
Chapter 7
AFS Topology and Its Applications

In this chapter, first we construct some topologies on the AFS structures, discuss the
topological molecular lattice structures on EI, ∗EI, EII, ∗EII algebras, and elabo-
rate on the main relations between these topological structures. Second, we apply
the topology derived by a family of fuzzy concepts in EM, where M is a set of simple
concepts, to analyze the relations among the fuzzy concepts. Thirdly, we propose the
differential degrees and fuzzy similarity relations based on the topological molec-
ular lattices generated by the fuzzy concepts on some features. Furthermore, the
fuzzy clustering problems are explored using the proposed differential degrees and
fuzzy similarity relations. Compared with other fuzzy clustering algorithms such
as the Fuzzy C-Means and k-nearest-neighbor fuzzy clustering algorithms, the pro-
posed fuzzy clustering algorithm can be applied to data sets with mixed feature vari-
ables such as numeric, Boolean, linguistic rating scale, sub-preference relations, and
even descriptors associated with human intuition. Finally, some illustrative exam-
ples show that the proposed differential degrees are very effective in pattern recog-
nition problems whose data sets do not form a subset of a metric space such as the
Eculidean one. This approach offers a promising avenue that could be helpful in
understanding mechanisms of human recognition.

7.1 Topology on AFS Structures and Topological Molecular
Lattice on ∗EIn Algebras

In this section, we first study the topological molecular lattice on the ∗EI algebra
over a set M, i.e.,(∗EM,∨,∧), in which the lattice operators ∨, ∧ are defined as
follows: for any ∑i∈I Ai, ∑ j∈J B j ∈ EM,

∑
i∈I

Ai ∨∑
j∈J

B j = ∑
i∈I, j∈J

Ai ∪B j, (7.1)

∑
i∈I

Ai ∧∑
j∈J

B j = ∑
i∈I

Ai + ∑
j∈J

B j. (7.2)

M is the maximum element of the lattice ∗EM and ∅ is the minimum element of
this lattice. That is, the above lattice ∗EM is a dual lattice of EM. In the lattice ∗EM,
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for ∑i∈I Ai,∑ j∈J B j ∈ EM, ∑i∈I Ai ≤ ∑ j∈J B j if and only if for any B j ( j ∈ J) there
exists Ak (i ∈ I) such that B j ⊇ Ak (refer to Theorem 5.24). Secondly, we study the
topology on the universe of discourse X induced by the topological molecular lattice
of some fuzzy concepts in EM. Finally the topological molecular lattice on the ∗EI2

algebra over the sets X , M, i.e.,(∗EXM,∨,∧), in which the lattice operators ∨, ∧ are
defined as follows: for any ∑i∈I aiAi, ∑ j∈J b jB j ∈ EXM,

∑
i∈I

aiAi ∨ ∑
j∈J

b jB j = ∑
i∈I, j∈J

ai ∩b jAi ∪B j, (7.3)

∑
i∈I

aiAi ∧ ∑
j∈J

b jB j = ∑
i∈I

aiAi + ∑
j∈J

b jB j. (7.4)

∅M is the maximum element of the lattice ∗EM and X∅ is the minimum element
of the lattice ∗EM. That is, the lattice ∗EXM is a dual lattice of EXM. In the lat-
tice ∗EXM, for ∑i∈I aiAi,∑ j∈J b jB j ∈ EM, ∑i∈I aiAi ≤ ∑ j∈J b jB j if and only if for
any b jB j ( j ∈ J) there exists akAk (i ∈ I) such that B j ⊇ Ak and ak ⊇ b j (refer to
Theorem 5.1).

Lemma 7.1. Let M be a set and EM be the ∗EI algebra over M. For A ⊆M, ∑i∈I Ai,
∑ j∈J B j ∈ EM, the following assertions hold:

(1) A ≥ ∑i∈I Ai and A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∨∑ j∈J B j;
(2) A ≥ ∑i∈I Ai or A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∧∑ j∈J B j.

Its proof is left as an exercise.

Definition 7.1. Let M be a set and (∗EM,∨,∧) be the ∗EI algebra over M defined by
(7.1) and (7.2). Let η ⊆ ∗EM. If ∅,M ∈ η and η is closed under finite unions (i.e.,
∨ ) and arbitrary intersections (i.e., ∧ ), then η is called a topological molecular
lattice on the lattice ∗EM, denoted as (∗EM,η). Let η be a topological molecular
lattice on the lattice ∗EM. If for any ∑i∈I Ai ∈ η , Ai ∈η for any i∈ I, then η is called
an elementary topological molecular lattice on the lattice ∗EM.

It is easy proved that if η is a topological molecular on the lattice ∗EM and η is a
dual idea of the lattice ∗EM, then η is an elementary topological molecular lattice
on the lattice ∗EM. In what follows, we apply the elementary topological molecular
lattice on the lattice ∗EM to induce some topological structures on X via the AFS
structure (M,τ,X) of a data. Thus the pattern recognition problem can by explored
in the setting of these topological structures on X .

Definition 7.2. Let X and M be sets and (M,τ,X) be an AFS structure. Let (∗EM,η)
be a topological molecular lattice on ∗EI algebra over M. For any x ∈ X , ∑i∈I Ai ∈
η ⊆ ∗EM, the set Nτ

∑i∈I Ai
(x) ⊆ X is defined as follows.

Nτ
∑i∈I Ai

(x) =

{
y ∈ X | τ(x,y) ≥ ∑

i∈I
Ai

}
, (7.5)
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and it is called the neighborhood of x induced by the fuzzy concept ∑i∈I Ai in the
AFS structure (M,τ,X). The set Nτ

η(x) ⊆ 2X is defined as follows.

Nτ
η (x) =

{
N∑i∈I Ai(x) | ∑

i∈I
Ai ∈ η

}
, (7.6)

and it is called the neighborhood of x induced by the topological molecular lattice
η in the AFS structure (M,τ,X).

Since τ(x,y) ⊆ M, hence τ(x,y) is an element in EM and τ(x,y) ≥ ∑i∈I Ai in (7.5)
is well-defined.

Definition 7.3. Let X and M be sets and (M,τ,X) be an AFS structure. (M,τ,X) is
called a strong relative AFS structure if ∀(x,y) ∈ X ×X ,τ(x,y)∪ τ(y,x) = M.

Since in a strong relative AFS structure (M,τ,X), ∀x ∈ X , τ(x,x) = M, hence ∀x ∈
X ,∀m ∈ M, x belongs to the simple concept m to some extent.

Proposition 7.1. Let X and M be sets and (M,τ,X) be a strong relative AFS struc-
ture. Let η be a topological molecular lattice on ∗EI algebra over M. For any
∑i∈I Ai, ∑ j∈J B j ∈ EM, the following assertions hold: for any x ∈ X

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in ∗EM, then Nτ
∑i∈I Ai

(x) ⊆ Nτ
∑ j∈J B j

(x);
(2) Nτ

∑i∈I Ai
(x)∩Nτ

∑ j∈J B j
(x) = Nτ

∑i∈I Ai∨∑ j∈J B j
(x);

(3) Nτ
∑i∈I Ai

(x)∪Nτ
∑ j∈J B j

(x) = Nτ
∑i∈I Ai∧∑ j∈J B j

(x).

Proof. (1) Let y ∈ Nτ
∑i∈I Ai

(x). Then there exists Ak,k ∈ I such that τ(x,y) ⊇ Ak. On
the other hand, since ∑i∈I Ai ≥ ∑ j∈J B j, hence for Ak there exists B j, j ∈ J such that
τ(x,y) ⊇ Ak ⊇ B j. This implies that y ∈ Nτ

∑ j∈J B j
(x). It follows that Nτ

∑i∈I Ai
(x) ⊆

Nτ
∑ j∈J B j

(x).
(2) For any y ∈ Nτ

∑i∈I Ai
(x)∩Nτ

∑ j∈J B j
(x), in virtue of Lemma 7.1, we have

y ∈ Nτ
∑i∈I Ai

(x)∩Nτ
∑ j∈J B j

(x) ⇔ y ∈ Nτ
∑i∈I Ai

(x) and y ∈ Nτ
∑ j∈J B j

(x)

⇔ τ(x,y) ≥ ∑
i∈I

Ai and τ(x,y) ≥ ∑
j∈J

B j

⇔ τ(x,y) ≥ ∑
i∈I, j∈J

Ai ∪B j

⇔ τ(x,y) ≥
(

∑
i∈I

Ai

)
∨
(

∑
j∈J

B j

)

⇔ y ∈ Nτ
∑i∈I Ai∨∑ j∈J B j

(x).

So we have showed that (2) holds.



272 7 AFS Topology and Its Applications

(3) For any y ∈ Nτ
∑i∈I Ai

(x)∪Nτ
∑ j∈J B j

(x), from Lemma 7.1, we have

y ∈ Nτ
∑i∈I Ai

(x)∪Nτ
∑ j∈J B j

(x) ⇔ y ∈ Nτ
∑i∈I Ai

(x) or y ∈ Nτ
∑ j∈J B j

(x)

⇔ τ(x,y) ≥ ∑
i∈I

Ai or τ(x,y) ≥ ∑
j∈J

B j

⇔ τ(x,y) ≥ ∑
i∈I

Ai + ∑
j∈J

B j

⇔ τ(x,y) ≥
(

∑
i∈I

Ai

)
∧
(

∑
j∈J

B j

)

⇔ y ∈ Nτ
∑i∈I Ai∧∑ j∈J B j

(x).

This implies that (3) is satisfied. ��
Theorem 7.1. Let X and M be sets and (M,τ,X) be a strong relative AFS structure.
Let η be a topological molecular lattice on the lattice ∗EM. If η is an elementary
topological molecular lattice on the lattice ∗EM and we define

Bη =

{
Nτ

∑i∈I Ai
(x) | x ∈ X , ∑

i∈I
Ai ∈ η

}
,

then Bη is a base for some topology of X.

Proof. Firstly, because (M,τ,X) is a strong relative AFS structure, for any x ∈ X ,
τ(x,x) = M. M is the maximum element of the lattice ∗EM. This implies that for
any ∑i∈I Ai ∈ η , τ(x,x) ≥ ∑i∈I Ai so that x ∈ Nτ

∑i∈I Ai
(x) and X =

⋃
β∈Bη β .

Secondly, suppose x ∈ X ,U,V ∈ Bη , and x ∈ U ∩V . We will prove there ex-
ists W ∈ Bη such that x ∈ W ⊆ U ∩V . By the hypothesis, we know there exists
∑i∈I Ai,∑ j∈J B j ∈ η such that U = Nτ

∑i∈I Ai
(u), V = Nτ

∑ j∈J B j
(v) for some u,v ∈ X

and ∃l ∈ I,∃k ∈ J, τ(u,x) ⊇ Al and τ(v,x) ⊇ Bk. Since (M,τ,X) is a strong relative,
hence x ∈ Nτ

Al
(x) and x ∈ Nτ

Bk
(x). For any y ∈ Nτ

Al
(x), i.e., τ(x,y) ⊇ Al , by Definition

4.5, we have τ(u,y) ⊇ τ(u,x)∩ τ(x,y) ⊇ Al , that is y ∈ U . It follows Nτ
Al

(x) ⊆ U .
For the same reason, Nτ

Bk
(x) ⊆V . By Proposition 7.1, we have

x ∈ Nτ
Al

(x)∩Nτ
Bk

(x) = Nτ
Al∨Bk

(x) ⊆U ∩V.

