
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 205–224, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Males’ and Females’ Script Debugging Strategies

Valentina Grigoreanu1,2, James Brundage2, Eric Bahna2, Margaret Burnett1,
Paul ElRif2, and Jeffrey Snover2

1 Oregon State University, School of Electrical Engineering and Computer Science,
Corvallis, Oregon, USA 97331

{grigorev,burnett}@eecs.oregonstate.edu
2 Microsoft, One Microsoft Way,
Redmond, Washington, USA

{t-valeng,jamesbru,ebahna,pelrif,jsnover}@microsoft.com

Abstract. Little research has addressed IT professionals’ script debugging
strategies, or considered whether there may be gender differences in these
strategies. What strategies do male and female scripters use and what kinds of
mechanisms do they employ to successfully fix bugs? Also, are scripters’ de-
bugging strategies similar to or different from those of spreadsheet debug-
gers? Without the answers to these questions, tool designers do not have a
target to aim at for supporting how male and female scripters want to go
about debugging. We conducted a think-aloud study to bridge this gap. Our
results include (1) a generalized understanding of debugging strategies used
by spreadsheet users and scripters, (2) identification of the multiple mecha-
nisms scripters employed to carry out the strategies, and (3) detailed exam-
ples of how these debugging strategies were employed by males and females
to successfully fix bugs.

Keywords: Gender, Debugging, Scripting, Debugging Strategies.

1 Introduction

At the border between the population of professional developers and the population of
end-user programmers, lies a subpopulation of IT professionals who maintain com-
puters, and they accomplish much of their job through scripting. As Kandogan et al.
argue, this population has much in common with end-user programmers [14]: as in
Nardi’s definition of end-user programmers, they program as a means to accomplish
some other task, not as an end in itself [22]. Scripting is also becoming much more
common by end-user programmers themselves through the advent of end-user
oriented scripting languages for the desktop and the web. However, despite the com-
plexity of some scripting tasks, little attention has been given to scripters’ specific
debugging needs, and even less to the impact that gender differences might have on
script debugging strategies and the mechanics used to support them.

We therefore conducted a qualitative study to address this gap by identifying the
debugging strategies and mechanisms scripters used. Strategy refers to a reasoned
plan or method for achieving a specific goal. Mechanisms are the low-level tactics

206 V. Grigoreanu et al.

used to support those strategies: through environment and feature usage. Our work
was guided by the debugging strategies reported in an earlier end-user debugging
study with spreadsheet users [32].

There are several reasons to ask whether strategies used by scripters working with
a scripting environment might be different from strategies used by end-user pro-
grammers with a spreadsheet system. First, the populations are different; for exam-
ple, one might expect scripters to have more experience in debugging per se than
spreadsheet users. Second, the language paradigms are different: scripting languages
are control-flow oriented, in which programmers focus primarily on specifying se-
quence and state changes, whereas spreadsheet languages are dataflow oriented, in
which programmers focus primarily on specifying calculations (formulas) that use
existing values in cells to produce new values. The language paradigm differences
lead naturally to a third difference: the environments’ debugging affordances them-
selves are different, with scripting environments tending toward peering into sequence
and state, whereas spreadsheets’ affordances tend more toward monitoring values and
how they flow through calculations. Therefore, the research questions we investigated
were:

RQ1: What debugging strategies do scripters try to use?
RQ2: What mechanisms do scripters employ to carry out each strategy?
RQ3: How do our findings on scripters’ strategies relate to earlier results on
strategies tied with male and female spreadsheet users’ success?

Thus, the contributions of this paper are in (1) identifying the strategies scripters
try to use in this programming paradigm, (2) identifying the mechanisms scripters use
to carry out their different strategies, and (3) exploring details of successful uses of
the strategies by males and females.

2 Background and Related Work

Although there has been work in how to effectively support system administrators in
creating their scripts [14], we have been unable to find work addressing scripters’
debugging strategies. Instead, most of the work on script debugging has been on tools
to automatically find and fix errors (e.g., [35, 37]).

However, there has been considerable work on professional programmers’
debugging strategies, and some work on end-user debugging strategies. One study
on professional programmers’ debugging strategies classified debugging strategies
as forward reasoning, going from the code forward to the output, and backward
reasoning, going from the output backward through the code [15]. See Romero et al.
for a survey of professional programmers’ debugging strategies [29].

End-user programmers have elements in common with novice programmers, so the
literature on how novice programmers differ from experts is relevant here. For both
novices and experts, getting an understanding of the high-level program structure
before jumping in to make changes relates to success [19, 21]. However, experts have
been found to read programs differently from novices: reading them in control flow
order (following the program’s execution), rather than spatial order (top to bottom).

 Males’ and Females’ Script Debugging Strategies 207

In end-user programming, gender differences have been found in attitudes toward
and usage of end-user programming and end-user programming environment features
[3, 4, 5, 10, 13, 16, 27, 28, 30, 38]. Especially pertinent is a series of end-user debug-
ging studies reporting gender differences in debugging strategies for spreadsheets [9,
32]. The first of these studies pointed to behavior differences that suggested strategy
differences, and the second reported a set of eight strategies end users employed in
their debugging efforts. In both of these studies, the strategies and behaviors leading
to male success were different from those leading to female success. For example, in
[32], dataflow strategies played an important role in males’ success, but not females’.
Prabhakararao et al.’s spreadsheet debugging study with end users also reported a
strong tie between using a dataflow strategy and success [25], but participant gender
was not collected in that study.

In fact, gender differences that relate to processing information and solving
problems have been reported in several fields. One of the most pertinent works is the
research on the Selectivity Hypothesis [20, 23]. It proposes that females process in-
formation in a comprehensive way (e.g., attending to details and looking for multiple
cues) in both simple and complex tasks. Males, on the other hand, process informa-
tion through simple heuristics (e.g., following the first cue encountered), only switch-
ing to comprehensive reasoning for complex tasks.

