
Chapter 8
AFS Formal Concept and AFS Fuzzy Formal
Concept Analysis

In this chapter, based on the original idea of Wille of formal concept analysis and the
AFS (Axiomatic Fuzzy Set) theory, we presents a rigorous mathematical treatment
of fuzzy formal concept analysis referred to as an AFS Formal Concept Analysis
(AFSFCA). It naturally augments the existing formal concepts to fuzzy formal con-
cepts, with the aim of deriving their mathematical properties and applying them
in the exploration and development of knowledge representation. Compared with
other fuzzy formal concept approaches such as the L-concept [1, 2] and the fuzzy
concept [48], the main advantages of AFSFCA are twofold. One is that the original
data and facts are the only ones required to generate AFSFCA lattices thus human
interpretation is not required to define the fuzzy relation or the fuzzy set on G×M
to describe the uncertainty dependencies between the objects in G and the attributes
in M. Another advantage comes with the fact that is that AFSFCA is more expedient
and practical to be directly applied to real world applications.

FCA(Formal Concept Analysis) was introduced by Rudolf Wille in 1980s [10].
In the past two decades, FCA has been a topic of interest both from the concep-
tual as well as applied perspective. In artificial intelligence community, FCA is used
as a knowledge representation mechanism [15, 50, 51] as well as it can support
the ideas of a conceptual clustering [4, 40] for Boolean concepts. Traditional FCA-
based approaches are hardly able to represent vague information. To tackle with
this problem, fuzzy logic can be incorporated into FCA to facilitate handling un-
certainty information for conceptual clustering and concept hierarchy generation.
Pollandt [42], Burusco and Fuentes-Gonza lez [3], Huynh and Nakamori [16], and
Belohlavek [1, 2] have proposed the use of the L-Fuzzy context as an attempt to
combine fuzzy logic with the FCA. The primary notion in this investigation is that
of a fuzzy context (L-context): it comes as a triple (G,M,I), where G and M are
sets interpreted as the set of objects (G) and the set of attributes (M), and I ∈ LG×M

is a fuzzy relation between G and M. The value I(g,m) ∈ L (L is a lattice) is inter-
preted as the truth value of the fact “the object g ∈ G has the attribute m ∈ M”. In
accordance with the Port-Royal definition, a (formal) fuzzy concept (L-concept) is
a pair (A,B), A ∈ LG,B ∈ LM , A plays the role of the extent (fuzzy set of objects
which determine the concept), B plays the role of the intent (fuzzy set of attributes
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which determine the concept). The L-Fuzzy context uses linguistic variables, which
are linguistic terms associated with fuzzy sets, to represent uncertainty in the con-
text. However, human interpretation is required to define the linguistic variables and
the fuzzy relation between G and M (i.e., I ∈ LG×M). Moreover, the fuzzy concept
lattice generated from the L-fuzzy context usually causes a combinatorial explosion
of concepts as compared to the traditional concept lattice.

Tho, Hui, Fong, and Cao [48] proposed a technique that combines fuzzy logic
and FCA giving rise to the idea of the Fuzzy Formal Concept Analysis (FFCA),
in which the uncertainty information is directly represented by membership grades.
The primary notion is that of a fuzzy context: it is a triple (G,M,I), where G is
a set of objects, M is a set of attributes, and I is a fuzzy set on domain G ×M.
Each relation (g,m) ∈ I has a membership value μI(g,m) in [0,1]. Compared to the
fuzzy concept lattice generated from the L-fuzzy context, the fuzzy concept lattice
generated by using FFCA is simpler in terms of the number of formal concepts.
However, human interpretation is still referring to it as the required to define the
membership function of the fuzzy set I for FFCA. In real world applications, just
based on human interpretation, it is very difficult to properly define the fuzzy set I

to describe the uncertainty relations between the objects and the attributes.
In order to cope with the above problems, we propose a new framework of fuzzy

formal concept analysis based on the AFS (Axiomatic Fuzzy Set) theory [18, 54]
referring to it as the AFS Formal Concept Analysis (AFSFCA,for brief). In the pro-
posed AFSFCA, each fuzzy complex attribute in EM, which plays the role of the
intent of an AFS formal concept, corresponds to a fuzzy set, which is automatically
determined by the AFS structure and the AFS algebra via what we have discussed
in Chapter 4, 5, and plays the role of the extent of the AFS formal concept. Thus the
original data and facts are only required to generate AFSFCA lattices and human
interpretation is not required to define the fuzzy relation or the fuzzy set I on G×M
to describe the uncertainty relations between the objects and the attributes. Com-
pared with the fuzzy concept lattices based on L-fuzzy context, the fuzzy concept
lattice generated using AFSFCA will be simpler in terms of the number of formal
concepts. Compared with FFCA, the fuzzy concept lattice generated using AFSFCA
will be richer in expression, more relevant and practical.

8.1 Concept Lattices and AFS Algebras

In Chapter 4, 5, various kinds of representations and logic operations for fuzzy con-
cepts in EM have been extensively discussed in the framework of AFS theory, in
which the membership functions and their logic operations are automatically de-
termined in an algorithmic fashion by taking advantage of the existing distribution
of the original data. The purpose of this section is to extend these approaches by
combining the AFS and FCA theories.

Let us briefly recall the Wille’s notion of formal concept [57]: The basic notions
of FCA are those of a formal context and a formal concept. A formal context is
a triple (G,M, I) where G is a set of objects, M is a set of features or attributes,
and I is a binary relation from G to M, i.e., I ⊆ G×M. gIm, which is also written as
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(g,m)∈ I, denotes that the object g possesses the feature m. An example of a context
(G,M, I) is shown in Table 8.1, where G = {g1,g2, ...,g6} and M = {m1,m2, ...,m5}.
An “×” is placed in the ith row and jth column to indicate that (gi,m j) ∈ I. For a
set of objects A ⊆ G, β (A) is defined as the set of features shared by all the objects
in A, that is,

β (A) = {m ∈ M|(g,m) ∈ I,∀g ∈ A}. (8.1)

Similarly, for B ⊆ M, α(B) is defined as the set of objects that possesses all the
features in B, that is,

α(B) = {g ∈ G|(g,m) ∈ I,∀m ∈ B}. (8.2)

The pair (β ,α) is a Galois connection between the power sets of G and M. For
more information on Galois connections, interested readers are referred to [57]. In
this chapter, the symbols α,β always denote the Galois connection defined by (8.1)
and (8.2). In the FCA, concept lattice, or Galois lattice is the core of its mathematical
theory and can be used as an effective tool for symbolic data analysis and knowledge
acquisition.

Table 8.1 Example of a context

m1 m2 m3 m4 m5
g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × ×
g5 × ×
g6 × ×

Lemma 8.1. Let (G,M, I) be a context. Then the following assertions hold:

(1) for A1,A2 ⊆ G, A1 ⊆ A2 implies β (A1) ⊇ β (A2) and
for B1,B2 ⊆ M, B1 ⊆ B2 implies α(B1) ⊇ α(B2);

(2) A ⊆ α(β (A)) and β (A) = β (α(β (A))) for all A ⊆ G, and
B ⊆ β (α(B)) and α(B) = α(β (α(B))) for all B ⊆ M.

Its proof is left to the reader.

Definition 8.1. ([51]) A formal concept in the context (G,M, I) is a pair (A,B) such
that β (A) = B and α(B) = A, where A ⊆ G and B ⊆ M.

In other words, a formal concept is a pair (A,B) of two sets A⊆G and B⊆M, where
A is the set of objects that possesses all the features in B and B is the set of features
common to all the objects in A. In what follows, a formal concept (A,B) in (G,M, I)
briefly noticed as (A,B) ∈ (G,M, I). The set A is called the extent of the concept and
B is called its intent. If we review B ⊆ M as a new attribute generated by the “and”
of all attributes in B like that in [28], then A is the set of objects that possess the
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new attribute B. The adjective “formal” in formal concept means that the concept is
a rigorously defined mathematical object [8]. From the point of view of logic, the
intent of a formal concept can be seen as a conjunct of features that each object of
the extent must possess. For any given context (G,M, I), neither every subset of G
nor every subset of M corresponds to a concept.

Definition 8.2. ([51]) A set B ⊆ M is called a feasible intent if set B is the intent
of the unique formal concept (α(B),B). Similarly, a set A ⊆ G is called a feasible
extent if A is the extent of the unique formal concept (A,β (A)). A set X is called a
feasible set if it is either a feasible extent or a feasible intent. Otherwise, X is called
non-feasible.

An important notion in FCA is that of a concept lattice, which makes it possible to
depict the information represented in a context as a complete lattice. Let L (G,M, I)
denote the set of all formal concepts of the context (G,M, I). An order relation on
L (G,M, I) is defined as follows [51]. Let (A1,B1) and (A2,B2) be two concepts in
L (G,M, I), then (A1,B1) ≤ (A2,B2) if and only if A1 ⊆ A2 (or equivalently B1 ⊇
B2). The formal concept (A1,B1) is called a sub formal concept of the formal concept
(A2,B2) and (A2,B2) is called a super formal concept of (A1,B1). The fundamental
theorem of Wille about concept lattices, states that (L (G,M, I),∨,∧) is a complete
lattice called the concept lattice of the context (G,M, I).

Lemma 8.2. (Will’s Lemma) Let (G,M, I) be a context and L (G,M, I) denote the
set of all formal concepts of the context (G,M, I). Then

L (G,M, I) = {(α(B),β (α(B))) | B ⊆ M}. (8.3)

Proposition 8.1. Let (G,M, I) be a context. Then for any Ai ⊆ G, i ∈ I, B j ⊆ M,
j ∈ J,

α

(⋃
j∈J

B j

)
=
⋂
j∈J

α(B j),

β

(⋃
i∈I

Ai

)
=
⋂
i∈I

β (Ai).

Proof. By the definitions, for any g ∈ α(
⋃

j∈J B j), we have

g ∈ α

(⋃
j∈J

B j

)
⇔ ∀m ∈

⋃
j∈J

B j, (g,m) ∈ I

⇔ ∀ j ∈ J, ∀m ∈ B j, (g,m) ∈ I

⇔ ∀ j ∈ J, g ∈ α(B j)

⇔ g ∈
⋂
j∈J

α(B j).

Similarly, we can prove that β (
⋃

i∈I Ai) =
⋂

i∈I β (Ai). 
�
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Theorem 8.1. (Fundamental Theorem of FCA) Let (G,M, I) be a context. Then
(L (G,M, I),∨,∧) is a complete lattice in which suprema and infima are given as
follows: for any formal concepts (A j,B j) ∈ L (G,M, I), j ∈ J,

∨
j∈J

(A j,B j) =

(
γG

(⋃
j∈J

A j

)
,
⋂
j∈J

B j

)
, (8.4)

∧
j∈J

(A j,B j) =

(⋂
j∈J

A j, γM

(⋃
j∈J

B j

))
, (8.5)

where γG = α ·β , γM = β ·α .

Proof. First, let us explain the formula for the infimum. Since A j = α(B j), for each
j ∈ J, (⋂

j∈J

A j,γM

(⋃
j∈J

B j

))

by Proposition 8.1 it can be transformed into(
α

(⋃
j∈J

B j

)
,γM

(⋃
j∈J

B j

))
,

i.e., it has the form (α(X),γM(X)) and is therefore a concept. That this can only be
the infimum, i.e., the largest common subconcept of the concepts (A j,B j), follows
immediately from the fact that the extent of this concept is exactly the intersection of
the extents of (A j,B j). The formula for the supremum is substantiated correspond-
ingly. Thus, we have proven that (L (G,M, I),∨,∧) is a complete lattice. 
�
In what follows, we denote the subsets of G with small letters and the subsets of M
with capital letters in order to distinguish subsets of objects in G from subsets of
attributes in M.

By sets G,M, we can establish the EII algebra over G,M and (EGM,∨,∧) is a
completely distributivity lattice. Now, we study the relationship between the lattice
(L (G,M, I),∨,∧) and the lattice (EGM,∨,∧). We define α(EM) a sub sets of
EGM as follows

α(EM) =

{
γ ∈ EGM | γ = ∑

i∈I

biBi, ∀i ∈ I, bi = α(Bi)

}
. (8.6)

Lemma 8.3. Let (G,M, I) be a context. Then α(EM) is a sub EII algebra of
EGM, i.e. k ∈ K, ζk = ∑i∈Ik bkiBki ∈ α(EM),

∨
k∈K ζk,

∧
k∈K ζk ∈ α(EM), and

(α(EM),∨,∧) is also a completely distributivity lattice.

Proof. It could be easily verified that
∨

k∈K ζk ∈α(EM). Since EGM is a completely
distributivity lattice, hence
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∧
k∈K

ζk = ∑
f∈Πk∈KIk

(
⋂

k∈K

bk f (k)
⋃
k∈K

Bk f (k)).

By Proposition 8.1 and α(Bk j) = bk j, for any k ∈ K, j ∈ I j, we have

α

(⋃
k∈K

Bk f (k)

)
=
⋂

k∈K

α(Bk f (k)) =
⋂
k∈K

bk f (k).

Therefore
∧

k∈K ζk ∈ α(EM). Because (EGM,∨,∧) is a completely distributivity
lattice, (α(EM),∨,∧) is also a completely distributivity lattice. 
�
Theorem 8.2. Let (G,M, I) be a context. pI is a homomorphism from lattice
(EM,∨,∧) to lattice (L (G,M, I),∨,∧) provided pI is defined as follows: for any
∑i∈I Bi ∈ EM,

pI

(
∑
i∈I

Bi

)
=
∨
i∈I

(α(Bi),β ·α(Bi)) =

(
α ·β (

⋃
i∈I

α(Bi)),
⋂
i∈I

β ·α(Bi)

)
. (8.7)

Proof. By Lemma 8.2, for any ∑i∈I Bi ∈ EM, one knows that ∀i ∈ I,(α(Bi),β ·
α(Bi)) ∈ L (G,M, I). Since lattice (L (G,M, I),≤) is a complete lattice, hence
∀∑i∈I Bi ∈ EM,

pI

(
∑
i∈I

Bi

)
=

(
α ·β (

⋃
i∈I

α(Bi)),
⋂
i∈I

β (α(Bi))

)

=
∨
i∈I

(α(Bi), β ·α(Bi)) ∈ L (G,M, I).

Next, we prove that pI is a map from EM to L (G,M, I). Suppose ∑i∈I1 B1i =
∑i∈I2 B2i ∈ EM. By Lemma 8.1, one has ∀i ∈ I1,∃k ∈ I2 such that B1i ⊇ B2k ⇒
α(B1i)⊆α(B2k) and ∀ j ∈ I2,∃l ∈ I1 such that B2 j ⊇ B1l ⇒α(B2 j)⊆α(B1l). There-
fore ∪i∈I1 α(B1i) = ∪ j∈I2 α(B2i) and

α ·β
(⋃

i∈I1

α(B1i)

)
= α ·β

(⋃
j∈I1

α(B2 j)

)
.

