
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 126–145, 2009.
© Springer-Verlag Berlin Heidelberg 2009

End-User Development for E-Government Website
Content Creation

Daniela Fogli

Dipartimento di Elettronica per l’Automazione
Università degli Studi di Brescia

Via Branze 38, 25123 Brescia, Italy
fogli@ing.unibs.it

Abstract. E-government websites are currently becoming more and more huge
and complex. They provide citizens with several kinds of information, includ-
ing services for online task payment or front office reservation. The creation
and maintenance of such websites often require a distributed approach: the con-
tent publication task is transferred from software developers to personnel of the
various organization departments (here called the publishers). To this end, a
Content Management System (CMS) is usually adopted. However, CMSs do
not generally satisfy all requirements and needs that emerge in this application
domain. Therefore, the adoption of End-User Development (EUD) techniques,
tailored to the publishers’ culture, background and skills, represents a possible
solution to CMSs’ current limitations. In this paper, after discussing the context
and the existing problems, we describe an approach to extending CMSs with
EUD techniques. The approach will be discussed with reference to the creation
and maintenance of the website of an existing government agency.

Keywords: e-government website, content management system, accessibility,
end user, meta-design.

1 Introduction

Government agencies are complex organizations whose websites are currently becom-
ing more and more huge and articulate. They offer to citizens several kinds of infor-
mation, including sophisticated services such as online task payment or front office
reservation.

For such websites, many countries all over the world have promulgated laws to es-
tablish the duty of satisfying precise accessibility standards [23][39][53], in addition
to the well-known usability requirements.

The creation of websites that satisfy usability and accessibility requirements has
been traditionally accomplished by software developers. Among the other activities,
software developers had to perform content authoring, by gathering information from
domain experts that worked in the various departments of the government agency.
However, this centralized organization was doomed to fail whenever the website
contents increased considerably: software developers became a bottleneck, thus de-
termining significant delays in the publication process.

 End-User Development for E-Government Website Content Creation 127

For these reasons, a decentralized strategy is currently preferred in most govern-
ment agencies: the responsibility of publishing contents on the website is assigned to
the employees of the different agency departments. Distributed content authoring has
a significant impact on the work organization and personnel roles, and investments
are necessary to acquire proper software applications that allow storing, controlling,
versioning, and publishing various kinds of web material. Web Content Management
Systems (CMSs) are the software applications that meet this demand.

A CMS is usually installed and managed by software developers – personnel
internal or external to the government agency who are expert in computer technology.
In such a situation, their responsibility in web page creation is reduced with respect
to the centralized approach. In particular, they have to develop page templates, by
ensuring their accessibility and usability. They also have to design the navigation
architecture, by assigning privileges to personnel committed to content publication,
the so-called publishers. Publishers – personnel working in some agency department
who possess the knowledge about the content to be published on the website – are the
very end users of the CMS. As such, these personnel are expected to evolve from
passive interviewees during requirements analysis to active content producers. They
generally have limited competencies in computer technology, but may be acquainted
with web browsers, word processors, spreadsheets and other similar office applica-
tions. Therefore, they are capable of using content authoring tools available in the
CMS to add their contents to the website.

However, from our collaboration experience with a large Italian municipality, it
emerged that CMS’ end users are often required to acquire some programming skills,
in order to cope with the limitations of the CMS. In particular, we have observed that
existing CMSs often lack functionalities for generating HTML code that satisfies
accessibility requirements as established by national laws (this is particularly true
when the adopted CMS is out-to-date, but migration to another product is not man-
ageable). In such a situation, publishers must access the HTML code generated by the
CMS authoring tools, and modify it manually. Consequently, this requires to provide
publishers with training courses and/or manuals that support them in doing this job. In
spite of these precautions, people not expert in computer technologies keep on con-
sidering this task as difficult, error-prone and time consuming, and thus they arrive
even at refusing to perform it.

Furthermore, software developers still remain a bottleneck in creating online ser-
vices. In fact, after the elicitation of requirements from personnel of the different
agency departments, they are in charge of implementing the services through the
programming language available in (or compliant with) the CMS. Moreover, the com-
munication gap [9][20][31] that often exists between developers and domain experts
(the departments’ employees) creates problems in correctly designing and developing
these services. Therefore, tools are needed to support CMS’ end users in creating not
only static content, but also online services, since these people are the owners of the
necessary domain knowledge.

We argue here that both HTML editing and online service creation must be re-
garded as two different kinds of software development activities publishers should
carry out. We propose to achieve this goal by extending CMSs with proper End-User
Development (EUD) facilities.

128 D. Fogli

EUD [29][50] has been defined by EUD-Net, the network of Excellence on End-
User Development funded by the European Commission during 2002-2003, as “the
set of methods, techniques, and tools that allow users of software systems, who are
acting as non-professional software developers, at some point to create or modify a
software artifact” [16]. EUD activities can range from just setting parameters to the
use of macro languages to extend system functionalities [8][9][28][35].

The contribution of this paper is to promote the application of results of EUD
research in the field of CMSs, with a particular focus on the use of CMSs for creating
e-government website content. With reference to the real case of an Italian municipal-
ity, we propose to integrate a CMS with tools that support publishers in creating con-
tents and services, transparently with respect to their underlying representation. In this
way, publishers can behave as “unwitting programmers” [11][41] by creating or
modifying software components without being conscious of this. To this end, EUD
tools must be designed by relying on publishers’ competencies and skills, thus avoid-
ing them to acquire new competencies in computer technologies.

In particular, we carried out a case study research [57][58] concerning an EUD-
based technique that has been implemented to relieve publishers from HTML editing.
This research is extensively described in [19] and briefly summarized here. A second
technique has been investigated and discussed with software developers that work at
the Italian municipality. It is still at the early stages of development, but it is presented
here as very promising in the case of online service creation.