Self-efficacy theory may also affect the strategies employed by male and female
debuggers [1]. Self-efficacy is a person’s confidence about succeeding at a specific
task. It has shown to influence everything from the use of cognitive strategies, to the
amount of effort put forth, the level of persistence, the coping strategies adopted in
the face of obstacles, and the final performance outcome. Regarding software usage,
there is specific evidence that low self-efficacy impacts attitudes toward software [3,
11], that females have lower self-efficacy than males at their ability to succeed at
tasks such as file manipulation and software management tasks [33], and that these
differences can affect females’ success [3].

Gender differences in strategies also exist in other problem-solving domains, such
as psychology, spatial navigation, education, and economics (e.g., [8]). One goal of
this paper is to add to the literature on gender differences in problem solving relating
to software development, by considering in detail the usage of different strategies by
male and female scripters.

3 Study

3.1 Participants

Eleven IT professionals (eight males and three females) volunteered to participate
in the study by responding to invitations on an IT-related internet forum and on a
PowerShell email discussion list. Participants received software as gratuity. Although
we had hoped for equal participation by females and males, female IT professionals
are in short supply, and only three signed up. Almost all participants had a technical
college degree (in computer science, engineering, or information systems), with the
exception of two males whose education ended after high school. Despite their tech-
nical degrees, six of the eleven participants rejected the label of “software developer.”
Those who did classify themselves as software developers were the three females and

208 V. Grigoreanu et al.

two of the eight males; the remaining six males described themselves as IT profes-
sionals or scripters. All participants reported that, in their everyday jobs, they accom-
plished their IT professional tasks using PowerShell. As examples of these regular
tasks, participants mentioned moving packages, moving machines out of a domain,
modifying the registry, initializing software, automating IT tasks, automating tests,
and creating test users on servers.

All participants had written two or more scripts within the past year, using Win-
dows PowerShell. The females had written fewer scripts in the past year than the
males (number of scripts written by females: 2, 3, and 5; number of scripts written by
males: 6, 6, 7, 20+, 30, 30+, 50, 100+).

3.2 Scripting Language and Environment

PowerShell is a new implementation of the traditional Command Line Interface and
scripting language developed by Microsoft, which aims to support both IT profes-
sionals’ and developers’ automation needs. We used an as-yet unreleased version of
this language and environment in our study. PowerShell supports imperative, pipeline,
object-oriented, and functional constructs. Its pipelining, unlike traditional UNIX
commands that pipeline text to one another, pipelines objects to one another. Power-
Shell has both a command line shell and a graphical scripting environment, and
participants used both. Both the command line and graphical scripting environment
provide common debugging features such as breakpoints, the ability to step into, error
messages, and viewing the call stack. Fig. 1 shows a version of the graphical scripting
environment that is similar to the one our participants used.

3.3 Tasks, Procedure, and Data Collection

We instructed the participants to debug two versions of a PowerShell script, which
included a “main” section and eight called functions, each of which was in a separate
file within the same directory. We used the same script (two versions) for both tasks
in order to minimize the amount of time participants spent getting an understanding of
the scripts so as to maximize the amount of time they spent actually debugging.

The script was a real-world script that one of us (Brundage) had previously written
to collect and display meta-data from other PowerShell scripts. We introduced a total
of seven bugs, which we harvested from bugs made by the script’s author when he
originally wrote the script. Each version of the main script contained one different
bug. The eight functions called by both versions contained five other bugs. The seven
total bugs fell into two categories: three errors in data: using an incorrect property,
allowing the wrong kind of file as input, and omitting a filter; and four errors in struc-
ture: an assignment rather than a comparison, an off-by-one error, an infinite loop,
and omitting the code that should have handled the last file.

After participants completed a profiling survey, we gave them a description of what
the script was supposed to do. Participants then debugged one version of the script using
a command line debugger and a second version using a graphical debugger. The order
of the script versions and environments was randomized to control for learning effects.

Participants were instructed to talk aloud as they performed their debugging tasks.
Data collected included screen captures, video, voice, and measures of satisfaction.

 Males’ and Females’ Script Debugging Strategies 209

Fig. 1. This is the graphical version of the Windows PowerShell environment. (a) Scripts are
written in the top pane, and the example shows a function that adds two numbers. (b) The out-
put pane displays the result of running the script or command. (c) The command line pane is
used exactly like PowerShell’s command line interface. In this case, it is running the function to
add two numbers. This figure is an adaptation of a figure in [36].

 After completion of each task, participants were given a post-session questionnaire

that included an interview question about the debugging strategies they used.

 3.4 Analysis Methodology

We analyzed the data using qualitative content analysis methods. We analyzed two
data sources: participant responses to the questionnaire, and the videos. Because we
wanted to measure the extent to which males’ and females’ debugging strategies iden-
tified in previous work [32] would generalize to our domain and population, we began
by mapping that code set to the Powershell domain of the current study.

210 V. Grigoreanu et al.

One researcher applied these codes to participants’ post-session open-ended inter-
view responses about strategies. We asked the same strategies question as in the ear-
lier work mentioned above, but it was asked verbally, rather than on paper. This led to
generalizations of a few of the codes and the introduction of a few new codes.

Two researchers then used this revised code set as a starting code set for the vid-
eos. They independently coded 27% of the videos (six tasks from various partici-
pants), achieving 88% agreement. The dually coded set included the three participants
described in 4.2, for which the two researchers also collaboratively analyzed the cir-
cumstances, sequences, and mechanisms, resolving any disagreements as they arose.
This also resulted in our final code set, which is given in Section 4. The first re-
searcher then analyzed and coded the remaining videos alone.

4 Results

4.1 Scripters’ Debugging Strategies

Our scripters used variants of seven of the eight strategies the spreadsheet users used
[32], plus three others. The spreadsheet strategy termed “fixing formulas” (in which
participants wrote only of editing formulas, but not of how they figured out what,
where, or how to fix the bug or of validating their changes) was not found in our data.