Since both (
(α ·β

⋃
i∈I1

α(B1i)),
⋂
i∈I1

β ·α(B1i)

)

and (
α ·β (

⋃
i∈I2

α(B2i)),
⋂
i∈I2

β ·α(B2i)

)

are formal concepts in (G,M, I), hence
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(α ·β (∪i∈I1 α(B1i)),∩i∈I1 β ·α(B1i)) = (α ·β (∪i∈I2 α(B2i)),∩i∈I2 β ·α(B2i)),

pI

(
∑
i∈I1

B1i

)
= pI

(
∑
i∈I2

B2i

)
.

For any ζ = ∑i∈I Ai,η = ∑ j∈J B j ∈ EM, by (8.7), (8.4) and Proposition 8.1, we have

pI(ζ ∨η)

= (α ·β [(∪i∈Iα(Ai))∪ (∪ j∈Jα(B j))], [(∩i∈Iβ ·α(Ai))∩ (∩ j∈Jβ ·α(B j))]).

pI(ζ )∨ pI(η)

= (α ·β (∪i∈Iα(Ai)),∩i∈Iβ ·α(Ai))∨ (α ·β (∪ j∈Jα(B j)),∩ j∈Jβ ·α(B j))

= (α ·β [α ·β (∪i∈Iα(Ai))∪α ·β (∪ j∈Jα(B j))], [(∩i∈Iβ ·α(Ai))∩ (∩ j∈Jβ ·α(B j))])

Since both pI(ζ ∨η) and pI(ζ )∨ pI(η) are formal concepts of the context (G,M, I),
hence pI(ζ ∨η) = pI(ζ )∨ pI(η). By (8.7), we have

pI(ζ ∧η) = pI

(
∑

i∈I, j∈J
Ai ∪B j

)
=

∨
i∈I, j∈J

(α(Ai ∪B j),β ·α(Ai ∪B j)).

In addition, for any i ∈ I, j ∈ J, it follows by (8.5)

(α(Ai),β ·α(Ai))∧(α(Bi),β ·α(Bi))=(α(Ai)∩α(B j),β ·α[β ·α(Ai)∪β ·α(B j)]).

By Proposition 8.1, we have α(Ai)∩α(B j) = α(Ai ∪B j) and

β ·α[β ·α(Ai)∪β ·α(B j)] = β ·α(β (α(Ai))∪β (α(B j)))
= β (α(β (α(Ai)))∩α(β (α(B j))))
= β (α(Ai)∩α(B j))
= β ·α(Ai ∪B j)).

Therefore for any i ∈ I, j ∈ J,

(α(Ai ∪B j),β ·α(Ai ∪B j)) = (α(Ai),β ·α(Ai))∧ (α(Bi),β ·α(Bi)).

and

pI(ζ ∧η) =
∨

i∈I, j∈J

(α(Ai ∪B j),β ·α(Ai ∪B j))

=
∨

i∈I, j∈J

[(α(Ai),β ·α(Ai))∧ (α(Bi),β ·α(Bi))]

=

[∨
i∈I

(α(Ai),β ·α(Ai))

]
∧
[∨

j∈J

(α(Bi),β ·α(Bi))

]

= pI(ζ )∧ pI(η).

This demonstrates that pI is homomorphism. 
�
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Theorem 8.3. Let (G,M, I) be a context. pI is homomorphism from lattice (α(EM),
∨,∧) to lattice (L (G,M, I),∨,∧), if for any ∑i∈I biBi ∈ α(EM), pI is defined as

pI

(
∑
i∈I

biBi

)
=
∨
i∈I

(bi,β (bi)) =

(
α ·β (

∨
i∈I

bi),
⋂
i∈I

β (bi)

)
. (8.8)

Proof. By Lemma 8.2 and (8.6), for any ∑i∈I biBi ∈ α(EM), one knows that ∀i ∈ I,
(bi,β (bi)) = (α(Bi),β (α(Bi))) ∈ L (G,M, I). This implies that

(α ·β (∪i∈Ibi),∩i∈Iβ (bi)) =
∨
i∈I

(bi,β (bi)) ∈ L (G,M, I).

Now, we prove that pI is a map from α(EM) to L (G,M, I). Suppose ∑i∈I1 b1iB1i =
∑i∈I2 b2iB2i ∈α(EM), i.e., ∀i∈ I1,∃k ∈ I2 such that B1i ⊇ B2k, b2k ⊇ b1i ⇒ β (b2k)⊆
β (b1i) and ∀ j ∈ I2,∃l ∈ I1 such that B2 j ⊇ B1l , b2 j ⊆ b1l , β (b2 j) ⊇ β (b1l). This
implies that

∪i∈I1 b1i = ∪ j∈I2 b2 j, ∩i∈I1 β (b1i) = ∩i∈I2 β (b2i).

Therefore pI(∑i∈I1 b1iB1i) = pI(∑i∈I2 b2iB2i), i.e., pI is a map. Then for any ζ =
∑i∈I aiAi,η = ∑ j∈J b jB j ∈ α(EM), by (8.4) and (8.8), we have

pI(ζ ∨η) = (α ·β [(∪i∈Iai)∪ (∪ j∈Jb j)], [(∩i∈Iβ (ai))∩ (∩ j∈Jβ (b j))])
pI(ζ )∨ pI(η) = (α ·β (∪i∈Iai), ∩i∈Iβ (ai))∨ (α ·β (∪ j∈Jb j), ∩ j∈Jβ (b j))

= (α ·β [α ·β (∪i∈Iai)∪α ·β (∪ j∈Jb j)], [(∩i∈Iβ (ai))∩(∩ j∈Jβ (b j))])

Since both pI(ζ ∨η) and pI(ζ )∨ pI(η) are formal concepts of the context (G,M, I),
hence pI(ζ ∨η) = pI(ζ )∨ pI(η). By (8.5) and (8.8), we have

pI(ζ ∧η) = pI

(
∑

i∈I, j∈J

ai ∩b jAi ∪B j

)

=

(
α ·β

( ⋃
i∈I, j∈J

ai

⋂
b j

)
,
⋂

i∈I, j∈J

β (ai ∩bi)

)

=
∨

i∈I, j∈J

(ai ∩b j,β (ai ∩bi)).

In addition, for any i ∈ I, j ∈ J, it follows by (8.5)

(ai,β (ai))∧ (b j,β (b j)) = (ai ∩b j,β ·α[β (ai)∪β (b j)]).

By Proposition 8.1 and Lemma 8.2, for any i ∈ I, j ∈ J, we have

β ·α[β (ai)∪β (b j)] = β ·α(β (ai)∪β (b j))
= β (α(β (ai))∩α(β (b j)))
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= β (α(β (α(Ai)))∩α(β (α(B j))))
= β (α(Ai)∩α(B j))
= β (ai ∩b j).

Therefore
(ai,β (ai))∧ (b j,β (b j)) = (ai ∩b j,β (ai ∩bi))

and

pI(ζ ∧η) =
∨

i∈I, j∈J

(ai ∩b j,β (ai ∩bi))

=
∨

i∈I, j∈J

[(ai,β (ai))∧ (b j,β (b j))]

=

[∨
i∈I

(ai,β (ai))

]
∧
[∨

j∈J

(b j,β (b j))

]

= pI(ζ )∧ pI(η).

Therefore pI is homomorphism. 
�
By Theorem 8.2, 8.3, we know that concept lattice L (G,M, I) has similar algebraic
properties to EI algebra and EII algebra. L (G,M, I) as a lattice is finer than the
lattices α(EM) and L (G,M, I) as an algebra structure is more rigorous than EI, EII
algebras. EI, EII algebras can be applied to study fuzzy attributes while L (G,M, I)
can only be applied to Boolean attributes.

Theorem 8.4. Let (G,M, I) be a context and L (G,M, I) be a concept lattice of
the context (G,M, I). Let EGM be the EI2 algebra over the sets G,M. If the map
h : L (G,M, I) → EGM is defined as follows: for any formal concept (b,B) ∈
L (G,M, I), h(b,B) = bB ∈ EGM, then the following assertions hold.

(1) If (a,A),(b,B) ∈ L (G,M, I), (a,A) ≤ (b,B), then h(a,A) ≤ h(b,B);
(2) For (a,A),(b,B) ∈ L (G,M, I),

h((a,A)∨ (b,B)) ≥ h(a,A)∨h(b,B),
h((a,A)∧ (b,B)) ≤ h(a,A)∧h(b,B).

Proof. (1) (a,A) ≤ (b,B) ⇒ a ⊆ b, A ⊇ B. By Definition 5.2 and Theorem 5.1, one
has

h(a,A)∨h(b,B) = aA + bB = bB = h(b,B).

This implies that h(a,A) ≤ h(b,B) in the lattice EGM.
(2) By the definition of the map h and (8.4), (8.5), we have

h((a,A)∨ (b,B)) = h(α ·β (a∪b),A∩B) = α ·β (a∪b)A∩B.
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By Proposition 8.1 and Lemma 8.2, we have

α ·β (a∪b) = α ·β (α(A)∪α(B)) = α ·β (α(A∩B))
= α(β (α(A∩B))) = α(A∩B).

Thus

α ·β (a∪b) = α(A∩B) ⊇ α(A) = a,

α ·β (a∪b) = α(A∩B) ⊇ α(B) = b.

Similarly, we can prove β ·α(A∪B) ⊇ A∪B. Then by Theorem 5.1, we have

h((a,A)∨ (b,B)) = α ·β (a∪b)A∩B ≥ aA + bB = h(a,A)∨h(b,B).
h((a,A)∧ (b,B)) = a∩b[β ·α(A∪B)] ≤ aA∧bB = h(a,A)∧h(b,B). 
�

8.2 Some AFS Algebraic Properties of Formal Concept
Lattices

In order to explore some algebraic properties of formal concept lattices, we define a
new algebra class ECII for a context (G,M, I), which is a new family of AFS algebra
different from the AFS algebras discussed in some other chapters.

Definition 8.3. Let G and M be sets and (G,M, I) be a context, EGMI is a set defined
as follows:

EGMI =

{
∑

u∈U
auAu | Au ⊆ M,au = α(Au), u ∈U, U is a non−empty indexing set

}
.

Where each ∑u∈U auAu as an element of EGMI is the “formal sum” of terms auAu.
∑u∈U auAu and ∑u∈U ap(u)Ap(u) are the same elements of EGMI if p is a bijec-
tion from I to I. R is a binary relation on EGMI defined as follows: ∑u∈U auAu,
∑v∈V bvBv ∈EGMI , (∑u∈U auAu,∑v∈V bvBv)∈R⇔ (i) ∀auAu (u∈U) ∃bkBk (k∈V )
such that au ⊆ bk, Au ⊆ Bk, (ii) ∀bvBv (v ∈ V ) ∃alAl (l ∈ U) such that bv ⊆ al ,
Bv ⊆ Al .

It is obvious that R is an equivalence relation on EGMI . The quotient set EGMI/R
is denoted as EIGM. ∑u∈U auAu = ∑v∈V bvBv means that ∑u∈U auAu and ∑v∈V bvBv

are equivalent under the equivalence relation R.

Proposition 8.2. Let G and M be sets, (G,M, I) be a context and EIGM be defined
as Definition 8.3. For ∑u∈U auAu ∈ EIGM, if aq ⊆ aw, Aq ⊆ Aw, w,q ∈ U, w �= q,
then

∑
u∈U

auAu = ∑
u∈U,u �=q

auAu.

Its proof remains as an exercise.
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Definition 8.4. Let G and M be sets, (G,M, I) be a context and EIGM be the set
defined as Definition 8.3. We introduce the following definitions.

(1) For ∑u∈U auAu ∈ EIGM, ∑u∈U auAu is called ECII irreducible if ∀w ∈ U ,
∑u∈U auAu �= ∑u∈U,u �=w auAu.

(2) For any ∑u∈U auAu ∈ EIGM, |∑u∈U auAu|, the set of all ECII irreducible items
in ∑u∈U auAu, is defined as follows.

| ∑
u∈U

auAu| �
{

auAu | u ∈U,au � a j,Au � A j f or any j ∈U
}

.

||∑u∈U auAu||, the length of ∑u∈U auAu, is defined as follows

|| ∑
u∈U

auAu|| � |{auAu | u ∈U,au � a j,Au � A j f or any j ∈U
} |.

Proposition 8.3. Let G and M be sets, (G,M, I) be a context and EIGM be the
set defined as Definition 8.3. The binary relation ≤ is a partial order relation if
∑u∈U auAu, ∑v∈V bvBv ∈ EIGM, ∑u∈U auAu ≤ ∑v∈V bvBv ⇔ ∀auAu (u ∈ U) ∃bkBk

(k ∈V) such that au ⊆ bk, Au ⊆ Bk.

Its proof remains as an exercise.

Proposition 8.4. Let G and M be sets, (G,M, I) be a context and EIGM be de-
fined as Definition 8.3. Then for any Γ ⊆ {A ∈ 2M | A = β ·α(A)} ⊆ M, ∅ �= Γ ,
∑B∈Γ α(B)B is ECII irreducible.

Proof. Suppose there exists A ∈ Γ such that ∑B∈Γ α(B)B = ∑B∈Γ ,B �=A α(B)B. By
Definition 8.3, for α(A)A standing on the left side of the equation, we know that
∃E ∈ Γ , E �= A such that α(A) ⊆ α(E),A ⊆ E . By the properties of the Galois
connection α,β shown in Lemma 8.1 and A ⊆ E , we have α(A) ⊇ α(E). This
implies that α(A) = α(E) and A = β · α(A) = β · α(E) = E . It contradicts that
E �= A. Therefore ∑B∈Γ α(B)B is ECII irreducible. 
�
Proposition 8.5. Let (G,M, I) be a context and EIGM be defined as Definition 8.3.
If for any ∑u∈U auAu, ∑v∈V bvBv ∈ EIGM, we define

( ∑
u∈U

auAu)∗ (∑
v∈V

bvBv) = ∑
u∈U,v∈V

au ∩bvAu ∪Bv, (8.9)

( ∑
u∈U

auAu)+ (∑
v∈V

bvBv) = ∑
u∈U�V

cuCu, (8.10)

where u∈U �V (the disjoint union of indexing sets U, V), cu = au, Cu = Au,if u∈U;
cu = bu, Cu = Bu,if u ∈U. Then “+” and “∗” are binary compositions on EIGM.

Its proof remains as an exercise.
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The algebra system (EIGM,∗,+,≤) is called the ECII algebra of context
(G,M, I) and denoted as EIGM, where ∗ and + are defined by (8.9) and ( 8.10),
and ≤ is defined by Proposition 8.3. For ∑u∈U auAu ∈ EIGM, let

(
∑

u∈U
auAu

)h

=

h︷ ︸︸ ︷
∑

u∈U
auAu ∗ ...∗ ∑

u∈U
auAu.

The algebra system (EIGM,∗,+,≤) has the following properties which can be fur-
ther applied to study the formal concept lattice.

