cost-optimal depth-bounded search with duplicate detection there is a
potential pitfall [40]. It is apparent in depth-first depth-bounded search but
applies to many cost-bounded variants. The problem is that a cached duplicate
may not be reached with optimal cost on the first visit such that on the second
visit it is stored with suboptimal cost. Even worse, if the successor of a such
cached duplicate has a bad state outside the cost threshold as a successor then
this error might not be detected even if its cost are below the cost threshold. A
possible solution is to re-open a state if reached with better costs.

Sparse Memory Forward Reachability. In model checking practice, the limita-
tion of (main) memory is likely to be the most challenging problem. Set Closed
is mainly kept to prevent exploring states twice and it tends to take up most
space. In Fig. 4 we show a pseudo-code implementation of frontier search that
has shown significant improvements in solving action planning and sequence
alignment problems [68]. The assumption here is that not the entire set of states
needs to be stored completely for detecting an error. How many layers are suf-
ficient for full duplicate detection in general is dependent on a property of the
search graph called locality. For uniform weighted problem graphs, it is defined

74 S. Edelkamp et al.

Procedure CostBoundedDirectedFrontierModelCheck
Input: Model M = (S ,T , I,L), set of bad states B, cost algebra A = 〈A,×,�,0,1〉,

bound on cost U , locality L, cost relation C, estimate relation H
Output: true if property satisfied on U cost-bounded paths or counterexample

1 Succ ← I; for each k = 1, . . . , L Closed(k) ← ∅
2 while (Succ 	= ∅)
3 Closed(0) ← Open ← Succ; Succ ← ∅
4 while (Open 	= ∅)
5 S ← SelectA(Open)
6 Open ← Open \ S
7 if (S ∩ B 	= ∅) then return GeneratePath(S ∩ B)
8 Succ ← Succ ∪ {s′ | s ∈ S, (s, t, s′) ∈ T}
9 Succ ← Succ \⋃L

k=0 Closed(k)
10 Succ ← Succ \ {s ∈ Succ | ∃a, b ∈ A.C(s, a) ∧H(s, b) ∧ U ≺ a × b}
11 for each k = L, . . . , 1 Closed(k) ← Closed(k − 1)
12 return true

Fig. 4. Directed Frontier Search Model Checking Algorithm

as the maximum max{δ(I, s) − δ(I, s′)} + 1 of all states s, s′, with s′ being a
successor of s. It determines the thickness of the boundary slice of the graph
needed to prevent duplicates to occur in the search.

One observation for state selection is that breadth-first branch-and-bound
frontier search often results in a smaller search frontier than best-first branch-
and-bound frontier search. In AI literature, the according search strategy is
called breadth-first heuristic search [114]. In beam-stack-search this strategy has
been extended to feature partial state selection [115]. For such memory-limited
frontier search, (divide-and-conquer) solution reconstruction is needed, for which
certain relay layers are additionally stored in main memory.

5 ω-Regular Properties

The exposition has so far been restricted to checking reachability of a set of states.
We now show how the machinery can be used to check ω-regular properties,
which properly include propositional LTL [45].

We assume that the reader is familiar with the automaton-based approach to
model checking of ω-regular properties [106]. We extend our state space model
with a Büchi fairness constraint F ⊆ S to M = (S, T , I,L,F) and restrict the
discussion below to the search of a fair lasso-shaped path inM. See also [27, 63].

Nested Depth-First Search. The most popular algorithm to search for fair lasso-
shaped paths in explicit-state model checking is probably nested depth-first
search [28, 65]. A first DFS finds all reachable states. When backtracking from
a fair state it starts a second DFS that tries to close a fair cycle by hitting a
state on the stack of the first DFS. When that happens, a counterexample can

Survey on Directed Model Checking 75

be reconstructed easily from both search stacks. States are marked as visited
by either DFS, hence, each state is visited at most twice. Marking can be done
with just two bits per state, which is the main reason for the frequent use of
this algorithm in explicit-state model checking. On the downside, starting the
second DFS in post order tends to produce long counterexamples.

In the inner search it’s obvious that the search should be directed to some
state in the stack of the outer search. Potential heuristics for this case include the
Hamming and the FSM distance heuristic [40]. In the outer search it’s less clear
what a promising direction should look like. Clearly, the likelihood of finding a
fair cycle should be high. If the state space of M is the synchronous product
of smaller state spaces M1,M2, . . ., some Mi can be analyzed beforehand to
obtain approximate information on whether a state s = (s1, s2, . . .) in M can be
part of a strongly connected component with a fair cycle at all. Only if all si are
part of an SCC that includes a fair path in Mi then s can be part of an SCC
with a fair path itself. Hence, if any si is known not to be in such SCC then the
search should be directed to the edge of the current SCC [39].

Liveness Checking as Safety Checking. Transforming a liveness checking prob-
lem into a safety checking problem immediately makes the algorithms in Sect. 4
available for all ω-regular properties. Here, we consider the state-recording trans-
lation that reformulates the problem of finding a fair lasso as a reachability
problem [18, 95, 96, 97]. The translation extends the original model with a copy
for each state variable and a number of flags. It splits the search for a fair lasso
into 3 steps: (1) non-deterministically guess and record a loop start in a copy
of the set of state variables, (2) search a fair state and record its occurrence
in a flag, and (3) return to the guessed and recorded loop start. Shortest fair
lassos can be found when breadth-first search or A* [79] are used.2 Although
the reformulation roughly squares the size of the state space, performance of
BDD-based symbolic model checking is improved for some examples [95, 96]. The
method has been applied to SAT-based interpolation [78], to external distributed
explicit-state directed model checking [37], and, independently, to regular model
checking [22].

The heuristics should distinguish whether a loop start has been guessed or
not. If not (step 1), we are effectively in the outer part of a nested search and
should seek for promising loop starts. Once a state has been saved, a fair state
(step 2) and, after that (step 3), the loop start are preferred targets. Applicable
heuristics in all phases include Hamming and FSM distance heuristics [39, 40].

Other Algorithms. Similar to the case of safety properties trail improvement can
also be used for lasso-shaped counterexamples [40, 76]. Assume, that a lasso-
shaped counterexample π = πstem ◦ πω

loop to some ω-regular property is given.
Directed model checking with Hamming or FSM distance heuristics is then used

2 Note that finding a shortest counterexample (as opposed to only a shortest fair cycle
in the product of model and property automaton) requires an appropriate translation
of the property into a Büchi automaton [95, 98] or dedicated algorithms [70].

76 S. Edelkamp et al.

to shorten π as follows. Let sl be the first state of πloop . In a first step a potentially
shorter trail π′

stem from the initial states to sl is generated. Then a fair cycle
π′
loop starting and ending in sl is produced. Backtracking is used to guarantee

fairness of π′
loop . As a further optimization, sl can be replaced with any state s′l

that is equivalent to sl in the sense that the sequence of transitions that leads
from sl to sl in π′

loop also lead from s′l to s′l and hits a fair state in between.
Standard algorithms in BDD-based model checking, which are typically vari-

ants of the Emerson-Lei algorithm [46], perform a nested fixed point compu-
tation, which makes application of heuristics difficult. The idea of using hints
has been extended to nested fixed points [20], though with less success than in
[87]. CTL is covered in [21]. In the context of an SCC enumeration algorithm a
prioritization was used based on the distance of states to the origin and on the
number of fairness constraints they fulfill to select a state as the starting point
for further SCC decomposition [108]. The approach by [50] extends to other least
fixed point computations.

6 Partial Order Reduction

Partial order reduction (POR) [52, 80, 104] is one of the most important state-
space reduction techniques in explicit state model checking. In this section we
discuss how POR can be combined with directed model checking. The only essen-
tial difference with POR for standard model checking (for instance, as presented
in [27]) is in the condition called the cycle proviso. Intuitively, this condition
prevents ignoring parts of the system (state space) because of closing cycles
during the search. The classical versions of the cycle proviso in standard model
checking are closely dependent on the search order - usually DFS [52] or BFS [7].
Because of that they are not applicable in directed model checking. The proviso
that we use to make POR compatible with directed model checking is inspired
by the general search order proviso presented in [23]. In the rest of the section
we introduce some basic terminology along the lines of [7] and state the new
version of the cycle proviso for safety and liveness properties.

Let M = (S, T , I,L,F) be a model of the state space as introduced in Sec-
tion 5. To improve readability, we write s

t→M s′ for (s, t, s′) ∈ T . When the
model M is clear from the context we omit it. Further, we assume that the
transition relation is deterministic in the sense that for each transition t ∈ T
and each state s ∈ S there exists at most one s′ ∈ S such that s

t→ s′. Thus,
each transition can be seen as a partial function t : S → S which is defined if
s′ exists. We also say that s′ is a successor of s. A transition t ∈ T is said to
be M-enabled in state s ∈ S iff t(s) is defined. The set of all transitions t ∈ T
enabled in state s ∈ S is denoted enabledM(s).

The basic idea of state space reduction is to restrict the part of the state space
of a concurrent system that is explored during verification in such a way that
all properties of interest are preserved. To this end we define a function r which
assigns to each state s a set of transitions r(s). During the on-the-fly construction
for each state s already included in the state set Sr of the reduced model Mr,

Survey on Directed Model Checking 77

we add its successors obtained via transitions in r(s). We start with an Sr that
includes only the initial states I of the original model M. Those states become
also the initial states Ir of the reduced model Mr. Then we iterate the above
described extension of Sr (Mr) until a fixed point is reached. The construction
of the reduced model is captured in the following definition:

For any reduction function r : S → 2T , we define the (partial-order) reduc-
tion of M = (S, T , I,L,F) with respect to r as the smallest model Mr =
(Sr, Tr, Ir,Lr,Fr) satisfying the following conditions: Sr ⊆ S, Ir = I; and for
every s, s′ ∈ Sr and t ∈ r(s) if s

t→M s′ then s
t→Mr s′. We say that property φ

is preserved by the reduction iff M |= φ ⇔Mr |= φ. Depending on the proper-
ties that a reduction must preserve, we define additional restrictions on r. These
sets of restrictions are well known in the POR theory (see [7, 27]).

Let M be a model with a reduction function r that is persistent in the sense
of [7, 52] and let us first consider POR without DMC. The POR variation of
the general model checking algorithm (GMCAPOR) is obtained by replacing in
the algorithm in Fig. 2 the assignment Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T } with
Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T ∧ t ∈ r(s)} where r(s) satisfies — besides the
well-known conditions C0a, C0b, C1 (see, e.g., [23]) — the condition

– C2c: For each s ∈ Sr there exists a transition t ∈ r(s) such that s′ = t(s)
and s′ �∈ Closed. Otherwise r(s) = enabledM(s).

Thus, we require that at least one new state which is explored via an action
in r(s) must not be in Closed. Otherwise the reduced set r(s) must include
all transitions which are enabled in s. The intuition behind C2c is that each
transition t which is not in r(s), i.e., it is temporarily ignored in s, will be
considered in at least one successor s′ of s. Since s′ is not in Closed, it must be
either in Open or a new unexplored state which will be put in Open. Thus, s′

will be considered in some later iteration of the algorithm. Condition C1 ensures
that t remains enabled also in s′. It could happen that t is ignored in s′ too,
but condition C2c will again ensure that it is considered later in some of its
successors. As the set Sr is finite one can show that this ignoring cannot go
forever and the action will be eventually included in some r(s′′) for some state
s′′ that is reachable in Mr from s′ and therefore also from s.

Similarly as in [23], one can show that condition C2c implies the general ig-
noring prevention condition given by Lemma 2.2 of [7]. Although a stronger
condition usually implies less reduction, in practice the advantage of C2c over
Lemma 2.2 of [7] is that the former can be efficiently checked based only on
local information, i.e., considering only state s and its successors. The correct-
ness of the GMCAPOR algorithm does not depend on the order in which states
are removed from Open, i.e., it is independent of the selection strategy imple-
mented by SelectA. Therefore, the correctness of the combination of POR with
the directed model checking algorithm follows immediately. By requiring that S
is a singleton we obtain the explicit state version of the general (directed) state
exploring algorithm with POR in [23], while by putting S = Open we get the
POR algorithm for symbolic (breadth-first) search in [7].

78 S. Edelkamp et al.

To preserve liveness properties (LTL−X , CTL∗
−X) with GMCAPOR one has

to ensure that function r satisfies the liveness variant of the transition ignoring
condition which requires that along each cycle c in the reduced model in at
least one state s of c it holds r(s) = enabledM(s). Intuitively, this condition
ensures that a transition cannot be indefinitely postponed along c since it will
be eventually included in r(s). The drawback of this condition is that it is defined
globally on the reduced state space. Like for safety properties, we give a stronger
condition that might produce less reduction but it is locally checkable in an
efficient manner:

– C2cl: For each s ∈ Sr for all transitions t ∈ r(s) such that s′ = t(s) it holds
s′ �∈ Closed. Otherwise r(s) = enabledM(s).

7 Applications

To explore complex systems, the above algorithms have to be adapted.

Discrete Model Checking. Discrete edge costs are very common in model checking
practice. In fact, most problem graphs considered are uniform, i.e., every edge has
cost 1. As in this case the heuristic evaluation function estimates the remaining
path length to the error, it is bounded by an upper-bound maxh on the optimal
counterexample length. This allows to split the relation H into sets of states Hj ,
j = 0, . . . , maxh, that share the same heuristic value,

In Fig. 5 we have depicted the matrix implementation of the general directed
model checking algorithm for uniform costs. Before expanding a state set (a.k.a.
bucket) from the matrix, we eliminate possible duplicates by state set subtrac-
tion. Next we check for bad states, generate the successor set and distribute it
according to the heuristic relation. For the sake of simplicity, we have assumed
consistent estimates, for which each state is expanded at most once. For admis-
sible but non-consistent estimates, we have to re-expand buckets and enlarge the
range of j to [0, . . . , maxh].

For disk-based (graph) search [94], the changes to the algorithm Discrete-
DirectedModelCheck are moderate. For detecting duplicates in one bucket, it is
sorted beforehand, and, instead of intersecting two sets internally, we scan the
corresponding files (assuming they are already sorted). In external frontier search
relay layers are not needed; the exploration fully resides on disk. There is one
subtle problem: predecessor pointers are not available on disk. This is resolved
by saving the predecessor together with every state, by scanning with decreasing
depth the stored files, and by looking for matching predecessors. Any reached
node that is a predecessor of the current node is its predecessor on an optimal
solution path. This results in an I/O complexity that corresponds to a linear
scan of at most all nodes visited.

To organize the communication between the processors in a parallel environ-
ment a working queue is maintained on disk [37]. The working queue contains
the requests for exploring parts of a (g, h) bucket together with the part of the

Survey on Directed Model Checking 79

Procedure DiscreteDirectedModelCheck
Input: Model M = (S ,T , I,L), set of bad states B, estimate sets Hj , 0 ≤ j ≤ maxh

Output: true if property is satisfied or counterexample if not

1 for each i = 1, . . . , L for each j = 0, . . . , maxh

2 Open(−i, j) ← ∅
3 for each j = 0, . . . , maxh

4 Open(0, j) ← I ∩ Hj

5 fmin ← min{j ≥ 0 | Open(0, j) 	= ∅}
6 while (fmin 	= ∞)
7 gmin ← min{i | Open(i, fmin − i) 	= ∅}
8 while (gmin ≤ fmin)
9 Min ← Open(gmin, fmin − gmin)
10 Min ← Min\ ⋃L

k=1 Open(gmin − k, fmin − gmin)
11 if (Min ∩ B 	= ∅) then return GeneratePath(Min ∩ B)
12 Succ ← {s′ | s ∈ Min, (s, t, s′) ∈ T}
13 for each j = fmin − gmin − 1, . . . , maxh

14 Open(gmin + 1, j) ← Open(gmin + 1, j) ∪ (Succ ∩ Hj)
15 gmin ← gmin + 1
16 fmin ← min({i + j > fmin | Open(i, j) 	= ∅} ∪ {∞})

Fig. 5. Directed Model Checking Algorithm for Uniform Costs

file that has to be considered. As processors may have different computational
power and processes can dynamically join and leave the exploration, the number
of state space parts does not necessarily have to match the number of processors.

Real-Time Model Checking. Timed automata (TA) extend finite labelled transi-
tion systems with real-valued variables called clocks to capture delays and timing
constraints. Directed model checking for TAs was developed parallel to directed
model checking for finite systems, and was coined guided model checking [13].
These techniques have been successfully applied to several case studies and were
implemented in the directed model checker for timed automata MCTA [71, 73]
and added to the existing model checker UPPAAL [13, 33, 84].

TA distinguish between delay and discrete edge transitions. Delay transitions
increment all clock variables with the same amount, while the finite part of the
state remains unchanged. Discrete edge transitions may change the finite part
of the state and reset clock variables to zero. Guards and invariant conditions
over clock variables are defined using clock constraints Ψ(Cl), defined by ψ :=
x � c | x − y � c | ψ ∧ ψ | ¬ψ with x, y ∈ Cl, c ∈ ZZ, and � ∈ {<,≤}. This
restriction to simple constraints on clocks, and constraints on differences between
clocks is used in [8] to show that model checking TAs is decidable.

Common model checkers use symbolic semantics based on zones. A zone Z
is a maximal set of clock valuations satisfying a constraint from Ψ(Cl). A sym-
bolic state s is a pair (l, Z) of a location and a zone. Symbolic state s = (l, Z)
represents a subset of s′ = (l′, Z ′), denoted s ⊆ s′, if l = l′ and v |= Z ⇒ v |= Z ′.

80 S. Edelkamp et al.

Procedure ModelCheck
Input: Model M = (S ,T , I,L), set of bad states B, cost algebra A
Output: true if property is satisfied or counterexample if not

1 Closed ← ∅; Open ← I
2 while (Open 	= ∅)
3 S ← SelectA(Open)
4 Open ← Open \ S; Closed ← Closed ∪ S
5 if (S ∩ B 	= ∅) return GeneratePath(S ∩ B)
6 Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T}
7 Succ ← {s ∈ Succ| ∀s′ ∈ Closed. s � s′}
8 Open ← {s ∈ Open| ∀s′ ∈ Succ. s � s′} ∪ {s ∈ Succ| ∀s′ ∈ Open.s � s′}
9 return true

Fig. 6. General Model Checking Algorithm for Timed Automata

Necessary operations can be effectively realized, using a canonical representation
of zones as weighted graph, known as Difference Bound Matrices [16].

Due to the nature of delay, it is possible to reach any reachable state by an
alternation of delays and edge transitions (by inserting zero delays or merg-
ing successive delays). The length of a counterexample can and is in practice
expressed in the number of discrete edge transitions. Cost and heuristic are
typically defined over cost algebra A = (IN0 ∪∞, +,≤,∞, 0). If the goal is to
minimize the length of the error trace, we assume for the cost that c(t) = 0 for
delay transitions, and c(t) = 1 otherwise. The forward reachability algorithm
presented in Fig. 2 can then be extended, as depicted in Fig. 6, to deal with
TAs. We assume that set of bad states B is a pair of a location and zone (lb, Zb).

A consequence of the zone-semantics is that a symbolic state s′ may represent
a subset of another symbolic state s. Model checking algorithms for TAs differ
therefore in one important aspect from the general algorithm in Fig. 2. Rather
than checking for equality between sets of states, they typically check for set
inclusion. If symbolic state s ∈ Closed, then we can discard exploration of any
subset s′ of s. Duplicate detection in Line 8 in Fig. 6 reflects the deletion of
subsets. Similarly, a symbolic state will not be added to Open if it is the subset
of some symbolic state in Open.

Although guided model checking as presented in [13] was aimed at cost optimal
reachability, it also explored briefly heuristics for simple reachability. Heuristics
in this area have traditionally been problem dependent, but Kupferschmid et al.
introduced generic heuristics based on monotonicity relaxations and automata-
theoretic abstractions [71, 72]. The monotonicity relaxation assumes that once a
value of a variable is attained, it may keep this value forever. The semantics
of a transition system under the monotonicity relaxation is set based, and the
successors increase monotonously with respect to set inclusion. The automata-
theoretic abstraction repeatedly replaces a pair of automata with an abstraction
of their product. The size of these abstraction is limited by a given N ; to reach
this bound bisimilar states and states with a large heuristic value are merged.

Survey on Directed Model Checking 81

This ensures that close to the error state, the abstraction is nevertheless accurate.
For given benchmarks both heuristics reduced time and memory requirements,
and furthermore found shorter error traces than Uppaal’s random DFS [71, 73].

Stochastic Model Checking. integrates quantitative dependability analysis with
model checking. In this context, systems are usually described as Markov models.
The mostly used models are discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs) and Markov Decision Processes (MDPs) [102].
These models can be considered as a labelled transition system extended by
transition probabilities. More concretely, in each state a probability distribution
describes the probability of firing a particular transition as the next step of the
system. Dependability requirements on such models are usually formulated in a
stochastic temporal logic like PCTL [60] in the discrete-time case or CSL [9, 10]
in the continuous-time case. Model checking of PCTL or CSL formulae relies
mainly on numerical methods to solve linear equation systems [9, 10, 60, 102].
A weakness of these methods is their inability to provide counterexamples. This
problem has been studied in the literature for a particular type of dependabil-
ity properties, namely probabilistic reachability, [3, 4, 5, 57, 58]. A probabilistic
reachability property is a claim that the probability to run into a bad state, i.e., a
state from B, does not exceed a particular probability bound p. Such a property
is violated in the case that the accumulated probability of all offending paths,
i.e., paths from an initial state to a state in B, is higher than p. A counterex-
ample in this context is then a set of offending paths such that its accumulated
probability is higher than p. Since paths with high probability represent high
probable system executions, we expect the human user to be more interested in
counterexamples which include most probable offending paths.

In [3, 4], an approach based on directed model checking has been proposed to
address this problem. The basic idea of that approach is to select the most prob-
able offending path. This can be done by using the algorithm in Fig. 3 combined
with the probabilistic cost algebra 〈[0, 1], ·,≥, 0, 1〉. The cost of a transition is its
probability. This means that the cost of a path, i.e., the product of the costs of
each transition along the path, is just the probability of that path. This setting
results in selecting the offending path with the maximal probability. In [3, 4] the
basic algorithm is extended to construct a whole counterexample by not only se-
lecting one most probable offending path but a sufficient set of such paths. Since
counterexamples in this context can contain a large number of paths, analysing
them is a chellange for a human user. In [6], a method based on interactive vi-
sualization is proposed which makes analysing complex counterexamples easier.

Search for Schedules. The following is an overview of techniques to approach
scheduling problems. [112] provides a more detailed discussion, comparing the
tools Spin, Cadp and Uppaal Cora. In recent years, model checkers have been
applied to solving combinatorial optimization problems. In particular, scheduling
problems have been considered often, e.g. [1, 13, 14, 24, 25, 48, 92, 103, 110, 111,
112]. The approach here is to interpret the problem as a reachability problem,
where the question is, in a system where transitions have costs, what the minimal

82 S. Edelkamp et al.

necessary cost is to reach a state in B, where B ⊆ S is a set of goal states (i.e.
‘good’ states where a complete schedule for the given problem has been achieved).
A trace providing this minimal cost then represents a schedule for the problem
at hand.

A scheduling problem is about processing a certain number of entities, e.g.
products. The processing is usually done by a one or more resource, which can
perform tasks, provided, that the accompanying constraints are met. Further-
more, each task has an execution time ([24] consider uncertain execution times).
A certain goal should be reached, usually having completely processed a finite
batch of entities. The question asked in scheduling is not mainly if this goal
can be reached, but how efficiently. Using model checking tools, we are able to
deal with complex industrial problems. We model tasks as transitions, meaning
that performing task ti in an execution appears as si

ti−−→ si+1 in a state space
model M, where si and si+1 are two states in the trace corresponding with the
execution. In such state spaces, we can observe the following.

A function progress : S → N can be constructed, which accesses the state vari-
ables, using the specification ofM, and quantifies the progress made to reaching
some predetermined goal, e.g. having completely processed a given batch of en-
tities. In general, say we have c0, cend ∈ N, ∀s ∈ S.c0 ≤ progress(s) ≤ cend and
progress(I) = c0, i.e. c0 is the initial (no) progress and cend represents having
reached the goal. Tasks may also lead a schedule further away from the goal.

For most scheduling problems, e.g. [1, 13, 14, 25, 48, 92, 112], typically B =
{s ∈ S | progress(s) = cend}. One technique is to iteratively search M using a
set of formulas, written in a temporal logic, such as LTL or µ-calculus. Placed
in the context of DMC, cost-bounded model checking algorithm (Fig. 3) can be
used to searchM for a schedule, cheaper than the provided cost upper bound U .
Using this approach, one can iteratively search for increasingly good schedules.
This has been done e.g. in Spin [92] and Cadp [112]. In the latter case, costs are
modelled in µCRL by means of additional actions. Iterative searching can be very
inefficient, though, depending on the number of iterations needed. Depth-first
branch-and-bound is based on the iterative search. Here, the upper bound in the
formula is updated on-the-fly. The benefit of using this technique is that M only
needs to be searched once, although it can still take a lot of resources. In Spin
4.0, this technique can be used by using C primitives [92]. An update section
in the model, written in C, is fired each time a counterexample is found, which
updates the (hidden) minimal cost variable, changing the property to check.

In state spaces of the most basic scheduling problems, a liveness property φ
that always a state e ∈ B can be reached holds. In other words, every schedule,
i.e. trace, eventually leads to a successful finish. This fact means that DMC
algorithms which aggressively prune and are therefore usually less effective for
functional model checking can be very useful for finding schedules. Examples of
such algorithms are nearest neighbour heuristic, which follows a single trace based
on cumulated costs, and beam search [77, 89], which follows up to β traces, using
cumulated costs and estimations. In functional model checking, if such searches

Survey on Directed Model Checking 83

do not return a counterexample, it is no guarantee that the property holds. In
‘basic’ scheduling, the worst we get are near-optimal solutions.

In a more general setting, we consider the presence of unsuccessful termi-
nation, i.e. deadlocks e for which progress(e) �= cend . See e.g. [103, 111] for
examples in this setting. Now, the aforementioned liveness property still holds,
but B = {s ∈ S | progress(s) = cend ∨ enabledM(s) = ∅}. Here, let us call the
goal states G = {s ∈ S | progress(s) = cend}. The BnB technique for Spin can
be adapted to this setting by incorporating a secondary check in the C code,
to ensure that a goal state has been found [110]. Pruning algorithms may lead
to no solution at all, depending on the ratio | G |:| B \ G | and how promising
the traces leading to states in B \ G initially appear to be, based on the guiding
function. Besides improving the guiding function, with beam search, we can also
counter this problem by increasing β, but of course, the penalty of this is less
pruning.

Beam search (BS) has been applied to a whole range of scheduling prob-
lems [31, 93, 100, 103, 111, 112]. Two variants of BS are considered most classic:
detailed and priority BS. Both versions use a beam width, to indicate the maxi-
mum number of states which may be expanded in each level of M. Detailed BS
uses an evaluation function f(s) = a× b, where C(s, a) and H(s, b), to select up
to β states. In priority BS adapted for general state spaces [103], outgoing tran-
sitions of each state are ordered by means of a priority function prio : T → Z.
The beam width is represented by β = αl, where α is the maximum number
of outgoing transitions explored per state in the first l levels of the search. In
subsequent levels, only one transition is explored per state. One extension of BS
is called flexible BS [103, 112], where the beam width is not strongly fixed. In
flexible detailed BS, tie-breaking is avoided in cases where there are not clearly β
best states, and all competent candidates are explored. In arbitrary state space
structures, this can improve the search a lot, since selections beyond the influ-
ence of the guiding function are avoided [103, 110, 111, 112]. Another extension
is a combination of Dijkstra’s search and BS. The advantage of this extension
over regular BS is that once a goal state has been found, the search can safely
terminate [112].

Other settings which still largely remain to be investigated are multi-cost
problems [14, 110], infinite scheduling problems with or without nondeterministic
product input, where the main difficulty is to determine what we are looking for,
e.g. a single cycle, and what actually constitutes a ‘best’ schedule, and parallel
scheduling problems where concurrent executions of tasks cannot be represented
in an interleaved fashion ([112] contains an example dealing with this).

8 Conclusion

In the survey we have illustrated the algorithmic essentials of direct model check-
ing, a recently proposed bug-finding paradigm for mitigating the state explosion
problem. We have shown that it applies in a wide number of verification areas,

84 S. Edelkamp et al.

and pointed to recent advances in AI search. Algorithms were presented in a
general set-theoretic manner and instantiated to specific needs.

Meanwhile, directed model checking has become major branch of the tech-
niques to cope with very large state spaces. The survey thus fills the gap left
open by directed model checking not being mentioned in the most visible books
like “Model Checking” [27] and surveys like “25 Years of Model Checking” [53].

The currently envisioned future of directed model checking includes the de-
sign of refined heuristics [61, 62], relevance analysis to detect helpful and useless
transitions [109], local search alternatives such as randomized guided search [90].
large-scale disk-based search with refined delayed duplicate elimination strate-
gies [12, 47, 75], semi-external search incorporating space-efficient perfect hash
function for a better time-space trade-off [42, 43], exploiting edges of current
hardware technology such as addressing flash memory instead of magnetic de-
vices [2, 11, 43], and parallel computation, especially the integration of multi-core
processing [64] and GPU computation [44].

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling With Timed Automata. The-
oretical Computer Science 354(2), 272–300 (2006)

2. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance of
flash memory storage devices and its impact on algorithm design. In: McGeoch,
C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 208–219. Springer, Heidelberg (2008)

3. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic
reachability. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 177–195. Springer, Heidelberg (2005)

4. Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reacha-
bility. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
33–51. Springer, Heidelberg (2006)

5. Aljazzar, H., Leue, S.: Counterexamples for model checking of markov decision
processes. Technical Report soft-08-01, Chair for Software Engineering, University
of Konstanz, Gemany (December 2007) (submitted for publication)

6. Aljazzar, H., Leue, S.: Debugging of dependability models using interactive visu-
alization of counterexamples. In: QEST 2008. IEEE Computer Society Press, Los
Alamitos (2008)

7. Alur, R., Brayton, R., Henzinger, T., Qadeer, S., Rajamani, S.: Partial-order re-
duction in symbolic state-space exploration. Formal Methods in System Design 18,
97–116 (2001)

8. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

9. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

10. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Eng. 29(7) (2003)

11. Barnat, J., Brim, L., Edelkamp, S., Šimeček, P., Sulewski, D.: Can flash memory
help in model checking? In: FMICS, pp. 159–174 (2008)

12. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting resistance speeds up I/O-
efficient LTL model checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

Survey on Directed Model Checking 85

13. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J.M.T.: Efficient guiding towards cost-optimality in UPPAAL. In: Margaria, T.,
Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 174. Springer, Heidelberg (2001)

14. Behrmann, G., Larsen, K., Rasmussen, J.: Optimal scheduling using priced timed
automata. SIGMETRICS Performance Evaluation Review 32(4), 34–40 (2005)

15. Bellman, R.: On a routing problem. Quaterly of Applied Mathematics 16(1), 87–
90 (1958)

16. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

17. Biere, A.: µcke — efficient µ-calculus model checking. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

18. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In:
FMICS (2002)

19. Bisiani, R.: Beam search. In: Shapiro [99], pp. 1467–1568
20. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking

of linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999)

21. Bloem, R., Ravi, K., Somenzi, F.: Symbolic guided search for CTL model checking.
In: DAC, pp. 29–34 (2000)

22. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

23. Bošnački, D., Leue, S., Lluch-Lafuente, A.: Partial-order reduction for general
state exploring algorithms. In: SPIN (2006)

24. Bozga, M., Kerbaa, A., Maler, O.: Scheduling Acyclic Branching Programs on
Parallel Machines. In: RTSS, pp. 208–215. IEEE Computer Society Press, Los
Alamitos (2004)

25. Brinksma, E., Mader, A.: Verification and Optimization of a PLC Control Sched-
ule. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885.
Springer, Heidelberg (2000)

26. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans.
Program. Lang. Syst. 16(5), 1512–1542 (1994)

27. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

28. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient al-
gorithms for the verification of temporal properties. Formal Methods in System
Design 1, 275–288 (1992)

29. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

30. Dechter, R., Pearl, J.: The optimality of A* revisited. In: AAAI (1983)
31. Della Croce, F., T’kindt, V.: A recovering beam search algorithm for the one-

machine dynamic total completion time scheduling problem. J. of the Operational
Research Society 53, 1275–1280 (2002)

32. Dial, R.: Shortest-path forest with topological ordering. Communications of the
ACM 12(11), 632–633 (1969)

33. Dierks, H.: Time, abstraction and heuristics – automatic verification and planning
of timed systems using abstraction and heuristics. Habilitation thesis (July 2005)

34. Dijkstra, E.: A note on two problems in connection with graphs. Numerische
Mathematik 1, 269–271 (1959)

86 S. Edelkamp et al.

35. Dillenburg, J., Nelson, P.: Perimeter search. Artificial Intelligence 65(1), 165–178
(1994)

36. Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: AIPS
(2002)

37. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

38. Edelkamp, S., Jabbar, S., Lluch-Lafuente, A.: Cost-algebraic heuristic search. In:
AAAI (2005)

39. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. STTT 5, 247–267 (2004)

40. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Partial order reduction and trail im-
provement in directed model checking. STTT 6, 277–301 (2004)

41. Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In:
ICAPS-Workshop on Connecting Planning Theory with Practice (2004)

42. Edelkamp, S., Sanders, P., Šimeček, P.: Semi-external LTL model checking. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 530–542. Springer,
Heidelberg (2008)

43. Edelkamp, S., Sulewski, D.: Flash-efficient LTL model checking with minimal
counterexamples. In: SEFM (2008)

44. Edelkamp, S., Sulewski, D.: Model checking via delayed duplicate detection on
the GPU. Technical Report 821, Dortmund University of Technology (2008)

45. Emerson, A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics, pp.
995–1072. Elsevier and MIT Press (1990)

46. Emerson, E., Lei, C.: Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In: LICS, pp. 267–278 (1986)

47. Evangelista, S.: Dynamic delayed duplicate detection for external memory model
checking. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 77–94. Springer, Heidelberg (2008)

48. Fehnker, A.: Scheduling a Steel Plant with Timed Automata. In: Proc. RTCSA
1999, IEEE Computer Society Press, Los Alamitos (1999)

49. Felner, A.: Improving Search Techniques and using them in Different Environ-
ments. PhD thesis, Bar-Ilan University (2001)

50. Fraer, R., Kamhi, G., Ziv, B., Vardi, M., Fix, L.: Prioritized traversal: Efficient
reachability analysis for verification and falsification. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

51. Ginsberg, M., Harvey, W.: Iterative broadening. Artificial Intelligence 55, 367–383
(1992)

52. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent
Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)

53. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000.
Springer, Heidelberg (2008)

54. Hajek, J.: Self-synchronization and blocking in data transfer protocols. Technical
Report THE-RC29286 (1977)

55. Hajek, J.: Automatically verified data transfer protocols. In: Proceedings 4th
International Computer Communications Conference (1978)

56. Hajek, J. (2002), http://www.humintel.com/hajek/
57. Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In:

Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86.
Springer, Heidelberg (2007)

http://www.humintel.com/hajek/

Survey on Directed Model Checking 87

58. Han, T., Katoen, J.-P.: Providing evidence of likely being on time: Counterex-
ample generation for CTMC model checking. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 331–346.
Springer, Heidelberg (2007)

59. Hansen, E., Zhou, R., Feng, Z.: Symbolic heuristic search using decision diagrams.
In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS, vol. 2371, p. 83. Springer,
Heidelberg (2002)

60. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

61. Helmert, M., Geffner, H.: Unifying the causal graph and additive heuristic. In:
ICAPS, pp. 140–147 (2008)

62. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics in optimal
sequential planning. In: ICAPS, pp. 176–183 (2007)

63. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

64. Holzmann, G., Bosnacki, D.: The design of a multicore extension of the SPIN
model checker. IEEE Trans. Software Eng. 33(10), 659–674 (2007)

65. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN
(1996)

66. Jensen, R., Bryant, R., Veloso, M.: SetA*: An efficient BDD-based heuristic search
algorithm. In: AAAI (2002)

67. Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Ar-
tificial Intelligence 27(1), 97–109 (1985)

68. Korf, R., Zhang, W., Thayer, I., Hohwald, H.: Frontier search. Journal of the
ACM 52(5), 715–748 (2005)

69. Kumar, V.: Branch-and-bound search. In: Shapiro [99], pp. 1468–1472
70. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonempti-

ness of automata on infinite words. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 492–508. Springer, Heidelberg (2006)

71. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podel-
ski, A., Behrmann, G.: uppaal/DMC – abstraction-based heuristics for directed
model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 679–682. Springer, Heidelberg (2007)

72. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI plan-
ning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 35–52. Springer, Heidelberg (2006)

73. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than uppaal? In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer,
Heidelberg (2008)

74. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

75. Lamborn, P., Hansen, E.A.: Layered duplicate detection in external-memory
model checking. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 160–175. Springer, Heidelberg (2008)

76. Lluch-Lafuente, A.: Directed Search for the Verification of Communication Pro-
tocols. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2003)

77. Lowerre, B.T.: The HARPY speech recognition system. PhD thesis, CMU (1976)
78. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,

Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

88 S. Edelkamp et al.

79. Pearl, J.: Heuristics. Addison-Wesley, Reading (1985)
80. Peled, D.: Combining partial order reductions with on-the-fly model-checking.