Since η is an elementary topological molecular lattice on the lattice ∗EM, hence
Al,Bk ∈ η and we have x ∈ W = Nτ

Al∨Bk
(x) ∈ Bη such that W ⊆ U ∩V . Now by

Theorem 1.21, Bη is a base for some topology on X . ��
The topological space (X ,Tη), in which Bη is the base for Tη , is called the topol-
ogy of X induced by the topological molecular lattice η .

Theorem 7.2. Let X and M be sets and (M,τ,X) be a strong relative AFS structure.
Let η be a topological molecular lattice on the lattice ∗EM and
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Lη =

{
∑
i∈I

aiAi ∈ EXM | ∑
i∈I

Ai ∈ η ,ai ∈ Tη f or any i ∈ I,

I is any non− empty indexing set} . (7.7)

Then Lη is a topological molecular lattice on the lattice ∗EXM. It is called the ∗EI2

topological molecular lattice induced by the ∗EI the topological molecular lattice η .

Proof. For any finite integer n, let λ j = ∑i∈Ij
ai jAi j ∈ EXM, j = 1,2, ...,n. Because

for any f ∈ ∏1≤ j≤n I j,
⋂

1≤ j≤n a f ( j) j ∈ Tη and

∨
1≤ j≤n

(
∑
i∈Ij

Ai j

)
= ∑

f∈∏1≤ j≤n Ij

⋃
1≤ j≤n

A f ( j) j ∈ η ,

then we have

∨
1≤ j≤n

λ j = ∑
f∈∏1≤ j≤n Ij

( ⋂
1≤ j≤n

a f ( j) j

⋃
1≤ j≤n

A f ( j) j

)
∈ Lη .

This implies that Lη is closed under finite unions (i.e.,∨). It is obvious that ∧ is
closed under arbitrary intersection. Therefore (∗EXM,Lη) is a ∗EI2 topological
molecular lattice on the lattice ∗EXM. ��
It is clear that Tη the topology on X is determined based on the distribution of raw
data and the chosen set of fuzzy concepts η ⊆ EM and it is an abstract geometry
relation among the objects in X under the fuzzy concepts under consideration, i.e.,
η . What are the interpretations of the special topological structures on X obtained
from given database? What are the topological structures associated with the essen-
tial nature of database? All these questions are related to the metric space of the
topology. With a metric in the topological space on X , it will be possible to handle
pattern recognition problems for the databases with various data types.

Let X be a set and M be a set of simple concepts on X . Let (M,τ,X) be an AFS
structure and S be the σ -algebra over X . In real world applications, it is obvious that
only some fuzzy concepts in EM are related with the problem under consideration.
Let these fuzzy concepts form the set Λ ⊆ EM. Let η be the topological molecular
lattice generated by Λ and (X ,Tη ) be the topology induced by η . Let S be the σ -
algebra generated by Tη , i.e., the Borel set corresponding to the topological space
(X ,Tη) and (S,m) be a measure space. For the fuzzy concept ∑i∈I Ai ∈ EM, if for
any x ∈ X , any i ∈ I, Aτ

i (x) ∈ S, then ∑i∈I Ai is called a measurable fuzzy concept
under the σ -algebra S. Thus the membership function of each measurable fuzzy
concept in EM can be obtained by the norm of E#I algebra via (5.13), (5.24) and
(S,m).

Theorem 7.3. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice ∗EM. Let η be a
topological molecular lattice on the lattice ∗EM and the topological space (X ,Tη)
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be the topology induced by η . Let S be the σ -algebra generated by Tη and Lη be
the ∗EI2 topological molecular lattice on ∗EXM induced by η . Then the following
assertions hold.

(1) For any fuzzy concept ∑i∈I Ai ∈ η , ∑i∈I Ai is a measurable concept under S ;
(2) For each fuzzy concept γ = ∑i∈I Ai ∈ η , let γ : X → EXM be the EI2 algebra

representation membership degrees defined by (5.10) as follows: for any x ∈ X,

γ(x) = ∑
i∈I

Aτ
i (x)Ai ∈ EXM. (7.8)

Let D be a directed set and δ : D → X be a net (i.e., {δ (d) | d ∈ D}). If δ is
converged to x0 ∈ X under topology Tη , then the net of the composition γ · δ :
D → EXM (i.e.,{γ(δ (d)) | d ∈ D}) converges to γ(x0) = ∑i∈I Aτ

i (x0)Ai under the
topological molecular lattice Lη . That is, the membership function of any fuzzy
concept in EM defined by (7.8) is a continuous function from the topological
space (X ,Tη ) to the topological molecular lattice (∗EXM,Lη).

Proof. (1) For any ∑i∈I Ai ∈ η , since Ai ≥∑i∈I Ai for all i ∈ I and η is an elementary
topological molecular lattice on the lattice ∗EM, hence Ai ∈ η for all i ∈ I and

Aτ
i (x) = Nτ

Ai
(x) ∈ Tη ⇒ Aτ

i (x) ∈ S, f or any x ∈ X and any i ∈ I.

Therefore ∑i∈I Ai is a measurable concept under S.
(2) Suppose ∑ j∈J p jPj ∈Lη and ∑ j∈J p jPj is a R-neighborhood of ∑i∈I Aτ

i (x0)Ai,
i.e., ∑i∈I Aτ

i (x0)Ai � ∑ j∈J p jPj. This implies that there exists plPl (l ∈ J) such that
for any i ∈ I, either Aτ

i (x0) � pl or Pl � Ai. First, assume ∀k ∈ I, Pl � Ak. It follows,
for any d ∈ D, ∑i∈I Aτ

i (δ (d))Ai � ∑ j∈J p jPj.
Second, assume that k ∈ I, Aτ

k(x0) � pl . Since x0 ∈ Aτ
k(x0) ∈ Tη and δ is con-

verged to x0 ∈ X under Tη , hence the exists N ∈ D such that for any d ∈ D,
d ≥ N, δ (d) ∈ Aτ

k(x0) � pl . For any y ∈ Aτ
k(δ (d)), i.e., τ(δ (d),y) ⊇ Ak, since

δ (d) ∈ Aτ
k(x0), i.e., τ(x0,δ (d)) ⊇ Ak and τ is an AFS structure, hence we have

τ(x0,y) ⊇ τ(x0,δ (d))∩ τ(δ (d),y) ⊇ Ak ⇒ y ∈ Aτ
k(x0) ⇒ Aτ

k(x0) ⊇ Aτ
k(δ (d)).

This implies that for i ∈ I if Aτ
i (x0) � pl , then exists N ∈ D such that for any d ∈

D,d ≥ N, Aτ
i (δ (d)) � pl . Thus for any R-neighborhood of ∑i∈I Aτ

i (x0)Ai, υ ∈ Lη ,
there exists N ∈ D such that for any d ∈ D,d ≥ N,

∑
i∈I

Aτ
i (δ (d))Ai � υ .

Therefore the net γ · δ is converged to ∑i∈I Aτ
i (x0)Ai under the topological lattice

Lη . ��
In a strong relative AFS structure (M,τ,X), ∀x∈X , τ(x,x) = M, i.e. ∀x∈X ,∀m∈M,
x belongs to the simple concept m at some extent. It is too strict to be exploited
in the setting of real world applications. In order to offer an abstract description
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of the similar relation between the objects in X concerning some given concepts,
Definition 7.2 should be modified as follows.

Definition 7.4. Let X and M be sets and (M,τ,X) be an AFS structure. Let η be a
topological molecular lattice on the lattice ∗EM. For any x ∈ X , ∑i∈I Ai ∈ η , the set
N�τ

∑i∈I Ai
(x) ⊆ X is defined as follows.

N�τ
∑i∈I Ai

(x) =

{
y ∈ X | τ(x,y)∩ τ(y,y) ≥ ∑

i∈I
Ai

}
, (7.9)

and it is called the limited neighborhood of x induced by the fuzzy concept ∑i∈I Ai ∈
η , if N�τ

∑i∈I Ai
(x) �= ∅. The set N�τ

η (x) ⊆ 2X is defined as follows.

N�τ
η (x) =

{
N∑i∈I Ai(x) �= ∅ | ∑

i∈I
Ai ∈ η

}
,

and it is called the limited neighborhood of x induced by the topological molecular
lattice η .

By the definition of the AFS structure (refer to Definition 4.5), we know that for any
x,y ∈ X ,

τ(x,x) ⊇ τ(x,y) ⊇ τ(x,y)∩ τ(y,y).

Therefore N�τ
∑i∈I Ai

(x) ⊆ Nτ
∑i∈I Ai

(x) for any x ∈ X , any ∑i∈I Ai ∈ η and

N�τ
∑i∈I Ai

(x) �= ∅ ⇔ x ∈ Nτ
∑i∈I Ai

(x).

Proposition 7.2. Let X and M be sets and (M,τ,X) be an AFS structure. Let η be a
topological molecular lattice on the lattice ∗EM. For any x ∈ X, ∑i∈I Ai,∑ j∈J B j ∈
EM, the following assertions hold.

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in the lattice ∗EM, then N�τ
∑i∈I Ai

(x) ⊆ N�τ
∑ j∈J B j

(x) for any
x ∈ X;

(2) N�τ
∑i∈I Ai

(x)∩N�τ
∑ j∈J B j

(x) = N�τ
∑i∈I Ai∨∑ j∈J B j

(x) for any x ∈ X;

(3) N�τ
∑i∈I Ai

(x)∪N�τ
∑ j∈J B j

(x) = N�τ
∑i∈I Ai∧∑ j∈J B j

(x) for any x ∈ X.

Proof. (1) Suppose y ∈ N�τ
∑i∈I Ai

(x), x ∈ X . By (7.9), we know that there exists Ak,
k ∈ I such that τ(x,y) ∩ τ(y,y) ⊇ Ak. Since ∑i∈I Ai ≥ ∑ j∈J B j, then for Ak, there
exists Bl , l ∈ J such that

τ(x,y)∩ τ(y,y) ⊇ Ak ⊇ Bl ⇒ τ(x,y)∩ τ(y,y) ≥ ∑ j∈J B j.

