
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 50–69, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Appropriation Infrastructure: Supporting the
Design of Usages

Gunnar Stevens, Volkmar Pipek, and Volker Wulf

University of Siegen and Fraunhofer FIT

Abstract. End User Development offers technical flexibility to encourage the
appropriation of software applications within specific contexts of use. Appro-
priation needs to be understood as a phenomenon of many collaborative and
creative activities. To support appropriation, we propose integrating communi-
cation channels into software applications. Such an appropriation infrastructure
provides communication and collaboration support to stimulate knowledge
sharing among users and between users and developers. It exploits the techno-
logical flexibility of software applications to enable these actors to change us-
ages and configurations. Taking the case of the BSCWeasel groupware, we
demonstrate how an appropriation infrastructure can be realized. Empirical re-
sults from the BSCWeasel project demonstrate the impact of such an infrastruc-
ture on the appropriation and design process. Based on these results, we argue
that appropriation infrastructures should be tightly integrated in the application
using the IT artifact itself as a boundary object as well as a bridge between de-
sign and use.

1 Introduction

We interpret the appropriation of information technology not as a phenomenon that
somehow happens once a software application is in its ‘application field’, but as a
network of activities that users continuously perform in order to make a software
‘work’ in a new work environment, shaping the artifact as a material as well as a
meaningful object. Existing practices evolve and result in new practices. Technical
flexibility to redesign the application according to specific local needs play a major
role in enabling appropriation work. Appropriation work may lead to software usages
that go beyond what has been envisioned by the designers of the software application
[cf. 29]. It is a specific part of an IT artifact’s usage, but it remains also linked
(through the artifact’s materiality) with its design process and the designer’s work
environments. Appropriation work needs to be understood as a core concept in the
field of End User Development (EUD).

To deal appropriately with the combined efforts of users and designers to success-
fully establish a software tool usage that satisfies the needs of practice requires a fun-
damental shift in perspectives on the concepts of ‘design’ and ‘use’. If the target of a
design process is not a technology/software/tool, but a certain usage (that is stimu-
lated by a certain new technology/software/tool), traditional notions of design proc-
esses and product structures become problematic. When does usage design start, when

 Appropriation Infrastructure: Supporting the Design of Usages 51

does it stop? Is it a continuous or a discrete process? Who initiates ‘design’ phases –
the developer side or the user side? For which parts of designing a usage are profes-
sional designers responsible, and for which parts the ‘users’ (they may be considered
as professional usage designers just with a different expertise profile)? Which compe-
tencies and experiences are necessary to perform certain activities of appropriation
work?

We see the cracks in the idea of a strict separation of design and use spheres
everywhere in practice: In the necessity for software development in cycles, in the
frequent software updating procedures, in continuous helpline support provided by
software manufacturers, in the differentiation of user roles (scale between end users
and power/lead users), in software development contract structures that include
‘maintenance’, in the practice of user forums in the Internet (that may have been pro-
vided by software manufacturers, but also third parties), and also in scientific concep-
tualizations e.g. with regard to ‘tailoring’ functions that support design-in-use ([15]
and many others), with regard to integrating users into software design (e.g. [12]),
with regard to professionalization structures in design and the problems they may
cause (e.g. [38]) or with regard to the integration of user-driven innovation in (re-
)design processes (e.g. [42]). In fact, the blurring notions of design and use spheres
point towards collaboration necessities and opportunities which, we claim should be-
come a central research area in the field of End User Development.

We will first connect our perspective to the scientific discourse in HCI and SE.
Based on the perspective of usage design, we will describe a framework for an appro-
priation infrastructure that allows to bridge between design and use by supporting
user-user- and user-designer-collaboration in usage design. We have implemented a
first example of an appropriation infrastructure when designing the BSCWeasel
groupware. To evaluate the utility of appropriation infrastructures, empirical results
from the BSCWeasel project are presented.

2 Appropriation Work and Technical Flexibility

We now describe in more detail what we see as relevant aspects of appropriation
work. We then discuss how the HCI and SE research communities tackle the issue of
technical flexibility. Both disciplines understood the need for flexibility on different
levels, a product-oriented perspective can be typically found in HCI discussions, and
a process-oriented perspective is typical for SE. We will argue that a linkage between
these approaches is essential.

2.1 Appropriation Work

Several case studies have investigated appropriation processes of IT artefacts in a
long term perspective [17, 25, 27, 31, 40, 43]. They offer empirical insights into the
appropriation activities and the resulting changes in work practices, and they also
showed that a significant part of the work being done to make software applications
work is collaborative. Based on these studies, in [29] we lined out opportunities for
collaboration support: (1) articulation support (support for technology-related articu-
lations - real and online), (2) historicity support (visualize appropriation as a process

52 G. Stevens, V. Pipek, and V. Wulf

of emerging technologies and usages, e.g. by documenting earlier configuration deci-
sions, providing retrievable storage of configuration and usage descriptions), (3) deci-
sion support (in a collaborative appropriation activity, providing voting, polling, etc.),
(4) demonstration support (provide communication channels to demonstrate usages
from one user or a group to another user or a group), (5) observation support (support
the visualization of – accumulated, anonymized - information on the use of tools and
functions in an organizational context), (6) simulation/exploration support (show ef-
fects of possible usages in a exemplified or actual organizational setting, maybe allow
configuration manipulations in a sandbox), (7) explanation support (explain reasons
for application behavior, automated vs. communication with experts), (8) delegation
support (support delegation patterns within configuration activities), and (9) (re-) de-
sign support (feedback to designers on the appropriation processes). This list focuses
on user-user-collaboration, and most support ideas still remain challenges that have to
be met with appropriate technological support.

But when is appropriation work? Orlikowski and Hofman [28] focused on the types
of work that are not closely related to the new technology, but that rather result in or-
ganizational changes. In their conceptual model to classify organizational changes re-
sulting from the appropriation of collaborative infrastructures, they distinguish three
cases: anticipated, opportunity-based, and emergent changes. Anticipated changes are
organizational transformations, which can be planned and implemented purposefully
when the technology is introduced into the organization. The corresponding appropria-
tion work activities can be most likely anticipated, support may be easily provided.
Opportunity-based changes occur spontaneously, but can be planed once the opportu-
nity is clear. It may be hard to estimate occurrence, duration and intensity of appropria-
tion work activities here, but once the opportunity becomes clear, the necessary
support may also be obvious (see [31] for an example of a group of users that inte-
grated a technological functionality into their practice in an innovative, unforeseen
manner). Emergent changes happen spontaneously, and when they happen, they also
can’t be planned or anticipated, they show that there is a necessity to continuously
provide easy access to a broad variety of means for appropriation work (see [41] for an
example of creating spontaneous learning opportunities between end users).