Formal Methods in System Design 8, 39–64 (1996)
81. Qian, K.: Formal Symbolic Verification Using Heuristic Search and Abstraction

Techniques. PhD thesis, University of New South Wales (2006)
82. Qian, K., Nymeyer, A.: Heuristic search algorithms based on symbolic data struc-

tures. In: ACAI (2003)
83. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction

and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

84. Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using
priced timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 220–235. Springer, Heidelberg (2004)

85. Ravi, K., Somenzi, F.: High-density reachability analysis. In: ICCAD (1995)
86. Ravi, K., Somenzi, F.: Efficient fixpoint computation for invariant checking. In:

ICCD (1999)
87. Ravi, K., Somenzi, F.: Hints to accelerate symbolic traversal. In: Pierre, L., Kropf,

T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 250–266. Springer, Heidelberg
(1999)

88. Reffel, F., Edelkamp, S.: Error detection with directed symbolic model checking.
In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708,
p. 195. Springer, Heidelberg (1999)

89. Rubin, S.: The ARGOS Image Understanding System. PhD thesis, CMU (1978)
90. Rungta, N., Mercer, E.G.: Generating counter-examples through randomized

guided search. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595,
pp. 39–57. Springer, Heidelberg (2007)

91. Russell, S.: Efficient memory-bounded search methods. In: European Conference
on Artificial Intelligence (ECAI). Wiley, Chichester (1992)

92. Ruys, T.C.: Optimal scheduling using branch and bound with SPIN 4.0. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 1–17. Springer, Hei-
delberg (2003)

93. Sabuncuoglu, I., Bayiz, M.: Job shop scheduling with beam search. European
Journal of Operational Research 118, 390–412 (1999)

94. Sanders, P., Meyer, U., Sibeyn, J.F.: Algorithms for Memory Hierarchies.
Springer, Heidelberg (2002)

95. Schuppan, V.: Liveness Checking as Safety Checking to Find Shortest Counterex-
amples to Linear Time Properties. PhD thesis, ETH Zürich (2006)

96. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to
reachability analysis. STTT 5(2-3), 185–204 (2004)

97. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. In: INFINITY (2005)

98. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking
of LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 493–509. Springer, Heidelberg (2005)

99. Shapiro, S. (ed.): Encyclopedia of Artificial Intelligence. Wiley Interscience, Hobo-
ken (1992)

100. Si Ow, P., Smith, S.F.: Viewing scheduling as an opportunistic problem-solving
process. Annals of Operations Research 12(1-4), 85–108 (1988)

101. Sobrinho, J.L.: Algebra and algorithms for QoS path computation and hop-by-
hop routing in the internet. IEEE/ACM Transactions on Networking 10, 541–550
(2002)

Survey on Directed Model Checking 89

102. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, New Jersey (1994)

103. Torabi Dashti, M., Wijs, A.J.: Pruning State Spaces with Extended Beam Search.
In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007.
LNCS, vol. 4762, pp. 543–552. Springer, Heidelberg (2007)

104. Valmari, A.: Eliminating redundant interleavings during concurrent program ver-
ification. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366,
pp. 89–103. Springer, Heidelberg (1989)

105. Valtorta, M.: A result on the computational complexity of heuristic estimates for
the A* algorithm. Information Sciences 34, 48–59 (1984)

106. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS (1986)

107. Wah, B., Shang, Y.: Study of IDA*-style searches. Artificial Intelligence 3(4),
493–523 (1995)

108. Wang, C., Bloem, R., Hachtel, G., Ravi, K., Somenzi, F.: Compositional SCC
analysis for language emptiness. Formal Methods in System Design 28(1), 5–36
(2006)

109. Wehrle, M., Kupferschmidt, S., Podelski, A.: Useful actions are useful. In: ICAPS,
pp. 388–395 (2008)

110. Wijs, A.J.: What to Do Next: Analysing and Optimising System Behaviour in
Time. PhD thesis, Vrije Universiteit Amsterdam (2007)

111. Wijs, A.J., Lisser, B.: Distributed Extended Beam Search for Quantitative Model
Checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI),
vol. 4428, pp. 165–182. Springer, Heidelberg (2007)

112. Wijs, A.J., van de Pol, J.C., Bortnik, E.: Solving Scheduling Problems by Untimed
Model Checking. In: STTT (to appear, 2008)

113. Yang, C., Dill, D.: Validation with guided search of the state space. In: DAC
(1998)

114. Zhou, R., Hansen, E.: Breadth-first heuristic search. In: ICAPS (2004)
115. Zhou, R., Hansen, E.: Beam-stack search: Integrating backtracking with beam

search. In: ICAPS (2005)

Automated Testing of Planning Models

Klaus Havelund, Alex Groce, Gerard Holzmann,
Rajeev Joshi, and Margaret Smith

Jet Propulsion Laboratory�, California Institute of Technology
4800 Oak Grove Drive, Pasadena/Los Angeles, CA 91109

{klaus.havelund,alex.d.groce,gh,rajeev.joshi,margaret}@jpl.nasa.gov

Abstract. Automated planning systems (APS) are maturing to the
point that they have been used in experimental mode on both the NASA
Deep Space 1 spacecraft and the NASA Earth Orbiter 1 satellite. One
challenge is to improve the test coverage of APS to ensure that no un-
safe plans can be generated. Unsafe plans can cause wasted resources or
damage to hardware. Model checkers can be used to increase test cov-
erage for large complex distributed systems and to prove the absence of
certain types of errors. In this work we have built a generalized tool to
convert the input models of an APS to Promela, the modeling language
of the Spin model checker. We demonstrate on a mission sized APS input
model, that we with Spin can explore a large part of the space of possible
plans and verify with high probability the absence of unsafe plans.

1 Introduction

Automated Planning Systems (APS) have performed onboard planning and com-
manding in experimental mode for two NASA technology validation missions:
Deep Space 1 and Earth Orbiter 1. APS are also used to support ground planning
of sequences for both the Mars Exploration Rovers and the Phoenix missions.
Unlike traditional software, which executes a fixed sequence, an APS takes a
few high level goals, and an input model describing behavioral constraints, and
automatically generates a sequence of actions, called a plan, that achieves the
goals while satisfying the constraints. An APS can respond to unexpected situa-
tions and opportunities that a fixed sequence can not. The same flexibility that
makes it possible to respond to unanticipated situations also makes a planner far
more difficult to verify. If a mission manager is to trust an APS to autonomously
command, it must be shown to generate the correct plan for a vast number of
situations. Empirical test cases can cover only a handful of the most likely or
critical situations. Formal methods can in principle prove that every plan meets
certain properties and can prove the absence of a dangerous or undesirable plan.

In this work, we expand upon the results of our previous work [1] that demon-
strated that it was possible to apply formal methods, and in particular, the Spin

� The research described in this paper was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration.

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 90–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automated Testing of Planning Models 91

model checker [2,3,5] to improve test completeness when verifying APS input mod-
els. In particular, we have constructed a tool called Map to automate the conver-
sion of APS models to Promela, the language of the Spin model checker. We have
demonstrated that a large portion of the semantics of an APS model is expressible
in the language of the model checker. As the subject of this work, we selected the
AspenAPS and itsmodeling languageAml [11,13,14,15]developedby JetPropul-
sion Laboratory (JPL) because it is currently successfully commanding the Earth
Observer1 (EO1)AutonomousSciencecraftExperimentonboardtheEO1 satellite.

~100 plans

undesirable
plan

all desirable
plans

Empirical Testing
(current approach)

input
model

Manually inspect
plans to identify

undesirable plans

end
testing

Adjust model
to exclude

undesirable
plan

Testing

limited b
y time

required
to

inspect
sample

plans

requirements

plans

Testing

undesirable plan
(error trace) no errors

Testing with the SPIN Model Checker
(our work)

correctness
properties

Adjust model
to exclude

undesirable
plan end

testing

limited o
nly by

memory
and

process
or

speed

Promela
Model

analyzes
billions
of plans

Fig. 1. Map in context

The traditional approach to testing a plan model is to use Aspen to exercise
the model with various goals, and manually examine the generated plans, see
Figure 1. The Map conversion tool offers an alternative approach where an Aml
model is translated to a Promela model, such that the Spin model checker can
be used to test the plan model. The tool handles goals, activity decomposition,
temporal constraints, and automated calculation of a cone of influence of vari-
ables (slicing) to reduce the search space. We demonstrate that the substantial
increase in test coverage achieved through the use of model checking can work
in practice and scale to a mission sized Aml input model.

In work that predated publication of our previous paper [1], the real-time
model checker UPPAAL was used to check for violations of mutual exclusion
properties and to check for the existence of a plan meeting a set of goals [6]. In
contrast, the work reported in this paper shows that for verification of a set of
properties of interest, it is not necessarily required to reason about time. Spin has
also been used to verify plan execution engines [7,8]. Automatically generated
test oracles have been used to assist in the interpretation of test plan outputs

92 K. Havelund et al.

from APS [9]. A comparison of three popular model checkers, Spin, SMV and
Murphi showed that these model checkers can be used to check for the existence
of a plan meeting a set of goals [10].

The rest of the paper is organized as follows. Section 2 briefly describes the
Aspen planner and the Spin model checker. Section 3 presents an example of an
Aml model, and how Spin is used to explore the Promela model generated by
the Map tool. Section 4 explains the principles of the translation from Aml to
Promela. Section 5 presents the results of analyzing the EO1 model. Finally,
Section 6 concludes the paper and suggests future work.

2 The Aspen Planner and the Spin Model Checker

2.1 The Aspen Planner

The Aspen planner takes as input: an initial state, a goal, and a plan model
describing allowable activities and constraints on their relationships; and pro-
duces a plan of activities that achieves the goal while satisfying the constraints
in the model. In order to be efficient for on-board planning, the Aspen planner
performs a heuristics-based search, not exploring all possible paths, but instead
only exploring a minimal search space. The objective of the planner is to find a
single good plan, and the assumption is that such a plan exists. While this min-
imal search approach makes Aspen efficient for finding plans quickly when they
exist, it makes Aspen’s search incomplete, which is a drawback during testing.
For instance, if Aspen does not return a plan, one cannot conclude that there
is no plan.

An Aml model consists of a set of goals, activity specifications, resources, and
states. C++ functions may be called from the model to calculate values used to
determine resource requirements and states. The start of an activity is normally
guarded so that the activity can only be scheduled if necessary resources are
available and if the spacecraft is in a desired state. Activities typically modify
states and resources at the beginning and/or end of the activity. Activities can
be decomposed into lower level, sub-activities. A number of temporal relations
can be defined to order the start and completion of sub-activities with respect
to one another. States and resources are used in Aml models to constrain the
types of plans that are generated to a set that will be safe and feasible. For
instance, an atomic resource such as a solid state recorder (SSR), that can only
be safely accessed by one reader or writer at a given time, will be tracked by a
mutex state. An activity that needs to write to the SSR will have a guard that
prevents the activity from starting until the SSR lock is available. The activity
needing to read or write to the SSR takes the lock upon entry and restores it
upon exit.

A tightly constrained Aml input model will have a smaller number of potential
plans, and can be more completely tested, but will be less agile in responding to
unexpected events during spacecraft operation. A less tightly constrained model
exploits the strengths of the APS system to respond to the unexpected, but

Automated Testing of Planning Models 93

in order to be trusted, must be more thoroughly tested than is possible with
standard test techniques.

2.2 The Spin Model Checker

Spin is a model checker and can analyze the correctness of finite state concurrent
systems with respect to formally stated properties [3]. A particular concurrent
system is formalized in the PROcess MEta LAnguage (Promela), and correct-
ness properties to be verified can be formalized either in Linear Temporal Logic
(Ltl), in a visual tool such as the TimeEdit tool [12] that generates Buchi au-
tomata, or using assertions placed in the Promela model. The Spin tool also
provides a simulator, with which Promela models may be executed. This can
in particular be used to re-run error traces generated by the model checker for
properties that are not satisfied. Spin’s search attempts to be exhaustive, con-
tinuing until it finds an error, memory is exhausted, or the search completes.
The correctness property can express a desired behavior, like a goal in Aspen’s
Aml language, or an undesired behavior, such as a unsafe plan that should be
excluded from an Aml input model.

Promela is Spin’s modeling language, supporting the declaration of process
types, and instantiation (spawning) of instances of these types. The language can
be thought of as a multi-threaded programming language. Processes communi-
cate via shared variables and/or by message passing through communication
channels. A process can block by waiting for a Boolean predicate over the global
variables to become true, or it can block on waiting for a value to appear on an
input channel. The execution of a Promela model consists of executing these
parallel running processes in a non-deterministic interleaved manner until no
process can continue, either because all processes have terminated normally, or
they have deadlocked. A Promela model denotes the set of all such finite and
infinite execution traces. The Spin model checker conceptually explores all traces
for conformance to or violation of a formal property.

3 Example

The following example is intentionally made as small as possible (and conse-
quently rather artificial), but sufficiently complex to still illustrate the funda-
mental principles. The scenario is the operation of a planetary rover performing
drilling activities. First an Aml model is represented. Second, it is shown how
Spin is used to analyze the Promela model generated by Map. In this section
the generated Promela will be regarded as a black-box, not unlike how a user
would perceive it. In Section 4 the translation will be explained.

3.1 Aml Model of Drilling Rover

The rover can perform three activities: (i) Drill: the rover drills a hole of a certain
depth, extracts some soil, and performs some analysis on the selected material, for

94 K. Havelund et al.

01 resource power {
02 type = depletable;

03 default_value = 75;

04 capacity = 100;

05 min_value = 10;

06 }
07

08 resource buffer { type = atomic; }
09

10 state_variable buffer_sv {
11 states = ("empty","full");

12 transitions = ("empty"->"full", "full" -> "empty");

13 default_state = "empty";

14 };
15

16 activity drill {
17 string hole;

18 int depth;

19 int power_use;

20 dependencies = power_use <- powerof(depth);

21 reservations =

22 buffer,

23 buffer_sv must_be "empty",

24 buffer_sv change_to "full" at_end,

25 power use power_use;

26 }
27

28 activity uplink {
29 reservations =

30 buffer,

31 power use 30;

32 }
33

34 activity charge {
35 reservations = power use -25;

36 }
37

38 activity experiment {
39 decompositions =

40 (drill with ("hole1" -> hole, 7 -> depth),uplink,charge

41 where charge ends_before end of drill)

42 or

43 charge;

44 }

Fig. 2. Aml model of drilling scenario

Automated Testing of Planning Models 95

example using an oven. All these activities are here abstracted into the single drill
action. (ii) Uplink : when the drilling (and included analysis) has been performed
the results must be uplinked to a spacecraft (which subsequently transmits it to
earth, not modeled). (iii) Charge : the drilling as well as the uplink both require
power, represented by a power resource. This resource can be charged with new
energy when becoming low. The Aml model presented in Figure 2 formalizes this
scenario. Our goal will be to generate plans that request drilling and uplink of the
results, with charging occurring as needed. We shall illustrate how Map can be
used to detect various errors in the model to be presented.

The rover and the equipmentonboard the rover usesvarious resources.There are
two types of resources: atomic, and variable. Atomic resources are physical devices
that can only be used (reserved) by one activity at a time (for example a science
instrument). A variable resource has at any point in time a value and can be used
by more than one activity at a time, each reducing the quantity of the resource, as
long as the minimum/maximum bounds are not exceeded. A variable resource is
either depletable or non-depletable. A depletable resource’s capacity is diminished
after use (for example a battery), in contrast to a non-depletable resource, where
the used quantity is automatically returned (for example solar power).

The model contains one variable depletable power resource (lines 01–06). The
power resource has a current starting value of 75, a minimum value of 10 (it
cannot go below) and a maximum capacity of 100. Digital results collected during
drilling are stored in a data buffer before being uplinked. The data buffer is
modeled as an atomic resource (line 08) and will be reserved by the drill
and the uplink activities to ensure mutual access. In addition, a state variable
buffer sv is introduced (lines 10–14) to model the status of the buffer: whether
it is empty or full. The state machine has two states ("empty" and "full") and
two transitions: one from "empty" (the initial state) to "full", and one from
"full" back to "empty".

The drill activity (lines 16–26) declares three local variables: hole, depth
and power use (lines 17–19). Any local variable in Aml can function as a pa-
rameter. The first two will function as parameters (what hole to drill and what
depth), while the third is a real local variable holding how much power to con-
sume, being assigned a value in a dependency clause (line 20) as a function of
the depth. The drill activity reserves a collection of resources (lines 21–25):
the data buffer (line 22, ensuring mutual exclusion during use), which must
be "empty" (line 23), and will transition to "full" after (line 24); and power
as a function of the depth of the hole (line 25). The uplink activity (lines 28–
32) reserves the buffer from where data are uplinked and uses 30 power units.
The charge activity (lines 34–36) adds 25 units back to the power resource (us-
ing Amls semantics of providing negative numbers when adding, and positive
numbers when subtracting).

The main activity is called experiment (lines 38–44) and is decomposed into
the three activities: charge, drill and uplink. The decomposition consists
of either (lines 40–41) performing a drill, an uplink and a charge, where the
charge is required to end before the end of the drill (to save time); or, if there

96 K. Havelund et al.

is not power enough, just charging the rover with new energy (line 43). Note
the constraint: ‘charge ends before end of drill’. Aml allows for several
kinds of constraints , ‘A constraint B’, between two activities A and B (that
can occur in any order if no constraints are given): contains, contained by,
starts before, ends before, starts after, ends after, all further followed
by one of start of, end of, or all of. Examples are: A starts before start
of B, A starts after end of B, and A contains all of B (the B activity
occurs during the A activity, not before and not after).

An initialization file outlines what activities should be instantiated. In this
case one instance of the experiment activity is initiated:

experiment exp {}

Note that the experiment activity itself launches the charge, drill and uplink
activities through decomposition.

3.2 Analyzing the Model with Spin

Verification 1. In order to verify Ltl properties with Spin, atomic conditions
(Promela macros using #define) are introduced by Map. For example, the
event e uplink will become true when the uplink activity terminates. For each
activity A, there will be a b A (begin A) and a e A (end A) event, which can be
referred to in Spin. The first property we will verify is that eventually an end
of uplink is observed. This is achieved by asking Spin to prove that there is no
execution satisfying the Ltl property <>e uplink (see Figure 3).

The property states that eventually the end of an uplink occurs. A trace sat-
isfying this property should constitute in a good plan. By making Spin attempt
to verify that an execution satisfying this property does not exist, we use Spin
to generate an error trace (a plan) that achieves such a state in case it exists.
Note that we have chosen the “No Executions” option in Xspin in order to get
an error trace (plan). The verification causes Xspin to generate the message
sequence diagram shown in Figure 4.

The message sequence diagram shows for each activity (a Promela process,
see Section 4) a vertical time line, showing when it begins and when it ends. In
this case it is observed that there is an uplink before any drilling has taken place.
This is an error according to our informal requirements. By studying the model it
is detected that the uplink activity does not check the status of the data buffer to
see whether it contains data before the uplink takes place. The buffer must be full
before uplink (a check on the buffer state variable), and after the uplink it must
be set to empty. To fix this we modify the uplink activity as follows:

activity uplink {
reservations =

buffer,
buffer_sv must_be "full", // added
buffer_sv change_to "empty", // added
power use 30;

}

Automated Testing of Planning Models 97

Fig. 3. Xspin – generate a plan ending in an uplink

Fig. 4. Xspin – an error trace equals a plan

98 K. Havelund et al.

3.3 Verification 2

Retrying the verification after this modification yields no errors. However, no
errors means no plan. Recall that Spin is asked to prove that there is no execution
leading to an uplink. After further examination it is discovered that even though
the charge activity adds 25 units, which should be enough to cover the combined
usage of 70 (drill) plus 30 (uplink) with an initial resource value of 75, another
10 needs to be added since the minimal value of the resource is set to 10 (cannot
go below). The maximum capacity must consequently also be increased. The
power resource therefore needs to be modified as follows:

resource power {
type = depletable;
default_value = 85; // changed from 75 to 85
capacity = 110; // changed from 100 to 110
min_value = 10;

}

This time an acceptable sequence of events is generated: first drilling, then a
charge, and then uplink.

3.4 Verification 3

We have now demonstrated that there is a plan that ends in an uplink preceded
with a drill. The question is whether there are any plans that end in an uplink
without being preceded with an drill. We can verify this by searching for a plan
satisfying the following Ltl property:

!e_drill U e_uplink

That is: no drill until an uplink. The until operator of Ltl is strong, hence this
means that an uplink must occur (and no drill before that). Since we want to
show that there is no such plan, we enter this property with “No Executions”
set. The verification shows that there are no such executions (errors : 0), which
is a satisfactory result.

All our properties so far have been stated as the Ltl property <>goal, using
the “No Executions” option to make Spin attempt finding just one execution
that makes the goal true. It turns out that for verification of plan models this
seems to be the most natural verification style: to postulate the non-existence of
an execution (plan) that satisfies a particular property. It is, however, possible
also to use the “All Executions” option in Xspin. That is, to prove that for all
execution traces some property is true. Note though that a plan model denotes
executions that lead nowhere. Such blind alleys are simply part of the search
problem. Hence, one has to be careful when stating properties to be true on all
executions. One has to limit the verification to only those executions that achieve
some meaningful goal. In our last case we can state the property that: every
uplink is preceded by a drill as the following property to be true on all traces,

Automated Testing of Planning Models 99

knowing that there is only one uplink possible: <>e uplink -> <>(e drill &
<>e uplink). That is, “for all traces, if the trace is a good plan (eventually from
the beginning of the trace there is an uplink), then (also from the beginning of
the trace) there is a drill, followed by a (the) uplink”. This is, however, a slightly
complicated way of stating our desired property.

4 Translation from Aml to Promela

Planning in principle can be regarded as the following problem: given is a model
M = (Σ, A) consisting of a state Σ (resources and state machines), and a finite
set of activities A = A1, A2, A3, . . . , An that access variables in the state Σ.
Each activity Ai has a precondition pre−Ai on the state Σ that has to be true
before that activity can execute (or “be put down on a time-line”, using planning
terminology), and a post-condition post−Ai, defining a side-effect on the state Σ.
The activities can be thought of as guarded commands. A planning problem is a
triple (I, G, M) consisting of an initial state I and a goal state G to be achieved
from the initial state while obeying the model M (obeying the pre-conditions
essentially). The planning problem is obviously more complicated, in particular
in the case of Aml, which allows for dynamically created activities and time
constraints.

However, this view of the planning problem directly leads to a process view
of planning: given a set of processes (activities), find an execution of these that
leads from the initial state to the goal state, without deadlocking or other-
wise failing in between. This is the view underlying the Map translator. It
translates an Aml model into a Promela model of concurrent processes, one
for each activity, with a pre-condition and a post-condition. Concurrency is
normally regarded as a hard problem for users to get right, and the above
argumentation suggests that the planning problem is equally difficult to get
right.

More specifically, an Aml model is translated into a Promela model, which
contains a process type (proctype) for each activity. The body of each such
process type consists of two sequentially composed statements S1; S2: a beginning
S1 and an ending S2, each of which is an atomic statement (encapsulated with
Promelas atomic{. . .}-construct). The basic idea is that the scheduling of an
Aml activity A over a time period starting at time t1 and ending at time t2 in
Spin will result in the corresponding process executing its first atomic statement
S1 at a point corresponding to time t1 and its second atomic statement S2 at
a point corresponding to time t2. However, since Spin does not model real-
time, time periods are not measured, only the relative ordering of events is
modeled. Planning in Spin consists of finding an execution trace that executes
the processes (respecting the guards) in such a manner that a specific end state
is reached, with the expected processes executing in a desired order, and such
that the state satisfies some invariants during the execution.

Resources are declared as state variables that get written to and read from
during the “execution” of the Promela model:

100 K. Havelund et al.

int power;
bool buffer;
byte buffer_sv;
int buffer_sv_reserve_count;

The power variable holds current power level. The buffer variable represents
a semaphore, which is either taken (value 1) or free (value 0). The buffer state
variable (buffer sv) holds the current state of the buffer state machine. The
buffer sv reserve count is increased each time a process performs a must be
request, as for example the drill action in line 23 of Figure 2. The drill action
requires the state variable to have this value throughout its execution. Several
activities can require this to be true, and all be able to execute at the same time.
Each process will count this variable up at entry and down on exit, and the state
variable (buffer sv) itself cannot change unless this counter is 0.

As already mentioned, an activity is modeled as a process. SPIN attempts
to ”execute” processes, thereby producing an execution trace, which becomes
the sought plan. In the example, the experiment activity starts the three sub-
activities drill, uplink, and charge, with the constraint that the charge should
end before the end of the drill action. In addition, the three sub-activities should
all terminate before the end of the experiment activity since they are created as
sub-activities (AML semantics). These constraints are illustrated in Figure 5.

Fig. 5. Activity constraints. Stipled lines are constraints imposed by AML semantics.
The fully drawn constraint comes from the model constraint: “charge ends before

end of drill”.

These constraints are imposed in the Promela model by passing two sets
(collections) of events to each process: those that it should wait for before it
starts, and those it should wait for before it terminates. In the above case, for
example, the drill process should be passed the sets: ∅ (don’t wait to start) and
{end charge} (wait for charge to terminate before terminating). In order to
know what events actually happened in the context (parent) in which a process
exists, it takes a third parameter, a reference to a set that is continuously up-
dated with events as they happen. The generated process declaration in Figure
6 contains these parameter definitions.

Automated Testing of Planning Models 101

proctype drill(set begin_events; set end_events;

set external_events; short sigstart; short sigend;

int depth)

{

byte _e_;

int power_use;

atomic {

subset(begin_events,external_events);

power_use = powerof(depth);

(buffer==1 && buffer_sv==ENUM_empty &&

(power-power_use)<=110 && (power-power_use)>=10) ->

buffer = buffer-1;

buffer_sv_reserve_count = buffer_sv_reserve_count+1;

power = power-power_use;

addorlog(external_events,sigstart)

};

atomic {

subset(end_events,external_events);

(buffer_sv==ENUM_empty &&

(buffer_sv_reserve_count==1 || buffer_sv==ENUM_full)) ->

buffer = buffer+1;

buffer_sv_reserve_count = buffer_sv_reserve_count-1;

buffer_sv = ENUM_full;

addorlog(external_events,sigend)

}

}

Fig. 6. Promela model of drill activity

The first two parameters are the sets of events to wait for before start-
ing (begin events) respectively ending (end events). Sets are not available
in Promela as a built in data type, so they are modeled as channels (the
Promela model contains a macro definition of the form: ‘#define set chan’).
The external events parameter is a reference (pointer) to the set of actual
events that happen, to be updated by the context. The process itself can add
events to this set when starting and when ending such that other processes
can be made aware thereof. The events to add are the last two parameters of
the process: sig start and sig end. Whether these events should be added
or not really depends on the context, whether some other process needs to
know. If no process needs to know the parameter is negative, and it will not
be added.

The last parameter (depth) to the process is an Aml model-parameter, intro-
duced by the user in the drill activity (line 18). Recall that any local “variable”
of an activity in Aml can be a parameter in case an instantiating activity passes
a value to this variable. The drill activity has 3 local variables: hole, depth,
and power use, but only the first two of these are real parameters instantiated
at call time in the experiment activity:

102 K. Havelund et al.

drill with ("hole1" -> hole, 7 -> depth)

However, only the depth parameter influences planning since it impacts how
much power is used (lines 20 and 25). Map performs abstraction by applying
data flow analysis of the Aml model in order to determine which variables
are not used in planning, and which can therefore be abstracted away. The
string variable hole does not influence the planning, and hence is abstracted
away.

The body of the drilling process is divided into two atomic statements, repre-
senting respectively the beginning and the end of the activity. The explanations
of the two blocks are similar. The beginning block starts by waiting for the
events in the begin events set to become a subset of the external events set
(subset(begin events,external events)). The various operations on sets are
really operations on channels, modeling set addition, set membership test, and
subset test. It then performs checks on and assignments to various resource, state
and semaphore variables. A conditional statement “condition -> statement”
causes the process to block until the condition becomes true (Promela seman-
tics). Finally, it is signaled to the external events set that the process has
started (if the sigstart value is not negative). The addorlog(set,signal)
function adds the signal to the set, if the signal is not negative, and furthermore
stores the signal in a global variable event (such that Ltl formulas can refer
to it) of an enumerated type of all the possible events, one for the beginning and
end for each activity:

mtype {
BEGIN_drill, END_drill,
BEGIN_uplink, END_uplink,
BEGIN_charge, END_charge,
BEGIN_experiment, END_experiment

}
local mtype _event_;

The experiment activity is similarly translated into the Promela process shown
in Figure 7. This process declares two variables. The set-valued variable events
will be updated continuously during execution and will contain the events that
occur during an experiment (it becomes the external events parameter to the
sub-activities). The set-valued variable end drill is initialized once to contain
the set of events that the drill activity has to wait for before it can end. The
required sizes of these sets (3 and 1) are calculated at translation time. For
example, 3 events will need to be recorded: end of charge (needed by the drill),
and end of drill and uplink (needed by the experiment that cannot terminate
before these have terminated, see Figure 5).

The first atomic block contains a conditional if . . . fi statement, having
two entries (each preceded by ::) that are chosen non-deterministically, cor-
responding to the or operator occurring in line 42 of the Aml model in Fig-
ure 2. The form of the two choices are similar. In the first case, corresponding
to lines 40-41 of Figure 2, the set end drill is created to contain the event

Automated Testing of Planning Models 103

END charge by: mustwaitfor(end drill,END charge), which adds its second
argument to the first argument set. This set is then passed as the second ar-
gument to the drill activity in the subsequent line to indicate that the drill
activity has to wait for the charge to end before it can end itself. The other
event sets passed around are empty (nullset). The events passed as arguments,
for example the negative -BEGIN charge and the positive END charge to the
charge activity, indicate that no activity cares about when a charge begins
(negative so it will not be added to the events set), whereas for example the
drill activity needs to know when the charge ends. Finally, the experimentwill
not continue before the sub-activities spawned in each branch have terminated
(isin(. . .)).

The Aml model contains in line 20, Figure 2, a call of the function powerof,
which must have been defined as a C++ function in a separate file. Map does
not translate these C++ functions. Instead, their occurrence in the Aml model
is marked by the translator, and a user has to program these as macros: #define
powerof(depth) (depth*10).

5 The Earth Orbiter 1 Application

Aspen has successfully commanded (and is still at the time of writing command-
ing) the Earth Observer 1 (EO1) Autonomous Sciencecraft Experiment onboard
the EO1 earth orbiting satellite. The EO1 satellite orbits earth, taking photos of
the surface and comparing recent images with previous images to detect changes
due to, for instance, flooding, fire and other natural events. Upon detecting a
change, the spacecraft software generates a new goal to take a more detailed
follow-up image and Aspen generates a plan to achieve that goal.

Our original goal was to enable Map to convert the EO1 Aml model into
Promela. The EO1 model features the most commonly used Aml constructs,
and therefore, a tool that can convert this model will be capable of converting
a very broad set of realistic Aml models, a non-trivial achievement. With well
over 100 activities in the EO1 Aml model, and an ever changing set of goals,
EO1 also illustrates that an automated conversion tool is necessary to make the
logic model checking of APS input models practical.

EO1 has two imaging instruments that can read from and write to a solid state
recorder. The designers of the Aml model were concerned about a possible data
race on the state recorder, violating that reads and writes must mutually exclude
each other. This property was formulated in Promela using a semaphore access
counter that was shown not to go beyond 1 on a very large state space, although
not the complete state space. The Aml model analyzed is approximately 7300
lines of code, causing approximately 4000 lines of Promela code to be gener-
ated. Two experiments were performed, each applying Spins bit-state hashing
where not all of the state space is explored. Each experiment was performed
comparing single core (1 CPU) and multi-core (8 CPUs) runs, using a recently
developed multi-core version of Spin [4]. In the first experiment 10 million states
were explored using 11.6 minutes on 1 CPU and 89 seconds on 8 CPUs. In the

104 K. Havelund et al.

proctype experiment(set begin_events; set end_events;

set external_events; short sigstart; short sigend)

{

byte _e_;

set events = [3] of {mtype};

set end_drill = [1] of {mtype};

atomic {

subset(begin_events,external_events);

addorlog(external_events,sigstart);

if

::

mustwaitfor(end_drill,END_charge);

run drill(nullset,end_drill,events,-BEGIN_drill,END_drill,7);

run uplink(nullset,nullset,events,-BEGIN_uplink,END_uplink);

run charge(nullset,nullset,events,-BEGIN_charge,END_charge);

isin(END_drill,events) && isin(END_uplink,events) &&

isin(END_charge,events)

::

run charge(nullset,nullset,events,-BEGIN_charge,END_charge);

isin(END_charge,events)

fi

};

atomic {

subset(end_events,external_events);

addorlog(external_events,sigend)

}

}

Fig. 7. Promela model of experiment activity

second experiment, with more aggressive bit-state hashing, 2.5 billion states were
explored, using 2.6 days on 1 CPU and 8 hours on 8 CPUs.

