
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 31–49, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Mutual Development: A Case Study in  
Customer-Initiated Software Product Development  

Renate Andersen and Anders I. Mørch 

InterMedia, University of Oslo,  
P.O. Box 1161 Blindern, N-0318 Oslo, Norway 

renate.andersen@ementor.no, anders.morch@intermedia.uio.no 

Abstract. The paper is a case study of customer-initiated software product de-
velopment. We have observed and participated in system development activities 
in a commercial software house (company) over a period of two years. The 
company produces project-planning tools for the oil and gas industry, and relies 
on interaction with customers for further development of its products. Our main 
research question is how customers and professional developers engage in mu-
tual development mediated by shared software tools (products and support sys-
tems). We have used interviews with developers and customers as our main 
source of data, and identified the activities (from use to development) where 
customers have contributed to development. We analyze our findings in terms 
of co-configuration, meta-design and modding in order to name and compare 
the various stages of development (adaptation, generalization, improvement re-
quest, specialization, and tailoring).  

Keywords: customer-initiated product development, software development, 
case study, empirical analysis, theoretical perspectives, mutual development. 

1   Introduction 

The goal of the research reported here is to identify areas where end-user develop-
ment (EUD) and professional software development interact. We have observed and 
participated in development activities in a commercial software house (referred to as 
company in the remainder of the paper) over a period of two years. We propose a 
model of the activities, which we refer to as mutual development. The model consists 
of the 5 sub-processes, which connects EUD and professional development. 

1.1   The Case 

The company is engaged in commercial software development in the area of project 
planning and management and provides consultancy services in using its tools. At 
present, the company employs 25-30 people, but they intend to grow and is concur-
rently expanding their staff and searching for new markets. The main market has been 
the Nordic oil and gas industry. To expand into new markets, particularly building 
and construction, the company has started to modify and improve its knowledge man-
agement practices regarding customer relations. As researchers, we were invited by 



32 R. Andersen and A.I. Mørch 

the company to give advice for how to improve knowledge management practices 
with customers. 

The company is known for their customer initiated product development approach, 
i.e. close interaction with customers to develop tailor-made products [1][31]. Custom-
ers are encouraged to report problems, innovative use, and local development to the 
company. This has been stimulated through long-term relationships (maintenance 
contracts) and user forums. Each year the company hosts a large showcase where 
customers are invited, and developers provide communication and information shar-
ing tools for customer interaction. This started with the telephone, then supplemented 
by mail, later extending to a Helpdesk interface, then a Customer Relationship  
Management (CRM) system, and most recently a Web 2.0 prototype created by the 
research team [29].  

Despite their small size, the company is recognized as a major player in the busi-
ness of project planning tools. They have several hundred customers and they have 
long-term commitments with many of them. One of their recent products is an add-on 
to Microsoft Project.  

Our main research question and objective is how there is mutual development be-
tween customers, professional developers mediated by software products and ICT 
support systems in the company we studied. By mutual development we mean that 
both professional developers and end users contribute to development as active par-
ticipants in both design and use. We identify the range of end-user development ac-
tivities (from use to design) taking place in the interaction between the company’s 
developers and some of their customers.  

We have identified five sub-processes (adaptation, generalization, improvement 
requests, specialization, and tailoring) by pinpointing what developers and customers 
are doing and where their activities meet and overlap. We base our analysis on inter-
views with developers, consultants, and customers, and on data from a video-recorded 
workshop. The findings are compared with previous research in EUD and analyzed in 
terms of co-configuration [7][8], meta-design [10][12] and modding [15][16]. The 
goal is to identify the interdependencies of EUD and professional development and to 
construct a model for their mutual development. 

The rest of the paper is organized as follows. It starts with an overview of EUD. 
Next, we present a survey of research in the intersection of EUD and software devel-
opment. Then we present three theoretical perspectives on EUD. We analyze our 
findings by comparing with the three perspectives. At the end open issues for further 
research is suggested. 

2   End-User Development 

End-user development is an umbrella term for research and development in end-user 
tools for application development. This originated with research that dealt with tech-
nological and organizational issues of an emerging field, such as end-user program-
ming in spreadsheets and tailorable systems [22]. Most recently, web application 
development has introduced a new line of R&D that shares many similarities with 
EUD (e.g., mashups, Yahoo pipes). However, EUD was perhaps first established as a 
research field with its own agenda in the European EUD-Net project (2002-3), which 



 Mutual Development 33 

defines EUD as “a set of methods, activities, techniques, and tools that allow people 
who are non-professional software developers, at some point to create or modify a 
software artifact” [21]. The different approaches to EUD vary with respect to how 
they emphasize methods, activities, techniques, and tools, and whether they focus on 
creation or modification of software artifacts. Furthermore, what a software artifact 
means also varies among researchers. Software tools, source code, design diagrams, 
application units, and application development environments have been mentioned. 
As an example, end-user tailoring is about methods, activities, techniques, and tools 
for adaptation and further development of existing software applications based on 
direct activation of tailoring tools from the applications’ user interface [25] [39].   

EUD is multidisciplinary and its rationale (the “why” of EUD) has multiple di-
mensions: human-computer interaction (HCI), software engineering, and organiza-
tional use. From a human-computer interaction perspective, EUD is about leveraging 
the deployment of easy-to-use ICT and turning them into easy-to-further-develop 
systems [21][28][40]. From a software engineering perspective, EUD is supportive of 
the trend of producing generic applications [2][24]. By “generic” is meant multifunc-
tional, domain independent, or application generators, i.e. “over designed” functional-
ity that can be configured to different user needs [26], or domain independent tools 
like groupware and basic drawing functionality, or “under designed” environments 
that support users in creating new applications [12]. For example, a groupware system 
can provide different users with different access rights to shared objects [33]. From 
the perspective of organizational use, the rationale for EUD is associated with the 
user diversity found in organizations employing advanced ICT. Users have different 
cultural, educational, training, and employment backgrounds. They are novice and 
experienced computer users (e.g. super user), ranging from the young to the mature, 
and they have many different abilities and disabilities [3][23][26].  

2.1   Integrated EUD 

EUD interrelates with software development in multiple ways, but (to the best of our 
knowledge) there are few studies that have examined EUD in terms of boundary 
crossing of two types of organizations (developer and customers). We survey the 
related work below EUD. We also include work that is not commonly associated with 
EUD in the survey. 