As Table 1 shows, five of the strategies they used were direct matches to the earlier
spreadsheet users’ strategies, two were matches to generalized forms of the spread-
sheet users’ strategies, and three arose that had not been viable for the spreadsheet
users. However, even for the direct matches, the mechanisms scripters used to pursue
these strategies had differences from those of the spreadsheet users.

Direct Matches. Testing is trying out different values to evaluate the resulting values.
Some of the mechanisms used by these scripters would not traditionally have been
identified as testing, yet they clearly are checking the values output for correctness—
but at finer levels of granularity than has been possible in classic software engineering
treatments of the notion of testing.

Specifically, we noticed three types of testing mechanisms used by participants:
testing different situations from a whole-program perspective, incrementally checking
variable values, and incrementally testing in other ways. The first type is classic test-
ing methodology to cover the specifications or to cover different parts of the code
(testing both the antecedent and the consequent parts of an if-then statement, for ex-
ample). The latter two are informal testing methods to see whether, after having exe-
cuted part of the code, the variables displayed reasonable values. For example, from a
whole-program perspective:

Female P0721081130 ran the code and examined both the error messages and the
output text in order, rather than focusing on either one or the other.

Female P0718081400 tried different contexts by cd-ing back to the root directory in
the command line before running the file again using the menu.

Male P0717080900 changed the format of the output so that he could understand it
more easily when he ran the program.

 Males’ and Females’ Script Debugging Strategies 211

Table 1. Participants’ responses when asked post-session to describe their strategies in finding
and fixing the bugs (listed in the order discussed in the text)

Strategy Definition

Direct Matches
Testing Trying out different values to evaluate the resulting values.
Code Inspection Examining code to determine its correctness.
Specification
Checking

Comparing descriptions of what the script should do with the
script’s code.

Dataflow Following data dependencies.
Spatial Following the spatial layout of the code.

Generalized Matches
Feedback Fol-
lowing

Using system-generated feedback to guide their efforts.

To-Do Listing Indicating explicitly the suspiciousness of code (or lack of suspi-
ciousness).

New Strategies

Control Flow Following the flow of control (the sequence in which instructions
are executed).

Help Getting help from people or resources.
Proceed as in
Prior Experience

Recognizing a situation (correctly or not) as one experienced
before, and using that prior experience as a blueprint of next steps
to take.

However, incrementally checking variable values was much more common, and
participants did it in many different ways:

Male P0718081030 hovered over variables to check their values.
Male P0117081130 also hovered over, but in conjunction with breakpoints to stop at a

particular line to facilitate the hover.
Female P0718081400 ran the code by accessing it through the command line inter-

face. Others preferred reaching it through the menu.
Female P0718081400 typed the variable name in the command line.
Male P0717080900 added temporary print statements to output variable values at that

point in time.
Male P0721081330 added temporary print statements to check whether a particular

part of the code was reached/covered by the input.
Female P0718081400 would have liked to use a watch window to examine variable

values.
Male P0718081030 examined an entire data structure using tabs (auto-complete) to

determine the correctness of its property values.

Other forms of incremental testing focused on running part of the code to check its
output. For example:

212 V. Grigoreanu et al.

Female P0718081400 did not understand why she was getting an “access denied”
message and therefore tried performing the action manually with Windows Ex-
plorer and navigating to that directory (to see if she would get the same message in
that different context).

Female P0718081400 first ran a variable to see its output, and then started adding the
surrounding words to get more information about that variable and how it is being
used.

Female P0717081630 used “stepping over” to see the script’s output appear incre-
mentally as she passed the line in the code that produced it.

Male P0721080900 wanted to break into the debugger once a variable had a particular
value.

Primarily only the first category of testing is supported by tools aiming to support
systematic testing for professional programmers or end-user programmers (e.g.,
WYSIWYT [6]). However, our scripters were very prone to incremental testing, and
although the scripting environment gives them good access to checking these values,
there is no support in that environment or most others for using this incremental test-
ing to systematically track which portions of the code are tested successfully, which
have failed, and which have not participated in any tests at all.

Code inspection is examining the code to determine its correctness. Code inspec-
tion is a counterpart to testing with complementary strengths [2]. It is heavily relied
upon in the open source community [26]. Not surprisingly, as in the spreadsheet
study, testing and code inspection were the most common strategies. Participants’
mechanisms for code inspection revealed a surprisingly large set of opportunities for
supporting code inspection better in scripting environments, spreadsheets, and other
end-user programming environments.

Besides simply reading through the code, some of the basic mechanisms the par-
ticipants used were:

Female P0718081400 opened up all of the files in the same directory as the script (to
view functions the main script was calling), and quickly scanned through all of
them one after the other.

Male P0718081030 resized the script pane to show more of the script.
Male P0717080900 used the “Find” function to jump to the part of interest.
Male P0718081030 used the command line to find out all the contextual information

he could about a variable he was inspecting (its type, for example).
Male P0717080900 used the integrated scripting environment as a code editor for the

command line task because he disliked inspecting the code without syntax high-
lighting.

The above five mechanisms may seem obvious, but many end-user programming
environments do not support these functionalities. For example, they are not well
supported in spreadsheets; in that environment performing these actions is awkward
and modal. Given the heavy reliance on code inspection by the participants in
both this study and the previous spreadsheet study, a design implication for end-user

 Males’ and Females’ Script Debugging Strategies 213

programming and scripting environments is to provide support for the flexible and
easy ability to inspect large amounts of the code when desired.

Finally, there were many instances of integration between testing and code inspec-
tion, such as this participant’s fine-grained mixing of the two:

Female P0718081400 hovered over variables in the code view for simultaneously
seeing both the code and output values.