There are several approaches that address spontaneous change activities, such as
help systems, exploration environments, user hotlines, or the general technical in-use
flexibility of tools [cf. 43]. However, these approaches are fragmented and do not
refer to each other conceptually and technically.

2.2 Product-Oriented Flexibility

The HCI community, and the EUD community in its mainstream, regards technical
flexibility mainly as a product feature which allows tailoring computer applications
within their contexts of use [15]. Tailoring takes place after the original design and
implementation phase of an application; it typically starts during or right after the
installation in its field of application. Tailoring is usually carried out by ordinary
users, local experts, system’s support or helpdesk staff in a collaborative manner.
The users may find themselves confronted with technical flexibility on three
levels of complexity: (1) choosing between alternatives of anticipated behavior,
(2) constructing new behavior from existing pieces and (3) altering the artifact
(i.e. reprogramming).

 Appropriation Infrastructure: Supporting the Design of Usages 53

Highly tailorable software artifacts have been developed, commercial products
(e.g. spreadsheets and CAD systems) as well as research prototypes ([22], [23]). With
the emergence of collaborative tool infrastructures that support communication, coop-
eration, and knowledge exchange, the need for tailorable software artifacts even in-
creased [3, 46]. The distributed nature of these systems and the potential interrelation
of individual tailoring activities posed new challenges to the design of tailorable ap-
plications [26]. OVAL [21], Prospero [7], and FreEvolve [37, 47] answered this chal-
lenge by providing highly tailorable groupware application frameworks grounded in
different paradigms of software engineering.

However, offering technical flexibility is not enough, we also need methods to find
the right kind of flexibility to address the requirements of particular contexts of use,
considering that things may change over time. It is a short coming of the EUD discus-
sion around tailorable systems that the approaches address the issue of flexibility on
the product level only, and do not study how their products are related to the appro-
priation dynamics and process-oriented flexibility.

2.3 Process-Oriented Flexibility

With the idea of designing usages, the traditional design work extends into the use
phase. Requirements for tailoring functions can hardly be foreseen completely; inevi-
tably breakdown situations will appear which cannot be fixed using the given tailoring
possibilities. Therefore, the development of tailorable software should remain con-
nected to a flexible software development process. The development process needs to
be organized to cover rather spontaneous requests for software revisions, as well.

The STEPS software development process model by Floyd [12] extends earlier mod-
els of iterative software development with a stronger focus on user-designer collabora-
tion and the gathering of actual use experience (not only laboratory evaluations) in the
process of refining software. However, it remained pretty abstract and rather unspecific
with regard to the types of work that would be required in addition to ‘programming’
and ‘using’. As a pre-WWW approach, it did also not address issues of collaboration
support. An extension of STEPS towards remote participation was suggested in the
CommSy project [8]. CommSy uses its own groupware functionality to allow dedicated
end users to participate remotely in the design process. Wulf and Rohde [46] proposed,
as a part of their OTD approach, to enhance the STEPS model by integrating tailoring as
a use activity with design relevance. An implementation architecture for component-
based tailorability has been developed within the FreEvolve project [37, 47]. However,
the approach did not address the underlying software development process or any ne-
cessities to support appropriation processes. Some of these issues were addressed in the
concept of a use discourse infrastructure [29].

Coming from a different angle, Fischer discussed end-user modifiability for gen-
eral design environments [9]. In his early work, he chose approaches similar to other
product-oriented concepts dealing with flexibility. Later he developed a design proc-
ess model called SER (Seeding, Evolutionary Growth and Reseeding; [10]). Similar
to STEPS, the concept does neither describe the collaborative work tasks necessary to
perform the process, nor does it specifically address the issue of supporting these
tasks. The different work on end-user modifiability and participatory oriented design
are currently integrated on a conceptual level by the Meta-design framework [11].

54 G. Stevens, V. Pipek, and V. Wulf

Agile software processes, like SCRUM or eXtreme Programming (XP), provide
extreme short release cycles and allow customers to change requirements at any time
during the design process. In particular XP suggests several methods to make such
changes economical and technological feasible. Major software engineering ap-
proaches to ensure this type of flexibility are test driven development, continuous
integration and continuous refactoring [2].

eXtreme Programming suggests that there should not be any extra effort to fulfill
requirements that may appear in the future. This is the counterpart to the concept of
radical tailoring. Radical tailorability wants to solve the problem of non-anticipated
requirements by building highly flexible products, XP wants to solve this problem by
providing flexible processes.

Since XP does not care about the appropriation processes in the use context, the
model does not make any suggestion about a shared infrastructure to foster mutual
learning processes. Instead, the programmers just get indirect feedback mediated by
the “costumer on site”-principle [2], although in practice it is difficult to find these
customers [32].

A pragmatic application of agile methods is offered by the development process of
the Eclipse platform, called the Eclipse way [13, 20]. The Eclipse way is a mediating
position between the dogma of radical tailorability and eXtreme Programming. It
follows the position of radical tailorability since all development is based on compo-
nents to keep the software adaptable and extendable in order to deal with the hetero-
geneities and dynamics in the fields of application. However, the Eclipse way does
not assume that product-oriented flexibility will fully solve the problem of future
requirements. It has developed some techniques to foster feedback from users. How-
ever, Eclipse does not provide a technical infrastructure to bridge the gap between
designers and users. Moreover, the Eclipse way has never been applied to domains in
which users are non professional designers.

3 An Infrastructure for Appropriation Support

The state of the art does not provide technical support for appropriation work from a
‘design for usages’ perspective. To fill the gap, a technical infrastructure for user-user
and user-designer collaboration is proposed here. The design of the infrastructure is
based on two basic assumptions:

(1) Appropriation processes require knowledge sharing among users. Therefore,
communication channels should support communities of users to reflect upon the us-
age of their software.

