


Lecture Notes in Computer Science 5435
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Volkmar Pipek Mary Beth Rosson
Boris de Ruyter Volker Wulf (Eds.)

End-User
Development

2nd International Symposium, IS-EUD 2009
Siegen, Germany, March 2-4, 2009
Proceedings

13



Volume Editors

Volkmar Pipek
University of Siegen
57068 Siegen, Germany
E-mail: volkmar.pipek@uni-siegen.de

Mary Beth Rosson
The Pennsylvania State University
University Park, PA 16802, USA
E-mail: mrosson@psu.edu

Boris de Ruyter
Philips Research Europe
5656 AE Eindhoven, The Netherlands
E-mail: Boris.de.Ruyter@philips.com

Volker Wulf
University of Siegen
57068 Siegen, Germany
E-mail: volker.wulf@fit.fraunhofer.de

Library of Congress Control Number: 2009921810

CR Subject Classification (1998): D.2, D.1, I.7, K.6

LNCS Sublibrary: SL 3 – Information Systems and Applications,
incl Internet/Web, and HCI

ISSN 0302-9743
ISBN-10 3-642-00425-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00425-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12624331 06/3180 5 4 3 2 1 0



 

Preface 

Work practices and organizational processes vary widely and evolve constantly. The 
technological infrastructure has to follow, allowing or even supporting these changes. 
Traditional approaches to software engineering reach their limits whenever the full 
spectrum of user requirements cannot be anticipated or the frequency of changes 
makes software reengineering cycles too clumsy to address all the needs of a specific 
field of application. Moreover, the increasing importance of ‘infrastructural’ aspects, 
particularly the mutual dependencies between technologies, usages, and domain 
competencies, calls for a differentiation of roles beyond the classical user–designer 
dichotomy. 

End user development (EUD) addresses these issues by offering lightweight,  
use-time support which allows users to configure, adapt, and evolve their software by 
themselves. EUD is understood as a set of methods, techniques, and tools that allow 
users of software systems who are acting as non-professional software developers to 
create, modify, or extend a software artifact1. While programming activities by  
non-professional actors are an essential focus, EUD also investigates related activities 
such as collective understanding and sense-making of use problems and solutions, the 
interaction among end users with regard to the introduction and diffusion of new 
configurations, or delegation patterns that may also partly involve professional 
designers. 

EUD concepts have found widespread use in commercial software with some 
success: recording macros in word processors, setting up spreadsheets for 
calculations, defining e-mail-filters, configurating desktop widgets, or composing 
mesh-ups. Although these applications only realize a fraction of EUD potential and 
still suffer from many flaws, they illustrate why empowering end-users to develop 
their applications is such an important issue. It contributes to the economic 
performance of organizations that depend increasingly on their IT infrastructure and 
enables citizens to become active members of the information society. 

EUD integrates different threads of discussions from human–computer interaction 
(HCI), software engineering (SE), computer–supported cooperative work (CSCW), and 
artificial intelligence (AI). Concepts such as tailorability, configurability, end-user 
programming, visual programming, natural programming, and programming by 
example already form a fruitful base, but they need to be better integrated and the 
synergy between them more fully exploited. 

Driven by developments in the context of Web 2.0, the number of end-user developers 
compared to the number of software professionals will grow strongly. This underlines the 
importance of systematic research into EUD. The potential to provide EUD-based 
adaptation over the Internet may create a shift from the conventional few-to-many 
distribution model of software adaptations to a many-to-many model. 

EUD can lead to considerable competitive advantage in adapting to dynamically 
changing (economic) environments. The increasing amount of software embedded 
                                                           
1 Lieberman, H.; Paternó, F.; Wulf, V. (eds): End User Development, Springer, London 2006. 



 Preface VI 

within consumer and professional products also points to a need in promoting EUD to 
enable effective use of these products. This momentum may also be picked up to 
improve software (re-)design based on user-driven innovation tools and strategies. 

On the political level, EUD is important for full participation of citizens in the 
emerging information society. While techniques of Web 2.0 already contribute to a 
democratization of the creation of content, the modification of the software 
infrastructure is difficult for non-professional programmers. This often leads to a 
division of labor between those who produce and those who consume. EUD has the 
potential to counterbalance these effects. 

The Second International Symposium on End User Development focused on an 
emergent discussion which so far has taken place in many different forums. In these 
proceedings, we document 12 full papers and two notes that report on the latest 
advances in the field. Full papers and notes were chosen in a quality-oriented 
selection process in which each contribution was reviewed by at least three members 
of the Program Committee. 

We are grateful to the distinguished members of our Program Committee. 
Six invited speakers shared their insights with us during the symposium. Their 

work has largely contributed to shaping EUD as a research field. We would like to 
thank Jörg Beringer (SAP), Margaret Burnett (Oregon State University), Pele Ehn 
(University of Malmo), Gerhard Fischer (University of Colorado), Yasmin Kafai 
(University of Pennsylvania), and Frank Piller (RWTH Aachen). Burnett’s and 
Fischer’s contributions are additionally documented in these proceedings.  

Organizing an international symposium requires team effort over a considerable period 
of time. We would like to thank Gunnar Stevens (Fraunhofer FIT) and Christopher 
Scaffidi (Carnegie Mellon University), who put together the work-in-progress section. 
Andrea Bernards, Matthias Korn, Karin Ofterdinger, Marion Schulte, Martin Stein, 
Marcel Tweer, and Timm Wunderlich supported us in many different ways, such as 
maintaining the website, formatting the proceedings, or running the registration process. 
We are deeply indebted to their high engagement.  

Finally, we are grateful to the sponsors of the symposium: the President of the 
University of Siegen, Philips Research, Sparkasse Siegen, the German Science 
Foundation's Research Centre on 'Media Upheavals' (DFG-FK 615), and the 
International Institute for Socio-Informatics (IISI).  

 
 

  
January 2009  
  
 
 
 
 



 

Organization 

Program Committee 

Sasche Alda Accenture, Germany  
Jörg Beringer SAP, Palo Alto, USA  
Alan Blackwell Cambridge University, UK  
Margaret Burnett Oregon State University, USA  
Maria Francesca Costabile University of Bari, Italy 
Clarisse Sieckenius De Souza Catholic University, Rio de Janeiro, Brazil  
Anid Dey Carnegie Mellon University, USA  
Yvonne Dittrich IT University Copenhagen, Denmark  
John Daughtry Penn State University, USA  
Christian Dörner University of Siegen, Germany  
Gregor Engels University of Paderborn, Germany  
Roman Englert T-Labs, Ben Gurion University, Israel  
Umer Farooq Microsoft, USA  
Gerhard Fischer University of Colorado, Boulder, USA 
Jörg Haake Fernuniversität Hagen, Germany  
Austin Henderson Pitney Bull, USA  
Jan Hess University of Siegen, Germany  
Thomas Herrmann University of Bochum, Germany  
Yasmin Kafai Penn State University, USA  
John Karat IBM T.J. Watson Research center, USA  
Roger Kilian-Kehr SAP Research, Karlsruhe, Germany  
Markus Klann Fraunhofer FIT, Germany  
Kari Kuutti University of Oulu, Finland  
Catherine Letondal Institute Pasteur, Paris, France  
Henry Lieberman MIT Media Lab, USA  
Wendy Mackay INRIA, France  
Nikolay Mehandjiev UMIST, UK  
Rob Miller MIT, USA  
Anders Morch University of Oslo, Norway 
Piero Mussio University of Milan, Italy  
Brad Myers Carnegie Mellon University, USA  
Horst Oberquelle University of Hamburg, Germany  
Reinhard Oppermann Fraunhofer FIT, Germany  
Philippe Palanque Univerity of Toulouse, France  
Fabio Paternó CNR-ISTI, Pisa, Italy  
Alexander Repenning University of Colorado, Boulder, USA  
Markus Rohde University of Siegen, Germany  
Stefan Scheidl SAP Research, Germany  
Albrecht Schmidt University of Duisburg-Essen, Germany  



 Organization VIII 

Carla Simone University of Milano-Bicocca, Italy  
Brian Smith Penn State University, USA  
Gunnar Stevens University of Siegen and Fraunhofer FIT,  

Germany  
Giuseppe Strina RWTH Aachen, Germany  
Alistair Sutcliffe UMIST, UK  
Bettina Törpel Technical University of Denmark, Copenhagen, 

Denmark 
Michael Veith University of Siegen, Germany  
Markus Won Deutsche Post, Bonn, Germany  
Fahri Yetim University of Siegen, Germany  
Jürgen Ziegler University of Duisburg-Essen, Germany  
Heinz Züllighoven University of Hamburg, Germany  

 



Table of Contents

Part I: Invited Talks

End-User Development and Meta-design: Foundations for Cultures of
Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Gerhard Fischer

What Is End-User Software Engineering and Why Does It Matter? . . . . . 15
Margaret Burnett

Part II: Refereed Papers

Mutual Development: A Case Study in Customer-Initiated Software
Product Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Renate Andersen and Anders I. Mørch

Appropriation Infrastructure: Supporting the Design of Usages . . . . . . . . 50
Gunnar Stevens, Volkmar Pipek, and Volker Wulf

Supporting End Users to Be Co-designers of Their Tools . . . . . . . . . . . . . . 70
Maria Francesca Costabile, Piero Mussio,
Loredana Parasiliti Provenza, and Antonio Piccinno

Improving Documentation for eSOA APIs through User Studies . . . . . . . 86
Sae Young Jeong, Yingyu Xie, Jack Beaton, Brad A. Myers,
Jeff Stylos, Ralf Ehret, Jan Karstens, Arkin Efeoglu, and
Daniela K. Busse

End-User Development of Enterprise Widgets . . . . . . . . . . . . . . . . . . . . . . . 106
Michael Spahn and Volker Wulf

End-User Development for E-Government Website Content Creation . . . 126
Daniela Fogli

LWOAD: A Specification Language to Enable the End-User Develoment
of Coordinative Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Federico Cabitza and Carla Simone

Shaping Collaborative Work with Proto-patterns . . . . . . . . . . . . . . . . . . . . . 166
Till Schümmer and Jörg M. Haake

Web Design Patterns: Investigating User Goals and Browsing
Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Paloma Dı́az, Mary Beth Rosson, Ignacio Aedo, and John. M. Carroll



X Table of Contents

Males’ and Females’ Script Debugging Strategies . . . . . . . . . . . . . . . . . . . . . 205
Valentina Grigoreanu, James Brundage, Eric Bahna,
Margaret Burnett, Paul ElRif, and Jeffrey Snover

Hypertextual Programming for Domain-Specific End-User
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Sebastian Ortiz-Chamorro, Gustavo Rossi, and Daniel Schwabe

Fast, Accurate Creation of Data Validation Formats by End-User
Developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Chris Scaffidi, Brad Myers, and Mary Shaw

Part III: Refereed Notes

Cicero Designer: An Environment for End-User Development of
Multi-Device Museum Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Giuseppe Ghiani, Fabio Paternò, and Lucio Davide Spano

Observing End-User Customisation of Electronic Patient Records . . . . . . 275
Cecily Morrison and Alan F. Blackwell

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285



Part I 

Invited Talks 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 3–14, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

End-User Development and Meta-design: 
Foundations for Cultures of Participation 

Gerhard Fischer 

Center for LifeLong Learning and Design (L3D) 
University of Colorado 

Boulder, CO 80309-0430 USA 
gerhard@colorado.edu 

Abstract. The first decade of the World Wide Web predominantly enforced a 
clear separation between designers and consumers. New technological devel-
opments, such as the cyberinfrastructure and Web 2.0 architectures, have 
emerged to support a participatory Web. These developments are the founda-
tions for a fundamental shift from a consumer culture (specialized in producing 
finished goods to be consumed passively) to a culture of participation (in which 
all people are provided with the means to participate actively in personally 
meaningful activities). End-user development and meta-design provide founda-
tions for this fundamental transformation. They explore and support new ap-
proaches for the design, adoption, appropriation, adaptation, evolution, and 
sharing of artifacts by all participating stakeholders. They take into account that 
cultures of participation are not dictated by technology alone: they are the result 
of incremental shifts in human behavior and social organizations. 

1   Introduction 

Cultures are defined in part by their media and their tools for thinking, working, 
learning, and collaborating [McLuhan, 1964]. In the past, the design of most media 
emphasized a clear distinction between producers and consumers [Benkler, 2006]. 
Television is the medium that most obviously exhibits this orientation [Postman, 
1985] and in the worst case contributes to the degeneration of humans into “couch 
potatoes” [Fischer, 2002] for whom remote controls are the most important  
instruments of their cognitive activities. In a similar manner, our current educational 
institutions often treat learners as consumers, fostering a mindset in students of “con-
sumerism” [Illich, 1971] rather than “ownership of problems” for the rest of their 
lives [Bruner, 1996]. As a result, learners, workers, and citizens often feel left out of 
decisions by teachers, managers, and policymakers, denying them opportunities to 
take active roles in personally meaningful and important problems. 

The personal computer can produce, in principle, an incredible increase in the  
creative autonomy of the individual. But historically these possibilities were often of 
interest and accessible only to a small number of “high-tech scribes.” End-user devel-
opment (EUD) is focused on the challenge of allowing users of software systems who 



4 G. Fischer 

are not primarily interested in software per se to modify, extend, evolve, and create 
systems that fit their needs. 

What the personal computer has done for the individual, the Internet has done for 
groups and communities. The first decade of Internet use was dominated by broadcast 
models and thereby extended the existing strong separation of “designers” and “users” 
imposed by existing media. Meta-design is an evolving conceptual framework to ex-
ploit computational media in support of collaboration and communication (such as 
table-top computing and wikis) to foster cultures of participation. 

2   End-User Development 

Familiarity with software applications has become an essential requirement for pro-
fessionals in a variety of complex domains: architects, doctors, electrical engineers, 
biochemists, statisticians, and film directors (among many others) all depend for their 
livelihood on the mastery of various collections of applications [Eisenberg & Fischer, 
1994]. These applications, to be at all useful, must provide domain professionals with 
complex, powerful functionality. In doing so, however, these systems likewise in-
crease the cognitive cost of mastering the new capabilities and resources that they 
offer. Moreover, the users of these applications will notice that "software is not 
soft"—that is, that the behavior of a given application cannot be changed or meaning-
fully extended without substantial reprogramming.  

The need for end-user development is not a luxury but a necessity: computational 
systems modeling some particular “world” are never complete; they must evolve over 
time because (1) the world changes and new requirements emerge; and (2) skilled 
domain professionals change their work practices over time—their understanding and 
use of a system will be very different after a month and certainly after several years. If 
systems cannot be modified to support new practices, users will be locked into exist-
ing patterns of use. 

These problems were recognized early in the context of expert systems and do-
main-oriented environments (here we present just two examples for illustration): 

 Expert systems: The TEIRESIAS system [Davis, 1984] was a module to support 
domain professionals to augment the existing knowledge base of a medical expert 
system; the objective of this component was to establish and support interaction 
at a discourse level that would allow domain professionals to articulate their 
knowledge without having to program in Lisp. 

 Domain-oriented environments: The JANUS-MODIFIER system [Fischer & 
Girgensohn, 1990; Girgensohn, 1992] supported not just human-computer inter-
action but human problem-domain interaction to allow kitchen designers to in-
troduce new components and new critiquing rules into design environments in 
support of kitchen design. 

From a more theoretical perspective, end-user developments can cope with ill-
defined (or wicked) problems and breakdowns: 

 Ill-defined or wicked problems [Rittel & Webber, 1984] cannot be delegated from 
domain professionals to software professionals, but require the creation of exter-
nalizations that talk back to the owner of the problem [Schön, 1983]. 



 End-User Development and Meta-design: Foundations for Cultures of Participation 5 

 Breakdowns [Fischer, 1994] are experienced by domain professionals and not by 
the system developers; if domain professionals can respond to these breakdowns 
without relying on a “high-tech scribe,” systems will evolve in response to real 
needs. 

Professional programmers and domain professionals define the endpoints of a con-
tinuum of computer users. The former like computers because they can program, and 
the latter because they get their work done. The goal of supporting domain profes-
sionals to develop and modify systems does not imply transferring the responsibility 
of good system design to the end-user [Burnett et al., 2004]. Normal users will in 
general not build tools of the quality a professional designer would (which was recog-
nized as one of the basic limitations of second-generation design methods [Rittel, 
1984]). However, if the tool does not satisfy the needs or the tastes of the end-users 
(who know best what these requirements are), then end-users should be able to adapt 
the system without requiring the assistance of developers. 

3   A “New World” Based on Cultures of Participation 

As the research community interested EUD gathers in 2009 for the Second International 
Symposium on End-user Development, an interesting question is: What has changed 
since the first symposium that took place in 2003 (as documented in the book End-User 
Development [Lieberman et al., 2006], which includes a chapter about the future of 
EUD [Klann et al., 2006])? The major innovation and transformation that emerged is 
the participatory web (or Web 2.0 [O'Reilly, 2006]), complementing and transcending 
the broadcast web (or Web 1.0), which dominated the first decade of the web. 

The Web 1.0 model primarily supports web page publishing and e-commerce, 
whereas the Web 2.0 model is focused on collaborative design environments, social 
media, and social networks creating feasibility spaces for new cultures that allow 
people to participate rather than being confined to passive consumer roles. 

This transformation represents a fundamental shift from consumer cultures (fo-
cused on passive consumption of finished goods produced by others) [Postman, 1985] 
to cultures of participation (in which all people are provided with the means to par-
ticipate actively in personally meaningful activities) [Fischer, 2002; von Hippel, 
2005]. End-user development is obviously an essential component of this transforma-
tion, but its impact is much broader: this transformation represents a change and new 
opportunity for social production, for mass collaboration, for civic and political life, 
and for education.  

The EUD research community has struggled to make its objectives and techniques 
known to the world, whereas the Web 2.0 world is being defined by breaking down 
the boundaries between producers and consumers. New broad-based developments 
(including open source software, Wikipedia, Second Life, YouTube, and 3D Ware-
house, to name just a few) attracted a very large number of contributors. The research 
community interested in EUD now has an opportunity to apply its research findings to 
create an analytical framework to deeply understand these new developments and 
evolve them further.  

 



6 G. Fischer 

This “new world” has established new levels of discourse, including the following: 

 From the dichotomy between consumers and producers, new, middle-ground 
models have emerged such as 

- prosumers [Tapscott & Williams, 2006], who are techno-sophisticated and 
comfortable with the technologies with which they grew up; they have lit-
tle fear of hacking, modifying, and evolving their artifacts to their own re-
quirements. They do not wait for someone else to anticipate their needs, 
and they can decide what is important for them. They participate in learn-
ing and discovery and engage in experimenting, exploring, building, tink-
ering, framing, solving, and reflecting. 

- professional amateurs [Brown, 2005; Leadbeater & Miller, 2008], who are 
innovative, committed, and networked amateurs working to professional 
standards; they are a new social hybrid, and their activities are not ade-
quately captured by the traditional dichotomous definitions of work and 
leisure, professional and amateur, consumption and production. 

- social production and mass collaboration [Benkler, 2006], which are based 
on the following facts: (a) a tiny percentage of a very large base is still a 
substantial number of people; (b) beyond quantitative numbers exists a 
great diversity of interests and passions in the Long Tail [Anderson, 2006]; 
and (c) while human beings often act for material rewards, they can also 
be motivated by social capital, reputation, connectedness, and the enjoy-
ment derived from giving things of value away (contributing).  

 An emphasis on open systems, which are systems focused on the “unfinished” 
and take into account that design problems have no stopping rule, need to remain 
open and fluid to accommodate ongoing change, and for which “continuous beta” 
becomes a desirable rather than a to-be-avoided attribute. 

 The importance of user-generated content, in which “content” is broadly defined: 
creating artifacts with existing tools (e.g., writing a document with a word proces-
sor) or changing the tools (e.g., writing macros to extend the word processor as a 
tool). In specific environments (such as open source software), the content is sub-
ject to the additional requirement of being computationally interpretable). 

 Moving from guidelines, rules, and procedures to exceptions, negotiations, and 
work-arounds to complement and integrate accredited and expert knowledge with 
informal, practice-based, and situated knowledge [Suchman, 1987; Orr, 1996; 
Winograd & Flores, 1986]. 

 Exploiting the Long Tail [Anderson, 2006] of knowledge distribution, allowing 
people from around the world to engage in topics and activities about which they 
feel passionate. 

 Fostering and supporting richer ecologies of participation (see Section 4.2). 
 Creating a new understanding of motivation, creativity, control, ownership, and 

quality (see Section 4.3). 

4   Meta-design 

Meta-design [Fischer & Giaccardi, 2006] is focused on “design for designers.” It cre-
ates open systems at design time that can be modified by their users acting as 



 End-User Development and Meta-design: Foundations for Cultures of Participation 7 

co-designers, requiring and supporting more complex interactions at use time. Meta-
design is grounded in the basic assumption that future uses and problems cannot be 
completely anticipated at design time, when a system is developed. At use time, users 
will invariably discover mismatches between their needs and the support that an exist-
ing system can provide for them. 

Open systems allow significant modifications when the need arises. The successes 
of open source software systems and open content environments have demonstrated 
that, given the right conditions, design through the collaboration of many can create 
new kinds of systems. 

Meta-design tries to reduce the gap in the world of computing between a popula-
tion of elite high-tech scribes who can act as designers and a much larger population 
of intellectually disenfranchised knowledge workers who are forced into consumer 
roles. The seeding, evolutionary growth, and reseeding (SER) model [Fischer & Ost-
wald, 2002] is an emerging descriptive and prescriptive model in support of  
meta-design. In the past, large and complex software systems were built as complete 
artifacts through the large efforts of a small number of people. Instead of attempting 
to build complete systems, the SER model advocates building seeds (in participatory 
design activities with meta-designers and end-users) that can evolve over time 
through small contributions of a large number of people (being the defining character-
istics of a culture of participation). It postulates that systems that evolve over a sus-
tained time span must continually alternate between periods of planned activity and 
unplanned evolution and periods of deliberate (re)structuring and enhancement. A 
seed is something that has the potential to change and grow. In socio-technical envi-
ronments, seeds need to be designed and created for the technical as well as the social 
component of the environment. 

4.1   The Ubiquity of Meta-design 

Meta-design transcends end-user development by studying and supporting cultures of 
participation not only in the area of software artifacts, but also in every domain of 
information and cultural production. Meta-design explores different purposes associ-
ated with the artifacts under development, ranging from reliability and efficiency to 
reaching a deeper understanding of problems and developing more creative and inno-
vative solutions. 

In our research, we have explored meta-design [Fischer & Giaccardi, 2006] in the 
following areas: 

 design of computational artifacts [Lieberman et al., 2006], with an emphasis on 
customization, personalization, tailorability, end-user modifiability, design for 
diversity, and design for a “universe of one” [Carmien & Fischer, 2008];  

 architectural design [Brand, 1995], with an emphasis on underdesign and support 
for an “unself-conscious culture of design” [Alexander, 1964];  

 new models of teaching and learning [Brown, 2005; Rogoff et al., 1998], with an 
emphasis on challenging the assumption that information must move from teach-
ers and other credentialed producers to passive learners and consumers [Illich, 
1971], such as learning communities, teachers as meta-designers, and courses-as-
seeds [dePaula et al., 2001]; 



8 G. Fischer 

 open source [Raymond & Young, 2001], with an emphasis on open source as a 
success model of decentralized, collaborative, evolutionary development 
[Scharff, 2002]; and  

 interactive art [Giaccardi, 2004], with an emphasis on collaboration and co-
creation facilitated by putting the tools rather than the object of design in the 
hands of users. 

In our currently active research, we are further deepening our understanding of 
meta-design and cultures of participation with the following projects: 

 3D WAREHOUSE, an environment in which people from around the world can 
share 3D models created with SketchUp, and how these models can be referenced 
and displayed in Google Earth; 

 SAP DEVELOPER NETWORK, an example of a successful socio-technical environ-
ment consisting of more than one million registered users forming a highly active 
online community; and  

 CREATIVEIT, a wiki-based environment fostering and supporting the evolving 
scientific community participating in the NSF Program on “Creativity and IT.” 

4.2   Richer Ecologies of Participation 

The traditional notions of developer and user are unable to reflect the fact that many 
socio-technical environments nowadays are developed with the participation of many 
people with varied interests and capabilities. Cultures of participation require con-
tributors with diverse background knowledge who need to provide support and value 
different ways of participating. Many collaborative design environments serve only as 
content management systems: participants contribute and share their own interests and 
abilities, and additional activities such as critiquing, rating, tagging, deliberating, ex-
tending, improving, and negotiating do not take place and are not adequately sup-
ported; their value is therefore not sufficiently recognized.  

Early studies [Gantt & Nardi, 1992] already identified that EUD is more successful 
if supported by collaborative work practices rather than focusing on individuals. Gantt 
and Nardi observed the emergence of “gardeners” (also known as “power users” and 
“local developers”), who are technically interested and sophisticated enough to per-
form system modifications that are needed by a community of users but that other 
end-users are not able or inclined to perform. 

A detailed analysis of open-source software systems [Ye & Fischer, 2007] revealed 
a variety of different roles: (1) passive users (using the system); (2) readers (trying to 
understand how the system works by reading the source code); (3) bug reporters (dis-
covering and reporting bugs); (4) bug fixers (fixing bugs); (5) peripheral developers 
(occasionally contributing new functionality or features); (6) active developers (regu-
larly contributing new features and fixing bugs); and (7) project leader(s) (initiating 
the project and being responsible for its vision and overall direction).  

In the SketchUp/3D Warehouse/Google Earth environments, a similar role distri-
bution can be observed: contributors create new models with SketchUp, raters and 
taggers evaluate and describe these models, and curators organize models in collec-
tions and create narratives. 

To be more specific about the role of meta-designers: what do they do? They use 
their own creativity to create socio-technical environments in which other people can 



 End-User Development and Meta-design: Foundations for Cultures of Participation 9 

be creative. The main activity of meta-designers shifts from determining the meaning, 
functionality, and content of a system to encouraging and supporting users to engage 
in these activities. Meta-designers must be willing to share control of how systems 
will be used, which content will be contained, and which functionality will be sup-
ported. They do so with a focus on underdesign (1) by creating contexts and content 
creation tools rather than content; (2) by creating technical and social conditions for 
broad participation in design activities; and (3) by supporting “hackability” and “re-
mixability.” 

4.3   Motivation, Control, Ownership, Creativity, and Quality 

As argued before, understanding and fostering cultures of participation with meta-
design requires paying attention to factors from political, economical, and social do-
mains. This section takes a brief look at a few of those factors. 

Motivation. Human beings are diversely motivated beings. We act not only for mate-
rial gain, but for psychological well-being, for social integration and connectedness, 
for social capital, for recognition, and for improving our standing in a reputation 
economy. The motivation for going the extra step to engage in EUD was articulated 
by Rittel [Rittel, 1984]: “The experience of having participated in a problem makes a 
difference to those who are affected by the solution. People are more likely to like a 
solution if they have been involved in its generation; even though it might not make 
sense otherwise.” Meta-design relies on intrinsic motivation for participation and it 
has the potential to influence this by providing contributors with the sense and experi-
ence of joint creativity, by giving them a sense of common purpose and mutual  
support in achieving it, and in many situations by replacing common background or 
geographic proximity with a sense of well-defined purpose, shared concerns, and the 
successful common pursuit of these [Anderson, 2006; Fischer, 2001]. 

Control. Meta-design supports users as active contributors who can transcend the 
functionality and content of existing systems. By facilitating these possibilities, con-
trol is distributed among all stakeholders in the design process. The importance of this 
distribution of control has been emphasized as important for architecture [Alexander, 
1984]: “I believe passionately in the idea that people should design buildings for 
themselves. In other words, not only that they should be involved in the buildings that 
are for them but that they should actually help design them.” Other arguments indi-
cate that shared control will lead to more innovation [von Hippel, 2005]: “Users that 
innovate can develop exactly what they want, rather than relying on manufacturers to 
act as their (often very imperfect) agents.” 

Ownership. Our experiences gathered in the context of the design, development, and 
assessment of our systems indicate that meta-design methodologies are less successful 
when users are brought into the process late (thereby denying them ownership) than 
when users are “misused” to fix problems and to address weaknesses of systems that 
the developers did not fix themselves. Meta-design does work when users are part of 
the participatory design effort in establishing a meta-design framework, including 
support for intrinsic and extrinsic motivation, user toolkits for reducing the effort to 
make contributions, and the seeding of use communities in which individuals can 
share their contributions [Dawe, 2007]. 



10 G. Fischer 

Social Creativity. Where do new ideas come from in meta-design environments and 
cultures of participation? The creativity potential is grounded in (1) user-driven inno-
vations, (2) taking advantage of breakdowns as sources for creativity, and (3) exploit-
ing the symmetry of ignorance and conceptual collisions. To increase social creativity 
requires: (1) diversity (each participants should have some unique information or per-
spective); (2) independence (participants’ opinions are not determined by the opinions 
of those around them) [Surowiecki, 2005]; (3) decentralization (participants are able 
to specialize and draw on local knowledge) [Anderson, 2006]; and (4) aggregation 
(mechanisms exist for turning individual contributions into collections, and private 
judgments into collective decisions). In addition, participants must be able to express 
themselves (requiring EUD competencies), must be willing to contribute (motivation), 
and must be allowed to have their voices heard (control). 

Quality. Many teachers will tell their students that they will not accept research findings 
and argumentation based on articles from Wikipedia. This exclusion is usually based on 
considerations such as: “How are we to know that the content produced by widely dis-
persed and qualified individuals is not of substandard quality?” 

The online journal Nature (http://www.nature.com/) has compared the quality of 
articles found in the Encyclopedia Britannica with Wikipedia and has come to the 
conclusion that “Wikipedia comes close to Britannica in terms of the accuracy of its 
science entries.” This study and the interpretation of its findings has generated a con-
troversy, and Tapscott and Williams [Tapscott & Williams, 2006] have challenged the 
basic assumption that a direct comparison between the two encyclopedias is a relevant 
issue: “Wikipedia isn't great because it's like the Britannica. The Britannica is great 
at being authoritative, edited, expensive, and monolithic. Wikipedia is great at being 
free, brawling, universal, and instantaneous.” 

There are many more open issues to be investigated about quality and trust [Kittur 
et al., 2008] in cultures of participation, including: (1) errors will always exist, result-
ing in learners acquiring the important skill of always being critical of information 
rather than blindly believing in what others (specifically experts or teachers) are say-
ing; and (2) ownership may be a critical dimension: the community at large has a 
greater sense of ownership and thereby is more willing to put an effort into fixing 
errors. This last issue has been explored in open source communities and has led to 
the observation that “if there are enough eyeballs, all bugs are shallow” [Raymond & 
Young, 2001].  

5   Drawbacks of Cultures of Participation 

Cultures of participation open up unique new opportunities for mass collaboration and 
social production, but they are not without drawbacks. One such drawback is that hu-
mans may be forced to cope with the burden of being active contributors in personally 
irrelevant activities. 

This drawback can be illustrated with “do-it-yourself” societies. Through modern 
tools, humans are empowered to perform many tasks themselves that were done pre-
viously by skilled domain workers serving as agents and intermediaries. Although this 
shift provides power, freedom, and control to customers, it also has forced people to 
act as contributors in contexts for which they lack the experience that professionals 



 End-User Development and Meta-design: Foundations for Cultures of Participation 11 

have acquired and maintained through the daily use of systems, as well as the broad 
background knowledge to do these tasks efficiently and effectively (e.g., companies 
offloading work to customers).  

Substantially more experience and assessment is required to determine whether the 
advantages of cultures of participation (such as extensive coverage of information, 
creation of large numbers of artifacts, creative chaos by making all voices heard, re-
duced authority of expert opinions, and shared experience of social creativity) will 
outweigh the disadvantages (accumulation of irrelevant information, wasting human 
resources in large information spaces, and lack of coherent voices). Such a determina-
tion will depend on creating a deeper understanding of these trade-offs [Carr, 2008; 
Lanier, 2006]. 

6   Implications and Conclusions 

For a couple of decades the rise of digital media has been providing new powers for 
the individual. The world's networks are now providing enormous unexplored oppor-
tunities for groups and communities. Providing all citizens with the means to become 
co-creators of new ideas, knowledge, and products in personally meaningful activities 
presents one of the most exciting innovations and transformations, with profound im-
plications in the years to come. 

This paper has described numerous reasons why EUD environments (for customiz-
ing, tailoring, and evolving systems) are highly desirable. Despite the fact that some 
EUD environments and their supporting research have been around for years and 
some success models exist [Lieberman et al., 2006], there is evidence that the impact 
of academic research efforts in this area has been limited. 

We do know, however, that digital media are powerful catalysts of cultural change. 
The challenge for the EUD research community is not only understanding, supporting, 
and participating in existing cultures, but also shaping, transforming, and fostering new 
cultures. Humans all over the world have the opportunity today not only to be exposed 
to cultures of consumerism [Postman, 1985], but to become active contributors in cul-
tures of participation. Without an analytic model and a demystification of media to 
deeply understand and explain new emerging phenomena and environments, however, 
we will only be able to treat them as curiosities or transient fads [Benkler, 2006]. The 
potential impact of cultures of participation supported by meta-design is substantial: 
they erode monopolistic positions held by professions, educational institutions, and 
experts, and they increase the diversity of perspectives on the way the world is and the 
way it could be. They require new metaphors, new levels of discourse, and new envi-
ronments to think, reflect, and support working, learning, and collaboration for alterna-
tive and more democratic futures. 

Acknowledgments 

I thank the members of the Center for LifeLong Learning & Design at the University 
of Colorado, who have made major contributions to the ideas described in this paper. 



12 G. Fischer 

I have learned much over the years by interacting with my professional colleagues 
and collaborators in the EUD and EUSE communities. 

The research was supported in part by (1) grants from the National Science Foun-
dation, including: (a) IIS-0613638 “A Meta-Design Framework for Participative 
Software Systems”, (b) IIS-0709304 “A New Generation Wiki for Supporting a Re-
search Community in ‘Creativity and IT’” and (c) IIS-0843720 “Increasing Partici-
pation and Sustaining a Research Community in ‘Creativity and IT’”; (2) a Google 
research award, “Motivating and Empowering Users to Become Active Contributors: 
Supporting the Learning of High-Functionality Environments”; and (3) a SAP re-
search project, “Giving All Stakeholders a Voice: Understanding and Supporting the 
Creativity and Innovation of Communities Using and Evolving Software Products.” 

References 

1. Alexander, C.: The Synthesis of Form, Part I. Harvard University Press, Cambridge (1964) 
2. Alexander, C.: The State of the Art in Design Methods. In: Cross, N. (ed.) Developments 

in Design Methodology, pp. 309–316. John Wiley & Sons, New York (1984) 
3. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More. Hype-

rion, New York (2006) 
4. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and 

Freedom. Yale University Press, New Haven (2006) 
5. Brand, S.: How Buildings Learn: What Happens after They’re Built. Penguin Books, New 

York (1995) 
6. Brown, J.S.: New Learning Environments for the 21st Century (2005), 

http://www.johnseelybrown.com/newlearning.pdf 
7. Bruner, J.: The Culture of Education. Harvard University Press, Cambridge (1996) 
8. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Communications 

of the ACM 47(9), 53–58 (2004) 
9. Carmien, S.P., Fischer, G.: Design, Adoption, and Assessment of a Socio-Technical Envi-

ronment Supporting Independence for Persons with Cognitive Disabilities. In: Proceedings 
of Chi 2008, pp. 597–607. ACM, Florence (2008) 

10. Carr, N.: Is Google Making Us Stupid? (2008), 
http://www.theatlantic.com/doc/200807/google 

11. Davis, R.: Interactive Transfer of Expertise. In: Buchanan, B.G., Shortliffe, E.H. (eds.) 
Rule-Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Program-
ming Project, pp. 171–205. Addison-Wesley Publishing Company, Reading (1984) 

12. Dawe, M.: Reflective Design-in-Use: Co-Designing an Assistive Remote Communication 
System with Individuals with Cognitive Disabilities and Their Families, Ph.D. Disserta-
tion, University of Colorado at Boulder (2007),  
http://l3d.cs.colorado.edu/~meliss/diss/ 

13. dePaula, R., Fischer, G., Ostwald, J.: Courses as Seeds: Expectations and Realities. In: Dil-
lenbourg, P., Eurelings, A., Hakkarainen, K. (eds.) Proceedings of the European Confer-
ence on Computer-Supported Collaborative Learning, Maastricht, The Netherlands, pp. 
494–501 (2001) 

14. Eisenberg, M., Fischer, G.: Programmable Design Environments: Integrating End-User 
Programming with Domain-Oriented Assistance. In: Human Factors in Computing Sys-
tems, Chi 1994, Boston, MA, pp. 431–437. ACM, New York (1994) 



 End-User Development and Meta-design: Foundations for Cultures of Participation 13 

15. Fischer, G.: Turning Breakdowns into Opportunities for Creativity. Knowledge-Based 
Systems, Special Issue on Creativity and Cognition 7(4), 221–232 (1994) 

16. Fischer, G.: Communities of Interest: Learning through the Interaction of Multiple Knowl-
edge Systems. In: 24th Annual Information Systems Research Seminar In Scandinavia 
(IRIS 1924), Ulvik, Norway, pp. 1–14 (2001) 

17. Fischer, G.: Beyond ‘Couch Potatoes’: From Consumers to Designers and Active Con-
tributors," Firstmonday (Peer-Reviewed Journal on the Internet) (2002),  
http://firstmonday.org/issues/issue7_12/fischer/ 

18. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Devel-
opment. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 427–
457. Kluwer Academic Publishers, Dordrecht (2006) 

19. Fischer, G., Girgensohn, A.: End-User Modifiability in Design Environments. In: Human 
Factors in Computing Systems (Chi 1990), Seattle, WA, pp. 183–191. ACM, New York 
(1990) 

20. Fischer, G., Ostwald, J.: Seeding, Evolutionary Growth, and Reseeding: Enriching Partici-
patory Design with Informed Participation, Malmö University, Sweden, pp. 135–143 
(2002) 

21. Gantt, M., Nardi, B.A.: Gardeners and Gurus: Patterns of Cooperation among CAD Users. 
In: Bauersfeld, P., Bennett, J., Lynch, G. (eds.) Proceedings of ACM CHI 1992 Confer-
ence on Human Factors in Computing Systems, pp. 107–117. ACM, New York (1992), 
http://www.acm.org/pubs/articles/proceedings/chi/142750/ 
p107-gantt/p107-gantt.pdf 

22. Giaccardi, E.: Principles of Metadesign: Processes and Levels of Co-Creation in the New 
Design Space, Ph.D. Dissertation, CAiiA-STAR, School of Computing, Plymouth, UK 
(2004) 

23. Girgensohn, A.: End-User Modifiability in Knowledge-Based Design Environments, Ph.D. 
Dissertation, University of Colorado at Boulder (1992) 

24. Illich, I.: Deschooling Society. Harper and Row, New York (1971) 
25. Kittur, A., Suh, B., Chi, E.H.: Can You Ever Trust a Wiki? Impacting Perceived Trustwor-

thiness in Wikipedia. In: Proceedings of CSCW 2008 (2008) 
26. Klann, M., Paterno, F., Wulf, V.: Future Perspectives in End-User Development. In: Lie-

berman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 475–486. Kluwer 
Academic Publishers, Dordrecht (2006) 

27. Lanier, J.: Digital Maoism: The Hazards of the New Online Collectivism (2006), 
http://www.edge.org/3rd_culture/lanier06/lanier06_index.html 

28. Leadbeater, C., Miller, P.: The Pro-Am Revolution—How Enthusiasts Are Changing Our 
Economy and Society (2008),  
http://www.demos.co.uk/files/proamrevolutionfinal.pdf 

29. Lieberman, H., Paterno, F., Wulf, V. (eds.): End User Development. Kluwer Publishers, 
Dordrecht (2006) 

30. McLuhan, M.: Understanding Media: The Extensions of Man. MIT Press, Cambridge 
(1964) 

31. O’Reilly, T.: What Is Web 2.0—Design Patterns and Business Models for the Next Gen-
eration of Software (2006),  
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html 

32. Orr, J.: Talking About Machines—an Ethnography of a Modern Job. ILR Press/Cornell 
University Press, Ithaca, NY (1996) 



14 G. Fischer 

33. Postman, N.: Amusing Ourselves to Death—Public Discourse in the Age of Show Busi-
ness. Penguin Books, New York (1985) 

34. Raymond, E.S., Young, B.: The Cathedral and the Bazaar: Musings on Linux and Open 
Source by an Accidental Revolutionary. O’Reilly & Associates, Sebastopol (2001) 

35. Rittel, H.: Second-Generation Design Methods. In: Cross, N. (ed.) Developments in De-
sign Methodology, pp. 317–327. John Wiley & Sons, New York (1984) 

36. Rittel, H., Webber, M.M.: Planning Problems Are Wicked Problems. In: Cross, N. (ed.) 
Developments in Design Methodology, pp. 135–144. John Wiley & Sons, New York 
(1984) 

37. Rogoff, B., Matsuov, E., White, C.: Models of Teaching and Learning: Participation in a 
Community of Learners. In: Olsen, D.R., Torrance, N. (eds.) The Handbook of Education 
and Human Development—New Models of Learning, Teaching and Schooling, pp. 388–
414. Blackwell, Oxford (1998) 

38. Scharff, E.: Open Source Software, a Conceptual Framework for Collaborative Artifact 
and Knowledge Construction, Ph.D. Dissertation, University of Colorado at Boulder 
(2002) 

39. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic 
Books, New York (1983) 

40. Suchman, L.A.: Plans and Situated Actions. Cambridge University Press, Cambridge 
(1987) 

41. Surowiecki, J.: The Wisdom of Crowds. Anchor Books, New York (2005) 
42. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything, 

Portofolio. Penguin Group, New York (2006) 
43. von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005) 
44. Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation for 

Design. Ablex Publishing Corporation, Norwood (1986) 
45. Ye, Y., Fischer, G.: Designing for Participation in Socio-Technical Software Systems. In: 

Stephanidis, C. (ed.) Proceedings of 4th International Conference on Universal Access in 
Human-Computer Interaction, Beijing, China, pp. 312–321. Springer, Heidelberg (2007) 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 15–28, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

What Is End-User Software Engineering and  
Why Does It Matter? 

Margaret Burnett 

Oregon State University, School of Electrical Engineering and Computer Science,  
Corvallis, Oregon, 97331 USA 

burnett@eecs.oregonstate.edu 

Abstract. End-user programming has become ubiquitous, so much so that there 
are more end-user programmers today than there are professional programmers.  
End-user programming empowers—but to do what?  Make really bad decisions 
based on really bad programs? Enter software engineering’s focus on quality.  
Considering software quality is necessary, because there is ample evidence that 
the programs end users create are filled with expensive errors.  In this paper, I 
consider what happens when we add to end-user programming environments 
considerations of software quality, going beyond the “create a program” aspect 
of end-user programming.  I describe a philosophy to software engineering for 
end users, and then survey several projects in this area.  A basic premise is  
that end-user software engineering can only succeed to the extent that it  
respects the fact that the user probably has little expertise or even interest in 
software engineering. 

Keywords: End-user software engineering, End-user programming, End-user 
development. 

1   Introduction  

It all started with end-user programming.   
End-user programming enables end users to create their own programs.  Research-

ers and developers have been working on empowering end users to do this for a num-
ber of years, and they have succeeded: today, end users create numerous programs.   

The “programming environments” used by end users include spreadsheet systems, 
web authoring tools, and graphical languages for creating educational simulations 
(e.g., [6, 16, 18, 22, 23]).  Using these systems, end users create programs in forms 
such as spreadsheets, dynamic web applications, and educational simulations.  Some 
ways in which end users create these programs include writing and editing formulas, 
dragging and dropping objects onto a logical workspace, connecting objects in a dia-
gram, or demonstrating intended logic to the system.   

In fact, research based on U.S. Bureau of Census and Bureau of Labor data shows 
that there are about 3 million professional programmers in the United States—but 
over 12 million more people who say they do programming at work, and over 50 
million who use spreadsheets and databases [28].  Fig. 1 shows the breakouts. Thus, 



16 M. Burnett 

the number of end-user programmers in the U.S. alone probably falls somewhere 
between 12 million and 50 million people—several times the number of professional 
programmers. 

Clearly then, end-user programming empowers—it has already empowered mil-
lions of end users to create their own software.   

Unfortunately, there is a down side: the software they are creating with this new 
power is riddled with errors.  In fact, evidence abounds of the pervasiveness of errors 
in software end users create.  (See, for example, the EUSPRIG web site’s 89 news 
stories recounting spreadsheet errors [9].) These errors can have significant impact.  
For example, one school faced a £30,000 shortfall because values in a budget spread-
sheet had not been added up correctly [9 story # 67].  TransAlta Corporation took a 
$24 million charge to earnings after a bidding error caused it to buy more U.S. power 
transmission hedging contracts than it bargained for, at higher prices than it wanted to 
pay, due to a spreadsheet error [10]. 

Even when the errors in end-user-created software are non-catastrophic, however, 
their effects can matter.  Web applications created by small-business owners to pro-
mote their businesses do just the opposite if they contain bad links or pages that dis-
play incorrectly, resulting in loss of revenue and credibility.  Software resources 
linked by end users to monitor non-safety-critical medical conditions can cause un-
necessary pain or discomfort for users who rely on them.  Such problems are ubiqui-
tous in two particularly rapidly growing types of software end users develop: open 
resource coalitions and dynamic web applications.   

Thus, the problem with end-user programming is that end users’ programs are all 
too often turning out to be of too low quality for the purposes for which they were 
created. 

1.1   A New Area: End-User Software Engineering  

A new research area is emerging to address this problem.  The area is known as end-
user software engineering [7], and it aims to address the problem of end users’ soft-
ware quality by looking beyond the “create” part of software development, which is 
already well supported, to the rest of the software lifecycle.  Thus, end-user pro-
gramming is the “create” part of end-user software development, and end-user soft-
ware engineering adds consideration of software quality issues to both the “create” 
and the “beyond create” parts of software development.   

More formally, Ko et al. define end-user software engineering as “end-user pro-
gramming involving systematic and disciplined activities that address software quality 
issues (such as reliability, efficiency, usability, etc.).  In essence, end-user program-
ming focuses mainly on how to allow end users to create their own programs, and 
end-user software engineering considers how to support the entire software lifecycle 
and its attendant issues” [14].  

End-user software engineering is similar to the notion of end-user development 
[17], but not quite the same.  According to Wikipedia, “end-user development (EUD) 
is a research topic within the field of computer science, describing activities or tech-
niques that allow people who are not professional developers to create or modify a 
software artifact.  A typical example of EUD is programming to extend and adapt an 
 



 What Is End-User Software Engineering and Why Does It Matter? 17 

 
Fig. 1. U.S. users in 2006 and those who do forms of programming [28] 

existing package (e.g.  an office suite)” [30].  Thus, end-user software engineering is 
end-user development with the additional notion of the software’s quality.  

In my view, end-user software engineering (done well) is inherently different from 
traditional software engineering, because simply mimicking traditional approaches 
would not be likely to produce successful results.  One reason is that end users often 
have very different training and background than professional programmers.  Even 
more important, end users also face different motivations and work constraints than 
professional programmers.  They are not likely to know about quality control mecha-
nisms, formal development processes, modeling diagrams, or test adequacy criteria, 
and are not likely to invest time learning about such things.  This is because in most 
cases, end users are not striving to create the best software they can; rather, they have 
their “real goals” to achieve: such as accounting, teaching, managing safety, under-
standing financial data, or authoring new media-based experiences.   

The strategy my collaborators and I have used in our end-user software engineering 
research to support these users in pursuing their real goals has been to gently alert 
them to dependability problems, to assist them with their explorations into those prob-
lems to whatever extent they choose to pursue such explorations, and to work within 
the contexts with which they are familiar.  This strategy represents a paradigm shift 
from traditional software engineering and end-user programming research, because it 
marries dependability with end-user software development.  Thus, our end-user 



18 M. Burnett 

software engineering projects combine in equal measures software engineering foun-
dations with human-computer interaction foundations. 

1.2   Organization of This Paper  

I’ll illustrate the end-user software engineering area with examples of projects that 
have been conducted by members of the EUSES Consortium (http://eusesconsortium. 
org), an NSF-funded collaboration of researchers working in the end-user software 
engineering area.  The examples are: 

• WYSIWYT and Surprise-Explain-Reward: WYSIWYT is a methodology for 
supporting systematic testing by end users.  Surprise-Explain-Reward is a strat-
egy for enticing end users to engage in software engineering practices such as the 
testing supported by WYSIWYT.  Since WYSIWYT’s success depends on Sur-
prise-Explain-Reward, I’ll discuss the two of these works together. 

• Debugging Machine-Learned Programs: In recent times, a new kind of  
“programmer” has entered the mix—machines.  These machines, through machine-
learning algorithms, automatically create programs on the user’s computer, deriv-
ing these programs from the user’s interaction habits and data history.  I’ll discuss a 
debugging approach and early results for one type of program in this class.   

• Gender in End-User Software Engineering: If end-user software engineering is to 
properly blend HCI-based people-oriented foundations with software engineering 
foundations, then it must attend to both 50%s of the people who are end users—
both the males and the females.  I’ll discuss emerging information about gender 
differences’ implications for the design of end-user software engineering tools.   

2   WYSIWYT Testing and Surprise-Explain-Reward  

WYSIWYT (What You See Is What You Test) [26] supports systematic testing by 
end-user programmers.  It has mostly been implemented in the spreadsheet paradigm, 
so I’ll present it here from that perspective.  Its motivation is the following: empirical 
studies have shown that users often assume their spreadsheets are correct, but even if 
they try to consider whether there are errors, they do so by looking at the immediate 
value recalculations they see when they enter or change formulas.  Empirical work 
has shown that this “one test only” feedback is tied to overconfidence about the cor-
rectness of their spreadsheets.   

WYSIWYT helps to address this problem.  With WYSIWYT, as a user incremen-
tally develops a spreadsheet, he or she can also test that spreadsheet.  As the user 
changes cell formulas and values, the underlying evaluation engine automatically 
evaluates cells, and the user (validates) checks off resulting values that are correct.  
Behind the scenes, these validations are used to measure the quality of testing in terms 
of a dataflow adequacy criterion, which tracks coverage of interactions between cells 
caused by cell references.   

For example, in Fig. 2, the user has noticed that Smith’s letter grade (row 4) is  
correct, so the user checked it off.  The Average row’s values under HWAVG,  
MIDTERM, and FINAL are also correct, so the user checks them off too. As a results, 
the cell borders turn closer to blue on a red-blue continuum, in which red means  



 What Is End-User Software Engineering and Why Does It Matter? 19 

untested, blue means tested, and colors between red and blue (shades of purple) mean 
partially tested. 

But, pause to reflect:  Why should a user whose interests are simply to get their 
spreadsheet results as efficiently as possible choose to spend extra time learning about 
these unusual new checkmarks, let alone think carefully about values and whether 
they should be checked off?  Let’s further assume that these users have never seen 
software engineering devices before.  To succeed at enticing the user to use these 
devices, we require a strategy that will both motivate these users to make use of soft-
ware engineering devices and provide the just-in-time support they need to effectively 
follow up on this interest.   

 

Fig. 2. At any time, the user can test by checking off a value that turned out to be correct, and 
this test causes borders of the cells involved to become more blue, reflecting coverage of the 
tests so far   

We call our strategy for enticing the user down this path Surprise-Explain-Reward 
[31].  The strategy attempts to first arouse users’ curiosity about the software engi-
neering devices through surprise, and to then encourage them, through explanations 
and rewards, to follow through with appropriate actions.  This strategy has its roots in 
three areas of research: (1) research about curiosity (psychology) [20], (2) Black-
well’s model of attention investment [4] (psychology/HCI), and (3) minimalist learn-
ing (educational theory, HCI) [8].   

Research into curiosity indicates that surprising by violating a user’s assumptions 
can trigger a search for an explanation.  The violation of assumptions indicates to the 
user the presence of something they do not understand.  According to the information-
gap perspective [20], a revealed gap in the user’s knowledge focuses the user’s atten-
tion on the gap and leads to curiosity, which motivates the user to close the gap by 
searching for an explanation. 

This is why the first component of our surprise-explain-reward strategy is needed: 
to arouse users’ curiosity enough, through surprise, to cause them to search for expla-
nations.  Blackwell’s model of attention investment [4] considers the costs, benefits, 
and risks users weigh in deciding how to complete a task.  For example, if a user’s 
goal is to forecast a budget using a spreadsheet, then exploring an unknown feature 
has perceived costs, perceived benefits, and a perceived risk — such as that using the 



20 M. Burnett 

new feature will waste time or, worse, leave the spreadsheet in a state from which it is 
difficult (and thus incurs more costs) to recover.  The model of attention investment 
implies that the second (explanation) component of the surprise-explain-reward strat-
egy must provide motivation by promising specific rewards (benefits).  The third 
component must then follow through with at least the rewards that were promised.   

For example, we instantiate the surprise-explain-reward strategy with the red bor-
ders and the checkboxes in each cell, both of which are unusual for spreadsheets.  
These surprises (information gaps) are non-intrusive: the user is not forced to attend 
to them if they view other matters to be more worthy of their time.  However, if they 
become curious about these features, they can ask them to explain themselves at a 
very low cost, simply by hovering over them with their mouse.  Thus, the surprise 
component delivers to the explain component. 

The explain component is also very low in cost.  In its simplest form, it explains 
the object in a tool tip.  For example, if the user hovers over a checkbox that has not 
yet been checked off, the tool tip says (in one variant of our prototype): “If this value 
is right, √ it; if it’s wrong, X it.  This testing helps you find errors.” Thus, it explains 
the semantics very briefly, gives just enough information for the user to succeed at 
going down this path, and gives a hint at the reward. 

As the above tool tip has pointed out, it is also possible for the user to “X out” a 
value that is incorrect.  For example, in Fig. 3, the user has noticed two incorrect 
values.  The system reasons about the backward slice (contributing cells and their 
values), taking correct values also into account, and highlights the cells in the data-
flow path deemed most likely to contain the formula error.  In the figure, two cells 
were X’d out, and those same two are highlighted, but one is highlighted darker than 
the other, because it was both identified as having a wrong value and also contributed 
to the other one that had the wrong value. 

The main reward is finding errors through checking values off and X’ing them out 
to narrow down the most likely locations of formula errors, but a secondary reward is 
 

 

Fig. 3. If the user also notices that a value is incorrect, the user can X it out, and this causes the 
fault localization algorithm to suggest which cell formulas are most likely to contain the error 



 What Is End-User Software Engineering and Why Does It Matter? 21 

a “well tested” (high coverage) spreadsheet, which at least shows evidence of having 
fairly thoroughly looked for errors.  To help achieve testing coverage, question marks 
point out where more decisions about values will make progress (cause more cover-
age under the hood, cause more color changes on the surface), and the progress bar at 
the top shows overall coverage/testedness so far.  Our empirical work has shown that 
these devices are quite motivating, and further more lead to more effectiveness [27]. 

3   Debugging Machine-Learned Programs  

But what if the program that has gone wrong was not written by a human at all? How 
do you debug a program that was written by a machine instead of a person?  

This is the problem faced by users of a new sort of program, namely, one generated 
by a machine learning system that customizes itself to the user.  For example, intelli-
gent user interfaces, recommender systems, and categorizers of email use machine 
learning to adapt their behavior to users’ preferences.  This learned set of behaviors is 
a program.  These learned programs do not come into existence until the learning 
environment has left the hands of the machine-learning specialist: they are learned on 
the user’s computer.  Thus, if these programs make a mistake, the only one present to 
fix them is the end user.  These attempts to “fix” the system can be viewed as debug-
ging—the user is aware of faulty system behavior, and wants to change the system’s 
logic so as to fix the flawed behavior.   

Sometimes correctness is not critical; “good enough” will suffice.  For example, a 
spam filter that successfully collects 90% of dangerous, virus-infested spam leaves 
the user in a far better situation than having no spam filter at all.  However, as the 
applications of machine learning expand, these programs are becoming more critical.  
For example, recommender systems that recommend substandard suppliers or incor-
rect parts, language translators that translate incorrectly, decision support systems that 
lead the user to overlook important factors, and even email classifiers that misfile 
important messages could cause significant losses to their users and raise significant 
liability issues for businesses.   

My collaborators and I have begun to investigate how to support end-user debug-
ging of machine-learned programs [15].  Inspired by the success of the Whyline’s 
support of end-user debugging [13, 21], we designed a method to allow end users to 
ask Why questions of machine-learned software.  Our approach is novel in the follow-
ing ways: (1) it supports end users asking questions of machine-learned programs, 
and (2) the answers aim at providing suggestions for these end users to debug the 
learned programs. 

We have built a prototype of our approach, so that we could investigate both barri-
ers faced by end users when debugging machine-learned programs, and challenges to 
machine learning algorithms themselves.  Our prototype was an e-mail application 
with several predefined folders.  The system utilized a machine-learned program to 
predict which folder each message in the inbox should be filed to, thus allowing the 
user to easily archive messages.  Our prototype answers the Why questions shown in 
Table 1. 

 



22 M. Burnett 

Table 1. The Why questions [15] 

Why will this message be filed to <Personal>? 
Why won’t this message be filed to <Bankruptcy>? 
Why did this message turn red? 
Why wasn’t this message affected by my recent changes?
Why did so many messages turn red? 
Why is this email undecided? 
Why does <banking> matter to the <Bankruptcy> folder?
Why aren’t all important words shown? 
Why can’t I make this message go to <Systems>? 

For example, the answer to Table 1’s second question (with dynamically-replaced 
text in <brackets>) is: 

The message will be filed to <Personal> instead of <Bankruptcy> because 
<Personal> rates more words in this message near Required than  
<Bankruptcy> does, and it rates more words that aren’t present in this message 
near Forbidden.  (Usage instructions followed this text.) 
In addition to the textual answers, three questions are also answered visually.  

These are shown in Table 2.  The bars indicate the weight of each word for predic-
tions to a given folder; the closer to Required/Forbidden, the more/less likely mes-
sages containing this word will be classified to this folder.   

Fig. 4 shows a thumbnail of the entire prototype.  The top half is not readable at 
this size, but it is simply a traditional email program.  The bottom middle panel pro-
vides visual answers, shown at a readable size in Table 2.   

Using this prototype, we conducted a formative empirical study to unearth barriers 
faced by the end user in debugging in this fashion, as well as challenges faced by 
machine-learning systems that generate the programs that ultimately will be debugged 
 

Table 2. Visual explanations for three Why questions [15] 

Why does <word> matter to 
<folder>? 

Why will this message 
be filed to <folder>? 

Why won’t this message 
be filed to <folder>? 

 

 

 
 



 What Is End-User Software Engineering and Why Does It Matter? 23 

 

Fig. 4. A thumbnail view of the prototype [15] 

by end users [15].  One of our primary results was that end users faced great difficulty 
in determining where would be the effective places to correct errors—much more so 
than in than in how to do so.  The sheer number of these instances strongly suggests 
the value of providing end users with information about where to give feedback to the 
machine-learned program in order to debug effectively.   

4   Gender in End-User Software Engineering  

Another important result in the Kulesza et al. study was that gender differences were 
present in the number of barriers encountered, the sequence of barriers, and usage of 
debugging features.  This is one of many studies conducted by EUSES Consortium 
collaborators in recent years that show gender differences in how male and female 
end-user programmers can best be supported in developing software effectively. 

For example, evidence has emerged indicating gender differences in programming 
environment appeal, playful tinkering with end-user software engineering features, 
attitudes toward and usage of end-user software engineering features, and end-user 
debugging strategies [1, 2, 5, 12, 19, 24, 25, 29].  In essence, in these studies females 
have been shown to both use different features and to use features differently than 
males.  Even more critically, the features most conducive to females’ success are 
different from the features most conducive to males’ success—and are the features 
least supported in end-user programming environments.  This is the opposite of the 
situation for features conducive to males’ success [29]. 

To begin to address this problem, we proposed two theory-based features that 
aimed to improve female performance without harming male performance [3].  We 
evolved these features over three years through the use of formative investigations, 
drawing from education theory, self-efficacy theory, information processing theory, 
metacognition, and curiosity theory. 



24 M. Burnett 

Fig. 5. Clicking on the checkbox turns it into four choices whose tool tips say “it’s wrong,” 
“seems wrong maybe,” “seems right maybe,” “it’s right.” [3] 

 
The first feature was to add “maybe” nuances to 

the checkmarks and X-marks of the WYSIWYT 
approach (Fig. 5) [3].  The empirical work leading 
to this change suggested that the original “it’s 
right” and “it’s wrong” checkmark and X-mark 
might seem too assertive a decision to make for 
low self-efficacy users, and we therefore added 
“seems right maybe” and “seems wrong maybe” 
checkmark and X-mark options.  The change was 
intended to communicate the idea that the user did 
not need to be confident about a testing decision in 
order to be “qualified” to make judgments.   

The second change was a more extensive set of 
explanations, to explain not only concepts but also 
to help close Norman’s “gulf of evaluation” by 
enabling users to better self-judge their problem-
solving approaches.  We proposed it in [3] and 
then evolved that proposal, ultimately providing 
the strategy explanations of Fig. 6.  Note that these 
are explanations of testing and debugging strategy, 
not explanations of software features per se. 

The strategy explanations are provided as both 
video snippets and hypertext (Fig. 6).  In each 
video snippet, the female debugger works on a 
debugging problem and a male debugger, referring 
to the spreadsheet, helps by giving strategy ideas.  
Each snippet ends with a successful outcome.  The 
video medium was used because theory and re-
search suggest that an individual with low self-
efficacy can increase self-efficacy by observing a 
person similar to oneself struggle and ultimately succeed at the task.  The hypertext 
version had exactly the same strategy information, with the obvious exception of the 
animation of the spreadsheet being fixed and the talking heads.  We decided on hyper-
text because it might seem less time-consuming and therefore more attractive to users 
from an attention investment perspective [4], and because some people prefer to learn 
from text rather than pictorial content.  Recent improvements to the video explana-
tions include shortening the explanations, revising the wording to sound more like a 
natural conversation, and adding an explicit lead-in question to immediately establish 
the purpose of each explanation. 

 

                               
 

      

Fig. 6. (Top): 1-minute video 
snippets. (Bottom): Hypertext 
version [11]. 



 What Is End-User Software Engineering and Why Does It Matter? 25 

We evaluated the approach in a controlled laboratory study, in which a Control 
group used the original WYSIWYT system as described in Section 2 and a Treatment 
group used the system with the two changes just described in this system [11].  The 
Treatment females did not fix more bugs than Control females, but we would not 
expect them to: Treatment females had both lower self-efficacy than Control females 
and more things to take their time than Control females did.  However, taking the self-
efficacy and time factors into account reveals that the new features helped to close the 
gender gap in numerous ways. 

First we found that our feature changes reduced the debugging feature usage gap 
between males and females.  When we compared the males and females in the Treat-
ment group to their counterparts in the Control group, the feature changes were tied to 
greater interest among the Treatment group.  Compared to females in the Control 
group, Treatment females made more use of debugging features such as checkmarks 
and X-marks, and had stronger ties between debugging feature usage and strategic 
testing behaviors. 

 

Fig. 7. Tinkering with X-marks (left) and √-marks (right), in marks per debugging minute.  
Note the gender gaps between the Control females’ and males’ medians.  These gaps disappear 
in the Treatment group [11].   

Second, we considered playful experimentation with the checkmarks and X-marks 
(trying them out and then removing them) as a sign of interest.  Past studies reported 
that females were unwilling to approach these features, but that if they did choose to 
tinker, their effectiveness improved [1, 2].  Treatment females tinkered with the fea-
tures significantly more than Control females, and this pattern held for both check-
marks and X-marks.  Fig. 7 illustrates these differences.   

Even more important than debugging feature usage per se was the fact that the fea-
ture usage was helpful.  The total  (playful plus lasting) number of checkmarks used 
per debugging minute, when accounting for pre-self-efficacy, predicted the maximum 
percent testedness per debugging minute achieved by females in both the Control 
group and in the Treatment group.  Further, for all participants, maximum percent 
testedness, accounting for pre-self-efficacy, was a significant factor in the number of 
bugs fixed. 

Finally, Treatment females’ post-session verbalizations showed that their attitudes 
toward the software environment were more positive than Control females’, and 



26 M. Burnett 

Treatment females’ confidence levels were roughly appropriate indicators of their 
actual ability levels, whereas Control females’ confidence levels were not.   

Taken together, the feature usage results show marked differences between Treat-
ment females versus Control females, all of which were beneficial to the Treatment 
females.  In contrast, there were very few significant differences between the male 
groups.  Most important, none of the changes benefiting the females showed adverse 
effects on the males. 

These results serve to reconfirm previous studies’ reports of the existence of a gen-
der gap related to the software environments themselves in the realm of end-user 
programming.  However, the primary contribution is that they show, for the first time, 
that it is possible to design features in these environments that lower barriers to fe-
male effectiveness and help to close the gender gap.   

5   Conclusion  

End-user software engineering matters when software quality matters.  End-user 
software engineering takes end-user programming beyond the “create” stage, expand-
ing to consider other elements of the software lifecycle.  It matters because sometimes 
end users’ software creations have flaws, and it empowers the end users to do some-
thing about these flaws.   

End-user software engineering’s success rests on respecting end users’ real goals 
and work habits.  As the work in this paper illustrates, we do not advocate trying to 
transform end users into engineers, nor do we propose to mimic the traditional engi-
neering approaches of segregated support for each element of the software life cycle, 
or even to ask the user to think in such terms.  Instead, we advocate promoting sys-
tematic ways an end-user programmer can guard against and solve software quality 
problems through mechanisms meant especially for end-user programmers. 

References 

1. Beckwith, L., Burnett, M., Grigoreanu, V., Wiedenbeck, S.: Gender HCI: What About the 
Software? Computer, 83–87 (2006) 

2. Beckwith, L., Inman, D., Rector, K., Burnett, M.: On to the Real World: Gender and Self-
Efficacy in Excel. In: IEEE Symposium on Visual Languages and Human-Centric Com-
puting, pp. 119–126. IEEE, Los Alamitos (2007) 

3. Beckwith, L., Sorte, S., Burnett, M., Wiedenbeck, S., Chintakovid, T., Cook, C.: Design-
ing Features for Both Genders in End-User Programming Environments. In: IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, pp. 153–160. IEEE, Los 
Alamitos (2005) 

4. Blackwell, A.: First Steps in Programming: A Rationale for Attention Investment Models. 
In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 2–10. 
IEEE, Los Alamitos (2002) 

5. Brewer, J., Bassoli, A.: Reflections of Gender, Reflections on Gender: Designing Ubiqui-
tous Computing Technologies. In: Gender & Interaction: Real and Virtual Women in a 
Male World, Workshop at AVI, pp. 9–12 (2006) 



 What Is End-User Software Engineering and Why Does It Matter? 27 

6. Burnett, M., Chekka, S., Pandey, R.: FAR: An End-User Language to Support Cottage E-
Services. In: Human-Centric Computing Languages and Environments, pp. 195–202. 
IEEE, Los Alamitos (2001) 

7. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Communications 
of the ACM 47(9), 53–58 (2004) 

8. Carroll, J., Rosson, M.: Paradox of the Active User. In: Carroll, J. (ed.) Interfacing 
Thought: Cognitive Aspects of Human-Computer Interaction, pp. 80–111. MIT Press, 
Cambridge (1987) 

9. EUSPRIG Spreadsheet Mistakes News Stories, 
http://www.eusprig.org/stories.htm 

10. French, C.: TransAlta Says Clerical Snafu Costs It $24 Million. Globe and Mail (June 3, 
2003) 

11. Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, K., Burnett, M., Wiedenbeck, S.: 
Can Feature Design Reduce the Gender Gap in End-User Software Development Envi-
ronments? In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 
149–156. IEEE, Los Alamitos (2008) 

12. Kelleher, C., Pausch, R., Kiesler, S.: Storytelling Alice Motivates Middle School Girls to 
Learn Computer Programming. In: ACM Conference on Human Factors in Computing 
Systems, pp. 1455–1464. ACM, New York (2007) 

13. Ko, A., Myers, B.: Designing the Whyline: A Debugging Interface for Asking Questions 
about Program Behavior. In: ACM Conference on Human Factors in Computing Systems, 
pp. 151–158. ACM, New York (2004) 

14. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Lawrance, J., 
Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Scaffidi, C., Shaw, M., Wieden-
beck, S.: The State of the Art in End-User Software Engineering (submitted, 2008) 

15. Kulesza, T., Wong, W., Stumpf, S., Perona, S., White, R., Burnett, M., Oberst, I., Ko, A.: 
Fixing the Program My Computer Learned: Barriers for End Users, Challenges for the 
Machine. In: ACM Conference on Intelligent User Interfaces. ACM, New York (to appear, 
2009) 

16. Lieberman, H. (ed.): Your Wish Is My Command: Programming By Example. Morgan 
Kaufmann Publishers, San Francisco (2001) 

17. Lieberman, H., Paterno, F., Wulf, V. (eds.): End-User Development. Springer, Heidelberg 
(2006) 

18. Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., Kandogan, E.: Koala: Capture, Share, 
Automate, Personalize Business Processes on the Web. In: ACM Conference on Human 
Factors in Computing Systems, pp. 943–946. ACM, New York (2007) 

19. Lorigo, L., Pan, B., Hembrooke, H., Joachims, T., Granka, L., Gay, G.: The Influence of 
Task and Gender on Search and Evaluation Behavior Using Google. Information Process-
ing and Management, 1123–1131 (2006) 

20. Lowenstein, G.: The psychology of curiosity. J. Psychological Bulletin 116(1), 75–98 
(1994) 

21. Myers, B., Weitzman, D., Ko, A., Chau, D.H.: Answering Why and Why Not Questions in 
User Interfaces. In: ACM Conference on Human Factors in Computing Systems, pp. 397–
406. ACM, New York (2006) 

22. Pane, J., Myers, B., Miller, L.: Using HCI Techniques to Design a More Usable Program-
ming System. In: Proc. IEEE Human-Centric Computing Languages and Environments, 
pp. 198–206. IEEE, Los Alamitos (2002) 



28 M. Burnett 

23. Repenning, A., Ioannidou, A.: AgentCubes: Raising the Ceiling of End-User Development 
in Education through Incremental 3D. In: IEEE Symposium on Visual Languages and 
Human-Centric Computing, pp. 27–31. IEEE, Los Alamitos (2006) 

24. Rode, J.A., Toye, E.F., Blackwell, A.F.: The Fuzzy Felt Ethnography - Understanding the 
Programming Patterns of Domestic Appliances. Personal and Ubiquitous Computing 8, 
161–176 (2004) 

25. Rosson, M., Sinha, H., Bhattacharya, M., Zhao, D.: Design Planning in End-User Web 
Development. In: IEEE Symposium on Visual Languages and Human-Centric Computing, 
pp. 189–196. IEEE, Los Alamitos (2007) 

26. Rothermel, G., Burnett, M., Li, L., DuPuis, C., Sheretov, A.: A Methodology for Testing 
Spreadsheets. ACM Transactions on Software Engineering 10(1) (January 2001) 

27. Ruthruff, J., Phalgune, A., Beckwith, L., Burnett, M., Cook, C.: Rewarding Good Behav-
ior: End-User Debugging and Rewards. In: IEEE Symposium on Visual Languages and 
Human-Centric Computing, pp. 115–122. IEEE, Los Alamitos (2004) 

28. Scaffidi, C., Shaw, M., Myers, B.: Estimating the Numbers of End Users and End User 
Programmers. In: IEEE Symp. Visual Lang. Human-Centric Computing, pp. 207–214. 
IEEE, Los Alamitos (2005) 

29. Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett, M., Wiedenbeck, S., Naraya-
nan, V., Bucht, K., Drummond, R., Fern, X.: Testing vs. Code Inspection vs.. What Else? 
Male and Female End Users’ Debugging Strategies. In: ACM Conference on Human Fac-
tors in Computing Systems, pp. 617–626. ACM, New York (2008) 

30. Wikipedia, End-User Development, 
http://en.wikipedia.org/wiki/End_user_development 

31. Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham, M., 
Rothermel, G.: Harnessing Curiosity to Increase Correctness in End-User Programming. 
In: ACM Conference on Human Factors in Computing Systems. ACM, New York (2003) 



Part II 

Refereed Papers 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 31–49, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Mutual Development: A Case Study in  
Customer-Initiated Software Product Development  

Renate Andersen and Anders I. Mørch 

InterMedia, University of Oslo,  
P.O. Box 1161 Blindern, N-0318 Oslo, Norway 

renate.andersen@ementor.no, anders.morch@intermedia.uio.no 

Abstract. The paper is a case study of customer-initiated software product de-
velopment. We have observed and participated in system development activities 
in a commercial software house (company) over a period of two years. The 
company produces project-planning tools for the oil and gas industry, and relies 
on interaction with customers for further development of its products. Our main 
research question is how customers and professional developers engage in mu-
tual development mediated by shared software tools (products and support sys-
tems). We have used interviews with developers and customers as our main 
source of data, and identified the activities (from use to development) where 
customers have contributed to development. We analyze our findings in terms 
of co-configuration, meta-design and modding in order to name and compare 
the various stages of development (adaptation, generalization, improvement re-
quest, specialization, and tailoring).  

Keywords: customer-initiated product development, software development, 
case study, empirical analysis, theoretical perspectives, mutual development. 

1   Introduction 

The goal of the research reported here is to identify areas where end-user develop-
ment (EUD) and professional software development interact. We have observed and 
participated in development activities in a commercial software house (referred to as 
company in the remainder of the paper) over a period of two years. We propose a 
model of the activities, which we refer to as mutual development. The model consists 
of the 5 sub-processes, which connects EUD and professional development. 

1.1   The Case 

The company is engaged in commercial software development in the area of project 
planning and management and provides consultancy services in using its tools. At 
present, the company employs 25-30 people, but they intend to grow and is concur-
rently expanding their staff and searching for new markets. The main market has been 
the Nordic oil and gas industry. To expand into new markets, particularly building 
and construction, the company has started to modify and improve its knowledge man-
agement practices regarding customer relations. As researchers, we were invited by 



32 R. Andersen and A.I. Mørch 

the company to give advice for how to improve knowledge management practices 
with customers. 

The company is known for their customer initiated product development approach, 
i.e. close interaction with customers to develop tailor-made products [1][31]. Custom-
ers are encouraged to report problems, innovative use, and local development to the 
company. This has been stimulated through long-term relationships (maintenance 
contracts) and user forums. Each year the company hosts a large showcase where 
customers are invited, and developers provide communication and information shar-
ing tools for customer interaction. This started with the telephone, then supplemented 
by mail, later extending to a Helpdesk interface, then a Customer Relationship  
Management (CRM) system, and most recently a Web 2.0 prototype created by the 
research team [29].  

Despite their small size, the company is recognized as a major player in the busi-
ness of project planning tools. They have several hundred customers and they have 
long-term commitments with many of them. One of their recent products is an add-on 
to Microsoft Project.  

Our main research question and objective is how there is mutual development be-
tween customers, professional developers mediated by software products and ICT 
support systems in the company we studied. By mutual development we mean that 
both professional developers and end users contribute to development as active par-
ticipants in both design and use. We identify the range of end-user development ac-
tivities (from use to design) taking place in the interaction between the company’s 
developers and some of their customers.  

We have identified five sub-processes (adaptation, generalization, improvement 
requests, specialization, and tailoring) by pinpointing what developers and customers 
are doing and where their activities meet and overlap. We base our analysis on inter-
views with developers, consultants, and customers, and on data from a video-recorded 
workshop. The findings are compared with previous research in EUD and analyzed in 
terms of co-configuration [7][8], meta-design [10][12] and modding [15][16]. The 
goal is to identify the interdependencies of EUD and professional development and to 
construct a model for their mutual development. 

The rest of the paper is organized as follows. It starts with an overview of EUD. 
Next, we present a survey of research in the intersection of EUD and software devel-
opment. Then we present three theoretical perspectives on EUD. We analyze our 
findings by comparing with the three perspectives. At the end open issues for further 
research is suggested. 

2   End-User Development 

End-user development is an umbrella term for research and development in end-user 
tools for application development. This originated with research that dealt with tech-
nological and organizational issues of an emerging field, such as end-user program-
ming in spreadsheets and tailorable systems [22]. Most recently, web application 
development has introduced a new line of R&D that shares many similarities with 
EUD (e.g., mashups, Yahoo pipes). However, EUD was perhaps first established as a 
research field with its own agenda in the European EUD-Net project (2002-3), which 



 Mutual Development 33 

defines EUD as “a set of methods, activities, techniques, and tools that allow people 
who are non-professional software developers, at some point to create or modify a 
software artifact” [21]. The different approaches to EUD vary with respect to how 
they emphasize methods, activities, techniques, and tools, and whether they focus on 
creation or modification of software artifacts. Furthermore, what a software artifact 
means also varies among researchers. Software tools, source code, design diagrams, 
application units, and application development environments have been mentioned. 
As an example, end-user tailoring is about methods, activities, techniques, and tools 
for adaptation and further development of existing software applications based on 
direct activation of tailoring tools from the applications’ user interface [25] [39].   

EUD is multidisciplinary and its rationale (the “why” of EUD) has multiple di-
mensions: human-computer interaction (HCI), software engineering, and organiza-
tional use. From a human-computer interaction perspective, EUD is about leveraging 
the deployment of easy-to-use ICT and turning them into easy-to-further-develop 
systems [21][28][40]. From a software engineering perspective, EUD is supportive of 
the trend of producing generic applications [2][24]. By “generic” is meant multifunc-
tional, domain independent, or application generators, i.e. “over designed” functional-
ity that can be configured to different user needs [26], or domain independent tools 
like groupware and basic drawing functionality, or “under designed” environments 
that support users in creating new applications [12]. For example, a groupware system 
can provide different users with different access rights to shared objects [33]. From 
the perspective of organizational use, the rationale for EUD is associated with the 
user diversity found in organizations employing advanced ICT. Users have different 
cultural, educational, training, and employment backgrounds. They are novice and 
experienced computer users (e.g. super user), ranging from the young to the mature, 
and they have many different abilities and disabilities [3][23][26].  

2.1   Integrated EUD 

EUD interrelates with software development in multiple ways, but (to the best of our 
knowledge) there are few studies that have examined EUD in terms of boundary 
crossing of two types of organizations (developer and customers). We survey the 
related work below EUD. We also include work that is not commonly associated with 
EUD in the survey. 

Stevens and Wulf [33] presented a case study of inter-organizational cooperation 
from the steel industry in Germany. They analyzed the relationship between two engi-
neering offices and a steel mill to identify patterns of cooperation that can serve as 
requirements for new designs. They found that there was tight coupling across organ-
izational boundaries, but also competition between the units. EUD was proposed in 
terms of a component-based framework for tailoring a groupware application at run-
time. The focus was on flexible access control for sharing material stored in electronic 
repositories among the interacting units. The new access mechanisms could be decom-
posed and integrated and the users were able to realize new access mechanisms that did 
not already exist in the groupware. By decomposing application components into sim-
pler ones and assembling the parts into new compounds (intermediate building blocks) 
and applications, users can modify existing applications and create new ones, without 
accessing the underlying program code [40]. 



34 R. Andersen and A.I. Mørch 

Eriksson and Dittrich [9] identified the reasons why tailoring should be integrated 
with software development. In a case study of a Swedish telecom provider, they found 
it was possible to provide end-user developers with the means to tailor not only indi-
vidual applications, but also the infrastructure in which applications are integrated. 
According to the authors, this is an area that might change faster than applications, 
especially in rapidly changing business contexts. To support this form of tailoring in 
the organization, they studied tailoring needs to coordinate better with software de-
velopment activities. In another study, Dittrich and Vaucouleur [4] found that cus-
tomization practices of an ERP system they studied at several sites were at odds with 
software engineering practices, resulting in a discrepancy in terms of integrated envi-
ronments for end-user development. 

In a case study in an accounting company in Norway, the activities of end user de-
velopers were followed and analyzed using Activity Theory [26]. The authors show 
how the organization successfully initiated a program to train super users [17] in con-
junction with introducing a new software application, Visma Business (VB). The 
research was formulated to address how super users engage in EUD activities in order 
to achieve an efficient use of VB, and how EUD activities were organized. In terms of 
organization, there was a certain division of labor within the community: 1) between 
the regular users and the super users, 2) between the super users and the application 
coordinator (acting as local developer), and 3) between the application coordinator 
and the professional developers. It was also interesting to find a new role for a local 
developer. This person’s responsibility was primarily to perform EUD activities at a 
general level, to work closely with some of the more experienced super users in the 
offices, and to communicate with the professional developers. This person general-
ized the results of useful EUD activities and made local solutions available through-
out the company.   

Explicit and implicit channels for communication between developers and users for 
the purpose of end user development have been proposed in a variety of contexts, 
especially in the area of CSCW. For example Mørch and Mehandjiev [27] demon-
strated that design rationale integrated with a tailor-enabled application could support 
indirect communication between developers and users and thus help end user devel-
opers to further develop their applications. Along the same lines, Stevens and 
Wiedenhöfer [34] developed a wiki-based help system for communication and infor-
mation sharing to be integrated with standalone applications. It provides online help 
to a community of users and thus enhances communication between developers and 
users with the affordances of Web 2.0. The authors claim this form of integration 
creates a more seamless transition between the use context and the resolution of a 
problem due to the familiarity users have with Wiki-based systems [34]. 

3   Concepts for Analysis  

We analyze our findings in terms of three theoretical perspectives on end-user devel-
opment in order to account for a broad array of relevant concerns, ranging from com-
puter science to application domains to organization of work: meta-design, modding, 
and co-configuration. 



 Mutual Development 35 

3.1   SER Model and Meta-design 

SER (Seeding, Evolutionary growth, Reseeding) is a process model for integrating 
end-user development with software engineering [11]. It is different from user-
centered design in HCI (e.g., prototyping) and from software engineering (e.g., speci-
fication driven methods). It has more in common with aspects of participatory design 
in that the SER model describes a sociotechnical environment for tailorable applica-
tions to be used over an extended period of time. It postulates that systems that evolve 
over a sustained time span must continually alternate between periods of unplanned 
evolutions by end users (evolutionary growth), and periods of deliberate restructuring 
and enhancement (reseeding), involving users in collaboration with designers [11].  