Stevens and Wulf [33] presented a case study of inter-organizational cooperation 
from the steel industry in Germany. They analyzed the relationship between two engi-
neering offices and a steel mill to identify patterns of cooperation that can serve as 
requirements for new designs. They found that there was tight coupling across organ-
izational boundaries, but also competition between the units. EUD was proposed in 
terms of a component-based framework for tailoring a groupware application at run-
time. The focus was on flexible access control for sharing material stored in electronic 
repositories among the interacting units. The new access mechanisms could be decom-
posed and integrated and the users were able to realize new access mechanisms that did 
not already exist in the groupware. By decomposing application components into sim-
pler ones and assembling the parts into new compounds (intermediate building blocks) 
and applications, users can modify existing applications and create new ones, without 
accessing the underlying program code [40]. 



34 R. Andersen and A.I. Mørch 

Eriksson and Dittrich [9] identified the reasons why tailoring should be integrated 
with software development. In a case study of a Swedish telecom provider, they found 
it was possible to provide end-user developers with the means to tailor not only indi-
vidual applications, but also the infrastructure in which applications are integrated. 
According to the authors, this is an area that might change faster than applications, 
especially in rapidly changing business contexts. To support this form of tailoring in 
the organization, they studied tailoring needs to coordinate better with software de-
velopment activities. In another study, Dittrich and Vaucouleur [4] found that cus-
tomization practices of an ERP system they studied at several sites were at odds with 
software engineering practices, resulting in a discrepancy in terms of integrated envi-
ronments for end-user development. 

In a case study in an accounting company in Norway, the activities of end user de-
velopers were followed and analyzed using Activity Theory [26]. The authors show 
how the organization successfully initiated a program to train super users [17] in con-
junction with introducing a new software application, Visma Business (VB). The 
research was formulated to address how super users engage in EUD activities in order 
to achieve an efficient use of VB, and how EUD activities were organized. In terms of 
organization, there was a certain division of labor within the community: 1) between 
the regular users and the super users, 2) between the super users and the application 
coordinator (acting as local developer), and 3) between the application coordinator 
and the professional developers. It was also interesting to find a new role for a local 
developer. This person’s responsibility was primarily to perform EUD activities at a 
general level, to work closely with some of the more experienced super users in the 
offices, and to communicate with the professional developers. This person general-
ized the results of useful EUD activities and made local solutions available through-
out the company.   

Explicit and implicit channels for communication between developers and users for 
the purpose of end user development have been proposed in a variety of contexts, 
especially in the area of CSCW. For example Mørch and Mehandjiev [27] demon-
strated that design rationale integrated with a tailor-enabled application could support 
indirect communication between developers and users and thus help end user devel-
opers to further develop their applications. Along the same lines, Stevens and 
Wiedenhöfer [34] developed a wiki-based help system for communication and infor-
mation sharing to be integrated with standalone applications. It provides online help 
to a community of users and thus enhances communication between developers and 
users with the affordances of Web 2.0. The authors claim this form of integration 
creates a more seamless transition between the use context and the resolution of a 
problem due to the familiarity users have with Wiki-based systems [34]. 

3   Concepts for Analysis  

We analyze our findings in terms of three theoretical perspectives on end-user devel-
opment in order to account for a broad array of relevant concerns, ranging from com-
puter science to application domains to organization of work: meta-design, modding, 
and co-configuration. 



 Mutual Development 35 

3.1   SER Model and Meta-design 

SER (Seeding, Evolutionary growth, Reseeding) is a process model for integrating 
end-user development with software engineering [11]. It is different from user-
centered design in HCI (e.g., prototyping) and from software engineering (e.g., speci-
fication driven methods). It has more in common with aspects of participatory design 
in that the SER model describes a sociotechnical environment for tailorable applica-
tions to be used over an extended period of time. It postulates that systems that evolve 
over a sustained time span must continually alternate between periods of unplanned 
evolutions by end users (evolutionary growth), and periods of deliberate restructuring 
and enhancement (reseeding), involving users in collaboration with designers [11].  

The SER model makes a distinction between design time and use time, which dis-
tinguishes developers’ activity from users’ activity. Integrating these two types of 
software development activities is the aim of meta-design: a framework to provide 
end users with tools that allow them to tailor and further develop professional tools in 
their own context [10][12]. Meta-designers use their creativity to develop sociotech-
nical environments in which other (less technical oriented) users can be creative in 
their own areas of expertise. Meta-design as viewed from a software engineering 
viewpoint defines flexible design spaces for end-user developers. Examples are tailor-
ing languages, application frameworks and EUD tools integrated with applications. 
This means the users interested in being active contributors should be supported in 
exploring an application’s potential for being incorporated in new activities, and 
evolving its functionally to support new needs [10]. To the extent this can be accom-
plished without end users having detailed knowledge of programming, meta-design 
becomes a powerful framework and perspective for EUD. 

The SER model has influenced the mutual development model we present below. 
In particular, we elaborate on evolutionary growth and reseeding and the dynamic 
interaction between them in the company we studied.  

3.2   Modding 

Modding is when users modify products by themselves, without the direct interven-
tion of professional developers. The term is a slang expression derived from the word 
modify that refers to the act of modifying a piece of software or hardware, originally 
conceived in the gaming industry. Modding is an alternative way of including cus-
tomers in product development processes. Modding can be seen to combine EUD and 
participatory design, in that it combines the inclusion of customers in both early and 
later stages of product development, depending on the customer’s needs. By adopting 
this activity, modding can be seen as extending the design environment approach to 
EUD [12][28][40] by making it possible for customers to promote an array of ideas 
and needs in the early stages of product development, even before a given framework 
exists.  

The outcomes of modding, called mods, range from minor alterations to very ex-
tensive variations of the original product [15][16]. An example of modding from the 
gaming industry is when hardcore players create hacks and figure out how to develop 
software add-ons to twist games’ parameters, such as the creation of a “No Jealousy” 
patch, which lets characters have more than one lover without either one getting 



36 R. Andersen and A.I. Mørch 

jealous [20]. What is even more interesting is how the original product serves as a 
platform for further modding for customers.    