(2) Support for appropriation processes needs to bridge between product- and
process-oriented flexibility. Therefore it is necessary to provide communication chan-
nels between users and developers.

Figure 1 illustrates our model of an appropriation infrastructure. We assume that
different users, power users, or system administrators work with a software applica-
tion that is assumed to be flexible in a product-oriented sense. In an EUD sense it
could consist of software modules which are represented at the user interface, are
meaningful to the users, and can be tailored by them. The communication channels

 Appropriation Infrastructure: Supporting the Design of Usages 55

Fig. 1. Infrastructure for Appropriation Support

among users should hence be integrated into the user’s interface and refer to the
modularized structure of the functionality (see section 5).

Moreover, our approach is based on the assumption that a team of designers and
engineers deal with the modularized code for maintenance and redesign purposes.
Communication channels should allow users to express design requirements towards
the software team referring to the modularized structure of the user’s interface (see
section 6). The content of the functionality-related communication among users
should become visible for designers as well.

To act as a boundary object among users, the functions of the application and their
tailoring options need to be understandable from different backgrounds of practice
and levels of expertise. Developers should be equipped with support that enables
them to perceive the usage of the application and to recognize break-down situations.
Moreover, they need tools to efficiently provide additional flexibility, implement
changes or refactor an application. We believe that access to a repository of compo-
nents could contribute to more efficient work processes.

4 BSCWeasel

To explore the idea of an infrastructure for appropriation support, we have developed
a groupware application, BSCWeasel, which contains communication channels for
appropriation support.

BSCWeasel is a rich client based on the BSCW platform. BSCW (Basic Support
for Cooperative Work) was one of the first web-based groupware applications. It was
developed at the German National Center for Research in Information Technology
(GMD) during the mid 90s [4]. It offers a 'shared workspace' which supports a group

56 G. Stevens, V. Pipek, and V. Wulf

of users to up- and download documents. Additionally, awareness services, differenti-
ated access rights, a group management tool, email distribution lists, a discussion fo-
rum, and a shared calendar complement the functionality of the groupware.

The fully web-based solution of BSCW has specific advantages. Obviously, there
is not any installation effort on the client side. However, there are also considerable
technical limitations due to the fact that BSCW just offers a thin client. There is not
any redundant local storage for important files, a permanent internet connection is
required, and streaming information (e.g. to provide peripheral awareness) is difficult
to implement.

Therefore, we have developed a rich client extension, called BSCWeasel which is
based on Eclipse. BSCWeasel started as an open source project in spring 2004 (cf.:
http://www.bscweasel.de). So far we still follow the basic client server architecture of
BSCW where the clients interact with a BSCW server. To implement rich clients, we
used the component-based software development environment Eclipse Rich Client
Platform (RCP) as the application framework [34, 35].

Eclipse is a development environment for component-based applications. Eclipse
RCP is a core component of Eclipse, which allows running component-based applica-
tions on a variety of different operating systems. Moreover, the Eclipse Foundation
promotes the growth of the Eclipse Ecosystem which allows benefiting from the re-
sults of a large community of developers. Eclipse provides a well supported and sta-
ble environment to build component-based applications. Another reason to choose
Eclipse was the fact that the framework is open source. So the source code is avail-
able and enabled us to change the framework where necessary.

In a first version of BSCWeasel, we basically implemented the main features of
the web-based BSCW client [cf.: 1]. Later on, we added components, called plugins
in the Eclipse terminology, to realize new functionality. A set of new plugins offer
tools for synchronous cooperation based on the XMPP/Jabber instant message proto-
col. We also developed a plugin which allows the fat client to deal with more than
one BSCW server. Additionally, we extended the awareness functionality of BSCW
and implemented a caching mechanism.

5 Collaboration among Users

To support collaborative appropriation activities among users, we suggest making
help functions highly context sensitive and to augment help functions by functional-
ities of a community system. In our work, we draw on Wikis to augment help func-
tions. Wikis are widely spread and allow editing texts in a collaborative manner.

We decided to represent the traditional help text of each function within a Wiki.
Users can extend, change or annotate these texts. They can create different local de-
scriptions of purpose, usage, or outcome of a function and exchange knowledge con-
cerning the appropriation of this function within their local practices. Access to the
Wiki needs to be highly contextualized at the user interface to select those Wiki en-
tries which are associated with the current usage. In our approach, we took the state of
the application as a proxy for the actual context of use. By means of the Meta Object
Protocol and runtime reflection [18], we linked Wiki/help pages technically to spe-
cific states of the application.

 Appropriation Infrastructure: Supporting the Design of Usages 57

From a user’s perspective, a Wiki page refers to a function perceived by the users
at the interface of the application, and therefore, supports appropriation discourses
among communities of users (also addressing diversifying sub-communities). The
user first selects the object in question and then presses F1 to open the corresponding
help/wiki page. So, the software application offers a built-in communication channel
among users and therefore acts as a boundary object for contextualizing the discus-
sion among users (see section 3).

The Wiki discourse infrastructure was realized using standardized software inter-
faces, but the realization of context sensitivity is more challenging. We used context
identifiers in the applications source code to anchor wiki widgets in a certain func-
tionality area. However, this implementation strategy turned out to be hard to main-
tain since designers may either forget to write help texts for an identifier or place the
context identifier at the wrong position in the source code.

Fig. 2. Highlighting the point of interest: (left) from a user perception (right) from a computa-
tional perceptive (the tool tip refers to information that can be gathered by algorithmic reflec-
tion on current state of the application)

However, the situatedness of work activities ([37]) is a tough challenge for the un-
derlying assumption that the execution position in the code is an appropriate measure
for the current work context. Still manual maintenance of context identifiers would be
quite error prone, as well. Therefore, we studied in which way users make sense of
the “set of pixels generated and managed by a computational process that is the result
of the computer interpretation of a program P.” [5]. In our empirical studies of users’
perception we present the users several screenshots of known and unknown pro-
grammes and ask them to highlight their point of interest (cf. Figure 2 left). In these
studies, we observe that the way users give the pixel a meaning is related to the wid-
get hierarchy of the interface. Based on this observation we created an algorithm
which identifies function compounds as they are perceived by the users and maps
them with stable context identifies. The calculation of the stable context identifier use
the runtime reflection feature [18] to gather information that allows a computational
identification of the point of interest (the tool tip in Figure 2 shows some of the in-
formation that was available for that widget via runtime reflection) [cf. 14].