The SER model makes a distinction between design time and use time, which dis-
tinguishes developers’ activity from users’ activity. Integrating these two types of 
software development activities is the aim of meta-design: a framework to provide 
end users with tools that allow them to tailor and further develop professional tools in 
their own context [10][12]. Meta-designers use their creativity to develop sociotech-
nical environments in which other (less technical oriented) users can be creative in 
their own areas of expertise. Meta-design as viewed from a software engineering 
viewpoint defines flexible design spaces for end-user developers. Examples are tailor-
ing languages, application frameworks and EUD tools integrated with applications. 
This means the users interested in being active contributors should be supported in 
exploring an application’s potential for being incorporated in new activities, and 
evolving its functionally to support new needs [10]. To the extent this can be accom-
plished without end users having detailed knowledge of programming, meta-design 
becomes a powerful framework and perspective for EUD. 

The SER model has influenced the mutual development model we present below. 
In particular, we elaborate on evolutionary growth and reseeding and the dynamic 
interaction between them in the company we studied.  

3.2   Modding 

Modding is when users modify products by themselves, without the direct interven-
tion of professional developers. The term is a slang expression derived from the word 
modify that refers to the act of modifying a piece of software or hardware, originally 
conceived in the gaming industry. Modding is an alternative way of including cus-
tomers in product development processes. Modding can be seen to combine EUD and 
participatory design, in that it combines the inclusion of customers in both early and 
later stages of product development, depending on the customer’s needs. By adopting 
this activity, modding can be seen as extending the design environment approach to 
EUD [12][28][40] by making it possible for customers to promote an array of ideas 
and needs in the early stages of product development, even before a given framework 
exists.  

The outcomes of modding, called mods, range from minor alterations to very ex-
tensive variations of the original product [15][16]. An example of modding from the 
gaming industry is when hardcore players create hacks and figure out how to develop 
software add-ons to twist games’ parameters, such as the creation of a “No Jealousy” 
patch, which lets characters have more than one lover without either one getting 



36 R. Andersen and A.I. Mørch 

jealous [20]. What is even more interesting is how the original product serves as a 
platform for further modding for customers.    

Modding as an alternative approach to including customers in product development 
processes is a noteworthy concept since it engages the customer in different stages of 
the product development process. Modding is based on further development of an al-
ready existing platform. However, this must not be misunderstood. It does not mean the 
narrowing down of product development to simply be further development of already 
existing products, as is often the case with tailorable applications and evolutionary ap-
plication development [24]. On the contrary, it appears that already existing products 
may be “opened up” by end-user contributions in terms of generating new ideas for 
functionality, new features, and even new products. In many ways, it is the concrete 
(executable) applications rather than the more abstract application frameworks and 
tailoring languages that best serve as a platform for end-user development [24].   

3.3   Co-configuration 

Engeström [7] [8] adopted the term co-configuration from Victor & Boynton [35] to 
enhance the theory of expansive learning in order to address a new form of work that 
involves user participation from customers and employees in the development of 
products. Co-configuration implies both a new form of work and a new way of learn-
ing. Engeström draws on the empirical findings of a broadband telecommunications 
firm in Finland, focusing on learning as joint creation of new knowledge and new 
practices by multiple stakeholders [7]. Engeström, following Victor and Boynton 
[35], defines co-configuration as an emerging historical type of work with the follow-
ing general characteristics [7]: 

• Adaptive and adaptable customer products or services, or more typically integrated 
product-service combinations 

• A continuous relationship of mutual exchange between customers, producers, and 
the product-service combinations  

• Continuous co-configuration and customization of the product-service-customer 
relationship over lengthy time periods  

• Active customer involvement and input in the co-configuration work 
• Multiple collaborating producers that need to operate together in networks within 

or between organizations 
• Mutual learning from interactions between the parties involved in configuration 

actions.  

From this description, we can understand the term co-configuration as a type of 
work that includes active participation from customers in developing their products. 
One of the characteristics of co-configuration work is the great degree of customer 
participation required in order for it to work. For example, when developing project 
planning software to fit a user organization and its work tasks, it is important to in-
clude users as participants in the process since they are the ones who know what kind 
of work tasks the project planning tools are supposed to support. However, not all 
companies will benefit by such a strategy. For example, to what degree is the com-
pany dependent on involvement from customers? What happens if some customers do 
not see the value of being part of such co-configuration work? To what degrees do the 



 Mutual Development 37 

customers actually participate? To what degree is it reasonable to expect that custom-
ers will continue to participate over lengthy time periods?  It is probably realistic to 
assume that in today’s world of mass consumption the majority of end users will not 
want to design or contribute to further development of the products they use. We 
chose to focus on those customers who took an active part in the case we report. 

4   Method 

Our objective is to construct a model of mutual development between customers and 
professional developers as seen from a EUD perspective. The case study is designed 
to extend our own previous efforts by treating the interaction of two organizations 
(developer and customer) as the unit of analysis [26][31]. We identify the sub-
processes of the product development process studied. EUD is one component in this 
picture, but not the only one. By presenting the whole picture we wish to provide a 
comprehensive view of mutual development, which we present as different stages of 
activity, using examples and theoretical analyses to justify our claims. We used a 
qualitative approach as part of a case study. In addition, we used video and audio 
recorders to gather data. Moreover, we used open-ended interviews, focus groups and 
participant observations. 

4.1   Categorizing Data 

This section will elaborate on how the intermediate terms used to describe mutual 
development emerged as a result of analysis done while screening and analyzing data. 
The form of analysis used is ‘template analysis,’ which is the process whereby “the 
researcher produces a list of codes (a template) representing themes identified in their 
textual data [19].” This is both a top-down and bottom up process. Below, we have 
named some terms, more precisely the different stages of mutual development, repre-
senting different themes identified in the empirical findings. After identifying these 
themes, the data was analyzed with this in mind, using these themes as a template. 
King distinguishes three features in template analysis: defining codes, hierarchical 
coding and parallel coding [19]. 

Defining codes is to label a section of text with a code in order to index it as relat-
ing to a theme or issue in the data that the researcher has identified as important to his 
or her interpretation [19]. We had the research questions in mind the first time we 
went through the data, but in the second round of selecting data we categorized it 
accordingly. The categorization of “outer loop” and “inner loop” were used as “high-
level codes,” and may be connected with what King defines as hierarchical coding.  

Hierarchical coding “is codes that are arranged hierarchically with groups of simi-
lar codes clustered together to produce more general higher order codes” [19]. The 
high-level codes of “inner loop” and “outer loop” roughly clustered the data into two 
different terrains, one about customer-initiated development activity (outer) and the 
other about software engineering (inner). This was done deliberately to create an 
overview of the data. Knowing that our area of interest was mostly on the “outer 
loop” product development process, the data was analyzed again for topics within this 
domain. It was found that within the interviews there existed some sub-processes of 
outer loop product development. They were identified as Adaptation, Generalization, 



38 R. Andersen and A.I. Mørch 

Tailoring, Improvement Request and Specialization. Using these terms or codes as a 
template, the data was searched again in order to support these sub-processes with 
empirical evidence.  

Parallel coding is when the same segment of data is classified within two (or 
more) different codes at the same level [19]. In one instance, the same set of data 
excerpts was classified within the intermediate code “outer loop” and the lower order 
code Specialization, which is a stage within the inner loop product development. 
Therefore, parallel coding was used in this context. 

5   Data and Analysis 

At the end of the coding we ended up with the following five sub-processes (stages) 
of customer-initiated product development:  

• Adaptation: Adaptation is when a customer requests an improvement to an existing 
product and the company chooses to fulfill the request. It becomes an Adaptation 
just for this customer. Sometimes, the customer has to pay for this, sometimes not. 

• Generalization: Generalization occurs when a new version of an existing product is 
released and is available to more than one customer. 

• Improvement Requests: This is when customers request the company for extra 
functionality, report bugs and usability problems, and is viewed from the custom-
ers’ perspectives. 

• Specialization: Specialization is when the professional developers at the company 
create in-house builds. This is common in inner loop development processes where 
professional developers improve the products for their own internal work. This 
could potentially result in new features, but most often it entails refining the prod-
uct, reorganizing program code, and removing bugs. 

• Tailoring is about active end users who make adaptations on their own.  

We justify these stages using the data extracts and analysis below. The two first ex-
tracts define basic issues (types of process) that resurface in the other extracts and in 
the analyses. The last three extracts represent four of the five stages. 

5.1   Excerpt 1: Types of Improvement Request 

In the first excerpt, the focus is on how a developer (informant) judges the Improve-
ment Requests of the customer. This includes making a power decision as to what 
kinds of Improvement Requests to consider. The power to judge whether or not a 
customer Improvement Request should be accepted lies in the hands of the company’s 
professional developers. This excerpt does not go into detail about how exactly these 
Improvement Requests enter the company, but it does elaborate in what way the cus-
tomers ask for Improvement Requests. 

 

Informant: Often when they (the customers) want Improvement Requests they ask 
me if I can make a change (to the existing product), according to some 
needs they have. In addition they put it (the Improvement Request) into 
a list we have on the Internet. We receive a lot of Improvement Re-
quests and some of them are actually such good ideas that we want to 



 Mutual Development 39 

integrate them into our products. And there are other ideas that are 
really bad. There are also some ideas that are not so good (but they are 
doable), therefore we incorporate them if they pay for it. When doing 
this we make special libraries for that particular customer. Then this 
does not become a part of the system (the product).  

 
Improvement Requests turned out to be an important activity for communication 

with the company, requiring less technical expertise than Tailoring. Excerpt 1 is an 
example of how customers propose changes to the company’s products without doing 
any local development. Excerpt 1 shows that an Improvement Request is one of the 
prerequisite sub-processes of Adaptation. It is when a professional developer creates a 
new feature for an already existing product in accordance with the customer’s de-
mands. At the end of this excerpt, the informant introduces the theme of how they get 
good, possible (doable) and bad ideas for further development. If an idea is labeled 
good it is accepted as is. When an idea is categorized as possible it means that the 
idea is plausible, but will not become a part of the general product. It might be ac-
cepted under contract (with payment), and turns into a local Adaptation. Finally, an 
idea labeled bad is rejected outright. Implicit in this example is the assumption that 
the company’s employees are the ones who judge whether the Improvement Requests 
are good, possible or bad and have the freedom to make those distinctions. 

As seen from a meta-design and SER perspective [11][12], Excerpt 1 may be inter-
preted as an example of boundary crossing, namely that submitting, receiving and 
handling of improvement request cross the boundary of two organizations (customer 
and developer). It also indicates some of the decisions that have to be made before the 
“evolutionary growth” of an application at a specific site can be accepted into the 
“reseeding” phase by company developers. In this way, Improvement Requests can 
help to bridge the gap between EUD and professional development.  

The data in Excerpt 1 may have some commonalities with Engeström’s notion of 
co-configuration. Item number two in the definition of co-configuration (see Inte-
grated EUD) is about the mutual exchange between customers, producers and the 
product-service combinations [8]. Mutual exchange can be seen in this excerpt as 
well, between the customers issuing requests to the company and the professional 
developers handling these requests. The exchange for customers is getting the devel-
opment they want, while the company receives money for performing the develop-
ment (or more satisfied customers). 

If a request is categorized as good or possible, the next stage of Adaptation takes 
place. During the second stage of Adaptation terms like patch, build and version be-
come relevant, which we discuss below.  

5.2   Excerpt 2: Types of Generalization  

This is part of an interview one of the researchers had with one of the developers. The 
informant explains the software deployment (packaging) terms patch, build and ver-
sion as part of an elaborated answer to a question about improvement requests: 

 
Informant: There are three levels: we have a so-called patch, which is a quick fix 

to some sort of a problem. This is being sent out to the customer, which 



40 R. Andersen and A.I. Mørch 

is a (solution) right there and then. After the customer installs the 
patch, he tests if it works and then the problem is fixed. After a while, 
when we have made enough patches like this, we find new errors and 
the customers find errors and then we make a new complete program. 
That is what we call a build. On top of this, we have something we call 
versions; they could be (called) 3.4, 3.5, 3.5.1. They have more content 
and much more functionality. 

 

Patch, build and version are the developers’ responses to customers forwarding 
Improvement Requests in the Adaptation stage, which again can lead to Specializa-
tion and Generalization. Patch is understood as a quick fix to a problem. Patches are 
packaged extensions that fit specific versions. For example, if Word is being used to 
write some text and one’s references in EndNote are lost each time text is converted 
into PDF, the company could be contacted. They will fix it and send back a so-called 
patch, which is small program (a software component) that may be installed on the 
computer and linked with the main program, and the problem is fixed. Builds result if 
the company has had many quick fixes, similar to the example with Word, and 2nd 
order problems emerge (i.e., problems connected to the compatibility of patches). 
Then they create a build, which is a compiled program. Builds are associated with 
Specialization. Finally, a new version is both an extension and a generalization. It is 
an extension (improvement) of a build, and a generalization when a new version is 
made available to new customers and to the existing customers when they are due for 
an upgrade according to their contract. Generalization is a borderline activity between 
inner loop and outer loop product development. 

In Excerpt 2 it is evident that to a large extent, software development at the com-
pany proceeds with the SER model, as Fischer describes [11]. Excerpt 2 has a lot in 
common with the example Fischer uses to explain the reseeding phase, where open 
source software systems take some time to evolve, aided by using local (user created) 
extensions and the integration of patches (evolutionary growth), but eventually re-
quire major reorganizing in order to incorporate the patches and extensions in a co-
herent fashion (reseeding) [11]. In the company it happened like this: First the prod-
uct evolves locally as a result of patches created in response to customer requests, and 
when this becomes unwieldy the company’s professional developers create a build. 
Lastly, when the modifications become too numerous or are judged to be useful 
(good) for other (potential) customers, the developers create a new version of the 
product. However, Fischer does not distinguish between build and version. He uses 
the term reseeding for all developer activity associated with reorganizing multiple 
adaptations (patched systems) into unified (seamless) versions. Due to the complexity 
of this activity, it is useful to distinguish the multiple sub processes (types) of reseed-
ing and the interaction between evolutionary growth and reseeding. 

5.3   Excerpt 3: Improvement Request and Adaptation 

Excerpt 3 below illustrates how the Improvement Requests, as elaborated in the ex-
cerpt above, are differentiated. It also shows what is meant by Adaptation. 

 



 Mutual Development 41 

Question: 
 
 
Answer: 
 
Question: 
Answer: 
 

So, the rationale for a given upgrade lies with a specific customer, 
which means that a customer can be a part of setting the standards for 
what other customers receive. 
Mm, but if what one customer suggests is far off, then we just make a 
local adaptation for that specific customer. 
So, this becomes a new version for you then? 
What we have in addition to every menu choice is a so-called user 
option, it is placed in an “own” library, which can be linked, and al-
lows us to do further product development. 

 
What triggered the statement above is that one of the interviewers asked how the 

company develops their products. In sentence number two, the informant answers that 
if the customer’s request is “far off” they just make an Adaptation for this particular 
customer, as long as the customer pays for it. As mentioned above, this corresponds 
with an Improvement Request labeled possible. Excerpt 3 shows how an Improve-
ment Request labeled good may become available to all customers. The informant 
acknowledges after some hesitation and with elaboration that the customers are to 
some extent “defining” what other customers receive of product upgrades. They do 
this by suggesting Improvement Requests and other customer-initiated activities such 
as Tailoring. However in most cases Improvement request that are responded to by an 
Adaptation, providing a custom-made product for this customer by using patches or 
user options with the current released version of the product. In the last sentence in 
Excerpt 3, the informant explains what is meant by (local) Adaptation. It is associated 
with a patched system installation that can be continually adapted (further developed) 
by user options that are deployed in a separate package (own library). When installed 
in the system, it appears as a separate menu with items for the various user options.  

5.4   Excerpt 4: Generalization 

The above excerpt introduced the term “user option,” which is a special kind of patch. 
The related terms user option, patch and new version will be clarified in Excerpt 4 
below. The excerpt illustrates the generalization process. 

 
Question: 
 
Answer: 
 
Question: 
Answer: 
 
 
 
Question: 
Answer: 
 
Question: 
Answer: 

Do you have other examples of customers initiating new functionality to 
the product? 
Yes, we have done it for BuildingCompany and ABB… (two large 
European engineering and consultancy companies)      
What sort of new functionality did they want? 
Yes, well, it is. I don’t remember - it was years ago. I know that when 
they bought the product they had specific requirements that were origi-
nally not part of the product. But we wrote it into the contract as the 
functionality they wanted.   
Ok, so it was a part of the contract?     
Yes, they wanted it within a specific time period. Their requirements 
were rather demanding regarding what they wanted us to make.  
Was it an add-on specifically made for BuildingCompany or..  
No, it became a part of the product. Yes, it started as a patch, what we 
call a user option.  



42 R. Andersen and A.I. Mørch 

The informant underlines that a request for new functionality eventually became 
part of the company’s general product portfolio and was made available to all their 
customers. It is an example of Generalization. It becomes clear that in this situation 
the request for new functionality that BuildingCompany asked for was something 
specific they needed. The company wrote their demands into the contract. This ex-
cerpt reiterates a point made above, that good Improvement Requests would be incor-
porated into the next version of one of their products.   

The transition from Adaptation to Generalization is evident in Excerpt 4 since it 
describes an activity that involves one specific product (Planner) based on interaction 
with specific customers (Building Company in particular). The product has developed 
from small local extensions (patches and user options) to a basic core (in-house) ver-
sion to a new (released) version where generally useful local adaptations are incorpo-
rated into the new release. We interpret the last sentence of the excerpt to mean a 
step-wise integration into the product (from specific to general) along three steps. It is 
associated with the combination of the utterance of “No” and “Yes” that signify a 
contradiction and disruptive (non incremental) transition (from Adaptation to Gener-
alization). 1-2) Yes, it started as a special type of patch (user option), which is Adap-
tation, 3) no, it was only later incorporated into the product, which is Generalization. 
Adaptation represents the two first steps. First, the extra functionality BuildingCom-
pany asked for is a user option, which means it is only available for this specific cus-
tomer. Second, they want to make this available for later use, so they make a patch 
that the other customers can access upon demand, for example via the company’s web 
pages. Third, when there is a new version of the product, the extra functionality 
(patches and user options) have been incorporated in the product and therefore made 
available to potentially all customers. In other words, we may say that there is a grad-
ual development of the company’s products over the years, many of which are based 
on local development initiatives and Improvement Requests to generalized versions 
and back to new initiatives for further development, as new user contexts appear.  

Fischer and Ostwald’s SER model [11] suggests mutual dependency of evolution-
ary growth and reseeding, and this is supported by the findings reported here, namely 
that use time activity (Improvement Requests) can trigger design-time (Generaliza-
tion) activity. It is also related to SER in a more indirect way, in that Adaptation as a 
user-oriented design-time activity can lead to Generalization.   

Jeppesen underlines how a defining characteristic of modding is how “final mods of-
ten are freely revealed,” meaning that no users are excluded from using the new modi-
fied version” [15]. In the same way as final mods are freely available, the Adaptations 
made to products based on some customers’ ideas become available for all customers in 
the Generalization stage, when the suggestions from customers are accepted and inte-
grated into a new version of the product, as shown in the excerpt above. 

5.5   Excerpt 5: Tailoring 

Excerpt 5 shows how customers locally adjust a software product by end-user pro-
gramming to create their own extensions. Excerpt 5, from an interview with a cus-
tomer in the building industry, shows a customer stating that he has adjusted the 
product himself by writing code in the domain-specific language SQL. 



 Mutual Development 43 

Question: 
Answer: 
 
 
 
 
 
 
 
Question: 
Answer: 

Have you requested any wishes or needs for local adaptations? 
No, we have not got any special adaptations of the products (from the 
company). The reason for this is because I knew a great deal about 
SQL from earlier experience; therefore I managed to find a shortcut (of 
how to do it myself). I do not know the whole structure of the system, 
but it is available through ordinary documentation. There you get the 
whole (database) table structure and that has made it possible for me to 
find a shortcut through Access (a proprietary database management 
system) and allowed me to make some special (local) adaptations.  
So, in reality you have made your own adaptations to the products? 
Yes, you may say that. 

 
This excerpt illustrates Tailoring, which is the sub-process that most closely re-

sembles EUD as a standalone activity. Microsoft Office Access is used in conjunction 
with one of the company’s project planning tools for data storage. 

In the first sentence of this excerpt the customer states that the company has not 
adjusted the products for them. It is discovered that the reason for this is because the 
customer has made some adaptations to the product himself. He has tailored the 
product. This was possible for the customer because the products are well docu-
mented. In addition, because this customer was familiar with SQL, a high-level data-
base query language, it was natural for him to fix the problem himself to suit his 
needs. This excerpt is an example of what we refer to as Tailoring. In Tailoring, the 
customer actually locally adapts the product without any company involvement. This 
might mean creating a small program to work around an inefficient solution as shown 
in this excerpt.  

The reason the customer is able to tailor the product himself is because he is an ex-
pert project manager and is interested in learning how to work around a problem or 
inefficient solution when it appears. In other words, he is a super user. As an example, 
he describes how he can access and reorganize database tables as he sees fit and in a 
way that meets his organization’s needs.  The cost of this is his time and the skills 
required for programming, albeit simplified with a database query language like SQL 
compared to programming languages like Java. The advantage is that he will be able 
to see results of his ideas implemented relatively quickly as compared to the turn-
around time when ideas for change are submitted to the company via improvement 
requests. The interviewer asks if this is a way of doing local adaptation, and he con-
firms that his SQL programming can be perceived as such.  If Tailoring is followed 
with an Improvement request, tailoring might contribute to further development at the 
general levels, as was illustrated in the previous excerpt.  

In previous work, tailoring has been viewed as evolutionary application develop-
ment [24]. This view ignored the role of professional development and reseeding, and 
explored the design space of evolutionary growth for end-user developers. According 
to the mutual development perspective, this view must be updated. Based on the data 
reported here, tailoring is better conceived of as evolutionary design, in the sense that 
the local (customer) solution serves as a design for the general (company) solution, 
assuming it is accepted.   

The findings reported in this section have been condensed and depicted in the mu-
tual development model shown in Figure 1. Excerpt 1 can be seen as clarifying the 



44 R. Andersen and A.I. Mørch 

informants’ perception of the terms good, possible and bad. Excerpt 2 has a similar 
role for the terms patch, build and version (user options are further distinguished in 
Excerpts 3 and 4). Excerpt 3 also underlines the processes of Improvement Request 
and Adaptation, which are related in that one feeds into the other. Excerpt 4 exempli-
fies the stage of Generalization. It illustrates how a product becomes available to all 
customers. Finally, Excerpt 5 illustrates Tailoring by showing how a customer with 
some programming knowledge modified the product himself. It should be stressed 
that we have focused on the activities that involve end users (company customers) and 
multiple perspectives on developer-user interaction. We do not yet have sufficient 
data to illustrate the Specialization stage. 
 

 

Fig. 1. Different stages of mutual development: developer activity and customer-initiated activ-
ity co-evolve; the arrows indicate dependencies. Specialization is not addressed in this paper 
because it does not interrelate directly with end-user activities. 

6   Conclusions and Directions for Further Work 

Our main research question and objective is how there is mutual development be-
tween customers, professional developers mediated by software products and ICT 
support systems in the company we studied. Our findings points to the components of 
the product development process studied. It was found that within the interviews there 
existed some sub-processes of mutual development (initially formulated during the 
preliminary analysis as customer-initiated product development) [1]. They were iden-
tified as Adaptation, Generalization, Improvement Request, Specialization, and Tai-
loring.  

Mutual development is depicted in Figure 1. It is our first attempt to construct a 
model to integrate professional and end-user development [1]. Looking back, we see 
there are additional questions we would have liked to ask our informants, for example 
about the details of the customer-developer interactions. This was not possible in the 
current study. We cannot rule out that there may be sub-processes that have not been 



 Mutual Development 45 

identified, some that may have to be modified, and yet others that need to be elabo-
rated. This is part of future work. 

In spite of this, it is clear that EUD and professional development are interdepend-
ent, and represent two different activity systems, one (customer-initiated activity) 
feeds into the other (developer activity) and they co-evolve. This relationship is  
maintained because the developer organization (company) relies on input from active 
customers for continuation of its products as part of maintenance and consultation 
contracts, and to get innovative ideas for new products that can attract new customers. 
This is to some extent a result of the company’s small size and its operation in a niche 
market. On the other hand, customers rely on the company for project planning tools, 
training and constancy services, the ability to interact with the company’s developers, 
and in general the pleasure they get from seeing their suggestions for modification 
being incorporated in a later version of the product.  

The five excerpts we have shown to justify our claims illustrate how the products 
in the company have evolved from specialized and locally adapted instances to more 
general and stable ones in interaction with customers. It goes through an elaborated 
process of specialization (refinement), adaptation (domain orientation) and generali-
zation (one to many instances), starting with a stable (but non optimal) product ver-
sion that is gradually extended with locally developed extensions, user options, and 
patches. At some point this configuration becomes unwieldy and the system is re-
built. The new build may lead into a new version of the product if it will benefit the 
company and its other customers. Interaction between the stages is not unidirectional 
because new versions may lead to new local development and improvement requests, 
which repeat the process. 

We have used theories and concepts developed by other researchers in EUD and 
adjoining disciplines, in particular meta-design [10][12], co-configuration [7][8], and 
modding [15][16] to discuss our findings at a more theoretical level. These findings 
are summarized as follows. 

 
Findings According to the Meta-design and SER Perspective 

• Customers being active either as designers of aspects of solutions or as producers 
of new ideas 

• Interaction between customers and professional developers is the driving force of 
evolutionary development 

• Professional developers adapting the products in accordance with customers’ needs 
as main method to further develop the products 

• Project planning tools evolving as a result of being used in specific contexts 
 
Findings According to the Co-configuration Perspective 

• Both customers and professional developers gain from customer-initiated product 
development 

• Customers forwarding Improvement Requests and the company handling these 
form a sort of network 

• Customers are active in the product development process 
• Customer-initiated product development is a continuous process lasting for a long 

time 



46 R. Andersen and A.I. Mørch 

• When customers and professional developers interact in intimate ways to develop 
products, they can be considered collaborators 
 

Findings According to the Modding Perspective 

• Changes made to the company’s products by users vary in complexity 
• There are changes made solely by users  
• Some modifications become available to all customers. 
• Customer-initiated product development motivates technical-minded users 
• Customers suggesting or designing new features of a product in a way “open it up” 

for further development 
• When customers develop new features, it can be seen as a decentralized develop-

ment activity 

6.1   Directions for Further Work 

Our results can furthermore be extended along directions advocated by researchers in 
user-driven innovation, participatory design, and evolution of technology.  

Users can be creative and contribute to development without designing, and end-
user development is often triggered by innovative use of a tool as a first step to  
address a breakdown in use. Norman [30] suggests workarounds and hacks as two 
techniques people draw on in everyday situations when coping with difficult-to-use 
tools. Many companies are starting to realize that innovation can arise not only from 
the IT department, but also from the interaction with partners, suppliers, and custom-
ers. Eric von Hippel, a pioneer and long-time champion of studying users as innova-
tors in product development coined the term user-driven innovation. He has  
introduced a method for identifying sources of innovation, following “lead users” 
[38]. Many of the innovations he has studied originated with lead users’ novel use of 
an existing product or an adaptation of a product based on knowledge of a related 
product. For example the motocross series of bikes manufactured for teenagers during 
the 1960s and 1970s originated as result of teenagers’ desire for their bikes to resem-
ble adult motocross bikes. 

Researchers in information systems have used terms like super users [17], gurus 
[14], and boundary spanners [36] for a similar role as lead user. They share the view 
that these users help to democratize the design process, and study them by drawing on 
insights derived from empirical data gathered from user organizations, like we have 
done in this paper.  

In the area of software development, participatory design [6][18], directed observa-
tion [30], and strategic ethnography [32] are methods for addressing similar issues. 
Directed observation means to seek out and analyze the workarounds, hacks, and 
clever improvisations lead users and ordinary people create at work and at home [30]. 
Strategic ethnography is longitudinal studies following artifacts (packaged software) 
as they evolve over time, which has been referred to as capturing the biography of 
these artifacts [32].  

Based on a study of user driven innovation in an open source community von Hip-
pel [37] observed “the ability of user communities to develop and sustain exceedingly 
complex products without any manufacturer involvement is remarkable.” He  



 Mutual Development 47 

identifies the conditions that favor user innovation and explores how circumstances 
evolve, sometimes to include commercial manufacturers and sometimes not [37]. 
When commercial manufactures are included in the loop, the resulting inter-
organization activity structure can be compared with “mutual development.” When 
commercial manufactures are not included in the loop, the resulting organization can 
be compared with the emerging “user manufacturing” model. Aided by the Internet 
and Web 2.0 applications to support communication and information sharing and 
most recently “mashing” (combining existing web 2.0 applications to create new 
ones), this model has the potential to attract new interest in end-user development due 
to the enormous success of this platform to attract self-motivated contributors [13]. To 
leverage this potential for end-user tailoring and evolutionary design is an area for 
further research in EUD. 

In their study, Douthwaite and colleagues [5] state the following “as technology and 
system complexity increase so does the need for interaction between the originating 
R&D team and the key stakeholders (those who will directly benefit and be penalized 
from the innovation).” This is a hypothesis that requires further testing. It implies when 
software products increase in complexity, the interaction between developers and cus-
tomers must proportionally increase in order to successfully manage further develop-
ment and sustain the product. Otherwise, users will seek out other products that are 
simpler to use. The reason for increasing customer interaction as complexity unfolds is 
that a successful technology represents a synthesis of the developers and key  
stakeholder knowledge sets, and creating this synthesis requires more iteration and 
negotiation as complexity increases [5]. This is a hypothesis that ought to be explored 
in software evolution as well, in particular when end-users are enabled by EUD envi-
ronments and rich feedback channels to more experienced developers.  

Acknowledgements 

The authors thank Annett Hillestad who was the co-supervisor to the first author. The 
members of the KIKK project at InterMedia, University of Oslo: Shazia Mushtaq, Damir 
Nedic, Kathrine Nygård, and Espen Olsen contributed to the ideas presented here. Sten 
Ludvigsen and Anne Moen gave us constructive comments throughout the project. The 
project is part of the KP-Lab (Knowledge Practices Laboratory) and supported financially 
by the European Commission’s contract FP6-2004-IST-4 027490. 

References 

1. Andersen, R.: Customer-initiated product development: A case study of adaptation and co-
configuration, Master’s thesis, Dept. of Informatics, University of Oslo, Norway (2008) 

2. Bansler, J.P., Havn, E.: Information systems development with generic systems. In: Wal-
ter, W.R.J. (ed.) Proceedings from Second European Conference on Information Systems, 
pp. 30–31. Nijenrode University Press, Breukelen (1994) 

3. Costabile, M.F., Foglia, D., Fresta, G., Mussio, P., Piccinno, A.: Software environments 
for end-user development and tailoring. PsychNology Journal 2(1), 99–122 (2004) 

4. Dittrich, Y., Vaucouleur, S.: Practices around customization of standard systems. In: Pro-
ceedings of the 2008 international Workshop on Cooperative and Human Aspects of Soft-
ware Engineering (CHASE 2008), pp. 37–40. ACM Press, New York (2008) 



48 R. Andersen and A.I. Mørch 

5. Douthwaite, B., Keatinge, J.D.H., Park, J.R.: Why promising technologies fail: The ne-
glected role of user innovation during adoption. Research Policy 30(5), 819–836 (2001) 

6. Ehn, P., Kyng, M.: Cardboard computers: Mocking-it-up or hands-on the future. In: 
Greenbaum, J., Kyng, M. (eds.) Design at Work: Cooperative Design of Computer Sys-
tems, pp. 169–195. Lawrence Erlbaum, Hillsdale (1991) 

7. Engeström, Y.: New forms of learning in co-configuration work. The Journal of Work-
place Learning 16, 11–21 (2004) 

8. Engeström, Y.: Enriching the Theory of Expansive Learning: Lessons From Journeys To-
ward Coconfiguration. Mind, culture and activity 14(1-2), 23–29 (2007) 

9. Eriksson, J., Dittrich, Y.: Combining tailoring and evolutionary software development for 
rapidly changing business systems. Journal of Organizational and End-User Comput-
ing 19(2), 47–64 (2007) 

10. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: A mani-
festo for end-user development. Comm. ACM 47(9), 33–37 (2004) 

11. Fischer, G., Ostwald, J.: Seeding, evolutionary growth, and reseeding: Enriching participa-
tory design with informed participation. In: Proceedings of the Participatory Design Con-
ference (PDC 2002), pp. 135–143. ACM Press, New York (2002) 

12. Fischer, G., Scharff, E.: Meta-design: Design for designers. In: Proceedings 3rd Interna-
tional Conference on Designing Interactive Systems (DIS 2000), New York, pp. 396–405 
(2000) 

13. Floyd, I.R., Jones, M.C., Rathi, D., Twidale, M.B.: Web mash-ups and patchwork proto-
typing: User-driven technological innovation with Web 2.0 and open source software. In: 
Proceedings of the 40th annual Hawaii international Conference on System Sciences, pp. 
86–96 (2007) 

14. Gantt, M., Nardi, B.: Gardeners and gurus: Patterns of cooperation among CAD users. In: 
Proceedings of the Conference on Computer-Human Interaction (CHI 1992), pp. 107–117. 
ACM Press, New York (1992) 

15. Jeppesen, L.B.: Profiting from innovative user communities: How firms organize the pro-
duction of user modifications in the computer industry. Working Papers 2003-2004, Dept. 
of Industrial Economics and Strategy, Copenhagen Business School, Denmark (2004) 

16. Jeppesen, L.B., Molin, M.J.: Consumers as co-developers: Learning and innovation out-
side the firm. Working Papers, 2003-01, Dept. of Industrial Economics and Strategy, Co-
penhagen Business School, Denmark (2003) 

17. Kaasbøll, J., Øgrim, L.: Super-users: Hackers, management hostages or working class he-
roes? A Study of user influence on redesign in distributed organizations. In: Proceedings of 
the 17th Information Systems Research Seminar in Scandinavia (IRIS-17), pp. 784–798. 
Dept. of Information Processing Science, University of Oulu, Finland (1994) 

18. Kanstrup, A.M., Christiansen, E.: Selecting and evoking innovators: Combining democ-
racy and creativity. In: Proceedings of the 4th Nordic Conference on HCI (NordiCHI 
2006), pp. 321–330. ACM Press, New York (2006) 

19. King, N.: Template analysis. In: Symon, G., Cassell, C. (eds.) Qualitative methods and 
analysis in organizational research: A practical guide, pp. 118–134. Sage, London (1994) 

20. Knight, W.: Supernatural powers become contagious in PC game (April 28, 2008), 
http://www.newscientist.com/article.ns?id=dn6857 

21. Lieberman, H., Paterno, F., Wulf, V. (eds.): End-user development: Empowering people to 
flexibly employ advanced information and communication technology. Kluwer, Dordrecht 
(2006) 

22. Mehandjiev, N., Bottaci, L. (eds.): End-user development: Special issue of the Journal of 
End User Computing 10(2) (1998) 



 Mutual Development 49 

23. Mehandjiev, N., Sutcliffe, A.G., Lee, D.: Organisational views of end-user development. 
In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End user development: Empowering people 
to flexibly employ advanced information and communication technology. Kluwer Aca-
demic Publishers, Dordrecht (2005) 

24. Mørch, A.: Evolving a generic application into a domain-oriented design environment. 
Scandinavian Journal of Information Systems 8(2), 63–90 (1996) 

25. Mørch, A.: Three levels of end-user tailoring: Customization, integration, and extension. 
In: Kyng, M., Mathiassen, L. (eds.) Computers and Design in Context, pp. 51–76. MIT 
Press, Cambridge (1997) 

26. Mørch, A.I., Hansen Åsand, H.R., Ludvigsen, S.R.: The Organization of End User Devel-
opment in an Accounting Company. In: Clarke, S. (ed.) End User Computing Challenges 
and Technologies: Emerging Tools and Applications, pp. 102–123. Information Science 
Reference, Hershey (2007) 

27. Mørch, A.I., Mehandjiev, N.D.: Tailoring as collaboration: The mediating role of multiple 
representations and application units. Computer Supported Cooperative Work 9(1), 75–
100 (2000) 

28. Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V.: Component-based 
technologies for end-user development. Comm. ACM 47(9), 59–62 (2004) 

29. Nedic, D., Olsen, E.A.: Customizing an open source web portal framework in a business 
context: Integrating participatory design with an agile approach. Master’s thesis, Dept. of 
Informatics, University of Oslo, Norway (2007) 

30. Norman, D.A.: Workarounds and hacks: The leading edge of innovation. Interac-
tions 15(4), 47–48 (2008) 

31. Nygård, K.A., Mørch, A.I.: The Role of Boundary Crossing for Knowledge Advancement 
in Product Development. In: Proceedings Int’l Conf. Computers in Education (ICCE 
2007), pp. 183–186. IOS Press, Amsterdam (2007) 

32. Pollock, N., Williams, R.: The biography of the enterprise-wide system or how SAP con-
quered the World. Routledge, London (2008) 

33. Stevens, G., Wulf, V.: A new dimension in access control: Studying maintenance engi-
neering across organizational boundaries. In: Proceedings of CSCW 1992, pp. 196–205. 
ACM Press, New York (2002) 

34. Stevens, G., Wiedenhofer, T.: CHIC - A pluggable solution for community help in context. 
In: Proceedings of the 4th Nordic Conference on HCI (NordiCHI 2006), pp. 212–221. 
ACM Press, New York (2006) 

35. Victor, B., Boynton, A.C.: Invented here: Maximizing your organization’s internal growth 
and profitability. Harvard Business School Press, Boston (1998) 

36. Volkoff, O., Strong, D.M., Elmes, M.B.: Between a Rock and a Hard Place: Boundary 
Spanners in an ERP Implementation. In: Proceedings of the 8th Americas Conference on 
Information Systems, pp. 958–962 (2002) 

37. von Hippel, E.: Innovation by User Communities: Learning From Open-Source Software. 
MIT Sloan Management review 42(4), 82–86 (2001) 

38. von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005) 
39. Wulf, V., Golombek, B.: Direct activation: A concept to encourage tailoring activities. Be-

haviour & Information Tech. 20(4), 249–263 (2001) 
40. Wulf, V., Pipek, V., Won, M.: Component-based tailorability: Enabling highly flexible 

software applications. Int. J. Hum.-Comput. Stud. 66(1), 1–22 (2008) 
 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 50–69, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Appropriation Infrastructure: Supporting the 
Design of Usages 

Gunnar Stevens, Volkmar Pipek, and Volker Wulf 

University of Siegen and Fraunhofer FIT 

Abstract. End User Development offers technical flexibility to encourage the 
appropriation of software applications within specific contexts of use. Appro-
priation needs to be understood as a phenomenon of many collaborative and 
creative activities. To support appropriation, we propose integrating communi-
cation channels into software applications. Such an appropriation infrastructure 
provides communication and collaboration support to stimulate knowledge 
sharing among users and between users and developers. It exploits the techno-
logical flexibility of software applications to enable these actors to change us-
ages and configurations. Taking the case of the BSCWeasel groupware, we 
demonstrate how an appropriation infrastructure can be realized. Empirical re-
sults from the BSCWeasel project demonstrate the impact of such an infrastruc-
ture on the appropriation and design process. Based on these results, we argue 
that appropriation infrastructures should be tightly integrated in the application 
using the IT artifact itself as a boundary object as well as a bridge between de-
sign and use.  

1   Introduction 

We interpret the appropriation of information technology not as a phenomenon that 
somehow happens once a software application is in its ‘application field’, but as a 
network of activities that users continuously perform in order to make a software 
‘work’ in a new work environment, shaping the artifact as a material as well as a 
meaningful object. Existing practices evolve and result in new practices. Technical 
flexibility to redesign the application according to specific local needs play a major 
role in enabling appropriation work. Appropriation work may lead to software usages 
that go beyond what has been envisioned by the designers of the software application 
[cf. 29]. It is a specific part of an IT artifact’s usage, but it remains also linked 
(through the artifact’s materiality) with its design process and the designer’s work 
environments. Appropriation work needs to be understood as a core concept in the 
field of End User Development (EUD). 

To deal appropriately with the combined efforts of users and designers to success-
fully establish a software tool usage that satisfies the needs of practice requires a fun-
damental shift in perspectives on the concepts of ‘design’ and ‘use’. If the target of a 
design process is not a technology/software/tool, but a certain usage (that is stimu-
lated by a certain new technology/software/tool), traditional notions of design proc-
esses and product structures become problematic. When does usage design start, when 



 Appropriation Infrastructure: Supporting the Design of Usages 51 

does it stop? Is it a continuous or a discrete process? Who initiates ‘design’ phases – 
the developer side or the user side? For which parts of designing a usage are profes-
sional designers responsible, and for which parts the ‘users’ (they may be considered 
as professional usage designers just with a different expertise profile)? Which compe-
tencies and experiences are necessary to perform certain activities of appropriation 
work? 

We see the cracks in the idea of a strict separation of design and use spheres  
everywhere in practice: In the necessity for software development in cycles, in the 
frequent software updating procedures, in continuous helpline support provided by 
software manufacturers, in the differentiation of user roles (scale between end users 
and power/lead users), in software development contract structures that include 
‘maintenance’, in the practice of user forums in the Internet (that may have been pro-
vided by software manufacturers, but also third parties), and also in scientific concep-
tualizations e.g. with regard to ‘tailoring’ functions that support design-in-use ([15] 
and many others), with regard to integrating users into software design (e.g. [12]), 
with regard to professionalization structures in design and the problems they may 
cause (e.g. [38]) or with regard to the integration of user-driven innovation in (re-
)design processes (e.g. [42]). In fact, the blurring notions of design and use spheres 
point towards collaboration necessities and opportunities which, we claim should be-
come a central research area in the field of End User Development.  

We will first connect our perspective to the scientific discourse in HCI and SE. 
Based on the perspective of usage design, we will describe a framework for an appro-
priation infrastructure that allows to bridge between design and use by supporting 
user-user- and user-designer-collaboration in usage design. We have implemented a 
first example of an appropriation infrastructure when designing the BSCWeasel 
groupware. To evaluate the utility of appropriation infrastructures, empirical results 
from the BSCWeasel project are presented. 

2   Appropriation Work and Technical Flexibility 

We now describe in more detail what we see as relevant aspects of appropriation 
work. We then discuss how the HCI and SE research communities tackle the issue of 
technical flexibility. Both disciplines understood the need for flexibility on different 
levels, a product-oriented perspective can be typically found in HCI discussions, and 
a process-oriented perspective is typical for SE. We will argue that a linkage between 
these approaches is essential. 

2.1   Appropriation Work 

Several case studies have investigated appropriation processes of IT artefacts in a 
long term perspective [17, 25, 27, 31, 40, 43]. They offer empirical insights into the 
appropriation activities and the resulting changes in work practices, and they also 
showed that a significant part of the work being done to make software applications 
work is collaborative. Based on these studies, in [29] we lined out opportunities for 
collaboration support: (1) articulation support (support for technology-related articu-
lations - real and online), (2) historicity support (visualize appropriation as a process 



52 G. Stevens, V. Pipek, and V. Wulf 

of emerging technologies and usages, e.g. by documenting earlier configuration deci-
sions, providing retrievable storage of configuration and usage descriptions), (3) deci-
sion support (in a collaborative appropriation activity, providing voting, polling, etc.), 
(4) demonstration support (provide communication channels to demonstrate usages 
from one user or a group to another user or a group), (5) observation support (support 
the visualization of – accumulated, anonymized - information on the use of tools and 
functions in an organizational context), (6) simulation/exploration support (show ef-
fects of possible usages in a exemplified or actual organizational setting, maybe allow 
configuration manipulations in a sandbox), (7) explanation support (explain reasons 
for application behavior, automated vs. communication with experts), (8) delegation 
support (support delegation patterns within configuration activities), and (9) (re-) de-
sign support (feedback to designers on the appropriation processes). This list focuses 
on user-user-collaboration, and most support ideas still remain challenges that have to 
be met with appropriate technological support.  

But when is appropriation work? Orlikowski and Hofman [28] focused on the types 
of work that are not closely related to the new technology, but that rather result in or-
ganizational changes. In their conceptual model to classify organizational changes re-
sulting from the appropriation of collaborative infrastructures, they distinguish three 
cases: anticipated, opportunity-based, and emergent changes. Anticipated changes are 
organizational transformations, which can be planned and implemented purposefully 
when the technology is introduced into the organization. The corresponding appropria-
tion work activities can be most likely anticipated, support may be easily provided. 
Opportunity-based changes occur spontaneously, but can be planed once the opportu-
nity is clear. It may be hard to estimate occurrence, duration and intensity of appropria-
tion work activities here, but once the opportunity becomes clear, the necessary  
support may also be obvious (see [31] for an example of a group of users that inte-
grated a technological functionality into their practice in an innovative, unforeseen 
manner). Emergent changes happen spontaneously, and when they happen, they also 
can’t be planned or anticipated, they show that there is a necessity to continuously 
provide easy access to a broad variety of means for appropriation work (see [41] for an 
example of creating spontaneous learning opportunities between end users). 

There are several approaches that address spontaneous change activities, such as 
help systems, exploration environments, user hotlines, or the general technical in-use 
flexibility of tools [cf. 43]. However, these approaches are fragmented and do not 
refer to each other conceptually and technically.  

2.2   Product-Oriented Flexibility 

The HCI community, and the EUD community in its mainstream, regards technical 
flexibility mainly as a product feature which allows tailoring computer applications 
within their contexts of use [15]. Tailoring takes place after the original design and 
implementation phase of an application; it typically starts during or right after the 
installation in its field of application. Tailoring is usually carried out by ordinary 
users, local experts, system’s support or helpdesk staff in a collaborative manner. 
The users may find themselves confronted with technical flexibility on three  
levels of complexity: (1) choosing between alternatives of anticipated behavior,  
(2) constructing new behavior from existing pieces and (3) altering the artifact  
(i.e. reprogramming). 



 Appropriation Infrastructure: Supporting the Design of Usages 53 

Highly tailorable software artifacts have been developed, commercial products 
(e.g. spreadsheets and CAD systems) as well as research prototypes ([22], [23]). With 
the emergence of collaborative tool infrastructures that support communication, coop-
eration, and knowledge exchange, the need for tailorable software artifacts even in-
creased [3, 46]. The distributed nature of these systems and the potential interrelation 
of individual tailoring activities posed new challenges to the design of tailorable ap-
plications [26]. OVAL [21], Prospero [7], and FreEvolve [37, 47] answered this chal-
lenge by providing highly tailorable groupware application frameworks grounded in 
different paradigms of software engineering.  

However, offering technical flexibility is not enough, we also need methods to find 
the right kind of flexibility to address the requirements of particular contexts of use, 
considering that things may change over time. It is a short coming of the EUD discus-
sion around tailorable systems that the approaches address the issue of flexibility on 
the product level only, and do not study how their products are related to the appro-
priation dynamics and process-oriented flexibility. 

2.3   Process-Oriented Flexibility 

With the idea of designing usages, the traditional design work extends into the use 
phase. Requirements for tailoring functions can hardly be foreseen completely; inevi-
tably breakdown situations will appear which cannot be fixed using the given tailoring 
possibilities. Therefore, the development of tailorable software should remain con-
nected to a flexible software development process. The development process needs to 
be organized to cover rather spontaneous requests for software revisions, as well.  

The STEPS software development process model by Floyd [12] extends earlier mod-
els of iterative software development with a stronger focus on user-designer collabora-
tion and the gathering of actual use experience (not only laboratory evaluations) in the 
process of refining software. However, it remained pretty abstract and rather unspecific 
with regard to the types of work that would be required in addition to ‘programming’ 
and ‘using’. As a pre-WWW approach, it did also not address issues of collaboration 
support. An extension of STEPS towards remote participation was suggested in the 
CommSy project [8]. CommSy uses its own groupware functionality to allow dedicated 
end users to participate remotely in the design process. Wulf and Rohde [46] proposed, 
as a part of their OTD approach, to enhance the STEPS model by integrating tailoring as 
a use activity with design relevance. An implementation architecture for component-
based tailorability has been developed within the FreEvolve project [37, 47]. However, 
the approach did not address the underlying software development process or any ne-
cessities to support appropriation processes. Some of these issues were addressed in the 
concept of a use discourse infrastructure [29].  

Coming from a different angle, Fischer discussed end-user modifiability for gen-
eral design environments [9]. In his early work, he chose approaches similar to other 
product-oriented concepts dealing with flexibility. Later he developed a design proc-
ess model called SER (Seeding, Evolutionary Growth and Reseeding; [10]). Similar 
to STEPS, the concept does neither describe the collaborative work tasks necessary to 
perform the process, nor does it specifically address the issue of supporting these 
tasks. The different work on end-user modifiability and participatory oriented design 
are currently integrated on a conceptual level by the Meta-design framework [11]. 



54 G. Stevens, V. Pipek, and V. Wulf 

Agile software processes, like SCRUM or eXtreme Programming (XP), provide 
extreme short release cycles and allow customers to change requirements at any time 
during the design process. In particular XP suggests several methods to make such 
changes economical and technological feasible. Major software engineering ap-
proaches to ensure this type of flexibility are test driven development, continuous 
integration and continuous refactoring [2].  

eXtreme Programming suggests that there should not be any extra effort to fulfill 
requirements that may appear in the future. This is the counterpart to the concept of 
radical tailoring. Radical tailorability wants to solve the problem of non-anticipated 
requirements by building highly flexible products, XP wants to solve this problem by 
providing flexible processes.  

Since XP does not care about the appropriation processes in the use context, the 
model does not make any suggestion about a shared infrastructure to foster mutual 
learning processes. Instead, the programmers just get indirect feedback mediated by 
the “costumer on site”-principle [2], although in practice it is difficult to find these 
customers [32].  

A pragmatic application of agile methods is offered by the development process of 
the Eclipse platform, called the Eclipse way [13, 20]. The Eclipse way is a mediating 
position between the dogma of radical tailorability and eXtreme Programming. It  
follows the position of radical tailorability since all development is based on compo-
nents to keep the software adaptable and extendable in order to deal with the hetero-
geneities and dynamics in the fields of application. However, the Eclipse way does 
not assume that product-oriented flexibility will fully solve the problem of future  
requirements. It has developed some techniques to foster feedback from users. How-
ever, Eclipse does not provide a technical infrastructure to bridge the gap between 
designers and users. Moreover, the Eclipse way has never been applied to domains in 
which users are non professional designers. 

3   An Infrastructure for Appropriation Support 

The state of the art does not provide technical support for appropriation work from a 
‘design for usages’ perspective. To fill the gap, a technical infrastructure for user-user 
and user-designer collaboration is proposed here. The design of the infrastructure is 
based on two basic assumptions:  

(1) Appropriation processes require knowledge sharing among users. Therefore, 
communication channels should support communities of users to reflect upon the us-
age of their software.  

(2) Support for appropriation processes needs to bridge between product- and 
process-oriented flexibility. Therefore it is necessary to provide communication chan-
nels between users and developers.  

Figure 1 illustrates our model of an appropriation infrastructure. We assume that 
different users, power users, or system administrators work with a software applica-
tion that is assumed to be flexible in a product-oriented sense. In an EUD sense it 
could consist of software modules which are represented at the user interface, are 
meaningful to the users, and can be tailored by them. The communication channels  
 



 Appropriation Infrastructure: Supporting the Design of Usages 55 

 

Fig. 1. Infrastructure for Appropriation Support 

among users should hence be integrated into the user’s interface and refer to the 
modularized structure of the functionality (see section 5).  

 

Moreover, our approach is based on the assumption that a team of designers and 
engineers deal with the modularized code for maintenance and redesign purposes. 
Communication channels should allow users to express design requirements towards 
the software team referring to the modularized structure of the user’s interface (see 
section 6). The content of the functionality-related communication among users 
should become visible for designers as well. 

To act as a boundary object among users, the functions of the application and their 
tailoring options need to be understandable from different backgrounds of practice 
and levels of expertise. Developers should be equipped with support that enables 
them to perceive the usage of the application and to recognize break-down situations. 
Moreover, they need tools to efficiently provide additional flexibility, implement 
changes or refactor an application. We believe that access to a repository of compo-
nents could contribute to more efficient work processes.  

4   BSCWeasel 

To explore the idea of an infrastructure for appropriation support, we have developed 
a groupware application, BSCWeasel, which contains communication channels for 
appropriation support.  

BSCWeasel is a rich client based on the BSCW platform. BSCW (Basic Support 
for Cooperative Work) was one of the first web-based groupware applications. It was 
developed at the German National Center for Research in Information Technology 
(GMD) during the mid 90s [4]. It offers a 'shared workspace' which supports a group 



56 G. Stevens, V. Pipek, and V. Wulf 

of users to up- and download documents. Additionally, awareness services, differenti-
ated access rights, a group management tool, email distribution lists, a discussion fo-
rum, and a shared calendar complement the functionality of the groupware. 

The fully web-based solution of BSCW has specific advantages. Obviously, there 
is not any installation effort on the client side. However, there are also considerable 
technical limitations due to the fact that BSCW just offers a thin client. There is not 
any redundant local storage for important files, a permanent internet connection is 
required, and streaming information (e.g. to provide peripheral awareness) is difficult 
to implement.  

Therefore, we have developed a rich client extension, called BSCWeasel which is 
based on Eclipse. BSCWeasel started as an open source project in spring 2004 (cf.: 
http://www.bscweasel.de). So far we still follow the basic client server architecture of 
BSCW where the clients interact with a BSCW server. To implement rich clients, we 
used the component-based software development environment Eclipse Rich Client 
Platform (RCP) as the application framework [34, 35].  

Eclipse is a development environment for component-based applications. Eclipse 
RCP is a core component of Eclipse, which allows running component-based applica-
tions on a variety of different operating systems. Moreover, the Eclipse Foundation 
promotes the growth of the Eclipse Ecosystem which allows benefiting from the re-
sults of a large community of developers. Eclipse provides a well supported and sta-
ble environment to build component-based applications. Another reason to choose 
Eclipse was the fact that the framework is open source. So the source code is avail-
able and enabled us to change the framework where necessary. 

In a first version of BSCWeasel, we basically implemented the main features of 
the web-based BSCW client [cf.: 1]. Later on, we added components, called plugins 
in the Eclipse terminology, to realize new functionality. A set of new plugins offer 
tools for synchronous cooperation based on the XMPP/Jabber instant message proto-
col. We also developed a plugin which allows the fat client to deal with more than 
one BSCW server. Additionally, we extended the awareness functionality of BSCW 
and implemented a caching mechanism.  

5   Collaboration among Users 

To support collaborative appropriation activities among users, we suggest making 
help functions highly context sensitive and to augment help functions by functional-
ities of a community system. In our work, we draw on Wikis to augment help func-
tions. Wikis are widely spread and allow editing texts in a collaborative manner.  

We decided to represent the traditional help text of each function within a Wiki. 
Users can extend, change or annotate these texts. They can create different local de-
scriptions of purpose, usage, or outcome of a function and exchange knowledge con-
cerning the appropriation of this function within their local practices. Access to the 
Wiki needs to be highly contextualized at the user interface to select those Wiki en-
tries which are associated with the current usage. In our approach, we took the state of 
the application as a proxy for the actual context of use. By means of the Meta Object 
Protocol and runtime reflection [18], we linked Wiki/help pages technically to spe-
cific states of the application.  



 Appropriation Infrastructure: Supporting the Design of Usages 57 

From a user’s perspective, a Wiki page refers to a function perceived by the users 
at the interface of the application, and therefore, supports appropriation discourses 
among communities of users (also addressing diversifying sub-communities). The 
user first selects the object in question and then presses F1 to open the corresponding 
help/wiki page. So, the software application offers a built-in communication channel 
among users and therefore acts as a boundary object for contextualizing the discus-
sion among users (see section 3). 

The Wiki discourse infrastructure was realized using standardized software inter-
faces, but the realization of context sensitivity is more challenging. We used context 
identifiers in the applications source code to anchor wiki widgets in a certain func-
tionality area. However, this implementation strategy turned out to be hard to main-
tain since designers may either forget to write help texts for an identifier or place the 
context identifier at the wrong position in the source code.  

 

      

Fig. 2. Highlighting the point of interest: (left) from a user perception (right) from a computa-
tional perceptive (the tool tip refers to information that can be gathered by algorithmic reflec-
tion on current state of the application) 

However, the situatedness of work activities ([37]) is a tough challenge for the un-
derlying assumption that the execution position in the code is an appropriate measure 
for the current work context. Still manual maintenance of context identifiers would be 
quite error prone, as well. Therefore, we studied in which way users make sense of 
the “set of pixels generated and managed by a computational process that is the result 
of the computer interpretation of a program P.” [5]. In our empirical studies of users’ 
perception we present the users several screenshots of known and unknown pro-
grammes and ask them to highlight their point of interest (cf. Figure 2 left). In these 
studies, we observe that the way users give the pixel a meaning is related to the wid-
get hierarchy of the interface. Based on this observation we created an algorithm 
which identifies function compounds as they are perceived by the users and maps 
them with stable context identifies. The calculation of the stable context identifier use 
the runtime reflection feature [18] to gather information that allows a computational 
identification of the point of interest  (the tool tip in Figure 2 shows some of the in-
formation that was available for that widget via runtime reflection) [cf. 14]. 

The identified widget was highlighted as a potential point of interest at the inter-
face (cf. Figure 2) and using the calculated context identifier as a shared reference 
point it offers access to the corresponding public Wiki page (cf. Figure 4) . 



58 G. Stevens, V. Pipek, and V. Wulf 

To implement the communication channels among users as described above, we 
have developed the CHIC-architecture (Community Help in Context) [36]. CHIC 
consists of three generic software modules: Application Integration Module (AIM), 
Context-Aware Adaptation Module (CAM), and Community-based Help System 
(CBHS) (see Figure 3).  

 

Fig. 3. Architecture of Community Help in Context (ChiC) 

The Application Integration Module (AIM) integrates CHiC into an existing appli-
cation and the user interacts with CHiC using it. When the user asks for help by 
pressing F1, it highlights the user perceived functions mapped to a context identifier 
and offers a “single-click” access to the CBHS-System [45] (for the interface see Fig-
ure 2). In order to provide this functionality, AIM requests the necessary information 
from the Context-Aware Adaptation Module (CAM). CAM mainly calculates the 
context identifier and mediates between AIM and CBHS. The CBHS can be any 
community system, like a Wiki, which provides an infrastructure for help discourses. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Changing the selected interface element triggers a recalculation of the help entries (1).  
A click on one of the help entries opens the Wiki page via the internal web browser (2). 

In the BSCWeasel case, we use the Eclipse framework to integrate the Wiki help 
into the application context. We benefit from the Eclipse architecture which allows 
adding new help items dynamically. A help item implements the interface 
IHelpResource which delivers the subject labels of help texts and the URLs of the 
corresponding Wiki pages. The subject labels of help items are displayed as links in  
 



 Appropriation Infrastructure: Supporting the Design of Usages 59 

the help window of Eclipse. When a user clicks on the label, Eclipse opens the inter-
nal web browser and loads the associated web page (cf. Figure 4). To realize CAM 
under Eclipse, we extended the IContextProvider. IContextProvider is invoked when-
ever the state of the application has changed. CAM uses this trigger to inspect the 
actual system state and requests CBHS to return a set of help entries. 

The CBHS module was realized by integrating the Atlassian Confluence Wiki1 be-
cause it provides a commenting function, several notification mechanisms like mail, 
RSS, and the recently changed pages. Moreover, it provides a well defined Web Ser-
vice API.  

6   Collaboration between Users and Developers 

To offer collaboration support for users and designers, we have integrated a profes-
sional requirements tracking system into the BSCWeasel application and have 
equipped it with a specific interface for the users.  

With regard to designers’ needs, our goal was to minimize the overhead from the 
administration of direct user feedback together with other sources of requirements. To 
encourage contributions from a wide variety of different users, we wanted to provide 
a gentle slope of increasingly more complex levels of participation [22] in the  
requirements specification process. Legitimate peripheral participation in the re-
quirements specification process is supported by allowing end users to just mark 
shortcomings in their current interface. However, lead users can use the system to 
discuss and test newly designed features in interaction with the professional designers 
who can use the system also for their work (e.g. design planning and scheduling).  

To realize this part of the appropriation infrastructure, we came up with a hybrid 
approach which combines an external requirements tracking system with an Eclipse 
plugin which is integrated into the BSCWeasel user interface. The plugin provides 
specific views on the requirements tracking system. Technologically we drew on the 
Web Service API/remote method invocation interface of the requirements tracking 
system to integrate its user interface into the BSCWeasel application.  

We decide to use a professional requirements tracking system, called JIRA. JIRA 
is a web based application supporting the interaction among developers. JIRA allows 
saving requirements in textual form, which can be annotated with attachments, e.g. 
log files or screenshots. Users of JIRA can discuss these requirements, prioritize and 
vote for them. A configurable workflow allows processing these requirements within 
the team of developers. The functionality of JIRA can be used via a web-based inter-
face or it can be integrated into 3rd party products via the Web Service API. 

The integration into BSCWeasel was realized implementing an Eclipse plugin 
called PaDU (Participatory Design in Use). PaDU packages JIRA’s Web Service API 
and makes it available for Eclipse RCP applications. If a requirement is submitted to 
JIRA or information is retrieved from JIRA, PaDU will carry it out via the XML 
RPC. To lower the barriers for users, PaDU uses the integrated web browser of 
Eclipse. When the user wants to see detailed information about his contribution, 
PaDU will open the corresponding web page. 

                                                           
1 http://www.atlassian.com/software/confluence/ 



60 G. Stevens, V. Pipek, and V. Wulf 

PaDU allows contributing to the design process directly from the BSCWeasel user 
interface. PaDU integrates two buttons into the user interface of the BSCWeasel ap-
plication (see Figure 5). The buttons help distinguishing between critical incidents (a 
subjective breakdown of tool usage) and use innovations (a new way of using existing 
functionality or a new idea for interesting functionality). These buttons are always 
visible and they are used as access points to document problems or suggest new de-
sign ideas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. PaDU’s access point is in the button bar which activates the requirements tracking  
system 

When a user presses one of these buttons, a multi-page dialog window appears. 
The dialog is adapted from the critical incident dialog [4] by Hartson et al [8]. Beyond 
purely textual descriptions of the requirements, we integrated features which allow for 
ostensive and deictic references to the software artefact in order to clarify design 
ideas. We have, for instance, extended the dialog window to enable users to add 
screenshots, annotate them textually or graphically, and attach own sketches. PaDU 
automatically takes a snapshot of the current state of the BSCWeasel interface at the 
moment it is activated. A drawing tool is available to edit the screenshots.  

Designers can deal with the contributions of the users in the same way they do 
with any other requirements documented in the system. They can discuss these re-
quirements, prioritize them and vote for them. To offer accountability with regard to 
their inputs, users can see all activities that happen in the requirements tracking sys-
tem. Via their interface, users can track the state of their contributions. They are in-
formed via email in case someone comments on their input. They can also set up links 
to other entries in order to be informed about the state of their procedure. Addition-
ally, designers can send a direct email to a user to clarify open issues.  

However, the discourse culture which emerged in the BSCWeasel project was 
slightly different. Instead of writing an email, questions to a contributor were attached 
as a comment. The contributor received an email containing this comment and had the 



 Appropriation Infrastructure: Supporting the Design of Usages 61 

option to answer to the email by adding a new comment. As a result, a public dis-
course around certain requirement emerged. 

We understand design to be a communicative process which needs to be transpar-
ent to those who want to participate.2 In order to satisfy this requirement users and 
designers should have similar rights with regard to inspecting the requirements data-
base and adding comments. To support users in becoming familiar with the web inter-
face and to increase their awareness of the design process, PaDU’s start page contains 
all the contributions made by this particular user.  

Additionally, we save a user’s contributions locally. So, writing a design sugges-
tion can happen before it is published within the requirement tracking system. Users 
can see all of their ideas in a list. A double click on published design ideas opens  
the web browser and shows the corresponding web page in the requirement tracking 
system. The web page shows the contribution in detail, the state of the contribution in 
the overall design process, and discussions and comments added in reaction to the 
contribution. 

7   Bridging between Product-Oriented and Process-Oriented 
Flexibility 

With regard to product-oriented flexibility, the current BSCWeasel implementation is 
grounded in the features which Eclipse RCP provides. A plugin is in a technical sense 
the smallest application unit of the Eclipse Platform function that can be developed 
and delivered separately [16]. Such a component must be designed according to the 
Eclipse plugin mode which is an extension of the common OSGi standard. Roughly 
spoken a component is a bundle of java code, additional resources, and a description 
of the component’s properties. 

Product-oriented flexibility is basically limited to extensibility. The Eclipse Update 
Manager allows high-level components to be integrated at runtime into a composition 
to provide additional functionality. Plugins for an application are stored in specific 
web sites and have to follow the update site’s specification. From this site they can be 
downloaded to the local plugin directory. 

Compositions of plugins cannot be reassembled during runtime by end users since 
Eclipse RCP does not provide any specific user interface for that. Contrary to 
FreEvolve [37], Eclipse does not connect the component structure with the corre-
sponding elements at the user interface. 

Beyond extensibility, Eclipse RCP implements an interface-related aspect of prod-
uct-oriented flexibility which is part of the Eclipse workbench concept. The user in-
terface of an application is subdivided into different areas in which different interface 
elements (called views) can be placed. These areas can be recursively split when 
needed. Users can reposition these interface elements to compose a new integrated 
user interface and enhance the functionality by adding new views.  

                                                           
2 This aspect distinguish our approach, e.g. from the concept of remote evaluation promoted by 

Hartson et al. (1996). In their work end users should only deliver information of shortcom-
ings in the design. However, their participation in the design-related discussions of these 
shortcomings is not technically supported.  



62 G. Stevens, V. Pipek, and V. Wulf 

 

Fig. 6. Screen shot of an Eclipse workbench with a set of BSCWeasel related views (outlined 
with a rectangle) 

Figure 6 provides a screenshot of the interface of the BSCWeasel, which illustrates 
the Eclipse workbench concept. Typically at the beginning the BSCWeasel user inter-
face displays only some views and with the time the user interfaces become more 
complex, presenting more sophisticated features (like the Event Monitor in Figure 6, 
which presents awareness information). 

We have set up an agile software development process to be able to react immedi-
ately to user requirements expressed within PaDU. To bridge between product- and 
process oriented flexibility, the developers can build new plugins or modify existing 
ones by means of short release cycles. We practice refactoring, as a method for archi-
tectural evolution. Eclipse as a software development environment offers tool suites 
to support these approaches to process-oriented flexibility, like refactoring feature, 
Release Engineering support, etc.  

8   Case Study 

Both prototypes which we described here were implemented based on the Eclipse 
plugin framework. Together with further applications that are being used at the pe-
riphery of other implementations (e.g. email clients), they form an infrastructure to 
support appropriation work in the late phase of usage design. Any application which 
operates on the same infrastructural background (Eclipse) would be able to use our 
concepts.  

To evaluate our concepts, we implemented them into the BSCWeasel client. 
BSCWeasel was developed by a research group of a German university. The core 
group consisted of two developers which were complemented temporarily by differ-
ent student teams. Contrary to most work in the area of product-oriented flexibility, 
we applied an agile development process which was directed towards short release 
cycles and an immediate evaluation in practice.  

In May 2005 an initial version of BSCWeasel was used by the developers and their 
student team. Later versions were announced towards the research group at the 



 Appropriation Infrastructure: Supporting the Design of Usages 63 

university (about 15 members) and towards two groups at a research institute in ap-
plied computer science (about 15 researchers) 100 km away from the university. All 
researchers were basically familiar with BSCW, though the system was applied to 
rather different degrees. The appropriation process of BSCWeasel was analyzed via 
the discussion threads provided by PaDU and CHIC. Moreover, observations and in-
formal interviews were carried out to explore the appropriation of BSCWeasel further 
on.  Additionally, two studies were conducted based on the ISO 9241-10/12 standards 
to improve the usability of the application. The first study was carried out in April 
2005 with nine users. It focused on the basic functionality of BSCWeasel. In January 
2006, a second study with six users looked particularly into the usability of the CHiC 
and PaDU functionality. 

With regard to the appropriation of BSCWeasel at the university and the research 
institute, we know about 10 regular users. They were intense users of BSCW before 
and identified specific BSCWeasel functions to be incorporated into their practice. 
The individual “killer” functions were not part of the BSCW thin client and covered a 
wide range of functionality. Some of them were requested via PaDU – like the option 
to download more than one file or complete folder structures, or a synchronized view 
on local and remote directory structures. Other functions were communicated directly 
towards the team of developers.  

About half of the BSCWeasel users have made use of PaDU. From September 
2005 to July 2007 130 design requirements were expressed via PaDU. Due to the rela-
tively small number of active users the design team was rather reactive towards their 
suggestions. About 50% of these proposals got implemented.  

In evaluating our experiences, we will focus on two main issues. First, we will in-
vestigate into the impact the appropriation infrastructure had on the design process. 
Secondly, we will look into the relations and interferences among the different func-
tions of the appropriation infrastructure. 

8.1   Grounding Design in Practice 

After the roll-out of PaDU, the designers got more feedback from users. Since PaDU 
items were stored in the Bug Tracking System, the feedback was more systematic and 
easier to handle and became an integral part of the coordination work carried out by 
the designers. 

PaDU is mainly used by users to make designers aware of a usability problem 
and/or feature request, however discussions among designers and users happened 
rarely. This may be due to the fact that PaDU does not disclose the users’ identity. 
However, we found frequent instances in which contributions made in PaDU trig-
gered a reflection process within the design team, e.g. discussing design alternatives 
related to a concrete user experience. Sometimes designers react to a user comment, 
when requirements expressed by the users were not clear (e.g. a designer wrote: 
“Well, technically this is a little thing [to implement the feature request]. However, 
for the moment is not yet clear to me how you would like to use it”) or different solu-
tions were possible, (e.g. asking which of different options to implement an “open file 
with …” feature would be needed). 

Most of the contributions made by the users referred to cases in which they were 
able to accomplish their task, often by means of a workaround, but wanted a better 



64 G. Stevens, V. Pipek, and V. Wulf 

support from BSCWeasel. The snapshot annotation tool was typically used to point to 
the referred area in the user interface. The suggested redesign would render more con-
trol or efficiency to their work. For example, with regard to the upload function a user 
made the following proposal: “It would be a nice thing to know the data volume 
ahead of an upload. In this case one would know how long it takes and whether there 
is sufficient space available”. 

Analyzing the contributions made via PaDU, we found little design requirements 
which went far beyond the given functionality. Most of the suggestions were rooted in 
practical experiences using BSCWeasel in the users’ daily work. Accessing PaDU 
directly from their context of use seems to stimulate users to focus on present-at-hand 
technology when contributing. It seems to result in incremental rather than highly 
innovative suggestions for redesign. 

However, these contributions, based on practical experience, had a considerable 
impact on the design process. One of the developers came up with the following bon 
mot: “If programming is understood as theory building [24], PaDU helps making it a 
‘grounded theory’”. 

Nevertheless, PaDU should be perceived as an additional instrument to improve 
distributed, continuous Participatory Design and not as a replacement for traditional, 
creativity oriented Participatory Design instruments like Future workshops. 

8.2   Integrating Different Functions in an Appropriation Infrastructure 

When integrating the different parts of the appropriation infrastructure and studying 
them simultaneously, we became aware of the phenomena of interference. The lack-
ing integration of users’ communication channels with those channels between users 
and designers created problems. The segregation of the different appropriation sup-
port functionalities – such as help, adaptation, or requirements articulation – seems to 
be dysfunctional.  

We observe that CHiC was mainly used as a traditional help system with only little 
discussions among users going on. It seems that CHiC and PaDU cannibalized each 
other since both could be applied when BSCWeasel was not present-at-hand. This 
fact became obvious in the second usability study. An interviewee stated that he is 
occasionally uncertain whether to address other users or better the developers. He had 
a problem in connecting the BSCWeasel client with the BSCW server. Reflecting on 
his problem, he was not sure whether it was caused by bad design or inappropriate 
use. So he could not decide easily whether to discuss his problem in PaDU or CHiC. 
In another case a user explained that she put a question into PaDU but later cancelled 
it. She was not sure whether this issue was just her personal problem, (“just not 
knowing enough about the system”), or if the issue was more generally relevant for 
the design of BSCWeasel. These findings seem to indicate a need for a deeper inte-
gration of PaDU and CHiC.  

Another example for lacking integration is the gap between flexibilization at the 
level of the user interface compared to the level of the component structure of the 
application and its missing integration into a communication infrastructure. Eclipse’s 
“viewer” concept offers an elegant solution for the composition of interface elements 
compared to user interfaces of web-based clients augmented by applets. All interface 
elements can be integrated into a combined view, called perspective. We observed 



 Appropriation Infrastructure: Supporting the Design of Usages 65 

that this feature was applied by the users to individualize their user interface. How-
ever, Eclipse still suffers from the fact that this interface layer of a user centric com-
position is not connected to the underlying component structure. So, the underlying 
structure is not visible and cannot directly explore from the user interface taking the 
actual use context into account. Obviously, lacking references between software 
structure and user interface leads to confusion and does not support users in under-
standing the linkage between the user interface and the software architecture [6]. 

As a result, users may develop a mental model which diverges strongly from the 
software architecture. It leads specifically to problem in cases where applications, such 
as Eclipse IDE or BSCWeasel, are composed by hundreds of components provided by 
different vendors.   During our usability study we found an example for these phenom-
ena.. It turned out that users assumed that our chat tool (a 3rd party component) and the 
BSCW system where tightly coupled because the interface elements were integrated. 
In another case we observed an Eclipse IDE user who had problems in finding out 
which vendor was responsible for a specific view which he had added to his user inter-
face. He was looking for more information about the object in question.  

Moreover, Eclipse suffers from lacking integration of the component management 
features into a community-oriented communication infrastructure. The Eclipse com-
munity starts to become aware of this problem. In particular, some commercial com-
panies like Innoopract have started to extend Eclipse with a component repository 
service with thousand of plug-ins. They support end users to assemble their personal 
Eclipse configuration out of the repository in an easy way. Furthermore one can ob-
serve that traditional centralized provisioning strategies will be enhanced by concepts 
that support a grassroots diffusion of composition and tailored artifacts. 

9   Conclusion 

Support for appropriation work has to be understood as a core challenge in the field of 
End User Development.  From the perspective of appropriation work, the concept of 
design needs to be re-interpreted. It should be understood as designing usages, not 
tools. In such a perspective, activities of end users such as configurating, tailoring, 
sense making, or negotiating conventions of usage have to be linked to the work per-
formed by software developers. Appropriation and realization are dialectic moments 
in usage design, while in the late phase it is mainly driven by actors and stakeholders 
from the use sphere, not from the design sphere. These activities can be considered as 
inherently collaborative and should be explicitly supported by appropriate infrastruc-
tures build into the applications. Extending earlier research, we aimed for an infra-
structure that does not only support user-user-collaboration, but also integrates the 
professional designers’ work sphere. When supporting appropriation work, it seems to 
be necessary to go beyond traditional EUD techniques such as configurating or tailor-
ing and connect professional designers with end users. 

As a first case of an appropriation infrastructure, we developed collaborative func-
tionalities based on the Eclipse plugin architecture. We integrated this infrastructure 
into BSCWeasel, a rich client for the web-based groupware system BSCW.  The first 
functionality we provided – supporting user-user collaboration - was a context-aware 
extensible help system based on a wiki metaphor. Help texts could be complemented 



66 G. Stevens, V. Pipek, and V. Wulf 

or specialized for certain situations of usage. The second functionality we provided – 
supporting user-designer collaboration – was a requirements tracking system that  
allowed for rich technology-related articulations and collaborative requirements man-
agement and was integrated into the application, as well. Together with additional 
tools which were integrated, they form an infrastructure for appropriation work. 

We collected first evaluation data by means of an empirical case study covering the 
infrastructure’s appropriation in three research groups. Some of the assumptions guid-
ing our design have been confirmed by the study. First of all, there is an interest, if 
not even a need, for collaboration in the appropriation of technology. It makes sense 
to understand the application to be appropriated not only as a boundary object be-
tween design and use, but also as a communication anchor and medium for appropria-
tion activities. Figure 1 illustrates the fact that both the appropriation infrastructure 
and the component-repositories mediate between the developers and user communi-
ties if such a modularized design is meaningful for the different actors. 

From a user perspective, the following activities seem to be expressions of appro-
priation work which are grounded in the reflective use of an application: 

• consulting help systems,  
• making requirement inquiry and (re-)design contributions, 
• tailoring and updating an application. 

Therefore, appropriation activities should be conceptualized from a holistic per-
spective. Appropriation infrastructure should integrate the different support features 
to a wider extend than BSCWeasel has done so far. The infrastructure needs to be 
tightly integrated into the software artifact for an optimal support of usage design: 

• the communication channels should be activated directly from the access 
point of the functions they refer to [cf.: 44], 

• the communication channels should be structured according to the way the 
users perceive the functionality, 

• the communication channels should offer opportunities to create deictic ref-
erences towards specific aspects of the functionality. 

In order to better support appropriation work, the linkage between product- and 
process-oriented aspects of flexibility implies further fundamental design challenges. 
Users and designers need to build common ground with regard to the component 
structure of an application. Users build their mental models of technology based on 
the perceived functionality. Designers work is typically grounded in a long profes-
sional tradition of software modularization which has led to a separation of applica-
tion logic and user interface. However, when supporting appropriation work, this  
tradition needs to be challenged since it is the source of misunderstandings between 
designers and users. 

Our research needs to be extended to a theoretical level (e.g. connecting it to the 
discourse around ‘infrastructuring’, [33]) as well as on a technological level (e.g. fine 
grained component based tailorability beyond plug-in integration, additional support 
functions, different infrastructural background technologies, e.g. service-oriented 
architectures). Ultimately we hope to be able to establish a methodological perspec-
tive on end user development understood as software (usage!) design which is not 



 Appropriation Infrastructure: Supporting the Design of Usages 67 

dominated by the traditions of programmers but respects the work of all stakeholders 
involved. 

We conclude this paper with a refinement of the definition of EUD, picking up the 
consideration that EUD should support a continuous co-evolution of both, the system 
and the user [5, 10]. In times where software development methodology conceptions 
like ‘perpetual beta’ [48] becomes general accepted designers, co-workers and other 
stakeholders of the software artifacts are essential participants in the continuous  
co-evolution. This also means that personal and shared design activities as highly 
interwoven. A definition of EUD should be reflected this issue, thus we suggest a 
refinement as follows: EUD denotes a set of methods, tools and techniques to support 
end users to enforce their interests in the continuous co-evolutionary process by 
modifying individual artifacts or participating in the modification of shared artifacts. 

Acknowledgements 

We would like to thank IBM for supporting our research by means of an Eclipse In-
novation Award. We are also grateful to the German Science Foundation and the 
German Ministry of Research and Education (BMBF) for funding in the field of End 
User Development (EUD). 