The paper is organized as follows: Section 2 analyses the problems concerning the
development of e-government websites. Section 3 describes content management
systems, the tools generally employed for creating, managing and updating an
e-government website. Section 4 presents the theme of end-user development, the
experiences of EUD in various application domains, and the characteristics of end
users required to perform EUD activities. Section 5 describes our case study. Section
6 provides a further analysis related with the case study, which appears promising for
future implementations of EUD-based techniques in the field of e-government web-
sites. Section 7 briefly discusses the novel ideas proposed in the paper and Section 8
concludes the paper.

2 Characteristics of E-Government Websites

In many countries all over the world, several laws establish precise accessibility goals
an e-government website must satisfy [39]. For instance, since 2005, websites of
Italian government agencies must satisfy the requirements established in the “Dis-
posizioni per favorire l'accesso dei soggetti disabili agli strumenti informatici” (“Pro-
visions to support the access to information technologies for the disabled”, Law no. 4
January 2004) [40].

Most of these laws on accessibility (including the Italian one) are based on the
Web Content Accessibility (WCAG) release 1.0 recommendation of World Wide
Web Consortium (W3C) [54]. WCAG 1.0 includes fourteen guidelines that must be
followed by web developers to make their sites accessible to people with disabilities.
Such people are (i) those who need to browse web pages by using assistive technolo-
gies because of physical disabilities (i.e. people having vision, hearing or mobility

 End-User Development for E-Government Website Content Creation 129

impairments); (ii) elder people, who experience changes in vision, hearing, dexterity,
and memory as they age; (iii) people who navigate the web through obsolete or lim-
ited hardware/software technologies, including old browser versions, low bandwidth
connections to the Internet, mobile phones, personal digital assistants [53]. Most of
the accessibility guidelines can be followed by writing proper HTML code, while
others impose constraints to the interaction experience (for example by suggesting to
avoid scripting code and to limit the presence of moving objects) or suggest the crea-
tion of simpler pages in terms of layout, graphics and language.

Furthermore, nowadays, e-government websites are becoming crucial also for the
services they provide to citizens. Online services can be very different one another
and dedicated to different kinds of users. For examples, some citizens may find easier
to pay local taxes on the web, or may find useful reserving front office services or
asking for personal documents by filling in forms on the website. Online services
represent a particular kind of content that, like the other information to be published
on the website, needs some domain knowledge generally possessed by personnel of
the various agency departments.

The necessity to publish a huge and diverse amount of content usually requires a
decentralized activity. To support distributed content authoring and easy website
management, content management systems are generally adopted. Their main charac-
teristics are discussed in the following section, along with their limitations in satisfy-
ing accessibility requirements and supporting end users in the creation of complex
content.

3 Content Management Systems and Their Role in E-Government
Website Creation and Maintenance

Like other kinds of web authoring tools, content management systems are becoming
popular in relieving web site developers from low-level details of page design and
implementation. In particular, content management systems implement the so-called
content-driven paradigm: they support a separation between page presentation and
page content, and allow users to ignore those aspects related with markup and script-
ing languages necessary to build the pages. As far as page presentation, pre-formatted
templates are usually available in a CMS, as well as WYSIWIG functionalities to
support users in creating new templates. But, more importantly for website content
evolution, CMSs usually include tools that allow people not expert in information
technologies to create web contents. Interacting with these tools is usually similar to
interacting with office applications users are accustomed to use in their daily work.
For example, a typical interaction could consist in choosing a page template and fill-
ing in it by editing objects or importing them from other sources.

These characteristics permit to create websites that satisfy usability requirements
(such as consistency among pages, user-error management, system feedback), and
which should be compliant with existing standards, particularly those related with
page accessibility. Satisfying accessibility requirements established by national and
international organizations is however a difficult task. Today several CMSs claim to
directly support the development of websites compliant with WCAG guidelines. They
are both open source tools, such as Plone [42], Moodle [34], Joomla! [24], Drupal

130 D. Fogli

[15], TYPO3 [52], and commercial tools, such as Blackboard Content System [3],
QnECMS [44], Sitekit CMS [49], Microsoft Content Management Server [32] or the
more up-to-date Microsoft Office SharePoint [33] (an exhaustive survey of CMS
products and technology is beyond the scope of the paper). In spite of these claims,
for most of these tools, evaluating which WCAG guidelines are taken into account
and how is not so easy. For example, exploring Joomla! documentation, one discovers
that several accessibility fixes are due in the future version of the tool. The same is
true for Moodle. However, Joomla! developers have already declared that some
WCAG requirements are outside of Joomla! development team, as they have to be
addressed by template designers or content managers [25]. A similar claim is made by
Plone’s development team, who is aware that a number of WCAG checkpoints are
subjective, and thus their interpretation may vary [43]. In TYPO3, an extension
(plugin) is available for managing content accessibility, but related user manuals are
unavailable at the date of writing this paper, and thus it is not possible, also in this
case, to evaluate a priori the suitability of TYPO3 for creating e-government websites.
A thorough evaluation is even more difficult for commercial CMSs. Generally, their
vendors declare that they are WAI compliant without giving further details.

Another topic concerning CMSs is the availability of server-side or client-side lan-
guages that can be used to personalize the website created through a CMS. However,
such languages almost always require advanced skills, not only in computer pro-
gramming, but also in information architectures of web applications. Therefore, they
are used generally by professional software developers to implement the functional-
ities required for the domain at hand. In e-government websites, these functionalities
include online services for tax payment, document request, front-office reservation,
registration to public services (e.g. schools). In order to implement these functional-
ities and make them available on the web, software developers must always perform
requirements gathering and analysis by interviewing the personnel of the interested
department. This centralized approach and the misunderstandings arising among
computer scientists and people with different competencies are often the reasons for
delays in service development and publication. Authoring tools suitable to this task
could adequately support the personnel at various departments in creating online ser-
vices. Actually, some CMSs are specialized for particular domains, such as media
sharing or personal spaces. These CMSs offer tailoring techniques or component-
based methodologies to create web pages with functionalities for photo or movie
sharing, guestbook management, meteorological forecasting. In a similar way, do-
main-dependent functionalities such as those offered by e-government websites could
be designed directly by publishers.