The identified widget was highlighted as a potential point of interest at the inter-
face (cf. Figure 2) and using the calculated context identifier as a shared reference
point it offers access to the corresponding public Wiki page (cf. Figure 4) .

58 G. Stevens, V. Pipek, and V. Wulf

To implement the communication channels among users as described above, we
have developed the CHIC-architecture (Community Help in Context) [36]. CHIC
consists of three generic software modules: Application Integration Module (AIM),
Context-Aware Adaptation Module (CAM), and Community-based Help System
(CBHS) (see Figure 3).

Fig. 3. Architecture of Community Help in Context (ChiC)

The Application Integration Module (AIM) integrates CHiC into an existing appli-
cation and the user interacts with CHiC using it. When the user asks for help by
pressing F1, it highlights the user perceived functions mapped to a context identifier
and offers a “single-click” access to the CBHS-System [45] (for the interface see Fig-
ure 2). In order to provide this functionality, AIM requests the necessary information
from the Context-Aware Adaptation Module (CAM). CAM mainly calculates the
context identifier and mediates between AIM and CBHS. The CBHS can be any
community system, like a Wiki, which provides an infrastructure for help discourses.

Fig. 4. Changing the selected interface element triggers a recalculation of the help entries (1).
A click on one of the help entries opens the Wiki page via the internal web browser (2).

In the BSCWeasel case, we use the Eclipse framework to integrate the Wiki help
into the application context. We benefit from the Eclipse architecture which allows
adding new help items dynamically. A help item implements the interface
IHelpResource which delivers the subject labels of help texts and the URLs of the
corresponding Wiki pages. The subject labels of help items are displayed as links in

 Appropriation Infrastructure: Supporting the Design of Usages 59

the help window of Eclipse. When a user clicks on the label, Eclipse opens the inter-
nal web browser and loads the associated web page (cf. Figure 4). To realize CAM
under Eclipse, we extended the IContextProvider. IContextProvider is invoked when-
ever the state of the application has changed. CAM uses this trigger to inspect the
actual system state and requests CBHS to return a set of help entries.

The CBHS module was realized by integrating the Atlassian Confluence Wiki1 be-
cause it provides a commenting function, several notification mechanisms like mail,
RSS, and the recently changed pages. Moreover, it provides a well defined Web Ser-
vice API.

6 Collaboration between Users and Developers

To offer collaboration support for users and designers, we have integrated a profes-
sional requirements tracking system into the BSCWeasel application and have
equipped it with a specific interface for the users.

With regard to designers’ needs, our goal was to minimize the overhead from the
administration of direct user feedback together with other sources of requirements. To
encourage contributions from a wide variety of different users, we wanted to provide
a gentle slope of increasingly more complex levels of participation [22] in the
requirements specification process. Legitimate peripheral participation in the re-
quirements specification process is supported by allowing end users to just mark
shortcomings in their current interface. However, lead users can use the system to
discuss and test newly designed features in interaction with the professional designers
who can use the system also for their work (e.g. design planning and scheduling).

To realize this part of the appropriation infrastructure, we came up with a hybrid
approach which combines an external requirements tracking system with an Eclipse
plugin which is integrated into the BSCWeasel user interface. The plugin provides
specific views on the requirements tracking system. Technologically we drew on the
Web Service API/remote method invocation interface of the requirements tracking
system to integrate its user interface into the BSCWeasel application.

We decide to use a professional requirements tracking system, called JIRA. JIRA
is a web based application supporting the interaction among developers. JIRA allows
saving requirements in textual form, which can be annotated with attachments, e.g.
log files or screenshots. Users of JIRA can discuss these requirements, prioritize and
vote for them. A configurable workflow allows processing these requirements within
the team of developers. The functionality of JIRA can be used via a web-based inter-
face or it can be integrated into 3rd party products via the Web Service API.

The integration into BSCWeasel was realized implementing an Eclipse plugin
called PaDU (Participatory Design in Use). PaDU packages JIRA’s Web Service API
and makes it available for Eclipse RCP applications. If a requirement is submitted to
JIRA or information is retrieved from JIRA, PaDU will carry it out via the XML
RPC. To lower the barriers for users, PaDU uses the integrated web browser of
Eclipse. When the user wants to see detailed information about his contribution,
PaDU will open the corresponding web page.

1 http://www.atlassian.com/software/confluence/

60 G. Stevens, V. Pipek, and V. Wulf

PaDU allows contributing to the design process directly from the BSCWeasel user
interface. PaDU integrates two buttons into the user interface of the BSCWeasel ap-
plication (see Figure 5). The buttons help distinguishing between critical incidents (a
subjective breakdown of tool usage) and use innovations (a new way of using existing
functionality or a new idea for interesting functionality). These buttons are always
visible and they are used as access points to document problems or suggest new de-
sign ideas.

Fig. 5. PaDU’s access point is in the button bar which activates the requirements tracking
system

When a user presses one of these buttons, a multi-page dialog window appears.
The dialog is adapted from the critical incident dialog [4] by Hartson et al [8]. Beyond
purely textual descriptions of the requirements, we integrated features which allow for
ostensive and deictic references to the software artefact in order to clarify design
ideas. We have, for instance, extended the dialog window to enable users to add
screenshots, annotate them textually or graphically, and attach own sketches. PaDU
automatically takes a snapshot of the current state of the BSCWeasel interface at the
moment it is activated. A drawing tool is available to edit the screenshots.

Designers can deal with the contributions of the users in the same way they do
with any other requirements documented in the system. They can discuss these re-
quirements, prioritize them and vote for them. To offer accountability with regard to
their inputs, users can see all activities that happen in the requirements tracking sys-
tem. Via their interface, users can track the state of their contributions. They are in-
formed via email in case someone comments on their input. They can also set up links
to other entries in order to be informed about the state of their procedure. Addition-
ally, designers can send a direct email to a user to clarify open issues.

However, the discourse culture which emerged in the BSCWeasel project was
slightly different. Instead of writing an email, questions to a contributor were attached
as a comment. The contributor received an email containing this comment and had the

 Appropriation Infrastructure: Supporting the Design of Usages 61

option to answer to the email by adding a new comment. As a result, a public dis-
course around certain requirement emerged.

