
LWOAD: A Specification Language to Enable

the End-User Develoment of Coordinative
Functionalities

Federico Cabitza and Carla Simone

Università degli Studi di Milano-Bicocca,
viale Sarca 336, 20126 Milano (Italy)
{cabitza,simone}@disco.unimib.it

Abstract. In this paper, we present an observational case study at a ma-
jor teaching hospital, which both inspired and gave us valuable feedback
on the design and development of LWOAD. LWOAD is a denotational
language we propose to support users of an electronic document system
in declaratively expressing, specifying and implementing computational
mechanisms that fulfill coordinative requirements. Our focus addresses
(a) the user-friendly and formal expression of local coordinative prac-
tices; (b) the agile mocking-up of corresponding functionalities; (c) the
full deployment of coordination-oriented and context-aware behaviors
into legacy electronic document systems. We give examples of LWOAD
mechanisms taken from the case study and discuss their impact for the
EUD of coordinative functionalities.

1 Requirements for EUD in Document-Mediated
Cooperative Work

The fact that documents are ubiquitous means to support work activities is
well known. Their initially undifferentiated role has been more recently investi-
gated and articulated to understand why documents, which are so natural and
widespread, still raise problems when they are transformed in digitized coun-
terparts, not only when electronic documents are used as stand-alone artifacts
but, above all, when they are parts and components of an electronic document
system [1,2]. The solution of this paradox calls for a stronger user involvement in
the definition and maintenance of functionalities that support actors in accom-
plishing their duties and coordinating their action; these functionalities relate
closely to how users read and write their paper-based artifacts and to the of-
ten only implicit and ad-hoc practices and conventions that regard documents’
use and interpretation. A very inspiring domain where to motivate this claim
and highlight requirements for an EUD-based solution is the healthcare domain.
This is, on the one hand, so complex and various that almost all considerations
emerged from other cooperative domains apply naturally (e.g., [3,4]); on the
other hand, this domain has been widely studied and specialist literature has
provided interesting findings to leverage. For instance, in his comprehensive ac-
count on the role of documents in professional work, Hertzum [5] points out the

V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 146–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

LWOAD: A Specification Language to Enable the End-User Develoment 147

paradigmatic case of the patient record, in regard to both its many-sidedness in
supporting cooperative work and its ability to speak different “voices”, i.e., to
convey different meanings according to the actor using it (e.g., doctor, nurse).
According to Garfinkel [6], the patient record contains at least two clear in-
tertwined voices: a voice reporting what clinician did what to inpatients; and
another voice attesting that clinicians have honored claims for adequate medical
care. Following in the same footsteps, Berg distinguishes between the coordi-
native and accumulative function [7] of patient records, respectively. Patient
records exhibit the accumulative function whenever they play the role of official,
inscribed artifacts that practitioners write to preserve memory or knowledge of
facts or events occurred at the hospital ward. Patient records exhibit the coordi-
native function whenever they are used to support articulation and coordination
of the work activities which are tightly coupled with data production and con-
sumption. A very important point is that the accumulative function can refer to
either a long-term role of records – typically when patient’s data are archived for
research or statistical purposes – or to a short-term role– typically when these
data are memorized to keep trace of the care trajectory during the patient’s hos-
pital stay. This latter role is necessarily entangled with coordinative functions in
not always trivial ways [8,9]. Accordingly, the specialist literature distinguishes
between primary and secondary purposes, respectively. Primary purposes regard
the demands for autonomy and support of practitioners involved in the direct
and daily care of inpatients; while secondary purposes are the main focus of
hospital management, which pursues them for the sake of rationalizing care pro-
vision and enabling clinical research. The investment policies in ICT are usually
focused on secondary purposes (i.e., on cost savings and new pharmacological
patents) and this leads to the design of Electronic Patient Records (EPR) where
document structures and functionalities are aimed at supporting information in-
scription and use according to data quality and usability criteria [10], which tend
to neglect (or heavily overlook) the primary purposes [11]. The additional effort
of articulation work on the clinical record is then usually left to practitioners; as
well as, often, the burden to reconfigure their coordinative practices once their
habitual paper-based artifacts have been digitized [9].

In this scenario, document templates and masks are usually imposed from
above to practitioners, irrespectively of their coordinative needs. Even in the
best case where documents are cooperatively and participatorily defined, they
tend to be given to actors once and for all so as to neglect the frequent tuning
activities and adjustments that coordinative mechanisms require for their nego-
tiated and participated nature [12,13]. Our observational studies in two wards
of a large provincial hospital in Northern Italy confirmed other accounts from
the CSCW literature (e.g., [14,7,8] on how practitioners try to reconcile primary
and secondary purposes on the artifacts of daily use to make them useful both
to store and retrieve information but also to support mutual learning, knowl-
edge sharing and coordination of caring activities. To this aim, actors define,
renegotiate and evolve ad-hoc practices, peculiar conventions, and agreed in-
terpretations that are local and unique to their work settings; usually, these

148 F. Cabitza and C. Simone

conventions thrive either in the grey area of underspecification or through the
mesh of the constraining specifications of organizational rules that the hospital
management has imposed for law or quality standard compliance.

Our point is that the development of any technological support of the full
usage of official records cannot do without considering these local habits and
conventions as a primary source of information for the definition of functional-
ities that support cooperation and, to limit ourselves to our reference domain,
effective care giving. Moreover, since these habits and conventions are local and
unique, the technological support should provide flexible functionalities that pre-
serve, or even foster the fluid, conventional and evolutionary nature of coordi-
native practices. Last but not least, these functionalities should be under the
full control of actors themselves. Our research question is then how to facilitate
this local management in a sustainable way. The paper aims to give a contribu-
tion in this direction by presenting a computational framework that was deeply
influenced and partially tested by our field study in the above mentioned hospi-
tal [15]. The next section describes the field study context and provides the main
motivations for the framework; Section 3 describes the framework and its deno-
tational language, LWOAD, in more details; Section 4 illustrates the complex
and real-life conventions we tested the framework on; Section 5 discusses the
main findings of the case study; Section 6 illustrates the mockup we used as a
proof-of-concept of the findings related to mechanism specification and Section 7
sums things up and sheds light on current and future directions of our research
in the EUD field.