Proposition 8.6. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,
≤) be the ECII algebra of context (G,M, I). Then the following assertions hold. For
any ψ , ϑ , γ , η ∈ EIGM,

(1) ψ + ϑ = ϑ + ψ , ψ ∗ϑ = ϑ ∗ψ;
(2) (ψ + ϑ)+ γ = ψ +(ϑ + γ), (ψ ∗ϑ)∗ γ = ψ ∗ (ϑ ∗ γ);
(3) (ψ + ϑ)∗ γ = (ψ ∗ γ)+ (ϑ ∗ γ), ψ ∗ (∅M) = (∅M), ψ ∗ (X∅) = ψ;
(4) If ψ ≤ ϑ , γ ≤ η , then ψ + γ ≤ ϑ + γ , ψ ∗ γ ≤ ϑ ∗ γ;
(5) For any ζ ∈ EIGM, any positive integer n,

ζ ≤ ζ n, (ζ +∅M)n = ζ n +∅M.

(6) Let A j ⊆ M, j ∈ J, J be any non-empty indexing set. For any A ⊆ M, U(A) the
set of all intents containing A is defined as follows.

U(A) = {B | A ⊆ B ⊆ M,B = β ·α(B)}.

Then the following assertions hold.

⎛
⎝∑

j∈J
∑

A∈U(A j)
α(A)A

⎞
⎠

2

= ∑
j∈J

∑
A∈U(A j)

α(A)A.

(7) For any ∑ j∈J a jA j ∈ EIGM and any positive integer l,

(
∑
j∈J

a jA j

)l

≤ ∑
j∈J

∑
A∈U(A j)

α(A)A.

(8) If γ = ∑m∈M α({m}){m}, then there exists an positive integer h such that
(γh)2 = γh, |γh| is the set of all concepts of context (G,M, I) except (X ,∅) (|γh|
defined by Definition 8.4).

Proof. (1), (2), (3) and (4) can be directly proved by using the definitions.
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Now we prove (5). Let ζ = ∑u∈U auAu ∈ EIGM.(
∑

u∈U
auAu

)
∗
(

∑
u∈U

auAu

)
= ∑

u,v∈U
au ∩avAu ∪Av

= ∑
u∈U

auAu + ∑
u,v∈U,u �=v

au ∩avAu ∪Av

≥ ∑
u∈U

auAu.

Thus ζ ≤ ζ 2. By (4), one has ζ ≤ ζ 2 ≤ ζ 3 ⇒ ζ ≤ ζ 2 ≤ ζ 3 ≤ ζ 4 ⇒ ... ⇒ ζ ≤
ζ 2... ≤ ζ n. From (1), (2), (3), we have

(∑u∈U auAu +∅M)∗ (∑u∈U auAu +∅M)
= ∑u∈U auAu ∗∑u∈U auAu +∅M ∗∑u∈U auAu + ∑u∈U auAu ∗∅M +∅M ∗∅M
= (∑u∈U auAu)2 +∅M.

Now we prove it by induction with respect on n. Suppose

( ∑
u∈U

auAu +∅M)n−1 = ( ∑
u∈U

auAu)n−1 +∅M.

We have

(∑u∈U auAu +∅M)n

= ((∑u∈U auAu)n−1 +∅M)∗ (∑u∈U auAu +∅M)
= (∑u∈U auAu)n +(∑u∈U auAu)n−1 ∗∅M +∅M ∗∑u∈U auAu +∅M
= (∑u∈U auAu)n +∅M.

Therefore the assertion holds.
(6) Let ∑ j∈J a jA j ∈ EIGM. For any u,v ∈ J,

(
∑

A∈U(Au)
α(A)A

)
∗
(

∑
A∈U(Av)

α(A)A

)
= ∑

A∈U(Au),B∈U(Av)
α(A)∩α(B)A∪B.

For any A ∈U(Au),B ∈U(Av), if A∪B is an intent of a concept of context (G,M, I),
then A∪B∈U(Au)∩U(Av). If A∪B is not an intent of a concept of context (G,M, I),
then A ∪ B ⊂ β · α(A ∪ B) ∈ U(Au) ∩U(Av) and α · β · α(A ∪ B) = α(A ∪ B) =
α(A)∩ α(B). Thus in any case, for any A ∈ U(Au),B ∈ U(Av) there exists D ∈
U(Av) such that α(A)∩α(B) ⊆ α(D) and A∪B ⊆ D (e.g., D = β ·α(A∪B)). By
Proposition 8.3, one has(

∑
A∈U(Au)

α(A)A

)
∗
(

∑
A∈U(Au)

α(A)A

)
≤ ∑

A∈U(Au)
α(A)A

From (5), we have(
∑

A∈U(Au)
α(A)A

)
∗
(

∑
A∈U(Au)

α(A)A

)
= ∑

A∈U(Au)
α(A)A
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It follows from (1), (2) and (3),

(
∑

u∈U
∑

A∈U(Au)
α(A)A

)2

= ∑
u,v∈U

(
∑

A∈U(Au)
α(A)A∗ ∑

A∈U(Au)
α(A)A

)

= ∑
u,v∈U

(
∑

A∈U(Au)
α(A)A

)

= ∑
u∈U

∑
A∈U(Au)

α(A)A

(7) Let ∑ j∈J a jA j ∈ EIGM. It is obvious that ∀u ∈ J,Au ⊆ β ·α(Au) ∈U(Au) and
au = α(Au) = α ·β ·α(Au). This implies that ∑ j∈J a jA j ≤∑ j∈J ∑A∈U(A j) α(A)A. By
(4), (5) and (6), for any integer l, we have

(
∑
j∈J

a jA j

)l

≤
⎛
⎝∑

j∈J
∑

A∈U(A j)
α(A)A

⎞
⎠

l

= ∑
j∈J

∑
A∈U(A j)

α(A)A.

(8) By (5), we know that

∑
m∈M

α({m}){m} ≤
(

∑
m∈M

α({m}){m}
)2

≤ ... ≤
(

∑
m∈M

α({m}){m}
)r

.

Since both G and M are finite sets, hence there are finite number of elements in
EIGM and there exists an integer h such that

(
∑

m∈M

α({m}){m}
)h

=

(
∑

m∈M

α({m}){m}
)2h

.

From (7), we know that for any integer r,

(
∑

m∈M
α({m}){m}

)r

≤
(

∑
m∈M

α({m}){m}
)h

≤ ∑
m∈M

∑
A∈U({m})

α(A)A.

Then for any m ∈ M,A ∈ U(m), there exists an item α(B)B in
(∑m∈M α({m}){m})|M| such that α(B) =∩m∈Aα({m})⊇α(A), B =∪m∈A{m}⊇A.
This implies that

(
∑

m∈M
α({m}){m}

)|M|
≥ ∑

m∈M
∑

A∈U({m})
α(A)A
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Therefore(
∑

m∈M

α({m}){m}
)|M|

=

(
∑

m∈M

α({m}){m}
)h

= ∑
m∈M

∑
A∈U({m})

α(A)A.

Let (
∑

m∈M

α({m}){m}
)h

= ∑
m∈M

∑
A∈U({m})

α(A)A = ∑
j∈J

a jA j,

and ∑ j∈J a jA j is ECII irreducible. Since for any concept (α(A),A) of
the context (G,M, I), α(A)A is an item in ∑m∈M ∑A∈U({m}) α(A)A and
∑m∈M ∑A∈U({m}) α(A)A = ∑ j∈J a jA j. Then for any concept (α(A),A) there exists
j ∈ J, such that α(A)⊆ a j = α(A j), A ⊆ A j. By the properties of Galois connection
α,β in Lemma 8.1 and A ⊆ A j, we have α(A) ⊇ α(A j) = a j, α(A) = a j = α(A j),
A = β ·α(A) = β ·α(A j) = A j. Thus (α(A),A) ∈ {(a j,A j)| j ∈ J}. For any w ∈ J,
if (aw,Aw) is not a concept of the context (G,M, I), then Aw is a proper subset of
β (aw) = β ·α(Aw) and (aw,β (aw)) is a concept of the context (G,M, I). This im-
plies that awβ (aw) is an item in ∑m∈M ∑A∈U({m}) α(A)A. By Proposition 8.2, we
know that item awAw will be reduced and it cannot appear in ∑ j∈J a jA j. It is a con-
tradiction. Therefore {(a j,A j)| j ∈ J} is the set of all concepts of context (G,M, I)
except (X ,∅). 
�
Theorem 8.5. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,≤)
be the ECII algebra of context (G,M, I). Let γ = ∑m∈M α({m}){m}. For an item
aA ∈ |γk| (|γk| defined by Definition 8.4), if |A| < k, then (a,A) is a formal concept
of the context (G,M, I), i.e., β (a) = A, α(A) = a, where k is any positive integer.

Proof. Assume that there exists an item aA∈ |γk| with |A|< k in |γk| such that (a,A)
isn’t a formal concept of the context (G,M, I). This implies that there exist B ⊆ M,
A ⊆ B and |B|= |A|+1 such that a = α(B). It is obvious that aB is an item in γ |A|+1.
By 5 of Proposition 8.6, one knows that γ |A|+1 ≤ γk. From Proposition 8.3, we know
there exist an item cC in γk such that a = α(B)⊆ c, A ⊆ B ⊆C. By Proposition 8.2,
item aA can be reduced and it contradicts aA ∈ |γk|. Therefore (a,A) is a concept of
the context (G,M, I). 
�
In what follows, we discuss how to find concepts of a context using the above results.
The following theorem gives a very simple way to compute the power of an ECII
element.

Theorem 8.6. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,
≤) be the ECII algebra of the context (G,M, I). For any nonempty set C ⊆ M, let
γ = ∑m∈C α({m}){m} and γk = ∑i∈I α(Ai)Ai,where k is a positive integer, k ≤ |C|.
Then

γ2k = ∑
i∈I,|Ai |<k

α(Ai)Ai +

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

,

where ∑i∈I,|Ai|=k α(Ai)Ai � ∅C, if there does not exist i ∈ I such that |Ai| = k.
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Proof. Let γk = ∑i∈I α(Ai)Ai = ∑i∈I,|Ai|<k α(Ai)Ai + ∑i∈I,|Ai|=k α(Ai)Ai. Then

γ2k =

(
∑

i∈I,|Ai|<k

α(Ai)Ai + ∑
i∈I,|Ai|=k

α(Ai)Ai

)2

=

(
∑

i∈I,|Ai|<k

α(Ai)Ai

)2

+

(
∑

i∈I,|Ai|<k

α(Ai)Ai

)
∗
(

∑
i∈I,|Ai|=k

α(Ai)Ai

)

+

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

(8.11)

Because γ = ∑m∈C α({m}){m}. For any set B ⊆ C, |B| < k, α(B)B is an
item in ∑i∈I,|Ai|<k α(Ai)Ai. Although α(B)B may be reduced by other items in
∑i∈I,|Ai|<k α(Ai)Ai, we always have α(B)B ≤ ∑i∈I,|Ai|<k α(Ai)Ai and

α(B)B + ∑
i∈I,|Ai|<k

α(Ai)Ai = ∑
i∈I,|Ai|<k

α(Ai)Ai. (8.12)

Similarly, since for every set B ⊆ C, |B| = k, B′B ≤ ∑i∈I,|Ai|=k A′
iAi and for any set

E ⊆ C, k ≤ |E| ≤ 2k, there exist F,H ⊆ C, |F | = |H| = k such that E = F ∪H.
By 4 of Proposition 8.3 and the facts α(F)F ≤ ∑i∈I,|Ai|=k α(Ai)Ai and α(H)H ≤
∑i∈I,|Ai|=k α(Ai)Ai, we have

α(E)E = α(F)∩α(H)F ∪H ≤
(

∑
i∈I,|Ai|=k

α(Ai)Ai

)2

,

α(E)E +

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

=

(
∑

i∈I,|Ai |=k

α(Ai)Ai

)2

. (8.13)

According to (8.11), (8.12) and (8.13), we have

γ2k =

(
∑

i∈I,|Ai|<k

α(Ai)Ai

)2

+

(
∑

i∈I,|Ai |=k

α(Ai)Ai

)2

= ∑
i∈I,|Ai|<k

α(Ai)Ai +

(
∑

i∈I,|Ai|=k

A′
iAi

)2

. 
�

The above discussion shows that the algebra characteristics of the formal concepts
of a context can be explored by the ECII algebra of the context. For example, The-
orem 8.5, Theorem 8.6 and Proposition 8.6 can be applied to identify all formal
concepts of a context. For any context (G,M, I), let γ = ∑m∈M α({m}){m}. By
8 of Proposition 8.6, we know that |γ |M|| defined by Definition 8.4 is the set of
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all formal concepts of the context (G,M, I). Notice that there is only one formal
concept whose extent is ∅, i.e., ∅M for (G,M, I). In order to simplify the com-

putation of γ |M|, we compute (γ + ∅M)2, (γ + ∅M)4, (γ + ∅M)8,...,(γ + ∅M)2k
,

until 2k ≥ |M|. By 5 of Proposition 8.6, one knows that (γ + ∅M)n = γn + ∅M
for any positive integer n. So each item ∅A in γn can be reduced by ∅M and the
number of items of (γ + ∅M)n is much lower than γn. Let γk = ∑i∈I α(Ai)Ai =
∑i∈I,|Ai|<k α(Ai)Ai + ∑i∈I,|Ai|=k α(Ai)Ai. According to Theorem 8.5 and Theorem
8.6, we know that for any formal concept (a,A), aA is in |∑i∈I,|Ai|<k α(Ai)Ai| if
|A| < k and aA is in |(∑i∈I,|Ai|=k α(Ai)Ai)2| if k ≤ |A| ≤ 2k, where k is a positive
integer. This fact and the following equation can further facilitate the computing,

γ2k = ∑
i∈I,|Ai |<k

α(Ai)Ai +

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

.

Example 8.1 demonstrates how the detailed calculations are carried out.

Table 8.2 The Reduced Mushroom

m1 m2 m3 m4 m5
Mushroom 1 × ×
Mushroom 2 × × ×
Mushroom 3 × × ×
Mushroom 4 × × ×
Mushroom 5 × × ×
Mushroom 6 × ×
Mushroom 7 × × ×
Mushroom 8 × × ×
Mushroom 9 × × ×
Mushroom 10 × ×

Example 8.1. The Table 8.2 shows the reduced mushroom example database from
the UCI KDD Archive (http://kdd.ics.uci.edu) in [43]. Where m1: edible, m2: poi-
sonous, m3: cap shape:convex, m4: cap-shape: flat, m5: cap-surface:fibrous. Let
(G,M, I) be the context of Table 8.2, G = {1,2, ...,10}, M = {m1, m2, m3, m4,
m5}. Let us find all formal concepts of the context (G,M, I) by ECII algebra via
the computing on the power of the following γ .