4 End-User Development: From Desktop to Web Applications

The main goal of End-User Development is to study and develop techniques and
applications for “empowering users to develop and adapt systems themselves” [28].
The level of complexity of these techniques should be appropriate to the users’ indi-
vidual skills and situations, and possibly allowing them to easily move up from less
complex to more complex EUD activities. To this end, a classification of EUD activi-
ties has been proposed in [8][9] and further elaborated in [28]. The authors called

 End-User Development for E-Government Website Content Creation 131

parameterization or customization all activities that allow users to choose among
alternative behaviors already available in the application, resulting for example in
associating specific computation parameters with specific parts of the data or in ap-
plying different functionalities to the data. Then, they classify as program creation or
modification the EUD activities carried out through programming by example, incre-
mental programming, model-based development, extended annotation.

4.1 EUD Solutions in Different Application Domains

EUD techniques have been used for many years in commercial software, such as
macro recording in word processors, formula composition in spreadsheets or filter
definition in e-mail clients [28]. However, on the one hand, they are far to be used
extensively by a large community of end users, and, on the other hand, there exists the
potential for employing EUD techniques in many other application domains and with
different levels of complexity.

Research projects have been funded to design EUD techniques that support
householders in programming their home appliances (e.g. digital radios, televisions,
telephones) [4][5], in order to possibly obtain intelligent environments [14]. In the
AutoHAN project [5], the idea is to use physical infrared remote controls that can
become the syntactic elements in a program and that can be composed by the user to
represent sophisticated functions. Component-based approaches for EUD are pro-
posed in the field of computer-supported collaborative work [36], by providing visual
tailoring environments that allow users to easily create search tools, chat tools and
shared-to-do lists [55]. Repenning and Ioannidou propose agent-based programming
as a paradigm for EUD [45]. They demonstrate the feasibility of this approach by
applying it to many different domains, from game applications, to simulation envi-
ronments, to software for education. Myers et al. are developing natural programming
languages and environments to permit people to program by expressing their ideas in
the same way they think about them [37]. They performed feasibility studies in the
domain of video games, after having examined how children use and structure lan-
guage to solve problems, and in the domain of business programming, after having
analyzed how adults describe database access scenarios. Different techniques for
EUD have been implemented in the software shaping workshops, end-user environ-
ments supporting domain experts in medical diagnosis [9], mechanical engineering
[10] and geological forecasting [7]; such techniques are based on annotation mecha-
nisms and visual programming through direct manipulation.

The area of EUD also involves the creation, modification and adaptation of web
applications. This activity may turn out to be even more difficult than the develop-
ment of traditional desktop applications, since it requires to know different markup
languages, programming languages (both client and server side), interaction tech-
niques with databases. In [48], the typical hurdles in web development have been
identified, such as the stateless nature of the HTTP protocol and the necessity of ses-
sion management, handling cross-platform compatibility, establishing and managing
database connections, input validation. To overcome these problems, a software sys-
tem, called Click [46], has been developed, which allows users to generate HTML
code by simply instantiating and positioning components for a page under construc-
tion. In [30], Macías and Paternò propose an approach to the customization of

132 D. Fogli

web-based applications, which exploits intelligent mechanisms to infer customization
rules from user changes. In this case, end-user web developers who need to deal with
structure and presentation of web pages are facilitated by an automatic system that
builds an end-user profile containing customization preferences and then uses it to
regenerate web pages according to such preferences. The use of wikis for EUD is
instead advocated by Anslow and Rielhe [1]: wikis are regarded as a platform to sup-
port end users not only in contributing content, but also in performing computational
tasks. They applied this technique for the development of business queries in web
information systems. The work of Ginige and colleagues [13][22][27] is in the field of
web information systems too. However, they propose a different solution: the defini-
tion of a meta-model of web applications and a set of form-based tools that can be
used by end users to customize and evolve their applications, thus making the soft-
ware architecture completely transparent to them. The ideas of meta-modelling and
form-based EUD techniques seem very promising also in the application domain
considered in this paper. However, while the tools described in [27] require users to
follow precise syntaxes to create executable code, we propose here an evolution of the
technique towards a more natural and direct manipulation interaction.

4.2 End Users’ Characteristics

One of the most important activities when an interactive system is designed and
evaluated is the characterization of its end users, especially if such end users are re-
quired to perform EUD activities.

Cypher defines end users as people who use a computer application as part of their
daily life or daily work, but not interested in computers per se [12]. They can be tech-
nicians, clerks, analysts and managers who are often required, due to new organiza-
tional, business and commercial technologies, to perform end-user computing, i.e. “to
develop software applications in support of organizational tasks” [6].

Some researchers focus the attention on end users with a high professionalism,
such as interior designers [18], medical doctors [9], mechanical engineers [10], ge-
ologists [7], biologists [26], urban planners [2]. This has motivated the definition of a
particular class of end users, the so-called domain experts [8][28], that is experts in a
specific domain, not necessarily experts in computer science, who use computer envi-
ronments to perform their daily tasks by acting as designers and being creative [21].
According to the spectrum presented in [56], they are software developers using do-
main-specific languages to write programs in order to solve specific problems that
they own.

Web applications are often developed by “sophisticated end users” [48]: they are
causal webmasters who, though possessing limited competencies in web technologies,
are characterized by a strong sensibility and a deep motivation in creating their own
artifacts [47]. They are sophisticated in that they are experienced in web design even
though they find difficulties in managing the typical complexities in web development
[48]. End users of wikis (e.g. Wikipedia), media sharing systems (e.g. Flickr) and
other Web 2.0 systems [38] are classified as web contents developers in [56]; they
share with casual webmasters the high motivation. In particular, they are very moti-
vated in contributing their contents and collaborating through the web, and they are
willing to spend time for preparing web material and publishing it.

 End-User Development for E-Government Website Content Creation 133

As far as the development of e-government websites is concerned, the end users of
content management systems represent another kind of web contents developers.
However, they are not so motivated to create web material, but often perceive such
activity as an overhead with respect to their daily work. The characteristics of these
users, which we consider crucial to design adequate EUD techniques, are discussed
more in detail in the next section.

