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Abstract. This paper represents a Particle Swarm Optimization (PSO) algorithm, for 
grid job scheduling. PSO is a population-based search algorithm based on the simula-
tion of the social behavior of bird flocking and fish schooling. Particles fly in problem 
search space to find optimal or near-optimal solutions. In this paper we used a PSO ap-
proach for grid job scheduling. The scheduler aims at minimizing makespan and flow-
time simultaneously. Experimental studies show that the proposed novel approach is 
more efficient than the PSO approach reported in the literature. 

1   Introduction 

Computational Grid [1] is composed of a set of virtual organizations (VOs). Any VO 
has its various resources and services and on the basis of its policies provides access 
to them and hence grid resources and services are much different and heterogeneous 
and are distributed in different geographically areas. At any moment, different re-
sources and services are added to or removed from grid and as a result, grid environ-
ment is highly dynamic. 

Service is an important concept in many distributed computations and communica-
tions. Service is used to depict the details of a resource within the grid [2]. Grid ser-
vices and resources are registered within one or more Grid Information Servers 
(GISs). The end users submit their requests to the Grid Resource Broker (GRB). Dif-
ferent requests demand different requirements and available resources have different 
capabilities. GRB discovers proper resources for executing these requests by querying 
in GIS and then schedules them on the discovered resources. Until now a lot of works 
has been done in order to schedule jobs in a computational grid. Yet according to the 
new nature of the subject further research is required. Cao [3] used agents to schedule 
grid. In this method different resources and services are regarded as different agents 
and grid resource discovery and advertisement are performed by these agents. Buyya 
[4] used economic based concepts including commodity market, posted price model-
ing, contract net models, bargaining modeling etc for grid scheduling. 
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As mentioned in [8] scheduling is NP-complete. Meta-heuristic methods have been 
used to solve well known NP-complete problems. In [10] Yarkhanan and Dongarra 
used simulated annealing for grid job scheduling. GAs for grid job scheduling is ad-
dressed in several works [12], [13], [14] and [16].  Abraham et al. [15] used fuzzy 
PSO for grid job scheduling. 

Different criteria can be used for evaluating the efficacy of scheduling algo-
rithms and the most important of which are makespan and flowtime. Makespan is 
the time when grid finishes the latest job and flowtime is the sum of finalization 
times of all the jobs. An optimal schedule will be the one that optimizes the flow-
time and makespan [15]. The method proposed in [15] aims at simultaneously 
minimizing makespan and flowtime. In this paper, a version of discrete particle 
swarm optimization (DPSO) is proposed for grid job scheduling and the goal of 
scheduler is to minimize the two parameters mentioned above simultaneously. This 
method is compared to the method presented in [15] in order to evaluate its effi-
cacy. The experimental results show the presented method is more efficient and 
this method can be effectively used for grid scheduling. The remainder of this pa-
per is organized in the following manner. In Section 2, we formulate the problem, 
in Section 3 the PSO paradigm is briefly discussed and Section 4 describes the 
proposed method for grid job scheduling, and Section 5 reports the experimental 
results. Finally Section 6 concludes this work. 

2   Problem Formulation 

GRB is responsible for scheduling by receiving the jobs from the users and querying 
their required services in GIS and then allocating these jobs to the discovered ser-
vices. Suppose in a specific time interval, n jobs },...,,{ 21 nJJJ are submitted to 

GRB. Also assume the jobs are independent of each other (with no inter-task data de-
pendencies) and preemption is not allowed (they cannot change the resource they has 
been assigned to). At the time of receiving the jobs by GRB, m  nodes 

},...,,{ 21 mNNN and k  services, },...,,{ 21 kSSS are within the grid. Each node has 

one or more services and each job requires one service. If a job requires more than 
one independent service, then we can consider it as a set of sub-jobs each requiring a 
service.  