γ = {1,2,3,4,5,6}{m1}+{7,8,9,10}{m2}+{1,2,5,6}{m3}
+{3,4,7,8,9,10}{m4}+{2,3,4,5,7,8,9}{m5} ∈ EIGM.

For any positive integer k > 1, let γk = ∑i∈I α(Ai)Ai = γk + γ̄k. Where γk =
∑i∈I|Ai|<k α(Ai)Ai, γ̄k = ∑i∈I|Ai|=k α(Ai)Ai.
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(γ +∅M)2 = {1,2,3,4,5,6}{m1}+{3,4,7,8,9,10}{m4}+{2,3,4,5,7,8,9}{m5}
+{1,2,5,6}{m1m3}+{2,3,4,5}{m1m5}+{3,4}{m1m4}
+{7,8,9,10}{m2m4}+{7,8,9}{m2m5}+{2,5}{m3m5}
+{3,4,7,8,9}{m4m5}+∅M.

(γ +∅M)4 = γ4 +∅M = γ2 +(γ̄2)2 +∅M

= {1,2,3,4,5,6}{m1}+{3,4,7,8,9,10}{m4}+{2,3,4,5,7,8,9}{m5}
+{1,2,5,6}{m1m3}+{2,3,4,5}{m1m5}+{7,8,9,10}{m2m4}+
{3,4,7,8,9}{m4m5}+{2,5}{m1m3m5}+{3,4}{m1m4m5}+
{7,8,9}{m2m4m5}+∅M

Since there does not exist item aA in γ4 such that |A| = 4, hence γ4 = ∅M and

(γ +∅M)8 = γ8 +∅M = γ4 +(γ4)2 +∅M = γ2 +(γ̄2)2 +∅M = (γ +∅M)4.

According to Theorem 8.5 and 8 of Proposition 8.6, all concepts of the context for
Table 8.2 are the items shown in the above (γ +∅M)4 except (X ,∅). It is the same
result as what has been obtained by the TITANIC algorithm presented in [43].

8.3 Concept Analysis via Rough Set and AFS Algebra

In this section, combining formal concept analysis (FCA) and AFS algebra, we pro-
pose AFS formal concept, which can be viewed as the generalization and develop-
ment of monotone concept proposed by Deogun and Saquer (2003) [8]. Moreover,
we show that the set of all AFS formal concepts forms a complete lattice. AFS
formal concept can be applied to represent the logic operations of queries in in-
formation retrieval. Furthermore, we present an approach to find the AFS formal
concepts whose intents (extents) approximate any fuzzy concepts in EM by virtue
of rough set theory.

The characteristic of concept lattice theory lies in reasoning on the possible at-
tributes of data sets [66]. Currently, FCA has been extended to other types for re-
quirements of real word applications, such as fuzzy concept lattice [2, 46], triadic
concept [57], monotone concept [8], variable threshold concept lattice [65], rough
formal concept [66], etc.

Rough set and FCA are related and complementary. In recent years, many efforts
have been made to compare and combine these two theories [61, 62, 64, 65]. The
combination of FCA and rough set theory provides some new approaches for data
analysis and knowledge discovery [44, 45, 55, 66].

In [8], Deogun and Saquer discussed some of limitations of Wille’s formal con-
cept [10] and proposed monotone concept. In Wille’s notation of concepts, only one
set is allowed as extent (intent). For many applications, it is necessary to allow in-
tents to be disjunction expression. Monotone concept is a generalization of Wille’s
notion of concept where disjunctions are allowed in the intent and set unions are



8.3 Concept Analysis via Rough Set and AFS Algebra 321

allowed in the extent. This generalization allows an information retrieval query con-
taining disjunctions to be understood as the intent of a monotone concept whose
answer is the extent of that concept. In [44], by using rough set theory, Saquer and
Deogun formulated a general solution to find monotone concepts whose intents are
close to the query, and show how to find monotone concepts whose extents approx-
imate any given set of objects.

In this section, we propose AFS formal concept, which extend the Galois connec-
tion α,β of a context (X ,M, I) to the connection between two AFS algebra systems
(EM,∨,∧) and (E#X ,∨,∧). The intent of an AFS formal concept is an element of
the EI algebra (EM,∨,∧)—a kind of AFS algebra over M; correspondingly, the
extent of the AFS formal concept is an element of the E#I algebra (E#X ,∨,∧)—
another kind of AFS algebra over X . Where M is a set of elementary attributes on
X , EM is the set of attributes logically compounded by some elementary attributes
in M under logic operations ∨ and ∧ (i.e., “and ” and “or ”). Each element of EM
is called a complex attribute (or a fuzzy concept), and has definitely semantic inter-
pretation. The extent and intent of an AFS formal concept can uniquely determine
each other. Thus, the intent of an AFS formal concept not only generalizes that of
the formal concept, but also has a well-defined semantic interpretation.

In an information retrieval system, the logic relationships between queries are
usually expressed by logic connectives such as “and ” and “or ”. AFS formal con-
cepts can be used to represent the query with complex logic operations. When using
the information retrieval system, we often find that not all queries are exactly con-
tained in database, but some items close to those are enough to satisfy user’s need.
Thus, it is necessary to investigate how to approximate a complex attribute by AFS
formal concepts such that the intents of lower and upper approximating concept are
closely to the complex attribute underlying semantics.

In this section, first, FCA and rough set are briefly summarized. Monotone con-
cept is also introduced and studied. Second, AFS formal concept is proposed and
the mathematical properties of AFS formal concepts are discussed. Third, we show
that the set of all AFS formal concepts forms a complete lattice. Fourth, an approach
to approximate the element of the EM (E#X) is proposed.

8.3.1 Monotone Concept

Let us first recall monotone concept [8] and study the aspects which should be
improved in concept representation and approximation. In [8], Deogun and Sa-
quer introduced some notations as follows: (X ,M, I) is a context. Associating with
every set B ⊆ M, a Boolean conjunctive expression B̂ is the conjunction of the
elements of B. For example, if B = {a,b,c}, then the associated Boolean con-
junctive expression is B̂ = a∧ b∧ c. A disjunction of Boolean conjunctive expres-
sions is referred to as a monotone Boolean formula. If B̂1, B̂2, ..., B̂n are Boolean
conjunctive expressions, then F = B̂1 ∨ B̂2 ∨ ... ∨ B̂n =

∨n
i=1 B̂i is monotone for-

mula. For example, let B1 = {a,b,c}, B2 = {a,d}, then B̂1 = a∧b∧ c, B̂2 = a∧d,
F = B̂1∨ B̂2 = (a∧b∧c)∨(a∧d) is monotone formula. For simplicity, F would be
written as abc∨ad [44].
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Definition 8.5. ([8]) Let (X ,M, I) be a context. For the monotone formula F =
∨n

i=1B̂i, Bi ⊆ M, δ (F) is defined as the set of all objects that satisfy F , that is,
δ (F) = ∪n

i=1δ (B̂i) ⊆ X , where δ (B̂i) is the set of all objects that satisfy B̂i . For
A = ∪n

j=1A j, define γ(A) to be ∨n
j=1γ(A j) ⊆ M, where A j ⊆ X , γ(A j) is defined to

be the Boolean conjunctive expression associated with β (A j), “β ” is Galois con-
nection.

Example 8.2. Let X = {1,2, ...,13} and M = {a,b,c,d,e, f ,h, i, j, l,x} be the set of
attributes on X . The context (X ,M, I) is shown as Table 8.3. Assume that the mono-
tone formula F = B̂1 ∨ B̂2 = abc∨ lx, A = ∪3

i=1Ai = {4,6}∪{6,7}∪{5}. By Defi-
nition 8.5, we have the following δ (F) and γ(A).

δ (F) = δ (B̂1)∪δ (B̂2) = {4}∪{6}= {4,6},
γ(A) = ∨3

i=1γ(Ai) = e f hl ∨ f hi jx∨ cde f hix.

Table 8.3 Relationship between objects and attributes [44]

a b c d e f h i j k l x
1 ×
2 × × ×
3 × ×
4 × × × × × × × ×
5 × × × × × × ×
6 × × × × × × × ×
7 × × × × ×
8 × × × × ×
9 × × × ×

10 × × × × ×
11 × ×
12 × × × × × × ×
13 × × × × × × ×

Definition 8.6. ([8]) Let (X ,M, I) be a context, Ai ⊆ X ,B j ⊆ M, 1 ≤ i, j ≤ n. A pair
(A,F) where A = ∪n

i=1Ai, F = ∨n
j=1B̂ j is monotone concept if δ (F) = A, γ(A) = F .

A is called its extent of the monotone concept (A,F), F its intent of the monotone
concept (A,F). Where B j is the set of features associated with B̂ j, and for each Ai,
there exists a B j such that (Ai,B j) is a formal concept.

A monotone formula F is called feasible if it is the intent of a monotone concept;
otherwise, F is called non-feasible. Similarly, A ⊆ X is called feasible if it is the
extent of a monotone concept; otherwise, A is called non-feasible. For instance,
assume F = e f ∨ f hix, A = {4,5,6,8,10,12,13}∪ {5,6,7,12,13} in Table 8.3 of
Example 8.2. One can verify that δ (F) = {4,5,6,8,10,12,13}∪{5,6,7,12,13}=
A, and γ(A) = e f ∨ f hix = F . Hence (A,F) is a monotone concept, and A, F are
feasible. If F = B̂1 ∨ B̂2 = abc∨ lx, A = {4,6,7}. According to Table 8.3, we have
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δ (F) = δ (B̂1)∪ δ (B̂2) = {4,6} �= A, γ(δ (F)) �= F , δ (γ(A)) �= A. (A,F) is not a
monotone concept, and A, and F are non-feasible.

Although the monotone concept overcomes some limitations of the Wille’s for-
mal concept [10], there remain two aspects that could be improved:

1) In monotone concept, intent and extent may not uniquely determine each
other. In Example 8.2, according to Table 8.3 and Definition 8.6, we know that
({4,5,6,7,8,10,12,13}, abcde f hl∨ e f ∨ f hix) is a monotone concept which is
different from ({4,5,6,7,8,10,12,13},e f ∨ f hix), but their extents are identical.

2) Consider {4},{4,5,6,8,10,12,13},{5,6,7,12,13} and abcde f hl, f hix,e f in
Table 8.3. It is easy to verify that {4}∪{4,5,6,8,10,12,13}∪{5,6,7,12,13}=
{4,5,6,7,8,10,12,13}, and ({4,5,6,7,8,10,12,13},abcde f hl∨ e f ∨ f hix) is a
monotone concept. If considering abcde f hl, e f and f hix as query words in an in-
formation retrieval system, we can find that abcde f hl∨ e f ∨ f hix represents the
logical relations “or ” among them. Notice {e, f} ⊂ {a,b,c,d,e, f ,h, l}. Thus,
if one object satisfies the condition expressed by abcde f hl, then it must satisfy
that expressed by e f , i.e., abcde f hl is redundant when abcde f hl ∨ e f ∨ f hix
forms a query. In other words, the queries abcde f hl ∨ e f ∨ f hix and e f ∨ f hix
are equivalent in semantics. However, they are intents of different monotone con-
cepts defined by Definition 8.6.

In [44], Saquer and Deogun gave a general solution to find monotone concepts
whose intents are close to the queries, and show how to find monotone concepts
whose extents approximate any given set of objects. However, it seems that the
following aspects of extents and intents approximations could be developed.

i) Let D be a set of objects. In [44], D is written as the union of the maxi-
mal extents of formal concepts that are contained in D and, possibly, a subset
containing whatever elements remain in D. For example, the non-feasible ob-
ject set {4,5,6,7} is written as {4,6}∪ {6,7}∪ {5}. But it is also reasonable
in practice to write it down as {4}∪{4,6}∪{6,7}∪{5}. For instance, similar
expressions have existed in [44] (see L(ψ) in Example 8.3). Accordingly, both
({4,5,6,7,12,13},e f hl ∨ f hi jx ∨ cde f hix) and ({4,5,6,7,12,13},abcde f hl∨
e f hl ∨ f hi jx ∨ cde f hix) could be the upper approximation monotone concepts
of {4,5,6,7} in Table 8.3.
ii) When approximating D = {2,3,4,5,6,7,8,9,10,11,12,13} in Table 8.3, one
can get an approximation of the monotone concept (D, f ) by using the approxi-
mation method presented in [44]. However, we can verify that (D,cd f ∨e f ∨ f h)
is also a monotone concept which is another approximation monotone concept
of D.

In order to deal with these problems, in the sequel we propose the AFS formal
concept.

8.3.2 AFS Formal Concept

In this section, we propose AFS formal concept in which the Galois connec-
tion “α,β ” of context (X ,M, I) [10] can be extended to the connection between
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the EI algebra (EM,∨,∧) and the E#I algebra (E#X ,∨,∧) as follows: for any
∑i∈I(∏m∈Ai

m) ∈ EM, ∑ j∈J a j ∈ E#X ,

α

(
∑
i∈I

(
∏

m∈Ai

m

))
= ∑

i∈I
α(Ai) ∈ E#X , (8.14)

β

(
∑
j∈J

a j

)
= ∑

j∈J

⎛
⎝ ∏

m∈β (a j)
m

⎞
⎠ ∈ EM. (8.15)

For any A⊆M,a⊆ X , we notice that α(∏m∈A m) = α(A),β (a) = ∏m∈β (a) m, which
are the same as the Galois connection “α,β ” defined by (8.1) and (8.2). Thus the
conventional formal concept lattice [10] can be explored in a more general mathe-
matical framework—the AFS formal concept lattice.

In what follows, we denote the subsets of X with the lower case letters and the
subsets of M with the capital letters, in order to distinguish the subsets of X from
those of M.

Theorem 8.7. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over M and E#X be the E#I algebra over X. Then
the following assertions hold:

(1) α , β are maps, where α,β are defined by (8.14) and (8.15).

(2) For any ζ , η ∈ EM, ν , ς ∈ E#X,

α(ζ ∨η) = α(ζ )∨α(η), α(ζ ∧η) = α(ζ )∧α(η),
β (ν ∨ ς) = β (ν)∨β (ς), β (ν ∧ ς) ≤ β (ν)∧β (ς).

(3) For any ζ , η ∈ EM, ν , ς ∈ E#X,

ζ ≤ η ⇒ α(ζ ) ≤ α(η),
ν ≤ ς ⇒ β (ν) ≤ β (ς).

(4) For any ζ ∈ EM, ς ∈ E#X,
ζ ≥ β (α(ζ )), α(ζ ) = α(β (α(ζ ))),
ς ≤ α(β (ς)), β (ς) = β (α(β (ς))).