Most participants in the earlier spreadsheet study also used testing and code inspec-

tion together. The preponderance of mixing these strategies suggests that program-
ming environment designers should strive to support this mixture, allowing “drill
down” into related testing information during code inspection, as in the example
above, and conversely allowing drill down into related code information during test-
ing. Getting directly to the code that produced certain values is well supported in
spreadsheets and in some end-user languages and environments such as Kid-
Sim/Cocoa/Stagecast [12] and Whyline [17], but is rarely present in scripting
environments.

Specification Checking is somewhat related to code inspection, but involves com-
parisons: namely, comparing descriptions of what the script should do with the
script’s code. This strategy is not well supported in any scripting or end-user pro-
gramming environment—code comments are the primary device to which users in
these environments have access for the purpose of specification checking.

Both the spreadsheet study and this one provided (informal) specifications in the
form of written descriptions of the intended functionality, and these were widely used
by both the previous study’s spreadsheet users and the current study’s scripters. In
addition, they relied on comments and output strings embedded in the code for this
purpose, as in the examples below.

Male P0717080900 read the informal description handout related to the script.
Male P0717080900 read the comments in the code related to what that part of the

code was supposed to do.
Male P0117081130 looked in the code for the places producing constant string out-

puts, with the view that those string outputs helped describe what nearby code what
supposed to do.

Female P0718081400 read the comments one-by-one, as she was reaching the parts
that they referred to in control flow order.

Thus, specification checking is an under-supported strategy for both spreadsheet

users and scripters.
Dataflow means following data dependencies through the program. Following

dataflow is a natural fit to the dataflow-oriented execution model of spreadsheets, and
some spreadsheet tools provide explicit support for it such as dataflow arrows and
slicing-based fault localization tools [6]. Even in imperative programs, dataflow
mixed with control flow (i.e., “slicing”) is commonly used [34], and ever since
Weiser’s classic study identified slicing as an important strategy for debugging [34],
numerous tools have been based on slicing. Our scripters followed dataflow a little,

214 V. Grigoreanu et al.

but it was not particularly common, perhaps because the scripting environment did
not provide much explicit support for it:

Female P0717081630 said, “Wish I could go to where this variable is declared.”
Female P0717081630 tried to “find all references” to a variable, in any file.
Male P0718081030 wanted to know how a particular variable got to be a certain

value, and therefore followed the flow of data to see what other variables influ-
enced this variable, and how it got to be the value it was.

Spatial is simply following the code in a particular spatial order. For example,

scripts can be read from top to bottom. (This is different from following execution
order; execution order deviates from top to bottom at procedure calls, loops, etc.)
Most participants demonstrated a little of this strategy, but nobody relied on it for
very long. It was fairly uncommon in the spreadsheet study as well, in which fewer
than 10% of the participants mentioned that strategy.

Generalized Matches. The two strategies that matched generalizations of strategies
observed in the spreadsheet study were Feedback Following and To-Do Listing.

Feedback Following is using system-generated feedback to guide debugging ef-
forts. This is a generalization of the strategy “Color Following” in the spreadsheet
study. To draw users’ attention to them, the spreadsheet system colored cells’ interi-
ors to show their likelihood of containing errors (based on the judgments made by
users about the correctness of each cell’s value). The users who followed this type of
feedback directly were considered to be color following. The scripting environment
used certain messages (not colors alone) to draw users’ attention to code with possible
bugs, a generalization upon following colors toward possible bugs.

Our script participants paid particular attention to the feedback messages, including
reading them, navigating backward and forward in them, looking at more or fewer of
them, and drilling down to get more information about them. For example:

Male P0117081130 looked at the last error message.
Male P0718080800 changed the display settings so as to show only the first error

message.
Male P0717080900 cleared the command line screen so he could easily scroll up and

stop at the first error message.
Female P0718081400 resized the output window to see more of the messages at once.
Female P0718081400 opened up Windows Explorer to better understand what path

the error message is talking about.

To-Do Listing is indicating explicitly the suspiciousness of code (or lack of suspi-

ciousness) as a way to keep track of which code needs further follow-up. Some
spreadsheet users did this by checking cells off or X-ing them out. (These features
were designed for another purpose, but some participants repurposed them to keep
track of things still to check.) Like the spreadsheet users, our scripters found mecha-
nisms to accomplish to-do listing, such as:

 Males’ and Females’ Script Debugging Strategies 215

Male P0117081130 put a breakpoint on a line to mark that line as incorrect, and to
stop on it whenever he ran the code.

Female P0721081130 closed files that she thought to be error-free, leaving possibly
buggy ones open.

Male P0718081030 used pen and paper to keep track of stumbling points.
The same male, P0718081030, also mentioned sometimes using bookmarks to keep

track of stumbling points.

Keeping track of things to do and things done is a functionality so dear to computer
users’ hearts, they have been reported to repurpose all sorts of mechanisms to accom-
plish it, such as appropriating email inboxes [7] and code commenting [31] for this
purpose. Yet, other than bug trackers (which do not work at the granularity of snip-
pets of code), few programming environments support to-do listing. A clear opportu-
nity for designers of end-user programming environments and scripting environments
is providing an easy, lightweight way to support to-do listing.

New Strategies. Finally, there were three strategies that had not been present in the
spreadsheet study: control flow, getting help, and proceeding as in prior experiences.

Control Flow means following the flow of control (sequence in which instructions
are executed). Pennington found that expert programmers initially represent a pro-
gram in terms of its control flow [24]. Since spreadsheets do not provide a view of
execution flow, it is not surprising that following control flow did not arise in the
spreadsheet study. The scripting environment, however, provided multiple affor-
dances for viewing control flow, and participants used them. For example:

Male P0717080900 used the call stack to see what subroutines were called and in
what order.

Female P0718081400 placed a breakpoint on the first line to run the script in control
flow from there in order to understand it.

Male P0117081130 stepped over and into to examine and execute the code in the
order it was run.

Providing support for following control flow is relatively widespread in program-
ming environments for professional programmers, but less so for end-user program-
ming environments. A notable exception is the approach for allowing control flow
following in the rule-based language KidSim/Cocoa/Stagecast [12], which features
the ability step through the program to see which rules fire in which order.