5 EUD in E-Government Website Content Creation: A Case
Study

During our collaboration with a large Italian municipality we had the opportunity to
know and analyze the needs for EUD in e-government website content creation.

This municipality adopted in 2003 a commercial CMS to support content creation
by the employees of various departments. A significant personalization work was
performed to adapt the CMS to the specific context and customer’s requirements.
Clearly, the adoption of a more recent CMS product would ensure an improvement in
website management, content creation and accessibility satisfaction. However, the
huge amount of content to be migrated and the necessity of performing further per-
sonalization work and personnel training have discouraged until now managers and
developers to make this choice.

During first informal conversations with some publishers, we discovered that they
found many difficulties in creating web contents, mainly for two reasons: 1) their own
characteristics; 2) the lack of some important functionalities in the CMS. As to the
first point, from conversations it emerged that publishers belong to an heterogeneous
population, which includes experts in different domains, thus having different compe-
tencies, skills, and cultural background. Most of them do not hold a higher education
degree and their ages range in a wide spectrum. Publishers seem often to be insuffi-
ciently motivated in doing content authoring, by perceiving such activity as alien to
their daily work. Moreover, they complained that, while interacting with the CMS
adopted in their agency, they were often charged with housekeeping activities. For
example, the creation of some type of content required publishers to edit directly the
generated HTML code, in order to satisfy accessibility requirements defined in
WCAG 1.0. These activities are natural for the computer expert and manageable by
casual webmasters, but they are perceived as intricate by publishers, who not rarely
arrive at refusing to perform the assigned content authoring tasks. Furthermore, most
publishers do not perform these tasks frequently, depending them on deadlines for tax
payments or other bureaucratic issues; therefore, such users tend to forget many de-
tails of the procedure to be followed, especially when it requires some editing of
HTML code.

These difficulties suggested us that an approach to CMS development aimed at in-
tegrating EUD techniques in the CMS itself could overcome different kinds of prob-
lems in e-government website creation, management and updating.

Therefore, we implemented a simple EUD technique to solve a specific problem
encountered by publishers; then, a case study research [57][58] was carried out to
examine in-depth the interaction with the original CMS and to evaluate how the EUD-
based approach improved the situation. In the following, we describe the problem

134 D. Fogli

considered and a possible EUD solution. Then, the main results of the case study
research are briefly presented (see [19] for more details).

5.1 EUD for Accessible Content Creation

To demonstrate the usefulness of EUD in the considered field, we faced the problem
of creating tabular content to be published on an e-government website. Tabular con-
tent must satisfy guideline 5 “Create tables that transform gracefully” of WCAG 1.0
[54]. The six checkpoints of the guideline must be followed to support disabled
people (users with blindness or low vision), who access tabular information through
assistive technologies, such as a screen reader or a Braille display. The ability to pro-
duce accessible tabular content is of course a basic feature one would expect from a
CMS (though this is not always the case). However, the EUD approach here proposed
has a broader scope since it is suitable to support publishers in other and more sophis-
ticated tasks.

To create accessible tables with the original CMS, publishers must modify the
HTML code generated by the CMS. In particular, the interaction occurs as follows.
The authoring tool available in the CMS provides a button in a toolbar to activate
table creation. When the user selects this button, the system presents the user with a
dialog window that asks for inserting the number of rows and columns of the new
table. After interacting with this dialog window, a “prototype” table is created show-
ing cells whose content is “Col 1 Row 1”, “Col 2 Row 1”, and so on for the first row,
“Col 2 Row 1”, “Col 2 Row 2”, and so on for the second row, for all the rows re-
quested by the user. Figure 1 shows the table created when the user asks for a two
rows-two columns table.

When the user clicks on a table cell, its content is selected and the user can substi-
tute it with the desired content. For example, let us suppose that the publisher inserts
person names (Maria, Paola) and surnames (Rossi, Bianchi) in the first column and

Fig. 1. The table created as a consequence of user request

 End-User Development for E-Government Website Content Creation 135

second column respectively. The resulting HTML code underlying the table would be
the following:

<TABLE>

<TR>
<TD> Maria </TD>
<TD> Rossi </TD>

</TR>
<TR>

<TD> Paola </TD>
<TD> Bianchi </TD>

</TR>
</TABLE>

To make this code compliant with guideline 5 of WCAG 1.0, the publisher must

access this code through the proper button in the CMS toolbar and modify it as fol-
lows (users’ modifications to the code generated by the CMS are highlighted):

<TABLE SUMMARY=“This table contains name and surname of the

employees that work at the Public Relations Department of the
Brescia municipality”>

<CAPTION>Employees working at the Public Relations
Department

</CAPTION>
<TR>

<TH ID=”name”>Name</TH>
<TH ID=”surname”>Surname</TH>

</TR>
<TR>

<TD headers=”name”>Maria</TD>
<TD headers=”surname”>Rossi</TD>

 </TR>
<TR>

<TD headers=”name”>Paola</TD>
<TD headers=”surname”>Bianchi</TD>

</TR>
</TABLE>

Actually this code aims at satisfying three of the six checkpoints of guideline 5 of

WCAG and in particular:

• A tag <TH> has been added for each column by specifying the column header as a
value of attribute ID of <TH>. This is to satisfy checkpoint 1 of WCAG guideline 5;

• Each cell identified by an element <TD> has been associated with the correspond-
ing column by using attribute headers, whose value must correspond to the col-
umn header. This is to satisfy checkpoint 2 of WCAG guideline 5;

• Attribute summary has been added in tag <TABLE> and element <CAPTION>
has been inserted as first child of element <TABLE>, in order to satisfy checkpoint
5 of WCAG guideline 5.

136 D. Fogli

According to the municipality managers, these checkpoints are the minimum re-
quirements to be satisfied by tables published in their website. In fact, checkpoint 6
gives additional indications for managing table linearization, but it has priority 3,
while it was decided that, at the moment, the goal was to obtain Conformance Level
AA for the website [53]. Checkpoints 3 and 4 refer to the use of tables for page lay-
out; they are satisfied a priori, since page layout is managed through style sheets.