We understand design to be a communicative process which needs to be transpar-
ent to those who want to participate.2 In order to satisfy this requirement users and
designers should have similar rights with regard to inspecting the requirements data-
base and adding comments. To support users in becoming familiar with the web inter-
face and to increase their awareness of the design process, PaDU’s start page contains
all the contributions made by this particular user.

Additionally, we save a user’s contributions locally. So, writing a design sugges-
tion can happen before it is published within the requirement tracking system. Users
can see all of their ideas in a list. A double click on published design ideas opens
the web browser and shows the corresponding web page in the requirement tracking
system. The web page shows the contribution in detail, the state of the contribution in
the overall design process, and discussions and comments added in reaction to the
contribution.

7 Bridging between Product-Oriented and Process-Oriented
Flexibility

With regard to product-oriented flexibility, the current BSCWeasel implementation is
grounded in the features which Eclipse RCP provides. A plugin is in a technical sense
the smallest application unit of the Eclipse Platform function that can be developed
and delivered separately [16]. Such a component must be designed according to the
Eclipse plugin mode which is an extension of the common OSGi standard. Roughly
spoken a component is a bundle of java code, additional resources, and a description
of the component’s properties.

Product-oriented flexibility is basically limited to extensibility. The Eclipse Update
Manager allows high-level components to be integrated at runtime into a composition
to provide additional functionality. Plugins for an application are stored in specific
web sites and have to follow the update site’s specification. From this site they can be
downloaded to the local plugin directory.

Compositions of plugins cannot be reassembled during runtime by end users since
Eclipse RCP does not provide any specific user interface for that. Contrary to
FreEvolve [37], Eclipse does not connect the component structure with the corre-
sponding elements at the user interface.

Beyond extensibility, Eclipse RCP implements an interface-related aspect of prod-
uct-oriented flexibility which is part of the Eclipse workbench concept. The user in-
terface of an application is subdivided into different areas in which different interface
elements (called views) can be placed. These areas can be recursively split when
needed. Users can reposition these interface elements to compose a new integrated
user interface and enhance the functionality by adding new views.

2 This aspect distinguish our approach, e.g. from the concept of remote evaluation promoted by

Hartson et al. (1996). In their work end users should only deliver information of shortcom-
ings in the design. However, their participation in the design-related discussions of these
shortcomings is not technically supported.

62 G. Stevens, V. Pipek, and V. Wulf

Fig. 6. Screen shot of an Eclipse workbench with a set of BSCWeasel related views (outlined
with a rectangle)

Figure 6 provides a screenshot of the interface of the BSCWeasel, which illustrates
the Eclipse workbench concept. Typically at the beginning the BSCWeasel user inter-
face displays only some views and with the time the user interfaces become more
complex, presenting more sophisticated features (like the Event Monitor in Figure 6,
which presents awareness information).

We have set up an agile software development process to be able to react immedi-
ately to user requirements expressed within PaDU. To bridge between product- and
process oriented flexibility, the developers can build new plugins or modify existing
ones by means of short release cycles. We practice refactoring, as a method for archi-
tectural evolution. Eclipse as a software development environment offers tool suites
to support these approaches to process-oriented flexibility, like refactoring feature,
Release Engineering support, etc.

8 Case Study

Both prototypes which we described here were implemented based on the Eclipse
plugin framework. Together with further applications that are being used at the pe-
riphery of other implementations (e.g. email clients), they form an infrastructure to
support appropriation work in the late phase of usage design. Any application which
operates on the same infrastructural background (Eclipse) would be able to use our
concepts.

To evaluate our concepts, we implemented them into the BSCWeasel client.
BSCWeasel was developed by a research group of a German university. The core
group consisted of two developers which were complemented temporarily by differ-
ent student teams. Contrary to most work in the area of product-oriented flexibility,
we applied an agile development process which was directed towards short release
cycles and an immediate evaluation in practice.

In May 2005 an initial version of BSCWeasel was used by the developers and their
student team. Later versions were announced towards the research group at the

 Appropriation Infrastructure: Supporting the Design of Usages 63

university (about 15 members) and towards two groups at a research institute in ap-
plied computer science (about 15 researchers) 100 km away from the university. All
researchers were basically familiar with BSCW, though the system was applied to
rather different degrees. The appropriation process of BSCWeasel was analyzed via
the discussion threads provided by PaDU and CHIC. Moreover, observations and in-
formal interviews were carried out to explore the appropriation of BSCWeasel further
on. Additionally, two studies were conducted based on the ISO 9241-10/12 standards
to improve the usability of the application. The first study was carried out in April
2005 with nine users. It focused on the basic functionality of BSCWeasel. In January
2006, a second study with six users looked particularly into the usability of the CHiC
and PaDU functionality.

With regard to the appropriation of BSCWeasel at the university and the research
institute, we know about 10 regular users. They were intense users of BSCW before
and identified specific BSCWeasel functions to be incorporated into their practice.
The individual “killer” functions were not part of the BSCW thin client and covered a
wide range of functionality. Some of them were requested via PaDU – like the option
to download more than one file or complete folder structures, or a synchronized view
on local and remote directory structures. Other functions were communicated directly
towards the team of developers.

About half of the BSCWeasel users have made use of PaDU. From September
2005 to July 2007 130 design requirements were expressed via PaDU. Due to the rela-
tively small number of active users the design team was rather reactive towards their
suggestions. About 50% of these proposals got implemented.

In evaluating our experiences, we will focus on two main issues. First, we will in-
vestigate into the impact the appropriation infrastructure had on the design process.
Secondly, we will look into the relations and interferences among the different func-
tions of the appropriation infrastructure.

8.1 Grounding Design in Practice

After the roll-out of PaDU, the designers got more feedback from users. Since PaDU
items were stored in the Bug Tracking System, the feedback was more systematic and
easier to handle and became an integral part of the coordination work carried out by
the designers.