References 

1. Appelt, W.: What Groupware Functionality do Users Really Use? In: Proceedings of the 
9th Euromicro Workshop on PDP 2001. IEEE Computer Society, Los Alamitos (2001) 

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Pearson 
Education (2000) 

3. Bentley, R., Dourish, P.: Medium versus mechanism: Supporting collaboration through 
customisation. In: Proceedings of ECSCW 1995. Kluwer Academic Publishers, Stockholm 
(1995) 

4. Bentley, R., et al.: Supporting Collaborative Information Sharing with the World Wide 
Web: The BSCW Shared Workspace System. In: The World Wide Web Journal: 
Proceedings of the 4th International WWW Conference, vol. 1, pp. 63–74 (1995) 

5. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: a Model-based Design Methodology. IEEE Trans. on SMC - Part A: 
Systems and Humans 37(6), 1029–1046 (2007) 

6. de Souza, C.S., Barbosa, S.D.J., Silva, S.R.P.: Semiotic engineering principles for 
evaluating end-user programming environments. Interacting with Computers 13 (2001) 

7. Dourish, P.: Developing a Reflective Model of Collaborative Systems. ACM Transactions 
on Computer-Human Interaction 2(1), 40–63 (1995) 

8. Finck, M., Gumm, D., Pape, B.: Using Groupware for Mediated Feedback. In: Proceedings 
of the Participation Design Conference 2004 (2004) 

9. Fischer, G., Girgensohn, A.: End-user modifiability in design environments. In: 
Proceedings of the SIGCHI conference on Human factors in computing systems. ACM 
Press, Washington (1990) 

10. Fischer, G., Ostwald, J.: Seeding, Evolutionary Growth, and Reseeding: Enriching 
Participatory Design with Informed Participation. In: Proceedings of the Participatory 
Design Conference (PDC 2002). 2002. CPSR, Malmö (2002) 



68 G. Stevens, V. Pipek, and V. Wulf 

11. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User 
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 
427–458. Springer, Heidelberg (2006) 

12. Floyd, C., Reisin, F.-M., Schmidt, G.: STEPS to Software Development with Users 
Source. In: Proceedings of the 2nd European Software Engineering Conference. LNCS. 
Springer, London (1989) 

13. Gamma, E., Wiegand, J.: The eclipse way processes that adapt (2005) 
14. Grüttner, M.: Entwicklung eines generischen Visualisierungs- und Interaktionskonzepts 

für kontextsensitive Hilfesysteme und prototypische Implementierung für das Eclipse 
RCP-Framework. In: Wirtschaftsinformatik. University of Siegen: Siegen (2007) 

15. Henderson, A., Kyng, M.: There’s No Place Like Home: Continuing Design in Use. In: 
Greenbaum, J.K. (ed.) Design at Work - Cooperative Design of Computer Artifacts, 
Hillsdale, pp. 219–240 (1991) 

16. IBM, Draft: Eclipse Platform Technical Overview, IBM Corporation and The Eclipse 
Foundation (2005) 

17. Karsten, H., Jones, M.: The long and winding road: Collaorative IT and organisational 
change. In: Int. Conference on Computer Supported Work (CSCW 1998). ACM Press, 
New York (1998) 

18. Kiczales, G., des Rivières, J., Bobrow, D.: The Art of the Meta-Object Protocol. MIT 
Press, Cambridge (1991) 

19. Lieberman, H., Paternó, F., Wulf, V. (eds.): End User Development. Springer, Berlin 
(2006) 

20. Lippert, M.: Eclipse Core - Unter der Haube, Teil 2: Ein Blick auf den 
Entwicklungsprozess des Eclipse-Plattform-Projekts. Eclipse Magazin (2006) 

21. Malone, T.W., Lai, K.-Y., Fry, C.: Experiments with Oval: a radically tailorable tool for 
cooperative work. ACM TOIS 13(2), 177–205 (1995) 

22. McLean, A., et al.: User tailorable systems: Pressing the issues with buttons. In: 
Proceedings of CHI 1990, Seattle, Washington (1990) 

23. Mørch, A.: Three Levels of End-user Tailoring: Customization, Integration and Extension. 
In: Kyng, M., Henderson, H. (eds.) Computers and Design in context, pp. 51–76. MIT 
Press, Cambridge (1997) 

24. Naur, P.: Programming as Theory Building. Microprocessing and Microprogramming 15, 
253–261 (1985) 

25. Ngwenyama, O.K.: Groupware, social action and organizational emergence: on the 
process dynamics of computer mediated distributed work. Accounting, Management and 
Information Technologies 8(4), 123–143 (1998) 

26. Oberquelle, H.: Situationsbedingte und benutzerorientierte Anpassbarkeit von Groupware. 
In: Hartmann, A., et al. (eds.) Menschengerechte Groupware - Software-ergonomische 
Gestaltung und partizipative Umsetzung, pp. 31–50. Stuttgart, Teubner (1994) 

27. Orlikowski, W.J.: Evolving with Notes: Organizational change around groupware 
technology. In: Ciborra, C. (ed.) Groupware & Teamwork, pp. 23–60. J. Wiley, Chichester 
(1996) 

28. Orlikowski, W.J., Hofman, J.D.: An Improvisational Model for Change Management: The 
Case of Groupware Technologies. Sloan Management Review, pp. 11–21 (Winter 1997) 

29. Pipek, V.: From Tailoring to Appropriation Support: Negotiating Groupware Usage. In: 
Faculty of Science, Department of Information Processing Science 2005. University of 
Oulu, Oulu (2005) 

30. Pipek, V., Kahler, H.: Supporting Collaborative Tailoring. In: Lieberman, H., Paterno, F., 
Wulf, V. (eds.) End-User Development. Springer, Berlin (2006) 



 Appropriation Infrastructure: Supporting the Design of Usages 69 

31. Pipek, V.W.: A Groupware’s Life. In: Proceedings of the Sixth European Conference on 
Computer Supported Cooperative Work (ECSCW 1999). Kluwer, Dordrecht (1999) 

32. Rumpe, B., Schröder, A.: Quantitative Untersuchung des Extreme Programming Prozesses 
(2001) 

33. Star, S.L., Bowker, G.C.: How to infrastructure. In: Lievrouw, L.A., Livingstone, S. (eds.) 
Handbook of New Media - Social Shaping and Consequences of ICTs, pp. 151–162. 
SAGE Pub., London (2002) 

34. Stevens, G.: BSCWeasel – How to make an existing Groupware System more flexible. In: 
Demo presentation on the 9th European Conference on Computer-Supported Cooperative 
Work (2005) 

35. Stevens, G., Budweg, S., Pipek, V.: The BSCWeasel and Eclipse-powered Cooperative 
End User Development. In: Proc. Workshop Eclipse as a Vehicle for CSCW Research at 
the Int. Conf. on CSCW 2004, Chicago, IL, USA (2004) 

36. Stevens, G., Wiedenhöfer, T.: CHIC - A pluggable solution for community help in context. 
In: Proc of the 4th NordiCHi (2006) 

37. Stiemerling, O.: Component-Based Tailorability. In: Institut für Informatik III, Rheinische 
Friedrich-Wilhelms-Universität, Bonn (2000) 

38. Suchman, L.: Located accountabilities in technology production. Scandinavian Journal of 
Information Systems 14(2), 91–105 (2002) 

39. Suchman, L.A.: Plans and situated actions: the problem of human-machine 
communication. Cambridge University Press, Cambridge (1990) 

40. Törpel, B., Pipek, V., Rittenbruch, M.: Creating Heterogeneity - Evolving Use of 
Groupware in a Network of Freelancers. Special Issue on Evolving Use of Groupware, 
Computer Supported Cooperative Work: The Journal of Collaborative Computing 
(JCSCW)  12(1-2) (2003) 

41. Twidale, M.B.: Over the Shoulder Learning: Supporting Brief Informal Learning. 
Computer Supported Cooperative Work 14(6), 505–547 (2005) 

42. von Hippel, E., Katz, R.: Shifting Innovation to Users via Toolkits. Management 
Science 48(7), 821–833 (2002) 

43. Wulf, V.: Evolving Cooperation when Introducing Groupware – A Self-Organization 
Perspective. Cybernetics and Human Knowing 6(2), 55–75 (1999) 

44. Wulf, V., Golombek, B.: Exploration environments: concept and empirical evaluation. In: 
Proc. of the GROUP (2001) 

45. Wulf, V., Golombek, B.: Direct Activation: A Concept to Encourage Tailoring Activities. 
Behaviour & Information Technology 20(4), 249–263 (2001) 

46. Wulf, V., Rohde, M.: Towards an Integrated Organization and Technology Development. 
In: ACM Proceedings of the Symposium on Designing Interactive Systems (1995) 

47. Wulf, V., Pipek, V., Won, M.: Component-based tailorability: Enabling highly flexible 
software applications. Int. J. Hum.-Comput. Stud. 66(1), 1–22 (2008) 

48. Wikipedia: Perpetual beta. Online resource (November 28, 2008), 
http://en.wikipedia.org/wiki/Perpetual_beta 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 70–85, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Supporting End Users to Be Co-designers of Their Tools 

Maria Francesca Costabile1, Piero Mussio2,  
Loredana Parasiliti Provenza2, and Antonio Piccinno1 

1 Dipartimento di Informatica, Università di Bari, Bari, Italy 
2 Dipartimento di Informatica e Comunicazione, Università di Milano, Milano, Italy 

{costabile,piccinno}@di.uniba.it, 
{mussio,parasiliti}@dico.unimi.it 

Abstract. Nowadays very different people use computer systems for their daily 
working activities, but also for fun and entertainment or only to satisfy their 
information needs. Designers are doing their best to create computer systems 
that work as end users expect, but it must be honestly admitted that they often 
fail and end users have all rights to complain. In order to improve this situation 
and create better systems, participatory approaches have been proposed, which 
involve end users in the design and development process. However, this 
solution is not without flaws, mainly because timing and ways of users' 
participation are very critical. In this paper we discuss our approach to create 
working systems, which is based on a star model of the software life cycle that 
drives system design, development and evolution, since software design and 
development is seen as an evolutive process, driven by end-users activities in 
the real life. System development does not end with its first release; it is 
experimented by its end users and further evolved on the basis of their 
feedbacks. End users are truly engaged in the software life cycle as co-designers 
and experimenters of the software tools they will use in various application 
domains. 

Keywords: Design Methodology, Star Life Cycle, Co-Evolution of Users and 
Systems, End-User Development. 

1   Introduction 

Current development of Information and Communication Technology (ICT) leads to a 
continuous growth of both computer systems and end-user population. Designers are 
doing their best to create computer systems that work as end users expect, but it must 
be admitted that they often fail [1]. Consequently, people are not satisfied with the 
system they use and companies investing in ICT are unhappy because a lot of money 
and resources are wasted.  

In order to design successful interactive systems that meet users’ expectations and 
improve their daily life, a designers’ major issue is: “How to define an interaction 
language that allows end users to easily perform their activities”. This language must 
be expressive enough to allow end users to formulate the solutions to their problems, 
and yet not so rich to generate user disorientation. Thus, on one side there is a 



 Supporting End Users to Be Co-designers of Their Tools 71 

notation problem, while, on the other side there is a problem of system complexity. 
As to notation, each element of the end user-system dialog must be expressed with 
symbols the user can correctly interpret in her/his context and application domain. As 
to complexity, the language should offer to its users all and only the tools they need to 
perform their activities in a certain time and context. 

Many questions arise. Who can define and evaluate notations understandable by 
users? Who can identify the set of tools required in a certain context during a certain 
activity? The answer is: the end users themselves. User involvement in the design 
team is the key point of participatory design approaches [2]. However, this solution is 
not without flaws, as clearly stated in [1]. Indeed, it is well known that end users are 
unreliable when requested to explicitly explain their needs and envision system 
functionalities, while they are very capable of detecting problems and difficulties 
when using a software system [1], [3]. 

We consider end users as domain experts and have worked with them in the design 
and development of systems in various application domains [4], [5]. Based on this 
experience, over the past few years we have been developing the Software Shaping 
Workshop (SSW) design methodology. We show in this paper that the SSW 
methodology is able to truly engage users at times they can provide valuable 
indications, as recommended in [1]. This goal is achieved by localizing the interface 
to user culture and allowing users to interact directly with the system under 
development. In this way, users are better engaged since they experiment the system 
in their ‘sphere of work’ [1]. In other words, the SSW methodology adopts a star 
model of the software life cycle, which anticipates the time when users test the system 
in their work practice [6]. This methodology acknowledges software design as an 
evolutive process, driven by user activities in the field. System development does not 
end with its first release; it is experimented by its end users and further evolved on the 
basis of their feedback. The system keeps evolving during time, since its use changes 
users’ working practices, so that they require new functionalities and new tools [7]. 

End users are willing to be more involved in designing and developing their tools. 
The boom of the Web 2.0 is pushing people not only to use software, but also to create 
it. The Web already supports some kind of End-User Development activities, ranging 
from simple parameter customization to modification and assembly of components, 
creating simulations, games and web contents [8]. We will show in this paper how the 
SSW methodology supports the creation of computer systems that evolve in time and 
allow end users to be co-designers of their tools. In this way, it provides a contribution 
towards computer systems that work successfully in the real life. 

The paper is organized as follows. Section 2 discusses motivations of this work. 
Sections 3 and 4 describe our approach to system design, development and evolution. 
Section 5 reports a case study that illustrates the practical application of the described 
concepts. Section 6 concludes the paper.  

2   Background and Motivation 

The diffusion of the World Wide Web as the platform for a wide variety of 
applications raises many expectations about the possibilities offered by web-based 
interactive systems. The interaction dimension creates new challenges for system 
specification, design and implementation. First of all, the use of an interactive system 



72 M.F. Costabile et al.  

cause the working environment and organization to evolve, and force the system to 
adapt to the evolved user, organization and environment (called co-evolution of users 
and systems, see [5], [9]). Moreover, current techniques for software specification and 
design, such as UML, are very useful for software engineers, but they are often 
unfamiliar to users’ experience, language, and background so that they fail to provide 
a good communication between application designers and users. This communication 
gap is a reason why software systems are often poorly usable [10]. To overcome these 
problems, software development methodologies aiming at participatory design [2] and 
open-ended design [11] are invoked. However, designers must make sure that end 
users are engaged at opportune moments, when they can provide useful suggestions. 

A further reason that makes very difficult the creation of successful systems is the 
diversity of end users: they have very different physical, cognitive and cultural 
abilities, needs, interests and activities they want to perform with computer systems. 
This diversity calls for general, adaptive systems [10]. The temptation is to develop 
very general systems, which may easily become Turing Tar Pits in which “everything 
is possible but nothing of interest is easy” [12]. The opposite temptation is to create 
specialized systems, focused on the activity of a well-specified user – or a well 
specified and restricted community of users linked by similar practices or similar 
interests – working in a restricted context. In such systems Fischer warns about the 
perils of this tendency: beware of the Turing Tar Pit inverse, i.e., overspecialized 
systems that permit only a limited number of activities, which cannot be generalized 
nor adapted and evolved [13]; they become a strict cage for end users by limiting their 
strategies for achieving their goals. Indeed, domain-specific systems support certain 
problem contexts but the ability to extend them is very limited; even minor 
incremental changes are often impossible. 

The design methodology we have developed in the last few years is suitable for 
developing interactive systems that are not Turing Tar Pits or the inverse. The 
methodology stems from our experience in participatory design of several 
applications. However, our participatory approach is very different from the 
traditional one [2] that recommends to involve end users in the design team just to 
provide advice on their needs and expectations. They are more engaged in the overall 
design and development process, being not only co-designers but also experimenters 
of the evolving system.  

Involving users in software project initiatives has been frequently indicated as a 
critical factor in the creation of successful software [14]. It is well acknowledged that 
it is good practice to involve users in designing the software applications with which 
they will be working. This principle of participatory design is reflected in a wide 
spectrum of methodologies in use today, such as agile programming.  

Recent researches show that, because end users are busy with their work, they will 
generally not be fully engaged in analyzing and evaluating new systems [1]. They 
become committed only when the system impacts on their daily life, i.e. when the 
system is released in the field. In the design and development phases, attempts to 
increase user participation are helpful, but only partially effective. Our experience is 
in line with this view: only when a new system impacts their daily practices, end users 
are able to evaluate it and raise significant issues about its functionalities and 
usability. This does not mean that involving end users in early phases of the design 
process is of no value, because they certainly provide useful feedback; it suggests that 



 Supporting End Users to Be Co-designers of Their Tools 73 

we have to revise the different stages of system development. Wagner and Piccoli 
recommend that post-implementation activities that try to solve the many problems 
raised by end users when they start working with the final system must be 
legitimized: they are not signs of system failure, but they are the only useful way of 
facing with actual users’ needs and expectations [1]. 

One of the novelties of the SSW methodology is the proposal of modifying the 
traditional software life cycle by considering software design as an evolutive process, 
during which end users have the possibility of working in real settings with prototypes 
that will be evolved on the basis of the results of this work. Thus, end users are not 
required to envision since they experience what the end product will be and how it 
will impact on their work practice, being able to provide very valuable feedback. 

In today information and communication society, end users are no longer passive 
consumers of computer tools, but they are shifting toward a more active role of 
information and software artifacts producers [15]. This is also highlighted by 
Shneiderman’s claim: “the old computing was about what computers could do; the 
new computing is about what users can do” [16].  

Our approach aims at developing software environments that support end users in 
performing their activities of interest, but also allow them to tailor these environments 
to better adapt them to their needs, and even to create or modify software artifacts. 
The latter are defined activities of End-User Development (EUD), to which a lot of 
attention is currently devoted by various researchers in Europe and all over the world 
[17], [18], [19], [20]. 

EUD implies the active participation of end users in the software development 
process. In this perspective, tasks that are traditionally performed by professional 
software developers are transferred to the users, who need to be specifically supported 
in performing these tasks. User participation in the software development process can 
range from providing information about requirements, use cases and tasks, as required 
in traditional participatory design, to creating/modifying software artefacts. Some EUD-
oriented techniques have already been adopted by software for the mass market such as 
the adaptive menus in MS Word™ or some Programming by Example techniques in MS 
Excel™. However, we are still quite far from their systematic adoption. 

To permit EUD activities, we consider a two-phase process, the first phase being 
designing the design environment (meta-design phase), the second one being 
designing the applications by using the design environment. The two phases are not 
clearly distinct, and are executed several times in an interleaved way, because the 
design environments evolve both as a consequence of the progressive insights the 
different stakeholders gain into the design process and as a consequence of the 
feedbacks provided by end users working with the system in the field. This two-phase 
process requires a shift in the design paradigm, which must move from user-centered 
and participatory design to meta-design [4], [21].  

3   A Strategy for Supporting Users’ Co-design  

Meta-design refers to the design of environments that allow end users to be actively 
involved in the continuous development, use and evolution of systems. In this 
perspective, meta-design underlines a novel vision of system design, which is the 
basis of our approach and considers end users as co-designers of the tools they will 



74 M.F. Costabile et al.  

use. All stakeholders of an interactive system, including end users, are ‘owners’ of a 
part of the problem: software engineers know the technology, end users know the 
application domain, Human-Computer Interaction (HCI) experts know human factors, 
etc.; they must all contribute to system design by bringing their own expertise. 
Stakeholders need different software environments, specific to their culture, 
knowledge and abilities, through which they can contribute to shape software 
artifacts. They should also exchange among themselves the results of these activities, 
to converge toward a common design. Moreover, co-evolution of users and systems 
forces all stakeholders to take part in a continuous evolution of the system [6], [20]. 
This can be carried out, on one hand, by end users, who can perform tailoring 
activities to adapt the software environments they use to their evolved needs and 
habits. On the other hand, end users should collaborate with all the other stakeholders 
in the evolution of the interactive system rather than just in the original design. 

Because of the diversity of end users, the challenge is to ensure the universal access 
and universal usability of interactive systems. The slogan “one size fits all” cannot be 
applied to the user interface; it is well known that people experience many difficulties 
when they interact with an interface presenting a huge number of functionalities, being 
overwhelmed with unnecessary interaction possibilities and often disoriented by them. 
Our approach aims at providing different communities of users with software 
environments that they may access and manipulate by exploiting their own system of 
signs (notation) [22]. We recognize, with Iverson, that a notation developed by users 
during years of experiences is a tool of thought [23]. However, we do not seek for a 
universal notation, but acknowledge that each user community has developed a notation 
that properly expresses the concepts and activities of that community.  

The interaction language exploited in each software environment is derived from 
the notation used by the community the environment is devoted to. This strategy has a 
drawback: it makes difficult for the user to understand the improvements on the 
system proposed by other stakeholders. To overcome this drawback and make fruitful 
this clash among laguages (and cultures), the proposed approach exploits system 
prototypes as boundary objects, supporting the communication among the different 
stakeholders. Each stakeholder describes the improvement s/he wants to add to the 
prototype by creating an updated executable prototype and possibly annotating it. The 
others stakeholders receive the annotated prototype and evaluate the proposal by 
reading annotations and concretely experimenting the prototype in their own 
environment while performing their work activity, thus living concretely the 
experience designed by the proposer. 

The Software Shaping Workshop (SSW) methodology we have described in [4] 
adopts a meta-design participatory approach that does not end with the release of the 
software, but continues throughout the whole software life cycle. A team of experts, 
including software engineers, HCI experts and domain experts, designs, implements 
and evolves an application throughout its life cycle. The aim of this methodology is to 
design interactive systems that are easily understood by their users because they 
“speak” users’ languages. An interactive system is designed as a network of software 
environments, called Software Shaping Workshops (SSW or briefly workshops), each 
of them being either an environment through which end users perform their activities 
or an environment through which stakeholders participate in the design of the whole 
system, even at use time. An SSW is designed in analogy with an artisan or engineer 



 Supporting End Users to Be Co-designers of Their Tools 75 

workshop, the workroom where an expert finds all and only those tools necessary to 
carry out her/his activities. The tools reflect the experts’ needs. For example, the 
blacksmith’s hammer is suitable for heavy work and has different features than the 
shoemaker’s hammer, suitable for more precise work. Following the analogy, each 
SSW adopts a domain-oriented interaction language tailored to end-user culture, in 
that it is shaped and defined by evolving the traditional end-user notations and system 
of signs. In this sense, we refer to it as end-user language. Moreover, each SSW 
provides all and only those tools that are required to perform the specific activities to 
which the workshop is devoted. The data on which end users operate are thus 
represented as elements of the language. Note that using the word ‘workshop’ to 
denote the workroom we adopt the point of view of our users rather than the one of 
computer scientists who denotes, by this word, a brief intensive meeting. 

 

Fig. 1. The star life cycle model [1] 

The SSWs are continually updated both because experience shows that the first 
release of a system does not generally work properly [1] and because the use of a 
system changes the work practice and determines user evolution (for more details on 
user and system co-evolution see [5]). In other words, system design and development 
do not end with its first release, since it evolves by following a star life cycle 
represented in Fig. 1 [6]. This model includes the use and maintenance activities 
performed during the working life of the system. The novelty of the SSW approach is 
that the activities in the life cycle are performed by a team including users 
representatives. System development can start from any point in the star (as shown by 
the entry arrows in the model in Fig. 1), followed by any other stage (as shown by the 
double arrows), always performing evaluation, which is at the center of the star. In 
this way, the requirements, the design and the product gradually evolve, becoming 
step by step well defined. The Use/Maintenance box refers to activities in which end 



76 M.F. Costabile et al.  

users are truly engaged; they practice in the field with the current version of the 
system. They can enrich the system by creating new tools and, possibly, find out new 
ways to use it; they also discover flaws in its use [1], [24]. All this is possible when 
people use the system in real life, it cannot be imagined before. New iterations of 
design and development are then necessary.  

Results reached at each stage of the system life must be evaluated before passing to 
the next stage. This is why evaluation is the star center. In the SSW methodology, end 
users are always required to experiment the current version of the system under 
development: they express their observations and suggestions, resulting from such 
experiments. To this aim, they are allowed to annotate their own environment and to 
make these annotations available to the design team [25]. More details about the 
communications among workshops in the network, in order to evolve the system, are 
in [4], [5], [26]. Analogously, Software Engineering (SE) experts and HCI experts 
operate on prototypes and update them. The negotiation among the members of the 
design team is based on the use of prototypes. A modification of the system is either 
accepted and executed, or rejected by the team after each member has experienced it 
and the different findings have been discussed [25].  

The SSW architecture supports the methodology: a) each stakeholder operates 
according to her/his mental model by using a SSW customized to her/his notations; b) 
prototypes (as executable specifications) and annotations, by which each stakeholder 
describes why and how a prototype must be updated, are exchanged among SSWs. 

On the whole, the SSW methodology brings to a process of software design, 
development and evolution that fosters the active participation of end users, involving 
them when they can be more useful and productive. The process always starts with 
defining a prototype, which is the seed of the whole process. This prototype can be an 
existing system that must be improved, or a mock up that embodies the client 
specification, if the process starts from scratch. Each stakeholder in the design team 
experiments the prototype using it in her/his SSW, and finds out usability problems, 
or unnecessary elements, or inadequacies of the system with respect to the work 
organization. Each stakeholder can modify and/or annotate the prototype at hand to 
make explicit her/his observations. From these experiments, several proposals emerge 
as different improvements of the original prototype. Such different proposals are 
concurrently developed, subjected to a continuous experimentation and negotiation 
among the stakeholders, until an agreed proposal emerges. The interaction language, 
i.e., the set of user actions, their notation and interaction style, is progressively 
defined in the process, under the critical influence of the domain experts and all 
involved end users. As to the notation, the lexicon (textual and graphical) and the 
syntax are computerized versions of those used by the end users in their domain, 
properly enriched and formalized to be executable by a computer. The formalization 
process implies the careful design of the presentation elements of the user interface. 

4   SSW Architecture as a Network of Customized Environments 

Fig. 2 shows the SSW architecture, organized as a network of SSWs, that supports a 
community of end users in performing their activities as well as the design team in 
designing the seed of the workshops and in evolving them. The case study refers to 



 Supporting End Users to Be Co-designers of Their Tools 77 

the development of a web application to support the activities of a consortium of 
small and medium-sized Italian companies operating in the confectionery field, called 
CIDD (“Consorzio Italiano Distribuzione Dolciaria”). More details on the case study 
are given in the next subsection. 

SE

SalesManager HCI 2

1

3AssocRep1 AssocRepN

4

…CustN.1 

…

CustN.K

high

low high

low

U
sa

bi
lit

y
fo

r
en

d 
us

er
s

C
om

pu
ta

tio
na

lp
ow

er

Partner1 PartnerN…

Assoc1 AssocN…

…

…Cust1.1 Cust1.H…

To Use level

To Use level

MetaMeta--DesignDesign
LevelLevel

Design Design LevelLevel

UseUse LevelLevel

SE

SalesManager HCI 22

11

33AssocRep1 AssocRepN

4

…CustN.1 

…

CustN.K

high

low

high

low

high

low high

low

high

low

U
sa

bi
lit

y
fo

r
en

d 
us

er
s

C
om

pu
ta

tio
na

lp
ow

er

Partner1 PartnerN…

Assoc1 AssocN…

…

…Cust1.1 Cust1.H…

To Use level

To Use level

MetaMeta--DesignDesign
LevelLevel

Design Design LevelLevel

UseUse LevelLevel

 

Fig. 2. The SSW network for the case study 

The SSW network of an interactive system is organized in three different levels 
based on the different types of activities the workshops are devoted to: the use level 
includes workshops that are used by end users to perform their tasks (called 
application workshop); the design level includes workshops for designing and 
adapting the application workshops in accordance with the evolving knowledge and 
user needs (called system workshops); and the meta-design level includes the system 
workshop for software engineers, which allows them to generate and maintain all the 
workshops in the network.  

The workshops in the architecture are of three types: 

• SE workshop (“1” in Fig. 2): this workshop supports the software engineers in 
designing and evolving all the other workshops in the architecture, according to the 
requests of the different stakeholders. Interacting with SE workshop, software 
engineers perform their activities using programming languages and other 
development tools; they have high professional competence on software, low 
competence on domain activities. Even if software engineers may be considered 
end users when they interact with software environments, case tools, etc. created 
by others, in this paper end users are the domain experts for whom the system is 
developed and they do not have generally any expertise in computer science. The 
interaction languages in the SE workshop are characterized by high computational 
power (Turing Machine equivalent) but cannot in general be understood and 
managed by end users, i.e., they have low usability with respect to end users. 
Hence, the SE workshop would be a Turing Tar Pit for end users. In order to avoid 
this, more usable environments are designed for end users even if with lower 
computational power. 



78 M.F. Costabile et al.  

• Design workshops (“2” and “3” in Fig. 2): these workshops support the members 
of the design team other than software engineers in designing and evolving the 
application workshops. Such stakeholders have no (or little) competence in 
computer science; some of them have competence on HCI design, so that they can 
bring human factors in system design; other stakeholders have competence on 
domain activities. These team members use specialized interaction languages that 
have less computational power than the ones used by software engineers, in that 
they permit a limited set of operations. However, they are more usable for end 
users in that they can be correctly interpreted by end users. 

• Application workshops (“4” in Fig. 2): these workshops are devoted to end users to 
perform their activities in the real world. Interacting with application workshops, 
end users perform their well-defined set of activities using domain-oriented 
languages that reflect and empower their traditional notations. Such languages 
permit the definition and execution of a limited set of computations, those of 
interest for the end-user community and are characterized by a low computational 
power. The characteristic structures of the alphabet elements used by an 
application workshop are words, icons, symbols that are significant for end users 
and can be correctly interpreted. Hence, the usability with respect to end users is 
high. Due to these languages, the application workshops are in danger of becoming 
the inverse of the Turing Tar Pit, where everything is easy and very little of interest 
is possible. Anyhow, this danger is avoided thanks to the support to co-evolution 
offered by our approach. Indeed, new functionalities can be provided to end users 
when they need them. 

5   A Case Study 

To provide a concrete example of these concepts, let us describe how the SSW 
methodology is being applied to the development of a web application supporting the 
activities of CIDD consortium. The application provides the consortium companies 
with several services such as price lists, discounts, order management, etc. and 
permits some of the consortium stakeholders to exchange information and cooperate 
through the Web. 

After a field study, we identified the following stakeholders:  

− the chairman, who is the official responsible for the consortium (e.g. he organizes 
and chairs meetings of associated companies, signs the balance sheet, etc.);  

− the sales manager, who manages all the consortium activities;  
− the consortium secretary, who works closely with the sales manager; 
− the partner companies, which hold agreements with the consortium to provide 

goods to associated companies at special prices; 
− the associated companies, which purchase products from the partner companies; 
− the customers of associated companies. 

A special role in the consortium is played by the sales manager, who needs to tailor 
the software environments to be used by the associated companies and by the partner 
companies, since he wants to decide about the services to provide to them. In turn, each 
associated company needs to define the environments to be used by their customers. 



 Supporting End Users to Be Co-designers of Their Tools 79 

This is a typical case where various users want to co-design software environments and 
tools, thus the meta-design approach of the SSW methodology can be successful.  

In the studies carried out for requirement analysis, four types of end users have 
been identified: 

• power users: they are able to visualize, insert, modify and delete workshop contents, 
define access rules and even design application workshops; the role of the power user 
is played by the sales manager and his secretary, who works on his behalf; 

• associated companies: their representatives can access contracts, catalogues, 
promotions, competitions, make orders and design/tailor the application workshops 
for their customers; 

• registered guests: they are the customers of the associated companies and, through 
their workshops, they can visualize specific contents; 

• unregistered guests: any user who visualizes the portal home page when browsing 
on the web. 

The chairman is a political stakeholder, not interested in the portal use. Company 
customers and partners are different communities of registered guests.  

A system used by different user communities is often overgeneralized for some and 
overspecialized for others. The SSW methodology avoids this: a system is generated 
as network of workshops, each one specific for tasks and needs of a user community.  

The seed of the current version of the CIDD portal was a first release of the 
application developed as a static web site made of HTML pages that the CIDD 
manager had commissioned to a company. The first user of that release was the 
manager himself, who was not satisfied at all. The application lacked some 
functionalities he considered necessary and presented various usability problems; 
more importantly, his main complain was that he did not have the possibility of 
shaping the web pages for the other end users (associated companies, partner 
companies, etc.). In fact, one of the primary concerns of the manager is that he wants 
to decide the services and the functionalities of the other end users. He is a demanding 
user that wants to design software environments and tools used by himself and by the 
other users of the consortium portal.  

Taking into account all manager’s complains and requests, the new version of the 
CIDD portal was developed with the SSW methodology. By considering the different 
types of end users, the network architecture shown in Fig. 2 was defined. At the 
design level there is a workshop for HCI experts, a workshop for the sales manager 
and a number of workshops for representatives of associated companies 
(“AssocRep1”, ..., “AssocRepN” in Fig. 2). The latter are used by representatives of 
associate companies to create and modify the application workshops devoted to their 
customers (“Cust1.1”,..., “Cust1.H”,.., “CustN.1”,..., “CustN.K”). At use level there 
are application workshops used by associated companies (“Assoc1”,..., “AssocN”) 
and application workshop used by partner companies (“Partner1”,..., “PartnerN”) for 
their consortium activities. 

Through their system workshop at the top level of the network, software engineers 
design and develop a first release of the system workshops for different experts (in the 
case study, sales manager and representatives of associated companies). By 
interacting with their own system workshops, such experts, who know end 
 



80 M.F. Costabile et al.  

 

Fig. 3. The SalesManager workshop. The sales manager is generating services for associated 
companies. 

usersworking context and habits, design and develop the application workshops 
tailored/specialized for different end-user communities (CIDD customers, associated 
companies, partners). CIDD customers, associated companies and partners use their 
workshops to carry out their tasks. When a user requires to perform new tasks not 
supported by her/his specialized workshop, s/he annotates the problems and sends it 
to corresponding domain expert, who evolves the workshop according to the new user 
requirements, by collaborating, if necessary, with HCI experts to fix usability 
problems. Whenever the domain expert system workshop is not so powerful to evolve 
another workshop, s/he asks software engineers for the missing tools by sending them 
an annotation. Software engineers thus evolve the workshop of the domain expert 
who is then able to evolve the application workshop as required. 

Some examples on how end users act as co-designers are provided in the 
following. In the SalesManager workshop, the sales manager finds tools that allow 
him to design the application workshops for each associated company and each 
partner company, and the system workshops for associate company representatives 
(“AssocRep1”,..., “AssocRepN” in Fig. 2). This workshop is shown in Fig. 3. Let us 
suppose that the sales manager wants to design the system workshop to be used by the 
representatives of an associated company, also providing it with some services. He 
designs this workshop by direct manipulation. Specifically, he selects the company 
from a drop-down list available in the central area of his workshop (the list is shown 
in Fig. 3); he also selects a service he wants to provide from another drop-down list  
 



 Supporting End Users to Be Co-designers of Their Tools 81 

 

Fig. 4. A screen shot of the workshop for associated company representatives. 

(available on the right of the previous one, not open in Fig. 3) and clicks on the 
association button (the latter on the right in Fig. 3) to actually associate the service to 
that company workshop. He does this for all services he wants to provide. As a result, 
the workshop for the representatives of the selected company is created, shown in Fig. 
4. Nine services are available and they are listed in the left panel of the workshop. 
Fig. 4 actually shows a situation in which the user has selected a service from the left 
panel and the central area shows the tools available to the user for using that service. 
Such tools are provided through an interaction language that is suited to the culture 
and skills of the users, who understand the meaning of all language elements and 
easily work with them. 

Similarly, the associated company’s representatives use their workshop to design 
the workshops to be used by their customers (registered users). Referring again to  
Fig. 4, here the user defines the product catalogues for a customer, with prices and 
percentage of revenues, and how it can be visualized. The central area shows all 
companies that provide products to the customer. For each company, the user 
specifies in the appropriate field the percentage of revenues, and also decides whether 
to show prices in the catalogue or not, by clicking on a radio button. Fig. 5 shows how 
the catalogue is visualized in the customer workshop. Again, the user activity is 
specified through direct manipulation of the elements of the interaction language  
 



82 M.F. Costabile et al.  

 

Fig. 5. A screenshot of the workshop for a customer 

implemented in that workshop. It is worth noting that the workshop in Fig. 4 provides 
its users with a communication area (the rectangular area at the bottom of Fig. 4) 
through which representative of associated companies can exchange messages in the 
network to foster the co-evolution process [5]. 

Through the developed system, each CCID user has available a workshop tailored to 
her/his needs, which allows users to interact through a domain-oriented language 
familiar to their culture and skills, thus avoiding the system to be a Turing Tar Pit. On 
the other side, users do not perceive their workshops as the inverse of Turing Tar Pits, 
which limit their activities, since the co-evolution process is supported throughout the 
software life cycle, making possible to add new functionalities, as required by end users. 

We agree that the design of such complex systems requires “more knowledge than 
any one single person can possess, and the knowledge relevant to a problem is often 
distributed and controversial” [27]. The SSW methodology allows a community of 
stakeholders to create a system through their collaborative negotiations. This 
negotiation is based on the exchange of messages which are of two types: executable 
specifications of workshops; and annotations about these workshops. These 
specifications are XML-based documents [28]. A stakeholder designing or updating a 
workshop (the example of sales manager designing the workshop for an associated 
company, depicted in Fig. 3) modifies the executable specification that, when 



 Supporting End Users to Be Co-designers of Their Tools 83 

interpreted by the browser, generates the new workshop. The user interface of this 
new workshop is created by: 

1. the browser interpreting the document resulting from the design process; 
2. the user, who can set configuration parameters (the associated company 

representative configures her/his workshop). 

Therefore, the stakeholder designing another workshop performs a programming 
activity that goes beyond configuration. By configuration we intend to set parameters 
in order to select among functionalities available in that workshop. 

In this case study, there is a variety of end users that are experts in a specific 
domain, but not in computer science. They need to use the web application to perform 
their work tasks, but they are not and do not want to become computer scientists. 
They are permitted to shape and modify software artefacts through interaction 
languages, whose elements (technical words, icon, etc.) are familiar to them. When 
they modify and update the CIDD application, they actually program, but they are not 
aware of this, also because they do not use conventional programs that would be too 
unfamiliar to their culture and skills. They use a language through which they 
compose new software artefacts by construction, similarly to children’s program 
construction [29]. Working with these languages, CIDD users perceive that they are 
simply carrying out their work activities and they are highly motivated. The simplicity 
of the user interface is a strength of the SSW approach: “let user do simple things to 
generate powerful results”. In other words, they are unwitting software developers, as 
analysed in [15].  

6   Conclusions  

This paper has discussed an approach aimed at creating interactive systems that 
address the needs of different communities of users, in which operations are easy to 
perform and many interesting activities, including end-user development activities, 
can be carried out. In this way, it is possible to avoid that the systems are perceived by 
their users as Turing Tar Pit in which "everything is possible but nothing of interest is 
easy". The opposite temptation is also avoided, namely the creation of overspecialized 
systems, in which operations are easy to perform but only specific activities, which 
cannot be generalized nor adapted and evolved, are possible; these systems are 
perceived as the inverse of Turing Tar Pits, i.e. a strict cage that limits the activities of 
their users. 

The approach requires that an interactive system is designed as a network of 
software environments, called Software Shaping Workshops, through which the 
different stakeholders involved in system design, including end-users’ representatives, 
are able to collaborate in the design and the evolution of the network of workshops 
and to carry out activities of interest in their application domain. 

The SSW methodology goes beyond the traditional participatory design that has 
been in practice for the last two decades [2]. End users are not only involved in the 
design phase to provide advice on their needs and expectations, they are truly engaged 
in the whole process having the possibility of working in real settings with prototypes 
that will be evolved on the basis of their feedback. The overall software life cycle is 



84 M.F. Costabile et al.  

revised. System development does not end with its first release; it is used by people in 
their work practice and continuously evolved to comply with further users’ needs, 
organization requirements and/or novel technology. 

The concepts are explained through examples taken from a case study relative to 
the development of a web application to support the activities of a consortium of 
small and medium-sized Italian companies, which operate in the confectionery field.  

Acknowledgments 

This work was supported by the Italian MIUR and by EU and Regione Puglia under 
grant DIPIS. We thank the CIDD consortium and Nicola Claudio Cellamare for their 
collaboration in the development of the CIDD application. 

References 

1. Wagner, E.L., Piccoli, G.: Moving Beyond User Participation to Achieve Successful Is 
Design. Commun. ACM 50, 51–55 (2007) 

2. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. Lawrence 
Erlbaum Associates, Inc., Mahwah (1993) 

3. Mayhew, D.J.: The Usability Engineering Lifecycle: A Practitioner’s Handbook for User 
Interface Design. Morgan Kaufmann Publishers Inc., San Francisco (1999) 

4. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: A Model-Based Design Methodology. IEEE Transactions on System 
Man and Cybernetics Part A-Systems and Humans 37, 1029–1046 (2007) 

5. Costabile, M.F., Fogli, D., Marcante, A., Piccinno, A.: Supporting Interaction and Co-
Evolution of Users and Systems. In: International Conference on Advanced Visual 
Interface, pp. 143–150. ACM Press, Venice (2006) 

6. Bianchi, A., Bottoni, P., Mussio, P.: Issues in Design and Implementation of Multimedia 
Software Systems. In: IEEE International Conference on Multimedia Computing and 
Systems (ICMCS 1999), pp. 91–96. IEEE Computer Society, Los Alamitos (1999) 

7. Nielsen, J.: Usability Engineering. Academic Press, San Diego (1993) 
8. Fogli, D., Colosio, S., Sacco, M.: Managing Accessibility in Local E-Government 

Websites through End-User Development: A Case Study. Int. J. Universal Access in the 
Information Society (to appear) 

9. Bourguin, G., Derycke, A., Tarby, J.C.: Beyond the Interface: Co-Evolution inside 
Interactive Systems - a Proposal Founded on Activity Theory. In: IHM-HCI, pp. 297–310. 
Springer, Heidelberg (2001) 

10. Folmer, E., van Welie, M., Bosch, J.: Bridging Patterns: An Approach to Bridge Gaps 
between SE and HCI. Information and Software Technology 48, 69–89 (2006) 

11. Hix, D., Hartson, H.R.: Developing User Interfaces: Ensuring Usability through Product & 
Process. John Wiley & Sons, Inc., Chichester (1993) 

12. Perlis, A.J.: Special Feature: Epigrams on Programming. SIGPLAN Not. 17, 7–13 (1982) 
13. Fischer, G.: Beyond Binary Choices: Understanding and Exploiting Trade-Offs to Enhance 

Creativity. First Monday 11 (2006) 
14. Buono, P., Simeone, A.L.: An Experience About User Involvement for Successful Design. 

In: D’Atri, A., De Marco, M., Casalino, N. (eds.) Interdisciplinary Aspects of Information 
Systems Studies. Springer, Heidelberg (to appear) 



 Supporting End Users to Be Co-designers of Their Tools 85 

15. Costabile, M.F., Mussio, P., Parasiliti Provenza, L., Piccinno, A.: End Users as Unwitting 
Software Developers. In: Proceedings of the 4th international workshop on End-user 
software engineering (WEUSE 2008), pp. 6–10. ACM, Leipzig (2008) 

16. Shneiderman, B.: Leonardo’s Laptop: Human Needs and the New Computing 
Technologies. MIT Press, Cambridge (2002) 

17. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Commun. 
ACM 47, 53–58 (2004) 

18. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User 
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, 
vol. 9, pp. 427–457. Springer, Dordrecht (2006) 

19. Myers, B., Hudson, S.E., Pausch, R.: Past, Present, and Future of User Interface Software 
Tools. ACM Trans. Comput.-Hum. Interact. 7, 3–28 (2000) 

20. Sutcliffe, A., Mehandjiev, N.: Introduction. Communications of the ACM 47, 31–32 
(2004) 

21. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., Mehandjiev, N.: Meta-Design: A 
Manifesto for End-User Development. Communications of the ACM 47, 33–37 (2004) 

22. De Souza, C.S., Barbosa, S.D.J.: A Semiotic Framing for End-User Development. End 
User Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, 
vol. 9, pp. 401–426. Springer, Dordrecht (2006) 

23. Iverson, K.E.: Notation as a Tool of Thought. Communications of the ACM 23, 444–465 
(1980) 

24. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: A Meta-Design Approach to End-
User Development. In: IEEE Symposium on Visual Languages and Human-Centric 
Computing, pp. 308–310. IEEE Computer Society, Dallas (2005) 

25. Fogli, D., Fresta, G., Mussio, P.: On Electronic Annotation and Its Implementation. In: 
Proceedings of the working conference on Advanced visual interfaces, pp. 98–102. ACM, 
Gallipoli (2004) 

26. Carrara, P., Fogli, D., Fresta, G., Mussio, P.: Toward Overcoming Culture, Skill and 
Situation Hurdles in Human-Computer Interaction. Universal Access in the Information 
Society 1, 288–304 (2002) 

27. Fischer, G.: Symmetry of Ignorance, Social Creativity, and Meta-Design. In: Proceedings 
of Creativity & Cognition 1999, pp. 116–123. ACM Press, New York (1999) 

28. Costabile, M.F., Fogli, D., Marcante, A., Mussio, P., Piccinno, A.: A Design Methodology 
for Tailorable Visual Interactive Systems. In: Int. Conference on Software Engineering and 
Knowledge Engineering, San Francisco Bay, CA, USA, pp. 450–455 (2006) 

29. Petre, M., Blackwell, A.F.: Children as Unwitting End-User Programmers. In: IEEE 
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2007, pp. 
239–242 (2007) 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 86–105, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Improving Documentation for eSOA APIs 
through User Studies 

Sae Young Jeong1, Yingyu Xie1, Jack Beaton1, Brad A. Myers1, Jeff Stylos1,  
Ralf Ehret2, Jan Karstens2, Arkin Efeoglu2, and Daniela K. Busse3 

1 School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA, USA  15213 

2 SAP, AG 
Walldorf, Germany 

3 SAP Labs, LLC Palo Alto, CA 94304 
tooth2@gmail.com, clare.xie@gmail.com, jackbeaton@cmu.edu, 

bam@cs.cmu.edu, jsstylos@cs.cmu.edu, 
{ralf.ehret,jan.karstens,arkin.efeoglu,daniela.busse}@sap.com 

Abstract. All software today is written using libraries, toolkits, frameworks and 
other application programming interfaces (APIs). We performed a user study of 
the online documentation a large and complex API for Enterprise Service-
Oriented Architecture (eSOA), which identified many issues and recommenda-
tions for making API documentation easier to use. eSOA is an appropriate  
testbed because the target user groups range from high-level business experts 
who do not have significant programming expertise (and thus are end-
participant developers), to professional programmers. Our study showed that 
the participants’ background influenced how they navigated the documentation. 
Lack of familiarity with business terminology was a barrier we observed for 
developers without business application experience. Participants with business 
software experience had difficulty differentiating similarly named services. 
Both groups avoided areas of the documentation that had an inconsistent visual 
design. A new design for the documentation that supports flexible navigation 
strategies seem to be required to support the wide range of users for eSOA. This 
paper summarizes our study and provides recommendations for future docu-
mentation for developers. 

Keywords: Usability, API Design, Service-Oriented Architecture, Web Ser-
vices, Documentation, Business Solution Architects. 

1   Introduction 

“Service-Oriented Architecture” (SOA) is a way to structure large and distributed 
software systems, where services communicate over a network with the client and 
with other services, and can be combined into composite applications. Enterprise 
SOA (eSOA) is focused specifically on supporting business processes across an  
enterprise by reusing existing services. When an eSOA application is being planned 
and developed, many kinds of people are involved, some of whom are end-user  
 



 Improving Documentation for eSOA APIs through User Studies 87 

developers (EUD). For example, business process experts, who might be titled  
“Solution Architects,” are knowledgeable about the business context but may not 
necessarily be professional programmers, and are often responsible for identifying 
and selecting which services will be used. Specifications they write will then be 
passed to professional programmers, who are responsible for writing code that uses 
the actual services. Therefore, the documentation and some of the tools must be ac-
cessible to both EUDs and professional programmers.  

In a service-oriented architecture, code on the user’s machine communicates with a 
remote service using messages across the internet. The communication is usually 
encoded in XML, and the format of the messages is usually described using a WSDL 
(Web Services Description Language) file, which has been formalized by the World 
Wide Web Consortium (see, for example, http://www.w3.org/TR/wsdl).  

As part of the “Natural Programming Project” [11], we are interested in a whole 
range of usability issues around programming. Recently, we have begun to focus on 
the usability of libraries, frameworks, toolkits, and other application programming 
interfaces (APIs) [6, 14, 17]. APIs are crucial to professionals and EUDs alike, since 
most of modern development of all kinds involves finding, understanding, and con-
necting pre-built items, from small library calls to large-scale components. SOA APIs 
are particularly interesting to study, because they are often large and complex, and 
therefore expose interesting issues of scale, and because they often target a wide 
range of developers. As one typical example, we studied a sales order scenario from 
SAP’s SOA services. SAP provides a large number of SOA services (over 2000) with 
interdependencies between services, and each service has many parameters, with 
interdependencies about which parameters are optional and required and what values 
are allowed based on values of other parameters. 

Our previous research has shown that programming using eSOA APIs is not simple 
if APIs are providing access to powerful business functionality [1, 2]. Some barriers we 
identified included long names for services, different behaviors of services due to dif-
ferent business behavior, parameters of the services as hierarchies of objects with com-
plex dependencies driven by internal, not exposed, business logic, and lack of example 
code [1, 2]. The current paper presents the results of a new user study of the usability of 
the online documentation provided by SAP for their SOA product. 

In summary, our results are that when navigating eSOA API documentation, users 
with business backgrounds did better, and they experienced the most benefit from 
process component documentation. The process component documentation provides 
diagrams showing the architecture of an eSOA API in terms of service interfaces, the 
service operations they contain, and the business objects to which they are connected.  
All users avoided sites with visual designs that were inconsistent with their starting 
pages. Developers without business application experience were unfamiliar with 
business terminology and so they focused on searching and scanning for individual 
terms with limited success. Based on these results, we recommend that documentation 
provide flexible ways to navigate for different users with different backgrounds. 

2   Related Work 

Some of the first work on applying usability principles to APIs comes out of Microsoft, 
focused on specific APIs [4]. Inspired by this, we began working on the usability of 



88 S.Y. Jeong et al. 

API design patterns [6, 15, 17], and the barriers to programming faced by EUDs, 
which includes the difficulties of identifying and understanding the appropriate re-
sources in the documentation, which we called “Selection Barriers” [10]. 

We also reported on our previous studies of the usability of eSOA APIs for  
programming. We identified many barriers for installing and using the eSOA devel-
opment environments, including issues with generating the stubs that will interface 
between the user’s code and the XML messages that are required to communicate 
over the web, and issues with the long and confusing names of the services [2]. In a 
second study, we asked experienced programmers to use four services which had 
already been identified for them [1]. The current study complements these other 
works by focusing on the task of finding the services in the first place. 

Many other people have provided recommendations and guidelines for APIs, but 
most of these are just based on the writer’s intuitions or personal experience, rather 
than usability studies with users. For example, API designers with experience build-
ing the Java [3] and Microsoft .NET [5] APIs have published API design guidelines. 
For SOA, Jones lists anecdotal common mistakes made when developing SOA archi-
tectures, such as problems caused by service hierarchies that are either too fine-
grained or too coarse-grained [9]. 

Focusing on documentation in general, Purho adapted Nielsen’s 10 heuristics to 
apply to documentation [13]. Friendly [8] applied an informal methodology of user 
testing to JavaDoc, which is automatically generated from a Java project, and derived 
clear and succinct recommendations for future API documentation designers. Unlike 
JavaDoc, the eSOA documentation we studied contains a large amount of hand-
created content and addresses a larger, more complex framework. 

Others have focused on the internal documentation for projects, focusing on the 
software developers themselves (e.g., [7]), but this is not relevant for understanding 
how documentation for external users should be designed. 

3   Methodology 

3.1   Participants 

Based on the success of our earlier studies [15], we decided to use an informal lab 
study with users who were representative of the target populations for the eSOA API. 
Since we were told by SAP that the target API was designed for developers with a 
wide range of expertise and background, we selected some experienced programmers 
with little business background, and some experienced business EUDs with little 
programming background, and some in between. We had 8 participants, all of whom 
were male Masters students at our university, although all but one of them had work 
experience before returning to school (see Table 1). The age ranged from about 25 to 
35. None of the participants had ever seen the specific documentation web site we 
were testing, and none had used the API that the documentation was for. Of the 8 
participants, 4 had significant experience with business application development us-
ing business software such as SAP, PeopleSoft and Oracle. All four of these partici-
pants had experience with Enterprise Resource Planning (ERP), which is one of the 
major areas of business software. Participant p2 had the most business application 
experience, having used the SAP development environment and SAP’s programming 



 Improving Documentation for eSOA APIs through User Studies 89 

language called ABAP. The other 4 participants had no experience with business 
applications. Three of the participants had moderate to extensive programming ex-
perience with Java (4 years or more), and the others had some experience. All of the 
participants except p2 were enrolled in a Web Services course, but our study was 
performed before they had gotten very far along. This means that the participants all 
had an interest in SOA and had been introduced to some of the terms. Thus, we feel 
that subject p5 could be representative of new hires who might be assigned to do SOA 
work, p6-p8 might be representative of system integrators, p2 represents an all-around 
expert, and p1, p3 and p4 be representative of Solution Architects who have moderate 
knowledge of both business and programming. The experiment lasted about two 
hours, and the participants were each paid $20. 

Table 1. Characteristics of the participants in the user study, and whether the search feature 
was available when they performed the study 

 p1 p2 p3 p4 p5 p6 p7 p8 
Years of Work Experience 3 3 3 1 0 2 1 2.5 
Business Application Experience yes YES yes yes no no no no 
Years Programming Experience 2 3 3 4 2 5 4 2.5 
Were able to use Search    yes    yes 

3.2   Tasks 

The tasks for this study were to find the specific services necessary to perform a 
“Create Sales Order” using the documentation. The participants did not use any pro-
gramming tools such as an Interactive Development Environment (IDE) and did not 
have to produce any code. They were shown the introductory page of the documenta-
tion web site and were given a brief tutorial (about 10 minutes) describing the docu-
ment layout including the various ways to navigate away from the front page. We told 
participants that they should consider themselves to be high-level architects in a com-
pany that was planning to implement a new sales order system using an existing ERP 
system. They should find the services needed to create a sales order, starting from the 
string names of a buying company, a selling company, and a product. They did not 
need to actually implement an application; they only needed to identify the correct 
services so that another developer could later implement the system. They were given 
about 2 hours to finish all tasks. 

One challenging part of this task was that when participants read the “Create Sales 
Order” service documentation, they would discover that this service does not take 
string names for the seller, product and buyer, but instead takes IDs, which the par-
ticipants had to find other service calls to look up. Therefore, successful task comple-
tion required finding four services we refer to here as “Create Sales Order”, “Find 
Customer”, “Find Supplier”, and “Find Product” (although the actual names were 
much longer and less clear).  Participants were not told in advance about the need for 
multiple inter-related services. Discovering that inter-related services were necessary 
from the documentation was an essential part of the task. 

During the study, we used the “think-aloud” protocol, in which participants are en-
couraged to talk to themselves and the moderator, because we were interested in gain-
ing insights as to what participants were thinking while performing the task. In order 



90 S.Y. Jeong et al. 

to be able to gain as much useful information from each participant as possible, after 
seeing enough confusion to confirm that the participant was experiencing a usability 
breakdown, we would offer help so the participant would not remain stuck on one 
problem for the entire session. We wanted to know why problems occurred, not the 
length of delays. However, explicit help was relatively rare because it was difficult to 
give advice without giving away the whole solution. 

3.3   Context – SOA Documentation 

The participants used the actual then-released (February, 2008) online documentation 
of SAP’s eSOA product. Based in part on the results of our study, SAP has since 
improved the site significantly, and many parts now no longer match what the partici-
pants saw, which is described below. 

There are several different paths that participants could use to navigate from the 
starting page down to the pages of individual service operations (see Fig. 1). One path 
grouped services into Enterprise Service (ES) “Bundles” that collected together a set 
of services that are often used together. The ES Bundles navigation path was imple-
mented using a user-editable Wiki, so that users of the documentation could add and 
update the bundles to show what services were actually used together in practice. 
Since this navigation path led to a Wiki, the visual formatting of these pages was 
quite different from other parts of the documentation web site. The bundles contained 
a list of service operations, and from there, users could eventually navigate down to 
the individual services, at which point they would leave the Wiki and return to the 
previous “normal” format.  

A second path used the Enterprise Service Index, which listed business “process 
components” in alphabetical order. The Process Component pages each contained a 
 

 
Fig. 1. Different possible navigation paths 



 Improving Documentation for eSOA APIs through User Studies 91 

Table 2.  Descriptions of webpage content for pages shown in Figure 1 

Documentation Content 
Solution Map Business value chains displayed as colorful diagrams. Colored bars 

hyperlink to processes and scenarios. May apply across industries 
(ERP, CRM, etc.) or for one industry. (Oil, Retail, etc.) (Fig. 2) 

Scenario Group Similar to a Solution Map, but specific to a part of one industry. 
Main or Business 
Process, Scenario 

Text description of a business process or scenario. Hyperlinks lead 
further down, but often do not link to Service Interfaces. 

Configuration 
Variant 

Text description of business use cases that may not be intended for 
developers, but rather business analysts. Hyperlinks go only to other 
Configuration Variants, and upwards. 

Process 
Component 

This page contained both a diagram and text. The diagram linked to a 
group of Business Objects, and all Service Interfaces and Service 
Operations using those Business Objects. Text links below the dia-
gram went to the Objects and Interfaces only. (Fig. 3a) 

Service 
Interface 

Text hyperlinks to some Service Operations sharing a Business Ob-
ject, which may have one or more Service Interfaces. 

Service 
Operation 

Description of a service operation. Hyperlinks to the service WSDL 
and parameters. (Fig. 3b) 

Business 
Object 

Description of a distinct business “entity” (such as a sales order, 
supplier, etc.) with links to Service Operations acting upon it. 

WSDL  XML file that describes the service in machine-readable form. 

process component diagram and a textual description of the process component (see 
Fig. 3a). From the process component diagram, participants could then navigate to the 
relevant business objects and service interfaces. Participants could navigate using 
hyperlinks located in the process component diagram or in a table below the diagram 
listing the contents of the process component as text.  

The third and fourth paths used two different kinds of graphical tables called “So-
lution Maps.” The cross industry solution maps (see Fig. 2) provided categories such 
as ERP (Enterprise Resource Planning), CRM (Customer Relation Management), 
SCM (Supply Chain Management), and then at the next level, groups of services such 
as “analytics,” “financials,” and “sales and service.”. The industry solution maps 
provided categories like “Retail,” “Airlines,” or “Oil & Gas”, and then groups of 
services such as “Sales & Marketing” and “Vehicle Maintenance”. As shown in Fig. 
1, all of the links in the Solution Maps lead to “Business Process” pages. Unfortu-
nately, some of these Business Process pages linked only to Configuration Variants, 
and not to the Service Interfaces that link to Service Operations pages and the techni-
cal information necessary for implementation. The Configuration Variant pages were 
dead ends and apparently not intended for use by developers. Instead they linked to 
other variants or back to Business Processes, so this path proved useless to our par-
ticipants. 

Once participants had navigated down to the “service operation” page (Fig. 3b), 
they could find out information about the specific service, including the WSDL files 
to download.  On each of the service operation pages, there was a hyperlink to a sepa-
rate “Detailed Field” page with collapsible tree hierarchies of the input and output 
parameters for calling the service. Since the web services can be accessed from a 
variety of programming languages, coding examples were not provided in the API 



92 S.Y. Jeong et al. 

documentation. Instead, a browser-based service “testing jig” was available. By show-
ing all available fields of the complex input and output parameter structures of the 
web services in a tree view, this testing jig allowed users to test service consumption 
with real values. However, at the time, the only link to the testing jig was provided 
inside a “Handbook” PDF guide hyperlinked from the main starting page of the 
documentation. This guide provided an end-to-end walkthrough of the documentation 
site and screenshots of pages along the navigational paths. 

When we began this study, the web site had a search box, but it appeared to be in-
operable, in that all searches returned no results. By the time we ran the last two sub-
jects (p5, p8 – see Table 1), the search seemed to be fixed and began working.1  

In summary, the documentation provided several architectural description pages to 
help understanding of the overall architecture. Table 2 shows some of the different 
architectural description pages, and their content. 

4   Results 

Table 3 shows a summary of the overall results – only two of the 8 participants (25%) 
were able to find all of the services during the two-hour session. Three of the four 
participants with business backgrounds (75%) were able to find the correct first ser-
vice (“create sales order”), however one was not sure that he had found the right one. 
Similarly, two of the participants without business backgrounds found the right sales 
order service, but were not sure, and none found any of the other services. Since there 
are such a small number of participants, we are not able to establish statistical signifi-
cance between the two groups, although the trend is striking. From our observations 
and the think-aloud comments of the participants, we were able to understand the 
participants’ strategies and barriers at a much more detailed level. 

4.1   Paths through the Documentation 

Given the four starting entry points for navigating from a home page (Fig. 1), partici-
pants were confused with which one to use, and spent significant time reading text on 
the home page to try to figure it out. The main page did not explain the motivations 
and goals of the four different paths, leaving participants confused about why there 
were multiple choices and which might be the most useful. This confusion made par-
ticipants feel frustrated right at the beginning. Table 3 summarizes where the partici-
pants started. 

An interesting observation was the use of what we call rally points by participants 
while navigating through unfamiliar areas (see Table 3). Participants would choose a 
path, go down that path until they decided whether or not it was worth continuing, and 
then return to an earlier page multiple times. Participant’s selection of a rally point 
indicated a level of certainty that the navigation up to that point, at least, was correct. 

Fig. 4 summarizes the paths of all of participants when trying to find the Create 
Sales Order Service. Each row represents a type of web page, as described in Table 2. 
Each circle represents web pages that the participant visited, with the size of the circle 
                                                           
1 A hazard of using a commercial on-line system for a study – one cannot guarantee all partici-

pants will have the identical system! 



 Improving Documentation for eSOA APIs through User Studies 93 

representing how long the participant stayed at that page. In Table 3 and Fig. 4, we 
can see that the page at which the participant started was a natural rallying point at 
first, but participants would move the rally point around as they gained and lost confi-
dence in the usefulness of various paths through the documentation.  

Most participants showed a tendency to choose the Solution Maps as a starting point 
(as shown in Table 3), but five of the participants changed to the Enterprise Service 
Index after failing to use the solution maps. The Enterprise Service Index page only 
provided process component lists and integration scenario lists in alphabetical order. In 
the process component lists, there were prominent business software categories such as 
CRM, ERP, SCM and SRM. Participants with business application backgrounds used 
the “Enterprise Service Index” pages as a rally point, and when they found the “Sales 
Order Processing” component in the ERP and SRM category, they felt they were on the 
right track. Most participants were frustrated by new and unfamiliar terms and acro-
nyms, but participants without business application backgrounds were particularly con-
fused by the large number of prominent acronyms such as ERP, CRM, SCM, SRM and 
other business-specific terms that they did not understand. 

When participants navigated to the Enterprise Service Bundles page (which was a 
Wiki), they were surprised by the different look and feel of this part of the web site, 
and felt they must have gone astray, so they quickly back-tracked. None of the par-
ticipants made use of the Bundles pages, so they do not appear in Fig. 4. 

Participants spent a lot of time trying to use the solution maps (Fig. 2). Some par-
ticipants selected cross industry solution map, possibly because they were not told 
about any specific industry in the task instructions, but others guessed an industry 
they thought might be appropriate, and used an industry-specific map. However, the 
 

 

Fig. 2. Cross industry solution map for ERP 
 



94 S.Y. Jeong et al. 

  
(a) 

 

    
(b) 

Fig. 3. (a) Process Component View Page for the Accounting process component which in-
cludes a diagram and text below the diagram (not shown). (b) Service Operation page for Cre-
ate Sales Order. 



 Improving Documentation for eSOA APIs through User Studies 95 

3Business Application Backgrounds

P1 P2 (Success) P3(Success) P4

ES Workplace 
Homepage

Enterprise 
Service Index

Cross 
Industry 
solution Map

Industry 
Solution Map

List of 
Process 
Components

Business 
Process

Process 
Component

Service 
Interface

Service 
Operation
(create sales 
order) 

Business Application Backgrounds

P1 P2 (Success) P3(Success) P4

ES Workplace 
Homepage

Enterprise 
Service Index

Cross 
Industry 
solution Map

Industry 
Solution Map

List of 
Process 
Components

Business 
Process

Process 
Component

Service 
Interface

Service 
Operation
(create sales 
order) 

C’

C’

ERP

C

ERP

C
V1 V2

C’

C’

C

C

C

V1 V2

“I found”SCM

W W

W’ lostW’

C

Retail

C
V1 V2

C’

C’

SRM
ERP

C

“I found”

“No link”

“I found”

 
 

No Business Application Backgrounds

P5 P6 P7 P8

No Business Application Backgrounds

P5 P6 P7 P8

CRM

WW

WW
lost

W

W

W

W

W

W

Consumer 
ProductRetail

“I found”

SCM

C’

SRM ERP

C

“No link”

lost

S

C

C’

C’

ERP

C

C

lost S

stop

ES Workplace 
Homepage

Enterprise 
Service Index

Cross 
Industry 
solution Map

Industry 
Solution Map

List of 
Process 
Components

Business 
Process

Process 
Component

Service 
Interface

Service 
Operation
(create sales 
order) 

ES Workplace 
Homepage

Enterprise 
Service Index

Cross 
Industry 
solution Map

Industry 
Solution Map

List of 
Process 
Components

Business 
Process

Process 
Component

Service 
Interface

Service 
Operation
(create sales 
order) 

Same name but diff. service)Multiple instances W wrongC’C Correct V1 Version S search  
 
Fig. 4. Summaries of the navigational paths of all of the participants when trying to find the 
Create Sales Order service. The sizes of the circles represent the amount of time spent at web 
pages of the type in the first column. 



96 S.Y. Jeong et al. 

Table 3. Starting and rally points for the participants (using page categories from Fig. 1), and 
success of participants on finding the 4 services. 
  Key: M=Solution Map; S=Search; I= ES Index, P=Process Component,  
 L=List of Process Components, B=Business Process 
 √=Success; √- =Success but not sure; Χ=Failure 
 

 p1 p2 p3 p4 p5 p6 p7 p8 Total 
Was able to use Search    yes    yes  
First Entry Point M M M I M M I S  
Other Rally Points I,P I,P B L,P M,B I,P L,P M,P  

Found Correct Service Operation: 
     Create Sales Order X √ √ √- X √- X √- 62.5% 
     Find Customer Service X √ √ X X X X X 25% 
     Find Supplier Service X √ √ X X X X X 25% 
     Find Product Service X √ √ X X X X X 25% 

participants without business backgrounds had difficulties in using the any of these 
solution maps to navigate further due to the unfamiliar terminology and the large num-
ber of choices making a brute-force systematic search difficult. However, half of the 
participants without business backgrounds used a map page as a rallying point (see Fig. 
4). In the think-alouds, the participants expressed a desire to understand the 
“big picture,” and the solution maps seemed to provide a good overview. The business-
background participants understood the category names such as ERP and SRM, and 
their sub-grouping such as “financials,” “retail,” etc., but even these participants often 
only had experience with some of the categories and sub-groupings. However, all par-
ticipants were confused by classifications with similar names such as: “sales”, “sales 
execution”, “sales order” and “sales & service” in the solution maps. 

4.2   Process Component View 

The Process Component view shows one or more related business objects and ser-
vices (see Fig. 3a). For example, in the “Sales Order Processing” process component 
view, the user can navigate to the “ordering in” and “ordering out” service interfaces 
and the “sales order” business objects. The page was composed of two parts: a dia-
gram, and a table. The diagram displayed business objects as small blocks and service 
interfaces as large blocks that held groups of smaller blocks representing service op-
erations. The service operations were connected to the business objects they acted 
upon with arrows. The titles of the blocks acted as hyperlinks to the appropriate busi-
ness object, service interface, and service operation pages. Due to the large number of 
objects to be shown in the diagram, the font of the elements was extremely small and 
yet horizontal and vertical scrolling was still needed.  

In spite of these barriers, some participants spent an extensive amount of effort try-
ing to understand the diagrams. Many of the participants found this view to be a good 
rallying point, since it provides a well-organized collection of related items to ex-
plore. However, some of the participants who were familiar with UML (Unified 
Modeling Language) notation mentioned that they would have preferred UML class 
diagrams, which have a standard notation for classes and their relationships. 



 Improving Documentation for eSOA APIs through User Studies 97 

Another cause for confusion was that the system provided many similar-sounding 
services in the process component view, and even multiple versions of the same ser-
vice with similar names such as “create sales order v1”, “create sales order v2”, and 
“check sales order creation”. Participants could not find any relevant information to 
differentiate those three different versions of services from the process component 
view. The participants had to drill down to the service operation level for each, to try 
to determine which should be used.  If the user could recognize the differences among 
these different services at the process component view, this would have saved signifi-
cant time and confusion.  

Beneath the diagram, a table contained text descriptions and hyperlinks to many of 
the same locations as the diagram, with the exception of the service operations. 

4.3   Service Descriptions 

In the tasks we gave the participants, it was important to investigate the input and 
outputs of the various services. However, this was difficult to verify from the detailed 
service pages. Only three participants were able to find the “buyerID”, “sellerID” and 
“materialID” parameters for the “Create Sales Order” service operation, which was 
crucial to determining what other services were needed. 

Other problems with understanding the services included unfamiliar technical 
terms such as synchronous and asynchronous mode and inbound and outbound mes-
sages. The participants did not find any explanations of these terms in the documenta-
tion, although they are pervasive throughout all services. Some of the details of the 
operation, such as which fields were required versus optional, were actually not 
documented anywhere except in the generated WSDL XML files themselves, which 
was too long and difficult to read to be effective documentation. 

The detailed page for each service listed three classes of messages: input message, 
output message and fault message, which participants did not understand. In fact, only 
input messages are relevant (messages that go “in” to the server), but this was not 
explained anywhere. 

In general, many participants found the correct target service, but then were unsure 
whether it was correct or not, and continued searching. For example, Table 3 and Fig. 
4 show that participants p4, p6 and p8 found the right service operation for Sales 
Order, but then navigated away and kept looking. Participant p4 eventually decided 
that a different service was actually right, and p6 and p8 were never confident of 
which service should be used. 

4.4   Using Search 

As mentioned above, the search box was present for all participants, but only began 
working for the last two (Table 1). All of the participants expressed a desire to use 
search to try to find the services. In general, if the participants knew the name of what 
they wanted, they preferred to use search, and the participants for whom search 
worked often returned to try searching when they were lost. Participants often tried to 
search for phrases we used in the instructions, such as “create sales order”, “selling 
company”, “buying company” and “product”, but these were not helpful, and then 
participants tried related terminology such as “agency”, “supplier”, “customer,” etc. 



98 S.Y. Jeong et al. 

In general, participants were not successful at using search because there were always 
either no results or too many matching results. Even the most experienced participants 
had difficulty mapping the product in the instructions with the actual parameter name 
of “material”. 

When search began working, the results were presented grouped by the various 
API documentation types shown in Table 2, such as solution map pages, process 
component view pages, and service operation pages. This grouping proved helpful to 
participants, and made it easy to find the appropriate process components and busi-
ness objects when they recognized them in the results. However, since there were 
often too many search results, and the listing was in alphabetical order, often partici-
pants missed the answer even when it was included. 

4.5   Individual Strategies 

By performing a detailed time analysis of each participant, we were able to break 
down their activities into various categories. We identified four categories of activi-
ties, with two opposing strategies in each: 

• Focusing on scanning textual descriptions (“scan text”) vs. focusing on scanning 
process diagrams (“scan diagrams”). 

• Trying to understand how to use the web site by reading the provided PDF docu-
mentation (“PDF overview”), or just by looking through the web site itself, relying 
on the documentation to be self-explanatory (“Self-explanatory”). Five participants 
found the PDF document but three of them did not use it, because it was a separate 
document. 

• Browsing the documentation with a single specific key word in mind from the task 
instructions, such as “buyer” (“Single word”), or else using a set of interrelated 
synonyms (“Synonyms”). 

• Skimming the documentation focusing on only the prominent text, such as the head-
ers (“Skim”), or systematically reading the pages line-by-line (“Line-by-line”). 

We then analyzed each of the participants, looking for whether they tried to use 
each of these strategies, and whether it worked for them. Note that each participant 
might have used different strategies at different times. Fig. 5 provides a radar chart 
averaged over all participants for the strategies. The opposing strategies are shown at 
opposite ends of each line. The outer black line (connecting the circles) shows the 
average of whether this was used or not (where 1 would mean everyone used it, and 0 
would mean no-one used it). The inner red line (connecting the squares) shows our 
estimate of how successful this strategy was.  

Fig. 5 makes it clear that participants were split on using text and diagrams, they 
strongly preferred the documentation to be self-explanatory, rather than using the 
PDF overview, more tried single words rather than synonyms, and everyone 
skimmed, but only a few systematically read line-by-line. As for the success of these 
strategies, by-and-large, the success seemed to mostly correlated with participants’ 
expectations (they used a strategy about as much as it was successful, so the two lines 
go in and out together), with the notable exception of the diagrams – as discussed 
above, many participants wanted to use these, but they did not work out for them. 
Another notable result is that the PDF overview was surprisingly un-helpful. 



 Improving Documentation for eSOA APIs through User Studies 99 

0

0.2

0.4

0.6

0.8

1
Scan Text

PDF overview

Single word

Skim

Scan Diagrams

Self-explanatory

Synonyms

Line-by-line

Tried

Worked
 

Fig. 5. Strategies the participants tried, and how well each strategy worked 

0

0.2

0.4

0.6

0.8

1
Scan Text

PDF overview

Single word

Skim

Scan Diagrams

Self-explanatory

Synonyms

Line-by-line

Tried

Worked    

0

0.2

0.4

0.6

0.8

1
Scan Text

PDF overview

Single word

Skim

Scan Diagrams

Self-explanatory

Synonyms

Line-by-line

Tried

Worked  
                                 (a)                                                                   (b) 

Fig. 6. Breakdown for participants with (a) and without (b) business backgrounds 

Fig. 6 provides the same data broken down by whether the participants had busi-
ness background or not. In terms of what they tried, it is clear that the non-business 
participants did not use synonyms (because they did not know the other terms that 
might be related), and the non-business participants were more systematic, trying to 
extract more meaning from the pages (whereas the business participants were more 
likely to be able to pick up the meaning from skimming). It is clear that few strategies 
worked for the participants without business backgrounds, and only scanning the text 
was overall successful. 

5   Threats to Validity 

There are many reasons why the results of this study may not generalize. First, we 
only used a small number of participants, and we were not able to get statistically 
significant results about their different behaviors. Most of the results reported here  
are impressions and informal analyses based on our observations of their behaviors, 



100 S.Y. Jeong et al. 

barriers and successes. The participants are also not necessarily representative of the 
target population for the documentation. eSOA APIs may be used only by people with 
some business background or people who have specific, relevant training. For exam-
ple, SAP offers various training courses that would have explained many of the fun-
damental terms about which the participants were confused. Our participants were all 
completely unfamiliar with the documentation or the API. 

The experimental set-up may have also biased the results. In real-life, users would 
have more than two hours to perform tasks, and they would likely go to more experi-
enced colleagues for help when they were stuck, which was not an option in this 
study. Also, our task was much simpler than real-world eSOA tasks. 

6   Discussion 

In spite of these concerns, we feel that useful information can be learned from our 
study. As with other usability analyses [12], when multiple user-study participants 
have difficulty with something, it is highly likely that at least some of the target audi-
ence will also have trouble, so the documentation is likely to be improved by elimi-
nating the barriers reported here.  

The differences in strategies and success between the people with business experi-
ence and those without are also interesting. These can mainly be attributed to the 
differences in their ability to understand the many terms and acronyms used in the 
documentation. Participants with business backgrounds were aware of interrelated 
business concepts and terminology, and so understood more explanations on the web 
site. The navigational strategies were also very different between the two groups. 

Of the four ways to navigate to the service operation, the ES index was found to be 
most useful to many developers, who then used the process component diagrams as a 
rally point. The graphical solution maps were frequently used by all participants, but 
tended to lead developers to the wrong services. The frequent use of the maps and 
process diagrams strongly suggests that a good diagram of the system is important to 
users. The presence of the many alternative navigation paths was itself a barrier to 
participants, since they had to investigate which one to use. 

This study particularly focused on identifying services based on their input/output 
characteristics, but this turned out to be surprisingly difficult to determine from the 
documentation. Our previous study showed that understanding the dependencies 
among the parameters is also a key barrier to developers [1], since which parameters 
are required and which are optional depends on the values supplied for other parame-
ters. This means that more attention is needed on documenting the parameters of 
services, where it is possible2. 

A consistent look and feel for the documentation was found to be important.  
When participants encountered the different format of the Wiki, they immediately 

                                                           
2 Some services deal with highly customizable business processes. Customer can set up the 

system for their special business needs and therefore the behavior of the services can change 
from customer to customer. So a “create sales order” service can be used in a simple retail 
scenario, where you just buy 100 pencils, as well as in the aerospace industry when you order 
20 Airbus A380 airplanes, which have quite different requirements. 



 Improving Documentation for eSOA APIs through User Studies 101 

backtracked without studying the new location. As a result, the grouped services on 
the wiki went unseen and unused by all of the participants. 

The names of services and their types were found to be a problem. We observed 
one participant confused with several versions of “create sales order v1” and “v2”, the 
differences between the same service name with “in” and “out” appended, and also 
with the difference between the “synchronous” and “asynchronous” versions of the 
same service. Another problem was the length and construction of the names them-
selves, which some participants found confusing (for example, SalesOrderERPCre-
ateRequestConfirmation_In_V1).  

7   Implications for Design 

How can the documentation be designed to best serve developers across the whole 
spectrum? Improvements in the usability of the documentation are clearly necessary if 
users such as our participants are to succeed. We are happy to report that many of 
these recommendations have been implemented in the current version of the SAP 
documentation, and others are being investigated for future versions. 

Based on our observations and user study results, we recommend the following as 
documentation guidelines: 

• Consistent Look-and-Feel. Overall, the entire documentation web site should 
have a consistent, yet unique, format, so that developers who leave the path know 
it instantly, and developers who find a useful area do not backtrack. This may 
mean that more developer participation in a Wiki might occur if its format is not 
visibly different from the rest of the API documentation. 

• Provide an Overall Map. When we were trying to understand the SAP documen-
tation ourselves before we ran the user study, we created early versions of Fig. 1 
and Table 2, which we found very helpful. Having such information at the front of 
the documentation web site would likely benefit users. 

• Explain Starting Points. Make the purpose of various starting points clear. It seems 
that some of the paths on the eSOA documentation may be targeted at different 
classes of users, such as Business Experts versus developers. Alternatively, they 
might be used for different tasks. Users would benefit from a better explanation of 
why there are multiple paths, and how they are intended to be used. 

• Provide “bread crumbs” the documentation structure. Users were often lost in 
the documentation. Providing a trail that shows where they are in the documenta-
tion structure, and what are the main nodes along the path to that page, would be 
helpful. However, the documentation is a graph and not a tree because some paths 
are in multiple paths (e.g., the same service may be used by multiple industries). 
This means that the trail will have to be careful to differentiate multiple possible 
paths to the current page, hopefully highlighting the path actually used. 

• Directly support rally points. In addition to the bread crumbs, there should be 
other support for users to backtrack to well-known pages that are serving as “rally 
points”. For example, we created a prototype which included an always-visible 
bookmark list into which the user could easily save pages while continuing naviga-
tion, and then these could serve as shortcuts for navigating back to a rally point. 
Another idea is to provide pages that other users or the system designers have iden-
tified as useful rally points. 



102 S.Y. Jeong et al. 

• Integrate “How-To-Use” Information. We discovered that although a PDF guide 
explained how the documentation could be used, users were reluctant to leave their 
browsing to read a document in an external format, so the explanations should be 
in html format. Even better would be if the documentation was self-explanatory, 
with explanations integrated with the main documentation content, so there would 
be no need for separate documents explaining how to the API documentation. For 
example, pop-ups or special hyperlinks might explain “What is this?” for items that 
users may not be familiar with. 

• Effective Search. The participants for whom search did not work were unhappy, 
so a good search facility needs to be part of all documentation. Since participants 
tried to search on all aspects of services, all parts of the API should be included in 
the search, including the parameter names and types, and the documentation of the 
names and types. It should be easy to navigate from data types to the fields that use 
those types. In order to reduce the size of the answers, the search should allow us-
ers to qualify what they are looking for (e.g., limit the answers to service opera-
tions). The grouping of the search results into categories is a good idea, but each 
result should be presented in a way that is easy to understand, so the user does not 
need to navigate into each result item to see if it is the desired one or not. 

• Provide Familiar Diagram Formats. Our participants expected UML Class dia-
grams or other well-known architectural presentations to help them understand the 
services. Users should be surveyed on what formats they will find familiar before 
the decision is made to create new formats. 

• Balance of Diagrams and Text. Some participants focused on diagrams showing 
the relationships among services, so these need to be clear and concise, with ap-
propriate labels that are understandable yet not too big. At the same time, other us-
ers skipped the diagrams in favor of text, so both should be supported. 

• Curtail User Focus on Esoteric Terminology. Specialized terminology for spe-
cialized users and use cases is absolutely necessary in API documentation. How-
ever, we observed that participants who are exploring tend to focus on unfamiliar 
terms, even if they are unnecessary as part of their task, and so waste time while 
increasing their level of confusion and frustration. However, most users will (at 
least eventually) be familiar with the terminology, so it is important that any defini-
tions or other help not interfere with expert use. It is also important that users be 
able to quickly tell what parts of the document are important to them, so they can 
skip large parts (and any unfamiliar terminology in those parts). 

• Explain Crucial Terminology. Participants could not find the correct services in 
our study without understanding the difference between synchronous and asyn-
chronous services, or the meaning of “in” and “out” services. To the extent that all 
users must understand certain “esoteric” terminology, make sure it is clearly ex-
plained, or even better, use more generally-understood terms so less explanation is 
needed. 

• Make the Parameters for Services More Prominent. Participants cited the pa-
rameters of the service signature as the main indicators of the usefulness of a ser-
vice. Therefore, parameters should be given a prominent position in the description 
of a service operation. Our previous research showed that the distinction between 
optional and required parameters, and parameters used to call the service and those 
filled in by the service as return values was not clear to developers [1]. This needs 



 Improving Documentation for eSOA APIs through User Studies 103 

to be particularly well explained, and certainly not left to be deduced from the 
WSDL files. 

• Support Comparing Services. There are many similar services, and participants 
needed to compare services to find out the differences. In the current system,  
sometimes they needed to open up the low-level WSDL files and try to manually 
determine the differences. Instead, direct comparisons and explanations should be 
available to differentiate services. For example, side-by-side visualizations of two 
services might emphasize the differences in parameters or actions. If a service is an 
updated version of another service, the modification dates and differences should 
be clear with cross-links and explanations of when each might be used. 

• Clear Names for Services. The user should be able to recognize what a service 
does by its name. If there are multiple versions, it should be clear why there are 
multiple versions, and whether they are all intended to be useful (vs. some being 
deprecated, for example), and which one should be selected. 

• Present Related Services. The documentation should present related services and 
business objects. For example, to create a sales order required providing three differ-
ent parameters that were returned by other services. Listing each of these parameters 
and services could help the user understand and find related services. The Bundles 
idea in the current documentation may help with this goal, but we were not able to 
evaluate how well it worked because our participants did not try the Bundles.  

• Provide Code Examples. While web services are often advertised for their ability 
to be consumed in any programming language, this does not excuse the provider 
from showing sample code snippets. Even if it is not possible to provide example 
code in every target language, then it is still useful to provide some examples 
rather than none. It should be noted that standardization across similar services will 
mean that fewer examples need to be provided, because a pattern that works for 
one service will also work for its “sibling” services. 

• Online Service Testing. Developers who want to see how a service works before 
starting to program may benefit from an interactive way to provide parameters and 
run the service. The current SAP documentation does have a “Test” function, 
where users can try out a service and see what it returns for various parameters. 
This kind of online service testing can have a positive effect on developers’ under-
standing of web service consumption. It has the potential to display required and 
optional parameters, and allow users to verify their understanding of the service. 
However, without valid test data to use as parameters, the user may never be able 
to get a useful return value. Therefore, the testing mechanism should be combined 
with multiple examples, and cross-linked to other services that might return the 
kinds of values required for the service to operate correctly. Furthermore, once the 
user has configured a test call interactively, it would be useful if there was some 
way to generate code in the desired target language that would do the same thing. 

• New Organizations for Hierarchical Browsing. In their think-alouds, we noticed 
that various participants, especially the ones without business experience, seemed 
to be trying to navigate based on different starting points and hierarchies. For ex-
ample, some participants seemed to be trying to find particular operations (verbs) 
first (such as create or find), then the objects on which those operations occurred 
(the nouns), and finally, other parameters of the operation (adverbs such “by what” 
the find should get the object, or “using what” to create the object). The current 



104 S.Y. Jeong et al. 

documentation does allow users to start from a business object and find all of its 
services, or to get a global list of services, but these are always organized alpha-
betically. Since the services are named based with the affected business object at 
the front of the name (e.g., SalesOrderERPCreateRequestConfirmation_In_V1), both 
lists are essentially noun first. Allowing a sort by operation (sorting all the “create” 
service operations together) might be helpful. 

8   Future Work and Conclusions 

This informal study is just the beginning of a long investigation into improvements 
that can be made to API documentation. We are currently working on interesting new 
designs to see how we can make documentation even easier to search and browse, and 
how to make the important information more salient (e.g., [16]). For example, more 
commonly used items in the documentation might use a bigger font, so they stand out 
compared to the lesser used items. 

