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Preface

It is well known that “fuzziness”—information granules and fuzzy sets as one
of its formal manifestations— is one of important characteristics of human
cognition and comprehension of reality. Fuzzy phenomena exist in nature and
are encountered quite vividly within human society. The notion of a fuzzy
set has been introduced by L. A., Zadeh in 1965 in order to formalize human
concepts, in connection with the representation of human natural language
and computing with words. Fuzzy sets and fuzzy logic are used for model-
ing imprecise modes of reasoning that play a pivotal role in the remarkable
human abilities to make rational decisions in an environment affected by un-
certainty and imprecision. A growing number of applications of fuzzy sets
originated from the “empirical-semantic” approach. From this perspective,
we were focused on some practical interpretations of fuzzy sets rather than
being oriented towards investigations of the underlying mathematical struc-
tures of fuzzy sets themselves. For instance, in the context of control theory
where fuzzy sets have played an interesting and practically relevant function,
the practical facet of fuzzy sets has been stressed quite significantly.

However, fuzzy sets can be sought as an abstract concept with all formal
underpinnings stemming from this more formal perspective. In the context
of applications, it is worth underlying that membership functions do not
convey the same meaning at the operational level when being cast in various
contexts. As a consequence, when we look carefully at the literature on fuzzy
sets, including Zadeh’s own papers, there is no profound uniformity as to
the interpretation of what a membership grade stands for. This situation
has triggered some critical comments outside the fuzzy set community and
has resulted in a great deal of misunderstanding within the field of fuzzy sets
itself. Most negative statements expressed in the literature raised the question
of interpretation and elicitation membership grades. Thus the questions of the
semantics and the empirical foundations as well as the measurement of fuzzy
sets remain partially unresolved. As of now, this is perhaps still a somewhat
under-developed facet of fuzzy set theory.
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Let us begin our discussions from the following example. What is your
perception of the height of a person? An NBA basketball player describes
that some person is not “tall” and a ten year old child describes that the
same person is very “tall”. Because the people the NBA basketball player of-
ten meets are different from the people the child meets, i.e., the “data” they
observed are drawn from different probability spaces. They may have dif-
ferent interpretations (membership functions or membership grades) for the
same linguistic concept “tall”. Therefore the interpretations of fuzzy sets are
strongly dependent on both the semantics of the concepts and the distribu-
tion of the observed data. Fuzzy sets call for efficient calibration mechanisms.
Thus when we consider the interpretation of a concept, the distributions of
the data the concept is applied to must be taken into account when determin-
ing the membership functions of the fuzzy concepts. In real world applica-
tions, the conventional membership functions are usually provided according
to the subjective knowledge or perception of the observer. These membership
functions have not accounted the particular distribution of the observed data.

When moving into the age of machine intelligence and automated decision-
making, we have to deal with both the subjective imprecision of human
perception-based information described in natural language and the objec-
tive uncertainty of randomness universally existing in the real world. There
is a deep-seated tradition in science of dealing with uncertainty–whatever its
form and nature–through the use of probability theory. What we see is that
standard probability theory comes with a number of strengths and limita-
tions. To a significant extent, standard probability theory cannot deal with
information described in natural language; that is, to put it simply, standard
probability theory does not have natural language processing capability. A
basic problem with standard probability theory is that it does not address
partiality of truth. The principal limitation is that standard probability pro-
vides no tools for operating on information that is perception-based and is
described in a natural language. This incapability is rooted in the fact that
perceptions are intrinsically imprecise, reflecting the bounded ability of sen-
sory organs, and ultimately the brain, to resolve detail and store information.
Zadeh has also claimed that “probability must be used in concert with fuzzy
logic to enhance its effectiveness. In this perspective, probability theory and
fuzzy logic are complementary rather than competitive.”

It is this statement that has motivated our proposal and a comprehensive
study of Axiomatic Fuzzy Set (AFS) whose aim is to explore how fuzzy set
theory and probability theory can be made to work in concert, so that uncer-
tainty of randomness and of imprecision can be treated in a unified and coher-
ent manner. In AFS theory—the studies on how to convert the information
in the observed data into fuzzy sets (membership functions), the membership
functions and logic operations of fuzzy concepts are determined by both the
distribution of raw data and semantics of the fuzzy concepts through the
AFS structures a kind of mathematical description of data structures and
AFS algebras a kind of semantic methodology of fuzzy concepts. Since the
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membership functions of fuzzy concepts in AFS theory always emphasizes
the data set they apply to and there are such complicated forms of the de-
scriptions and representations for the attributes of the raw data in the real
world applications, hence the raw data are regularized to be AFS structures
by two axioms. AFS is mainly with respect to AFS structure of the data
and AFS approach mainly studies fuzzy concepts, membership functions and
fuzzy logic on the AFS structure of the data, in stead of the raw data. AFS
theory is a rigorous and unified mathematical theory which is evolved from
two axioms of AFS structure and three natural language assumptions of AFS
algebra.

An AFS structure is a triple (M, τ, X) which is a special combinatoric
system, where X is the universe of discourse, M is a set of some simple
(or elementary) concepts on X (e.g., linguistic labels on the features such
as “large”, “medium”, “small” ) and τ : X × X → 2M is a mathematical
description of the relationship between the distributions of the original data
and semantic interpretations of the simple concepts in M . The AFS algebra
is a family of completely distributive lattices generated by the sets such as
X and M . A large number of complex fuzzy concepts on X and their logic
operations can be expressed by few simple concepts in M via the coherence
membership functions of the AFS algebras and the AFS structures.

Since AFS theory was proposed in 1998 (Journal of Mathematical Analysis
and Applications, Fuzzy Sets and Systems), a number of interesting develop-
ments in the theory and applications have been reported. For instance, the
topological structures of AFS algebra and AFS structure were presented in
1998 (Journal of Mathematical Analysis and Applications), some combina-
toric properties of AFS structures were introduced in 1999 (Fuzzy Sets and
Systems). Further algebraic properties of the AFS algebra have been explored
in 2004 (Information Sciences), the fuzzy clustering analysis based on AFS
theory were proposed in 2005 (IEEE Transactions on Systems, Man and Cy-
bernetics Part B), the representations and fuzzy logic operations of fuzzy
concepts under framework of AFS theory were outlined in 2007 (Information
Sciences), the relationships between AFS algebra and Formal Concept Analy-
sis (FCA) were demonstrated in 2007 (Information Sciences), fuzzy decision
trees under the framework of AFS theory were discussed in 2007 (Applied
Soft Computing), AFS fuzzy clustering analysis was applied to management
strategic analysis in 2008 (European Journal of Operational Research), con-
cept analysis via rough set and AFS algebra was presented in 2008 (Informa-
tion Sciences), fuzzy classifier designs based on AFS theory were proposed in
2008 (Journal of Industrial and Management Optimization), fuzzy rough sets
under the framework of AFS theory were discussed in 2008 (IEEE Transac-
tions on Knowledge and Data Engineering) ... etc. Last years saw a rapid
growth of the development of the AFS theory. We may witness (maybe not
always that clearly and profoundly) that AFS approach tends to permeate
a number of significant endeavors. The reason is quite straightforward. In a
nutshell, AFS approaches has established a bridge connecting the real world
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problems with many abstract mathematical theories and human natural lan-
guage interpretations of fuzzy concepts via the AFS structures of the data
and AFS algebras of the human natural language. Since, so far, all application
algorithms in AFS approaches imitate human cognitive process with a set of
objects by some given fuzzy concepts and attributes; hence AFS delivers new
approaches to knowledge representations and inference that is essential to
the intelligent systems. The theory offers a far more flexible and powerful
framework for representing human knowledge and studying the large-scale
intelligent systems in real world applications.

While the idea of AFS has been advocated and spelled out in the realm
of fuzzy sets, a fundamental formal framework of AFS based on algebra,
combinatorics, measure theory and probability theory has been gradually
formed. Undoubtedly, AFS theory has systematically established a rigorous
mathematical theory to answer the basic question of the measurement for
membership functions of fuzzy concepts and set up the foundations of fuzzy
sets for its future developments.

The successful applications of AFS theory show that the theory cannot
only serve as the mathematical foundation of fuzzy sets, but also is applicable
and practically viable to model human concepts and their logic operations.
The discovered inherent relationships of AFS theory with formal concept
analysis and rough sets provide a great potential to be explored even further.

In this book, the theory and application results of AFS achieved in a more
than a decade are put into a systematic, a rigorous, and unified framework.
The book is designed to introduce the AFS in both its rigorous mathematical
theory and its flexible application methodology. The material of the mono-
graph is structured into three main sections:

1. mathematical fundamentals which introduce some elementary mathemat-
ical notations and underlying structural knowledge about the subject
matter;

2. rigorous mathematical theory for the readers who are interested in the
mathematical facet of the AFS theory;

3. the applications and case studies which are of particular interest to the
readers involved in the applications of the theory.

The last two parts can be studied independently to a very high extent
as the algorithms (methods) coming directly from the main mathematical
results presented in part 2 are clearly discussed and explained though some
detailed examples. Thus there should not be any difficulties for the reader
who wishes to directly proceed with part 3. We anticipate that the level of
detail at which the material is presented makes this book a useful reference
for many researchers working in the area of fuzzy sets and their applications.

The first part of this book, which consists of Chapter 1 (Fundamentals) and
Chapter 2 (Lattices), is devoted to a detailed overview of the fundamental
knowledge which is required for the rigorous exposure of the mathematical
material covered in the second part. This part makes the book self-contained
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to a significant extent. We would like to note though that most of material
in this part is not required for the readers who are predominantly interested
in the applications of the AFS theory.

The second part of this book, which consists of Chapter 3 (Boolean Matri-
ces and Binary Relation, Chapter 4 (AFS Logic, AFS Structure and
Coherence Membership Functions), Chapter 5 (AFS Algebras and Their Rep-
resentations of Membership Degrees), introduces the rigorous mathematical
facet of the AFS theory and develops a suite of theorems and results which
can be directly exploited in the studies on real world applications.

The third part of this book, which consists of Chapter 6 (AFS Fuzzy
Rough Sets), Chapter 7 (AFS Topology and Its Applications), Chapter 8
(AFS Formal Concept and AFS Fuzzy Formal Concept Analysis), Chapter 9
(AFS Fuzzy Clustering Analysis), and Chapter 10 (AFS Fuzzy Classifiers),
covers various applications of the theory results developed in the second part.
The chapters in this part are all independent and each chapter focuses on
some direct application of some results discussed in the second part of the
book.

The studies on the AFS theory (primarily reported in journal publications
and conference proceedings) have attracted interest of the community work-
ing within the boundaries of the technology of fuzzy sets. The underlying
concept of AFS could be of interest to a far broader audience. Having this in
mind, there are a number of key objectives of this book:

� To present a cohesive framework of the AFS by defining its main research
objectives and specifying underlying tasks;

� To discuss individual technologies of AFS in this uniform setting and for-
malizing the key tasks stemming from AFS theory (that concerns the
measurement of fuzzy sets by taking both fuzziness (subjective impre-
cision) and randomness (objective uncertainty) into account and their
applications to the real world problems);

� To provide the reader with a well-thought and carefully introduced host
of algorithmic methods available in AFS framework.

The intent is to produce a highly self - contained volume. The reader is
provided with the underlying material on AFS theory as well as exposed
to the current developments where it finds the most visible applications.
Furthermore the book includes an extensive and annotated bibliography - an
indispensable source of information to everybody seriously pursuing research
in this rapidly developing area. Chapters come with a number of open-ended
problems that might be of interest to a significant sector of the readership.
The book exhibits the following features:

• Comprehensive, authoritative and up-to-date publication on AFS theory
(a self-contained volume providing coverage of AFS from its mathematical
foundations through methodology and algorithms to a representative set
of applications).
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• Coverage of detailed mathematical proofs: a complete and rigorous math-
ematical theory based on the underlying axioms of the AFS structure
and natural language assumptions of the AFS algebra itself. The theory
is oriented to link the findings to essential and well-delineated goals of
practical relevance.

• Coverage of detailed algorithms, complete description of underlying ex-
periments, and a thorough comparative analysis illustrated with the aid
of complete numeric examples coming from a broad spectrum of problems
stemming from information systems.

• Breadth of exposure of the material ranging from fundamental ideas and
concepts to detailed, easy to follow examples; the top - down approach
fully supports a systematic and in-depth comprehension of the material.

• Self - containment of the material; the book will include all necessary
prerequisites so that it will appeal to a broad audience that may be diverse
in terms of background and research interests.

• Exercises of different level of complexity following each chapter that help
the reader reflect and build upon key conceptual and algorithmic points
raised in the text. Such exercises can be of significant help to an instructor
offering courses on this subject. The open problems following each chapter
provide some further research topics for the readers.

• An extended and fully updated bibliography and a list of WWW resources
being an extremely valuable source of information in pursuing further
studies.

The audience of this book is diversified. The material could be of interest
to researchers and practitioners (primarily engineers, mathematics, computer
scientists, managers) interested in fuzzy set theory and applications, gradu-
ate students in electrical and computer engineering, software engineering,
mathematics, computer science, operations research and management. The
material will not only be advantageous to the readership in the area of fuzzy
sets but also the readers in the area of mathematics, rough sets, formal con-
cept analysis (FCA) and probabilistic methods.

The book can be used to some extent in graduate courses on intelligent
systems, fuzzy sets, data mining, rough sets, formal concept analysis and
data analysis. The book can be either viewed as a primary text or a reference
material depending upon a way in which the subject matter becomes covered.

Edmonton, Canada Xiaodong Liu
October 2008 Witold Pedrycz
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Chapter 1
Fundamentals

The main objective of this chapter is to introduce some preliminaries regarding es-
sential mathematical notions and mathematical structures that have been commonly
encountered in the theory of topological molecular lattices, fuzzy matrices, AFS
(Axiomatic Fuzzy Set) structures and AFS algebras. The proofs of some theorems
or propositions which are not too difficult to be proved are left to the reader as
exercises.

1.1 Sets, Relations and Maps

Set theory provides important foundations of contemporary mathematics. Even if
one is not particularly concerned what sets actually are, sets and set theory still
form a powerful language for reasoning about mathematical objects. The use of the
theory has spilled over into a number of related disciplines. In this section, we recall
and systematize various standard set-theoretical notations and underlying constructs
[6], proceeding with the development of the subject as far as the study of maps and
relations is concerned.

1.1.1 Sets

We view the idea of set as a collection of objects as being a fairly obvious and quite
intuitive. For many purposes we want to single out such a collection for attention,
and it is convenient to be able to regard it as a single set. Usually we name a set
by associating with some meaningful label so that later on we can easily refer to
it. The objects which have been collected into the set are then called its members ,
or elements, and this relationship of membership is designated by the “included in”
symbol ∈. Thus, a ∈ X is reads as ‘a is a member of the set X’ or just ‘a is in the
set X’.

An important point worth stressing here is that everything we can know about a
set is provided by being told what members it is composed of. Put it another way,
‘two sets are equal if and only if they have the same members’. This is referred to as

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 3–60.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 1 Fundamentals

the axiom of extensionality since it tells us that how far a set ‘extends’ is determined
by what its members are.