This implies that y ∈ N�τ
∑ j∈J B j

(x). It follows N�τ
∑i∈I Ai

(x) ⊆ N�τ
∑ j∈J B j

(x).
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(2) For any y ∈ N�τ
∑i∈I Ai

(x)∩N�τ
∑ j∈J B j

(x),

y ∈ N�τ
∑i∈I Ai

(x)∩N�τ
∑ j∈J B j

(x) ⇔ y ∈ N�τ
∑i∈I Ai

(x) and y ∈ N�τ
∑ j∈J B j

(x)

⇔ τ(x,y)∩ τ(y,y)≥∑
i∈I

Ai and τ(x,y)∩ τ(y,y) ≥ ∑
j∈J

B j

⇔ τ(x,y)∩ τ(y,y) ≥ ∑
i∈I

Ai ∨∑
j∈J

B j (by Lemma 7.1)

⇔ y ∈ N�τ
∑i∈I Ai∨∑ j∈J B j

(x).

Therefore N�τ
∑i∈I Ai

(x)∩N�τ
∑ j∈J B j

(x) = N�τ
∑i∈I Ai∨∑ j∈J B j

(x).

(3) For any y ∈ N�τ
∑i∈I Ai

(x)∪N�τ
∑ j∈J B j

(x),

y ∈ N�τ
∑i∈I Ai

(x)∪N�τ
∑ j∈J B j

(x) ⇔ y ∈ N�τ
∑i∈I Ai

(x) or y ∈ N�τ
∑ j∈J B j

(x)

⇔ τ(x,y)∩ τ(y,y) ≥ ∑
i∈I

Ai or τ(x,y)∩ τ(y,y) ≥ ∑
j∈J

B j

⇔ τ(x,y)∩ τ(y,y) ≥ ∑
i∈I

Ai ∧ ∑
j∈J

B j (by Lemma 7.1)

⇔ y ∈ N�τ
∑i∈I Ai∧∑ j∈J B j

(x).

Subsequently (3) is satisfied. ��
Theorem 7.4. Let X and M be sets and (M,τ,X) be an AFS structure. Let η be a
topological molecular lattice on the lattice ∗EM. If η is an elementary topological
molecular lattice on the lattice ∗EM and B�

η is defined as follows

B�
η = {N∑i∈I Ai(x) | x ∈ X ,∑

i∈I
Ai ∈ η}, (7.10)

then B�
η is a base for some topology of X.

Proof. Firstly, for any x ∈ X , since ∅ ∈ η , hence τ(x,x) ≥ ∅, i.e., x ∈ N�τ
∅

(x). This

implies that X =
⋃

N∈B�
η

N. Secondly, suppose x ∈ X , U , V ∈ B�
η , and x ∈ U ∩V .

We will prove that there exists W ∈ B�
η such that x ∈ W ⊆ U ∩V . By (7.10), we

know that there exists ∑i∈I A, ∑ j∈J B j ∈ η , u,v ∈ X such that there U = N�τ
∑i∈I Ai

(u),

V = N�τ
∑ j∈J B j

(v). That is, ∃l ∈ I, ∃k ∈ J, τ(u,x) ∩τ(x,x) ⊇ Al and τ(v,x)∩ τ(x,x) ⊇
Bk. By τ(u,x) ∩τ(x,x) ⊆ τ(x,x) and τ(v,x)∩ τ(x,x) ⊆ τ(x,x), we have x ∈ N�τ

Al
(x)

and x ∈ N�τ
Bk

(x). For any y ∈ N�τ
Al

(x), i.e., τ(x,y)∩ τ(y,y) ⊇ Al , by AX1 and AX2
in Definition 4.5, we have τ(x,y) ⊆ τ(x,x) and τ(u,x)∩ τ(x,y) ⊆ τ(u,y). It follows

τ(u,y)∩ τ(y,y) ⊇ τ(u,x)∩ τ(x,x)∩ τ(x,y)∩ τ(y,y) ⊇ Al.
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This fact implies that τ(u,y)∩ τ(y,y) ≥ ∑i∈I A and y ∈ N�τ
∑i∈I Ai

(u). Thus we have

N�τ
Al

(x) ⊆U . Similarly, we can prove N�τ
Bk

(x) ⊆V . Since η is an elementary topo-
logical molecular lattice on the lattice ∗EM, hence Al , Bk ∈ η , and Al ∪Bk = Al ∨
Bk ∈ η . In virtue of Proposition 7.2, one has W = N�τ

Al
(x)∩N�τ

Bk
(x) = N�τ

Al∨Bk
(x) ∈

B�
η such that x ∈ W ⊆U ∩V . Therefore by Theorem 1.21 B�

η is a base for some
topology on X . ��

The topological space (X ,T �
η ), in which B�

η is a base for T �
η , is called the limited

topology of X induced by the topological molecular lattice η .
In what follows, we look more carefully at these topological structures by dis-

cussing the following illustrative examples.

Example 7.1. Let X = {x1,x2, ...,x5} be a set of 5 persons. M = {old, heavy, tall,
high salary, more estate, male, female } be a set of simple concepts on the attributes
which are shown as Table 7.1.

Table 7.1 Description of attributes

age heigh weigh salary estate male f emale
x1 21 1.69 50 0 0 1 0
x2 30 1.62 52 120 200,000 0 1
x3 27 1.80 65 100 40,000 1 0
x4 60 1.50 63 80 324,000 0 1
x5 45 1.71 54 140 940,000 1 0

We can construct the AFS structure τ according to the data shown in Table 7.1 and
the semantics of the simple concepts in M. τ is shown as the following Table 7.2.
Here A: old, M: male, W: female, H: tall, We: heavey, S: high salary, Q: more estate.

Table 7.2 The AFS structure (M,τ,X) of data shown in Table 7.1

τ(., .) x1 x2 x3 x4 x5
x1 {A,M,H,We,S } {M,H } {M } {M,H } {M }
x2 {A,W,We,S,Q } {A,W,H,We,S,Q } {A,W,S,Q} {W,H,S } {W }
x3 {A,M,H,We,S,Q } {M,H,We } {A,M,H,We,S,Q} {M,H,We,S} {M,H,We}
x4 {A,W,We,Q} {A,W,We,Q } {A,W,Q } {A,W,We,H,S,Q} {A,W,We }
x5 {A,M,S,Q} {A,M,H,We,S,Q } {A,M,S,Q } {M,H,S,Q } {A,M,H,S,We,Q }

We can verify that τ satisfies Definition 4.5 and (M,τ,X) is an AFS structure. Since
for any x ∈ X , τ(x,x) �= M, hence (M,τ,X) is not an strong relative AFS structure.

If we consider some health problem and suppose the problem just involves the at-
tributes age, high and weight. Thus we just consider simple concepts A,H,We ∈ M
and let M1 = {A,H,We}. (M1,τM1 ,X) is an AFS structure if the map τM1 : X ×X →
2M1 is defined as follows: for any x,y ∈ X , τM1(x,y) = τ(x,y) ∩ M1. Obviously,
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(M1,τM1 ,X) is a strong relative AFS structure. Let η ⊆ EM be the topological
molecular lattice generated by the fuzzy concepts {A},{H},{We} ∈ EM on the
lattice ∗EM. η consists of the following elements.

∅, M, {A} + {H} + {We}, {A} + {H}, {A} + {We}, {H} + {We}, {A},
{H}, {We}, {A,H}+ {A,We}+ {We,H}, {A,H}+ {A,We}, {A,H}+ {We,H},
{A,We}+ {We,H}, {A,H}, {A,We}, {We,H}, {A}+ {We,H}, {H}+ {A,We},
{We}+{A,H}, {A,H,We}.

It could be easily verified that η is an elementary topological molecular lattice on
the lattice ∗EM. Now we study Tη the topology on X induced by η via the AFS
structure (M1,τM1 ,X). The neighborhood of x1 induced by the fuzzy concepts in η ,
which is obtained by Definition 7.2, are listed as follows.

Nτ
{A}+{H}+{We}(x1)= {x1,x2,x4}, Nτ

{A}+{H}(x1)= {x1,x2,x4}, Nη
{A}+{We}(x1)= {x1},

Nτ
{H}+{We}(x1) = {x1,x2,x4}, Nτ

{A}(x1) = {x1}, Nτ
{H}(x1) = {x1,x2,x4},

Nη
{We}(x1) = {x1}, Nτ

{A,H}+{A,We}+{We,H}(x1) = {x1}, Nτ
{A,H}+{A,We}(x1) = {x1},

Nτ
{A,H}+{We,H}(x1) = {x1}, Nτ

{A,We}+{We,H}(x1) = {x1}, Nτ
{A,H}(x1) = {x1},

Nτ
{A,We}(x1) = {x1}, Nτ

{We,H}(x1) = {x1}, Nτ
{A}+{We,H}(x1) = {x1}, Nτ

∅ = X

Nτ
{H}+{A,We}(x1) = {x1,x2,x4}, Nτ

{We}+{A,H}(x1) = {x1}, Nτ
{A,H,We}(x1) = {x1}.

Therefore the neighborhood of x1 induced by the fuzzy concepts in η comes as

Nτ
η (x1) = {X , {x1,x2,x4}, {x1}} .

Similarly, we have the neighborhood of other elements in X as follows.

Nτ
η (x2) = {X , {x1,x2,x3,x4}, {x1,x2,x4}, {x1,x2,x3}, {x1,x2}, {x2,x4}, {x2}} ,

Nτ
η (x3) = {X , {x1,x3}} ,

Nτ
η (x4) = {X , {x1,x2,x4,x5}, {x4}} ,

Nτ
η (x5) = {X , {x1,x2,x3,x5}, {x2,x4,x5}, {x2,x5}} .

What is the interpretations of the above topological structure on X obtained from
the given data shown as Table 7.1? This remains an open problem. How to estab-
lish a distance function according the above topology on X for a pattern recognition
problem will be explored in Section 7.3. Here we just simply analyze it alluding
to intuition. One can observe that x1,x2,x4 are discrete points for the topology Tη .
Coincidentally, their membership degrees to the fuzzy concepts {A},{H},{We} ∈
EM taken on minimal values, respectively. For any U ∈ Tη , we can prove that
if x5 ∈ U then x2 ∈ U . This implies that the degree of x5 belonging to any con-
cept in EM1 is always larger than or equal to that of x2. Since x5 /∈ {x1,x3} ∈
Tη , x3 /∈ {x2,x5} ∈ Tη , i.e., the separation property of topology Tη . This im-
plies that there exist two fuzzy concepts in η such that x5,x3 can be distinguished
by them.
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7.2 Topology on AFS Structures and Topological Molecular
Lattice on EIn Algebras

Most of the results in this section can be proved by using the similar methods to
those we exercised in the previous section, since the lattice of EIn algebras is the
dual lattice of ∗EIn algebras. We first list the corresponding results of the topological
molecular lattice on the EI algebra over a set M, in which the lattice operators ∨, ∧
are defined as follows: for any ∑i∈I Ai, ∑ j∈J B j ∈ EM,

∑
i∈I

Ai ∧ ∑
j∈J

B j = ∑
i∈I, j∈J

Ai ∪B j,

∑
i∈I

Ai ∨ ∑
j∈J

B j = ∑
i∈I

Ai + ∑
j∈J

B j.