2 Bridging Conventions and EPR Applications

Our empirical research involved doctors and nurses of a major Neonatal Intensive
Care Unit (NICU). We conducted this study through unobtrusive observations in
the ward, informal talks, individual interviews with key doctors and nurses, and
open group discussions with ward practitioners. These interactions were initially
used to deal with the “descriptive” part of the research, and to reach a reason-
able and common language. Yet, quite soon, the need emerged to find a more
effective way to deal with what we called “local habits and conventions” in the
previous section. In parallel with our investigation in the ward, practitioners had
to interact with a team of software developers of a third-party IT firm, the Alpha
ltd. The NICU head physician had been involved for months with this firm to
produce an innovative EPR for the care of his premature newborns: a job order
he was totally in charge of, with no time pressures and the concrete willingness
to create a solution on the practitioners’ side. Since Alpha designers had already
developed a full-fledged prototype of a hospital-wide EPR, the NICU head physi-
cian soon adopted that prototype as a sort of “sandbox” where the programmer
analysts of Alpha and some physicians of the NICU could experiment their inno-
vative and peculiar ideas with no claim of officiality or exactitude. While Alpha’s
analysts were more oriented to the archival functionalities, we concentrated on
the coordinative ones: together with the practitioners, we took the design of a

LWOAD: A Specification Language to Enable the End-User Develoment 149

new EPR as the occasion to try to preserve as many as possible efficient, though
idiosyncratic, coordinative practices and “graft” them onto the archival-oriented
EPR by conceiving coordinative functionalities on-top-of it.

To this aim, we felt the need to develop specific ways (a) to express
coordination-oriented requirements in a user-friendly manner for ICT laymen
(as clinicians were); and (b) to formalize the corresponding functionalities in a
way that they could become easily computable. Our goal was to support the
effort of practitioners in making explicit, symbolic and also computable the rela-
tionship occurring between recurrent patterns of context and the conventional,
local ways practitioners relied on to cope with this context. During the require-
ment collection and preliminary analysis, we observed that the simplest, and yet
powerful, concept that practitioners grasped with fewer equivocations was that
of reactive behavior and its computable counterpart, the rule, i.e., a well-defined
and autonomous if-then statement (see Figure 1).

This finding heavily influenced how we were conceiving the WOAD frame-
work [15] (an acronym for ‘Web of Documental Artifacts’). WOAD is a design
framework we were articulating during the NICU case study in order to bridge
the gap between informal description of coordinative conventions – expressed
in terms of agreed ways to cope with the current context – and the design of
document-mediated functionalities supportive of these conventions. Our point
was that practitioners themselves could bridge this gap, if the the computer-
based support could provide them unobtrusive and additional information to
promote collaboration awareness [16,17]. In the WOAD framework, we defined
(a) a conceptual model of articulation by which to characterize the main entities
and relationships involved in document-mediated cooperative work in terms of
minimal sets of attributes; (b) a denotational language – LWOAD – which incor-
porates those concepts and relationships to represent the context of cooperative
document domains and conceive specific computational mechanisms that convey
Awareness Promoting Information (API) depending on the current context [17];
and (c) a high-level architecture for information sharing in context-aware and
distributed computing settings where LWOAD is used and implemented. Since
LWOAD plays a basic role in making the specification of rules expressing the
above mentioned relationships computable, we briefly introduce it and discuss
how we used it in our interaction with the NICU practitioners.

3 A Language to Express Coordinative Functionalities

Within the WOAD framework, LWOAD provides a set of high-level concepts
– like those of actor, documental artifact, fact, fact space, and fact-interpreter –
that we propose to guide the design of a rule-based reference architecture for
context-aware and coordination-oriented electronic document systems. We con-
ceive LWOAD as an astract programming interface by which to program
functionalities that (a) process the content of a document according to local
conventions of coordination; and (b) convey suitable API to support actors in
articulating their document-centered activities.

150 F. Cabitza and C. Simone

LWOAD encompasses a set of both static and dynamic constructs by which
designers can express either contextual, organizational or procedural knowledge
about a work arrangement. Static data structures and dynamic behaviors of an
application are expressed by two specific constructs: facts and mechanisms, re-
spectively. In LWOAD, designers can model a cooperative arrangement in terms
of its main relevant entities and the relationships between them by declaring
facts. Whatever is given the suffix -fact (e.g., activity-fact, relation-fact and
API-fact) is a key-value data structures, which programmers can use to char-
acterize the relevant entities of a documental domain just assigning a value to
their specific attributes. A relation-fact, for instance, is characterized by five at-
tributes: i) a name, ii) a description, iii) a property telling whether the relation-
fact indicates a relationship between classes (e.g., physicians and patients) or
between instances (e.g., Dr Smith and Mr Jones), iv) an attribute that spec-
ifies the fact’s name of the entity that is the source (i.e., the subject) of the
relationship and v) an attribute specifying the target (i.e., object) entity of the
relationship. LWOAD provides designers with templates (i.e., entity-facts) for
the most generic categories of articulation work (cf. [13]), like those of actor,
activity and artifact; yet, by means of the extends primitive, designers can also
define domain-specific entities (such as patient, doctor and clinical activity) that
specialize and inherit from those general categories.