Meanwhile, SAP is continuing to improve their APIs and the documentation for 
them. We plan to repeat this study with the new designs to see what problems have 
been solved, and if there are any new problems introduced. In the new study, it will be 
interesting to investigate more classes of users, from Business Expert EUDs with little 
programming experience to experienced programmers, and hopefully get some non-
university participants from local businesses. It would also be useful to compare peo-
ple who are expert users of the system and documentation to the novice users that we 
focused on in this study. Good documentation should also be efficient for experts, as 
well as helpful for novices. 

In addition to providing insights into how to improve the current documentation, 
these kinds of studies can provide generalizable knowledge that is useful for all 
documentation writers for all kinds of systems, since many of the challenges will be 
similar. Since all programmers, from EUD to novices and to professionals, spend 
significant time trying to understand and use APIs, improvements to documentation 
can have significant impacts on the overall usability of the system as a whole. 

Acknowledgements 

For help with this paper, we thank many people at SAP (especially Paul Hofmann, 
Dan Rosenberg, Ike Nassi, Claudius Fischer, Bernhard Drittler, and Oliver Schmidt) 
and the participants for sharing in user study. This research was partially funded by a 
grant from SAP and partially by NSF under grant ITR-0325273 through the EUSES 
Consortium, and CCF-0811610. Opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect 
those of the NSF or SAP. 

References 

1. Beaton, J., et al.: Usability Challenges for Enterprise Service-Oriented Architecture APIs. 
In: 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, 
VL/HCC 2008, Herrsching am Ammersee, Germany, September 15-18, pp. 193–196 
(2008) 



 Improving Documentation for eSOA APIs through User Studies 105 

2. Beaton, J., et al.: Usability Evaluation for Enterprise SOA APIs. In: 2nd International 
Workshop on Systems Development in SOA Environments, SDSOA 2008 (Co-located 
with ICSE 2008), May 12, pp. 29–34. Leipzig, Germany (2008) 

3. Bloch, J.: Effective Java Programming Language Guide. Addison-Wesley, Boston (2001) 
4. Clarke, S.: Measuring API Usability. Dr. Dobbs Journal, S6–S9 (May 2004) 
5. Cwalina, K., Abrams, B.: Framework Design Guidelines. Addison-Wesley, Upper-Saddle 

River (2005) 
6. Ellis, B., Stylos, J., Myers, B.: The Factory Pattern in API Design: A Usability Evaluation. 

In: International Conference on Software Engineering (ICSE 2007), May 20-26, Minnea-
polis, MN, pp. 302–312 (2007) 

7. Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools, and tech-
nology: a survey. In: DocEng, McLean. pp. 26–33 (2002) 

8. Friendly, L.: The design of distributed hyperlinked programming documentation. In: Inter-
national Workshop on Hypermedia Design, June 1-2, pp. 151–173. Springer, Montpellier 
(1995) 

9. Jones, S.: SOA Anti-Patterns. Jun 19, C4Media Inc.: InfoQ.com (2006), 
http://www.infoq.com/articles/SOA-anti-patterns 

10. Ko, A.J., Myers, B.A., Aung, H.H.: Six Learning Barriers in End-User Programming Sys-
tems. In: IEEE Symposium on Visual Languages and Human-Centric Computing, Rome, 
Italy, September 26-29, pp. 199–206 (2004) 

11. Myers, B.: Creating More Natural Programming Languages. In: VL 2000: IEEE Sympo-
sium on Visual Languages, Seattle, Washington, September 10-14 (2000) (Invited Keynote 
Address), http://www.cs.orst.edu/~burnett/vl2000 

12. Nielsen, J.: Usability Engineering. Academic Press, Boston (1993) 
13. Purho, V.: Heuristic inspections for documentation-10 recommended documentation heu-

ristics. STC Usability SIG Newsletter, 6(4) (April 2000),  
http://www.stcsig.org/usability/newsletter/ 
0004-docsheuristics.html 

14. Stylos, J., et al.: A Case Study of API Design for Improved Usability. In: 2008 IEEE Sym-
posium on Visual Languages and Human-Centric Computing, VL/HCC 2008, Herrsching 
am Ammersee, Germany, September 15-18, pp. 189–192 (2008) 

15. Stylos, J., Clarke, S.: Usability Implications of Requiring Parameters in Objects’ Construc-
tors. In: International Conference on Software Engineering (ICSE 2007), Minneapolis, 
MN, May 20-26, pp. 529–539 (2007) 

16. Stylos, J., Myers, B.A., Yang, Z.: Improving API Documentation Using API Usage Infor-
mation (submitted, 2009) 

17. Stylos, J., Myers., B.A.: The Implications of Method Placement on API Learnability. In: 
Sixteenth ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE 
2008), Atlanta, GA, November 9-14, pp. 105–112 (2008) 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 106–125, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

End-User Development of Enterprise Widgets 

Michael Spahn1 and Volker Wulf2 

1 SAP AG, SAP Research, Bleichstr. 8, 64283 Darmstadt, Germany 
Michael.Spahn@sap.com 

2 University of Siegen, Hölderlinstr. 3, 57076 Siegen, Germany 
Volker.Wulf@uni-siegen.de 

Abstract. Companies are operating in a dynamic environment, resulting in a 
continuous need of adapting used information systems to changing business 
processes and associated information needs. Viewed from a micro-perspective, 
business users are managing and executing business processes on a daily basis, 
but are not able to adapt used software to their individual needs and working 
practice. In this paper, we present an End-User Development (EUD) approach 
and prototypic environment, enabling business users to create enterprise wid-
gets tailored to their personal information needs without the need of program-
ming knowledge, by mashing up enterprise resources using a lightweight visual 
design paradigm. The approach especially considers extensibility of building 
blocks for widget creation even by small and medium sized enterprises (SMEs) 
using existing knowledge. We give evidence on the applicability of the ap-
proach in real enterprise contexts, by providing first results of an evaluation in 
three German SMEs. 

Keywords: End-User Development, Mashup, Widget. 

1   Introduction 

In our today’s business world, companies use enterprise software systems like Enter-
prise Resource Planning (ERP) systems to support and facilitate their business proc-
esses. As companies are not static and evolve like the environment of competitors, 
markets and customers surrounding them, a continuous need of adapting these  
systems to new requirements, business processes and associated information needs, 
exists. Due to a lack of resources and expertise, especially small and medium sized 
enterprises (SMEs) suffer from their inability to adapt used enterprise software to 
their needs [1]. They are forced to adapt themselves to the possibilities offered by the 
used enterprise software or to delegate adaptations to IT professionals, resulting in 
long and costly adaptation processes [2, 3]. As organizational and technological de-
velopment are closely correlated, the inability of adapting the technical systems used, 
is limiting the organizational development possibilities of the companies as well [4]. 
As a consequence, the ability of organizations to optimize their business processes 
and to innovate to gain unique competitive advantages is limited. 

Viewed from a micro-perspective, business users as the end-users of enterprise sys-
tems know best about changing requirements and needed adaptations, as they are 
managing and executing business processes on a daily basis. As end-users are domain 



 End-User Development of Enterprise Widgets 107 

experts but not necessarily IT professionals, they are not able to adapt the used enter-
prise systems to their individual needs on their own. End-users are forced to indirectly 
influence the adaptation processes by communicating their needs to IT professionals. 
IT professionals are confronted with the requirements of users expressed in their  
domain language, which have to be interpreted and transformed into models and  
technical solutions matching the capabilities of the enterprise software systems. This 
process is not only costly and time-consuming, but also error prone due to a possible 
misinterpretation of requirements [5]. Furthermore many useful adaptations to the in-
dividual working practice of end-users are dropped due to limited budget, resources 
and expertise. One approach to improve this situation is to better enable end-users to 
adapt the used enterprise systems on their own. At this, the inherent challenge is to 
reduce the expertise tension, existing in a two-dimensional continuum of job-related 
domain knowledge and system related development knowledge [6]. 

We are approaching this challenge from an End-User Development (EUD) per-
spective. EUD can be defined as “a set of methods, techniques, and tools that allow 
users of software systems, who are acting as non-professional software developers, at 
some point to create or modify a software artifact” [7]. Crucial preconditions of suc-
cessfully enabling EUD are on one hand systems, which are flexible enough to be 
adaptable in a technical sense, and on the other hand methods to leverage this flexibil-
ity at the hand of end-users [8, 9]. In the last years the dissemination of the Service 
Oriented Architecture (SOA) [10] paradigm led to an increased technical flexibility. 
SOAs, i.e. implemented using the widespread Web Services Stack, provide means to 
increase flexibility by recombining existing functionality of software systems using 
loose coupling of services, enabling the orchestration of new software solutions from 
existing functionality. SOAs offer rich possibilities for IT professionals, but as they 
are based on complex standards like SOAP, WSDL, UDDI, or BPEL, the technical 
flexibility is not leveraged at the hand of end-users. In this context a new type of web-
based applications, known as mashups, has been gaining momentum. Novel light-
weight design principles are currently about to emerge, allowing to mash up data from 
different resources into a single integrated tool and thereby creating a new and distinct 
service, that was not originally provided by either resource used. Popular examples 
for consumer mashup environments are e.g. Microsoft Popfly [11] or Yahoo! Pipes 
[12]. Gartner even identified mashups and composite applications as one of the top 
ten strategic technologies for 2008 [13]. 

We conducted preliminary studies in SMEs and identified several kinds of  
data-centric adaptation problems that end-users face in their work context [14]. We 
believe, that some of these adaptation problems can be adequately addressed by pro-
viding EUD tools based on a mashup design paradigm. Business users should be en-
abled to create data-centric tools that are tailored to their individual information 
needs, by mashing up enterprise resources. To further investigate that solution ap-
proach, we set up a prototypic EUD design environment for the creation of widgets, 
which can be mashed up of enterprise resources in a very lightweight way. Widgets 
are small, interactive applications for displaying data, packaged in a way to be execu-
table on a users’ machine [15]. By using a very lightweight mashup design paradigm 
and encapsulating mashups as widgets, we enable end-users to develop small, interac-
tive applications using enterprise resources and to deploy these applications directly 
to their machine, without the need of any programming knowledge. Our approach  



108 M. Spahn and V. Wulf 

especially considers extensibility of building blocks for widget creation even by 
SMEs using existing knowledge. Thereby the whole chain of developing building 
blocks and composing building blocks to widgets can be put in the hands of SMEs. 
To be able to evaluate the usefulness and practicability of our solution approach in 
real work environments, we deployed our solution to three German SMEs. We inves-
tigated if business users are able to create widgets using the lightweight design ap-
proach, and if practical problems can be addressed using such simple applications like 
widgets. Furthermore we classified types of end-users and analyzed how they collabo-
rate to create solutions of practical value. 

The remainder of the paper is organized as follows. In Section 2 we present the 
conducted preliminary empirical studies and explain our research and solution ap-
proach. In Section 3 we describe the developed EUD environment for widget creation 
with regard to conceptual layers, architectural components, user interface and design 
paradigm. First results of the evaluation phase are discussed in Section 4, before we 
summarize and conclude our paper in Section 5. 

2   Research Approach and Preliminary Studies 

An important aim of our research is to create EUD approaches and tools, which are 
applicable in real enterprise environments. This intent is considered by the setup of 
our research approach. The work presented in this paper is based on a research ap-
proach consisting of three steps, which can be characterized as follows: (i) Conduct-
ing empirical research to identify end-user adaptation problems relevant in real enter-
prise environments. (ii) Developing a solution approach to address identified 
adaptation problems. (iii) Evaluate the solution approach in real work contexts to de-
termine its applicability for the intended purpose. In the following subsections we dis-
cuss each of the steps briefly. 

2.1   Preliminary Empirical Studies 

In preparation of designing EUD tools, we conducted a series of semi-structured in-
terviews based on qualitative research methods [16] in three German midsized com-
panies that use ERP systems to support their business processes. The addressed com-
panies were two companies from production industry (137 and 140 employees) and 
one larger software vendor (500 employees). Semi-structured face-to-face interviews 
were conducted in an exploratory way to get a deep insight into operational tasks and 
work practices. The interviews focused on data-centric aspects of how end-users ac-
cess information stored in the ERP system, how they flexibly process the data, and 
what problems they face, especially with regard to EUD related activities. With re-
gard to EUD related activities our studies revealed, that it is common for business us-
ers to create individual information artifacts supporting them in their operative tasks. 
The most important information artifacts that end-users create are spreadsheets, tai-
lored to the end-users’ individual information needs. End-users commonly use prede-
fined queries of the ERP system to import enterprise data into spreadsheets. Due to 
the complexity of the data model exposed by the ERP system and the complexity of 
the tools for query creation provided by the ERP system, most end-users are not able 
to create custom queries on their own to import data from the ERP system as desired. 



 End-User Development of Enterprise Widgets 109 

Additionally, end-users are not able to create any kind of custom information artifact 
providing interaction on live data of the ERP system. Many end-users have to access a 
certain set of data relevant for their individual working tasks from the ERP system 
many times a day. In many cases, this data can not be accessed from a single location 
within the graphical user interface (GUI) of the ERP systems, forcing users to access 
multiple locations and cumbersomely collect the needed data. As they are not able to 
create any kind of customized GUI or interactive application, providing access to 
relevant data at a glance, many working tasks can only be executed in an inefficient 
and cumbersome manner. 

Complementary to the interview studies, a participatory design workshop (PDW) 
was held to investigate how typical business users manage to design a software arti-
fact using a very lightweight box and wires design paradigm. A PDW puts users in 
the role of designers and requires them to collaborate actively in a solution-oriented 
design process [17]. In the PDW business users had to design an information artifact 
representing a tool that should support users in an analytic task, which was taken from 
their work context. To create the solution, the users could add boxes to the design 
space that represent data or functionality. Boxes had output ports and input ports and 
could be connected by drawing lines to define data or control flow between the boxes. 
The boxes and wires model was left underspecified in a way that no concrete instruc-
tions were given to the users on how to formally specify the meaning of the used de-
sign elements. The underspecified semantics enabled to observe how users intuitively 
use design elements. As the participatory design workshop revealed, end-users intui-
tively thought of boxes as a representation of tabular data, organizing data in rows and 
columns. By connecting boxes, business users related data from different boxes with 
each other and defined the data flow of the solution. The users had no problems using 
the boxes and wires design paradigm itself to specify a solution, but had problems to 
express what data a box should represent. The users decided to specify the data by 
giving a short description on how they would access the data in their used ERP sys-
tem. More details on the results of our preliminary empirical studies are given in [14]. 

2.2   Creating a Solution Approach 

In our preliminary studies we identified two main problems that end-users face with 
regard to data-centric EUD activities. First, end-users create custom spreadsheets and 
rely on getting relevant business data from the ERP system by using queries, but face 
considerable challenges when trying to create custom queries for their individual in-
formation needs. Second, end-users need to access the same set of data within the 
GUI of the ERP system over and over again in a cumbersome manner, and are not 
able to create custom interactive applications that provide the information relevant for 
individual working tasks at a glance. We developed prototypic EUD environments 
addressing both problems identified. With regard to EUD of queries for complex en-
terprise information systems, we developed a prototype called “Semantic Query  
Designer” (SQD), which is build on an ontology-based middleware and provides so-
phisticated visualization, navigation, search and query building possibilities. As we 
are focusing on the second identified problem in this paper, we refer to [18], provid-
ing a detailed description of SQD. 

With regard to EUD of custom, interactive applications providing access to data 
relevant for individual working tasks, we set up the prototypic EUD environment 



110 M. Spahn and V. Wulf 

“Widget Composition Platform” (WCP). The WCP enables business users to create 
custom widgets without any programming knowledge by mashing up enterprise re-
sources in a visual design environment and deploying the created widgets to their ma-
chines. The WCP uses a very lightweight mashup design paradigm based on a simple 
box and wires framework. Boxes represent services that provide enterprise data that is 
in most cases rendered as a table. As our preliminary studies revealed, business users 
are able to learn simple design paradigms like boxes and wires in quite a short time 
and are able to use services providing data in a tabular format in an intuitive way for 
designing software artifacts. 

For the realization of a visual mashup design environment, we could build on an 
early internal prototype of SAP Research that we modified and extended to suit our 
needs. Although we could build on a certain framework, we faced considerable chal-
lenges with regard to realizing a solution that could be deployed and used within 
SMEs for two main reasons. First, SMEs often use ERP systems that are not (yet) ser-
vice-enabled and thus cannot provide enterprise resources as services that are accessi-
ble using standard web protocols, which is a an essential precondition for deploying 
developed mashups as a widget on common widget runtimes. Second, even if enter-
prise systems were exposing a fixed set of resources as services, this set could not be 
extended without programming skills and thus would limit the creatable solutions to 
combinations of predefined services. To address these challenges, we implemented a 
middleware which is able to wrap resources from not service-enabled ERP systems 
and provide these as services in a way accessible using standard web protocols. To 
enable SMEs to extend the provided services without any programming skills, new 
services must be creatable by SMEs using existing knowledge. As at least some ad-
vanced end-users in SMEs exist, that are able to create queries within the ERP sys-
tem, we enabled the implemented middleware to wrap queries stored within the ERP 
system and expose these as services. Using the existing skills of query creation to en-
able the creation of new building blocks for widget creation, limits the entry barriers 
to flexibly use the new technology and can be seen as a kind of gentle slope of com-
plexity approach [8, 19] that puts the whole chain of widget creation in the hand of 
SMEs. Additionally, by enabling the use of queries as services, a relation between the 
prototypes SQD and WCP is established, as end-users are able to use SQD for easy 
query creation, and WCP to mash up these queries to widgets. The conceptual layers, 
architectural components, and GUI of the WCP are described in detail in section 3. 

2.3   Evaluating the Solution Approach 

To be able to evaluate the practicability and usefulness of our solution approach in 
real work environments, we deployed the WCP environment to three German SMEs. 
In this evaluation phase we observed the usage, created widgets and services as well 
as the collaboration of different types of end-users. Additionally we conducted a ques-
tionnaire-based survey among the employees to refine the results of our preliminary 
studies and to get feedback on our WCP-based solution approach from a broad end-
user base. In section 4 we provide first promising results of the evaluation phase by 
describing practical use cases of WCP-created widgets within SMEs, classify end-
users by observed behavior related to widget creation, and discuss selected analysis 
results of the questionnaire-based study. 



 End-User Development of Enterprise Widgets 111 

3   Widget Composition Platform 

The WCP is a web-based EUD environment that enables business users to mashup  
enterprise resources in a visual design environment in a very lightweight way and to 
deploy the created mashups in the form of widgets to their local machines. In the fol-
lowing subsections we describe the WCP environment in detail. We describe the con-
ceptual layers that are implemented by the WCP environment. We explain of which 
architectural components the WCP environment consists and how these components 
work together. Finally we describe the provided GUI and explain how end-users are 
able to create widgets by mashing up enterprise services. 

3.1   Conceptual Layers 

On a conceptual level, the WCP and created widgets are based on a layered architecture. 
Significant components of this conceptual architecture are classified and structured in 
the widget stack depicted in Fig. 1. The widget stack consists of five basic layers: re-
source layer, application programming interface (API) layer, wrapper layer, service 
layer, and mashup / widget layer. With regard to Fig. 1, we will describe the layers bot-
tom-up, as each layer requires the functionality provided by its subjacent layer. 

Resource Layer. The resource layer consists of all resources that can be integrated in 
mashups. Resources can be data, like customer master data stored in an ERP system, 
or functionality, like locating an address and returning an according image of a map 
provided by a map application. Resources are managed and provided by systems that 
can be internal or external to an organization. Internal systems might be various 
enterprise systems, like ERP or Customer Relationship Management (CRM) systems, 
custom applications tailored to the needs of the enterprise, or general purpose 
relational database management systems (RDBMS). External resources might be 
provided by systems accessible to a closed user group, like e.g. systems of suppliers, 
customers or B2B market places, or by systems publicly accessible over the internet, 
like e.g. map services or stock quotes. 

API Layer. The API layer consists of the well-defined interfaces provided by the 
systems managing the resources. Depending on the systems, different formats and 
protocols may be needed to call the APIs and access the resources. APIs of modern 
service-enabled systems may be exposed as web services that can be called using 
standard web protocols, while legacy systems may expose APIs only as libraries that 
can be linked into source code and communicate with the system using proprietary 
protocols. Required formats of input parameters and formats of returned results vary 
accordingly and range from XML structures to proprietary binary formats. 

Wrapper Layer. To abstract from the heterogeneity of APIs and respective protocols 
and formats, the wrapper layer provides a unified service model, consumable by the 
service layer. The abstraction is provided by wrapper components that transform 
requests to the abstract service model to concrete requests using the respective API, 
protocol and parameter format of the addressed resource. Raw results received from 
the API are transformed to a format that can be processed within the unified service  
 



112 M. Spahn and V. Wulf 

 

Fig. 1. Conceptual layers of widget stack in the WCP environment 

model, e.g. data structures storing tables, lists or even images. Not each resource 
requires its own wrapper component. Generic wrappers are able to wrap certain types 
of resources, like SAP ERP queries or RSS feeds, in a generic way. These generic 
wrappers are exposed as service types in the service layer. 

Service Layer. The service layer provides a repository of services that can be mashed 
up in the mashup environment. All services are parameterized instances of service 
types, relating services to a certain wrapper component in the wrapper layer. For 
example, a service “Customer data” providing data from a SAP ERP query is an 
instance of the service type “SAP ERP Query” that relates the service to an according 
wrapper component. The service instance uses parameters to specify which concrete 
query should be accessed inside the SAP ERP system via the wrapper component. 
Services provide further configuration possibilities that vary depending on the type of 
service. For example, the desired type of data visualization (e.g. rendering data as a 
table or a list), or the set of usable data filters that are exposed in the mashup 
environment, can be configured. Services can be further described by adding 
information like name and description text. 

Mashup / Widget Layer. The mashup and widget layer is adding mashup 
functionality to the unified service model of the service layer and provides the 
functionality to deploy mashups as widgets. Mashups are defined by specifying a 
wiring of design elements, interconnecting design elements and defining the desired 
data flow. Design elements can be services or additional UI elements (like e.g. text 
boxes). The wiring defines how data from one design element is used to parameterize 
calls to other (dependent) design elements. Dependent design elements react on data 
updates of connected design elements and update their data accordingly. Mashups can 
be encapsulated as widgets and deployed as self-contained applications to individual 
runtimes, like e.g. the Yahoo! Widget engine [20]. The mashup creation and widget 
deployment functionality is provided by the mashup and widget layer to end-users by 
an integrated EUD environment. 
 



 End-User Development of Enterprise Widgets 113 

To enable business users to create custom widgets supporting their individual working 
tasks, relevant business data needs to be available as services in the service layer. 
Therefore wrapper components and service types need to be implemented to be able 
to wrap resources from relevant enterprise systems. Any implementation of the wid-
get stack should consider that at least some users within the organization are able to 
extend the services using existing knowledge. Therefore, employees should be able to 
create at least some types of resources and wrap these resources as services, without 
the help of IT professionals. If an implementation does not consider this aspect, its 
practical applicability will be limited by design. As an example, the usefulness of ena-
bling the wrapping of a fixed set of web services would only be limited, as employees 
usually are not able to create customized web services due to a lack of programming 
skills. In contrast to this, the wrapping of queries enables at least some employees to 
create desired queries for data retrieval and flexibly include data into widgets. 

3.2   Architectural Components of the Widget Composition Platform 

We set up a prototypic system, instantiating the conceptual widget stack laid out in 
the previous subsection. Fig. 3 provides an overview of the system components, 
which are discussed in the following. 

The central component of the system is the WCP, a web application which is im-
plemented using Java technology and is run inside a web application server. The WCP 
provides an integrated graphical end-user development environment for widget crea-
tion. Its GUI can be accessed by calling a certain URL using a web browser. All ser-
vices that can be mashed up within a widget are managed by a service repository. A 
widget deployment component within the WCP is responsible for creating source code, 
encoding the currently created widget for multiple runtime environments. During the 
process of widget composition within the WCP GUI, this component generates code 
for the WCP browser runtime libraries, so that the widget is fully functional within the 
GUI that is rendered inside a browser. If the user decides to deploy the developed wid-
get to a widget runtime engine, the component generates code specific to that runtime 
environment and packages the widget to a file of according structure and format. To 
persist data, like the service repository, the personal repository of end-users’ created 
widgets, or login and access right information, the WCP is using a RDBMS. 

On the client side, end-users access the GUI of the WCP by using a web browser to 
call a certain URL. The installation of client-side software or browser plugins is not 
required to use the WCP. This simplifies the provisioning of the WCP to end-users 
and makes it very easy for end-users to start with the development of individual wid-
gets. Within the browser, widgets are run based on a WCP runtime library imple-
mented in JavaScript using common web standards. This enables a rendering of the 
widget and providing full widget functionality inside the browser during the devel-
opment process without the need of any additional runtime environments installed to 
the client. Only if the end-user wants to use the developed widget within a certain 
widget runtime on the client side, this runtime environment needs to be installed on 
the client and the widget deployed to the runtime environment. For deployment, the 
WCP is delivering a single file that contains the widget packaged in the specific for-
mat required by the runtime environment. 



114 M. Spahn and V. Wulf 

 

Fig. 2. Architectural components of the Widget Composition Platform 

According to the widget stack described in the previous subsection, widgets access 
the resources that are mashed up within the widget via wrapper components. As 
wrapper components are encoded directly into the generated widget code, they are 
subject to the same technical restrictions as the technology used to implement 
widgets. As widgets need to run within a browser during the development process, 
wrapper components are limited to calls that can be realized using web standards from 
within a browser. If resources are managed by service-enabled systems, wrapper 
components are able to address the resources directly using standard web protocols. If 
resources are managed by legacy systems, that do not provide an API addressable us-
ing standard web protocols, wrapper components are assisted by wrapper services. 
Wrapper services are deployed to a dedicated web application server and provide  
access to legacy systems by encapsulating relevant parts of their API with a Represen-
tational State Transfer (REST) [21] based API that can be consumed by wrapper  
components. In our concrete setup we implemented wrapper services to access que-
ries within not service-enabled versions of SAP ERP systems by encapsulating SAP 
Remote Function Calls (SAP RFC) using SAP Java Connector (SAP JCO), and exe-
cution of queries expressed in Structured Query Language (SQL) to RDBMS or Excel 
files using Java Database Connectivity (JDBC). By this, wrapper components are able 
to access resources within such systems using simple web protocols, keeping the 
needed technology on the client side as simple and lightweight as possible. 

3.3   GUI of Widget Composition Platform 

The WCP provides a browser-based GUI representing an integrated development en-
vironment (IDE) enabling the visual development of widgets without any program-
ming knowledge. The GUI does not depend on any browser plugins and can simply 
be consumed by accessing an URL. A screenshot of the GUI is depicted in Fig. 3. 

The GUI is separated into several panes. On the left side, a list of all services con-
tained in the service repository is provided. The list groups services according to their 
service types. Users are able to add services to a mashup, simply by dragging and  
 



 End-User Development of Enterprise Widgets 115 

 

Fig. 3. GUI of the Widget Composition Platform 

dropping the service to the design pane, located in the middle of the GUI. Besides 
services, additional design elements, like text boxes, can be dragged from the upper 
right of the GUI into the design pane. If an element in the design pane is selected, its 
properties are visible and modifiable in a properties pane on the right. Properties 
that can be modified include visual properties (such as color or font faces), but – more 
importantly – structural properties of services. For example, if service data is rendered 
as a table, then columns can be disabled or enabled to show exactly the desired data, 
or the number of displayed rows can be limited. From the background pane at the bot-
tom of the GUI, the user is able to select a background image, enhancing the visual 
appearance of the created widget. Custom background images, e.g. tailored to the 
corporate identity of an organization, can easily be added by uploading an image in a 
common format like JPG. After adding services or design elements to the design 
pane, they are immediately populated with live data and provide runtime interaction 
possibilities. All design decisions create immediate effects, thus blurring design time 
and runtime and enabling development close to a WYSIWYG manner, increasing the 
confidence of the user in creating the desired results. 

To mashup services, a wiring has to be defined using a simple box and wires design 
paradigm. As depicted in Fig. 4, services and other design elements offer input ports 
and output ports that can be connected to define the wiring. Input ports are visualized 
as orange triangles on the left side of elements and output ports are visualized as blue 
circles on the right side of elements. Elements are connected by drawing a line, origi-
nating from an output port of a source element to an input port of a target element. 
Whenever data in the source element changes, the new data is pushed as input to the 
target element, which updates itself accordingly. The update of data in target elements 
might again push new data to dependent elements, which in turn might trigger updates. 
Services update their data by executing a service call, which is parameterized accord-
ing to the current input values. In the given example, a service providing customer 
master data is connected to a service providing sales order data. When selecting a 
customer in the customer table, the connected sales order service is automatically  
 



116 M. Spahn and V. Wulf 

 

Fig. 4. Wiring of services and design elements 

updated to only show sales orders of the selected customer. In case of the depicted ser-
vices, input ports correspond to filters on table columns and output ports to the column 
values of the currently selected row. In the given example, two text boxes are used to 
enable the user to interactively define values that are pushed to services as input. The 
 

text box connected to the customer data service restricts the shown customers accord-
ing to the given name pattern. The text box connected to the sales order service re-
stricts shown sales orders to such sales orders that have been received at or after a 
given date. In addition to text boxes, other design elements exist, that provide addi-
tional functionality, if served with according data. Examples are design elements that 
use e-mail addresses or Skype names as input and provide the ability to send an e-mail 
or establish a Skype call just by clicking on an envelope or telephone symbol. 

If realizing during the creation process, that a resource needed for the current 
mashup is missing in the service repository, an according service can be defined using 
the “Create” option of the service pane. To define a service, the service type needs to 
be selected (e.g. SAP ERP query) and then the resource that should be encapsulated 
by the service specified (e.g. by providing the SAP ERP system storing the query, and 
the name of the query). After saving the service to the repository, it can instantly be 
used in the mashup process. 

At any point of time, the user is able to switch from the design time mode to a run-
time mode. Although the widget is fully functional even in design time mode, the run-
time mode hides all visual elements that are only needed at design time, like input 
ports, output ports, or connections, and prevents modifications to the widget. This 
way, the widget is presented as it would appear if deployed to an external widget en-
gine. Widgets can be saved to and loaded from a personal widget repository managed 
by the WCP. This functionality is accessible through the “MyWidgets” pane on the 
left of the GUI. Using the “Deployments Option” pane, the widget can be deployed to 
multiple widget runtime environments, like Yahoo! Widget Engine [20] or Microsoft 
Windows Vista Sidebar [22]. When selecting deployment, the WCP is returning a sin-
gle file, which can either be directly opened and thereby gets deployed to the client-
side widget engine or saved as a file, that can easily be sent via e-mail or moved to a 
file share, to share the widget with colleagues. Widgets that are deployed to a  
client-side widget engine, run independently of the WCP and are small, self-
contained, interactive applications. 



 End-User Development of Enterprise Widgets 117 

4   Evaluation 

The aim of the WCP approach is to enable business users to create custom widgets 
tailored to their individual information needs, without the need of any programming 
skills. To achieve this aim, a very lightweight composition approach was chosen, to 
mash up enterprise resources. This enables the creation of simple solutions by simple 
means. Additionally, advanced end-users are able to create new enterprise services to 
be mashed up within the WCP by creating and wrapping according resources within 
enterprise systems. With regard to validity of this approach, several questions arise. 
Are business users of SMEs able to create widgets using the WCP? Are widgets able 
to address practical problems in real work contexts, although they are very simple 
software artifacts composed in a very simple way? Are advanced end-users able to 
create and wrap enterprise resources as new services to extend the available building 
blocks for widget creation? What types of end-users exist with regard to widget usage 
and development, and how do they collaborate? To be able to evaluate our solution 
approach in real work environments, we deployed the WCP environment to three 
German SMEs. Additionally, we conducted a questionnaire-based survey among the 
employees to refine the results of our preliminary studies and to get feedback on our 
WCP-based solution approach from a broad end-user base. In the following, we de-
scribe the setup of the practical evaluation of the WCP, discuss first results of the 
practical use within SMEs, describe a first classification of end-users based on ob-
served EUD behavior, and discuss first results of the questionnaire analysis. As the 
evaluation phase is still ongoing at the time of writing, all results have to be consid-
ered as preliminary results. 

4.1   Setup of Evaluating WCP in Practice 

The WCP environment has been deployed to three German midsized companies, 
which use an SAP ERP system to support their business processes. The companies are 
two midsized companies from production industry (137 and 140 employees) and one 
larger software vendor (500 employees). In the respective companies 57, 80 and 350 
employees use a PC. Among those, 50, 70 and 116 employees have access to the SAP 
ERP system. 18, 60 and 70 employees use the SAP ERP system on a regular base. In 
two of the three companies the initial WCP installation was realized in cooperation 
with the IT department, and in one company with the person responsible for IT con-
cerns, as no dedicated IT department existed. After installation, the WCP could be ac-
cessed by every employee having access to the internal network of the company. 

In each company one advanced end-user was nominated as a contact person, 
responsible for all concerns with regard to the WCP. This person should act as an 
evangelist to promote the usage of the new technology, as well as provide support to 
end-users, if questions arise. In a first phase, the contact person was given an introduc-
tion into the WCP and should experiment freely with it to get more familiar with its 
concepts and usage. We defined five distinct services encapsulating SAP ERP data as a 
starting point for experiments. The services provided common data, like data related to 
customers, sales orders and invoices. To increase the motivation to go for experiments, 
we included some appealing external services that could be used, like a service for 
visualizing addresses on a map, a YouTube video service, Google news, and a stock 



118 M. Spahn and V. Wulf 

quote service. In a second phase, we discussed any problems that might have arisen in 
the first phase and provided help to solve these problems. After that, we discussed po-
tential use cases of widgets within the company with the contact person. In a third 
phase, we encouraged the contact person to act as an evangelist and promote the usage 
of the WCP by approaching employees related to the discussed use cases, giving an in-
troduction to the WCP, and motivating its usage. If the contact person was not moti-
vated enough or had problems acting as an evangelist, we gave additional support or 
acted as evangelists on our own to push the dissemination of WCP technology. During 
the third and ongoing phase we conduct accompanying interviews with the employees, 
which are using the WCP for the creation of individual widgets. We investigate what 
use cases exist, how end-users are able to use the WCP and widgets to address practi-
cal problems, and how different end-users collaborate to create solutions. 

4.2   Adoption of WCP and Widgets in Practical Use Cases 

As the evaluation phase is still in progress at the time of writing, a final analysis of the 
results cannot be given yet. Nevertheless we are able to discuss some of our first pre-
liminary results, which are very promising. In the following we exemplarily discuss 
two use cases which describe how business users adopt widgets that have been created. 

Use Case 1: Sales Support Widget. A user in the sales department is in charge of 
answering questions of customers related to sales orders. Customers contact the user by 
phone to get information related to the content and status of sales orders. Inquiries 
comprise e.g. questions about whether or not certain goods have been ordered in a 
certain sales order, or what the current state of sales order processing is. To be able to 
answer such questions, the user has to access multiple locations inside the GUI of the 
SAP ERP system. In a first step, the user needs to access customer master data to 
uniquely identify the customer. In a second step, the user accesses sales order header 
data to filter sales orders of the respective customer and the sales order of question. In a 
third step, the individual items of the sales order are accessed to view ordered goods, the 
ordered quantity and their status. If multiple sales orders are of interest, the user needs to 
switch back and forth between the sales order list and its details. The process of 
incrementally gathering required information from the GUI by accessing multiple 
locations and the need to switch back and forth between them is rated to be cumbersome 
by the user, especially as the user has to access the information many times a day. 

The user was approached by the local evangelist and was shown the WCP. The 
user started to experiment with the WCP. Using the services we defined as standard 
demo services during installation, the user was able to create a suitable widget for his 
needs. The widget shows customer master data, sales order header data and sales or-
der details as three distinct tables. Using text boxes the user added filters for custom-
ers by name or customer number, and filters on the order date of sales orders. The 
user deployed the widget to his desktop to make it easily accessible and uses it to 
quickly access sales order related data if customers ask for them. By using the filters 
on customer master data, a customer can be uniquely identified in a fast and comfort-
able way. By clicking on this customer in the table, all sales orders of the customer 
are shown in another table, directly beneath the customer table. The user then restricts 
the shown sales orders to the ones ordered at or after a certain order date. By clicking 
on a sales order, all relevant details are shown in a third table. The user configured the 



 End-User Development of Enterprise Widgets 119 

tables to only show data relevant for him, resulting in a compact overview providing 
required data at a glance. To view details of other sales orders in question, the user 
simply clicks on the sales order in the sales order table. 

The created widget is used by the user about 40 times a day to answer standard 
questions of customers related to sales orders. As the user does not need to access 
multiple locations within the complex GUI of the SAP ERP system, but gets all rele-
vant data at a glace, he is able to answer standard customer inquiries in approximately 
the half of the time compared to using the GUI of the SAP ERP system. Because of 
this practical value, the user sent the widget to a colleague, who needs to access such 
data occasionally. The user has absolutely no programming skills and was able to cre-
ate a custom widget for supporting his individual working task within three hours af-
ter having seen the WCP for the first time. The user told us that experimenting with 
the WCP was fun for him. He perceived the WCP to have an appealing user interface 
and the composition of widgets to be simple, comprehensible and easy to learn. 

Use Case 2: Material Lookup Widget. A user in charge of procurement needs to 
access certain information related to material many times a day. For instance, 
identifying a material by its material number and getting the quantity currently in 
stock and the quantity already scheduled for production. To get a first overview of the 
material status, the user determines a constant set of information, which she considers 
to be standard for her work context. Similar to the previous use case, relevant 
information are widely spread within the GUI of the SAP ERP system and have to be 
gathered in a cumbersomely manner. 

As the user was approached by the local evangelist and was shown the WCP, she 
immediately thought of building a widget to access her standard set of material related 
information. As no predefined services existed that could deliver relevant data, the 
evangelist discussed with the user which data was actually needed and searched for 
possible data sources like tables and queries within the ERP system. Using a larger 
query as a template, the evangelist managed to create a SAP query joining five dis-
tinct tables and providing most of the requested data. The query was wrapped as a 
service for the WCP and was used by the user to create a suitable widget. 

The widget is rather simply structured and just consists of a text box and the cre-
ated service. The text box defines a filter on the material number to the service. As the 
service just returns a single record, the results are not rendered as a table with a single 
row, but as a list, showing all attributes of the record with according values as rows. 
The user configured the service to show only the most relevant data and arranged all 
design elements neatly to create an appealing widget. The widget was also deployed 
on the PC of an employee working in the raw material warehouse, who did not have a 
direct access to live data from the SAP ERP system before. By using the widget, he is 
able to access the most important data related to material in a very easy way, without 
the need of having to learn and understand a complex enterprise system. 

4.3   Types of End-Users 

Based on first insights obtained by accompanying interviews and observations, we 
distinguish different types of end-users with regard to widget usage and development. 
An according segmentation of end-users is given by the following classification: wid-
get consumers, widget creators, and service creators. 



120 M. Spahn and V. Wulf 

Widget Consumers. Widget consumers are end-users which are only consuming 
widgets, but do not create widgets. Some users only use computers occasionally and 
are not very familiar with complex information systems. They receive widgets from 
more experienced colleagues and use them to access data in an easy and comfortable 
way without the need of learning and understanding one or more complex information 
systems. By this, the value of information stored in enterprise systems is leveraged, as 
it enables more end-users to access them and make better informed decisions. 
Additionally this removes the need of asking colleagues for data and thus makes data 
access more efficient. Another class of widget consumers consists of end-users that 
could create widgets for their own, but are not motivated enough to engage in widget 
creation. On the other hand, they willingly use widgets that are created by other end-
users that turn out to be useful to support own working tasks. 

Widget Creators. Widget creators are end-users that create widgets for themselves or 
others to support individual working tasks. They are motivated by multiple reasons to 
create widgets. One main reason is to simplify data access for own working tasks and 
thereby making these working tasks more efficient and less cumbersome. Another 
motivation is to provide others with especially tailored widgets, to improve data 
supply to others engaged into the same business processes. By this, the amount of 
inquiries for data is reduced and business process may be executed more efficiently. 
Providing better tools to support individual working tasks of processes is especially 
relevant for end-users being responsible for certain processes and thus motivates them 
to act as widget creator to optimize these processes and improve process performance. 
End-users successfully using widgets motivate others to engage in widget creation as 
they are motivated by the success of others and want to use such optimization 
possibilities for their own working tasks and processes. Other end-users are 
technology-savvy and start widget creation for the reason of having fun 
experimenting with new technology. They discover the usefulness for own tasks or 
tasks of others while experimenting. 

Service Creators. Service creators are advanced end-users that are able to create new 
resources that can be wrapped and added to the service repository, from where they 
can be used for widget creation. By extending the service repository with new 
services, they enable widget creators to address more use cases and create more 
widgets that are more precisely tailored to the individual needs of end-users. Without 
service creators, widget creators would be limited to a certain set of predefined 
services which limits the amount of creatable solutions. With regard to the WCP 
environment service creators are end-users having the skills of creating, modifying or 
at least locating suitable queries inside the SAP ERP system that match existing 
information needs of widget creators. 

4.4   Questionnaire-Based Evaluation of WCP 

To refine the results of the preliminary studies and to acquire feedback on the WCP-
based approach on a broad end-user base, we conducted a questionnaire-based survey 
among the employees of the companies participating in the evaluation of the WCP  
environment. Besides the WCP related aspects, the questionnaire addressed many more 
aspects like IT-related skills of employees, satisfaction with provided enterprise 



 End-User Development of Enterprise Widgets 121 

software, experience with EUD related activities, as well as working practices and 
problems with regard to individual information processing and access. For the sake of 
brevity, we focus on WCP related aspects only in the following. As not all employees 
participating in the survey knew the WCP environment, we provided the questionnaire 
online and embedded a small video presenting the WCP. The video was shown to the 
participants after having explained a small use case and showed the employees how to 
create a suitable enterprise widget and deploy it to the desktop in less than three min-
utes. As common office PCs mostly do not provide sound, short explanations were 
given by fading text in the video. Based on the video, the questionnaire asked several 
questions directly related to the WCP approach. Video presentation can be seen as a 
viable medium for demonstrating systems in a user acceptance testing context as it en-
ables subjects “to form accurate attitudes, usefulness perceptions, quality perceptions 
and behavioral expectations (self-predictions of use)” [23], which are important factors 
for technology acceptance according to the Technology Acceptance Model [24]. 

Each of the three participating companies was asked to send the URL to access the 
questionnaire to 33 randomly chosen users of the SAP ERP system. Finally we 
received 73 filled and analyzable questionnaires. With regard to a total of 236 
 

Table 1. Questions related to the WCP environment and widgets with according results 

Question Results 
How do you rate the difficulty level of the 
shown method of widget creation? 

0% too difficult, 13.8% difficult but man-
ageable, 39.7% passable, 22.4% easy, 
20.7% very easy, 3.4% declared not to 
answer 

Do you think you could manage to create a 
widget using the shown method on your own? 

72.5% yes, 6.9% no, 17.2% uncertain, 
3.4% declared not to answer 

Do you think custom-made widgets can pro-
vide benefits in real work contexts? 

69.1% yes, 5.3% no, 21.3% uncertain, 
4.3% declared not to answer 

Do you think, you could ease or accelerate 
your work by using widgets tailored to your 
needs? 

Scale from 0 (would not provide any 
benefits for me) to 5 (would help me a 
lot): 6.4% 0, 5.3% 1, 17.0% 2, 26.6% 3, 
26.6% 4, 7.4% 5, 9.6% declared not to 
answer, 1.1% did not answer 

Is there any personal, typical work situation 
that spontaneously comes to your mind, in 
which a widget would be of help for you? 

47.9% yes, 27.6% no, 14.9% uncertain, 
8.5% declared not to answer, 1.1% did 
not answer 

If your last answer was “yes”, would you be 
willing to create a widget for that purpose on 
your own? 

58.5% yes, 8.5% no, 17.0% uncertain, 
12.8% declared not to answer, 3.2% did 
not answer 

Would you be willing to accept learning ef-
forts to learn the creation of widgets? 

5.3% no, 7.4% yes, up to half an hour, 
11.7% yes, up to an hour, 19.1% yes, 
several hours, 21.3% yes, a day, 28.8% 
yes, several days, 5.3% declared not to 
answer, 1.1% did not answer 

Can you think of using complete, predefined 
widgets in your everyday work, if they pro-
vide data relevant to you? 

84.0% yes, 2.1% no, 8.5% uncertain, 
4.3% declared not to answer, 1.1% did 
not answer 



122 M. Spahn and V. Wulf 

employees working with the SAP ERP system in these companies, we achieved a 
coverage of about 30.1% of the addressed test population. Table 1 lists some of the 
questions which have been asked in the questionnaire after the participants watched 
the video demonstrating the WCP environment, together with the according results. 

The results are promising. The participants rate the WCP not to be too difficult. 
82.8% rate the perceived difficulty level to be passable, easy or very easy. 72.5% 
think that they can manage to create widgets on their own using the WCP environ-
ment. 69.1% think that custom-made widgets are able to provide benefits in real work 
context. On a scale ranging from 0 (widgets do not provide any benefit for me) to 5 
(widgets would help me a lot), 60.6% of participants rated the ability of widgets to 
ease or accelerate their own work with at least 3. 47.9% of the participants state, that a 
typical, personal work situation spontaneously comes to their mind, in which widgets 
would be helpful. 58.5% of these participants would be willing to create a widget on 
their own for that work situation. 88.3% of the participants are willing to accept learn-
ing efforts to learn the creation of widgets. 69.2% of these participants would accept 
learning efforts ranging from several hours to several days. 84% of the participants 
would use complete, predefined widgets in their every day work, if they provide data 
relevant to them. 

The results indicate that typical business users of SMEs, which are using an ERP 
system in their daily work, believe that widgets are able to provide benefits in real 
work contexts. Many business users see application possibilities in their own, per-
sonal work context and would like to create a widget for that purpose on their own, 
even if they have to accept learning effort to achieve this aim. The vast majority of 
business users believes to be able to create widgets with the WCP environment and 
rates its usage to be not difficult. Overall, this can be seen as quite a positive and 
promising feedback with regard to the WCP environment and the practical applicabil-
ity of widgets. According to the Technology Acceptance Model [24], the high degree 
of perceived usefulness can be seen as a strong indicator for acceptance. 

5   Summary and Conclusion 

In this paper, we presented an EUD approach enabling business users to create  
enterprise widgets tailored to their personal information needs without the need of 
programming knowledge. The approach is based on a prototypic, web-based EUD en-
vironment called WCP, which enables end-users to mash up enterprise resources in a 
visual design environment in a very lightweight way using a simple box and wires de-
sign paradigm and to deploy the created mashups in the form of widgets to their local 
machines. The ability of creating custom widgets enables business users to create 
small, interactive applications to access relevant business data in a fast and convenient 
way, without the need of starting heavyweight and complex enterprise systems and 
cumbersomely collect data from multiple locations within the GUI of such systems. 
This creates a new experience for end-users, as they were not able to create interactive 
tools providing live interaction on enterprise resources to support their individual 
work tasks on their own before. The approach especially considers extensibility of 
building blocks for widget creation by SMEs using existing knowledge, as it enables 
to wrap and expose enterprise resources (e.g. SAP ERP queries), which can be created 



 End-User Development of Enterprise Widgets 123 

by advanced end-users, as services that can be mashed up in a widget. Thus, the 
whole chain of widget development is put in the hand of SMEs. 

We described our research approach targeted at creating EUD solutions applicable 
in real enterprise contexts, and motivated the need and setup of our approach with 
results of our preliminary empirical studies. With regard to the set up of our solution 
approach, we discussed the conceptual layers of the widget stack, which is instanti-
ated by the WCP environment, and explained the architectural components of the 
WCP and how these work together. We presented the GUI of the WCP and explained 
how end-users are able to create individual mashups of enterprise resources using a 
simple box and wires design paradigm, and how these mashups can be deployed as 
widgets to the local machines of the end-users. With regard to evaluation of the ap-
proach, we presented first results of a practical evaluation of the EUD environment in 
three German SMEs. We provided use cases from real enterprise contexts, and gave a 
classification of end-user types based on our observations. Additionally, we presented 
results of a questionnaire-based survey conducted on a broad end-user base, which 
document a very promising feedback with regard to our approach. 

The provided use cases from real enterprise contexts demonstrate that business us-
ers are able to create custom widgets supporting their individual work tasks using the 
provided EUD environment. The use cases gave evidence that widgets can be used to 
address practical problems in real work contexts, although they are very simple soft-
ware artifacts composed in a very simple way. The results of the questionnaire-based 
survey support these conclusions, as they show that a broad base of typical business 
users believe that widgets are able to provide benefits in real work contexts, see appli-
cation possibilities in their own work context, and would like to create a widget for 
that purpose on their own, even if they had to accept learning effort to achieve this 
aim. The vast majority believes to be able to create widgets with the WCP environ-
ment and rates its usage to be not difficult. 

Beyond this, we observed in practical situations that advanced end-users are able to 
create and wrap enterprise resources as new services to extend the available building 
blocks for widget creation. By this, the whole development chain of widget creation 
can be put in the hands of SMEs and allows them to act as autonomous creators of 
services and widgets, without the need of external IT professionals. With regard to 
our aim of creating EUD approaches for enterprise environments, which can be man-
aged even by SMEs and enable business users to better adapt software to their indi-
vidual working tasks and work practice, we consider these first results as being very 
promising. 

With our research, we contribute to the field of EUD in various ways. We give an 
example of how the technical flexibility of SOAs can be leveraged at the hand of end-
users using approaches like mashups and widgets. We provide indications, taken from 
our evaluation, that a simple box and wires design paradigm, combined with a design 
environment blurring design time and runtime can be easily learned and used by typi-
cal business users to orchestrate simple software artifacts. We show that EUD ap-
proaches enabling business users to create simple software artifacts like widgets are 
able to address practical problems in real enterprise work contexts. Additionally, we 
provide indications from our observations, that by enabling SMEs to create enterprise 
resources using existing knowledge and wrapping these resources as building blocks 
for the EUD of software artifacts, the whole development chain of software artifacts 



124 M. Spahn and V. Wulf 

can be put in the hands of SMEs, thus reducing the need of external IT professionals 
and at the same time increasing flexibility in adapting the used software infrastructure 
to individual and changing needs. 

Acknowledgments. We would like to thank Alexander Dreiling and Kathrin 
Fleischmann of SAP Research for providing an early prototype of the WCP we could 
branch and extend. The presented research was funded by the German Federal 
Ministry of Education and Research (BMBF) under the project EUDISMES (number 
01ISE03C). 

References 

1. Roth, A., Scheidl, S.: End-User Development for Enterprise Resource Planning Systems. 
In: Informatik 2006, pp. 596–599. GI (2006)  

2. Brehm, L., Heinzl, A., Markus, M.L.: Tailoring ERP Systems: A Spectrum of Choices and 
their Implications. In: 34th Annual Hawaii International Conference on System Sciences 
(HICSS-34). IEEE, Los Alamitos (2001) 

3. Markus, M.L., Tanis, C.: The Enterprise System Experience: From Adoption to Success. 
In: Zmud, R.W. (ed.) Framing the Domains of IT Research: Glimpsing the Future through 
the Past, pp. 173–207. Pinnaflex (2000) 

4. Wulf, V., Rohde, M.: Towards an integrated Organization and Technology Development. 
In: Designing Interactive Systems 1995 (DIS 1995). ACM, New York (1995) 

5. Gallivan, M.J., Keil, M.: The User–Developer Communication Process: A critical Case 
Study. ISJ 13, 37–68 (2003) 

6. Beringer, J.: Reducing Expertise Tension. Commun. ACM 47, 39–40 (2004) 
7. Lieberman, H., Paternò, F., Wulf, V.: End User Development. Springer, Heidelberg (2006) 
8. Spahn, M., Dörner, C., Wulf, V.: End User Development: Approaches towards a flexible 

Software Design. In: 16th European Conference on Information Systems (ECIS 2008), pp. 
303–314. CISC (2008)  

9. Wulf, V., Pipek, V., Won, M.: Component-based Tailorability: Towards highly flexible 
Software Applications. IJHCS 66, 1–22 (2008) 

10. Erl, T.: Service-oriented Architecture: Concepts, Technology, and Design. Prentice-Hall, 
Englewood Cliffs (2005) 

11. Microsoft Popfly, http://www.popfly.com/ 
12. Yahoo! Pipes, http://pipes.yahoo.com/ 
13. Gartner Identifies the Top 10 Strategic Technologies for 2008 (2008), 

http://www.gartner.com/it/page.jsp?id=530109 
14. Spahn, M., Dörner, C., Wulf, V.: End User Development of Information Artefacts: A De-

sign Challenge for Enterprise Systems. In: 16th European Conference on Information Sys-
tems (ECIS 2008), pp. 482–493. CISC (2008) 

15. Caceres, M.: Widgets 1.0 Requirements. W3C Working Draft. W3C (2008)  
16. Kvale, S.: Interviews: An Introduction to Qualitative Research Interviewing. Sage Publica-

tions, Thousand Oaks (1996) 
17. Muller, M.J.: Participatory Design: The third Space in HCI. In: The Human-Computer In-

teraction Handbook: Fundamentals, evolving Technologies and emerging Applications, pp. 
1051–1068. Erlbaum (2003) 



 End-User Development of Enterprise Widgets 125 

18. Spahn, M., Kleb, J., Grimm, S., Scheidl, S.: Supporting Business Intelligence by Providing 
Ontology-based End-User Information Self-Service. In: 1st International Workshop on On-
tology-supported Business Intelligence (OBI 2008). ACM, New York (2008) 

19. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable Systems: Pressing the 
Issues with Buttons. In: SIGCHI Conference on Human Factors in Computing Systems 
(CHI 1990), pp. 175–182. ACM, New York (1990) 

20. Yahoo! Widgets, http://widgets.yahoo.com/ 
21. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, University of California, Irvine, USA (2000) 
22. Lal, R.: Creating Vista Gadgets. Sams (2008) 
23. Davis, F.D.: A Technology Acceptance Model for empirically testing new End-User In-

formation Systems: Theory and Results. PhD thesis, Sloan School of Management, Massa-
chusetts Institute of Technology, Cambridge, MA, USA (1986) 

24. Davis, F.D.: Perceived Usefulness, perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly 13, 319–340 (1989) 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 126–145, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

End-User Development for E-Government Website 
Content Creation  

Daniela Fogli 

Dipartimento di Elettronica per l’Automazione 
Università degli Studi di Brescia 

Via Branze 38, 25123 Brescia, Italy 
fogli@ing.unibs.it 

Abstract. E-government websites are currently becoming more and more huge 
and complex. They provide citizens with several kinds of information, includ-
ing services for online task payment or front office reservation. The creation 
and maintenance of such websites often require a distributed approach: the con-
tent publication task is transferred from software developers to personnel of the 
various organization departments (here called the publishers). To this end, a 
Content Management System (CMS) is usually adopted. However, CMSs do 
not generally satisfy all requirements and needs that emerge in this application 
domain. Therefore, the adoption of End-User Development (EUD) techniques, 
tailored to the publishers’ culture, background and skills, represents a possible 
solution to CMSs’ current limitations. In this paper, after discussing the context 
and the existing problems, we describe an approach to extending CMSs with 
EUD techniques. The approach will be discussed with reference to the creation 
and maintenance of the website of an existing government agency. 

Keywords: e-government website, content management system, accessibility, 
end user, meta-design.  

1   Introduction 

Government agencies are complex organizations whose websites are currently becom-
ing more and more huge and articulate. They offer to citizens several kinds of infor-
mation, including sophisticated services such as online task payment or front office 
reservation. 

For such websites, many countries all over the world have promulgated laws to es-
tablish the duty of satisfying precise accessibility standards [23][39][53], in addition 
to the well-known usability requirements.  

The creation of websites that satisfy usability and accessibility requirements has 
been traditionally accomplished by software developers. Among the other activities, 
software developers had to perform content authoring, by gathering information from 
domain experts that worked in the various departments of the government agency. 
However, this centralized organization was doomed to fail whenever the website 
contents increased considerably: software developers became a bottleneck, thus de-
termining significant delays in the publication process.  



 End-User Development for E-Government Website Content Creation 127 

For these reasons, a decentralized strategy is currently preferred in most govern-
ment agencies: the responsibility of publishing contents on the website is assigned to 
the employees of the different agency departments. Distributed content authoring has 
a significant impact on the work organization and personnel roles, and investments 
are necessary to acquire proper software applications that allow storing, controlling, 
versioning, and publishing various kinds of web material. Web Content Management 
Systems (CMSs) are the software applications that meet this demand. 

A CMS is usually installed and managed by software developers – personnel  
internal or external to the government agency who are expert in computer technology. 
In such a situation, their responsibility in web page creation is reduced with respect  
to the centralized approach. In particular, they have to develop page templates, by 
ensuring their accessibility and usability. They also have to design the navigation 
architecture, by assigning privileges to personnel committed to content publication, 
the so-called publishers. Publishers – personnel working in some agency department 
who possess the knowledge about the content to be published on the website – are the 
very end users of the CMS. As such, these personnel are expected to evolve from 
passive interviewees during requirements analysis to active content producers. They 
generally have limited competencies in computer technology, but may be acquainted 
with web browsers, word processors, spreadsheets and other similar office applica-
tions. Therefore, they are capable of using content authoring tools available in the 
CMS to add their contents to the website.   

However, from our collaboration experience with a large Italian municipality, it 
emerged that CMS’ end users are often required to acquire some programming skills, 
in order to cope with the limitations of the CMS. In particular, we have observed  that 
existing CMSs often lack functionalities for generating HTML code that satisfies 
accessibility requirements as established by national laws (this is particularly true 
when the adopted CMS is out-to-date, but migration to another product is not man-
ageable). In such a situation, publishers must access the HTML code generated by the 
CMS authoring tools, and modify it manually. Consequently, this requires to provide 
publishers with training courses and/or manuals that support them in doing this job. In 
spite of these precautions, people not expert in computer technologies keep on con-
sidering this task as difficult, error-prone and time consuming, and thus they arrive 
even at refusing to perform it. 

Furthermore, software developers still remain a bottleneck in creating online ser-
vices. In fact, after the elicitation of requirements from personnel of the different 
agency departments, they are in charge of implementing the services through the 
programming language available in (or compliant with) the CMS. Moreover, the com-
munication gap [9][20][31] that often exists between developers and domain experts 
(the departments’ employees) creates problems in correctly designing and developing 
these services. Therefore, tools are needed to support CMS’ end users in creating not 
only static content, but also online services, since these people are the owners of the 
necessary domain knowledge. 

We argue here that both HTML editing and online service creation must be re-
garded as two different kinds of software development activities publishers should 
carry out. We propose to achieve this goal by extending CMSs with proper End-User 
Development (EUD) facilities.  



128 D. Fogli 

EUD [29][50] has been defined by EUD-Net, the network of Excellence on End-
User Development funded by the European Commission during 2002-2003, as “the 
set of methods, techniques, and tools that allow users of software systems, who are 
acting as non-professional software developers, at some point to create or modify a 
software artifact” [16]. EUD activities can range from just setting parameters to the 
use of macro languages to extend system functionalities [8][9][28][35].  

The contribution of this paper is to promote the application of results of EUD 
research in the field of CMSs, with a particular focus on the use of CMSs for creating 
e-government website content. With reference to the real case of an Italian municipal-
ity, we propose to integrate a CMS with tools that support publishers in creating con-
tents and services, transparently with respect to their underlying representation. In this 
way, publishers can behave as “unwitting programmers” [11][41] by creating or 
modifying software components without being conscious of this. To this end, EUD 
tools must be designed by relying on publishers’ competencies and skills, thus avoid-
ing them to acquire new competencies in computer technologies.  

In particular, we carried out a case study research [57][58] concerning an EUD-
based technique that has been implemented to relieve publishers from HTML editing. 
This research is extensively described in [19] and briefly summarized here. A second 
technique has been investigated and discussed with software developers that work at 
the Italian municipality. It is still at the early stages of development, but it is presented 
here as very promising in the case of online service creation. 

The paper is organized as follows: Section 2 analyses the problems concerning the 
development of e-government websites. Section 3 describes content management 
systems, the tools generally employed for creating, managing and updating an 
e-government website. Section 4 presents the theme of end-user development, the 
experiences of EUD in various application domains, and the characteristics of end 
users required to perform EUD activities. Section 5 describes our case study. Section 
6 provides a further analysis related with the case study, which appears promising for 
future implementations of EUD-based techniques in the field of e-government web-
sites. Section 7 briefly discusses the novel ideas proposed in the paper and Section 8 
concludes the paper. 

2   Characteristics of E-Government Websites 

In many countries all over the world, several laws establish precise accessibility goals 
an e-government website must satisfy [39]. For instance, since 2005, websites of 
Italian government agencies must satisfy the requirements established in the “Dis-
posizioni per favorire l'accesso dei soggetti disabili agli strumenti informatici” (“Pro-
visions to support the access to information technologies for the disabled”, Law no. 4 
January 2004) [40].  

Most of these laws on accessibility (including the Italian one) are based on the 
Web Content Accessibility (WCAG) release 1.0 recommendation of World Wide 
Web Consortium (W3C) [54]. WCAG 1.0 includes fourteen guidelines that must be 
followed by web developers to make their sites accessible to people with disabilities. 
Such people are (i) those who need to browse web pages by using assistive technolo-
gies because of physical disabilities (i.e. people having vision, hearing or mobility 



 End-User Development for E-Government Website Content Creation 129 

impairments); (ii) elder people, who experience changes in vision, hearing, dexterity, 
and memory as they age; (iii) people who navigate the web through obsolete or lim-
ited hardware/software technologies, including old browser versions, low bandwidth 
connections to the Internet, mobile phones, personal digital assistants [53]. Most of 
the accessibility guidelines can be followed by writing proper HTML code, while 
others impose constraints to the interaction experience (for example by suggesting to 
avoid scripting code and to limit the presence of moving objects) or suggest the crea-
tion of simpler pages in terms of layout, graphics and language.  

Furthermore, nowadays, e-government websites are becoming crucial also for the 
services they provide to citizens. Online services can be very different one another 
and dedicated to different kinds of users. For examples, some citizens may find easier 
to pay local taxes on the web, or may find useful reserving front office services or 
asking for personal documents by filling in forms on the website. Online services 
represent a particular kind of content that, like the other information to be published 
on the website, needs some domain knowledge generally possessed by personnel of 
the various agency departments.  

The necessity to publish a huge and diverse amount of content usually requires a 
decentralized activity. To support distributed content authoring and easy website 
management, content management systems are generally adopted. Their main charac-
teristics are discussed in the following section, along with their limitations in satisfy-
ing accessibility requirements and supporting end users in the creation of complex 
content. 

3   Content Management Systems and Their Role in E-Government 
Website Creation and Maintenance 

Like other kinds of web authoring tools, content management systems are becoming 
popular in relieving web site developers from low-level details of page design and 
implementation. In particular, content management systems implement the so-called 
content-driven paradigm: they support a separation between page presentation and 
page content, and allow users to ignore those aspects related with markup and script-
ing languages necessary to build the pages. As far as page presentation, pre-formatted 
templates are usually available in a CMS, as well as WYSIWIG functionalities to 
support users in creating new templates. But, more importantly for website content 
evolution, CMSs usually include tools that allow people not expert in information 
technologies to create web contents. Interacting with these tools is usually similar to 
interacting with office applications users are accustomed to use in their daily work. 
For example, a typical interaction could consist in choosing a page template and fill-
ing in it by editing objects or importing them from other sources. 

These characteristics permit to create websites that satisfy usability requirements 
(such as consistency among pages, user-error management, system feedback), and 
which should be compliant with existing standards, particularly those related with 
page accessibility. Satisfying accessibility requirements established by national and 
international organizations is however a difficult task. Today several CMSs claim to 
directly support the development of websites compliant with WCAG guidelines. They 
are both open source tools, such as Plone [42], Moodle [34], Joomla! [24], Drupal 



130 D. Fogli 

[15], TYPO3 [52], and commercial tools, such as Blackboard Content System [3], 
QnECMS [44], Sitekit CMS [49], Microsoft Content Management Server [32] or the 
more up-to-date Microsoft Office SharePoint [33] (an exhaustive survey of CMS 
products and technology is beyond the scope of the paper). In spite of these claims, 
for most of these tools, evaluating which WCAG guidelines are taken into account 
and how is not so easy. For example, exploring Joomla! documentation, one discovers 
that several accessibility fixes are due in the future version of the tool. The same is 
true for Moodle. However, Joomla! developers have already declared that some 
WCAG requirements are outside of Joomla! development team, as they have to be 
addressed by template designers or content managers [25]. A similar claim is made by 
Plone’s development team, who is aware that a number of WCAG checkpoints are 
subjective, and thus their interpretation may vary [43]. In TYPO3, an extension 
(plugin) is available for managing content accessibility, but related user manuals are 
unavailable at the date of writing this paper, and thus it is not possible, also in this 
case, to evaluate a priori the suitability of TYPO3 for creating e-government websites. 
A thorough evaluation is even more difficult for commercial CMSs. Generally, their 
vendors declare that they are WAI compliant without giving further details.  

Another topic concerning CMSs is the availability of server-side or client-side lan-
guages that can be used to personalize the website created through a CMS. However, 
such languages almost always require advanced skills, not only in computer pro-
gramming, but also in information architectures of web applications. Therefore, they 
are used generally by professional software developers to implement the functional-
ities required for the domain at hand. In e-government websites, these functionalities 
include online services for tax payment, document request, front-office reservation, 
registration to public services (e.g. schools). In order to implement these functional-
ities and make them available on the web, software developers must always perform 
requirements gathering and analysis by interviewing the personnel of the interested 
department.  This centralized approach and the misunderstandings arising among 
computer scientists and people with different competencies are often the reasons for 
delays in service development and publication. Authoring tools suitable to this task 
could adequately support the personnel at various departments in creating online ser-
vices. Actually, some CMSs are specialized for particular domains, such as media 
sharing or personal spaces. These CMSs offer tailoring techniques or component-
based methodologies to create web pages with functionalities for photo or movie 
sharing, guestbook management, meteorological forecasting. In a similar way, do-
main-dependent functionalities such as those offered by e-government websites could 
be designed directly by publishers.  

4   End-User Development: From Desktop to Web Applications   

The main goal of End-User Development is to study and develop techniques and 
applications for “empowering users to develop and adapt systems themselves” [28]. 
The level of complexity of these techniques should be appropriate to the users’ indi-
vidual skills and situations, and possibly allowing them to easily move up from less 
complex to more complex EUD activities. To this end, a classification of EUD activi-
ties has been proposed in [8][9] and further elaborated in [28]. The authors called 



 End-User Development for E-Government Website Content Creation 131 

parameterization or customization all activities that allow users to choose among 
alternative behaviors already available in the application, resulting for example in 
associating specific computation parameters with specific parts of the data or in ap-
plying different functionalities to the data. Then, they classify as program creation or 
modification the EUD activities carried out through programming by example, incre-
mental programming, model-based development, extended annotation.  

4.1   EUD Solutions in Different Application Domains 

EUD techniques have been used for many years in commercial software, such as 
macro recording in word processors, formula composition in spreadsheets or filter 
definition in e-mail clients [28]. However, on the one hand, they are far to be used 
extensively by a large community of end users, and, on the other hand, there exists the 
potential for employing EUD techniques in many other application domains and with 
different levels of complexity.  

Research projects have been funded to design EUD techniques that support  
householders in programming their home appliances (e.g. digital radios, televisions, 
telephones) [4][5], in order to possibly obtain intelligent environments [14]. In the 
AutoHAN project [5], the idea is to use physical infrared remote controls that can 
become the syntactic elements in a program and that can be composed by the user to 
represent sophisticated functions. Component-based approaches for EUD are pro-
posed in the field of computer-supported collaborative work [36], by providing visual 
tailoring environments that allow users to easily create search tools, chat tools and 
shared-to-do lists [55]. Repenning and Ioannidou propose agent-based programming 
as a paradigm for EUD [45]. They demonstrate the feasibility of this approach by 
applying it to many different domains, from game applications, to simulation envi-
ronments, to software for education. Myers et al. are developing natural programming 
languages and environments to permit people to program by expressing their ideas in 
the same way they think about them [37]. They performed feasibility studies in the 
domain of video games, after having examined how children use and structure lan-
guage to solve problems, and in the domain of business programming, after having 
analyzed how adults describe database access scenarios. Different techniques for 
EUD have been implemented in the software shaping workshops, end-user environ-
ments supporting domain experts in medical diagnosis [9], mechanical engineering 
[10] and geological forecasting [7]; such techniques are based on annotation mecha-
nisms and visual programming through direct manipulation.   

The area of EUD also involves the creation, modification and adaptation of web 
applications. This activity may turn out to be even more difficult than the develop-
ment of traditional desktop applications, since it requires to know different markup 
languages, programming languages (both client and server side), interaction tech-
niques with databases. In [48], the typical hurdles in web development have been 
identified, such as the stateless nature of the HTTP protocol and the necessity of ses-
sion management, handling cross-platform compatibility, establishing and managing 
database connections, input validation. To overcome these problems, a software sys-
tem, called Click [46], has been developed, which allows users to generate HTML 
code by simply instantiating and positioning components for a page under construc-
tion. In [30], Macías and Paternò propose an approach to the customization of  



132 D. Fogli 

web-based applications, which exploits intelligent mechanisms to infer customization 
rules from user changes. In this case, end-user web developers who need to deal with 
structure and presentation of web pages are facilitated by an automatic system that 
builds an end-user profile containing customization preferences and then uses it to 
regenerate web pages according to such preferences. The use of wikis for EUD is 
instead advocated by Anslow and Rielhe [1]: wikis are regarded as a platform to sup-
port end users not only in contributing content, but also in performing computational 
tasks. They applied this technique for the development of business queries in web 
information systems. The work of Ginige and colleagues [13][22][27] is in the field of 
web information systems too. However, they propose a different solution: the defini-
tion of a meta-model of web applications and a set of form-based tools that can be 
used by end users to customize and evolve their applications, thus making the soft-
ware architecture completely transparent to them. The ideas of meta-modelling and 
form-based EUD techniques seem very promising also in the application domain 
considered in this paper. However, while the tools described in [27] require users to 
follow precise syntaxes to create executable code, we propose here an evolution of the 
technique towards a more natural and direct manipulation interaction. 

4.2   End Users’ Characteristics  

One of the most important activities when an interactive system is designed and 
evaluated is the characterization of its end users, especially if such end users are re-
quired to perform EUD activities.  

Cypher defines end users as people who use a computer application as part of their 
daily life or daily work, but not interested in computers per se [12]. They can be tech-
nicians, clerks, analysts and managers who are often required, due to new organiza-
tional, business and commercial technologies, to perform end-user computing, i.e.  “to 
develop software applications in support of organizational tasks” [6].  

Some researchers focus the attention on end users with a high professionalism, 
such as interior designers [18], medical doctors [9], mechanical engineers [10], ge-
ologists [7], biologists [26], urban planners [2]. This has motivated the definition of a 
particular class of end users, the so-called domain experts [8][28], that is experts in a 
specific domain, not necessarily experts in computer science, who use computer envi-
ronments to perform their daily tasks by acting as designers and being creative [21]. 
According to the spectrum presented in [56], they are software developers using do-
main-specific languages to write programs in order to solve specific problems that 
they own. 

Web applications are often developed by “sophisticated end users” [48]: they are 
causal webmasters who, though possessing limited competencies in web technologies, 
are characterized by a strong sensibility and a deep motivation in creating their own 
artifacts [47]. They are sophisticated in that they are experienced in web design even 
though they find difficulties in managing the typical complexities in web development 
[48]. End users of wikis (e.g. Wikipedia), media sharing systems (e.g. Flickr) and 
other Web 2.0 systems [38] are classified as web contents developers in [56]; they 
share with casual webmasters the high motivation. In particular, they are very moti-
vated in contributing their contents and collaborating through the web, and they are 
willing to spend time for preparing web material and publishing it. 



 End-User Development for E-Government Website Content Creation 133 

As far as the development of e-government websites is concerned, the end users of 
content management systems represent another kind of web contents developers. 
However, they are not so motivated to create web material, but often perceive such 
activity as an overhead with respect to their daily work. The characteristics of these 
users, which we consider crucial to design adequate EUD techniques, are discussed 
more in detail in the next section.  

5   EUD in E-Government Website Content Creation: A Case 
Study 

During our collaboration with a large Italian municipality we had the opportunity to 
know and analyze the needs for EUD in e-government website content creation.  

This municipality adopted in 2003 a commercial CMS to support content creation 
by the employees of various departments. A significant personalization work was 
performed to adapt the CMS to the specific context and customer’s requirements. 
Clearly, the adoption of a more recent CMS product would ensure an improvement in 
website management, content creation and accessibility satisfaction. However, the 
huge amount of content to be migrated and the necessity of performing further per-
sonalization work and personnel training have discouraged until now managers and 
developers to make this choice. 

During first informal conversations with some publishers, we discovered that they 
found many difficulties in creating web contents, mainly for two reasons: 1) their own 
characteristics; 2) the lack of some important functionalities in the CMS. As to the 
first point, from conversations it emerged that publishers belong to an heterogeneous 
population, which includes experts in different domains, thus having different compe-
tencies, skills, and cultural background. Most of them do not hold a higher education 
degree and their ages range in a wide spectrum. Publishers seem often to be insuffi-
ciently motivated in doing content authoring, by perceiving such activity as alien to 
their daily work. Moreover, they complained that, while interacting with the CMS 
adopted in their agency, they were often charged with housekeeping activities. For 
example, the creation of some type of content required publishers to edit directly the 
generated HTML code, in order to satisfy accessibility requirements defined in 
WCAG 1.0. These activities are natural for the computer expert and manageable by 
casual webmasters, but they are perceived as intricate by publishers, who not rarely 
arrive at refusing to perform the assigned content authoring tasks. Furthermore, most 
publishers do not perform these tasks frequently, depending them on deadlines for tax 
payments or other bureaucratic issues; therefore, such users tend to forget many de-
tails of the procedure to be followed, especially when it requires some editing of 
HTML code. 

These difficulties suggested us that an approach to CMS development aimed at in-
tegrating EUD techniques in the CMS itself could overcome different kinds of prob-
lems in e-government website creation, management and updating.  

Therefore, we implemented a simple EUD technique to solve a specific problem 
encountered by publishers; then, a case study research [57][58] was carried out to 
examine in-depth the interaction with the original CMS and to evaluate how the EUD-
based approach improved the situation. In the following, we describe the problem 



134 D. Fogli 

considered and a possible EUD solution. Then, the main results of the case study 
research are briefly presented (see [19] for more details). 

5.1   EUD for Accessible Content Creation 

To demonstrate the usefulness of EUD in the considered field, we faced the problem 
of creating tabular content to be published on an e-government website. Tabular con-
tent must satisfy guideline 5 “Create tables that transform gracefully” of WCAG 1.0 
[54]. The six checkpoints of the guideline must be followed to support disabled  
people (users with blindness or low vision), who access tabular information through 
assistive technologies, such as a screen reader or a Braille display. The ability to pro-
duce accessible tabular content is of course a basic feature one would expect from a 
CMS (though this is not always the case). However, the EUD approach here proposed 
has a broader scope since it is suitable to support publishers in other and more sophis-
ticated tasks. 

To create accessible tables with the original CMS, publishers must modify the 
HTML code generated by the CMS. In particular, the interaction occurs as follows. 
The authoring tool available in the CMS provides a button in a toolbar to activate 
table creation. When the user selects this button, the system presents the user with a 
dialog window that asks for inserting the number of rows and columns of the new 
table. After interacting with this dialog window, a “prototype” table is created show-
ing cells whose content is “Col 1 Row 1”, “Col 2 Row 1”, and so on for the first row, 
“Col 2 Row 1”, “Col 2 Row 2”, and so on for the second row, for all the rows re-
quested by the user. Figure 1 shows the table created when the user asks for a two 
rows-two columns table. 

When the user clicks on a table cell, its content is selected and the user can substi-
tute it with the desired content. For example, let us suppose that the publisher inserts 
person names (Maria, Paola) and surnames (Rossi, Bianchi) in the first column and  
 

 

Fig. 1. The table created as a consequence of user request 



 End-User Development for E-Government Website Content Creation 135 

second column respectively. The resulting HTML code underlying the table would be 
the following: 

 
<TABLE> 

<TR> 
<TD> Maria </TD> 
<TD> Rossi </TD> 

</TR> 
<TR> 

<TD> Paola </TD> 
<TD> Bianchi </TD> 

</TR> 
</TABLE> 
 
To make this code compliant with guideline 5 of WCAG 1.0, the publisher must 

access this code through the proper button in the CMS toolbar and modify it as fol-
lows (users’ modifications to the code generated by the CMS are highlighted):  

 
<TABLE SUMMARY=“This table contains name and surname of the 

employees that work at the Public Relations Department of the 
Brescia municipality”> 

<CAPTION>Employees working at the Public Relations  
Department 

</CAPTION> 
<TR> 

<TH ID=”name”>Name</TH> 
<TH ID=”surname”>Surname</TH> 

</TR> 
<TR> 

<TD headers=”name”>Maria</TD> 
<TD headers=”surname”>Rossi</TD> 

  </TR> 
<TR> 

<TD headers=”name”>Paola</TD> 
<TD headers=”surname”>Bianchi</TD> 

</TR> 
</TABLE> 
 
Actually this code aims at satisfying three of the six checkpoints of guideline 5 of 

WCAG and in particular: 

• A tag <TH> has been added for each column by specifying the column header as a 
value of attribute ID of <TH>. This is to satisfy checkpoint 1 of WCAG guideline 5; 

• Each cell identified by an element <TD> has been associated with the correspond-
ing column by using attribute headers, whose value must correspond to the col-
umn header. This is to satisfy checkpoint 2 of WCAG guideline 5; 

• Attribute summary has been added in tag <TABLE> and element <CAPTION> 
has been inserted as first child of element <TABLE>, in order to satisfy checkpoint 
5 of WCAG guideline 5. 



136 D. Fogli 

According to the municipality managers, these checkpoints are the minimum re-
quirements to be satisfied by tables published in their website. In fact, checkpoint 6 
gives additional indications for managing table linearization, but it has priority 3, 
while it was decided that, at the moment, the goal was to obtain Conformance Level 
AA for the website [53]. Checkpoints 3 and 4 refer to the use of tables for page lay-
out; they are satisfied a priori, since page layout is managed through style sheets.  

To support publishers in this work practice, they were provided with a paper-based 
manual, which presented a detailed example to be adapted to the case at hand. Not-
withstanding this, this activity represented a problem for publishers.  

In order to solve the problem by implementing a simple EUD technique based on 
parameterization, the source code of the CMS was properly modified. The interaction 
with the system for inserting a table now occurs as follows. When the user selects the 
tool to insert a table, after the dialog window asking for the number of rows and col-
umns, a new dialog window is presented to the user. Such window, shown in Figure 
2, asks the user for inserting a text for the caption, a text for the summary, and as 
much headers as the number of columns previously declared. The window autono-
mously adapts its size according to the number of column headers that need to be 
requested. It also helps the user to insert caption and summary by remembering 
her/him the meaning of such information directly in the text fields. The user is obliged 
to fill in all the text fields: in fact, when s/he selects the OK button, information are 
checked and, if one is missing, a warning message is presented to the user, by con-
straining her/him to return to the dialog window and complete data insertion. This 
relieves the publisher from checking the correctness of the table, making it easy to 
assess her/his EUD activity [28]. 

The new procedure is clearer and easier for people not expert in computer tech-
nologies. This was confirmed by the results of our case study research. 

 

Fig. 2. The dialog window asking for accessibility parameters 

5.2   Case Study Research: Methodology and Results 

The goal of the case study research was to investigate the difficulties encountered by 
publishers in creating accessible content and to evaluate the benefits of enhancing the 
adopted CMS with EUD features. Therefore, our research questions aimed at 



 End-User Development for E-Government Website Content Creation 137 

understanding what happened during content creation and how the publishers faced 
the problems of the CMS about content accessibility. Then, our goal was also investi-
gating if the extension of the CMS with the EUD feature would have provided sig-
nificant improvements in terms of both performance and publishers’ willingness to 
carry out activities concerned with accessible table creation.  

We involved eight users chosen from different departments of the municipality. 
The sample, even if little, can be considered enough representative of the publisher 
population, because it included people expert in different domains and having  
different competencies, skills, and cultural background. Participants were asked for 
performing a task concerning the creation of an accessible table. A within groups 
technique was adopted, meaning that all users in the sample performed the same task 
using the original CMS and the extended CMS. To avoid polarization due to learning 
effects, different execution orders were defined. 

Data gathering was carried out in the usual work place of users. The techniques 
adopted were structured interviews (after the execution of the assigned task in the two 
sub-cases), observation during task execution and performance measures (completion 
time and number of errors). The first two techniques were meant to provide us with a 
qualitative evaluation, while the last were meant to provide us with quantitative data 
possibly corroborating qualitative ones. An evaluation form was prepared to gather 
both qualitative and quantitative data: it included few simple questions (e.g. “Which 
are the main difficulties you encountered using the original CMS?”, “Which are the 
main improvements you noticed in the new solution?”) and some fields to be filled in 
by the observer with the observations taken during task execution and with the quanti-
tative data. 

During the execution of the task with the original CMS, we observed that most of 
publishers applied mechanically what was suggested by the example table in the 
manual and made several mistakes during the adaptation of that table. They often 
forgot to change some parts of the table, by leaving the information already present in 
the example table. Moreover, by listening to users’ spontaneous comments, we  
discovered that difficulties and misunderstandings arose because users did not under-
stand the meaning of tags correctly. For example, they confounded the terms cap-
tion, headers and summary (maybe this was also due to the translation between 
English and Italian). The interviews confirmed that publishers perceived the task as 
too difficult and requiring an exaggerate effort. In general, publishers considered the 
HTML code manipulation as a work alien to their competencies and tasks, useless, 
and time consuming. Most of them explicitly declared that they were not willing to 
spend energies and time in doing that job. 

The new approach apparently solves all the above problems. Participants com-
mented that the system now requires them exactly what is needed, it does not ask 
them anymore for thinking about the accessibility parameters, but it just drives them 
through table creation, and thus it also avoids them to consult the manual. These posi-
tive results, gathered through direct observation and interviews, are corroborated by 
quantitative data: the comparison of completion times and error numbers demonstrate 
that, using the procedure offered by the extended CMS, there is a significant im-
provement in both robustness and efficiency [19]. 