To support publishers in this work practice, they were provided with a paper-based
manual, which presented a detailed example to be adapted to the case at hand. Not-
withstanding this, this activity represented a problem for publishers.

In order to solve the problem by implementing a simple EUD technique based on
parameterization, the source code of the CMS was properly modified. The interaction
with the system for inserting a table now occurs as follows. When the user selects the
tool to insert a table, after the dialog window asking for the number of rows and col-
umns, a new dialog window is presented to the user. Such window, shown in Figure
2, asks the user for inserting a text for the caption, a text for the summary, and as
much headers as the number of columns previously declared. The window autono-
mously adapts its size according to the number of column headers that need to be
requested. It also helps the user to insert caption and summary by remembering
her/him the meaning of such information directly in the text fields. The user is obliged
to fill in all the text fields: in fact, when s/he selects the OK button, information are
checked and, if one is missing, a warning message is presented to the user, by con-
straining her/him to return to the dialog window and complete data insertion. This
relieves the publisher from checking the correctness of the table, making it easy to
assess her/his EUD activity [28].

The new procedure is clearer and easier for people not expert in computer tech-
nologies. This was confirmed by the results of our case study research.

Fig. 2. The dialog window asking for accessibility parameters

5.2 Case Study Research: Methodology and Results

The goal of the case study research was to investigate the difficulties encountered by
publishers in creating accessible content and to evaluate the benefits of enhancing the
adopted CMS with EUD features. Therefore, our research questions aimed at

 End-User Development for E-Government Website Content Creation 137

understanding what happened during content creation and how the publishers faced
the problems of the CMS about content accessibility. Then, our goal was also investi-
gating if the extension of the CMS with the EUD feature would have provided sig-
nificant improvements in terms of both performance and publishers’ willingness to
carry out activities concerned with accessible table creation.

We involved eight users chosen from different departments of the municipality.
The sample, even if little, can be considered enough representative of the publisher
population, because it included people expert in different domains and having
different competencies, skills, and cultural background. Participants were asked for
performing a task concerning the creation of an accessible table. A within groups
technique was adopted, meaning that all users in the sample performed the same task
using the original CMS and the extended CMS. To avoid polarization due to learning
effects, different execution orders were defined.

Data gathering was carried out in the usual work place of users. The techniques
adopted were structured interviews (after the execution of the assigned task in the two
sub-cases), observation during task execution and performance measures (completion
time and number of errors). The first two techniques were meant to provide us with a
qualitative evaluation, while the last were meant to provide us with quantitative data
possibly corroborating qualitative ones. An evaluation form was prepared to gather
both qualitative and quantitative data: it included few simple questions (e.g. “Which
are the main difficulties you encountered using the original CMS?”, “Which are the
main improvements you noticed in the new solution?”) and some fields to be filled in
by the observer with the observations taken during task execution and with the quanti-
tative data.

During the execution of the task with the original CMS, we observed that most of
publishers applied mechanically what was suggested by the example table in the
manual and made several mistakes during the adaptation of that table. They often
forgot to change some parts of the table, by leaving the information already present in
the example table. Moreover, by listening to users’ spontaneous comments, we
discovered that difficulties and misunderstandings arose because users did not under-
stand the meaning of tags correctly. For example, they confounded the terms cap-
tion, headers and summary (maybe this was also due to the translation between
English and Italian). The interviews confirmed that publishers perceived the task as
too difficult and requiring an exaggerate effort. In general, publishers considered the
HTML code manipulation as a work alien to their competencies and tasks, useless,
and time consuming. Most of them explicitly declared that they were not willing to
spend energies and time in doing that job.

The new approach apparently solves all the above problems. Participants com-
mented that the system now requires them exactly what is needed, it does not ask
them anymore for thinking about the accessibility parameters, but it just drives them
through table creation, and thus it also avoids them to consult the manual. These posi-
tive results, gathered through direct observation and interviews, are corroborated by
quantitative data: the comparison of completion times and error numbers demonstrate
that, using the procedure offered by the extended CMS, there is a significant im-
provement in both robustness and efficiency [19].

138 D. Fogli

6 Toward Online Service Creation through EUD

We carried on the collaboration with the municipality with the aim of finding a solu-
tion also to the problem of online service development. This task is still at the hands
of personnel of the Computer Science department of the municipality, since the CMS
does not provide proper facilities for transferring it to publishers. This should remain
valid also if a more up-to-date CMS would be adopted, since, as already mentioned,
existing products provide scripting languages and macro languages that only com-
puter experts or power users are able to manage.

This section describes a possible EUD approach to developing online services. The
approach stems from the analysis of how personnel of the Computer Science depart-
ment operate to create such services and from the characterization of publishers
carried out during the case study research. We used unstructured interviews with a
representative software developer to elicit knowledge about the kinds of services to be
made available on a municipality website and about their design and development.

From the analysis of online services currently offered to citizens on the website it
is possible to obtain the following classification: 1) front office reservation; 2) tax
payment; 3) document request; 4) document submission; 5) registration to courses or
schools. All these services are accessed by the end users of the website through form-
based pages, since fill-in form interaction style has a low cognitive burden for most of
people and it is easy to implement. More precisely, end users are presented with the
forms composing a service through a step-by-step instruction design pattern [51].
This permits to drive users through the task, in order to acquire all necessary informa-
tion in each step, and to perform validity checks on input data. Also inspired by the
work of Ginige et al. [13][22], we think that an interaction style based on fill-in forms
and a step-by-step instruction design pattern could be also at the basis of the EUD
technique allowing publishers to create online services.

We illustrate this technique by an example. Currently, front office reservation ser-
vices are implemented in the municipality website as a 5-step wizard, where the steps
are: 1) counter choice; 2) date choice; 3) time choice; 4) input of personal data; 5)
summary of data. The first three steps are implemented through radio buttons permit-
ting exclusive choices; the fourth step presents text fields and combo boxes to input
data; the fifth just presents all inserted data and asks for a confirmation. In each step,
but the first, it is possible to go back one step to modify previous inserted data. An
area on the right side of the page shows the steps performed, the step currently under
compilation, and the steps remaining. Figure 3 shows the website page during the
reservation of general registry office services: step 3 (time choice) is under compila-
tion (see the main area of the page); on the right side, the white box and the symbol
highlight the step under compilation, whilst previous steps (counter selection and date
selection) are marked as done () and next steps (input of personal data and sum-
mary of data) are marked as to be done ().