Help means getting help from other people or resources, a common practice in
real-world software development. For example, Ko et al. reported that developers
often sought information in hard-to-search sources, such as coworkers’ heads,
scanned-in diagrams, and hand-written notes [18]. In our study, examples of follow-
ing help included searching for help on a bug using Google Search, consulting the
internal help documentation in order to set a breakpoint, or asking the researchers
what a particular function does. This strategy was not available in the spreadsheet
study but our script participants used it extensively.

216 V. Grigoreanu et al.

Female P0717081630 sought help from the observers.
Male P0718081030 sought online help.
Male P0117081130 used the interface’s help menu item.
Female P0718081400 used the command line’s “-?” and “/?” commands.
Male P0718081030 used the function key to bring up the internal help. Later, he also

brought help up on a particular word by first highlighting it and then hitting the
function key.

Finally, one participant attempted to integrate external help with code inspection:

Male P0718081030 restored down the help window, to be able to look at the code and
still have the help in an open window next the code.

Proceeding as in Prior Experience was recognizing a situation (correctly or not) as

one experienced before, and using that prior experience as a blueprint of next steps to
take. Sometimes the recognition was about a feature in the environment that had
helped them in the past and sometimes it was about a particular type of bug. Once
recognition struck, participants often proceeded in a trial-and-error manner, without
first evaluating whether it was the right path. For example:

Male P0717080900: “Ah – I’ve seen this before. This is what must be wrong.”
Female P0718081400: “It obviously needs to go up one directory.”
Male P0721080900 said: “Just for kicks and giggles, let’s try this.”
Male P0718081030 felt something strange was going on and, from an earlier experi-

ence, decided that it was PowerShell’s fault. He therefore closed the environment
and opened it up again.

We suspect that proceeding as in prior experience is quite widespread, but it has
not been reported in the literature on debugging. Given humans’ reliance on recogni-
tion in everyday life, this strategy could be having a powerful influence on how peo-
ple debug. It is an open question whether and how designers of debugging tools might
leverage the fortunate aspects of this and take steps to help guard against the unfortu-
nate aspects.

4.2 Sequential Usage of Strategies: Three Participants

To investigate how the participants used these strategies when succeeding, we ana-
lyzed three participants in detail. The first two were the most successful male (who
fixed four bugs in one task) and the most successful female (who fixed one bug in one
task). We then analyzed a male with the same scripting experience as the female (who
also fixed one bug in one task). Each of these participants thus provided at least one
successful event to analyze, in addition to several failed attempts. Fig. 2 shows the
sequence of strategies used in one of the two tasks by these participants.

As an aside, the overall low success rate on the number of bugs fixed was expected,
because we deliberately designed the tasks to be difficult, so that strategizing would
occur even with expert scripters. For example, one of our participants (the most suc-
cessful male) was extremely experienced, having written more than 100 PowerShell

 Males’ and Females’ Script Debugging Strategies 217

scripts in the past year. He fixed all seven bugs in the two tasks. (Reminder: the figure
shows only one of those two tasks.)

The most successful female described herself as a software developer. She was
about 30 years old, and had nine years of scripting experience (in JavaScript, Power-
Shell, Perl, and Bash/UNIX Shell Scripting). Within the past year, she had written
about five PowerShell scripts and was a frequent PowerShell user, normally using it
about two to three times per week.

As Fig. 2 shows, after reading the task description, this female began by running
the script: “First thing I’m going to do is to try to run it to see what the errors are.”
Using the error message which stated there was an error at a line which contained
“Type = ‘NewLine’” because “Type” is a read-only property, she navigated directly
to that line of the script. She right away noticed that the equal sign was doing an as-
signment instead of a comparison, thereby finding the first bug (the dashed bar at the
beginning of her session in Fig. 2). But, although she knew what the error was, she
fixed it incorrectly based on her prior experience with other languages (the solid line
with a dot followed by 45 seconds of testing). Fortunately, testing her change made
her realize that her fix was incorrect: “Ok, perhaps it was wrong...” Despite her ex-
perience with scripting and using PowerShell, she said she felt silly about not remem-
bering what the correct syntax was, but that it is due to her not writing scripts from
scratch in PowerShell often, but rather reusing and extending existing scripts.

Knowing what she wanted the program to do but not the syntax to accomplish it,
she started to use code inspection to find a suitable fix by looking for examples in
related code: “That’s why I usually start looking at other files, to see if there’s an
‘equal’ type thing.” She went on to skim two other PowerShell files, rejecting two
Boolean operators she did not believe would fix her problem. However, the second
one, even though it was not exactly what she needed, was close enough to enable her
to fix the bug by patterning her change after that code: “Aha! ‘–like’ isn’t it because
that would be like a ‘starts with’ type thing. So, maybe I need to do ‘-eq’?” This use
of code inspection is what enabled her to actually fix the bug, and is a good example
of how increased use of this strategy might have led to greater female success in [32].

The female’s use of code inspection to actually fix the bug above, rather than just
to find it, is interesting. It suggests a possible new debugging functionality, code mini-
pattern recognition and retrieval, to support searching and browsing for related code
patterns to use as templates. The female’s beneficial use of code inspection in this
study is consistent with the results from [32] that code inspection was statistically tied
to female spreadsheet users’ success. These combined results suggest the following
hypotheses to more fully investigate the importance of code inspection to female
debuggers:

Hypothesis 1F: Code inspection is tied to females’ success in finding bugs.
Hypothesis 2F: After a bug has been found, code inspection is tied to females’ success

in correctly fixing the bug.
Hypothesis 3F: Environments that offer explicit support for code inspection strategies

in fixing bugs will promote greater debugging success by females than environ-
ments that do not explicitly support code inspection strategies.