∅ is the maximum element of the lattice EM and M is the minimum element of
the lattice EM. That is, the above lattice EM is a dual lattice of ∗EM. In the lattice
EM, for ∑i∈I Ai,∑ j∈J B j ∈ EM, ∑i∈I Ai ≥ ∑ j∈J B j if and only if for any B j ( j ∈ J)
there exists Ak (i ∈ I) such that B j ⊇ Ak (refer to Theorem 4.1). Secondly, we list
the results for the topology on the universe of discourse X induced by the topo-
logical molecular lattice of some fuzzy concepts in EM. Finally, we present the
results of the topological molecular lattice on the EI2 algebra over the sets X , M,
i.e.,(EXM,∨,∧), in which the lattice operators ∨, ∧ are defined as follows: for any
∑i∈I aiAi, ∑ j∈J b jB j ∈ EXM,

∑
i∈I

aiAi ∧ ∑
j∈J

b jB j = ∑
i∈I, j∈J

ai ∩b jAi ∪B j,

∑
i∈I

aiAi ∨ ∑
j∈J

b jB j = ∑
i∈I

aiAi + ∑
j∈J

b jB j.

X∅ is the maximum element of the lattice EM and ∅M is the minimum element
of the lattice EM. That is, the lattice EXM is a dual lattice of ∗EXM. In the lat-
tice EXM, for ∑i∈I aiAi,∑ j∈J b jB j ∈ EM, ∑i∈I aiAi ≥ ∑ j∈J b jB j if and only if for
any b jB j ( j ∈ J) there exists akAk (i ∈ I) such that B j ⊇ Ak and ak ⊇ b j (refer to
Theorem 5.1).

Definition 7.5. Let M be set and (EM,∨,∧) be the EI algebra over M. Let η ⊆ EM.
If ∅,M ∈ η and η is closed under finite unions (i.e., ∨ ) and arbitrary intersections
(i.e., ∧ ), then η is called a topological molecular lattice on the lattice EM, de-
noted as (EM,η). Let η be a topological molecular lattice on the lattice EM. If for
any ∑i∈I Ai ∈ η , Ai ∈ η for any i ∈ I, then η is called an elementary topological
molecular lattice on the lattice EM.

In what follows, we apply the elementary topological molecular lattice on the lattice
EM to induce some topological structures on X via the AFS structure (M,τ,X) of a
data. Thus the pattern recognition problem can by explored under these topological
structures on X .
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Definition 7.6. Let X and M be sets and (M,τ,X) be an AFS structure. Let (EM,η)
be a topological molecular lattice on EI algebra over M. For any x ∈ X , ∑i∈I Ai ∈
η ⊆ EM, the set Nτ

∑i∈I Ai
(x) ⊆ X is defined as follows.

Nτ
∑i∈I Ai

(x) =

{
y ∈ X | τ(x,y) ≤ ∑

i∈I
Ai

}
, (7.11)

and it is called the neighborhood of x induced by the fuzzy concept ∑i∈I Ai in the
AFS structure (M,τ,X). The set Nτ

η(x) ⊆ 2X is defined as follows.

Nτ
η (x) =

{
N∑i∈I Ai(x)|∑

i∈I
Ai ∈ η

}
, (7.12)

and it is called the neighborhood of x induced by the topological molecular lattice
η in the AFS structure (M,τ,X).

Since τ(x,y) ⊆ M, hence τ(x,y) is an element in EM and τ(x,y) ≤ ∑i∈I Ai in (7.11)
is well-defined.

Proposition 7.3. Let X and M be sets and (M,τ,X) be an strong relative AFS struc-
ture. Let η be a topological molecular lattice on EI algebra over M. For any x ∈ X,
∑i∈I Ai, ∑ j∈J B j ∈ EM, the following assertions hold: for any x ∈ X

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in EM, then Nτ
∑i∈I Ai

(x) ⊇ Nτ
∑ j∈J B j

(x);
(2) Nτ

∑i∈I Ai
(x)∩Nτ

∑ j∈J B j
(x) = Nτ

∑i∈I Ai∧∑ j∈J B j
(x);

(3) Nτ
∑i∈I Ai

(x)∪Nτ
∑ j∈J B j

(x) = Nτ
∑i∈I Ai∨∑ j∈J B j

(x).

Its proof, which is similar to the proof of Proposition 7.1, remains as an exercise.

Theorem 7.5. Let X and M be sets and (M,τ,X) be a strong relative AFS structure.
Let η be a topological molecular lattice on the lattice EM. If η is an elementary
topological molecular lattice on the lattice EM and we define

Bη =

{
Nτ

∑i∈I Ai
(x) | x ∈ X , ∑

i∈I

Ai ∈ η

}
,

then Bη is a base for some topology of X.

Its proof, which is similar to the proof of Theorem 7.1, is left to the reader.

Theorem 7.6. Let X and M be sets, (M,τ,X) be a strong relative AFS structure. Let
η be a topological molecular lattice on the lattice EM and

Lη =

{
∑
i∈I

aiAi ∈ EXM | ∑
i∈I

Ai ∈ η , ai ∈ Tη f or any i ∈ I

}
. (7.13)
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Then Lη is a topological molecular lattice on the lattice EXM. It is called the EI2

topological molecular lattice induced by the EI topological molecular lattice η .

Its proof ( similar to the proof of Theorem 7.2) remains as an exercise.

Theorem 7.7. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice EM. Let η be a
topological molecular lattice on the lattice EM and the topological space (X ,Tη)
be the topology induced by η . Let S be the σ -algebra generated by Tη and Lη be
the EI2 topological molecular lattice on EXM induced by η . Then the following
assertions hold.

(1) For any fuzzy concept ∑i∈I Ai ∈ η , ∑i∈I Ai is a measurable concept under S ;
(2) For each fuzzy concept γ = ∑i∈I Ai ∈ η , let γ : X → EXM be the EI2 algebra

representation membership degrees defined by (5.10) as follows: for any x ∈ X,

γ(x) = ∑
i∈I

Aτ
i (x)Ai ∈ EXM. (7.14)

Let D be a directed set and δ : D → X be a net (i.e., {δ (d) | d ∈ D}). If δ
is converged to x0 ∈ X under topology Tη , then the net of the composition
γ · δ : D → EXM (i.e.,{γ(δ (d)) | d ∈ D}) converges to γ(x0) = ∑i∈I Aτ

i (x0)Ai

under the topological molecular lattice Lη . That is the membership function de-
fined by (7.14) is a continuous function from the topological space (X ,Tη) to the
topological molecular lattice (EXM,Lη).

Its proof, which is similar to the proof of Theorem 7.3, can be treated as an exercise.

Example 7.2. Let us study the topological structures on the same AFS structure
(M1,τM1 ,X) of the same data we used in Example 7.1.

Let η ⊆ EM be the topological molecular lattice generated by the fuzzy concepts
{A},{H},{We} ∈ EM on the lattice EM. η consists of the following elements
which are the same as for η in Example 7.1.

∅, M, {A} + {H} + {We}, {A} + {H}, {A} + {We}, {H} + {We}, {A},
{H}, {We}, {A,H}+ {A,We}+ {We,H}, {A,H}+ {A,We}, {A,H}+ {We,H},
{A,We}+ {We,H}, {A,H}, {A,We}, {We,H}, {A}+ {We,H}, {H}+ {A,We},
{We}+{A,H}, {A,H,We}.

It can be easily to verify that η is an elementary topological molecular lattice on
the lattice EM. Now we study Tη -the topology on X induced by η via the AFS
structure (M1,τM1 ,X). The neighborhood of x1 induced by the fuzzy concepts in η ,
which is obtained by Definition 7.6, is listed as follows.

Nτ
{A}+{H}+{We}(x1) = {x1,x2,x3,x4,x5}, Nτ

{A}+{H}(x1) = {x1,x2,x3,x4,x5},

Nτ
{A}+{We}(x1) = {x1,x2,x3,x4,x5}, Nτ

{H}+{We}(x1) = {x1,x2,x3,x4},
Nτ
{A}(x1) = {x1,x2,x3,x4,x5}, Nτ

{H}(x1) = {x1,x3}, Nτ
{We}(x1) = {x1,x2,x3,x4},

Nτ
{A,H}+{A,We}+{We,H}(x1) = {x1,x2,x3,x4}, Nτ

{A,H}+{A,We}(x1) = {x1,x2,x3,x4},
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Nτ
{A,H}+{We,H}(x1) = {x1,x3}, Nτ

{A,We}+{We,H}(x1) = {x1,x2,x3,x4},
Nτ
{A,H}(x1) = {x1,x3}, Nτ

{A,We}(x1) = {x1,x2,x3,x4}, Nτ
{We,H}(x1) = {x1,x3},

Nτ
{A}+{We,H}(x1) = {x1,x2,x3,x4,x5}, Nτ

{H}+{A,We}(x1) = {x1,x2,x3,x4,x5},

Nτ
{We}+{A,H}(x1) = {x1,x2,x3,x4}, Nτ

{A,H,We}(x1) = {x1,x3,x5}, Nτ
M(x1) = X .

Therefore the neighborhood of x1 induced by the fuzzy concepts in η is

Nτ
η (x1) = {X , {x1,x2,x3,x4}, {x1,x3,x5}, {x1,x3}} .

Similarly, we have the neighborhood of other elements in X as follows.

Nτ
η(x2) = {X , {x2,x3,x4,x5}, {x1,x2,x3,x4}, {x2,x4,x5}, {x2,x3,x5},{x2,x5}} ,

Nτ
η(x3) = {X , {x2,x3,x4,x5}, {x3}} ,

Nτ
η(x4) = {X , {x3,x4}, {x4}} ,

Nτ
η(x5) = {X , {x3,x4,x5}, {x4,x5}, {x3,x5}, {x5}} .

Here we just simply analyze the topology on X resorting ourselves to intuition. One
can observe that x3, x4, x5 are discrete points for the topology Tη . Coincidentally,
their membership degrees to the fuzzy concepts {A},{H},{We} taken on the max-
imal values, respectively. For any U ∈ Tη , we can prove that if x1 ∈U then x3 ∈U .
This implies that the degree of x3 belonging to any fuzzy concept in EM1 is always
larger than or equal that of x1. Since x2 ∈ {x1,x3} ∈ Tη , x1 ∈ {x2,x5} ∈ Tη i.e.,
the separation property of topology Tη , hence there exist two fuzzy concepts in η
such that x2,x1 can be distinguished by them. Compared with the topological struc-
ture on X induced by the topological molecular lattice on ∗EIn algebra, the above
topological structure has many differences. What are the relationship between these
topological structures still remains as an open problem.

7.3 Fuzzy Similarity Relations Based on Topological Molecular
Lattices

In this section, by considering the AFS structure (M,τ,X) of a data, we apply Tη
the topology on X induced by the topological molecular lattice η of some fuzzy
concepts on ∗EM to study the fuzzy similarity relations on X for problems of pat-
tern recognition. The topology Tη on X is determined by the original data and some
selected fuzzy concepts in EM. It represents the abstract geometry relations among
the objects in X . We study the interpretations of the induced topological structures
on the AFS structures directly obtained by a given data set through the differential
degrees between objects in X and the fuzzy similarity relations on X in the topo-
logical space (X ,Tη). We know that human can classify, cluster and recognize the
objects in the set X without any metric in Euclidean space. What is human recog-
nition based on if X is not a subset of some metric space in Euclidean space? For
example, if you want to classify all your friends into two classes {close friends} and
{common friends}. The criteria/metric you are using in the process is very important
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though it may not be based on the Euclidean metric. By the fuzzy clustering analysis
based on the topological spaces induced by the fuzzy concepts in EM, we hope find
some clues for these challenge problems.