We argue that the implementation of such kind of wizards could be performed eas-
ily by publishers if the CMS supports them through a step-by-step form-based interac-
tion. For creating a new online service, the publisher will first choose the class of the
service, for example the “front office reservation” class. Then, the system will drive
him/her through the steps for creating the service by means of fill-in forms. The

 End-User Development for E-Government Website Content Creation 139

Fig. 3. Step 3 of front office reservation

first step will consist in generating the list of counter choices that pertain to the pub-
lisher’s department. To this aim, a list of all counters could be available and the pub-
lisher might move items from this list to a list of selected counters, which will be
presented on the website as a set of radio buttons. Figure 4 shows a mock-up of this
EUD solution. (For the sake of paper readability, all mock-ups are in English).

Available counters Selected counters

COUNTER RESERVATION – STEP 1: COUNTER CHOICE

Digital identity cards counter

Italian citizens counter

EU citizens counter

Non-EU citizens counter

Permanent address renewel counter

Digital identity cards counter

EU citizens counter

Non-EU citizens counter

...
Non-EU citizens counter

Available counters Selected counters

COUNTER RESERVATION – STEP 1: COUNTER CHOICE

Digital identity cards counter

Italian citizens counter

EU citizens counter

Non-EU citizens counter

Permanent address renewel counter

Digital identity cards counter

EU citizens counter

Non-EU citizens counter

...

Available counters Selected counters

COUNTER RESERVATION – STEP 1: COUNTER CHOICE

Digital identity cards counter

Italian citizens counter

EU citizens counter

Non-EU citizens counter

Permanent address renewel counter

Digital identity cards counter

EU citizens counter

Non-EU citizens counter

...
Non-EU citizens counter

Fig. 4. Mock-up of the EUD tool for generating a list of radio buttons related with counter
choice

The next step should be a calendar component customized to publishers’ needs: it
should support the choice of start and end dates, the indication of holidays, and the
choice of week days in which the counter is open. Figure 5 shows a mock-up of this
EUD solution: three calendars are used to choose start, end, and holidays; six check
boxes permit to choose working days. The system must generate a set of radio buttons
for date choice that satisfy all constraints defined by the publisher.

140 D. Fogli

COUNTER RESERVATION – STEP 2: DATE CHOICE

Working days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

√

√

√

Start End Holidays

COUNTER RESERVATION – STEP 2: DATE CHOICE

Working days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

√

√

√

Working days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

√

√

√

Start End HolidaysStart End Holidays

Fig. 5. Mock-up of the EUD tool for generating a list of radio buttons related with date choice

The third step should be the creation of time choices: the publisher could choose
start, end, break and time intervals, and the system should generate the list of all pos-
sible times as a set of radio buttons satisfying the established constraints. Figure 6
shows a mock-up of this EUD solution: combo boxes permit time choices.

COUNTER RESERVATION – STEP 3: TIME CHOICE

8.00 18.00 12.30-13.00 30 min

Start End Break Time interval

8.00 18.00 12.30- 30 min
8.30
9.00
9.30
10.00

18.30
19.00
19.30
20.00

12.45-
13.00-
13.15-
13.30-

45 min
60 min
75 min
100 min

COUNTER RESERVATION – STEP 3: TIME CHOICE

8.00 18.00 12.30-13.00 30 min

Start End Break Time interval

8.00 18.00 12.30- 30 min
8.30
9.00
9.30
10.00

18.30
19.00
19.30
20.00

12.45-
13.00-
13.15-
13.30-

45 min
60 min
75 min
100 min

Fig. 6. Mock-up of the EUD tool for generating a list of radio buttons related with time choice

Then the publisher should create the form for input data; also in this case, the solu-
tion foreseen for counter choice, i.e. the double-list control, can be useful: a list of all
possible personal data could be available, giving the publisher the possibility to select
only those s/he considers necessary to be requested in the case at hand. Finally, the
step summarizing the inserted data could be generated automatically by the system on
the basis of the previous steps created by the publisher.

 End-User Development for E-Government Website Content Creation 141

7 Discussion

The design of EUD techniques proposed in the previous sections derives from a basic
observation: end users who has to carry out some software development in the domain
of e-government websites are different from casual webmasters or power users.
Therefore, they must not be aware of performing software development. They should
accomplish tasks that consist in just editing content (including providing information
that become HTML attribute values) or selecting some content from available
choices. The underlying system will be in charge of generating the correct code by
exploiting the content provided by the user.

Both techniques presented in Sections 5 and 6 are based on fill-in form interaction
style, which has been judged suitable for the considered end users, namely personnel
used to carry out administration tasks often consisting in the compilation of paper-
based forms. Therefore, this interaction style should be natural and simple for these
end users, by allowing them to operate according to their mental models of the activi-
ties to be performed [11]. On the other hand, this EUD style has been applied also in
other contexts with successful results [27], even though, differently from [27], we aim
to drive users through all their choices, without asking them to remember some par-
ticular syntax for providing the information requested by the system.

In the case of online service creation, the fill-in form interaction style is combined
with a step-by-step instruction design pattern that reflects the structure of the service
to be created. The publisher should not have so much freedom (and consequent re-
sponsibility) to modify the layout of the service pages or the structure of the service.
Moreover, s/he should not access the generated code.

The idea of an EUD technique based on a step-by-step instruction design pattern
actually arises from the analysis of the output to be generated (i.e. the service to be
made available to website’s users). This analysis produces a model of the service,
which helps to determine the most natural way for publishers to take care of its devel-
opment.