218 V. Grigoreanu et al.

Fig. 2. The strategies used by three participants during one of the two tasks, as well as when
bugs were found and fixed. Each patterned square is a 30-second use of the strategy shown in
the legend, and the lines display a bug found / fixed also shown in the legend. The start of the
session is at the top and the end at the bottom.

 Males’ and Females’ Script Debugging Strategies 219

In contrast to the female, for males, code inspection did not appear to be tied to
success, either in the earlier spreadsheet study or in this one. As the figure shows, the
successful male used very little of it, and used none in the periods after finding, when
working on actually fixing the bugs. Although the low-experience male did use code
inspection, it did not seem to help him very much. Thus, we predict that a set of
hypotheses (which we will refer to as 1M, 2M, and 3M) about males like the female-
oriented Hypotheses 1F, 2F, and 3F will produce different results in follow-up
research, because instead of emphasizing code inspection, the periods near the low-
experience male’s successful finding of a bug and near his successful fixing of the
bug contained a marked emphasis on testing. (We will return to this point shortly.)

The successful male, whose sequence of strategies is also shown in Fig. 2, was a
very experienced scripter. He described himself as a scripter (not as an IT profes-
sional or developer) and had 20 years of experience writing scripts in languages such
as Korn Shell, BIN, PowerShell, Perl, and Tcl. He had used PowerShell since its in-
ception and had written over 100 PowerShell scripts within the past year alone.

After reading the task instructions, the successful male did not begin as the female
did by running the script, but instead first began by reading the main script code from
top to bottom for a couple of minutes, “The first thing I’ll do is to read the script to
find out what I believe it does.” Once he got to the bottom of the script, he stated that
“this code didn’t seem to have anything wrong with it,” denoted by the dotted line in
Fig. 2. He was incorrect about this.

After the dotted line, this successful male switched to running the script to see its
outputs (testing) and to consider the resulting error messages (feedback following).
The first error message this male pursued was the second error message that the suc-
cessful female had also tried addressing: “cannot find path because it does not exist.”
Without even navigating to the function to which that the error referred, the success-
ful male was able to draw from his prior experience, immediately hypothesizing (cor-
rectly) that the error was caused by a function call in the main script that used the
“name” property as a parameter, rather than the “full name” property of a file. He
stated, “I know that the file type has a ‘full name’ property, so that’s what we need to
do.” After changing the code, to check his change before really declaring it a fix, he
opened the function that the error message referred to, checking to see how the file
name that was being passed as a parameter was being used (dataflow). At this point,
he declared the first bug fixed, and reran the script to see what problem to tackle next.
He used a similar sequence of testing, feedback following, and prior experience for
the next three bugs he found and fixed.

But when the successful male found the fifth bug (see the fifth dashed line in Fig.
2), he did not have prior experiences relevant to fixing it. As the right half of the
figure shows, he spent the rest of the session trying to fix it, mainly relying on a com-
bination of fine-grained testing (checking variable output values) and help (documen-
tation internal to the product on debugging PowerShell scripts), with bits of code
inspection, control flow, and specification checking also sprinkled throughout.

Thus, the successful male provided interesting evidence regarding code inspection,
testing, prior experience, and dataflow. We have already derived hypotheses about
code inspection, and we defer hypotheses about testing until after discussing the sec-
ond male. Regarding prior experience, both the successful male and the successful
female drew on prior experience in conjunction with feedback following, but the

220 V. Grigoreanu et al.

female’s prior experience had negative impacts when she tried to fix a bug by re-
membering the syntax from a different language. The interplay between feedback
following and proceeding as in prior experience is thought-provoking, but there is not
as yet enough evidence about this interaction and gender differences for us to propose
hypotheses for follow-up.

Dataflow, however, was also a successful strategy for the males in [32], and this
successful male’s experience with it suggests exactly where it might be contributing
to males’ success:

Hypothesis 4M: Dataflow is tied to males’ success in finding bugs.
Hypothesis 5M: After the bug has been fixed, dataflow is tied to males’ success at

checking their fix.
Hypothesis 6M: Environments that offer explicit support for dataflow will promote

greater debugging success by males than environments that do not explicitly sup-
port dataflow.

We do not expect the corresponding female Hypotheses 4F, 5F, and 6F to show
significant effects, since we have seen no evidence of it in either study.

The successful female was much less experienced than the successful male, so we
also compared her strategies to those of a less experienced male to obtain insights into
strategy differences due solely to experience. This male had nearly identical experi-
ence to the female: 10 years of scripting experience (in CMD, VBScript, PowerShell,
T-SQL, and SSIS). In the past year, he had written about six PowerShell scripts, and
used PowerShell about three times per week.

Like the successful male, this less experienced male also started out with inspect-
ing the code from top to bottom. The less experienced male examined most of the
script very carefully, highlighting the lines he read as he went along. He used several
strategies (including testing, feedback following, control flow, and help) to better
understand a construct he had never run into before. After about four minutes of try-
ing, he noted not completely understanding that part of the code and assumed that it
was correct (which was true), stating that the part he had been studying seemed like a
“red herring” and “a no-op”. He therefore went on to examine the next line.

Directly following about three minutes of incremental testing (running only frag-
ments of the code at a time to see what they output), the lower-experience male found
a bug (dashed line in Fig. 2). At that point, he stated “I’m making a note of a bug
that’s here; that we’re not making a path here… And we’re going to fail, because the
system is simply not going to find those files.” After having made the note, he went
on trying to use several strategies (mainly testing and code inspection) to understand
the rest of the code.

In the earlier study, we saw some evidence pointing in the direction of to-do listing
being a strategy used more by females [32], and two of the three females used it in
this study too. This male employed a pen-and-paper version of to-do listing, but to-do
listing was so scarcely used overall in this study (perhaps since it was not supported
by the environment) that we could not derive hypotheses based on these data alone.