The other main principle of set formation is called the axiom of comprehension,
which states that ‘for any property we can form a set containing precisely those
objects with the given property’. This is a powerful principle which allows us to
form a great variety of sets for all sorts of purposes. Unfortunately, with too full an
interpretation of the word ‘property’ this gives rise to the Russell’s paradox: Let the
property p(x) be x /∈ x, that is, ‘x is not a member of itself’ and R be a set containing
precisely those objects with the property p(x). This means that for every y, y ∈ R if
and only if y /∈ y. If this is true for every y, then it must be true when R is substituted
for y, so that R ∈ R if and only if R /∈ R. Since one of R ∈ R and R /∈ R must hold,
we arrive at an obvious contradiction which is the crux of the Russel paradox. This
means that the axiom of comprehension must be restricted in some way and for most
purposes we encounter there is no difficulty to accomplish that.

There are several quite different ways of specifying sets. In general we enumerate
the elements of the set by including those in curly brackets {}. If the number of
elements forming the set is not large, those can be explicitly listed in entirety. For
example, {7, 8, 9, 10} is a set with four members (i.e., a set containing precisely
those objects with the property: ‘the natural number between 6 and 11). Often a set
could be listed in this manner, but this could be time consuming. One may use a dot
notation . . . to indicate what the missing elements are, provided that this mechanism
is clearly spelled out or is fully understood. Thus the set {1, 2, 3, 4,. . . ,1000} is the
set of all integers from 1 to 1000 inclusive. In other cases we are not at position to
list the entire set, for the reason that it is infinite, so if we are to use this form of
listing, dots are essential. For instance, the set {2, 3, 5, 7, 11, 13, 17, 19,. . .} is the
set of all prime numbers, which is an infinite set. We are assuming that it is clear
which particular set we are intended in on the basis of the elements actually listed.

Since problems often arise when making attempts to list all the members of a
set, it is better to use a defining property to specify it where possible. As we hinted,
there is a definite ambiguity in defining P by the implied listing above, and the same
set {2, 3, 5, 7, 11, 13, 17, 19,. . .} may be better expressed as

{n|n is a positive prime number},

which we read as ‘the set of all n such that n is a prime number’. Here the spec-
ification of the set is totally unambiguous. The use of the notation is justified by
the axiom of comprehension: here the property is ‘n is a prime number’, and the
notation tells us to collect together all those numbers fulfilling the property-which
by the axiom of comprehension, is a set.

We first need to define formally the following two relationships, which allow
us to order and equate sets: we say that the set A is contained in the set B or is a
subset of B (or B contains A) and denote this as A ⊆ B (or B ⊇ A) if every element
x in A is also in B. Symbolically, we can write this statement as x ∈ A ⇒ x ∈ B,
where the symbol ‘⇒’ is read as ‘implies’. The statement A = B is equivalent to the
two statements A ⊆ B and B ⊆ A. Symbolically, A = B ⇔ A ⊆ B and B ⊆ A, where
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symbol ‘⇔’ reads ‘if and only if’. If A ⊆ B and A �= B we write A ⊂ B and say that
A is a proper subset of B . Alternatively, we can write B ⊃ A.

Given any two sets A and B, we have the following elementary set operations:

Union: The union of A and B, written A ∪ B, is the set of elements that belong to
either A or B or both. Symbolically,

A∪B={x | x ∈ A or x ∈ B}.

Intersection: The intersection of A and B, written A∩B, is the set of elements that
belong to both A and B. Symbolically,

A∩B={x | x ∈ A and x ∈ B}.

Complementation: The complement of the set A, written A′, is the set of all ele-
ments that are not in A. Symbolically,

A′ ={x | x/∈ A}.
We begin our discussion with a brief survey of some maps and equivalence rela-

tions. Prior to that we list follows.

Empty set: We denote by ∅ the set without any members. That there is only one
such set follows from the axiom of extensionality, in a vacuous way. When we know
what members a set has, that set is then completely determined.

Power set: The set of all subsets of a set X is called its power set, written 2X .
Symbolically,

2X ={Y | Y ⊆ X}.

If X has n members, then 2X has 2n members.

Difference: For two sets X and Y , the difference set of X and Y is the set of all
members ofX which are not in Y , written X −Y . Symbolically,

X −Y={z | z ∈ X and z /∈ Y }.

Disjointness: Two sets X and Y are said to be disjoint if their intersection is empty,
i.e., X ∩Y = ∅.

Partition: Let S be a set and Γ be a collection of non-empty subsets of S.Γ is called
a partition of S if the union of the sets in Γ is the whole of S and distinct sets in Γ
are disjoint. Symbolically,⋃

A∈Γ A = S and A∩B = ∅ for A, B ∈Γ , A �= B.

Each subset A in the partition Γ is called a block of Γ .

Cardinality: The number of members of the set X is denoted by |X |. This definition
makes sense only if X is finite (that is consists of a finite number of elements).

The elementary set operations can be combined, somewhat akin to the way ad-
dition and multiplication operations can be combined. As long as we are careful in
doing that, we can treat sets as if they were numbers. We can now state the following
useful properties of set operations.
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Theorem 1.1. For any three sets A,B, and C, the following assertions hold:

1. A∪B = B∪A, A∩B = B∩A; ( Commutativity )
2. A∪ (B∪C)=(A∪B)∪C, A∩ (B∩C)=(A∩B)∩C; (Associativity)
3. A∩(B∪C)=(A∩B)∪(A∩C), A∪(B∩C)=(A∪B)∩(A∪C);(Distributive Laws)
4. (A∪B)′ = A′ ∩B′, (A∩B)′ = A′ ∪B′. (DeMorgan’s Laws)

Proof. The proof of most of this theorem is left as a list of exercises. To illustrate
the underlying technique, however, we will prove the Distributive Law: A ∩ (B ∩
C)=(A∩B)∩C.

To prove that two sets are equal, it must be demonstrated that each set contains
the other. Formally, then

A∩ (B∪C)={x | x ∈ A and x ∈ (B∩C)};

(A∩B)∪ (A∩C)={x | x ∈ A∩B or x ∈ A∩C }.

We first show that A∩ (B∪C) ⊆ (A∩B)∪ (A∩C). Let x ∈ (A∩ (B∪C)). By the
definition of intersection, it must be that x ∈ (B ∪C), that is, either x ∈ B or x ∈ C.
Since x also must be in A, we have either x ∈ (A∩B) or x ∈ (A∩C); therefore,

x ∈((A∩B)∪ (A∩C)),

and the containment is established.
Now assume x ∈((A∩B)∪(A∩C)). This implies that x ∈ (A∩B) or x ∈ (A∩C). If

x ∈ (A∩B), then x is in both A and B. Since x ∈ B, x ∈ (B∪C) and thus x ∈ (A∩(B∪
C)). If, on the other hand, x ∈ (A∩C), the argument is similar, and we again conclude
that x ∈ (A∩ (B∪C)). Thus, we have established ((A∩B)∪ (A∩C))⊆ A∩ (B∪C),
showing containment in the other direction and, hence, proving the Distributive Law.


�

The operations of union and intersection can be extended to finite or infinite collec-
tions of sets as well. If A1, A2, A3, . . . , An is a collection of sets, then

n⋃
i=1

Ai =
⋃

1≤i≤n
Ai = {x|x ∈ Ai f or some i = 1,2, ...,n},

n⋂
i=1

Ai =
⋂

1≤i≤n
Ai = {x|x ∈ Ai f or all i = 1,2, ...,n}.

If I is an index set (a set of elements to be used as indices) and Ai, i ∈ I, is a collection
of sets, then the operations of the union and intersection of the sets are as follows:⋃

i∈I
Ai = {x|x ∈ Ai f or some i ∈ I} ,

⋂
i∈I

Ai = {x|x ∈ Ai f or all i ∈ I} .
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The index set I can be any finite, infinite, or uncountable set. For instance, let I={1,
2, . . . , n}. Then

n⋃
i=1

Ai =
⋃

i∈{1,2,...,n} Ai,
n⋂

i=1

Ai =
⋂

i∈{1,2,...,n} Ai.

If the index set I={A1, A2, . . . , An}, then

n⋃
i=1

Ai =
⋃

i∈I
Ai,

n⋂
i=1

Ai =
⋂

i∈I
Ai.

For example, we take the index set Γ={all positive real numbers} and Aa =
(0,a) = {x | 0 < x ≤ a}, then

⋃
a∈Γ Aa = (0,∞) is an uncountable union. For any

collection of sets Γ and the set B, the distributive laws carry over to arbitrary inter-
sections and unions:

B∩ (
⋃

A∈Γ
A) =

⋃
A∈Γ

(B∩A), B∪ (
⋂

A∈Γ
A) =

⋂
A∈Γ

(B∪A)

The proofs of them are left as exercise.
Let A and B be two sets. The Cartesian product set of A and B is the set of pairs

(a,b),a ∈ A, b ∈ B, written A×B. Symbolically, A×B = {(a,b) | a ∈ A,b ∈ B}.
The sets A and B need not be distinct. In the set A×B, the elements (a, b) and (c,

d) are regarded as equal if and only if a = c and b = d. It is important to extend the
notion of Cartesian product of two sets to the product of any finite number of sets.

If S1, S2, . . . , Sr are any sets, then
γ
∏
i=1

Si or S1 × S2×. . .×Sr is defined to be the set

of r-tuples (s1, s2, . . . , sr) where the ith component si ∈ Si. Equality is defined by

(s1, s2, . . . , sr)= (e1, e2, . . . , er)

if and only if si = ei for every i. If all the Si = S then we write Sr for∏1≤i≤r Si.
The disjoint union of I and J is a kind of union of I and J in which every element

in I and every element in J are always regarded as different elements,denoted as
I � J. That is, I � J = (I ×{1})∪ (J×{2}).

1.1.2 Relations

We say that a binary relation is defined on a set S, if given any ordered pair (a, b)
of elements of S, we can determine whether or not a is in the given relation to b.
For example, we have the relation of order “ ≤ ” in the set of real numbers. Given
two real numbers a and b, presumably we can determine whether or not a ≤ b. An-
other order relation is the lexicographic ordering of words, which determines their
position in a dictionary. Still another example of a relation is the first-cousin rela-
tion among people (a and b have a common grandparent). To abstract the essential
element from these situations and similar ones, we are led to define in a formal way
a binary relation R on a set S to be simply any subset of the product set S×S.
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Definition 1.1. Let S be a set. R is called a binary relation on S if R ⊆ S × S. For
a,b ∈ S, if (a,b) ∈ R, then we say that “a is in the relation R to b” or “a and b have
the relation R”; otherwise, “a is not in the relation R to b” or “a and b have not the
relation R”.

Definition 1.2. Let S be a set. A binary relation R on S is called an equivalence
relation if the following conditions hold for any a,b,c in S:

1. (a,a) ∈ R (reflexive property)
2. (a,b) ∈ R ⇒ (b,a) ∈ R (symmetry)
3. (a,b) ∈ R and (b,c) ∈ R ⇒ (a,c) ∈ R (transitivity)

An example of an equivalence relation is obtained by letting S to be the set of points
in the plane and defining (a,b) ∈ R if a and b lie on the same horizontal line for
a,b ∈ S. Another example of an equivalence relation R on the same S is obtained by
stipulating that (a,b) ∈ R is a and b are equidistant from the origin O.

Theorem 1.2. An equivalence relation R on the set S determines a partition Γ of S
and a partition Γ on S determines an equivalence relation R on S.

Proof. First, suppose the equivalence relation R is given. If a ∈ S we let

R(a) = {b ∈ S|(a,b) ∈ R}.

We call R(a) the equivalence class relative to R determined by a. Since (a,a) ∈ R,
a ∈ R(a), hence every element of S is contained in an equivalence class and so⋃

a∈S R(a) = S. We note next that R(a) = R(b) if and only if (a,b) ∈ R. First, let
(a,b) ∈ R and let c ∈ R(a). Then (c,a) ∈ R and so, by condition 3, (c,b) ∈ R. Then
c ∈ R(a). Then R(a) ⊆ R(b). Also, by condition 2, (b,a) ∈ R and so R(b) ⊆ R(a).
Hence R(a) = R(b). Conversely, suppose R(a) = R(b). Since a ∈ R(a) = R(b) we
see that (a,b) ∈ R, by the definition of R(b). Now suppose R(a) and R(b) are not
disjoint and let c ∈ R(a)∩R(b). Then (c,a)∈ R and (c,b)∈ R. Hence R(a)= R(b)=
R(c). We therefore see that distinct sets in the set of equivalence classes are disjoint.
Hence {R(a)|a ∈ S} is a partition of S.

Conversely, let Γ be any partition of the set S. Then, if a ∈ S, a is contained in one
and only one A ∈Γ . We define a relation RΓ by specifying that (a, b)∈ RΓ if and only
if a and b are contained in the same A ∈Γ . Clearly this relation is reflexive, symmet-
ric, and transitive. Hence RΓ is an equivalence relation. It is clear also that the equiv-
alence class R(a) of a relative to RΓ is the subset A in the partition Γ containing a.
Hence the partition associated with RΓ is the given Γ . It is equally clear that if R is a
given equivalence relation and the partitionΛ=R(a)|a ∈ S}, then the equivalence re-
lation RΛ in which elements are equivalent if and only they are contained in the same
R(a) is the given relation R. 
�

If R is an equivalence relation on S, the associated partition Γ = {R(a)|a ∈ S} is
called the quotient set of S relative to the relation R, written S/R . We emphasize
again that S/R is no a subset of S. In the quotient set S/R, each equivalence class
R(a) is an element of S/R, R(a) and R(b) are the same element if (a, b) ∈ R.
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Example 1.1. Let Z be the set of all integers. On the Cartesian product set (or briefly
product set) Z × (Z−{0}), the binary relation R is defined as follows: for (a,b),
(c,d) ∈ Z × (Z−{0}),

((a,b), (c,d))∈ R ⇔ ad = bc, where ad and bd are the multiplication of the num-
bers.

It is obvious that ((a,b),(a,b)) ∈ R and ((a,b),(c,d)) ∈ R ⇒ ((c,d),(a,b)) ∈ R.
If ((a,b),(c,d)) ∈ R, ((c,d), (e, f )) ∈ R, then ad = bc,c f = de. We have ad f =
bc f = bde. Since d �= 0, hence a f = be and ((a,b), (e, f )) ∈ R. Therefore R is an
equivalence relation on Z × (Z−{0}). If for each (a,b) ∈ Z × (Z−{0}), (a,b) rep-
resents a rational number a/b, then any (c,d) in the equivalence class relative to R
determined by (a,b) represents the same rational number a/b and (Z×(Z− {0}))/R,
the quotient set of Z × (Z− {0}) relative to the relation R is the set of all rational
numbers.

1.1.3 Maps

Let A, B be two sets given, a map of A into B is a correspondence rule ϕ such that
∀a ∈ A, there exits a a′ ∈ B that a′ corresponds to a. a′ is called the image of a under
ϕ , denoted by ϕ(a); a is called the inverse image of a′. The set A is called domain
of ϕ and the set B co-domain (range) of ϕ . Usually, the above facts are denoted by

ϕ : A −→ B, a �−→ a′ = ϕ(a)

If S is a subset of A, then we write ϕ(S)={ϕ(a)| a ∈ S} and call this the image of
S under ϕ . In particular, we have ϕ(A), which is called the image (or range) of the
map. We will denote this also as Imϕ . If T ⊆ B, the subset

ϕ−1(T ) = {x|x ∈ A and ϕ(x) ∈ T}

of A is called completely inverse image of T under ϕ . For t ∈ B,

ϕ−1(t) = {x |x ∈ A and ϕ(x) = ϕ(t)}.