Service analysis and model-based design of EUD techniques should remain at the
hands of the software developers belonging to the organization managing the website:
they should identify the classes of services that could be developed, the steps consti-
tuting each class, and the elements composing each step. Then, their work will be the
development of the fill-in forms that allow publishers to create online services. These
activities can be characterized as meta-design activities [17], in that they are carried
out to “design the design process” [21], i.e. to design the EUD activities that publish-
ers should perform. In [17], this is regarded as the first level of meta-design, which
refers to the possibility offered to end users to transform and modify components and
contents at use time, according to emerging needs and tasks, as it may happen in the
case of online service creation. Methodologically, software developers operate at a
meta-level by “establishing the conditions that will allow users, in turn, to become
designers” [17].

Obviously, software developers may become again a bottleneck in those contexts
that are very dynamic, where classes of services evolve over time and new classes must
be designed and developed frequently. However, the approach here presented seems –
at least at the moment – suitable to the dynamicity of the considered application do-
main. Its scalability should be studied if one would like to extend its application to

142 D. Fogli

other domains, such as e-commerce or e-learning websites. Further research on meta-
design approaches could help to find solutions to this problem.

8 Conclusions

This paper focused on a particular application domain, namely the creation and main-
tenance of e-government websites. In this domain, distributed content authoring is
often a necessity to avoid delays in publishing important information for citizens and
to overcome communication gaps between software developers and domain experts.

However, despite the use of CMSs, this distributed activity is far to be performed
in an easy, efficient and effective way. By analyzing the case of an Italian municipal-
ity we discovered that publishers find several difficulties in creating accessible con-
tents. Therefore, a CMS extension with a simple EUD technique has been developed
to eliminate such difficulties. The approach has been evaluated with publishers, by
giving positive results [19].

We also observed that the creation of more sophisticated contents, e.g. online
services, are still at the hands of software developers, since this task appears as too
difficult to be carried out by publishers. In this paper, we tried to demonstrate the
contrary: it is possible to implement proper EUD techniques devoted to these end
users, whose motivation and interest in software development is low. From our analy-
sis, it emerged that the fill-in form interaction style and the step-by-step instruction
design pattern could be adopted to design EUD techniques for the domain at hand.
They have been proved successful in the case of HTML editing for accessibility satis-
faction, and they seem to be promising in the case of online service development.

As future work we plan to implement and test the mock-up ideas presented in this
paper, as well as to identify and define meta-design guidelines for the design of EUD
techniques by personnel of the Computer Science municipality department.

Acknowledgments. The author wishes to thank Sergio Colosio of Comune di Bre-
scia, Italy, and Loredana Parasiliti Provenza of Università di Milano, Italy, for the
fruitful discussions about the content of this paper. She is also indebted to Matteo
Sacco for the development of the CMS extensions and to the publishers of the
Comune di Brescia for their availability in participating in interviews and tests of the
implemented EUD technique.

References

1. Anslow, C., Rielhe, D.: Towards End-User Programming with Wikis. In: Proc. WEUSE
IV 2008, Leipzig, Germany, pp. 61–65 (2008)

2. Arias, E., Eden, H., Fischer, G., Gorman, A., Scharff, E.: Transcending the Individual
Human Mind - Creating Shared Understanding through Collaborative Design. ACM
Transactions on Computer-Human Interaction 7(1), 84–113 (2000)

3. Blackboard Content System,
http://www.blackboard.com/products/Academic_Suite/
Content_System/index

 End-User Development for E-Government Website Content Creation 143

4. Blackwell, A.F.: End-User Developers at Home. Communications of the ACM 47(9), 65–
66 (2004)

5. Blackweell, A.F., Hague, R.: AutoHAN: An architecture for programming at home. In:
Proc. IEEE Symposium on Human-Centric Computing Languages and Environments, pp.
150–157 (2001)

6. Brancheau, J.C., Brown, C.V.: The Management of End-User Computing: Status and Di-
rections. ACM Computing Surveys 25(4), 437–482 (1993)

7. Carrara, P., Fogli, D., Fresta, G., Mussio, P.: Toward overcoming culture, skill and situa-
tion hurdles in human-computer interaction. Int. J. Universal Access in the Information
Society 1(4), 288–304 (2002)

8. Costabile, M.F., Fogli, D., Letondal, C., Mussio, P., Piccinno, A.: Domain-Expert Users
and their Needs of Software Development. In: Proc. UAHCI Conference, Crete, pp. 232–
236 (2003)

9. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: the Software
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User
Development, pp. 183–205. Kluwer Academic Publisher, Dordrecht (2006)

10. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: a Model-based Design Methodology. IEEE Transactions on Systems
Man and Cybernetics, part A- Systems and Humans 37(6), 1029–1046 (2007)

11. Costabile, M.F., Mussio, P., Parasiliti Provenza, L., Piccinno, A.: End Users as Unwitting
Software Developers. In: Proc. WEUSE IV 2008, Leipzig, Germany, pp. 6–10 (2008)

12. Cypher, A.: Watch What I Do: Programming by Demonstration. MIT Press, Cambridge
(1993)

13. Da Silva, B., Ginige, A.: Modeling Web Information Systems for Co-Evolution. In: Proc.
ICSOFT 2007, Barcelona, Spain (2007)

14. De Ruyter, B., Van de Sluis, R.: Challenges for End-User Development in Intelligent Envi-
ronments. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 243–
250. Kluwer Academic Publishers, Dordrecht (2006)

15. Drupal, http://drupal.org/
16. EUD-Net Thematic Network, http://giove.cnuce.cnr.it/eud-net.htm
17. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Devel-

opment. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 427–
457. Kluwer Academic Publisher, Dordrecht (2006)

18. Fischer, G.: Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and
Evolving Knowledge in Domain-Oriented Design Environments. Int. J. Automated Soft-
ware Engineering 5(4), 447–464 (1998)

19. Fogli, D., Colosio, S., Sacco, M.: Managing Accessibility in Local E-government Websites
through End-User Development: A Case Study. Int. J. Universal Access in the Information
Society (to appear)

20. Folmer, E., van Welie, M., Bosch, J.: Bridging patterns: An approach to bridge gaps be-
tween SE and HCI. J. of Information and Software Technology 48(2), 69–89 (2005)