PaDU is mainly used by users to make designers aware of a usability problem
and/or feature request, however discussions among designers and users happened
rarely. This may be due to the fact that PaDU does not disclose the users’ identity.
However, we found frequent instances in which contributions made in PaDU trig-
gered a reflection process within the design team, e.g. discussing design alternatives
related to a concrete user experience. Sometimes designers react to a user comment,
when requirements expressed by the users were not clear (e.g. a designer wrote:
“Well, technically this is a little thing [to implement the feature request]. However,
for the moment is not yet clear to me how you would like to use it”) or different solu-
tions were possible, (e.g. asking which of different options to implement an “open file
with …” feature would be needed).

Most of the contributions made by the users referred to cases in which they were
able to accomplish their task, often by means of a workaround, but wanted a better

64 G. Stevens, V. Pipek, and V. Wulf

support from BSCWeasel. The snapshot annotation tool was typically used to point to
the referred area in the user interface. The suggested redesign would render more con-
trol or efficiency to their work. For example, with regard to the upload function a user
made the following proposal: “It would be a nice thing to know the data volume
ahead of an upload. In this case one would know how long it takes and whether there
is sufficient space available”.

Analyzing the contributions made via PaDU, we found little design requirements
which went far beyond the given functionality. Most of the suggestions were rooted in
practical experiences using BSCWeasel in the users’ daily work. Accessing PaDU
directly from their context of use seems to stimulate users to focus on present-at-hand
technology when contributing. It seems to result in incremental rather than highly
innovative suggestions for redesign.

However, these contributions, based on practical experience, had a considerable
impact on the design process. One of the developers came up with the following bon
mot: “If programming is understood as theory building [24], PaDU helps making it a
‘grounded theory’”.

Nevertheless, PaDU should be perceived as an additional instrument to improve
distributed, continuous Participatory Design and not as a replacement for traditional,
creativity oriented Participatory Design instruments like Future workshops.

8.2 Integrating Different Functions in an Appropriation Infrastructure

When integrating the different parts of the appropriation infrastructure and studying
them simultaneously, we became aware of the phenomena of interference. The lack-
ing integration of users’ communication channels with those channels between users
and designers created problems. The segregation of the different appropriation sup-
port functionalities – such as help, adaptation, or requirements articulation – seems to
be dysfunctional.

We observe that CHiC was mainly used as a traditional help system with only little
discussions among users going on. It seems that CHiC and PaDU cannibalized each
other since both could be applied when BSCWeasel was not present-at-hand. This
fact became obvious in the second usability study. An interviewee stated that he is
occasionally uncertain whether to address other users or better the developers. He had
a problem in connecting the BSCWeasel client with the BSCW server. Reflecting on
his problem, he was not sure whether it was caused by bad design or inappropriate
use. So he could not decide easily whether to discuss his problem in PaDU or CHiC.
In another case a user explained that she put a question into PaDU but later cancelled
it. She was not sure whether this issue was just her personal problem, (“just not
knowing enough about the system”), or if the issue was more generally relevant for
the design of BSCWeasel. These findings seem to indicate a need for a deeper inte-
gration of PaDU and CHiC.

Another example for lacking integration is the gap between flexibilization at the
level of the user interface compared to the level of the component structure of the
application and its missing integration into a communication infrastructure. Eclipse’s
“viewer” concept offers an elegant solution for the composition of interface elements
compared to user interfaces of web-based clients augmented by applets. All interface
elements can be integrated into a combined view, called perspective. We observed

 Appropriation Infrastructure: Supporting the Design of Usages 65

that this feature was applied by the users to individualize their user interface. How-
ever, Eclipse still suffers from the fact that this interface layer of a user centric com-
position is not connected to the underlying component structure. So, the underlying
structure is not visible and cannot directly explore from the user interface taking the
actual use context into account. Obviously, lacking references between software
structure and user interface leads to confusion and does not support users in under-
standing the linkage between the user interface and the software architecture [6].

As a result, users may develop a mental model which diverges strongly from the
software architecture. It leads specifically to problem in cases where applications, such
as Eclipse IDE or BSCWeasel, are composed by hundreds of components provided by
different vendors. During our usability study we found an example for these phenom-
ena.. It turned out that users assumed that our chat tool (a 3rd party component) and the
BSCW system where tightly coupled because the interface elements were integrated.
In another case we observed an Eclipse IDE user who had problems in finding out
which vendor was responsible for a specific view which he had added to his user inter-
face. He was looking for more information about the object in question.

Moreover, Eclipse suffers from lacking integration of the component management
features into a community-oriented communication infrastructure. The Eclipse com-
munity starts to become aware of this problem. In particular, some commercial com-
panies like Innoopract have started to extend Eclipse with a component repository
service with thousand of plug-ins. They support end users to assemble their personal
Eclipse configuration out of the repository in an easy way. Furthermore one can ob-
serve that traditional centralized provisioning strategies will be enhanced by concepts
that support a grassroots diffusion of composition and tailored artifacts.

9 Conclusion

Support for appropriation work has to be understood as a core challenge in the field of
End User Development. From the perspective of appropriation work, the concept of
design needs to be re-interpreted. It should be understood as designing usages, not
tools. In such a perspective, activities of end users such as configurating, tailoring,
sense making, or negotiating conventions of usage have to be linked to the work per-
formed by software developers. Appropriation and realization are dialectic moments
in usage design, while in the late phase it is mainly driven by actors and stakeholders
from the use sphere, not from the design sphere. These activities can be considered as
inherently collaborative and should be explicitly supported by appropriate infrastruc-
tures build into the applications. Extending earlier research, we aimed for an infra-
structure that does not only support user-user-collaboration, but also integrates the
professional designers’ work sphere. When supporting appropriation work, it seems to
be necessary to go beyond traditional EUD techniques such as configurating or tailor-
ing and connect professional designers with end users.

As a first case of an appropriation infrastructure, we developed collaborative func-
tionalities based on the Eclipse plugin architecture. We integrated this infrastructure
into BSCWeasel, a rich client for the web-based groupware system BSCW. The first
functionality we provided – supporting user-user collaboration - was a context-aware
extensible help system based on a wiki metaphor. Help texts could be complemented

66 G. Stevens, V. Pipek, and V. Wulf

or specialized for certain situations of usage. The second functionality we provided –
supporting user-designer collaboration – was a requirements tracking system that
allowed for rich technology-related articulations and collaborative requirements man-
agement and was integrated into the application, as well. Together with additional
tools which were integrated, they form an infrastructure for appropriation work.