It is clear thatϕ−1(T )=
⋃

t∈T ϕ−1(t).
If A1 is a subset of A and ϕ is a map of A into B, then we get a map of A1 to B by

restricting the domain to A1.This map is called restriction of ϕ to A1 and denoted
by ϕ |A1. Turning things around we will say that a map ϕ of A to B is an extension
of the map ψ of A1 to B if ψ=ϕ |A1.

Two maps ϕ : A → B and ψ : C → D are said to be equal (denoted ϕ=ψ) if and
only if A=C, B=D and ϕ(a)=ψ(a) for any a ∈ A. A map ϕ : A→B is called surjective
if Imϕ=B, that is, if the range coincides with the co-domain. ϕ : A → B is injective if
distinct elements of A have distinct images in B, that is, if a1 �= a2 ⇒ϕ(a1) �= ϕ(a2).
If ϕ is both injective and surjective, it is called bijective (or ϕ is said to be one-to-one
correspondence between A and B).
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Example 1.2. For sets A = {a, b, c} and B = {1,2,3}, we define the maps f and g
as

f : a �−→ 1,b �−→ 1,c �−→ 2

g : a �−→ 1,b �−→ 2

Then f is a mapping A into B, Im f = f (A)={1, 2}, and f −1(1)={a, b}. However g
is not a mapping A into B, because there exits no image of c under g. Clearly, f is
neither a surjective nor a injective.

Example 1.3. Let Z and N be integers set and natural number set respectively, we
define the maps ϕ , ψ and γ as following

ϕ : Z −→ N ψ : Z −→ Z γ : Z −→ Z
n �−→ |n|+ 1 n �−→ 2n n �−→ n + 1

Then ϕ is a surjective, ψ is a injective, γ is a bijective, and ψ �= γ.

Let ϕ : A → B and ψ : B → C. Then we define the map γ: A →C as the map having
the domain A and the co-domain C, by definition

(ψϕ)(a) = ψ(ϕ(a)) (∀a ∈ A).

We call this map the composite (or product, or sometimes resultant) of ϕ and ψ (ψ
following ϕ). It is often useful to indicate the relation γ=ψϕ by saying that the

ϕA B

ψ

C

γ

is commutative. Similarly, we express the fact that ψϕ=δγ for ϕ : A → B, ψ : B → D,
γ: A → C, δ : C → D by saying that the rectangle triangle is commutative. Compo-
sition of maps satisfies the associative law: if ϕ : A → B, ψ : B → C, and γ: C → D,
then γ(ψϕ)=(γψ)ϕ . We note first that both of these maps have the same domain A
and the same co-domain D. Moreover, for any a ∈ A we have

(γ(ψϕ))(a) = γ((ψϕ)(a) = γ(ψ(ϕ(a)))

((γψ)ϕ)(a) = (γψ)(ϕ(a))= γ(ψ(ϕ(a)))
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A B

C D

ϕ

γ ψ

δ

A

CB

D

ϕ

ψ

γ

σρ

so γ(ψϕ) and (γψ)ϕ are identical. This can be illustrated by shown the above dia-
gram.

The associative law amounts to the statement that if the triangles ABC and BCD
are commutative then the whole diagram is commutative.

Example 1.4. For any set A one defines the identity map 1A (or 1 if A is clear) as

1A : A → A

a �→ a (∀a ∈ A).

This map is a mapping A into A.

We now state the following important results:

(1) If ϕ : A → B one checks immediately that 1Bϕ=ϕ1A.
(2) ϕ : A→B is bijective if and only if there exists a map ψ : B→ A such thatψϕ=1A

and ϕψ=1B.

The map ψ satisfying ψϕ=1A and ϕψ=1B is unique since if ψ ′: B → A satisfies
the same conditions, ψ ′ϕ=1A , ϕψ ′=1B, then

ψ ′ = 1Aψ ′ = (ψϕ)ψ ′ = ψ(ϕψ ′) = ψ1B = ψ .

We will now denote ψ as ϕ−1 and call this the inverse of the (bijective) map ϕ .
Clearly the foregoing result shows that ϕ−1 is bijective and (ϕ−1)−1=ϕ .

As a first application of the criterion for bijectivity we give a formal proof of a
fact which is fairly obvious anyhow: the product of two bijective maps is bijective.
For, Let ϕ : A→B andψ : B→C be bijective. Then we have the inverses ϕ−1: B→A
and ψ−1: C → B and the composite map ϕ−1ψ−1: C → A. Moreover,
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(ψϕ)(ϕ−1ψ−1) =((ψϕ)ϕ−1)ψ−1 = (ψ(ϕϕ−1))ψ−1 = ψψ−1 =1C.

Also,

(ϕ−1ψ−1)(ψϕ)=ϕ−1(ψ−1(ψϕ))=ϕ−1((ψ−1ψ)ϕ)=ϕ−1ϕ=1A.

Hence ϕ−1ψ−1 is an inverse of ψϕ , that is

(ψϕ)−1 = ϕ−1ψ−1 (1.1)

This important formula has been called the “dressing-undressing principle”: what
goes on in dressing comes off in the reverse order in undressing (e.g., socks and
shoes).

The proofs of the following statements remain as exercises. Let f be a map of X
into Y and A, B be any subsets of X and U , V be any subsets of Y . Then the following
assertions hold.

(1) f (A∪B) = f (A)∪ f (B), f (A∩B) ⊆ f (A)∩ f (B);
(2) f −1(U ∪V ) = f −1(U)∪ f −1(V ), f −1(U ∩V ) ⊆ f −1(U)∩ f −1(V ).

It is important to extend the notion of the Cartesian product of two sets to the
product of any finite or infinite number of sets using concept of mapping. Consider
to the Cartesian product A1 ×A2 of two sets A1, A2, where I={1, 2} is subscript set
(or indexing set). For every (a1, a2) ∈ A1 × A2, there exists a unique map f from
Iinto A1 ∪A2 such that f (1)=a1 ∈ A1, f (2)=a2 ∈ A2. Inversely, for every map f : I →
A1 ∪A2 which satisfies f (1)=a1 ∈ A1, f (2)=a2 ∈ A2, there exists a unique element
(a1, a2) in A1 × A2 such that a1= f (1), a2= f (2). Therefore, there exists an one-to-
one correspondence between the maps satisfied above properties and elements in
A1×A2. It follows that, we can extend the notion of the Cartesian product as follows:

Definition 1.3. Let {Ai|i ∈ I} be family of sets and I ( �= ∅) indexing set (finite or
infinite). The Cartesian product of Ai (i ∈ I) is defined as

{ f | f : I → ∪i∈IAi,∀i ∈ I, f (i) ∈ Ai},

and denoted by∏i∈I Ai.

It is clear that f ∈ ∏i∈I Ai is determined by image of { f (i)|i ∈ I}. If ai= f (i), we
always consider the f as the set {ai|i ∈ I}. Thus, when I={1, 2, . . . , n}, we have

∏
i∈I

Ai = {(a1,a2, . . . ,an)|ai ∈ Ai, i = 1,2, . . . ,n}.

Let A be a set and A �= ∅, the map f of A×A into A is called an algebra operation
(binary operation or binary composition) of A, that is, ∀a, b ∈ A, there exists a
unique element c in A such that f (a, b)=c, denoted by a ·b=c (or ab=c). For example,
in 2A, the power set of a set A, we have the algebra operation ∩, ∪ (i.e., for any C,
D ∈2A,(C, D) → C ∩ D and (C, D) → C ∪ D). Also, let Q be the set of rational
number, then additive, subtraction and multiplication of numbers all are algebra
operations of Q, but division of numbers does not, for zero cannot be a divisor.



1.1 Sets, Relations and Maps 13

The concept of algebra operations can be extended to any finite number of sets.
Let A be a non-vacuous set and n natural numbers, then a n-ary operation of A is a
map f from A×A×. . .×A to A. An algebraic system is a non-vacuous set with n-ary
operation. For example, if “·”, “∗” are binary operation of A, algebraic system A is
denoted usually by (A, ·,∗). Moreover, (Q,+,−,×) and (2A,∩,∪,′ ) are algebraic
systems.

We consider some important connections between maps and equivalence rela-
tions. Suppose ϕ : A → B. Then we can define a relation Rϕ in A by specifying
that aRϕb if and only if for a, b ∈ A, ϕ(a)=ϕ(b). It is clear that this is an equiva-
lence relation in A. If c ∈ B, c=ϕ(a) for some a ∈ A, then ϕ−1(c)=ϕ−1(ϕ(a))={ b|
ϕ(b)=ϕ(a)} and this is just the equivalence class Rϕ(a) in A determined by the ele-
ment a. We shall refer to this subset of A also as the fiber over the element c∈Imϕ .
The set of these fibers constitutes the partition of A determined by Rϕ that is, they
are the elements of the quotient set A/Rϕ .

In the general, ϕ : A → B defines a map ϕ∗ of A/Rϕ into B: abbreviating Rϕ(a) =
ϕ−1(ϕ(a)). We simply define ϕ∗ by writing down

ϕ∗(Rϕ(a)) = ϕ(a) (1.2)

Since Rϕ(a) = Rϕ(b) if and only if ϕ(a) = ϕ(b), it is clear that the right-hand side
is independent of the choice of the element a in Rϕ(a) and so, indeed, we do have a
map. We call ϕ∗ the map of A/Rϕ induced by ϕ . This is injective since ϕ∗(Rϕ(a))
= ϕ∗(Rϕ(b)) gives ϕ(a) = ϕ(b) and this implies Rϕ(a) = Rϕ(b), by the definition
of Rϕ . Of course, if ϕ is injective to begin with, then aRϕb (ϕ(a) = ϕ(b)) implies a
= b. In this caseA/Rϕ can be identified with A and ϕ∗ can be regarded as the same
as ϕ .

Let ν : A → A/Rϕ be a map for any a ∈ A, ν(a) = Rϕ(a) (i.e., the natural map of
A to A/Rϕ ). We now observe that ϕ∗(ν(a)) = ϕ∗(Rϕ(a)) = ϕ(a). Hence we have
the factorization of the given map as a product of the natural map ν of A to A/Rϕ

ϕ = ϕ∗ν (1.3)

and the induced map ϕ∗ of A/Rϕ to B. The map ϕ∗ is injective and ν is surjective.
The relation (1.3) is equivalent to the commutativity of the diagram A/Rϕ to B.
The map ϕ∗ is injective and ν is surjective. The relation (1.3) is equivalent to the
commutativity of the diagram.

Since ν is surjective it is clear that Imϕ = Imϕ*. Hence ϕ* is bijective if and only
if ϕ is surjective. We remark finally that ϕ* is the only map which can be defined
from A/Rϕ to B to make the above commutative diagram. Let ψ : A/Rϕ → B satisfy
ψν = ϕ . Then ψ(Rϕ(a)) = ψ(ν(a)) = ϕ(a). Hence ψ = ϕ*.

There is a useful generalization of these simple considerations. Suppose we are
given a map ϕ : A → B and an equivalence relation Ron A. We shall say that ϕ is
compatible with R if aRb for a, b in A implies ϕ(a) = ϕ(b). In this case, we can
define a map ϕ∗ of A/R to B by ϕ∗ : R(a) → ϕ(a). Clearly this is well defined, and
if ν denotes the natural surjection a �−→ R(a), then ϕ = ϕ∗ν , that is, we have the
commutativity.
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A B

A
Rϕ

ν ϕ ∗

ϕ

A B

A
R

ν ϕ ∗

ϕ

In this case the map ϕ∗ need not be injective. In fact ϕ∗ is injective if and only if
the equivalence relation R = Rϕ . We now call attention to the map ν of A into A/E
defined by

ν : a → R(a).

We call this the natural map of A to the quotient set A/R. Clearly, ν is surjective.

1.1.4 Countable Sets

A set is finite if and only it can be put into one-to-one map with a set of the form
{p|p ∈ N and p < q} for some q ∈ N, where N is the set of non-negative integers.

Definition 1.4. A set A is called countably infinite if and only if it can be put into
one-to-one map with the set N of non-negative integers; A set is countable if and
only if it is either finite or countably infinite, otherwise it is called uncountable .

Theorem 1.3. A subset of a countable set is countable.

Its proof remains as an exercise.

Theorem 1.4. If A is a countable family of countable sets, then ∪A∈A A is count-
able.

Proof. Because A is countable there is a one-to-one map F whose domain is a
subset of N and whose range is A . Since F(p) ∈ A is countable for each p in
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N, it is possible to find an one-to-one map Gp on a subset of {p}×N whose range
is the countable set F(p). Consequently there is a one-to-one map on a subset of
N × N whose range is ∪A∈A A, and the problem reduces to showing that N × N is
countable. The key to this proof is the observation that, if we think of N ×N as lying
in the upper left to lower right contain only a finite number of members of N × N.
Explicitly, for n in N, let

Bn = {(p,q) | (p,q) ∈ N ×N, and p + q = n }.

Then Bn contains precisely n + 1 points, and the union ∪n∈ZBn is N ×N. A one-to-
one map on N with range N ×N may be constructed by choosing first the members
of B0, next those of B1 and so on. The explicit definition of such a function is left as
an exercise. 
�

Corollary 1.1. The set Q of all rational numbers is a countable set.

Its proof remains as an exercise.

Corollary 1.2. The set R of all real numbers is uncountable.

Proof. Before we prove R is uncountable, we first prove that the interval (0, 1) is
uncountable. We suppose that the set of real numbers in (0, 1) is countable and
assume a one-to-one map has been set between the set of non-negative integers
Nand (0, 1). We indicate the correspondence the following diagram:

1 ↔0.a11a12a13a14. . .

1 ↔0.a21a22a23a24. . .

1 ↔0.a31a32a33a34. . .

. . . . .

. . . . .

Where each ai j represents a digit, i.e., 0≤ ai j ≤9, and where it is assumed that where
we have two alternate choices for the decimal expression of real number, as for ex-
ample in the case where 2/10 could be written either as 0.2000. . . or as 0.1999. . . , we
always choose the one that ends in a tring of zeros. Now this one-to-one correspon-
dence is such that to every positive integer there correspondence some real number
in (0, 1) and conversely to each real number in (0, 1) there correspondence some
integer. Consequently the infinite list of decimals given above is complete in the
sense that every real number of (0, 1) occurs somewhere in the list. If , then, we can
produce a real number in (0, 1) which is not in this list we shall have a contradiction,
and this is precisely what we set out to do. We define b=0.b1b2b3. . . as follows: if aii

is 5 let bi=6, if aii �=5 let bi=5. Now it is clear that b is not equal to any one of the
decimals in our list for it differs from the nth one at the nth place. Also it is clear that
b is between 5/9 and 2/3, so that b ∈(0, 1). This contradiction then shows that there
cannot exist such a one-to-one correspondence between N and (0, 1), and the set of
real number in (0, 1) is uncountable. Since (0, 1) is a subset of the set of real number
R, hence R is uncountable because of Theorem 1.3. 
�
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1.1.5 Partially Ordered Sets, Directed Sets and Nets

The most general concept we consider in this section is that of a partially ordered
set. We recall that a binary relation on a set S is a subset R of the product set S ×S.
We say that a is in the relation R to b if and only if (a,b) ∈ R.