Mechanisms can be seen as simple conditional statements, like if-then rules.
They produce some output in virtue of the actions expressed in their consequent
(the then part) whenever specific contextual conditions, which are expressed in
their antecedent (the if part), are true. Antecedents are considered true when-
ever the conditions they express on the entities they refer to are met by the cur-
rent WOAD-compliant representation of the context, i.e., by the content of the
facts represented within the so called fact space. Any single mechanism is hence a
symbolic way to make a relation explicit between some contextual conditions and
some functionality that the system should exhibit whenever a specific case occurs.

Although symbolic and based on rules, LWOAD is far from being usable di-
rectly by practitioners, since it must comply with the typical syntactic
constraints of a language interpretable by a computational engine. For this

Fig. 1. The design-implementation loop inspired by the case study

LWOAD: A Specification Language to Enable the End-User Develoment 151

reason, we adopted a two-step approach: first, for each identified coordinative
mechanism, we invited the practitioners to indicate both the relevant set of
attributes of the domain entities, events and documental data that the compu-
tational system should be sensitive to, and what conditions the system should
evaluate on these relevant aspects of the work setting in order to activate the
desired functionalities. The practitioners expressed the mechanisms in natural,
tough structured and restricted, language and we translated them “on the fly’
in LWOAD statements. In doing so, we could rapidly convey the “flavor” of the
coordinative mechanisms envisioned by the NICU practitioners and we could
support them in deciding whether the mechanisms had to be fully implemented
in the hypothetical final release of the EPR. Once they had become familiar
with this way of describing the desired mechanisms and had identified the basic
patterns of conditions, we mocked-up an interface based on a wizard that could
support practitioners in the construction of mechanisms (more details in Sec-
tion 6). Our goal was to check whether the practitioners had become proficient
in defining the desired mechanisms autonomously. Then, the needed mechanisms
were translated in LWOAD to check its correctness with respect to both the ap-
plication conditions and the desired outputs. Generally, practitioners did not
find problems in expressing LWOAD mechanisms, probably for their intrinsic
simplicity: antecedents are constituted by fact patterns and boolean tests and
practitioners found natural express them as conjunction of facts that must be
true in a given situation. On the other hand, consequents are sequences of WOAD
primitives and practitioners mastered them in a relatively short time since our
design choice was to limit LWOAD to the expression of functionalities that pro-
mote collaboration awareness and do not manipulate the data managed in the
archival dimension of the EPR. Therefore, the effects of the consequents were
only graphical cues added on top of documents’ data. In a parallel work [17], we
classified up to 13 different types of API – e.g., criticality, revision and sched-
ule awareness – and identified together with the practitioners graphical ways
to convey those various kinds of information. Although this latter identification
is not completely experimented, it constituted a basis where to get an initial
impression of how well the interface could be usable by practitioners on their
own. In the next section, we provide the reader with two examples of mecha-
nism specification in response to the specific coordinative requirements that we
identified with the NICU practitioners during the first phase of our study.

4 Coordinative Requirements for EPRs

The patient record is the main documental artifact used in hospital care as it is
the composite repository for the whole information concerning a single patient
stay. During a patient stay, the whole patient record is split up into several
sheets and documents; these are distributed in the ward and are very specific for
a certain aspect of care so as to be usually used by different actors at the same
time. During the study at NICU, practitioners recognized the need to conceive
functionalities supportive of the conventional ways by which artifacts were used

152 F. Cabitza and C. Simone

both to document their work and to mutually articulate their activities with each
other. In the what follows, we present some cases that call for the requirements
of a flexible definition and flexible combination of coordinative functionalities.

Specification Flexibility for Structure-Related Conventions. Due to the
fact that clinical data are usually scattered across multiple artifacts in different
places, doctors at NICU found useful to rely on a summary of clinical data
that are gathered into one single sheet that they call Summary Sheet (SS); they
update the SS quite frequently by taking and synchronizing its content from
the official patient record. The summary sheet is not part of the official patient
record but, nevertheless, it is a very useful working document since it is often
used to jot down offhand annotations and informal communications regarding
clinical conditions of the patient at hand. Moreover, due to its informality, doc-
tors are used to bringing the SS with them either as first page of sets of papers
under their arm, or even folded in their pocket. Therefore, since the SS is usually
the first document doctors have got in their hand during their hectic activities,
they also use it to jot clinical data and prescriptions on-the-go, which they will
have to replicate into the official record later as a rule of law. Hence, the sum-
mary sheet is not only a “passive view” of previously reported data, i.e., a view
on data fetched by querying multiple tables of a clinical database on the illness
course of a single patient. It is also an active entry form, into which practitioners
insert data at the point of care and from which they copy data into the official
records for the sake of accountability and liability. Doctors were well aware of
this twofold functionality during the design of the digital counterpart of the SS
into the “innovative” EPR; therefore, they were willing to express constraints
and define conceptual connections between sections and fields of the summary
sheet and corresponding sections and fields of the artifacts compounding the
patient record. These connections were seen as symmetrical, i.e., equivalent and
irrespective of where the original data were actually inserted first. They can
be traced back to the class of connections that in [18] we denoted as enabling
“redundancy by duplicated data”, in that they make the association explicit be-
tween identical data that are reported in two or more documents of the patient
record. In regard to the requirements for supportive functionalities, these kind
of connections regard conventions of production and use of clinical documents:
more specifically, they regard how data are organized within templates, what
data type are allowed in what field (i.e., syntactic integrity) and also where
people fill in data during their situated documental activities. Moreover, these
connections are local and conventional both in their definition and, above all, in
their use. In fact, it is only on a conventional and context-dependent basis that
doctors want summary sheets be completely compiled after the patient record
and, conversely, values reported in the SS first be fed into the patient record at
proper time.