6 Conclusion and Future Work

The translator translates a large subset of Aml relatively faithfully by attempt-
ing to map Aml source constructs to Promela target constructs, which are
supposed to yield a behavior in Spin similar to the behavior of the source in
Aspen. However, some parts of Aml are not translated, in some cases as an
optimization mechanism. The main constructs of Aml that are not translated
include time values and durations, reals and floats, priorities, and a special form
of call-by-reference parameter passing that Promela does not support. Of the
omitted concepts, some are generally hard to translate, such as time, real num-
bers, and call-by-reference of activities. The remaining omissions could be han-
dled more easily. The Map tool shall be seen as an aid in examining the utility of
model checking in testing plan models. Future work includes examining exactly

Automated Testing of Planning Models 105

what forms of verification can be performed with the presented tool that cannot
easily be performed with Aspen.

References

1. Smith, M., Holzmann, G., Cucullu, G., Smith, B.: Model Checking Autonomous
Planners: Even the Best Laid Plans Must be Verified. In: IEEE Aerospace Confer-
ence, Big Sky, Montana (March 2005)

2. Holzmann, G.: The Model Checker Spin. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

3. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual 2003, 608
pgs. Addison-Wesley, Reading (2003)

4. Holzmann, G., Bosnacki, D.: The Design of a Multi-Core Extension of the Spin
Model Checker. IEEE Transactions on Software Engineering 33(10), 659–674 (2007)

5. http://www.spinroot.com

6. Khatib, L., Muscettola, N., Havelund, K.: Verification of Plan Models using UP-
PAAL. In: First Goddard Workshop on Formal Approaches to Agent-Based Sys-
tems (March 2000)

7. Havelund, K., Lowry, M., Penix, J.: Formal Analysis of a Space Craft Controller
using Spin. IEEE Transactions on Software Engineering 27(8) (August 2001)

8. Havelund, K., Lowry, M., Park, S., Pecheur, C., Penix, J., Visser, W., White, J.L.:
Formal Analysis of the Remote Agent - Before and After Flight. In: The Fifth
NASA Langley Formal Methods Workshop, Virginia (June 2000)

9. Feather, M., Smith, B.: Automatic Generation of Test Oracles: From Pilot Studies
to Applications. In: Proceedings of the Fourteenth IEEE International Conference
on Automated Software Engineering (ASE 1999), Cocoa Beach, FL, October 1999,
pp. 63–72. IEEE Computer Society, Los Alamitos (1999)

10. Penix, J., Pecheur, C., Havelund, K.: Using Model Checking to Validate AI Planner
Domain Models. In: 23 Annual NASA Goddard Software Engineering Workshop,
Goddard, Maryland (December 1998)

11. Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G., Sherwood, R.: Validating
the Autonomous EO-1 Science Agent. In: International Workshop on Planning and
Scheduling for Space (IWPSS 2004), Darmstadt, Germany (June 2004)

12. Smith, M., Holzmann, G., Ettessami, K.: Events and Constraints: a Graphical Ed-
itor for Capturing Logic Properties of Programs. In: 5th International Symposium
on Requirements Engineering, Toronto, Canada, August 2001, pp. 14–22 (2001)

13. Chien, S., Knight, R., Stechert, A., Sherwood, R., Rabideau, G.: Using Iterative
Repair to Improve Responsiveness of Planning and Scheduling. In: International
Conference on Artificial Intelligence Planning Systems (AIPS 2000), Breckenridge,
CO (April 2000)

14. Fukunaga, A., Rabideau, G., Chien, S.: ASPEN: An Application Framework for
Automated Planning and Scheduling of Spacecraft Control and Operations. In:
Proceedings of International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS 1997), Tokyo, Japan, pp. 181–187 (1997)

15. Smith, B., Sherwood, R., Govindjee, A., Yan, D., Rabideau, G., Chien, S., Fuku-
naga, A.: Representing Spacecraft Mission Planning Knowledge in Aspen. In: AIPS
1998 Workshop on Knowledge Engineering and Acquisition for Planning (June
1998); Workshop notes published as AAI Technical Report WS-98-03

http://www.spinroot.com

Towards Partial Order Reduction
for Model Checking Temporal Epistemic Logic

Alessio Lomuscio1, Wojciech Penczek2, and Hongyang Qu1

1 Department of Computing, Imperial College London, UK
{A.Lomuscio,Hongyang.Qu}@imperial.ac.uk

2 Institute of Computer Science, PAS, and University of Podlasie, Poland
penczek@ipipan.waw.pl

Abstract. We introduce basic partial order reduction techniques in a
temporal-epistemic setting. We analyse the semantics of interpreted sys-
tems with respect to the notions of trace-equivalence for the epistemic
linear time logic LTLK−X .

1 Introduction

In recent years there has been growing attention to the area of verification
of multi-agent systems (MAS) by automatic model checking. Differently from
standard reactive systems where plain temporal logics are often used, MAS are
specified by using rich, intensional logics such as epistemic and deontic logics in
combination with temporal logic. To accommodate for these needs several tech-
niques for model checking have been suitably extended. For instance in [4, 20]
OBDD-based techniques for temporal epistemic logic were introduced. Simi-
lar analysis were carried out previously for SAT-based approaches, including
bounded and unbounded model checking [10, 18]. These approaches have now
been implemented [1, 4, 13] and experimental results obtained in a variety of ar-
eas such as verification of security protocols, web-services, etc. Several extensions
to other logics, including ATL, real-time, and others, have also been analysed.

It is surprising however that two mainstream techniques in symbolic verifica-
tion, i.e., predicate abstraction and partial order reduction have not so far been
applied to the verification of MAS logics. In this paper we begin the analysis of
partial order reduction for temporal epistemic logic. Specifically, we look at the
case of the linear temporal logic LTLK−X (i.e., the standard LTL [14] without
the X next-time operator in which an epistemic modality is added [3]). The
main contributions of this research note are the notions of weak and strong path
equivalence defined on MAS semantics, the corresponding dependency relations,
and a proof showing that these equivalences preserve the satisfaction of LTLK−X

formulas.
The rest of the paper is organised as follows. In Section 2 we introduce syntax,

semantics of our setting together with some basic notions. In Section 3 we present
the definitions of path equivalence and dependency which are used in Theorem 1,
the key result of the paper, showing that strongly equivalent paths preserve

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 106–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Partial Order Reduction 107

LTLK−X formulas. We exemplify the methodology in Section 4 while discussing
an example, and present our conclusions in Section 5.

2 Preliminaries

We introduce here the basic technical background to the present paper. In par-
ticular we discuss the semantics of interpreted systems, properly augmented with
suitable concepts for our needs, and the basic syntax we shall be using in the
rest of the paper.

2.1 Interpreted Systems

The semantics of interpreted systems provides a setting to reason about MAS.
Interpreted systems were originally developed independently by Parikh and Ra-
manujam [16], Halpern and Moses [8] and Rosenschein [21]. Their adoption as
a semantics of choice for several MAS concept follows the publication of [3].
Although several valuable extensions have been proposed, in their basic settings
interpreted systems offer a natural synchronous semantics for linear time and
an external account of knowledge of the agents in the system. The following is
a brief summary of the fundamental concepts needed for the rest of the paper;
we refer to [3] for more details.

We begin by assuming a MAS to be composed of n agents A = {1, . . . , n}1.
We associate a finite set of possible local states Li = {l1i , l2i , . . . , lnli

i } and actions
Acti = {a1

i , a
2
i , . . . , a

nai

i } to each agent i ∈ A. In the interpreted systems model
the actions of the agents are selected and performed synchronously according to
each agent’s local protocol Pi : Li → 2Acti; the local protocol effectively models
the program the agent is executing. A global state g = (l1, . . . , ln) is a tuple of
local states for all the agents in the MAS corresponding to an instantaneous
snapshot of the system at a given time. Given a global state g = (l1, . . . , ln), we
denote gi = li as the local component of agent i ∈ A in g. Global transitions
are executed by means of joint actions on global states. In a nutshell, the global
evolution function t : G×Act1 × · · · ×Actn → G defines the target global state
from a global state when a joint action (a1, . . . , an) ∈ Act1×· · ·×Actn is selected
and performed by all agents in the system. More details can be found in [3].

In the following analysis we differ from the standard presentation by abstract-
ing from the actual protocols and actions being performed and focus on the
transitions only. For this reason we simply focus on the set of all possible global
transitions T = {(g, g′) | ∃(a1, . . . , an) ∈ Act1×· · ·×Actn such that t(g, a1, . . . ,
an) = g′}. For simplicity we shall often use lower case letters t1, t2, . . . to denote
elements of T . Given the set T of global transitions we denote by Ti, i ∈ A, the
set of all local transitions of the form ti = (lki , lk+1

i) for an agent i ∈ A. The
set of all local transitions can be obtained by projecting T over the correspond-
ing dimension for the agent in question; more formally (lki , lk+1

i) ∈ Ti if there

1 Note in the present study we do not consider the environment component. This may
be added with no technical difficulty at the price of heavier notation.

108 A. Lomuscio, W. Penczek, and H. Qu

exists a joint action (a1, . . . , an) such that t(gk, a1, . . . , an) = gk+1, where the
local component for agent i in gk (respectively gk+1) is lki (respectively lk+1

i).
With slight abuse of notation for any global transition t = (g, g′) ∈ T we write
t = (t1, . . . , tn), where each ti ∈ Ti, i ∈ A is such that ti(gi, g

′
i), and say that all

ti, i = 1, . . . , n, are the local transitions in t.
With respect to the above we use the following notations. Given a local tran-

sition ti = (li, l′i) we write source(ti) = li and target(ti) = l′i. Further, if li = l′i,
we denote ti as ε. We use similar notation for global transitions too with ob-
vious meaning in terms of source and target on global states. A sequence of
global states ρ = g0g1g2 . . . is called a path (or a run) if for every gk, gk+1 ∈ ρ
(k ≥ 0) we have that (gk, gk+1) ∈ T . Given a path ρ we say ρ|i = g0

i g1
i g

2
i . . .

is the local path for agent i in ρ. Given a path ρ = g0g1g2 . . . , ρ(k) = gk, and
ρ〈k〉 = (gk, gk+1) = tk. Similarly, the k-th state and k-th transition in ρ|i are
denoted as ρ|i(k) and ρ|i〈k〉 respectively. Let ρ[0..k] = g0g1 . . . gk (respectively
ρ|i[0..k] = g0

i g1
i . . . gk

i) be the prefix of ρ (respectively ρ|i) and ρ[k] = gkgk+1 . . .
(respectively ρ|i[k] = gk

i gk+1
i . . .) the suffix. The set of paths originating from g

is denoted as Π(g).
We express synchronisation of transitions as follows. Local transitions are

synchronised if they are always performed jointly by the system; this is formally
expressed as follows.

Definition 1 (Synchronisation). For any i, j ∈ A (i �= j), a local transition
ti is said to be semi-synchronised to a local transition tj if whenever ti appears
in a global transition t = (t1, . . . , tn) so does tj. Two local transitions ti, tj are
synchronised if ti is semi-synchronised to tj and tj is semi-synchronised to ti.

We write t1 → t2 to denote the fact that t1 is semi-synchronised to t2 and t1 ↔ t2
denote t1 is synchronised to t2. Figure 1 shows an interpreted system composed
of three agents. The dotted lines represents synchronised transitions, i.e., the
local transitions t21 and t22 are synchronised.

Definition 2 (Interpreted Systems). Given a set of atomic propositions P ,
an interpreted system (or simply a model) is a tuple M = (G, G0, Π, h), where G
is a set of global states, G0 ⊆ G is a set of initial (global) states, Π =

⋃
i∈G0

Π(i)

is the set of paths originating from all states in G0, and h : P → 2G is an

Fig. 1. A synchronous system

Towards Partial Order Reduction 109

interpretation for the atomic propositions. Particularly, we define a local atomic
proposition pj

i for each local state lji of the agent i ∈ A such that h(pj
i) = {g |

g ∈ G and gi = lji }. We assume G to be the set of states reachable from G0 by
any path in Π.

We can now define the syntax and interpretation of our language.

2.2 Syntax

Combinations of linear time and knowledge have long been used in the analysis
of temporal epistemic properties of systems [3, 7]. In partial order reduction for
LTL one typically excludes from the syntax the next time operator X as the
preservation results [12] do not hold when X is present. Given this we consider
LTLK−X in this paper.

Definition 3 (Syntax). Let PV be set of atomic propositions to be interpreted
over the global states of a system. The syntax of LTLK−X is defined by the
following BNF grammar:

φ ::= true | false | p | ¬p | φ ∧ φ | φ ∨ φ | φUφ | φRφ | Kiφ | Kiφ,

where p ∈ PV .

The temporal operatorsU andR are named as usual until and release respectively.
The formula Kiφ represents ”agent i knows φ” and Kiφ is the corresponding dual
representing ”agent i does not know whether or not φ holds”. The
epistemic modalities are defined by means of the following relations as standard.

Definition 4 (Epistemic relation). For each agent i ∈ A, ∼i ⊆ G × G is
an epistemic indistinguishably relation over global states defined by g ∼i g′ if
gi = g′i.

Given a model M = (G, G0, Π, h), where h(p) is the set of global states where p
holds. Let Π denote the suffix-closure of Π , i.e., the set of all the paths in Π and
their suffices. The formal semantics of an LTLK−X formula φ being satisfied by
M and ρ ∈ Π , denoted as M, ρ |= φ, is recursively defined as follows.

Definition 5 (Satisfaction)

– M, ρ |= true for each ρ ∈ Π;
– M, ρ �|= false for each ρ ∈ Π;
– M, ρ |= p iff ρ(0) ∈ h(p);
– M, ρ |= ¬p iff M, ρ �|= p;
– M, ρ |= φ1 ∧ φ2 iff M, ρ |= φ1 and M, ρ |= φ2;
– M, ρ |= φ1 ∨ φ2 iff M, ρ |= φ1 or M, ρ |= φ2;
– M, ρ |= φ1Uφ2 iff M, ρ[k] |= φ2 for some k ≥ 0 and M, ρ[j] |= φ1 for all

0 ≤ j < k;
– M, ρ |= φ1Rφ2 iff either M, ρ[k] |= φ2 and M, ρ[k] �|= φ1 for all k ≥ 0, or

M, ρ[k] |= φ1 for some k ≥ 0 and M, ρ[j] |= φ2 for all 0 ≤ j ≤ k;

110 A. Lomuscio, W. Penczek, and H. Qu

– M, ρ |= Kiφ iff all paths ρ′ ∈ Π we have that ρ′(0) ∼i ρ(0) implies M, ρ′ |= φ.
– M, ρ |= Kiφ iff for some path ρ′ ∈ Π we have that ρ′(0) ∼i ρ(0) and

M, ρ′ |= φ.

Given a global state g of M and an LTLK−X formula φ, we use the following
notations:

– M, g |= φ iff M, ρ |= φ for all the paths ρ ∈ Π(g).
– M |= φ iff M, g |= φ for all g ∈ G0.
– Props(φ) ⊆ PV is the set of atomic propositions that appear in φ.

In order to define partial order reduction for LTLK−X , we transform each for-
mula ¬p into a fresh atomic proposition q such that h(q) = G \ h(p). Next, we
present the main notions used for our reduction.

Definition 6 (Simple State Expression). Let I ⊆ A. A set LI ⊆
⋃

i∈I Li

is said to be simple if it contains exactly one element from each set Li. Given
a simple set LI , a simple state expression P for an atomic proposition p is a
Boolean formula of the form:

P =
∧

lji∈LI

pj
i , (1)

where pj
i is the local atomic proposition corresponding to lji and for all g ∈ G

and i ∈ I: gi ∈ LI implies g ∈ h(p).

In the above definition, each local atomic proposition in P denotes a local state
which “forces” any global state in which it appears to satisfy p. Given any I ⊆ A,
let [p] denote the set of all valid simple state expressions for p. Given an atomic
proposition p, a set I ⊆ A and a simple state expression P , we write [P] for LI

and A|P for I.
Let G|P ⊆ G be the set of global states in which P holds. Given two simple

state expressions Pk,P ′
k ∈ [p], we write Pk ≤ P ′

k iff G|Pk
⊆ G|P′

k
and Pk < P ′

k iff
Pk ≤ P ′

k and Pk �= P ′
k. Clearly, ([p],≤) is a poset. Let Max[p] be the set of the

maximal elements in [p]. Note that the maximal elements intuitively correspond
to the “smallest” simple state expressions.

Definition 7 (Full State Expression). The full state expression Ep for an
atomic proposition p is a Boolean formula of the form:

Ep =
∨

P∈Max[p]

P , (2)

In other words, Ep encodes the set of global states where p holds, i.e., h(p).
In what follows we also use the following shortcuts: A|p =

⋃
P∈Max[p]A|P (A|p

denotes the set of agents appearing in the full state expression of p), and A|φ =⋃
p∈Props(φ)A|p.

Towards Partial Order Reduction 111

3 Partial Order Reduction on Interpreted Systems

In the literature, partial order reduction has been studied intensively for asyn-
chronous systems, e.g., [5, 6, 9, 11, 15, 17, 19, 22]. The technique permits the
exploration of a portion of the state space when checking for satisfaction of a
formula in a system. The basic idea consists in observing that two consecutive
independent transitions in a path can sometimes be interchanged with no effect
to the satisfaction of a formula. Because of this, the set of all the paths in a sys-
tem can be partitioned into subsets, named traces [2]. In this section, we aim to
define a dependency relation between transitions in order to be able to partition
paths into traces. We begin with the notion of stuttering [12].

Definition 8. The stutter normal form of a path ρ is a sequence #ρ such that
each consecutive repetition of states in ρ is replaced by a single state. Two paths
are said to be equivalent up to stuttering if they have the same stutter normal
form.

For example, two paths g1g2g2g3g3 and g1g2g2g2g3 are equivalent up to stut-
tering since their stutter normal form is g1g2g3. The same definition applies to
local paths ρ|i.
Definition 9 (Weak equivalence). Two paths ρ and ρ′ are weakly equivalent
iff ρ|i and ρ|′i are equivalent up to stuttering, for all agents i ∈ A.

Figure 2 and 3 display two weakly equivalent paths in the system of Figure 1
based on the above definition.

Observe that even if two paths are weakly equivalent, they may not satisfy the
same LTLK−X formula. For example, consider the system in Figure 1 and two
atomic propositions p and q such that p holds in all the global states containing
s1 while q holds in all the global states containing w2. The formula

pUq (3)

holds in the path in Figure 3, but does not hold in the one in Figure 2.
Now we start to define dependency relations between transitions to strengthen

weak equivalence in order to get strong equivalence preserving the LTLK−X

formulae.

Fig. 2. A path ρ

112 A. Lomuscio, W. Penczek, and H. Qu

Fig. 3. A path weakly equivalent to ρ

Definition 10 (Basic dependency relation). For any agent i ∈ A, the de-
pendency relation Di is the symmetric closure of the relation:

di = {(ti, t′i) | ti, t′i ∈ Ti and (either (ti �= ε, t′i �= ε) or
(ti �= ε and ∃tj ∈ Tj , tj �= ε, t′i → tj or tj → t′i) or

((∃tj ∈ Tj , tj �= ε, ti → tj or tj → ti) and(∃tk ∈ Tk, tk �= ε, t′i → tk or tk → t′i)))}.

The basic dependency relation relates two local transitions if either they cause an
effective change of local states or they do not but they are (semi-)synchronised
to other local transitions that do so.

Definition 11 (Dependency relation for synchronisation). The depen-
dency relation Dsyn is the symmetric closure of the following relation:

dsyn = {(ti, tj)|ti ∈ Ti, tj ∈ Tj and ti → tj}.

We now define the dependency relation for an LTLK−X formula. We begin with
the dependency relation for an atomic proposition.

Definition 12 (Dependency relation for atomic propositions). For an
atomic proposition p with corresponding full state expression Ep =

∨
P∈Max[p] P,

the dependency relation Dp for p is

Dp = {(ti, tj)|ti ∈ Ti, tj ∈ Tj , i �= j,P ∈Max[p],P ′ ∈Max[p],

target(ti) ∈ [P] and ti �= ε and source(tj) ∈ [P ′] and tj �= ε}.

Dp requires that each non-ε transition ti entering a local state in [P] is de-
pendent on every non-ε transition tj leaving a local state in any [P ′]. The
reason for this is that p may become satisfied after ti is executed and be-
come unsatisfied after tj is executed. For example, consider an atomic propo-
sition p with full state expression s2 ∧ r2 (as shown in Figure 1). We have
Dp = {(t11, t23), (t13, t21), (t23, t11), (t21, t13)}.

To define the dependency relation for an arbitrary LTLK−X formula φ, we
need to preform some pre-processing on φ. Firstly, we need to make sure that each

Towards Partial Order Reduction 113

atomic proposition p occurs only once in φ. If there is more than one occurrence
for p, we generate a fresh atomic proposition p′ for each occurrence and define
h(p′) = h(p). It follows that Ep′ = Ep. For example, we transform φ = Kip∨Kjp
into Kip1 ∨Kjp2 with h(p1) = h(p2) = h(p). Secondly, we define the epistemic
nesting depth {ψ}K for every sub-formula ψ of φ. The epistemic nesting of a
sub-formula corresponds to the “epistemic depth” of a sub-formula in a formula.
Intuitively, the “deeper” a sub-formula is in an epistemic formula the higher
its nesting will be. To calculate the nesting we assign a level 0 of nesting to the
whole formula and increase it by 1 every time we find an epistemic operator while
exploring the parse tree of the formula. More formally, we proceed as follows.

Definition 13 (Epistemic nesting depth). Given a formula φ, the epistemic
nesting {ψ}K of a sub-formula ψ of φ is defined as follows.

– If ψ = φ, then {φ}K = {ψ}K = 0;
– If ψ ∈ {ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1Uψ2, ψ1Rψ2}, then {ψ1}K = {ψ2}K = {ψ}K;
– If ψ ∈ {Kiψ1, Kiψ1}, then {ψ1}K = {ψ}K + 1;
– If ψ = p, then {p}K = {ψ}K.

Let |φ|K = max{{p}K | p ∈ Props(φ)} be the maximum epistemic nesting
depth of φ. Let APm

φ be the subset of Props(φ) such that for each p ∈ APm
φ ,

{p}K = m, and APφ =
⋃

0≤m≤|φ|K
APm

φ . Assume i1, i2, . . . , im is the sequence of

indexes for the epistemic modalities scoping p (e.g., for φ = K1q∧K2(EF (K1p)),
the sequence of indexes for p is (2, 1)). Then we perform the following two steps
on APφ:

1. For each p ∈ APm
φ for all m > 0, we generate the set of propositions

Σp ={pj1,j2,...,jm | lj1i1 ∈Li1 , . . . , l
jm

im
∈ Limand Epj1,j2,...,jm

= pj1
i1
∧· · ·∧pjm

im
∧Ep},

where pjk

ik
is the local atomic proposition for ljk

ik
. For example, consider φ =

EF (K2p) with Ep = s2 ∧ r2 in the system of Figure 1. Since {p}K = 1, we
generate the propositions p1, p2, p3 with Ep1 = w1∧s2∧r2, Ep2 = w2∧s2∧r2
and Ep3 = w3 ∧ s2 ∧ r2. Let AP ′

φ =
⋃

0<m≤|φ|K
(
⋃

p∈AP m
φ

Σp) be the set of the

newly generated atomic propositions.
2. For each pair of atomic propositions p and q in AP 0

φ ∪AP ′
φ, we define a fresh

atomic proposition r with h(r) = h(p) ∪ h(q). Let AP r
φ be the set of atomic

propositions generated in this step.

Definition 14 (Dependency relation for an LTLK−X formula φ). The
dependency relation Dφ for φ is defined as follows:

Dφ =
⋃

p∈AP 0
φ∪AP ′

φ∪AP r
φ

Dp.

114 A. Lomuscio, W. Penczek, and H. Qu

Consider the example φ = EF (K2p) with Ep = s2∧r2 again. Dφ is the symmet-
ric closure of the following set: {(t12, t11), (t12, t13), (t11, t23), (t13, t21), (t22, t11), (t22, t13),
(t12, t21), (t12, t23), (t22, t21), (t22, t23)}. The above dependency relation is used to avoid
inconsistencies among weakly equivalent paths where a formula holds in one
path but does not hold in the other. For example, the paths in Figure 2 and
Figure 3 can be distinguished now with respect to Formula (3). Since DpUq =
{(t11, t12), (t12, t11)}, t11 and t12 are not interchangeable and the execution order be-
tween them has an impact on the satisfaction of the formula.

Definition 15 (Extended Formula). For any LTLK−X formula φ, an ex-
tended formula φ′ for φ is defined by replacing each subformula ψ = Kiϕ with

ψ′ = Ki((p1
i ∧ ϕ) ∨ . . . ∨ (pnli

i ∧ ϕ)),

where pj
i is the local atomic proposition corresponding to lji (1 ≤ j ≤ nli). The

substitution is carried out bottom-up in the parse tree.

Note that obviously Dφ = Dφ′ . So in what follows we assume to be dealing with
extended formulae only.

Given an LTLK−X formula φ, let

D = (
⋃

i∈A
Di) ∪Dsyn ∪Dφ. (4)

For a path ρ containing two specific occurrences ti and tj (i, j ∈ A) of local
transitions, we write ti <ρ tj if ti happens earlier than tj in ρ. We write ti =ρ tj
if they are executed together in a global transition. We use ti ≤ρ tj to denote
either ti <ρ tj or ti =ρ tj .

Now we are ready to present the main result of this note. To this aim we
first define strong equivalence, and then show that it preserves the LTLK−X

formulae.

Definition 16 (Strong equivalence). Two paths ρ and ρ′ are strongly equiv-
alent with respect to an LTLK−X formula φ iff the following two conditions
hold:

(1) ρ and ρ′ are weakly equivalent,
(2) for any two occurrences t and t′ of local transitions in ρ and (t, t′) ∈ D,

t <ρ t′ implies t <ρ′ t′, and t =ρ t′ implies t =ρ′ t′.

Given the above equivalence, we formulate two auxiliary lemmas.

Lemma 1. The following two conditions hold:

A) For a path ρ and an LTLK−X formula φ, if M, ρ |= φ and M, ρ[1] �|= φ, then
there exists p ∈ Props(φ) such that M, ρ |= p and M, ρ[1] �|= p,

B) if M, ρ �|= φ and M, ρ[1] |= φ, we can find an atomic proposition p ∈
Props(φ) such that M, ρ �|= p and M, ρ[1] |= p.

Towards Partial Order Reduction 115

Proof. We prove A) by induction on the structure of φ. The condition B) can
be shown similarly.

1. φ = p. This case is obvious.
2. φ = ψ1∧ψ2. We have M, ρ |= ψ1∧ψ2 and M, ρ[1] �|= ψ1∧ψ2. If M, ρ[1] �|= ψ1,

given that M, ρ |= ψ1, it follows that there exists an atomic proposition p in
ψ1 such that M, ρ |= p and M, ρ[1] �|= p.

3. φ = ψ1 ∨ ψ2. This case is similar to the previous one.
4. φ = ψ1Uψ2. We have M, ρ |= ψ1Uψ2 and M, ρ[1] �|= ψ1Uψ2. So M, ρ |= ψ2

and M, ρ[1] �|= ψ2. Therefore, by induction the case holds.
5. φ = ψ1Rψ2. We have M, ρ |= ψ1Rψ2 and M, ρ[1] �|= ψ1Rψ2. If ψ2 holds

in all states in ρ and ψ1 does not holds in any states, then M, ρ[1] |= φ.
Thus there exists k such that ψ1 holds in ρ(k) and ψ2 holds in ρ(j) for all
0 ≤ j ≤ k. Similarly to the U case, k = 0, and ψ1 or ψ2 does not hold in
ρ(1). Then there exists p in ψ1 or ψ2 satisfying the lemma.

6. φ = Kiψ. We have M, ρ |= Kiψ and M, ρ[1] �|= Kiψ. So ρ|i(0) �= ρ|i(1). Since
φ is an extended formula, we know that M, ρ |= Ki((p1

i ∧ψ)∨ ...∨(pnli
i ∧ψ)),

and there exists a 1 ≤ j ≤ nl1 such that pj
i is the local atomic proposition

corresponding to ρ|i(0). We have M, ρ |= pj
i and M, ρ[1] �|= pj

i .
7. φ = Kiψ. This case is similar to the one above. �

Lemma 2. Let φ be an LTLK−X formula and paths ρ, ρ′ ∈ Π be strongly equiv-
alent. Then there exist k, k′ ≥ 0 such that the following two conditions hold:

A) If M, ρ[k] |= φ, then M, ρ′[k′] |= φ;
B) There exists an i ∈ A|φ such that the paths ρ|i[0..k] and ρ′|i[0..k′] are equiva-

lent up to stuttering, and if M, ρ[k−1] �|= φ and M, ρ[k] |= φ, then ρ|i〈k〉 �= ε.

Proof. A) By induction on the structure of φ.
The base case: φ = p.
Assume M, ρ[k] |= p for some k ≥ 0. Given that ρ(k) ∈ h(p), we have that

there exists a simple state expression P ∈ Max[p] for some simple set LI , I ⊆ A
and ρ(k) ∈ G|P . For any i ∈ I, consider the shortest and longest prefixes of
the projections of ρ′ onto i that are equivalent to ρ|i[0..k] up to stuttering.
Call ρ′|i[0..ji] the shortest and ρ′|i[0..ji] the longest. Given ρ and ρ′ are strongly
equivalent, they are weakly equivalent and therefore, we have ρ′|i(ji) = ρ′|i(ji) =
ρ|i(k). Consider the following two cases, which may arise.

1.
⋂
i∈I

[ji, ji] �= ∅. Then, there is a k′ ≥ 0 such that k′ ∈ ⋂
i∈I

[ji, ji]. Given that

ρ′|i(k′) = ρ|i(k) for all i ∈ I, we have that M, ρ′[k′] |= p.
2.
⋂
i∈I

[ji, ji] = ∅. Then, there must exist x, y ∈ I such that jx > jy. This implies

that the transitions tjx−1
x and tjy are dependent. However, by the inductive

hypothesis ρ, ρ′ are strongly equivalent and therefore we have tjy ≤ρ′ tjx−1
x .

This is a contradiction. So, we have
⋂
i∈I

[ji, ji] �= ∅.

The induction steps.

116 A. Lomuscio, W. Penczek, and H. Qu

1. φ = ψ1∧ψ2. Assume M, ρ[k] |= ψ1∧ψ2, therefore M, ρ[k] |= ψ1 and M, ρ[k] |=
ψ2. By the inductive assumption there exist k′, k′′ ≥ 0 such that M, ρ′[k′] |=
ψ1 and M, ρ′[k′′] |= ψ2. If k′ = k′′, then M, ρ′[k′] |= ψ1∧ψ2. So, we are done.
Without loss of generality, assume now that k′ < k′′. Let k̄′ ≥ k′ be the
biggest natural number such that M, ρ′[j] |= ψ1 for k′ ≤ j ≤ k̄′ and M, ρ′[k̄′+
1] �|= ψ1. Similarly let k̄′′ be the smallest natural number such that M, ρ′[j] |=
ψ2 for k̄′′ ≤ j ≤ k′′ and M, ρ′[k̄′′ − 1] �|= ψ2. If k̄′′ ≤ k̄′ then there exists a
k′′′ such that M, ρ′[k′′′] |= ψ1 ∧ ψ2.

Otherwise, we have k̄′ < k̄′′. By Lemma 1, there exists an atomic propo-
sition p in ψ1 such that M, ρ′[k̄′] |= p and M, ρ′[k̄′ + 1] �|= p, and an atomic
proposition q in ψ2 such that M, ρ′[k̄′′−1] �|= q and M, ρ′[k̄′′] |= q. Assume p
is satisfied by the simple state expression P1 ∈ Max[p] for some I ⊆ A and
q by P2 ∈ Max[q] for some I ′ ⊆ A. Therefore, there exist an agent i ∈ I
such that tk̄

′
i = ρ′|i〈k̄′〉 (tk̄

′
i �= ε) leaves the local state ρ′|i(k̄′) ∈ [P1], and

an agent j ∈ I ′ such that tk̄
′′−1

j = ρ′|j〈k̄′′ − 1〉 (tk̄
′′−1

j �= ε) enters the local
state ρ′|j(k̄′′) ∈ [P2] (note that i �= j, otherwise we would have k′ = k′′.).
According to the construction of Dφ, tk̄

′
i and tk̄

′′−1
j are dependent. So we

have tk̄
′

i ≤ρ′ tk̄
′′−1

j and tk̄
′′−1

j <ρ tk̄
′

i . But ρ and ρ′ are strongly equivalent by
the inductive hypothesis, so we get a contradiction.

2. φ = ψ1 ∨ ψ2. This case is immediate.
3. φ = ψ1Uψ2. Assume M, ρ[k] |= ψ1Uψ2. By definition we have that there

exists a k′ ≥ k such that M, ρ[k′] |= ψ2 and M, ρ[j] |= ψ1 for k ≤ j ≤ k′.
Then by induction, we have that there exists a k′′ such that M, ρ′[k′′] |= ψ2.
So we have M, ρ′[k′′] |= ψ1Uψ2.

4. φ = ψ1Rψ2. According to the semantics of R, we know that M, ρ[k] |= ψ2
and thus there exists k′ such that M, ρ′[k′] |= ψ2. If for all j > k, M, ρ[j] �|=
ψ1, then for all j′ > k′, M, ρ′[j′] �|= ψ1 (otherwise, there exists j̄ > k such
that M, ρ[j̄] |= ψ1). If there exists j (j ≥ k), M, ρ[j] |= ψ1, then ψ1Rψ2 =
ψ2U(ψ1 ∧ ψ2) and the case may be shown similarly to the above.

5. φ = Kiψ. Assume M, ρ[k] |= Kiψ. Since ρ, ρ′ are strongly equivalent, ρ|i[0..k]
and ρ′|i[0..k′] are equivalent up to stuttering for some k′. So ρ|i(k) = ρ′|i(k′).
Therefore M, ρ′[k′] |= φ.

6. φ = Kiψ. It is the same as the Ki case.