Modding as an alternative approach to including customers in product development 
processes is a noteworthy concept since it engages the customer in different stages of 
the product development process. Modding is based on further development of an al-
ready existing platform. However, this must not be misunderstood. It does not mean the 
narrowing down of product development to simply be further development of already 
existing products, as is often the case with tailorable applications and evolutionary ap-
plication development [24]. On the contrary, it appears that already existing products 
may be “opened up” by end-user contributions in terms of generating new ideas for 
functionality, new features, and even new products. In many ways, it is the concrete 
(executable) applications rather than the more abstract application frameworks and 
tailoring languages that best serve as a platform for end-user development [24].   

3.3   Co-configuration 

Engeström [7] [8] adopted the term co-configuration from Victor & Boynton [35] to 
enhance the theory of expansive learning in order to address a new form of work that 
involves user participation from customers and employees in the development of 
products. Co-configuration implies both a new form of work and a new way of learn-
ing. Engeström draws on the empirical findings of a broadband telecommunications 
firm in Finland, focusing on learning as joint creation of new knowledge and new 
practices by multiple stakeholders [7]. Engeström, following Victor and Boynton 
[35], defines co-configuration as an emerging historical type of work with the follow-
ing general characteristics [7]: 

• Adaptive and adaptable customer products or services, or more typically integrated 
product-service combinations 

• A continuous relationship of mutual exchange between customers, producers, and 
the product-service combinations  

• Continuous co-configuration and customization of the product-service-customer 
relationship over lengthy time periods  

• Active customer involvement and input in the co-configuration work 
• Multiple collaborating producers that need to operate together in networks within 

or between organizations 
• Mutual learning from interactions between the parties involved in configuration 

actions.  

From this description, we can understand the term co-configuration as a type of 
work that includes active participation from customers in developing their products. 
One of the characteristics of co-configuration work is the great degree of customer 
participation required in order for it to work. For example, when developing project 
planning software to fit a user organization and its work tasks, it is important to in-
clude users as participants in the process since they are the ones who know what kind 
of work tasks the project planning tools are supposed to support. However, not all 
companies will benefit by such a strategy. For example, to what degree is the com-
pany dependent on involvement from customers? What happens if some customers do 
not see the value of being part of such co-configuration work? To what degrees do the 



 Mutual Development 37 

customers actually participate? To what degree is it reasonable to expect that custom-
ers will continue to participate over lengthy time periods?  It is probably realistic to 
assume that in today’s world of mass consumption the majority of end users will not 
want to design or contribute to further development of the products they use. We 
chose to focus on those customers who took an active part in the case we report. 

4   Method 

Our objective is to construct a model of mutual development between customers and 
professional developers as seen from a EUD perspective. The case study is designed 
to extend our own previous efforts by treating the interaction of two organizations 
(developer and customer) as the unit of analysis [26][31]. We identify the sub-
processes of the product development process studied. EUD is one component in this 
picture, but not the only one. By presenting the whole picture we wish to provide a 
comprehensive view of mutual development, which we present as different stages of 
activity, using examples and theoretical analyses to justify our claims. We used a 
qualitative approach as part of a case study. In addition, we used video and audio 
recorders to gather data. Moreover, we used open-ended interviews, focus groups and 
participant observations. 

4.1   Categorizing Data 

This section will elaborate on how the intermediate terms used to describe mutual 
development emerged as a result of analysis done while screening and analyzing data. 
The form of analysis used is ‘template analysis,’ which is the process whereby “the 
researcher produces a list of codes (a template) representing themes identified in their 
textual data [19].” This is both a top-down and bottom up process. Below, we have 
named some terms, more precisely the different stages of mutual development, repre-
senting different themes identified in the empirical findings. After identifying these 
themes, the data was analyzed with this in mind, using these themes as a template. 
King distinguishes three features in template analysis: defining codes, hierarchical 
coding and parallel coding [19]. 

Defining codes is to label a section of text with a code in order to index it as relat-
ing to a theme or issue in the data that the researcher has identified as important to his 
or her interpretation [19]. We had the research questions in mind the first time we 
went through the data, but in the second round of selecting data we categorized it 
accordingly. The categorization of “outer loop” and “inner loop” were used as “high-
level codes,” and may be connected with what King defines as hierarchical coding.  

Hierarchical coding “is codes that are arranged hierarchically with groups of simi-
lar codes clustered together to produce more general higher order codes” [19]. The 
high-level codes of “inner loop” and “outer loop” roughly clustered the data into two 
different terrains, one about customer-initiated development activity (outer) and the 
other about software engineering (inner). This was done deliberately to create an 
overview of the data. Knowing that our area of interest was mostly on the “outer 
loop” product development process, the data was analyzed again for topics within this 
domain. It was found that within the interviews there existed some sub-processes of 
outer loop product development. They were identified as Adaptation, Generalization, 



38 R. Andersen and A.I. Mørch 

Tailoring, Improvement Request and Specialization. Using these terms or codes as a 
template, the data was searched again in order to support these sub-processes with 
empirical evidence.  

Parallel coding is when the same segment of data is classified within two (or 
more) different codes at the same level [19]. In one instance, the same set of data 
excerpts was classified within the intermediate code “outer loop” and the lower order 
code Specialization, which is a stage within the inner loop product development. 
Therefore, parallel coding was used in this context. 

5   Data and Analysis 

At the end of the coding we ended up with the following five sub-processes (stages) 
of customer-initiated product development:  

• Adaptation: Adaptation is when a customer requests an improvement to an existing 
product and the company chooses to fulfill the request. It becomes an Adaptation 
just for this customer. Sometimes, the customer has to pay for this, sometimes not. 

• Generalization: Generalization occurs when a new version of an existing product is 
released and is available to more than one customer. 

• Improvement Requests: This is when customers request the company for extra 
functionality, report bugs and usability problems, and is viewed from the custom-
ers’ perspectives. 

• Specialization: Specialization is when the professional developers at the company 
create in-house builds. This is common in inner loop development processes where 
professional developers improve the products for their own internal work. This 
could potentially result in new features, but most often it entails refining the prod-
uct, reorganizing program code, and removing bugs. 

• Tailoring is about active end users who make adaptations on their own.  

We justify these stages using the data extracts and analysis below. The two first ex-
tracts define basic issues (types of process) that resurface in the other extracts and in 
the analyses. The last three extracts represent four of the five stages. 