Theorem 7.8. The following three conditions on a topological space are equivalent.

(1) The space is metrizable;
(2) The space is T1 and regular, and the topology has a σ -locally finite base;
(3) The space is T1 and regular, and the topology has a σ -discrete base.

Here a topological space is a T1 space if and only if each set which consists of a
single point is closed, a topological space is regular if and only if for each point
x and each neighborhood U of x there is a closed neighborhood V of x such that
V ⊆U, and a family is σ -locally finite (σ -discrete) if and only if it is the union of a
countable number of locally finite (respectively, discrete) subfamilies.

Its proof (refer to Theorem 1.43) is left to the reader.
The topology Tη on X induced by the topological molecular lattice η of some

fuzzy concepts in EM is a description of the abstract geometry relations among the
objects determined by the semantic interpretations of the fuzzy concepts in η and
the distributions of the original data. We can state the problem in mathematical ways
as follows: Let X be a set of some objects and � be the set of all features, including
features which are independent or irrelated to the problems under considering. M
is the set of simple concepts on the features in �. Λ ⊆ EM, Λ is the set of fuzzy
concepts an individual considers crucial to his problem. η is the topological molec-
ular lattice generated by Λ . If the topology Tη satisfies (2) or (3) in Theorem 7.8,
then the topology space (X ,Tη) is metrizable. Thus we can study the clustering and
recognition problems by the metric induced by topology Tη , i.e., the distance func-
tion d on the cartesian product X ×X to the non-negative reals defined by Definition
1.33 as follows: for all points x,y, and z of X ,

1. d(x,y) = d(y,x),
2. d(x,y)+ d(y,z) ≥ d(x,z), (triangle inequality)
3. d(x,y) = 0 if x = y, and
4. if d(x,y) = 0, then x = y.

However, for a real world applications, it is very difficult to satisfy the conditions of
Theorem 7.8. In other words, this theorem cannot be directly applied to real world
classification scenarios. By the analysis of the definition of metric in metrizable
topology space (X ,Tη) in mathematics (refer to Urysohn Lemma Lemma 1.1), we
know that the more fuzzy concepts distinguish x from y are there in η , the larger the
distance of x and y, i.e., d(x,y). In practice, for X a set of objects and Λ ⊆ EM a
set of selected fuzzy or Boolean concepts, although Tη the topology induced by the
topological molecular lattice η seldom satisfies (2) or (3) in Theorem 7.8, Tη also
can reflect the similar relations between the objects in X determined by the concepts
in Λ and the distributions of the original data. Thus we define the differential degree
and the similarity degree of x, y ∈ X based on the topology Tη as follows.
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Definition 7.7. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let
η be a topological molecular lattice on the lattice ∗EM and (X ,Tη) be the topol-
ogy space on X induced by η . We define the partial distance function D(x,y), the
differential degree d(x,y) and the similarity degree s(x,y) in the topological space
(X ,Tη) as follows: for x,y ∈ X ,

D(x,y) = ∑
δ∈Tη ,x∈δ ,y/∈δ

|δ |; (7.15)

d(x,y) = D(x,y)+ D(y,x); (7.16)

s(x,y) = 1− d(x,y)
maxz∈X{d(z,y)} . (7.17)

Because there are too many fuzzy concepts in η , in practice, it is difficult or im-
possible to calculate d(x,y) by Definition 7.7 for the topological molecular lattice
η generated by Λ , if |Λ | > 4. The following Definition 7.8 and Definition 7.9 in-
troduce the differential degrees of x,y, d(x,y) which are more expedient to compute
than that in Definition 7.7, although they may loose some information compared
with the concept captured by Definition 7.7. Definition 7.8 and Definition 7.9 are
applicable to discuss real world problems while Definition 7.7 is more appealing
from the theoretical perspective.

Definition 7.8. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let η
be an elementary topological molecular lattice on the lattice ∗EM and (X ,Tη ) be the
topology space on X induced by η . We define DA(x,y), the distance function on the
molecular A; dM(x,y), the molecular differential degree; and sM(x,y), the molecular
similarity degree in the topological space (X ,Tη ) as follows: for x,y ∈ X , A ⊆ M,
A ∈ η ,

DA(x,y) = ∑
u∈X ,x∈N�τ

A (u),y/∈N�τ
A (u)

| N�τ
A (u)|; (7.18)

dM(x,y) = ∑
A⊆M,A∈η

(DA(x,y)+ DA(y,x)); (7.19)

sM(x,y) = 1− dM(x,y)
maxz∈X{dM(z,y)} . (7.20)

DA(x,y) in Definition 7.8 is considered under the fuzzy molecular concept A ∈ η
and dM(x,y), the molecular differential degree of x,y is the sum of the distances of
x,y under all fuzzy molecular concepts in η .

Definition 7.9. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let η
be an elementary topological molecular lattice on the lattice ∗EM. Let (X ,Tη ) be
the topology space on X induced by η . We define the elementary partial distance
function De(x,y), the elementary differential degree de(x,y) and the elementary sim-
ilarity degree se(x,y) in the topological space (X ,Tη) as follows: for any x,y ∈ X ,
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De(x,y) = ∑
δ∈B�τ

M ,x∈δ ,y/∈δ

|δ |; (7.21)

de(x,y) = De(x,y)+ De(y,x); (7.22)

se(x,y) = 1− de(x,y)
maxz∈X{de(z,y)} . (7.23)

Here

B�τ
M =

{
N�τ

A (x) | A ⊆ M,A ∈ η ,x ∈ X
}

.

It is clear that B�τ
M ⊆Tη is the set of all neighborhoods induced by the fuzzy molec-

ular concepts in η which determine the distances and similarity degrees defined by
Definition 7.9. However, in Definition 7.7, they are determined by all neighborhoods
in Tη . Since the number of the elements of Tη is much larger than that of the set

B�τ
M , hence much time will save if Definition 7.9 or Definition 7.8 is applied to a

pattern recognition problem. The problem is still open: are the similarity degrees
defined by Definition 7.7, Definition 7.8 and Definition 7.9 equivalent?

Proposition 7.4. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let
η be an elementary topological molecular lattice on the lattice ∗EM and (X ,Tη) be
the topology space on X induced by η . Then for any x,y∈X the following assertions
hold.

(1) d(x,x) = 0, d(x,y) = d(y,x) and s(x,y) = s(y,x) ≤ s(x,x);
(2) dM(x,x) = 0, dM(x,y) = dM(y,x) and sM(x,y) = sM(y,x) ≤ sM(x,x);
(3) de(x,x) = 0, de(x,y) = de(y,x) and se(x,y) = se(y,x) ≤ se(x,x).

Its proof is left to the reader.

7.4 Fuzzy Clustering Algorithms Based on Topological
Molecular Lattices

Numerous mathematical tools, investigated for clustering, have been considered to
detect similarities between objects inside a cluster. The two-valued clustering is
described by a characteristic function. This function assigns each object to one and
only one of the clusters, with a degree of membership equal to one. However, the
boundaries between the clusters are not often well-defined and this description does
not fully reflect the reality. The fuzzy clustering, founded upon fuzzy set theory [35],
is meant to deal with not well-defined boundaries between clusters. Thus, in fuzzy
clustering, the membership function is represented by grades located anywhere in-
between zero and one. Therefore, this membership degree indicates how the object is
classified ( allocated ) to each cluster. This can be advantageous for patterns located
in the boundary region which may not be precisely defined. In particular, we could
flag some patterns that are difficult to assign to a single cluster as being inherently
positioned somewhere at the boundary of the clusters.
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Many fuzzy clustering algorithms have been developed, but the most widely used
is the Fuzzy C-Means algorithm (FCM) along with a significant number of their
variants. Conceived by Dunn [2] and generalized by Bezdek [1], this family of algo-
rithms is based on iterative optimization of a fuzzy objective function. The conver-
gence of the algorithm, proved by Bezdek, shows that the method converges to some
local minima [4]. Nevertheless, the results produced by these algorithms depend on
some predefined distance formulated in a metric space, for instance Euclidean space
Rn. However, in this section we will cluster the objects in ordinary data set X � Rp×n

according to the fuzzy concepts or attributes on the features without using any kind
of distance functions expressed in the Euclidean space.

In general, FCM is an objective function optimization approach to solve the fol-
lowing problem [1, 4]:

minimize : Jm(U,V ) = ∑
i

∑
k

um
ikd2(xk,vi)

with respect to U = [uik] ∈ Rc×n, a fuzzy c-partition of n data set X = {x1, ...,xn} ∈
Rp×n and V , a set of c cluster centers V = {v1, ...,vc} ∈ Rp×c. The parameter m > 1
is a fuzziness coefficient. d(xk,vi) is a distance from xk to the ith cluster center
vi. The performance of FCM is affected by different distances d(., .). In general,
the distance is expressed in some metric space [4, 34], if data set X is a subset of
a metric space. FCM fuzzy clustering algorithms are very efficient if the data set
X ⊂ Rp×n, as in this case there exists a distance function. Let c be a positive integer
greater than one. μ = {μ1, ...,μc} is called a fuzzy c-partition of X , if μi(x) is the
membership functions in fuzzy sets μi on X assuming values in the [0,1] such that
∑c

i=1 μi(x) = 1 for all x in X . Thus, the Fuzzy C-Mean (FCM) objective function
J(μ ,V ) is also defined as

J(μ ,V ) =
c

∑
i=1

n

∑
j=1

μm
i (x j)||x j − vi||2, (7.24)

where μi(x j)= ui j = μi j and d(xk,vi) = ‖xk−vi‖. The FCM clustering is an iterative
algorithm where the update formulas for the prototypes and the partition matrix read
as follows:

vi =
∑n

j=1 μm
i j x j

∑n
j=1 μm

i j
, i = 1, ...,c (7.25)

and

μi j = μi(x j) = (
c

∑
k=1

||x j − vi||2/(m−1)

||x j − vk||2/(m−1) )
−1, i = 1, ...,c, j = 1, ...,n. (7.26)

If the feature vectors are numeric data in Rd , the FCM clustering algorithm is a
suitable optimization tool. However, when applying the FCM to data set with mixed
features such as Boolean, partial order and linguistic rating scale, we encounter
some problems, because the conventional distance ||.|| is not suitable any longer.
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To overcome these problems, the differential degrees d(x,y) (or de(x,y), dM(x,y))
defined in the above section can substitute the Euclidean distance ||.|| and the FCM
can be modified as follows.

min :
{v1,...,vc}⊆X

J(μ ,V ) =
c

∑
i=1

n

∑
j=1

μm
i (x j)d(x j,vi)2 (7.27)

subject to

μi(x j) = (∑c
k=1

d(x j ,vi)2/(m−1)

d(x j ,vk)2/(m−1) )
−1, i = 1, ...,c, j = 1, ...,n.