B) A proof of this condition follows from the above proof. �

Strong equivalence for an LTLK−X formula φ naturally partitions Π into traces
of strongly equivalent paths. We have the following theorem.

Theorem 1. For any LTLK−X φ and any two strongly equivalent paths ρ, ρ′ ∈
Π, we have M, ρ |= φ iff M, ρ′ |= φ.

Proof. By induction on the structure of φ.
The base case φ = p is obvious given ρ(0) = ρ′(0).
The induction steps φ = ψ1 ∧ ψ2, φ = ψ1 ∨ ψ2, φ = Kiψ and φ = Kiψ can
be obtained similarly. In the following, we prove the case φ = ψ1Uψ2. A similar
proof can be obtained for φ = ψ1Rψ2.

Towards Partial Order Reduction 117

φ = ψ1Uψ2. Assume M, ρ |= ψ1Uψ2. If M, ρ |= ψ2, then M, ρ′ |= ψ2 and
therefore M, ρ′ |= φ. Assume there exists a k ≥ 0 such that M, ρ[k] |= ψ2 and
M, ρ[j] |= ψ1 for 0 ≤ j < k. By Lemma 2, there exists a smallest k′ > 0 such
that M, ρ′[k′] |= ψ2; we need to show that M, ρ′[j] |= ψ1 for all 0 ≤ j < k′.
Assume that M, ρ′[j] �|= ψ1 for the smallest 0 ≤ j < k′. Note that M, ρ′[0] |= ψ1;
so this implies that M, ρ′[j − 1] |= ψ1. So there must exist a set of agents I ⊆ A
such that ρ′|i(j − 1) �= ρ′|i(j) for all i ∈ I. Similarly observe there exists a set
of agents I ′ ⊆ A such that ρ′|i(k′) �= ρ′|i(k′ − 1) for all i ∈ I ′. So by observing
there are atomic propositions changing values from ρ′(k′− 1) to ρ′(k′) and from
ρ′(j− 1) to ρ′(j), and reasoning similarly to the case of conjunction in the proof
of Lemma 2, we can reach a contradiction with hypothesis of ρ, ρ′ being strongly
equivalent. �

Theorem 1 implies that partial order reduction based on the relation of strong
equivalence preserves LTLK−X properties.

4 Example

We exemplify the technique above on the system of three agents A = {1, 2, 3}
of Figure 1 with respect to the formula

φ = ♦K3 p.

We assume p is an atomic proposition that holds in the global state (s2, w2, r5),
i.e., its full state expression is

Ep = s2 ∧w2 ∧ r5.

Before we start to explore the state space, we need to generate the dependency
relation according to the formula 4.

– The basic dependency relation is defined as follows.

D1 = {(t11, t11), (t21, t21), (t11, t21), (t21, t11)}
D2 = {(t12, t12), (t22, t22), (t12, t22), (t22, t12)}
D3 = {(t13, t13), (t23, t23), (t33, t33), (t43, t43), (t13, t23), (t13, t33), (t13, t43), (t23, t33), (t23, t43),

(t33, t
4
3), (t

2
3, t

1
3), (t

3
3, t

1
3), (t

4
3, t

1
3), (t

3
3, t

2
3), (t

4
3, t

2
3), (t

4
3, t

3
3)}

– The dependency relation for synchronisation is as follows.

Dsyn = {(t21, t22), (t22, t21)}

– The dependency relation for atomic propositions is as follows.

Dp = {(t21, t43), (t22, t43), (t43, t21), (t43, t22)}

118 A. Lomuscio, W. Penczek, and H. Qu

– The dependency relation for the formula is defined as follows. For K3 p, we
construct a new atomic proposition p′ such that

Ep′ =
∨

l3∈L3

(l3 ∧ s2 ∧ w2 ∧ r5)

= (r1 ∧ s2 ∧ w2 ∧ r5) ∨ (r2 ∧ s2 ∧ w2 ∧ r5) ∨ (r3 ∧ s2 ∧ w2 ∧ r5)∨
(r4 ∧ s2 ∧w2 ∧ r5) ∨ (r5 ∧ s2 ∧ w2 ∧ r5)∨

= s2 ∧w2 ∧ r5
= Ep.

Therefore, we have Dφ = Dp.
By means of the technique discussed, to check the validity of the formula above

we do not need to explore the full state space shown in Figure 4. Since p does
not hold in the state (s1, w2, r5) (nor in (s1, w1, r5), (s2, w1, r5), (s3, w3, r5))
and (s1, w2, r5) ∼3 (s2, w2, r5), K3 p does not hold in the model.

After applying partial order reduction, we are able to check that K3 p does not
hold. Figure 5 illustrates the reduced state space, clearly showing the potential
of this technique.

It is easy to see that any path in Figure 4 has a strongly equivalent path in
Figure 5. For example, the path

(s1, w1, r1)(s1, w1, r2)(s2, w2, r3)(s2, w2, r4)(s2, w2, r5)(s3, w3, r5)

is equivalent to

(s1, w1, r1)(s1, w1, r2)(s1, w1, r3)(s1, w1, r4)(s1, w1, r5)(s2, w2, r5)(s3, w3, r5).

We can use similar considerations to check any LTLK−X formulae effectively.

Fig. 4. The full state space

Towards Partial Order Reduction 119

Fig. 5. The reduced state space

5 Conclusions

In this research note we have extended a partial order reduction technique to a
basic logic for knowledge and linear time. Our main result concerns the preser-
vation of satisfaction of LTLK−X formulae on equivalent paths on synchronous
interpreted systems semantics.

The dependency relation we defined is quite general, as we do not impose
any restrictions on the underlying models. While this makes it easier to de-
sign an algorithm ans test its effectiveness, we believe we can further enhance
its effectiveness by exploring particular properties in the temporal epistemic
logic.

We are currently investigating the feasibility of an algorithm to verify satis-
fiability on reduced traces and plan to test its implementation against known
results for temporal epistemic specification available in the multi-agent systems
literature.

Acknowledgements

The research described in this paper is partly supported by the European Com-
mission Framework 6 funded project CONTRACT (IST Project Number 034418)
and by the Polish Ministry of Science and Higher Education under grant
3T11C01128.

120 A. Lomuscio, W. Penczek, and H. Qu

References

1. Dembinski, P., Janowska, A., Janowski, P., Penczek, W., Pó�lrola, A., Szreter,
M., Woźna, B.z., Zbrzezny, A.: VerICS: A tool for verifying Timed Automata
and Estelle specifications. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003.
LNCS, vol. 2619, pp. 278–283. Springer, Heidelberg (2003)

2. Diekert, V., Rozemberg, G. (eds.): The Book of Traces. World Scientific
Publishing Co. Pte. Ltd., Singapore (1995)

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowl-
edge. MIT Press, Cambridge (1995)

4. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowl-
edge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–
483. Springer, Heidelberg (2004)

5. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach
to branching time logic model checking. Information and Computation 150,
132–152 (1999)

6. Godefroid, P.: Using partial orders to improve automatic verification meth-
ods. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. ACM/AMS DIMACS
Series, vol. 3, pp. 321–340 (1991)

7. Halpern, J., van der Meyden, R., Vardi, M.Y.: Complete axiomatisations for
reasoning about knowledge and time. SIAM Journal on Computing 33(3),
674–703 (2003)

8. Halpern, J., Moses, Y.: Knowledge and common knowledge in a distributed
environment. Journal of the ACM 37(3), 549–587 (1984); A preliminary
version appeared in Proc. 3rd ACM Symposium on Principles of Distributed
Computing (1984)

9. Holzmann, G., Peled, D.: Partial order reduction of the state space. In: First
SPIN Workshop, Montréal, Quebec (1995)

10. Kacprzak, M., Lomuscio, A., Penczek, W.: From bounded to unbounded
model checking for temporal epistemic logic. Fundamenta Informati-
cae 63(2,3), 221–240 (2004)

11. Kurbán, M.E., Niebert, P., Qu, H., Vogler, W.: Stronger reduction criteria
for local first search. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)
ICTAC 2006. LNCS, vol. 4281, pp. 108–122. Springer, Heidelberg (2006)

12. Lamport, L.: What good is temporal logic? In: IFIP Congress, pp. 657–668
(1983)

13. Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent sys-
tems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 450–454. Springer, Heidelberg (2006)

14. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent sys-
tems, vol. 1. Springer, Berlin (1992)

15. McMillan, K.L.: A technique of a state space search based on unfolding.
Formal Methods in System Design 6(1), 45–65 (1995)

16. Parikh, R., Ramanujam, R.: Distributed processes and the logic of knowl-
edge. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp.
256–268. Springer, Heidelberg (1985)

Towards Partial Order Reduction 121

17. Peled, D.: All from one, one for all: On model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

18. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent
systems via bounded model checking. Fundamenta Informaticae 55(2), 167–
185 (2003)

19. Penczek, W., Szreter, M., Gerth, R., Kuiper, R.: Improving partial order
reductions for universal branching time properties. Fundamenta Informati-
cae 43, 245–267 (2000)

20. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems
by model checking via OBDDs. Journal of Applied Logic (2007) (to appear
in Special issue on Logic-based agent verification)

21. Rosenschein, S.J.: Formal theories of ai in knowledge and robotics. New
Generation Computing 3, 345–357 (1985)

22. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg
(1991)

Model Checking Driven Heuristic Search for
Correct Programs

Gal Katz and Doron Peled

Bar Ilan University,
Ramat Gan 52900, Israel

Abstract. Genetic programming and model checking were combined
recently to generate correct-by-construction programs. Unlike other syn-
thesis methods, this approach is based on a search in the state space
of syntactically-restricted programs. This search can be seen as a prob-
abilistic and heuristic search. In this paper we discuss the connection
between program synthesis and heuristic search.

1 Introduction

Formal methods suggest various techniques to enhance the reliability of soft-
ware, including the automatic verification of finite state programs, called model
checking [3,9]. Model checking compares a given system with formal specifica-
tion, written in some formalism, e.g., linear temporal logic [13]. It is of course
tempting to try to convert the specification directly into a working code. In this
way, one should obtain code that is “correct by construction”. There are several
obstacles for the automatic generation of code:

– In order to synthesize code from specification, the specification needs to
be complete, i.e., include all possible requirements from the code. This is
usually difficult to achieve. To begin with, providing formal specification is
hard enough. Specification for model checking is usually incomplete, and
usually only some aspects of the software are checked.

– The complexity of synthesizing correct code can be very high or, even unde-
cidable [14,15] (depending on the architecture). Practically, most of the work
on synthesis is devoted to either generating synchronized systems [10,14,1],
or to imposing controlled (and centralized) restrictions on existing systems,
such that they will satisfy further requirements [16].

– Automatically synthesizing a program from specification assumes also that
one can first synthesize some abstract machine, usually a collection of finite
state automata, and then transfer them into a program in some programming
language. This does not take into account various restrictions and typical
behavior of programming constructs and physical systems. Such restrictions
can include timing constraints (which may be transformed sometimes into
fairness constraints, in the sense that one process does not wait indefinitely
to another independent process). Another restriction can be related to the

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 122–131, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model Checking Driven Heuristic Search for Correct Programs 123

granularity of atomicity, taking into account the capabilities of doing some
collection of testing and setting variable values, without the possibility of
intermediate results.

A common way of looking for a solution for a problem in a discrete system is
performing a search, typically Depth First Search or Breadth First Search. A
search makes sense when there is a relation between elements, usually a graph,
were immediately related elements are connected by edges. One reason for per-
forming a search is the ability to systematically cover the possible candidates
for a solution. A search can use a hash table, a stack, or some other structure,
to maintain that elements that were already found are not repeated, e.g., in a
non-progressing search cycle. When the search space is huge, it may be pointless
to make just a systematic search. An exhaustive search in the space of syntac-
tically restricted programs for mutual exclusion programs was reported in [2],
and for a security protocol was reported in [17].

Heuristic search is employed in order to attempt to direct the search quickly
in the direction of the correct solution. Directing the search is done by providing
some weight for each node that is reached during the search and using a search
strategy and some priority-based selection process in order to choose directions
that seem to be most promising on the way to the search goal. For example, the
A∗ search [12] assigns an estimated cost to reach the goal from the current state
and a cost to reach the current state. It selects the successor node, from which
the search will continue, as the one which minimizes the sum of these two values.
The intuition behind this search is that if the estimate was accurate, it would
indicate in which direction (i.e., edge from some node at the current boundary
of the search) one will find the shortest path to the goal.

To some extent, genetic programming [7] can be seen as a heuristic search.
Each node is provided with a fitness value. A selection of candidate programs is
chosen (randomly or based on fitness), some mutations of these candidates are
generated, sometimes even a combination of candidates (in an operation that
combines existing candidate programs, called crossover), and then the fitness of
the newly generated candidates can be used to select those that replace the old
candidates.

The main challenge is then to design a fitness function for candidate programs
generated during the GP search that provides a good prediction on progress.
That is, candidates with high fitness value have at least a qualitative, if not
quantitative, high expectation to develop, through the mutation operations, into
an appropriate solution. There should also be a correlation between the mutation
(and crossover) operation and the fitness function: applying a mutation operation
on a candidate with high fitness should have a reasonably high probability of
generating a new candidate with a high fitness value. If this is not the case, the
genetic search, is not more meaningful than generating random candidates and
checking them.

The fitness function that we use in [4,5] to automatically generate solutions
for the mutual exclusion problem is based on the result of applying model check-
ing on the candidate programs, with respect to a fixed set of properties. In a

124 G. Katz and D. Peled

previous attempt, Johnson [8] suggested basing the fitness function on model
checking, such that one ascribes a value related to the number of properties that
hold in a candidate program. This approach turned out to produce too coarse
fitness scheme. We deviated from straightforward model checking by providing
contributing fitness value even if a property was not completely satisfied by a
program. This was based on a deeper decision procedure, that checks situations
where e.g., some bad executions were not satisfying the specification, but from
every point they could be extended by the program into good executions, satis-
fying the specification. A logic that allows providing various relaxed criteria for
satisfying a linear temporal property was introduced in [11].

1.1 Preliminaries

1.2 Genetic Programming

Genetic programming [7] is a branch of Genetic algorithms that attempts to
develop programs by means of evolution principles. The genetic search involves
generations of candidate programs. Iteratively, one selects some portion of the
currently available candidate programs, applies some mutation operations that
produces new candidates. Then, some mutations, selected based on fitness values,
are returned to the list of candidate programs, replacing some existing candi-
dates. The initial generation of candidates, the selection of candidates for apply-
ing the mutation operations to candidates, or crossover operations, that combine
and mutate several candidates, and the selection of the kind of mutation to per-
form, all employ probabilistic decision process.

One can describe the basic search loop as follows:

Initialization. Create a set of N initial candidates S at random.
Pre-mutation selection. Select some portion f(S) of S for mutation and

crossover operation.
Applying mutating operations. Apply transforming operations to the elements

in f(S) to obtain the elements g(f(S)). Note that it is not compulsory that
|g(f(S))| = |f(S)|.

Evolution through fitness. The fitness value for the elements g(f(S)) is
calculated.

Obtaining next generation. Using the fitness values, the N elements for the next
generation are selected, out of the elements S ∪ g(f(S)), forming the new
set S of candidates. Note that this does not mean necessarily that the N
elements have the best fitness values; alternatively, we may select the best
candidates out of f(s) ∪ g(f(S)), leaving the elements S \ f(S)) intact for
the next generation.

Repeat. If no perfect solution was found, and the predefined limit on the number
of iterations was not exceeded, we return to the Pre-mutation selection stage.

One applies a random choice in the choices made in the stages of Initialization,
Pre-mutation selection and Applying mutation operation.

Each candidate program is represented using its syntactic tree. The syntax
of the programming language used strictly dictates the type of subtrees that

Model Checking Driven Heuristic Search for Correct Programs 125

each node can have. For example, a while node, representing a while loop in the
code, will have a left subtree that corresponds to the while condition, and a right
subtree that corresponds to the loop body. The mutation operations can be the
following:

Replacement. Replacing some subtree in the tree representing the candidate
program with another randomly generated subtree.

Insertion. Add an immediate parent to some node in the subtree. Create
additional offsprings needed by the type of node added.

Reduction. Replace a selected node by one of its offspring, when the types of
the replacing node is the same as the original.

Deletion. Delete some subtree. Update the ancestors recursively in an
appropriate manner.

1.3 Model Checking

Model Checking [3,9] is a method for automatically checking the correctness of
finite state systems. The system (here, a program) is translated into an automa-
ton, and some graph algorithms are applied to it. Specification is given using
a formalism called Temporal Logic. In essence, there are two main dichotomies
for temporal logics used in verification: linear time [13], which asserts about the
valid execution sequences, and branching time [3], which asserts also about the
availability of choices from various given points. For our purposes, it is usually
possible to use linear time temporal logic. However, in some cases, an adaptation
that corresponds to branching time logics is needed.

An execution is a sequence accepted by the automaton representing the system
A. The set of executions of A, i.e., the language of the automaton representing
the system is denoted L(A). For linear temporal logic, we look at the set of
sequences satisfying a property ϕ, i.e., the language of ϕ, denoted L(ϕ). Then,
the correctness criterion is that L(A) ⊆ L(ϕ).

There is often more than a single temporal property that needs to hold in the
generated program (albeit one can conjoin all such properties), related to dif-
ferent requirements and aspects of the systems. Some properties, e.g., represent
the “safety” of the code (in mutual exclusion, that only one process can enter a
critical section at the same time), and other are “liveness” properties (in mutual
exclusion, that when a process wants to enter a critical section, it will eventually
be able to do so). One can sometimes define a hierarchy between such properties,
e.g., making the safety properties more basic than the liveness properties (in the
sense that a solution that satisfies only the safety properties is more accepted
than a solution that satisfies the liveness but not the safety properties).

A genetic programming search based on model checking, where the fitness
is calculated directly by counting the number of temporal properties that hold
for a candidate program was reported in [8]. In [4,5], we used a more refined
fitness measures (which were formalized in a logic called EmCTL∗, described
in [11]). Under this approach, we sometimes provide positive fitness measure
for properties that do not fully satisfy the above correctness criteria, but rather

126 G. Katz and D. Peled

a relaxed criterion. For example, we may still provide some fitness value when
part of the executions are “good”, i.e., when L(A) ∩ L(ϕ) �= ∅. An even higher
fitness value will be given when infinite “bad” executions must require infinitely
many choices to avoid becoming “good” executions. In other words, each infinite
sequence in L(A) \L(ϕ) satisfies that each of its finite prefixes can be extended
into a “good” execution.

The fitness calculated in [4,5] takes into account both the various relaxed
correctness criteria described above, and a hierarchy between the temporal prop-
erties, which gives different weights to the various specification properties.

2 Why Does It Work?

In this section, we will try to justify the reasons that one can expect a genetic
search, as performed in [4,5] to find correct programs, and explain what makes
this approach different than others. The kind of search we adopt is influenced by
the fact that the search space is enormous (or even infinite). We look at several
parameters.

Genetic search differs from other common ways of attempting to obtain correct
programs for a given task automatically. It is not based on learning the desired
task as in machine learning [6]. It does not make deductions from a collected
database or knowledge base. There is no refinement from the abstract into the
concrete implementation. Koza [7] argues that the kind of search performed in
genetic programming resembles the process of inventions, which appears some-
what instantaneous, and then is refined, by checking related variants. Another
related approach is that of simulated annealing [18], which takes its metaphoric
description from physics: one produces some “heating” around existing candi-
date solutions, in order to perform variants, and a “controlled cooling”, when
it seems that a solution is within reach. Accordingly, the genetic programming
process also selects some instances of candidate solutions, performs some limited
amount of changes (“heating”) and attempts to control the variables (“controlled
cooling”) by using fitness metrics.

Randomization

The genetic search is probabilistic. It starts with some random instances, and,
progress is partially random. The relevant observation is that in searching for
a correct program there is no known “correct” or “preferred” initial state. An
important situation that one wants to avoid is “hill climbing”. In this situation,
one progresses in the search towards a deceptively promising local optimum,
which does not provide a path to the actual goal. The GP search is not strictly
greedy, and not only the most promising candidate programs are selected for
future rounds of the search. Also, the initial random selection of programs also
allows us to jump directly into several distinct points in the search graph. In
addition, if the search does not progress after some predefined amount of time,
or number of generations, we start from scratch, with new random instances.

Model Checking Driven Heuristic Search for Correct Programs 127

No Need for Saving Programs

There is no mechanism in our genetic search for saving elements that were already
discovered. This task is typically performed using a hash table. We do not use a
hash table here. This is because the search space of programs is infinite, and even
when restricted to some size, it is still huge. Only a small portion of the possible
candidates are covered before we abandon the current attempt and start from
scratch. Due to the nature of the genetic mutation operator, it is quite possible
that the same candidate is regenerated again and again. In fact, a loop of size
two is quite plausible, using two complementary mutations. Even if such loops
may exist, the random choice provides ample chance of getting rid of such loops.

Correlation between Fitness and Successors

There is no apriory relation between different versions of programs. An edge
between two nodes in the graph of programs, corresponds to the application
of a particular mutation operation. A multi-edge (edge between more than two
nodes) from a pair (or more) nodes to another node, corresponds to the crossover
operation. If the search could be comprehensive we would just need to wait until
a solution, if exists, will be found. This is obviously not the case here, where the
state space is enormous.

This makes it extremely important to have a correlation between fitness and
programs that are obtained from one other by mutation or crossover. That is,
if some candidate programs are ranked higher than most others, the search will
have a good chance of success if there is a nontrivial probability that, by applying
a sequence of mutation and crossover operations, the search will progress through
a sequence of well fitted candidates, into a program that satisfies all of the
specification properties. In particular, we conjecture the following relation on
pairs of programs that are related through the mutation operations:

There is a significant probability that by transforming a program with a
high fitness value using the mutation and crossover operations (once or
a small number of times), we obtain another program with a high fitness
value.

This works since the process, in some sense, mimics program debugging, where
some of the changes are local, and have a limited affect on the behavior of the
program. Tsay [19] explains how some of the mutual exclusion algorithms are
discovered. His description of the mental process of discovering new algorithms
resembles, to some extent, the genetic mutation approach. Some of the changes
include switching the order of some assignments, combining parts that take care
of complimentary goals from different algorithms and adding tests or assignments
to shared variables. It is quite a challenging task to obtain correct code for such
an intricate problem as mutual exclusion, especially when practical constraints
such as limitations on the access of certain variables are added. We claim that for
obtaining optimized algorithms, it becomes more practical to use an automatic
programming process, as our GP with model checking approach, than to attempt
to discover such an algorithm manually.

128 G. Katz and D. Peled

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
ro

gr
am

s
(%

)

Fitness

Fig. 1. Fitness distribution of random programs

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

P
ro

gr
am

s
(%

)

Fitness

Fig. 2. Fitness distribution during round 500 of a GP run

Fitness That Is Based on Trial and Error

Our fitness function is not fixed. That is, not only that the specification is
changed from one programming problem to another, but the fine-tuning of the
actual function is done separately for each programming problem.

It is quite natural that for different applications we will need to make many
changes in order to provide a fitness value that gives a good heuristics for the

Model Checking Driven Heuristic Search for Correct Programs 129

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

P
ro

gr
am

s
(%

)

Fitness

Fig. 3. Fitness distribution during the last round of a GP run

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

F
itn

es
s

Generation

Average
Best

Fig. 4. Fitness distribution of random programs

search. In fact, it is mostly a trial-and-error process, where the fitness function
is refined. There are several factors in evaluating the fitness function:

– The properties used for the specification are given.
– Unlike [8], we may assign different weights to the properties.
– We may choose some priority order among the specification properties. If a

higher priority property (say a safety property) does not hold, there is no
point or value in checking the candidate solution further (say for satisfying
liveness properties).

130 G. Katz and D. Peled

– Sometimes it is beneficial to use some additional properties even if they
are implied by existing ones. For example, in mutual exclusion, there is a
requirement that each process that wants to enter its critical section will
succeed to do so. We used also a weaker property: that a process that wants
to enter its critical section while the other does not attempt to do so will be
able to enter. Obviously, the first property implies the second, weaker one.
However, adding the second property, and giving it a higher priority than
the first one did help the search to converge into correct solutions.

The following figures compare the performance of a GP run with this of a sim-
ple random search. Figure 1 shows the distribution of fitness values of 1,000,000
randomly generated programs. More than 70% of the programs do not satisfy
even the most basic property, and thus receive a fitness value of 0. Other pro-
grams succeeded in satisfying one or more properties, and received higher fitness
values. However, none of the programs was able to satisfy enough properties in
order to get a significant fitness value.

In a typical GP run, the population usually contain a few hundreds or thou-
sands of program. Therefore, the chances that the first generation will contain
“good” programs, is very low. However, after some generations, the combination
of the genetic operations, and the selection mechanism, usually improves the
average fitness of the population, and the fitness values are gradually shifted
towards the right side of the distribution graph. Figure 2 shows the fitness dis-
tribution at the 500th generation of a successful GP run, while Figure 3 shows
the fitness distribution at the last generation.

Figure 4 shows the best and average fitness values throughout the entire run.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M.
(eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 136–150. Springer,
Heidelberg (2003)

3. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980.
LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

4. Katz, G., Peled, D.: Model checking-based genetic programming with an applica-
tion to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

5. Katz, G., Peled, D.: Genetic programming and model checking: Synthesizing
new mutual exclusion algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Hei-
delberg (2008)

6. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

Model Checking Driven Heuristic Search for Correct Programs 131

8. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

9. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–350. Springer, Heidelberg (1982)

10. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. ACM Transactions on Programming Languages and Systems 6, 68–
93 (1984)

11. Niebert, P., Peled, D., Pnueli, A.: Discriminative model checking. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 504–516. Springer, Heidelberg
(2008)

12. Pearl, J.: Heuristics. Addison-Wesley, Reading (1984)
13. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, Providence, Rhode

Island, pp. 46–57. IEEE, Los Alamitos (1977)
14. Pnueli, A., Rosner, R.: On the synthesis of reactive systems. In: POPL 1989, Austin,

Texas, pp. 179–190 (1989)
15. Pnueli, A., Rosner, R.: Distributed Reactive Systems are Hard to Synthesize. In:

FOCS 1990, St. Louis, Missouri, vol. II. IEEE, Los Alamitos (1990)
16. Rammage, P., Wonham, M.: The control of discrete event systems. Proceedings of

the IEEE 77, 81–98 (1989)
17. Song, D.X., Perrig, A., Phan, D.: Agvi – automatic generation, verification, and

implementation of security protocols. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 241–245. Springer, Heidelberg (2001)

18. Kirkpatrick, S., G. Jr., D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

19. Tsay, Y.K.: Deriving a scalable algorithm for mutual exclusion. In: Kutten, S. (ed.)
DISC 1998. LNCS, vol. 1499, pp. 393–407. Springer, Heidelberg (1998)

Experimental Evaluation of a Planning
Language Suitable for Formal Verification�

Radu I. Siminiceanu1, Rick W. Butler2, and César A. Muñoz1

1 National Institute of Aerospace, Hampton, Virginia, USA
2 NASA Langley Research Center, Hampton, Virginia, USA

Abstract. The marriage of model checking and planning faces two
seemingly diverging alternatives: the need for a planning language ex-
pressive enough to capture the complexity of real-life applications, as
opposed to a language simple, yet robust enough to be amenable to
exhaustive verification and validation techniques. In an attempt to rec-
oncile these differences, we have designed an abstract plan description
language, ANMLite, inspired from the Action Notation Modeling Lan-
guage (ANML). We present the basic concepts of the ANMLite lan-
guage as well as an automatic translator from ANMLite to the model
checker SAL (Symbolic Analysis Laboratory). We discuss various aspects
of specifying a plan in terms of constraints and explore the implications
of choosing a robust logic behind the specification of constraints, rather
than simply propose a new planning language. Additionally, we provide
an initial assessment of the efficiency of model checking to search for solu-
tions of planning problems. To this end, we design a basic test benchmark
and study the scalability of the generated SAL models in terms of plan
complexity.

1 Introduction

Historically, the fields of planning and formal verification have had very little
interaction. As branches of Artificial Intelligence, planning and scheduling have
mainly focused on developing powerful search heuristics for efficiently finding
solutions to extremely complex, specialized problems that take into account in-
tricate domain specific information. Traditionally, this field and has been heavily
influenced by the goals of one of the major sponsoring agencies (NASA, Ames
Center) and its affiliated institutes (RIACS, JPL). The planning software pro-
duced is in a perpetual process of expansion to include the latest and fanciest
capabilities: re-planning, on-the-fly reconfiguration, resource allocation, etc.

These goals are often contrasting with the main purpose of our field of formal
verification. To make the planning software ready for space missions and pass
the certification process, the main thrust of our activities are in a completely
opposite direction: simplify, reduce complexity, understand the concepts, make
software amenable to exhaustive verification.
� Research funding was provided by the National Aeronautics and Space Administra-

tion under the cooperative agreement NCC-1-02043.

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 132–146, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Experimental Evaluation of a Planning Language Suitable 133

To this end, we seek to define a simple language that can be used to describe
planning problems. Hopefully, by drastically restricting the constructs in the
language, two benefits accrue: (1) the language will be easy to understand and
write, and (2) the language will lend itself to formal verification.

We have named the language ANMLite [4] because it was developed to support
the analysis of planning domains described in the Action Notation Modeling
Language (ANML) [20] under development at NASA Ames[12]. ANML succeeds
other planning languages, such as PDDL [15] and NDDL, that have been used
in the software package EUROPA2 [2].

In ANMLite, a planning problem consists of a finite set of disjoint timelines,
a set of valid actions for each timeline, and a set of temporal constraints that
govern the correct scheduling of the actions. The constraints can be broadly
categorized into two groups. The first group is specified by a transition relation
and only involves actions on the same timeline. These constraints express the
valid succession of actions along the timeline. The transition relation disallows
overlapping actions and gaps on a timeline. The second category are general
constraints, expressed in some logic of choice, which specify cross-timeline rela-
tionships between actions. The temporal logic must be chosen with care. It has
to be rich enough to cover all the significant relations that can occur (such as
Allen temporal operators [1], a popular logic in planning), but simple enough to
avoid inconsistencies and ambiguities. Furthermore, since we seek to develop a
framework for formal verification, it must be translatable into a form suitable for
model checking or theorem proving. We are currently targeting the SAL model
checker [7].

SAL is a framework for combining different tools to calculate properties of
concurrent systems. The SAL language is designed for specifying concurrent sys-
tems in a compositional way. It is supported by a tool suite that includes state
of the art symbolic (BDD-based) and bounded (SAT-based) model checkers,
and a unique ”infinite” bounded model checker based on SMT solving. Aux-
iliary tools include a simulator, deadlock checker, and an automated test case
generator.

2 Related Work

The idea of using symbolic model checking techniques for planning problems is
relatively recent. A seminal line of work was initiated by Cimatti et al [5], which
generated a series of articles applied to a variety of planning domains. In [9],
Edelkamp applies symbolic model checking techniques for finding a sequence of
actions that always has a possibility to lead to a goal state in non-deterministic
domains. SPUDD [13] introduces the use algebraic decision diagrams for stochas-
tic planning. More recently, approaches applying SAT based techniques to plan-
ning in non-deterministic domains under null and partial observability have been
proposed [11]. Model checking has been applied in the context of logics with ac-
tions [17] and knowledge representation [14]. The symbolic model checker of
choice in this case is NuSMV.

134 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

The avenue of using constraint solvers for planning problems has been ex-
plored in [19], based on temporal interval logic and attributes, and [18], by
solving a particular class of disjunctive temporal problems via SAT techniques.

Test case generation for planning has been attempted in [10]. While testing is
not an exhaustive verification technique, it is always seen as complementary and
is mostly motivated by the need of low cost and performance. Finally, runtime
monitoring, a lightweight version of verification, has been applied to the fault
protection engine of the Deep-Impact spacecraft flight software [8].

3 ANMLite Language Concepts

We briefly describe the basic ANMLite concepts. For further information, an
extensive discussion of the ANMLite language syntax and semantics is given in
the NASA Technical Memorandum [4].

3.1 Timelines and Actions

Discovering a suitable sequence of actions on a timeline is fundamental to solving
a planning problem. The first step in defining the problem is to identify all the
actions that can be scheduled on a timeline. In ANMLite, this is declared as in
the following example:

TIMELINE A ACTIONS
A0
A1: [_,10]
A2: [2,_]

This specification defines the timeline A and its three actions: A0, A1, and A2.
Actions A1 and A2 have time duration constraints: A1 takes at most 10 time units
and A2 takes at least 2 time units. Usually, there are also constraints on the se-
quence of actions, so an intuitive, unambiguous specification of these constraints
is highly desirable. There are two different approaches to the specification of
these constraints:

– Assume that all action sequences are possible unless specifically forbidden
and then specify the sequences that are not allowed.

– Assume that no sequences are allowed and then systematically add the al-
lowed sequences.

We have currently opted for the second approach. This is different from many
AI planning systems, but it follows the approach frequently used in the formal
methods community. We currently believe that this leads to a clearer specifica-
tion, though we recognize that we may be biased by the historic conventions of
our discipline.

Experimental Evaluation of a Planning Language Suitable 135

3.2 Transitions

The transition relation on a timeline is similar to state-transition systems. Here,
the states are the actions and a directed edge represents a valid transition be-
tween states. We have used the same construction deployed in the Abstract Plan
Preparation Language (APPL) [3]. Hence, the transition relation is a set of pairs
of actions, which can be declared by listing for each action the (complete) set of
its successors, as in the following example:

TRANSITIONS
A0 -> A1 -> A2 -> (A0 | A1 | A3)
A3 -> A2

The flexibility of the language is increased by allowing parametrization of
actions. For example, the following

A1(x,y: animal): [10,_]

defines an action A1 with two parameters of type animal that takes at least 10
units of time.

We allow more restrictive forms of transitions to be defined using a simple
parameter matching scheme, with implicitly declared variables. For example,

A1(cat,u) -> A2(u,_)

states that only A1 actions with a first parameter equal to cat are to be followed
by an A2 action and that the first parameter of A2, represented by the variable
u, must be equal to the second parameter of A1. Unless explicitly specified on a
different constraint, no other transition from A1 is allowed.

Multiple timeline instances are defined using a VARIABLE section:

VARIABLES
t1, t2: A
t3: B

This specificationdeclares twodistinct instances,t1andt2,definedbyTIMELINE A,
and one instance t3 defined by TIMELINE B.

The variables of the same TIMELINE share the transition relation, but might
still behave differently, in case specific constraints are declared in the general
constraint section. This is beneficial in terms of keeping the model compact, and
it is frequently seen in practice.

3.3 Goal Statements and Initialization

In ANMLite, goals can be specified by an action name. Initial states can also be
specified using an INITIAL-STATE declaration though they are not necessary.

INITIAL-STATE
|-> t1.A0
|-> t2.A1

136 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

This specifies that A0 is the first scheduled action on timeline t1 and that A1 is
the first scheduled action on timeline t2. A generic form is also allowed

INITIAL-STATE
|-> A.A0

This means that on every timeline of type A, A0 is the first scheduled action.