5.1   Excerpt 1: Types of Improvement Request 

In the first excerpt, the focus is on how a developer (informant) judges the Improve-
ment Requests of the customer. This includes making a power decision as to what 
kinds of Improvement Requests to consider. The power to judge whether or not a 
customer Improvement Request should be accepted lies in the hands of the company’s 
professional developers. This excerpt does not go into detail about how exactly these 
Improvement Requests enter the company, but it does elaborate in what way the cus-
tomers ask for Improvement Requests. 

 

Informant: Often when they (the customers) want Improvement Requests they ask 
me if I can make a change (to the existing product), according to some 
needs they have. In addition they put it (the Improvement Request) into 
a list we have on the Internet. We receive a lot of Improvement Re-
quests and some of them are actually such good ideas that we want to 



 Mutual Development 39 

integrate them into our products. And there are other ideas that are 
really bad. There are also some ideas that are not so good (but they are 
doable), therefore we incorporate them if they pay for it. When doing 
this we make special libraries for that particular customer. Then this 
does not become a part of the system (the product).  

 
Improvement Requests turned out to be an important activity for communication 

with the company, requiring less technical expertise than Tailoring. Excerpt 1 is an 
example of how customers propose changes to the company’s products without doing 
any local development. Excerpt 1 shows that an Improvement Request is one of the 
prerequisite sub-processes of Adaptation. It is when a professional developer creates a 
new feature for an already existing product in accordance with the customer’s de-
mands. At the end of this excerpt, the informant introduces the theme of how they get 
good, possible (doable) and bad ideas for further development. If an idea is labeled 
good it is accepted as is. When an idea is categorized as possible it means that the 
idea is plausible, but will not become a part of the general product. It might be ac-
cepted under contract (with payment), and turns into a local Adaptation. Finally, an 
idea labeled bad is rejected outright. Implicit in this example is the assumption that 
the company’s employees are the ones who judge whether the Improvement Requests 
are good, possible or bad and have the freedom to make those distinctions. 

As seen from a meta-design and SER perspective [11][12], Excerpt 1 may be inter-
preted as an example of boundary crossing, namely that submitting, receiving and 
handling of improvement request cross the boundary of two organizations (customer 
and developer). It also indicates some of the decisions that have to be made before the 
“evolutionary growth” of an application at a specific site can be accepted into the 
“reseeding” phase by company developers. In this way, Improvement Requests can 
help to bridge the gap between EUD and professional development.  

The data in Excerpt 1 may have some commonalities with Engeström’s notion of 
co-configuration. Item number two in the definition of co-configuration (see Inte-
grated EUD) is about the mutual exchange between customers, producers and the 
product-service combinations [8]. Mutual exchange can be seen in this excerpt as 
well, between the customers issuing requests to the company and the professional 
developers handling these requests. The exchange for customers is getting the devel-
opment they want, while the company receives money for performing the develop-
ment (or more satisfied customers). 

If a request is categorized as good or possible, the next stage of Adaptation takes 
place. During the second stage of Adaptation terms like patch, build and version be-
come relevant, which we discuss below.  

5.2   Excerpt 2: Types of Generalization  

This is part of an interview one of the researchers had with one of the developers. The 
informant explains the software deployment (packaging) terms patch, build and ver-
sion as part of an elaborated answer to a question about improvement requests: 

 
Informant: There are three levels: we have a so-called patch, which is a quick fix 

to some sort of a problem. This is being sent out to the customer, which 



40 R. Andersen and A.I. Mørch 

is a (solution) right there and then. After the customer installs the 
patch, he tests if it works and then the problem is fixed. After a while, 
when we have made enough patches like this, we find new errors and 
the customers find errors and then we make a new complete program. 
That is what we call a build. On top of this, we have something we call 
versions; they could be (called) 3.4, 3.5, 3.5.1. They have more content 
and much more functionality. 

 

Patch, build and version are the developers’ responses to customers forwarding 
Improvement Requests in the Adaptation stage, which again can lead to Specializa-
tion and Generalization. Patch is understood as a quick fix to a problem. Patches are 
packaged extensions that fit specific versions. For example, if Word is being used to 
write some text and one’s references in EndNote are lost each time text is converted 
into PDF, the company could be contacted. They will fix it and send back a so-called 
patch, which is small program (a software component) that may be installed on the 
computer and linked with the main program, and the problem is fixed. Builds result if 
the company has had many quick fixes, similar to the example with Word, and 2nd 
order problems emerge (i.e., problems connected to the compatibility of patches). 
Then they create a build, which is a compiled program. Builds are associated with 
Specialization. Finally, a new version is both an extension and a generalization. It is 
an extension (improvement) of a build, and a generalization when a new version is 
made available to new customers and to the existing customers when they are due for 
an upgrade according to their contract. Generalization is a borderline activity between 
inner loop and outer loop product development. 

In Excerpt 2 it is evident that to a large extent, software development at the com-
pany proceeds with the SER model, as Fischer describes [11]. Excerpt 2 has a lot in 
common with the example Fischer uses to explain the reseeding phase, where open 
source software systems take some time to evolve, aided by using local (user created) 
extensions and the integration of patches (evolutionary growth), but eventually re-
quire major reorganizing in order to incorporate the patches and extensions in a co-
herent fashion (reseeding) [11]. In the company it happened like this: First the prod-
uct evolves locally as a result of patches created in response to customer requests, and 
when this becomes unwieldy the company’s professional developers create a build. 
Lastly, when the modifications become too numerous or are judged to be useful 
(good) for other (potential) customers, the developers create a new version of the 
product. However, Fischer does not distinguish between build and version. He uses 
the term reseeding for all developer activity associated with reorganizing multiple 
adaptations (patched systems) into unified (seamless) versions. Due to the complexity 
of this activity, it is useful to distinguish the multiple sub processes (types) of reseed-
ing and the interaction between evolutionary growth and reseeding. 

5.3   Excerpt 3: Improvement Request and Adaptation 

Excerpt 3 below illustrates how the Improvement Requests, as elaborated in the ex-
cerpt above, are differentiated. It also shows what is meant by Adaptation. 

 



 Mutual Development 41 

Question: 
 
 
Answer: 
 
Question: 
Answer: 
 

So, the rationale for a given upgrade lies with a specific customer, 
which means that a customer can be a part of setting the standards for 
what other customers receive. 
Mm, but if what one customer suggests is far off, then we just make a 
local adaptation for that specific customer. 
So, this becomes a new version for you then? 
What we have in addition to every menu choice is a so-called user 
option, it is placed in an “own” library, which can be linked, and al-
lows us to do further product development. 