By inspecting the code in control flow order, the less experienced male realized
that an incorrect property used for one of the variables was the cause of the faulty
output. Returning to the first bug he had written down on paper, he succeeded at fix-
ing the bug through the use of testing. Specifically, he copied that variable and its

 Males’ and Females’ Script Debugging Strategies 221

property into the command line and ran the command. He stated that the output was
incorrect, since it was the name of the file instead of its full path. Using tab-
completion in the command line, he deleted the property, and tabbed through the list
of all properties. He then also used a command to output a list of all properties and
skimmed through them, wondering, “Is there a FullPath property?” There, he found a
“FullName” property. He tried it out by typing the variable name and property in the
command line again. The output was exactly what he wanted, so he put that small
code fragment into the script’s code, thereby fixing the bug. This suggests a possibil-
ity that a programming environment that supports systematic debugging-oriented
testing mechanisms, such as tracking incremental testing and testing of small frag-
ments of code, may be helpful to testing-oriented debuggers.

The testing evidence from both males above, combined with that of the previous
study, suggests the following hypotheses for follow-up investigation.

Hypothesis 7M: Testing is tied to males’ success in finding bugs.
Hypothesis 8M: After a bug has been found, testing is tied to males’ success at cor-

rectly fixing the bug.
Hypothesis 9M: After the bug has been fixed, testing is tied to males’ success at

evaluating their fix.
Hypothesis 10M: Environments offering explicit support for incremental testing and

testing of small code fragments will promote greater debugging success by males
than environments that do not explicitly support incremental testing strategies.

We are also proposing identical hypotheses for testing with females (7F, 8F, 9F,
and 10F). Our prior study provided no ties between testing and success by females, so
we do not predict significant effects for 8F-10F. However, the successful female in
this study used testing in conjunction with feedback following to successfully find a
bug; 7F might therefore also hold true for females.

As we have been bringing out in our hypotheses, the above evidence from all three
participants suggests that the debugging stage at which a strategy is used (finding a
bug, fixing a bug, or evaluating a fix) might have an influence on females’ and males’
success with the strategy, and we consider this to be an interesting new open research
question. For example, although everyone successfully found at least one bug by
incorporating testing, only the lower experience male fixed a bug using that strategy.
One concrete instance of this open question is, therefore, whether there is a difference
in how males and females use testing. For example, might males incorporate testing
into both finding and fixing, whereas females use it for only in the finding stage? We
express this open question as a general hypothesis:

Hypothesis 11MF: Males’ and females’ success with a strategy differs with different
debugging stages (finding a bug, fixing a bug, or evaluating a fix).

5 Conclusion

This paper presents the results from a think-aloud study we conducted to see how well
end-user programmers’ spreadsheet debugging strategies generalize to a different

222 V. Grigoreanu et al.

population and a different paradigm: IT professionals debugging Windows Power-
Shell scripts. Our results show that:

• All but one of the strategies found with the spreadsheet users also applied to IT
professionals debugging scripts, along with three more that emerged. The
seven strategies we observed in both studies were: testing, code inspection,
specification checking, dataflow, spatial, feedback following (a generalization
of the strategy previously termed color following), and to-do listing. In addi-
tion, we observed the following three strategies that had not been present in the
spreadsheet study: control flow, help, and proceeding as in prior experience.

• The mechanisms scripters used revealed several opportunities for new features
in scripting environments, such as support for systematic incremental testing,
for easy inspection of large amounts of code and of code mini-patterns, for
“drill down” into related testing information during code inspection and into
related code information during testing, for informal specification checking,
and for to-do listing.

• The evidence of the earlier statistical study on spreadsheets combined with the
qualitative analysis of this study’s participants produced several detailed hy-
potheses on gender differences in successful strategy usage.

Perhaps the most important contribution of this study is that it raised a significant new
open question: whether males’ and females’ uses of debugging strategies differ not
only in which strategies they use successfully, but also in when and how they use
those strategies.

Acknowledgements. We thank the participants of our study and are grateful to
Jennifer East, Curtis Posadas, and Siddhika Nevrekar for recruiting them. Finally, we
thank the anonymous reviewers, whose feedback helped us significantly in improving
the paper.

References

1. Bandura, A.: Social Foundations of Thought and Action. Prentice Hall, Englewood Cliffs
(1986)

2. Basili, V., Selby, R.: Comparing the Effectiveness of Software Testing Strategies. IEEE
Trans. Soft. 13(12), 1278–1296 (1987)

3. Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S., Hastings, M.: Effective-
ness of End-User Debugging Software Features: Are There Gender Issues? In: Proc. ACM
CHI 2005, pp. 869–878 (2005)

4. Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A.,
Cook, C.: Tinkering and Gender in End-User Programmers Debugging. In: Proc. ACM
CHI 2006, pp. 231–240 (2006)

5. Beckwith, L., Inman, D., Rector, K., Burnett, M.: On to the Real World: Gender and Self-
Efficacy in Excel. In: Proc. IEEE VLHCC (2007)

6. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Comm.
ACM 47(9), 53–58 (2004)

 Males’ and Females’ Script Debugging Strategies 223

7. Danis, C., Kellogg, W., Lau, T., Stylos, J., Dredze, M., Kushmerick, N.: Managers’ Email:
Beyond Tasks and To-Dos. In: ACM CHI Extended Abstracts, pp. 1324–1327 (2005)

8. Gallagher, A., De Lisi, R., Holst, P., McGillicuddy-De Lisi, A., Morely, M., Cahalan, C.:
Gender Differences in Advanced Mathematical Problem Solving. J. Experimental Child
Psychology 75(3), 165–190 (2000)

9. Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komireddy, C., Narayanan, V., Cook,
C., Burnett, M.: Gender Differences in End-User Debugging Revisited: What the Miners
Found. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
19–26 (2006)

10. Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, R., Burnett, M., Wiedenbeck, S.:
Can Feature Design Reduce the Gender Gap in End-User Software Development Envi-
ronments? In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
149–156 (2008)