This algorithm is called the AFS fuzzy c-mean algorithm (AFS FCM).
In order to compare the differential functions defined in the above section with

the Euclidean distance function, we directly apply the similarity matrix derived by
the differential function and Euclidean distance function to the clustering problem.
Let X = {x1, x2, ..., xn} and the similarity matrix S = (si j)n×n, where si j = se(xi,x j)
is elementary similarity degree of x,y defined by Definition 7.8. For the similarity
matrix S, we know si j = s ji and si j ≤ sii, 1 ≤ i, j ≤ n from Proposition 7.4, hence
there exists an integer r such that S ≤ S2 ≤ ... ≤ Sr = Sr+1, where S2 = (ri j) =
SS is the fuzzy matrix product, i.e., ri j = max1≤k≤n min{sik,sk j}. Thus, (Sr)2 = Sr

(Sr is the transitive closure matrix of S) and the fuzzy equivalence relation matrix
Q = (qi j) = Sr can yield a partition tree with equivalence classes in which xi and x j

are in the same cluster (i.e., in the same equivalence classe ) under some threshold
α ∈ [0,1] if and only if qi j ≥ α .

7.5 Empirical Studies

In this section, we apply the similarity relations and the differential functions defined
by Definition 7.8 to the conventional FCM and compare the elementary differential
function with the Euclidean distance function in the clustering analysis of the Iris
data. Furthermore, they are also applied to Taiwan airfreight forwarder data which
is just described by means of linguistic terms. These examples show that the topol-
ogy Tη on a universe of discourse X induced by the topological molecular lattice
η of some fuzzy concepts in EM can be applied to the real world pattern recogni-
tion problems for the data set with mixed features on which the classical distance
functions could not be defined.

7.5.1 Empirical Examples of Taiwan Airfreight Forwarder

In what follows, we apply the elementary differential degree and elementary simi-
larity degree defined by Definition 7.8 to empirical examples of Taiwan airfreight
forwarder for the clustering and analyzing current operation strategies in [27]. In
[27], the authors gathered 28 strategic criteria from scholars, experts and proprietors.
They select 30 companies of airfreight forwarder in Taiwan by random selection.
Using Statistical Analysis System (SAS), they obtain seven factors: Factor1: Core



288 7 AFS Topology and Its Applications

ability, Factor2: Organization management, Factor3: Pricing, Factor4: Competitive
forces, Factor5: Finance, Factor6: Different advantage, Factor7: Information tech-
nology. The decision-makers may tackle preference rating system by adopting one
of various rating scales assumed in the literature [8, 28, 29] or may develop their
own rating scales system by using trapezoidal fuzzy number to show the individual
conception of the linguistic variable “attention degree”. According to the preference
ratings proposed by Liang and Wang [28], it is suggested that the decision-makers
utilize the linguistic rating set

W = {VL,B.V L&L,L,B.L&M,M,B.M&H,H,B.H&V H,VH},

where VL: Very Low, B.VL&L: Between Very Low and Low, L: Low, B.L&M: Be-
tween Low and Medium, M: Medium, B.M&H: Between Medium and High, H:High,
B.H&VH:Between High and Very High, VH:Very High, to assess the attention
degree of subjects of companies under each of the management strategies. The
decision-makers utilize the linguistic rating as above and obtain the evaluation re-
sults as Table 7.3. Let X = {C1, ...,C5} and M = {m1,m2, ...,m7} be the set of sim-
ple concepts on the features Factor1 to Factor7. Where mi: great attention degree of
Factor i, i = 1,2, ...,7. The following order relation of the elements in the linguistic
rating set W is determined by their linguistic rating scales:

VL < B.VL&L < L < B.L&M < M < B.M&H < H < B.H&VH < VH (7.28)

For each mi ∈ M, we can define a binary relation Rmi on X by Table 7.3 and the
order relation shown as (7.28): (Ck,Ck) ∈ Ri, for any k = 1, ...,5 and for any k �= l,
(Ck,Cl) ∈ Ri ⇔Ck(Factor i)≥Cl(Factor i), where Cj(Factor i) is the linguistic rating
scale of Cj for Factor i. By Definition 4.3, one can verify that for each mi ∈ M,
Ri is a simple concept. (X ,τ,M) is an AFS structure if τ is defined as follows:
For any Ci, Cj ∈ X , τ(Ci,Cj) = {mk ∈ M|(Ci,Cj) ∈ Rk} (refer to (4.26)). Let Λ =
{{m1}, ...,{m7}} ⊆ EM and η be the topological molecular lattice generated by
Λ . Let (X ,Tη) be the topology space on X induced by η . Let de(Ci,Cj) be the
elementary differential degree of Ci,Cj and se(Ci,Cj) be the elementary similarity
degree of x,y defined by Definition 7.8. We obtain the following fuzzy similar matrix
S = (si j)n×n, si j = se(Ci,Cj) and the following elementary differential matrix T =
(ti j)n×n, ti j = de(Ci,Cj).

Table 7.3 The evaluation results of five companies

Company Factor
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

C1 M H H B.H & VH VH L B.M & H
C2 H B.L& M M B.M & H H B.M & H VL
C3 H H B.M & H H H VH B.M & H
C4 VL M H B.VL&L H B.L& M M
C5 L M B.H & VH H B.H & VH B.VL&L B.M & H
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T =

⎡
⎢⎢⎢⎢⎣

0 1513 1175 1112 666
1513 0 638 1067 1391
1175 638 0 1161 1263
1112 1067 1161 0 918
666 1391 1263 918 0

⎤
⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎣

1.0 0 0.2234 0.2650 0.5598
0 1.0 0.5783 0.2948 0.0806
0.2234 0.5783 1.0 0.2327 0.1652
0.2650 0.2948 0.2327 1.0 0.3933
0.5598 0.0806 0.1652 0.3933 1.0

⎤
⎥⎥⎥⎥⎦

Then, the transitive closure of similar matrix S is S4, i.e.,

(S4)2 = S4 =

⎡
⎢⎢⎢⎢⎣

1.0 0.2948 0.2948 0.3933 0.5598
0.2948 1.0 0.5783 0.2948 0.2948
0.2948 0.5783 1.0 0.2948 0.2948
0.3933 0.2948 0.2948 1.0 0.3933
0.5598 0.2948 0.2948 0.3933 1.0

⎤
⎥⎥⎥⎥⎦

Let the threshold α = 0.5. Then the clusters are {C1, C5}, {C2, C3} and {C4}. In
[27], the transitive closure of the compatibility relation RT of Table 7.3 is obtained
as follows:

RT =

⎡
⎢⎢⎢⎢⎣

1 0.389 0.415 0.590 0.679
0.389 1 0.389 0.389 0.389
0.415 0.389 1 0.415 0.415
0.590 0.389 0.415 1 0.590
0.679 0.389 0.415 0.590 1

⎤
⎥⎥⎥⎥⎦ .

By taking λ ∈ (0.590, 0.679], the authors in [27] obtained the clusters: {C1,C5},
{C2}, {C3} and {C4}.

By the application of the AFS-FCM algorithm described by (7.27) with the ele-
mentary differential degree defined by Definition 7.8 to the data of the 30 companies
shown in Appendix A, let the cluster number c be equal to 5, we obtain the cluster-
ing results

cluster1={C2, C3, C6,C7}, cluster2={C1, C4, C5, C10, C16, C21, C23, C25, C28},
cluster3={C9, C11, C13, C17, C19, C27},
cluster4={C8, C18, C20, C24, C26, C29}, cluster5={C12, C14, C15, C22, C30}.

Figure 7.1, in which the x-axis is the re-order of the C1,..., C30 by the order clus-
ter 1,...,cluster 5, i.e., 1:4 cluster 1; 5:13 cluster 2; 14:19 cluster 3; 20:25 cluster 4;
26:30 cluster 5, shows the membership functions of the fuzzy partition matrix of X ,
μ = {μ1, ...,μ5}.
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Fig. 7.1 The membership functions μi of the fuzzy 5-partition of X , μ = {μ1, ...,μ5}

7.5.2 Experimental Studies on the Iris Data Set

The Iris data [30] have 150× 4 matrix W = (wi j)150×4 evenly distributed in three
classes: iris-setosa, iris-versicolor, and iris-virginica. Vector of sample i, (wi1, wi2,
wi3, wi4) has four features: sepal length and width, and petal length and width (all
given in centimeters). Let X = {x1,x2,...,x150} be the set of the 150 samples, where
xi = (wi1,wi2,wi3,wi4). Let M = {m1, m2, ..., m8} be the set of simple concepts on
the features, where

m1: the sepal is long, m2: sepal is wide, m3: petal is long, m4: petal is wide;
m5 = m′

4: petal is not wide, m6 = m′
3: petal is not long, m7 = m′

2: sepal is not
wide, m8 = m′

1 : the sepal is not long.

Given the original Iris data, we can verify that each concept m ∈ M is a simple con-
cept and (M,τ,X) is an AFS structure if for any x,y∈X , we define τ(x,y) = {m|m∈
M,(x,y) ∈ Rm} (refer to (4.26)). For example, τ(x1,x1) = {m1, m2, m3, m4, m5, m6,
m7, m8}, since the sample x1 has sepal length and width, and petal length and width.
Similarly we can get τ(xi,xi), i = 2, ..., 150. For sample x4 = (4.6,3.1,1.5,0.2) and
sample x7 = (4.6,3.4,1.4,0.3), we have τ(x4,x7) = {m1,m3,m5,m7,m8}, since the
degrees of x4 belonging to simple concepts long sepal, long petal, not wide petal,
not wide sepal, not long sepal are larger than or equal to that of x7. Similarly, we can
determine τ(xi,x j) for any i, j according to the given feature values of the samples
or the binary relation Rm of the simple concepts m ∈ M.