Proof. (1) Suppose ζ = ∑i∈I(∏m∈Ai
m), η = ∑ j∈J(∏m∈B j

m) ∈ EM, ζ = η . That
is, ∀Ai (i ∈ I), ∃Bk (k ∈ J) such that Ai ⊇ Bk and ∀B j ( j ∈ J), ∃Al (l ∈ I) such that
B j ⊇ Al . This implies that ∀α(Ai) (i ∈ I), ∃α(Bk) (k ∈ J) such that α(Ai) ⊆ α(Bk)
and ∀α(B j) ( j ∈ J), ∃α(Al) (l ∈ I) such that α(B j) ⊆ α(Al). Therefore

α

(
∑
i∈I

(
∏

m∈Ai

m

))
= ∑

i∈I
α(Ai) = ∑

j∈J
α(B j) = α

(
∑
j∈J

(
∏

m∈B j

m

))

and α is a map. Similarly, we can prove that β is also a map.



8.3 Concept Analysis via Rough Set and AFS Algebra 325

(2) α(ζ ∨η) = α(ζ )∨α(η) and β (ν ∨ ς) = β (ν)∨β (ς) can be directly ver-
ified by (8.14) and (8.15). Let ζ = ∑i∈I(∏m∈Ai

m), η = ∑ j∈J(∏m∈B j
m) ∈ EM,

ν = ∑i∈I ai, ς = ∑ j∈J b j ∈ E#X .

α(ζ ∧η) = α

(
∑

i∈I, j∈J

(
∏

m∈Ai∪B j

m

))
= ∑

i∈I, j∈J
α(Ai ∪B j)

= ∑
i∈I, j∈J

α(Ai)∩α(B j) = α(ζ )∧α(η).

β (ν ∧ ς) = β

(
∑

i∈I, j∈J
ai ∩b j

)
= ∑

i∈I, j∈J
β (ai ∩b j).

For any i ∈ I, j ∈ J, since β (ai∩b j)⊇ β (ai), β (ai∩b j)⊇ β (b j), hence β (ai∩b j)⊇
β (ai)∪β (b j). This implies that

β (ν ∧ ς) = ∑
i∈I, j∈J

( ∏
m∈β (ai∩b j)

m) ≤ ∑
i∈I, j∈J

( ∏
m∈β (ai)∪β (b j)

m)

=

(
∑
i∈I

( ∏
m∈β (ai)

m)

)
∧
⎛
⎝∑

j∈J
( ∏

m∈β (b j)
m)

⎞
⎠= β

(
∑
i∈I

ai

)
∧β

(
∑
j∈J

b j

)
.

(3) It can be directly verified by Theorem 4.1 and Theorem 5.24 and the proper-
ties of the Galois connection in Proposition 8.1.

(4) For ζ = ∑i∈I(∏m∈Ai
m) ∈ EM, since for any i ∈ I, Ai ⊆ β ·α(Ai), α(Ai) =

α ·β ·α(Ai), hence

β (α(ζ )) = β

(
∑
i∈I

α(Ai)

)
= ∑

i∈I

( ∏
m∈β ·α(Ai)

m) ≤ ∑
i∈I

( ∏
m∈Ai

m),

α(β (α(ζ ))) = ∑
i∈I

α ·β ·α(Ai) = ∑
i∈I

α(Ai) = α(ζ ).

For ν = ∑i∈I ai ∈ E#X , since for any i ∈ I, ai ⊆ α ·β (ai), β (ai) = β ·α ·β (ai), hence

α(β (ν)) = α

(
∑
i∈I

( ∏
m∈β (ai)

m)

)
= ∑

i∈I

α ·β (ai) ≥ ∑
i∈I

ai,

β (α(β (ν))) = ∑
i∈I

β ·α ·β (ai) = ∑
i∈I

β (ai) = β (ν).

The proof is complete. 
�
Definition 8.7. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over M and E#X be the E#I algebra over X . Let ζ =
∑i∈I(∏m∈Ai

m) ∈ EM, ν ∈ ∑ j∈J a j ∈ E#X . (ν , ζ ) is called an AFS formal concept
of the context (X ,M, I), if α(ζ ) = ν , β (ν) = ζ . ν is called the extent of the AFS
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formal concept (ν , ζ ) and ζ is called the intent of the AFS formal concept (ν , ζ ).
L (E#X ,EM, I) is the set of all AFS formal concepts of the context (X ,M, I).

In virtue of the semantics of each element in EM demonstrated in the previous
chapters, we know the complex attributes in EM are much richer in expressions than
the attributes in 2M. In real world situations, many phenomena can be described by
AFS formal concepts. For example, it is necessary to allow a query containing few
search conditions when we use an information retrieval system. The relationships
among the search conditions are usually “or ” and “and ” logic expression. Thus
the query can be represented by the intent of an AFS formal concept. For example,
ab + bcd + e + hi in Table 8.3 can be used to represent the query “ab OR bcd OR
e OR hi”. The answer to query can be represented by the extent of an AFS formal
concept.

Definition 8.8. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context, EM be the EI algebra over M and E#X be the E#I algebra over X . ζ =
∑i∈I(∏m∈Ai

m)∈EM, ν = ∑ j∈J a j ∈E#X , if β (α(ζ )) �= ζ , ζ is called a non-feasible
fuzzy concept. If α(β (ν)) �= ν , ν is called a non-feasible E#I element.

For example, let ζ = ab + f in Table 8.3. Due to β · α({a,b}) = β ({4}) =
{a,b,c,d,e, f ,h, l} �= {a,b}, β ·α({ f}) = f . Then, β (α(ζ )) �= ζ , ζ is non-feasible.

Lemma 8.4. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context. Then the following assertions hold:

(1) For any (ν,ζ ) ∈ L (E#X ,EM, I), let ν = ∑i∈I ai, ζ = ∑ j∈J(∏m∈A j
m). If

∑ j∈J(∏m∈A j
m) and ∑i∈I ai are irreducible, then |I| = |J| (|I| denotes the car-

dinality of I) and for any i ∈ I, j ∈ J, A j is the intent of a formal concept of
(X ,M, I), ai is the extent of a formal concept of (X ,M, I).

(2) Let ν = ∑i∈I ai ∈ E#X, ζ = ∑ j∈J(∏m∈A j
m) ∈ EM, and ∑i∈I ai, ∑ j∈J(∏m∈A j

m)
be irreducible. If for any j ∈ J, A j is the intent of a formal concept of context
(X ,M, I), then (α(ζ ),ζ ) ∈ L (E#X ,EM, I). If for any i ∈ I, ai is the extent of a
formal concept of context (X ,M, I), then (ν,β (ν)) ∈ L (E#X ,EM, I).

Proof. (1) Assume |I| �= |J|. Without loss of generality, let |I| < |J|. By the fact that
(ν,ζ ) is an AFS formal concept (Definition 8.7), we know that β (ν) = ζ and the
cardinality of β (ν) is |I|. Since |I| < |J|, hence ∑ j∈J(∏m∈A j

m) is not irreducible,
which contradicts the fact that ∑ j∈J(∏m∈A j

m) is irreducible.
Next, we will prove for any j ∈ J, A j is the intent of a formal concept of (X ,M, I)

and ai is an extent of some formal concept with an intent in {A j | j ∈ J}. By Def-
inition 8.7, we have β (α(ζ )) = ζ , α(β (ν)) = ν . This implies that there exists a
bijection p from I to J such that for any i ∈ I, β (ai) = Ap(i). Since α(β (ν)) = ν ,
then

α(β (ν)) = α

⎛
⎝∑

i∈I
( ∏

m∈Ap(i)

m)

⎞
⎠= ∑

i∈I
α(Ap(i)) = ∑

i∈I
ai.
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If there exists i ∈ I such that α(Ap(i)) = α(β (ai)) �= ai, which means there exists ak,
i �= k, such that α(Ap(i)) = α(β (ai)) = ak. By the properties of Galois connection
“α,β ”, we have ak = α(β (ai))⊇ ai. It contradicts the fact that ∑i∈I ai is irreducible.
Thus, α(Ap(i)) = α(β (ai)) = ai and (ai,Ap(i)) is a concept of context (X ,M, I).

(2) One can directly verify that (α(ζ ),ζ ) is an AFS formal concept of the context
(X ,M, I) by Definition 8.7, (8.14) and (8.15). Similarly, the second conclusion holds
as well. 
�
Theorem 8.8. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context and L (E#X ,EM, I) be the set of all AFS formal concepts of the context
(X ,M, I). Then, for any (ν,ζ ) ∈ L (E#X ,EM, I), ν and ζ are uniquely determined
by each other.

Proof. Let ν = ∑i∈I ai ∈ E#X , ζ = ∑ j∈J(∏m∈A j
m) ∈ EM. Without loss of gen-

erality, let ∑i∈I ai and ∑ j∈J(∏m∈A j
m) be irreducible. By the Lemma 8.4, we get

|I|= |J|. For simplicity, let I = J. Assume that ν and ζ are not uniquely determined
by each other. Then, for ν , there exists ρ = ∑k∈I(∏m∈Bk

m) ∈ EM (ρ �= ζ ) such
that (ν,ρ) ∈ L (E#X ,EM, I). Thus, there is at least one i0 ∈ I such that Ai0 �= Bi

for any i ∈ I. From the Lemma 8.4 and Definition 8.7, we get that there exist k ∈ I,
j ∈ I such that (ak,Ai0), (ak,B j) are formal concepts of the context (X ,M, I), then
ai0 is not an extent of a formal concept, which contradicts to (ν,ζ ) is an AFS
formal concept (by Lemma 8.4). Similarly, for ζ , there exists unique ν such that
(ν,ζ ) ∈L (E#X ,EM, I). 
�
Definition 8.9. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context and L (E#X ,EM, I) be the set of all AFS formal concepts of the context
(X ,M, I). Let (ν1,ζ1),(ν2,ζ2) ∈ L (E#X ,EM, I). Define (ν1,ζ1) ≤ (ν2,ζ2) if and
only if ν1 ≤ ν2 in lattice E#X (or equivalently ζ1 ≤ ζ2 in lattice EM).

It is obvious that ≤ defined by Definition 8.9 is a partial order on L (E#X ,EM, I).
The following theorem shows that the set L (E#X ,EM, I) forms a complete lattice.

Theorem 8.9. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context and L (E#X ,EM, I) be the set of all AFS formal concepts of the context
(X ,M, I). Then L (E#X ,EM, I,≤) is a complete lattice in which suprema and infima
are given as follows: for any (νk,ζk) ∈ L (E#X ,EM, I),

∨
k∈K

(νk,ζk) =

(∨
k∈K

α(ζk), β

(∨
k∈K

α(ζk)

))
, (8.16)

∧
k∈K

(νk,ζk) =

(∧
k∈K

α(ζk), β

(∧
k∈K

α(ζk)

))
, (8.17)

where k ∈ K, K is any non-empty indexing set.

Proof. In order to show that L (E#X ,EM, I,≤) is a complete lattice, we need
to show that any subset of L (E#X ,EM, I) has a least upper bound (suprema)
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and a greatest lower bound (infima). Let S = {(νk,ζk) | k ∈ K} be any subset of
L (E#X ,EM, I). Let ζk = ∑sk∈Jk

(∏m∈Aksk
m),k ∈ K, Jk be the indexing set associat-

ing to ζk. We claim,

suprema =

(∨
k∈K

α(ζk), β

(∨
k∈K

α(ζk)

))
,

in f ima =

(∧
k∈K

α(ζk), β

(∧
k∈K

α(ζk)

))
.

First, we show that suprema = (
∨

k∈K α(ζk), β (
∨

k∈K α(ζk))). By Theorem 8.7,
we have

α

(
β

(∨
k∈K

α(ζk)

))

= α

⎛
⎝β

⎛
⎝∑

k∈K

α

⎛
⎝ ∑

sk∈Jk

( ∏
m∈Aksk

m)

⎞
⎠
⎞
⎠
⎞
⎠= α

⎛
⎝∑

k∈K

β

⎛
⎝α

⎛
⎝ ∑

sk∈Jk

( ∏
m∈Aksk

m)

⎞
⎠
⎞
⎠
⎞
⎠

= ∑
k∈K

∑
sk∈Jk

α

⎛
⎝β

⎛
⎝α

⎛
⎝ ∏

m∈Aksk

m

⎞
⎠
⎞
⎠
⎞
⎠= ∑

k∈K
∑

sk∈Jk

α

⎛
⎝ ∏

m∈Aksk

m

⎞
⎠

= ∑
k∈K

α

⎛
⎝ ∑

sk∈Jk

∏
m∈Aksk

m

⎞
⎠=

∨
k∈K

α(ζk).

This implies (
∨

k∈K α(ζk),β (
∨

k∈K α(ζk))) ∈ L (E#X ,EM, I), i.e., it is an AFS
formal concept. Moreover, for any k ∈ K, νk = α(ζk) ≤ ∨

k∈K α(ζk) holds. Fur-
thermore, (

∨
k∈K α(ζk), β (

∨
k∈K α(ζk))) is an upper bound for S. Let (ν,ζ ) ∈

L (E#X ,EM, I) and for any k ∈ K, (νk,ζk) ≤ (ν,ζ ), i.e., (ν,ζ ) is another up-
per bound for S. It is easy to get νk = α(ζk) ≤ ν for any k ∈ K. Therefore,
∨k∈Kα(ζk) ≤ ν and (

∨
k∈K α(ζk), β (

∨
k∈K α(ζk))) ≤ (ν,ζ ), i.e.,

suprema =

(∨
k∈K

α(ζk), β

(∨
k∈K

α(ζk)

))
.

Next, we show that in f ima = (
∧

k∈K α(ζk), β (
∧

k∈K α(ζk))). Since E#X is a
complete distributive lattice according to Theorem 5.2. Hence for any k ∈ K, one
has ∧

k∈K

α(ζk) = ∑
f∈Θ

⋂
k∈K

α(Ak f (k))

where Θ = { f | f : K →⋃
k∈K Jk s.t. f (k) ∈ Jk}. Thus by the definitions of α,β (i.e.,

(8.14) and (8.15)), we have
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α

(
β

(∧
k∈K

α(ζk)

))

= α

(
β

(
∑
f∈Θ

⋂
k∈K

α(Ak f (k))

))
= α

(
β

(
∑
f∈Θ

α

(⋃
k∈K

Ak f (k)

)))

= α

⎛
⎝∑

f∈Θ
∏

m∈β ·α(⋃k∈K Ak f (k))
m

⎞
⎠= ∑

f∈Θ
α ·β ·α

(⋃
k∈K

Ak f (k)

)

= ∑
f∈Θ

α

(⋃
k∈K

Ak f (k)

)
= ∑

f∈Θ

⋂
k∈K

α(Ak f (k)) =
∧
k∈K

α(ζk).