138 D. Fogli 

6   Toward Online Service Creation through EUD 

We carried on the collaboration with the municipality with the aim of finding a solu-
tion also to the problem of online service development. This task is still at the hands 
of personnel of the Computer Science department of the municipality, since the CMS 
does not provide proper facilities for transferring it to publishers. This should remain 
valid also if a more up-to-date CMS would be adopted, since, as already mentioned, 
existing products provide scripting languages and macro languages that only com-
puter experts or power users are able to manage. 

This section describes a possible EUD approach to developing online services. The 
approach stems from the analysis of how personnel of the Computer Science depart-
ment operate to create such services and from the characterization of publishers  
carried out during the case study research. We used unstructured interviews with a 
representative software developer to elicit knowledge about the kinds of services to be 
made available on a municipality website and about their design and development. 

From the analysis of online services currently offered to citizens on the website it 
is possible to obtain the following classification: 1) front office reservation; 2) tax 
payment; 3) document request; 4) document submission; 5) registration to courses or 
schools. All these services are accessed by the end users of the website through form-
based pages, since fill-in form interaction style has a low cognitive burden for most of 
people and it is easy to implement. More precisely, end users are presented with the 
forms composing a service through a step-by-step instruction design pattern [51]. 
This permits to drive users through the task, in order to acquire all necessary informa-
tion in each step, and to perform validity checks on input data. Also inspired by the 
work of Ginige et al. [13][22], we think that an interaction style based on fill-in forms 
and a step-by-step instruction design pattern could be also at the basis of the EUD 
technique allowing publishers to create online services. 

We illustrate this technique by an example. Currently, front office reservation ser-
vices are implemented in the municipality website as a 5-step wizard, where the steps 
are: 1) counter choice; 2) date choice; 3) time choice; 4) input of personal data; 5) 
summary of data. The first three steps are implemented through radio buttons permit-
ting exclusive choices; the fourth step presents text fields and combo boxes to input 
data; the fifth just presents all inserted data and asks for a confirmation. In each step, 
but the first, it is possible to go back one step to modify previous inserted data. An 
area on the right side of the page shows the steps performed, the step currently under 
compilation, and the steps remaining. Figure 3 shows the website page during the 
reservation of general registry office services: step 3 (time choice) is under compila-
tion (see the main area of the page); on the right side, the white box and the symbol  
highlight the step under compilation, whilst previous steps (counter selection and date 
selection) are marked as done ( ) and next steps (input of personal data and sum-
mary of data) are marked as to be done ( ).  

We argue that the implementation of such kind of wizards could be performed eas-
ily by publishers if the CMS supports them through a step-by-step form-based interac-
tion. For creating a new online service, the publisher will first choose the class of the 
service, for example the “front office reservation” class. Then, the system will drive 
him/her through the steps for creating the service by means of fill-in forms. The 
 



 End-User Development for E-Government Website Content Creation 139 

 

Fig. 3. Step 3 of front office reservation 

first step will consist in generating the list of counter choices that pertain to the pub-
lisher’s department. To this aim, a list of all counters could be available and the pub-
lisher might move items from this list to a list of selected counters, which will be 
presented on the website as a set of radio buttons. Figure 4 shows a mock-up of this 
EUD solution. (For the sake of paper readability, all mock-ups are in English).  

 

Available counters Selected counters

COUNTER RESERVATION – STEP 1: COUNTER CHOICE 

Digital identity cards counter

Italian citizens counter

EU citizens counter

Non-EU citizens counter

Permanent address renewel counter

Digital identity cards counter

EU citizens counter

Non-EU citizens counter

...
Non-EU citizens counter

Available counters Selected counters

COUNTER RESERVATION – STEP 1: COUNTER CHOICE 

Digital identity cards counter

Italian citizens counter

EU citizens counter

Non-EU citizens counter

Permanent address renewel counter

Digital identity cards counter

EU citizens counter

Non-EU citizens counter

...

Available counters Selected counters

COUNTER RESERVATION – STEP 1: COUNTER CHOICE 

Digital identity cards counter

Italian citizens counter

EU citizens counter

Non-EU citizens counter

Permanent address renewel counter

Digital identity cards counter

EU citizens counter

Non-EU citizens counter

...
Non-EU citizens counter

 

Fig. 4. Mock-up of the EUD tool for generating a list of radio buttons related with counter 
choice  

The next step should be a calendar component customized to publishers’ needs: it 
should support the choice of start and end dates, the indication of holidays, and the 
choice of week days in which the counter is open.  Figure 5 shows a mock-up of this 
EUD solution: three calendars are used to choose start, end, and holidays; six check 
boxes permit to choose working days. The system must generate a set of radio buttons 
for date choice that satisfy all constraints defined by the publisher. 



140 D. Fogli 

COUNTER RESERVATION – STEP 2: DATE CHOICE 

Working days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

√

√

√

Start End Holidays

COUNTER RESERVATION – STEP 2: DATE CHOICE 

Working days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

√

√

√

Working days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

√

√

√

Start End HolidaysStart End Holidays

 

Fig. 5. Mock-up of the EUD tool for generating a list of radio buttons related with date choice 

The third step should be the creation of time choices: the publisher could choose 
start, end, break and time intervals, and the system should generate the list of all pos-
sible times as a set of radio buttons satisfying the established constraints. Figure 6 
shows a mock-up of this EUD solution: combo boxes permit time choices. 

COUNTER RESERVATION – STEP 3: TIME CHOICE 

8.00 18.00 12.30-13.00 30 min

Start End Break Time interval

8.00 18.00 12.30- 30 min
8.30
9.00
9.30
10.00

18.30
19.00
19.30
20.00

12.45-
13.00-
13.15-
13.30-

45 min
60 min
75 min
100 min

COUNTER RESERVATION – STEP 3: TIME CHOICE 

8.00 18.00 12.30-13.00 30 min

Start End Break Time interval

8.00 18.00 12.30- 30 min
8.30
9.00
9.30
10.00

18.30
19.00
19.30
20.00

12.45-
13.00-
13.15-
13.30-

45 min
60 min
75 min
100 min

 

Fig. 6. Mock-up of the EUD tool for generating a list of radio buttons related with time choice 

Then the publisher should create the form for input data; also in this case, the solu-
tion foreseen for counter choice, i.e. the double-list control, can be useful: a list of all 
possible personal data could be available, giving the publisher the possibility to select 
only those s/he considers necessary to be requested in the case at hand. Finally, the 
step summarizing the inserted data could be generated automatically by the system on 
the basis of the previous steps created by the publisher. 



 End-User Development for E-Government Website Content Creation 141 

7   Discussion 

The design of EUD techniques proposed in the previous sections derives from a basic 
observation: end users who has to carry out some software development in the domain 
of e-government websites are different from casual webmasters or power users. 
Therefore, they must not be aware of performing software development. They should 
accomplish tasks that consist in just editing content (including providing information 
that become HTML attribute values) or selecting some content from available 
choices. The underlying system will be in charge of generating the correct code by 
exploiting the content provided by the user.  

Both techniques presented in Sections 5 and 6 are based on fill-in form interaction 
style, which has been judged suitable for the considered end users, namely personnel 
used to carry out administration tasks often consisting in the compilation of paper-
based forms. Therefore, this interaction style should be natural and simple for these 
end users, by allowing them to operate according to their mental models of the activi-
ties to be performed [11]. On the other hand, this EUD style has been applied also in 
other contexts with successful results [27], even though, differently from [27], we aim 
to drive users through all their choices, without asking them to remember some par-
ticular syntax for providing the information requested by the system. 

In the case of online service creation, the fill-in form interaction style is combined 
with a step-by-step instruction design pattern that reflects the structure of the service 
to be created. The publisher should not have so much freedom (and consequent re-
sponsibility) to modify the layout of the service pages or the structure of the service. 
Moreover, s/he should not access the generated code.    

The idea of an EUD technique based on a step-by-step instruction design pattern 
actually arises from the analysis of the output to be generated (i.e. the service to be 
made available to website’s users). This analysis produces a model of the service, 
which helps to determine the most natural way for publishers to take care of its devel-
opment. 

Service analysis and model-based design of EUD techniques should remain at the 
hands of the software developers belonging to the organization managing the website: 
they should identify the classes of services that could be developed, the steps consti-
tuting each class, and the elements composing each step. Then, their work will be the 
development of the fill-in forms that allow publishers to create online services. These 
activities can be characterized as meta-design activities [17], in that they are carried 
out to “design the design process” [21], i.e. to design the EUD activities that publish-
ers should perform. In [17], this is regarded as the first level of meta-design, which 
refers to the possibility offered to end users to transform and modify components and 
contents at use time, according to emerging needs and tasks, as it may happen in the 
case of online service creation. Methodologically, software developers operate at a 
meta-level by “establishing the conditions that will allow users, in turn, to become 
designers” [17]. 

Obviously, software developers may become again a bottleneck in those contexts 
that are very dynamic, where classes of services evolve over time and new classes must 
be designed and developed frequently. However, the approach here presented seems – 
at least at the moment – suitable to the dynamicity of the considered application do-
main. Its scalability should be studied if one would like to extend its application to 



142 D. Fogli 

other domains, such as e-commerce or e-learning websites. Further research on meta-
design approaches could help to find solutions to this problem.  

8   Conclusions 

This paper focused on a particular application domain, namely the creation and main-
tenance of e-government websites. In this domain, distributed content authoring is 
often a necessity to avoid delays in publishing important information for citizens and 
to overcome communication gaps between software developers and domain experts.  

However, despite the use of CMSs, this distributed activity is far to be performed 
in an easy, efficient and effective way. By analyzing the case of an Italian municipal-
ity we discovered that publishers find several difficulties in creating accessible con-
tents. Therefore, a CMS extension with a simple EUD technique has been developed 
to eliminate such difficulties. The approach has been evaluated with publishers, by 
giving positive results [19].  

We also observed that the creation of more sophisticated contents, e.g. online  
services, are still at the hands of software developers, since this task appears as too 
difficult to be carried out by publishers. In this paper, we tried to demonstrate the 
contrary: it is possible to implement proper EUD techniques devoted to these end 
users, whose motivation and interest in software development is low. From our analy-
sis, it emerged that the fill-in form interaction style and the step-by-step instruction 
design pattern could be adopted to design EUD techniques for the domain at hand. 
They have been proved successful in the case of HTML editing for accessibility satis-
faction, and they seem to be promising in the case of online service development.  

As future work we plan to implement and test the mock-up ideas presented in this 
paper, as well as to identify and define meta-design guidelines for the design of EUD 
techniques by personnel of the Computer Science municipality department.  

 
Acknowledgments. The author wishes to thank Sergio Colosio of Comune di Bre-
scia, Italy, and Loredana Parasiliti Provenza of Università di Milano, Italy, for the 
fruitful discussions about the content of this paper. She is also indebted to Matteo 
Sacco for the development of the CMS extensions and to the publishers of the 
Comune di Brescia for their availability in participating in interviews and tests of the 
implemented EUD technique. 

References 

1. Anslow, C., Rielhe, D.: Towards End-User Programming with Wikis. In: Proc. WEUSE 
IV 2008, Leipzig, Germany, pp. 61–65 (2008) 

2. Arias, E., Eden, H., Fischer, G., Gorman, A., Scharff, E.: Transcending the Individual 
Human Mind - Creating Shared Understanding through Collaborative Design. ACM 
Transactions on Computer-Human Interaction 7(1), 84–113 (2000) 

3. Blackboard Content System, 
http://www.blackboard.com/products/Academic_Suite/ 
Content_System/index 



 End-User Development for E-Government Website Content Creation 143 

4. Blackwell, A.F.: End-User Developers at Home. Communications of the ACM 47(9), 65–
66 (2004) 

5. Blackweell, A.F., Hague, R.: AutoHAN: An architecture for programming at home. In: 
Proc. IEEE Symposium on Human-Centric Computing Languages and Environments, pp. 
150–157 (2001) 

6. Brancheau, J.C., Brown, C.V.: The Management of End-User Computing: Status and Di-
rections. ACM Computing Surveys 25(4), 437–482 (1993) 

7. Carrara, P., Fogli, D., Fresta, G., Mussio, P.: Toward overcoming culture, skill and situa-
tion hurdles in human-computer interaction. Int. J. Universal Access in the Information 
Society 1(4), 288–304 (2002) 

8. Costabile, M.F., Fogli, D., Letondal, C., Mussio, P., Piccinno, A.: Domain-Expert Users 
and their Needs of Software Development. In: Proc. UAHCI Conference, Crete, pp. 232–
236 (2003) 

9. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: the Software 
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User 
Development, pp. 183–205. Kluwer Academic Publisher, Dordrecht (2006) 

10. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: a Model-based Design Methodology. IEEE Transactions on Systems 
Man and Cybernetics, part A- Systems and Humans 37(6), 1029–1046 (2007) 

11. Costabile, M.F., Mussio, P., Parasiliti Provenza, L., Piccinno, A.: End Users as Unwitting 
Software Developers. In: Proc. WEUSE IV 2008, Leipzig, Germany, pp. 6–10 (2008) 

12. Cypher, A.: Watch What I Do: Programming by Demonstration. MIT Press, Cambridge 
(1993) 

13. Da Silva, B., Ginige, A.: Modeling Web Information Systems for Co-Evolution. In: Proc. 
ICSOFT 2007, Barcelona, Spain (2007) 

14. De Ruyter, B., Van de Sluis, R.: Challenges for End-User Development in Intelligent Envi-
ronments. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 243–
250. Kluwer Academic Publishers, Dordrecht (2006) 

15. Drupal, http://drupal.org/ 
16. EUD-Net Thematic Network, http://giove.cnuce.cnr.it/eud-net.htm  
17. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Devel-

opment. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 427–
457. Kluwer Academic Publisher, Dordrecht (2006) 

18. Fischer, G.: Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and 
Evolving Knowledge in Domain-Oriented Design Environments. Int. J. Automated Soft-
ware Engineering 5(4), 447–464 (1998) 

19. Fogli, D., Colosio, S., Sacco, M.: Managing Accessibility in Local E-government Websites 
through End-User Development: A Case Study. Int. J. Universal Access in the Information 
Society (to appear) 

20. Folmer, E., van Welie, M., Bosch, J.: Bridging patterns: An approach to bridge gaps be-
tween SE and HCI. J. of Information and Software Technology 48(2), 69–89 (2005) 

21. Giaccardi, E., Fischer, G.: Creativity and Evolution: A Metadesign Perspective. Digital 
Creativity 19(1), 19–32 (2008) 

22. Ginige, A., De Silva, B.: CBEADS©: A Framework to Support Meta-design Paradigm. In: 
Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 107–116. Springer, Heidelberg 
(2007) 

23. Goette, T., Collier, C., Daniels White, J.: An exploratory study of the accessibility of state 
government Web sites. Int. J. Universal Access in the Information Society 5, 41–50 (2006) 

24. Joomla!TM, http://www.joomla.org/ 



144 D. Fogli 

25. Joomla! Help Site – WCAG Checklist, http://help.joomla.org/ 
26. Letondal, C.: Participatory Programming: Developing Programmable Bioinformatics Tools 

for End-Users. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 
207–242. Kluwer Academic Publishers, Dordrecht (2006) 

27. Liang, X., Ginige, A.: Enabling an End-User Drive Approach for Managing Evolving User 
Interfaces in Business Web Applications. In: ICSOFT 2007, Barcelona, Spain (2007) 

28. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging 
Paradigm. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 1–8. 
Kluwer Academic Publishers, Dordrecht (2006) 

29. Lieberman, H., Paternò, F., Wulf, V. (eds.): End-User Development. Kluwer Academic 
Publishers, Dordrecht (2006) 

30. Macías, J.A., Paternò, F.: Customization of Web applications through an intelligent envi-
ronment exploiting logical interface descriptions. Interacting with Computers 20, 29–47 
(2008) 

31. Majhew, D.J.: Principles and Guideline in Software User Interface Design. Prentice-Hall, 
Englewood Cliffs (1992) 

32. Microsoft Content Management Server, 
http://www.microsoft.com/cmserver/default.mspx 

33. Microsoft Office SharePoint Designer 2007 (2007), 
http://office.microsoft.com/ 
it-it/sharepointdesigner/FX100487631040.aspx 

34. Moodle, http://moodle.org/ 
35. Mørch, A.: Three Levels of End-User Tailoring: Customization, Integration, and Exten-

sion. In: Kyng, M., Mathiassen, L. (eds.) Computers and Design in Context, pp. 51–76. 
MIT Press, Cambridge (1997) 

36. Mørch, A., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, G.: Component-Based 
Technologies for End-User Development. Communications of the ACM 47(9), 59–62 
(2004) 

37. Myers, B.A., Pane, J.F., Ko, A.: Natural Programming Languages and Environments. 
Communications of the ACM 47(9), 47–52 (2004) 

38. O’Really: What Is Web 2.0 - Design Patterns and Business Models for the Next Genera-
tion of Software,  
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html 

39. Paris, M.: Website accessibility: a survey of local e-government websites and legislation in 
Northern Ireland. Int. J. Universal Access in the Information Society 4, 292–299 (2006) 

40. Parlamento Italiano, Disposizioni per favorire l’accesso dei soggetti disabili agli strumenti 
informatici, Legge 9 gennaio, n. 4, G.U. n. 13 del 17 gennaio (in Italian) (2004) (in Eng-
lish), http://www.pubbliaccesso.it/normative/law_20040109_n4.htm 

41. Petre, M., Blackwell, A.F.: Children as Unwitting End-User Programmers. In: Proc. 
VL/HCC 2007, Coeur d’Alène, USA, pp. 239–242 (2007) 

42. PloneTM, http://plone.org/ 
43. PloneTM– Accessibility Statement, http://plone.org/accessibility-info 
44. QnECMS – Quick & Easy Accessible CMS, http://www.qnecms.co.uk/ 
45. Repenning, A., Ioannidu, A.: Agent-Based End-User Development. Communications of 

the ACM 47(9), 43–46 (2004) 
46. Rode, J., Bhardwaj, Y., Pérez-Quinones, M.A., Rosson, M.B., Howarth, J.: As Easy as 

“Click”: End-User Web Engineering. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. 
LNCS, vol. 3579, pp. 478–488. Springer, Heidelberg (2005) 



 End-User Development for E-Government Website Content Creation 145 

47. Rode, J., Rosson, M.B., Pérez Quinõnes, M.A.: End User Development of Web Applica-
tions. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 161–182. 
Kluwer Academic Publishers, Dordrecht (2006) 

48. Rosson, M.B., Ballin, J., Nash, H.: Everyday Programming: Challenges and Opportunities 
for Informal Web Development. In: Proc. VL/HCC 2004, Rome, Italy, pp. 123–130 (2004) 

49. Sitekit CMS, http://www.sitekit.net/ 
50. Sutcliffe, A., Mehandjiev, N. (Guest eds.): End-User Development. Communications of 

the ACM 47(9), 31–32 (2004) 
51. Tidwell, J.: Common Grounds: A Pattern Language for Human-Computer Interface De-

sign, http://www.mit.edu/~jtidwell/common_ground.html 
52. Typo3, http://typo3.com/ 
53. Web Accessibility Initiative, http://www.w3.org/WAI/ 
54. Web Content Accessibility Guidelines 1.0, W3C Recommendation (May 5, 1999), 

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505 
55. Won, M., Stiemerling, O., Wulf, V.: Component-Based Approaches to Tailorable Systems. 

In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 115–141. Klu-
wer Academic Publishers, Dordrecht (2006) 

56. Ye, Y., Fischer, G.: Designing for Participation in Socio-Technical Software Systems. In: 
Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 312–321. Springer, Heidelberg 
(2007) 

57. Yin, R.K.: Case study research: Design and methods. Sage, Newbury Park (1984) 
58. Yin, R.K.: Case study methods. In: Green, J.L., Camilli, G., Elmore, P.B. (eds.) Handbook 

of complementary methods in education research, pp. 111–122. Lawrence Erlbaum Asso-
ciates, Hillsdale (2006) 



LWOAD: A Specification Language to Enable
the End-User Develoment of Coordinative

Functionalities

Federico Cabitza and Carla Simone

Università degli Studi di Milano-Bicocca,
viale Sarca 336, 20126 Milano (Italy)
{cabitza,simone}@disco.unimib.it

Abstract. In this paper, we present an observational case study at a ma-
jor teaching hospital, which both inspired and gave us valuable feedback
on the design and development of LWOAD. LWOAD is a denotational
language we propose to support users of an electronic document system
in declaratively expressing, specifying and implementing computational
mechanisms that fulfill coordinative requirements. Our focus addresses
(a) the user-friendly and formal expression of local coordinative prac-
tices; (b) the agile mocking-up of corresponding functionalities; (c) the
full deployment of coordination-oriented and context-aware behaviors
into legacy electronic document systems. We give examples of LWOAD
mechanisms taken from the case study and discuss their impact for the
EUD of coordinative functionalities.

1 Requirements for EUD in Document-Mediated
Cooperative Work

The fact that documents are ubiquitous means to support work activities is
well known. Their initially undifferentiated role has been more recently investi-
gated and articulated to understand why documents, which are so natural and
widespread, still raise problems when they are transformed in digitized coun-
terparts, not only when electronic documents are used as stand-alone artifacts
but, above all, when they are parts and components of an electronic document
system [1,2]. The solution of this paradox calls for a stronger user involvement in
the definition and maintenance of functionalities that support actors in accom-
plishing their duties and coordinating their action; these functionalities relate
closely to how users read and write their paper-based artifacts and to the of-
ten only implicit and ad-hoc practices and conventions that regard documents’
use and interpretation. A very inspiring domain where to motivate this claim
and highlight requirements for an EUD-based solution is the healthcare domain.
This is, on the one hand, so complex and various that almost all considerations
emerged from other cooperative domains apply naturally (e.g., [3,4]); on the
other hand, this domain has been widely studied and specialist literature has
provided interesting findings to leverage. For instance, in his comprehensive ac-
count on the role of documents in professional work, Hertzum [5] points out the

V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 146–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



LWOAD: A Specification Language to Enable the End-User Develoment 147

paradigmatic case of the patient record, in regard to both its many-sidedness in
supporting cooperative work and its ability to speak different “voices”, i.e., to
convey different meanings according to the actor using it (e.g., doctor, nurse).
According to Garfinkel [6], the patient record contains at least two clear in-
tertwined voices: a voice reporting what clinician did what to inpatients; and
another voice attesting that clinicians have honored claims for adequate medical
care. Following in the same footsteps, Berg distinguishes between the coordi-
native and accumulative function [7] of patient records, respectively. Patient
records exhibit the accumulative function whenever they play the role of official,
inscribed artifacts that practitioners write to preserve memory or knowledge of
facts or events occurred at the hospital ward. Patient records exhibit the coordi-
native function whenever they are used to support articulation and coordination
of the work activities which are tightly coupled with data production and con-
sumption. A very important point is that the accumulative function can refer to
either a long-term role of records – typically when patient’s data are archived for
research or statistical purposes – or to a short-term role– typically when these
data are memorized to keep trace of the care trajectory during the patient’s hos-
pital stay. This latter role is necessarily entangled with coordinative functions in
not always trivial ways [8,9]. Accordingly, the specialist literature distinguishes
between primary and secondary purposes, respectively. Primary purposes regard
the demands for autonomy and support of practitioners involved in the direct
and daily care of inpatients; while secondary purposes are the main focus of
hospital management, which pursues them for the sake of rationalizing care pro-
vision and enabling clinical research. The investment policies in ICT are usually
focused on secondary purposes (i.e., on cost savings and new pharmacological
patents) and this leads to the design of Electronic Patient Records (EPR) where
document structures and functionalities are aimed at supporting information in-
scription and use according to data quality and usability criteria [10], which tend
to neglect (or heavily overlook) the primary purposes [11]. The additional effort
of articulation work on the clinical record is then usually left to practitioners; as
well as, often, the burden to reconfigure their coordinative practices once their
habitual paper-based artifacts have been digitized [9].

In this scenario, document templates and masks are usually imposed from
above to practitioners, irrespectively of their coordinative needs. Even in the
best case where documents are cooperatively and participatorily defined, they
tend to be given to actors once and for all so as to neglect the frequent tuning
activities and adjustments that coordinative mechanisms require for their nego-
tiated and participated nature [12,13]. Our observational studies in two wards
of a large provincial hospital in Northern Italy confirmed other accounts from
the CSCW literature (e.g., [14,7,8] on how practitioners try to reconcile primary
and secondary purposes on the artifacts of daily use to make them useful both
to store and retrieve information but also to support mutual learning, knowl-
edge sharing and coordination of caring activities. To this aim, actors define,
renegotiate and evolve ad-hoc practices, peculiar conventions, and agreed in-
terpretations that are local and unique to their work settings; usually, these



148 F. Cabitza and C. Simone

conventions thrive either in the grey area of underspecification or through the
mesh of the constraining specifications of organizational rules that the hospital
management has imposed for law or quality standard compliance.

Our point is that the development of any technological support of the full
usage of official records cannot do without considering these local habits and
conventions as a primary source of information for the definition of functional-
ities that support cooperation and, to limit ourselves to our reference domain,
effective care giving. Moreover, since these habits and conventions are local and
unique, the technological support should provide flexible functionalities that pre-
serve, or even foster the fluid, conventional and evolutionary nature of coordi-
native practices. Last but not least, these functionalities should be under the
full control of actors themselves. Our research question is then how to facilitate
this local management in a sustainable way. The paper aims to give a contribu-
tion in this direction by presenting a computational framework that was deeply
influenced and partially tested by our field study in the above mentioned hospi-
tal [15]. The next section describes the field study context and provides the main
motivations for the framework; Section 3 describes the framework and its deno-
tational language, LWOAD, in more details; Section 4 illustrates the complex
and real-life conventions we tested the framework on; Section 5 discusses the
main findings of the case study; Section 6 illustrates the mockup we used as a
proof-of-concept of the findings related to mechanism specification and Section 7
sums things up and sheds light on current and future directions of our research
in the EUD field.

2 Bridging Conventions and EPR Applications

Our empirical research involved doctors and nurses of a major Neonatal Intensive
Care Unit (NICU). We conducted this study through unobtrusive observations in
the ward, informal talks, individual interviews with key doctors and nurses, and
open group discussions with ward practitioners. These interactions were initially
used to deal with the “descriptive” part of the research, and to reach a reason-
able and common language. Yet, quite soon, the need emerged to find a more
effective way to deal with what we called “local habits and conventions” in the
previous section. In parallel with our investigation in the ward, practitioners had
to interact with a team of software developers of a third-party IT firm, the Alpha
ltd. The NICU head physician had been involved for months with this firm to
produce an innovative EPR for the care of his premature newborns: a job order
he was totally in charge of, with no time pressures and the concrete willingness
to create a solution on the practitioners’ side. Since Alpha designers had already
developed a full-fledged prototype of a hospital-wide EPR, the NICU head physi-
cian soon adopted that prototype as a sort of “sandbox” where the programmer
analysts of Alpha and some physicians of the NICU could experiment their inno-
vative and peculiar ideas with no claim of officiality or exactitude. While Alpha’s
analysts were more oriented to the archival functionalities, we concentrated on
the coordinative ones: together with the practitioners, we took the design of a



LWOAD: A Specification Language to Enable the End-User Develoment 149

new EPR as the occasion to try to preserve as many as possible efficient, though
idiosyncratic, coordinative practices and “graft” them onto the archival-oriented
EPR by conceiving coordinative functionalities on-top-of it.

To this aim, we felt the need to develop specific ways (a) to express
coordination-oriented requirements in a user-friendly manner for ICT laymen
(as clinicians were); and (b) to formalize the corresponding functionalities in a
way that they could become easily computable. Our goal was to support the
effort of practitioners in making explicit, symbolic and also computable the rela-
tionship occurring between recurrent patterns of context and the conventional,
local ways practitioners relied on to cope with this context. During the require-
ment collection and preliminary analysis, we observed that the simplest, and yet
powerful, concept that practitioners grasped with fewer equivocations was that
of reactive behavior and its computable counterpart, the rule, i.e., a well-defined
and autonomous if-then statement (see Figure 1).

This finding heavily influenced how we were conceiving the WOAD frame-
work [15] (an acronym for ‘Web of Documental Artifacts’). WOAD is a design
framework we were articulating during the NICU case study in order to bridge
the gap between informal description of coordinative conventions – expressed
in terms of agreed ways to cope with the current context – and the design of
document-mediated functionalities supportive of these conventions. Our point
was that practitioners themselves could bridge this gap, if the the computer-
based support could provide them unobtrusive and additional information to
promote collaboration awareness [16,17]. In the WOAD framework, we defined
(a) a conceptual model of articulation by which to characterize the main entities
and relationships involved in document-mediated cooperative work in terms of
minimal sets of attributes; (b) a denotational language – LWOAD – which incor-
porates those concepts and relationships to represent the context of cooperative
document domains and conceive specific computational mechanisms that convey
Awareness Promoting Information (API) depending on the current context [17];
and (c) a high-level architecture for information sharing in context-aware and
distributed computing settings where LWOAD is used and implemented. Since
LWOAD plays a basic role in making the specification of rules expressing the
above mentioned relationships computable, we briefly introduce it and discuss
how we used it in our interaction with the NICU practitioners.

3 A Language to Express Coordinative Functionalities

Within the WOAD framework, LWOAD provides a set of high-level concepts
– like those of actor, documental artifact, fact, fact space, and fact-interpreter –
that we propose to guide the design of a rule-based reference architecture for
context-aware and coordination-oriented electronic document systems. We con-
ceive LWOAD as an astract programming interface by which to program
functionalities that (a) process the content of a document according to local
conventions of coordination; and (b) convey suitable API to support actors in
articulating their document-centered activities.



150 F. Cabitza and C. Simone

LWOAD encompasses a set of both static and dynamic constructs by which
designers can express either contextual, organizational or procedural knowledge
about a work arrangement. Static data structures and dynamic behaviors of an
application are expressed by two specific constructs: facts and mechanisms, re-
spectively. In LWOAD, designers can model a cooperative arrangement in terms
of its main relevant entities and the relationships between them by declaring
facts. Whatever is given the suffix -fact (e.g., activity-fact, relation-fact and
API-fact) is a key-value data structures, which programmers can use to char-
acterize the relevant entities of a documental domain just assigning a value to
their specific attributes. A relation-fact, for instance, is characterized by five at-
tributes: i) a name, ii) a description, iii) a property telling whether the relation-
fact indicates a relationship between classes (e.g., physicians and patients) or
between instances (e.g., Dr Smith and Mr Jones), iv) an attribute that spec-
ifies the fact’s name of the entity that is the source (i.e., the subject) of the
relationship and v) an attribute specifying the target (i.e., object) entity of the
relationship. LWOAD provides designers with templates (i.e., entity-facts) for
the most generic categories of articulation work (cf. [13]), like those of actor,
activity and artifact; yet, by means of the extends primitive, designers can also
define domain-specific entities (such as patient, doctor and clinical activity) that
specialize and inherit from those general categories.

Mechanisms can be seen as simple conditional statements, like if-then rules.
They produce some output in virtue of the actions expressed in their consequent
(the then part) whenever specific contextual conditions, which are expressed in
their antecedent (the if part), are true. Antecedents are considered true when-
ever the conditions they express on the entities they refer to are met by the cur-
rent WOAD-compliant representation of the context, i.e., by the content of the
facts represented within the so called fact space. Any single mechanism is hence a
symbolic way to make a relation explicit between some contextual conditions and
some functionality that the system should exhibit whenever a specific case occurs.

Although symbolic and based on rules, LWOAD is far from being usable di-
rectly by practitioners, since it must comply with the typical syntactic
constraints of a language interpretable by a computational engine. For this

Fig. 1. The design-implementation loop inspired by the case study



LWOAD: A Specification Language to Enable the End-User Develoment 151

reason, we adopted a two-step approach: first, for each identified coordinative
mechanism, we invited the practitioners to indicate both the relevant set of
attributes of the domain entities, events and documental data that the compu-
tational system should be sensitive to, and what conditions the system should
evaluate on these relevant aspects of the work setting in order to activate the
desired functionalities. The practitioners expressed the mechanisms in natural,
tough structured and restricted, language and we translated them “on the fly’
in LWOAD statements. In doing so, we could rapidly convey the “flavor” of the
coordinative mechanisms envisioned by the NICU practitioners and we could
support them in deciding whether the mechanisms had to be fully implemented
in the hypothetical final release of the EPR. Once they had become familiar
with this way of describing the desired mechanisms and had identified the basic
patterns of conditions, we mocked-up an interface based on a wizard that could
support practitioners in the construction of mechanisms (more details in Sec-
tion 6). Our goal was to check whether the practitioners had become proficient
in defining the desired mechanisms autonomously. Then, the needed mechanisms
were translated in LWOAD to check its correctness with respect to both the ap-
plication conditions and the desired outputs. Generally, practitioners did not
find problems in expressing LWOAD mechanisms, probably for their intrinsic
simplicity: antecedents are constituted by fact patterns and boolean tests and
practitioners found natural express them as conjunction of facts that must be
true in a given situation. On the other hand, consequents are sequences of WOAD
primitives and practitioners mastered them in a relatively short time since our
design choice was to limit LWOAD to the expression of functionalities that pro-
mote collaboration awareness and do not manipulate the data managed in the
archival dimension of the EPR. Therefore, the effects of the consequents were
only graphical cues added on top of documents’ data. In a parallel work [17], we
classified up to 13 different types of API – e.g., criticality, revision and sched-
ule awareness – and identified together with the practitioners graphical ways
to convey those various kinds of information. Although this latter identification
is not completely experimented, it constituted a basis where to get an initial
impression of how well the interface could be usable by practitioners on their
own. In the next section, we provide the reader with two examples of mecha-
nism specification in response to the specific coordinative requirements that we
identified with the NICU practitioners during the first phase of our study.

4 Coordinative Requirements for EPRs

The patient record is the main documental artifact used in hospital care as it is
the composite repository for the whole information concerning a single patient
stay. During a patient stay, the whole patient record is split up into several
sheets and documents; these are distributed in the ward and are very specific for
a certain aspect of care so as to be usually used by different actors at the same
time. During the study at NICU, practitioners recognized the need to conceive
functionalities supportive of the conventional ways by which artifacts were used



152 F. Cabitza and C. Simone

both to document their work and to mutually articulate their activities with each
other. In the what follows, we present some cases that call for the requirements
of a flexible definition and flexible combination of coordinative functionalities.

Specification Flexibility for Structure-Related Conventions. Due to the
fact that clinical data are usually scattered across multiple artifacts in different
places, doctors at NICU found useful to rely on a summary of clinical data
that are gathered into one single sheet that they call Summary Sheet (SS); they
update the SS quite frequently by taking and synchronizing its content from
the official patient record. The summary sheet is not part of the official patient
record but, nevertheless, it is a very useful working document since it is often
used to jot down offhand annotations and informal communications regarding
clinical conditions of the patient at hand. Moreover, due to its informality, doc-
tors are used to bringing the SS with them either as first page of sets of papers
under their arm, or even folded in their pocket. Therefore, since the SS is usually
the first document doctors have got in their hand during their hectic activities,
they also use it to jot clinical data and prescriptions on-the-go, which they will
have to replicate into the official record later as a rule of law. Hence, the sum-
mary sheet is not only a “passive view” of previously reported data, i.e., a view
on data fetched by querying multiple tables of a clinical database on the illness
course of a single patient. It is also an active entry form, into which practitioners
insert data at the point of care and from which they copy data into the official
records for the sake of accountability and liability. Doctors were well aware of
this twofold functionality during the design of the digital counterpart of the SS
into the “innovative” EPR; therefore, they were willing to express constraints
and define conceptual connections between sections and fields of the summary
sheet and corresponding sections and fields of the artifacts compounding the
patient record. These connections were seen as symmetrical, i.e., equivalent and
irrespective of where the original data were actually inserted first. They can
be traced back to the class of connections that in [18] we denoted as enabling
“redundancy by duplicated data”, in that they make the association explicit be-
tween identical data that are reported in two or more documents of the patient
record. In regard to the requirements for supportive functionalities, these kind
of connections regard conventions of production and use of clinical documents:
more specifically, they regard how data are organized within templates, what
data type are allowed in what field (i.e., syntactic integrity) and also where
people fill in data during their situated documental activities. Moreover, these
connections are local and conventional both in their definition and, above all, in
their use. In fact, it is only on a conventional and context-dependent basis that
doctors want summary sheets be completely compiled after the patient record
and, conversely, values reported in the SS first be fed into the patient record at
proper time.

Two examples can better illustrate this point. Some members of the NICU
staff team expressed the requirement that values on the weight of newborns
would be reported into the summary sheet only whenever a newborn was in
life-threatening conditions. In fact only in that case, these practitioners deemed



LWOAD: A Specification Language to Enable the End-User Develoment 153

Fig. 2. A coordinative mechanism on conventional patterns of data redundancy. Above,
as expressed by practitioners in their own terms. Below, how this is translated in terms
of LWOAD facts and primitives.

necessary to rely on weight data at the point-of-care, so as to calculate drug
dosage precisely. In the other cases, to have these data available on the SS would
only result in an unnecessary information overload and, even more annoying,
would undermine the role of unobtrusive reminder on critical conditions that
the presence or absence of weight data in the summary sheet could play at the
point of care. Likewise, at NICU, clinical data that are reported into the SS first
are often deemed as still provisional and are reported there to have colleagues
consider those data but also take them as not yet definitive, or even as an
invitation for further check and inquiry. The need for doctors to be aware of what
is still provisional and hence different from what constitutes an unmodifiable and
legal account of accomplished deeds is essential to cooperatively structure the
formation of decisions and judgments, as also reported in [19].

Figure 2 depicts how the above mentioned conventions on data replication
have been expressed in a dedicated and concise LWOAD mechanism. This mech-
anism has in its antecedent all and only the relevant aspects of context that are
concerned with the coordinative functionality expressed in the consequent. While
practitioners expressed this subset of contextual information in their own terms,
we translated the consequent into four conditional elements, i.e., namely three
patterns and an inequality test. The reason why even what seems a quite ob-
jective and scientific threshold of blood pressure is consider “conventional” (and
hence ward- if not doctor-specific) is worthy a reflection. Quite surprisingly, doc-
tors told us that also the notion of “critical condition” changes according to a
number of contextual aspects that are mostly neglected by monitoring devices:
their alarms are most of times consciously and rightly ignored by expert nurses,
as reported in [20]. For this reason, doctors believe that these conditions are



154 F. Cabitza and C. Simone

utterly difficult to hardwire into procedural application logic in all but the most
obvious cases. In fact, criticality – seen along the coordinative dimension as the
condition of a patient that calls for a direct and immediate intervention of some
practitioner – depends on several anamnestic and physiological elements, on the
illness history of the patient, and also on even more situated aspects, like the
attitude of attending practitioners and their current workload. This is an impor-
tant point to challenge LWOAD against the requirement of flexible definition of
mechanisms. Obviously, not all the above often-tacit contextual conditions can
be immediately and comprehensively externalized into a mechanism and neither
should they be: however, as long as recognizing a specific situation has a relevant
coordinative value, practitioners can be motivated in characterizing it formally,
by relying on some shared and broader conventional interpretation of data com-
binations or on the mutual acquaintance of the involved actors. In all these cases,
the highly incremental structure and computational autonomy of mechanisms (in
terms of their inner components and role in the control flow of the application,
respectively) can facilitate stakeholders in expressing and updating mechanisms
that are quite specific to complex and ever new situations. For instance, if the
NICU practitioners had expressed the need not to be alerted for low pressure
problems of their inpatients unless in more specific cases than that represented
in Figure 2, the antecedent of that mechanism would have been enriched with
a new combination of conditional elements: e.g., a test to evaluate whether the
basal and physiologic blood pressure of the newborn is usually low, or whether
she has been already treated for low pressure after the onset of the criticality,
or even whether the latest drug that had been administered to her brings low
pressure normally. The progressive tuning of coordinative requirements would
not require a major rewriting of the application logic behind the corresponding
functionality, but just call for the addition (or deletion) of specific conditional
elements within the mechanism that triggers the provision of criticality API on
those critical conditions.

Combination Flexibility For Run-time Connections. As said above,
NICU practitioners expressed the need that executable mechanisms could be
easy to define and modify. In addition to that, they also expressed the need
the application (i.e., execution) of these constructs be dependent on the current
context. In regards to this requirement, which is in the line of the major tenets
of context-aware computing [21], they needed to conceive ways to manage con-
nections that had been explicitly instantiated between data during their daily
activities, and not just at schema level and at compile time as in the previous
case. Thinking in terms of rules assured them that the whole set of mechanisms,
once specified as a whole, is “rescaled” each time into smaller active subsets,
i.e., those mechanisms whose antecedent is satisfied according to what actors
do (as to any other contextual event). In fact, even multi-condition mechanisms
– i.e., mechanisms that are very specific to a given situation – are considered
for execution just when all their conditions are true; this releases practitioners
from conceiving an arbitrarily long sequential flow of control in which this kind
of mechanisms are discarded in all cases but that very specific situation. This



LWOAD: A Specification Language to Enable the End-User Develoment 155

flexibility was deemed useful especially in the case of connections that were cre-
ated at run-time across artifacts of the patient record, such as the problem list
and the doctors’ diary.

The Problem List (PL) is the artifact of the patient record where clinicians
enumerate the patient’s problems. This list is intended to document all those
conditions and events that can be related to clinical hypotheses and procedures.
The term “problem” is purposely left vague enough to comprise a number of
factors like symptoms, any alterations to vital signs, and all the concomitant
pathologies that could affect a patient’s hospitalization. The PL is likely to
change during the caring process since practitioners are supposed to update its
content with respect to the actual improvements or aggravations exhibited by the
patient but also with respect to the extent they can consolidate their diagnostic
hypothesis. Therefore, the PL is more than a mere list of either concomitant
or sequential problems affecting the patient: it is the artifact where doctors
represent the main deviations and swerves of illness trajectories, and the results
of the epicrises (i.e., summings up) doctors periodically accomplish in evolving
and improving their diagnosis on a specific case. The epicrises can result in the
need to “cross out” previously unrelated symptoms and substitute them with
new comprehensive diagnostic items. On the other hand, changes that regard
the acuteness of single problems previously stated are not represented into the
PL explicitly. These are rather represented in the Doctors’s Diary (DD). The
DD is the central repository for the notes that physicians need to write down in
order to account for the decisions and interventions they are responsible for, as
well as to make impressions, opinions, or just lines of reasoning explicit, either
for themselves as memorandum or as written notes to other colleagues.

The physicians called our attention on how useful would be for them to be
capable of making explicit on the record itself the relationships between past
problems and new problems as well as between problems of the PL and the
daily entries reported into the DD. The former capability was seen as a way
to reconstruct or, better yet, make the line of thought explicit by which symp-
toms have been rationalized into problems and unrelated problems into precise
diagnosis. The latter was seen as a way to facilitate the a posteriori reconstruc-
tion of a problem progress from its outset, in order to give indications on how
to head the course of clinical interventions towards its conclusion. These re-
quirements point to a relevant coordinative need, besides that of keeping trace
of relevant phases during the decisional/medical process: in fact doctors were
also, sometimes implicitly, expressing the need to be informed on what problems
they should address first and on the way their colleagues had coped with these
problems that far.

We then asked practitioners which kinds of relationship they would more
naturally employ to join two or more data that are not explicitly correlated by the
patient record structure. The result was that practitioners found more natural to
consider relationships as occurring between data entries, either already recorded
or still to record on the patient record. In the former case, they pointed out the
usefulness to relate data over distributed and different artifacts; in the latter case,



156 F. Cabitza and C. Simone

they referred to the capability to draw relationships between data values and
fields yet to fill in, that is between documental activities and articulated work
activities still to perform. While almost any doctor expressed her preference
for a number of possible relationships that had small overlap (if any) with those
pointed out by the others, we noticed that when these relationships were actually
applied in the field of work, they all blur into three main categories: causal,
temporal and intentional connections [18]. The generic semantics that pertain
to the nature of the relationships between a source information and a target
information could then be respectively rendered as: (a) “the source because of
the target”; doctors would use this connection in order to hint a strict causal
relationship between items of the patient record: e.g., the diagnosis ‘pneumonia’ –
reported in the PL – can be indicated as cause of the symptom ‘cough’ – reported
in the DD – as a way to explain the symptom itself. (b) “the source after the
target”; doctors would use this connection not only in strict temporal sense, but
also to hint a very weak or just supposed causal relationship: e.g., reporting that a
skin rash – a symptom from the DD – occurred after having administered a drug
– an order reported somewhere else in the PR – would indicate a hypothesized
correlation between these two clinical facts. And (c) “the source for the target”,
that doctors would use in order to highlight evidence supporting a particular
decision or to make an intention explicit (e.g., that the bacterial culture – an
order – has been prescribed to verify the diagnostic hypothesis of pneumonia
– an item in the PL).

Figure 3 depicts how the need to be aware of impromptu connections (i.e.,
relationships) that were previously drawn by colleagues was computationally
rendered in WOAD-compliant statements by practitioners with our support. The
mechanism is sensitive to whether a connection exists between a specific entry
and another entry anywhere else in the PR. Only whenever this situation occurs,
the WOAD interpreter executes an instruction by which an API is conveyed to
the actor through the form she is currently using (see last statement in Figure 3).
This general mechanism can be made more specific in its antecedent by adding to
the pattern for the relation-fact the explicit indication of the type of relationship

Fig. 3. A list-like representation of the mechanism of run-time creation of data con-
nections



LWOAD: A Specification Language to Enable the End-User Develoment 157

(e.g., causal) to be sensitive to. Likewise, designers can specify in the consequent
what API to convey in relation to the kind of correlation.

5 LWOAD and the Flexible Specification of Coordinative
Functionalities

LWOAD was presented to the clinicians as a sort of specification language by
which to implement their coordinative requirements. These were intended to
characterize an EPR that would not hinder, but rather foster, patterns of coop-
erative behaviors on the basis of how actors use official records and documents
in their daily practice. The fact that users could be facilitated in “rapidly hav-
ing a taste of a functionality” (as suggestively said by an interviewee) called for
the twofold requirement that coordinative requirements must be flexibly speci-
fied – so as not to hinder their incremental re-definition – and the corresponding
functionalities be flexibly combined – so as to fit an ever-changing and necessarily
underspecified context.

This stress on flexibility has, on the one hand, motivated us in defining
LWOAD as a language by which to render coordinative requirements in a com-
putable but yet platform-independent and abstract manner; on the other hand,
we were motivated in using it to express an upper layer of application logic that
would be conceptually “on top of” a full-fledged electronic document system and
that would endow that system with cooperation-oriented functionalities (see this
general schema in Figure 4).

Fig. 4. The two-tier architecture designed to enhance electronic documents with col-
laboration awareness. FS stands for Fact Space, the memory where declarative repre-
sentations of documental and working context are stored.

The adopted declarative and rule-based approach guaranteed that coordina-
tive functionalities can be expressed in terms of reactive and declarative mecha-
nisms [22]; these are symbolic statements intended to translate the typical ques-
tion of users “ . . . and could I have the system do this, whenever that occurs?”
into computable instructions. The declarativeness of these statements allows for
the expression and formal specification of what a system should do rather than
worrying about how it really accomplishes it at specification time. Declarative-
ness also allows mechanisms to be written without imposing a strict control flow,



158 F. Cabitza and C. Simone

which is hardly recognizable in actual work situations. On the other hand, reac-
tivity allows mechanisms to be written by using circumscribed units of code (i.e.,
rules). This“convenience of definition” relates to flexibility in terms of a greater
easiness of maintenance due to better modularity and incrementality; moreover,
defining mechanisms in a higher-level way than by means of traditional proce-
dural specification is also intended towards a better participation of users in the
process of modelling and defining formal expressions, so that these could reflect
how users really see their domain-specific knowledge and functionalities.

The rule-based layer of cooperation logic on top of the procedural application
logic of a traditional electronic document system is sensitive to both the content
of documents (in Figure 4 denoted with XMLD, i.e., data rendered in XML
format) and the symbolic representation of context. The output of this context-
aware layer is the conveyance of additional information, namely API, that does
not change documental data but rather how the interface of a document system
displays and “affords” them (in Figure 4 denoted with XMLA, i.e., API rendered
in terms of XML metadata). In doing so, data conveyed in documents (denoted
with a capital D in Figure 4) would be gathered from official repositories (e.g., a
hospital DB) according to procedural organizational logic; conversely, the API
attached to these data (denoted as an highlighted border all around the capital
D in Figure 4) would be provided according to more flexible mechanisms on the
basis of coordinative conventions.

Furthermore, the rule-based approach addresses the flexibility requirement
from the combination point of view. In rule-based programming, a rule is exe-
cuted automatically on the basis of any significant event and data change only
after that: i) its “applicability criteria” have been matched by the rule engine
against current data, i.e. what constitutes the symbolic description of a situa-
tion at run-time; and ii) after that it has been selected among all other rules as
the most suitable to that situation, according to some strategy (e.g., specificity,
recentness). We agree with [22] that rule-based programming have some im-
portant advantages over procedural programming in grasping and aligning with
cooperative work, especially for its data- and event-driven nature. In addition,
the particular kind of action that LWOAD mechanisms trigger, i.e., augment-
ing the interface with graphical cues and indications promoting collaboration
awareness, brings down the problem of mutual consistency of the rule set. This
problem often makes the adoption of this form of declarative specification diffi-
cult to be understood and managed by layman users. Our case is different from
production systems and expert system where possibly long chains of rules are
consecutively executed to infer a line of action on the basis of progressively true
conditions. Conversely, we adopt a rule-based approach in order to separate func-
tional concerns into single mechanisms (not into chains of their executions); and,
for the mechanism design, we advocate the principle that the consequent of each
mechanism should be expressed as simply as possible, i.e., that each mechanism
should only address a single and punctual functionality that the system must
exhibit against possibly over-detailed and specific contextual conditions (which
are specified in the mechanism’s antecedent). Moreover, the fact that LWOAD



LWOAD: A Specification Language to Enable the End-User Develoment 159

Fig. 5. Screenshot of the mockup for the mechanism editor, first windows

consequents do not change data (and hence the state of the world) but rather
convey APIs, and that APIs are conceived as orthogonal guarantees that data
inconsistency can not occur for their execution. Moreover, possible conflicts in
alerts (e.g., when two mechanisms trigger the same API but with different val-
ues) can be “caught” before execution by the mechanism interpreter itself (i.e.,
by monitoring the execution agenda). In this latter case, the system can propose
the conflict to users as particular situations that call for their interpretation and
resolution on the basis of their experience and knowledge.

6 Simulation and Mockup Tests of LWOAD Specification

In what follows, we illustrate the mockup that we designed after the requirement
analysis. This was meant as a proof-of-concept for the prospective application
that users would use to develop coordinative mechanisms by themselves. Since
mechanisms are but rules, the main idea was to assimilate mechanisms devel-
opment to rule configuration: we then conceived the LWOAD mechanism editor
similar to an interactive help utility, much alike those provided by email clients
to guide users through the configuration of personal filters and mechanisms of
message filing. The mockup was realized in MS PowerPoint and intended as a
sequence of dialog boxes where users could select options and fill in details; each
slide was endowed with active areas corresponding to the buttons and links of
the prospective interface in order to simulate the typical interaction involved in
mechanism creation.



160 F. Cabitza and C. Simone

Fig. 6. Screenshot of the mockup for the definition of the mechanism’s antecedent

In the first window, users have access to the macro-functionalities of the editor
(see Figure 5) as regards either mechanism composition or API visualization. In
this paper, we do not address the functionalities of API rendering, i.e., the asso-
ciation between API types and rendering functionalities (like, e.g., colors, icons,
highlighting) provided by the documental platform. In regards to mechanism
composition, a list of existing mechanisms is displayed in the top frame of the
window. Users can read the textual description of each mechanism by selecting
the corresponding row: the description is then displayed in the bottom frame
(in Figure 5 we report the same mechanism illustrated in Figure 2). From the
textual description of a mechanism, users can directly modify its parameters by
clicking on the underlined elements (i.e., variables of the mechanism’s pattern).
Users can also change the structure of the mechanism (clicking on ‘change...’);
delete it, “activate” it (by checking the corresponding checkbox); and run the
mechanism to check its functioning (clicking on ‘Run Now...’). If the user clicks
on ‘New’, the mechanism wizard starts a three-step process; in the first window,
the system proposes two options: to create a mechanism from a template, or
to compose it from scratch, i.e., from a blank template. We will consider this
second case. In this case, the system opens a new window in place of the former,
like that depicted in Figure 6 (left side, background). From the top frame of this



LWOAD: A Specification Language to Enable the End-User Develoment 161

window, the user can select any number of conditions the mechanism should be
sensitive to (in its antecedent). In-depth analysis and participatory design ses-
sions have allowed to list together all the relevant conditions that practitioners
wanted to be catched with respect to the records’ content, time and the clinical
context. By selecting a condition from the list, the associated conditional state-
ment is added in the bottom frame. As in the case of the first screen (Figure 5),
the user can specify the value of the parameters the mechanism should monitor
by clicking on the underlined parts of the statement. In doing so, correspond-
ing input boxes are displayed to allow users insert the value (e.g., 70 mmHg,
a blood pressure value as in the case reported in Figure 2). If the user wants
to specify the document where to check the condition, the system opens a box
like that depicted in Figure 6 (right side, foreground). Here, the user can con-
sult a tree-like schema of the official documentation and select the document/s
(or their inner sections) whose data must be matched with the pattern’s values.
Once the antecedent of the mechanism has been defined, the wizard proposes a
third window (in place of the previous one – see Figure 7) where the user can
specify what the system is supposed to do when the conditions are true, i.e., the
elements of the consequent part. Also in this case, the user can select a number
of different actions from the top frame; and then specify a value for each key
presented in the textual description in the bottom frame. The list depicted in

Fig. 7. Screenshot of the mockup for the mechanism’s consequent definition



162 F. Cabitza and C. Simone

Figure 7 presents the main options selected by practitioners on a relevance basis
during the interviews. The system groups these options together by similar cat-
egory: e.g., API provision, connection definition, data replication and insertion
and the like. In the case the action regards API provision, the user can also
insert a textual explanation. This would be displayed on the clinical record only
if requested in case a user can not interpret the API clue conveyed. By clicking
the button ‘Finish’, the system creates the mechanism that is executable by
the LWOAD interpreter. This is currently a compiler that renders LWOAD con-
structs into corresponding structures of Jess 1, which are then executed by the
fast and reliable rule engine provided within this scripting environment. Jess was
chosen after our positive experience during the development of a distributed ver-
sion of Jess for the construction of applications in the Collaborative Ubiquitous
Computing and Ambient Intelligence domains [23,24]. The strong decoupling
we pursued in the design of the WOAD architecture between cooperative logic
and the operational platform allows for the development of other compilers by
which to translate LWOAD statements into other rule-based scripting languages.
Currently, the implementation of a WOAD compiler compliant with the JBoss
Rules2 engine is under consideration to overcome the limits of Jess in dealing
with data structures more complex than lists.

7 Conclusions and Future Work

The paper illustrates the trajectory we have followed to approach the definition
of a framework where layman users can specify mechanisms supporting their
cooperation mediated by documental artifacts. This trajectory is not completed
but currently covers the most important part of the research path: namely, i)
understanding the kind of functionalities users need; ii) identifying a way to
express the functionalities and iii) defining an architecture where the function-
alities can then be implemented and validated. Also in regards to how users
should interact with this architecture and system, our research agenda covers
the incremental involvement and increasing skills of users: namely, we started
having practitioners express conditional mechanisms in natural language; then
we stimulated them to use an application to compose and detail condition-
action statements of increasing complexity; lastly, we envision the opportu-
nity to have users tweak and adjust LWOAD statements created with the for-
mer application in case of progressive customization and compliance to local
needs. In this study, the choice of a rule-based representation seemed the most
suitable one for the different types of flexibility it allows: namely, flexibility
in specifying computational mechanisms and in combining them together at
execution time.

The empirical findings we gathered so far refer to the healthcare domain and
to a hospital setting. In this case, the problem was to endow the implemen-
tation of an EPR with means that preserve or even support the conventions
1 Java Expert System Shell:http://www.jessrules.com/
2 See http://www.jboss.com/products/rules

http://www.jessrules.com/
http://www.jboss.com/products/rules


LWOAD: A Specification Language to Enable the End-User Develoment 163

that practitioners adopt to make their cooperation smooth and seamless. A first
natural question regards how much our empirical findings can be generalized
to other settings, even within the same domain: we acknowledge to have found
a group of doctors and nurses that were extraordinarily helpful to try and co-
develop innovative solutions with computer researchers and professionals; they
were extremely motivated in molding any tool that could help them in provid-
ing a better care and re-delivering more healthy newborns to their parents. For
this reason, scalability and generalization of our proposal is part of our research
agenda. Our next activities will also include the full implementation of the inter-
face, informally validated through the mockup illustrated in Section 6: our pilot
sessions confirm its feasibility as a tool that makes users autonomous in speci-
fying condition-action mechanisms, once the set of patterns has been identified
for their antecedents and a rich palette of graphical cues has been proposed as
output of their consequents. This approach however opens a new area of prob-
lems: a tool like that depicted in Section 6 interprets EUD more as a flexible
kind of customization than as a real development environment [25]. In fact, the
predefined set of patterns cannot fulfill the needs of increasingly skilled users
wanting to extend the “localization” of the desired support. To fulfill this re-
quirement, users must have access to the implementation environment also: here
it is where the WOAD framework, and specifically its specification language
– LWOAD – can play a relevant role for its declarative, abstract and modular
approach that divides complex situations into a bunch of supportive function-
alities that are called reactively with respect to the current context. The first
phase of the study showed how (relatively) easily layman users can transform
informal rules of their particular setting into executable statements, due to the
“isomorphic” nature of the involved representations.

The next step is to allow users define more general rules by selecting the
needed pieces of information to build the antecedent of the rules out of the
documental artifacts in a natural way. Practitioners proposed a solution that
could mimic how users of a spreadsheet copy data from cell to cell just by
clicking on them and pasting them where needed. Likewise, users should be
able to express contextual conditions from a predefined palette of templates
(concerning, e.g., time, frequency, iterations, etc.) and specialize them by ex-
pressing simple key-value pairs and selecting data structures and data values
directly from their documentation. Of course, this additional flexibility would
ask for a strong interoperability between the coordinative layer and the archival
layer, i.e., the EPR, or at least the capability to export and represent suit-
able views of clinical data, irrespectively of how they are organized and mem-
orized. In our opinion, and on the basis of our interaction with practitioners,
this kind of interoperability could bring data presentation strategies to EPR
that are more natural and closer to the way practitioners use the current paper-
based clinical record fruitfully. This positive mutual influence is the final goal
we aim to pursue in our planned interactions with users in the healthcare
domain.



164 F. Cabitza and C. Simone

Acknowledgements

The work presented in this paper has been partially supported by the F.A.R.
2008. The authors would like to thank the management and the Neonatal Inten-
sive Care Unit personnel of the Alessandro Manzoni Hospital of Lecco for their
kind collaboration. In particular, we would like to acknowledge the invaluable
help and courtesy of Dr Bellù and Mrs Colombo.

References

1. Braa, K., Sandahl, T.: Introducing digital documents in work practices - challenges
and perspectives. Group Decision and Negotiation 9(3), 189–203 (2000)

2. Sellen, A.J., Harper, R.H.R.: The Myth of the Paperless Office. MIT Press, Cam-
bridge (2003)

3. Terzis, S., Nixon, P., Wade, V., Dobson, S., Fuller, J.: The future of enterprise
groupware applications. Enterprise Information Systems, 99–106 (2000)

4. Xiao, Y.: Artifacts and collaborative work in healthcare: methodological, theo-
retical, and technological implications of the tangible. J. of Biomedical Informat-
ics 38(1), 26–33 (2005)

5. Hertzum, M.: Six roles of documents in professionals’ work. In: ECSCW 1999:
Proceedings of the Sixth European conference on Computer supported cooperative
work, pp. 41–60. Kluwer Academic Publishers, Norwell (1999)

6. Garfinkel, H.: “Good” organizational reasons for “bad” clinic records. In: Studies
in Ethnomethodology, pp. 186–207. Prentice-Hall, New Jersey (1967)

7. Berg, M.: Accumulating and Coordinating: Occasions for Information Technolo-
gies in Medical Work. Computer Supported Cooperative Work, The Journal of
Collaborative Computing 8(4), 373–401 (1999)

8. Fitzpatrick, G.: Integrated care and the working record. Health Informatics Jour-
nal 10(4), 291–302 (2004)

9. Winthereik, B.R., Vikkelso, S.: Ict and integrated care: Some dilemmas of stan-
dardising inter-organisational communication. Computer Supported Cooperative
Work, The Journal of Collaborative Computing 14(1), 43–67 (2005)

10. Cabitza, F., Simone, C.: “You Taste Its Quality”: Making sense of quality stan-
dards on situated artifacts. In: MCIS 2006: Proceedings of the First Mediterranean
Conference on Information Systems, Venice, Italy, AIS (2006)

11. Berg, M., Goorman, E.: The contextual nature of medical information. Interna-
tional Journal of Medical Informatics 56, 51–60 (1999)

12. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer Supported Cooperative Work 5(2/3),
155–200 (1996)

13. Divitini, M., Simone, C.: Supporting different dimensions of adaptability in work-
flow modeling. Computer Supported Cooperative Work 9(3), 365–397 (2000)

14. Heath, C., Luff, P.: Documents and Professional Practice: ‘bad’ organisational rea-
sons for ‘good’ clinical records. In: CSCW 1996: Proceedings of the international
conference on computer-supported cooperative work, pp. 354–363. ACM Press,
Cambridge (1996)

15. Cabitza, F., Simone, C.: “. . . and do it the usual way”: fostering awareness of work
conventions in document-mediated collaboration. In: ECSCW 2007: Proceedings of
the Tenth European Conference on Computer Supported Cooperative Work (EC-
SCW),Limerick, Ireland, September 24–28, pp. 119–138. Springer,Heidelberg (2007)



LWOAD: A Specification Language to Enable the End-User Develoment 165

16. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In:
CSCW 1992: Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, pp. 107–114. ACM Press, New York (1992)

17. Cabitza, F., Sarini, M., Simone, C.: Providing awareness through situated process
maps: the hospital care case. In: GROUP 2007: Proceedings of the 2007 Interna-
tional ACM SIGGROUP Conference on Supporting Group Work, pp. 41–50. ACM
Press, New York (2007)

18. Cabitza, F., Simone, C.: Supporting practices of positive redundancy for seamless
care. In: CBMS 2008: Proceedings of the 21st IEEE International Symposium on
Computer-Based Medical Systems, Jyväskylä, Finland, June 17-19, 2008, pp. 470–
476. IEEE Computer Society, Los Alamitos (2008)

19. Hardstone, G., Hartswood, M., Procter, R., Slack, R., Voss, A., Rees, G.: Support-
ing informality: team working and integrated care records. In: CSCW 2004: Pro-
ceedings of the 2004 ACM conference on Computer supported cooperative work,
pp. 142–151. ACM Press, New York (2004)

20. Randell, R.: Accountability in an alarming environment. In: CSCW 2004: Proceed-
ings of the 2004 ACM conference on Computer supported cooperative work, pp.
125–131. ACM Press, New York (2004)

21. Dourish, P.: Seeking a Foundation for Context-Aware Computing. Special Issue on
Context-Aware Computing HCI Journal 16 (2001)

22. Wulf, V., Stiemerling, O., Pfeifer, A.: Tailoring groupware for different scopes of
validity. Behaviour and Information Technology 18(3), 199–212 (1999)

23. Cabitza, F., Seno, B.D., Sarini, M.: DJess – a context-sharing middleware to de-
ploy distributed inference systems in pervasive computing domains. In: ICPS 2005:
Proceedings of the IEEE International Conference on Pervasive Services, Santorini,
Greece, pp. 229–238 (2005)

24. Cabitza, F., Locatelli, M., Sarini, M., Simone, C.: CASMAS: Supporting collab-
oration in pervasive environments. In: PerCom 2006: Proceedings of the Fourth
Annual IEEE International Conference on Pervasive Computing and Communica-
tions, Pisa, Italy, pp. 286–295. IEEE, Los Alamitos (2006)

25. Liebermann, H., Wulf, V., Paternò, F. (eds.): End-User Development. Kluwer Aca-
demic Publishers, Dordrecht (2006)



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 166–185, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Shaping Collaborative Work with Proto-patterns 

Till Schümmer and Jörg M. Haake 

FernUniversität in Hagen 
Universitätsstraße 1, 58084 Hagen, Germany 
Till.Schuemmer@fernuni-hagen.de 

Abstract. A shared set of processes and norms as well as a shared understand-
ing of the collaboration infrastructure is a vital aspect for collaboration. This 
paper investigates how practitioners of virtual organizations can be supported in 
creating, sharing, and applying best practices that form the basis for a shared 
understanding of collaboration processes. Extending the interpretation of end-
user development to a the development of processes and technology, best prac-
tice descriptions document proven social processes as well as guidelines for 
end-user appropriation and utilization of groupware tools. We propose a prac-
tice creation process, show how proto-patterns can be used for documenting 
best practice, and explain how they help to gain a socio-technical perspective on 
the shared practices. The approach has been used to create a best practice col-
lection for efficient meetings. 

1   Introduction 

Virtual organizations and virtual enterprises are becoming more and more ubiquitous 
in these days. According to Byrne et al. [2], virtual organizations form “… a tempo-
rary network of independent companies linked by the free flow of information. There 
is no hierarchy, no central office and no vertical integration: just the skills and re-
sources needed to do the job… the key is the use of ICT [information and communi-
cation technology] which will be used to forge the alliances” (cited from [7]).  
Supporting collaboration in such organizations is a major challenge since all partners 
typically contribute their individual ways of per-forming work. They lack a shared set 
of processes and norms that guide the collaboration processes.  

Each partner in a virtual organization contributes a different infrastructure. Thus, it 
is likely that different partners use different groupware systems. Johnson-Lenz and 
Johnson-Lenz defined groupware as “intentional group processes plus software to 
support them” [11]. The variety of systems used by the partners further complicated 
the development of shared social practices. 

EUD is one approach for addressing this problem. It allows the practitioners in the 
individual organizations to modify their groupware systems so that the resulting infra-
structures become compatible. End-users become developers in the sense of End-User 
Development as it was defined by Liebermann et al. who termed it as “a set of meth-
ods, techniques, and tools that allow users of software systems, who are acting as non-
professional software developers, at some point to create, modify or extend a software 
artifact.” [12]. 



 Shaping Collaborative Work with Proto-patterns 167 

In the EU Project MAPPER [10], we were able to experience and observe multiple 
instantiations of virtual enterprises: a large automotive supplier interacting with many 
different car manufacturers for supplying car components, an individual car manufac-
turer interacting with various suppliers in order to co-construct a new car, and two 
small electronics design companies co-constructing a new USB chip. The above men-
tioned partners, a software company and several research partners formed a virtual 
organization with the goal of creating tools and methods for efficient distributed 
engineering. 

All examples shared common problems typical for virtual organizations. We could 
confirm issues raised by Hales [7]: It was essential that the partners had a profound 
understanding of their core functions and that differing approaches and processes to 
completing tasks were embraced. All partners contributed their experience as well as 
their groupware systems for structuring interaction. They had different best practices 
for structuring the interaction among the partners. To work together effectively, the 
members of the virtual organization had to identify, connect, and improve their best 
practices and agree on a common set of shared best practices. They also had to estab-
lish a technical infrastructure that allowed them to interact. How to reach such a 
common set of practices with adequate technology support and thereby align the dif-
ferent members of the virtual organization is the topic of this paper. 

We argue that EUD currently is not sufficient to bridge the socio-technical gap be-
tween the partner organizations, since EUD is primarily addressing technical systems. 
In this paper, we propose a method for simultaneously addressing both, the social 
processes and their supportive technologies.  

We will show how the members of a virtual organization can be supported in the 
process of making their individual best practice explicit, sharing it with other partners 
in the virtual organization and transforming it from an individual and subjective level 
to an organizational level. These practices combine technical aspects with social as-
pects. Users shape their collaborative work by modifying both, social interaction and 
the technology that supports the interaction. Traditional EUD techniques (i.e., end-
user programming, participatory design) are employed for shaping technology. We 
will also show how these shared best practices can be improved in an agile manner 
during application time. As a result, the virtual organization will collaboratively de-
velop a set of shared best practices that enables efficient collaboration. 

The remaining part of this paper is structured as follows: We will first discuss the 
problem space for sharing and improving best practice in virtual organizations both 
from a social and a technical perspective and identify requirements for better support-
ing this process. We will then discuss to what extent current approaches support the 
evolution of best practice knowledge and the supportive technology. Afterwards, we 
will present our approach that consists of a standardized best practice representation 
focusing both on improving social interaction and better supporting this interaction 
through groupware applications and a computer-supported best practice sharing proc-
ess. In the final sections of this paper we will report our experiences with the 
approach developing meeting practices in a virtual organization.  



168 T. Schümmer and J.M. Haake 

2   Requirements for Best Practice Detection and Sharing in 
Virtual Organizations 

In 1983, Schön published his influencing work on the reflective practitioner in which 
he outlines a framework of reflection in action [22]. He understands professional 
practice as a problem solving process. Practitioners make use of their mental model of 
the problem solving process. They use building blocks of knowledge and prefabri-
cated solutions that they have in their minds in order to solve problems in their work 
environment. But these models only work when the anticipated context of the work 
situation matches the actual context. In changing work contexts practitioners have to 
look for new solutions for the problem at hand. Reflection-in-action means that the 
practitioner (1) detects that the current situation does no longer match the mental 
model of the anticipated context, (2) constructs a new mental model, and (3) tests the 
new mental model by means of ad-hoc experimentation. As a result, the practitioner 
will create a new model of the problem space and come up with new ways of solving 
the problem [22].  

The improvement of the mental model can influence the concrete interaction in two 
ways: It can result in new strategies for interacting with the world and thus change the 
way how the practitioner acts. It can also result in a reconfiguration of the practitio-
ner’s context. Examples for the latter are changed layouts of offices or – in the con-
text of computer-mediated interaction – a modified groupware infrastructure. While 
the practitioner is often able to build the new mental model, it is a much harder task to 
communicate these new social practices to others. This requires that the practitioner is 
able to convert his tacit knowledge into external knowledge that can be shared in a 
learning organization [20]. Accordingly, changed technical infrastructures can result 
in a better fit between the individual’s mental model and the infrastructure but at the 
same time may create a mismatch with other practitioners’ models. As a result, 
knowledge about changes of the infrastructure has to be shared among all involved 
practitioners. Again, one of the challenges is how to support the practitioner who 
modified the infrastructure in making his reasons for changing the infrastructure ex-
plicit and explaining how to use the improved system. 

Nonaka and Takeuchi [21] have investigated this relation between tacit and explicit 
knowledge. They observed that “organizational knowledge creation is a continuous 
and dynamic interaction between tacit and explicit knowledge.” [19, p. 70]. They 
distinguish four modes of knowledge creation: (1) socialization, (2) externalization, 
(3) combination, and (4) internalization. In the socialization mode, practitioners inter-
act in the field and knowledge about practices is transferred by experiencing the prac-
tice. They work together and the apprentice observes and imitates the actions of the 
more experienced practitioner. When practitioners externalize their knowledge, they 
make it accessible for other members of the organization. Knowledge is captured in 
writing and can be shared in the virtual organization. The externalized knowledge of 
different members is then combined to reach a shared knowledge. Finally, other prac-
titioners integrate the new externalized knowledge with their tacit knowledge. This 
process of internalization is required to apply the knowledge.  

The different modes form a spiral of knowledge creation [21] that scales up while 
the knowledge is shared by a growing number of people. In the first iterations, indi-
viduals reflect on their knowledge and relate it to external representations of their 



 Shaping Collaborative Work with Proto-patterns 169 

knowledge. Later on, the externalized knowledge is used within the work group and 
even later, it may be shared in the whole organization or across organizational units of 
virtual organizations.  

Socialization is often the most effective way of knowledge transfer. Art teaching, 
e.g., is normally taught by mentoring or direct observation. However, in the context of 
distributed virtual organizations, knowledge transfer through socialization is rarely 
possible since it would require co-located collaboration between the practitioners. 
Instead, we focus our analysis on the ‘longer’ path of knowledge transfer that in-
volves externalization, combination, and internalization. From this discussion, we can 
draw the following requirement: 

(R1) Practice knowledge must be made explicit before it can be shared in the vir-
tual organization over distance: Here, Practitioners need to be (a) motivated to make 
their tacit knowledge of best practice explicit, and (b) guided in a reflection process to 
identify individual best practice. 

Externalization is, however, a cognitive challenge for the practitioner. Tradition-
ally, the externalization takes place by telling communication partners a story [13]. 
Giving the story a good plot is not always easy. According to [13], these stories 
should follow a narrative genre beginning with a context description that sets the 
stage, followed by a dramatic conflict that is resolved. This not only helps authors to 
write understandable descriptions, it also allows the reader faster access to the story. 

(R2) Standardized practice representation: Practice descriptions should follow a 
common (standard) structure to ease the creation of the description as well as its ap-
plication across organizational boundaries. 

When writing their practice description, practitioners need to reflect on the current 
situation and investigate its context. Knowledge without context becomes “down-
graded to information” [13]. It loses aspects that are required to interpret the knowl-
edge and situate it in a new application context. For that reason, the context of the 
best practice is essential for its application. The context of a best practice can be ab-
stracted from the concrete context to allow a wider view on the problem or it can be 
made more concrete to support the reader in better understanding the preconditions 
for the described practice. We argue that both directions need to be taken into account 
when describing a practice. 

(R3) Abstract solution: (a) Practice descriptions need to abstract from organization 
infrastructures and services in order to be applicable in other contexts. (b) If practice 
descriptions are based on certain specifics of the organization this must be made ex-
plicit, so that the application of the practice in other contexts is informed. 

By now, we have discussed the second mode of the spiral of knowledge creation: 
externalization. A comprehensive approach to knowledge creation in virtual organiza-
tions should also address the subsequent modes: combination and internalization 
including the following three requirements. 

(R4) Access to practice descriptions: Individual practices or practices of one organi-
zation need to be accessible by other organizations. Hence, practitioners need to be 
able to store and retrieve practice descriptions. They also need support for exploring 
and finding best practice in the organization’s existing best practice collection. 



170 T. Schümmer and J.M. Haake 

(R5) Communication: There needs to be a discussion of practice descriptions. Practi-
tioners must have a means to comment best practice descriptions and provide feed-
back on their experiences with the practice. 

(R6) Combination: Practitioners need to be supported in relating and aligning new 
best practice to the organization’s existing best practice collection. 

In order to become a shared practice of the virtual organization, practice descrip-
tions need to be distributed to all members of the virtual organization. This is a pre-
requisite for knowledge application at an inter-organizational level.  

(R7) Practice dissemination: Information about available practices must be dissemi-
nated in the virtual organization, and awareness about best practices must be raised to 
increase the chance of adoption. 

Virtual organizations make use of information and communication technology 
(ICT) to mediate the interaction between partners. Best practices that involve more 
than one partner will thus always involve the use of ICT as well as social solutions to 
solve socio-technical problems. This combination may complicate the application of 
the practice, especially when the technical aspect of the solution requires substantial 
modifications to the virtual organization’s ICT. Since the partners very likely enter 
the virtual organization with an existing local ICT, it may even be impossible to reach 
a full level of integration. The implementation strategy should thus describe a spec-
trum of implementation options ranging from social process design to using integrated 
technical support. 

(R8) Implementation strategy: (a) The implementation of best practice must be 
easy-to-begin-with, i.e. by piloting a social process only. (b) However, the potential of 
supportive technologies to increase effectiveness must be addressed in the practice 
description. 

The implementation strategy makes it easier for the practitioner to translate the 
practice to his concrete context. It eases the internalization of knowledge by providing 
different levels of social or technical concreteness. Linking the practice to existing 
tacit knowledge becomes easier since the variety of potential connection points (e.g., 
solely on the social level or at a level of standard ICT components) is increased. Nev-
ertheless, we assume that a practice will still undergo a mapping process where the 
acting practitioner adapts the practice to his current tacit knowledge and the concrete 
organizational context. 

(R9) Adaptation: Individual practice of members in the virtual organization should 
be able to change the practice of other members. Therefore, adaptation of practice to 
the needs of its users must be supported. 

Adapted practices may then be the seeding point for the next iteration in the 
knowledge creation spiral. This means that changes to a practice first become an indi-
vidual practice again but afterwards may emerge to a new practice that is externalized, 
communicated and combined again. 

A solution addressing the abovementioned requirements supports the transitions 
between all modes of the knowledge spiral. We will now discuss supportive ap-
proaches contributing to individual requirements. 



 Shaping Collaborative Work with Proto-patterns 171 

3   Current Approaches 

We can group current approaches for addressing the requirements in two clusters: (1) 
Approaches for representing and sharing best practices and (2) processes for improv-
ing collaboration and the supportive groupware technology. In the following sections, 
we will provide examples of approaches in each cluster. 

3.1   Representing and Sharing Best Practices  

In cooperative knowledge management, numerous approaches have been developed 
for representing good practice. For the purpose of our analysis we take a closer look 
at two strategies: expert finder systems and repository approaches. 

Expert finder systems support finding peers who have experienced comparable 
challenges. By using the current context, the system finds other users who are proba-
bly able to help the requesting user (see the EXPERT FINDER pattern in [24] for more 
information and example systems). This enables socialization of knowledge even in 
distributed settings. Practitioners talk about the context and the problems and collabo-
ratively work on a solution given the experience of the expert found. The main prob-
lem with such an approach is that it relies on specific members of the organization. If 
the organization changes partners, the knowledge may get lost. Compared to our re-
quirements, the interaction with an expert may provide implicit access to practice 
descriptions (R4) and foster communication on the practice (R5).  

Repository approaches rely on an explicit knowledge representation. During the 
last years, design patterns have been discussed as a means for capturing best practices 
and supporting knowledge management [17]. A design pattern is a three part rule that 
provides a solution for a problem in a specific context. Initially developed by the 
architect Alexander [1] who wanted to empower lay people to shape their homes, 
patterns have been applied to various disciplines, especially to software development 
[5]. In the context of CSCW, they have been used with the following purposes: 

− Describing interaction, e.g., in the context of ethnographic fieldwork where pat-
terns were used to describe typical scenarios observed by the field worker [16]. 

− Improving social interaction, e.g., in the context of organizational change [15], or 
to support changes in the networked society [26]. 

− Designing socio-technical systems, e.g., for knowledge management [9] or com-
munity-based learning [3]. The most recent and largest collection of socio-
technical patterns is the pattern language for computer-mediated interaction [24]. It 
includes 71 patterns addressing, among others, issues of community design, small 
group interaction, and the design of infrastructures for collaborative systems.  

While descriptive approaches help to better understand interaction, they do not 
necessarily provide guidance for improving a concrete situation. Patterns for improv-
ing social interaction can be used to describe the social part of the best practice. But 
as soon as technology is required for distributed interaction, they lack appropriate 
guidance for mapping the social processes to technology. Socio-technical patterns 
combine social and technical aspects and thereby support the co-evolution of group 
processes and supportive technology. However, the different implementation strate-
gies are not addressed by current approaches (R8). 



172 T. Schümmer and J.M. Haake 

Pattern approaches capture solutions in a standardized way (R2, R4) together with 
an intended application context (R3). But they do not address the evolutionary change 
of the patterns (R5, R6, and R9). Neither do they address the process of pattern crea-
tion needed to generate a pattern language for a virtual organization (R1). 

3.2   Processes 

In the context of groupware development, appropriation, and application, several 
process models have been proposed that help the users to improve their work place 
and share their improved practice with others. The Integrated Organizational and 
Technical Development (OTD) [27] model is an evolutionary process that assumes 
that users constantly analyze the actual state of the organization. They should detect 
problems and create alternatives. As a result, the users apply interventions looking 
simultaneously at three levels, namely the technology used in the organization, the 
organizational structures, and the qualification. In summary, OTD satisfies the re-
quirements for applying new practices (R8&R9) but does not provide explicit support 
for the creation of best practices (R1-R7).  

The Seeding, Evolutionary Growth, and Reseeding (SER) approach [4] puts a spe-
cial focus on knowledge transfer in knowledge intensive work. In the seeding phase, 
users contribute their subjectively relevant knowledge and design objectives. The 
collected knowledge influences the future collaboration. During work, users contrib-
ute to the initial seed. In a reseeding phase, the user-generated knowledge is restruc-
tured so that it is compatible with the initial seed. SER supports shared access to 
common knowledge (R4), fosters communication (R5) and combination (R6) in the 
reseeding phase, and embraces adaptations (R9) that are fed back into the develop-
ment process (R7). However, it neither propagates a standardized knowledge structure 
(R2) nor supports practitioners in making their knowledge explicit (R1). 

In the Oregon Software Development Process (OSDP) [23] practitioners make use 
of design patterns to modify their groupware environment. While working with a 
groupware system, practitioners constantly reflect on their interaction. As soon as 
they encounter a collaboration breakdown, they look for design patterns that help to 
resolve the conflict that caused the breakdown. The application of the patterns may 
either result in tailoring activities where the practitioners change the groupware sys-
tem or in development activities where practitioners ask developers to change the 
groupware system. A pattern scout observes the practitioners’ behavior and seeks for 
interesting tailorings that may lead to new patterns.  

By using patterns, OSDP employs a standardized practice representation (R2) that 
encourages adaptation (R9). The distinction between tailoring and development ac-
tivities fulfils parts of the implementation strategy requirement (R6). However, it does 
only provide little guidance on how the patterns should emerge and states that this 
should be the task of the pattern scout. It thus lacks concepts for making tacit knowl-
edge explicit (R1), and discussing (R5), relating (R6), and disseminating (R7) it 
within the organization. 

With a focus on tailoring activities, Pipek and Kahler discussed different levels of 
collaboration involved in tailoring [19]. Based on empirical findings on tailoring 
behavior and sharing of tailoring, the authors identified several aspects that need to be 
addressed when supporting shared tailoring including a mechanism for sharing  



 Shaping Collaborative Work with Proto-patterns 173 

tailoring (in line with R4) and the need for communicating about tailoring (R5). The 
authors also argue that tailoring as a collaborative design process (in the sense of 
Oberquelle [18]) should foster reflection on breakdown situations and ease the proc-
ess of articulation during the design process. We share this requirement and extend it 
to the discussion of both social practices and technology (including adaptations to the 
technology). 