We collected first evaluation data by means of an empirical case study covering the
infrastructure’s appropriation in three research groups. Some of the assumptions guid-
ing our design have been confirmed by the study. First of all, there is an interest, if
not even a need, for collaboration in the appropriation of technology. It makes sense
to understand the application to be appropriated not only as a boundary object be-
tween design and use, but also as a communication anchor and medium for appropria-
tion activities. Figure 1 illustrates the fact that both the appropriation infrastructure
and the component-repositories mediate between the developers and user communi-
ties if such a modularized design is meaningful for the different actors.

From a user perspective, the following activities seem to be expressions of appro-
priation work which are grounded in the reflective use of an application:

• consulting help systems,
• making requirement inquiry and (re-)design contributions,
• tailoring and updating an application.

Therefore, appropriation activities should be conceptualized from a holistic per-
spective. Appropriation infrastructure should integrate the different support features
to a wider extend than BSCWeasel has done so far. The infrastructure needs to be
tightly integrated into the software artifact for an optimal support of usage design:

• the communication channels should be activated directly from the access
point of the functions they refer to [cf.: 44],

• the communication channels should be structured according to the way the
users perceive the functionality,

• the communication channels should offer opportunities to create deictic ref-
erences towards specific aspects of the functionality.

In order to better support appropriation work, the linkage between product- and
process-oriented aspects of flexibility implies further fundamental design challenges.
Users and designers need to build common ground with regard to the component
structure of an application. Users build their mental models of technology based on
the perceived functionality. Designers work is typically grounded in a long profes-
sional tradition of software modularization which has led to a separation of applica-
tion logic and user interface. However, when supporting appropriation work, this
tradition needs to be challenged since it is the source of misunderstandings between
designers and users.

Our research needs to be extended to a theoretical level (e.g. connecting it to the
discourse around ‘infrastructuring’, [33]) as well as on a technological level (e.g. fine
grained component based tailorability beyond plug-in integration, additional support
functions, different infrastructural background technologies, e.g. service-oriented
architectures). Ultimately we hope to be able to establish a methodological perspec-
tive on end user development understood as software (usage!) design which is not

 Appropriation Infrastructure: Supporting the Design of Usages 67

dominated by the traditions of programmers but respects the work of all stakeholders
involved.

We conclude this paper with a refinement of the definition of EUD, picking up the
consideration that EUD should support a continuous co-evolution of both, the system
and the user [5, 10]. In times where software development methodology conceptions
like ‘perpetual beta’ [48] becomes general accepted designers, co-workers and other
stakeholders of the software artifacts are essential participants in the continuous
co-evolution. This also means that personal and shared design activities as highly
interwoven. A definition of EUD should be reflected this issue, thus we suggest a
refinement as follows: EUD denotes a set of methods, tools and techniques to support
end users to enforce their interests in the continuous co-evolutionary process by
modifying individual artifacts or participating in the modification of shared artifacts.

Acknowledgements

We would like to thank IBM for supporting our research by means of an Eclipse In-
novation Award. We are also grateful to the German Science Foundation and the
German Ministry of Research and Education (BMBF) for funding in the field of End
User Development (EUD).

References

1. Appelt, W.: What Groupware Functionality do Users Really Use? In: Proceedings of the
9th Euromicro Workshop on PDP 2001. IEEE Computer Society, Los Alamitos (2001)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Pearson
Education (2000)

3. Bentley, R., Dourish, P.: Medium versus mechanism: Supporting collaboration through
customisation. In: Proceedings of ECSCW 1995. Kluwer Academic Publishers, Stockholm
(1995)

4. Bentley, R., et al.: Supporting Collaborative Information Sharing with the World Wide
Web: The BSCW Shared Workspace System. In: The World Wide Web Journal:
Proceedings of the 4th International WWW Conference, vol. 1, pp. 63–74 (1995)

5. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: a Model-based Design Methodology. IEEE Trans. on SMC - Part A:
Systems and Humans 37(6), 1029–1046 (2007)

6. de Souza, C.S., Barbosa, S.D.J., Silva, S.R.P.: Semiotic engineering principles for
evaluating end-user programming environments. Interacting with Computers 13 (2001)

7. Dourish, P.: Developing a Reflective Model of Collaborative Systems. ACM Transactions
on Computer-Human Interaction 2(1), 40–63 (1995)

8. Finck, M., Gumm, D., Pape, B.: Using Groupware for Mediated Feedback. In: Proceedings
of the Participation Design Conference 2004 (2004)

9. Fischer, G., Girgensohn, A.: End-user modifiability in design environments. In:
Proceedings of the SIGCHI conference on Human factors in computing systems. ACM
Press, Washington (1990)

10. Fischer, G., Ostwald, J.: Seeding, Evolutionary Growth, and Reseeding: Enriching
Participatory Design with Informed Participation. In: Proceedings of the Participatory
Design Conference (PDC 2002). 2002. CPSR, Malmö (2002)

68 G. Stevens, V. Pipek, and V. Wulf

11. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp.
427–458. Springer, Heidelberg (2006)

12. Floyd, C., Reisin, F.-M., Schmidt, G.: STEPS to Software Development with Users
Source. In: Proceedings of the 2nd European Software Engineering Conference. LNCS.
Springer, London (1989)

13. Gamma, E., Wiegand, J.: The eclipse way processes that adapt (2005)
14. Grüttner, M.: Entwicklung eines generischen Visualisierungs- und Interaktionskonzepts

für kontextsensitive Hilfesysteme und prototypische Implementierung für das Eclipse
RCP-Framework. In: Wirtschaftsinformatik. University of Siegen: Siegen (2007)

15. Henderson, A., Kyng, M.: There’s No Place Like Home: Continuing Design in Use. In:
Greenbaum, J.K. (ed.) Design at Work - Cooperative Design of Computer Artifacts,
Hillsdale, pp. 219–240 (1991)

16. IBM, Draft: Eclipse Platform Technical Overview, IBM Corporation and The Eclipse
Foundation (2005)

17. Karsten, H., Jones, M.: The long and winding road: Collaorative IT and organisational
change. In: Int. Conference on Computer Supported Work (CSCW 1998). ACM Press,
New York (1998)