In this paper, scheduling is done at node level and it is assumed that each node uses 
First-Come, First-Served (FCFS) method for performing the received jobs. We as-
sume that each node in the grid can estimate how much time is needed to perform 
each service it includes. In addition each node includes a time as previous workload 
which is the time required for performing the jobs given to it in the previous steps. 
We used the ETC model to estimate the required time for executing a job in a node. In 
ETC model we take the usual assumption that we know the computing capacity of 
each resource, an estimation or prediction of the computational needs of each job, and 
the load of prior work of each resource. 
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Table 1 shows a simple example of a set of received jobs by GRB in a specific 
time interval and status of available nodes and services in the grid. In this Table GRB 
received 5 jobs in a time interval and the status of available nodes and resources in the 
grid is as follows: 

Table 1. A simple example of a set of jobs and grid status 

},,,,{: 54321 JJJJJJobs  

},,,{: 4321 SSSSServices  

},,{: 321 NNNNodes  

Jobs Requirements: 

13

22

11

SJ

SJ

SJ

→
→
→

 45

34

SJ

SJ

→
→

 

Nodes status: 

 Previous 
workload 1S  2S  3S  4S  

1N  15 18 5 75 ∞  

2N 60 ∞  17 ∞  15 

3N 36 12 ∞  98 ∞  

There are 4 services and 3 nodes; 1N  includes 15 time units of previous workload 

which means that it requires 15 time units to complete the tasks already submitted to 
it. This node requires 18 time units to perform 1S , 5 time units to perform 2S  and 75 

time units to perform 3S . Since this node does not include 4S , it is not able to per-

form it. Therefore the required time to perform 4S  by this node is considered as ∞ . In 

this Table job 1J  requires service 1S , 2J  requires 2S , 3J  requires 1S  , 4J  requires 3S , 

and 5J  requires 4S . Scheduling algorithm should be designed in a way that each job 

is allocated to a node which includes the services required by that job.  
Assume that jiC ,  }),...,2,1{},,...,2,1{( njmi ∈∈  is the completion time for per-

forming jth job in ith node and iW  }),...,2,1{( mi ∈ is the previous workload of iN , 

then Eq. (1) shows the time required for iN  to complete the jobs included in it. Ac-

cording to the aforementioned definition, makespan and flowtime can be estimated 
using Equations. (2) and (3) respectively. 

∑ + ii WC  (1) 

},...,2,1{

},max{

mi

WCmakespan ii

∈
+= ∑  (2) 

∑
=

=
m

i
iCflowtime

1

 (3) 

As mentioned in the previous section the goal of the scheduler is to minimize 
makespan and flowtime simultaneously. 
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3   Particle Swarm Optimization  

Particle Swarm Optimization (PSO) is a population based search algorithm inspired 
by bird flocking and fish schooling originally designed and introduced by Kennedy 
and Eberhart [9] in 1995. In contrast to evolutionary computation paradigms such as 
genetic algorithm, a swarm is similar to a population, while a particle is similar to an 
individual. The particles fly through a multidimensional search space in which the po-
sition of each particle is adjusted according to its own experience and the experience 
of its neighbors. PSO system combines local search methods (through self experi-
ence) with global search methods (through neighboring experience), attempting to 
balance exploration and exploitation [5]. 

In 1997 the binary version of this algorithm was presented by Kennedy and Eber-
hart [6] for discrete optimization problems. In this method, each particle is composed 
of D elements, which indicate a potential solution. In order to evaluate the appropri-
ateness of solutions a fitness function is always used. Each particle is considered as a 
position in a D-dimensional space and each element of a particle position can take the 
binary value of 0 or 1 in which 1 means “included” and 0 means “not included”. Each 
element can change from 0 to 1 and vise versa. Also each particle has a D-
dimensional velocity vector the elements of which are in range ],[ maxmax VV− . Veloci-

ties are defined in terms of probabilities that a bit will be in one state or the other. At 
the beginning of the algorithm, a number of particles and their velocity vectors are 
generated randomly. Then in some iteration the algorithm aims at obtaining the opti-
mal or near-optimal solutions based on its predefined fitness function. The velocity 
vector is updated in each time step using two best positions, pbest and nbest , and 

then the position of the particles is updated using velocity vectors. 
Pbest and nbest are D-dimensional, the elements of which are composed of 0 and 