Definition 1.5. A partially ordered set (S, ≤) (simply, S) is a set S together with a
binary relation R≤ on S satisfying the following conditions, where for a, b ∈ S, a ≤ b
simply denotes (a, b) ∈ R≤:

(1)a ≤ a for any a ∈ S; (reflexivity)
(2)If a ≤ b and b ≤ a, then a = b; (anti-symmetry)
(3)If a ≤ b and b ≤ c, then a ≤ c. (transitivity)

Also, “≤” is called a partially ordered relation on set S.

Let (S,≤) be a partially ordered set, and a,b ∈ S. If a ≤ b and a �= b, then we write
a < b. Also we write a ≥ b as an alternative for b ≤ a and a > b for b < a. If a ≤ b or
b ≤ a, then we say that is comparable with a and b. In general we may have neither
a ≤ b nor b ≤ a holding for the pair of elements a, b ∈ S, denoted by a||b, and then
we say that is not comparable or uncomparable between a and b.

Example 1.5. Let 2S be the power set of a set S. If A ≤ B for subsets A and B means
A ⊆ B, then (S, ⊆) is a partially ordered set. Let N be a set of natural numbers. If
a ≤ b for natural numbers a and b means a|b (a is a divisor of b), then (N, | ) is a
partially ordered set.

Definition 1.6. Let (S, ≤) be a partially ordered set. If we do have a ≤ b or b ≤ a
for every pair (a, b), in other word, every pair (a, b) is comparable, then we call (S,
≤) (simply, S) a linear ordered set (or a chain , or a totally ordered set), and call the
“≤” linear (or totally) order on set S.

Example 1.6. Let N be a set of natural numbers. If a ≤ b for natural numbers a and
b means that a is less than b or equals b, then (N, ≤) is a linear ordered set.

Let ≤ be a partially ordered relation on the set S and N a subset of S, then inverse
relation ≤−1 (or ≥ ) of ≤ is also a partially ordered relation on S. Induced relation
≤N of ≤ on N is a partially ordered relation on N such that for a, b ∈ N, a ≤N

b ⇔ a ≤ b. We say partially ordered set (S, ≤−1) and (N, ≤N) to be dual ordered
subset of partially ordered set (S, ≤), respectively. If (N, ≤N) is a chain, that is, N
with partially ordered relation ≤N became a chain, then we say N to be a chain in
S. Clearly, if (S,≤) is a chain, then it is dual and partially ordered subset are also
chain, respectively. Let C be a chain in S, we call C a maximal chain in S if D is a
chain in S and C ⊆ D, then C = D.

In a partially ordered set (S, ≤) the relation “<” can be expressed in terms of a
relation of covering . We say that a1 is a cover of a2 (or a1 is a prime over of a2,
or a2 is a prime under of a1) if a2 < a1 and there exists no u such that a2 < u < a1,
denote by a2 ≺ a1. It is clear that a < b in partially ordered set if and only if there
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exists a sequence b = a1, a2, . . . , an = a such that each ai is a cover of ai+1. The
notion of cover suggests a way of representing partially ordered set S by a diagram
(Hasse diagram). We represent the elements of S by dots. If a1 is a cover of a2 then
we place a1 above a2 and connect the two dots by a straight line. Then b < a if
and only if there is a descending broken line connecting a to b. If a and b are not
comparable, that is a||b, then no line connects a and b. Some examples of Hasse
diagrams of partially ordered sets are shown below.

The third example, represent a totally ordered set.
We now define quasi-ordered relation which is weaker than partially ordered re-

lation.

Definition 1.7. A quasi-ordered set (S,≤) is a set S together with a binary relation
R≤ on S satisfying the following conditions, where for a,b ∈ S, a ≤ b simply denotes
(a,b) ∈ R≤:

(1) a ≤ a; (reflexivity)
(2) If a ≤ b and b ≤ c, then a ≤ c. (transitivity)

“≤” is called a quasi-ordered relation on set S.

It is clear that a partially ordered relation must be a quasi-ordered relation. But the
converse statement is not always true. For example, in the set of real numbers R, we
define a binary relation ≤′

as follows

a ≤′
b ⇔ |a| ≤′ |b|, (∀a, b ∈ R)

Then ≤′
is a quasi-ordered relation without being a partially ordered relation.

Definition 1.8. Let (S, ≤) be a quasi-ordered set. (S, ≤) is called a quasi-linear
ordered set if we do have a ≤ b or b ≤ a for pair of elements a,b ∈ S.

Definition 1.9. Let (S,≤) be a partially ordered set, A a non-empty subset of S, and
a ∈ A. If we have x ≤ a for every x ∈ A, then a is called a maximum element of A.
If there exist no y ∈ A such that a < y (a �= y), then a is called a maximal element of
A. Dually, we can define minimum element and minimal element of A.

It is clear that a maximum (minimum) element must be a maximal (minimal) ele-
ment. But in general the converse of the result is not true. In particular, the maximum
element of the partially ordered set (S,≤) (if it exists) is called identity element of
S, denoted as I or 1, the minimum element of the partially ordered set (S,≤) (if it
exists) is called zero element of S, denoted as O or 0. In a partially ordered set there
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may be more than one maximal (minimal) element, but there is only one maximum
(minimum) element if it has. In virtue of the following theorem, we know that every
finite chain must have a maximal (minimal) element.

Theorem 1.5. Let (S, ≤) be a partially ordered set and A be a non-empty subset of
S. Then the following assertions hold:

(1) If A has maximum (minimum) element, then the maximal (minimal) element is
unique.

(2) If A is finite subset of S, then there must exist a maximal (minimal) element.
(3) If A is a chain in S (e.g. linear ordered subset), then maximal (minimal) element

of A (if it exists) must be maximum (minimum) element.

Proof. We only present the proof of (2) here while the others are left as exercise.
Let A = {a1,a2, . . . ,an}, we define sequence

m1,m2, . . . ,mn

of elements in S, such that m1 = a1 and

mk =
{

ak, i f mk−1 < ak

mk−1, otherwise
(1.4)

It is clear that mn is a maximal element of A. Similarly, we can prove that A has the
minimal element. 
�

Let (S,≤) be a partially ordered set (resp. chain). If S is a finite set, then (S,≤)
is called a finite partially ordered set (resp. finite chain). If not, (S,≤) is called a
infinite partially ordered set (resp. infinite chain). Let (S,≤) be a partially ordered
set together with maximal element I and minimal element O. Then prime over (or
cover) of O is called an atom of S, and prime under of I is called a dual atom of S.

Definition 1.10. Let D be a non-empty set and R≥ be a binary relation on D. For
a,b ∈ D, a ≥ b simple denotes (a,b) ∈ R≥. R≥ is said to direct the set D if it satisfies
the following conditions:

(1) if m,n, p ∈ D such that m ≥ n and n ≥ p, then m ≥ p;
(2) if m ∈ D, then m ≥ m;
(3) if m,n ∈ D, then there is p in D such that p ≥ m and p ≥ n.

We say that m follows in and n precedes m if and only if m ≥ n.

The family of all finite subsets of a set is directed by ⊇. A directed set is a pair
(D,≥) such that ≥ directs the set D. This sometimes called a directed system. A net
is a pair (S, ≥) such that S is a map and ≥ directs Dthe domain of S, which is simply
written as {Sn | n ∈ D, ≥}. A net {Sn | n ∈ D, ≥} is in a set A if and only if Sn ∈ A
for all n ∈ D; it is eventually in A if and only if there is an element m of D such that,
if n ∈ D and n ≥ m, then Sn ∈ A; it is frequently in A if and only if for each m in D
there is n in D such that n ≥ m and Sn ∈ A. If {Sn | n ∈ D, ≥} is frequently in A, then
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the set E of all members nof D such that Sn ∈ A has the property: for each there is p
in E such that p ≥ m. Such subsets of D are called cofinal . Each cofinal subset E of
D is also directed by ≥ because for elements m and n of E there is p in D such that
p ≥ m and p ≥ n, and there is then an element q of E which follows p.

1.1.6 Maximal Conditions and Minimal Conditions

Let (S,≤) be a partially set. We now consider the following conditions.

A. Minimal Condition: Every non-empty subset of S must have minimal elements.

B. Descending Chain Condition: For every sequence of elements {ai | i = 1,2, . . .},
if

a1 ≥ a2 ≥ . . . ≥ an ≥ . . . ,

then there exists a positive integer m such that am = am+n, n = 1,2, . . . .

C. Inductive Condition: For any property ε , if

(1) Every minimal element (if it exists) has property ε ,
(2) For ∀a, x ∈ S, x < a, x has property ε ⇒ a has property ε .

Then every element in S has also property ε .
The duality hold; we have

A′. Maximal Condition: Every non-empty subset of S must have maximal elements.

B′. Descending Chain Condition: For every sequence of elements {ai | i =
1,2, . . .}, if

a1 ≤ a2 ≤ . . . ≤ an ≤ . . . ,

then there exists a positive integer m such that am = am+n, n = 1,2, . . . .

C′. Dual Inductive Condition: For any property ε , if

(1) Every maximal element (if it exists) has property ε ,
(2) For ∀a, x ∈ S, x > a, x has property ε ⇒ a has property ε .

Then every element in S has also property ε .
The relation among those condition terms from the following

Theorem 1.6. Conditions A, B and C (dually, Conditions A′, B′ and C′) are equiva-
lent for any partially set (S,≤).

Proof. A ⇒ C. Let S satisfy the minimal condition (i.e. A), ε be a property. The
premises of inductive condition (i.e. C) is satisfied. Let

M = {a | a ∈ S and a has no property ε},
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then M ⊆ S. If M �= ∅, there exists a minimal element a ∈ M by A, but a is not a
minimal element in S from the premises of inductive condition. However, if x < a
and x ∈ P, then x /∈ M and has property ε , consequently, a has also property ε from
the premise (2) of inductive condition. This contradicts that a ∈ M and M = ∅. Thus
inductive condition (i.e. C) holds.

C⇒B. Let S satisfy inductive condition (i.e. C). Definite: a(a ∈ S) has property
ε if and only if for every descending chain

a = a1 ≥ a2 ≥. . .≥ an ≥. . . ,

there exists a positive integer m such that am = an+n, n = 1,2, . . . . It is clear that
every minimal element (if it exists) in S has property ε . Let a ∈ S, and ∀x ∈ S, if
x < a, then x has property ε , then a has property ε . Consequently, every element in
S has property ε by inductive condition (i.e. C), that is, descending chain condition
(i.e. B) holds.

B⇒A. Let descending chain condition (i.e. B) holds. Let us suppose that minimal
condition (i.e. A) does not hold, then there exists a non-empty subset N of P such
that N has no minimal element. It is obvious that N is an infinite set. Let a1 ∈ S, then
a1 is not the minimal element of N, consequently, there exists a2 such that a1 > a2.
Since a2 is not the minimal element of N, there exists a3 such that a1 > a3 · · · · · · .
It follows that, there is a sequence of elements of N such that

a1 > a2 > .. . > an > .. . ,

and this contradicts that descending chain condition (i.e. B) holds.
Similarly, we can show that conditions A′, B′ and C′ are equivalent. 
�

Definition 1.11. A linear ordered set (or a chain) which satisfies maximal condition
is called a well ordered set . Its linear ordered relation is called well order.

Example 1.7. (N,≥), the set of natural numbers N ordered by usually order relation
of numbers ≥, becomes a well ordered set.

For a well ordered set (S,≤), it is easy to verify that every partially ordered subset
of S is also a well ordered set, and there exists a unique minimal element (it is also
minimum element) in S. Moreover, we have the following theorems (their proofs
are left to the reader).

Theorem 1.7. Let (S,≤) be a partially ordered set. S satisfies minimal condition if
and only if every chain in S is a well ordered set.

Here, we present the axiom of choice, and line up, without proof, some theorems,
which are equivalent to the axiom of choice. They will play a fundamental role in
what follows.

Theorem 1.8. (Axiom of choice) Let P∗ (S) = 2S −∅. Then there exists a mapping
ϕ: P∗ (S) → A such that ϕ(T ) ∈ T for every T ∈ P∗ (S).
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Theorem 1.9. (Zermelo) For any set S, there exists a linear order ≥ such that (S,≤)
is a well ordered set.

Theorem 1.10. (Hausdorff) For any partially set (S,≤), every chain in S is included
in some maximal chain.

Theorem 1.11. (Kuratowski-Zorn) Let (S,≤) be a partially ordered set. If every
chain in S has an upper bound in S, then every element of S is included in some
maximal element of S.

1.2 Topological Spaces

Our purpose here is to study what is ordinarily called point set topology [4]. Point
set topology is one of the fundamentals that we study the theory of topological
molecular lattices, the topology structures on the AFS structure and the applications
to the pattern recognition.

The development of general topology has followed an evolutionary development
which occurs frequently in mathematics. One begins by observing similarities and
recurring arguments in several situations which superficially seem to bear little re-
semblance to each other. We then attempt to isolate the concepts and methods which
are common to the various examples, and if the analysis has been sufficiently pene-
trating we may find a theory containing many or all of our examples, which in itself
seems worthy of study. It is in precisely this way, after much experimentation, that
the notation of a topology space was developed. It is a natural product of a continu-
ing consolidation, abstraction, and extension process. Each such abstraction, if it is
to contain the examples from which it was derived in more than a formal way, must
be tested to find whether we have really found the central ideas involved. In this
case we want to find whether a topological space, at least under some reasonable
restrictions, must necessarily be one of the particular concrete spaces from which
the notation is derived. The “standard” examples with which we compare spaces are
Cartesian products of unit intervals and metric spaces.

1.2.1 Neighborhood Systems and Topologies

In a certain sense, a neighborhood of a point x is a set of points which lie “close”
to the point. For example, you have the sets of “close friends”, “common friends”,
“friends” etc. to describe your relationship with your friends. According to the opin-
ion, the notion of a neighborhood system of a point x of the set is defined as the
following Definition 1.13 which is abstracted from Euclidean space.

Definition 1.12. Let X be a set and T be a family of subsets of X (i.e., T ⊆ 2X).
The pair (X ,T ) is call a topological space, if the following conditions hold.

(1) The union of any number of sets of T is again in T ;
(2) The intersection of any two of sets of T is again in T ;
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(3) X ∈ T ;
(4) ∅ ∈ T .

It is frequently convenient to say simply that X is a topological space, rather than
having to specify the topology, T , and having to write (X , T ), since, more often
than not, we are interested not so much in a particular topology, but further in prop-
erties that any topology still possesses. We shall thus feel free to omit any specific
mention of the topology unless it is important to the context to emphasize a partic-
ular topology, or to distinguish between different topologies.