This shows (
∧

k∈K α(ζk), β (
∧

k∈K α(ζk))) ∈ L (E#X ,EM, I), i.e., it is an AFS
formal concept. Moreover, for any k ∈ K,

∧
k∈K α(ζk) ≤ νk = α(ζk) holds, so

(
∧

k∈K α(ζk), β (
∧

k∈K α(ζk))) is a lower bound for S. Let (ν,ζ ) ∈ L (E#X ,EM, I)
and for any k ∈ K, (νk,ζk) ≥ (ν,ζ ), i.e., (ν,ζ ) is another lower bound for S. This
implies that for any k ∈ K, νk = α(ζk) ≥ ν . Therefore, both

∧
k∈K α(ζk) ≥ ν and(∧

k∈K

α(ζk), β

(∧
k∈K

α(ζk)

))
≥ (ν,ζ )

hold, i.e., in f ima = (
∧

k∈K α(ζk),β (
∧

k∈K α(ζk))). 
�
In an AFS formal concept, its intent is a complex attribute of EM; correspondingly,
its extent is an element of E#X . The extent and intent of an AFS formal concept can
uniquely determine each other. Given some extents a1,a2, ...,an of formal concept
[10], we can find a unique ζ ∈ EM, as the intent of the AFS concept with extent
∑n

i=1 ai. ζ is a semantic description of ∑n
i=1 ai. On the contrary, given some intents

A1,A2, ...,An of formal concept [10], we can find a unique ν ∈ E#X , as the extent of
the AFS concept with intent ∑n

i=1(∏m∈Ai
m). ν is uniquely suitable to the description

of ∑n
i=1(∏m∈Ai

m).

Remark 8.1. By using AFS formal concepts, we can avoid the following two issues
discussed above.

1. In the AFS formal concept, intent and extent can be uniquely determined by
each other (Theorem 8.8), and there exists a bijection between each item of intent
and each item of extent (Lemma 8.4).

2. AFS formal concept is based on the EI algebra (EM,∨,∧) and the E#I algebra
(E#X ,∨,∧). In (EM,∨,∧), we can consider whether two complex attributes are
equivalent or not under the semantics (Definition 4.1)existing in an information
table. Thus we can filter some complex attributes without loss of main informa-
tion. For instance, let us continue discussing items {4}, {4,5,6,8,10,12,13},
{5,6,7,12,13} and abcde f hl,e f , f hix in Table 8.3. In terms of the AFS algebra,



330 8 AFS Formal Concept and AFS Fuzzy Formal Concept Analysis

abcde f hl + e f + f hix = e f + f hix (Definition 4.1). Thus items {4}, {4, 5, 6, 8,
10, 12, 13}, {5,6,7,12,13} and abcde f hl,e f , f hix can consist of an AFS for-
mal concept ({4, 5, 6, 8, 10, 12, 13}+ {5,6,7,12,13}, e f + f hix). Moreover,
{5,6,7,12,13}∪ {4,5,6,8,10,12,13} is just identical with extent of ({4, 5, 6, 7,
8, 10, 12, 13}, abcde f hl ∨ e f ∨ f hix). Then, AFS formal concept have not lost a
crucial original information, although the intents of AFS formal concepts are usu-
ally simpler than those of monotone concepts. Thus AFS formal concept constitutes
an improvement of the monotone concept.

In general, not all queries are exactly contained in an information system, but there
exist many words (or phrases) close to those. For example, in Example 8.3, there
does not exist an AFS formal concept with intent f +cd, but AFS formal concepts
with intent e f + cd f and f h + cd f exist in information Table 8.3. Accordingly, we
study how to approximate a complex attribute in EM (or an element in E#X) by AFS
formal concepts. In next section, we will investigate this issue in terms of rough set
theory.

8.3.3 Rough Set Theory Approach to Concept Approximation

Let (X ,M, I) be a context. Inspired by [44], for each m ∈ M, denote set

Im = {x ∈ X | (x,m) ∈ I}

represent all objects that possess the attribute m. Define a binary relation RI over M
as follows, for any mi,m j ∈ M,

(mi,m j) ∈ RI ⇔ Imi = Im j. (8.18)

That is to say, two attributes are related under RI if and only if they are possessed by
the same object set. It is easy to demonstrate that RI is an equivalence relation over
M. Denote M/RI to be the set of all equivalence classes deduced by RI over M, i.e.,
M/RI = {[mi] | mi ∈ M}, where [mi] = {m j | (mi,m j) ∈ RI} = {m j | Imi = Im j}.

Similarity, we can define an equivalence relation TI over X :

(xi,x j) ∈ TI ⇔ xiI = x jI, (8.19)

where xi,x j ∈ X , xiI = {m ∈ M | (xi,m) ∈ I} represent all attributes which are pos-
sessed by the object xi. X/TI be the set of all equivalence classes deduced by TI over
X , i.e., X/TI = {[xi] | xi ∈ X}, where [xi] = {x j | (xi,x j) ∈ TI} = {x j | xiI = x jI}.

The lower and upper approximations of subset B of M in the approximation space
A = (M,RI) defined by (6.1) are listed as follows:

A∗(B) = {m ∈ M | [m] ⊆ B} =
⋃
{Y ∈ M/RI | Y ⊆ B}, (8.20)

A∗(B) = {m ∈ M | [m]∩B �= ∅} =
⋃
{Y ∈ M/RI | Y ∩B �= ∅}. (8.21)
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Similarity, the lower and upper approximations of subset a of X in the approximation
space A = (X ,TI) defined by (6.1) are listed as follows:

A∗(a) = {x ∈ X | [x] ⊆ X} =
⋃
{z ∈ X/TI | z ⊆ a}, (8.22)

A∗(a) = {x ∈ X | [x]∩a �= ∅} =
⋃
{z ∈ X/TI | z∩a �= ∅}. (8.23)

Definition 8.10. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra over
the set X . For any ψ = ∑i∈I(∏m∈Bi

m) ∈ EM, ψ the lower approximation and ψ the
upper approximation of the fuzzy concept ψ are given in the form:

ψ = ∑
i∈I

( ∏
m∈A∗(Bi)

m) ∈ EM, ψ = ∑
i∈I

( ∏
m∈A∗(Bi)

m) ∈ EM. (8.24)

For any θ = ∑i∈I ai ∈ E#M, θ the lower approximation and θ the upper approxima-
tion of the E#I algebra element θ are defined as follows.

θ = ∑
i∈I

A∗(ai) ∈ E#M, θ = ∑
i∈I

A∗(ai)) ∈ E#M. (8.25)

Proposition 8.7. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then the following assertions hold.

(1) for any ψ1,ψ2,γ ∈ EM,

γ ≤ γ ≤ γ,

(ψ1 ∨ψ2) = (ψ1)∨ (ψ2) , (ψ1 ∨ψ2) = (ψ1)∨ (ψ2),

(ψ1 ∧ψ2) ≤ (ψ1)∧ (ψ2) , (ψ1 ∧ψ2) = (ψ1)∧ (ψ2).

(2) for any θ1,θ2,ϑ ∈ E#X,

ϑ ≤ ϑ ≤ ϑ ,

(θ1 ∨θ2) = (θ1)∨ (θ2) , (θ1 ∨θ2) = (θ1)∨ (θ2),

(θ1 ∧θ2) ≤ (θ1)∧ (θ2) , (θ1 ∧θ2) = (θ1)∧ (θ2).

Its proof is left to the reader. Whether the upper and lower approximations defined
by (8.24) and (8.25) have the same properties as the upper and lower approximation
defined by (6.1) remains an open problem.

Let (X ,M, I) be a context, M be set of elementary attributes, Bi ⊆ M, ψ =
∑i∈I(∏m∈Bi

m) ∈ EM be non-feasible, i.e., β (α(ψ)) �= ψ (Definition 8.8). We are
interested in finding AFS formal concepts whose intents approximate ψ . Let L(ψ)
and U(ψ) be two AFS formal concepts, whose intents are the lower and upper ap-
proximations of ψ respectively, as follows:
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L(ψ) =

(
∑
i∈I

α(A∗(Bi)), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
∈ L (E#X ,EM, I), (8.26)

U(ψ) =

(
∑
i∈I

α(A∗(Bi)), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
∈ L (E#X ,EM, I). (8.27)

where A∗(Bi), A∗(Bi) defined by (8.20) and (8.21), respectively. “α,β ” is Galois
connection defined by (8.1) and (8.2). The following Proposition 8.8 shows that
L(ψ) and U(ψ) are AFS formal concepts of the context (X ,M, I). L(ψ) is called the
lower AFS formal concept approximation of the fuzzy concept ψ and U(ψ) is called
the upper AFS formal concept approximation of the fuzzy concept ψ .

Proposition 8.8. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then for any ψ = ∑i∈I(∏m∈Bi

m) ∈ EM, the following assertions hold for the
lower and upper AFS formal concept approximations of the fuzzy concept ψ:

L(ψ) =

(
∑
i∈I

α(A∗(Bi))), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
= (α(ψ),β ·α(ψ)),

U(ψ) =

(
∑
i∈I

α(A∗(Bi)), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
= (α(ψ),β ·α(ψ)).

where α and β defined by (8.14) and (8.15), respectively. ψ and ψ defined by (8.24).

The proof of this proposition remains as an exercise. By Proposition 8.8, Definition
8.7 and Theorem 8.7, we know that both L(ψ) and U(ψ) are AFS formal concepts
of the context (X ,M, I).

Proposition 8.9. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then the following assertions hold:

(1) For any ψ ∈ EM, L(ψ) ≤ (α(ψ),β (α(ψ))) ≤ U(ψ), where α,β defined by
(8.14) and ( 8.15);

(2) For ψ1,ψ2 ∈ EM, ψ1 ≤ ψ2 ⇒ L(ψ1) ≤ L(ψ2), U(ψ1) ≤U(ψ2),

where L(.) and U(.) are defined by (8.26) and (8.27), respectively.

Proof. (1) Let ψ = ∑i∈I(∏m∈Ai
m) ∈ EM. For any i ∈ I, we can get A∗(Ai) ⊆ Ai ⊆

A∗(Ai) from the formulas (8.20) and (8.21). By using properties of the Galois con-
nection “α,β ” Proposition 8.1, we have α(A∗(Ai)) ⊇ α(Ai)⊇ α(A∗(Ai)). From the
definition of AFS formal concept (Definition 8.7) and the formulas (8.26)–(8.27),
we get L(ψ) ≤ (α(ψ),β (α(ψ))) ≤U(ψ).

(2) Let ψ1 = ∑ j∈J(∏m∈B j
m),ψ2 = ∑i∈I(∏m∈Ai

m) ∈ EM. Since ψ1 ≤ ψ2, hence
for any j ∈ J, there exists an i ∈ I such that Ai ⊆ B j. By proposition 6.1, A∗(Ai) ⊆



8.3 Concept Analysis via Rough Set and AFS Algebra 333

A∗(B j). From the definition of AFS formal concept (Definition 8.7) and the formulas
(8.26)–(8.27), we get L(ψ2)≤ L(ψ1). Similarly, we obtain U(ψ2)≤U(ψ1). 
�
In Example 8.3, we compare AFS formal concept approximations with results in
[44].

Example 8.3. Let X be a set and M be a set of attributes on X . Consider the context
(X ,M, I) given in Table 8.3. An “×” is placed in the p-th row and q-th column to
indicate that object p has attribute q. Let B = { f ,h, i}, from (8.18), (8.20) and (8.21),
one can get that M/RI = {ab,c,d,e, f ,h, ix, j,k, l}. In the approximation space A =
(X ,RI), A∗(B) = { f ,h}, A∗(B) = { f ,h, i,x}. Let ϕ = f hi ∈ EM. Then owing to
formulas (8.26)–(8.27), we have

L(ϕ) = ({5,6,7,12,13}, f hix),
U(ϕ) = ({2,3,4,5,6,7,8,11,12,13}, f h).

The authors in [44] gave an example on approximating a non-feasible monotone
formula in which ψ = ab∨ bcd ∨ e∨ hi∨ f hi. Due to α · β ({a,b}) = α({4}) =
{a,b,c,d,e, f ,h, l} �= {a,b}, ψ is non-feasible. L(ψ) and U(ψ) are computed as
illustrated in Table 8.4.

Table 8.4 The lower and upper approximation of ψ [44]

i Bi A∗(Bi) A∗(Bi) L(Bi) U(Bi)
1 {a,b} {a,b} {a,b} ({4}, abcde f hl) ({4}, abcde f hl)
2 {b,c,d} {a,b,c,d} {c,d} ({4}, abcde f hl) ({4,5,8,9,10,12,13}, cd f )
3 {e} {e} {e} ({4,5,6,8,10,12,13}, e f ) ({4,5,6,8,10,12,13}, e f )
4 {h, i} {h, i,x} {h} ({5,6,7,12,13}, f hix) ({2,3,4,5,6,7,8,11,12,13}, f h)
5 { f ,h, i} { f ,h, i,x} { f ,h} ({5,6,7,12,13}, f hix) ({2,3,4,5,6,7,8,11,12,13}, f h)

The authors concluded that

L(ψ) = ({4}∪{4,5,6,8,10,12,13}∪{5,6,7,12,13},
abcde f hl∨ e f ∨ f hix)

= ({4,5,6,7,8,10,12,13}, abcde f hl∨ e f ∨ f hix),

U(ψ) = ({4}∪{4,5,8,9,10,12,13}∪{4,5,6,8,10,12,13}
∪{2,3,4,5,6,7,8,11,12,13}, abcde f hl∨ cd f ∨ e f ∨ f h)

= ({2,3,4,5,6,7,8,9,10,11,12,13}, abcde f hl∨ cd f ∨ e f ∨ f h).

However, by using Definition 4.1, we find that in EM

abcde f hl + e f + f hix = e f + f hix,

abcde f hl + cd f + e f + f h = cd f + e f + f h.
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By Definition 5.3, we find that in E#X

{4}+{4,5,6,8,10,12,13}+{5,6,7,12,13}
= {4,5,6,8,10,12,13}+{5,6,7,12,13},

{4}+{4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}+{2,3,4,5,6,7,8,11,12,13}
= {4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}+{2,3,4,5,6,7,8,11,12,13}.

By the formulas L(ψ) and U(ψ), we can get that

L(ψ) = ({4}+{4,5,6,8,10,12,13}+{5,6,7,12,13},
abcde f hl + e f + f hix)

= ({4,5,6,8,10,12,13}+{5,6,7,12,13},e f + f hix),

and

U(ψ) = ({4}+{4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}
+{2,3,4,5,6,7,8,11,12,13},abcde f hl+ cd f + e f + f h)

= ({4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}
+{2,3,4,5,6,7,8,11,12,13},cd f + e f + f h).

It is easy to verify that ψ , L(ψ), U(ψ) satisfy (1) of Proposition 8.9.

Remark 8.2. From Example 8.3, one can observe that the semantics of the intents
of the lower and upper approximations of ψ by AFS formal concepts are equivalent
to those of ψ by monotone concepts. However, the extents of them are different,
and the extents of AFS formal concepts preserve more information than those of
monotone concepts. In addition, the semantic equivalence and logic operations are
introduced in AFS formal concepts. These are more conveniently to represent the
logic operations of queries in information retrieval.