1 the same as particles position and operate as the memory of the algorithm. The per-
sonal best position, pbest , is the best position the particle has visited and nbest  is the 

best position the particle and its neighbors have visited since the first time step. When 
all of the population size of the swarm is considered as the neighbor of a particle, 
nbest is called global best (star neighborhood topology) and if the smaller neighbor-
hoods are defined for each particle (e.g. ring neighborhood topology), then nbest  is 
called local. Equations 4 and 5 are used to update the velocity and position vectors of 
the particles respectively. 
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In Eq. (4) )( jX t
i  is jth element of ith particle in tth step of the algorithm and )( jV t

i  

is the jth element of the velocity vector of the ith particle in tth step. 1c  and 2c are 

positive acceleration constants which control the influence of pbest and nbest on the 
search process. Also 1r  and 2r  are random values in range ]1,0[  sampled from a uni-

form distribution. w  which is called inertia weight was introduced by Shi and Eber-
hart [7] as a mechanism to control the exploration and exploitation abilities of the 
swarm. Usually w starts with large values (e.g.  0.9) which decreases over time to 
smaller values so that in the last iteration it ends to a small value (e.g. 0.1). ijr  in  

Eq. (5) is a random number in range ]1,0[ and Eq. (6) shows sigmoid function.  

4   Proposed PSO Algorithm for Grid Job Scheduling 

In this section we propose a version of discrete particle swarm optimization for grid 
job scheduling. Particle needs to be designed to present a sequence of jobs in avail-
able grid nodes. Also the velocity has to be redefined. Details are given what follows.  

4.1   Position of Particles 

One of the key issues in designing a successful PSO algorithm is the representation 
step which aims at finding an appropriate mapping between problem solution and PSO 
particle. In our method solutions are encoded in a nm×  matrix, called position matrix, 
in which m is the number of available nodes at the time of scheduling and n is the 
number of jobs. The position matrix of each particle has the two following properties: 

1) All the elements of the matrices have either the value of 0 or 1. In other 
words, if kX  is the position matrix of kth particles, then: 

},...,2,1{},,...2,1{,),(}1,0{),( njmijijiX k ∈∈∀∈  (7) 

2) In each column of these matrices only one element is 1 and others are 0. 

In position matrix each column represents a job allocation and each row represents al-
located jobs in a node. In each column it is determined that a job should be performed 
by which node. Assume that kX shows the position matrix of kth particle. If 

1),( =jiX k  then the jth job will be performed by ith node. Figure 1 shows a position 

matrix in the example mentioned in Table 1. This position matrix shows that 2J  and 

4J  will be performed in 1N ; 3J  and 5J  will be performed in 2N  and 1J  will be per-

formed in 3N . 

4.2   Particles Velocity, pbest and nbest 

Velocity of each particle is considered as an nm×  matrix whose elements are in 
range ],[ maxmax VV− . In other words if kV  is the velocity matrix of kth particle, then: 
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1J  
2J  3J  4J  5J  

1N  0 1 0 1 0 

2N  0 0 1 0 1 

3N  1 0 0 0 0 

Fig. 1. Position matrix in the example mentioned in Table 1 

},...,2,1{},,...2,1{,),(],[),( maxmax njmijiVVjiVk ∈∈∀−∈  (8) 

Also pbest and nbest are m.n matrices and their elements are 0 or 1 the same as posi-
tion matrices. kpbest  represents the best position that kth particle has visited since the 

first time step and knbest represents the best position that kth particle and its 

neighbors have visited from the beginning of the algorithm. In this paper we used star 
neighborhood topology for nbest . In each time step pbest and nbest should be up-

dated; first fitness value of each particle (for example kX ) is estimated and in case its 

value is greater than the fitness value of kpbest  ( pbest associated with kX ), kpbest  

is replaced with kX . For updating nbest in each neighborhood, pbests are used so that 

if in a neighborhood, the fitness value of the best pbest (pbest with max fitness value 
in neighborhood) is greater than nbest, then nbest is replaced with it.  