18. Kiczales, G., des Rivières, J., Bobrow, D.: The Art of the Meta-Object Protocol. MIT
Press, Cambridge (1991)

19. Lieberman, H., Paternó, F., Wulf, V. (eds.): End User Development. Springer, Berlin
(2006)

20. Lippert, M.: Eclipse Core - Unter der Haube, Teil 2: Ein Blick auf den
Entwicklungsprozess des Eclipse-Plattform-Projekts. Eclipse Magazin (2006)

21. Malone, T.W., Lai, K.-Y., Fry, C.: Experiments with Oval: a radically tailorable tool for
cooperative work. ACM TOIS 13(2), 177–205 (1995)

22. McLean, A., et al.: User tailorable systems: Pressing the issues with buttons. In:
Proceedings of CHI 1990, Seattle, Washington (1990)

23. Mørch, A.: Three Levels of End-user Tailoring: Customization, Integration and Extension.
In: Kyng, M., Henderson, H. (eds.) Computers and Design in context, pp. 51–76. MIT
Press, Cambridge (1997)

24. Naur, P.: Programming as Theory Building. Microprocessing and Microprogramming 15,
253–261 (1985)

25. Ngwenyama, O.K.: Groupware, social action and organizational emergence: on the
process dynamics of computer mediated distributed work. Accounting, Management and
Information Technologies 8(4), 123–143 (1998)

26. Oberquelle, H.: Situationsbedingte und benutzerorientierte Anpassbarkeit von Groupware.
In: Hartmann, A., et al. (eds.) Menschengerechte Groupware - Software-ergonomische
Gestaltung und partizipative Umsetzung, pp. 31–50. Stuttgart, Teubner (1994)

27. Orlikowski, W.J.: Evolving with Notes: Organizational change around groupware
technology. In: Ciborra, C. (ed.) Groupware & Teamwork, pp. 23–60. J. Wiley, Chichester
(1996)

28. Orlikowski, W.J., Hofman, J.D.: An Improvisational Model for Change Management: The
Case of Groupware Technologies. Sloan Management Review, pp. 11–21 (Winter 1997)

29. Pipek, V.: From Tailoring to Appropriation Support: Negotiating Groupware Usage. In:
Faculty of Science, Department of Information Processing Science 2005. University of
Oulu, Oulu (2005)

30. Pipek, V., Kahler, H.: Supporting Collaborative Tailoring. In: Lieberman, H., Paterno, F.,
Wulf, V. (eds.) End-User Development. Springer, Berlin (2006)

 Appropriation Infrastructure: Supporting the Design of Usages 69

31. Pipek, V.W.: A Groupware’s Life. In: Proceedings of the Sixth European Conference on
Computer Supported Cooperative Work (ECSCW 1999). Kluwer, Dordrecht (1999)

32. Rumpe, B., Schröder, A.: Quantitative Untersuchung des Extreme Programming Prozesses
(2001)

33. Star, S.L., Bowker, G.C.: How to infrastructure. In: Lievrouw, L.A., Livingstone, S. (eds.)
Handbook of New Media - Social Shaping and Consequences of ICTs, pp. 151–162.
SAGE Pub., London (2002)

34. Stevens, G.: BSCWeasel – How to make an existing Groupware System more flexible. In:
Demo presentation on the 9th European Conference on Computer-Supported Cooperative
Work (2005)

35. Stevens, G., Budweg, S., Pipek, V.: The BSCWeasel and Eclipse-powered Cooperative
End User Development. In: Proc. Workshop Eclipse as a Vehicle for CSCW Research at
the Int. Conf. on CSCW 2004, Chicago, IL, USA (2004)

36. Stevens, G., Wiedenhöfer, T.: CHIC - A pluggable solution for community help in context.
In: Proc of the 4th NordiCHi (2006)

37. Stiemerling, O.: Component-Based Tailorability. In: Institut für Informatik III, Rheinische
Friedrich-Wilhelms-Universität, Bonn (2000)

38. Suchman, L.: Located accountabilities in technology production. Scandinavian Journal of
Information Systems 14(2), 91–105 (2002)

39. Suchman, L.A.: Plans and situated actions: the problem of human-machine
communication. Cambridge University Press, Cambridge (1990)

40. Törpel, B., Pipek, V., Rittenbruch, M.: Creating Heterogeneity - Evolving Use of
Groupware in a Network of Freelancers. Special Issue on Evolving Use of Groupware,
Computer Supported Cooperative Work: The Journal of Collaborative Computing
(JCSCW) 12(1-2) (2003)

41. Twidale, M.B.: Over the Shoulder Learning: Supporting Brief Informal Learning.
Computer Supported Cooperative Work 14(6), 505–547 (2005)

42. von Hippel, E., Katz, R.: Shifting Innovation to Users via Toolkits. Management
Science 48(7), 821–833 (2002)

43. Wulf, V.: Evolving Cooperation when Introducing Groupware – A Self-Organization
Perspective. Cybernetics and Human Knowing 6(2), 55–75 (1999)

44. Wulf, V., Golombek, B.: Exploration environments: concept and empirical evaluation. In:
Proc. of the GROUP (2001)

45. Wulf, V., Golombek, B.: Direct Activation: A Concept to Encourage Tailoring Activities.
Behaviour & Information Technology 20(4), 249–263 (2001)

46. Wulf, V., Rohde, M.: Towards an Integrated Organization and Technology Development.
In: ACM Proceedings of the Symposium on Designing Interactive Systems (1995)

47. Wulf, V., Pipek, V., Won, M.: Component-based tailorability: Enabling highly flexible
software applications. Int. J. Hum.-Comput. Stud. 66(1), 1–22 (2008)

48. Wikipedia: Perpetual beta. Online resource (November 28, 2008),
http://en.wikipedia.org/wiki/Perpetual_beta

	Appropriation Infrastructure: Supporting the Design of Usages
	Introduction
	Appropriation Work and Technical Flexibility
	Appropriation Work
	Product-Oriented Flexibility
	Process-Oriented Flexibility

	An Infrastructure for Appropriation Support
	BSCWeasel
	Collaboration among Users
	Collaboration between Users and Developers
	Bridging between Product-Oriented and Process-Oriented Flexibility
	Case Study
	Grounding Design in Practice
	Integrating Different Functions in an Appropriation Infrastructure

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