 
What triggered the statement above is that one of the interviewers asked how the 

company develops their products. In sentence number two, the informant answers that 
if the customer’s request is “far off” they just make an Adaptation for this particular 
customer, as long as the customer pays for it. As mentioned above, this corresponds 
with an Improvement Request labeled possible. Excerpt 3 shows how an Improve-
ment Request labeled good may become available to all customers. The informant 
acknowledges after some hesitation and with elaboration that the customers are to 
some extent “defining” what other customers receive of product upgrades. They do 
this by suggesting Improvement Requests and other customer-initiated activities such 
as Tailoring. However in most cases Improvement request that are responded to by an 
Adaptation, providing a custom-made product for this customer by using patches or 
user options with the current released version of the product. In the last sentence in 
Excerpt 3, the informant explains what is meant by (local) Adaptation. It is associated 
with a patched system installation that can be continually adapted (further developed) 
by user options that are deployed in a separate package (own library). When installed 
in the system, it appears as a separate menu with items for the various user options.  

5.4   Excerpt 4: Generalization 

The above excerpt introduced the term “user option,” which is a special kind of patch. 
The related terms user option, patch and new version will be clarified in Excerpt 4 
below. The excerpt illustrates the generalization process. 

 
Question: 
 
Answer: 
 
Question: 
Answer: 
 
 
 
Question: 
Answer: 
 
Question: 
Answer: 

Do you have other examples of customers initiating new functionality to 
the product? 
Yes, we have done it for BuildingCompany and ABB… (two large 
European engineering and consultancy companies)      
What sort of new functionality did they want? 
Yes, well, it is. I don’t remember - it was years ago. I know that when 
they bought the product they had specific requirements that were origi-
nally not part of the product. But we wrote it into the contract as the 
functionality they wanted.   
Ok, so it was a part of the contract?     
Yes, they wanted it within a specific time period. Their requirements 
were rather demanding regarding what they wanted us to make.  
Was it an add-on specifically made for BuildingCompany or..  
No, it became a part of the product. Yes, it started as a patch, what we 
call a user option.  



42 R. Andersen and A.I. Mørch 

The informant underlines that a request for new functionality eventually became 
part of the company’s general product portfolio and was made available to all their 
customers. It is an example of Generalization. It becomes clear that in this situation 
the request for new functionality that BuildingCompany asked for was something 
specific they needed. The company wrote their demands into the contract. This ex-
cerpt reiterates a point made above, that good Improvement Requests would be incor-
porated into the next version of one of their products.   

The transition from Adaptation to Generalization is evident in Excerpt 4 since it 
describes an activity that involves one specific product (Planner) based on interaction 
with specific customers (Building Company in particular). The product has developed 
from small local extensions (patches and user options) to a basic core (in-house) ver-
sion to a new (released) version where generally useful local adaptations are incorpo-
rated into the new release. We interpret the last sentence of the excerpt to mean a 
step-wise integration into the product (from specific to general) along three steps. It is 
associated with the combination of the utterance of “No” and “Yes” that signify a 
contradiction and disruptive (non incremental) transition (from Adaptation to Gener-
alization). 1-2) Yes, it started as a special type of patch (user option), which is Adap-
tation, 3) no, it was only later incorporated into the product, which is Generalization. 
Adaptation represents the two first steps. First, the extra functionality BuildingCom-
pany asked for is a user option, which means it is only available for this specific cus-
tomer. Second, they want to make this available for later use, so they make a patch 
that the other customers can access upon demand, for example via the company’s web 
pages. Third, when there is a new version of the product, the extra functionality 
(patches and user options) have been incorporated in the product and therefore made 
available to potentially all customers. In other words, we may say that there is a grad-
ual development of the company’s products over the years, many of which are based 
on local development initiatives and Improvement Requests to generalized versions 
and back to new initiatives for further development, as new user contexts appear.  

Fischer and Ostwald’s SER model [11] suggests mutual dependency of evolution-
ary growth and reseeding, and this is supported by the findings reported here, namely 
that use time activity (Improvement Requests) can trigger design-time (Generaliza-
tion) activity. It is also related to SER in a more indirect way, in that Adaptation as a 
user-oriented design-time activity can lead to Generalization.   

Jeppesen underlines how a defining characteristic of modding is how “final mods of-
ten are freely revealed,” meaning that no users are excluded from using the new modi-
fied version” [15]. In the same way as final mods are freely available, the Adaptations 
made to products based on some customers’ ideas become available for all customers in 
the Generalization stage, when the suggestions from customers are accepted and inte-
grated into a new version of the product, as shown in the excerpt above. 

5.5   Excerpt 5: Tailoring 

Excerpt 5 shows how customers locally adjust a software product by end-user pro-
gramming to create their own extensions. Excerpt 5, from an interview with a cus-
tomer in the building industry, shows a customer stating that he has adjusted the 
product himself by writing code in the domain-specific language SQL. 



 Mutual Development 43 

Question: 
Answer: 
 
 
 
 
 
 
 
Question: 
Answer: 

Have you requested any wishes or needs for local adaptations? 
No, we have not got any special adaptations of the products (from the 
company). The reason for this is because I knew a great deal about 
SQL from earlier experience; therefore I managed to find a shortcut (of 
how to do it myself). I do not know the whole structure of the system, 
but it is available through ordinary documentation. There you get the 
whole (database) table structure and that has made it possible for me to 
find a shortcut through Access (a proprietary database management 
system) and allowed me to make some special (local) adaptations.  
So, in reality you have made your own adaptations to the products? 
Yes, you may say that. 

 
This excerpt illustrates Tailoring, which is the sub-process that most closely re-

sembles EUD as a standalone activity. Microsoft Office Access is used in conjunction 
with one of the company’s project planning tools for data storage. 

In the first sentence of this excerpt the customer states that the company has not 
adjusted the products for them. It is discovered that the reason for this is because the 
customer has made some adaptations to the product himself. He has tailored the 
product. This was possible for the customer because the products are well docu-
mented. In addition, because this customer was familiar with SQL, a high-level data-
base query language, it was natural for him to fix the problem himself to suit his 
needs. This excerpt is an example of what we refer to as Tailoring. In Tailoring, the 
customer actually locally adapts the product without any company involvement. This 
might mean creating a small program to work around an inefficient solution as shown 
in this excerpt.  