Two examples can better illustrate this point. Some members of the NICU
staff team expressed the requirement that values on the weight of newborns
would be reported into the summary sheet only whenever a newborn was in
life-threatening conditions. In fact only in that case, these practitioners deemed

LWOAD: A Specification Language to Enable the End-User Develoment 153

Fig. 2. A coordinative mechanism on conventional patterns of data redundancy. Above,
as expressed by practitioners in their own terms. Below, how this is translated in terms
of LWOAD facts and primitives.

necessary to rely on weight data at the point-of-care, so as to calculate drug
dosage precisely. In the other cases, to have these data available on the SS would
only result in an unnecessary information overload and, even more annoying,
would undermine the role of unobtrusive reminder on critical conditions that
the presence or absence of weight data in the summary sheet could play at the
point of care. Likewise, at NICU, clinical data that are reported into the SS first
are often deemed as still provisional and are reported there to have colleagues
consider those data but also take them as not yet definitive, or even as an
invitation for further check and inquiry. The need for doctors to be aware of what
is still provisional and hence different from what constitutes an unmodifiable and
legal account of accomplished deeds is essential to cooperatively structure the
formation of decisions and judgments, as also reported in [19].

Figure 2 depicts how the above mentioned conventions on data replication
have been expressed in a dedicated and concise LWOAD mechanism. This mech-
anism has in its antecedent all and only the relevant aspects of context that are
concerned with the coordinative functionality expressed in the consequent. While
practitioners expressed this subset of contextual information in their own terms,
we translated the consequent into four conditional elements, i.e., namely three
patterns and an inequality test. The reason why even what seems a quite ob-
jective and scientific threshold of blood pressure is consider “conventional” (and
hence ward- if not doctor-specific) is worthy a reflection. Quite surprisingly, doc-
tors told us that also the notion of “critical condition” changes according to a
number of contextual aspects that are mostly neglected by monitoring devices:
their alarms are most of times consciously and rightly ignored by expert nurses,
as reported in [20]. For this reason, doctors believe that these conditions are

154 F. Cabitza and C. Simone

utterly difficult to hardwire into procedural application logic in all but the most
obvious cases. In fact, criticality – seen along the coordinative dimension as the
condition of a patient that calls for a direct and immediate intervention of some
practitioner – depends on several anamnestic and physiological elements, on the
illness history of the patient, and also on even more situated aspects, like the
attitude of attending practitioners and their current workload. This is an impor-
tant point to challenge LWOAD against the requirement of flexible definition of
mechanisms. Obviously, not all the above often-tacit contextual conditions can
be immediately and comprehensively externalized into a mechanism and neither
should they be: however, as long as recognizing a specific situation has a relevant
coordinative value, practitioners can be motivated in characterizing it formally,
by relying on some shared and broader conventional interpretation of data com-
binations or on the mutual acquaintance of the involved actors. In all these cases,
the highly incremental structure and computational autonomy of mechanisms (in
terms of their inner components and role in the control flow of the application,
respectively) can facilitate stakeholders in expressing and updating mechanisms
that are quite specific to complex and ever new situations. For instance, if the
NICU practitioners had expressed the need not to be alerted for low pressure
problems of their inpatients unless in more specific cases than that represented
in Figure 2, the antecedent of that mechanism would have been enriched with
a new combination of conditional elements: e.g., a test to evaluate whether the
basal and physiologic blood pressure of the newborn is usually low, or whether
she has been already treated for low pressure after the onset of the criticality,
or even whether the latest drug that had been administered to her brings low
pressure normally. The progressive tuning of coordinative requirements would
not require a major rewriting of the application logic behind the corresponding
functionality, but just call for the addition (or deletion) of specific conditional
elements within the mechanism that triggers the provision of criticality API on
those critical conditions.

Combination Flexibility For Run-time Connections. As said above,
NICU practitioners expressed the need that executable mechanisms could be
easy to define and modify. In addition to that, they also expressed the need
the application (i.e., execution) of these constructs be dependent on the current
context. In regards to this requirement, which is in the line of the major tenets
of context-aware computing [21], they needed to conceive ways to manage con-
nections that had been explicitly instantiated between data during their daily
activities, and not just at schema level and at compile time as in the previous
case. Thinking in terms of rules assured them that the whole set of mechanisms,
once specified as a whole, is “rescaled” each time into smaller active subsets,
i.e., those mechanisms whose antecedent is satisfied according to what actors
do (as to any other contextual event). In fact, even multi-condition mechanisms
– i.e., mechanisms that are very specific to a given situation – are considered
for execution just when all their conditions are true; this releases practitioners
from conceiving an arbitrarily long sequential flow of control in which this kind
of mechanisms are discarded in all cases but that very specific situation. This

LWOAD: A Specification Language to Enable the End-User Develoment 155

flexibility was deemed useful especially in the case of connections that were cre-
ated at run-time across artifacts of the patient record, such as the problem list
and the doctors’ diary.

The Problem List (PL) is the artifact of the patient record where clinicians
enumerate the patient’s problems. This list is intended to document all those
conditions and events that can be related to clinical hypotheses and procedures.
The term “problem” is purposely left vague enough to comprise a number of
factors like symptoms, any alterations to vital signs, and all the concomitant
pathologies that could affect a patient’s hospitalization. The PL is likely to
change during the caring process since practitioners are supposed to update its
content with respect to the actual improvements or aggravations exhibited by the
patient but also with respect to the extent they can consolidate their diagnostic
hypothesis. Therefore, the PL is more than a mere list of either concomitant
or sequential problems affecting the patient: it is the artifact where doctors
represent the main deviations and swerves of illness trajectories, and the results
of the epicrises (i.e., summings up) doctors periodically accomplish in evolving
and improving their diagnosis on a specific case. The epicrises can result in the
need to “cross out” previously unrelated symptoms and substitute them with
new comprehensive diagnostic items. On the other hand, changes that regard
the acuteness of single problems previously stated are not represented into the
PL explicitly. These are rather represented in the Doctors’s Diary (DD). The
DD is the central repository for the notes that physicians need to write down in
order to account for the decisions and interventions they are responsible for, as
well as to make impressions, opinions, or just lines of reasoning explicit, either
for themselves as memorandum or as written notes to other colleagues.