4 Constraints

The transition statements are adequate to specify the allowed sequences of ac-
tions on a timeline, but they cannot be used to specify constraints between
actions on different timelines. The constraint section is used to accomplish this.
The ANMLite constraints are built upon a simple but powerful foundation: lin-
ear inequations between the start and end timepoints of actions. Expressions
may contain at most one variable on each side of the relational operator, e.g.

A1.start + 16 < B2.end

Restricting the constraint language to these simple linear relationships enables
a very natural translation into the SAL model checking language (see Sec. 5).

4.1 Repetitive Actions

It is often the case that the same action is scheduled several times on a timeline.
For example, crew activities on a space station are mostly routine tasks repeated
every day, intertwined with other specific activities. Two occurrences of the
same action are distinct because they are scheduled at different time intervals.
There is a clear need to distinguish between these intervals when writing a set
of constraints, which can refer to all or just one of these instances. We consider
two approaches: (1) provide a new construct to establish a reference point for a
constraint (called the at expression) and (2) introduce the qualifier next for a
second occurrence of an action in the same constraint.

Neither of these two constructs were previously considered in planning lan-
guages, yet there is an obvious risk of ambiguities in their absence.

The at Expression. In the following example

at A0.start: BO.end < next A0.start

all actions that are active at the timepoint A0.start are the current ones. The
next instance after the completion of the current one is the next one. For example

B0 B0

A1 A0

B1 B1

A2

B0.start B0.end next A0.start next B0.end

A0

reference point

Experimental Evaluation of a Planning Language Suitable 137

If the action is not active at the reference point, then the “current” is the last
completed one and the next is the first occurrence after the reference point.

B1B1

A0 A1 A0 A2

B1B0 B0

B1.start

reference point

next B1.start

It should also be noted that there is an implicit universal quantifier in every
constraint. If the reference point involves action A1 and A1 can occur multiple
times on a timeline, then this constraint applies every time A1 is scheduled.

4.2 Timeline Instance Specific Constraints

Constraints can be specialized by using a timeline variable in the constraint.
Suppose we have

VARIABLES
t1,t2: A
t3,t4: B

CONSTRAINTS
t1.A1.start < t4.B1.end

This constraint only affects timelines t1 and t4. But the constraint

A1.start < B1.end

is equivalent to four constraints:

t1.A1.start < t3.B1.end t1.A1.start < t4.B1.end
t2.A1.start < t3.B1.end t2.A1.start < t4.B1.end

4.3 Vacuous Solutions

Consider the Allen logic operator A1 contains B1. A constantly debated issue
is whether the constraint can be satisfied by the following timeline

A0 A2

B0 B1 B2

Because the Allen operator has the implicit quantifiers FORALL A1: EXISTS B1:
A1 contains B1, this constraint can be vacuously met in case A1 is never sched-
uled. Whether this is desirable or not is a recurring theme in the plan spec-
ification domain. A non-ambiguous semantics should be chosen for all these
situations.

138 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

4.4 Summary of Constraint Semantics

There are two major issues that need to be resolved when interpreting a con-
straint in ANMLite:
– Determination of the time point from which the current and next instances

of an action can be disambiguated.
– Determination of which actions are universally quantified and which ones

are existentially quantified.

These issues are orthogonal and hence the most general solution allows an inde-
pendent specification of them. The first issue is handled by the at expression.
The second issue is handled by a syntactic convention, namely, that the last
term in the chain of inequalities determines the universally quantified action.
This choice is justified by the way the constraint checking has to performed (ef-
ficiently) in the SAL models. The other alternative, of attaching the universal
quantifier to the first term, is equally valid from the theoretical point of view.

5 Translating ANMLite to SAL

Although using a model checker might not be the most efficient means of finding
a solution to a planning problem, building a translator has provided a sanity
check on the meaning of the language constructs.

5.1 Simple Example

We will begin our look at the technique for translating ANMLite to SAL with a
very simple two timeline example:

PLAN ex1
TIMELINE A TIMELINE B
ACTIONS ACTIONS

A0: [2,_] B0: [2,_]
A1 B1: [1,10]
A2

TRANSITIONS TRANSITIONS
A0 -> A1 -> A2 B0 -> B1

END A END B

INITIAL-STATE GOALS
|-> A.A0 A.A2
|-> B.B0 B.B1
END ex1

Corresponding to the timeline and action declarations, the following types are
generated:

A_actions: TYPE = {A0, A1, A2, A_null};
B_actions: TYPE = {B0, B1, B_null};

Experimental Evaluation of a Planning Language Suitable 139

In addition to the declared actions, a null state is created for each of the timelines.
There are two purposes for these extra states. They provide a means for the
completion of an action when the action has no successor and also a convenient
mechanism for recording when a goal state has been reached and completed on
each timeline.

The generatedSAL model consists of threemodules: module A_m, corresponding
to timeline A. module B_m to timeline B, and module Clock, which advances time.

5.2 Multiple Variables

If there are multiple variables of a timeline, say

VARIABLES
t1,t2: A

then a variable identifier type is generated,

A_ids: TYPE = {t1,t2};

and the module A_m is parametrized with the variable id

A_m[i: A_ids] : MODULE =

Furthermore, since each instance of the timeline is a separate module, all the local
and global variables in the parametrized module have to be arrays. For example,
a non-parametrized module A_m might include a variable for A0_start:

GLOBAL
A0_start: TM_rng;

The parametrized version has to be

GLOBAL
A0_start: ARRAY A_ids OF TM_rng;

This way, the start of A0 for instance t1 is referred to as A0_start[t1].

5.3 Modeling Time

Time is governed by the generic clock module. We have experimented with var-
ious implementations of this module. The most straightforward approach is to
have the clock module increment the current time by one time unit at each
step. This approach is very simple but is not scalable, because the system would
traverse a very large number of states that are identical with the exception of
the clock value. This state explosion problem is exacerbated by problems with
large planning horizons. A possible alleviation of problem is to allow the clock
to advance by larger amounts. However, this still does not rule out the traversal
of multiple states in an interval of time when nothing interesting happens (from
the point of view of action change). The best solution in this case is to use the
concept of timeouts [16] that model the event driven clocks. In this approach,

140 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

each timeline maintains a future clock value where an event is scheduled to occur,
and time jumps directly to the next interesting event. The timeouts are stored
in an array of timepoints and the clock module determines the next (minimum
value in the future) timeout.

The modules are composed asynchronously.

System: MODULE = A_m [] B_m [] Clock;

The SAL model checker will be used to search through all possible sequences
of actions on the timelines to find sequences which satisfy all of the constraints
specified in the ANMLite model. These constraints fall into two broad categories:

– Timing constraints that impact durations and start/stop times of actions.
– Simple relationships between start and end variables.

The search is started at time 0 and proceeds forward in time until the planning
horizon TM_rng is reached.

5.4 Model Variables

The GLOBAL sections of all of the timeline modules contain variables which record
the action that is scheduled during the current time:

GLOBAL
A0_start: TM_rng,
B0_start: TM_rng,
B1_start: TM_rng,
B_state: B_actions,
A_state: A_actions,

The _state variables store the current action and the _start and _end variables
record the start and end times of the actions.

5.5 Transitions

The ANMLite TRANSITIONS section is the major focus of the translation process.
The SAL TRANSITIONS section is constructed from this part of the ANMLite
model. When a transition occurs, an action is completed and another transition
is initiated. No empty time slots are allowed. For example, the following

TRANSITIONS
A0 -> A1 -> A2

is translated into three SAL transitions, which are labeled as follows:

A0_to_A1: %% A0 -> A1
A1_to_A2: %% A1 -> A2
A2_to_A_null: %% A2 -> A_null

The first transition is guarded by the following expression:

Experimental Evaluation of a Planning Language Suitable 141

A_state = A0
AND time >= A0_start + 2

The first conjunct ensures that this transition only applies when the current
action on the timeline is A0 and the second conjunct insures that the duration
of the action is at least 2 time units. This corresponds to the fact that A0 was
declared as A0: [2,_].

The GOALS statement is translated into the following SAL specification:

sched_sys: THEOREM
System |- AG(NOT(A_state = A_null AND B_state = B_null));

Since the “null” states can only be reached from the goal states (i.e., A2 and
B1), these efficiently record the fact that the appropriate goal has been reached
and completed on each timeline. Note that the ANMLite goal statement has
been negated. Therefore when the model checker is instructed to establish the
property, any counterexample provided by SAL will serve as a feasible realization
of the plan.

5.6 Translating Constraints

There are major conceptual differences between specifying constraints and check-
ing constraints that need to be reconciled. In principle, the specification is declar-
ative by nature and the modeler usually looks “forward” in time in expressing
what needs to happen in order for the plan to complete. The checking of the plan
is operational by nature, because start and end variables are assigned values
as they occur, hence testing that a constraint is valid cannot be performed until
the last timepoint has occurred. Therefore, in the checking of the constraints the
modeler has to look “backwards” in time.

For example, the constraint A.start < B.end < C.start cannot be estab-
lished when A starts. Even if B has not ended yet, its relationship to the start of
C cannot be established.

The mechanism of checking constraints with a model checker is based on
assigning and updating the values of timeline state and each action start and
end variables. This is performed at the timepoints when a timeline transitions
from one action to another, according to the TRANSTIONS section.

Repetitive actions require special care, as multiple occurrences of the same
actions will overwrite the values of the corresponding start and end variables,
so only the most recent one is actually available (and possibly the previous
occurrence, given that we allow the next qualifier).

For example, if there is a transition A1 -> A2 on timeline A, the following
updates are necessary:

– A_state’ = A2
– A1_end’ = time
– A2_start’ = time

A constraint is, in principle, applicable to all the transitions that affect the vari-
ables present in the constraint expression. That is, a start variable is

142 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

relevant to entering an action, while the end variable is relevant to exiting an
action. Transition guards are generated for the events that are involved.

The general approach of translating constraints into transition guards consists
of determining the last timepoint in the chain and substituting that term with
the value of the system variable time. For example, in the constraint

A1.start + 4 < B1.start < C1.end

the last timepoint is C1_end. The transitions of relevance to this timepoint are
from a predecessor of C1 to C1.

6 Experiments

To instrument a scalability study for the model checker, we have explored two
options. On the one hand, we have already accumulated a small benchmark of
ANML models used for basic checks of the ANML operator semantics against
the EUROPA2 [2] implementation. On the other hand, the model checker is not
able to solve even moderately complex problems, with no more than a handful
of timelines. Therefore, we took the path of generating random models to fit into
the current range of capabilities of SAL.

6.1 Real Models

The small suite of examples includes 73 models designed to investigate the basic
Allen operators that are at the core of the EUROPA2 [2] logic. The main purpose
was not the study of performance but to expose semantics issues, inconsistencies
in the solutions, and insights into the subtleties of the logic (such as vacuous
solutions, repetitive actions, the need for quantifiers, etc). Additionally, a space
station crew activities and a dock worker robots models have been developed.
Even though not nearly as sophisticated as necessary for practical purposes, they
were still too complex to model check with SAL.

6.2 Random Models

The major challenge in using the “real” models is that it is very tedious and
time consuming to manually scale up the models (e.g. increase the number of
timelines, actions, constraints) in a meaningful way.

Instead, from the statistical point of view, it might be better to just generate
random models. They are obviously meaningless form the planning point of
view, but they are better from the experimental point of view, since they are
completely “unbiased”.

In our experiments, we used 3, 900 random models, generated by a C program
which takes in a few parameters:

– the number of timelines, T ;
– the number of actions on a timeline, A;

Experimental Evaluation of a Planning Language Suitable 143

– the number of transitions in a timeline, R;
– the number of constraints/Allen operators in the constraint section, C;

The transition graph is generated randomly. The program picks a source and
target action (without self loops) and adds an edge. For simplicity, the con-
straints are all of the form endpoint + constant < endpoint , where endpoints are
randomly selected from the set: action .{start/end}.

A completely random generator would most likely produce a large number
of planning problems with no solution, as is the case of disconnected transition
graphs. Therefore, the random generation is “steered” towards more meaningful
setups. Instead of completely random graphs (which are likely to contain un-
reachable goal states), we always add the backbone chain A0 → A1 → . . . →
An−1 and make An−1 the goal state. This gives the model checker something
useful to work with and increases the probability of an existing solution.

The set of sample parameters is the following:

– T ∈ {1, 2, 3, 4, 5};
– A ∈ {3, 4, . . . , 10};
– R takes sample values between the minimal (backbone) graphs with A − 1

edges and the full graph with A(A−1)
2 edges. The test harness covers values

for the fraction of ”fullness” f ∈ {0, 1
4 , 1

3 , 1
2 , 2

3 , 3
4 , 1}, that is

R = (A− 1) + f ·
(

A(A−1)
2 − (A− 1)

)
;

– C takes sample values from “nothing” to ”a lot”: {0, A
4 , A

3 , A
2 , A, 2A}.

6.3 Results

We ran our batch of experiments using SAL version 3.0 on a 64bit, 3.2 GHz ma-
chine with 8GB of memory running RH Enterprise Linux version 2.6.9-5ELsmp.
We collected the runtime for each model with the time command, using a time-
out of 30 minutes (after which the SAL instance was aborted).

Outcome. The analysis has to take into account the outcome of a run: a
solution is found, no solution is found, or the run is aborted when reaching the
timeout cutoff. Since the model checking query was set up as a negation of the
statement ”no solution exists”, in case a counterexample is found, it is then
displayed (which is a time-consuming operation for a model checker). Figure 1
shows the outcome breakdown for the runs, function of the four parameters in
the experiment.

We observe a few natural trends. The number of timeouts increases dramati-
cally with the number of timelines, which is the largest contributor to the com-
plexity of a SAL model. The number of timeouts also increases with the number
of actions, but more interestingly, for the number of constraints, it first peaks
for an intermediate value, before dipping. We attribute this to the fact that in-
creasing the number of constraints is likely to reduce the chances of an existing
solution.

144 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 4 3 2 1

pe
rc

en
ta

ge

#timelines

no solution
solution

timed out

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 9 8 7 6 5 4 3

pe
rc

en
ta

ge

#actions

no solution
solution

timed out

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 0.75 0.5 0.25 0

pe
rc

en
ta

ge

transition fullness

no solution
solution

timed out

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 1.5 1 0.75 0.5 0.25 0

pe
rc

en
ta

ge

constraint load

no solution
solution

timed out

Fig. 1. Outcome breakdown

In terms of finding a solution, there is a mix of results. As seen above, more
timelines and more constraints decrease the possibility of a solution. The number
of actions has a small effect, while the number of transitions seems to favor the
existence of a solution. This can be attributed to the fact that more edges in the
transition graph would allow the reach of a goal state by “bypassing” actions
that are tied into unfeasible constraints.

In general, the generated models seem to be more likely to lack a solution
rather than have one. This is probably due to the “random” (that is often mean-
ingless) nature of the models.

Runtimes. Figure 2 shows the average runtime for six combinations of pa-
rameters. The trends are also mixed. While it is obvious that the runtime will
grow with the increase in the number of timelines and actions, the number of
transitions seems to have a negligible effect on the runtime. Also, the number of
constraints produces a peak in the middle and decreases for larger values.

The dependency on the number of timelines can be illustrated by the total
runtime of the script for the approximately 800 models for each value of T . It
took less than a day (23 hours) to finish the models with T = 1, more than two
days (51 hours) for T = 2, six and a half days (156 hours) for T = 3, ten days
(240 hours) for T = 4, and nearly two weeks (320 hours) for T = 5.

We also computed the averages in subcategories, corresponding to the exis-
tence of a solution or not. Both due to lack of space and also to the fact that the
comparison is unfair to the case when a solution exists (given that the model
checker spends more time constructing the counterexample), we left those graphs

Experimental Evaluation of a Planning Language Suitable 145

Average runtime (min)

 4
 3

 2
 1

#timelines

1
0.75

0.66
0.5

0.33
0.25

transitions

20
15
10

5
 0

Average runtime (min)

 4
 3

 2
 1

#timelines

2
1.5

1
0.75

0.66
0.5

0.33
0.25

 constr. load

25
20
15
10

5
 0

Average runtime (min)

 3
 4

 5
 6

 7
 8

 9
#actions

1
0.75

0.66
0.5

0.33
0.25

transitions

15

10

5

Average runtime (min)

 3
 4

 5
 6

 7
 8

 9
#actions

2
1.5

1
0.75

0.66
0.5

0.33
0.25

 constr. load

15
10

5

Average runtime (min)

 4
 3

 2
 1

#timelines
 4

 5
 6

 7
 8

 9
 10

#actions

25
20
15
10

5
 0

Average runtime (min)

0.75
0.66

0.5
0.33

0.25
0

trans.

2
1.5

1
0.75

0.66
0.5

0.33
0.25

 constr. load

15
10

5

Fig. 2. Average runtimes

out of this paper. The profile of the graphs is largely similar to the overall av-
erages, but is roughly scaled (down for no solution, up for an existing solution)
by a constant factor.

7 Conclusions

We are just making small steps in this area. Traditional symbolic model check-
ing technology is not mature enough to handle complex applications. Yet, with
the help of more advanced techniques (timeout automata and other deductive
approaches, such as SMT solvers [6]), more progress can be made.

In general, we believe that there is a clear role for formal methods in de-
signing planning languages. While the powerful heuristics of the AI software are
more suited to efficiently find a solution, exhaustive techniques, such as model
checking, are obviously the only alternative to prove the lack of a solution. More-
over, in safety-critical applications, eliminating ambiguities in the specification
language is a strong requirement. Our comparative study with EUROPA2 has

146 R.I. Siminiceanu, R.W. Butler, and C.A. Muñoz

provided valuable insight and feedback to the designers to help them make the
planning language more robust and safe.

References

[1] Allen, J.F., Ferguson, G.: Actions and Events in Interval Temporal Logic. Tech-
nical Report TR521, University of Rochester (1994)

[2] Bedrax-Weiss, T., McGann, C., Bachmann, A., Edington, W., Iatauro, M.: EU-
ROPA2: User and Contributor Guide. Technical report, NASA Ames Research
Center, Moffett Field, CA (February 2005)

[3] Butler, R.W., Muñoz, C.A.: An Abstract Plan Preparation Language. Report
214518, NASA Langley, Hampton VA 23681-2199, USA (2006)

[4] Butler, R.W., Siminiceanu, R.I., Muño, C.A.: The ANMLite language and logic
for specifying planning problems. Report 215088, NASA Langley, Hampton VA
23681-2199, USA (November 2007)

[5] Cimatti, A., Giunchiglia, F., Giunchiglia, E., Traverso, P.: Planning via model
checking: a decision procedure for AR. In: Steel, S. (ed.) ECP 1997. LNCS (LNAI),
vol. 1348, pp. 130–142. Springer, Heidelberg (1997)

[6] de Moura, L., Dutertre, B.: Yices 1.0: An Efficient SMT Solver. Technical report,
SRI International, SMCOMP (2006), http://yices.csl.sri.com

[7] de Moura, L., Owre, S., Shankar, N.: The SAL Language Manual. Technical Re-
port SRI-CSL-01-02, CSL Technical Report (2003)

[8] Drusinsky, D., Watney, G.: Applying Run-Time Monitoring to the Deep-Impact
Fault Protection Engine. In: 28th IEEE/NASA Software Engineering Workshop,
p. 127 (2003)

[9] Edelkamp, S.: Heuristic search planning with BDDs. In: PuK (2000)
[10] Feather, M.S., Smith, B.: Automatic Generation of Test Oracles – From Pilot

Studies to Application. Automated Software Eng. 8(1), 31–61 (2001)
[11] Ferraris, P., Giunchiglia, E.: Planning as satisfiability in nondeterministic do-

mains. In: AAAI, pp. 748–753 (2000)
[12] Frank, J., Jonsson, A.: Constraint-based Attribute and Interval Planning. Journal

of Constraints 8, 339–364 (2003)
[13] Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic planning using

decision diagrams. In: Uncertainty in Artificial Intelligence (UAI 1999), pp. 279–
288 (1999)

[14] Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic Verification of Knowledge
and Time with NuSMV. In: IJCAI, pp. 1384–1389 (2007)

[15] Drew McDermott and AIPS 1998 IPC Committee. PDDL – the Planning Domain
Definition Language. Technical report, Yale University (1998)

[16] Owre, S., Shankar, N.: Formal Analysis Methods for Spacecraft Autonomy, Final
Report. Technical Report SRI-17625, SRI International (2007)

[17] Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS, vol. 4428, pp. 113–128.
Springer, Heidelberg (2007)

[18] Sheini, H.M., Peintner, B., Sakallah, K.A., Pollack, M.E.: On solving soft temporal
constraints using SAT techniques. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
pp. 607–621. Springer, Heidelberg (2005)

[19] Smith, D.E., Frank, J., Jonsson, A.K.: Bridging the Gap between Planning and
Scheduling. The Knowledge Engineering Rev. 15(1), 113–128 (2000)

[20] Smith, D.E., Frank, J., McGann, C.: The ANML Language. Technical report,
NASA Ames, unpublished report (2006)

http://yices.csl.sri.com

Relaxation Refinement: A New Method to
Generate Heuristic Functions

Jan-Georg Smaus1 and Jörg Hoffmann2

1 University of Freiburg, Germany
smaus@informatik.uni-freiburg.de
2 SAP Research, Karlsruhe, Germany

joe.hoffmann@sap.com

Abstract. In artificial intelligence, a relaxation of a problem is an
overapproximation whose solution in every state of an explicit search
provides a heuristic solution distance estimate. The heuristic guides the
exploration, potentially shortening the search by exponentially many
search states. The big question is how a good relaxation for the problem
at hand should be derived. In model checking, overapproximations are
called abstractions, and abstraction refinement is a powerful method
developed to derive approximations that are sufficiently precise for
verifying the system at hand. In our work, we bring these two paradigms
together. We pioneer the application of (predicate) abstraction refine-
ment for the generation of heuristic functions that are intelligently
adapted to the problem at hand. We investigate how an abstraction
refinement process for generating heuristic functions should differ from
the process used in the verification context. We do so in the context of
DMC of timed automata. We obtain a variety of interesting insights
about this approach.

Keywords: Directed model checking, abstraction refinement, predicate
abstraction, timed automata.

1 Introduction

In artificial intelligence (AI), a relaxation of a problem is an overapproximation
of the problem. During an explicit search in the state space of the problem, in
each state s the relaxed problem is solved starting from s, and the length of
the relaxed solution is used as a heuristic distance estimate, i.e., an estimate of
the distance from s to the nearest solution state. States with lower estimated
distance are explored first. It is well known that this strategy can exponentially
decrease the explored part of the state space (e.g. [22]). Recently, the same idea
has been applied for falsification, namely in directed model checking (DMC) [11],
which is the search for errors using a heuristic function.

Both in AI and in DMC, the main question to be addressed is how to define
the approximation that underlies the heuristic function. Different definitions
yield different heuristics, and this makes all the difference between being and

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 147–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

148 J.-G. Smaus and J. Hoffmann

not being able to find an error. Intuitively, the heuristic function should capture
sufficient information for predicting whether a state is likely to lead to an error.
Doing so requires knowledge about the reasons for the error in the particular
system considered. The “hot trail” we follow is to use methods coming from the
field of model checking to learn this kind of knowledge.

In model checking, overapproximations are called abstractions, and have been
used for verification. Applying the formalism of abstract interpretation [7], an
abstraction of a system is designed so that if some undesirable state is unreach-
able in the abstraction, then it is surely unreachable in the original system. A
highly successful method in this context is abstraction refinement [2,6,23]: start-
ing from some trivial abstraction, the abstract state space is computed. If there
is no path to the undesirable state (error path), the system is safe and one can
stop. Otherwise, one determines if the path is spurious, i.e., if it does not corre-
spond to a path in the original system. If it is spurious, one examines the path
and tries to refine the abstraction in order to exclude this spurious error path
in the next iteration. If the path is not spurious, an error has been found. The
process of repeated refinement iterations is called refinement loop.

Given these facts, the obvious question that springs to mind is: can, and how
can, we use abstraction refinement to devise heuristic functions that are intelli-
gently adapted to the system at hand? This question may be of relevance in many
different contexts, ranging from DMC in various model checking formalisms to
the various search problems traditionally considered in AI. Here, we investigate
this question in the context of DMC of timed automata.

In our own previous work [16], we have shown how one can use predicate
abstraction [14] to generate heuristic functions for DMC of timed automata us-
ing Uppaal [4]. Following the pattern database approach [8], the abstract state
space is built before the actual search for an error starts; during the search,
the abstract state space is used as a look-up table for retrieving the heuristic
values. The abstraction predicates in that work were mostly generated by read-
ing the predicates directly off transition guards in the system. We also made an
initial experiment with abstraction refinement, realised via the abstraction re-
finement model checker (ARMC) [23]. The conclusion from the latter experiment
was that off-the-shelf abstraction refinement is not a good method for deriving
heuristic functions. An intuitive explanation is that in off-the-shelf abstraction
refinement, the abstraction is tailored to capture a lot of information about one
particular error path; other regions of the state space unrelated to that path
are abstracted coarsely. When used as a heuristic function, such an abstraction
yields precise estimates for states near the error path, but imprecise – overly
optimistic – estimates otherwise. This can have the unwanted effect that states
unrelated to the error path obtain lower heuristic estimates, and are preferred
in the search. In addition, using off-the-shelf abstraction refinement, we have
insufficient control to be able to tune the balance between heuristic quality and
heuristic cost.

In this paper, while being inspired by ARMC, we do not use ARMC off-
the-shelf, because we want to experiment with different methods of doing

Relaxation Refinement: A New Method to Generate Heuristic Functions 149

abstraction refinement in the context of heuristic generation, to find a method
is more suitable for defining useful heuristic functions. Let us briefly explain the
strategies we tried. The error state in our benchmarks is given by a formula
(loc(p1) = �1) ∧ (loc(p2) = �2), stating that process p1 is in location �1 and p2
is �2. The simplest method we tried is to use an initial abstraction consisting of
the predicates loc(p1) = �1, loc(p2) = �2, so that the abstraction could always
distinguish an error state from a non-error state. Alternatively, we generated
two abstractions based on initial predicates loc(p1) = �1 and loc(p2) = �2 kept
separate. Somewhat surprisingly, the latter turned out to be better, and can
compete with other heuristics we use for comparison. To overcome the focus of
the abstraction refinement on one particular path, we then tried to base each
refinement step on several paths, rather than just a single path. The most sur-
prising result for us was that this had no positive impact. We learnt that the
way predicates are added based on an abstract path sometimes implies that
the refinement loop terminates with an extremely coarse abstraction, and yet
there is no “incentive” to refine this abstraction. Moreover, we learnt that this
is not a question of choosing the right paths. To tackle this problem, we used
initial abstractions based on “random” predicates as additional “seed” for the
abstraction refinement. The results are generally unstable; sometimes they are
extremely good.

Our overall experiments suggest that abstraction refinement is useful for se-
lecting predicates from a certain repertoire so that the set obtained is informative
enough yet small enough not to pose a prohibitive computational overhead; in
this respect the present approach is an advance over [16]. We had also hoped
that abstraction refinement can, compared to other ways of generating predi-
cates, significantly enhance the repertoire itself; but, at least in our benchmarks,
this does not seem to be the case. It remains to be seen if and how the situation
changes in the context of DMC in other formalisms (or even just other bench-
marks), and in the context of AI search problems. As such, our work provides
only a first exploration of a much larger research topic.

This paper is organised as follows. In the next section, we introduce timed
automata. In Sec. 3, we explain predicate abstraction for heuristic generation.
In Sec. 4, we explain how predicates are generated by refinement based on an
error path in ARMC, and how this approach is adapted for generating heuristic
functions. In Sec. 5 we report on experiments, in Sec. 6 we discuss related work,
and in Sec. 7 we conclude.

2 Timed Automata in Uppaal

We introduce timed automata [1] here following the terminology of Uppaal [4],
which is an integrated tool environment for modelling, simulation and verifica-
tion of real-time systems. We restrict to the features that we actually consider
in our benchmarks and implementation.

A timed automaton is a finite (ω-)automaton enhanced with real-valued
variables called clocks and integer variables. Instead of the usual word state

150 J.-G. Smaus and J. Hoffmann

bright

off

dim press?

x<=10
press?

press?
x:=0

x>10
press?

study

idle

relax

t

y<5

y>10
press!

press!
y:=0

press!press!
y:=0

press!

Fig. 1. A system composed of two processes

we speak of a location of a timed automaton, since a state in our parlance
consists of a location together with a value for each variable of the automaton.
One location is marked as initial.

Locations can be connected by directed edges. An edge can be labelled with
a clock (resp. integer) guard, which is a conjunction of conditions of the form
x �� c or x − y �� c (resp. c �� 0), where x, y are clocks and c is an expression
using natural constants and integer variables, and �� ∈ {<,≤, =,≥, >}. An edge
can also be labelled with one or several effects, which are assignments to an
integer variable or resets of a clock variable to 0. A location can be labelled with
an invariant, which is of the same form as a guard and states a condition that
must hold while the automaton remains in this location. One usually requires
that clock invariants are downwards closed, i.e., �� ∈ {<,≤}.

An automaton as described so far is called a process; several processes can
be composed to a network of automata, called system, as follows: a state is
characterised by a location for each of its processes and a value for each of its
variables. An edge may be labelled by a synchronisation label ch? or ch! where ch
is a symbol called channel. If one process has an edge labelled ch? and another
process has an edge labelled ch!, then the two must be taken simultaneously to
obtain a transition. An edge of a process that has no synchronisation label can
be taken alone; this is called a τ-transition.

Figure 1 shows an example. The process on the left-hand side models a lamp
switch and the process on the right-hand side models the lamp user. We are
dealing here with a widespread design of lamps where pressing the button twice
“quickly” causes the light to be bright, whereas pressing it once causes the
light to be dimmed if it was off before, and switches the light off otherwise.
We illustrate some of the above concepts: x and y are clocks, off is a location
(marked as initial by the double circle), x > 10 is a guard, x := 0 is an effect,
y < 5 is an invariant of location t, and ‘press’ is a channel.

Relaxation Refinement: A New Method to Generate Heuristic Functions 151

A run or path is defined in an intuitive way (see [1,4,5] for a formal def-
inition): the system starts in its initial state, some time passes (during which
all clocks increase at the same speed, and all relevant location invariants must
hold), then a transition allowed by the guards is made (which takes no time) and
its effects are applied, reaching a new state, and so forth. Here is a run for the
lamp example (L and U stand for the “lamp” and “user” process, respectively):

(L.off ,U.idle, x = 0, y = 0)→ (L.off ,U.idle, x = 31, y = 31)
press−→

(L.dim,U.t, x = 0, y = 0)→ (L.dim,U.t, x = 2, y = 2)
press−→

(L.bright,U.study, x = 2, y = 2)

The state space S is the directed graph where the nodes are all states, and the
edges are the transitions. The set of error or target states which are undesirable
are given by a formula φ, specifying a condition on the locations and variables.

3 Predicate Abstraction for Heuristic Generation

In this section we recall our previous work [16]; we explain technically how
heuristics for Uppaal are computed based on predicate abstraction.

A predicate is a logic formula that “talks” about the system. We consider
three kinds of predicates: location predicates loc(proc) = � stating that process
proc is in location �; and integer, resp. clock predicates, defined like guards,
see Sec. 2.

A vector P = (p1, . . . , pm) of predicates defines a predicate abstraction;
e.g. P = (loc(1) = 3, x > 2, y = 0). We sometimes regard P as a set. When
|P| = m, we call a vector in {T, U, F}m an abstract state or TUF-vector for
P . Here, T, U, F stand for true, unknown, and false. We usually assume that P
is clear from the context.

Viewing a state s as a valuation of the system variables, we use the notation
s |= ψ to say that the formula ψ is true under s, and φ |= ψ means that ψ is
true under every valuation under which φ is true.

Given a concrete state s, i.e., a vector consisting of a location for each
process and a value for each variable, the abstraction of s is a vector b =
(b1, . . . , bm) ∈ {T, F}m where bi = T if s |= pi and bi = F if s |= ¬pi. E.g. if s =
(loc(1) = 2, loc(2) = 4, x = 2.3, y = 4.7) and P is as above, then the abstraction
of s is FTF.

For an abstract state b, we denote by [b] the concretisation of b, i.e., [b] =
{s | for all i ∈ [1..m], s |= pi if bi = T, s |= ¬pi if bi = F}. For b,b′ ∈ {T, U, F}m,
we say that b′ subsumes b if [b′] ⊇ [b], which is the case iff b′ is obtained
from b by replacing zero or more occurrences of T or F by U. The abstract
state space for P , denoted [S]P , is the directed graph where the nodes are all
TUF-vectors for P , and there is an edge from b1 to b2 iff there exist s1 ∈ [b1]
and s2 ∈ [b2] so that there is an edge from s1 to s2 in S (see Sec. 2). Note that
[S]P is an over -approximation of S, i.e., every concrete path corresponds to an
abstract path but not necessarily vice versa. This can be seen as follows: suppose

152 J.-G. Smaus and J. Hoffmann

we have four concrete states s1, s2, s′2, s3 such that s1 → s2 and s′2 → s3 hold
in S but s1 → s′2 and s2 → s3 do not hold in S, and [s2] = [s′2]; then we have
[s1]→ [s2]→ [s3] in [S]P although s3 might not be reachable from s1 is S.

Given an error condition φ as in Sec. 2, the abstract error state is defined
as the TUF-vector b = (b1, . . . , bm) where bi = T if φ |= pi, and bi = F if
φ |= ¬pi, and bi = U otherwise. Note that φ might not uniquely determine the
value of each predicate pi. In addition, we obtain a precision loss due to the
fact that we consider the predicates in isolation. E.g., it might be the case that
φ |= (p1 ∧ p2 ∧ p3)∨ (p1 ∧ ¬p2 ∧¬p3), so that we should have two abstract error
states TTT and TFF, but instead, we just take the abstract error state TUU.
This merging is referred to as Cartesian abstraction [3].

The abstract state space is computed starting from the abstract error state
and computing its abstract predecessors to obtain the first layer ; then all pre-
decessors of those states give the second layer, and so forth. Whenever a state
is computed that is subsumed by a state computed earlier, then the new state
will be ignored. This computation is called regression.

Computing the predecessor of an abstract state b is a logical deduction task.
To compute the predecessor of b obtained by applying (backward) some edge
(pair) t, we construct a formula using the variables occurring in P and in the
guards, effects, and invariants of (the sources and targets of) t, where we prime (′)
the variables to denote their value in the target location; the unprimed variants
correspond to the source location. First, b translates into ψb =

∧
bi=T p′i ∧∧

bi=F ¬p′i, where p′i denotes the result of priming each variable in pi. Secondly,
t translates into a formula ψt that expresses the effect of applying t, by relating
the values of the variables in the sources and targets. E.g. if t has an effect
i := i + 1 then one of the conjuncts of ψt will be i′ = i + 1.