21. Giaccardi, E., Fischer, G.: Creativity and Evolution: A Metadesign Perspective. Digital
Creativity 19(1), 19–32 (2008)

22. Ginige, A., De Silva, B.: CBEADS©: A Framework to Support Meta-design Paradigm. In:
Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 107–116. Springer, Heidelberg
(2007)

23. Goette, T., Collier, C., Daniels White, J.: An exploratory study of the accessibility of state
government Web sites. Int. J. Universal Access in the Information Society 5, 41–50 (2006)

24. Joomla!TM, http://www.joomla.org/

144 D. Fogli

25. Joomla! Help Site – WCAG Checklist, http://help.joomla.org/
26. Letondal, C.: Participatory Programming: Developing Programmable Bioinformatics Tools

for End-Users. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp.
207–242. Kluwer Academic Publishers, Dordrecht (2006)

27. Liang, X., Ginige, A.: Enabling an End-User Drive Approach for Managing Evolving User
Interfaces in Business Web Applications. In: ICSOFT 2007, Barcelona, Spain (2007)

28. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging
Paradigm. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 1–8.
Kluwer Academic Publishers, Dordrecht (2006)

29. Lieberman, H., Paternò, F., Wulf, V. (eds.): End-User Development. Kluwer Academic
Publishers, Dordrecht (2006)

30. Macías, J.A., Paternò, F.: Customization of Web applications through an intelligent envi-
ronment exploiting logical interface descriptions. Interacting with Computers 20, 29–47
(2008)

31. Majhew, D.J.: Principles and Guideline in Software User Interface Design. Prentice-Hall,
Englewood Cliffs (1992)

32. Microsoft Content Management Server,
http://www.microsoft.com/cmserver/default.mspx

33. Microsoft Office SharePoint Designer 2007 (2007),
http://office.microsoft.com/
it-it/sharepointdesigner/FX100487631040.aspx

34. Moodle, http://moodle.org/
35. Mørch, A.: Three Levels of End-User Tailoring: Customization, Integration, and Exten-

sion. In: Kyng, M., Mathiassen, L. (eds.) Computers and Design in Context, pp. 51–76.
MIT Press, Cambridge (1997)

36. Mørch, A., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, G.: Component-Based
Technologies for End-User Development. Communications of the ACM 47(9), 59–62
(2004)

37. Myers, B.A., Pane, J.F., Ko, A.: Natural Programming Languages and Environments.
Communications of the ACM 47(9), 47–52 (2004)

38. O’Really: What Is Web 2.0 - Design Patterns and Business Models for the Next Genera-
tion of Software,
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html

39. Paris, M.: Website accessibility: a survey of local e-government websites and legislation in
Northern Ireland. Int. J. Universal Access in the Information Society 4, 292–299 (2006)

40. Parlamento Italiano, Disposizioni per favorire l’accesso dei soggetti disabili agli strumenti
informatici, Legge 9 gennaio, n. 4, G.U. n. 13 del 17 gennaio (in Italian) (2004) (in Eng-
lish), http://www.pubbliaccesso.it/normative/law_20040109_n4.htm

41. Petre, M., Blackwell, A.F.: Children as Unwitting End-User Programmers. In: Proc.
VL/HCC 2007, Coeur d’Alène, USA, pp. 239–242 (2007)

42. PloneTM, http://plone.org/
43. PloneTM– Accessibility Statement, http://plone.org/accessibility-info
44. QnECMS – Quick & Easy Accessible CMS, http://www.qnecms.co.uk/
45. Repenning, A., Ioannidu, A.: Agent-Based End-User Development. Communications of

the ACM 47(9), 43–46 (2004)
46. Rode, J., Bhardwaj, Y., Pérez-Quinones, M.A., Rosson, M.B., Howarth, J.: As Easy as

“Click”: End-User Web Engineering. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005.
LNCS, vol. 3579, pp. 478–488. Springer, Heidelberg (2005)

 End-User Development for E-Government Website Content Creation 145

47. Rode, J., Rosson, M.B., Pérez Quinõnes, M.A.: End User Development of Web Applica-
tions. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 161–182.
Kluwer Academic Publishers, Dordrecht (2006)

48. Rosson, M.B., Ballin, J., Nash, H.: Everyday Programming: Challenges and Opportunities
for Informal Web Development. In: Proc. VL/HCC 2004, Rome, Italy, pp. 123–130 (2004)

49. Sitekit CMS, http://www.sitekit.net/
50. Sutcliffe, A., Mehandjiev, N. (Guest eds.): End-User Development. Communications of

the ACM 47(9), 31–32 (2004)
51. Tidwell, J.: Common Grounds: A Pattern Language for Human-Computer Interface De-

sign, http://www.mit.edu/~jtidwell/common_ground.html
52. Typo3, http://typo3.com/
53. Web Accessibility Initiative, http://www.w3.org/WAI/
54. Web Content Accessibility Guidelines 1.0, W3C Recommendation (May 5, 1999),

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
55. Won, M., Stiemerling, O., Wulf, V.: Component-Based Approaches to Tailorable Systems.

In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 115–141. Klu-
wer Academic Publishers, Dordrecht (2006)

56. Ye, Y., Fischer, G.: Designing for Participation in Socio-Technical Software Systems. In:
Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 312–321. Springer, Heidelberg
(2007)

57. Yin, R.K.: Case study research: Design and methods. Sage, Newbury Park (1984)
58. Yin, R.K.: Case study methods. In: Green, J.L., Camilli, G., Elmore, P.B. (eds.) Handbook

of complementary methods in education research, pp. 111–122. Lawrence Erlbaum Asso-
ciates, Hillsdale (2006)

	End-User Development for E-Government Website Content Creation
	Introduction
	Characteristics of E-Government Websites
	Content Management Systems and Their Role in E-Government Website Creation and Maintenance
	End-User Development: From Desktop to Web Applications
	EUD Solutions in Different Application Domains
	End Users’ Characteristics

	EUD in E-Government Website Content Creation: A Case Study
	EUD for Accessible Content Creation
	Case Study Research: Methodology and Results

	Toward Online Service Creation through EUD
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