The members of the topology T are called open relative to T , or T –open, or
if only one topology is under consideration, simply open sets. LetX be a set. By
Definition 1.2.1, we know that (X , T ) is a topological space if T = {X ,∅}. This is
not a very interesting topology, but it occurs frequently enough to deserve a name;
it is called the indiscrete (or trivial) topology for X , and (X ,T ) is then an indiscrete
topological space ). At the other extreme is the family of all subsets of X , T = 2X ,
which is the discrete topology for X , and (X , T ) is then a discrete topological space.
If T is the discrete topology, then every subset of the space is open.

The discrete and indiscrete topologies for a set X are respectively the largest and
the smallest topology for X . If T1 and T2 are topologies for X , then, following
the convention for arbitrary families of sets, T1 is smaller than T2 if and only if
T1 ⊆ T2. In other case, it is also said that T1 is coarser than T2 and T2 is finer
than T1. The space (X ,T ) is called a finite topological space if X is a finite set.
Otherwise, (X ,T ) is called an infinite topological space.

Definition 1.13. Let X be a set and (X ,T ) be a topological space. A set U ⊆ X is
called a neighborhood of a point x ∈ X if and only if there exists an open set V ∈ T
such that x ∈ V ⊆ U . The family of all neighborhoods of the point x is called the
neighborhood system of x, written Ux.

A neighborhood of a point need not be an open set, but every open set is a neigh-
borhood of each of its points. Each neighborhood of a point contains an open neigh-
borhood of the point. The following theorem shows that a topology for a set X can
be generated by the neighborhood systems of the points in X .

Theorem 1.12. A set is open if and only if it contains a neighborhood of each of its
points.

Proof. The union U of all open subsets of a set A is surely an open subset of A. If A
contains a neighborhood of each of its points, then each member x of A belongs to
some open subset of A and hence x ∈ U . In this case A = U and therefore A is open.
On the other hand, if A is open it contains a neighborhood (namely, A) of each of its
points. 
�

Example 1.8. Let R be the real line. The usual topology for R is the family of all
those sets which contain an open interval about each of their points (e.g., (a,b) =
{x |a < x < b}). Define
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Ux = {U |x ∈ (a,b) ⊆ U for some a,b ∈ R,a < b}.

Then Ux is a neighborhood system at x and generates the usual topology for R
according to Theorem 1.12.

Example 1.9. Let X be a set, and let Ux={U | x ∈ U , U ∈2X} for each x ∈ X , then
Ux is a neighborhood system at x, and the topology thus generated is the discrete
topology for X .

Example 1.10. Let X be a set, and let Ux = {X} for each x ∈ X , then Ux is a neigh-
borhood system at x, and the topology thus generated is the trivial (indiscrete) topol-
ogy for X .

Theorem 1.13. If U is the neighborhood system of a point, then finite intersections
of members of U , and each set which contains a member of U belongs to it.

Proof. If U and V are neighborhoods of a point x, there are open neighborhoods U0

and V0 contained in U and V respectively. Then U ∩V contains the open neighbor-
hood U0 ∩V0 and is hence a neighborhood of x. Thus the intersection of two (and
hence of any finite number of ) members of U is a member. If a set U contains a
neighborhood of a point x it contains an open neighborhood of x and is consequently
itself a neighborhood. 
�

1.2.2 Limit Points Closure of a Set and Closed Sets

Now we introduce first the notions of limit points and the derived set of a set, via
the following manner.

Definition 1.14. Let X be a topological space and A be a subset of X . Then the point
x ∈ X is said to be a limit point (sometimes called accumulation point or cluster
point ) of A, provided that for every U ∈ Ux, U ∩A contains a point y �= x.

Example 1.11. Let us study the real plane.

1. In the real plane with the usual topology, any point of the form (0, y) is a limit
point of the set D = {(x,y) | x > 0}.

2. On the real line with the usual topology, a as well as b is a limit point of the
interval (a, b).

3. Let X be a nonempty set with the discrete topology, let A ⊆ X and let x ∈ X , then
x is not a limit point of A.

Definition 1.15. Let X be a topological space and let A ⊆ X . The derived set of A ,
written Ad , is the set of all x ∈ X such that x is a limit point of A.

Example 1.12. On the real line with the usual topology, let A = (a,b), then Ad =
[a,b]. Let B = {x | 0 < x ≤ 1 or x = 2}, then Bd = [0, 1]. By Definition. 1.14 and
Definition. 1.15, it is easy to prove the following theorem.
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Theorem 1.14. In any topological space, the following assertions hold.

(1) if A ⊆ B, then Ad ⊆ Bd.
(2) (∅d)d = ∅.

The closure of a set A in a topological space X has a number of interesting properties.
They are presented though the following definition.

Definition 1.16. Let X be a topological space, and let A ⊆ X . The closure of A,
written A−, is the set A∪Ad.

It is clear that the intersection of the members of the family of all closed sets con-
taining A is the closure of A.

Theorem 1.15. Let X be a topological space, and let A ⊆ X, then A−− = A−.

Proof. By Definition 1.16 A−− = A− ∪ (A−)d . We show that (A−)d ⊆ A−. Let x ∈
(A−)d , and suppose x /∈ A− = A∪Ad , then x /∈ A and further, since also x /∈ Ad , by
Definition 1.2.3 there exists some U ∈ Ux, such that U ∩ A = ∅. Select O, open,
such that x ∈ O ⊆ U , then O ∈ Ux, and further since O∩A ⊆ U ∩A = ∅, we have
O∩A = ∅. Now since x ∈ (A−)d , O∩A− contains some point y �= x. Thus y ∈ A−,
and since O∩A = ∅, y ∈ Ad . Since O is open, O ∈ Ux, by Definition 1.14, thus there
exists z �= y such that z ∈ O∩A. This, however, contradicts O∩A = ∅, consequently
x ∈ A−. This completes the proof that (A−)d ⊆ A−. Finally A−− = A−∪(A−)d , since
(A−)d ⊆ A−. 
�

Theorem 1.16. Let X be a topological space and let A ⊆ X and B ⊆ X, then the
following assertions hold.

(1) If A ⊆ B, then A− ⊆ B−.
(2) (A∩B)− ⊆ A− ∩B−.
(3) (A∪B)− = A− ∪B−.

Proof. (1) If A ⊆ B, then Ad ⊆ Bd by Theorem 1.14. Consequently, A− = A∪ Ad ⊆
B∪Bd = B−.

(2) Let x ∈ (A∩B)−, and let U ∈Ux. Then U ∩(A∪B) �= ∅. Consequently, neither
U ∩A nor U ∩B is empty, and x ∈ A− and x ∈ B−, hence x ∈ A− ∩B−. Therefore
(A∩B)− ⊆ A− ∩B−.

(3) Since A ⊆ A ∪ B and B ⊆ A ∪ B, we have by part (1) of this theorem that
A− ⊆ (A∪B)− and B− ⊆ (A∪B)−, that is A−∪B− ⊆ (A∪B)−. Now let x ∈ (A∪B)−,
and suppose x /∈ A− and x /∈ B−, then there exist U , V ∈ Ux such that U ∩ A = ∅
and U ∩B = ∅. Now U ∩V ∈ Ux and

U ∩V ∩ (A∪B) = (U ∩V ∩A)∪ (U ∩V ∩B) ⊆ (U ∩A)∪ (V ∩B) = ∅,

but this contradicts x ∈ (A∪B)−. Consequently either x ∈ A− or x ∈ B−, when x ∈
A− ∪B−, and finally (A∪B)− = A− ∪B−. 
�

Theorem 1.17. Let X be a topological space, and let A ⊆ X be open. Let B ⊆ X,
then A∩B− ⊆ (A∩B)−.
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Proof. Let
x ∈ A∩B− = A∩ (B∩Bd) = (A∩B)∪ (A∩Bd)

If x ∈ A∩B, then
x ∈ (A∩B)∪ (A∩B)d = (A∩B)−

Assume x ∈ A ∩Bd . Since A ∈ Ux, if U ∈ Ux, A ∩U ∈ Ux by Theorem 1.14. Now
since x ∈ Bd , (A∩U)∩B contains a point y �= x. Thus for each U ∈Ux, U ∩(A∩B) =
(A∩U)∩B contains a point y �= x, whence

x ∈ (A∩B)d ⊆ (A∩B)−

In either case, x ∈ (A∩B)−, whence A∩B− ⊆ (A∩B)−. 
�
It is perhaps reasonable to ask at this point if there are sets which already contain
all their limit points, and if such sets have any interesting and distinctive properties.
We now set about investigating some of the properties of such sets.

Definition 1.17. Let X be a topological space, let A ⊆ X , then A is said to be closed
provided A = A−.

Remark 1.1. In any space, the sets ∅ and X (the whole space) are invariably closed,
and for that matter also invariably open.

It is important to remember that open and closed are not antithetical for sets in a
topological space, namely that a set may be both open and closed at the same time,
which it may be open but not closed, that it may be closed but not open, and that it
may be neither open nor closed. Consequently we have that, if we are in a position
to want to prove a set closed, it will do us no good whatever to prove it is not open.
It is, of course, equally true that it does no good to prove a set is not closed if our
object is to prove that it is open. However, open and closed sets are related as is
shown in the following

Theorem 1.18. A set A, in a topological space X, is closed if and only if its comple-
ment, A′, is open.

Proof. Let A be closed, and let x ∈ A′. Since x /∈ A = A−, there exists a neighborhood
U ∈Ux such that U ∩A = ∅. Consequently,U ⊆ A′, when by Theorem 1.14, A′ ∈Ux,
and by Theorem 1.12, A′ is open.

Conversely, let A′ be open, and let x ∈ A−. Suppose that x ∈ A′, then by Definition
1.13, A′ ∈ Ux, and so A′ ∩A �= ∅. This is clearly a contradiction, consequently x ∈ A,
and A− ⊆ A. However, since for any set A ⊆ A−, we have A = A−, and A is closed.


�
A simple application of this theorem, together with DeMorgan’s rule, establishes
the following

Corollary 1.3. In any topological space, the following assertions hold.

(1) The intersection of any number of closed sets is closed, and
(2) The union of any two (hence any finite number) of closed sets is closed.
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Proof. (1) Let A be an indexing set, and for each α ∈ A let Cα be closed. Further let
C =∩α∈ACα , then C′ = (∩α∈ACα)′ = ∪α∈AC′

α , and since by Theorem 1.18 every C′
α

is open, so also is ∪α∈AC′
α by Definition 1.12. Thus C′

α is open, again by Theorem
1.18, C is closed. 
�

1.2.3 Interior and Boundary

Here is another operator defined on the family of all subsets of a topological space,
which is very intimately related to the closure of a set.

Definition 1.18. A point x of a subset A of a topological space is called an interior
point of A if and only if A is a neighborhood of x, and the set of all interior point of
A is said to be the interior of A, denoted A0.

Theorem 1.19. let A be a subset of a topological space X. Then the interior A0 of A
is open and is the largest open subset of A. A set A is open if and only if A = A0. A
set of all points of A which are not points of accumulation of X −A is precisely A0.
The closure of X −A is X −A0.

Proof. If a point x belongs to the interior of a set A, then x is a member of some open
subset U of A. Every member of U is also a member of A0, and A0 consequently
contains a neighborhood of each of its points and is therefore open by Theorem
1.12. If V is an open subset of A and y ∈ V , then A is a neighborhood of y and so
y ∈ A0. Hence A0 contains each open subset of A and it is therefore the largest open
subset of A. If A is open, then A is surely identical with the largest open subset of
A; hence A is open if and only if A = A0. Assume that x is a point of A such that
is not an accumulation point of X −A. There is a neighborhood U of x which does
not intersect X − A and is therefore a subset of A. Then A is a neighborhood of x
and x ∈ A0. On the other hand, A0 is a neighborhood of each of its points and A0

does not intersect X − A, so that no point of A0 is an accumulation point of X − A.
Finally, since A0 consists of the points of A which are not accumulation points of
X −A, hence the complement of A0, X −A0, is precisely the set of all points which
are either point of X − A or accumulation points of X − A; that is, X − A0 is the
closure of X −A by Definition 1.16. 
�

The preceding result can be stated as (A0)′=(A′)−, and, it follows, by taking comple-
ments, that A0=((A′)−)′. Thus the interior of A is the complement of the closure of
the complement of A. If A is replaced by its complement it follows that A−=((A′)0)′,
so that the closure of a set is the complement of the interior of the complement. If
X is an indiscrete space the interior of every set except X itself is empty. If X is a
discrete space, then each set is open and closed and consequently identical with its
interior and with its closure. If X is the set of real numbers with the usual topology,
then the interior of the set of all integers is empty; the interior of closed interval is
the open interval with the same endpoints. The interior of the set of rational numbers
is empty, and the closure of the interior of this set is consequently empty.
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Definition 1.19. Let A be a set of a topological space X . The set of all points which
are interior to neither A nor X −A is said to be the boundary of A. Equivalently, x is
a point of the boundary if and only if each neighborhood of x intersects both A and
X −A.

It is clear that the boundary of A is identical with the boundary of X − A. If X is
indiscrete space and A is neither X nor empty, then the boundary of A is X , while
if X is discrete space the boundary of every subset is empty. The boundary of an
interval of real numbers, in usual topology for the real numbers, is the set whose
only members are the endpoints of the interval, regardless of whether the interval
is open, closed, or half-open. The boundary of the set of rational numbers, or the
set of irrational, is the set of all real numbers. It is not difficult to discover the
relations between boundary, closure, and interior. The following theorem, whose
proof remains as an exercise, summarizes the facts.

Theorem 1.20. Let A be a subset of a topological space X and let b(A) be the
boundary of A. Then b(A) = A− ∩ (X −A)− = A− −A0, X −b(A) = A0 ∪ (X −A)0,
A− = A∪b(A) and A0 = A−b(A). A set is closed if and only if it contains its bound-
ary. A set is open if and only if it is disjoint from its boundary.

1.2.4 Bases Countability Axioms Separability

In defining the usual topology for the set of real numbers we began with the family
B of open intervals, and formed this family constructed the topology T . The same
method is useful in other situations and we now examine the construction in detail.

Definition 1.20. A base (or basis) for a topology , T , of a space X is B a subset of
T and for each x ∈ X and each U ∈ Ux, there exists V ∈ B such that x ∈ V ⊆ U .
The sets of B are called basic sets and B is said to be a base for the topology T .
Let Bx be a subset of T and x ∈ X . If each U ∈ Ux, there exists V ∈ Bx such that
x ∈ V ⊆ U , then the sets of Bx are called basic sets of the neighborhood system of
x and Bx is said to be a base for the neighborhood system of x.

The family of open intervals is a base (or basis) for usual topology of the real num-
bers, in view of the definition of the usual topology and the fact that open intervals
are open relative to this topology. The following simple characterization of bases is
frequently used as an alternative definition of base.

Corollary 1.4. A subfamily B of a topology T for X is a base for T if and only if
each member of T is the union of members of B.

Proof. Suppose that B is a base for the topology T and that U ∈ T . Let V be the
union of all members of B which are subsets of U and suppose that x ∈ U . Then
there is W in B such that x ∈ W ⊆ U by Definition 1.20, and consequently x ∈ V .
So that U ⊆ V . Since V is surely a subset of U , hence V = U . Conversely, suppose
B ⊆ T and each member of T is the union of members of B. If U ∈ T , then U is
the union of members of a subfamily of B, and for each xin U there is V in B such
that x ∈ V ⊆ U . Consequently B is a base for T by Definition 1.20. 
�
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Example 1.13. Let X a nonempty set, and let

B1 = {{x}| x ∈ X}, B2 = {X}

then B1 is a base for the discrete topology of X , and B2 is a base for the trivial
topology of X .