Lyons [13] as well as May and Taylor [17] argued that practitioners should create 
patterns of their best practice as a result of the reflection process. They should use 
these patterns for knowledge transfer in virtual teams. This is the closest approach to 
our requirements. However, Lyons did not provide guidelines on how to create and 
improve patterns as well. May and Taylor proposed to use shepherding and writer’s 
workshop techniques known from pattern conferences to improve the pattern quality. 
However, they still make a distinction between pattern authors and practitioners since 
the act of writing a pattern is considered as an extremely difficult task. Supporting 
end-users in end-user pattern writing is thus still an open issue (R1). In addition, their 
patterns address social aspects only which means that a more detailed pattern struc-
ture is required in order to support the co-evolution of social practices and groupware 
support (R8 & R9). 

In summary, while the processes provide important advice for best practice shar-
ing, none of them provides sufficient support for making implicit practice knowledge 
explicit. To our knowledge, there is no process or knowledge representation that ful-
fils all requirements for a best practice sharing approach needed in our virtual organi-
zation setting. 

4   A Proto-pattern Oriented Approach to Best Practice Sharing in 
Virtual Organizations 

In order to fulfill all requirements, we propose the knowledge creation process shown 
in Figure 1. The process makes use of the pattern format as a means for documenting 
best practice. Unlike traditional pattern approaches, we guide the practitioners 
through the process of pattern creation, improvement, dissemination, and application. 
Our process consists of three major phases: 

1. In the pattern creation phase, users make their tacit knowledge explicit. This phase 
maps to the externalization mode of Nonaka and Takeuchi. 

2. The pattern sharing phase focuses on reviewing and relating patterns. Members of 
the virtual organization interact with the author and provide hints for improvement. 
This phase maps to the combination mode of the knowledge creation spiral. 

3. During the pattern application phase, the pattern is applied by other members of the 
virtual organization. Findings from the application are fed back to the sharing 
phase or directly to the creation phase. The application phase maps to the internali-
zation mode of Nonaka and Takeuchi. 

We will now briefly describe our pattern format. Afterwards, we present each 
phase of our process in detail. 

 



174 T. Schümmer and J.M. Haake 

Pattern Creat ion

XPLICIT
ATIONALE
E  

R
IND THE
ROBLEM

F   
P

ITUATED
ROBLEM

S  
P

ENERIC
ECHNOLOGY
G  

T
TAGED

OLUTION
S  

S

Pa ttern Sharing

Pattern    Applicat ion

Identify 
Forces

Select 
Pattern

Reflect 
Application

Shepherding Relating 
Patterns

Pattern 
Annotation

Donated Pattern Requests for Improvements

Pulled Pattern Pushed Pattern

Apply 
Pattern

Next Stage

Comments

Pattern 
Training Comments

 

Fig. 1. Pattern-oriented best practice creation 

4.1   The Proto-pattern Structure 

We modified the pattern structure of [24] in order to make it suitable for capturing 
best practice of individual practitioners (R2). The main difference is that we refine the 
structure of the solution statements so that social solutions, solutions that require 
tailored off-the-shelf technology and custom-built groupware solutions are presented 
separately. In addition, we encourage practitioners to describe their personal best 
practices even though they may not have a long track record of successful applica-
tions across different teams. This is the reason why we also talk of proto-patterns (we 
will use the terms pattern and proto-pattern interchangeably in the remaining part of 
this paper). Proto-patterns contain at least the following sections: 

Pattern Name (and alternative names): Patterns should carry metaphoric names 
where possible. They are the shortest description of the pattern’s solution. 

Context: A pattern provides a best practice for a problem in a specific context. The 
context section summarizes the original context that was in the author’s focus. 

Problem: One of the two most important parts of the pattern is the problem descrip-
tion. It answers why the solution is really needed and serves as a hint for the user 
of the pattern to understand what the pattern really solves. 

Symptoms: The symptoms section lists potential observations that indicate the pres-
ence of the problem and the applicability of the pattern. 

Social Solution: The social solution explains changes of the social practice needed to 
solve the problem. As mentioned above, we clearly distinguish between social and 
technical solutions. This allows the practitioner to implement the pattern with dif-
ferent implementation strategies (R7). When no common infrastructure is in place 
and no budget for creating or installing additional applications is available, the 
practitioners can implement the pattern by adapting their interaction process.  



 Shaping Collaborative Work with Proto-patterns 175 

Although such an implementation strategy reduces the costs for technology 
change, it can still be difficult and expensive to implement since changes in social 
processes rely on the respective participation of all involved team members. Adapt-
ing social practice is done by employing participatory design techniques for creat-
ing, improving, and applying patterns in the organization. 

Instant Technology Solution: The easiest way to get technical support for interaction 
in a virtual organization into the workplace is to make use of technology that is al-
ready there. The Instant Technology Solution section explains how the social solu-
tion proposed by the pattern can be implemented using standard collaboration 
technology. We assume that the partners have access to a common set of core ap-
plications. Even though our selection of core technologies is short, it is important 
to note that most complex technologies can be emulated by a less complex tech-
nology. From an abstract point of view, the members of the virtual organization 
need access to shared data and be able to send data from one participant to one or 
more other participants. The most common technology supporting this basic ser-
vice is IMAP. It allows users to access content stored on a mail server and send 
content to other users on the same or a different server. We assume that the virtual 
organization has either agreed on the following set of basic services or that the 
members have found ways to emulate these technologies: 

− Audio- or text-chat tools for synchronous communication. E-mail may be used 
to emulate chat interaction (by polling the mail server for new messages).  

− A wiki [14] or a SHARED FILE REPOSITORY [24] allowing participants to store, 
modify, and access shared documents. An IMAP mail system that allows 
group access to mail folders can emulate a SHARED FILE REPOSITORY. To up-
load a new file, users send it as an attachment to the target mailbox that can be 
accessed by all group members. 

− A shared view area can be used to project the content of the screen to any 
other user (following the APPLICATION SHARING [24] pattern). The shared 
view area can be emulated with a SHARED FILE REPOSITORY. However, the 
participants in this case will need a good communication channel so that in-
structions for updating local views can be given.  

Modifying their ICT infrastructure thus becomes selecting common technologies, 
typically involving EUD techniques for tailoring the selected technologies. Some 
technologies also allow customization by means of macro programming or tem-
plate design. In these cases, the practitioner starts to program structural and/or 
process-oriented support for the virtual organization. 

Groupware Solution: Participants may need to use highly sophisticated tools for per-
forming specialized tasks during collaboration. Integrating the collaboration infra-
structure with these applications can help to better support the collaboration. The 
groupware solution section describes how the social solution can be supported us-
ing collaboration techniques that emerged from CSCW research (e.g., patterns for 
computer-mediated interaction [24]). 

In this case, EUD techniques for participatory design empower the practitioners 
to play an active role in the design process of the common future groupware solu-
tion. 

Drawbacks: Each change in a socio-technical system can cause new problems, arising 
from complex social dependencies. For the users of the patterns, it is therefore  



176 T. Schümmer and J.M. Haake 

important to get guidance on issues that they should carefully observe after they 
have put a specific pattern in place. 

Related Patterns: The related patterns section lists patterns that are closely related to 
the current pattern in the sense that they solve comparable problems or that they 
are often applied together with the current pattern.  

The proto-pattern format provides the basis for addressing the other requirements. 
Since it is not trivial to create proto-patterns of high quality, the proposed knowledge 
creation process guides the practitioner through the writing and application of the 
patterns. We will now present the individual phases of this process. Note that we will 
use a shortened form of the pattern format to describe best practice for pattern writing 
as well. 

4.2   Pattern Creation 

The pattern creation phase is triggered by practitioners or pattern scouts [23]. Either 
practitioners reflect their current practice and identify successful episodes or pattern 
scouts observe practitioners and interact with the practitioners to externalize their tacit 
knowledge. In both cases, the practitioner reflects on his current practice and the way 
how he solves a specific problem. He starts by describing the social process of his 
practice. Afterwards, he explains, why the process has this form. The following pat-
terns support the practitioner in this process: 

Explicit Design Rationale 
Problem: People cannot understand why elements of a practice are present and what 

their purpose is. 
Solution: Annotate each part of the practice description with an explanation why the 

specific part is needed. Formulate the need in terms of a force, i.e., as a sentence 
that explains the underlying requirement for implementing this solution part. 

Find The Problem  
Problem: Practitioners make implicit decisions based on their understanding of the 

world. Less experienced practitioners can often not understand the purpose of spe-
cific actions performed by the experienced practitioner. 

Solution: Create a punchy problem statement that contrasts the most important con-
flicting forces that will be resolved in the solution. To implement this, you should 
basically perform the following 5 steps:  

1. Maintain relations to all requirements that are addressed or affected by the solu-
tion (we will call these requirements forces).  

2. Create a network of forces that contains relations between all forces whenever 
one force positively or negatively influences another force. 

3. Identify conflicting forces that are balanced when the solution is in place.  
4. List all other forces that are influenced by the solution as indications for apply-

ing the pattern.  
5. Create a contrast phrase that explains the conflict between the most important 

conflicting forces and use this as a problem statement.  
 



 Shaping Collaborative Work with Proto-patterns 177 

The process of detecting forces and creating the problem statement is the most im-
portant analytical step in the pattern creation phase. After this is in place, the pattern 
contains the most important aspects of a successful story: The forces unfold a dra-
matic conflict that is resolved by a social solution. Such proto-patterns can already be 
shared with other practitioners sharing the same context. For wider applicability, the 
tacit context must be externalized, too.  

Situated Problem 
Problem: Depending on the state of the environment, practitioners make different 

decisions to solve a specific problem. While guidelines mostly focus on the me-
chanics of the solution, they often neglect the prerequisites for applying the solu-
tion. But when practitioners apply the solution, these prerequisites are of special 
importance since they have to be compatible to the practitioner’s current context.  

Solution: Capture the context when documenting the solution for a problem. Keep 
records of your context such as a diary or video recordings in order to ease the re-
construction of the context when reflecting on the solution.  

 

In summary, the above mentioned patterns in combination with the role of the pat-
tern scout who accompanies the practitioner in the process of making his tacit knowl-
edge explicit address the requirements of explicit practice knowledge (R1) and the 
solution abstraction (R3). The two remaining steps in the pattern creation phase aim at 
supporting the applicability of the pattern in a virtual organization that relies on ICT 
for collaboration (R7). 

Generic Technology 
Problem: Describing a concrete technical implementation in the solution statement of 

a proto-pattern makes it difficult to apply the proto-pattern in a similar but not 
identical context. Especially, technology constraints in the target context may pro-
hibit the direct use of the pattern. 

Solution: Separate solution ideas from technology specific parts of the solution. For 
example, speak of version management services instead of naming a specific ver-
sion management system (CVS). 

Staged Solution Description 
Problem: Changes in socio-technical systems affect both the social process and the 

technology that supports the process. But users willing to apply the change may 
not have the technical expertise to change the technology that is currently in use. 
Restricting the solution description to actions that can be performed by every prac-
titioner on the other hand forces the creator of the proto-pattern not to go beyond 
the technical state of the art and thereby restricts his ability to describe advanced 
technology solutions.  

Solution: Split the solution statement of the pattern into three parts: the social solution 
describing changes in the interaction process, the instant technology solution de-
scribing how off-the-shelf software systems can be used to support the social solu-
tion, and the integrated groupware solution describing how the process can be 
supported by an integrated and domain-specific collaborative system. 

 



178 T. Schümmer and J.M. Haake 

With the integrated groupware solution, the practitioner is able to contribute his 
understanding of how the process should be integrated with the domain-specific tasks. 
This takes into account that practitioners often have a clear vision on how to improve 
their work environment. As an example for the level of integration, one may consider 
design meetings in the automotive industry. In these meetings, participants need to be 
able to access CAD and Simulation systems. They need to relate their discussion to 
elements of the CAD model of the constructed car. An integrated groupware solution 
for sharing annotations would thus become a part of the CAD system so that users 
could share their annotations directly in their domain-specific CAD application. 

4.3   Pattern Sharing 

Once the pattern contains the most important sections, the context, the problem, and 
the solution, it can be donated to a common pattern repository. Our proposed process 
makes use of a structured wiki [6] to store the individual patterns. Each pattern is 
stored as a wiki page that has fields for the required sections of the pattern. In addi-
tion, each pattern has an associated BLOG that allows pattern-centric discussions and 
annotations.  

From a process perspective, donated patterns will be taken up by a shepherd [8], 
i.e., an experienced pattern author who helps the author to further improve his prac-
tice description. The assumption is that the practitioner remains the expert for his 
practice but that the shepherd can help to better structure the proto-pattern and detect 
forces that were up to then not seen by the practitioner. The shepherd sends requests 
for improvement to the pattern author who in return updates the pattern description 
accordingly. 

Pattern authors as well as other practitioners also work on relating patterns to the 
pattern language of the virtual organization. Here, all members can become active and 
forge links by editing the wiki page of the pattern.  

Shepherding as well as the process of relating patterns contribute to the communi-
cation (R4) and the combination (R5) requirements. 

4.4   Pattern Application 

We distinguish two different motivational factors for applying proto-patterns: the 
breakdown and the group policy. When the pattern application is triggered by a 
breakdown, the practitioner observes obstacles in his current activities. He starts to 
analyze the different forces that cause the breakdown and compares these forces with 
the forces of the available patterns. Assuming that a matching pattern exists, the prac-
titioner can directly apply the pattern. Since the user is actively seeking for a match-
ing pattern, we speak of a pull mode here (cf. Figure 1). 

In contrast, the group policy trigger assumes that patterns are pushed to relevant 
practitioners (cf. Figure 1). In this case, the management board of the virtual organi-
zation has agreed on a specific set of patterns that are then presented to the practitio-
ners of the individual organizational units in forms of tutorials, reports, or newsfeeds. 
The practitioners are expected to study the patterns independently of a concrete cur-
rent breakdown and apply these patterns when appropriate situations come up in the 
future. 



 Shaping Collaborative Work with Proto-patterns 179 

The application of the pattern may go through different stages. Typically, practi-
tioners start applying the pattern on a social level implementing the changes in the 
social interaction processes. As soon as the new process shows that the practice was 
improved and better usability or effectiveness is needed, practitioners may think about 
supportive technology. This is done by tailoring existing infrastructures according to 
the solution outlined in the instant technology solution of the pattern. Finally, if 
tighter integration with existing groupware infrastructures is requested, the practitio-
ner may initiate new development activities performed by groupware designers and 
assisted by practitioners in the sense of a participatory design setting. 

Whenever practitioners have applied a pattern, the process encourages them to re-
flect on the application to identify aspects that improved or to spot new problems. 
They can share their observations by annotating the patterns in the shared pattern 
repository or by directly asking the pattern author to improve the pattern. 

Note that the application process is closely related to the tailoring iteration in the 
Oregon Software Development Process [23]. The main differences are that our ap-
proach differentiates the triggers for starting the pattern application and that it distin-
guishes the different application stages. 

5   Experiences 

We evaluated our approach through several case studies taking place in the context of 
a 30 months European project. During this time, we observed the behavior of (1) the 
members of a virtual organization running a research project with 9 partner organiza-
tions distributed all over Europe, (2) a virtual organization in the automotive suppliers 
sector, (3) a virtual organization formed by a major European automotive company 
and its suppliers, and (4) a virtual organization of two electronics design companies. 

The first case was our main observation target for understanding the whole best-
practice creation process. We intentionally focused our attention on this virtual or-
ganization since it was highly distributed (6 countries throughout Europe) and had a 
high variety with respect to the partners’ organizational cultures ranging from re-
search cultures brought in by research partners to industrial interaction cultures 
brought in by participating manufacturing companies. The latter three industrial cases 
provided additional experiences with respect to the application of the patterns.  

During the first phases of the project, meetings showed to be a relevant activity for 
all cases. Each partner contributed his or her own view on how a meeting should be 
prepared and performed. It was thus required that the group as a whole grew a meet-
ing culture. 

In the following sections, we will first show how a concrete pattern was created. 
We will then report on anecdotal experiences of the pattern sharing process and fi-
nally show how the patterns were applied in the different cases. 

5.1   Pattern Creation 

The members of the virtual organization first performed meetings as they were used 
to in their home organizations. This means that meetings were differently structured 
dependent on the origin of the specific meeting facilitator. After several weeks of 



180 T. Schümmer and J.M. Haake 

experience, one practitioner started to reflect his practice of organizing meetings and 
compared it to the other user’s practices. He found out, that his way of organizing 
meetings was different with respect to the agenda creation. While other facilitators 
simply fixed an agenda, he felt that the participants of the meeting should contribute 
to the agenda. 

He started to use a wiki for collaboratively organizing the agenda and noticed that 
this worked reasonable well for his meetings. This was the starting point to create a 
pattern for collaborative agenda creation. He wrote down the advice for agenda crea-
tion that contained detailed descriptions of how to set up an initial agenda in the wiki, 
how to invite participants by mail and ask them to add their agenda items, and on how 
to finalize the agenda. 

He then identified 10 forces and analyzed whether or not the forces were in con-
flict. Two examples for conflicting forces were: 

– F3: Owner sets topic. The meeting owner wants to set the topic of the meeting. 
– F5: Participants show interest. Participants will not contribute to the meeting if 
the agenda is not interesting for them. 

From this list, the practitioner was able to deduct a problem statement. He then de-
scribed the context and checked the situations in which he used the solution. Finally, 
he situated the pattern in the context of meeting preparation. 

The initial description of the solution referred to a concrete technical infrastructure. 
While refining the pattern, the practitioner abstracted from the concrete wiki and 
exchanged references to concrete mail addresses that were present in an early draft of 
the pattern with explanations of the receiver’s role. 

Finally, he split up the solution by distinguishing between technical aspects of the 
solution and social aspects. In the instant technology solution, the practitioner created 
templates for agenda pages that could be re-used in the whole virtual organization. By 
creating the template, he extended the existing infrastructure (he performed end-user 
programming activities). He also envisioned how an integrated solution would look 
like and became a driving force in convincing the developers of the virtual organiza-
tion’s infrastructure to implement an integrated meeting support mechanism (the 
practitioner became the driving force ion a participatory design process). 

The pattern creation process resulted in the following pattern (some parts have 
been abbreviated for space reasons). 

It’s My Agenda – It’s My Meeting 
Context: You are calling for a meeting and create an agenda for it. There are stake-

holders who have different backgrounds and interests. 
Problem: The owner of the meeting normally creates an agenda. All other invited 

participants have only limited possibilities to participate in the agenda crea-
tion. This can lead to incomplete or wrong agendas. 

Symptoms:  
− Agreeing on the agenda takes a lot of time at the start of the meeting. 
− Many new topics pop up during the meeting, which have not been foreseen. 
− Important topics do not make it to the agenda early enough for allowing good 

preparation of the topics.   



 Shaping Collaborative Work with Proto-patterns 181 

Social Solution: Define a shared place where all invited meeting participants can 
collaboratively prepare the meeting agenda up to a specified deadline.  

Instant Technology Solution: Create a wiki page as a shared artifact of the agenda. 
Invite participants to change the wiki page by sending them a link to the page. Tell 
them that and how they should update other participants on agenda changes (i.e. 
by replying to the invitation mail). Create a section on the wiki page where the 
participants can express their approval after the agenda was finalized (one week 
before the meeting). 

Groupware Solution: Implement the agenda preparation workflow as part of your 
collaboration environment. Make use of a SHARED FILE REPOSITORY [24] or a 
ROOM [SL07] as a shared place where agenda items for the meeting are stored. 
Initially the shared space is only accessible to the meeting organizers. After the 
meeting organizers have created an initial agenda, they can invite additional par-
ticipants. Invited participants will receive a message in which they can confirm 
their attendance. From then on, participants can modify agenda items. After saving 
an updated agenda item, the system sends a notification to all other participants. 
The final acceptance of the agenda can be supported by a VOTE [24] that is auto-
matically triggered at a defined time before the meeting. 

Drawbacks: If the agenda is created by the group, the meeting owner may need to be 
the MODERATOR [24] so that the meeting stays in line with the general meeting 
goals. 

Related Patterns:  
− WHY SHOULD I BE THERE: The discussion of the agenda can help the participants 

to better understand why they should attend the meeting. 

5.2   Pattern Sharing 

We provided practitioners with a structured wiki to store their patterns. Practitioners 
contributed their patterns to the wiki so that they could be discussed afterwards. How-
ever, we observed that users hesitated to comment on the patterns. One reason for this 
may have been that the users did not consider themselves as experts for the specific 
topic and thus did not want to question the pattern author’s expertise. Another reason 
that was reported by one user was the lack of time. 

However, when we discussed the patterns in face-to-face meetings, the members of 
the virtual organization contributed valuable feedback ranging from confirmations 
over suggestions for improving the social process up to new ideas for an integrated 
groupware solution. 

When more meeting patterns were created, the practitioners started to connect the 
patterns. Connections were established using wiki links. Currently, the meeting pat-
tern language contains 21 patterns each connected to 2-11 other patterns. 

All meeting patterns have undergone a shepherding process. After an internal 
shepherding of peer practitioners, the meeting pattern language was passed on to an 
external shepherd who spent six weeks giving comments to the patterns and checking 
updated versions. The final version of the patterns was in addition shared with the 
European patterns community and received high attention [25]. 



182 T. Schümmer and J.M. Haake 

5.3   Pattern Application 

Initially, the meeting patterns were applied as a group policy in the research consor-
tium. During a project meeting, one pattern author gave an overview of the pattern 
language and explained how the patterns can be used together. Notably, this had an 
immediate effect on the meeting. While the first day of the meeting started without a 
detailed agenda, the second day was prepared by the facilitator much more precisely. 
In addition, the facilitator changed the way how he collected input for the agenda. 
Agendas were no longer created only by the facilitator. Instead, all meeting partici-
pants started to contribute to the agenda creation process and thereby helped to create 
an agenda that suits the group’s needs. 

In subsequent distributed project meetings, the practice of agenda creation was fur-
ther improved according to the pattern. One group moved from the social implemen-
tation level to the instant technology level. They created a wiki template for meetings 
as it is shown in Figure 2 (using the CURE wiki engine [6]). Participants could from 
then on directly edit the agenda of the meeting.  

 

Fig. 2. A meeting page in CURE 

Since the agenda creation gained more and more importance during the project, the 
technology providers in the project finally decided to implement the envisioned solu-
tion so that the meeting planning process was integrated in the CURE system. The 
development activities were accompanied by users of the system who contributed 
their visions for system design. The CURE developers provided new wiki page types 
that aggregate other pages and that could be used as overview pages for meetings (i.e. 
the agenda was a composite of agenda items). The invitation of participants was done 
by giving the intended participants access rights to the meeting place and change 
notifications for changes of the agenda were automatically sent to all participants of 
 



 Shaping Collaborative Work with Proto-patterns 183 

 

Fig. 3. Integrated Groupware Solution for the It’s my Agenda – It’s My Meeting pattern 

the meeting. Figure 3 shows how the resulting meeting page looked after the pattern 
was implemented in CURE. 

One industrial consortium decided to directly adapt the solution that was developed 
and used in the research project by adapting the existing meeting templates. Another 
industrial consortium decided to implement the patterns on the social level. The third 
consortium made use of the advice given in the instant technology solution and tai-
lored their MS SharePoint installation so that meeting preparation was better sup-
ported. All industrial partners reported on perceived efficiency improvements as a 
result of applying the patterns. In summary, this shows that all three implementation 
levels were used by the partners and that it depends on the concrete application con-
text how much technology support is required. 

6   Conclusion 

In this paper, we presented a process model and a knowledge representation for best 
practice sharing in virtual organizations. This process uses EUD techniques for 
adjusting supportive technologies to changing social practice. It makes use of proto-
patterns for capturing and communicating social practice. We showed how practitio-
ners can use proto-patterns to make their tacit knowledge explicit so that it can be 
shared and discussed with other practitioners. This allows other practitioners to inter-
nalize the shared practice and create a common conception of collaborative work.  



184 T. Schümmer and J.M. Haake 

The staged implementation principle applied by our proto-patterns helps to gain a 
new perspective on the design of groupware. Practitioners start with implementing the 
social process, continue with applying EUD techniques such as end-user program-
ming or tailoring of off the shelf components and occasionally decide to create a do-
main-specific integrated groupware solution using participatory design techniques. 
Unlike in other approaches that have a focus either on social aspects of collaboration 
or on the technical implementation of the groupware application, we experienced that 
our approach helps practitioners to gain a good understanding on how the processes 
are mapped to technology. This means that the presented approach may be one further 
step towards bridging the socio-technical gap in CSCW design. 

Although the pattern creation and application led to notable improvements of the 
interaction, we had expected a more extensive discussion of best practices. For now, 
we can only guess that the main reason for this could have been the lack of time. It 
remains to be studied, to what extent improved communication could help the practi-
tioners in agreeing on shared best practices and how to reach such an improvement. 
Besides this, our future work will focus on the collaboration involved in proto-pattern 
creation. We are currently working towards transferring the results to large distributed 
voluntary organizations that make few use of groupware technology and show their 
main interest in creating and sharing social solutions by means of proto-patterns. 

References 

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A 
pattern language. Oxford University Press, New York (1977) 

2. Byrne, J., Brandt, R., Port, O.: The virtual corporation. Business Week 8, 98–102 (1993) 
3. Carroll, J.M., Farooq, U.: Community-based Learning: Design Patterns and Frameworks. 

In: Proceedings of ECSCW 2005, Paris, France, pp. 307–324 (2005) 
4. Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., Shipman, F.: 

Seeding, Evolutionary Growth and Reseeding: The Incremental Development of Collabo-
rative Design Environments. In: Olson, G., Malone, T., Smith, J. (eds.) Coordination The-
ory and Collaboration Technology, pp. 447–472. Lawrence Erlbaum Associates, Mahwah 
(2001) 

5. Gabriel, R.P.: Patterns of Software. Oxford University Press, New York (1996) 
6. Haake, A., Lukosch, S., Schümmer, T.: Wiki-templates: adding structure support to wikis 

on demand. In: Proc. of WikiSym 2005, pp. 41–51. ACM Press, New York (2005) 
7. Hales, K.: Value Creation in a Virtual World, PhD thesis, Bond Univ., Qld, Australia 

(2005) 
8. Harrison, N.B.: The Language of Shepherding. In: Proceedings of PLoP 1999 (1999), 

http://hillside.net/patterns/EuroPLoP2001/shepherding.doc 
9. Herrmann, T., Hoffmann, M., Jahnke, I., Kienle, A., Kunau, G., Loser, K.-U., Menold, N.: 

Concepts for usable patterns of groupware applications. In: Proc. Of GROUP 2003, pp. 
349–358. ACM Press, Sanibel Island (2003) 

10. Johnsen, S., Schümmer, T., Haake, J., Pawlak, A., Jørgensen, H., Sandkuhl, K., Stirna, J., 
Tellioglu, H., Jaccuci, G.: Model-based Adaptive Product and Process Egineering. In: 
Rabe, M., Mihók, P. (eds.) New Technologies for the intelligent Design and Operation of 
Manufacturing Networks, pp. 7–27. Fraunhofer IRb Verlag, Stuttgart (2007) 



 Shaping Collaborative Work with Proto-patterns 185 

11. Johnson-Lenz, P., Johnson-Lenz, T.: Consider the Groupware: Design and Group Process 
Impacts on Communication in the Electronic Medium. In: Hiltz, S., Kerr, E. (eds.) Studies 
of Computer-Mediated Communications Systems: A Synthesis of the Findings, Computer-
ized Conferencing and Communications Center, New Jersey Institute of Technology, 
Newark, New Jersey (1981) 

12. Lieberman, H., Paternó, F., Klann, M., Wulf, V.: End-User Development: an Emerging 
Paradigm. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End-User Development, pp. 9–
16. Springer, Berlin (2006) 

13. Lyons, K.: Using Patterns to Capture Tacit Knowledge and Enhance Knowledge Transfer 
in Virtual Teams. In: Malhotra, Y. (ed.) Knowledge Management and Virtual Organiza-
tions. Idea Group Publishing (2000) 

14. Leuf, B., Cunningham, W.: The Wiki Way. Addison-Wesley, Reading (2001) 
15. Manns, M.L., Rising, L.: Fearless Change: Patterns for Introducing New Ideas. Addison-

Wesley, Reading (2005) 
16. Martin, D., Rodden, T., Rouncefield, M., Sommerville, I., Viller, S.: Finding Patterns in 

the Fieldwork. In: Proc. of ECSCW 2001, pp. 39–58. Kluwer, Germany (2001) 
17. May, D., Taylor, P.: Knowledge management with patterns. Commun. ACM 46(7), 94–99 

(2003) 
18. Oberquelle, H.: Situationsbedingte und benutzerorientierte Anpaßbarkeit von Groupware. 

In: Hartmann, A., Herrmann, T., Rohde, M., Wulf, V. (eds.) Menschengerechte Group-
ware - Software-ergonomische Gestaltung und partizipative Umsetzung, Teubner, Stutt-
gart, pp. 31–50 (1994) 

19. Pipek, V., Kahler, H.: Supporting Collaborative Tailoring. In: Lieberman, H., Paterno, F., 
Wulf, V. (eds.) End-User Development, pp. 315–345. Springer, Berlin (2006) 

20. Prange, C.: Organizational Learning – Desperately Seeking Theory? In: Easterby-Smith, 
M., Burgoyne, J., Araujo, L. (eds.) Organizational Learning and the Learning Organiza-
tion, pp. 23–43. SAGE Publications, Thousand Oaks (1999) 

21. Nonaka, I., Takeuchi, H.: The knowledge creation company. Oxfort University Press, New 
York (1995) 

22. Schön, D.: The Reflective Practitioner: How Professionals Think in Action. Basic Books, 
New York (1983) 

23. Schümmer, T.: A Pattern Approach for End-User Centered Groupware Development. 
Josef Eul Verlag, Lohmar – Köln, Gemany (2005) 

24. Schümmer, T., Lukosch, S.: Patterns for Computer-Mediated Interaction. John Wiley & 
Sons, Chichester (2007) 

25. Schümmer, T., Tandler, P.: Patterns for Technology Enhanced Meetings. In: Proceedings 
of EuroPLoP 2007, Konstanz, Germany, pp. 97–120 (2008) 

26. Schuler, Douglas: Liberating Voices: A Pattern Language for Communication Revolution. 
MIT Press (2008) 

27. Wulf, V., Krings, M., Stiemerling, O., Iacucci, G., Fuchs-Fronhofen, P., Hinrichs, J., 
Maidhof, M., Nett, B., Peters, R.: Improving Inter-Organizational Processes with Inte-
grated Organization and Technology Development. Journal of Universal Computer Sci-
ence 5(6), 339–365 (1999) 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 186–204, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Web Design Patterns: Investigating User Goals 
 and Browsing Strategies 

Paloma Díaz1, Mary Beth Rosson2, Ignacio Aedo1, and John. M. Carroll2 

1 DEI Lab. Universidad Carlos III de Madrid Spain 
2 Information Science and Technology College, Pennsylvania State University USA 

paloma.diaz@uc3m.es, ignacio.aedo@uc3m.es,  

Abstract. Design patterns document in a systematic way design solutions to re-
current problems and they are expressed using non-technical terms, so that a 
wider audience can understand them. Thus they could be useful tools to im-
prove communication in interdisciplinary teams and to integrate end-users in 
participatory design processes. However, the difficulties of using patterns go 
beyond the lexicon used in the patterns description. The individuals who might 
use the patterns may be following different strategies when browsing a collec-
tion of patterns, strategies that are determined by their goal at a specific point 
during the development process. Moreover, the strategy they follow can have 
some influence in the quality of the proposed solution. In this paper we describe 
an empirical study that has been performed to answer some of these questions. 
In the study we gathered information on browsing strategies and user goals 
when using a patterns catalogue to design a web system. We also analyzed the 
relation among the goal and the strategy as well as their impact in the quality of 
the use of the patterns. This investigation is part of a larger project intended to 
design patterns catalogues that take into account the goals and expectations of 
their end-users, who are not necessarily experts either on web design or on 
design patterns. 

Keywords: web design patterns, design, end-user development.  

1   Introduction 

The design of large-scale web information systems is a complex and multifaceted task 
that must consider issues such as information structure, navigation options, the design 
of the user interface and interaction mechanisms, personalization, and security assur-
ance [1, 2]. One consequence is that inter-disciplinary web development teams, made 
up of members with complementary abilities and knowledge, are often preferred to 
generalist software engineers, because they provide greater depth and breadth of 
knowledge [3]. In the web domain, such teams typically integrate specialists in web 
design and programming, information architecture, HCI and security. Further, to en-
sure that the final system is both usable and useful, end users or other problem domain 
stakeholders are often asked to contribute to design decisions through a user-centered 
or a participatory design process when they are integrated as first-class designers who 
can take active part in the design decisions and not just as evaluators of prototypes. 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 187 

Unfortunately, inter-disciplinary teams are not always as efficient as one would 
hope. Communication difficulties that can affect the quality of the final product [4], 
may worsen in the case of web development, where there are often particularly onerous 
time pressures on the schedule. Researchers such as Jan Borchers have suggested that 
design patterns might be used to improve communication in inter-disciplinary teams; 
such patterns document established solutions to recurrent problems using a language 
characterized by its cross-discipline readability [5]. The work reported here is part of a 
larger effort investigating the usefulness of web design patterns in the context of inter-
disciplinary development teams that include end-users as first-class designers.  

In addition to improving communication among team members with differing ex-
pertise, design patterns may be of particular benefit to end-users and other nonpro-
grammers who wish to contribute to the development of a web system, because they 
may help to address the technical challenges of the web development process [6].  We 
are exploring this possibility within a pattern-driven framework for web development, 
where users select and compose design patterns to specify a system, rather than learn-
ing and using complex programming techniques [7, see also 8]. We propose that a 
pattern language integrates patterns from different design disciplines (including web 
design patterns [10, 11, 12, 13] and interaction design patterns [14]), may be useful to 
inter-disciplinary designers and end-users — but only if these individuals can navi-
gate the patterns to find solutions to their problems and fulfill their requirements. For 
example, problems of different types that are correlated in the real world (for exam-
ple, a dynamic navigation interface that violates security guidelines) should also be 
correlated in the pattern language. In this way we will help designers to consider dif-
ferent but inter-related knowledge when dealing with a problem; failure to do so is 
one of the most common errors in inter-disciplinary development [4]. 

Even if we succeed in creating a cross-disciplinary pattern language of this sort, we 
must also consider how users with varying background will explore and apply these 
patterns. To ensure that our pattern-based framework will be useful for teams that 
include diverse users, we must first understand how such individuals approach design 
problems, so that we can provide them with the representation(s) that helps them to 
efficiently locate and apply the patterns they need.  

In this paper, we report a preliminary empirical study of pattern-based web design 
that we conducted to explore the browsing strategies that non-experts use when trying 
to apply patterns to web information system design. Our goal was to understand the 
implications that such browsing strategies have for a design tool that supports pattern 
exploration. We describe the results of the study in terms of how browsing strategies 
were related to users’ goals in design problem-solving. We also consider how the 
different browsing strategies impacted users’ effectiveness in using the patterns.   

The remaining of the paper is organized as follows. Section 2 reviews related 
work. Section 3 describes the patterns collection used in the study, and Section 4 
reports the study. Conclusions and further work are summarized in Section 5. 

2   Related Work 

Design patterns document in a systematic way the successful solutions to recurrent 
problems. They achieve this purpose through an organization that includes sections 



188 P. Díaz et al. 

with information about the pattern’s utility, its limitations and how to apply it. For 
example, the Alexandrian or canonical format includes the sections such as the Name; 
the Problem; the Context; the Forces; the Solution and Example; the Resulting Con-
text; a Rationale; the Know Uses and the Related Patterns.  

A comprehensive information resource like a pattern can be used for very different 
purposes. For instance, in the conclusions of the CHI '97 Workshop on Pattern Lan-
guages, Bayle et al [15] summarized five different uses for design patterns that had 
been suggested by workshop participants: Capture and Description, when patterns are 
used as a mechanism to record features of a design entity, whether static or dynamic, 
in a specific context; Generalization, when patterns are used to generalize properties 
across places and situations; Prescription, when patterns are used as a way to deter-
mine the right solution to a specific problem; Rhetoric, when they are used as a kind 
of lingua franca to talk about design in an easy and understandable way and Predic-
tion, when patterns are used to analyze the impact of a specific design decision.  

These different possible uses of patterns suggest they may contribute to different 
points in the software development lifecycle, and not only for design generation as is 
commonly believed. For example, during the analysis process, design patterns may be 
used to identify features or requirements of the system as they capture and describe 
problems and solutions and generalize aspects. During design, solutions described by 
patterns can be applied and even they can be used as a communication tool between 
designers given their rhetorical value. Moreover, if we have competing designs, the 
predictability can be used to select the most appropriate one [14]. Finally, patterns can 
also be used to evaluate a system’s quality according to their prescriptive value. Fo-
cusing just on the design process, the empirical study reported in [16] enumerates four 
different activities that may be supported by patterns during design: discovery, when 
designers browse the collection to identify those patterns that could be useful; ideas 
generation, when designers look for patterns fulfilling a specific high-level goal; issue 
clarification, when they look for a specific solution to a fully specified problem; and 
re-reference, when they look back to the collection just to reference something they 
saw before.  

A central problem in practical use of patterns is the identification of a candidate 
pattern. Problems arise because of the typical ways in which patterns are organized 
and presented in current tools [17], especially once we consider that users may be 
operating within different use contexts or pursuing different purposes when using the 
patterns. Design patterns are normally found in text-based or web-based catalogues 
that emphasize browsing or searching the collection with pre-defined criteria, usually 
a design concern. For example, the ACM-SIGWEB Hypermedia Design Patterns web 
repository [18] offers two exploration options: an alphabetically ordered list of pat-
terns, including the name and creation date for each item; and three broad categories 
of patterns (Interface/Layout; Structure/Navigation or Content oriented). 

Patterns may also be integrated within a cohesive pattern language that makes ex-
plicit the relationships amongst patterns (typically composition and association). In 
this case, exploration tools can include links enabling users to move from one pattern 
to other related patterns. For example, HyperPatterns [19], a language of web design 
patterns, supports navigation via web design concerns (navigation, structure, presenta-
tion, interaction, personalization and security) as well as browsing via hyperlinks 
embedded in the pattern description. However both of these navigation options may 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 189 

create difficulties for non-experts because they require knowledge of  either design 
patterns (to identify a pattern by name) or web design (to identify the design issue that 
might be related to a potentially useful pattern). Moreover, once selected a pattern is 
presented in a comprehensive and sequential fashion – including all its sections – that 
may make the content difficult to read and understand.  

A richer approach to pattern exploration is described in [20]; here each pattern is 
rewritten as a forces hierarchy that shows the benefits and trade-offs for each pattern 
individually, so designers can understand the consequences of applying a specific 
pattern. However, in this approach the relation between patterns, which makes up the 
core of the pattern language, is lost. As another alternative, we have described a visual 
tool that would enable pattern browsing by design goals extracted from the problem 
section of patterns [7]. We have re-written the HyperPatterns language using soft-goal 
graphs [21]. Users are first presented a number of web design goals (like “Guide the 
user through the information space” or “Ensure system security”); these are organized 
in a hierarchy of soft-goal graphs that consider the relationships in the pattern lan-
guage. Both positive relationships (goals that contribute to reach another goal) and 
negative relationships (goals that can make it difficult or prevent for meeting another 
goal) are highlighted in the graph. Users can interactively browse this goal space and 
see the patterns that support each goal.  

Even though a visual goal-based approach such as this might be more efficient for 
non-experts than textual-based descriptions, it does not consider the requirement that 
pattern browsing and application is likely to occur with different purposes by different 
individuals, and at different points of development. If the patterns have different uses, 
their users - whether experts, casual designers or end-users – are likely to be pursuing 
different goals when identifying and applying the patterns. These variations in pur-
poses may in turn imply the need for supporting different browsing strategies.  

The work reported in this paper elaborates this general idea. We seek to analyze 
the browsing strategy used by the designer as a function of her goal, and to analyze 
the relation between strategy and goal, and between strategy and the effectiveness of 
pattern use of. In contrast to other work, we are not interested in measuring the quality 
of the designs produced through application of a patterns catalogue or language. Our 
goal instead is to study the goals and strategies of users and how well they understand 
the pattern when they apply a specific strategy or try to meet a goal, so that we can 
identify flaws that might guide design of patterns exploration tools that can make 
users more efficient in their use of patterns. Such exploration tools could be integrated 
into development frameworks, like the one described in [22], which make it possible 
to generate conceptual designs and prototypes from a list of selected patterns. In this 
way, end user development would be completely supported using the patterns as the 
main interface.   

3   HyperPatterns: A Language of Web Design Patterns  

In order to study the strategies users apply to their search for patterns and the goals 
that drive these explorations, we need a collection of patterns that can be explored by 
users. Because one of our goals is to provide tools dealing with different web design 
perspectives, including information structure, navigation tools, presentation and  



190 P. Díaz et al. 

interaction mechanisms, security and personalization, we selected an existing patterns 
language called HyperPatterns [19]. This language is a compilation of patterns be-
longing to several existing pattern languages. Moreover, all the patterns include some 
kind of design rationale, so designers will have additional resources for deciding 
whether or not to apply each pattern. However, HyperPatterns has some usability and 
readability problems. First, the patterns description is often too long. Taking into 
account the time pressure on most web site development projects, it is not realistic to 
expect designers to devote significant time reading and understanding the patterns, 
especially if we consider that patterns do not provide a cut-and-paste solution but 
rather solution guidelines that are only more or less precise, depending on the pat-
tern’s level of abstraction. Secondly, the solution proposed by the patterns is often 
rather abstract and verbose, with no additional examples or illustrations, so that users 
might find it difficult to understand quickly as required in a domain like web 
development.  

As a result of these issues, we have created a new version of HyperPatterns, avail-
able in [23] where the essence of the pattern language was maintained. Here, each 
pattern description includes nine sections (see figure 1): the identifier, name as well as 
the reference to the original pattern (see first line in the figure); the context, that de-
scribes the situation leading to the application of the pattern (see second line in the 
figure); the intent, that describes in a very short sentence the problem addressed by 
the pattern (see the centered bold line in the figure); the solution that consists of an 
image and a description of the proposed solution (see description and figure below the 
solution); the discussion that analyzes the implications of applying the pattern; related 
patterns that links to some related patterns; and references that links to the original 
source of the pattern as well as other sources used to improve the original pattern. 
Most patterns are slightly modified to shorten the description of the problem in order 
to make them more readable; some also include new sections like images of applica-
tion examples, in order to improve their comprehensibility. Moreover, the different 
sections of the pattern have been reordered and formatted to improve readability. For 
example, each problem has been described using the shortest and clearest sentence 
possible, with a placement that is centered and bold at the beginning of the pattern to 
give it a strong emphasis, so that users can quickly determine if the pattern is poten-
tially useful for them depending on whether it deals or not with a problem they are 
concerned with. We also considered important to put the reference to the original 
source as soon as possible to use authority as a criteria to promote the confidence in 
the pattern quality. 

Recall that we selected HyperPatterns as a focus for investigation because it con-
tains patterns that consider six different design views.  This gives us the flexibility to 
consider different kinds of web design problems. Moreover, patterns deal with prob-
lems at different levels of abstraction so we have patterns that could be useful for 
different kinds of users. For example, the pattern [HI1] Interaction describes at a very 
high level how to deal with interaction design as a global task, acting as a kind of 
integrator for the rest of the patterns dealing with this design perspective; the pattern 
[MI1] Information on Demand is a medium level pattern that provides several guide-
lines to let the user control the amount of information she wants to receive. [LI1] 
Action Buttons is a low-level pattern that describes the user interface technique of 
links that may be used to evoke actions.  



 Web Design Patterns: Investigating User Goals and Browsing Strategies 191 

 

Fig. 1. One of the design patterns in the new version of HyperPatterns used in the study 

4    Analysing User Goals and Browsing Strategies 

To study users’ design goals as well as their browsing strategies we conducted a pre-
liminary empirical investigation of casual developers as they attempted to find and 
apply patterns to a web design problem. This was an exploratory study, in that our 
focus was on participant observation as they worked on problems, so that we could 
answer questions like which and how many strategies they appied, and what goals 
they were pursuing as they progressed through the activity. There were no predefined 
categories for goals or strategies — the goal of this initial study was precisely to dis-
cover what such categories might be. In this section we first describe the study set-up 



192 P. Díaz et al. 

and procedures. We follow this with an analysis of results, and finish with implica-
tions for design tools that support user-centered exploration of design patterns. 

4.1   Methods 

Goal. The goal of the empirical study was to study the strategies users follow when 
browsing a design patterns collection to design a web site. We were interested in 
finding out how the users access and read patterns and with what purposes, in order to 
devise useful browsing tools. 

Participants. We recruited volunteers from two classes of students currently taking 
an HCI course offered within the College of Information Sciences and Technology 
College at Penn State University. These students were not experts in either web pro-
gramming techniques or design patterns. 21 students volunteered for the study; 3 were 
women. They were organized into 10 pairs plus one single student. Five pairs had 
never worked together, two occasionally (once or twice), and three of them very often 
(several times or quite often according to them). In general, we can describe partici-
pants as casual developers without an extensive history in cooperating together. 

Procedure. Working in pairs, the participants were given the task to design a per-
sonal information organizer. The task description is included in Annex I. They re-
ceived a high-level description of this task (i.e., with no details as to what should be 
included or how it should work), as well as a printed book containing a set of Hyper-
Patterns patterns. The book contained the printed version of the patterns listed in 
Table 1. The book started with an Index where patterns were organized by design 
concern, followed by the patterns whose format was shown previously in Figure 1. 

Table 1.  Index of the design patterns used in the study  

Design view Pattern (ID + Name) 
Interaction [MI1] Information on Demand based on [10] 

[MI2] Process Feed-back based on [10] 
[LI1]Action Buttons based on [14] 

Navigation [MN1] Index Navigation based on [11] 
[MN2] Guided Tour Navigation based on [11] 
[MN3] Navigational Context based on [10] 
[LN1] Location Bread Crumbs based on [14] 
[LN2] Site Map based on [13] 
[LN3] Search Action Module based on [14] 
[LN4] One Jump Home based on [24] 

Presentation [MP1] Information-Interaction Decoupling based on [12] 
[MP2] Information-Interaction Coupling based on [12] 
[MP3] Behavioral Grouping based on [10] 
[MP4] Define and Run Presentation based on [25] 
[MP5] Synchronize Channels based on [25] 
[LP1] Navigation Bar based on [14] 
[LP2] Footer Bar based on [13] 

Structure [ME1] Hierarchical Organization based on [14] 
[ME2] Task-based Organization based on [14] 
[LE1] Collection Center based on [11] 
[LE2] Node as a Single Unit based on [10] 
[LE3] Home Page based on [14] 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 193 

Participants were given 45 minutes to generate a high-level design. Their deliver-
ables were a paper and pencil sketch of the interface and a narrative description of 
how it worked. They were asked to browse the patterns catalogue as they developed 
their design and to annotate their sketch to show which pattern(s) they had applied. 
Once the design was completed the participants completed individual surveys that 
posed questions about the way they had used the catalogue. Finally, the participants 
responded to semi-structured interview questions, so that we could clarify and vali-
date both the design and their answers to the survey questions. During the interview 
we also probed more deeply how they thought of patterns as a communication tool 
between designers, to analyze the rhetorical use of patterns as a lingua franca, as well 
as their expectations about the role of patterns in designing a more complex and un-
familiar web site. This final question was aimed at understanding what aspects of our 
findings might be tied to the particular design problem assigned, as well as to gather 
information about how the results could be applied in a different setting.  

Recording mechanisms and data gathered. As mentioned earlier, we had three 
main sources of data: the designs; the questionnaires and the interviews. Designs were 
pen and pencil drawings of the interface, and included marks showing where and 
which patterns has been used (see an example in figure 2).  

 

Fig. 2. A design with patterns marked where used 

The questionnaire (see the questions in the figure 3) included five open-ended 
questions about the use of the patterns, and a few more specific questions about the 
participants’ background. The semi-structured interview began by asking evaluators 
to describe their design. Then we followed an informal script to ask about four main 
issues: the criteria they used to decide whether the pattern was useful or not; the sec-
tions of the pattern they found more useful; the use of the pattern as a communication 
tool between them; and their intention to use these patterns to design a completely 
new and unfamiliar web site. We introduced this last question after the first three 
sessions and interviews, when we realized that most participants said that the web site 



194 P. Díaz et al. 

assigned as a design problem for the study was so familiar to them as web users that 
they would have used probably the same patterns even without realizing they were 
doing it. Overall, we collected 11 designs and interviews and 21 completed surveys. 

Data were gathered from the sources summarized in Table 2. We had no 
pre-established categories for user goals or strategies because this project was an 
exploratory study where we were observing users to understand their behaviour; in 
such settings a predefined set of categories would have biased the results. Concerning 
the “Quality in the design of the patterns, for each of the patterns in the catalogue we 
assigned a value according to its suitability to the design problem being faced. We 
used 4 values: 0 if pattern should not be applied; 0.25 if its use is slightly recom-
mended (it is not necessary but it could be used if the system is complex enough); 0.5 
if it is strongly recommended and 1 if it is considered mandatory. 

Table 2. Data gathered in the empirical study 

Goal Data source 
User goals  Questionnaire: questions 1, 2 and 3 

Additional information from interviews 
Browsing strategy Questionnaire: questions 1 and 2 

Additional information from interviews 
Most/less useful 
parts of the pattern 

Questionnaire: questions 2, 4 and 5 
Additional information from interviews 

Quality in the use of 
the patterns 

Designs 

Patterns as a com-
munication tool 

Interviews 

Using patterns in 
unfamiliar contexts 

Interviews 

4.2   Results 

In this section we summarize the main results of our empirical study, organized ac-
cording to the data we gathered for the issues in Table 2. 

4.2.1   User Goals  
To identify the different user goals our evaluators had, we analyzed the answers col-
lected from questions 1, 2 and 3 (see Fig. 3), complemented by additional information 
provided in the interviews. We have identified three categories of goals: 

1. Adhering to design goals: some evaluators established in the first place a num-
ber of goals, usually through brainstorming, or they worked having in mind the 
general goal of improving usability and easiness of use and design. 

2. Recreating similar systems: some evaluators have had previous experience 
with this kind of web systems and they just tried to include the same services 
and structures they are used to. 

3. Looking for ideas: some evaluators just went through the catalogue to identify 
design solutions that could be useful, with no preconceived idea or goal. 

 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 195 

 

Fig. 3. Questions included in the post-task individual questionnaire  

According to the data collected, the most common goal was “Adhering to design 
goals” (16 participants), followed by “Recreating similar systems” (12 participants) 
and, finally, “Looking for ideas” (4 participants). As can be seen by these tallies, 
some users described two different strategies, a non-surprising result considering that 
the phrasing of question 1 raised this as a possibility. In particular, 8 participants said 
they were pursuing both goals 1 and 2 at different moments. According to one team 
during their interview: 

“We used the categories at the beginning, in the index of the book, to 
go through the patterns. We used the category to decide if the pattern 
could be relevant for our goals. We also used our personal experience 
in this kind of systems. We were trying to combine ideas from social 
networks and organizers.”  

4.2.2   Browsing Strategies by User Goals 
From participants’ answers to questions 1, 2 and 3 and the interviews we extracted the 
strategies that users applied for browsing the patterns. In this case we have identified 
4 different strategies: 



196 P. Díaz et al. 

1. Skim information: some participants were looking for information to decide 
whether to apply a pattern or not (e.g., the title, the problem, the solution, the 
example).  

2. Flip through pages looking for images: some participants used visual informa-
tion (examples of use and image of the solution). 

3. Read one-by-one: some participants went through all the patterns as a first strat-
egy to identify candidates and look for ideas 

4. Use of category index: some participants went to the index as a first strategy to 
identify potential patterns matching their concerns 

In Figures 4, 5 and 6 we have graphed participants’ reported strategies according to 
the three types of goals they had reported (see previous subsection). 

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Skim through
information

Flip through pages Read one-by-one Use of category index

Adhering to design goals

Pa
rt

ic
ip

an
ts

 a
p
p
ly

in
g
 t

h
e
 s

tr
at

e
g
y

 
Fig. 4. Browsing strategies for the “Adhering to design goals” user goal 

0
1
2
3
4
5
6
7
8
9

10

Skim through
information

Flip through pages Read one-by-one Use of category index

Recreating similar systems

P
a
rt

ic
ip

a
n
ts

 a
p
p
ly

in
g
 t

h
e 

st
ra

te
g
y

 

Fig. 5. Browsing strategies for the “Recreating similar systems” user goal 
 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 197 

0
1
2
3
4
5

Skim through
information

Flip through pages Read one-by-one Use of category
index

Looking for ideas

P
a
rt

ic
ip

a
n
ts

 a
p
p
ly

in
g
 t

h
e 

st
ra

te
g
y

 
Fig. 6. Browsing strategies for the “Looking for ideas” user goal 

As these graphs convey, “Skim through information” (i.e., browsing descriptive 
sections like the problem or solution section of a pattern) is most common as a strat-
egy when the participants were trying to work with specific design principles, as well 
as when they were looking for ideas. In contrast, when they had a clear idea about 
what they wanted, mainly because they were frequent users of this kind of web sys-
tems, the preferred strategy was “Flip through pages”; that is, they have an image of 
the interface they wanted to create based on previous experience with similar systems, 
and are presumably looking for some example image that could match what they have 
in mind. “Read one-by-one” is rarely used and only when participants were attempt-
ing to recreate some other system. “Use of category index” was used less frequently 
across all types of goals.  

4.2.3   Most- and Least-Used Sections of Patterns 
In order to generate ideas about how to organize or highlight the information con-
tained in each pattern, we included a specific question about the sections of each pat-
tern that were considered most relevant. In general, participants reported that the 
name of the pattern, the problem description and the images were most useful. The 
following are some specific comments concerning this issue: 

- When paging we were looking for the bold titles (problem section) 
and pictures (Example and Solution sections) to make sure we have 
included such things. Quickly find patterns to apply. 
- Pictures help to draw your attention 
- Examples and figures were really useful. 

Notably, the “Related Patterns” section was not reported as useful by any of the 
evaluators. Even though such information is usually considered to be fundamental to 
the pattern language, because it makes it possible to navigate through related patterns, 
it seems that the enumeration of related patterns, even when the relationship is ex-
plained, was not very useful in this task context. It seems that other ways to deal with 
issues involving related patterns are needed. Perhaps techniques that are more visually 
engaging like graphs [7], or more proactive like pop-up windows that draw the atten-
tion of the user, will be effective in promoting discovery of related patterns. 

As a caveat, the results we report about these users’ attention to different aspects of 
the pattern information might have been influenced by the limited amount of time 
they had to create their designs. However even if so, we expect that real-world web 
development projects often take place under similar time pressures. 



198 P. Díaz et al. 

4.2.4   Quality in the Use of the Patterns 
As mentioned earlier, we had no interest in evaluating the quality of the patterns in 
HyperPatterns, but rather wanted to know if users’ browsing strategy might affect 
how they perceived and understood the patterns. With this goal in mind we analyzed 
the sketched designs and the patterns that had been explicitly marked on them. In the 
course of doing this, we discovered that some of the designs reflected patterns that 
had not been recognized or explicitly identified (as one of our evaluators said “Since 
they (patterns) are so familiar I can presume I would use them even without being 
aware of”). However because the pairs were asked to mark the patterns they used, we 
only considered the marks like those in Figure 2 to analyze their use of the patterns.  

The results are summarized in figure 7. Generally the most commonly used pat-
terns were those that are relatively intuitive and concrete, a result that has also been 
obtained in similar studies [17, 28]. A counterexample is the most used pattern [MI2, 
Process Feedback], a medium level pattern that was used by all the teams. In this 
case, the example image accompanying the pattern was particularly clear, perhaps 
making it was very easy to understand. Looking across the patterns, we see that inter-
action patterns were most effectively used; it may be that interaction schemes are 
quite easy to understand while the other categories deal with more abstract concepts 
like navigational context or information decoupling. For example, two patterns that 
were relevant but were not mentioned in any design were MN1 and LE2. MN1 (“In-
dex Navigation”) concerns organizing a collection of items. Because it is about 
organization and the example in the printed catalogue is a complex hierarchy with 
several levels, participants might have thought it was not needed and would compli-
cate unnecessarily the interface. Concerning LE2 (“Node as a single unit”), this is an 
example of rather abstract concept that everybody uses but few are aware of as an 
explicit guideline.  

With respect to design goals, it is worth noting that the only incorrect application 
of a pattern (misuse of the pattern MN2 “Guided tour”) occurred in two groups that 
were using the “Flip through the pages” strategy. In these cases they did not read the 
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
MI1 MI2 LI

1
M
N1

M
N2

M
N3 LN

1
LN

2
LN

3
LN

4
MP1 MP2 MP3 MP4 MP5 LP

1
LP

2
ME1 ME2 LE

1
LE

2
LE

3

Not applied
Applied incorrectly
Applied

 

Fig. 7. Data about the quality of the use of the patterns; for pattern names see in Table 1 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 199 

pattern, but rather just looked at images and examples and got the wrong idea about 
the solution proposed. For this pattern (intended to demonstrate how web navigation 
can be designed as a guided tour), one of the groups said: 

“We began with an idea we had and combined the idea with the layout 
on page 18”… The combination of tabs and buttons was most useful, 
however we altered the buttons to links….” 

This comment reveals that when they were analyzing their design they adapted the 
interface layout of the example provided, but without realizing that the solution being 
exemplified (see Figure 1) was not the layout but rather the buttons that enable navi-
gation between the items in the guided tour. 

4.2.5   Patterns as a Communication Tool 
We included a question in the interview to assess whether patterns could be used with 
a rhetorical purpose by end users or casual developers. Even though our results may 
be biased by the fact that the participants had been exposed to the patterns only during 
a 45 minutes work session, it is common among patterns developers to claim that 
patterns use an intuitive vocabulary that can be understood by casual designers and 
end users without problems.  

Our results show that users found the idea behind the pattern more intuitive than 
the name of the pattern itself; only three participants mentioned the name. Some of 
the comments we recorded in the interview suggest some possible causes of this 
rather modest acceptance of pattern names: 

Answering to the question, Did you use the names of the patterns as a 
communication tool between both of you? 
- Yes, not using the entire name in some cases cause names are too 
long but the idea of the pattern 
- Yes both the code and the idea behind the pattern. We moved from 
familiar concepts (like collapsable) to the patterns code (MI1) when 
documenting the system 

Also we realized that participants who had a predefined concept for their web design 
based on experience with similar web systems, said they used the pattern as a way to 
acquire some “vocabulary”. One way to understand this comment is that learning a 
pattern’s name became a goal for them as it made them feel more technically sound. 

4.2.6   Using Patterns in Unfamiliar Contexts 
Considering that the design problem used for the study was familiar enough that may 
participants chose to adapt the design of similar systems, we included a question in 
the interview to get their opinion about using this patterns catalogue in a much less 
familiar context - a military intranet. In this case, all of the groups agreed they would 
want to use the patterns. Because this was an open-ended question we include some of 
the most revealing comments we gathered: 

- Even if it is something really new you always can pick up some ideas 
from patterns 
- If you come from the web design area, probably you would need to 
read carefully the requirements and try to address them before apply-
ing patterns 



200 P. Díaz et al. 

- It would have been definitely harder (to use them to design an unfa-
miliar site) but it would have been easier to come up with something 
completely new since you need to decide what the system has to do 
first 
- They help because once you have the requirements list they could 
help you to figure out solutions, they can be applied to meet the re-
quirements, to pick up ideas and how they can be applied. Examples 
and figures were really useful. 

4.3   Preliminary Conclusions of the Study 

Even though we are aware that further empirical work is required to draw strong con-
clusions about strategies and to envision the right tool for each strategy, we did collect 
a number of interesting findings in this first exploratory study. We summarize them 
below, illustrating each with comments of individual participants.  

 
Since they (patterns) are so familiar I can presume I would use them even with-

out being aware of it.  
This is perhaps the main weakness of patterns. The patterns that are most used are 

those that reflect practices that are so evident and broadly spread that would have 
been used without even thinking about them in an explicit fashion. Good designers 
are good designers, with or without patterns. Patterns are supposed to be oriented 
towards those who have little or no experience in design, or to communicate complex 
ideas to expert designers. However, our study is consistent with other studies [17, 28] 
in demonstrating that designers prefer only very concrete and visual patterns, espe-
cially those with clear images illustrating the solution. In fact one participant reported 
that “Originally tried reading text but it was confusing and time-consuming”. Note 
that participants had 45 minutes to produce the design applying patterns they had not 
been exposed to in advance. 

So, what is the use of abstract patterns and their narrative sections if designers do 
not look at them except perhaps on occasion? In some sense their use is obvious; they 
provide design rationale for reuse of design knowledge. Looking only at images can 
lead designers to misconceptions, as happened with two of our groups that relied on 
the images and thought they had used a pattern but had not.  Informative sections like 
the problem, the consequences or the context might help users to understand the pat-
tern and how and why to apply it. Our primary challenge might be in the way we are 
deploying patterns - i.e., as extensive narratives that must be read by designers who 
have no time for reading. Maybe we should consider more efficient ways to organize 
and present information. We should go further in analyzing which are the needs of 
designers in terms of information and representation. We should explore alternative 
visualization tools that go beyond the plain representation of the full text pattern, 
including graphs like in [7, 20] that make possible to visualize the problem space with 
contributions and trade-offs or applying adaptation techniques for presentation and 
navigation purposes, reusing knowledge from the hypermedia community [27]. 

In the beginning I quickly scanned the entire catalogue and took some mental 
notes of things I saw. I then used the index on the first two pages to quickly locate 
what I was looking for. 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 201 

It was clear that participants used different browsing strategies to look for the pat-
terns they needed depending on the stage of the design they were and on their goal. 
Some started by selecting patterns by its name and then reading them thoroughly to 
check if they were suitable. Some did just the opposite, scanned the catalogue picking 
up ideas using mainly the bold title and the images. Others just were flipping pages to 
see images that reinforced the idea they had about the interface or that suggested new 
ideas to incorporate.  

These findings suggest not only that we should support different access strategies 
to the patterns but that strategies are likely to vary for the same designer over time. In 
any case further empirical research is required to provide valid guidelines about the 
design of exploration tools.  

If you come from the web design area, probably you would need to read carefully 
the requirements and try to address them before applying patterns 

This is an idea repeated by several participants in the study; it points to the close tie 
between patterns and requirements, already studied by different researchers. Because 
patterns address recurrent problems in a specific domain, the space defined by the 
Problem section of patterns can be directly linked with the system requirements, 
whether to trace requirements [28], to identify requirements [14] or to generate de-
signs from requirements, whether automatically [22] or not [29]. 

As another participant mentioned, “Once you have the requirements list they (pat-
terns) could help you to figure out solutions, they can be applied to meet the require-
ments, to pick up ideas and how they can be applied”.  

5   Conclusions and Further Work 

In this paper we have described a study of non-expert users attempting to apply de-
sign patterns to a simple web design task. Our results suggest that users apply differ-
ent strategies to browse pattern depending on their goal and previous experience as 
user of the kind of system being developed. Exploration tools could be improved to 
support such strategies and assist users in applying all the patterns their design needs, 
not only those that are so evident that are applied unintentionally but those who are 
more complex and abstract. Moreover, patterns must be presented in a way that is 
useful and usable by end users and casual designers, not only to expert designers who 
are much less likely to need them for assistance. Consequently, further work on the 
design of the exploration tools is required to map the content and representation of 
design patterns to their less expert users, who do not have experience either with de-
sign tasks or design patterns. In this sense, the investigation we have reported is a first 
step in this challenge. We need to carry out more studies of with different kinds of 
users and with different exploration tools, to define a set of useful guidelines to im-
prove the reuse of the design knowledge underlying the patterns by supporting effi-
cient browsing strategies.  

Acknowledgments 

This work is funded by the Spanish Ministry of Science and Innovation through the 
grant MEC PRY2007-0267 and the MODUWEB project (TIN2006-09678). 



202 P. Díaz et al. 

References 

1. Lowe, D., Hall, W.: Hypermedia and the Web: an engineering approach. John Wiley and 
Sons, Chichester (1999) 

2. Díaz, P., Montero, S., Aedo, I.: Modelling hypermedia and web applications: the Ariadne 
development method. Information Systems 30(8), 649–673 (2005) 

3. Rideout, T.B., Uyeda, K.M., Williams, E.L.: Evolving the software usability engineering 
process at Hewlett-Packard. In: IEEE International Conference on Systems, Man and Cy-
bernetics, vol. 1, pp. 229–234 (1989) 

4. Safoutin, M.J., Thurston, D.J.: A communications-based technique for interdisciplinary 
design team management. IEEE Transactions on Engineering Management 40(4), 360–372 
(1993) 

5. Borchers, J.: Interdisciplinary Design Patterns. In: INTERACT 1999 7th International 
Conference on Human-Computer Interaction, Edinburgh, UK, August 1999. Position Pa-
per, Workshop on Usability Pattern Language (1999) 

6. Rode, J., Rosson, M.B., Perez, M.: End user development of web applications. In: Lieber-
man, H., Paterno, F., Wulf, V. (eds.) End-User Development. Springer, Heidelberg (2006) 

7. Díaz, P., Aedo, I., Rosson, M.B.: Visual representation of web design patterns for end-
users. In: AVI 2008, pp. 408–411 (2008) 

8. Radeke, F., Forbrig, P., Seffah, A., Sinning, D.: PIM Tool: Support for Pattern-Driven and 
Model-Based UI Development. In: Coninx, K., Luyten, K., Schneider, K.A. (eds.) TA-
MODIA 2006. LNCS, vol. 4385, pp. 82–96. Springer, Heidelberg (2007) 

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley Professional, Reading (1995) 

10. Garrido, A., Rossi, G., Schwabe, D.: Patterns systems for hypermedia. In: Proceedings of 
The 3rd Pattern Language of Programming Conference (1997) 

11. Garzotto, F., Paolini, P., Bolchini, D., Valenti, S.: Modeling-by- Patterns of web applica-
tions. In: Advances in Conceptual Modeling: ER 1999 Workshops on Evolution and 
Change in Data Management, Reverse Engineering in Information Systems, and the World 
Wide Web and Conceptual Modeling, pp. 293–306 (1999) 

12. Rossi, G., Schwabe, D., Lyardet, F.: User interface patterns for hypermedia application. In: 
Proceedings of Advanced Visual Interfaces 2000, pp. 136–142 (2000) 

13. van Melie, M.: Web design patterns (last accessed September 2, 2008), 
http://www.welie.com/patterns/  

14. van Duyne, D.K., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns, Principles, and 
Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley, Reading 
(2002) 

15. Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross, B., 
Lehder, D., Marmolin, H., Potts, C., Skousen, G., Thomas, J.: Putting It All Together: To-
wards a Pattern Language for Interaction Design (last accessed on September 2, 2008), 
http://www.visi.com/~snowfall/Patterns.WrkShpRep.html 

16. Saponas, T.S., Prabaker, M.K., Abowd, G.D., Landay, J.A.: The impact of pre-patterns on 
the design of digital home applications. In: Proceedings of the 6th Conference on Design-
ing interactive Systems, DIS 2006, University Park, PA, USA, June 26 - 28, pp. 189–198. 
ACM, New York (2006) 

17. Kampffmeyer, H., Zschaler, S.: Finding the Pattern You Need: The Design Pattern Intent 
Ontology. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. 
LNCS, vol. 4735, pp. 211–225. Springer, Heidelberg (2007) 



 Web Design Patterns: Investigating User Goals and Browsing Strategies 203 

18. Bolchini, D.: Hypermedia Design Patterns Repository (last accessed September 2, 2008), 
http://www.designpattern.lu.unisi.ch 

19. Montero, S.: Hypermedia Patterns: Semantic Repository (last accessed September 2, 
2008), http://hypatterns.no-ip.info:8080 

20. Araujo, I., Weiss, M.: Linking Non-Functional Requirements and Patterns. In: Proceedings 
of the Ninth Conference on Pattern Language of Programs (PLoP 2002), September 8–12 
(2002) 

21. Chung, L., Nixon, B.A., Yu, A., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluwer Academic Publishers, Dordrecht (2000) 

22. Montero, S., Díaz, P., Aedo, I.: From requirements to conceptual modeling of web applica-
tions through design patterns. In: Workshop on HCI Patterns: Mapping User Needs Into 
Interaction Design Solutions, in conjunction with INTERACT 2005, Rome, Italy, Septem-
ber 13 (2005) 

23. http://dino2.dei.inf.uc3m.es/hyperpatterns (last accessed September 2, 
2008) 

24. Irons, M.L.: Patterns for personal web sites (last accessed September 2, 2008), 
http://www.rdrop.com/~half/Creations/Writings/Web.patterns/i
ndex.html 

25. Cybulski, J.L., Linden, T.: Composing Multimedia Artefacts for Reuse. In: Pattern Lan-
guages of Program Design, vol. 4, pp. 461–488. Addison-Wesley Longman, Amsterdam 
(1999) 

26. Chung, E.S., Hong, J.I., Lin, J., Prabaker, M.K., Landay, J.A., Liu, A.L.: Development and 
evaluation of emerging design patterns for ubiquitous computing. In: DIS 2004: Proceed-
ings of the 2004 conference on Designing interactive systems, pp. 233–242. ACM Press, 
New York (2004) 

27. Brusilovsky, P.: Adaptive hypermedia. Kobsa, A. (ed.) User Modeling and User Adapted 
Interaction, Ten Year Anniversary Issue 11(1/2), 87–110 (2001) 

28. Cleland-Huang, J., Schmelzer, D.: Dynamically Tracing Non-Functional Requirements 
through Design Pattern Invariants. In: Workshop on Traceability in Emerging Forms of 
Software Engineering, in conjunction with IEEE International Conference on Automated 
Software Engineering (October 2003) 

29. Weiss, M.: Pattern-Driven Design of Agent Systems: Approach and Case Study. In: Eder, 
J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681. Springer, Heidelberg (2003) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



204 P. Díaz et al. 

ANNEX I. DESCRIPTION OF THE DESIGN TASK 

 
Designing a Web Personal Organizer using design patterns 

 
The goal of this experiment is to determine whether and how the patterns in the 

catalogue are useful to you, as well as to gather ideas for how to make them more 
useful. 

INSTRUCTIONS 
• Read the task description and create with your pair a design for 

the proposed web site applying some of the web design patterns 
included in the catalogue. A design is a sketch of the interface, 
done with paper and pencil, plus a narrative description of how it 
works.  

• Browse the patterns catalogue to produce your solution. The de-
sign has to include at least the home page and some second-level 
pages where patterns are used. 

• Mark in the sketch the pattern(s) you have applied (use the 
alphanumeric IDs to refer to the pattern in the sketch). You have 
to use at least one pattern of each category (Interaction, Presentation, 
Navigation and Structure).  

• Fill the survey about the web design patterns usage. 

DELIVERABLE 
• Design (sketch + narrative) 

• Survey 

TASK DESCRIPTION 
The task consists of designing your own web personal organizer (WPO). In your 

organizer you can manage your public personal page, agenda, list of contacts, tasks 
and assignments, multimedia files (videos, music...), urls to resources (courses, 
chats...), alarms or whatever you consider necessary to make your organization 
more efficient. Think about useful and innovative ways of organizing and displaying 
information according to your needs and don't imitate existing interfaces if you don't 
consider they have the appropriate interface. To manage the WPO means that you 
browse, add, modify, structure and remove items from the web system.  
 

 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 205–224, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Males’ and Females’ Script Debugging Strategies  

Valentina Grigoreanu1,2, James Brundage2, Eric Bahna2, Margaret Burnett1,  
Paul ElRif2, and Jeffrey Snover2 

1 Oregon State University, School of Electrical Engineering and Computer Science, 
Corvallis, Oregon, USA 97331 

{grigorev,burnett}@eecs.oregonstate.edu 
2 Microsoft, One Microsoft Way, 
Redmond, Washington, USA 

{t-valeng,jamesbru,ebahna,pelrif,jsnover}@microsoft.com 

Abstract. Little research has addressed IT professionals’ script debugging 
strategies, or considered whether there may be gender differences in these 
strategies. What strategies do male and female scripters use and what kinds of 
mechanisms do they employ to successfully fix bugs? Also, are scripters’ de-
bugging strategies similar to or different from those of spreadsheet debug-
gers? Without the answers to these questions, tool designers do not have a 
target to aim at for supporting how male and female scripters want to go 
about debugging. We conducted a think-aloud study to bridge this gap. Our 
results include (1) a generalized understanding of debugging strategies used 
by spreadsheet users and scripters, (2) identification of the multiple mecha-
nisms scripters employed to carry out the strategies, and (3) detailed exam-
ples of how these debugging strategies were employed by males and females 
to successfully fix bugs. 

Keywords: Gender, Debugging, Scripting, Debugging Strategies. 

1   Introduction 

At the border between the population of professional developers and the population of 
end-user programmers, lies a subpopulation of IT professionals who maintain com-
puters, and they accomplish much of their job through scripting. As Kandogan et al. 
argue, this population has much in common with end-user programmers [14]: as in 
Nardi’s definition of end-user programmers, they program as a means to accomplish 
some other task, not as an end in itself [22]. Scripting is also becoming much more 
common by end-user programmers themselves through the advent of end-user 
oriented scripting languages for the desktop and the web. However, despite the com-
plexity of some scripting tasks, little attention has been given to scripters’ specific 
debugging needs, and even less to the impact that gender differences might have on 
script debugging strategies and the mechanics used to support them. 

We therefore conducted a qualitative study to address this gap by identifying the 
debugging strategies and mechanisms scripters used. Strategy refers to a reasoned 
plan or method for achieving a specific goal. Mechanisms are the low-level tactics 



206 V. Grigoreanu et al. 

used to support those strategies: through environment and feature usage. Our work 
was guided by the debugging strategies reported in an earlier end-user debugging 
study with spreadsheet users [32].  

There are several reasons to ask whether strategies used by scripters working with 
a scripting environment might be different from strategies used by end-user pro-
grammers with a spreadsheet system.  First, the populations are different; for exam-
ple, one might expect scripters to have more experience in debugging per se than 
spreadsheet users. Second, the language paradigms are different: scripting languages 
are control-flow oriented, in which programmers focus primarily on specifying se-
quence and state changes, whereas spreadsheet languages are dataflow oriented, in 
which programmers focus primarily on specifying calculations (formulas) that use 
existing values in cells to produce new values. The language paradigm differences 
lead naturally to a third difference: the environments’ debugging affordances them-
selves are different, with scripting environments tending toward peering into sequence 
and state, whereas spreadsheets’ affordances tend more toward monitoring values and 
how they flow through calculations. Therefore, the research questions we investigated 
were: 

RQ1: What debugging strategies do scripters try to use? 
RQ2: What mechanisms do scripters employ to carry out each strategy? 
RQ3: How do our findings on scripters’ strategies relate to earlier results on 
strategies tied with male and female spreadsheet users’ success? 

Thus, the contributions of this paper are in (1) identifying the strategies scripters 
try to use in this programming paradigm, (2) identifying the mechanisms scripters use 
to carry out their different strategies, and (3) exploring details of successful uses of 
the strategies by males and females. 

2   Background and Related Work 

Although there has been work in how to effectively support system administrators in 
creating their scripts [14], we have been unable to find work addressing scripters’ 
debugging strategies. Instead, most of the work on script debugging has been on tools 
to automatically find and fix errors (e.g., [35, 37]). 

However, there has been considerable work on professional programmers’  
debugging strategies, and some work on end-user debugging strategies. One study  
on professional programmers’ debugging strategies classified debugging strategies  
as forward reasoning, going from the code forward to the output, and backward  
reasoning, going from the output backward through the code [15]. See Romero et al. 
for a survey of professional programmers’ debugging strategies [29].  

End-user programmers have elements in common with novice programmers, so the 
literature on how novice programmers differ from experts is relevant here. For both 
novices and experts, getting an understanding of the high-level program structure 
before jumping in to make changes relates to success [19, 21]. However, experts have 
been found to read programs differently from novices: reading them in control flow 
order (following the program’s execution), rather than spatial order (top to bottom).  



 Males’ and Females’ Script Debugging Strategies 207 

In end-user programming, gender differences have been found in attitudes toward 
and usage of end-user programming and end-user programming environment features 
[3, 4, 5, 10, 13, 16, 27, 28, 30, 38]. Especially pertinent is a series of end-user debug-
ging studies reporting gender differences in debugging strategies for spreadsheets [9, 
32]. The first of these studies pointed to behavior differences that suggested strategy 
differences, and the second reported a set of eight strategies end users employed in 
their debugging efforts. In both of these studies, the strategies and behaviors leading 
to male success were different from those leading to female success. For example, in 
[32], dataflow strategies played an important role in males’ success, but not females’. 
Prabhakararao et al.’s spreadsheet debugging study with end users also reported a 
strong tie between using a dataflow strategy and success [25], but participant gender 
was not collected in that study. 

In fact, gender differences that relate to processing information and solving  
problems have been reported in several fields. One of the most pertinent works is the 
research on the Selectivity Hypothesis [20, 23]. It proposes that females process in-
formation in a comprehensive way (e.g., attending to details and looking for multiple 
cues) in both simple and complex tasks. Males, on the other hand, process informa-
tion through simple heuristics (e.g., following the first cue encountered), only switch-
ing to comprehensive reasoning for complex tasks.  

Self-efficacy theory may also affect the strategies employed by male and female 
debuggers [1]. Self-efficacy is a person’s confidence about succeeding at a specific 
task. It has shown to influence everything from the use of cognitive strategies, to the 
amount of effort put forth, the level of persistence, the coping strategies adopted in 
the face of obstacles, and the final performance outcome. Regarding software usage, 
there is specific evidence that low self-efficacy impacts attitudes toward software [3, 
11], that females have lower self-efficacy than males at their ability to succeed at 
tasks such as file manipulation and software management tasks [33], and that these 
differences can affect females’ success [3].   

Gender differences in strategies also exist in other problem-solving domains, such 
as psychology, spatial navigation, education, and economics (e.g., [8]). One goal of 
this paper is to add to the literature on gender differences in problem solving relating 
to software development, by considering in detail the usage of different strategies by 
male and female scripters.  

3   Study 

3.1   Participants 

Eleven IT professionals (eight males and three females) volunteered to participate  
in the study by responding to invitations on an IT-related internet forum and on a 
PowerShell email discussion list. Participants received software as gratuity. Although 
we had hoped for equal participation by females and males, female IT professionals 
are in short supply, and only three signed up. Almost all participants had a technical 
college degree (in computer science, engineering, or information systems), with the 
exception of two males whose education ended after high school. Despite their tech-
nical degrees, six of the eleven participants rejected the label of “software developer.” 
Those who did classify themselves as software developers were the three females and 



208 V. Grigoreanu et al. 

two of the eight males; the remaining six males described themselves as IT profes-
sionals or scripters. All participants reported that, in their everyday jobs, they accom-
plished their IT professional tasks using PowerShell. As examples of these regular 
tasks, participants mentioned moving packages, moving machines out of a domain, 
modifying the registry, initializing software, automating IT tasks, automating tests, 
and creating test users on servers. 

All participants had written two or more scripts within the past year, using Win-
dows PowerShell. The females had written fewer scripts in the past year than the 
males (number of scripts written by females: 2, 3, and 5; number of scripts written by 
males: 6, 6, 7, 20+, 30, 30+, 50, 100+). 

3.2   Scripting Language and Environment 

PowerShell is a new implementation of the traditional Command Line Interface and 
scripting language developed by Microsoft, which aims to support both IT profes-
sionals’ and developers’ automation needs. We used an as-yet unreleased version of 
this language and environment in our study. PowerShell supports imperative, pipeline, 
object-oriented, and functional constructs. Its pipelining, unlike traditional UNIX 
commands that pipeline text to one another, pipelines objects to one another. Power-
Shell has both a command line shell and a graphical scripting environment, and 
participants used both. Both the command line and graphical scripting environment 
provide common debugging features such as breakpoints, the ability to step into, error 
messages, and viewing the call stack. Fig. 1 shows a version of the graphical scripting 
environment that is similar to the one our participants used. 

3.3   Tasks, Procedure, and Data Collection 

We instructed the participants to debug two versions of a PowerShell script, which 
included a “main” section and eight called functions, each of which was in a separate 
file within the same directory. We used the same script (two versions) for both tasks 
in order to minimize the amount of time participants spent getting an understanding of 
the scripts so as to maximize the amount of time they spent actually debugging. 

The script was a real-world script that one of us (Brundage) had previously written 
to collect and display meta-data from other PowerShell scripts. We introduced a total 
of seven bugs, which we harvested from bugs made by the script’s author when he 
originally wrote the script. Each version of the main script contained one different 
bug. The eight functions called by both versions contained five other bugs. The seven 
total bugs fell into two categories: three errors in data: using an incorrect property, 
allowing the wrong kind of file as input, and omitting a filter; and four errors in struc-
ture: an assignment rather than a comparison, an off-by-one error, an infinite loop, 
and omitting the code that should have handled the last file. 

After participants completed a profiling survey, we gave them a description of what 
the script was supposed to do. Participants then debugged one version of the script using 
a command line debugger and a second version using a graphical debugger. The order 
of the script versions and environments was randomized to control for learning effects. 

Participants were instructed to talk aloud as they performed their debugging tasks. 
Data collected included screen captures, video, voice, and measures of satisfaction. 
 



 Males’ and Females’ Script Debugging Strategies 209 

 

Fig. 1. This is the graphical version of the Windows PowerShell environment. (a) Scripts are 
written in the top pane, and the example shows a function that adds two numbers. (b) The out-
put pane displays the result of running the script or command. (c) The command line pane is 
used exactly like PowerShell’s command line interface. In this case, it is running the function to 
add two numbers. This figure is an adaptation of a figure in [36]. 

 
 After completion of each task, participants were given a post-session questionnaire 

that included an interview question about the debugging strategies they used. 

 3.4   Analysis Methodology 

We analyzed the data using qualitative content analysis methods. We analyzed two 
data sources: participant responses to the questionnaire, and the videos. Because we 
wanted to measure the extent to which males’ and females’ debugging strategies iden-
tified in previous work [32] would generalize to our domain and population, we began 
by mapping that code set to the Powershell domain of the current study.  