The physicians called our attention on how useful would be for them to be
capable of making explicit on the record itself the relationships between past
problems and new problems as well as between problems of the PL and the
daily entries reported into the DD. The former capability was seen as a way
to reconstruct or, better yet, make the line of thought explicit by which symp-
toms have been rationalized into problems and unrelated problems into precise
diagnosis. The latter was seen as a way to facilitate the a posteriori reconstruc-
tion of a problem progress from its outset, in order to give indications on how
to head the course of clinical interventions towards its conclusion. These re-
quirements point to a relevant coordinative need, besides that of keeping trace
of relevant phases during the decisional/medical process: in fact doctors were
also, sometimes implicitly, expressing the need to be informed on what problems
they should address first and on the way their colleagues had coped with these
problems that far.

We then asked practitioners which kinds of relationship they would more
naturally employ to join two or more data that are not explicitly correlated by the
patient record structure. The result was that practitioners found more natural to
consider relationships as occurring between data entries, either already recorded
or still to record on the patient record. In the former case, they pointed out the
usefulness to relate data over distributed and different artifacts; in the latter case,

156 F. Cabitza and C. Simone

they referred to the capability to draw relationships between data values and
fields yet to fill in, that is between documental activities and articulated work
activities still to perform. While almost any doctor expressed her preference
for a number of possible relationships that had small overlap (if any) with those
pointed out by the others, we noticed that when these relationships were actually
applied in the field of work, they all blur into three main categories: causal,
temporal and intentional connections [18]. The generic semantics that pertain
to the nature of the relationships between a source information and a target
information could then be respectively rendered as: (a) “the source because of
the target”; doctors would use this connection in order to hint a strict causal
relationship between items of the patient record: e.g., the diagnosis ‘pneumonia’ –
reported in the PL – can be indicated as cause of the symptom ‘cough’ – reported
in the DD – as a way to explain the symptom itself. (b) “the source after the
target”; doctors would use this connection not only in strict temporal sense, but
also to hint a very weak or just supposed causal relationship: e.g., reporting that a
skin rash – a symptom from the DD – occurred after having administered a drug
– an order reported somewhere else in the PR – would indicate a hypothesized
correlation between these two clinical facts. And (c) “the source for the target”,
that doctors would use in order to highlight evidence supporting a particular
decision or to make an intention explicit (e.g., that the bacterial culture – an
order – has been prescribed to verify the diagnostic hypothesis of pneumonia
– an item in the PL).

Figure 3 depicts how the need to be aware of impromptu connections (i.e.,
relationships) that were previously drawn by colleagues was computationally
rendered in WOAD-compliant statements by practitioners with our support. The
mechanism is sensitive to whether a connection exists between a specific entry
and another entry anywhere else in the PR. Only whenever this situation occurs,
the WOAD interpreter executes an instruction by which an API is conveyed to
the actor through the form she is currently using (see last statement in Figure 3).
This general mechanism can be made more specific in its antecedent by adding to
the pattern for the relation-fact the explicit indication of the type of relationship

Fig. 3. A list-like representation of the mechanism of run-time creation of data con-
nections

LWOAD: A Specification Language to Enable the End-User Develoment 157

(e.g., causal) to be sensitive to. Likewise, designers can specify in the consequent
what API to convey in relation to the kind of correlation.

5 LWOAD and the Flexible Specification of Coordinative
Functionalities

LWOAD was presented to the clinicians as a sort of specification language by
which to implement their coordinative requirements. These were intended to
characterize an EPR that would not hinder, but rather foster, patterns of coop-
erative behaviors on the basis of how actors use official records and documents
in their daily practice. The fact that users could be facilitated in “rapidly hav-
ing a taste of a functionality” (as suggestively said by an interviewee) called for
the twofold requirement that coordinative requirements must be flexibly speci-
fied – so as not to hinder their incremental re-definition – and the corresponding
functionalities be flexibly combined – so as to fit an ever-changing and necessarily
underspecified context.

This stress on flexibility has, on the one hand, motivated us in defining
LWOAD as a language by which to render coordinative requirements in a com-
putable but yet platform-independent and abstract manner; on the other hand,
we were motivated in using it to express an upper layer of application logic that
would be conceptually “on top of” a full-fledged electronic document system and
that would endow that system with cooperation-oriented functionalities (see this
general schema in Figure 4).

Fig. 4. The two-tier architecture designed to enhance electronic documents with col-
laboration awareness. FS stands for Fact Space, the memory where declarative repre-
sentations of documental and working context are stored.

The adopted declarative and rule-based approach guaranteed that coordina-
tive functionalities can be expressed in terms of reactive and declarative mecha-
nisms [22]; these are symbolic statements intended to translate the typical ques-
tion of users “ . . . and could I have the system do this, whenever that occurs?”
into computable instructions. The declarativeness of these statements allows for
the expression and formal specification of what a system should do rather than
worrying about how it really accomplishes it at specification time. Declarative-
ness also allows mechanisms to be written without imposing a strict control flow,

158 F. Cabitza and C. Simone

which is hardly recognizable in actual work situations. On the other hand, reac-
tivity allows mechanisms to be written by using circumscribed units of code (i.e.,
rules). This“convenience of definition” relates to flexibility in terms of a greater
easiness of maintenance due to better modularity and incrementality; moreover,
defining mechanisms in a higher-level way than by means of traditional proce-
dural specification is also intended towards a better participation of users in the
process of modelling and defining formal expressions, so that these could reflect
how users really see their domain-specific knowledge and functionalities.