The reason the customer is able to tailor the product himself is because he is an ex-
pert project manager and is interested in learning how to work around a problem or 
inefficient solution when it appears. In other words, he is a super user. As an example, 
he describes how he can access and reorganize database tables as he sees fit and in a 
way that meets his organization’s needs.  The cost of this is his time and the skills 
required for programming, albeit simplified with a database query language like SQL 
compared to programming languages like Java. The advantage is that he will be able 
to see results of his ideas implemented relatively quickly as compared to the turn-
around time when ideas for change are submitted to the company via improvement 
requests. The interviewer asks if this is a way of doing local adaptation, and he con-
firms that his SQL programming can be perceived as such.  If Tailoring is followed 
with an Improvement request, tailoring might contribute to further development at the 
general levels, as was illustrated in the previous excerpt.  

In previous work, tailoring has been viewed as evolutionary application develop-
ment [24]. This view ignored the role of professional development and reseeding, and 
explored the design space of evolutionary growth for end-user developers. According 
to the mutual development perspective, this view must be updated. Based on the data 
reported here, tailoring is better conceived of as evolutionary design, in the sense that 
the local (customer) solution serves as a design for the general (company) solution, 
assuming it is accepted.   

The findings reported in this section have been condensed and depicted in the mu-
tual development model shown in Figure 1. Excerpt 1 can be seen as clarifying the 



44 R. Andersen and A.I. Mørch 

informants’ perception of the terms good, possible and bad. Excerpt 2 has a similar 
role for the terms patch, build and version (user options are further distinguished in 
Excerpts 3 and 4). Excerpt 3 also underlines the processes of Improvement Request 
and Adaptation, which are related in that one feeds into the other. Excerpt 4 exempli-
fies the stage of Generalization. It illustrates how a product becomes available to all 
customers. Finally, Excerpt 5 illustrates Tailoring by showing how a customer with 
some programming knowledge modified the product himself. It should be stressed 
that we have focused on the activities that involve end users (company customers) and 
multiple perspectives on developer-user interaction. We do not yet have sufficient 
data to illustrate the Specialization stage. 
 

 

Fig. 1. Different stages of mutual development: developer activity and customer-initiated activ-
ity co-evolve; the arrows indicate dependencies. Specialization is not addressed in this paper 
because it does not interrelate directly with end-user activities. 

6   Conclusions and Directions for Further Work 

Our main research question and objective is how there is mutual development be-
tween customers, professional developers mediated by software products and ICT 
support systems in the company we studied. Our findings points to the components of 
the product development process studied. It was found that within the interviews there 
existed some sub-processes of mutual development (initially formulated during the 
preliminary analysis as customer-initiated product development) [1]. They were iden-
tified as Adaptation, Generalization, Improvement Request, Specialization, and Tai-
loring.  

Mutual development is depicted in Figure 1. It is our first attempt to construct a 
model to integrate professional and end-user development [1]. Looking back, we see 
there are additional questions we would have liked to ask our informants, for example 
about the details of the customer-developer interactions. This was not possible in the 
current study. We cannot rule out that there may be sub-processes that have not been 



 Mutual Development 45 

identified, some that may have to be modified, and yet others that need to be elabo-
rated. This is part of future work. 

In spite of this, it is clear that EUD and professional development are interdepend-
ent, and represent two different activity systems, one (customer-initiated activity) 
feeds into the other (developer activity) and they co-evolve. This relationship is  
maintained because the developer organization (company) relies on input from active 
customers for continuation of its products as part of maintenance and consultation 
contracts, and to get innovative ideas for new products that can attract new customers. 
This is to some extent a result of the company’s small size and its operation in a niche 
market. On the other hand, customers rely on the company for project planning tools, 
training and constancy services, the ability to interact with the company’s developers, 
and in general the pleasure they get from seeing their suggestions for modification 
being incorporated in a later version of the product.  

The five excerpts we have shown to justify our claims illustrate how the products 
in the company have evolved from specialized and locally adapted instances to more 
general and stable ones in interaction with customers. It goes through an elaborated 
process of specialization (refinement), adaptation (domain orientation) and generali-
zation (one to many instances), starting with a stable (but non optimal) product ver-
sion that is gradually extended with locally developed extensions, user options, and 
patches. At some point this configuration becomes unwieldy and the system is re-
built. The new build may lead into a new version of the product if it will benefit the 
company and its other customers. Interaction between the stages is not unidirectional 
because new versions may lead to new local development and improvement requests, 
which repeat the process. 

We have used theories and concepts developed by other researchers in EUD and 
adjoining disciplines, in particular meta-design [10][12], co-configuration [7][8], and 
modding [15][16] to discuss our findings at a more theoretical level. These findings 
are summarized as follows. 

 
Findings According to the Meta-design and SER Perspective 

• Customers being active either as designers of aspects of solutions or as producers 
of new ideas 

• Interaction between customers and professional developers is the driving force of 
evolutionary development 

• Professional developers adapting the products in accordance with customers’ needs 
as main method to further develop the products 

• Project planning tools evolving as a result of being used in specific contexts 
 
Findings According to the Co-configuration Perspective 

• Both customers and professional developers gain from customer-initiated product 
development 

• Customers forwarding Improvement Requests and the company handling these 
form a sort of network 

• Customers are active in the product development process 
• Customer-initiated product development is a continuous process lasting for a long 

time 



46 R. Andersen and A.I. Mørch 

• When customers and professional developers interact in intimate ways to develop 
products, they can be considered collaborators 
 

Findings According to the Modding Perspective 

• Changes made to the company’s products by users vary in complexity 
• There are changes made solely by users  
• Some modifications become available to all customers. 
• Customer-initiated product development motivates technical-minded users 
• Customers suggesting or designing new features of a product in a way “open it up” 

for further development 
• When customers develop new features, it can be seen as a decentralized develop-

ment activity 

6.1   Directions for Further Work 

Our results can furthermore be extended along directions advocated by researchers in 
user-driven innovation, participatory design, and evolution of technology.  