Although this is a very convenient method for the construction of topology, a little
caution is necessary because not every family of sets is the base for a topology. The
reason for this situation is made clear by the following example and theorem.

Example 1.14. Let X = {0,1,2}, A={0, 1} and B={1, 2}. If S = {X , A, B, ∅}, then
cannot be the base for any topology because the union of members of is always a
member of . Therefore if S were the base of a topology then that topology would
have to be S itself, but S is not a topology due to A∩B /∈ S.

We shall enable to distinguish bases from other families of subsets, as in fact is
shown by the following theorem.

Theorem 1.21. A family, B, of subsets of a set X is a base for some topology, T ,
of X if and only if both the following assertion (1) and (2) hold.

(1) X = ∪B∈BB;
(2) For each x ∈ X and each pair U,V ∈ B, for which x ∈U and x ∈V, there exists

W ∈ B such that x ∈ W ⊆ U ∩V.

Proof. Let B be a basis for some topology, T , for X , and let x ∈ X . Then there
exists U ∈ Ux, such that x ∈ U , and by Definition 1.20 there exists Bx ∈ B, such
that x ∈ Bx ⊆ U . Clearly X ⊆ ∪x∈X Bx ⊆ X , hence X = ∪x∈X Bx and condition (1) is
met.

Let U , V ∈ B, x ∈U and x ∈ V , define Q = U ∩V , then since by Definition 1.20,
U and V are both open, so also is Q, whence Q ∈ Ux. Consequently, by Definition
1.20, there exists W ∈ B such that x ∈ W ⊆ Q = U ∩V , and condition (2) is met.

Conversely, suppose B satisfies both (1) and (2). Let T be the family of all
unions of members of B. A union of members of T is itself a union of members
of B and is therefore a members of T , and it is only necessary to show that the
intersection of two members U and V of T is a member of T . If x ∈ U ∩V , then
we may choose U0 and V0 in B such that x ∈ U0 ⊆ U and x ∈ V0 ⊆ V , and then a
member W of B such that x ∈ W ⊆ U0 ∩V0 ⊆ U ∩V by (2). Consequently U ∩V is
the union of members of B, and T is a topology according to Definition 1.12. 
�

We have just seen that an arbitrary family S of sets may fail to be the base for
any topology. With persistence we vary the question and enquire whether there is a
unique topology which is, in some sense, generated by S. Such a topology should be
a topology for the set X which is the union of the members of S, and each member
of S should be open relative to the topology; that is, S should be a subfamily of the
topology. This raises the question: Is there a smallest topology for X which contains
S? The following simple result will enable us to exhibit this smallest topology.
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Theorem 1.22. If S is any non-empty family of sets. Then the family of all finite
intersections of members of S is the base for a topology for the set X =

⋃
U∈S U.

Proof. Suppose that S is a family of sets. Let B be the family of finite intersections
of members of S. Then the intersection of two members of B is again a member of
B and, from Theorem 1.21, B is the base for a topology. 
�

A family S of sets is a subbase for a topology T if and only if the family of finite
intersections of members of S is a base for T (equivalently, if and only if each
member of T is the union of finite intersections of members of S). In the view of
the preceding theorem every non-empty family S is the subbase for some topology,
and this topology is, of course, uniquely determined by S. It is the smallest topology
containing S (That is, it is a topology containing S and is a subfamily of every
topology containing S).

There will generally be many different bases and subbases for a topology and
the most appropriate choice may depend on the problem under consideration. One
rather natural subbase for the usual topology for real numbers is the family of half-
infinite open intervals; that is, the family of sets of the form (−∞, a)={x | x < a}
or (a, +∞)={x | x > a}. Each open interval is the intersection of two such sets, and
this family is consequently a subbase. A space whose topology has a countable base
has many useful properties.

Definition 1.21. A space X , which has a base, B, which is a countable family, i.e.,
B = {Bi| i = 1,2, . . .} is said to satisfy the second axiom of countability or some-
times more simply to have a countable basis . We also speak of spaces being second
countable, meaning thereby that they have a countable basis, or satisfy the second
axiom of countability.

Example 1.15. Let R be the real numbers with the usual topology, and let

B1 = {(a, b) | a, b rational numbers, a < b}

then B1 is a countable basis for R and R is second countable.

Theorem 1.23. If A is an uncountable subset of a space whose topology has a count-
able base, then some point of A is an accumulation point of A.

Proof. Suppose that no point of A is an accumulation point and that B is a countable
base. By Definition 1.14, we know that for each x in A there is an open set containing
no point of A other than x. Since B is a base we may choose Bx in B such that
Bx ∩A={x}. There is then a one-to-one correspondence between the points of A and
the members of a subfamily of B, and A is therefore countable. It contradicts to
the assumption that A is an uncountable set. Therefore some point of A must be an
accumulation point of A. 
�

Definition 1.22. The set A is said to be dense in the set B if A− ⊇ B. If A is dense
in the whole space, X , we say that A is everywhere dense, or sometimes, if there is
no chance for misunderstanding, simply dense. If there exists A ⊆ X , A is countable
such that A− = X , then space X is said to be separable.
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A separable space may fail to satisfy the second axiom of countability. For example,
let X be an uncountable set with the topology consisting of the empty set and the
complements of all finite subsets of X . Then every non-finite set is dense because
it intersects every non-empty open set. On the other hand, suppose that there is a
countable base B and let x be a fixed point of X . The intersection of the family
of all open sets to which x belongs must be {x}, because the complement of every
other point is open. It follows that the intersection of those members of the base
B to which x belongs is {x}. But the complement of this countable intersection
is the union of a countable number of finite sets, which is equal to X−{x}, hence
countable, and this is a contradiction. There is no difficulty in showing that a space
with a countable base is separable. The relation between second countable spaces
and separable spaces is given by the following theorem.

Theorem 1.24. Let X be a topological space with a countable basis, then X is sep-
arable.

Proof. Let B = {Bi| i = 1,2, . . .} be a countable base for X , and define A = {xi| xi ∈
Bi, i = 1,2, . . .}, i.e., A∩Bi = {xi}. We prove now that A− = X . Let x ∈ X , if x = xi

for some i, then x ∈ A ⊆ A−, so assume that x �= xi for each i. Let U ∈ Ux, then
there exists Bi ∈ B, such that x ∈ Bi ⊆ U . Now xi ∈ Bi ⊆ U , and xi �= x, thus every
neighborhood U of x contains a point of A distinct from x, whence x ∈ A−. Thus
X ⊆ A−, and since A ⊆ X , A− ⊆ X− = X , we have A− = X , and A is the required
countable dense subset. 
�

1.2.5 Subspace Separation and Connected Sets

Definition 1.23. Let (X , TX ) be a topological space, and let Y ⊆ X . The relative
topology of TX to YTY is defined to be the family of all intersections of members of
TX with Y ; that is, U ∈ TY if and only if there exists V ∈ TX such that U = V ∩Y .
The topological space (X , TY ) is called a subspace of the space (X , TX).

It is not difficulty to see that TY is actually a topology. Each member U of relative
topology TY is said to be open in Y . It is worth noticing that, in the above definition,
a subset Y of a space X is not necessarily a subspace. Only if the topology of Y
agrees with relative topology of TX to Y , then Y is called a subspace.

Example 1.16. Let N ={(x, y) | x, y real numbers, y ≥0}, i.e., N is the closed upper
half of the real plane, and let

N0= {(x, y) | x, y real numbers, y > 0}.

For {x, y}∈ N, define V(x,y) = U(x,y) ∩N if y > 0, where U(x,y) is the neighborhood
system for (x, y) in the usual topology for the real plane, and define

V(x,y)={V | V ⊇ (U ∩N0)∪{(x, y)}}

for U ∈ U(x,y) if y=0. Let

T = {V(x,y)| (x, y) ∈ N},
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with V(x,y) as so defined, then (N, T ) is a topological space. N is not a subspace of
the real plane with the usual topology, nor is the real line with its usual topology a
subspace of N. The real line with the discrete topology is a subspace of N, where
we think of the real line here as the set R={(x, y) | y = 0}.

The following theorem formulates a criterion to recognize the closed sets, closure
and accumulation points in a subspace.

Theorem 1.25. Let (X, TX) be a topological space and (Y , TY ) a subspace of X.
Then the following assertions hold.

(1) The set A is closed in space Y if and only if it is the intersection of Y and a
closed set in space X;

(2) A point y of space Y is an accumulation point of A ⊆ Y if and only if it is an
accumulation point of A in space X;

(3) The closure of A in space Y is the intersection of Y and the closure of A in space
X.

Proof. The set A is closed in Y if and only if its relative complement Y −A is of the
form V ∩Y for some open set V in space X , but this is true if and only if A=(X −
V )∩Y for some open set V in space X . This proves (1). (2) follows directly from
the definition of the relative topology and the definition of accumulation point. The
closure of A in space Y is the union of A and the set of its accumulation points in
space Y , and hence by (2) it is the intersection of Y and the closure of A, thus (3)
holds. 
�

Definition 1.24. Let (X , T ) be a topological space and A, B be subsets of X . Two
sets A and B are called separated in space X if and only if both A− ∩B and A∩B−

are empty. (X , T ) is called a connected topological space if and only if X is not the
union of two nonempty separated subsets. A subset Y of X is called connected if and
only if the topological space Y with the relative topology is connected. A component
of a topological space is a maximal connected subset; that is, a connected subset
which is properly contained in no other connected subset.

The separation involves the closure operation in X . However, the apparent depen-
dence on the space X is illusory, for A and B are separated X if and only if neither A
nor B contains a point or an accumulation point of the other. This condition may be
restated in terms of the relative topology for A∪B, in view of (2) of Theorem 1.25,
as both A and B are closed in subspace A∪B (or equivalently A (or B) is both open
and closed in subspace A∪B) and A and B are disjoint. A set Y is connected if and
only if the only subsets of Y which are both open and closed in subspace Y are Y
and the empty set.

Example 1.17. The open interval (0, 1) and (1, 2) are disjoint subsets of R the real
numbers and there is a point, 1, belonging to the closure of both (0, 1) and (1, 2) in
the usual topology of R. However, (0, 1) is not disjoint with the closed interval [1,
2]=(1, 2)− because of 1, which is a member of [1, 2], is an accumulation point of
(0, 1).
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The real numbers, with the usual topology are connected (exercise 8), but the
rational numbers, as a subspace of the usual topology of R, are not connected. For
any irrational number a ∈ R the sets {x | x < a} and {x | x > a} are separated in the
subspace the rational numbers.

Theorem 1.26. The closure of a connected set is connected.

Proof. Suppose that Y is a connected subset of a topological space and that Y− =
A∪B, where A and B are both open and closed in Y−, A and B are disjoint. Then each
of A∩Y and B∩Y is open and closed in Y , and since Y =(A∩Y )∪ (B∩Y ) and Y is
connected, one of these two sets must be empty. Suppose that B∩Y is empty. Then
Y is a subset of A and consequently Y− is a subset of A because A is closed in Y−.
Hence B is empty, and it follows that Y− is connected. 
�

Theorem 1.27. Let A be a family of connected subsets of a topological space. If no
two members of A are separated, then

⋃
A∈A A is connected.

Its proof remains as an exercise. If a space is connected, then it is its only com-
ponent. If a space is discrete, then each component consists of a single point. Of
course, there are many spaces which are not discrete which have components con-
sisting of a single point, for instance, the space of rational numbers, as the subspace
of the usual topology for the real numbers.

Theorem 1.28. Each connected subset of a topological space is connected in a com-
ponent, and each component is closed. If A and B are distinct components of a space,
then A and B are separated.

Its proof remains as an exercise. It is well to end our remarks on components with a
word of caution. If two points, x and y, belong to the same component of a topolog-
ical space, then they always lie in the same part of a separation of the space.

1.2.6 Convergence and Hausdorff Spaces

In this section, it will turn out that the topology of space can be described com-
pletely in terms of convergence. We also characterize those notions of convergence
which can be described as convergence relative to some topology. Sequential con-
vergence furnishes the pattern on which the theory is developed, and we therefore
list a few definitions and theorems on sequences to indicate this pattern. These will
be particular cases of the theorems proved later. A sequence is a map on the set N
of the non-negative integers. The value of a sequence S at n ∈ N is denoted, inter-
changeably, by Sn or S(n). By Definition 1.10, we can verify that N is a directed set
for the order of integers and the sequence {Sn | n ∈ N} is a net. A sequence S is in a
set A if and only if Sn ∈ Afor each n ∈ N, and S is eventually in A if and only if there
is m ∈ N such that Sn ∈ A whenever n ≥ m. A sequence S is frequently in a set A if
and only if for each non-negative integer m there is an integer n such that n ≥ m and
Sn ∈ A. This is precisely the same thing as saying that S is not eventually in A′.
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Definition 1.25. Let X be a topological space, let x ∈ X , and let {xn| n= 1, 2, . . .}
be a sequence of points in X . The sequence {xn} is said to converge to x, and x is
said to be a limit of the sequence {xn} if and only if for each U ∈ Ux, there exists an
integer m such that n ≥ m implies xn ∈ U . A point s is a cluster point of a sequence
S if and only if S is frequently in each neighborhood of s.

Let S be a sequence. T is said to be a subsequence of sequence S if and only if there
is a sequence I of non-negative integers such that T (i) = S(I(i)) for each i ∈ N. It
is clear that each cluster point of a sequence is a limit point of a subsequence, and
conversely each limit point of a subsequence is a cluster point of a sequence.

Definition 1.26. Let (X ,T ) be a topological space and (S, ≥) be a net in X . The
net (S, ≥) is said to converge to s relative to T if and only if it is eventually in each
neighborhood of s for topology T .

It is easy to describe the accumulation points of a set, the closure of a set, and in fact
the topology of a space in terms of convergence.

Theorem 1.29. Let (X ,T ) be a topological space. Then the following assertions
hold.

(1) A point s is an accumulation of a subset A of A if and only if there is a net in
A−{s} which converges to s;

(2) A point s belongs to the closure of a subset A of X if and only if there is a net in
A converging to s;

(3) A subset A of X is closed if and only if no net in A converges to a point of
A−{s}.