The rule-based layer of cooperation logic on top of the procedural application
logic of a traditional electronic document system is sensitive to both the content
of documents (in Figure 4 denoted with XMLD, i.e., data rendered in XML
format) and the symbolic representation of context. The output of this context-
aware layer is the conveyance of additional information, namely API, that does
not change documental data but rather how the interface of a document system
displays and “affords” them (in Figure 4 denoted with XMLA, i.e., API rendered
in terms of XML metadata). In doing so, data conveyed in documents (denoted
with a capital D in Figure 4) would be gathered from official repositories (e.g., a
hospital DB) according to procedural organizational logic; conversely, the API
attached to these data (denoted as an highlighted border all around the capital
D in Figure 4) would be provided according to more flexible mechanisms on the
basis of coordinative conventions.

Furthermore, the rule-based approach addresses the flexibility requirement
from the combination point of view. In rule-based programming, a rule is exe-
cuted automatically on the basis of any significant event and data change only
after that: i) its “applicability criteria” have been matched by the rule engine
against current data, i.e. what constitutes the symbolic description of a situa-
tion at run-time; and ii) after that it has been selected among all other rules as
the most suitable to that situation, according to some strategy (e.g., specificity,
recentness). We agree with [22] that rule-based programming have some im-
portant advantages over procedural programming in grasping and aligning with
cooperative work, especially for its data- and event-driven nature. In addition,
the particular kind of action that LWOAD mechanisms trigger, i.e., augment-
ing the interface with graphical cues and indications promoting collaboration
awareness, brings down the problem of mutual consistency of the rule set. This
problem often makes the adoption of this form of declarative specification diffi-
cult to be understood and managed by layman users. Our case is different from
production systems and expert system where possibly long chains of rules are
consecutively executed to infer a line of action on the basis of progressively true
conditions. Conversely, we adopt a rule-based approach in order to separate func-
tional concerns into single mechanisms (not into chains of their executions); and,
for the mechanism design, we advocate the principle that the consequent of each
mechanism should be expressed as simply as possible, i.e., that each mechanism
should only address a single and punctual functionality that the system must
exhibit against possibly over-detailed and specific contextual conditions (which
are specified in the mechanism’s antecedent). Moreover, the fact that LWOAD

LWOAD: A Specification Language to Enable the End-User Develoment 159

Fig. 5. Screenshot of the mockup for the mechanism editor, first windows

consequents do not change data (and hence the state of the world) but rather
convey APIs, and that APIs are conceived as orthogonal guarantees that data
inconsistency can not occur for their execution. Moreover, possible conflicts in
alerts (e.g., when two mechanisms trigger the same API but with different val-
ues) can be “caught” before execution by the mechanism interpreter itself (i.e.,
by monitoring the execution agenda). In this latter case, the system can propose
the conflict to users as particular situations that call for their interpretation and
resolution on the basis of their experience and knowledge.

6 Simulation and Mockup Tests of LWOAD Specification

In what follows, we illustrate the mockup that we designed after the requirement
analysis. This was meant as a proof-of-concept for the prospective application
that users would use to develop coordinative mechanisms by themselves. Since
mechanisms are but rules, the main idea was to assimilate mechanisms devel-
opment to rule configuration: we then conceived the LWOAD mechanism editor
similar to an interactive help utility, much alike those provided by email clients
to guide users through the configuration of personal filters and mechanisms of
message filing. The mockup was realized in MS PowerPoint and intended as a
sequence of dialog boxes where users could select options and fill in details; each
slide was endowed with active areas corresponding to the buttons and links of
the prospective interface in order to simulate the typical interaction involved in
mechanism creation.

160 F. Cabitza and C. Simone

Fig. 6. Screenshot of the mockup for the definition of the mechanism’s antecedent

In the first window, users have access to the macro-functionalities of the editor
(see Figure 5) as regards either mechanism composition or API visualization. In
this paper, we do not address the functionalities of API rendering, i.e., the asso-
ciation between API types and rendering functionalities (like, e.g., colors, icons,
highlighting) provided by the documental platform. In regards to mechanism
composition, a list of existing mechanisms is displayed in the top frame of the
window. Users can read the textual description of each mechanism by selecting
the corresponding row: the description is then displayed in the bottom frame
(in Figure 5 we report the same mechanism illustrated in Figure 2). From the
textual description of a mechanism, users can directly modify its parameters by
clicking on the underlined elements (i.e., variables of the mechanism’s pattern).
Users can also change the structure of the mechanism (clicking on ‘change...’);
delete it, “activate” it (by checking the corresponding checkbox); and run the
mechanism to check its functioning (clicking on ‘Run Now...’). If the user clicks
on ‘New’, the mechanism wizard starts a three-step process; in the first window,
the system proposes two options: to create a mechanism from a template, or
to compose it from scratch, i.e., from a blank template. We will consider this
second case. In this case, the system opens a new window in place of the former,
like that depicted in Figure 6 (left side, background). From the top frame of this

LWOAD: A Specification Language to Enable the End-User Develoment 161

window, the user can select any number of conditions the mechanism should be
sensitive to (in its antecedent). In-depth analysis and participatory design ses-
sions have allowed to list together all the relevant conditions that practitioners
wanted to be catched with respect to the records’ content, time and the clinical
context. By selecting a condition from the list, the associated conditional state-
ment is added in the bottom frame. As in the case of the first screen (Figure 5),
the user can specify the value of the parameters the mechanism should monitor
by clicking on the underlined parts of the statement. In doing so, correspond-
ing input boxes are displayed to allow users insert the value (e.g., 70 mmHg,
a blood pressure value as in the case reported in Figure 2). If the user wants
to specify the document where to check the condition, the system opens a box
like that depicted in Figure 6 (right side, foreground). Here, the user can con-
sult a tree-like schema of the official documentation and select the document/s
(or their inner sections) whose data must be matched with the pattern’s values.
Once the antecedent of the mechanism has been defined, the wizard proposes a
third window (in place of the previous one – see Figure 7) where the user can
specify what the system is supposed to do when the conditions are true, i.e., the
elements of the consequent part. Also in this case, the user can select a number
of different actions from the top frame; and then specify a value for each key
presented in the textual description in the bottom frame. The list depicted in