Users can be creative and contribute to development without designing, and end-
user development is often triggered by innovative use of a tool as a first step to  
address a breakdown in use. Norman [30] suggests workarounds and hacks as two 
techniques people draw on in everyday situations when coping with difficult-to-use 
tools. Many companies are starting to realize that innovation can arise not only from 
the IT department, but also from the interaction with partners, suppliers, and custom-
ers. Eric von Hippel, a pioneer and long-time champion of studying users as innova-
tors in product development coined the term user-driven innovation. He has  
introduced a method for identifying sources of innovation, following “lead users” 
[38]. Many of the innovations he has studied originated with lead users’ novel use of 
an existing product or an adaptation of a product based on knowledge of a related 
product. For example the motocross series of bikes manufactured for teenagers during 
the 1960s and 1970s originated as result of teenagers’ desire for their bikes to resem-
ble adult motocross bikes. 

Researchers in information systems have used terms like super users [17], gurus 
[14], and boundary spanners [36] for a similar role as lead user. They share the view 
that these users help to democratize the design process, and study them by drawing on 
insights derived from empirical data gathered from user organizations, like we have 
done in this paper.  

In the area of software development, participatory design [6][18], directed observa-
tion [30], and strategic ethnography [32] are methods for addressing similar issues. 
Directed observation means to seek out and analyze the workarounds, hacks, and 
clever improvisations lead users and ordinary people create at work and at home [30]. 
Strategic ethnography is longitudinal studies following artifacts (packaged software) 
as they evolve over time, which has been referred to as capturing the biography of 
these artifacts [32].  

Based on a study of user driven innovation in an open source community von Hip-
pel [37] observed “the ability of user communities to develop and sustain exceedingly 
complex products without any manufacturer involvement is remarkable.” He  



 Mutual Development 47 

identifies the conditions that favor user innovation and explores how circumstances 
evolve, sometimes to include commercial manufacturers and sometimes not [37]. 
When commercial manufactures are included in the loop, the resulting inter-
organization activity structure can be compared with “mutual development.” When 
commercial manufactures are not included in the loop, the resulting organization can 
be compared with the emerging “user manufacturing” model. Aided by the Internet 
and Web 2.0 applications to support communication and information sharing and 
most recently “mashing” (combining existing web 2.0 applications to create new 
ones), this model has the potential to attract new interest in end-user development due 
to the enormous success of this platform to attract self-motivated contributors [13]. To 
leverage this potential for end-user tailoring and evolutionary design is an area for 
further research in EUD. 

In their study, Douthwaite and colleagues [5] state the following “as technology and 
system complexity increase so does the need for interaction between the originating 
R&D team and the key stakeholders (those who will directly benefit and be penalized 
from the innovation).” This is a hypothesis that requires further testing. It implies when 
software products increase in complexity, the interaction between developers and cus-
tomers must proportionally increase in order to successfully manage further develop-
ment and sustain the product. Otherwise, users will seek out other products that are 
simpler to use. The reason for increasing customer interaction as complexity unfolds is 
that a successful technology represents a synthesis of the developers and key  
stakeholder knowledge sets, and creating this synthesis requires more iteration and 
negotiation as complexity increases [5]. This is a hypothesis that ought to be explored 
in software evolution as well, in particular when end-users are enabled by EUD envi-
ronments and rich feedback channels to more experienced developers.  

Acknowledgements 

The authors thank Annett Hillestad who was the co-supervisor to the first author. The 
members of the KIKK project at InterMedia, University of Oslo: Shazia Mushtaq, Damir 
Nedic, Kathrine Nygård, and Espen Olsen contributed to the ideas presented here. Sten 
Ludvigsen and Anne Moen gave us constructive comments throughout the project. The 
project is part of the KP-Lab (Knowledge Practices Laboratory) and supported financially 
by the European Commission’s contract FP6-2004-IST-4 027490. 

References 

1. Andersen, R.: Customer-initiated product development: A case study of adaptation and co-
configuration, Master’s thesis, Dept. of Informatics, University of Oslo, Norway (2008) 

2. Bansler, J.P., Havn, E.: Information systems development with generic systems. In: Wal-
ter, W.R.J. (ed.) Proceedings from Second European Conference on Information Systems, 
pp. 30–31. Nijenrode University Press, Breukelen (1994) 

3. Costabile, M.F., Foglia, D., Fresta, G., Mussio, P., Piccinno, A.: Software environments 
for end-user development and tailoring. PsychNology Journal 2(1), 99–122 (2004) 

4. Dittrich, Y., Vaucouleur, S.: Practices around customization of standard systems. In: Pro-
ceedings of the 2008 international Workshop on Cooperative and Human Aspects of Soft-
ware Engineering (CHASE 2008), pp. 37–40. ACM Press, New York (2008) 



48 R. Andersen and A.I. Mørch 

5. Douthwaite, B., Keatinge, J.D.H., Park, J.R.: Why promising technologies fail: The ne-
glected role of user innovation during adoption. Research Policy 30(5), 819–836 (2001) 

6. Ehn, P., Kyng, M.: Cardboard computers: Mocking-it-up or hands-on the future. In: 
Greenbaum, J., Kyng, M. (eds.) Design at Work: Cooperative Design of Computer Sys-
tems, pp. 169–195. Lawrence Erlbaum, Hillsdale (1991) 

7. Engeström, Y.: New forms of learning in co-configuration work. The Journal of Work-
place Learning 16, 11–21 (2004) 

8. Engeström, Y.: Enriching the Theory of Expansive Learning: Lessons From Journeys To-
ward Coconfiguration. Mind, culture and activity 14(1-2), 23–29 (2007) 

9. Eriksson, J., Dittrich, Y.: Combining tailoring and evolutionary software development for 
rapidly changing business systems. Journal of Organizational and End-User Comput-
ing 19(2), 47–64 (2007) 

10. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: A mani-
festo for end-user development. Comm. ACM 47(9), 33–37 (2004) 

11. Fischer, G., Ostwald, J.: Seeding, evolutionary growth, and reseeding: Enriching participa-
tory design with informed participation. In: Proceedings of the Participatory Design Con-
ference (PDC 2002), pp. 135–143. ACM Press, New York (2002) 

12. Fischer, G., Scharff, E.: Meta-design: Design for designers. In: Proceedings 3rd Interna-
tional Conference on Designing Interactive Systems (DIS 2000), New York, pp. 396–405 
(2000) 