Proof. If s is an accumulation point of A, then for each neighborhood U of s there is
a point sU ∈ U−{s}. Us, the neighborhoods of s, is directed by ⊆, and if U , V ∈ Us

such that V ⊆ U , then sU ∈ V ⊆ U . The net { sU , U ∈ Us, ⊆}, therefore converges
to s. On the other hand, if a net in A−{s} converges to s, then this net has point in
every neighborhood of s and A−{s} surly intersects each neighborhood of s. This
establishes the statement (1). To prove (2), recall that the closure of a set A consists
of A and together with all accumulation points of A. For each accumulation points s
of A there is, by the preceding, a net in A converging to s; for each point s of Aany
net whose point at every element of its domain is s converges to s. Therefore each
point of the closure of A has a net in A converging to it. Conversely, if there is a net
in A converging to s, then every neighborhood of s intersects A and s belongs to the
closure of A. Assertion (3) is now obvious. 
�

Example 1.18. Let E be the real plane, and define for ε > 0,

Sε(x, y) = {(u, v) | (u, v) ∈ E , |x−u| < ε}

and

U(x,y)= {U | U ⊇ Sε(x, y) for some ε > 0}.
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By Definition 1.13 we can verify that U(x,y) is a neighborhood system for each (x,
y) ∈ E . Then {U(x,y)| (x, y) ∈ E} determines a topology T for E by Theorem 1.12.
Let {(xn, yn)} be a sequence in E , with the topology, T , and let (x0, y0) be a limit
of the sequence {(xn, yn)}, then (x0, z) for any z is also a limit of the sequence {(xn,
yn)}, and observe thus that limits of sequence need not be unique.

We have noticed that, in general, a net in a topological space may converging to
several different points. Thus introduce a new kind of space, with a rather stronger
structure.

Definition 1.27. Let (X , T ) be a topological space, then T is said to be a Hausdorff
(T2−space, or separated space) topology for X , provided that for each pair, x, y,
with x �= y, of points of X , there exist U ∈ Ux, V ∈ Uy such that U ∩V = ∅. If this
condition is satisfied we call X a Hausdorff (T2 or separated) space.

Example 1.19. The real line with the usual topology is a Hausdorff space. The real
plane with the usual topology also is a Hausdorff space. But the real plane with the
topology defined in Example 1.17 is not a Hausdorff space.

Hausdorff spaces have the property that limits of sequences are unique, as in fact is
shown by the following Theorem whose proof remains as a exercise.

Theorem 1.30. A topological space is a Hausdorff space if and only if each net in
the space converges to at most one point.

It is of some interest to know when a topology can be described in terms of se-
quences alone, not only because it is a convenience to have a fixed domain for all
nets, but also because there are properties of sequences which fail to generalize.
The most important class of topological spaces for which sequential convergence is
adequate are those satisfying the first countability axiom: the neighborhood system
of each point has countable base. That is, for each point x of the space X there is a
countable family of neighborhoods of x such that every neighborhood of x contains
some member of family. In this case we may replace “net” by “sequence” in almost
all of the preceding theorems.

Theorem 1.31. Let X be a topological space satisfying the first axiom of countabil-
ity. Then the following assertions hold.

(1) A point s is an accumulation point of a set A of X if and only if there is a
sequence in A−{s} which converges to s.

(2) A set A is open if and only if each sequence which converges to a point of A is
eventually in A.

(3) If s is a cluster point of a sequence S there is a subsequence of S converging to
s.

Proof. Suppose that s is an accumulation point of a subset A of X , and that U0,
U1, . . .U2, . . . is a sequence which is a base for the neighborhood system of s. Let
Vn = ∩0≤i≤nUi . Then the sequence V0, V1, . . .V2, . . . is also a sequence which is
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a base for the neighborhood system of s and, moreover, Vn+1 ⊆ Vn for each n. For
each n select a point sn ∈Vn∩(A−{s}), thus obtaining a sequence {sn, n ∈ N} which
evidently converges to s. This establishes half of (1), and the converse is obvious.
If A is a subset of X which is not open, then there is a sequence in X − A which
converges to a point of A. Such a sequence surely fails to be eventually in A, and
part (2) follows. Finally, suppose that s is a cluster point of a sequence S and that
V0, V1, . . .V2, . . . is a sequence which is a base for the neighborhood system of s
such that Vn+1 ⊆Vn for each n. For every non-negative integer I, choose Ni such that
Ni ≥ i and sNi belongs to Vi. Then surely {sNi, n ∈ N} is a subsequence of S which
converges to s. 
�

1.2.7 Various Special Types of Topological Spaces

In this section, we shall investigate briefly a variety of special types of topological
spaces. These spaces will play a fundamental role in the application of topology to
the pattern recognition.

Definition 1.28. Let X be a set, Y ⊆ X , and let

{Dα | α ∈ A, an indexing set}

be a family of subsets of X , then {Dα} is called a cover or covering for Y provided⋃
α∈A Dα ⊇ Y .

Definition 1.29. Let X be a topological space, then X is said to be compact provided
each open cover of X contains a finite cover. (Here “open” refers to a property of
the set Dα , while “finite” refers to a property of the indexing set A.)

A simple, but quite useful, consequence of Definition 1.29 comes as the following
theorem.

Theorem 1.32. Let X be a topological space, then X is compact if and only if for
each family of closed sets {Cα | α ∈ A} of X,

⋂
α∈A Cα = ∅ implies that there exists

F ⊆ A, F finite, such that
⋂
α∈F Cα = ∅.

Proof. Let X be compact, and let {Cα | α ∈ A} be a family of closed sets with
vacuous intersection. Define Oα = C′

α , then Oα is open, and

⋃
α∈A

Oα =
⋃
α∈A

C′
α = [

⋂
α∈A

Cα ]′ = ∅′ = X ,

hence by Definition 1.29 there exists F ⊆ A, F finite, such that ∪α∈F Oα = X , and

∅ = X ′ = [∩α∈F Oα ]′ = ∩α∈F O′
α = ∩α∈FCα .

Similarly, the converse can be proved. 
�

Definition 1.30. Let X be a set and {Dα | α ∈ A} be a family of subsets of X . Then
{Dα} is said to have the finite intersection property provided that for any finite,
non-empty subset F of A,

⋂
α∈F Dα �= ∅.
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Theorem 1.33. A topological space, X, is compact if and only if for any family
{Dα | α ∈ A} of closed sets with the finite intersection property.

Theorem 1.34. Let X be a topological space, then X is compact if and only if any
family {Dα | α ∈ A} of subsets of X with the finite intersection property has the
further property that

⋂
α∈A D−

α �= ∅.

We now introduce a sequence of axioms, called separation axioms, into the defini-
tion of a space as follows

Definition 1.31. Let (X ,T ) be a topological space, then X is said to be a Ti space,
provided it satisfies Axiom Ti, i = 0,1,2,3,4, where the axioms are as follow.

Axiom T0: For each x and y ∈ X , x �= y, either there exists U ∈ Ux such that
y /∈ U , or there exists V ∈ Uy such that x /∈ V .

Axiom T1: For each x and y ∈ X , x �= y, there exist U ∈ Ux and V ∈ Uy such that
y /∈ U and x /∈ V .

Axiom T2: For each x and y ∈ X , x �= y, there exist U ∈ Ux and V ∈ Uy such that
U ∩V = ∅.

Axiom T3: For each x ∈ X and each closed set C ⊆ X , x /∈ C, there exist U ∈ Ux

and O ∈ T such that C ⊆ O and O∩U = ∅.
Axiom T4: For each pair of closed disjoint sets, C, D ⊆ X , there exists a pair O1,

O2 ∈ T such that C ⊆ O1, D ⊆ O2, and O1 ∩O2 = ∅.

A space which is a T2 space is called a Hausdorff space. A space which is at one
and the same time a T1 and a T2 space is called a regular space. A space which is at
one and the same time a T2 and a T4 space is called a normal space.

Theorem 1.35. A space X is a T1 space if and only if each point is closed.

Proof. Let x ∈ X , then for each y ∈ X , y �= x, select U ∈ Uy such that x /∈ U . Then
X −{x} ⊇ U , whence X −{x} ∈ Uy for each y ∈ X −{x}, whence by Definition
1.12, X −{x} is open, and {x} is closed. Conversely, let x ∈ X , y ∈ X , and x �= y,
then since {x} is closed, X −{x } is open, and since y ∈ X −{x}, X −{x} ∈ Uy, and
by an identical argument X −{y}∈Ux, whence X is a T1 space. 
�

Theorem 1.36. Each of the following properties of topological spaces is stronger
than the next: Normality, Regularity, T2 (Hausdorff), T1, T0, in the sense that if a
space satisfies the definitions of any one of these properties, it also satisfies the
definitions for all of the following ones as well.

1.3 Metrization

In this section the elementary properties of metric and pseudo-metric spaces are
developed, and necessary and sufficient conditions are given under which a space is
copy of a metric space or of a subspace of the Cartesian product of intervals.
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1.3.1 Continuous Functions

The words “function”, “map”, “correspondence”, “operator” and “transformation”
are synonymous.

Definition 1.32. A map f of a topological space (X ,T1) into a topological space
(Y,T2) is continuous if and only if the inverse of each open set is open. More pre-
cisely, f is continuous with respect to T1 and T2 if and only if f −1(U) ∈ T1 for
each U ∈ T2.

The concept of continuity depends on the topology of both the range and the domain
space, but we follow the usual practice of suppressing all mention of the topolo-
gies when confusion is unlikely. The following is a list of conditions, each equiva-
lent to continuity; it is useful because it is frequently necessary to prove functions
continuous.

Theorem 1.37. If X and Y are topological space and f is a function on X to Y , then
the following statements are equivalent.

(1) The function f is continuous.
(2) The inverse of each closed set is closed.
(3) The inverse of each member of a subbase for the topology for Y is open.
(4) For each x in X the inverse of every neighborhood of f (x) is a neighborhood of

x.
(5) For each x in X and each neighborhood U of f (x) there is a neighborhood V of

x such that f (V ) ⊆ U.
(6) For each net S (or {Sn, n ∈ D} ) in X which converges to a point s, the compo-

sition f ·S (i.e., { f (Sn), n ∈ D} ) converges to f (s).
(7) For each subset A of X the image of closure is a subset of the closure of the

image; that is, f (A−) ⊆ f (A)−.
(8) For each subset B of Y , f −1(B)− ⊆ f −1(B−).

Proof. (6)⇒ (7) Assuming (6), let A be a subset of X and s ∈ A−. Then there is a net
Sin A which converges to s, and f·S converges to f (s), which is therefore a member
of f (A)−. Hence f (A−) ⊆ f (A)−.

(7)⇒ (8) Assuming (7), if A = f −1(B), then f (A−) ⊆ f (A)− ⊆ B− and hence
A− ⊆ f −1(B−). That is f −1(B)− ⊆ f −1(B−).

(8)⇒ (2) Assuming (8), if B is a closed subset of Y , then f −1(B)− ⊆ f −1(B−) =
f −1(B) is therefore closed. The proofs of other parts remain as exercises. 
�

There is also a localized form of continuity which is useful. A function f on a
topological space X to a topological space Y is continuous at point x if and only
if the inverse under f of each neighborhood of f (x) is a neighborhood of x. A
homeomorphism , or topological transformation, is a continuous one-to-one map of
a topological space X onto a topological space Y such that f −1 is also continuous.
If there exists a homeomorphism of one space onto another, the two spaces are said
to be homeomorphic and each is a homeomorphism of the other. Consequently the
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collection of topological spaces can be divided into equivalence classes such that
each topological space is homeomorphic to every member of its equivalence class
and to these spaces only. Two topological spaces are topologically equivalent if and
only if they are homeomorphic.

Two discrete spaces, X and Ywith finite number of elements, are homeomorphic
if and only if there is a one-to-one function on X onto Y , that is, if and only if X and
Yhave the same number of elements. This is also true for the indiscrete topologies
of X and Y . The set of all real numbers, with the usual topology, is homeomorphic
to the open interval (0, 1), with the relative topology, for the function f (x) = (2x−1)

x(x−1)
which is easily proved to be a homeomorphism. However, the interval (0, 1) is not
homeomorphic to (0, 1)∪(1, 2). Because if f were a homeomorphism (or, in fact,
just a continuous function) on (0,1) with range then (0, 1)∪(1, 2), then f −1( (0,
1)) would be a proper open and closed subset of (0, 1), and (0, 1) is connected. This
demonstration was achieved by noticing that one of the space is connected, the other
is not, and the homeomorphism of the space is connected, the other is not, and the
homeomorphism of a connected space is again connected. A property which when
possessed by a topological space is also possessed by each homeomorphism is a
topological invariant.

1.3.2 Metric and Pseudo-metric Spaces

We concentrate now to a rather special sort of topological space, one in which there
is defined a distance function or a pseudo-distance function, so that we can say what
the distance between points is. In a sense these spaces, so-called metric spaces, are
rather special, since, as well turn out in the sequel, they will enjoy properties of the
nature we have already discussed, but under less restrictive hypotheses than more
general spaces. On the other hand, metric spaces are still quite general, since all
the common spaces of analysis are metric spaces. We define a metric space in two
stages. We start with the following facts.

Definition 1.33. Let X be a set and ρ : X × X → R be a function (not necessarily
continuous) of X ×X into the non-negative real numbers R+. ρ is called a distance
on X and (X , ρ) is called a metric space if for any x, y, z ∈ X , ρ satisfies the following
conditions.

(1) ρ(x, y)=ρ(y, x);
(2) ρ(x, y)+ρ(y, z) ≥ ρ(x, z); (triangle inequality)
(3) ρ(x, y)=0 if x = y, and
(4) if ρ(x, y)=0, then x = y.

ρ is called a pseudo-distance on X and (X , ρ) is called a pseudo-metric space if ρ
satisfies only (1), (2) and (3).

Every set is a metric set if ρ is defined as follows: ρ(x, y)=1 for x �= y, and ρ(x,
y)=0 for x = y. It is a simple verification that with this definition of ρ , any set X
is a metric set. In order to generate the topology for X via the metric, we give the
following definition.
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Definition 1.34. Let (X , ρ) be a metric (pseudo metric) space. If r is a positive
number, then for x ∈ X , the following sets Sr(x) and S−

r (x) are called the open sphere
of ρ–radius r about x and closed sphere of ρ–radius r about x respectively

Sr(x) = {y | ρ(x,y) < r f or y ∈ X},
S−

r (x) = {y | ρ(x,y) ≤ r f ory ∈ X}.

X with the following Bρ as basis is called a metric space (pseudo metric space).
The topology so generated is called a metric topology (pseudo metric topology)
generated by ρ

Bρ ={Sr(x) | x ∈ X , r > 0}.

Now only the rankest of amateurs at mathematics tries to prove definitions; however,
the above definition makes some assertions which must be verified. In particular, it
is asserted that Bρ is a basis, and this is perhaps not so evident without some proof.
We deal with this minor matter in the follows.

Theorem 1.38. Let (X, ρ) be a metric (pseudo metric) space. Then the set Bρ
={Sr(x) | x ∈ X, r > 0} is a basis for some topology for X.

Proof. We shall apply Theorem 1.21. Since x ∈ Sr(x) for each x ∈ Xclearly we have
X = ∪B∈BB. Now let x ∈ X and let Sr1(x1), Sr2(x2) ∈ B such that x ∈ Sr1(x1)∩
Sr2(x2). It is clear that ρ(x, x1) = d1 < r1 and ρ(x, x2) = d2 < r2. Let e=min{r1 −d1,
r2 −d2}. We consider Se(x). For any y ∈ Se(x), we have ρ(x, y) = e. Now

ρ(y,x1) ≤ ρ(y,x)+ρ(x,x1) < e + d1 ≤ r1 −d1 + d1 = r1,

So that y ∈ Sr1(x1). Similarly, we can prove that y ∈ Sr2(x2). Thus we have found
Se(x) ∈ B such that

x ∈ Se(x) ⊆ Sr1(x1)∩Sr2(x2),

and by Theorem 1.21, Bρ is a basis. 
�

It can happen that a space X is already given us, and we may wish to know if it is
possible to define a metric, ρ , such that the topology generated by the metric, using
Definition 1.33, is in fact the same as the original topology. We define a space with
this desirable property as follows.