The exact method of determining all the abstract predecessor states of b would
be as follows: we enumerate all abstract states a ∈ {T, F}m, build a formula
ψa =

∧
ai=T pi ∧

∧
ai=F ¬pi in analogy to ψb but with unprimed variables, and

check if ψb ∧ ψt ∧ ψa is satisfiable. If yes, then there is an assignment to the
variables, corresponding to concrete states in [a] and [b], respectively, with a
transition between these concrete states, and hence a is an abstract predecessor
state of b.

However, the method described in the previous paragraph would be too ineffi-
cient because we would have to enumerate 2m abstract states. Instead, we again
apply Cartesian abstraction: we compute just one abstract predecessor state a
of b w.r.t. t by taking each predicate pi in isolation: if pi is implied by ψb ∧ψt,
then ai = T; if ¬pi is implied by ψb ∧ ψt, then ai = F; otherwise ai = U. For
checking the implications we use the solver ICS [13].

Since we compute the abstract state space [S]P backwards starting from the
error state, we obtain the distance of each abstract state from the abstract
error state for free. This information is stored in a so-called pattern database,
which is implemented as a certain tree data structure [15] supporting efficient
subsumption tests. The pattern database is the basis for defining the heuristic
value of a concrete Uppaal search state s. Essentially, the lookup of a heuristic

Relaxation Refinement: A New Method to Generate Heuristic Functions 153

��
��
�0 �j := j + 2

��
��
�1 �j := j + 1

��
��
�2 �i == j

��
��
�3

Fig. 2. Predicate Generation in ARMC

value for a concrete Uppaal search state s works as follows: the abstraction of s
is computed; call it b; now consider all c in the pattern database that subsume
b; among those, take the one whose (precomputed) distance to the abstract
error state is minimal; this distance is the heuristic value of s (see [16] for more
details).

We (and others before us [12,17]) have experienced that combining several
simple abstractions is often better than having one complicated abstraction.
Thus we usually have several sets of abstraction predicates and thus abstract
spaces and “raw” heuristic functions. The latter can be combined by taking, for
each concrete search state, the maximum or the sum.1 We refer to this as MAX
option, SUM option, resp.

4 Abstraction Refinement

When predicate abstraction refinement is used for verification, one successively
refines an abstraction by adding predicates in order to exclude spurious error
paths. But which predicates? We explain here how the abstraction refinement
model checker (ARMC) [23] answers this question, since we generate predicates
in the same way. We immediately jump to a timed automata setting. So the aim
is to verify a timed automaton, i.e. to show that a certain error location �err is
unreachable.

A predicate is of the form e1 �� e2 where e1, e2 are expressions involving integer
variables and �� ∈ {=,≤, <,≥, >}. Each location � is associated with a set of
predicates P	, and an abstract state is a pair (�,a) where a ∈ {T, U}|P�|. Note
that in the verification context [23], one only distinguishes true and unknown.

The abstraction refinement loop starts with an initial abstraction where P	 =
∅ for all �. We now explain how one iteration of the loop works. Assume that we
have a current abstraction, i.e., a P	 for each �. We compute an abstract error
path �0 → . . .→ �n = �err, i.e. a path from the initial location to �err. By treating
�0 → . . .→ �n backward, we generate new predicate sets P ′

	0
, . . . ,P ′

	n
as follows:

P ′
	n

:= P	n ; if P ′
	i+1

is already computed, and �i → �i+1 has guard g1 ∧ . . . ∧ gr

and assignments x1 := e1, . . . , xk := ek, then P	i = ({g1, . . . , gr} ∪ P ′
	i+1

)[xk %→
ek, . . . , x1 %→ e1]∪P	i (the notation [x %→ e] denotes the replacement of x by e).

In Fig. 2 we illustrate a fragment of an error path. Here, i == j is a guard.
Starting with P	i = ∅ for i ∈ [0..3] we obtain P ′

	3
= ∅, P ′

	2
= {i = j}, P ′

	1
= {i =

j+1} and P ′
	0

= {i = j+3}. Each P ′
	 corresponds to the weakest precondition of

i = j w.r.t. the subsequent updates, i.e. it expresses exactly the condition under
which �2 → �3 can be taken. If �0 is the initial location of the automaton and
1 The issue of admissibility is discussed in [16].

154 J.-G. Smaus and J. Hoffmann

we assume that variables are initialised to 0, then P ′
	0

,P ′
	1

,P ′
	2

,P ′
	3

are sufficient
to exclude this spurious error path (fragment), i.e., this error path will not be
computed again.

We adopt the method of generating predicates just described. Yet there are
some differences between ARMC and our setting. Unlike ARMC, our abstract
states represent location information only to the extent that there are location
predicates. Therefore, our abstract paths can be spurious for location reasons,
i.e., we could have a transition �0 → �1 followed by a transition �′1 → �2 where
�1 �= �′1, because the abstraction cannot distinguish �1 from �′1. One could of
course change this, but our experiments suggest that abstractions preserving all
location information lead to abstract state spaces that are much too expensive
to compute. Therefore, we do not have a different predicate set per location, but
an abstraction is given by one global predicate set.

More importantly, as explained in the introduction, our aim is not to exclude
all spurious error paths (verification), but to characterise a sufficiently large envi-
ronment of the error state with sufficient precision to provide a good heuristic.2

Therefore, instead of basing one refinement step on one path from the initial
to the error state, we can base one refinement step on arbitrarily many paths
starting from an arbitrary state and leading to the error state.

We present the core of our abstraction refinement algorithm: the generation
of new predicates based on a single abstract path. Given a set of predicates P
and an abstract path t1, . . . , tn leading to the abstract error state, we refine P
as shown in Fig. 3. To simplify the presentation, we only show the case of a
synchronised transition. We denote by edge!(t), edge?(t) the two edges of t, and
by targ(d), src(d) the target and source locations, and by proc(d) the process of
an edge d.

The algorithm processes the edge(pair)s of the abstract path backward.
The most relevant difference to ARMC is that the abstract path may be
spurious for location reasons. We maintain information about the current lo-
cation of each process in curloc. Whenever targ(edge!(ti)) is different from
curloc(proc(edge!(ti))) (or analogously for edge?), we have detected that
t1, . . . , tn is spurious for location reasons. We then add a location predicate
that will exclude the abstract path in the next iteration, and stop the processing
of the edge(pair)s (see lines marked “[”).

The algorithm must be embedded in one or several refinement loops, to gener-
ate one or several abstractions (see end of Sec. 3). Now there are three questions:

– What should the initial abstraction(s) be?
– How many and which abstract paths should be chosen for the refinement?
– When should the refinement loop stop?

We have tried many possible approaches to answering these questions, of which
we present some in Sections 5.2 to 5.4, after explaining the setup for our
experiments.

2 Whether or not a heuristic is good is measured here, as usual, by considering the
size of the explored state space (see Sec. 5).

Relaxation Refinement: A New Method to Generate Heuristic Functions 155

procedure refine path(Predicates P , Path (t1, . . . , tn))
foreach process p do

curloc(p) := unknown od
for i := n to 1 do⎡

⎣
if curloc(proc(edge!(ti))) 	= unknown ∧ targ(edge!(ti)) 	= curloc(proc(edge!(ti)))

P := P ∪ {loc(proc(edge!(ti))) = curloc(proc(edge!(ti)))} break fi
curloc(proc(edge!(ti))) := src(edge!(ti))⎡

⎣
if curloc(proc(edge?(ti))) 	= unknown ∧ targ(edge?(ti)) 	= curloc(proc(edge?(ti)))

P := P ∪ {loc(proc(edge?(ti))) = curloc(proc(edge?(ti)))} break fi
curloc(proc(edge?(ti))) := src(edge?(ti))
foreach invariant g of targ(edge!(ti)), targ(edge?(ti)) do

P := P ∪ {g} od
foreach assignment i := e of edge!(ti), edge?(ti) in reverse order do

P := P [i �→ e] ∪ P od
foreach guard g of edge!(ti), edge?(ti) and
foreach invariant g of src(edge!(ti)), src(edge?(ti)) do

P := P ∪ {g} od
od
return P

Fig. 3. Refining an abstraction based on a path t1, . . . , tn

5 Experiments

Our benchmarks come from two industrial case studies [9,18]. Since we are deal-
ing with error detection, i.e., falsification, our examples had an error injected.

Examples “Mi” and “Ni”, i = 1, . . . , 4, come from a study called “Mutual
Exclusion”. This study models a real-time protocol to ensure mutual exclusion
of states in a distributed system via asynchronous communication [9]. An error
was injected by increasing an upper time bound. Examples “Ci”, i = 2, . . . , 9,
are a case study called “Single-tracked Line Segment” coming from an industrial
project partner of the UniForM-project [18]. The problem is to design a dis-
tributed real-time controller for a segment of tracks where trams share a piece of
track. The controller was modelled in terms of PLC-automata (PLC stands for
programmable logic controllers) [9,18] and translated into timed automata. We
injected an error by manipulating a delay such that the asynchronous commu-
nication between some automata is faulty. The given set of PLC-automata had
eight input variables and we constructed eight models with decreasing size by
abstracting more and more of these inputs. The numbering of the benchmarks
is ad hoc, but the benchmarks become bigger with increasing i.

Concerning “Ci”, we observed that the model checking could be dramatically
simplified by a slight modification of the benchmarks, namely to reduce the
number of times a certain loop edge can be taken. This issue is completely
orthogonal to the topic of this paper, but we mention the fact that we used the
modified benchmarks for the sake of comparison with other works [10,16,19,20].

We performed DMC using Uppaal. We used greedy best-first search [20], i.e.,
the search queue is a priority queue over the value of the heuristic function. The

156 J.-G. Smaus and J. Hoffmann

Table 1. M1-M4, N1-N4: search space size | heuristic computing time | user time

M1 M2 M3 M4
hL 5656|n.a.|0.1 30743| n.a.| 0.3 18431| n.a.| 0.2 122973| n.a.| 1.3
hU 14679|n.a.|0.2 68407| n.a.| 0.9 75976| n.a.| 0.9 233378| n.a.| 2.8
syn 5000/10/SUM 23257| 0.3| 0.6 84475| 0.4| 1.5 92548| 0.4| 1.6 311049| 0.6| 4.7
syn 5000/10/MAX 23744| 0.3| 0.6 102042| 0.4| 1.7 98715| 0.4| 1.7 399114| 0.6| 5.6
syn 20000/20/SM 12780| 1.7|1.7 34947|10.7|10.7 55098|10.8|10.8 139875|15.1|15.1
1abs 5000/10 20188| 0.7| 0.8 39369| 0.3| 0.7 64522| 0.3| 1.0 110240| 0.3| 1.6
2abs 5000/10/SUM 14955| 0.7| 0.7 17753| 0.5| 0.6 86316| 0.4| 1.4 110240| 0.3| 1.5
2abs 5000/10/MAX 3769| 0.6| 0.6 7637| 0.5| 0.5 119108| 0.4| 1.7 32034| 0.3| 0.5

seed 100/10/SUM 18566| 0.6| 0.7 29253| 0.5| 0.8 64671| 0.5| 1.3 110240| 0.5| 1.8
seed 100/10/MAX 1050| 0.5| 0.5 3921| 0.6| 0.6 5514784| 0.5|97.6 32034| 0.5| 0.8
seed 5000/10/SUM 14955| 1.7|1.7 17753| 1.3| 1.3 86316| 1.0| 2.0 110240| 0.7| 2.0
seed 5000/10/MAX 3769| 1.7|1.7 7637| 1.3| 1.3 119096| 1.0| 2.4 32034| 0.7| 0.9

N1 N2 N3 N4
hL 16335|n.a.|0.5 88537| n.a.| 2.5 28889| n.a.| 0.6 226698| n.a.| 5.0
hU 25577|n.a.|0.8 132711| n.a.| 3.9 143969| n.a.| 4.2 747210| n.a.|20.0
syn 5000/10/SUM 36030| 0.3|1.8 178333| 0.5| 6.9 196535| 0.4| 7.7 983344| 0.6|37.4
syn 5000/10/MAX 31589| 0.3|1.3 163001| 0.4| 5.6 207665| 0.5| 7.5 1255213| 0.6|47.1
syn 20000/20/SM 17357| 1.7|2.1 63596|10.8|12.0 96202|10.6|12.4 445359|15.0|29.0
1abs 5000/10 31042| 0.7|1.8 91367| 0.3| 3.2 135906| 0.3| 4.9 353609| 0.3|12.5
2abs 5000/10/SUM 17584| 0.7|1.2 38216| 0.5| 1.6 157491| 0.4| 5.5 353609| 0.3|12.4
2abs 5000/10/MAX 4031| 0.7|0.7 18914| 0.5| 1.0 242012| 0.4| 8.7 119802| 0.3| 3.9

seed 100/10/SUM 27364| 0.6|1.4 71411| 0.6| 2.9 132538| 0.5| 5.0 353609| 0.5|13.0
seed 100/10/MAX 1209| 0.5|0.5 15920| 0.6| 1.0 117276| 0.6| 4.5 119802| 0.5| 4.3
seed 5000/10/SUM 17584| 1.7|2.0 38216| 1.3| 2.3 157491| 1.0| 6.2 353609| 0.7|13.0
seed 5000/10/MAX 4031| 1.6|1.6 18914| 1.3| 1.7 241968| 1.0| 9.3 119802| 0.7| 4.4

interface to Uppaal is the one introduced in [19].3 For the experiments, we used
a machine with two Intel Xeon processors running at 3.02 GHz with 6 GB RAM.

We present results for six kinds of heuristics here. First, we have heuristics hL

and hU , which are based on a heuristic method from AI planning [20]. Second,
we have heuristic “syn” based on extracting abstraction predicates from the
guards of a system [16]. Third, we have a heuristic based on refinement of a
single error path with initial predicate set {loc(p1) = �1, loc(p2) = �2} (“1abs”),
and fourth, a heuristic based on two abstractions obtained by having two initial
predicate sets {loc(p1) = �1}, {loc(p2) = �2} (“2abs”). Fifth, we have a method
where refinement is based on several abstract paths (Table 3), and finally, a
method where we use initial predicate sets that contain “random” predicates as
additional “seed” for the abstraction refinement.

The entries in Tables 1 and 2 are of the form a|b|c. Here, a is the size of the
search space explored by Uppaal, i.e., the number of explored states (not to be
confused with the size of the abstract state space!). The second figure b is the
total time in seconds taken for precomputing the heuristic, and c is the total
user time for the Uppaal model checking as measured by the Linux command
time, including the precomputation time b. Note that in some cases b is equal

3 The Uppaal source code was provided to our group by Gerd Behrmann.

Relaxation Refinement: A New Method to Generate Heuristic Functions 157

Table 2. C2-C9: search space size | heuristic computing time | user time

C2 C3 C4 C5
hL 4059| n.a.| 0.2 3253| n.a.| 0.2 2683| n.a.| 0.2 87342| n.a.| 6.5
hU 5629| n.a.| 0.4 4756| n.a.| 0.3 3471| n.a.| 0.2 19598| n.a.| 1.2
syn 5000/10/SUM 2866| 3.3| 3.3 2691| 3.8| 3.8 3941| 5.3| 5.3 68077| 5.9| 6.0
syn 5000/10/MAX 2421| 3.7| 3.7 2360| 3.8| 3.8 1621| 5.3| 5.3 518| 5.9| 5.9
syn 20000/20/SUM 9938| 8.5| 8.5 5446| 9.2| 9.2 11061|13.4|13.4 timeout| |
syn 20000/20/MAX 18085| 8.2| 8.2 9506| 8.8| 8.8 21712|13.0|13.0 timeout| |
1abs 5000/10 28303| 1.3| 1.3 13458| 1.4| 1.4 11836| 1.6| 1.6 378| 2.0| 2.0
2abs 5000/10/SUM 7382| 1.4| 1.4 2866| 1.5| 1.5 2679| 1.8| 1.8 258| 2.0| 2.0
2abs 5000/10/MAX 5616| 1.4| 1.4 3612| 1.4| 1.4 3376| 1.7| 1.7 299| 2.0| 2.0
seed 100/10/SUM 5154| 0.5| 0.5 4793| 0.6| 0.6 4002| 0.8| 0.8 657| 0.5| 0.5
seed 100/10/MAX 7011| 0.6| 0.6 4196| 0.6| 0.6 3512| 0.8| 0.8 797| 0.5| 0.5
seed 5000/10/SUM 6849| 5.7| 5.7 3496| 5.9| 5.9 3140| 6.6| 6.6 583| 7.8| 7.8
seed 5000/10/MAX 5612| 6.0| 6.0 3608| 6.0| 6.0 3374| 6.7| 6.7 304| 7.8| 7.8

C6 C7 C8 C9
hL 16284| n.a.| 1.3 79769| n.a.| 6.2 37202| n.a.| 2.6 134489| n.a.| 9.1
hU 9327| n.a.| 0.5 46193| n.a.| 2.6 6569| n.a.| 0.5 127924| n.a.| 11.0
syn 5000/10/SUM 13518| 6.7| 6.7 71916| 7.1| 7.1 61871|10.4|10.4 156445|14.5| 15.0
syn 5000/10/MAX 1514| 6.3| 6.3 17534| 7.6| 7.6 39158|11.2|11.2 146810|15.8| 16.7
syn 20000/20/SUM 6176|14.1|14.1 32290|15.4|15.4 30394|18.3|18.3 31280|25.8| 25.8
syn 20000/20/MAX 863|13.8|13.8 9603|16.4|16.4 19682|19.9|19.9 22176|27.9| 27.9
1abs 5000/10 16346| 2.0| 2.0 102611| 2.1| 2.7 329298| 2.2| 5.2 1637759| 1.9| 19.1
2abs 5000/10/SUM 3127| 2.2| 2.2 31584| 2.3| 2.4 106065| 2.8| 3.9 451610| 3.2| 8.8
2abs 5000/10/MAX 3549| 2.1| 2.1 31676| 2.3| 2.3 103416| 2.8| 3.6 359530| 3.2| 7.4

seed 100/10/SUM 18711| 0.6| 0.8 110878| 0.7| 1.9 333488| 0.6| 4.5 1623070| 0.7| 20.0
seed 100/10/MAX 20583| 0.6| 0.8 119415| 0.7| 2.0 340927| 0.7| 4.6 1637147| 0.7| 20.3
seed 5000/10/SUM 20250| 8.0| 8.0 118830| 8.1| 8.1 290987|10.0|11.8 1270802|12.0| 30.0
seed 5000/10/MAX 3539| 7.6| 7.6 31610| 7.9| 7.9 103140| 9.3| 9.3 358171|11.3|14.7

to c because the time for the actual Uppaal model checking is negligible. We
have highlighted the best and the worst figures. For each example, those figures
within factor 2 of the best figure are in boldface, and those within factor 2 of
the worst are in italics.

5.1 Other Heuristics Used for Comparison

On the one hand, we used two heuristics introduced in [20], which are among
the best heuristics for these benchmarks [19]. There, a heuristic method from AI
planning is adapted, based on a notion of “monotonicity” where it is assumed
that a state variable accumulates, rather than changes, its values. In Tables
1 and 2 and in [20], there are two heuristics referred to as hL (which states in
which layer of the relaxed transition graph a state can be found, and is a strongly
underestimating heuristic) and hU (which gives an actual path in the abstract
system, and may be overestimating). Since hL and hU are computed on-the-fly,
there is no heuristic precomputation.

Concerning the runtime, hL and hU are very often among the best by far.
Concerning the size of the explored state space, they are more often among the
worst than among the best. The heuristics are relatively expensive to compute

158 J.-G. Smaus and J. Hoffmann

per state which shows for N3, C5, C9, but the fact that the runtime is so small
whenever the size of the explored search space is small exhibits the advantage
of on-the-fly computation: in contrast, for heuristics based on predicate abstrac-
tion and pattern databases, it could happen that a heuristic is very good but
expensive to compute because the abstract state space is big.

On the other hand, we compared with a kind of abstraction we developed
previously [16], where the repertoire of predicates consists of all guards and
invariants that textually occur in the system definition, together with all possible
location predicates. Since taking one abstraction based on all these predicates
is much too inefficient to compute, we only take the predicates of one single
process, generate an abstract state space, and see if the number of states or the
number of layers exceeds certain thresholds. If yes, we take the current predicate
set for defining one pattern database and start generating another one based
on another process. Otherwise, we continue to add the predicates coming from
another process to the current abstraction. Typically we end up with two or three
abstractions this way. The results are referred to as “syn” for “syntax-based”.

A notation such as “5000/10/SUM”, used not only for “syn” but also for
other heuristics, means that the threshold on the number of states (resp., layers)
is 5000 (resp., 10), and that we use the SUM option (see Sec. 3). The figures
for “syn 20000/20/MAX” and “syn 20000/20/SUM” are identical in Table 1
because only one (or only one non-trivial) abstraction was generated, which is
why we write “SM”.

For M and N, the results are never among the best and often among the
worst. For C, the explored state space size is sometimes among the best (note in
particular C9), but often among the worst as far as the runtimes are concerned,
as computing the heuristic is so expensive. The problem with “syn” is that
composing predicate sets along process boundaries as described above is a very
coarse approach: it can happen that we have a predicate set that is very small
and yields a heuristic that is fast to compute but not very good, and then
adding the predicates from another process immediately results in an abstraction
that might be good but is extremely expensive to compute.4 In contrast, with
our abstraction refinement the differences between subsequent abstractions will
typically be much smaller so that the balance between heuristic quality and
heuristic computation time can be better tuned.

5.2 Using the (Joint or Separate) Target Locations as Initial
Predicates

In our benchmarks the error condition is given by a formula of the form (loc(p1) =
�1) ∧ (loc(p2) = �2), i.e., the error state consists of process p1 being in �1 and p2
being in �2 simultaneously. The simplest setup we tried is the following: the initial
abstraction consists of the two location predicates for the two target locations.5

4 This problem also occurs when we use off-the-shelf abstraction refinement [16].
5 Note that having two processes involved in the target condition does not mean that

the whole system consists of just these two processes.

Relaxation Refinement: A New Method to Generate Heuristic Functions 159

The abstraction can thus definitely distinguish a target state from a non-target
state, which in our intuition is a good basis for a heuristic function. In each
step, the refinement is based on a single abstract path of maximal length in the
current abstract space. The results for this strategy are marked in Tables 1 and
2 with “1abs”.

As a termination criterion for the refinement, we used thresholds on the size of
the abstract state space and on the number of layers as in Sec. 5.1. Whenever one
of them is exceeded, then the current abstraction will be the last one generated
in this refinement loop. The thresholds were chosen to pose a sensible limit on
the computational resources spent in building the abstractions.

Although it seems intuitively reasonable to have an initial abstraction that
contains location predicates for both target locations, on the other hand one
may also argue that it is good to combine several abstractions, and a simple way
of doing this is to have two abstractions, each based on the initial predicate set
{loc(pi) = �i} for i = 1, 2. Everything else is as before. The results are marked
in the tables with “2abs”.

Concerning the size of the explored state space, “2abs” is better than “1abs”
on most examples. This suggests that, ceteris paribus, the argument that having
several different heuristics is better than having just one outweighs the argument
that a good heuristic should at least capture the difference between a target state
and a non-target state. Therefore, in the investigation of other aspects of the
design space presented in the sequel, we decided to base the initial abstractions
on the two targets kept separate.

Concerning the total runtime, “1abs” is sometimes negligibly better than
“2abs” because we only have to compute one abstract space instead of two.

Now compare “2abs” to the other heuristics. The results are never extraor-
dinarily bad: in the few cases where the results are among the worst, they are
“in good company”. The results are often among the best, but in none of these
cases are they dramatically better than the corresponding result for “seed”, see
Sec. 5.4. Compared to “syn”, the balance between heuristic quality and heuristic
computation time can be better tuned because the differences between subse-
quent abstractions are typically small.

5.3 Abstractions Based on Several Paths

In this setup, each iteration of the refinement loop is based on refining several
paths, each as shown in Fig. 3. We generated two abstractions, each based on
the initial predicate set {loc(pi) = �i} for i = 1, 2.

For each target, the refinement loop works as follows: given the current ab-
stract space, we select several paths for doing refinement — selecting all paths
would be too expensive, selecting just one path might result in too few predi-
cates being added in the refinement step. Moreover, the longer the abstract path
the more predicates will be added due to this path. Therefore our intuition was
that the number and quality of the predicates added are strongly correlated to
the length of the abstract paths one chooses, and so we decided that all ab-
stract paths should all have the same length l, which is thus a parameter of

160 J.-G. Smaus and J. Hoffmann

Table 3. Refinement based on q paths of length l, setting 5000/10/SUM

l → w
1

w
2
,w
3
,w
4

↓ q M1
1,2,4,8 14955 22162

N1
1,2,4,8 17584 30269

w
1

w
2
,w
3
,w
4

M2
17753 38234

N2
38216 69276

w
1

w
2
,w
3
,w
4

M3
86316 61252

N3
157491 145018

w
1

w
2
,w
3
,w
4

M4
110240 110240

N4
353609 353609

l → w
1

w
2

w
3

w
4

↓ q C2
1 7382 13653 23389 23389

2,4,8 7382 12500 12500 12500
C3

1 2866 5208 9634 9634
2,4,8 2866 4819 4819 4819

C4
1 2679 4989 8587 8587

2,4,8 2679 4600 4600 4600

w
1

w
2

w
3

w
4

C5
258 258 522 522
258 258 258 258

C6
3127 14707 15925 15925
3127 12922 12922 12922

C7
31584 92322 98028 98028
31584 86465 86465 86465

w
1

w
2

w
3

w
4

C8
106065 293694 308413 308413
106065 288112 288112 288112

C9
451610 1412455 1560656 1560656
451610 1413494 1413494 1413494

the method. Technically, in an ad hoc random way one selects up to q states
in the abstract state space such that there is an abstract path of length l from
such a state to the error state.Then one refines the current abstraction based on
these paths.

In Table 3, we show the explored state space size depending on q and l. Here
w is the number of layers of the current abstract state space, e.g., l = w

2 means
that the refinement is based on abstract paths whose length is half the maximal
length of any path in the current abstract state space. We set l to a minimum
of 3 to avoid some extremely short paths. Note that the results for l = w

1 , q = 1
are necessarily identical to those of “2abs 5000/10/SUM”.

The parameter q has little influence on the number of explored states. I.e.,
it does not seem to matter which or how many of the paths are chosen for the
refinement. This is a bit surprising, and contrary to our intuition [16] that off-
the-shelf abstraction refinement is too much focused on a single path, which
should be bad because it leads to abstractions that are fine in some regions and
coarse in others. In contrast, the parameter l is important. If l is too small, then
the refinement will not “take off”, i.e., it will converge very quickly generating
very few predicates (with M3 and N3 as exceptions).

We analysed some of the predicate sets generated for our benchmarks more
closely. Our observations suggest the following thesis: it is not the case that
the above strategy could lead to many very different predicate sets, depending
on how the parameters are chosen. Rather, for reasonably chosen parameters,
an abstraction refinement based on one of the target locations will converge
to a certain predicate set. This convergence can happen very early and the
predicate set can be very small. This motivates the method described next,
adding additional “seeds” for the abstraction. We go back to taking q = 1 and l
maximal, as in Sec. 5.2.

Relaxation Refinement: A New Method to Generate Heuristic Functions 161

5.4 Generating Several Abstractions Based on “Random Seeds”

Using the setups above, we observed that our refinement sometimes reaches a
fixpoint extremely early, way before any “artificial” termination criterion (see
Sec. 5.1) applies. If the final transition of the abstract path is � → �′ and the
initial abstraction is just the predicate loc = �′, then the abstract space will have
two states T and F, and the refinement will not add any predicates. Generally,
if the abstract path consists of location-wise consistent edges and either there
are no integer guards/invariants or they have already been added, then the
refinement stops, and this can happen very early, so that the abstraction is
extremely coarse.

Our idea to overcome this phenomenon is to insert a “random” location pred-
icate as an additional “seed” for the abstraction refinement, i.e., to use a slightly
finer initial abstraction. As a first näıve realisation of this, we generated ab-
stractions by refinement based on each pair (loc = �0, loc = �) where �0 is a
target location and � any other location, for any process. This will give dozens
of abstract spaces for our examples, so we had to find ways of generating fewer
abstractions yet sufficiently many interesting ones. After observing that many
generated spaces are extremely similar, we pruned spaces that are likely to be
similar to previously generated spaces, as follows: firstly, if for a refinement based
on some seed predicate, the generated abstract space in the first refinement it-
eration consists of abstract states where the seed predicate is always U, then we
deem the seed predicate to be useless and abort the refinement based on it. Sec-
ondly, we take at most one location predicate per system process as seed, that
is to say, we consider the location predicates of each process in turn, but once
we have successfully generated an abstraction for the current location predicate,
we disregard all remaining location predicates of the current process. With this
approach, we typically obtained between four and six abstractions.

The results are marked in Tables 1 and 2 with the word “seed”. The re-
sults are very unstable, sometimes extremely good, sometimes extremely bad.
An improvement of the approach could be to allow for random restarts, that
is to say, whenever the error search is taking too long, one might abort the
search and compute a new heuristic function, obtained by modifying some of
the parameters. This is in loose analogy to random restarts in propositional sat-
isfiability solving [21]. Alternatively, one could have several searches running in
parallel, based on several abstractions obtained by choosing the parameters in
different ways.

For the M and N examples, the search space sizes are sometimes the same
for “100/10” and “5000/10”. Also, some search space sizes are identical to the
respective values for “2abs”. Of course, we do not believe that this is a pure
coincidence, but rather, that it is due to the fact that the underlying abstractions
are similar. While inspection confirms this to some extent, it is not obvious that
the abstractions should be so extremely similar, but we do not consider this to
be a particularly important issue.

162 J.-G. Smaus and J. Hoffmann

6 Related Work

Using pattern database heuristics for DMC has been proposed in [25]. The sys-
tems considered are finite-state transition systems, where each state consists of
an assignment of values from a finite domain to the state variables. In a next
step, it is assumed that a state can be encoded as a bitvector. Unlike in our
work, the bits are not interpreted as logical formulas that “talk about” system
states, and predicate abstraction is not even mentioned. The encoding of states
as bitvectors is no abstraction, in the sense of information loss; it is only in the
next step that a pattern database abstraction is defined by ignoring some of the
bits. Note that there is no abstraction refinement in that work.

Another work by the same authors [24] does consider refinement, however it
is not the abstractions that are refined, but the abstract error paths themselves
are refined, removing those that are spurious.

In [12], pattern database heuristics are also used for DMC. Refinement is not
considered. It is observed that combining several pattern databases is useful.

In [10], DMC of timed automata is considered. The heuristic function is based
on an abstraction that merges locations until there are at most N locations left,
where N is a parameter. The heuristic function is read off the overall merged
automaton. This approach does not involve predicate abstraction or refinement.

We have already mentioned another approach to DMC, which we used for com-
parison because it is among the best for our benchmarks [20]. Several heuristic
functions including [10,20] have been joined in the tool Uppaal/DMC [19].

In our own previous work [16], we have presented a first implementation of
predicate abstraction for DMC of timed automata, including one approach where
the abstraction was generated using refinement. Unlike in the work presented
here, in the implementation we actually used the tool ARMC [23]. The setup of
the refinement process differs substantially from the one of this paper — most
importantly, in [16] we have a preprocessing of the original system splitting it into
several subsets of its processes, similarly as described for “syn”. The motivation
for implementing the refinement process ourselves instead of relying on ARMC
is that we wanted to cater for the aspects that are different in our scenario, as
discussed in Sec. 4.

7 Discussion

In this paper, we have presented various methods of setting up a predicate ab-
straction refinement loop for the purpose of generating heuristic functions for
DMC.

We found that generating predicates by collecting guards along abstract paths
is useful for generating reasonably small and good abstractions (Sec. 5.2), in
contrast to the syntax-based abstractions [16] that tend to be too big (“syn”).
So the main benefit is that abstraction refinement selects good predicates from
a repertoire.

Moreover, we hoped that abstraction refinement enlarges the repertoire of
predicates, as in Fig. 2, where the predicate i = j + 3 cannot be read off the

Relaxation Refinement: A New Method to Generate Heuristic Functions 163

system syntax. We have looked into this, and it seems to be of hardly any
significance. For our benchmarks it happens very rarely (though not never!)
that a predicate is generated that is not contained as a guard or invariant in the
system. Thus for these benchmarks, generating predicates by updating guards
and invariants is overly subtle and complicated.

Basing the refinement loop on several, not necessarily error paths rather than
just one path did not have the positive impact of adding more predicates that we
hoped (Sec. 5.3). As we explained in Sec. 5.4, this is mostly due to the fact that
the refinement can reach a fixpoint at a very early point: the abstract paths,
even though extremely short, do not give rise to the addition of any further
predicates.

The idea of adding seeds (Sec. 5.4) provides a remedy to this problem. The
idea can be varied in many ways, of which we discussed some. It can yield very
good results, but the results are quite unpredictable, and we still hope to enhance
abstraction refinement using some technique which systematically improves on
the method of Sec. 5.2.

In fact, suppose there is a more stable solution to the problem of early conver-
gence, consistently obtaining reasonably good results. Then this solution might
provide the key to boosting the performance of our initial idea, basing the re-
finement on several paths rather than just one path. This is a promising issue
to be explored in further work.

In summary, while the application of abstraction refinement for the intelligent
creation of heuristic functions is an exciting idea, making this idea work in
practice is non-trivial and involves several subtle issues. A variety of these issues
has been identified and investigated in our work. It remains to be seen in future
work how the prevailing difficulties can be overcome. In particular, it may be
that some of the issues disappear or are less critical in other search problems.
Hence investigating the method in other contexts – other DMC formalisms or
AI problems – is important.