4.3   Particle Updating 

Eq. (9) is used for updating the velocity matrix and then Eq. (10) is used for position 
matrix of each particle.  
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In Eq. (9) ),( jiV t
k is the element in ith row and jth column of the kth velocity matrix 

in tth time step of the algorithm and ),( jiX t
k  denotes the element in ith row and jth 

column of the kth position matrix in tth time step. Eq. (10) means that in each column 
of position matrix value 1 is assigned to the element whose corresponding element in 
velocity matrix has the max value in its corresponding column. If in a column of ve-
locity matrix there is more than one element with max value, then one of these ele-
ments is selected randomly and 1 assigned to its corresponding element in the position 
matrix. 
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4.4   Fitness Evaluation 

In this paper, makespan and flowtime are used to evaluate the performance of sched-
uler simultaneously. Because makespan and flowtime values are in incomparable 
ranges and the flowtime has a higher magnitude order over the makespan, the value of 
mean flowtime, flowtime / m, is used to evaluate flowtime where m is the number of 
available nodes. The Fitness value of each solution can be estimated using Eq. (11). 

]1,0[,)_).1(.( 1 ∈−+= − λλλ flowtimemeanmakespanfitness  (11) 

λ  in Eq. (11) is used to regulate the effectiveness of parameters used in this equation. 
The greater λ , more attention is paid by the scheduler in minimizing makespan and 
vise versa.  

4.5   Proposed PSO Algorithm 

The pseudo code of the proposed PSO algorithm is stated as follows: 

Create and initialize an nm×  dimensional swarm with P particles 
repeat 

for each particle i=1,…,P  do 
  if   )()( ii pbestfXf >  then // f( ) is the  fitness function 

   ii Xpbest = ; 

end 
  if   )()( ii nbestfpbestf >  then 

ii pbestnbest = ; 

end 
end 
for each particle i=1,…,P  do 
 update the velocity matrix using Eq. (9) 
 update the position matrix using Eq. (10) 
end 

until stopping condition is true; 

Fig. 2. Pseudo code of the proposed method 

5   Implementation and Experimental Results 

In this Section, the proposed algorithm is compared to the method presented in [15]. 
Both approaches were implemented using VC++ and run on a Pentium IV 3.2 GHz 
PC. In the preliminary experiment the following ranges of parameter values were 
tested: λ = [0, 1], 1c  and 2c = [1, 3], ]01.04.1[ →=w , ]30,10[=P , ]50,5[max =V , 

and maximum iterations = ]200,20[ mm ×× in which m is the number of nodes. 

Based on experimental results the proposed PSO algorithm and the method presented 
in [15] perform best under the following settings: λ =0.35, 5.121 == cc , 

1.09.0 →=w , 28=P , 30max =V , and maximum iteration m×= 100 . 



 A Novel Particle Swarm Optimization Approach for Grid Job Scheduling 107 

5.1   Comparison of Results with the Method Proposed in [15] 

Abraham et al. [15] used Fuzzy discrete particle swarm optimization [11] for grid job 
scheduling. In their method, the position of each particle is presented as nm×  matri-
ces in which m  is the number of available nodes and n is the number of received 
jobs. Each matrix represents a potential solution whose elements are in [0, 1] intervals 
in which the total sum of the elements of each column is equal to 1. The value of ijs , 

the element in ith row and jth column of the position matrix, means the degree of 
membership that the grid node jN would process the job iJ  in the feasible schedule 

solution [15]. In the first time step of the algorithm one position matrix is generated 
using LJFR-SJFR heuristic [16] that minimizes the makespan and the flowtime simul-
taneously and others are generated randomly and then in each time step these matrices 
are updated using velocity matrix whose elements are real numbers in 
range ],[ maxmax VV− . After updating each position matrix, it is normalized in a way 

that each element is in range [0, 1] and the sum of values of each column equals 1 and 
then using these obtained matrices schedules are generated. 