Let (M,τ,X) be the AFS structure of the Iris data set and η be the topologi-
cal molecular lattice on the lattice ∗EM generated by all simple concepts in M,i.e.,
Λ = {{m1}, ...,{m8}} ⊆ EM. Let (X ,Tη) be the topology space of X induced by
the topological molecular lattice η . In order to compare the elementary differential
degree of x,y in topology Tη with Euclidean distance in R4. Let Rη be the fuzzy
relation matrix derived by topology Tη , where Rη = Sr

η , (Sr
η)2 = Sr

η , Sη = (si j),
si j = se(xi,x j), the elementary similarity degree is defined by Definition 7.8. Let
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RE be the fuzzy relation matrix derived by the Euclidean distance where RE = Sk
E ,

(Sk
E)2 = Sk

E , SE = (ei j), ei j = 1− (∑1≤k≤4(xik − x jk)2)
1
2 . Let fuzzy equivalence re-

lation matrix Q = (qi j) = Rη or RE , and for each threshold α ∈ [0,1], let Boolean
matrix Qα = (qa

i j), qa
i j = 1 ⇔ qi j ≥ α . Since R2

η = Rη , R2
E = RE , hence for each

threshold α ∈ [0,1], Qα is an equivalence relation Boolean matrix and it can yield a
partition on X (refer to [23]). The following Figure 7.2 shows the clustering accuracy
rates of fuzzy equivalence relation matrices Rη and RE for threshold α ∈ [0.1,1].
The accuracy is determined as follows: Suppose that the clusters C1, C2, ...,Cl are
obtained by the fuzzy equivalence relation matrices Rη or RE for some specific
threshold α . Let N1 = {1,2, ...,50}, N2 = {51,52, ...,100}, N3 = {101,102, ...,150}.
For l ≥ 3, the clustering accuracy rate r is

r = max1≤i, j,k≤l,i�= j,i�=k, j �=i{ |N1∩Ci |+|N2∩Cj |+|N3∩Ck |
150 };

For l = 2, let

|Nk ∩C1| = max1≤u≤3{|Nu ∩C1|}, 1 ≤ k ≤ 3,
|Nl ∩C2| = max1≤u≤3,u �=k{|Nu ∩C2|}, 1 ≤ l ≤ 3, l �= k,

r = |Nk∩C1|+|Nl∩C2|
150 . For l = 1, let r = 1

3 . When threshold α = 0.8409, the clustering
accuracy rate of Rη is 90.67% (the best one), 9 clusters are obtained, the error clus-
tering samples are x23, x42, x69, x71, x73, x78, x84, x88, x107, x109, x110, x118, x132, x135.
When threshold α = 0.8905, the clustering accuracy rate of RE is 72.67% (the best
one), and 29 clusters have been obtained. In Figures 7.2, we can observe that the
elementary differential degrees defined by Definition 7.8 are better than those ob-
tained for the Eculidean distance when it comes to the description of the difference
of objects for this cluster analysis.

In order to compare the fuzzy equivalence relation matrices Rη with RE , we show
that the similar relation degrees of xk to ∀x ∈ X ,i.e., Rη(xk,x) and RE(xk,x), k =
71,72, ...,130 in Figures 7.3- 7.14 in Appendix B as examples. Since for Iris-data,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

C
lu

st
er

in
g 

ac
cu

ra
te

  r
at

e

R−Eculidean−distance
R−topology          

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

C
lu

st
er

in
g 

ac
cu

ra
te

  r
at

e

R−Eculidean−distance
R−topology

Fig. 7.2 The clustering accuracy rates of fuzzy equivalence relation matrices Rη and RE for
threshold α ∈ [0.1,1]
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the samples x71, ...,x130 are most difficult to be clustered, hence we show Rη (xk,x)
and RE(xk,x), k = 71,72, ...,130 in the figures. For Iris-data, samples 1:50 are cluster
1, i.e., iris-setosa; samples 51:100 are cluster 2, i.e., iris-versicolor; samples 101:150
are cluster 3, i.e., iris-virginica. In Figures 7.3 and Figures 7.4, for x71,x72, ...,x80

which are cluster 2, Rη(xk,x) and RE(xk,x), x∈ X are shown. Compared with Figure
7.4, we can observe that in Figure 7.3, the similarity degrees of xk to most samples
in cluster 2 are larger than that of xk to the samples in cluster 1,3. This implies that
xk are more similar to the samples in cluster 2 and Rη (xk,x), k = 71, ...,80, in Figure
7.3 are more clearly distinguish xk from the samples in cluster 1, 3 than RE(xk,x),
k = 71, ...,80, in Figure 7.4. Similar phenomenon can be observed in Figures 7.4-
7.14 and the others for k = 1, ...,70,131, ...,150 which are not shown here. These
examples show that the fuzzy equivalence relation matrix based on the topology is
obviously better than that based on Eculidean distance for clustering of Iris data.

By the application of the AFS-FCM algorithm shown in (7.27) to the distance
matrix T = (ti j)150×150, ti j = de(xi,x j) defined by Definition 7.8, the clustering ac-
curacy rate is 86.67%. Using the function k means in MATLAB toolbox, which
is based on the well known k-mean clustering algorithm [32], the clustering ac-
curacy rate is 89.33%. And using the function FCM in MATLAB toolbox, which
is based on the FCM clustering algorithm [1], the clustering accuracy rate is also
89.33%. Considering that the cluster centers of AFS-FCM must be the samples,
i.e., {v1, ...,vc} ⊆ X , while the cluster centers of FCM can be any vectors, i.e.,
{v1, ...,vc} ⊆ Rn, the clustering accuracy rate of AFS-FCM is acceptable.

In some situations, it is difficult or impossible to describe some features of objects
using real numbers, considering some inevitable errors and noise. For example, we
do not describe a degree “white hair” of a person by counting the number of white
hair on his head. But the order relations can be easily and accurately established
by the simple comparisons of each pair of person’s hair. In the framework of AFS
theory, (M,τ,X) is determined by the binary relations Rm, m ∈ M and the order re-
lations are enough to establish the AFS structure of a data system. The membership
functions and their logic operations of the fuzzy concepts in EM can be obtained by
the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X). Therefore
the AFS-FCM can be applied to the data set with the attributes described by mixed
features such as numeric data, Boolean, order, even descriptors of human intuition,
but FCM and k-mean can only be applied to the data set with the attributes described
by numeric data.

The differential degrees and similarity degrees based on the topology induced
by some fuzzy concepts are the criteria/metric human are using in their recognition
process. This criteria/metric may not be the metric in the Euclidean space. The il-
lustrative examples give some interpretations of the special topological structures
on the AFS structures directly obtained by a given data set. Thus this approach also
offers a new idea to data mining, artificial intelligence, pattern recognition,..., etc.
Furthermore the real world examples demonstrate that this approach is promising.
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Exercises

Exercise 7.1. Let M be a set and EM be the ∗EI algebra over M. For A⊆ M, ∑i∈I Ai,
∑ j∈J B j ∈ EM, show the following assertions hold:

(1) A ≥ ∑i∈I Ai and A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∨∑ j∈J B j.
(2) A ≥ ∑i∈I Ai or A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∧∑ j∈J B j.

Exercise 7.2. Let X and M be sets and (M,τ,X) be an strong relative AFS structure.
Let η be a topological molecular lattice on EI algebra over M. For any x∈X , ∑i∈I Ai,
∑ j∈J B j ∈ EM, show the following assertions hold: for any x ∈ X

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in EM, then Nτ
∑i∈I Ai

(x) ⊇ Nτ
∑ j∈J B j

(x);
(2) Nτ

∑i∈I Ai
(x)∩Nτ

∑ j∈J B j
(x) = Nτ

∑i∈I Ai∧∑ j∈J B j
(x);

(3) Nτ
∑i∈I Ai

(x)∪Nτ
∑ j∈J B j

(x) = Nτ
∑i∈I Ai∨∑ j∈J B j

(x).

Exercise 7.3. Proved that if η is a topological molecular on the lattice ∗EM and η is
a dual idea of the lattice ∗EM, then η is an elementary topological molecular lattice
on the lattice ∗EM.

Exercise 7.4. ([13]) Let X and M be sets and (M,τ,X) be a strong relative AFS
structure. Let η be a topological molecular lattice on the lattice EM. If η is an
elementary topological molecular lattice on the lattice EM and we define

Bη =

{
Nτ

∑i∈I Ai
(x) | x ∈ X , ∑

i∈I

Ai ∈ η

}
,

prove that Bη is a base for some topology of X .

Exercise 7.5. Let X and M be sets, (M,τ,X) be a strong relative AFS structure. Let
η be a topological molecular lattice on the lattice EM and

Lη =

{
∑
i∈I

aiAi ∈ EXM | ∑
i∈I

Ai ∈ η ,ai ∈ Tη f or any i ∈ I

}
. (7.29)

Prove that Lη is a topological molecular lattice on the lattice EXM.

Exercise 7.6. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice EM. Let η be
a topological molecular lattice on the lattice EM and the topological space (X ,Tη)
be the topology induced by η . Let S be the σ -algebra generated by Tη and Lη be
the EI2 topological molecular lattice on EXM induced by η . Show the following
assertions hold.

(1) For any fuzzy concept ∑i∈I Ai ∈ η , ∑i∈I Ai is a measurable concept under S ;
(2) The membership function defined by (7.14) is a continuous function from the

topological space (X ,Tη) to the topological molecular lattice (EXM,Lη).

Exercise 7.7. Prove that the following three conditions on a topological space are
equivalent.
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(1) The space is metrizable;
(2) The space is T1 and regular, and the topology has a σ -locally finite base;
(3) The space is T1 and regular, and the topology has a σ -discrete base.

Exercise 7.8. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let η be
an elementary topological molecular lattice on the lattice ∗EM and (X ,Tη ) be the
topology space on X induced by η . Show for any x,y ∈ X the following assertions
hold.

(1) d(x,x) = 0, d(x,y) = d(y,x) and s(x,y) = s(y,x) ≤ s(x,x);
(2) dM(x,x) = 0, dM(x,y) = dM(y,x) and sM(x,y) = sM(y,x) ≤ sM(x,x);
(3) de(x,x) = 0, de(x,y) = de(y,x) and se(x,y) = se(y,x) ≤ se(x,x).

Open problems

Problem 7.1. Let X be a set and M be the set of simple concepts on X . Let (M,τ,X)
be an AFS structure. If M is a finite set, then for any topological molecular lattice
η on the EI algebra EM is also a topological molecular lattice on the ∗EI algebra
∗EM. What are the relationships between the topological structures on X induced
by η as a topological molecular on EM and that induced by η as a topological
molecular on ∗EM?

Problem 7.2. It is clear that Tη the topology on X is determined based on the distri-
bution of raw data and the chosen set of fuzzy concepts η ⊆ EM and it is an abstract
geometry relation among the objects in X under the considering fuzzy concepts,
i.e., η .

1. What are the interpretations of the special topological structures on X obtained
from given database?

2. What are the topological structures associating with the essential nature of
database?

Problem 7.3. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice EM. Let η be
a topological molecular lattice on the lattice EM and the topological space (X ,Tη)
be the topology induced by η .

(1) How to induce a topological molecular lattice L 2
η on the lattices ∗EXMM,

EXMM and a topological molecular lattice L 1
η on the lattices ∗E#X , E#X?

(2) Are the membership functions defined on the lattices EXMM by (5.12) and
E#X by (5.13) continuous from the topological space (X ,Tη ) to the topological
molecular lattices (EXMM,L 2

η ), (∗EXMM,L 2
η ), (∗E#X ,L 1

η ), (E#X ,L 1
η )?

Problem 7.4. With a metric in the topological space on X , solving the pattern recog-
nition problems will be possible for the database with various data types. Though
we can have different choices from the topological theory for the metrics, what is
suitable metric for this data of the pattern recognition problem?
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Problem 7.5. Are the similarity degrees defined by Definition 7.7, Definition 7.8
and Definition 7.9 equivalent?