Acknowledgements. This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB TR14/AVACS).
We would like to thank Henning Dierks, Sebastian Kupferschmid, Bernhard
Nebel, Andreas Podelski, and Martin Wehrle for useful discussions and help
with the implementation. We could also like to thank the anonymous reviewers
of this paper for their useful comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Ball, T., Podelski, A., Rajamani, S.K.: Completeness of abstraction refinement for
software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280. Springer, Heidelberg (2002)

164 J.-G. Smaus and J. Hoffmann

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for
model checking C programs. International Journal on Software Tools for Tech-
nology Transfer 5(1), 49–58 (2003)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

5. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

6. Clarke, E., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstrac-
tion refinement. IEEE Transactions on Computer Aided Design 23(7), 1113–1123
(2004)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM Symposium on Principles of Programming Languages, pp. 238–252
(1977)

8. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(3),
318–334 (1998)

9. Dierks, H.: Comparing model checking and logical reasoning for real-time systems.
Formal Aspects of Computing 16(2), 104–120 (2004)

10. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp.
19–34. Springer, Heidelberg (2006)

11. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. International Journal on Software
Tools for Technology 5(2-3), 247–267 (2004)

12. Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In: Pro-
ceedings of the ICAPS Workshop on Connecting Planning Theory with Practice,
pp. 7–13 (2004)

13. Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated canonizer and
solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
246–249. Springer, Heidelberg (2001)

14. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

15. Hoffmann, J., Koehler, J.: A new method to index and query sets. In: Dean, T. (ed.)
Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pp. 462–467. Morgan Kaufmann, San Francisco (1999)

16. Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.:
Using predicate abstraction to generate heuristic functions in UPPAAL. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS, vol. 4428, pp. 51–66.
Springer, Heidelberg (2007)

17. Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases.
In: Proceedings of the 14th National Conference on Artificial Intelligence and 9th
Innovative Applications of Artificial Intelligence Conference, pp. 700–705. MIT
Press, Cambridge (1997)

18. Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForM workbench,
a universal development environment for formal methods. In: Woodcock, J.C.P.,
Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer,
Heidelberg (1999)

Relaxation Refinement: A New Method to Generate Heuristic Functions 165

19. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podel-
ski, A., Behrmann, G.: Uppaal/DMC – Abstraction-based heuristics for directed
model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 679–682. Springer, Heidelberg (2007)

20. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI plan-
ning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 35–52. Springer, Heidelberg (2006)

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference,
pp. 530–535. ACM Press, New York (2001)

22. Pearl, J.: Heuristic. Addison-Wesley, Reading (1985)
23. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-

ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

24. Qian, K., Nymeyer, A.: Abstraction-based model checking using heuristical refine-
ment. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 165–178. Springer,
Heidelberg (2004)

25. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction
and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

Model Checking Strategic Equilibria

Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge

Department of Computer Science, University of Liverpool, UK

Abstract. Solutions concepts are a fundamental tool for the analysis of game-
like systems, and as a consequence, much effort has been devoted to the problem
of characterising solution concepts using logic. However, one problem is that, to
characterise solution concepts such as Nash equilibrium, it seems necessary to
refer to strategies in the object language, which tends to complicate the object
language. We propose a logic in which we can formulate important properties
of games (and in particular pure-strategy solution concepts) without recourse to
naming strategies in the object language. The idea is that instead of using pred-
icates which state that a particular collection of strategies forms a solution, we
define formulae of the logic that are true at a state if and only if this state con-
stitutes a particular equilibrium outcome. We demonstrate the logic by model
checking equilibria of strategic games.

1 Introduction

Game theory [18] has come to be seen as a topic of major importance for computer
science, since it focuses on the study of protocols from an economic perspective. Social
software [20] aims to give social procedures a theory analogous to the formal theories
for computer algorithms, e.g., program correctness or analysis of programs. One aspect
of game logics [23] is to study those theories with logical tools. We can distinguish
two complementary families of formalism: dynamic logics (action, time), and logics of
mental states (epistemic, preferences).

Games of interaction and their solutions. A game is a description of the protocol of
interaction between players and their preferences. A solution concept describes what
may be the solutions (or outcomes) in some class of game.

To describe the different models of interaction, the solutions and their properties,
game theory makes use of the language of mathematics which is merely set theory and
plain English. One objective of game logics is to build purely logical formal languages
that are able to talk about social procedures and games in particular. Some obvious mer-
its would be to obtain unambiguous formalisations for the domain of social procedures,
and the opportunity to apply formal methods of computer science to game-like systems.

Game theory is concerned with identifying sensible solutions for a particular class of
game. Our present task is to propose a framework in which we can reason about them.

Model checking game solutions. The interest of the computer science community in the
agent paradigm for software architecture is dramatically increasing, and game theory is
one of the most successfully applied theories of agent interaction in computer science.

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 166–188, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model Checking Strategic Equilibria 167

As a consequence, it is not hard to argue in favour of formal methods for verifying
social procedures as they are fundamental for the validation of such complex systems.

Model checking is one of these methods for hardware or software verification. A
problem of model checking can be formally stated as follows: given a property (or
logical formula) ϕ, a modelM, return the set of states S such that s ∈ S iff ϕ is true at
the state s in M.

One important aspect that one should have in mind when designing methods for
model checking is then to provide a language of specification that will facilitate the
work of the user. In this paper, we attach a particular importance to the simplicity of the
syntax of our logic for the very purpose of characterising properties of games.

Action abstraction. Typically in game logics, the characterisation of solution concepts
is achieved by defining predicates of the form SC((si)N), stating that the particular strat-
egy profile (si)N is an equilibrium with respect to the solution concept SC1 (for example
take SC as Nash equilibrium). In such predicate definitions, strategies or actions are pa-
rameters, and so we must have a way of referring to these in the logic’s object language.
Propositional Dynamic Logic [14] is a natural candidate. However when this principle
is integrated to logics of ability and agency like Alternating-time Temporal Logic [1],
Coalition Logic [22] or STIT theories [5], there is a paradigmatic issue. Indeed, the
agenda of reasoning about solution concepts seems to make it necessary to reify strate-
gies in the object language — yet one of the putative advantages of temporal-based
logics such as ATL is to abstract away from strategies and actions.

But let us take a step back, and ask the question: are explicit names of actions necessary
for the logical characterisation of solution concepts? In this note, we shall provide evi-
dence for a negative answer. For the time being a motivational question is: what would
we gain by abstracting actions away?

For model checking solution concepts we would like to give as input (1) a game, and
(2) a general formulation of a solution concept, and obtain as output the set of outcomes
that verify it. For the existing logics able to express game equilibria, model checking
possible approaches to verifying solution concepts are somewhat limited because the
modeller first has to choose an action profile (si)N and then check whether the game
satisfies SC((si)N). Either the hard work is done by the designer, in selecting the action
profile, or we need to provide to the model checker a large formula containing as many
disjunctions as the model to be tested has strategy profiles. This leads to a formula ex-
ponentially large w.r.t. to the number of strategies. As we shall see, our definitions of
solution concept are not subject to this drawback. We thus can characterise important
properties of game in a more succinct manner. This is also desirable since the complex-
ity of model checking typically depends on the size of the input formula.

Naturally, abstraction of action names is not a solution to every problem in social
software. For a completely different perspective, see [24] in which the author considers
strategies to be “the unsung heroes of game theory”. However, we show in what follows
that without relying on explicit actions, we are able to give a general logical formulation

1 We call N the grand coalition, the coalition containing every players. A strategy profile is a
combination of one strategy for every player of the grand coalition.

168 N. Troquard, W. van der Hoek, and M. Wooldridge

SC for most solution concepts in strategic games. As a consequence, we can check in a
very natural manner where the equilibria are in a game.

Outline. This article aims at providing a language for characterising properties of
games, which is expressive, easy to manipulate, unambiguous, and in this sense par-
ticularly suitable for a designer of interaction protocols in need of a tool for model
checking their game theoretic properties. We first introduce some concepts from game
theory and some solution concepts. Next, we present our logic and characterise the so-
lution concepts in logic. We continue with examples. We conclude with an informal
discussion and perspectives.

2 Some Notions from Game Theory

In this section, we review the basics of game theory in strategic games.

2.1 Strategic Games

Definition 1 (strategic game form). A strategic game form is a tuple 〈N, (Ai)〉 where:

– N is a finite set of players (or agents);
– Ai is a nonempty set of actions for each player i ∈ N.

A strategic game form is sometimes called the mechanism. It specifies the agents taking
part in the game and the actions available to them. Next, we need preferences, which
will give the players the incentive for taking an action.

Definition 2 (preference relation). A preference relation& over S is a total, transitive
and reflexive binary relation over S.

We can now see a strategic game as basically the composition of a strategic game form
with a collection of preference relations (one for every agent).

Definition 3 (strategic game). A strategic game is a tuple 〈N, (Ai), (&i)〉 where
〈N, (Ai)〉 is a strategic game form, and for each player i ∈ N,&i is a preference relation
over A = ×j∈NAj.

We refer to a collection (aj)j∈N , consisting of one action for every agent in N, as an
action profile. Given an action profile a, we denote by ai the action of the player i, and
by a−i the action profile of the coalition N \ {i}. We write aC for the coalitional actions
that are members of AC = ×j∈CAj for any C ⊆ N.

Strategic games are models of interaction in which each player chooses an action
simultaneously and independently. It is convenient to see the elements of A as the out-
comes of the game, resulting from an action profile. There are three ingredients that
are characteristic of game theoretic interactions in strategic games: (i) agents are inde-
pendent, in the sense that every player i can freely decide which action in Ai to play
whatever the other agents choose – all combinations of agents’ choice are compatible;
(ii) not only those combinations are compatible, but they also lead to a unique outcome
(here formally represented by the action profile itself); and (iii) the preferences &i are

Model Checking Strategic Equilibria 169

a2 b2

a1 1, 1 2, 0
b1 0, 2 0, 0

Fig. 1. An example of 2-player strategic game

over the possible outcomes A, which gives the game theoretic flavour: players must
take into account the preferences of others in order to determine how to achieve the
best outcome for themselves.

In 2-player games, it is convenient to represent a strategic game as a matrix of utilities
(or payoffs). In the game shown in Figure 1, player 1 is the row player and player 2 is
the column player. The entries (x, y) of the matrix represent the payoffs of agents for
a particular outcome — x is the payoff for the row player, while y is the payoff for the
column player. The preferences are easily derived. For example (a1, a2) &1 (b1, a2),
(a1, a2) &2 (a1, b2) but (a1, a2) �&1 (a1, b2), and (b1, b2) &2 (a1, b2) and (a1, b2) &2
(b1, b2).

2.2 Game Equilibria

Next, we define some important solution concepts in pure strategies. Those are defi-
nitions of very standard notions of game theory. We refer the reader to [18]. We will
later demonstrate the ability of our logic to represent properties of strategic games and
game equilibria in particular. In order to show how fine-grained the logic is, we will
study several variants of equilibria, namely two sorts of Pareto optimality, three sorts of
dominance, two sorts of Nash equilibria and the concept of the core.

Definition 4 (Pareto optimality). An action profile a∗ is a weak Pareto optimum if
there is no action profile strictly preferred over a∗ by every agent. a∗ is a strong Pareto
optimum if there is no action profile considered at least as good as a∗ by every agent
and strictly preferred by at least one agent.

Definition 5 (dominance equilibria). a∗ is a very weakly dominant action profile if
for every player i and action a−i, i considers (a∗

i , a−i) at least as good as (a′
i, a−i) for

every a′
i . a∗ is a weakly dominant action profile if for every agent i, one preference is

strict for at least one action a′
i . a∗ is a strictly dominant action profile if all preferences

are strict.

Definition 6 (Nash equilibrium). An action profile a∗ ∈ A is a Nash equilibrium iff
for every player i ∈ N and for all ai ∈ Ai, i considers (a∗

−i, a∗
i) at least as good as

(a∗
−i, ai).

To conclude this collection of solution concepts, we will also show interest in coopera-
tive games via the study of strong Nash equilibrium and the core of strategic games.

Definition 7 (strong Nash equilibrium). An action profile a∗ is a strong Nash equi-
librium of a strategic game iff there is no coalition C ⊂ N and no strategy aC such that
(aC, a∗

−C) is considered strictly better than a∗ by every players of C.

170 N. Troquard, W. van der Hoek, and M. Wooldridge

Definition 8 ((weak) core membership). An action profile a∗ is dominated in a strate-
gic game iff there is a coalition C ⊂ N and a strategy aC such that for all a−C, every
i ∈ C strictly prefers (aC, a−C) over a∗. a∗ is in the (weak) core of the game if it is not
dominated.

This last definitions hold for a coalitional game without transferable utilities. That is,
players can form coalitions, but cannot redistribute the sum of the payoffs among the
individuals of the coalition.

3 A Hybrid Logic of Choice and Preferences

We now introduce a logic that will allow us to capture game theoretic solution con-
cepts such as those above, without recourse to naming strategies/actions in the object
language.

At the heart of the models we use Kripke frames: we assume a set of states and binary
relations over them. We will think of a state as an action profile. For any coalition J,
an equivalence relations RJ will cluster together the states that J cannot differentiate
by one of its choices. The main task is to constrain the frames 〈S, (RJ)〉 such that they
are a correct conceptualisation of strategic game forms. We will also have a preference
relation Pi for every agent i. This logic is a hybrid logic [3], and in what follows, we
pre-suppose some familiarity with this class of formalisms.

3.1 Language and Semantics

Let us assume Agt = {0, 1 . . .n} a nonempty finite set of agents, Prop = {p1, p2 . . .}
a countable set of propositions, Nom = {i1, i2 . . .} a countable set of nominals and
WVar = {x1, x2 . . .} a countable set of state variables.Prop,Nom,WVar are pairwise
disjoint. We call Symb = Nom ∪ WVar the set of state symbols. The set of atoms is
then denotedAtm = Prop ∪ Symb.

The syntax of HLCP is defined by the BNF

ϕ ::= | a | ¬ϕ | ϕ ∨ ϕ | [J]ϕ | [�i]ϕ | @sϕ |↓ x.ϕ

where a ∈ Atm, x ∈ WVar, s ∈ Symb, i ∈ Agt and J ⊆ Agt are terminal symbols. This
is a multi-modal language of the hybrid logic with @ and ↓ (from now onH(@, ↓)).

As usual, the remaining Boolean connectives are defined by abbreviations, and
〈J〉ϕ =def ¬[J]¬ϕ. Analogously, 〈�i〉ϕ =def ¬[�i]¬ϕ. In the object language, we
denote by J the complement of J w.r.t. Agt.

The intended reading of [J]ϕ is “group J chooses such that ϕ whatever other agents
do” or “the current choices of agents in J ensure that ϕ”. 〈J〉ϕ is “J by its current choice
does not rule out ϕ as a possible outcome.” In particular, because the empty coalition
cannot make any choice (or more precisely has a unique vacuous choice), [∅]ϕ can be
read as “ϕ cannot be avoided” and 〈∅〉ϕ reads “ϕ is a possible outcome”. 〈�i〉ϕ means
that at the current state, i prefers ϕ or is indifferent. @sϕ means that ϕ is true at the state
labelled s. ↓ x.ϕ labels the current state with the state variable x. Then it allows further
explicit reference to the state by using x as an atom in the formula in the scope of the
operator.

Model Checking Strategic Equilibria 171

Definition 9 (HLCP model). A model for HLCP is a tuple 〈Agt,Prop,Nom,WVar,S,
(RJ), (Pi), π〉 where:

– Agt, Prop,Nom andWVar are as before;
– S is a set of states;
– every RJ is an equivalence relation over S such that:

1. RJ1∪J2 ⊆ RJ1;
2. RJ1 ∩ RJ2 ⊆ RJ1∪J2;
3. R∅ ⊆ RJ ◦ RAgt\J;
4. RAgt = Id;

– every Pi is a total, transitive relation over S;
– π : S −→ 2Prop∪Nom is a valuation function where π−1(i) is a singleton for every

i ∈ Nom.

An assignment, g, is a mapping from Symb into S. We define gx
s as gx

s(x) = s and
gx

s(x) = g(y) for x �= y.

The definition of valuation function of our models is conceptually important here.
The fact that the valuation of a nominal is a singleton reflects the main aspect of

hybrid logic. A nominal uniquely characterises a state in the Kripke model and can thus
can be understood as the name of a state.

RJ represents the choices of J. We can see it as a representation of the power of J
in the game. R∅ represents the choice of the empty coalition. Since the empty coalition
is assumed to have only one ubiquitous choice, R∅ is the relation over the possible
outcomes. (1.) means that adding agents to a coalition makes it at least as effective.
(2.) means that a coalition is not more effective than the combination of its parts. (3.)
says that an outcome is possible only if one can reach it by two successive moves along
two relations of choice of two complementary coalitions. This is intended to reflect the
independence of agents. (4.) means that the grand coalition is maximally effective: if
an outcome is possible then the grand coalition can choose it deterministically.

An example of a malformed HLCP (pre-)model with two players is given in Figure 2.
RAgt = R{0,1} relation is represented by dashed lines. R∅ = R{0} ◦R{1} relation groups
the outcomes of a strategic game together. At s, the constraint (2.) on R is not satisfied.
At t, the constraint (4.) on R is not satisfied. An example of HLCP (pre-)model with
two players is represented in Figure 3.

Truth values are given by:

– M, g, s |= p iff p ∈ π(s), for p ∈ Prop
– M, g, s |= t iff g(t) = s, for t ∈ Symb
– M, g, s |= @tϕ iffM, g, g(t) |= ϕ, where t ∈ Symb
– M, g, s |=↓ x.ϕ iffM, gx

s, s |= ϕ
– M, g, s |= [J]ϕ iff for all s′ ∈ RJ(s), M, g, s′ |= ϕ
– M, g, s |= [�i]ϕ iff for all s′ ∈ Pi(s), M, g, s′ |= ϕ

and as usual for classical connectives. We also adopt the conventional definitions of
satisfiability and validity: an HLCP formula ϕ is satisfiable iff there exists a pointed
modelM, g, s such thatM, g, s |= ϕ and ϕ is valid iff for every pointed modelM, g, s
we haveM, g, s |= ϕ.

We shall write M, s |= ϕ when it is the case thatM, g, s |= ϕ for any mapping g.

172 N. Troquard, W. van der Hoek, and M. Wooldridge

s

t

R{0}

R{1}

Fig. 2. Dashed lines represent RAgt relations.
This is not an HLCP model.

ϕ

ψ

R{1}

R{0} s

Fig. 3. An example of HLCP pre-model. Pref-
erences are not represented.

3.2 Some Intuitions about the Logic

The frames of HLCP models are the frames we expect for studying strategic games.
Definition 9 item 3 defines the powers of the empty coalition and reflects the indepen-
dence of agents. A state is considered possible if it can be reached via the relation R∅. A
state is possible only if it is compatible with the choices of complementary coalitions.
From items 2 and 4, the pointwise intersections of agents’ classes of choice are single-
tons:

⋂
i∈Agt R{i}(s) = {s} for every s. Hence, possible states map directly to action

profiles. We explain this in more detail now.

Actions and choices explained. Given a coalition J, and two states s and s′ in S,
s ∈ RJ(s′) means that s and s′ are two possible outcomes of a same choice of J. By
definition (Definition 9 item 2), a choice of a coalition is the intersection of the choices
of its individual members. Hence s ∈ RJ(s′) means that s and s′ are in a same choice
of every agent in J. To put it another way, no agent in J can choose (resp. dismiss) s
without choosing (resp. dismissing) s′.

The operator 〈J〉 allows to quantify over possible states, given that the actions of
the agents out of J are fixed. Equivalently, keeping in mind the analogy of states as
action profiles, it makes it possible to quantify over actions of J. For example, 〈{i}〉
quantifies over i’s actions. 〈J〉ϕ can be read “the action of the agents that are not in J
been maintained, there is an action of J such that ϕ”.

In the model of Figure 3 with Agt = {0, 1}, at state s, player 1 can unilater-
ally change its current choice such that ψ holds: M, s |= 〈{1}〉ψ, or equivalently
M, s |= 〈{0}〉ψ, meaning that player 0 allows ψ. Analogously player 1 allows ϕ:
M, s |= 〈{1}〉ϕ. Hence player 0 can change its choice such that ϕ holds: M, s |=
〈{0}〉ϕ.

The action component of the logic is largely inspired by the weaker Chellas’s STIT
logic [15]. The logic limited to individuals has been axiomatised by Xu [5, Chap. 17]
and studied further in [4]. [9] proposes a group version of the logic. With HLCP, in
order to fit with strategic games, the only difference with the original logic is a further
constraint that says that the grand coalition can deterministically choose the outcome
of the game.

Then, like STIT, HLCP has obvious links with multi-agent epistemic logic [11] and
multi-dimensional logics over equivalence relations [17]. It may indeed be helpful to
think about a choice relation as an epistemic relation. In epistemic logics, [i]ϕ would

Model Checking Strategic Equilibria 173

read “i knows that ϕ”. For a coalition J, [J] is similar to the distributed knowledge
operator of epistemic logic, usually written DJ . Let us make a quick observation and
also emphasise that for the action component, we could have used cylindric modal
logic [27] or logics of propositional control [26,13]. In these logics, a formula of the
form ♦Jϕ reads the agents in J can change their choice such that ϕ holds. It trivially
corresponds in HLCP to the formula 〈J〉ϕ meaning that the agents out of J allow for ϕ.

About the hybridisation. Intuitively, ↓ x.ϕ assigns the name of the current state to
the variable x, and it can be reused in the scope of the binder as a propositional letter.
The authors of [2] compare the role of the binder ↓ to the Reichenbachian generalised
present tense. They write:

It enables us to “store” an evaluation point, thereby making it possible to in-
sist later that certain events happened at that time, or that certain other events
must be viewed from that particular perspective. This is precisely the kind of
expressive power we need to encode Reichenbach’s ideas.

We argue that this ability to fix an ‘evaluation point’, viz. an action profile in our setting,
and looking at alternatives from that perspective, is also precisely what we need to
encode most game equilibria.

We can already take advantage of the power of hybrid logic for defining strict pref-
erences which will be useful later.

Definition 10 (strict preferences). The strict preference of i for an alternative where
ϕ holds is defined by:

〈≺i〉ϕ =def ↓ x.〈�i〉(ϕ ∧ ¬〈�i〉x)

Note that the expressive power of hybrid logic makes it possible to characterise in the
object language some features of models in a way that is not possible in conventional
modal logic. For instance, the ability to grasp the intersection of relations was a key
trigger for the modern era of hybrid logic [21]. This leads us to the axiomatic charac-
terisation of HLCP.

3.3 Axiomatisation

x will be used as a meta-variable over the set of state variables WVar; s, t and u will
be meta-variables over the set of state symbols Symb; and � is any modality from
{[J] | J ⊆ Agt} ∪ {[�i] | i ∈ Agt}.

There exist several presentations of the axiomatics of the basic hybrid logic with
@ and ↓ (hereafter KH(@,↓)) [7,6,3]. We use one given in [6] which unlike the others
we can find in the literature, does not have recourse to unorthodox rules, viz. rules of
inference that apply under syntactic constraints. We show it in Figure 4. note that a
substitution replaces uniformly (1) proposition variable by arbitrary formulae and (2)
nominals by other nominals.

The principles are sound and axiomatise completely KH(@,↓) when the operators
symbolised by � are normal modalities over arbitrary frames (i.e., K-modalities). We
now need to give the principles that will ensure that the modalities of the form

174 N. Troquard, W. van der Hoek, and M. Wooldridge

axioms:
(CT) enough classical tautologies
(K�) �(p → q) → (�p → �q)
(K@) @s(p → q) → (@sp → @sq)
(selfdual@) @sp ↔ ¬@s¬p
(ref@) @ss
(agree) @t@sp ↔ @sp
(intro) s → (p ↔ @sp)
(back) ¬ � ¬@sϕ → @sϕ
(DA) @s(↓ x.ϕ ↔ ϕ[x/s])
(name↓) ↓ x.(x → ϕ) → ϕ, provided that x does not occur in ϕ
(BG↓) @s� ↓ x.@s¬ � ¬x
rules:
(MP) From � ϕ and � ϕ → ψ infer � ψ
(subst) From � ϕ infer � ϕσ, for σ a substitution
(nec@) From � ϕ infer � @sϕ
(nec↓) From � ϕ infer �↓ x.ϕ
(nec�) From � ϕ infer � �ϕ

Fig. 4. An axiomatisation of KH(@,↓)

[�i] represent a relation of preference and the collection of modalities of the form [J]
represent a strategic game form.

We say a formula is pure if it contains no propositional variables (but may con-
tain nominals). We obtain the full axiomatisation of HLCP by adding the pure axiom
schemata listed in Figure 5. It is easy to check that these principles are sound. An im-
portant theorem of hybrid logic states that if Σ is a set of pureH(@, ↓) formulae, then
KH(@,↓) + Σ is complete for the class of frames on which each formula of Σ is valid
[7, Th. 4.11]. Proving the completeness of the inference system is thus straightforward.

We try to give intuitive readings of the axioms of Figure 5. (T[J]) means that if s is
the state at hand, everyone has accepted it. (5[J]) means that for every coalition J, if J
accepts s then J refuse not to accept it. (mon) expresses the fact that if a group accepts
s then its parts accept s also. (inter) means that if some parts accept s then the coalition
composed of these parts accepts s too. (elim) means that if an outcome is acceptable

(T[J]) s → 〈J〉s
(5[J]) 〈J〉s → [J]〈J〉s
(mon) 〈J1 ∪ J2〉s → 〈J1〉s
(inter) 〈J1〉s ∧ 〈J2〉s → 〈J1 ∪ J2〉s
(elim[∅]) 〈∅〉s → 〈J〉〈J〉s
(det[Agt]) 〈Agt〉s → s
(4[�i]) 〈�i〉〈�i〉s → 〈�i〉s
(total) s ∧ 〈∅〉t → 〈�i〉t ∨ @t〈�i〉s

Fig. 5. Principles added to the axiomatisation of KH(@,↓), completing the axiomatisation of
HLCP

Model Checking Strategic Equilibria 175

then a coalition always accepts that its complementary coalition could accept s too.
(det) captures the fact that if the grand coalition accepts s then s is the outcome. (4[�i])
and (total) are intuitively the transitivity and connectedness of preferences.

Proposition 1 (completeness). HLCP is complete with respect to the class of HLCP
models.

PROOF. By applying the Standard Translation (ST) for hybrid logic, we can check that
the pure axioms in the last tabular correspond to the constraints we imposed on the
frames. The correspondence is pretty clear for who is familiar with the ST for hybrid
logic. (Or modal logic: just recall that a nominal is true exactly at one state.) For the
example, we nevertheless give the translation for (inter) and (total). (The subscript t is
a state symbol that does not occur in the formula being translated.)

– (inter) corresponds to the constraint RJ1 ∩ RJ2 ⊆ RJ1∪J2 :
1. STt(〈J1〉s ∧ 〈J2〉s → 〈J1 ∪ J2〉s).
2. STt(〈J1〉s) ∧ STt(〈J2〉s) → STt(〈J1 ∪ J2〉s)
3. ∃y1.(RJ1(t, y1) ∧ STy1(s)) ∧ ∃y1.(RJ2(t, y2) ∧ STy2(s)) →

∃y1.(RJ1∪J2(t, y3) ∧ STy3(s))
4. ∃y1.(RJ1(t, y1) ∧ (y1 = s)) ∧ ∃y1.(RJ2(t, y2) ∧ (y2 = s))→

∃y1.(RJ1∪J2(t, y3) ∧ (y3 = s))
5. RJ1(t, s) ∧ RJ2(t, s) → RJ1∪J2(t, s)

– (total) corresponds to the constraint “Pi is total”:
1. STu(s ∧ 〈∅〉t → 〈�i〉t ∨@t〈�i〉s)
2. STu(s) ∧ STu(〈∅〉t) → STu(〈�i〉t) ∨ STu(@t〈�i〉s)
3. (u = s) ∧ ∃y1.(R∅(u, y1) ∧ STy1(t)) →

∃y2.(Pi(u, y2) ∧ STy2(t)) ∨ ∃y3.(Pi(t, y3) ∧ STy3(s))
4. (u = s) ∧ ∃y1.(R∅(u, y1) ∧ (y1 = t)) →

∃y2.(Pi(u, y2) ∧ (y2 = t)) ∨ ∃y3.(Pi(t, y3) ∧ (y3 = s))
5. R∅(s, t) → Pi(s, t) ∨ Pi(t, s)

HLCP only consists in a set of pure axiom schemata added to the axiomatisation of
KH(@,↓). Hence, the result follows as a corollary of [7, Th. 4.11]. �

4 Application to Game Analysis

In the introduction to the paper, we promised that we would formalise solution concepts
without using names for actions. In this section, we make good on that promise. We
show how it is possible to characterise a number of solution concepts using the logic.

4.1 Relating Strategic Games and HLCP Models

We here guarantee that HLCP models are an adequate conceptualisation of strategic
games. With this aim, we relate strategic games G = 〈N, (Ai), (&i)〉 with the models of
HLCP. Let us first introduce a hybrid version of strategic games.

176 N. Troquard, W. van der Hoek, and M. Wooldridge

Definition 11 (hybrid game model). A hybrid game model is a tuple 〈N, (Ai), (&i),
Prop,Nom,WVar, v〉where 〈N, (Ai), (&i)〉 is a strategic game,Prop,Nom andWVar
are as in Definition 9, and v maps elements from ×i∈NAi to 2Prop∪Nom.

Hybrid game models are strategic games with propositions and a function of interpre-
tation, to which we add the standard ‘hybrid machinery’. They are sufficiently rich to
give a semantics to the language of HLCP. Truth values of HLCP formulae over hybrid
game models are defined recursively as follows.

Definition 12 (truth values in hybrid game models). Let a hybrid game modelMG =
〈N, (Ai), (&i),Prop,Nom,WVar, v〉 and g, is a mapping from Symb into A as in Defi-
nition 9.

– MG, g, a |=sg p iff p ∈ π(a), for p ∈ Prop
– MG, g, a |=sg t iff g(t) = a, for t ∈ Symb
– MG, g, a |=sg @tϕ iffMG, g, g(t) |=sg ϕ, where t ∈ Symb
– MG, g, a |=sg↓ x.ϕ iffMG, gx

a, a |=sg ϕ
– MG, g, a |=sg [J]ϕ iff for every a′

−J ∈ ×j∈N\JAj we haveMG, g, (aJ, a′
−J) |=sg ϕ

– MG, g, a |=sg [�i]ϕ iff for every a′ &i a we haveMG, g, a′ |=sg ϕ

and as usual for classical connectives.

We say a HLCP formula ϕ is sg-satisfiable iff there exists a pointed hybrid game model
MG, g, a such thatMG, g, a |=sg ϕ and ϕ is sg-valid iff for every pointed hybrid game
modelMG, g, a we haveMG, g, a |=sg ϕ.

From a hybrid game model we obtain a corresponding HLCP model as follows.

Definition 13 (from hybrid game models to HLCP models). We say an HLCP model
〈Agt,Prop,Nom,WVar, S, (RJ), (Pi), π〉 corresponds to a hybrid game model
〈N, (Ai), (&i),Prop,Nom,WVar, v〉 if:

– Agt = N;
– S = ×i∈NAi;
– (aJ, a−J)RJ(aJ , a′

−J);
– a′ ∈ Pi(a) iff a′ &i a;
– π = v.

It was already clear that we conceive a state in HLCP as an action profile. Two action
profiles are in the same class of choice of J if agents in J do the same action in both
profiles; preferences are immediate.

The other way round, we could construct a hybrid game model corresponding to an
HLCP model. We just give it for clarification but will not make use of it.

Definition 14 (from HLCP models to hybrid games models). We say that a hy-
brid game model 〈N, (Ai), (&i),Prop,Nom,WVar, v〉 corresponds to an HLCP model
〈Agt,Prop,Nom,WVar, S, (RJ), (Pi), π〉 if:

– N = Agt;
– Ai = S|≡R{i} = {|s|≡R{i} : s ∈ S};

Model Checking Strategic Equilibria 177

– (|s0|≡R{0} , . . . |sk|≡R{k}) &i (|s′0|≡R{0} , . . . |s′k|≡R{k}) iff y ∈ Pi(x), where k =
Card(Agt)− 1, x ∈ ⋂i∈Agt |s′i|≡R{i} and y ∈ ⋂i∈Agt |si|≡R{i};

– v = π.

The notation makes it perhaps less self explanatory than the previous definition. It iden-
tifies the set of actions of an agent i with the set of classes in the equivalence relation
of choice R{i}. An action profile is then captured by a tuple of such classes of choice,
one for every agent. As a consequence of the items 2 and 4 of Definition 9, the classes
of choice in a tuple intersect in exactly one state: thus, x and y in the definition above
are uniquely determined. The preferences in the strategic game model are then derived
from the relation Pi applied to this state.

4.2 Equilibria in HLCP Models

Our next task is to adapt the previous definitions of equilibria in the context of HLCP
models. We also state their correspondence with the game theoretic definitions.

Definition 15. Given an HLCP model M and a state s∗ in M, s∗ is weakly Pareto
optimal iff there is no s ∈ R∅(s∗) such that s ∈ Pi(s∗) and s∗ �∈ Pi(s) for every i in Agt.
s∗ is strongly Pareto optimal iff there is no s ∈ R∅(s∗) such that s ∈ Pi(s∗) for every i
in Agt, and there is a j such that s∗ �∈ Pj(s).

Definition 16. Given an HLCP modelM and a state s∗ inM, s∗ is

1. very weakly dominant iff for all i inAgt and for all s ∈ Ri(s∗), we have that for all
s′ ∈ RAgt\{i}(s), s ∈ Pi(s′);

2. weakly dominant iff for all i in Agt and for all s ∈ Ri(s∗), we have that for all
s′ ∈ RAgt\{i}(s), s ∈ Pi(s′) and there is a s′′ ∈ RAgt\{i}(s) such that s′′ �∈ Pi(s);

3. strictly dominant iff for all i in Agt and for all s ∈ Ri(s∗), we have that for all
s′ ∈ RAgt\{i}(s), s ∈ Pi(s′) and s′ �∈ Pi(s).

Definition 17. Given an HLCP modelM and a state s∗ inM, s∗ is

1. Nash equilibrium iff for all i in Agt, for all s in RAgt\{i}(s∗) we have s ∈ Pi(s∗);
2. strong Nash equilibrium iff for all J ⊂ Agt and s ∈ RAgt\J(s∗) there is an i in J

such that s∗ ∈ Pi(s).

Definition 18. Given an HLCP model M and a state s∗ in M, s∗ is in the weak core
iff for all J ⊂ Agt and s ∈ RAgt\J(s∗) there is an i in J and an s′ ∈ RJ such that
s∗ ∈ Pi(s′).

These definitions are adequate with the definition of game theory. This is stated by the
next proposition.

Proposition 2. Let SC be a solution concept among weakly Pareto optimal, strongly
Pareto optimal, very weakly dominant, weakly dominant, strictly dominant, Nash equi-
librium, strong Nash equilibrium and core. Given a hybrid strategic game MG and a
corresponding HLCP modelM, an action profile ofMG is SC iff it is an SC inM.

We will rely next on the definitions in terms of relational models introduced in this
section for implementing the solution concepts in the language of HLCP.

178 N. Troquard, W. van der Hoek, and M. Wooldridge

4.3 Implementation of Equilibria in HLCP

This section provides ‘constant predicates’ characterising that a state is a particular
solution concept. To put it another way, we give context-free definitions of solution
concepts in the language of HLCP. We start by defining predicates for best response
(weak and strict) that will be instrumental in the definition of Nash equilibrium and
dominance equilibria next. As an illustration, we also characterise the concept of never
best response.