Let (X ,M, I) be a context, ai ⊆ X , θ = ∑i∈I ai ∈ E#X . We are interested in finding
AFS formal concepts whose extents approximate θ . Let L(θ ) and U(θ ) be two AFS
formal concepts, whose extents represent the lower and upper approximations of θ ,
respectively, as follows

L(θ ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
∈ L (E#X ,EM, I), (8.28)

U(θ ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
∈ L (E#X ,EM, I). (8.29)

where A∗(ai) and A∗(ai) defined by (8.22) and (8.23), respectively. “α,β ” are Galois
connection defined by (8.14) and (8.15). The following Proposition 8.10 shows that



8.3 Concept Analysis via Rough Set and AFS Algebra 335

L(θ ) and U(θ ) are AFS formal concepts of the context (X ,M, I). L(θ ) is called the
lower AFS formal concept approximation of the E#I algebra element θ and U(ψ) is
called the upper AFS formal concept approximation of the E#I algebra element θ .

Proposition 8.10. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then for any θ = ∑i∈I ai ∈ E#X, the following assertions hold for the lower
and upper AFS formal concept approximations of θ :

L(ψ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
= (α ·β (θ), β (θ )),

U(ψ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
= (α ·β (θ), β (θ )).

where α and β defined by (8.14) and (8.15), respectively. θ and θ defined by (8.25).

The proof of this proposition remains as an exercise. By Proposition 8.10, Definition
8.7 and Theorem 8.7, we know that both L(θ ) and U(θ ) are AFS formal concepts
of the context (X ,M, I).

Proposition 8.11. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra over
the set X. Then the following assertions hold:

(1) For any θ ∈ E#X, L(θ ) ≤ (α · β (θ ), β (θ )) ≤ U(θ ), where α,β defined by
(8.14) and ( 8.15);

(2) For θ1,θ2 ∈ EM, θ1 ≤ θ2 ⇒ L(θ1) ≤ L(θ2), U(θ1) ≤U(θ2),

where L(.) and U(.) defined by (8.28) and (8.29), respectively.

Example 8.4. Let X be a set and M be a set of attributes on X . Consider the context
(X ,M, I) given in Table 8.3. From formula (8.19), one obtains

X/TI = {{1},{2},{3,11},{4},{5,12,13},{6},{7},{8},{9},{10}}.

Let θ = ∑i∈I ai = {2,3}+{4}+{5,6,7}∈ E#X . From formulas (8.22) and (8.23),
L(θ ) and U(θ ) are computed as presented in Table 8.5.

Table 8.5 The lower and upper approximation of θ

i ai A∗(ai) A∗(ai) L(ai) U(ai)
1 {2,3} {2} {2,3,11} ({2,4,5,8,12,13}, d f h) ({2,3,4,5,6,7,8,11,12,13}, f h)
2 {4} {4} {4} ({4}, abcde f hl) ({4}, abcde f hl)
3 {5,6,7} {6,7} {5,6,7,12,13} ({6,7}, f hi jx) ({5,6,7,12,13}, f hix)
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Therefore, from properties of EI, E#I algebra and the formulas (8.28)-(8.29), we
get

L(θ ) = ({2,4,5,8,12,13}+{4}+{6,7},d f h +abcde f hl+ f hi jx)
= ({2,4,5,8,12,13}+{6,7},d f h + f hi jx),

and

U(θ ) = ({2,3,4,5,6,7,8,11,12,13}+{4}+{5,6,7,12,13},
f h + abcde f hl + f hix)

= ({2,3,4,5,6,7,8,11,12,13}, f h).

Remark 8.3. The extent and intent of AFS formal concept can uniquely deter-
mine each other. Thus, concept approximation by AFS formal concepts can avoid
the issues i) and ii) stated in the abvoe section of monotone concepts and is
more conveniently for query. When approximating {2,3,4,5,6,7,8,11,12,13}+
{4,5,8,9,10,12,13}+ {4,5,6,8,10,12,13} by AFS formal concepts, we get that
({4,5,8,9,10,12,13}+ {4,5,6,8,10,12,13}+ {2,3,4,5,6,7,8,11,12,13},cd f +
e f + f h) instead of (D, f ), where D = {2,3,4,5,6,7,8,9,10,11,12,13}. When ap-
proximating D by AFS formal concepts, one also can obtain that (D, f ) by union all
of the items of extent of the AFS formal concept, which is the same as the approxi-
mation realized by monotone concepts.

In this section, the AFS formal concept is proposed, which can be more conveniently
applied to represent query in information retrieval systems than both the monotone
concept and the formal concept. The set of all AFS formal concepts forms a com-
plete lattice. Furthermore, by virtue of rough set theory, we discuss how to find AFS
formal concepts whose intents (extents) approximate a fuzzy concept in EM (or an
element of E#X). The examples and remarks demonstrate that not only the forms of
approximation results by using AFS formal concepts may be concise, but they do
not lead to any loss of crucial information. In this way, the AFS formal concepts can
be viewed as the generalization of the monotone concept and the formal concept.

8.4 AFS Fuzzy Formal Concept Analysis

In the above sections, the set M in any context (G,M, I) is a set of Boolean attributes
on X . However, in the real world applications the set M often represents a set of
fuzzy or Boolean attributes. Given this, in the this section, we show that any context
(G,M,I) with fuzzy attributes in M, where I stresses that there are fuzzy attributes
in M, can be described by an AFS structure. Let G be a set of objects and M be a set
of fuzzy or Boolean attributes. ∀g1,g2 ∈ G,τ is defined by

τ(g1,g2) = {m|m ∈ M,(g1,g2) ∈ Rm},

where (g1,g2) ∈ Rm (refer to Definition 4.2 )⇔ g1 belongs to attribute m at some
degree and the degree of g1 belonging to m is larger than or equal to that of g2, or
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g1 belongs to m at some degree and g2 does not at all. For a given context (G,M, I),
we can establish an AFS structure (M,τI ,G) according to (G,M, I) in the following
manner.

τI(g1,g2) = {m ∈ M|(g1,g2) ∈ Rm},
where for m ∈ M and binary relation I ⊆ G×M, g1 belongs to attribute m at some
degree which means that (g1,m) ∈ I. Since each m ∈ M, m is a Boolean attribute,
hence (g1,m) ∈ I implies that the degree of g1 belonging to m is larger than or equal
to that of g2 for any g2 ∈ G. Therefore

τI(g1,g2) = {m ∈ M|(g1,g2) ∈ Rm} = {m ∈ M|(g1,m) ∈ I}.

Now, we discuss the AFS formal concept analysis, in which M is a set of fuzzy
or Boolean attributes on X .

Definition 8.11. Let X , M be sets and (M,τ,X) be an AFS structure. A binary rela-
tion Iτ from X ×X to M is defined as follows: for (x,y) ∈ X ×X ,m ∈ M,

((x,y),m) ∈ Iτ ⇔ m ∈ τ(x,y). (8.30)

It is clear that (X ×X , M, Iτ ) is a formal context defined by [10]. The formal con-
text (X ×X ,M,Iτ ) is called the fuzzy context associating with the AFS structure
(M,τ,X).

Definition 8.12. Let X be a set and E#(X ×X) be the E#I algebra on X ×X . For any
a ⊆ X ×X , any x ∈ X , we define

aR(x) = {y ∈ X | (x,y) ∈ a} ⊆ X . (8.31)

For any γ = ∑i∈I ai ∈ E#(X ×X), the E#I algebra valued membership function γR :
X → E#X is defined as follows: for any x ∈ X ,

γR(x) = ∑
i∈I

aR
i (x) ∈ E#X . (8.32)

By the fuzzy norm (5.24) with Mρ the measure shown as (5.16) for the function
ρ : X → [0,+∞), the membership function μγR(x) of γR is defined as follows: for
any x ∈ X ,

μγR(x) = ||γR(x)||ρ = sup
i∈I

{Mρ(aR
i (x))} ∈ [0,1]. (8.33)

Thus every γ ∈ E#(X ×X) can be regarded as a fuzzy set on X whose membership
functions are defined by (8.32) or (8.33).

Since E#X is a lattice, hence for each γ ∈ E#(X ×X), γR : X → E#X defined by the
formula (8.32) is a lattice valued fuzzy set. One can verify that for γ,η ∈ E#(X ×X),
if γ ≤ η in lattice E#(X ×X), then for any x∈ X , γR(x)≤ ηR(x) in lattice E#X . Thus
in (X ×X , M, Iτ ), the fuzzy context associated with the AFS structure (M,τ,X), for
each attribute η ∈ EM, α(η) is a fuzzy set on X with the membership functions
defined by (8.32) or (8.33), where “α” is the Galois connection defined by (8.15).
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Contrastively, for any γ ∈ E#(X × X) as a fuzzy set defined by (8.32) or (8.33),
β (γ) is an attribute in EM, where “β ” is the Galois connection defined by (8.14).
If (γ,η) is an AFS formal concept defined by Definition 8.7, then the fuzzy set γ is
the extent of (γ,η) and the attribute η , which is the AFS logic combination of the
simple attributes in M and has a definitely semantic interpretation, is the intent of
(γ,η).

Theorem 8.10. Let X be a set and M be a set of simple attributes on X. Let (M,τ,X)
be an AFS structure in which for any x,y ∈ X,τ(x,y) = {m ∈ M | (x,y) ∈ Rm} (re-
fer to (4.26)) and (X ×X, M, Iτ) be the fuzzy context associating with (M,τ,X).
Then for ζ ,ς ∈ EM, if β (α(ζ )) = β (α(ς)),i.e., both β (α(ζ )) and β (α(ς)) are
the intent of an AFS formal concept, then ∀x ∈ X, ζ (x) = ς(x) and μζ (x) = μς (x),
where “α,β ” are the Galois connections defined by (8.14) and (8.15); for any fuzzy
attribute γ = ∑u∈U(∏m∈Cu m) ∈ EM,γ(x) = ∑u∈U Cτ

u (x) ∈ E#X is the E#I valued
membership function of γ defined by (5.13) and μγ (x) = ||∑u∈U Cτ

u(x)||ρ ∈ [0,1] is
the membership function of γ defined by (5.25) for the fuzzy norm (5.24) with Mρ
the measure shown as (5.16) for the function ρ : X → [0,+∞).

Proof. According to the definitions of (X ×X ,M,Iτ) and the Galois connection α ,
for any m ∈ M, we have

α({m}) = {(x,y) ∈ X ×X | m ∈ τ(x,y)}.

By Proposition 8.1 and (8.32), we can verify that for any A ⊆ M, any x ∈ X ,

α(A)R(x) =

(⋂
m∈A

α({m})
)R

(x)

=

(⋂
m∈A

{(x,y) ∈ X ×X | m ∈ τ(x,y)}
)R

(x)

= ({(x,y) ∈ X ×X |A ⊆ τ(x,y)})R(x). (8.34)

By (4.27) and (8.31), we have

({(x,y) ∈ X ×X |A ⊆ τ(x,y)})R(x) = Aτ(x). (8.35)

Furthermore for any γ = ∑u∈U(∏m∈Cu m) ∈ EM and any x ∈ X , from (8.35) and
(8.32), one has

α(γ)R(x) = ∑
u∈U

α(Cu)R(x) = ∑
u∈U

Cτ
u(x) = γ(x) (8.36)

That is the E#I valued membership function of the fuzzy attribute γ defined by
(5.13). For ζ ,ς ∈ EM, if β (α(ζ )) = β (α(ς)), then

α(ζ ) = α(β (α(ζ ))) = α(β (α(ς))) = α(ς).
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It follows from (8.36) that for any x ∈ X ,

ζ (x) = α(ζ )R(x) = α(ς)R(x) = ς(x),

Since ||.|| is a fuzzy norm on the lattice E#X , we have

μζ (x) = ||ζ (x)||ρ = ||ς(x)||ρ = μς (x). 
�

Assume that each attribute in M is a Boolean attribute on X . For any m ∈ M, let
Rm be the binary relation of m defined by Definition 4.2. Since m ∈ M is Boolean
concept, hence for any x ∈ X , either (x,y) ∈ Rm for any y ∈ X or (x,y) /∈ Rm for
any y ∈ X . By (8.31), one has that for any m ∈ M, any x ∈ X , either {m}R(x) = X
or {m}R(x) = ∅. This implies that for any A ⊆ M, any x ∈ X , either AR(x) = X
or AR(x) = ∅. Further, by (8.32) and (8.33), for any ζ ∈ E#(X ×X), any x ∈ X ,
either ζ R(x) = X or ζ R(x) = ∅, and either μζ R(x) = 1 or μζ R(x) = 0, i.e., μζ R(x)
is the characteristic function of a Boolean set Cζ ⊆ X . Proposition 4.3 has showed

that the AFS logic system (EM,∨,∧,
′
) will degenerate into Boolean logic system

(2X ,∪,∩,
′
) if every attribute in M is a Boolean attribute. Therefore if each m ∈ M

is a Boolean attribute, then the AFS formal concept lattice of an AFS structure
(M,τ,X) will degenerate into the formal concept lattice of context (X ,M, I), where
for x ∈ X and m ∈ M, (x,m) ∈ I ⇔ ((x,y),m) ∈ Iτ for any y ∈ X ⇔ (x,y) ∈ Rm for
any y∈ X ⇔ x has attribute m (refer to Definition 4.2). For each AFS formal concept
(γ,η), the intent η = ∑i∈I(∏m∈Ai

m) ∈ EM corresponds to the disjunctive normal
form of a monotone Boolean formula

∨
i∈I Ai, where each ∏m∈Ai

m is a Boolean
conjunctive expression

∧
a∈Ai

a, and the extent γ ⊆ X is

γ = α(η) =
⋃
i∈I

⋂
a∈Ai

α(a).

For instance, in Example 8.1, for instance, the attribute ξ = m1 + m2m4 + m4m5 ∈
EM read as “edible” or “poisonous and cap-shape” or “cap-shape and cap-surface:
fibrous”. According to Table 8.2, we know that {m1}, {m2,m4} and {m4,m5} are all
intents of some concepts of the context (G,M, I). From Lemma 8.4, one has that(

α({m1})+
(

α({m2})
⋂

α({m4})
)

+
(

α({m4})
⋂

α({m5})
)

, ξ
)

is an AFS formal concept of the context (X ,M, I). The following Example 8.5
demonstrates how to implement AFS fuzzy formal concept analysis for a data with
both fuzzy and Boolean attributes.

Example 8.5. Let X = {x1,x2, ...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table 8.6; there the number i in the “hair color” columns which corre-
sponds to some x ∈ X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {m1,m2, ..., m10} be
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Table 8.6 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male f emale black white yellow

x1 20 1.9 90 1 0 1 0 6 1 4
x2 13 1.2 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 1.4 54 15 2 1 0 5 2 2
x6 37 1.6 80 80 28 0 1 6 1 4
x7 45 1.7 78 268 90 1 0 1 6 4
x8 70 1.65 70 30 45 1 0 3 4 2
x9 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3

the set of fuzzy or Boolean concepts on X and each m ∈ M associate to a single fea-
ture. Where m1 : “old people”, m2 : “tall people”, m3 : “heavy people”, m4 : “high
salary”, m5 : “more estate”, m6 :“male”, m7 : “female”, m8 : “black hair people”,
m9 : “white hair people”, m10 : “yellow hair people”.