210 V. Grigoreanu et al. 

One researcher applied these codes to participants’ post-session open-ended inter-
view responses about strategies. We asked the same strategies question as in the ear-
lier work mentioned above, but it was asked verbally, rather than on paper. This led to 
generalizations of a few of the codes and the introduction of a few new codes.  

Two researchers then used this revised code set as a starting code set for the vid-
eos. They independently coded 27% of the videos (six tasks from various partici-
pants), achieving 88% agreement. The dually coded set included the three participants 
described in 4.2, for which the two researchers also collaboratively analyzed the cir-
cumstances, sequences, and mechanisms, resolving any disagreements as they arose. 
This also resulted in our final code set, which is given in Section 4. The first re-
searcher then analyzed and coded the remaining videos alone. 

4   Results 

4.1   Scripters’ Debugging Strategies 

Our scripters used variants of seven of the eight strategies the spreadsheet users used 
[32], plus three others. The spreadsheet strategy termed “fixing formulas” (in which 
participants wrote only of editing formulas, but not of how they figured out what, 
where, or how to fix the bug or of validating their changes) was not found in our data. 

As Table 1 shows, five of the strategies they used were direct matches to the earlier 
spreadsheet users’ strategies, two were matches to generalized forms of the spread-
sheet users’ strategies, and three arose that had not been viable for the spreadsheet 
users. However, even for the direct matches, the mechanisms scripters used to pursue 
these strategies had differences from those of the spreadsheet users. 

 
Direct Matches. Testing is trying out different values to evaluate the resulting values. 
Some of the mechanisms used by these scripters would not traditionally have been 
identified as testing, yet they clearly are checking the values output for correctness—
but at finer levels of granularity than has been possible in classic software engineering 
treatments of the notion of testing.  

Specifically, we noticed three types of testing mechanisms used by participants: 
testing different situations from a whole-program perspective, incrementally checking 
variable values, and incrementally testing in other ways. The first type is classic test-
ing methodology to cover the specifications or to cover different parts of the code 
(testing both the antecedent and the consequent parts of an if-then statement, for ex-
ample). The latter two are informal testing methods to see whether, after having exe-
cuted part of the code, the variables displayed reasonable values. For example, from a 
whole-program perspective: 

 

Female P0721081130 ran the code and examined both the error messages and the 
output text in order, rather than focusing on either one or the other. 

Female P0718081400 tried different contexts by cd-ing back to the root directory in 
the command line before running the file again using the menu. 

Male P0717080900 changed the format of the output so that he could understand it 
more easily when he ran the program. 
 



 Males’ and Females’ Script Debugging Strategies 211 

Table 1. Participants’ responses when asked post-session to describe their strategies in finding 
and fixing the bugs (listed in the order discussed in the text) 

Strategy Definition 
 

Direct Matches 
Testing Trying out different values to evaluate the resulting values. 
Code Inspection Examining code to determine its correctness. 
Specification 
Checking 

Comparing descriptions of what the script should do with the 
script’s code. 

Dataflow Following data dependencies. 
Spatial Following the spatial layout of the code. 
 

Generalized Matches 
Feedback Fol-
lowing 

Using system-generated feedback to guide their efforts. 

To-Do Listing Indicating explicitly the suspiciousness of code (or lack of suspi-
ciousness). 

 
New Strategies 

Control Flow Following the flow of control (the sequence in which instructions 
are executed). 

Help Getting help from people or resources.  
Proceed as in 
Prior Experience

Recognizing a situation (correctly or not) as one experienced 
before, and using that prior experience as a blueprint of next steps 
to take. 

However, incrementally checking variable values was much more common, and 
participants did it in many different ways: 

 

Male P0718081030 hovered over variables to check their values. 
Male P0117081130 also hovered over, but in conjunction with breakpoints to stop at a 

particular line to facilitate the hover. 
Female P0718081400 ran the code by accessing it through the command line inter-

face. Others preferred reaching it through the menu. 
Female P0718081400 typed the variable name in the command line. 
Male P0717080900 added temporary print statements to output variable values at that 

point in time. 
Male P0721081330 added temporary print statements to check whether a particular 

part of the code was reached/covered by the input. 
Female P0718081400 would have liked to use a watch window to examine variable 

values. 
Male P0718081030 examined an entire data structure using tabs (auto-complete) to 

determine the correctness of its property values. 
 

Other forms of incremental testing focused on running part of the code to check its 
output. For example: 

 



212 V. Grigoreanu et al. 

Female P0718081400 did not understand why she was getting an “access denied” 
message and therefore tried performing the action manually with Windows Ex-
plorer and navigating to that directory (to see if she would get the same message in 
that different context). 

Female P0718081400 first ran a variable to see its output, and then started adding the 
surrounding words to get more information about that variable and how it is being 
used. 

Female P0717081630 used “stepping over” to see the script’s output appear incre-
mentally as she passed the line in the code that produced it. 

Male P0721080900 wanted to break into the debugger once a variable had a particular 
value. 
 

Primarily only the first category of testing is supported by tools aiming to support 
systematic testing for professional programmers or end-user programmers (e.g., 
WYSIWYT [6]). However, our scripters were very prone to incremental testing, and 
although the scripting environment gives them good access to checking these values, 
there is no support in that environment or most others for using this incremental test-
ing to systematically track which portions of the code are tested successfully, which 
have failed, and which have not participated in any tests at all. 

Code inspection is examining the code to determine its correctness. Code inspec-
tion is a counterpart to testing with complementary strengths [2]. It is heavily relied 
upon in the open source community [26]. Not surprisingly, as in the spreadsheet 
study, testing and code inspection were the most common strategies. Participants’ 
mechanisms for code inspection revealed a surprisingly large set of opportunities for 
supporting code inspection better in scripting environments, spreadsheets, and other 
end-user programming environments. 

Besides simply reading through the code, some of the basic mechanisms the par-
ticipants used were: 

 

Female P0718081400 opened up all of the files in the same directory as the script (to 
view functions the main script was calling), and quickly scanned through all of 
them one after the other. 

Male P0718081030 resized the script pane to show more of the script. 
Male P0717080900 used the “Find” function to jump to the part of interest. 
Male P0718081030 used the command line to find out all the contextual information 

he could about a variable he was inspecting (its type, for example). 
Male P0717080900 used the integrated scripting environment as a code editor for the 

command line task because he disliked inspecting the code without syntax high-
lighting. 
 

The above five mechanisms may seem obvious, but many end-user programming 
environments do not support these functionalities. For example, they are not well 
supported in spreadsheets; in that environment performing these actions is awkward 
and modal. Given the heavy reliance on code inspection by the participants in  
both this study and the previous spreadsheet study, a design implication for end-user 



 Males’ and Females’ Script Debugging Strategies 213 

programming and scripting environments is to provide support for the flexible and 
easy ability to inspect large amounts of the code when desired. 

Finally, there were many instances of integration between testing and code inspec-
tion, such as this participant’s fine-grained mixing of the two: 

 

Female P0718081400 hovered over variables in the code view for simultaneously 
seeing both the code and output values. 
 
Most participants in the earlier spreadsheet study also used testing and code inspec-

tion together. The preponderance of mixing these strategies suggests that program-
ming environment designers should strive to support this mixture, allowing “drill 
down” into related testing information during code inspection, as in the example 
above, and conversely allowing drill down into related code information during test-
ing. Getting directly to the code that produced certain values is well supported in 
spreadsheets and in some end-user languages and environments such as Kid-
Sim/Cocoa/Stagecast [12] and Whyline [17], but is rarely present in scripting 
environments.  

Specification Checking is somewhat related to code inspection, but involves com-
parisons: namely, comparing descriptions of what the script should do with the 
script’s code. This strategy is not well supported in any scripting or end-user pro-
gramming environment—code comments are the primary device to which users in 
these environments have access for the purpose of specification checking.  

Both the spreadsheet study and this one provided (informal) specifications in the 
form of written descriptions of the intended functionality, and these were widely used 
by both the previous study’s spreadsheet users and the current study’s scripters. In 
addition, they relied on comments and output strings embedded in the code for this 
purpose, as in the examples below.  

 

Male P0717080900 read the informal description handout related to the script. 
Male P0717080900 read the comments in the code related to what that part of the 

code was supposed to do. 
Male P0117081130 looked in the code for the places producing constant string out-

puts, with the view that those string outputs helped describe what nearby code what 
supposed to do. 

Female P0718081400 read the comments one-by-one, as she was reaching the parts 
that they referred to in control flow order. 
 
Thus, specification checking is an under-supported strategy for both spreadsheet 

users and scripters.  
Dataflow means following data dependencies through the program. Following 

dataflow is a natural fit to the dataflow-oriented execution model of spreadsheets, and 
some spreadsheet tools provide explicit support for it such as dataflow arrows and 
slicing-based fault localization tools [6]. Even in imperative programs, dataflow 
mixed with control flow (i.e., “slicing”) is commonly used [34], and ever since 
Weiser’s classic study identified slicing as an important strategy for debugging [34], 
numerous tools have been based on slicing. Our scripters followed dataflow a little, 



214 V. Grigoreanu et al. 

but it was not particularly common, perhaps because the scripting environment did 
not provide much explicit support for it: 

 

Female P0717081630 said, “Wish I could go to where this variable is declared.” 
Female P0717081630 tried to “find all references” to a variable, in any file. 
Male P0718081030 wanted to know how a particular variable got to be a certain 

value, and therefore followed the flow of data to see what other variables influ-
enced this variable, and how it got to be the value it was. 
 
Spatial is simply following the code in a particular spatial order. For example, 

scripts can be read from top to bottom. (This is different from following execution 
order; execution order deviates from top to bottom at procedure calls, loops, etc.) 
Most participants demonstrated a little of this strategy, but nobody relied on it for 
very long. It was fairly uncommon in the spreadsheet study as well, in which fewer 
than 10% of the participants mentioned that strategy. 

 
Generalized Matches. The two strategies that matched generalizations of strategies 
observed in the spreadsheet study were Feedback Following and To-Do Listing. 

Feedback Following is using system-generated feedback to guide debugging ef-
forts. This is a generalization of the strategy “Color Following” in the spreadsheet 
study. To draw users’ attention to them, the spreadsheet system colored cells’ interi-
ors to show their likelihood of containing errors (based on the judgments made by 
users about the correctness of each cell’s value). The users who followed this type of 
feedback directly were considered to be color following. The scripting environment 
used certain messages (not colors alone) to draw users’ attention to code with possible 
bugs, a generalization upon following colors toward possible bugs.  

Our script participants paid particular attention to the feedback messages, including 
reading them, navigating backward and forward in them, looking at more or fewer of 
them, and drilling down to get more information about them. For example: 

 

Male P0117081130 looked at the last error message. 
Male P0718080800 changed the display settings so as to show only the first error 

message. 
Male P0717080900 cleared the command line screen so he could easily scroll up and 

stop at the first error message. 
Female P0718081400 resized the output window to see more of the messages at once. 
Female P0718081400 opened up Windows Explorer to better understand what path 

the error message is talking about. 
 
To-Do Listing is indicating explicitly the suspiciousness of code (or lack of suspi-

ciousness) as a way to keep track of which code needs further follow-up. Some 
spreadsheet users did this by checking cells off or X-ing them out. (These features 
were designed for another purpose, but some participants repurposed them to keep 
track of things still to check.) Like the spreadsheet users, our scripters found mecha-
nisms to accomplish to-do listing, such as: 

 



 Males’ and Females’ Script Debugging Strategies 215 

Male P0117081130 put a breakpoint on a line to mark that line as incorrect, and to 
stop on it whenever he ran the code. 

Female P0721081130 closed files that she thought to be error-free, leaving possibly 
buggy ones open. 

Male P0718081030 used pen and paper to keep track of stumbling points. 
The same male, P0718081030, also mentioned sometimes using bookmarks to keep 

track of stumbling points. 
 

Keeping track of things to do and things done is a functionality so dear to computer 
users’ hearts, they have been reported to repurpose all sorts of mechanisms to accom-
plish it, such as appropriating email inboxes [7] and code commenting [31] for this 
purpose. Yet, other than bug trackers (which do not work at the granularity of snip-
pets of code), few programming environments support to-do listing. A clear opportu-
nity for designers of end-user programming environments and scripting environments 
is providing an easy, lightweight way to support to-do listing. 

 
New Strategies. Finally, there were three strategies that had not been present in the 
spreadsheet study: control flow, getting help, and proceeding as in prior experiences. 

Control Flow means following the flow of control (sequence in which instructions 
are executed). Pennington found that expert programmers initially represent a pro-
gram in terms of its control flow [24]. Since spreadsheets do not provide a view of 
execution flow, it is not surprising that following control flow did not arise in the 
spreadsheet study. The scripting environment, however, provided multiple affor-
dances for viewing control flow, and participants used them. For example: 

 

Male P0717080900 used the call stack to see what subroutines were called and in 
what order. 

Female P0718081400 placed a breakpoint on the first line to run the script in control 
flow from there in order to understand it. 

Male P0117081130 stepped over and into to examine and execute the code in the 
order it was run. 
 

Providing support for following control flow is relatively widespread in program-
ming environments for professional programmers, but less so for end-user program-
ming environments. A notable exception is the approach for allowing control flow 
following in the rule-based language KidSim/Cocoa/Stagecast [12], which features 
the ability step through the program to see which rules fire in which order. 

Help means getting help from other people or resources, a common practice in 
real-world software development. For example, Ko et al. reported that developers 
often sought information in hard-to-search sources, such as coworkers’ heads, 
scanned-in diagrams, and hand-written notes [18]. In our study, examples of follow-
ing help included searching for help on a bug using Google Search, consulting the 
internal help documentation in order to set a breakpoint, or asking the researchers 
what a particular function does. This strategy was not available in the spreadsheet 
study but our script participants used it extensively. 

 
 



216 V. Grigoreanu et al. 

Female P0717081630 sought help from the observers. 
Male P0718081030 sought online help. 
Male P0117081130 used the interface’s help menu item. 
Female P0718081400 used the command line’s “-?” and “/?” commands. 
Male P0718081030 used the function key to bring up the internal help. Later, he also 

brought help up on a particular word by first highlighting it and then hitting the 
function key. 
 

Finally, one participant attempted to integrate external help with code inspection:  
 

Male P0718081030 restored down the help window, to be able to look at the code and 
still have the help in an open window next the code. 
 
Proceeding as in Prior Experience was recognizing a situation (correctly or not) as 

one experienced before, and using that prior experience as a blueprint of next steps to 
take. Sometimes the recognition was about a feature in the environment that had 
helped them in the past and sometimes it was about a particular type of bug. Once 
recognition struck, participants often proceeded in a trial-and-error manner, without 
first evaluating whether it was the right path. For example: 

 

Male P0717080900: “Ah – I’ve seen this before. This is what must be wrong.” 
Female P0718081400: “It obviously needs to go up one directory.”  
Male P0721080900 said: “Just for kicks and giggles, let’s try this.” 
Male P0718081030 felt something strange was going on and, from an earlier experi-

ence, decided that it was PowerShell’s fault. He therefore closed the environment 
and opened it up again. 
 

We suspect that proceeding as in prior experience is quite widespread, but it has 
not been reported in the literature on debugging. Given humans’ reliance on recogni-
tion in everyday life, this strategy could be having a powerful influence on how peo-
ple debug. It is an open question whether and how designers of debugging tools might 
leverage the fortunate aspects of this and take steps to help guard against the unfortu-
nate aspects. 

4.2   Sequential Usage of Strategies: Three Participants 

To investigate how the participants used these strategies when succeeding, we ana-
lyzed three participants in detail. The first two were the most successful male (who 
fixed four bugs in one task) and the most successful female (who fixed one bug in one 
task). We then analyzed a male with the same scripting experience as the female (who 
also fixed one bug in one task). Each of these participants thus provided at least one 
successful event to analyze, in addition to several failed attempts. Fig. 2 shows the 
sequence of strategies used in one of the two tasks by these participants.  

As an aside, the overall low success rate on the number of bugs fixed was expected, 
because we deliberately designed the tasks to be difficult, so that strategizing would 
occur even with expert scripters. For example, one of our participants (the most suc-
cessful male) was extremely experienced, having written more than 100 PowerShell 



 Males’ and Females’ Script Debugging Strategies 217 

scripts in the past year.  He fixed all seven bugs in the two tasks. (Reminder: the figure 
shows only one of those two tasks.)   

The most successful female described herself as a software developer. She was 
about 30 years old, and had nine years of scripting experience (in JavaScript, Power-
Shell, Perl, and Bash/UNIX Shell Scripting). Within the past year, she had written 
about five PowerShell scripts and was a frequent PowerShell user, normally using it 
about two to three times per week.  

As Fig. 2 shows, after reading the task description, this female began by running 
the script: “First thing I’m going to do is to try to run it to see what the errors are.” 
Using the error message which stated there was an error at a line which contained 
“Type = ‘NewLine’” because “Type” is a read-only property, she navigated directly 
to that line of the script. She right away noticed that the equal sign was doing an as-
signment instead of a comparison, thereby finding the first bug (the dashed bar at the 
beginning of her session in Fig. 2). But, although she knew what the error was, she 
fixed it incorrectly based on her prior experience with other languages (the solid line 
with a dot followed by 45 seconds of testing). Fortunately, testing her change made 
her realize that her fix was incorrect: “Ok, perhaps it was wrong...” Despite her ex-
perience with scripting and using PowerShell, she said she felt silly about not remem-
bering what the correct syntax was, but that it is due to her not writing scripts from 
scratch in PowerShell often, but rather reusing and extending existing scripts. 

Knowing what she wanted the program to do but not the syntax to accomplish it, 
she started to use code inspection to find a suitable fix by looking for examples in 
related code: “That’s why I usually start looking at other files, to see if there’s an 
‘equal’ type thing.” She went on to skim two other PowerShell files, rejecting two 
Boolean operators she did not believe would fix her problem. However, the second 
one, even though it was not exactly what she needed, was close enough to enable her 
to fix the bug by patterning her change after that code: “Aha! ‘–like’ isn’t it because 
that would be like a ‘starts with’ type thing. So, maybe I need to do ‘-eq’?” This use 
of code inspection is what enabled her to actually fix the bug, and is a good example 
of how increased use of this strategy might have led to greater female success in [32].  

The female’s use of code inspection to actually fix the bug above, rather than just 
to find it, is interesting. It suggests a possible new debugging functionality, code mini-
pattern recognition and retrieval, to support searching and browsing for related code 
patterns to use as templates. The female’s beneficial use of code inspection in this 
study is consistent with the results from [32] that code inspection was statistically tied 
to female spreadsheet users’ success. These combined results suggest the following 
hypotheses to more fully investigate the importance of code inspection to female 
debuggers: 

 

Hypothesis 1F: Code inspection is tied to females’ success in finding bugs. 
Hypothesis 2F: After a bug has been found, code inspection is tied to females’ success 

in correctly fixing the bug. 
Hypothesis 3F: Environments that offer explicit support for code inspection strategies 

in fixing bugs will promote greater debugging success by females than environ-
ments that do not explicitly support code inspection strategies. 

 



218 V. Grigoreanu et al. 

 

Fig. 2. The strategies used by three participants during one of the two tasks, as well as when 
bugs were found and fixed. Each patterned square is a 30-second use of the strategy shown in 
the legend, and the lines display a bug found / fixed also shown in the legend. The start of the 
session is at the top and the end at the bottom. 



 Males’ and Females’ Script Debugging Strategies 219 

In contrast to the female, for males, code inspection did not appear to be tied to 
success, either in the earlier spreadsheet study or in this one. As the figure shows, the 
successful male used very little of it, and used none in the periods after finding, when 
working on actually fixing the bugs. Although the low-experience male did use code 
inspection, it did not seem to help him very much. Thus, we predict that a set of  
hypotheses (which we will refer to as 1M, 2M, and 3M) about males like the female-
oriented Hypotheses 1F, 2F, and 3F will produce different results in follow-up  
research, because instead of emphasizing code inspection, the periods near the low-
experience male’s successful finding of a bug and near his successful fixing of the 
bug contained a marked emphasis on testing. (We will return to this point shortly.) 

The successful male, whose sequence of strategies is also shown in Fig. 2, was a 
very experienced scripter. He described himself as a scripter (not as an IT profes-
sional or developer) and had 20 years of experience writing scripts in languages such 
as Korn Shell, BIN, PowerShell, Perl, and Tcl. He had used PowerShell since its in-
ception and had written over 100 PowerShell scripts within the past year alone.  

After reading the task instructions, the successful male did not begin as the female 
did by running the script, but instead first began by reading the main script code from 
top to bottom for a couple of minutes, “The first thing I’ll do is to read the script to 
find out what I believe it does.” Once he got to the bottom of the script, he stated that 
“this code didn’t seem to have anything wrong with it,” denoted by the dotted line in 
Fig. 2. He was incorrect about this. 

After the dotted line, this successful male switched to running the script to see its 
outputs (testing) and to consider the resulting error messages (feedback following). 
The first error message this male pursued was the second error message that the suc-
cessful female had also tried addressing: “cannot find path because it does not exist.” 
Without even navigating to the function to which that the error referred, the success-
ful male was able to draw from his prior experience, immediately hypothesizing (cor-
rectly) that the error was caused by a function call in the main script that used the 
“name” property as a parameter, rather than the “full name” property of a file. He 
stated, “I know that the file type has a ‘full name’ property, so that’s what we need to 
do.” After changing the code, to check his change before really declaring it a fix, he 
opened the function that the error message referred to, checking to see how the file 
name that was being passed as a parameter was being used (dataflow). At this point, 
he declared the first bug fixed, and reran the script to see what problem to tackle next. 
He used a similar sequence of testing, feedback following, and prior experience for 
the next three bugs he found and fixed. 

But when the successful male found the fifth bug (see the fifth dashed line in Fig. 
2), he did not have prior experiences relevant to fixing it. As the right half of the 
figure shows, he spent the rest of the session trying to fix it, mainly relying on a com-
bination of fine-grained testing (checking variable output values) and help (documen-
tation internal to the product on debugging PowerShell scripts), with bits of code 
inspection, control flow, and specification checking also sprinkled throughout. 

Thus, the successful male provided interesting evidence regarding code inspection, 
testing, prior experience, and dataflow. We have already derived hypotheses about 
code inspection, and we defer hypotheses about testing until after discussing the sec-
ond male. Regarding prior experience, both the successful male and the successful 
female drew on prior experience in conjunction with feedback following, but the 



220 V. Grigoreanu et al. 

female’s prior experience had negative impacts when she tried to fix a bug by re-
membering the syntax from a different language. The interplay between feedback 
following and proceeding as in prior experience is thought-provoking, but there is not 
as yet enough evidence about this interaction and gender differences for us to propose 
hypotheses for follow-up. 

Dataflow, however, was also a successful strategy for the males in [32], and this 
successful male’s experience with it suggests exactly where it might be contributing 
to males’ success: 

 

Hypothesis 4M: Dataflow is tied to males’ success in finding bugs. 
Hypothesis 5M: After the bug has been fixed, dataflow is tied to males’ success at 

checking their fix. 
Hypothesis 6M: Environments that offer explicit support for dataflow will promote 

greater debugging success by males than environments that do not explicitly sup-
port dataflow. 

 

We do not expect the corresponding female Hypotheses 4F, 5F, and 6F to show 
significant effects, since we have seen no evidence of it in either study.  

The successful female was much less experienced than the successful male, so we 
also compared her strategies to those of a less experienced male to obtain insights into 
strategy differences due solely to experience. This male had nearly identical experi-
ence to the female: 10 years of scripting experience (in CMD, VBScript, PowerShell, 
T-SQL, and SSIS). In the past year, he had written about six PowerShell scripts, and 
used PowerShell about three times per week. 

Like the successful male, this less experienced male also started out with inspect-
ing the code from top to bottom. The less experienced male examined most of the 
script very carefully, highlighting the lines he read as he went along. He used several 
strategies (including testing, feedback following, control flow, and help) to better 
understand a construct he had never run into before. After about four minutes of try-
ing, he noted not completely understanding that part of the code and assumed that it 
was correct (which was true), stating that the part he had been studying seemed like a 
“red herring” and “a no-op”. He therefore went on to examine the next line.  

Directly following about three minutes of incremental testing (running only frag-
ments of the code at a time to see what they output), the lower-experience male found 
a bug (dashed line in Fig. 2). At that point, he stated “I’m making a note of a bug 
that’s here; that we’re not making a path here… And we’re going to fail, because the 
system is simply not going to find those files.” After having made the note, he went 
on trying to use several strategies (mainly testing and code inspection) to understand 
the rest of the code. 

In the earlier study, we saw some evidence pointing in the direction of to-do listing 
being a strategy used more by females [32], and two of the three females used it in 
this study too. This male employed a pen-and-paper version of to-do listing, but to-do 
listing was so scarcely used overall in this study (perhaps since it was not supported 
by the environment) that we could not derive hypotheses based on these data alone. 

By inspecting the code in control flow order, the less experienced male realized 
that an incorrect property used for one of the variables was the cause of the faulty 
output. Returning to the first bug he had written down on paper, he succeeded at fix-
ing the bug through the use of testing. Specifically, he copied that variable and its 



 Males’ and Females’ Script Debugging Strategies 221 

property into the command line and ran the command. He stated that the output was 
incorrect, since it was the name of the file instead of its full path. Using tab-
completion in the command line, he deleted the property, and tabbed through the list 
of all properties. He then also used a command to output a list of all properties and 
skimmed through them, wondering, “Is there a FullPath property?” There, he found a 
“FullName” property. He tried it out by typing the variable name and property in the 
command line again. The output was exactly what he wanted, so he put that small 
code fragment into the script’s code, thereby fixing the bug. This suggests a possibil-
ity that a programming environment that supports systematic debugging-oriented 
testing mechanisms, such as tracking incremental testing and testing of small frag-
ments of code, may be helpful to testing-oriented debuggers. 

The testing evidence from both males above, combined with that of the previous 
study, suggests the following hypotheses for follow-up investigation. 
 

Hypothesis 7M: Testing is tied to males’ success in finding bugs. 
Hypothesis 8M: After a bug has been found, testing is tied to males’ success at cor-

rectly fixing the bug. 
Hypothesis 9M: After the bug has been fixed, testing is tied to males’ success at 

evaluating their fix. 
Hypothesis 10M: Environments offering explicit support for incremental testing and 

testing of small code fragments will promote greater debugging success by males 
than environments that do not explicitly support incremental testing strategies.  

 

We are also proposing identical hypotheses for testing with females (7F, 8F, 9F, 
and 10F). Our prior study provided no ties between testing and success by females, so 
we do not predict significant effects for 8F-10F. However, the successful female in 
this study used testing in conjunction with feedback following to successfully find a 
bug; 7F might therefore also hold true for females.  

As we have been bringing out in our hypotheses, the above evidence from all three 
participants suggests that the debugging stage at which a strategy is used (finding a 
bug, fixing a bug, or evaluating a fix) might have an influence on females’ and males’ 
success with the strategy, and we consider this to be an interesting new open research 
question. For example, although everyone successfully found at least one bug by 
incorporating testing, only the lower experience male fixed a bug using that strategy. 
One concrete instance of this open question is, therefore, whether there is a difference 
in how males and females use testing. For example, might males incorporate testing 
into both finding and fixing, whereas females use it for only in the finding stage? We 
express this open question as a general hypothesis: 
 

Hypothesis 11MF: Males’ and females’ success with a strategy differs with different 
debugging stages (finding a bug, fixing a bug, or evaluating a fix). 

5   Conclusion 

This paper presents the results from a think-aloud study we conducted to see how well 
end-user programmers’ spreadsheet debugging strategies generalize to a different 



222 V. Grigoreanu et al. 

population and a different paradigm: IT professionals debugging Windows Power-
Shell scripts. Our results show that: 
 

• All but one of the strategies found with the spreadsheet users also applied to IT 
professionals debugging scripts, along with three more that emerged. The 
seven strategies we observed in both studies were: testing, code inspection, 
specification checking, dataflow, spatial, feedback following (a generalization 
of the strategy previously termed color following), and to-do listing. In addi-
tion, we observed the following three strategies that had not been present in the 
spreadsheet study: control flow, help, and proceeding as in prior experience. 

• The mechanisms scripters used revealed several opportunities for new features 
in scripting environments, such as support for systematic incremental testing, 
for easy inspection of large amounts of code and of code mini-patterns, for 
“drill down” into related testing information during code inspection and into 
related code information during testing, for informal specification checking, 
and for to-do listing. 

• The evidence of the earlier statistical study on spreadsheets combined with the 
qualitative analysis of this study’s participants produced several detailed hy-
potheses on gender differences in successful strategy usage. 

Perhaps the most important contribution of this study is that it raised a significant new 
open question: whether males’ and females’ uses of debugging strategies differ not 
only in which strategies they use successfully, but also in when and how they use 
those strategies. 
 
Acknowledgements. We thank the participants of our study and are grateful to  
Jennifer East, Curtis Posadas, and Siddhika Nevrekar for recruiting them. Finally, we 
thank the anonymous reviewers, whose feedback helped us significantly in improving 
the paper.  

References 

1. Bandura, A.: Social Foundations of Thought and Action. Prentice Hall, Englewood Cliffs 
(1986) 

2. Basili, V., Selby, R.: Comparing the Effectiveness of Software Testing Strategies. IEEE 
Trans. Soft. 13(12), 1278–1296 (1987) 

3. Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S., Hastings, M.: Effective-
ness of End-User Debugging Software Features: Are There Gender Issues? In: Proc. ACM 
CHI 2005, pp. 869–878 (2005) 

4. Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A., 
Cook, C.: Tinkering and Gender in End-User Programmers Debugging. In: Proc. ACM 
CHI 2006, pp. 231–240 (2006) 

5. Beckwith, L., Inman, D., Rector, K., Burnett, M.: On to the Real World: Gender and Self-
Efficacy in Excel. In: Proc. IEEE VLHCC (2007) 

6. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Comm. 
ACM 47(9), 53–58 (2004) 



 Males’ and Females’ Script Debugging Strategies 223 

7. Danis, C., Kellogg, W., Lau, T., Stylos, J., Dredze, M., Kushmerick, N.: Managers’ Email: 
Beyond Tasks and To-Dos. In: ACM CHI Extended Abstracts, pp. 1324–1327 (2005) 

8. Gallagher, A., De Lisi, R., Holst, P., McGillicuddy-De Lisi, A., Morely, M., Cahalan, C.: 
Gender Differences in Advanced Mathematical Problem Solving. J. Experimental Child 
Psychology 75(3), 165–190 (2000) 

9. Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komireddy, C., Narayanan, V., Cook, 
C., Burnett, M.: Gender Differences in End-User Debugging Revisited: What the Miners 
Found. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 
19–26 (2006) 

10. Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, R., Burnett, M., Wiedenbeck, S.: 
Can Feature Design Reduce the Gender Gap in End-User Software Development Envi-
ronments? In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 
149–156 (2008) 

11. Hartzel, K.: How Self-Efficacy and Gender Issues Affect Software Adoption and Use. 
Communications of the ACM 46(9), 167–171 (2003) 

12. Heger, N., Cypher, A., Smith, D.: Cocoa at the Visual Programming Challenge 1997. 
Journal of Visual Languages and Computing 9(2), 151–169 (1998) 

13. Ioannidou, A., Repenning, A., Webb, D.: Using Scalable Game Design to Promote 3D 
Fluency: Assessing the AgentCubes Incremental 3D End-User Development Framework. 
In: Ioannidou, A., Repenning, A., Webb, D. (eds.) IEEE Symposium on Visual Languages 
and Human-Centric Computing, pp. 47–54 (2008) 

14. Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P., Zhao, H.: A1: End-User Pro-
gramming for Web-based System Administration. In: ACM UIST 2005, pp. 211–220 (2005) 

15. Katz, I., Anderson, J.: Debugging: An Analysis of Bug-Location Strategies. In: Human-
Computer Interaction, vol. 3, pp. 351–399 (1988) 

16. Kelleher, C., Pausch, R., Kiesler, S.: Storytelling Alice Motivates Middle School Girls to 
Learn Computer Programming. In: Proc. ACM CHI 2007, pp. 1455–1464 (2007) 

17. Ko, A.J., Myers, B.A.: Designing the Whyline: A Debugging Interface for Asking Ques-
tions about Program Failures. In: Proc. ACM CHI 2004, pp. 151–158 (2004) 

18. Ko, A., DeLine, R., Venolia, G.: Information Needs in Collocated Software Development 
Teams. In: International Conference on Software Engineering, pp. 344–353 (2007) 

19. Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.: Mental Models and Software Mainte-
nance. In: Soloway, E., Iyengar, S. (eds.) Proc. ESP. Ablex, Norwood, NJ, pp. 80–98 
(1986) 

20. Meyers-Levy, J.: Gender Differences in Information Processing: A Selectivity Interpreta-
tion. In: Cafferata, P., Tybout, A. (eds.) Cognitive and Affective Responses to Advertis-
ing, Lexington, Ma, Lexington Books (1989) 

21. Nanja, N., Cook, C.: An Analysis of the On-Line Debugging Process. In: Olson, G.M., 
Sheppard, S., Soloway, E. (eds.) Proc. ESP, Ablex, Norwood (1987) 

22. Nardi, B.: A Small Matter of Programming: Perspectives on End-User Computing. MIT 
Press, Cambridge (1993) 

23. O’Donnell, E., Johnson, E.: The Effects of Auditor Gender and Task Complexity on In-
formation Processing Efficiency. Int. J. Auditing 5, 91–105 (2001) 

24. Pennington, N.: Stimulus Structures and Mental Representations in Expert Comprehension 
of Computer Programs. Cognitive Psychology 19(3), 295–341 (1987) 

25. Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M., Burnett, 
M.: Strategies and Behaviors of End-User Programmers with Interactive Fault Localiza-
tion. In: IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 
15–22 (2003) 



224 V. Grigoreanu et al. 

26. Rigby, P., German, D., Storey, M.: Open Source Software Peer Review Practices: A Case 
Study of the Apache Server. In: International Conference on Software Engineering, pp. 
541–550 (2008) 

27. Rode, J.A.: An Ethnographic Examination of the Relationship of Gender & End-User Pro-
gramming, Ph.D. Thesis, University of California Irvine (2008) 

28. Rode, J.A., Toye, E.F., Blackwell, A.F.: The Fuzzy Felt Ethnography - Understanding the 
Programming Patterns of Domestic Appliances. Personal and Ubiquitous Computing 8, 
161–176 (2004) 

29. Romero, P., du Boulay, B., Cox, R., Lutz, R., Bryant, S.: Debugging Strategies and Tac-
tics in a Multi-Representation Software Environment. International Journal on Human-
Computer Studies 61, 992–1009 (2007) 

30. Rosson, M., Sinha, H., Bhattacharya, M., Zhao, D.: Design Planning in End-User Web 
Development. In: Proc. VLHCC. IEEE, Los Alamitos (2007) 

31. Storey, M., Ryall, J., Bull, R.I., Myers, D., Singer, J.: TODO or to bug: Exploring How 
Task Annotations Play a Role in the Work Practices of Software Developers. In: Interna-
tional Conference on Software Engineering, pp. 251–260 (2008) 

32. Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Narayanan, V., Bucht, K., Drummond, 
R., Fern, X., Wiedenbeck, S., Burnett, M.: Testing vs. Code Inspection vs. ...What Else? 
Male and Female End Users’ Debugging Strategies. In: Proc. ACM CHI (2008) 

33. Torkzadeh, G., Koufteros, X.: Factorial Validity of a Computer Self-Efficacy Scale and 
the Impact of Computer Training. Educational and Psychological Measurement 54(3), 
813–821 (1994) 

34. Weiser, M.: Programmers Use Slices When Debugging, Comm. ACM 25(7), 446–452 
(1982) 

35. Whitaker, A., Cox, R., Gribble, S.: Configuration Debugging as Search: Finding the Nee-
dle in the Haystack. In: 6th Symposium on Operating System Design and Implementation 
(2004) 

36. Windows PowerShell Wikipedia entry (accessed on August 20, 2008),  
http://en.wikipedia.org/wiki/Powershell  

37. Yuan, C., Lao, N., Wen, J., Li, J., Zhang, Z., Wang, Y., Ma, W.: Automated known prob-
lem diagnosis with event traces. In: Proc. ACM Sigops/Eurosys European Conference on 
Computer Systems (2006) 

38. Zang, N., Rosson, M.B.: What’s in a Mashup? And Why? Studying the Perceptions of 
Web-Active End Users. In: IEEE Symposium on Visual Languages and Human-Centric 
Computing, pp. 31–38 (2008) 

 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 225–241, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Hypertextual Programming for Domain-Specific  
End-User Development  

Sebastian Ortiz-Chamorro1,4, Gustavo Rossi1,2, and Daniel Schwabe3 

1 LIFIA, Universidad Nacional de La Plata, Argentina 
2 CONICET, Argentina 

3 Departamento de Informática, PUC-Rio, Brazil 
4 Departamento de Electrónica e Informática, Universidad Católica de Asunción, Paraguay 

{sortiz,gustavo}@lifia.info.unlp.edu.ar, dschwabe@inf.puc-rio.br 

Abstract. Domain-specific languages (DSLs) have successfully been used for 
end-user development. However, dealing with language syntax poses signifi-
cant learning challenges. In this paper, we introduce hypertextual programming, 
a technique that represents language syntax as hypertext. With this technique, 
instead of dealing with textual languages, users can inspect and construct their 
programs mainly by using navigation. Beyond merely representing the syntax, 
hypertext can be used to provide various views of a single program code. Nev-
ertheless, to reap the benefits of this technique, adequate hypertextual editors 
must be built. This paper argues that many of the lessons learned in the web en-
gineering area can be used to deal with this problem. Millions of users navigate 
the World Wide Web. Hypertextual programming leverages this widely avail-
able end-user skill to facilitate the construction of computer programs. 

Keywords: hypertextual programming, end-user development, interfaces for 
end-user development, domain-specific languages, web engineering.  

1   Introduction 

Domain-specific languages (DSLs, a.k.a. scripting languages) have successfully been 
used for end-user development [1,2,3]. These languages help domain experts con-
struct, inspect and test computer programs that operate within defined realms. Part of 
their success may be attributed to the fact that they present a set of familiar concepts 
to the end-user. However, DSLs force the user to “learn the arcane syntax and vo-
cabulary conventions of the language” [2]. This initial step constitutes a difficult and 
undesirable challenge for the end-user. 

Even in the case of DSLs, language syntax may be very complex. Consider the 
case of writing business rules in Jess [4], a popular rule-engine. The following is an 
example of a valid sequence of Jess commands: 

(defglobal ?*threshold* = 20) 

(bind ?age = 15) 

(if (> ?age ?*threshold*) then 



226 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

          (printout t "adult" crlf) 

       else 

          (printout t "minor" crlf)) 

The syntax of these commands is correct, but one missing or extra parenthesis 
would render the whole program syntactically invalid. We also have to take into ac-
count that dealing with language syntax in order to write a program goes way beyond 
avoiding syntactic errors. Executing the above set of commands in Jess 7.0 would 
actually generate a runtime error: Not a number: “=” 

This is because of a subtlety: even though syntactically correct, the second line ac-
tually assigns the string “=”, not the number 15, to the age variable. If the user’s 
intention was to assign the numeric value 15 to this variable, the following would be 
the correct Jess instruction: 

(bind ?age 15) 

Other language conventions may involve constantly memorizing and recalling (or 
at least searching through) an ever changing set of available elements to use. For 
example, in Jess, the set of available functions at a given program point contains all 
the predefined language functions and also any functions that the user has already 
defined. This is representative of many other languages where users are required to 
declare, define or import variable declarations, functions and other language elements 
before using them. 

A different dimension of dealing with the language syntax in programming in-
volves understanding the program code. Programming is an iterative process where, 
typically, the programmer has to read and understand existing code, identify the part 
or parts of the program that will be modified in a particular iteration and then perform 
the changes. Going back to the Jess example, a beginner will need significant effort to 
understand the complex language syntax. This adds a heavy burden to the authoring 
process. 

Visual programming techniques have been developed to mitigate this problem by 
giving users graphic representations that may be more easily recognizable in some 
cases. These techniques have been used for end-user development [3]. However, 
visual programming has problems of its own. Among other things, some authors ar-
gue that visual programming may have scalability problems [5]. 

Graphic or not, the length and complexity of the end-user’s programs, together 
with the limitations stated above and the need to focus on the specific parts that are 
undergoing modification call for a representation of the program code as a set of 
manageable pieces that the user can browse for inspection.  

If a program is divided into units to be presented to the user, this user will need an 
intuitive and consistent way to select the specific parts to be viewed and modified. 

This paper presents a technique based on the use of hypertext development envi-
ronments that embody the syntax and conventions of the underlying language and use 
navigation as the main tool to inspect and modify programs. Hypertext systems [6] 
provide interactive environments where users can navigate through defined pieces of 
information (nodes). Beyond code browsing, in this paper we argue that by ade-
quately using widely available tools like the World Wide Web, users can be provided 
with explicit controls that present them with a carefully chosen set of modification 



 Hypertextual Programming for Domain-Specific End-User Development 227 

options for each specific node given the underlying language syntax. This has the 
potential to greatly reduce the programming learning effort. 

This technique grew out of more than a decade of experience in the construction of 
web-applications that had various end-user development features. These ranged from 
small business process management rule definitions to the complete development 
environment presented in this paper as a concrete example of hypertextual program-
ming: Benefit Catalog and Benefit Configurator. This dyad of applications constitutes 
a complete end-user development, versioning, testing, deployment and run-time envi-
ronment for dynamic health-care insurance policy programming. 

Expressing language syntax through navigation poses a significant engineering 
challenge. Hypertextual programming draws heavily on ideas from web engineering 
[7].  Several web design methodologies address the problem of expressing an underly-
ing structure (usually a domain model) through a web-application [8,9,10,11,12]. In 
this case, the underlying structure is the syntax of a domain-specific language. The 
description of hypertextual programming that we present in this paper is a first at-
tempt towards applying the lessons learned in web engineering to the problem of 
constructing hypertextual programming environments for a given DSL. 

The structuring of this paper loosely follows the chronological development of hy-
pertextual programming. In our experience, it is easier to understand this technique by 
starting with a concrete example and then exploring the general ideas and definitions 
behind it. Section 2 contains a description of Benefit Catalog and Benefit Configurator 
and includes some general requirements, architecture and hypertextual programming 
characteristics. In section 3, we present a more general description of hypertextual 
programming and some web engineering ideas that may help in the construction of 
hypertextual developing environments. Section 4 discusses related work. Finally, the 
conclusions of this paper and future research are presented in section 5. 

2   Benefit Catalog and Benefit Configurator 

Health-care insurance is a fertile ground for domain-specific end-user development. 
The process of administering health care insurance policies involves complex deci-
sion-making based on knowledge gained throughout decades of industry experience. 
Domain experts in this area may take years to learn the intricacies of just the sub-
areas of the business that they work on. Merely the first step of the process from the 
client’s point of view, which is helping to choose, customize and issue a health care 
policy, involves maintaining a sizable catalog of products that can be tailored to a 
specific client’s needs. The health insurance products rendered by this process must 
comply with a considerable number of company guidelines and policies, and also any 
applicable laws. 

Benefit Catalog and Benefit Configurator allow domain experts (benefit engineers) 
to: i)collaboratively develop a dynamic catalog of health-care insurance products 
(each dynamic product definition is called a product template); ii)maintain a library of 
parts to be used by different product templates; iii)test the product templates; 
iv)promote the approved versions of product templates for use in a production  
environment; v)run the product templates developed as an interactive sequence of 
questions to be asked to specialized company sales representatives; vi)based on the 



228 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

answers, generate and store health-care insurance policy specifications (called answer 
sets) as the output of these interactive questionnaires; and vii)provide support for the 
full product development life cycle, including the management of different versions 
of product templates and reusing previous answer sets for health care policy renewal. 

An important requirement of this application is that the whole process described 
above has to be done without the intervention of professional programmers or com-
pany IT staff. This project required benefit engineers, that is, domain experts that do 
not have any professional programming background, to develop, test and manage 
product templates by themselves using a web environment. This requirement clearly 
prompted us to focus on the construction of tools that facilitate end-user development. 

 

Fig. 1. Benefit Catalog and Benefit Configurator architectural diagram. Product templates are 
stored in the product template database, then, they are rendered as “executble” PTL XML. 

An architectural diagram of the applications is shown in Fig. 1. Benefit Catalog is a 
fully web-based product template development environment. This tool saves product 
templates both in the product template database and also as programs written in the 
PTL1 XML language. This allows users to query the product template database and 
obtain information about the various product templates that have been developed. 

Additionally, benefit engineers can test and manage product templates’ versions 
and the product part libraries that are used to build them. 

Benefit Configurator is a PTL interpreter that runs these programs and generates an 
interactive series of questions to be answered by specialized sales representatives; 
then, based on the answers provided, it produces a health care insurance policy for the 
client (an answer set) and saves it to the answer set database. 

The answer sets database is then transformed and imported into various down-
stream systems, including legal (text) contract generators and various claims systems 
among others. 

                                                           
1 PTL stands for Product Template Language. 



 Hypertextual Programming for Domain-Specific End-User Development 229 

2.1   Product Template Language 

We created an internal domain-specific language for product template specification. 
The Product Template Language (simply called PTL) is an XML [13] language that 
was built as an extension of the Cytera.Rules language [14]. Cytera.Rules is a Cytera 
Systems Inc. proprietary XML business rules language that allows the creation and 
evaluation of basic string, mathematical and boolean-based rules. PTL allows the 
representation and processing of rules involving objects and operations that are spe-
cific to the health-care insurance area.  

In order to run PTL, almost all of the Cytera.Rules language interpreter had to be 
rewritten. To avoid this inconvenience in future projects, we developed a business 
rules language called AtOOmix with the aim of allowing the creation and implemen-
tation of XML domain-specific languages as extensions of existing AtOOmix lan-
guages without the need to fully rebuild the original languages and  interpreters [15]. 

2.2   Benefit Catalog Hypertextual Programming Environment 

It is important to point out that the benefit engineers never had direct contact with 
PTL. A fully web-based PTL editor was developed as the core of the Benefit Catalog 
application. This editor has several features aimed at facilitating the benefit engineers’ 
tasks. Benefit Catalog represents the PTL code of an existing product template as a 
hierarchical collection of web pages that the user can navigate through.  

Benefit Engineers never had to learn PTL, they only had to use the web-application 
that serves as user-interface. This is similar to the case of users that employ a web-
application to populate a database: these users never have to deal directly with the 
database tables; they merely have to interact with the web-application. 

Benefit engineers can also create and modify PTL code with Benefit Catalog.  
Fig. 2 shows how a new question is created. First, the user activates the Attach Plan 
Choice Question anchor in the Grouping node. This takes the user to the Question 
node. In this case, since it is a new question, users must fill-in the appropriate fields 
and then click on the Attach button. A benefit engineer can also create a new question 
by copying and then modifying an existing one. The Copy link is also shown in Fig. 2. 

Right after a question has been created, and also throughout subsequent develop-
ment sessions, benefit engineers can use navigation to go back to the question to  
inspect or modify it, e.g. change the grouping it belongs to, add a rule to turn-on the 
question or change the set of possible answers. 

As a comparative example, the following code is a simplified PTL representation 
of a plan choice question: 

<grouping name=“Deductible”> 

  <pcq question_part=“fam_ded”> 

    <when_turned_on_rule> 

      <operation op=“=”> 

 <var type=“String”>ded_yn</var> 

 <const type=“String”>Yes</var> 



230 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

      </operation> 

    </when_turned_on_rule> 

    <quality_type>core</quality_type> 

    <funding_type>SI</funding_type> 

    <seq>1</seq> 

    <eff_dt>05/11/2005</eff_dt> 

    <trm_dt>05/11/2007</trm_dt> 

    <save>Y</save> 

    <txt>Do you want a family deductible?</txt> 

    <answer type=“String” qi=“Core” cc= “Y”  

  mndt=“Federal”>Yes</answer> 

    <answer type=“String” qi=“Core” cc= “Y”  

  mndt=“Federal”>No</answer> 

  </pcq> 

... 

Writing these rules manually requires an important effort. The syntax is complex 
and many language conventions have to be taken into account.  For example, all ques-
tions have to reference previously defined question parts and answers. This is also 
true of quality types, funding types, quality indicators, cost containment and mandate 
indicators. In all these cases, with Benefit Catalog, values are assigned by simply 
choosing them from select lists. The application interface enforces the language con-
ventions instead of leaving that burden to the user. 

Reading questions directly from PTL would also a problem for the end-user, espe-
cially as the number of questions becomes large (a template with more than 200 rule-
activated questions is not unusual). The background web page shown in Fig. 2 is an 
example of high-level code visualization. Questions belonging to a specific group are 
displayed on a single page. At this level, only the most critical question information is 
displayed to provide the user with a comprehensive view of the set of questions that 
form the group. 

Using this web interface, benefit engineers can add other constructs used in prod-
uct templates like cost sharing components and define rule-driven properties for them. 
Users can also define benefit options, benefit service levels for the benefit options and 
rules to populate them with the dynamic cost sharing components previously defined. 
For sake of space and simplicity, we do not provide the details of all these program-
ming primitives in this paper. The number of these additional primitives is at least 
five times higher than the ones related to plan choice questions and involve more 
health-care insurance-specific concepts that are not as easy to explain as questions 
and answers. The main features of hypertextual programming on this system are ade-
quately illustrated with plan choice questions. 

 



 Hypertextual Programming for Domain-Specific End-User Development 231 

 

Fig. 2. Creating a new question in Benefit Catalog 

To complete the program lifecycle, benefit engineers can run their product tem-
plates in a test environment, manage different versions of the same product template 
and activate it for it use in a production environment where it is used to interactively 
configure health-care plans. It is important to point out that all of this process is done 
by the benefit engineers themselves through Benefit Catalog and without the interven-
tion of IT staff or professional developers. 

3   Hypertextual Programming 

Benefit Catalog and other applications that provide similar features cannot be ade-
quately characterized neither as visual programming tools nor as text or structure 
based editors either. Rather, Benefit Catalog can be seen as an example of hypertex-
tual programming. 

We define hypertextual programming as a form of programming that uses naviga-
tion as the primary tool to inspect and edit the application code, and is supported by a 
computer system that: i) represents the entire program source code as hypertext; and 
ii) allows all the possible finite language instances to be generated as navigation paths 
through it. 

In contrast to hypertextual programming, visual programming provides the user 
with a set of mainly graphic (as opposed to purely textual) elements that users can 
manipulate in order to develop a program. Benefit Catalog does not provide a graphic 



232 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

representation of programs (in this case product templates); it rather provides an in-
teractive system where the users can explore and modify the program code by using 
navigation.  

At the same time, this application is no traditional text editor either. Text editors 
usually present programs as collections of characters divided in files. Development is 
achieved mainly by adding and deleting characters in those files. Integrated develop-
ment environments like Eclipse [16] provide some forms of navigation between dif-
ferent portions of the program code and features like auto-complete; however, we 
consider that they do not provide all the necessary features for hypertextual program-
ming. First, navigation is not the primary means for source-code browsing and –most 
importantly– editing. Second, the source code structure at large is not represented as 
hypertext. 

One basic definition of hypertext describes it as text structured in such a way that it 
has several possible reading paths. An example that satisfies this definition is the 
famous novel “Rayuela” by Argentinian writer Julio Cortazar. However, several au-
thors insist on having automated navigation support for an artifact to be considered a 
hypertext system [6]. In the same fashion, we view hypertextual programming as an 
activity that is inseparable from a computer system that provides automated support 
for its key aspects. We call this computer system a hypertextual editor.  

This definition requires program inspection and editing to be done primarily 
through navigation, but in our experience, the combination of this and other pro-
gramming and interface construction techniques offer bigger potential. As an exam-
ple, we found that mathematical and logical formulas may not always be well suited 
for hypertext representation. Breaking up such formulas in various nodes would lead 
to unnecessarily long navigation paths that contain very little information in each one 
of them. Consider the following formula: 

1 + (2 * (Math.cos(a + b))) 

If we represent it as eight nodes (1, +, 2, *, Math.cos, a, +, b) and provide the  
corresponding navigational links between them, very little information would be dis-
played in each node and the user would have to traverse a long navigation path just to 
read it. 

This example is representative of other cases where better results might be ob-
tained simply by using text to represent sub-parts of a language. In these cases, the 
text subparts can be used as node components. 

In other cases, graphic elements may be more expressive to represent sub-parts of a 
language. Again, these graphic elements may also be used as node components. 

When creating or altering language elements (e.g. adding a question or a group), 
users are creating or modifying node and link instances; they expect these changes to 
be reflected in the space that they are navigating (the specific instance of the naviga-
tional model at a given time). In other words, with hypertextual programming, the 
development of a computer program can be viewed as the construction of a navigation 
space, or more formally, as the iterative instantiation of a given navigational model. 

Our definition requires the language syntax to be represented through hypertext. In 
the next section, we give a more detailed description of how a widely used language 
syntax definition can be represented in this way. 



 Hypertextual Programming for Domain-Specific End-User Development 233 

3.1   Expressing Language Syntax through Hypertext 

Several web engineering methodologies separate conceptual design from navigational 
design in such a way that the nodes and links in navigational models are based on the 
objects, attributes and relations found in the conceptual model [8,9,10,11,12]. For 
example, Fig. 3 shows the conceptual and navigational models for part of a health 
care information website in OOHDM [8].  

In OOHDM, navigational objects (nodes and links) are explicitly defined as views 
on conceptual objects. Nodes are composed of attributes that potentially belong to 
several classes in the conceptual model. In the conceptual model shown in Fig. 3, a 
Medical Condition class has as attributes the Name and General Information about it. 
The symptoms associated with a condition are a related but separate class. Treatment 
is also on a separate class. 

In the navigational model, a node based on the Medical Condition conceptual class 
shows more than merely the Name and General Information. A list of Symptoms, 
Tests and available Treatments are also displayed in this node. Here, only Test names 
are displayed (other attributes are hidden at this level), and these names are anchors 
that trigger navigation to the Test node. A similar thing occurs with the Treatment 
node. However, not necessarily all conceptual classes become nodes. In our example, 
there is no node corresponding to the Symptom class. 

 

Fig. 3. Conceptual and Navigational models for a health care information website 
 



234 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

Links are the navigational realization of relations appearing in the conceptual 
model. In our example, the Has relation between the Medical Condition and Treat-
ment conceptual classes becomes the Has link between the Medical Condition and 
Treatment nodes. 

This separation of concerns allows web developers to deal with the understanding 
of complex domains and the creation of a navigational scheme that expresses this 
underlying domain as separate issues. At the same time, these practices force the 
developers to elaborate a solid and coherent underlying foundation (the domain 
model) that will be rendered to the web site user in the form of a concrete navigation 
structure.  

A hypertextual editor’s navigational design should also express an underlying 
structure. The key difference is that the underlying structure being expressed through 
navigation is not an object model, but rather the syntax of a domain-specific pro-
gramming language. In order to do this, there must be a correspondence between 
language syntax and navigational design. Fig. 4 is an example of the correspondence 
between PTL syntactic elements as defined in XML Schema [17,18] and part of 
Benefit Configurator’s navigational classes. 

 

Fig. 4. An example of correspondence between PTL’s XML Schema-defined syntax and Bene-
fit Catalog’s navigational class diagram. PTL’s XML Schema is presented using XML Spy’s 
visual schema notation. Tag attributes are not shown.  

Nodes have a correspondence with XML language tags. The node’s content may 
come from the data contained in the tag that it represents and also from related tags. 
For example, the Question node contains, among other things, the grouping name, 
from the parent Grouping tag; the question text attribute, from the QuestionText child 
tag; and the list of answers for the question, from the Answer tags below.  



 Hypertextual Programming for Domain-Specific End-User Development 235 

Not all tags become nodes. For example, there is no node that corresponds to the 
Answer tag. The contents of these tags are displayed in the Question node. Also note 
that not all the complete contents of a tag are shown in the node that represents it. For 
example, the Grouping node does not show all the details of the Question tags that it 
contains. The question of what tags should constitute nodes and what information to 
include in them are design choices that have to be decided by the software engineers 
in charge of the project. General Web design and usability guidelines should be taken 
into account [19]. 

Nodes are weaved by the links that connect them in such a way that links corre-
spond to the syntactic rules that define the language structure. The links in Benefit 
Catalog correspond to the XML Schema definitions that specify the tag structure. For 
example, the contains link from Grouping to Question corresponds to the xs:sequence 
XML Schema definition that specifies the content of the Grouping tags to include a 
sequence of Question tags. 

One last element that needs to be defined in order to complete the navigation de-
sign is the context diagram. The context diagram groups navigational objects into sets 
and defines access structures that the user can employ to reach and move through 
these objects. Fig. 5 shows part of the context diagram for Benefit Catalog. 

 

Fig. 5. Part of the Benefit Catalog context diagram 

From the main menu, users have direct access to an index of product templates, 
listed alphabetically. When users access this index, they enter into the Product Tem-
plate Alphabetical context, where product templates are listed by name. From that 
context, the user can go to the Groupings context where groupings are displayed by 
sequence order. 

Although Benefit Catalog does not use this feature, in OOHDM, navigational 
classes may be decorated when appearing in a particular context. Decorating naviga-
tional classes may become important as more potent context diagrams are built. 



236 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

3.2   Navigating beyond Syntax 

Benefit Catalog has a very simple context diagram that stems directly from PTL’s 
hierarchical XML Schema definition, e.g. groupings and questions are only displayed 
by sequence. 

It is important to point out that many other contexts can be built around these navi-
gational elements, providing the user with different views of the program code. For 
example, a possible improvement for Benefit Catalog could be displaying questions 
indexed by the variables that are used in its activation rules, or by its answers. This 
would help visualize what questions a certain variable helps turn on and off, or in 
what questions a certain answer is used in. 

In fact, navigational design in web engineering in general is to a large extent, the 
definition of the various navigational contexts that the user will be traversing while 
performing the various tasks the applications purports to support. Therefore, the natu-
ral place to look for them is in the task descriptions (for example, in user interaction 
diagrams). 

The potential features of hypertextual editors go beyond merely representing the 
underlying language syntax. The various tasks performed by end-users should be an 
important guide for organizing sets of navigational elements. 

4   Related Work 

4.1   Hypertext CASE Tools 

There are different ways in which hypertext can support the software engineering 
process. Sometimes, these approaches are hard to compare because they may all use 
hypertext but they use it in completely different ways or to address different software 
engineering problems. 

Østerbye developed a system to explore the idea of using hypertext for literate pro-
gramming [22]. The goal of this work was to use the linking capabilities of hypertext 
to help weave together smalltalk code and documentation to facilitate inspection. In 
classic literate programming spirit, the aim was to construct a human-oriented repre-
sentation of code and documentation. By using hypertext, the program can go beyond 
a linear document. 

However, the advantages of this technique come at a great cost. The developer has 
to design all the navigation for the hypertext program representation. Even the authors 
point out that a drawback of this technique is “the well-known problem of hypertext, 
that one looses the feeling for where the information presently available at the screen 
belongs in the overall document”. 

First, it is important to point out that this system, and literate programming in gen-
eral, assumes that there is an underlying programming language that will be used in 
the development process (Smalltalk in this case). Literate programming (with or 
without hypertext) uses this basic tool –the programming language(s)–, rearranging 
and combining source code with documentation in order to make them easy to absorb 
by a human reader; we can say that literate programming is at least one-level above 
purely textual programming languages. Hypertextual programming is proposed as an 



 Hypertextual Programming for Domain-Specific End-User Development 237 

alternative to textual programming languages. Moreover, hypertextual programming 
could be used for literate programming. 

There are some similarities between this literate programming system and the hy-
pertextual environments described in this paper. In this literate programming system, 
some of the Smalltalk constructs are represented as nodes and some of the syntax 
rules as links. However, this relationship is not strict and the nodes contain important 
portions of textual code.  

This Smalltalk literate programming system does not conform to our definition of 
hypertextual programming. Although the result of the programming process is hyper-
text (a program-document that developer can navigate through) and navigation may 
be used throughout the development process, programming is done primarily by edit-
ing text, not by using navigation. The most important criterion or our definition is not 
met. By using this or a similar system, the end-user would still have to learn a textual 
programming language. That’s precisely what we are trying to avoid. 

Using hypertext for end-user development also has to address the user disorienta-
tion problem. In order to do this, the web engineering techniques discussed in this 
paper were developed in part to deal with this problem. However, using these tech-
niques for designing navigation is in turn a costly task usually done by professional 
web engineers. As opposed to this Smalltalk literate programming system, the present 
proposal does not leave navigational design to the developer (in our case, an end-user 
doing development). When designing a hypertextual editor, engineers have the re-
sponsibility of transforming language syntax into navigational design and create an 
application where the user is less likely to get lost.  

Then, when end-users add or modify navigational elements, they may create links 
and nodes, but these actions do not alter the underlying navigational model (they 
simply instantiate it). 

The Chimera open hypermedia system [23] uses hypertext to help manage and 
combine heterogeneous software engineering tools. Some of these engineering tools 
are programming language IDEs. Chimera also uses hypertext at a level above pro-
gramming languages. The same can be said about Ishys [24].  

Hypertextual programming editors may be one of the many systems combined by 
Chimera and other open hypermedia systems. 

4.2   Visual and Textual Programming 

Visual programming languages provide “some visual representations (in addition to 
or in place of words and numbers) to accomplish what would otherwise have to be 
written in a traditional one-dimensional programming languages” [25]. Despite its 
advantages, visual programming may have scalability problems [5], including scal-
ability from a program-size standpoint and also scalability from a problem-domain 
standpoint. 

From a program-size standpoint, the Benefit Catalog example that we presented 
was successfully used by end-users to develop programs (dynamic health care prod-
ucts) that are sizable and complex by various measures: i) the programs had several 
thousand rules; ii) they were collaboratively developed; iii) the development process 
of these programs typically takes several months; iv) these programs went through 
several maintenance cycles. 



238 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

The various levels of abstraction and potentially different views of the source code 
given by a well-designed hypertextual editor, provide an adequate tool to deal with 
large programs. 

From a problem-domain standpoint, this paper has provided guidelines to build hy-
pertextual editors for any character-based, domain-specific language. Since domain-
specific languages have been used in several areas, this suggests that hypertextual 
programming may also be scalable on this respect. In fact, we have used this tech-
nique in health-care insurance, small business rules definitions and programming 
email alerts for an academic system. 

Visual programming techniques may be more appropriate to express some pro-
gramming concepts. Even in these cases, hypertextual programming is well-suited for 
use in combination with visual and other programming and interface construction 
techniques. 

In the case of textual programming, having to learn the syntax and conventions of 
character-based programming languages constitutes a considerable problem for end-
users. The importance of this problem cannot be overstated. Providing a hypertextual 
editor that embodies the syntax and language conventions, transforming them in navi-
gational paths to be traversed by the end-user significantly reduces this burden. 

However, in the case of end-users who have already learned a textual domain-
specific language, there may be no clear advantage in starting to use a hypertextual 
editor for the same language. 

5   Conclusions and Future Research 

In this paper we introduced the concept of hypertextual programming. This  
programming technique represents the program code as hypertext [6], allowing the 
end-user to inspect and modify this code mainly by using navigation. 

Millions of users navigate the World Wide Web. Hypertextual programming lever-
ages this widely available end-user skill to facilitate the construction of computer 
programs. 

The user is provided with an environment that allows interactive source code ex-
ploration through navigation. A well-designed environment could facilitate reading 
and understanding by providing various views of the source code at potentially differ-
ent levels of abstraction and a consistent way to move between them. 

In a hypertextual editor, the user interacts with interface elements in order to mod-
ify the program code. On any given node, a carefully chosen set of relevant editing 
controls allows program modification without overwhelming the user. When com-
bined with DSLs, many of these interface components may represent concepts that are 
familiar to the user. This technique is expected to significantly reduce the learning 
effort needed to begin developing domain-specific programs. 

We presented and discussed a concrete example of a hypertext editor, Benefit Cata-
log, both as validation and to illustrate this technique. On this application, end-users 
have been effectively developing, testing, debugging, maintaining, deploying and 
running complex programs for dynamic health care policy configuration without the 
intervention of professional programmers or IT staff. 



 Hypertextual Programming for Domain-Specific End-User Development 239 

Beyond syntax representation, various navigational contexts may be created in or-
der to provide the user with a rich set of navigation paths that take into account the 
various tasks that form the software development process. 

However, reaping the benefits described above requires well-designed hypertextual 
editors. This entails significant engineering challenges. Among other things, editors 
have to express the syntax of the underlying language through a concrete navigational 
and interface design to begin with. In this paper, we argue that many of the techniques 
used in web engineering, most noticeably design methodologies [8,9,10,11,12],  can 
be helpful on this respect, leveraging years of academic research and real-world ex-
perience. 

Hypertext has been used in programming before. We reviewed three representative 
examples [22,23,24]. In general, all of these tools and techniques assume that there 
are one or more underlying programming languages and use hypertext to rearrange 
and/or link the potentially different program sources with other documents and prod-
ucts of the software engineering process. In general, they use hypertext on an above-
language level. As an exception, in the Smalltalk literate programming system that we 
reviewed [22], some of the Smalltalk syntax is expressed in the form of links. How-
ever, nodes still contain significant portions of textual code and the rendering of the 
program in the form of nodes and links is guided by the literate-programming goal of 
human readability. In this system, although navigation may play a role in the devel-
opment process, it is not the primary means to edit the program code. Text editing is 
still a central part of the development process. Therefore, this system does not con-
form to our definition of hypertextual programming. More importantly, the user has to 
know Smalltalk in order to use this system. The need to learn a textual language is 
precisely what hypertextual programming tries to avoid. 

We made a comparison with these tools mainly to clarify that their use of hypertext 
is different and addresses other problems related to software development. The side-
by-side comparison should not be with these techniques, but mainly against visual and 
textual programming. 

Hypertextual programming is different from visual programming. The first does 
not rely mainly on the expressive power of graphics to facilitate the development 
process; it rather relies on the organization of the source code as a set of nodes and an 
intuitive mechanism to move around these nodes: navigation. 

It has been argued that visual programming may have scalability problems [5]. 
Hypertextual programming can help to mitigate the problem of dealing with a great 
number of visual primitives at one time by providing different views of the program 
code and a systematic mechanism to tie them up: navigational links. At the same time, 
hypertextual editors can benefit from the use of visual techniques as part of their in-
terface. 

We provided general guidelines to build hypertextual editors for textual, domain-
specific languages. This suggests that hypertextual programming may also be useful 
in different areas (domain-scalability). In fact, we have used this technique in health-
care insurance, small business rules definitions and programming email alerts for an 
academic system. 

With textual programming, the user has to learn the syntax and conventions of 
character-based programming languages. This constitutes a significant problem that 
hypertextual programming may help to solve. Providing a hypertextual editor that 



240 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe 

embodies the syntax and language conventions, transforming them in navigational 
paths to be traversed by the end-user may significantly reduce this burden. 

We discussed some basic correspondence principles that should exist between 
XML Schema [17] syntax elements and a navigational model that may serve as guides 
in the design process. Still, more formal and detailed methodologies for designing 
hypertextual editors could be developed in the future. 

Moreover, a careful and detailed review of the use of navigational contexts for 
building hypertextual editors may be beneficial. 

Several design patterns for hypertext in general have been developed [20] since 
they were first introduced in [21]. Design patterns that are specific to hypertextual 
editors may be needed. In our experience, building nodes that are overly small or 
providing an excessive number of editing controls on a single node are not desirable. 
However, some of these problems may be related to more fundamental limitations of 
this technique. The answer may lie in the fact that some languages may be more suit-
able than others for use with hypertextual programming.  

Our definition requires the hypertext editor to be able to generate all possible finite 
instances of the language and it requires navigation to be the main inspection and 
editing mechanism. Although a more formal demonstration should be performed, one 
seemingly direct consequence is that all (or at least the main) editing tasks for the 
given language should be achievable through navigation. 

This paper discusses mainly languages defined in XML Schema. The specifics of 
other grammars deserve further investigation. 

Since a hypertextual development environment has a correspondence with the syn-
tactic elements of the underlying code, it may be viewed simply as a mapping be-
tween the language syntax and the possible ways of representing these elements as a 
web-application (the formatting and layout could be specified separately with CSSs). 
We are currently designing a web-based hypertextual editor generation application for 
XML Schema-defined  languages. 

The development environments discussed on this paper are mainly web-
applications. Other forms of hypertext should also be considered. 

References 

1. Martin, J.: An Information Systems Manifesto. Prentice-Hall, Englewood Cliffs (1984) 
2. Cypher, A. (ed.): Watch What I Do: Programming by Demonstration. MIT Press, Cam-

bridge (1993) 
3. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging 

Paradigm. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 1–8. 
Springer, Netherlands (2006) 

4. Jess, the Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov/ 
5. Burnett, M.M., Baker, M.J., Bohus, C., Carlson, P., Yang, S., van Zee, P.: Scaling up Vis-

ual Programming Languages. IEEE Computer 28(3), 45–54 (1995) 
6. Conklin, J.: Hypertext: an introduction and survey. Computer 20(9), 17–41 (1987) 
7. Murugesan, S., Desphande, Y.: Web Engineering. Software Engineering and Web Appli-

cation Development. LNCS-Hot Topics. Springer, New York (2001) 
8. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design. 

Theory and Practice of Object Systems 4(4) (1998) 



 Hypertextual Programming for Domain-Specific End-User Development 241 

9. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web applications from 
Web enhanced conceptual schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuer-
mann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg (2003) 

10. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive Web applica-
tions. IEEE Internet Computing 6(4), 20–30 (2002) 

11. Knapp, A., Koch, N., Zhang, G., Hassler, H.M.: Modeling business processes in Web ap-
plications with ArgoUWE. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) 
UML 2004. LNCS, vol. 3273, pp. 69–83. Springer, Heidelberg (2004) 

12. De Troyer, O.: Audience-driven Web design. In: Rossi, M., Siau, K. (eds.) Information 
Modeling in the New Millennium. IDEA Group Publishing, Hershey (2001) 

13. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup 
Language (XML) 1.0., 3rd edn. W3C Recommendation (2004) 

14. Ortiz-Chamorro, S.: Cytera. Rules Language Specification. Technical Report, CyteraSys-
tems (2001) 

15. Ortiz-Chamorro, S., Aquino, N., Rubin, R., Cernuzzi, L.: AtOOmix: un Lenguaje Extensi-
ble de Reglas de Negocios. In: Proceedings of CLEI 2008 (to appear) (2008) 

16. Eclipse Home, http://www.eclipse.org/ 
17. Thompson, H.S., et al.: XML Schema Part 1: Structures, 2nd edn. W3C Recommendation 

(2004) 
18. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes, 2nd edn. W3C Recommenda-

tion (2004) 
19. Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Publishing, 

Indianapolis (1999) 
20. Hypermedia Design Patterns Repository, 

http://www.designpattern.lu.unisi.ch/index.htm 
21. Rossi, G., Schwabe, D., Garrido, A.: Design reuse in hypermedia applications develop-

ment. In: Proceedings of Hypertext 1997, pp. 57–66 (1997) 
22. Østerbye, K.: Literate Smalltalk Programming Using Hypertext. IEEE Transactions on 

Software Engineering 21(2), 138–145 (1995) 
23. Anderson, K.M., Taylor, R.N., Whitehead, E.J.: Chimera: hypermedia for heterogeneous 

software development enviroments. ACM Transactions on Information Systems 18(3), 
211–245 (2000) 

24. Garg, P.K., Scacchi, W.: ISHYS: Designing an Intelligent Software Hypertext System. 
IEEE Expert: Intelligent Systems and Their Applications 4(3), 52–63 (1989) 

25. Shu, N.: Visual Programming. Van Nostrand Reinhold, New York (1988) 
 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 242–261, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Fast, Accurate Creation of Data Validation Formats by 
End-User Developers 

Chris Scaffidi, Brad Myers, and Mary Shaw 

Carnegie Mellon University 
5000 Forbes Ave 

Pittsburgh, PA 15217 
{cscaffid,bam,mary.shaw}@cs.cmu.edu 

Abstract. Inputs to web forms often contain typos or other errors. However,  
existing web form design tools require end-user developers to write regular ex-
pressions (“regexps”) or even scripts to validate inputs, which is slow and error-
prone because of the poor match between common data types and the regexp 
notation. We present a new technique enabling end-user developers to describe 
data as a series of constrained parts, and we have incorporated our technique 
into a prototype tool. Using this tool, end-user developers can create validation 
code more quickly and accurately than with existing techniques, finding 90% of 
invalid inputs in a lab study. This study and our evaluation of the technique’s 
generality have motivated several tool improvements, which we have imple-
mented and now evaluate using the Cognitive Dimensions framework. 

Keywords: Data validation, web macros, web applications. 

1   Introduction 

The success of Web 2.0 hinges on enabling end-user developers to create programs 
that collect information via the web. For example, accountants and financial analysts 
might create web macro scripts to automatically “screen scrape” data from web pages 
into spreadsheets [6][15], and marketing specialists or even administrative assistants 
might create web applications to receive information directly from people via web 
forms. This wide range of different users can then write programs to use the collected 
information for computation, report-generation, or generating new web pages. 

Inputs often contain typos and other errors, so values should be validated when 
they are first received in order to prevent invalid data from jeopardizing the program’s 
purpose. For example, if an end-user developer creates a web macro that scrapes data 
from a certain place on a web page, and the web page is later modified by the site 
owner, then the web macro may begin to read incorrect information and malfunction 
as a result [6][7]. Even when information is not collected automatically, inputs can 
still contain errors. For instance, prior studies have shown that people sometimes type 
the wrong kind of data into web form fields such as entering “12 Years old” into a 
street address field [16], which limits the usefulness of this information for generating 
maps, mining data, or creating reports. 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 243 

However, existing tools for designing web macros and web forms can validate only 
a limited set of input types, and they present high barriers to specifying custom vali-
dation. For instance, end-user developers can create web forms with Microsoft Visual 
Studio.NET (which comes in an “Express Edition” for hobbyists, students, and end-
user developers), and they can specify that textfield inputs should be validated against 
certain regular expressions (regexps), such as email addresses and zip codes. How-
ever, the list of available regexps is extremely short compared to the range of actual 
input fields that appear in real web applications. Examples of data types that lack 
pre-packaged regexps include city names and company names as well as organiza-
tion-specific data types such as project numbers. Creating custom regexps or writing 
intricate JavaScript is beyond the abilities of many administrative assistants, account-
ants, and other end-user developers. Spreadsheets and other end-user development 
tools share these limitations. 

Solving this problem is not as simple as providing an online repository of regexps 
that end-user developers could copy/paste into programming tools. Such repositories 
already exist, but they do not completely meet the users’ needs, mainly because it is 
so difficult to obtain specialized regexps needed for particular applications. For ex-
ample, the forum for the largest existing online repository1 includes postings from 
people who want regexps that: 

 
• Only accept a password if it has “at least 7 characters, at leaset [sic] 1 number, 1 

lower case, 1 upper case and no spaces” 
• Only accept a URL if its domain is not in a set of certain disallowed domains 
• Only accept a zip code if the first three digits fall into a certain range 
 

When people fail to find what they need in these repositories, the main problem is 
with the underlying regexp notation rather than with the repository per se, as it is 
extremely cumbersome and sometimes impossible to write regexps with the charac-
teristics of the examples above (complex character counting, compound negative 
disjunctions, and numeric ranges). 

To address the underlying need for a better notation, this paper presents a new in-
teraction technique based on describing inputs as a series of constrained parts, resem-
bling the way that end-user developers actually describe data. This reduces the time 
required to implement custom validation, and the automatically generated validation 
code displays targeted human-readable error messages to help application users fix 
invalid inputs. Our technique is integrated with programming-by-example and direct 
manipulation in a prototype editor called Toped. Given examples of the data to vali-
date, Toped infers a format describing that data. It presents the format to the end-user 
developer, who can iteratively review, test and edit the format before using it to vali-
date data in spreadsheets, web applications, web macros, and other programs. 

Previous work described how to algorithmically infer formats from examples [17], 
how to use Toped formats to validate data in web macro editors and other program-
ming platforms [6][18], and how to formally model collections of formats [16]. While 
this work briefly mentions Toped, it does not describe Toped’s internal details, nor 
does it evaluate Toped’s expressiveness and usability. 

                                                           
1 http://regexlib.com/ 



244 C. Scaffidi, B. Myers, and M. Shaw 

In the current paper, we describe our format editor in detail as well as three studies: 
a formative interview-based formative study that originally led to our editor’s design, 
an empirical evaluation of the editor’s expressiveness and generality, and a user ex-
periment evaluating its usability. Finally, we briefly summarize improvements in our 
most recent implementation of the editor, which we evaluate using the Cognitive 
Dimensions framework [5]. The contributions of this paper are: 

 
• An interaction technique for describing formats as a sequence of constrained parts, 

which is adequate for representing a wide range of short, human-readable strings.  
• A prototype tool that enables end-user developers to quickly create accurate for-

mats, as well as editor innovations that will likely further enhance usability. 
 
We review related work in Section 2 In Section 3, we describe the formative study 

that guided the design of the format editor, which we describe in Section 4. We evalu-
ate the expressiveness and usability of the editor in Sections 5 and 6. These evalua-
tions prompted improvements to our editor, which we describe and evaluate in 
Section 7. Finally, in Section 8, we conclude with a discussion of future work. 

2   Related Work 

To help end-user developers overcome some difficulties of the regexp notation, 
SWYN infers a regexp from example strings and presents it using a visual language 
for review and editing [1]. This language replaces regexps’ exotic characters with 
shapes (for example, representing the Kleene operator * as a visual stack of letters and 
the disjunction operator | as a colored circle containing a set of options). SWYN adds 
simple negation to the regexp notation, using red shading to express substrings that 
are not allowed. Grammex [8] and Apple data detectors [13] describe strings as char-
acter sequences with context-free grammars (CFGs) rather than regexps. No usability 
studies have been done on Grammex or Apple data detectors, but we expect that the 
relative complexity of CFGs versus regexps make them less usable than SWYN. 
Unlike Toped, regexps and CFGs are ultimately expressed in terms of character se-
quences, which forces users to figure out how to translate high-level constraints into 
character sequence patterns. This can be difficult or even impossible, as in the case of 
examples mentioned in Section 1 (e.g.: a password if it has “at least 7 characters, at 
leaset [sic] 1 number, 1 lower case, 1 upper case and no spaces”). While Toped gen-
erates CFGs internally, users never see the grammars and can instead describe data as 
a series of constrained parts. 

Lapis infers a pattern in a specialized textual language that end-user developers can 
edit and use to find outliers that do not match the pattern [9]. Whereas regexps, 
SWYN, and CFGs require end-user developers to describe a string as a character 
sequence, Lapis allows end-user developers to describe a string as a sequence of parts, 
each of which matches a regexp, literal string, or a certain primitive refined by “starts 
with”, “contains”, or “ends with” constraints. Toped eschews regexp-based con-
straints and instead offers a broad range of human-readable constraints that can be 
combined to validate parts of strings. 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 245 

Toped also significantly differs from regexps, CFGs, and Lapis in that it supports 
soft constraints that need not always be true. This makes it possible to flag inputs that 
are questionable, but which should be accepted if they are double-checked. 

Several tools check constraints over numeric data in particular programming plat-
forms, rather than a format over string-like data. For example, Cues infers constraints 
over web service data [14], and Forms/3 infers numeric constraints over spreadsheet 
cells [2]. From a conceptual standpoint, Toped generalizes these number-oriented 
systems to include string-like data. 

3   Formative Study 

To learn how end-user developers describe data, we asked four administrative assis-
tants to verbally describe two types of data (American mailing addresses and univer-
sity project numbers) so a hypothetical foreign undergraduate could find those data on 
a hard drive. (We used this syntax-neutral phrasing to avoid biasing participants to-
ward or away from regexps or any other particular notation.) 

Participants described data as a series of named parts, such as city, state, and zip 
code. They did not explicitly provide descriptions of those parts without prompting, 
assuming that simply referring to those parts would enable the hypothetical under-
graduate to find the data. When prompted to describe the parts of data, participants 
hierarchically described parts in terms of other named parts (such as an address line 
being a number, street name, and street type) until sub-parts became small enough 
that participants lacked names for them. 

At that point, participants used constraints to define sub-parts, such as specifying 
that the street type usually is “Blvd” or “St”. They often used adverbs of frequency 
such as “usually” or “sometimes”, meaning that valid data occasionally violate these 
constraints. This use of not-always-true constraints stands in stark contrast to regexp-
based validation, which classifies inputs as valid or invalid, with no shades of gray. 

Finally, participants mentioned the punctuation separating named parts, such as 
the periods that punctuate parts of our university’s project numbers. Such punctua-
tion is common in data encountered on a daily basis by end-user developers, such as 
hyphens and slashes in dates, and parentheses around area codes in American phone 
numbers. 

4   Toped Format Editor 

Based on the formative study results, we have designed a new tool for end-user de-
velopers to describe the format that inputs should match (Fig. 1). After a developer 
creates a format, its specification is stored and later used to check inputs. The process 
is conceptually similar to creating a regexp and using it to check inputs, except that 
Toped describes data as a sequence of named parts with constraints (Table 1). Toped 
is forms-based, a style of user interface known to help reduce memory load and er-
rors, though at the risk of limited expressiveness and generality [12]. 

 



246 C. Scaffidi, B. Myers, and M. Shaw 

 

Fig. 1. Editing a format in Toped, after providing example street addresses and giving human-
readable names to the inferred format and its three parts. Adding, removing, and reordering 
parts/constraints is accomplished with the  ,  , and  buttons. Each § indicates a space. 

Table 1. Constraints that can be applied to parts  

Constraint Description 
Pattern Specifies the characters in a part and how many of them may appear 
Literal Specifies that the part equals one of a certain set of options 
Numeric Specifies a numeric inequality or equality 
Substring Specifies that the part starts/ends with some literal or number of certain characters 
Wrapped Specifies that the part is preceded and/or followed by a certain string 
Optionality Specifies that the part may be missing 
Repeat Specifies that the part may repeat, with possible separators between repetitions 
Reference Specifies that the part matches another format 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 247 

We named the editor “Toped”, after the Greek word “tope” for “place”, because 
each format validates a kind of data that has a natural “place” in the problem domain. 
That is, problem domains involve email addresses and salaries, rather than strings and 
floats, and it is the problem domain that governs whether a string is valid. 