WBRi is intended to read “i plays a weak best response to other agents choice in the
current state” by what could be reworded as “the other agents choose that i considers
the current state at least as good”. Formally,

WBRi =def↓ x.[{i}]〈�i〉x

We see how “binding” the current state to the variable x permits us to use it such that
[{i}]x exactly quantifies over the alternatives allowed by the current choice of the other
agents (agents in Agt \ {i}) at the state recorded in x. Since the grand coalition is
deterministic, i itself is the ‘final chooser’. i plays its best response if in every alternative
allowed by the other agents’ current choice, i would consider its current choice at least
as good.

The notion of strict best response is obtained by replacing the weak preference
modality by the strict one, and since [{i}] is reflexive, we need to use a conditional
such that the current state (obviously not strictly preferred) is not compared.2

SBRi =def↓ x.[{i}](¬x → 〈≺i〉x)

We can use WBRi and SBRi as the building blocks for defining more complex notions.
Before focusing on several equilibria, we can see for example that the notion of a choice
that is never a best response is intuitively captured in our language, using an agentive
formula stating that i chooses that it does not play a weak best response (whatever other
agents do):

NBRi =def [i]¬WBRi

The current choice of an agent i is never a best response if i chooses that it does not play
a best response (whatever other agents do). A choice that is never a best response (or
equivalently which is always dominated) are often worth considering in game theory
because a rational player will never use such a choice.

In the remaining of this section, we give the characterisation of every solution con-
cept defined previously.

Pareto optimality. A state is a weak Pareto optimum if there is no other state that
makes every agent better off.

WPO =def↓ x.[∅]
∨

i∈Agt

〈�i〉x

2 Note that this is perfectly uniform with the weak case since, due to the reflexivity of [�i] we
have WBRi ↔↓ x.[{i}](¬x → 〈�i〉x).

Model Checking Strategic Equilibria 179

A state labelled x is a strong Pareto optimum if there is no state y that is considered
by every agent at least as good as x and which is strictly preferred by at least one agent.
We can formulate this as:

SPO =def↓ x.[∅](↓ y.(@x

∧

i∈Agt

〈�i〉y) → (
∧

i∈Agt

〈�i〉x))

Contrarily to WPO, SPO is a fairly complicated formula obtained directly from the
definition and without much simplification. The next proposition states that these for-
malisations are correct.

Proposition 3. Given an HLCP model M and a state s in M, s∗ is weakly Pareto
optimal iffM, s∗ |= WPO. It is strongly Pareto optimal iffM, s∗ |= SPO

PROOF. From Definition 15, for WPO we obtain ↓ x.¬〈∅〉[↓ y.
∧

i∈Agt((@x〈�i〉y) ∧
¬〈�i〉x)]. We simplify this by the observation that, from (total), s ∧ 〈∅〉t ∧ ¬〈�i〉t →
@t〈�i〉s is a theorem of HLCP. SPO is straightforward from the definition with minor
rewriting. �

We omit the proofs for the other equilibria. They all consist in translating the definitions
of Section 4.2 and rewriting the formulation.

Dominance equilibria. We define very weak dominance, weak dominance and strict
dominance. Our definitions of dominance largely make use of the concept of best
response.

An agent is currently playing a very weakly dominant strategy if this is its (weak)
best response whatever what the other agents play. It should be clear now that we just
have to formalise it via an agentive formula stating that “i chooses that it plays its
best response whatever other agents do”. Thus we characterise a state where i plays a
very weakly dominant strategy by the formula [i]WBRi. We then capture a very weak
dominance equilibrium by:

VWSD =def

∧

i∈Agt

[i]WBRi

Weak dominance imposes the strategy to be the strict best response to at least one of the
possible combination of choice of the other agents, and this is the only difference with
weak dominance. This is formalised by 〈i〉SBRi. Thus, we characterise a state where i
plays a weakly dominant strategy by the formula [i]WBRi ∧ 〈i〉SBRi, and we capture a
weak dominance equilibrium by

WSD =def

∧

i∈Agt

[i]WBRi ∧ 〈i〉SBRi

Strict dominance is intuitively along the same line as very weak dominance, substituting
the weak best response by the strict one (or the weak preference modality by a strict
one). We characterise a strict dominance equilibrium by

SSD =def

∧

i∈Agt

[i]SBRi

180 N. Troquard, W. van der Hoek, and M. Wooldridge

Proposition 4. Given an HLCP modelM and a state s∗ inM, s∗ is

1. very weakly dominant iffM, s∗ |= VWSD;
2. weakly dominant iffM, s∗ |= WSD;
3. strictly dominant iffM, s∗ |= SSD.

It is routine to check that strict strategy dominance implies weak strategy dominance
which in turn implies very weak strategy dominance.

Proposition 5.) SSD → WSD and) WSD → VWSD

Nash equilibria. A state being a Nash equilibrium is simply defined by:

NE =def

∧

i∈Agt

WBRi

A state is a Nash equilibrium if every agent uses its best response to the choice of the
other agents. Remarkably, [25] proposed a similar definition along the pattern∧

i DAgt\{i}〈�i〉x within an epistemic language. (Recall our quick comparison in Sec-
tion 3.2 between epistemic logic and our logic of choice.)

A state is a strong Nash equilibrium of the game if there is no coalition J that can
change its choice and lead to a state considered strictly better by every members of J.

SNE =def↓ x.
∧

J⊂Agt

[J](
∨

i∈J

〈�i〉x)

Proposition 6. Given an HLCP modelM and a state s∗ inM, s∗ is a

1. Nash equilibrium iffM, s∗ |= NE.
2. strong Nash equilibrium iffM, s∗ |= SNE.

The next proposition is straightforward.

Proposition 7.) SNE → NE

Core. The use of HLCP is not restricted to non-cooperative games. We have already
characterised strong Nash equilibrium. It is also easy to capture the concept of core of
a cooperative strategic game without transferable payoff. We did not do so in our defi-
nition in Section 4.2, but as we did for Definition 8 we can start by giving the charac-
terisation of an undominated state. A straightforward translation would be DOM =def↓
x.〈J〉∨J⊂Agt[J]

∧
i∈J ↓ y.@x〈≺i〉y.

INCR is simply the negation of DOM. Up to equivalence (in particular because of
(total), (agree), and modal distributivity/contraction) we obtain:

INCR =def↓ x.
∧

J⊂Agt

[J]〈J〉
∨

i∈J

〈�i〉x

Proposition 8. Given an HLCP modelM and a state s∗ inM, s∗ is in the (weak) core
iffM, s∗ |= INCR.

Note the difference with (or the resemblance to) strong Nash equilibrium. We clearly
have the following.

Proposition 9.) SNE → INCR

Model Checking Strategic Equilibria 181

On the succinctness of solution concept characterisations. As noted in the intro-
duction, the number of strategies has no impact on the size of the characterisation of
solution concepts. In the case of cooperative equilibria, the size of the characterisation
depends on the number of coalitions, and is then exponential in the number of players.
However, for all solution concepts but strong Nash equilibrium and core membership,
the size of the formula is polynomial in the number of agents.

In summary, the syntax of HLCP allows to a designer to formalise important prop-
erties of games succinctly. This is a very desirable feature of a language when we are
interested in model checking. There are at least two reasons for that: (i) less efforts are
needed for the designer to write down a property to be tested, and (ii) the complexity of
model checking is usually function of the size of the input formula.

5 Model Checking

In order to verify properties of games, we can use the Hybrid Logic Model Checker
(HLMC) [10]. This is an implementation of the algorithms of [12], where model check-
ing of hybrid fragment including binders is proved PSPACE-complete when the size of
the input formula is taken as parameter. (Model checking can be solved in polynomial
time if the size of the model is the parameter.) HLMC is given a model and a formula. The
output is the set of states in the model where the formula is satisfied, plus some statistics.

We present the model checking by means of two examples. This will allow us to
demonstrate the ability of our logic with a wide assortment of properties. We first focus
on solution concepts for which players are assumed to be individually rational. We
define Nash equilibrium, very weak dominance and strict dominance in the language
of HLMC (to be introduced). We also make explicit how an HLCP model is encoded.
In a second part, we make a move to solution concepts for team reasoners: players are
assume to be able to form coalitions. In the specification language of HLMC, we then
define strong Nash equilibrium, core membership and the ‘composite equilibrium’ of
Pareto optimal Nash equilibrium.

5.1 Equilibria of Individual Rationality

The language of HLMC for implementing the formulae to be tested matches with the
logical representation. For example, we use [ag1] for the [{1}], <pref2> stands for
〈�2〉, B x is the down-arrow binder ↓ x., & is the conjunction ∧, | is the disjunction
∨, ! is the negation ¬. We propose three progressive examples.

A Nash equilibrium in a 2-agent game is characterised by:

B x (
([ag2](<pref1>(x)))
&
([ag1](<pref2>(x)))

)

A very weak dominant equilibrium in a 2-agent game is a slight modification of Nash
equilibrium:

[ag1] (B x ([ag2](<pref1>(x))))
&
[ag2] (B x ([ag1](<pref2>(x))))

182 N. Troquard, W. van der Hoek, and M. Wooldridge

A strict dominant equilibrium in a 2-agent game is obtained from the very weak domi-
nant equilibrium, expanding the definition of strict preferences:

[ag1] (B x ([ag2](!x ->
(B y (<pref1>((x) & !<pref1>(y)))))))

&
[ag2] (B x ([ag1](!x ->

(B y (<pref2>((x) & !<pref2>(y)))))))

The game of Figure 1 can be represented in the language of HLMC. It is the translation
of the following definition ofM = 〈Agt,Prop,Nom,WVar, S, (RJ), (Pi), π〉 where:

– Agt = {1, 2};
– Prop = ∅;
– Nom = {i0, i1, i2, i3};
– WVar = {x, y};
– S = {s0, s1, s2, s3};
– R∅ = {(s, s′) | s ∈ S, s′ ∈ S};
– R{1} = {(s0, s1), (s2, s3)}∗, where ∗ is the equivalence closure;
– R{2} = {(s0, s2), (s1, s3)}∗, where ∗ is the equivalence closure;
– RAgt = {(s, s) | s ∈ S};
– P1 = {(s0, s1), (s2, s0), (s2, s1), (s2, s3), (s3, s0), (s3, s1), (s3, s2)}∗, where ∗ is the

reflexive closure;
– P2 = {(s0, s3), (s1, s0), (s1, s2), (s1, s3), (s3, s0), (s3, s1), (s3, s2)}∗, where ∗ is the

reflexive closure;
– π(s0) = {i0}, π(s1) = {i1}, π(s2) = {i2}, π(s3) = {i3}.

We give in Appendix the XML script which is the representation of this model. The
following is a resume of the model generated by HLMC. Note that we did not give the
relations of choice for the grand coalition and the empty coalition. The former is simply
obtained as the identity relation, the latter is the composition of the relations of the two
individual agents.

Kripke structure: XML
Worlds: s0 (0), s1 (1), s2 (2), s3 (3)
Modalities:

ag1 (0) = <s0, s0> <s0, s1> <s1, s0> <s1, s1> <s2, s2> <s2, s3>
<s3, s2> <s3, s3>
ag2 (1) = <s0, s0> <s0, s2> <s1, s1> <s1, s3> <s2, s0> <s2, s2>
<s3, s1> <s3, s3>
pref1 (2) = <s0, s0> <s0, s1> <s1, s1> <s2, s0> <s2, s1> <s2, s2>
<s2, s3> <s3, s0> <s3, s1> <s3, s2> <s3, s3>
pref2 (3) = <s0, s0> <s0, s3> <s1, s0> <s1, s1> <s1, s2> <s1, s3>
<s2, s2> <s3, s0> <s3, s1> <s3, s2> <s3, s3>

Propositional symbols:
Nominals:

i0 (0) = s0
i1 (1) = s1
i2 (2) = s2
i3 (3) = s3

Model Checking Strategic Equilibria 183

formula result RT (in sec) # recursive calls # modal calls # binder calls max. nesting

NE {s0} 0.0000 45 16 1 7
WSD {s0} 0.0000 49 18 2 10
SSD {s0} 0.0000 273 74 10 17

Fig. 6. Experimental results on non-cooperative solution concepts

Once the game encoded, we can verify that in all cases we obtain the expected output,
that is, that the state s0 corresponding to the action profile (a1, a2) is the only equilib-
rium of the three sorts tested.

We can now test some properties of this game. The result of the model checking in
HLMC consists in giving the states satisfying the input formula and some statistics that
we give such that the reader can have a grasp on the difference of resources needed for
model checking the various properties. Figure 6 presents the results of model checking
Nash equilibrium, weak strategy dominance and strict strategy dominance against the
the previous model.

5.2 Equilibria for Teams

It must be clear that the expressive power of HLCP is not limited the basic properties
of games. The language is precise enough for specifying numbers of properties that one
would like to verify. For instance, we can elaborate on equilibria that are desirable from
the point of view of team reasoning.

On Figure 7, we have represented a strategic game involving three player. There are
two Nash equilibria, (b1, b2, a3) and (a1, a2, b3), that are also strong Nash equilibria.
Then, they are also in the core, which also contains (a1, b2, b3). Perhaps a better solu-
tion of this game when players reason as a team is the concept of Pareto optimal Nash
equilibrium. In this case (b1, b2, a3) is the only solution.

We are now going to verify these statements with HLMC.
The internal representation of the corresponding model in HLMC is the following:

Kripke structure: XML
Worlds: s0 (0), s1 (1), s2 (2), s3 (3), s4 (4), s5 (5), s6 (6), s7 (7)
Modalities:

ag1 (0) = <s0, s0> <s0, s1> <s0, s4> <s0, s5> <s1, s0> <s1, s1>
<s1, s4> <s1, s5> <s2, s2> <s2, s3> <s2, s6> <s2, s7> <s3, s2> <s3, s3> <s3, s6>
<s3, s7> <s4, s0> <s4, s1> <s4, s4> <s4, s5> <s5, s0> <s5, s1> <s5, s4> <s5, s5>
<s6, s2> <s6, s3> <s6, s6> <s6, s7> <s7, s2> <s7, s3> <s7, s6> <s7, s7>

ag2 (1) = <s0, s0> <s0, s2> <s0, s4> <s0, s6> <s1, s1> <s1, s3>
<s1, s5> <s1, s6> <s1, s7> <s2, s0> <s2, s2> <s2, s4> <s3, s1> <s3, s3> <s3, s5>
<s3, s7> <s4, s0> <s4, s2> <s4, s4> <s4, s6> <s5, s1> <s5, s3> <s5, s5> <s5, s7>
<s6, s0> <s6, s2> <s6, s4> <s6, s6> <s7, s1> <s7, s3> <s7, s5> <s7, s7>

ag3 (2) = <s0, s0> <s0, s1> <s0, s2> <s0, s3> <s1, s0> <s1, s1>

a3.

a2 b2

a1 1, 0,−5 (s0) −5,−5, 0 (s1)

b1 −5,−5, 0 (s2) 0, 0, 10 (s3)

b3.

a2 b2

a1 −1,−1, 5 (s4) 5,−5, 0 (s5)

b1 −5,−5, 0 (s6) −2,−2, 0 (s7)

Fig. 7. A 3-player strategic game. Player 1 chooses rows, player 2 chooses columns and player 3
chooses matrices.

184 N. Troquard, W. van der Hoek, and M. Wooldridge

<s1, s2> <s1, s3> <s2, s0> <s2, s1> <s2, s2> <s2, s3> <s3, s0> <s3, s1> <s3, s2>
<s3, s3> <s4, s4> <s4, s5> <s4, s6> <s4, s7> <s5, s4> <s5, s5> <s5, s6> <s5, s7>
<s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s4> <s7, s5> <s7, s6> <s7, s7>

ag12 (3) = <s0, s0> <s0, s4> <s1, s1> <s1, s5> <s2, s2> <s2, s6>
<s3, s3> <s3, s7> <s4, s0> <s4, s4> <s5, s1> <s5, s5> <s6, s2> <s6, s6> <s7, s3>
<s7, s7>

ag13 (4) = <s0, s0> <s0, s1> <s1, s0> <s1, s1> <s2, s2> <s2, s3>
<s3, s2> <s3, s3> <s4, s4> <s4, s5> <s5, s4> <s5, s5> <s6, s6> <s6, s7> <s7, s6>
<s7, s7>

ag23 (5) = <s0, s0> <s0, s2> <s1, s1> <s1, s3> <s2, s0> <s2, s2>
<s3, s1> <s3, s3> <s4, s4> <s4, s6> <s5, s5> <s5, s7> <s6, s4> <s6, s6> <s7, s5>
<s7, s7>

pref1 (6) = <s0, s0> <s0, s5> <s1, s0> <s1, s1> <s1, s2> <s1, s3>
<s1, s4> <s1, s5> <s1, s6> <s1, s7> <s2, s0> <s2, s1> <s2, s2> <s2, s3> <s2, s4>
<s2, s5> <s2, s6> <s2, s7> <s3, s0> <s3, s3> <s3, s5> <s4, s0> <s4, s3> <s4, s4>
<s4, s5> <s5, s5> <s6, s0> <s6, s1> <s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6>
<s6, s7> <s7, s1> <s7, s3> <s7, s4> <s7, s5> <s7, s7>

pref2 (7) = <s0, s0> <s0, s3> <s1, s0> <s1, s1> <s1, s2> <s1, s3>
<s1, s4> <s1, s5> <s1, s6> <s1, s7> <s2, s0> <s2, s1> <s2, s2> <s2, s3> <s2, s4>
<s2, s5> <s2, s6> <s2, s7> <s3, s0> <s3, s3> <s4, s0> <s4, s3> <s4, s4> <s5, s0>
<s5, s1> <s5, s2> <s5, s3> <s5, s4> <s5, s5> <s5, s6> <s5, s7> <s6, s0> <s6, s1>
<s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s0> <s7, s3> <s7, s4>
<s7, s7>

pref3 (8) = <s0, s0> <s0, s1> <s0, s2> <s0, s3> <s0, s4> <s0, s5>
<s0, s6> <s0, s7> <s1, s1> <s1, s2> <s1, s3> <s1, s4> <s1, s5> <s1, s6> <s1, s7>
<s2, s1> <s2, s2> <s2, s3> <s2, s4> <s2, s5> <s2, s6> <s2, s7> <s3, s3> <s4, s3>
<s4, s4> <s5, s1> <s5, s2> <s5, s3> <s5, s4> <s5, s5> <s5, s6> <s5, s7> <s6, s1>
<s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s1> <s7, s2> <s7, s3>
<s7, s4> <s7, s5> <s7, s6> <s7, s7>

Propositional symbols:
Nominals:

i0 (0) = s0
i1 (1) = s1
i2 (2) = s2
i3 (3) = s3
i4 (4) = s4
i5 (5) = s5
i6 (6) = s6
i7 (7) = s7

We need to define the solution concepts that are relevant for this game. For three agents,
Pareto optimal Nash equilibrium can be implemented in HLMC as follows:

B x (
([ag23](<pref1>(x)))
&
([ag13](<pref2>(x)))
&
([ag12](<pref3>(x)))
&
[ag12] ([ag3] (<pref1>(x) | <pref2>(x) | <pref3>(x)))

)

Observe that we did not use the global modality [∅] in the last clause (corresponding
to Pareto optimality). As a consequence of (elim[∅]), it is indeed definable from two
modalities [J1] and [J2] when J1∩J2 = ∅. Hence, we do not have to specify the relation
of choice for the empty coalition in the input model.

Strong Nash equilibrium can be implemented as follows in HLMC:

B x (
([ag1](<pref2>(x) | <pref3>(x)))
&
([ag2](<pref1>(x) | <pref3>(x)))
&
([ag3](<pref1>(x) | <pref2>(x)))

Model Checking Strategic Equilibria 185

formula result RT (in sec) # recursive calls # modal calls # binder calls max. nesting

NE {s3, s4} 0.0000 137 48 1 8
NE ∧ PO {s3} 0.0000 289 88 1 14

SNE {s3, s4} 0.0100 425 120 1 14
INCR {s3, s4, s5} 0.0200 473 168 1 15

Fig. 8. Experimental results on Nash equilibrium, weak Pareto Nash equilibrium and cooperative
solution concepts

&
([ag23](<pref1>(x)))
&
([ag13](<pref2>(x)))
&
([ag12](<pref3>(x)))

)

Finally core membership can be implemented as follows:

B x (
([ag1] (<ag23> (<pref2>(x) | <pref3>(x))))
&
([ag2] (<ag13> (<pref1>(x) | <pref3>(x))))
&
([ag3] (<ag12> (<pref1>(x) | <pref2>(x))))
&
([ag23] (<ag1> (<pref1>(x))))
&
([ag13] (<ag2> (<pref2>(x))))
&
([ag12] (<ag3> (<pref3>(x))))

)

Note that a solution concept defined for k agents can be used for model checking games
of less than k players. All we shall need to do is to model the choices of the extra players
as the vacuous and dummy choice. That is, every extra player will have not more power
that the empty coalition.

We can now verify that our quick analysis of the solutions in the example is correct.
Figure 8 presents the results of model checking Nash equilibrium, Pareto Optimal Nash
equilibrium, strong Nash equilibrium and core membership against the the previous
model.

6 Discussion and Perspectives

It should be clear from what precedes that a logical language without action labels
appears to be useful for model checking equilibrium in games. The main aspect is that
when combined with the down arrow binder bringing the expressively of “here and
now” in the object language, it allows general characterisations of equilibria. With the
small exception of [25], and as far as we know, such an approach has not been followed
elsewhere.

Adding epistemic reasoning. A theory of interaction cannot be complete without epis-
temic attitudes. Since the action component of HLCP is inspired by STIT logics, a

186 N. Troquard, W. van der Hoek, and M. Wooldridge

natural extension is to integrate knowledge, as in [9]. This simply consists of adding
straightforward epistemic relations over states to the models and the underlying knowl-
edge operators to the language. As a result we have an expressive logic capable of
strategic reasoning under uncertainty.

As an illustration, the infamous notion of knowing a strategy is not ambiguous. (See
[16] for an account of the problem in logics of ability.) We can distinguish: “for all
epistemically indistinguishable states, there exists a strategy of J that leads to φ”, from
“there exists a strategy σ of the coalition J such that for all states epistemically indis-
tinguishable for J, σ leads to φ”. The former is a ∀-∃ schema of “knowing a strategy”.
It is in contrast to the latter sentence, which is a ∃-∀ schema.

The need for succinct models. It is not difficult to see that modelling even small
strategic games is almost unfeasible. The HLMC basic constructor is

<modality label="M">
...

<acc-pair to-world-label="s1" from-world-label="s0"/>
...

</modality>

stating that the relation underlying the modality [M] has an edge from the state s0 to
the state s1. Hence, given the language of HLMC the designer needs to specify every
edge of every relation of the model.

Relations of choice. In the case of choice relations, every edges for reflexivity, tran-
sitivity and euclideanity must be specified. It is quite easy to see that we can encode
choices efficiently. We could for instance use ad hoc constructors.

<choice-mod label="ag1">
<equiv-class "s0 s1 s2">

</choice-mod>

would build all the edges to make {s0, s1, s2} an equivalence class representing a choice.
Choice relations for coalitions can next be extrapolated from individual relations by
intersection.

Relations of preferences. As the relations of preference are much less structured as
the relations of choice, their case is also more problematic in practice. Given a game
〈N, (Ai), (&i)〉, a corresponding HLCP model 〈Agt,Prop,Nom,WVar,S,(RJ),(Pi), π〉
will have |S| = ∏

i∈N |Ai| states. Hence, only due to the totality of the preferences, for

every agent i, Card(Pi) ≥ |S|+ |S|(|S|−1)
2 . Then, for example, for any game of 3 players

with 3 choices each, we need to specify at least 1134 edges of preference relation, and
we still have to fix the transitivity!

From a practical point of view it means that HLMC is not optimal. It has to be asso-
ciated with a piece of software taking a compact representation of the model in input
and giving in output the XML script readable by HLMC. Such a ‘black-box’ can take
inspiration from the research in compact representation of games. See for example [19,
Sect. 2.5] for a short survey.

Model Checking Strategic Equilibria 187

Acknowledgement

This research is funded by the EPSRC grant EP/E061397/1 Logic for Automated Mech-
anism Design and Analysis (LAMDA). We are grateful to the reviewers and participants
of LOFT’08 and EUMAS’08.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

2. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: Characterization, interpolation and com-
plexity. Journal of Symbolic Logic 66, 977–1010 (2001)

3. Areces, C., ten Cate, B.: Hybrid Logics. In: Handbook of Modal Logic. Blackburn, et al. [?],
vol. 3, pp. 821–868 (2006)

4. Balbiani, P., Herzig, A., Troquard, N.: Alternative axiomatics and complexity of deliberative
STIT theories. Journal of Philosophical Logic 37(4), 387–406 (2008)

5. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents and choices in our indeterminist
world. Oxford (2001)

6. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics. Studia Log-
ica 84, 277–322 (2006)

7. Blackburn, P., Tzakova, M.: Hybrid languages and temporal logic. Logic Journal of the
IGPL 7(1), 27–54 (1999); Revised Version of MPI-I-98-2-006

8. Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.): Handbook of Modal Logic. Studies
in Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York (2006)

9. Broersen, J., Herzig, A., Troquard, N.: Normal simulation of coalition logic and an epistemic
extension. In: Proceedings of TARK 2007, Brussels, Belgium. ACM DL, New York (2007)

10. Dragone, L.: Hybrid logic model checker (2005),
http://www.luigidragone.com/hlmc/

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The MIT Press,
Cambridge (1995)

12. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to
semistructured data). Jounal of Applied Logic 4, 279–304 (2006)

13. Gerbrandy, J.: Logics of propositional control. In: AAMAS 2006: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems, pp. 193–200.
ACM Press, New York (2006)

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
15. Horty, J.F., Belnap Jr., N.D.: The deliberative STIT: A study of action, omission, and obliga-

tion. Journal of Philosophical Logic 24(6), 583–644 (1995)
16. Jamroga, A., van der Hoek, W.: Agents that know how to play. Fundamenta Informati-

cae 62(2-3), 185–219 (2004)
17. Kurucz, A.: Combining modal logics. In: Handbook of Modal Logic. Blackburn et al. [?],

vol. 3, pp. 869–924 (2006)
18. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)
19. Papadimitriou, C.: The complexity of finding Nash equilibria. In: Algorithmic Game Theory,

pp. 29–51. Cambridge University Press, Cambridge (2007)
20. Parikh, R.: Social software. Synthese 132(3), 187–211 (2002)
21. Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and Computa-

tion 93, 263–332 (1991)

http://www.luigidragone.com/hlmc/

188 N. Troquard, W. van der Hoek, and M. Wooldridge

22. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computa-
tion 12(1), 149–166 (2002)

23. van Benthem, J.: Open problems in logic and games. In: Artëmov, S.N., Barringer, H.,
d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them! Essays in Hon-
our of Dov Gabbay, vol. 1, pp. 229–264. King’s College Publications, London (2005)

24. van Benthem, J.: In praise of strategies. In: van Eijck, J., Verbrugge, R. (eds.) Discourses on
Social Software. Texts in Logic and Games. Amsterdam University Press (2009)

25. van Benthem, J., van Otterloo, S., Roy, O.: Preference Logic, Conditionals, and Solution
Concepts in Games. In: Lagerlund, H., Lindström, S., Sliwinski, R. (eds.) Modality Matters,
pp. 61–76. University of Uppsala (2006)

26. van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control.
Artificial Intelligence 164(1-2), 81–119 (2005)

27. Venema, Y.: Cylindric modal logic. Journal of Symbolic Logic 60(2), 591–623 (1995)

Appendix: Representation of the Example in HLMC

We give the XML script which is the representation of the model pictured in Figure 1.
We first define four states representing the set of strategy profiles of the game. Then

we enumerate explicitly every edge of the relations underlying the choices of agent 1,
the choices of agent 2, the preferences of agent 1 and the preferences of agent 2. Finally
we assign one nominal to each state. Remark that we did not give the relations of choice
for the grand coalition and the empty coalition.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hl-kripke-struct SYSTEM "hl-ks.dtd">
<hl-kripke-struct name="XML">

<world label="s0"/>
<world label="s1"/>
<world label="s2"/>
<world label="s3"/>

<!-- s0 is NE, VWSD and SSD
(s0)1,1 (s1)2,0
(s2)0,2 (s3)0,0 -->

<modality label="ag1">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s0" from-world-label="s1"/>
<acc-pair to-world-label="s1" from-world-label="s0"/>

<acc-pair to-world-label="s2" from-world-label="s3"/>
<acc-pair to-world-label="s3" from-world-label="s2"/>

</modality>

<modality label="ag2">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s0" from-world-label="s2"/>
<acc-pair to-world-label="s2" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s3"/>
<acc-pair to-world-label="s3" from-world-label="s1"/>

</modality>

<modality label="pref1">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s1" from-world-label="s0"/>
<acc-pair to-world-label="s0" from-world-label="s2"/>
<acc-pair to-world-label="s1" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s2"/>
<acc-pair to-world-label="s0" from-world-label="s3"/>
<acc-pair to-world-label="s1" from-world-label="s3"/>
<acc-pair to-world-label="s2" from-world-label="s3"/>

</modality>

<modality label="pref2">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s3" from-world-label="s0"/>
<acc-pair to-world-label="s0" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s1"/>
<acc-pair to-world-label="s3" from-world-label="s1"/>
<acc-pair to-world-label="s0" from-world-label="s3"/>
<acc-pair to-world-label="s1" from-world-label="s3"/>
<acc-pair to-world-label="s2" from-world-label="s3"/>

</modality>

<nominal label="i0" truth-assignment="s0"/>
<nominal label="i1" truth-assignment="s1"/>
<nominal label="i2" truth-assignment="s2"/>
<nominal label="i3" truth-assignment="s3"/>

</hl-kripke-struct>

Author Index

Alechina, Natasha 1
Aljazzar, Husain 65

Bakera, Marco 15
Benac Earle, Clara 34
Bošnački, Dragan 65
Butler, Rick W. 132

Edelkamp, Stefan 15, 49, 65

Fehnker, Ansgar 65
Fredlund, Lars-Åke 34

Groce, Alex 90

Havelund, Klaus 90
Hoffmann, Jörg 147
Holzmann, Gerard 90

Iglesias, José Antonio 34

Jabbar, Shahid 49
Joshi, Rajeev 90

Katz, Gal 122
Kissmann, Peter 15, 49

Ledezma, Agapito 34
Logan, Brian 1
Lomuscio, Alessio 106

Muñoz, César A. 132

Nga, Nguyen Hoang 1

Peled, Doron 122
Penczek, Wojciech 106

Qu, Hongyang 106

Rakib, Abdur 1
Renner, Clemens D. 15

Schuppan, Viktor 65
Siminiceanu, Radu I. 132
Smaus, Jan-Georg 147
Smith, Margaret 90

Troquard, Nicolas 166

van der Hoek, Wiebe 166

Wijs, Anton 65
Wooldridge, Michael 166

	Title Page
	Preface
	Organization
	Table of Contents
	Verifying Time and Communication Costs of Rule-Based Reasoners
	Introduction
	Systems of Communicating Rule-Based Reasoners
	Extending CTL* with Belief Operators and Communication Counters
	Mocha Encoding
	Experimental Results
	Conclusions
	References

	Solving μ-Calculus Parity Games by Symbolic Planning
	Introduction
	Symbolic Analysis of Two-Player Games
	Preliminaries: Model Checking Based on Parity Games
	μ-Calculus Model Checking
	Parity Games

	Solving Parity Games for Alternation-Free Formulas
	Extension to Full Alternation Depth
	Empirical Analysis
	Data-Flow Analysis as Model Checking
	Experiments

	Conclusion and Discussion
	References
	Compiling Away the Recursion
	GDDL Encoding

	Verifying Robocup Teams
	Introduction
	The Programming Language Erlang
	The McErlang Tool
	Programming Language Semantics for Erlang
	Correctness Properties
	Using the Model Checker for Simulation

	RoboCup Teams in Erlang
	Checking Robocup Agents
	Correctness Property Classification
	Verification of the First RoboCup Team
	Verification of the Second RoboCup Team

	Conclusions
	References

	Scaling Search with Pattern Databases
	Introduction
	External-Memory Heuristic Search
	Pattern Databases
	Refined Database Construction
	Incremental External Search
	External-Memory Symbolic Pattern Databases
	Delayed Successor Generation
	Distributed Pattern Database Evaluation
	External-Memory Relay A*
	Conclusion
	References

	Survey on Directed Model Checking
	Introduction
	History of Directed Model Checking
	Concepts and Notation
	Directed Model Checking Algorithms
	ω-Regular Properties
	Partial Order Reduction
	Applications
	Conclusion
	References

	Automated Testing of Planning Models
	Introduction
	The {\sc Aspen} Planner and the {\sc Spin} Model Checker
	The {\sc Aspen} Planner
	The {\sc Spin} Model Checker

	Example
	{\sc Aml} Model of Drilling Rover
	Analyzing the Model with {\sc Spin}
	Verification 2
	Verification 3

	Translation from {\sc Aml} to {\sc Promela}
	The Earth Orbiter 1 Application
	Conclusion and Future Work
	References

	Towards Partial Order Reduction for Model Checking Temporal Epistemic Logic
	Introduction
	Preliminaries
	Interpreted Systems
	Syntax

	Partial Order Reduction on Interpreted Systems
	Example
	Conclusions
	References

	Model Checking Driven Heuristic Search for Correct Programs
	Introduction
	Preliminaries
	Genetic Programming
	Model Checking

	WhyDoesItWork?
	References

	Experimental Evaluation of a Planning Language Suitable for Formal Verification
	Introduction
	Related Work
	ANMLite Language Concepts
	Timelines and Actions
	Transitions
	Goal Statements and Initialization

	Constraints
	Repetitive Actions
	Timeline Instance Specific Constraints
	Vacuous Solutions
	Summary of Constraint Semantics

	Translating ANMLite to SAL
	Simple Example
	Multiple Variables
	Modeling Time
	Model Variables
	Transitions
	Translating Constraints

	Experiments
	Real Models
	Random Models
	Results

	Conclusions
	References

	Relaxation Refinement: A New Method to Generate Heuristic Functions
	Introduction
	Timed Automata in Uppaal
	Predicate Abstraction for Heuristic Generation
	Abstraction Refinement
	Experiments
	Other Heuristics Used for Comparison
	Using the (Joint or Separate) Target Locations as Initial Predicates
	Abstractions Based on Several Paths
	Generating Several Abstractions Based on “Random Seeds”

	Related Work
	Discussion
	References

	Model Checking Strategic Equilibria
	Introduction
	Some Notions from Game Theory
	Strategic Games
	Game Equilibria

	A Hybrid Logic of Choice and Preferences
	Language and Semantics
	Some Intuitions about the Logic
	Axiomatisation

	Application to Game Analysis
	Relating Strategic Games and {\sf HLCP} Models
	Equilibria in {\sf HLCP} Models
	Implementation of Equilibria in {\sf HLCP|}

	Model Checking
	Equilibria of Individual Rationality
	Equilibria for Teams

	Discussion and Perspectives
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