Fig. 7. Screenshot of the mockup for the mechanism’s consequent definition

162 F. Cabitza and C. Simone

Figure 7 presents the main options selected by practitioners on a relevance basis
during the interviews. The system groups these options together by similar cat-
egory: e.g., API provision, connection definition, data replication and insertion
and the like. In the case the action regards API provision, the user can also
insert a textual explanation. This would be displayed on the clinical record only
if requested in case a user can not interpret the API clue conveyed. By clicking
the button ‘Finish’, the system creates the mechanism that is executable by
the LWOAD interpreter. This is currently a compiler that renders LWOAD con-
structs into corresponding structures of Jess 1, which are then executed by the
fast and reliable rule engine provided within this scripting environment. Jess was
chosen after our positive experience during the development of a distributed ver-
sion of Jess for the construction of applications in the Collaborative Ubiquitous
Computing and Ambient Intelligence domains [23,24]. The strong decoupling
we pursued in the design of the WOAD architecture between cooperative logic
and the operational platform allows for the development of other compilers by
which to translate LWOAD statements into other rule-based scripting languages.
Currently, the implementation of a WOAD compiler compliant with the JBoss
Rules2 engine is under consideration to overcome the limits of Jess in dealing
with data structures more complex than lists.

7 Conclusions and Future Work

The paper illustrates the trajectory we have followed to approach the definition
of a framework where layman users can specify mechanisms supporting their
cooperation mediated by documental artifacts. This trajectory is not completed
but currently covers the most important part of the research path: namely, i)
understanding the kind of functionalities users need; ii) identifying a way to
express the functionalities and iii) defining an architecture where the function-
alities can then be implemented and validated. Also in regards to how users
should interact with this architecture and system, our research agenda covers
the incremental involvement and increasing skills of users: namely, we started
having practitioners express conditional mechanisms in natural language; then
we stimulated them to use an application to compose and detail condition-
action statements of increasing complexity; lastly, we envision the opportu-
nity to have users tweak and adjust LWOAD statements created with the for-
mer application in case of progressive customization and compliance to local
needs. In this study, the choice of a rule-based representation seemed the most
suitable one for the different types of flexibility it allows: namely, flexibility
in specifying computational mechanisms and in combining them together at
execution time.

The empirical findings we gathered so far refer to the healthcare domain and
to a hospital setting. In this case, the problem was to endow the implemen-
tation of an EPR with means that preserve or even support the conventions
1 Java Expert System Shell:http://www.jessrules.com/
2 See http://www.jboss.com/products/rules

http://www.jessrules.com/
http://www.jboss.com/products/rules

LWOAD: A Specification Language to Enable the End-User Develoment 163

that practitioners adopt to make their cooperation smooth and seamless. A first
natural question regards how much our empirical findings can be generalized
to other settings, even within the same domain: we acknowledge to have found
a group of doctors and nurses that were extraordinarily helpful to try and co-
develop innovative solutions with computer researchers and professionals; they
were extremely motivated in molding any tool that could help them in provid-
ing a better care and re-delivering more healthy newborns to their parents. For
this reason, scalability and generalization of our proposal is part of our research
agenda. Our next activities will also include the full implementation of the inter-
face, informally validated through the mockup illustrated in Section 6: our pilot
sessions confirm its feasibility as a tool that makes users autonomous in speci-
fying condition-action mechanisms, once the set of patterns has been identified
for their antecedents and a rich palette of graphical cues has been proposed as
output of their consequents. This approach however opens a new area of prob-
lems: a tool like that depicted in Section 6 interprets EUD more as a flexible
kind of customization than as a real development environment [25]. In fact, the
predefined set of patterns cannot fulfill the needs of increasingly skilled users
wanting to extend the “localization” of the desired support. To fulfill this re-
quirement, users must have access to the implementation environment also: here
it is where the WOAD framework, and specifically its specification language
– LWOAD – can play a relevant role for its declarative, abstract and modular
approach that divides complex situations into a bunch of supportive function-
alities that are called reactively with respect to the current context. The first
phase of the study showed how (relatively) easily layman users can transform
informal rules of their particular setting into executable statements, due to the
“isomorphic” nature of the involved representations.

The next step is to allow users define more general rules by selecting the
needed pieces of information to build the antecedent of the rules out of the
documental artifacts in a natural way. Practitioners proposed a solution that
could mimic how users of a spreadsheet copy data from cell to cell just by
clicking on them and pasting them where needed. Likewise, users should be
able to express contextual conditions from a predefined palette of templates
(concerning, e.g., time, frequency, iterations, etc.) and specialize them by ex-
pressing simple key-value pairs and selecting data structures and data values
directly from their documentation. Of course, this additional flexibility would
ask for a strong interoperability between the coordinative layer and the archival
layer, i.e., the EPR, or at least the capability to export and represent suit-
able views of clinical data, irrespectively of how they are organized and mem-
orized. In our opinion, and on the basis of our interaction with practitioners,
this kind of interoperability could bring data presentation strategies to EPR
that are more natural and closer to the way practitioners use the current paper-
based clinical record fruitfully. This positive mutual influence is the final goal
we aim to pursue in our planned interactions with users in the healthcare
domain.

164 F. Cabitza and C. Simone

Acknowledgements

The work presented in this paper has been partially supported by the F.A.R.
2008. The authors would like to thank the management and the Neonatal Inten-
sive Care Unit personnel of the Alessandro Manzoni Hospital of Lecco for their
kind collaboration. In particular, we would like to acknowledge the invaluable
help and courtesy of Dr Bellù and Mrs Colombo.