13. Floyd, I.R., Jones, M.C., Rathi, D., Twidale, M.B.: Web mash-ups and patchwork proto-
typing: User-driven technological innovation with Web 2.0 and open source software. In: 
Proceedings of the 40th annual Hawaii international Conference on System Sciences, pp. 
86–96 (2007) 

14. Gantt, M., Nardi, B.: Gardeners and gurus: Patterns of cooperation among CAD users. In: 
Proceedings of the Conference on Computer-Human Interaction (CHI 1992), pp. 107–117. 
ACM Press, New York (1992) 

15. Jeppesen, L.B.: Profiting from innovative user communities: How firms organize the pro-
duction of user modifications in the computer industry. Working Papers 2003-2004, Dept. 
of Industrial Economics and Strategy, Copenhagen Business School, Denmark (2004) 

16. Jeppesen, L.B., Molin, M.J.: Consumers as co-developers: Learning and innovation out-
side the firm. Working Papers, 2003-01, Dept. of Industrial Economics and Strategy, Co-
penhagen Business School, Denmark (2003) 

17. Kaasbøll, J., Øgrim, L.: Super-users: Hackers, management hostages or working class he-
roes? A Study of user influence on redesign in distributed organizations. In: Proceedings of 
the 17th Information Systems Research Seminar in Scandinavia (IRIS-17), pp. 784–798. 
Dept. of Information Processing Science, University of Oulu, Finland (1994) 

18. Kanstrup, A.M., Christiansen, E.: Selecting and evoking innovators: Combining democ-
racy and creativity. In: Proceedings of the 4th Nordic Conference on HCI (NordiCHI 
2006), pp. 321–330. ACM Press, New York (2006) 

19. King, N.: Template analysis. In: Symon, G., Cassell, C. (eds.) Qualitative methods and 
analysis in organizational research: A practical guide, pp. 118–134. Sage, London (1994) 

20. Knight, W.: Supernatural powers become contagious in PC game (April 28, 2008), 
http://www.newscientist.com/article.ns?id=dn6857 

21. Lieberman, H., Paterno, F., Wulf, V. (eds.): End-user development: Empowering people to 
flexibly employ advanced information and communication technology. Kluwer, Dordrecht 
(2006) 

22. Mehandjiev, N., Bottaci, L. (eds.): End-user development: Special issue of the Journal of 
End User Computing 10(2) (1998) 



 Mutual Development 49 

23. Mehandjiev, N., Sutcliffe, A.G., Lee, D.: Organisational views of end-user development. 
In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End user development: Empowering people 
to flexibly employ advanced information and communication technology. Kluwer Aca-
demic Publishers, Dordrecht (2005) 

24. Mørch, A.: Evolving a generic application into a domain-oriented design environment. 
Scandinavian Journal of Information Systems 8(2), 63–90 (1996) 

25. Mørch, A.: Three levels of end-user tailoring: Customization, integration, and extension. 
In: Kyng, M., Mathiassen, L. (eds.) Computers and Design in Context, pp. 51–76. MIT 
Press, Cambridge (1997) 

26. Mørch, A.I., Hansen Åsand, H.R., Ludvigsen, S.R.: The Organization of End User Devel-
opment in an Accounting Company. In: Clarke, S. (ed.) End User Computing Challenges 
and Technologies: Emerging Tools and Applications, pp. 102–123. Information Science 
Reference, Hershey (2007) 

27. Mørch, A.I., Mehandjiev, N.D.: Tailoring as collaboration: The mediating role of multiple 
representations and application units. Computer Supported Cooperative Work 9(1), 75–
100 (2000) 

28. Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V.: Component-based 
technologies for end-user development. Comm. ACM 47(9), 59–62 (2004) 

29. Nedic, D., Olsen, E.A.: Customizing an open source web portal framework in a business 
context: Integrating participatory design with an agile approach. Master’s thesis, Dept. of 
Informatics, University of Oslo, Norway (2007) 

30. Norman, D.A.: Workarounds and hacks: The leading edge of innovation. Interac-
tions 15(4), 47–48 (2008) 

31. Nygård, K.A., Mørch, A.I.: The Role of Boundary Crossing for Knowledge Advancement 
in Product Development. In: Proceedings Int’l Conf. Computers in Education (ICCE 
2007), pp. 183–186. IOS Press, Amsterdam (2007) 

32. Pollock, N., Williams, R.: The biography of the enterprise-wide system or how SAP con-
quered the World. Routledge, London (2008) 

33. Stevens, G., Wulf, V.: A new dimension in access control: Studying maintenance engi-
neering across organizational boundaries. In: Proceedings of CSCW 1992, pp. 196–205. 
ACM Press, New York (2002) 

34. Stevens, G., Wiedenhofer, T.: CHIC - A pluggable solution for community help in context. 
In: Proceedings of the 4th Nordic Conference on HCI (NordiCHI 2006), pp. 212–221. 
ACM Press, New York (2006) 

35. Victor, B., Boynton, A.C.: Invented here: Maximizing your organization’s internal growth 
and profitability. Harvard Business School Press, Boston (1998) 

36. Volkoff, O., Strong, D.M., Elmes, M.B.: Between a Rock and a Hard Place: Boundary 
Spanners in an ERP Implementation. In: Proceedings of the 8th Americas Conference on 
Information Systems, pp. 958–962 (2002) 

37. von Hippel, E.: Innovation by User Communities: Learning From Open-Source Software. 
MIT Sloan Management review 42(4), 82–86 (2001) 

38. von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005) 
39. Wulf, V., Golombek, B.: Direct activation: A concept to encourage tailoring activities. Be-

haviour & Information Tech. 20(4), 249–263 (2001) 
40. Wulf, V., Pipek, V., Won, M.: Component-based tailorability: Enabling highly flexible 

software applications. Int. J. Hum.-Comput. Stud. 66(1), 1–22 (2008) 
 


	Mutual Development: A Case Study in Customer-Initiated Software Product Development
	Introduction
	The Case

	End-User Development
	Integrated EUD

	Concepts for Analysis
	SER Model and Meta-design
	Modding
	Co-configuration

	Method
	Categorizing Data

	Data and Analysis
	Excerpt 1: Types of Improvement Request
	Excerpt 2: Types of Generalization
	Excerpt 3: Improvement Request and Adaptation
	Excerpt 4: Generalization
	Excerpt 5: Tailoring

	Conclusions and Directions for Further Work
	Directions for Further Work

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