Let (M,τ,X) be the AFS structure of the data shown in Table 8.6. For simplicity,
let S=2X be the σ -algebra over X and mρ be the measure defined by (5.16) for the a
weight function ρ(x)=1, ∀x ∈ X . Let

ζ = m1m3m4 + m1m3m7, ξ = m1m2m3m4 + m1m2m3m7

be two fuzzy attributes in EM. It is obvious that ζ ≥ ξ and ζ �= ξ in lattice EM.
One can verify that

β (α( ∏
m∈{m1,m3,m4}

m)) = ∏
m∈{m1,m2,m3,m4}

m,

β (α( ∏
m∈{m1,m3,m7}

m)) = ∏
m∈{m1,m2,m3,m7}

m.

Although ζ and ξ are different attributes in EM, i.e., ζ and ξ capture different
semantics, the fuzzy sets defined by (5.13) or the norm of the lattice E#X defined by
(5.24) are identical, i.e., their extents are equal as shown in Table 8.7.

Table 8.7 Membership functions of ζ and ξ defined by (8.33)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μζ (.) = μξ (.) 0.3 0.2 0.4 0.4 0.3 0.4 0.4 0.4 0.7 0.1

Let N = {m1,m2,m3,m6,m7} ⊆ M. Here, we study the AFS fuzzy formal con-
cept lattice L (E#(X ×X),EN,Iτ). According to Lemma 8.4, we know that for any
AFS formal concept (ν,η) ∈ L (E#(X ×X),EN,Iτ ) there exist Ai ⊆ N, i ∈ I, Ai

is the intent of a formal concept of context (X ×X ,N,Iτ) which is the fuzzy con-
text associating with the AFS structure (N,τ,X) (refer to Definition 8.11) such that
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m3
m2

m1

m6
m7

m2m3 m1m3
m1m2m3m6 m3m7 m2m6 m2m7m1m6

m1m7

m1m2m3
  m2m3m6m1m3m6

m1m2m7
 m2m3m7m1m2m6

m1m2m3m6
m1m2m3m7

  m1m2m3m6m7

Fig. 8.1 Concept lattice of context (X ×X ,N,Iτ )

Table 8.8 Membership functions of the extents of the formal concepts shown in Figure 8.1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μm1(·) 0.3 0.2 0.7 1 0.4 0.5 0.6 0.9 0.8 0.1
μm1m2(·) 0.3 0.2 0.6 0.8 0.3 0.4 0.5 0.5 0.7 0.1
μm1m3(·) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.5 0.7 0.1
μm1m6(·) 0.3 0 0 1 0.4 0 0.6 0.9 0 0
μm1m7(·) 0 0.2 0.7 0 0 0.5 0 0 0.8 0.1
μm1m2m3(·) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.4 0.7 0.1
μm1m2m6(·) 0.3 0 0 0.8 0.3 0 0.5 0.5 0 0
μm1m2m7(·) 0 0.2 0.6 0 0 0.4 0 0 0.7 0.1
μm1m3m6(·) 0.3 0 0 0.6 0.3 0 0.4 0.5 0 0
μm1m2m3m6(·) 0.3 0 0 0.6 0.3 0 0.4 0.4 0 0
μm1m2m3m7(·) 0 0.2 0.4 0 0 0.4 0 0 0.7 0.1
μm2(·) 1 0.2 0.7 0.8 0.3 0.4 0.7 0.5 0.9 0.1
μm2m3(·) 1 0.2 0.4 0.6 0.3 0.4 0.6 0.4 0.9 0.1
μm2m6(·) 1 0 0 0.8 0.3 0 0.7 0.5 0 0
μm2m7(·) 0 0.2 0.7 0 0 0.4 0 0 0.9 0.1
μm2m3m6(·) 1 0 0 0.6 0.3 0 0.6 0.4 0 0

η = ∑i∈I(∏m∈Ai
m). So we show the concept lattice generated by the fuzzy context

(X ×X ,N,Iτ) in Figure 8.1 and the membership functions of the extents are shown
in Table 8.8. Notice that although both the extents and the intents of the formal con-
cepts in (X ×X ,N,Iτ ) may be fuzzy sets and fuzzy attributes, (X ×X ,N,Iτ ) is a
traditional context [10]. This implies that its complexity is the same as a traditional
context with |X |2 objects and |N| attributes.
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m1 m6 m7

m1m6 m1m7

m1m2m3m6m7

m2m3m6
m1m2m3

m1m2m3m6 m1m2m3m7

m2m3

Fig. 8.2 Concept lattice of context (X1 ×X1,N,Iτ )

Table 8.9 Membership functions of the extents of the formal concept shown in Figure 8.2

μm1 μm1m6 μm1m7 μm1m2m3 μm1m2m3m6 μm1m2m3m7 μm2m3 μm2m3m6 μm6 μm7

x1 0.6 0.6 0 0.6 0.6 0 1 1 1 0
x2 0.4 0 0.4 0.4 0 0.4 0.4 0 0 1
x5 0.8 0.8 0 0.6 0.6 0 0.6 0.6 1 0
x6 1 0 1 0.8 0 0.8 0.8 0 0 1
x10 0.2 0 0.2 0.2 0 0.2 0.2 0 0 1

Let X1 = {x1,x2,x5,x6,x10} ⊆ X . Figure 8.2 shows the concept lattice gener-
ated by (X1 ×X1,N,Iτ ) and the membership functions of the extents are shown in
Table 8.9. Although the intent and extent of an AFS formal concept are a fuzzy
attribute in EM and a fuzzy set on X respectively, the context (X ×X ,M,Iτ) associ-
ating with an AFS structure (M,τ,X) is a traditional context which can be directly
established by the original data without the use of the fuzzy set I to describe the
uncertainty between the objects and the attributes. Thus the AFS formal concept
lattices preserve more information contained in original data than the other fuzzy
formal concept lattices. This observation stresses that the AFS formal concept anal-
ysis naturally extends the traditional formal concepts to the fuzzy formal concepts.

In order to cope with the data with various data types such as real numbers, Boolean
value and even the human intuition description with sub-preferences, the AFS fuzzy
formal concept analysis, which intuitively augments the traditional formal concepts
to fuzzy formal concepts and overcomes the difficulties of other fuzzy formal con-
cepts to define the fuzzy binary relation by human interpretations, is proposed and
developed. The examples demonstrate that the AFS fuzzy formal concept analysis
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can be directly applied to the original data with both fuzzy and Boolean attributes
and preserve more information contained in the original data than other fuzzy for-
mal concepts. In the framework of AFS fuzzy formal concept analysis, the original
data is only required to generate AFSFFCA lattices, human interpretation is not re-
quired to define the fuzzy binary relations and the fuzzy sets corresponding to all
attributes in EM are automatically determined by a consistent algorithm according
to the AFS structure and the AFS algebra. So AFSFFCA lattices are more objective
and comprehensive representations of the knowledge contained in the original data
than traditional and other fuzzy formal concepts. The theorems prove that AFS fuzzy
formal concept lattices are more general mathematization of the traditional formal
concept lattices. Many already existing mathematical tools such as topology, mea-
sure theory, combinatorics and algebras can be applied to the research of the AFS
theory. These facts encourage us to derive mathematical properties of AFSFFCA
and apply them to future research and development of knowledge representation
schemes.

Exercises

Exercise 8.1. Let (G,M, I) be a context. Show that the following assertions hold:

(1) for A1,A2 ⊆ G, A1 ⊆ A2 implies β (A1) ⊇ β (A2) and
for B1,B2 ⊆ M, B1 ⊆ B2 implies α(B1) ⊇ α(B2);

(2) A ⊆ α(β (A)) and β (A) = β (α(β (A))) for all A ⊆ G, and
B ⊆ β (α(B)) and α(B) = α(β (α(B))) for all B ⊆ M.

Exercise 8.2. (Wille’s Lemma) Let (G,M, I) be a context and L (G,M, I) denote
the set of all formal concepts of the context (G,M, I). Show that

L (G,M, I) = {(α(B),β (α(B))) | B ⊆ M}.

Exercise 8.3. (Fundamental Theorem of FCA) Let (G,M, I) be a context. Prove that
(L (G,M, I),∨,∧) is a complete lattice in which suprema and infima are given as
follows: for any formal concepts (A j,B j) ∈ L (G,M, I), j ∈ J,

∨
j∈J

(A j,B j) =

(
γG

(⋃
j∈J

A j

)
,
⋂
j∈J

B j

)
,

∧
j∈J

(A j,B j) =

(⋂
j∈J

A j, γM

(⋃
j∈J

B j

))
,

where γG = α ·β , γM = β ·α .

Exercise 8.4. Let X and M be sets, (G,M, I) be a context and EIXM be defined as
Definition 8.3. For ∑u∈U auAu ∈ EIXM, if aq ⊆ aw, Aq ⊆ Aw, w,q ∈U , w �= q, prove
that



344 8 AFS Formal Concept and AFS Fuzzy Formal Concept Analysis

∑
u∈U

auAu = ∑
u∈U,u �=q

auAu.

Exercise 8.5. Let X and M be sets, (G,M, I) be a context and EIXM be the set
defined as Definition 8.3. Prove that the binary relation ≤ is a partial order relation
if ∑u∈U auAu, ∑v∈V bvBv ∈ EIXM, ∑u∈U auAu ≤ ∑v∈V bvBv ⇔∀auAu (u ∈U) ∃bkBk

(k ∈V ) such that au ⊆ bk, Au ⊆ Bk.

Exercise 8.6. Let (G,M, I) be a context and EIGM be defined as Definition 8.3. If
for any ∑u∈U auAu, ∑v∈V bvBv ∈ EIGM, we define(

∑
u∈U

auAu

)
∗
(

∑
v∈V

bvBv

)
= ∑

u∈U,v∈V

au ∩bvAu ∪Bv,

(
∑

u∈U

auAu

)
+

(
∑
v∈V

bvBv

)
= ∑

u∈U�V

cuCu,

where u ∈ U �V (the disjoint union of indexing sets U , V ), cu = au, Cu = Au,if
u ∈ U ; cu = bu, Cu = Bu,if u ∈ U . Prove that “+” and “∗” are binary compositions
on EIGM.

Exercise 8.7. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,≤)
be the ECII algebra of context (G,M, I). Show that the following assertions hold.
For any ψ , ϑ , γ , η ∈ EIGM,

(1) ψ + ϑ = ϑ + ψ , ψ ∗ϑ = ϑ ∗ψ ;
(2) (ψ + ϑ)+ γ = ψ +(ϑ + γ), (ψ ∗ϑ)∗ γ = ψ ∗ (ϑ ∗ γ);
(3) (ψ + ϑ)∗ γ = (ψ ∗ γ)+ (ϑ ∗ γ), ψ ∗ (∅M) = (∅M), ψ ∗ (X∅) = ψ ;
(4) If ψ ≤ ϑ , γ ≤ η , then ψ + γ ≤ ϑ + γ , ψ ∗ γ ≤ ϑ ∗ γ;

Exercise 8.8. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . Show the validity of the following assertions hold.

(1) for any ψ1,ψ2,γ ∈ EM,

γ ≤ γ ≤ γ,

(ψ1 ∨ψ2) = (ψ1)∨ (ψ2) , (ψ1 ∨ψ2) = (ψ1)∨ (ψ2),

(ψ1 ∧ψ2) ≤ (ψ1)∧ (ψ2) , (ψ1 ∧ψ2) = (ψ1)∧ (ψ2).

(2) for any θ1,θ2,ϑ ∈ E#X ,

ϑ ≤ ϑ ≤ ϑ ,

(θ1 ∨θ2) = (θ1)∨ (θ2) , (θ1 ∨θ2) = (θ1)∨ (θ2),

(θ1 ∧θ2) ≤ (θ1)∧ (θ2) , (θ1 ∧θ2) = (θ1)∧ (θ2).
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Exercise 8.9. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . Let (X ,M, I) be a context, Bi ⊆ M, ψ = ∑i∈I(∏m∈Bi

m) ∈ EM be a complex
attribute. Prove that for any ψ ∈ EM, the lower and upper AFS formal concept
approximations of the fuzzy concept ψ satisfy the relationships

L(ψ) = (∑
i∈I

α(A∗(Bi))),∑
i∈I

∏
m∈β ·α(A∗(Bi))

m) = (α(ψ),β (α(ψ)))

U(ψ) = (∑
i∈I

α(A∗(Bi)),∑
i∈I

∏
m∈β ·α(A∗(Bi))

m) = (α(ψ),β (α(ψ)))

where α and β are defined by (8.14) and (8.15), respectively. ψ and ψ are defined
by (8.24).

Exercise 8.10. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . For any θ = ∑i∈I ai ∈ E#X , show the following assertions hold for the lower
and upper AFS formal concept approximations of θ :

L(ψ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
= (α ·β (θ), β (θ )),

U(ψ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
= (α ·β (θ), β (θ )).

where α and β are defined by (8.14) and (8.15), respectively. θ and θ are defined
by (8.25).

Exercise 8.11. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . Show the following assertions hold:

(1) For any θ ∈ E#X , L(θ ) ≤ (α · β (θ ), β (θ )) ≤ U(θ ), where α,β defined by
(8.14) and ( 8.15);

(2) For θ1,θ2 ∈ EM, θ1 ≤ θ2 ⇒ L(θ1) ≤ L(θ2), U(θ1) ≤U(θ2),

where L(.) and U(.) are defined by (8.28) and (8.29), respectively.

Open problems

Problem 8.1. Let X and M be sets, (G,M, I) be a context and (EIXM,≤) be the
partially ordered set defined as Definition 8.3. Show whether (EIXM,≤) is a lattice.
What are the lattice operations ∨ and ∧?

Problem 8.2. Demonstrate whether the upper and lower approximations defined by
(8.24) and (8.25) have the same properties as the upper and lower approximation
defined by (6.1).
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Problem 8.3. Discuss whether the upper and lower AFS formal concept approxi-
mations defined by (8.26) and (8.27) (or (8.28) and (8.29)) have the same properties
as the upper and lower approximation defined by (6.1).

Problem 8.4. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra
over the set X . For any ψ ∈ EM, whether L(ψ) is the maximal formal concept
smaller than (α(ψ),β (α(ψ))) and U(ψ) is the minimal formal concept larger than
(α(ψ),β (α(ψ)))? Here α,β are defined by (8.14) and ( 8.15), L(.) and U(.) are
defined by (8.26) and (8.27), respectively.

Problem 8.5. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the set
X . For any ψ ∈ EM and θ ∈ E#X , what are the relationships between the following
pairs?

L(ψ) and L(α(ψ)), U(ψ) and U(α(ψ)),
L(θ ) and L(β (θ )), U(θ ) and U(β (θ )).

Here L(.) is defined by (8.26) or (8.28), and U(.) is defined by (8.27) or (8.29),
respectively.
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