References

1. Braa, K., Sandahl, T.: Introducing digital documents in work practices - challenges
and perspectives. Group Decision and Negotiation 9(3), 189–203 (2000)

2. Sellen, A.J., Harper, R.H.R.: The Myth of the Paperless Office. MIT Press, Cam-
bridge (2003)

3. Terzis, S., Nixon, P., Wade, V., Dobson, S., Fuller, J.: The future of enterprise
groupware applications. Enterprise Information Systems, 99–106 (2000)

4. Xiao, Y.: Artifacts and collaborative work in healthcare: methodological, theo-
retical, and technological implications of the tangible. J. of Biomedical Informat-
ics 38(1), 26–33 (2005)

5. Hertzum, M.: Six roles of documents in professionals’ work. In: ECSCW 1999:
Proceedings of the Sixth European conference on Computer supported cooperative
work, pp. 41–60. Kluwer Academic Publishers, Norwell (1999)

6. Garfinkel, H.: “Good” organizational reasons for “bad” clinic records. In: Studies
in Ethnomethodology, pp. 186–207. Prentice-Hall, New Jersey (1967)

7. Berg, M.: Accumulating and Coordinating: Occasions for Information Technolo-
gies in Medical Work. Computer Supported Cooperative Work, The Journal of
Collaborative Computing 8(4), 373–401 (1999)

8. Fitzpatrick, G.: Integrated care and the working record. Health Informatics Jour-
nal 10(4), 291–302 (2004)

9. Winthereik, B.R., Vikkelso, S.: Ict and integrated care: Some dilemmas of stan-
dardising inter-organisational communication. Computer Supported Cooperative
Work, The Journal of Collaborative Computing 14(1), 43–67 (2005)

10. Cabitza, F., Simone, C.: “You Taste Its Quality”: Making sense of quality stan-
dards on situated artifacts. In: MCIS 2006: Proceedings of the First Mediterranean
Conference on Information Systems, Venice, Italy, AIS (2006)

11. Berg, M., Goorman, E.: The contextual nature of medical information. Interna-
tional Journal of Medical Informatics 56, 51–60 (1999)

12. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer Supported Cooperative Work 5(2/3),
155–200 (1996)

13. Divitini, M., Simone, C.: Supporting different dimensions of adaptability in work-
flow modeling. Computer Supported Cooperative Work 9(3), 365–397 (2000)

14. Heath, C., Luff, P.: Documents and Professional Practice: ‘bad’ organisational rea-
sons for ‘good’ clinical records. In: CSCW 1996: Proceedings of the international
conference on computer-supported cooperative work, pp. 354–363. ACM Press,
Cambridge (1996)

15. Cabitza, F., Simone, C.: “. . . and do it the usual way”: fostering awareness of work
conventions in document-mediated collaboration. In: ECSCW 2007: Proceedings of
the Tenth European Conference on Computer Supported Cooperative Work (EC-
SCW),Limerick, Ireland, September 24–28, pp. 119–138. Springer,Heidelberg (2007)

LWOAD: A Specification Language to Enable the End-User Develoment 165

16. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In:
CSCW 1992: Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, pp. 107–114. ACM Press, New York (1992)

17. Cabitza, F., Sarini, M., Simone, C.: Providing awareness through situated process
maps: the hospital care case. In: GROUP 2007: Proceedings of the 2007 Interna-
tional ACM SIGGROUP Conference on Supporting Group Work, pp. 41–50. ACM
Press, New York (2007)

18. Cabitza, F., Simone, C.: Supporting practices of positive redundancy for seamless
care. In: CBMS 2008: Proceedings of the 21st IEEE International Symposium on
Computer-Based Medical Systems, Jyväskylä, Finland, June 17-19, 2008, pp. 470–
476. IEEE Computer Society, Los Alamitos (2008)

19. Hardstone, G., Hartswood, M., Procter, R., Slack, R., Voss, A., Rees, G.: Support-
ing informality: team working and integrated care records. In: CSCW 2004: Pro-
ceedings of the 2004 ACM conference on Computer supported cooperative work,
pp. 142–151. ACM Press, New York (2004)

20. Randell, R.: Accountability in an alarming environment. In: CSCW 2004: Proceed-
ings of the 2004 ACM conference on Computer supported cooperative work, pp.
125–131. ACM Press, New York (2004)

21. Dourish, P.: Seeking a Foundation for Context-Aware Computing. Special Issue on
Context-Aware Computing HCI Journal 16 (2001)

22. Wulf, V., Stiemerling, O., Pfeifer, A.: Tailoring groupware for different scopes of
validity. Behaviour and Information Technology 18(3), 199–212 (1999)

23. Cabitza, F., Seno, B.D., Sarini, M.: DJess – a context-sharing middleware to de-
ploy distributed inference systems in pervasive computing domains. In: ICPS 2005:
Proceedings of the IEEE International Conference on Pervasive Services, Santorini,
Greece, pp. 229–238 (2005)

24. Cabitza, F., Locatelli, M., Sarini, M., Simone, C.: CASMAS: Supporting collab-
oration in pervasive environments. In: PerCom 2006: Proceedings of the Fourth
Annual IEEE International Conference on Pervasive Computing and Communica-
tions, Pisa, Italy, pp. 286–295. IEEE, Los Alamitos (2006)

25. Liebermann, H., Wulf, V., Paternò, F. (eds.): End-User Development. Kluwer Aca-
demic Publishers, Dordrecht (2006)

	LWOAD: A Specification Language to Enable the End-User Develoment of Coordinative Functionalities
	Requirements for EUD in Document-Mediated Cooperative Work
	Bridging Conventions and EPR Applications
	A Language to Express Coordinative Functionalities
	Coordinative Requirements for EPRs
	LWOAD and the Flexible Specification of Coordinative Functionalities
	Simulation and Mockup Tests of LWOAD Specification
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