In this paper, for comparison and evaluation of the scheduler, makespan and 
mean flowtime are used simultaneously. A random number in the range ]500,0[ , 

sampled from uniform distribution, is assigned to the previous workload of each 
node in our tests. One or more services (at most k services) of },...,,{ 21 kSSS  are 

randomly selected for each node. The time for executing services is randomly se-
lected in range ]100,1[  if the node has these services; otherwise it is selected as ∞ . 

For each job one service among k services is selected randomly as the required 
service of that job. To improve the efficiency of our proposed method and the 
method presented in [15] we generate only feasible solutions in initial step as well 
as each iteration/generation.  In other words each job is allocated to the node 
which has the service required by that job. If in grid there is a job that its corre-
sponding service does not exist in any of the nodes, then its allocated node is con-
sidered as -1 and this means that this job is not performable in the grid at that  
 

Table 2. Comparison of statistical results between our method and FPSO proposed in [15] 

LJFR-SJFR 
heuristic 

FPSO [15] Proposed DPSO 
Case 
Study 

Number of 
(Jobs, Nodes, 
Services) 

Number of 
iterations: 
(100 m× ) make- 

span 
flow- 
time 

make- 
span 

flow- 
time 

make- 
span 

flow- 
time 

I (50,10,40) 1000 607.9 1337.4 530.5 1252.2 500.6 1186.8 
II (100,10,80) 1000 750.3 2440.1 658.2 2309.1 581.4 2139.5 
III (300,10,160) 1000 1989.0 6956.8 1359.7 6769.3 1226.7 6483.9 
IV (50,20,40) 2000 482.7 1230.4 470.9 1057.0 462.8 891.3 
V (100,20,80) 2000 550.2 1881.6 511.3 1443.2 497.4 1278.5 
VI (300,20,160) 2000 886.9 4863.5 667.1 4215.7 535.8 3830.9 
VII (50,30,40) 3000 467.3 1177.1 468.6 821.5 459.0 691.3 
VIII (100,30,80) 3000 487.7 1603.4 468.9 1124.8 443.5 983.1 
IX (300,30,160) 3000 554.6 3691.2 533.5 3324.3 490.2 2912.4 
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specific time. In this case ∞ , the required time for performing the job, is not taken 
into account in fitness estimation so that the efficiency of the method does not 
fade. Nine grid status of different sizes with number of jobs, n=50, 100, 300 num-
ber of nodes, m=10, 20, 30 and number of services, k=40, 80, 160 are generated. 
The statistical results of over 50 independent runs are illustrated in Table 2. 

As evident, the proposed method performs better than the Fuzzy PSO proposed in 
[15]. Figures 3 and 4 show a comparison of CPU time required to achieve results and 
the fitness values of each method for different case studies as shown in Table 2. 
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Fig. 3. Comparison of convergence time between our proposed method and FPSO [15] 
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Fig. 4. Comparison of fitness values between our proposed method and FPSO [15] 
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6   Conclusions 

This paper presented a version of Discrete Particle Swarm Optimization (DPSO) algo-
rithm for grid job scheduling. Scheduler aims at generating feasible solutions while 
minimizing makespan and flowtime simultaneously. The performance of the proposed 
method was compared with the fuzzy PSO through carrying out exhaustive simulation 
tests and different settings. Experimental results show that the proposed method out-
performs fuzzy PSO. In the future, we plan to use the proposed method for grid job 
scheduling with more quality of service constraints. 
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