Problem 7.6. Let (X ,Tη ) be the topological space induced by η . Where η is the
topological molecular lattice generated by some fuzzy concepts in EM. So far, we
cannot obtain the differential degree and the similarity degree if η is the topologi-
cal molecular lattice generated by more than 12 fuzzy concepts in EM. The more
effective algorithm for the computation of the differential degree and the similarity
degree in (X ,Tη) are the most required.

Appendix A

Table 7.4 Evaluate results of 30 companies

Company Factor
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

C1 H H H B.H & VH VH B.M & H B.M & H
C2 H H B.M & H B.M & H H B.M & H B.M & H
C3 H H B.M & H H H B.M & H B.M & H
C4 H B.H & VH H B.H & VH H B.H & VH B.M & H
C5 H B.H & VH H B.H & VH B.H & VH B.H & VH B.M & H
C6 H H B.M & H M B.M & H B.M & H B.M & H
C7 H H M B.H & VH B.M & H B.M & H M
C8 B.M & H H M B.M & H B.M & H H B.L& M
C9 B.M & H H H H B.H & VH B.M & H M
C10 H VH H B.M & H B.H & VH H B.M & H
C11 M H M H B.M & H B.H & VH B.H & VH
C12 VH VH H B.H & VH VH H M
C13 B.M & H H B.M & H H B.H & VH B.M & H B.M & H
C14 H H B.M & H B.H & VH B.H & VH H M
C15 H H H H B.H & VH VH M
C16 H H H B.H & VH B.H & VH B.H & VH B.H & VH
C17 B.M & H H M H B.H & VH B.M & H B.M & H
C18 M H B.M & H B.H & VH B.H & VH M M
C19 B.M & H H B.M & H B.M & H VH B.M & H B.H & VH
C20 B.M & H M M H B.H & VH B.M & H B.L& M
C21 B.H & VH VH B.H & VH B.H & VH B.H & VH B.H & VH VH
C22 H B.H & VH B.M & H B.H & VH B.H & VH H M
C23 B.H & VH VH H B.H & VH H B.M & H B.M & H
C24 H B.M & H M M B.H & VH M M
C25 VH VH H B.H & VH B.H & VH B.H & VH B.M & H
C26 H M H B.H & VH B.H & VH B.H & VH L
C27 B.M & H B.M & H H H B.H & VH H B.M & H
C28 B.H & VH B.H & VH B.M & H H B.H & VH B.M & H B.H & VH
C29 H B.M & H M H B.M & H B.M & H L
C30 H B.H & VH H B.H & VH H H M
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Appendix B

The following figures show the plots of Rη(xk,x)and RE(xk,x),∀x∈X .k=71, ...,130.

Fig. 7.3 The degrees of sim-
ilarity relation of xk to x ∈ X
based on topology, i.e.,
Rη (xk,x), k = 71,72, ...,80
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Fig. 7.4 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 71,72, ...,80
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Fig. 7.5 The degrees of sim-
ilarity relation of xk to x ∈ X
based on topology, i.e.,
Rη (xk,x), k = 81,82, ...,90
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Fig. 7.6 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 81,82, ...,90
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Fig. 7.7 The degrees of sim-
ilarity relation of xk to x ∈ X
based on topology, i.e.,
Rη (xk,x), k = 91,92, ...,100
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Fig. 7.8 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 91,92, ...,100
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Fig. 7.9 The degrees
of similarity relation of
xk to x ∈ X based on
topology, i.e., Rη(xk,x),
k = 101,102, ...,110
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Fig. 7.10 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 101,102, ...,110
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Fig. 7.11 The degrees
of similarity relation of
xk to x ∈ X based on
topology, i.e., Rη(xk,x),
k = 111,112, ...,120
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Fig. 7.12 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 111,112, ...,120
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Fig. 7.13 The degrees
of similarity relation of
xk to x ∈ X based on
topology, i.e., Rη(xk,x),
k = 121,122, ...,130
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Fig. 7.14 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 121,122, ...,130

0 50 100 150
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Samples:1:50,setosa;51:100,versicolor;101:150,virginica

Si
m

ila
r d

eg
re

e

R
E
(x

121
,:)

R
E
(x

122
,:)

R
E
(x

123
,:)

R
E
(x

124
,:)

R
E
(x

125
,:)

R
E
(x

126
,:)

R
E
(x

127
,:)

R
E
(x

128
,:)

R
E
(x

129
,:)

R
E
(x

130
,:)

References

1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum,
New York (1981)

2. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters. J. Cybernet 3(3), 32–57 (1974)



300 7 AFS Topology and Its Applications

3. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Systems 90,
141–150 (1997)

4. Bezdek, J.C.: A convergence theorem for the fuzzy ISODATA clustering algorithms.
IEEE Trans. Pattern Anal. Machine Intell. PAMI 2(1), 1–8 (1980)

5. Baum, J.D.: Elements of Point Set Topology. Prentice-Hall, Englewood Cliffs (1964)
6. Booker, J.M., Mayer, M.A.: Common problem in the elicitation and analysis of expert

opinion affecting probabilistic safety assessments. In: CSNI Workshop on PSA Applica-
tion and Limitation, Santa Fe, NM, September 4-6, 1990, pp. 353–368 (1990)

7. Graver, J.E., Watkins, M.E.: Combinatorics with Emphasis on the Theory of Graphs.
Springer, New York (1977)

8. Gbyym, S.H.: A semi-linguistic fuzzy approach to multifactor decision-making: Appli-
cation to aggregation of experts judgments. Annals of Nuclear Energy 26, 1097–1112
(1999)

9. Kelley, J.L.: General Topology. Springer, New York (1955)
10. Kim, K.H.: Boolean matrix Theory and Applications. Marcel Dekker, New York (1982)
11. Keller, J.M., Gray, M.R., Givens Jr., J.A.: A fuzzy K-nearest neighbors algorithm. IEEE

Trans. Systems Man, Cybernet. SMC 15(4), 580–585 (1985)
12. Liu, X.D.: The Fuzzy Theory Based on AFS Algebras and AFS Structure. Journal of

Mathematical Analysis and Applications 217, 459–478 (1998)
13. Liu, X.D.: The Topology on AFS Algebra and AFS Structure. Journal of Mathematical

Analysis and Applications 217, 479–489 (1998)
14. Liu, X.D.: A new fuzzy model of pattern recognition and hitch diagnoses of complex

systems. Fuzzy Sets and Systems 104, 289–297 (1999)
15. Liu, X.D.: A New Mathematical Axiomatic System of Fuzzy Sets and Systems. Journal

of Fuzzy Mathematics 3, 559–560 (1995)
16. Liu, X.D.: The Fuzzy Sets and Systems Based on AFS Structure, EI Algebra and EII

algebra. Fuzzy Sets and Systems 95, 179–188 (1998)
17. Liu, X.D.: Two Algebra Structures of AFS structure. Journal of Fuzzy Mathematics 3,

561–562 (1995)
18. Liu, X.D., Wang, W., Chai, T.Y.: The Fuzzy Clustering Analysis Based on AFS Theory.

IEEE Transactions on Systems, Man and Cybernetics Part B 35(5), 1013–1027 (2005)
19. Liu, X.D., Zhang, Q.L.: The Fuzzy Cognitive Maps Based on AFS Fuzzy Logic. Dy-

namics of Continuous, Discrete and Impulsive Systems 11(5-6), 787–796 (2004)
20. Liu, X.D., Zhu, K.J., Huang, H.Z.: The Representations of Fuzzy Concepts Based on

the Fuzzy Matrix Theory and the AFS Theory. In: IEEE International Symposium on
Intelligent Control, Texas, USA, October 5-8, pp. 1006–1011 (2003)

21. Liu, X.D., Pedrycz, W., Zhang, Q.L.: Axiomatic Fuzzy Set Logic. In: The Proceedings of
2003 IEEE International Conference on Fuzzy Systems, St. May Louis Missouri, USA,
vol. 1, pp. 55–60 (2003)

22. Liu, X.D., Pedrycz, W.: The Development of Fuzzy Decision Trees in the Framework of
Axiomatic Fuzzy Set Logic. Applied Soft Computing 7, 325–342 (2007)

23. Liu, X.D.: The Structure of Fuzzy Matrices. Journal of Fuzzy Mathematics 2, 311–325
(1994)

24. Liu, X.D., Chai, T.Y., Wang, W.: Approaches to the Representations and Logic Opera-
tions for Fuzzy Concepts in the Framework of Axiomatic Fuzzy Set Theory I. Informa-
tion Sciences 177, 1007–1026 (2007)

25. Liu, X.D., Wang, W., Chai, T.Y.: Approaches to the Representations and Logic Opera-
tions for Fuzzy Concepts in the Framework of Axiomatic Fuzzy Set Theory II. Informa-
tion Sciences 177, 1027–1045 (2007)



References 301

26. Liu, X.D., Zhang, L.S., Chai, T.Y.: The Fuzzy Clustering Analysis Based on Topology
Space (manuscript)

27. Liang, G.S., Chou, T.Y., Han, T.C.: Cluster analysis based on fuzzy equivalence relation.
European Journal of Operational Research 166, 160–171 (2005)

28. Liang, G.S., Wang, M.J.: A fuzzy multi-criteria decision-making method for facility site
selection. International Journal of Product Research 29(11), 2313–2330 (1991)

29. Liou, T.S., Wang, M.J.J.: Subjective assessment of mental workload-a fuzzy linguistic
multi-criteria approach. Fuzzy Sets and Systems 62, 155–165 (1994)

30. Mertz, J., Murphy, P.M.: UCI repository of machine learning databases,
http://www.ics.uci.edu/pub/machinelearning-data-bases

31. Pu, B.M., Liu, Y.M.: Fuzzy Topology I, Neighborhood structure of Fuzzy Point and
Moore-Smith Convergence. Journal of Mathematical Analysis and Applications 76, 571–
599 (1980)

32. Seber, G.A.F.: Multivariate Observations. Wiley, New York (1984)
33. Wang, G.J.: Theory of topological molecular lattices. Fuzzy Sets and Systems 47, 351–

376 (1992)
34. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recogni-

tion 35, 2267–2278 (2002)
35. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
36. Zhang, Y.J., Liang, D.Q., Tong, S.C.: On AFS Algebra Part I, II. Information Sci-

ences 167, 263–286, 287-303 (2004)

http://www.ics.uci.edu/pub/machinelearning-data-bases

	AFS Topology and Its Applications
	Topology on AFS Structures and Topological Molecular Lattice on $^{*}EI^{n}$ Algebras
	Topology on AFS Structures and Topological Molecular Lattice on $EI^{n}$ Algebras
	Fuzzy Similarity Relations Based on Topological Molecular Lattices
	Fuzzy Clustering Algorithms Based on Topological Molecular Lattices
	Empirical Studies
	{\it Empirical Examples of Taiwan Airfreight Forwarder}
	{\it Experimental Studies on the Iris Data Set}

	Exercises
	Open problems
	Appendix A
	Appendix B
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