Our editor has four sections, as shown in Fig. 1. First, the user names the data to 
validate, such as “phone number” or “person name”, and names the format. It is im-
portant to distinguish between the name of the data and the name of the format, since 
many kinds of data can appear in more than one format (such as “08/16/2008” and 
“Aug 16, 2008” formats for US dates). Our system includes a format browser so the 
user can browse for formats using these names. Prompting the user to name the data 
also enables the editor to refer to the data by name in the next three steps. 

Second, the end-user developer defines the format’s parts. For example, a US 
phone number has three parts: area code, exchange, and local number. The end-user 
developer can add, remove and reorder parts, and he can specify constraints on parts. 
Table 1 shows the available constraints, which we initially identified based on the 
formative study and later expanded as we used Toped to validate a variety of data. 

In the third step of the editor, the end-user developer can enter example strings to 
test against the format. The editor displays a targeted error message in a mouse-over 
tooltip for each invalid test example. These targeted messages show a list of violated 
constraints. The end-user developer can iteratively debug the format. 

Finally, the format is saved to a file, which can be reloaded and further edited. 

4.1   Specific Editor Features 

To help the end-user developer get started, Toped includes a textbox that accepts an 
example string. The editor identifies non-alphanumeric characters in the example and 
treats these as separators between parts. It then initializes a part in the editor for each 
part of the example and looks for a few basic constraints (e.g.: noticing that a word-
like part starts with an uppercase letter). To provide further help, Toped can examine 
multiple examples of data and infer a single format describing the majority of those 
examples [17]. The examples are automatically copied into the testing feature (Step 3) 
to help the end-user developer review, test, and customize the format. 

One problem with some editing tools is that spaces are invisible and (we suspect) 
hard to debug. To counter this, Toped makes spaces visible by representing them with 
a special symbol, §. Though this slightly reduces readability, it is preferable to having 
spaces that the end-user developer cannot see or debug. (In error messages, spaces  
appear as SPACE to avoid font-related problems.) To further improve readability and 
directness, Toped allows numeric ranges in textboxes that accept an integer. For ex-
ample, users can specify that a part starts with “1”, “2-3”, or “4+” uppercase letters.  

The Pattern, Literal, Numeric, Wrapped, and Substring constraints can be marked 
as “never”, “rarely”, “as often as not”, “more often than not”, “almost always”, or 
“always” true. We selected these adverbs of frequency because there is surprisingly 
little variance in the probabilities that people assign to these words, corresponding 
within a few percentage points to probabilities of 0%, 10%, 50%, 60%, 90%, and 
100%, respectively [10]. This robust correspondence makes it feasible to integrate 
constraints with formal grammars (below). As users have trouble grasping mixtures of 



248 C. Scaffidi, B. Myers, and M. Shaw 

conjunction and disjunction [11], all constraints are conjoined, and disjunction is 
expressed as two constraints with parallel sentence structure that are each not always 
true. Toped has an advanced mode, not shown in Fig. 1, for specifying conditional 
constraints that span multiple parts, such as the intricate leap year rules for dates. 

4.2   Validating Data 

Formats are not used to validate data directly. Instead, they are converted automati-
cally into a grammar, which is then used at runtime to validate strings in web forms, 
web macros, and other end-user development platforms. 

Generating a grammar and parsing strings. To create a grammar, Toped generates 
a hierarchy of CFG productions to represent Reference constraints, indicating that a 
part should match another format. It inserts separators between parts based on 
Wrapped constraints, and it inserts repetition productions based on Repeat constraints. 
Toped generates leaf productions based on Numeric, Pattern and Literal constraints, 
which indicate that certain characters or literal values appear in a part.  

Like other CFGs, this basic CFG can only accept or reject strings. But the soft con-
straints supported by the Toped user interface are more expressive, since they can iden-
tify questionable inputs that might or might not be valid. Toped reflects this additional 
expressiveness in the grammar by augmenting the basic CFG with additional produc-
tions and constraints on productions. Each production constraint has a “penalty”, which 
indicates that if a substring matches the production but violates the constraint, then the 
substring is questionable and might be invalid. This penalty is between 0 and 1, depend-
ing on the probability corresponding to the adverb of frequency on the constraint.  

The Numeric, Pattern and Literal constraints can be directly attached to produc-
tions of respective parts. If a Wrapped constraint has an adverb of frequency, indicat-
ing that separators should occur but are not mandatory, then Toped augments the 
basic CFG with alternate productions where the separator does not occur, and it at-
taches a penalty to the alternate productions. Toped also generates alternate produc-
tions from Optionality constraints, but without penalties.  

At runtime, strings are parsed according to the augmented grammar. Our parser is 
based on GLR [19], which runs in linear time (with respect to the length of the input 
string) when the grammar has low ambiguity, as is generally the case with grammars 
generated from Toped formats. We adapt GLR by incorporating constraints. When a 
production is completed, producing a variable v, GLR automatically treats this vari-
able as valid and uses it to complete other productions waiting for v. In contrast, our 
adapted version of GLR associates a score with each variable instance (a parse tree 
node), ranging from 0 through 1. When a production p for a variable v is completed, 
the parser evaluates any constraints on p. It downgrades the score of v by multiply-
ing the score by each violated constraint’s penalty. If a variable instance with  
a downgraded score is later used on the right hand side of a production, then the 
parser uses this score to multiplicatively downgrade the score of the variable on the 
production’s left-hand side. Thus, the score of each node in the parse tree depends on 
child nodes’ scores. 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 249 

In short, these multiplications use penalties from violated constraints to score each 
node, including the root. That way, when the tree is complete, the parser can return a 
score between 0 and 1 for the input as a whole. In cases of ambiguity, the parser se-
lects the parse with the highest score. 

Generating error messages. To generate error messages, the parser tracks a list of 
violated constraints and concatenates them into a message (e.g.: the tooltip in Step 3 
of Fig. 1). When a parse totally fails (making it impossible to identify specific vio-
lated constraints), the parser generates a message by concatenating constraints associ-
ated with failed productions that should have been completed. The resulting message 
is targeted and descriptive, a significant improvement over typical hard-coded error 
messages such as “Please enter a valid phone number” on web sites, or “The formula 
you typed contains an error” in Excel.  

Toped has been integrated with several end-user development tools, including Vis-
ual Studio.NET [18], the Robofox web macro tool [6], and Microsoft Excel [18]. 
Formats can be reused without modification in each of these programming platforms. 
While error messages are generated in the same way for each platform, they are dis-
played in different ways. 

For example, when a format is associated with a web form field using Visual Stu-
dio.NET, targeted human-readable error messages appear alongside textfields when 
inputs are invalid (Fig. 2). If an input matches the CFG but violates soft constraints, 
the code shows the message so that the end user can correct the input, but the message 
is displayed in a popup window so that the user can override the warning. End-user 
developers can also specify alternate settings, such as showing overridable messages 
with an “Ignore” button alongside textfields rather than in a popup, or configuring the 
web form to always reject any input that violates soft constraints. 

 

Fig. 2. Validating web form data  

A second programming platform, web macros, enables end-user developers to cre-
ate scripts that scrape data from web sites, but scripts can sometimes read the wrong 
data from web pages if the pages are modified by site owners after the scripts are 
created. Toped formats help make Robofox web macro scripts more robust to web 
page changes. When constructing a script, an end-user developer can highlight a clip-
board item, which is a variable that is initialized by a copy operation in the script. 
This opens Toped so the end-user developer can create a new format or select an 
existing format. Robofox then creates an assertion specifying that after the copy op-
eration, the clipboard should contain a string that matches the format. At runtime, if a 
string violates any constraint in the format, then Robofox displays a warning popup to 



250 C. Scaffidi, B. Myers, and M. Shaw 

explain that the assertion is violated, enabling the end-user developer to modify the 
script or cancel execution if necessary. 

To validate Excel spreadsheets, end-user developers highlight some cells, click a 
button, and select a format file, which can be customized if desired. Alternatively, 
clicking another button causes Toped to infer a new format using the highlighted cells 
as examples, and then the new format is presented for editing. Based on the grammar 
generated from the format, the plug-in validates each highlighted cell and flags each 
invalid cell with a red triangle and a tooltip showing a targeted error message. End-
user developers can browse through comments using Excel’s Reviewing feature. 

Toped’s format editing user interface runs on Microsoft .NET 2.0 and is imple-
mented in C#. Toped’s parser for validating data against formats is available as a 
.NET library and as a Java library. All code has been made available as open source 
so that other researchers can continue to apply formats in new and innovative ways. 

5   Expressiveness Evaluation 

In many cases, “forms-based systems lack generality” [12] since they provide a rela-
tively small set of primitives. Consequently, we evaluated the expressiveness of 
Toped by implementing formats for a range of data types commonly encountered by 
end users. As this was an evaluation of expressiveness, not usability, we implemented 
the formats ourselves as expert users. 

5.1   Data and Method 

To identify test data, we ran logging software for three weeks on four administrative 
assistants’ computers. When a user filled out a web form in Internet Explorer (these 
users’ preferred browser), the logger recorded the fields’ HTML names and some text 
near each field (to capture the fields’ human-readable labels).  

For each field, the logger recorded a regexp describing the string that the user en-
tered. (We recorded a regexp rather than the literal string to protect users’ privacy.) 
To generate regexps, we converted each lowercase letter to the regexp [a-z], upper-
case to [A-Z], and digits to [0-9], then concatenated regexps and coalesced repeated 
regexps (e.g.: user0@XYZ.EDU  [a-z]{4}[0-9]@[A-Z]{3}.[A-Z]{3}). 

We manually examined many of the 5897 logged regexps and wrote scripts to 
gather fields into semantic families such as “email” and “currency” based on HTML 
names and human-readable text near the fields. As shown in Table 2, 5527 (93.7%) 
fell into one of 19 semantic families. Using the regexps as a reference, we created 
formats for the 14 asterisked families. We omitted 3 families (justification, descrip-
tion, and posting title) because each would have simply required a sequence of any 
characters. That is, it is doubtful that these fields have any semantics aside from 
“text.” We omitted usernames and passwords because we wanted to post formats 
online and did not want to reveal formats of our users’ authentication credentials. 
Finally, we used our parser to test formats with sample strings, which we generated 
by referring to concrete regexps in the log and by using our knowledge of formats’ 
semantics (such as what might constitute an email address).  



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 251 

Table 2. Semantic families gathered from user data. Asterisked groups were used for testing. 

Family name Strings Example regexp from logs Formats 
Needed 

Strings Not 
Covered 

project number * 821 [0-9]{5} 1 1 
justification 820 Very long   
expense type * 738 [0-9]{5} 1  
award number * 707 [0-9]{7} 1  
task number * 610 [0-9][A-Z] 2  
currency * 489 [0-9]\.[0-9]{2} 2 6 
date * 450 [0-9]{2}\/[0-9]{2}\/[0-9]{4} 2 2 
sites * 194 [a-z]{3} 1  
password 155 Several characters   
username 121 Several characters   
description 96 Very long   
posting title 65 Very long   
email address * 50 [a-z]{8}@[a-z]{7}\.[a-z]{3} 2 7 
person name * 48 [A-Z][a-z]{5}\s[A-Z][a-z]{8} 2  
cost center * 41 [0-9]{6} 1  
expense type * 41 [0-9]{5} 1 6 
address line * 37 [0-9]{3}\s[A-Z][a-z]{5} 

                     \s[A-Z][a-z]{4} 
1  

zip code * 28 [0-9]{5} 1  
city * 16 [A-Z][a-z]{8} 1  

5.2   Results 

We had little trouble expressing families as formats. Some required 2 formats, but this 
was reasonable, as web forms generally require inputs to be in a certain format. For 
example, we needed a format for dates like “10/12/2004” and another for dates like 
“12-Oct-2004”. 

When testing formats, we found that we had made 4 errors. Three were cases 
where we failed to mark a part as optional. The fourth error was an apparent slip of 
the mouse, in which we indicated that a constraint was often true rather than always 
true. The version of the editor that we used for this evaluation did not have the testing 
feature (Step 3 in Fig. 1). We noted that these errors probably could have been found 
if we had been able to test our formats when we created them. Therefore, after our 
evaluation, we added the editor’s testing feature. 

After correcting these errors, our formats covered 99.5% of the 4250 strings used 
for testing. The 22 strings not covered included 17 apparent typos in the original data 
and 4 cases that probably were not typos by the users (that is, they were intentionally 
typed), but we suspect that they may have been invalid inputs, nonetheless. For ex-
ample, in 2 cases, users entered a month and a year rather than a full date. The final 
uncovered test value was a case where a street type had a trailing period, and the edi-
tor offered no way for us to express that a street type may contain a period but only in 
the last position, a limitation that has recently been addressed. Formats’ effectiveness 
at identifying invalid values suggests that they are powerful enough for validating a 
variety of data types. 



252 C. Scaffidi, B. Myers, and M. Shaw 

6   Usability Evaluation 

We conducted a between-subjects experiment to assess Toped’s usability. As a base-
line, we compared Toped to Lapis (which was described in Section 2) because Lapis 
patterns are more expressive than regexps or CFGs, and were previously shown to be 
usable by end-user developers [9]. 

Using emails and posters, we recruited 7 administrative assistants and 10 graduate 
students, who were predominantly master’s students in information technology and 
engineering. None had prior experience with Toped or Lapis, but many had some 
experience with programming or grammars. We paid $10 to each. 

We randomly assigned each to a Toped or Lapis group. Each condition had four 
stages: a background questionnaire, a tutorial for the assigned tool, three validation 
tasks, and a final questionnaire. 

The tutorial introduced the assigned tool, coaching subjects through a practice task 
and showing all tool features necessary for later tasks. Subjects could ask questions 
and work up to 30 minutes on the tutorial. 

The validation tasks instructed subjects to use the assigned tool to validate three 
types of data. Subjects could spend a total of up to 20 minutes on these tasks and 
could not ask questions. Subjects could refer to the written tutorial as well as an extra 
reference packet extensively describing features of the assigned tool. 

6.1   Task Details 

In Lapis, text appears on the screen’s left side, while the pattern editor appears on the 
right. End-user developers highlight example strings, and Lapis infers an editable 
pattern. Lapis highlights each string in purple if it matches the pattern or yellow if it 
does not. For comparability, we embedded Toped in a text viewer with the same 
screen layout and highlighting. Each example string on the left was highlighted in 
yellow if it violated any constraints or purple otherwise. 

Each task presented 25 strings drawn from one spreadsheet column in the EUSES 
corpus, an existing collection of spreadsheets from the web [4]. Each column also 
contained at least 25 additional strings that we did not show but instead reserved for 
testing. All 50 strings were randomly selected. 

The first task used American phone numbers, the second used street addresses (just 
the street address, not a city or state or zip), and the third used company names. We 
selected these types to exercise Toped on data ranging from highly structured to rela-
tively unstructured. The data contained a mixture of valid and invalid strings. For 
example, most mailing addresses were of the form “1000 EVANS AVE.”, but a few 
were not addresses, such as “12 MILES NORTH OF INDEPENDENCE”.  

We told subjects that the primary goal was to “find typos” by creating formats that 
properly highlighted valid strings in purple and invalid strings in yellow. To avoid 
biasing subjects, we did not use Toped or Lapis keywords in the description of validity. 
To further clarify the conditions for validity, the task instructions called out six strings 
for each data type as valid or invalid. 

 
 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 253 

Table 3. Results comparing Toped to Lapis 

 Toped Lapis Relative 
Improvement 

Significant? 
(Mann-Whitney) 

Tasks completed 2.79 1.75 60% p<0.01 
     
Typos identified     
  On 75 visible strings 16.50 5.75 187% p<0.01 
  On all 150 strings 31.25 9.50 229% p<0.01 
     
F1 accuracy measure     
  On 75 visible strings 0.74 0.51 45% No 
  On all 150 strings 0.68 0.46 48% No 
     
User satisfaction 3.78 3.06 24% p=0.02 

6.2   Results 

We asked subjects to think aloud when something particularly good or bad occurred 
in the tool. One Toped subject interpreted these instructions differently than the other 
subjects, as she spoke aloud about virtually every mouse click. We discarded her data 
from analysis, leaving 8 subjects assigned to each group. 

As shown in Table 3, we used the conservative Mann-Whitney (Wilcoxon) statisti-
cal test, since our sample was small and we could not assume normally distributed 
data (though all measures’ medians were very close to the respective means).  

Tasks completed. In the allotted time, Toped subjects completed an average of 2.79 
tasks, while Lapis subjects averaged 1.75 (Table 3), a significant difference (Mann-
Whitney, p<0.01). Toped subjects were more successful at their primary goal, finding 
typos. Of the 18 actual invalid strings in the 75 visible strings, Toped subjects found 
an average of 16.5 invalid strings, compared to 5.75 for Lapis subjects, which was a 
significant difference (Mann-Whitney, p<0.01). In addition, of the 35 typos in the 
total set of 150 test strings, the completed Toped formats found an average of 31.25 
invalid strings, whereas completed Lapis patterns found only 9.5, a significant differ-
ence (Mann-Whitney, p<0.01). 

Accuracy. Finding invalid data is not sufficient alone. Validation should also classify 
valid data as valid. We evaluated accuracy using F1, a standard statistic commonly 
used to evaluate classifiers, with typical F1 scores in the range 0.7-1.0 [3]. F1 com-
bines measures for “false negatives” and “false positives”. Compared to simply count-
ing classification errors, F1 more effectively “discourages classifiers that sacrifice one 
measure for another too drastically” [3]. The 23 completed Toped formats had an F1 
of 0.74 on the 75 visible strings and 0.68 on all 150 strings, whereas the 14 completed 
Lapis patterns had respective scores of 0.51 and 0.46, though these inter-tool differ-
ences were not statistically significant (Mann-Whitney, p<0.05). Thus, Toped subjects 
completed more tasks without sacrificing accuracy.   



254 C. Scaffidi, B. Myers, and M. Shaw 

User satisfaction. We assessed user satisfaction because end-user developers such as 
students and administrative assistants typically do not need to program to get their 
work done: they can choose a manual approach rather than a programmatic approach 
if they do not like their programming tool [12]. 

Subjects generally commented that Toped was easy to use, “interesting” and “a 
great idea”. Most suggested other types of data to validate, such as email addresses, 
license plate numbers, bank record identifiers, and other application-specific data. 
One subject commented that it was unintuitive to represent “two options” (disjunc-
tion) as two constraints with parallel structure.   

The satisfaction questionnaire asked subjects to rate on 5-point Likert scale how 
hard the tool was to use, how much they trusted it, how pleasant it was to use, and if 
they would use it if it was integrated with spreadsheets or word processors. We found 
that we could combine answers into a moderately robust scale (Cronbach’s al-
pha=0.74). On this scale, subjects reported an average satisfaction of 3.78 with Toped 
and 3.06 with Lapis, a significant difference (Mann-Whitney, p=0.02). 

No confounds with background. Subjects had different job categories and varying 
experience with grammars and programming. Yet for each tool, we found no 
statistically significant effects (Mann-Whitney, p<0.05) on task completion, format 
accuracy, or user satisfaction based on this prior experience or job category.   

6.3   Comparisons to Other Studies 

Regexp study. Though not perfectly comparable, it appears that subjects completed 
our tasks with Toped more quickly and accurately than subjects completed tasks with 
regexps in a study during SWYN’s development [1]. For each of 12 data types 
presented in random order, that study asked 39 graduate students to identify which of 
5 strings matched a provided regexp that was written in one of four notations. 
Average speeds on the last six tasks (after subjects grew accustomed to the notations) 
ranged from 14 to 21 seconds per string, and error rates ranged from 27% to 47%. 
(No F1 was reported.) In contrast, Toped subjects were faster and more accurate, not 
only checking strings, but also constructing a format at an average of 15 seconds per 
string (373.8 sec / task) with a simple classification error rate of only 19%. 

Formative study. As in our formative study, our initial questionnaire (prior to 
validation tasks) asked subjects to write descriptions of US postal addresses and 
person names. Slightly more than half of responses (17) were sentences calling out 
parts by name. In some cases, they specified constraints on parts, whether implicitly 
in names (“street number” implies the presence of digits) or explicitly (“5 digit zip 
code”). Constraints often included an adverb of frequency. This description style is 
consistent with the earlier results and a close match to Toped’s style of interaction. 

Our questionnaire also uncovered an additional way that people describe data as a 
series of constrained parts. Many questionnaire responses (15) were non-sentence 
templates listing parts by name and visually showing spaces or punctuation separating 
parts. As in the sentence-like descriptions, many constraints were implicit in names, 
but explicit constraints were rarely specified. Our earlier study probably did not un-
cover this visual way of describing a series of constrained parts because the formative 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 255 

study required participants to verbally describe data, whereas this questionnaire asked 
participants to write descriptions, and the written medium is much more conducive to 
communicating template-like (visual) descriptions. 

7   Recent Editor Improvements 

During the evaluations described above, we observed the need for several editor im-
provements, which we have implemented and will evaluate below. 

7.1   Requirements for Improvements 

Sharing parts between formats. During the expressiveness evaluation, we observed 
that implementing validation for a semantic family often required more than one 
format. In most cases, these formats had the same parts but different separators and 
different ordering of parts. For example, person names could be written as “Otto von 
Bismark” or as “von Bismark, Otto”. In addition to the multi-format semantic families 
shown in Table 2, we have observed many other kinds of multi-format strings such as 
credit card numbers (written as “1234 5678 9012 3456” or “1234567890123456” or 
“1234-5678-9012-3456”) and phone numbers. The parts in these formats have 
identical constraints—it is merely the manner of combining the parts that differs. 

In such cases, it would be ideal if the user could create a part and reuse its con-
straints in multiple formats. In the existing editor, this would only have been feasible 
by putting the first name into a format of its own, the last name into a format of its 
own, and then referencing these formats when creating the person name formats. This 
would lead to a rapid increase in the number of formats and format management com-
plexity. Perhaps a particular user might still want to store the first and last name for-
mats separately, in order to validate fields that should only contain a first or last name 
rather than a full person name, but at least the end-user developer should be able to 
make that choice rather than having it forced onto him. 

Referencing collections of formats. Another consequence of the multi-format nature 
of users’ data is that a format’s part might match one of several formats. For example, 
a month can be written as “Aug”, “August”, “08”, or “8”, and when a month is refer-
enced in a date, humans typically can understand the date regardless of which format 
is used for the month (with caveats about ambiguity among the day, month and year 
parts, which we discuss later). The implication for our format editor is that it would be 
ideal if a user could not only reuse one format in another format, but if they also could 
reference a collection of formats when specifying a part in another format. 

Tailoring constraints to kinds of parts. In our expressiveness study, we noted that 
several kinds of parts frequently appeared, and the kind of the part strongly influenced 
the applicable constraints. Numeric parts always contained numeric characters, never 
contained alphabetic characters, always had Numeric constraints, and rarely needed 
Substring constraints. Word-like parts rarely contained numeric characters (with ex-
ceptions like usernames in email addresses), always contained alphabetic characters, 
sometimes contained punctuation, and often needed Substring constraints. 



256 C. Scaffidi, B. Myers, and M. Shaw 

Despite the existence of these kinds of parts, Toped treated each part as a “generic” 
part, rather than tailoring the interface to each kind of part. Consequently, adding a 
new constraint to a part required selecting the desired constraint from the full list of 
available constraints, rather than a shortened list of constraints relevant to that kind of 
part. It would be ideal if the editor instead showed the most relevant constraints for 
each kind of part, with an option to add other kinds of rarely-relevant constraints. 

Showing disjunction more clearly. Finally, during the user study, a single 
participant commented that it was unintuitive to represent “two options” (disjunction) 
as two constraints with parallel structure. Disjunction most commonly occurred when 
different separators could be used between parts (such as writing a North American 
phone numbers as “888-888-8888” or “(888) 888-8888”), or when the part could start 
or end with certain particular options. The disjunction of separator options is actually 
the same issue as having multiple formats with the same parts (discussed above). As 
for Substring disjunctions, it would be ideal if choices for starting or ending strings 
could be listed within the same constraint, so as to avoid multiple parallel constraints. 

7.2   Toped+: An Improved Prototype for Editing Formats 

Our latest format editor, called Toped+, refers to a collection of formats as a “data 
description” (Fig. 3). The data description can contain one or more variations that 
contain parts interspersed with separators. This presentation was inspired by the 15 
cases where usability study participants used non-sentence templates listing parts by 
name and visually showing spaces or punctuation separating parts. Toped+ supports 
drag/drop and copy/paste operations for creating and manipulating parts, as well as 
instantiation of parts or an entire data description from examples. 

Each part has constraints, which can be edited by clicking on the part. Toped+ sup-
ports three kinds of parts—Numeric, Word-like, and Hierarchical (referencing another 
data description—and each icon in the Toolbox corresponds to a prototype instance of 
a part or separator. When the user drags a new part from the Toolbox on the left, the 
part’s editor is “pre-loaded” with a default set of constraints that are usually appropri-
ate for that kind of part. In addition, the user can add Pattern, Literal, Substring, and 
Repeat constraints to any kind of part. Substring constraints can contain a disjunction 
of options. To test part constraints, each part icon has a user-editable example, which 
is validated using the part’s constraints (generating a targeted message in a tooltip if 
the example fails to meet the constraints). 

Thus, this improved interface directly meets three of the four requirements above: 
sharing parts between formats, tailoring constraints to kinds of parts, and showing 
disjunction more clearly. Support for the fourth requirement, referencing collections 
of formats, is more complex and has implications that require deeper explanation. 

Referencing collections of formats. Toped+ allows users to create a Hierarchical part 
that references an existing data description, which may contain multiple variations. As 
a result, each variation actually corresponds to multiple formats. In this way, it is 
possible to quickly build up quite complex validation code.  

For example, a month data description might have three one-part variations (the 
first of which would recognize “August”, the second for “Aug”, and the third for “8”),  
 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 257 

 

Fig. 3. Using Toped+ to edit variations of a phone number data description. Each variation 
appears on one row and consists of a series of parts (each of which may appear on multiple 
rows). Dragging and dropping a prototype’s icon from the Toolbox creates a new part, and the 
editor also supports drag/drop re-arrangement of parts as well as copy/paste. Users can click the 
example in a part’s icon to edit it, while clicking other parts of the icon displays widgets for 
editing its constraints, which are shared by every instance of the part. As in Toped, clicking  
adds a constraint, while clicking  deletes the constraint. Users can toggle whether each space 
character is shown with a special character or as an invisible blank. 

a day data description might have one variation, and a year data description might have 
two one-part variations (for two-digit and four-digit years). Concatenating hyphen 
separators with month, day and year parts (each referencing the respective data 
description) would yield 6 formats visually represented on-screen by a single date 
variation. The user could duplicate this variation by copy/paste, then change the new 
variation’s separators to slashes, yielding another six formats in just a few user inter-
face operations. Dates are perhaps the most complex kind of string data that we have 
encountered, in terms of the number of formats. Yet because the parts are shared be-
tween variations, and because parts reference data descriptions rather than particular 
formats, it is possible to show many formats in relatively little space. This conciseness 
helps to greatly reduce the data description’s visual complexity. 



258 C. Scaffidi, B. Myers, and M. Shaw 

Ambiguity. A consequence of parsing against collections of formats, rather than 
particular formats, is the possibility of ambiguity. For example, should “02/06/08” be 
interpreted as a date in February, June, or August? Careful consideration, however, 
reveals that this is a false dilemma: the role of validation is to check whether this 
string matches any valid date, so it does not matter which date it refers to. 

Forgetting about Toped for the moment, it would be perfectly reasonable for a 
skilled programmer to validate dates with a (very complex) regexp that had a disjunc-
tion of many different date formats, even though the regexp would be incapable of 
indicating which date format had been used. The regexp’s job is to identify invalid 
dates, not to identify a valid date’s format. On the other hand, if the programmer 
wanted users to enter values in a particular format, then he would instead use a more 
specific regexp that only recognized that particular format. Unfortunately, this would 
require the programmer to maintain a separate regexp for each particular format, since 
it would not be feasible to reuse the general-purpose format. 

The same reasoning also applies to Toped+, but with improved reusability of vali-
dation code. If an end-user developer wants to validate dates against a specific format, 
then (unlike in the case of regexps), a general-purpose data description can still be 
reused. In this case, the user associates the data description with the input field and 
provides an example of the preferred format to our plug-in for Microsoft Excel or 
Visual Studio.NET. The plug-in calls our parser to parse the example in order to iden-
tify the desired format. (Obviously, the example must match one format, as in 
“12/31/99”, in order to unambiguously specify the preferred format.) The plug-in 
associates this preferred format with the field so that at runtime, inputs are checked 
against the demonstrated format rather than the entire data description. Thus, Toped+ 
supports validating inputs against particular formats, but without the hassle of main-
taining separate validation code for every format.  

7.3   Evaluating Toped+ Improvements 

Cognitive Dimensions is an established framework for qualitatively evaluating non-
orthogonal aspects (“dimensions”) of a notation, programming language or user inter-
face, and for discussing trade-offs between different designs [5]. Example dimensions 
include Closeness of mapping, Abstraction gradient, Juxtaposability, and Visibility. 
Below, we consider 12 dimensions that are highly relevant to the task of creating 
formats, in order to identify strengths and weaknesses of Toped+ relative to Toped. 

Closeness of mapping. Both Toped+ and Toped have excellent closeness of mapping 
to the problem domain, since like end-user developers, they describe formats as a 
sequence of constrained parts. We believe that this closeness of mapping was a key 
ingredient to Toped’s success in the user study. Moreover, Toped+ constraints are 
associated with parts, rather than appearances of parts in particular formats, yielding 
better closeness of mapping to the kinds of data that appear in the real world. 

Abstraction gradient and Hidden dependencies. Both Toped and Toped+ require 
users to comprehend and manipulate constraint, part, and format abstractions. In 
addition, Toped+ requires users to comprehend variations and data descriptions. Yet 
Toped+ is not “abstraction-hungry” in the sense of requiring users to create multiple 
variations if they are not needed for a particular data description. 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 259 

The usual problem introduced by reusable abstractions is the possibility of hidden 
dependencies. This caution applies to Toped+, since if a user edits a part by clicking 
on its icon in one variation, then any changes will also affect the part as it appears in 
other variations. We have attempted to mitigate this potential for confusion by high-
lighting every one of a part’s icons throughout the data description when a user clicks 
on a part (Fig. 3). Another form of hidden dependency, which applies to both Toped 
and Toped+, is the fact that formats are indirectly affected when referenced formats 
change. Future versions of Toped+ should mitigate this potential for confusion by 
listing the data descriptions that reference the data description currently being edited. 

Juxtaposability, Diffuseness, and Visibility. In Toped, it was impossible to view 
two formats side-by-side at the same time. Toped+ places formats adjacent to one 
another, making it straightforward to see differences in separators and part ordering. 

Toped and Toped+ both suffer from a common problem of visual languages in re-
quiring a great deal of screen space. Toped+ mitigates this diffuseness by only show-
ing a part’s constraints when the user clicks on the part’s icon, which frees up enough 
screen space to show several variations at the same time. This design decision im-
proves visibility but decreases the juxtaposability of parts’ constraints, since it is 
therefore impossible to view two parts’ constraints simultaneously. Fortunately, it is 
fairly rare that two parts need to have similar constraints, so we believe that it is more 
valuable to show multiple variations than multiple parts at the same time. 

Error-proneness and Premature commitment. We expect the constraint editors in 
Toped+ will help reduce error-proneness relative to Toped, since users would need to 
make a special effort to create senseless combinations of constraints.  

The trade-off with this decision is that users must choose a particular kind of part 
before configuring the part’s constraints. This is a form of premature commitment, 
since the user must manually back out of an error to a previous state (by deleting the 
part) before performing a more correct operation. It would be ideal if Toped+ pro-
vided a feature to change the kind of a part, but we believe that it is infeasible to pro-
vide such a feature because of the richness of the supported constraints. Therefore, we 
have attempted to mitigate this problem by making it simple to delete a part (by click-
ing on it and typing Control+Delete, or selecting Delete under the Edit menu) and to 
create a part (by dragging a prototype from the Toolbox). 

Viscosity. Toped+ greatly reduces the effort required to make changes to programs 
(viscosity). One reason is that simple operations are faster because Toped+ supports 
drag/drop and copy/paste. Another reason is that fewer user interface operations are 
required because it is so easy to reuse constraints and data descriptions. 

Hard mental operations, Progressive evaluation, and Secondary notation. We 
have tried to minimize the need for hard mental operations in both Toped and Toped+ 
through support for inferring formats (or even particular parts in Toped+) from 
examples. Progressive evaluation is supported in Toped+ by letting the user enter an 
example (in the part’s icon) that is validated with the part’s constraints. In addition, 
the user can enter a list of examples to test the data description as a whole—just as a 
format could be tested in Toped. Moreover, unlike in Toped, the example strings 



260 C. Scaffidi, B. Myers, and M. Shaw 

entered for testing  in Toped+ are actually stored with the data description, so they can 
serve as a form of “use case” secondary notation that provides additional information 
about the function of the data description. In both editors, users provide human-
readable names for parts and data descriptions, which is a form of secondary notation. 

8   Conclusion and Future Work 

The central insight described in this paper is that end-user developers tend to describe 
string inputs as a series of constrained parts. We have found that this way of describ-
ing data is expressive enough for validating many kinds of data, and we have used 
this insight to design a tool that helps end-user developers create validation formats 
more quickly and accurately than is possible with existing tools. Our studies identified 
the need for editor improvements that we have implemented. Based on an analysis 
using the Cognitive Dimensions framework, we believe that the enhanced editor will 
be even more usable than the first version. We conclude that describing strings as a 
series of constrained parts is an effective approach for structuring validation code. 

Future work will continue to develop Toped+ by providing highly-usable support for 
implementing functions that transform strings among the different formats of a data 
description. We have already prototyped a minimalist tool for implementing basic inter-
format transformations, such as fixing capitalization and tweaking separators [16]. How-
ever, we have not integrated this tool with Toped+, since we anticipate that can do even 
better by developing algorithms that automatically implement these basic transformations 
based on the layout of a data description’s variations. We will also support custom trans-
formations with a general-purpose language such as JavaScript.  

In addition, we are designing a repository that will enable end-user developers to pub-
lish, find, and reuse data descriptions. As noted in the introduction, the main problem with 
existing repositories is with the underlying notation, rather than the idea of a repository per 
se. Since Toped+ provides a means for end-user developers to inspect and modify formats 
in a notation that has strong closeness of mapping to the problem domain, we anticipate 
that a final summative user study will show that integrating a repository with Toped+ 
enables end-user developers to conveniently browse, select, reuse and customize data 
descriptions to validate data. 

Acknowledgements 

This work was funded in part by the EUSES Consortium via NSF (ITR-0325273) and 
by NSF under Grants CCF-0438929 and CCF-0613823. Opinions, findings and con-
clusions or recommendations are the authors’ and not necessarily those of sponsors. 

References 

1. Blackwell, A.: SWYN: A Visual Representation for Regular Expressions. In: Your Wish 
Is My Command: Programming by Example, pp. 245–270. Morgan Kaufmann, San Fran-
cisco (2001) 

2. Burnett, M., et al.: End-User Software Engineering with Assertions in the Spreadsheet 
Paradigm. In: Proc. 25th Intl. Conf. on Software Engineering, pp. 93–103 (2003) 



 Fast, Accurate Creation of Data Validation Formats by End-User Developers 261 

3. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan 
Kaufmann, San Francisco (2002) 

4. Fisher II, M., Rothermel, G.: The EUSES Spreadsheet Corpus: A Shared Resource for 
Supporting Experimentation with Spreadsheet Dependability Mechanisms. Tech. Rpt. 04-
12-03, Univ. of Nebraska (2004) 

5. Green, T., Petre, M.: Usability Analysis of Visual Programming Environments: A “Cogni-
tive Dimensions” Framework. J. Visual Lang. and Computing 7, 131–174 (1996) 

6. Koesnandar, A., et al.: Using Assertions to Help End-User Programmers Create Depend-
able Web Macros. In: Proc. 16th ACM SIGSOFT Intl. Symp. on Foundations of Software 
Engineering (to appear) (2008) 

7. Lerman, K., Minton, S., Knoblock, C.: Wrapper Maintenance: A Machine Learning Ap-
proach. J. Artificial Intelligence Research 18, 149–181 (2003) 

8. Lieberman, H., Nardi, B., Wright, D.: Training Agents to Recognize Text by Example. J. 
Auton. Agents and Multi-Agent Systems 4(1), 79–92 (2001) 

9. Miller, R., Myers, B.: Outlier Finding: Focusing Human Attention on Possible Errors. In: 
Proc. 14th Symp. on User Interface Software and Technology, pp. 81–90 (2001) 

10. Mosteller, F., Youtz, C.: Quantifying Probabilistic Expressions. Statistical Science 5(1), 2–
12 (1990) 

11. Myers, B., Pane, J., Ko, A.: Natural Programming Languages and Environments. Comm. 
ACM 47(9), 47–52 (2004) 

12. Nardi, B.: A Small Matter of Programming: Perspectives on End User Computing. MIT 
Press, Cambridge (1993) 

13. Nardi, B., Miller, J., Wright, D.: Collaborative, Programmable Intelligent Agents. Comm. 
ACM 41(3), 96–104 (1998) 

14. Raz, O., Koopman, P., Shaw, M.: Semantic Anomaly Detection in Online Data Sources. 
In: Proc. 24th Intl. Conf. on Software Engineering, pp. 302–312 (2002) 

15. Safonov, A.: Web Macros By Example: Users Managing the WWW of Applications. In: 
CHI 1999 Extended Abstracts on Human Factors in Computing Sys., pp. 71–72 (1999) 

16. Scaffidi, C., Myers, B., Shaw, M.: Topes: Reusable Abstractions for Validating Data. In: 
Proc. 30th Intl. Conf. on Software Engineering, pp. 1–10 (2008) 

17. Scaffidi, C.: Unsupervised Inference of Data Formats in Human-Readable Notation. In: 
Proc. 9th Intl. Conf. on Enterprise Information Systems-HCI Volume, pp. 236–241 (2007) 

18. Scaffidi, C., et al.: Using Topes to Validate and Reformat Data in End-User Programming 
Tools. In: Proc. 4th Workshop on End-User Software Engineering, pp. 11–15 (2008) 

19. Tomita, M.: An Efficient Augmented-Context-Free Parsing Algorithm. J. Computational 
Linguistics 13(1-2), 31–46 (1987) 



Part III 

Refereed Notes 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 265–274, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Cicero Designer: An 
Environment for End-User Development of Multi-Device 

Museum Guides 

Giuseppe Ghiani, Fabio Paternò, and Lucio Davide Spano 

ISTI-CNR, HIIS Lab, Via Moruzzi 1, 
56124 Pisa, Italy 

{Giuseppe.Ghiani,Fabio.Paterno,Lucio.Davide.Spano}@isti.cnr.it  

Abstract. This paper describes the design and implementation of a tool to allow 
people without programming experience to customize the functionality and user 
interface of a multi-device museum guide. It consists of a direct-manipulation 
visual environment that supports editing of the main features of a museum 
guide and the creation of the associated interactive games. The tool then gener-
ates application versions for access through both mobile and large screen sta-
tionary devices. We also report on a first empirical evaluation carried out with 
museum curators. 

Keywords: End User Development, Multi-Device User Interfaces, Mobile Mu-
seum Guides. 

1   Introduction 

End-User Development (EUD) [8] has focused mainly on desktop applications. How-
ever, mobile technology has penetrated many application domains and mobile devices 
are more and more powerful in terms of  processing and interaction resources. There 
is an increasing number of applications that aim to exploit such technological offer-
ings. Non-professional developers already have difficulties in developing applications 
for desktop systems, and targeting multi-device environments is too complex, unless 
they are  adequately supported [4]. The prototype described in the paper is an example 
of a domain specific EUD environment. The identification of key semantic building 
blocks and target scenarios guided the creation of an intuitive metaphorical tool to 
configure context-sensitive museum guides, including educational games and multi-
device deployment. 

In particular, we consider the museum application domain, in which software ap-
plications are increasingly used to assist visitors in accessing the relevant information. 
In addition, museums are dynamic entities and often change the items on exhibit or 
their locations.  Thus, it is important to allow their curators, who presumably have no 
programming experience, to be able to (re)configure the mobile guide, its content and 
interactive behaviour.  

Our work aims to allow museum curators to easily create and modify guides acces-
sible through both mobile and large screen stationary devices, providing a rich set of 



266 G. Ghiani, F. Paternò, and L.D. Spano 

interactions with the museum information, including some interactive games, which 
can be useful to improve and assess the learning experience. 

2   Related Work 

A visual strategy for developing context-aware applications was proposed in [7]. Such 
a system, called iCAP, allows end-users to design application prototypes by defining 
elements (objects, activities) and rules (associations between actions and situations). 
The rules are graphically edited through basic operations like dragging the defined 
elements onto rule sheets. Another framework to support people without program-
ming experience is eBlocks [6]: it facilitates the creation of customized sensor-based 
systems and the configuration of condition tables. 

Differently from iCAP and eBlocks, which are not specifically dedicated to end 
user development for mobile environments, our investigation is focused on solutions 
for facilitating the management of content and the associated interactive functionality 
also on mobile devices (namely, PDAs and smartphones). 

Akesson et al. [1] present a user-oriented framework to ease the reconfiguration of 
ubiquitous domestic environments. The support, running on a tablet PC, adopts a 
different paradigm, based on jigsaws. 

Carmien and Fisher [5] describe a framework for customizing mobile applications 
to help people with cognitive disabilities. A graphic editor, intended to be used by the 
caretakers, facilitates the management of the task-support scripts for helping the dis-
abled. The evaluation of the editing environment, called MAPS-DE, revealed that the 
caretakers appreciate the possibility of customizing the prompting system for the 
needs of individuals with specific disabilities. Like MAPS-DE, our environment also 
allows the customization of mobile solutions, but it has educational purposes rather 
than disabled support and it also allows the generation of application versions for 
stationary systems with large screens. 

The use of educational games on mobile phones for enhancing scholars’ visit of ar-
chaeological sites is treated in [2] which, however, does not deal with the develop-
ment and modification of application content and behaviour. 

Bellotti et al. [3] propose a framework for developing edutainment applications, 
such as mobile tourist guides. The paper also deals with the issues related to the inter-
action between the user and the mobile device when rich multimedia content is pre-
sented, but it does not provide solutions for end-user development. 

Some ideas regarding general environments for end-user development of multi-
device interactive applications are in [4] but such ambitious goal has not found a 
definitive solution. In this work we focus on a specific application domain (museums) 
and present a solution that can be applied to other domains as well, and which can be 
extended to support adaptation to a broader set of devices. 

3   The End-User Development Environment 

In order to facilitate content creation for the guide of a new museum and/or changes 
to an existing one and the associated interactive behaviour, we have developed a  
specific visual environment for the desktop PC. The guide editor tool (as well as the 



 Cicero Designer: An Environment for End-User Development  267 

resulting mobile and stationary versions of the guide) has been written in the .NET C# 
language. This tool accesses an XML-based description of the museum, which defines 
rooms, their layout, and artwork positions as well as additional information. Starting 
with such data, which includes the photos and descriptions of the artworks, the editor 
allows users to: 

• Create museum rooms or sections by simply drawing polygons on the overall 
museum map; 

• Create links for navigation among rooms using icons (e.g.: arrows or stairs) or 
text boxes; 

• Add, remove or change artwork icons and select the associated photo, informa-
tion, video and text files, used by the TTS (Text-to-Speech) engine to create the 
vocal comments on the fly. Each artwork can be associated with a tag (RFID, in 
our case) for automatic user localization purposes at run time (see Figure 1). The 
tag ID inserted in the editor is basically a string and the editor functionality is 
independent of the localization technology actually used by the guide applica-
tion: the matching between the detected tag(s) and the associated artwork(s) is 
solved at run time when a new tag event occurs. This type of event is triggered 
by the localization module that interfaces with the hardware; 

• Create help sections; 
• Insert interactive regions on the overall museum map for quick room selection 

(allowing the user to manually change room by clicking them); 
• Create instances of educational games; 
• Insert, by drag-and-drop, game instances, which are associated with specific 

artworks. 

3.1   The Museum Maps 

Figure 1 shows the interface for editing the museum virtual environment. The rooms 
and the associated items are listed on the left side in a tree structure (elements can be 
expanded for editing). The same strategy is used in the right panel for listing the avail-
able resources (e.g.: photos). The central part is dedicated to the room currently being 
edited. New elements can be added to the room by just selecting the corresponding 
icons from the toolbox and locating them in the museum map through drag-and-drop. 

After saving the configuration, the tool generates a collection of XML files, which 
define the corresponding database and can be simply deployed on the devices (mobile 
and stationary). The two database versions differ mostly in the detail level of the mul-
timedia resources. The stationary device package contains pictures and videos with 
higher quality than the mobile one. In this way it is possible to exploit the better reso-
lution of the large screen (e.g.: for items preview) and to save storage space on the 
mobile device. On the guide application at run-time the information available is  
presented differently depending on the type of device (thus, for example, long de-
scriptions are presented only on request on the mobile, while they are immediately 
rendered on the large screen). 

Currently, the rules determining how the user interface will appear in the two dif-
ferent platforms are pre-defined. In future work they will be generated from logical 
descriptions taking into account the capabilities of the target devices. 

 



268 G. Ghiani, F. Paternò, and L.D. Spano 

 
 

Fig. 1. The main window of the museum maps editor (top) and the form for setting the exhibit 
parameters (bottom) 

3.2   The Games 

The environment supports six types of individual games. Figure 2 shows the user 
interface for each: 

• Associations requires the player to link images to information items, e.g. the 
picture of an artwork with its name. 

• Details shows an enlargement of a small portion of an image. The player has 
to guess which of the items the detail belongs to. 



 Cicero Designer: An Environment for End-User Development  269 

• Chronology requires the user to order the images of the artworks shown ac-
cording to their creation date. 

• In the find the word game the user is requested to guess a “hidden word” re-
lated to an exhibit attribute: the number of characters composing the word is 
provided as a facility. 

• In the memory game, the user has to observe an image for a while. After the 
image has disappeared s/he has to answer a question related to the image. 

• The quiz is a single-answer multiple-choice question. 
 

 

Fig. 2. The six individual games displayed on the PDA 

We chose these types of games with the aim to enhance the museum visitor’s ex-
perience without interfering with the visit: users need not spend time in understanding 
the game rules, but should exploit the museum information in order to find the solu-
tion. For this reason the games are simple, and the difficulty depends mostly on the 
content. 

The interface for editing a game has been designed to look like a preview of the 
corresponding game: the user enters the questions, the images and the captions, and 
provides the solution for the game.  

 



270 G. Ghiani, F. Paternò, and L.D. Spano 

 

Fig. 3. The window for creating an “associations” game 

To create a game, the user selects the game type (associations, chronology etc.), 
then associates the artwork (or the artworks if the game involves more than one, i.e. 
associations and chronology), and finally provides the proper content. After creating 
the game, a star will appear over the corresponding artwork icon. It is possible to 
associate a set of games to an artwork. 

Figure 3 shows an example of creating an association game: the environment 
prompts the user (i.e., the museum curator) to provide the images, the corresponding 
names and the relations among them. Although every game is bound to one or more 
artworks, the game is not a field of the artwork data structure, that is to say it is not 
contained in the artwork definition. Thus, the game generation is a more dynamic 
process than a simple content addition. Indeed, each new game consists of a set of 
resources (texts, pictures) contained on, or referred by, a piece of XML code compli-
ant to the specifications of the template. The association between artwork and game is 
then solved by the editor preview form, as well as by the guide application, to enable 
the graphic engine to draw the game icon. At run time, museum visitors may try the 
possible associations and receive the corresponding feedback whether the answers are 
correct or not. 

This high configurability of the environment has made it possible to create a guide 
for the Natural History Museum of Calci involving one collaborator of our laboratory 
for about one week. The availability of an EUD tool for museums is judged impor-
tant, especially after the guide application deployment, since the layout of a museum 
can often change. The museum curators can thus directly update the data and func-
tionality of the guide, even without knowing the underlying implementation language. 

4   The Resulting Application 

The resulting application can be used through either a PDA or a desktop system,  
including desktops with large screens. While the two application versions have a  
 



 Cicero Designer: An Environment for End-User Development  271 

similar logic, their user interfaces vary in order to better adapt the different screen 
sizes (3.5 and 42 inches). In addition, users can dynamically transfer part of the user 
interface from the mobile to a large screen when one is nearby in order to opportunis-
tically exploit its better resolution or share information and comments on it with other 
visitors. Figure 4 shows how, after migration to the stationary device, the user can 
access the content that was available on the PDA through richer presentations. On the 
PDA, the map items are icons (A1), while on the large screen images are used (A2). 
The artwork/exhibit preview on the desktop (B2) has a picture with a better resolution 
than in the PDA (B1), and the text is shown in its entirety (while on the PDA the 
description is provided vocally) and the position of the visited section with respect to 
the museum map is presented as well. 

Thus, the user interfaces differ depending on the mode in which the application is 
accessed: mobile only, desktop only, distributed across the two platforms. 

In the case of mobile access: 

• The item has a label, a low resolution photo (about 150x200 px), chronology 
and a summary of main information (e.g., authors for artworks or scientific 
names for animals). The description is automatically read by text to speech 
software; 

• The games are represented by title and description (or question, if any), item 
photo, UI for answering through PDA-designed interaction (e.g., four clicks in 
sequence for chronology order); 

• Museum visit consists of presenting section/room maps with low resolution 
icons of the items. 

In the case of stationary access through large screens: 

• Items are presented by name, high resolution photo (about 800x600 px), de-
tailed description, context information (life of the author and historical descrip-
tions for artworks, species information for animals etc.), related items, position 
in the museum and path from current position. 

• Games are represented as in the PDA, with high resolution photos of the items 
and standard desktop interactions. 

• Museum visit is supported through high resolution section or room maps with 
the possibility to change the display of the items using icons, previews or both, 
and whole museum map with current position, as well as collaborative game 
status 

In the case of distributed user interface: 

• The PDA shows game title, description (or question) and the UI for answering 
through a PDA-designed interaction technique; 

• the desktop shows same title, description and high resolution photo of the 
items  



272 G. Ghiani, F. Paternò, and L.D. Spano 

 

Fig. 4. Device dependent representations: virtual section on PDA (A1) and large screen (A2); 
artwork preview on PDA (B1) and large screen (B2) 

5   User Test 

We performed a first user test of our end-user development platform for museum 
environments. In order to get feedback from the target users, we involved the curators 
of the Museum of Natural History in Calci (Italy). Two of them participated in the test 
session. Both had several years of experience on personal computers and applications, 
however they had never used any environment for managing museum content or, 
more generally, visual builders. 

Before starting the test, the participants viewed a short demonstration on the capa-
bilities of the tool and received explanations on the main components. Then, they 
were provided with the list of tasks to perform: 

• Set up one room (reflecting the real layout) 

o Extract the room map from the global museum map 
o Create, configure the exhibits and put them on the map 
o Insert the link items for section changes 

A1 

B2 

A2 

B1 



 Cicero Designer: An Environment for End-User Development  273 

• Add a new item to an existing room 
• Generate two educational games and bind them to existing exhibits. 

Both users were able to accomplish the assigned tasks. After performing the test, the 
users were requested to answer a questionnaire providing ratings (1 to 5) as well as 
subjective opinions and suggestions for improving the tested solution. Users rated  the 
tool’s features 4 and 5, and provided  positive feedback. The museum curators appre-
ciated the possibility of quickly editing the museum guide descriptions, not only for 
setting up new sections but also for managing the rooms whose layouts often change. 
This was considered a key feature for a museum guide: the curators often change the 
presentation of exhibits or artworks  (for special exhibitions, artists celebrations etc.), 
and a software without this possibility would soon be considered obsolete.  

One user reported that the ease of editing would enable easily creating ad-hoc 
games for teachers in order to evaluate their knowledge before actually accompanying 
students to the museum. The other user suggested enhancing the game editor interface 
with previewing capabilities, in order to let the user immediately see the actual pres-
entation provided to the visitors on the PDA. 

6   Conclusions and Future Work 

End-User Development has mainly focused on desktop applications, but people use 
more and more mobile devices as well in order to access interactive applications. In 
this work we present an environment to support end-user development of museum 
applications that can be accessed through both mobile and desktop devices. This work 
shows a systematic design pattern: domain analysis to define target functionality and 
building blocks for component-based design time, use of direct manipulation design 
principles, templates (in this case game patterns, for example). These principles can 
be transferred to other domains as well. 

Future work will be dedicated to the possibility of extending the approach in such a 
way to generate application versions accessible also through different modalities 
(such as voice) exploiting the use of XML-based declarative descriptions of user 
interfaces and a set of adaptation rules customizable by users. We also plan to conduct 
further empirical validation of the approach proposed.  

References 

1. Akesson, K.P., Crabtree, A., Hansson, P., Hemmings, T., Humble, J., Koleva, B., Rodden, 
T.: “Playing with the Bits” User-Configuration of Ubiquitous Domestic Environments. In: 
Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 256–
263. Springer, Heidelberg (2003) 

2. Ardito, C., Buono, P., Costabile, M.F., Lanzilotti, R., Pederson, T.: Mobile games to foster 
the learning of history at archaeological sites. In: VL/HCC 2007, pp. 81–86 (2007) 

3. Bellotti, F., Berta, R., De Gloria, A., Margarone, M.: MADE: Developing Edutainment Ap-
plications on Mobile Computers. Computers & Graphics 27, 617–634 (2003) 

4. Berti, S., Paternò, F., Santoro, C.: Natural Development of Nomadic Interfaces Based on 
Conceptual Descriptions. In: End User Development, pp. 143–160. Springer, Heidelberg 
(2006) 



274 G. Ghiani, F. Paternò, and L.D. Spano 

5. Carmien, S.P., Fischer, G.: Design, Adoption, and Assessment of a Socio-Technical Envi-
ronment Supporting Independence for Persons with Cognitive Disabilities. In: Proc. CHI 
2008, pp. 597–606 (2008) 

6. Cotterell, S., Vahid, F.: A Logic Block Enabling Logic Configuration by Non-Experts in 
Sensor Networks. In: Proc. CHI 2005, pp. 1925–1928 (2005) 

7. Dey, K.A., Sohn, T., Streng, S., Kodama, J.: iCAP: Interactive Prototyping of Context-
Aware Applications. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVA-
SIVE 2006. LNCS, vol. 3968, pp. 254–271. Springer, Heidelberg (2006) 

8. Lieberman, H., Paternò, F., Wulf, W.: End-User Development. Springer, Heidelberg (2006) 



V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 275–284, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Observing End-User Customisation of Electronic Patient 
Records 

Cecily Morrison and Alan F. Blackwell 

University of Cambridge, Computer Laboratory 
JJ Thompson Avenue, Cambridge, UK, CB3 9EU 

{Cecily.Morrison,Alan.Blackwell}@cl.cam.ac.uk 

Abstract. The contemporary practice of medicine, which is concerned both 
with national standards of audit and innovation through local customisation, is a 
prime domain for end-user development. In this paper we describe four experi-
ences of end-user development in this domain that offer interesting empirical 
examples. We look at existing practices through considering end-user customi-
sation of paper charts (1), compare the end-user customisation facilities  
provided by two applications for electronic patient records (2), assess the struc-
ture of an actual end-user development using one of these (3), and propose a 
longitudinal study of end-user customisation building on this work (4). 

Keywords: Patient records, Healthcare, End-user customization. 

1   Introduction 

Contemporary medical practice is fundamentally concerned with the definition and 
execution of standardised procedures. The creation of new standard procedures by 
individual hospitals or units, and the local refinement of existing procedures, is com-
monplace. Such local customization, even if minor, can be seen in a positive light, 
encouraging reflective professional practice [1], as well as innovation. Despite these 
potential benefits that procedural diversity carries, it causes problems for the applica-
tion of information technology to clinical practice, which for economic reasons is 
often deployed across a large number of client institutions. This conflict is well illus-
trated by the significant difficulties encountered in the implementation of the British 
National Program for Information Technology, a very large scale deployment of stan-
dardised clinical administration software [2].  

The combination of requirements, for both standardisation and customisation, 
means that Electronic Patient Record (EPR) systems are a natural target for end-user 
development or end-user customisation. (In this paper, we will refer to both as EUD.) 
Indeed, leading EPR products offer in addition to their standardised set of procedures 
and record formats, significant capabilities to support local end-user development. 
The already established medical practice of defining and refining procedures  
makes EUD application use in medical environments particularly interesting to study, 
as the practitioners are familiar with the process but not the technology. Such a  
situation provides the opportunity to assess customisation procedures without the use 



276 C. Morrison and A.F. Blackwell 

of technology as well as a capability to home in on the problems stemming from the 
technology use, as we can assume that the process of negotiating customised proce-
dures is already smoothly established.  

This paper highlights a number of examples from our experiences with customisa-
tion procedures and EUD technology employed in healthcare environments. We 
begin by investigating the process of customisation without technology, by detailing 
how paper charts were developed in an intensive care unit (1). Moving on to look at 
customisation of technology, we present a comparison of the initial customisation 
procedures of two EPR systems, GE Healthcare Centricity EMR [3] and IMDsoft 
Metavision [4] (2). We then focus on a single system, Metavision, and explore how 
system structure affects end-user development (3). Finally, we change focus from the 
initial to the long-term practice of customisation, and propose how one might study 
long-term EUD usage in a medical environment (4). Despite the brevity of these 
examples, we aim to demonstrate in our conclusion that studies in the medical  
environment can offer insight into a wide variety of issues in the EUD application 
development process. 

2   Customisation on Paper (Case 1) 

As noted in the introduction, the creation and refinement of new procedures in medi-
cal contexts is both common and productive. Indeed it is considered an important skill 
for senior clinical practitioners and a way to provide innovative patient care. These 
procedures are traditionally deployed through the development of appropriate charts. 
Below we look at the customisation of paper charts found in an intensive care unit 
(ICU) of a cardiothoracic specialist, research-oriented hospital in the UK. We first 
detail a brief example of process and then discuss the end-result.  

2.1   Customisation of the CCOC Paper Chart 

A tremendous amount of data about a patient's state is collected from the many ma-
chines to which she is attached – heart rate, fluid balance, oxygen levels and blood 
results to name just a few. This data is organized in various charts, perhaps as many 
as 10, for use by different kinds of practitioners (e.g. nurses vs. doctors).  In order to 
utilize such a wealth of information, the director of this ICU discouraged narrative 
observations on charts, in favour of formalised tabular formats that could be easily 
reviewed and compared. The most commonly used chart shared by all practitioners, 
the Critical Care Observation Chart (CCOC), became, as a result, formalised to an 
extent that it did not accommodate the more diverse aspects of patient care with 
which nurses are concerned.  

In response, nurses developed the habit of turning the CCOC over, to write less 
structured observations on the back. However, as unstructured text presents problems 
in consistency and standard interpretation, the ICU nursing staff decided to define a 
standardised structure for nursing observations too. They revised the CCOC by print-
ing another grid on the reverse side, providing another, but different, knowledge 
structure for use by nurses.  



 Observing End-User Customisation of Electronic Patient Records 277 

We might note two points from this example of the customisation process. First, 
the process of formalisation and categorisation is a feature of organisational data 
management, a point observed by Bowker and Star [5] in an analysis of case studies 
that included the formalisation of nursing practices. It is therefore a process that is 
well practised, even when customisation happens without any EUD technology, a 
point that will be discussed further in section three. Second, it demonstrates a reac-
tive, incremental developmental process which suggests the importance of looking at 
long term usage of patterns of EUD application and not just the initial period of cus-
tomisation, something that will be done in section four.  

 

Fig. 1. A selection of more recently design paper charts in use at the ICU 

2.2   Examples of Paper Chart Customisation 

In Figure 1 and 2 we present a collection of charts from this ICU unit. Those in Figure 
1 are newer and more standardized than those in Figure 2. In particular, we would like 
to draw attention to the visual coherence that begins to appear in the newer charts. 
This suggests that not only is customisation happening on a chart-by-chart basis as the  
 



278 C. Morrison and A.F. Blackwell 

 

Fig. 2. A selection of older paper charts in use at the ICU 

need arises (as above), but that there is concerted design of the information structure. 
Customising fields on a chart might be seen as end-user programming while design of 
an information structure may be likened to end-user software engineering. This dis-
tinction will be considered in more detail below.  



 Observing End-User Customisation of Electronic Patient Records 279 

3   Comparison of Two Health EUD Applications (Case 2) 

3.1   GE Healthcare 

The CHI 2006 workshop on End-User Software Engineering [6] included a represen-
tative of GE Healthcare, who described the customisation facilities of the Centricity 
Electronic Medical Record product [7]. The aspect of the system providing the focus 
of discussion was its facility for generating medical reports. Medical reports are stan-
dardised in structure and terminology, to an extent that suggests they might easily be 
generated automatically. Indeed, Centricity allowed doctors to define the content of 
an individual patient’s report using menus and checkboxes, then automatically gener-
ate the full prose text report from the resulting data fields. However, despite the clear 
advantages of standardised text (consistency, quality control, efficiency), individual 
doctors often have strong preferences for particular expressions or writing ap-
proaches, to an extent that makes them reluctant to use standardised text.  

The solution offered by the Centricity product is that doctors can customise report 
text generation in accordance with their own preferred style, using a “medical expres-
sion language.” Unfortunately, the computational complexity of transforming a prede-
fined set of terms into arbitrary prose constructs is such that this language includes 
most of the data and control features of a general purpose programming language 
(typed variables, conditionals, iteration and others). The instruction manual for the 
medical expression language resembled an introductory programming course, in both 
content and structure. Few doctors have the time to develop programming skills from 
scratch, leading on the one hand to a thriving third-party industry offering customisa-
tion services for Centricity, and on the other hand to a variety of costs and risks 
associated with the specification and debugging of any scripts written by relatively 
inexperienced doctors. 

3.2   IMDsoft Metavision 

The director of the above mentioned ICU considered the GE Healthcare product when 
implementing a new Electronic Patient Record system, but eventually selected the 
MetaVision product from IMDsoft. He reported to us, at the outset of our research, 
that customisation facilities had been a significant factor in that decision. Although 
MetaVision has a different set of customisable features, the encounter with a different 
product did provide us with an opportunity to compare end-user customisation and 
deployment issues associated with different products in the same market. At this ICU, 
report formats also provided an initial focus for customisation. However, it was not 
prose reports that were the main priority, but the layout and content of patient charts 
to monitor patient’s vital signs, drug administration and fluid balance.  

Implementation of Metavision at this ICU was mainly concerned with replicating 
the structure of these existing paper charts within the Electronic Patient Record. We 
observed the necessary customisation work being carried out by a small team of sys-
tem “super-users” – the clinical director of the unit (a consultant anaesthetist) who 
had been the initiator and driver of new policy, the director of nursing, and the com-
puter system administrator. Their approach to the project closely resembled profes-
sional practice. Having collected samples of all the paper charts used in this ICU, the 



280 C. Morrison and A.F. Blackwell 

team identified all data fields. They arranged these on flipcharts posted around the 
walls of their workspace and carried out the customisation in the centre of the room at 
workstation with a collection of Metavision manuals. A second workstation was used 
by IMDsoft staff who were present as trainers at the start of the one week initial cus-
tomisation period. 

The professional and systematic approach to end-user development was not acci-
dental. Metavision training material has an explicit focus on project management, 
including recruiting suitable members of the development team, and establishing a 
systematic development process. This typically starts with the definition of “parame-
ters” (patient data and measurements), followed by layout of a patient “flowsheet” 
that provides interactive access to various data entry forms as well as charts and re-
ports. It is clear that the Metavision product takes as its starting point the importance 
of end-user software engineering (EUSE) concerns, somewhat in contrast to the Cen-
tricity training material, which at the time we saw it had a far more conventional fo-
cus on end-user programming (EUP) facilities.  

From the perspective of a computer science researcher, the Metavision documenta-
tion was rather irritating, because basic description of language syntax and library 
functions are located in obscure parts of the documentation. The Centricity documen-
tation offered far more conventional programming reference – perhaps a sign that the 
two audiences, end-user software engineering and end-user programmers should be 
clearly separated. In other EUP research in our group, we encourage the use of perso-
nas to distinguish between the two, characterising the approaches to programming 
that might be found among different professional groups [8]. 

4   EUD Application Structure 

End-user development activities in Metavision are largely structured around the pre-
defined dataflows and interaction model at the core of the product. It would not be 
possible for users to modify these system behaviours. Customisation of certain opera-
tions can be done using a scripting language that is invoked during particular opera-
tions, which include “triggers,” relatively advanced messaging, action and automated 
notification functions.  During the initial customization period, the team focused on 
creating parameters and forms rather than on triggers. However, they did use scripting 
facilities to write “formula” scripts that can calculate new parameters derived from 
directly captured data.  

Formula scripts provided the main opportunity for us to observe conventional pro-
gramming activity. IMDsoft training staff were able to assist with script syntax, but 
this threw attention onto the need for a shared domain understanding between techni-
cal and practical expertise. We observed a sustained debate over the interpretation of 
physical dimensions and data types, as clinical staff and trainers disagreed whether 
the built-in type “millimoles” represented a concentration or a quantity of potassium 
(ion balance in ICU patients was a key clinical concern of the ICU director).  

A less contentious, although laborious, consequence of using formula scripts to 
implement local clinical concerns was the process of creating many formulas to calcu-
late patient fluid balance – almost all drug administration and nutrition introduces 
fluids into the patient that must be taken into account alongside ion balance. As the 



 Observing End-User Customisation of Electronic Patient Records 281 

base product did not anticipate this particular cross-cutting concern, customisation 
activity had to include the creation of many small scripts throughout the system to 
account for fluid intake. 

We also observed the consequences of conflict between the built-in operational 
model of the software, and the operational conventions of existing paper-based data 
processing. One of the primary displays in the Metavision software is a chart that can 
be customised to plot various parameters along a continuous timeline. The navigation 
of the chart and control of the timeline itself are sophisticated, and of course cannot 
be customised by end-users. However, this seemed to cause a major obstacle for the 
nursing staff. The local clinical concern with continuous monitoring of fluid balance 
meant that nurses were accustomed to noting that a patient had passed a quantity of 
urine, and attributing this retrospectively to a loss of fluid over the previous hour. 
However, the underlying model of the Metavision timeline seemed to assume that all 
observations related to events in the current, rather than previous time period.  

The above three examples demonstrate a number of problems. The first and the 
third note the issue of having a sufficiently shared understanding between technicians 
and end-users to achieve a task. In the latter example particularly, neither the team nor 
the IMDsoft staff found it easy to identify this fundamental difference in the way they 
described the relationship between observations and intervals. Most likely, a common 
level of description would have required a shift to a more abstract conception of time 
[8]. The second and third examples indicate the importance of appropriate design 
even when customisation abilities are present. Although many problems can be 
worked around, as in the second example of writing many scripts to calculate fluid 
balance, others, such as the notion of time and flow, are more problematic. Research 
into requirements gathering for EUD systems that distinguishes between items that 
can and cannot be customised would be useful.  

5   Studying Long-Term EUD Usage 

In the second section we highlight the need to focus not just on the initial process of 
end-user customisation (as in cases two and three) but also on long term usage, ena-
bling us to understand how customization becomes embedded in the social context. 
Lieberman et al [9] also stress the need for empirical studies of long-term EUD usage 
in their vision of EUD research of the next 15 years. This vein of research aims to 
answer questions ranging from when software is customised as opposed to when 
workarounds are found, to what role does cooperation play in the customisation proc-
ess. We are now commencing a retrospective study of the ICU unit described above, 
investigating the day-to-day process of the customisation process of the Metavision 
system. This section describes how we intend this to be done.  

5.1   Background 

The majority of work that focuses on usage of EUD systems is carried out during the 
design, rather than evaluation phase. Rode et al. [10] for example, look at what fea-
tures non-professional web-designers use in order to build an EUD system that ad-
dresses the needs of this particular group. Stevens et al. [11] focus more on the social 



282 C. Morrison and A.F. Blackwell 

context of system use, describing problems with data control between two organiza-
tions and how that can be accounted for in an EUD system. In contrast, we concen-
trate on the long-term usage of the system. One expects a significant amount of cus-
tomisation when a system is first bought and used. When, by whom, and for what 
purpose is the system customised after the initial burst? Noting Blackwell's attention 
investment theory of abstraction use [12], if users are given the opportunity to cus-
tomise, when do they decide to adapt themselves rather than the system? How does 
the technology and the social context change the answer to this question? 

5.2   Study Design 

We have chosen two complementary approaches to address these questions: (1) a 
catalog of customised elements; (2) contextual interviews about specific changes 
made. The catalog will be used to explore patterns in what, when, and who does the 
customisation, while the contextual interviews are intended to investigate the social 
context in which customisation happens. The interviews will be broken into two parts, 
the first focusing on understanding the context for making changes and the second 
one concentrating on how the EUD capabilities are employed to achieve changes.  

The catalog will be comprised of a database of all changes made in the past two 
years, documenting what change was made, when, and by whom (if possible). After 
categorizing the changes using grounded theory, it will be possible to look for pat-
terns. We are particularly interested in whether there will be correlations between any 
of the following:  

(1) the time elapsed since the initial customisation and the number of changes 
made 

(2) time and what kind of changes are made 
(3) time and who makes changes 
(4) what changes are made by whom  

We would also like to know if repeated changes are made to the same element. Not 
only will this data give us a general overview of customisation over time, but will 
provide fodder for the contextual interviews.  

In the first part of the interview, the respondent will be asked about four changes in 
the catalog. Three will be randomly chosen to sample a range of possible user con-
cerns and the fourth will be one of interest to the researchers, such as an element that 
has been changed several times. We have chosen to discuss concrete examples for 
two reasons. First, we want to understand the average case, rather than just extraordi-
nary ones that are likely to be remembered. Second, it is usually easier for people to 
recall something specific (e.g. the change of the haemoglobin parameter) rather than 
something more general (what kinds of parameters have changed). The respondent 
will also be given an opportunity to discuss any significant changes that they remem-
ber in order to identify the most burdensome problems.  

The questions used for both sections of the first part are listed below. They are 
open-ended and thus designed to elicit more information than is strictly implied in the 
question. Other questions will be used as necessary to develop themes that emerge.  

1) Who made this change? (Does this person usually make changes?) 
2) Why was this change made? 



 Observing End-User Customisation of Electronic Patient Records 283 

3) How was the decision made to make this change? 
4) Were there any difficulties making this change? 
5) Was the change tested after it was made? 
6) How was the change communicated to the medical staff? 
7) Was the accuracy of the change ever questioned? 

The first question hopes to draw out comments about how people think of those 
making changes and perhaps how that affects their attitude towards or description of 
the changes. The second question will help us understand when changes are made and 
perhaps when they are not, and whether this varies over time. Questions 3 & 6 are 
oriented towards discovering the official and unofficial policies for making and dis-
tributing changes. Question 4 is an initial question to probe difficulties, either social 
or technical ones, which arise during customisation. Lastly, question 7 is an explora-
tion of the social context of customisation. 

The second part of the interview looks more specifically at interaction with the 
customisation interface and language. Again we employ the strategy of talking about 
concrete episodes, this time asking them to recall a specific incident. We also use a 
strategy of repetition, making the later questions refinements of the earlier. The ques-
tions are meant to address the social and technical issues raised when non-
programmers use a programming language.  

1) Is there any change that you would like to make but are unable? If so, can you 
describe how you would like to make this change? 

2) In the past have there been problems that have been difficult to solve? What 
did you do?  

3) Do you work on customisation with your colleagues?  
4) How is this work similar and/or different from designing the paper charts?  
5) Do you use metaphors or images or other aids when customizing? 

6   Conclusion 

We have presented a description of research work in progress, investigating the rela-
tionship between existing professional customisation practices, and software-based 
EUD practices, in a medical environment. It is clear that current commercial products 
already incorporate relatively sophisticated EUD facilities, and that these (unsurpris-
ingly) are drawing attention to the importance of end-user software engineering, both 
in the formal interventions of software vendors, and the informal appropriation of 
technical capabilities within clinical teams. As such, we find that these experiences 
offer a valuable case study for comparison to experiences of EUD in educational or 
research contexts. Furthermore, they offer an opportunity for the long-term observa-
tion and analysis that is still in progress. This kind of long-term professional deploy-
ment is unusual in research contexts, and includes longitudinal study of individuals 
that is unusual in educational contexts (where studies of individual students usually 
last for a year at most). We believe that this research context will offer a valuable 
opportunity for further investigation of EUD in practice. 



284 C. Morrison and A.F. Blackwell 

References 

1. Schon, D.A.: The Reflective Practitioner: How professionals think in action. Basic Books 
(1983) 

2. Martin, D., Rouncefield, M., O’Neill, J., Hartswood, M., Randall, D.: Timing in the Art of 
Integration: That’s How the Bastille Got Stormed. In: Proc. of Group 2005 (2005) 

3. GE Healthcare: Centricity EMR product description (August 29, 2008), 
http://www.gehealthcare.com 

4. IMDsoft MetaVision MVICU product description (August 29, 2008), www.imd-
soft.com 

5. Bowker, G.C., Star, S.L.: Sorting Things Out: Classification and Its Consequences. MIT 
Press, Cambridge (1999) 

6. Burnett, M., Myers, B., Rosson, M.B., Wiedenbeck, S.: The next step: from end-user pro-
gramming to end-user software engineering. In: CHI 2006 (extended abstracts) 

7. Orrick, E.: Position Paper for the CHI 2006 Workshop on End-User Software Engineering 
(2006), http://eusesconsortium.org/weuseii/docs/ErikaOrrick.pdf 

8. Blackwell, A.F., Church, L.E., Green, T.R.G.: The abstract is an enemy. In: Proc. of PPIG 
(2008) 

9. Lieberman, H., Paterno, F., Klann, M., Wulf, V.: End-User Development: An Emerging 
Paradigm. In: Lieberman, Paterno & Wulf (2006) 

10. Rode, J., Rossen, M.B., Perez Quinones, M.A.: End-User Development of Web Applica-
tions. In: Lieberman, Paterno & Wulf (2006) 

11. Stevens, G., Quaisser, G., Klann, M.: Breaking it up: An Industrial Case Study of Compo-
nent-Based Tailorable Software Design. In: Lieberman, Paterno & Wulf (2006) 

12. Blackwell, A.F.: First steps in programming: A rationale for Attention Investment models. 
In: Proc. of the IEEE Symposium on Human-Centric Computing Languages and Environ-
ments (2002) 

13. Lieberman, H., Paterno, F., Wulf, V. (eds.): End-User Development. Springer, Heidelberg 
(2006) 



Author Index

Aedo, Ignacio 186
Andersen, Renate 31

Bahna, Eric 205
Beaton, Jack 86
Blackwell, Alan F. 275
Brundage, James 205
Burnett, Margaret 15, 205
Busse, Daniela K. 86

Cabitza, Federico 146
Carroll, John. M. 186
Costabile, Maria Francesca 70

Dı́az, Paloma 186

Efeoglu, Arkin 86
Ehret, Ralf 86
ElRif, Paul 205

Fischer, Gerhard 3
Fogli, Daniela 126

Ghiani, Giuseppe 265
Grigoreanu, Valentina 205

Haake, Jörg M. 166

Jeong, Sae Young 86

Karstens, Jan 86

Mørch, Anders I. 31
Morrison, Cecily 275
Mussio, Piero 70
Myers, Brad A. 86, 242

Ortiz-Chamorro, Sebastian 225

Parasiliti Provenza, Loredana 70
Paternò, Fabio 265
Piccinno, Antonio 70
Pipek, Volkmar 50

Rossi, Gustavo 225
Rosson, Mary Beth 186

Scaffidi, Chris 242
Schümmer, Till 166
Schwabe, Daniel 225
Shaw, Mary 242
Simone, Carla 146
Snover, Jeffrey 205
Spahn, Michael 106
Spano, Lucio Davide 265
Stevens, Gunnar 50
Stylos, Jeff 86

Wulf, Volker 50, 106

Xie, Yingyu 86


	Title Page
	Preface
	Organization
	Table of Contents
	Part I Invited Talks
	End-User Development and Meta-design: Foundations for Cultures of Participation
	Introduction
	End-User Development
	A “New World” Based on Cultures of Participation
	Meta-design
	The Ubiquity of Meta-design
	Richer Ecologies of Participation
	Motivation, Control, Ownership, Creativity, and Quality

	Drawbacks of Cultures of Participation
	Implications and Conclusions
	References

	What Is End-User Software Engineering and Why Does It Matter?
	Introduction
	A New Area: End-User Software Engineering
	Organization of This Paper

	WYSIWYT Testing and Surprise-Explain-Reward
	Debugging Machine-Learned Programs
	Gender in End-User Software Engineering
	Conclusion
	References


	Part II Refereed Papers
	Mutual Development: A Case Study in Customer-Initiated Software Product Development
	Introduction
	The Case

	End-User Development
	Integrated EUD

	Concepts for Analysis
	SER Model and Meta-design
	Modding
	Co-configuration

	Method
	Categorizing Data

	Data and Analysis
	Excerpt 1: Types of Improvement Request
	Excerpt 2: Types of Generalization
	Excerpt 3: Improvement Request and Adaptation
	Excerpt 4: Generalization
	Excerpt 5: Tailoring

	Conclusions and Directions for Further Work
	Directions for Further Work

	References

	Appropriation Infrastructure: Supporting the Design of Usages
	Introduction
	Appropriation Work and Technical Flexibility
	Appropriation Work
	Product-Oriented Flexibility
	Process-Oriented Flexibility

	An Infrastructure for Appropriation Support
	BSCWeasel
	Collaboration among Users
	Collaboration between Users and Developers
	Bridging between Product-Oriented and Process-Oriented Flexibility
	Case Study
	Grounding Design in Practice
	Integrating Different Functions in an Appropriation Infrastructure

	Conclusion
	References

	Supporting End Users to Be Co-designers of Their Tools
	Introduction
	Background and Motivation
	A Strategy for Supporting Users’ Co-design
	SSW Architecture as a Network of Customized Environments
	A Case Study
	Conclusions
	References

	Improving Documentation for eSOA APIs through User Studies
	Introduction
	Related Work
	Methodology
	Participants
	Tasks
	Context – SOA Documentation

	Results
	Paths through the Documentation
	Process Component View
	Service Descriptions
	Using Search
	Individual Strategies

	Threats to Validity
	Discussion
	Implications for Design
	Future Work and Conclusions
	References

	End-User Development of Enterprise Widgets
	Introduction
	Research Approach and Preliminary Studies
	Preliminary Empirical Studies
	Creating a Solution Approach
	Evaluating the Solution Approach

	Widget Composition Platform
	Conceptual Layers
	Architectural Components of the Widget Composition Platform
	GUI of Widget Composition Platform

	Evaluation
	Setup of Evaluating WCP in Practice
	Adoption of WCP and Widgets in Practical Use Cases
	Types of End-Users
	Questionnaire-Based Evaluation of WCP

	Summary and Conclusion
	References

	End-User Development for E-Government Website Content Creation
	Introduction
	Characteristics of E-Government Websites
	Content Management Systems and Their Role in E-Government Website Creation and Maintenance
	End-User Development: From Desktop to Web Applications
	EUD Solutions in Different Application Domains
	End Users’ Characteristics

	EUD in E-Government Website Content Creation: A Case Study
	EUD for Accessible Content Creation
	Case Study Research: Methodology and Results

	Toward Online Service Creation through EUD
	Discussion
	Conclusions
	References

	LWOAD: A Specification Language to Enable the End-User Develoment of Coordinative Functionalities
	Requirements for EUD in Document-Mediated Cooperative Work
	Bridging Conventions and EPR Applications
	A Language to Express Coordinative Functionalities
	Coordinative Requirements for EPRs
	LWOAD and the Flexible Specification of Coordinative Functionalities
	Simulation and Mockup Tests of LWOAD Specification
	Conclusions and Future Work
	References

	Shaping Collaborative Work with Proto-patterns
	Introduction
	Requirements for Best Practice Detection and Sharing in Virtual Organizations
	Current Approaches
	Representing and Sharing Best Practices
	Processes

	A Proto-pattern Oriented Approach to Best Practice Sharing in Virtual Organizations
	The Proto-pattern Structure
	Pattern Creation
	Pattern Sharing
	Pattern Application

	Experiences
	Pattern Creation
	Pattern Sharing
	Pattern Application

	Conclusion
	References

	Web Design Patterns: Investigating User Goals and Browsing Strategies
	Introduction
	Related Work
	HyperPatterns: A Language of Web Design Patterns
	Analysing User Goals and Browsing Strategies
	Methods
	Results
	Preliminary Conclusions of the Study

	Conclusions and Further Work
	References
	ANNEX I. DESCRIPTION OF THE DESIGN TASK

	Males’ and Females’ Script Debugging Strategies
	Introduction
	Background and Related Work
	Study
	Participants
	Scripting Language and Environment
	Tasks, Procedure, and Data Collection
	Analysis Methodology

	Results
	Scripters’ Debugging Strategies
	Sequential Usage of Strategies: Three Participants

	Conclusion
	References

	Hypertextual Programming for Domain-Specific End-User Development
	Introduction
	Benefit Catalog and Benefit Configurator
	Product Template Language
	Benefit Catalog Hypertextual Programming Environment

	Hypertextual Programming
	Expressing Language Syntax through Hypertext
	Navigating beyond Syntax

	Related Work
	Hypertext CASE Tools
	Visual and Textual Programming

	Conclusions and Future Research
	References

	Fast, Accurate Creation of Data Validation Formats by End-User Developers
	Introduction
	Related Work
	Formative Study
	Toped Format Editor
	Specific Editor Features
	Validating Data

	Expressiveness Evaluation
	Data and Method
	Results

	Usability Evaluation
	Task Details
	Results
	Comparisons to Other Studies

	Recent Editor Improvements
	Requirements for Improvements
	Toped+: An Improved Prototype for Editing Formats
	Evaluating Toped+ Improvements

	Conclusion and Future Work
	References


	Part III Refereed Notes
	Cicero Designer: An Environment for End-User Development of Multi-Device Museum Guides
	Introduction
	Related Work
	The End-User Development Environment
	The Museum Maps
	The Games

	The Resulting Application
	User Test
	Conclusions and Future Work
	References

	Observing End-User Customisation of Electronic Patient Records
	Introduction
	Customisation on Paper (Case 1)
	Customisation of the CCOC Paper Chart
	Examples of Paper Chart Customisation

	Comparison of Two Health EUD Applications (Case 2)
	GE Healthcare
	IMDsoft Metavision

	EUD Application Structure
	Studying Long-Term EUD Usage
	Background
	Study Design

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