11. Hartzel, K.: How Self-Efficacy and Gender Issues Affect Software Adoption and Use.
Communications of the ACM 46(9), 167–171 (2003)

12. Heger, N., Cypher, A., Smith, D.: Cocoa at the Visual Programming Challenge 1997.
Journal of Visual Languages and Computing 9(2), 151–169 (1998)

13. Ioannidou, A., Repenning, A., Webb, D.: Using Scalable Game Design to Promote 3D
Fluency: Assessing the AgentCubes Incremental 3D End-User Development Framework.
In: Ioannidou, A., Repenning, A., Webb, D. (eds.) IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 47–54 (2008)

14. Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P., Zhao, H.: A1: End-User Pro-
gramming for Web-based System Administration. In: ACM UIST 2005, pp. 211–220 (2005)

15. Katz, I., Anderson, J.: Debugging: An Analysis of Bug-Location Strategies. In: Human-
Computer Interaction, vol. 3, pp. 351–399 (1988)

16. Kelleher, C., Pausch, R., Kiesler, S.: Storytelling Alice Motivates Middle School Girls to
Learn Computer Programming. In: Proc. ACM CHI 2007, pp. 1455–1464 (2007)

17. Ko, A.J., Myers, B.A.: Designing the Whyline: A Debugging Interface for Asking Ques-
tions about Program Failures. In: Proc. ACM CHI 2004, pp. 151–158 (2004)

18. Ko, A., DeLine, R., Venolia, G.: Information Needs in Collocated Software Development
Teams. In: International Conference on Software Engineering, pp. 344–353 (2007)

19. Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.: Mental Models and Software Mainte-
nance. In: Soloway, E., Iyengar, S. (eds.) Proc. ESP. Ablex, Norwood, NJ, pp. 80–98
(1986)

20. Meyers-Levy, J.: Gender Differences in Information Processing: A Selectivity Interpreta-
tion. In: Cafferata, P., Tybout, A. (eds.) Cognitive and Affective Responses to Advertis-
ing, Lexington, Ma, Lexington Books (1989)

21. Nanja, N., Cook, C.: An Analysis of the On-Line Debugging Process. In: Olson, G.M.,
Sheppard, S., Soloway, E. (eds.) Proc. ESP, Ablex, Norwood (1987)

22. Nardi, B.: A Small Matter of Programming: Perspectives on End-User Computing. MIT
Press, Cambridge (1993)

23. O’Donnell, E., Johnson, E.: The Effects of Auditor Gender and Task Complexity on In-
formation Processing Efficiency. Int. J. Auditing 5, 91–105 (2001)

24. Pennington, N.: Stimulus Structures and Mental Representations in Expert Comprehension
of Computer Programs. Cognitive Psychology 19(3), 295–341 (1987)

25. Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M., Burnett,
M.: Strategies and Behaviors of End-User Programmers with Interactive Fault Localiza-
tion. In: IEEE Symposia on Human-Centric Computing Languages and Environments, pp.
15–22 (2003)

224 V. Grigoreanu et al.

26. Rigby, P., German, D., Storey, M.: Open Source Software Peer Review Practices: A Case
Study of the Apache Server. In: International Conference on Software Engineering, pp.
541–550 (2008)

27. Rode, J.A.: An Ethnographic Examination of the Relationship of Gender & End-User Pro-
gramming, Ph.D. Thesis, University of California Irvine (2008)

28. Rode, J.A., Toye, E.F., Blackwell, A.F.: The Fuzzy Felt Ethnography - Understanding the
Programming Patterns of Domestic Appliances. Personal and Ubiquitous Computing 8,
161–176 (2004)

29. Romero, P., du Boulay, B., Cox, R., Lutz, R., Bryant, S.: Debugging Strategies and Tac-
tics in a Multi-Representation Software Environment. International Journal on Human-
Computer Studies 61, 992–1009 (2007)

30. Rosson, M., Sinha, H., Bhattacharya, M., Zhao, D.: Design Planning in End-User Web
Development. In: Proc. VLHCC. IEEE, Los Alamitos (2007)

31. Storey, M., Ryall, J., Bull, R.I., Myers, D., Singer, J.: TODO or to bug: Exploring How
Task Annotations Play a Role in the Work Practices of Software Developers. In: Interna-
tional Conference on Software Engineering, pp. 251–260 (2008)

32. Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Narayanan, V., Bucht, K., Drummond,
R., Fern, X., Wiedenbeck, S., Burnett, M.: Testing vs. Code Inspection vs. ...What Else?
Male and Female End Users’ Debugging Strategies. In: Proc. ACM CHI (2008)

33. Torkzadeh, G., Koufteros, X.: Factorial Validity of a Computer Self-Efficacy Scale and
the Impact of Computer Training. Educational and Psychological Measurement 54(3),
813–821 (1994)

34. Weiser, M.: Programmers Use Slices When Debugging, Comm. ACM 25(7), 446–452
(1982)

35. Whitaker, A., Cox, R., Gribble, S.: Configuration Debugging as Search: Finding the Nee-
dle in the Haystack. In: 6th Symposium on Operating System Design and Implementation
(2004)

36. Windows PowerShell Wikipedia entry (accessed on August 20, 2008),
http://en.wikipedia.org/wiki/Powershell

37. Yuan, C., Lao, N., Wen, J., Li, J., Zhang, Z., Wang, Y., Ma, W.: Automated known prob-
lem diagnosis with event traces. In: Proc. ACM Sigops/Eurosys European Conference on
Computer Systems (2006)

38. Zang, N., Rosson, M.B.: What’s in a Mashup? And Why? Studying the Perceptions of
Web-Active End Users. In: IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 31–38 (2008)

	Males’ and Females’ Script Debugging Strategies
	Introduction
	Background and Related Work
	Study
	Participants
	Scripting Language and Environment
	Tasks, Procedure, and Data Collection
	Analysis Methodology

	Results
	Scripters’ Debugging Strategies
	Sequential Usage of Strategies: Three Participants

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