Definition 1.35. Let (X , T ) be a topological space. If it is possible to define a dis-
tance (pseudo-distance) ρ such that the metric topology (pseudo-topology) gener-
ated by ρ coincides with T , then X is said to be a metrizable (pseudo metrizable )
topological space.

1.3.3 Some Properties of Metrizable and Pseudo Metrizable Space

One of the more interesting problems is to decide what sorts of topological spaces
are metrizable or pseudo metrizable. Before we tackle this problem, however, let us
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explore some of the properties of metric spaces. Metric spaces have a fairly strong
structure, and this is demonstrated by the following theorems.

Theorem 1.39. Every metric space is a Hausdorff space.

Proof. Let x, y ∈ X , with x �= y, then ρ(x, y) = d > 0. Let ε=d/2 and let U = Sε(x),
V = Sε(y), then U and V are open sets, and we need only show U ∩V = ∅. Suppose
that U ∩V �= ∅. Then there exists a z ∈U ∩V and since x ∈U , ρ(z,x) < ε . Similarly
ρ(y,z) < ε . Thus

ρ(x,y) ≤ ρ(x,z)+ρ(y,z) < 2ε = d,

And d = ρ(x,y) < d. This palpable contradiction shows that U ∩V = ∅. Therefore
X is Hausdorff. 
�

Theorem 1.40. Every metrizable (pseudo metrizable) topological space is a T4

space.

Proof. We need thus only verify that if A and B are closed disjoint subset of X , then
there exist open sets U , V such that A ⊆ U , B ⊆ U , and U ∩V = ∅.

Now for each a ∈ A, a is not a limit point of B, for if it were we should have
a ∈ B, since B is closed. It contradicts A and B are disjoint. Thus for each a ∈ A,
there exists an εa > 0 such that Sεa(a)∩ B = ∅. Let Ua = Sεa/2(a). Similarly for
each b ∈ B, there is an εb > 0 such that Sεb(b)∩A = ∅. Let Vb = Sεb/2(b). Finally
let

U =
⋃

a∈AUa , V =
⋃

b∈BVb ,

Then U and V are open.
We show now that U ∩V = ∅. Suppose that U ∩V �= ∅, and let x ∈ U ∩V , then

x ∈Ua for some a ∈ A and x ∈Vb for some b ∈ B. Since ρ(x,a)< εa/2, ρ(x,b)< εb/2,
hence

ρ(a,b) ≤ ρ(a,x)+ρ(x,a) < (εa + εb)/2.

If εa ≤ εb, then ρ(a,b) < (εa + εb)/2 ≤ εb and a ∈ Sεb(b). So that a ∈ Sεb(b)∩A �=
∅, contrary to the definition of Sεb(b). On the other hand, if εa ≥εb, then ρ(a,b) <
(εa + εb)/2 ≤ εa and b ∈ Sεa(a). So that b ∈ Sεa(a)∩B �= ∅, contrary to the choice
of Sεa. It must be the case that U ∩V = ∅, and hence that X is T4. 
�

By Theorem 1.39 we already know that if X is metrizable, then it is a Hausdorff
space, hence T2. Furthermore Theorem 1.41 shows that every metrizable topological
space is a normal space. In what follows, we establish that every regular second
countable space is metrizable. We require a good bit of machinery before we are
ready to prove this result, and this is the purpose of the following theorem.

Theorem 1.41. A T1 space X is regular if and only if for each x ∈ X and each U ∈Ux

there is a V ∈ Ux such that V− ⊆ U.
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Theorem 1.42. A T1 space X is normal if and only if for each closed set Cand each
open set U such that C ⊆ U, there exists an open set V such that C ⊆ V ⊆ V− ⊆ U.

Definition 1.36. Let

H = {y | y={yn, n ∈ N+}, yn is a real number for each in such that ∑n∈N y2
n < ∞ }

i.e., is the collection of all sequences of real numbers such that the series formed
from the squares of the terms of the sequence is a convergent series. For x, y ∈ H ,
the distance ρ on H is defined as follows

ρ(x,y) =

(
∑

n∈N+
(xn − yn)2

)1/2

.

Then the resulting metrizable topological space is called a Hilbert space. Here N+ =
N−{0}.

The proofs of the following statements remain as exercises. The ρ(x, y) in Definition
1.36 is a distance on H ; The subspace of H defined by

E1={x | x ∈ H , x={xn, n ∈ N+}, xn=0 for n > 1 }

is homeomorphic to the real line with the usual topology; More generally En ⊆ H ,
defined by

En={x | x ∈ H , x={xi, i ∈ N+}, xi=0 for i > n }

is homeomorphic to Rn the n-dimension Euclidean space with the usual topology.
The subspace H ′ of H defined by

H ′={x | x ∈ H , x={xn, n ∈ N+}, 0≤ xn ≤ 1/n for each n ∈ N+ }

is called the Hilbert cub (or Hilbert parallelotrope ). Let In=[0, 1] for each n ∈ N+,
i.e., the unit interval with the relative topology inherited from the real numbers,
and let IN+ = ∏i∈I Ii, then H ′ is homeomorphic to IN+. The key of the proof of
the metrization theorem is to show that every second countable regular space is
homeomorphic to a subset of Hilbert space (in fact of the Hilbert cube), that is, the
space is metrizable. Now in order to define the appropriate mapping of our space X
into H ′, we need to specify the terms, yn, of the sequence y ∈ H ′ which is to be
the image point of some preselected point x ∈ X . We thus need some mechanism for
associating a sequence of real numbers {yn | 0≤ yn ≤ 1/n} with each point of our
space.

We wish to exploit the regularity of X , and specifically to make use of Theorem
1.41, which tells us that for each open set, consequently for each basic neighborhood
Bi, of a point x ∈ X , there is another open set, which we may choose as a second basic
neighborhood, such that x ∈ B j ⊆ B−

j ⊆ Bi. Then B−
j and X − Bi, will be disjoint

closed sets. If we consider all pairs of basic neighborhoods, (B j, Bi) of X such that
B−

j ⊆ Bi, which set of pairs is countable (by the second countability of X), and if we
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can associate with each such pair a real-valued function λi such that 0≤ λi(x) ≤1,
we would at least be partially on our way. In order to accomplish this we prove first
the following:

Lemma 1.1. (Urysohn) Let X be a normal space, A, B closed disjoint subsets of X,
then exists a map f : X → I, I=[0, 1] such that f (A)=0, f (B)=1.

Proof. Stage 1. Let X − B = G1, an open set, since B is closed, then A ⊆ G1 since
A ∩B = ∅. By Theorem 1.42, there exists an open set G1/2 such that A ⊆ G1/2 ⊆
G−

1/2 ⊆ G1.
Stage 2. Again by Theorem 1.42, there exist open sets G1/4 and G3/4 such that

A ⊆ G1/4 ⊆ G−
1/4 ⊆ G1/2 ⊆ G−

1/2 ⊆ G3/4 ⊆ G−
3/4 ⊆ G1.

Stage 3. Once again by Theorem 1.42, there exist open sets G1/8, G3/8, G5/8 and
G7/8 such that

A ⊆ G1/8 ⊆ G−
1/8 ⊆ G1/4 ⊆ G−

1/4 ⊆ G3/8 ⊆ G−
3/8 ⊆ G1/2 ⊆ G−

1/2 ⊆ G5/8 ⊆ G−
5/8 ⊆

G3/4 ⊆ G−
3/4 ⊆ G7/8 ⊆ G−

7/8 ⊆ G1

and so forth up to.
Stage N. By Theorem 1.42 for each odd integer 2i−1, 1≤2i−1≤2N−1, there

exists an open set G(2i−1)/2N such that A ⊆ G1/2N and G−
(2i−2)/2N ⊆ G(2i−1)/2N ⊆

G−
(2i−1)/2N ⊆ G2i/2N .
By induction we construct for each dyadic fraction number, t, between 0 and 1,

i.e., for each fraction whose denominator is 2n, n ≥ 0, an open Gt such that if t and
t ′ are two dyadic fractions that t < t ′ if and only if G−

t ⊆ Gt′ .
Now for x ∈ X , define

f (x) =

{
inf

x∈Gt
t x /∈ B

1 x ∈ B

Observe that A ⊆ Gt for all t, thus f (x) = 0 if x ∈ A, and also note that 0 ≤ f (x) ≤ 1.
We are left with the task of showing f continuous. Let us examine the structure

of f −1([0,y)) for 0 < y ≤ 1. New f (x) ∈ [0,y) provided 0 ≤ f (x) < y, and since the
dyadic fractions are dense in [0, 1] there exists a dyadic fraction t0 such that

f (x) = inf
x∈Gt

t < t0 < y

Consequently x ∈ Gt0 . On the other hand, if t0 < y and x ∈ Gt0 , f (x) ∈ [0,y). We
thus see that f −1([0, y))=∪t<yGt . Since Gt is open for each t, f −1([0, y)) is open
for each y. By a similar argument it is clear that f −1((y, 1])=∪t>y(X − Gt), where
0 ≤ y < 1. Since Gt ⊆ G−

t , X −G−
t ⊆ X −Gt for each t. Thus

∪t>y(X −Gt) ⊇ ∪t>y(X −G−
t ).

How ever, if x ∈ ∪t>y(X − Gt), then there exists a t > y such that x ∈ X − Gt ,
and again by the density of the dyadic fractions in [0,1] we may select t ′, a dyadic
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fraction, such that t > t ′ > y, then G−
t′ ⊆ Gt , and X −G−

t′ ⊇ X −Gt , so that x ∈ X −G−
t′

for some t ′ > y, whence x ∈∪t>y(X −G−
t ). Thus ∪t>y(X −Gt) ⊆∪t>y(X −G−

t ) and
finally

∪t>y(X −Gt) = ∪t>y(X −G−
t ).

Consequently, since each G−
t is closed, hence each X − G−

t is therefore open, and
we see that f −1((y, 1])=

⋃
t>y(X −G−

t ) is open.
Now let U be some open set in [0,1], such that f (x) ∈ U , then there exists a

basic set V in [0,1] such that f (x) ∈ V ⊆ U , and the basic set V in the relative
topology of [0,1] has one of the following forms: [0,y),0 < y < 1;(y,1],0 < y <
1;(y1,y2),0 < y1 < y2 < 1; [0,1]. If V = [0,y), then f −1(V ) is open by what we have
proved above. If V =(y,1], then f −1(V ) is open by what we have proved above, also.
If V = (y1,y2), then V = [0,y2)∩(y1,1] and f −1(V ) = f −1([0,y2))∩ f −1((y1,1]) is
open as the intersection of open sets, whence f is continuous. 
�

Theorem 1.43. Every second countable regular space is homeomorphic to a subset
of the Hilbert cube.

Proof. Let (X , T ) be a second countable regular topological space and B =
{Bi | i = 1,2, . . .} be the countable basis. It is clear that (X , T ) is normal, thus
by Theorem 1.42, there exists pairs (Bi, B j) of elements of B such that B−

i ⊆ B j.
Since B is countable, the collection of all such pairs is again countable. Let us
call it P = {Pn | n = 1,2, . . .} where Pn = (Bn

i ,B
n
j) and Bn−

i ⊆ Bn
j . Now since

Bn−
i ∩ (X − Bn

j) = ∅ and both Bn−
i and (X − Bn

j) are closed, we may define, by
Lemma 1.1, a map fn : X → I=[0,1] such that fn(Bn−

i )=0, fn(X − Bn
j)=1. Finally

define f : X → K ′, the Hilbert cube, by for x ∈ X ,

f (x) = { fn(x)/n | n = 1,2, . . .}.

Since for each x ∈ X , 0 ≤ fn(x) ≤ 1, hence ∑n∈N+ ( fn(x)/n)2 < ∞ and f (x) ∈ K ′.
First we show f is one-to-one map. Let x �= y, then since X is Hausdorff by

Theorem 1.36, there exist open sets, which we may choose as basic sets, A1, A2 such
that x ∈ A1, y ∈ A2, and A1 ∩A2 = ∅. Further, since X is normal we can find A0 ∈ B,
such that x ∈ A0 ⊆ A−

0 ⊆ A1, then x ∈ A−
0 and y ∈ X −A2, and the pair (A0,A1) ∈ P ,

i.e., for some n, (A0,A1) = (Bn
i ,B

n
j). Thus fn(x) = fn(Bn−

i ) = fn(A−
0 ) = 0, while

fn(y) = fn(X −Bn
j) = fn(X −A1)=1. This implies that f (x) �= f (y), since f (x) differs

from f (y) at the nth place.
Now we prove that f is continuous. Let x ∈ X , and let ε > 0. We wish to construct

U ∈Ux in space X such that for any y ∈U , ρ( f (x), f (y)) < ε in metric subspace K ′.
First, since for any point y ∈ X , 0 ≤ fn(y) ≤ 1, we have that | fn(x)− fn(y)|2 ≤ 1.
Now the finite series ∑n∈N+ n−2 converges, thus for N sufficiently large,

∞

∑
n=N

n−2 <
ε2

2
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thus
∞

∑
n=N

| fn(x)− fn(y)|2n−2 ≤
∞

∑
n=N

n−2 <
ε2

2

Now let k < N, then the function fk : X → I is continuous and there exists a Uk ∈ Ux

such that y ∈ Uk implies

| fk(x)− fk(y)| <
kε

(2(N −1))1/2

Or
| fk(x)− fk(y)|2

k2 <
ε2

2(N −1)
.

Now let U = ∩1≤k≤N−1Uk, then if y ∈ U ,

∞

∑
n=1

| fn(x)− fn(y)|2
n2 =

N−1

∑
n=1

| fn(x)− fn(y)|2
n2 +

∞

∑
n=N

| fn(x)− fn(y)|2
n2

< (N −1)
ε2

2(N −1)
+
ε2

2
= ε2

And finally ρ( f (x), f (y)) < ε . Therefore f is continuous.
Finally we must show that f is an open mapping. Let Ube open in X , and let

x ∈ U , then there exist Bi,B j ∈ B such that

x ∈ Bi ⊆ B−
i ⊆ B j ⊆ U

by the normality of X and the fact that B is a basis. Thus the pair (Bi,B j) ∈ P ,
say (Bi,B j) = (Bn

i ,B
n
j). Then fn(x) = fn(Bn−

i )=0, and since X −U ⊆ X −Bn
j , hence

fn(X −U) = fn(X −Bn
j)=1. Thus for any y ∈ X −U ,

ρ( f (x), f (y)) = (
∞

∑
n=1

| fn(x)− fn(y)|2
n2 )1/2 ≥ (

| fn(x)− fn(y)|2
n2 )1/2 =

1
N

So that if V = S1/n( f (x)) ⊆ K ′, z ∈V , then we have ρ( f (x),z) < 1/n and f −1(z) ∈
U , because if f −1(z) ∈ X −U , then ρ( f (x), f ( f −1(z))) ≥ 1/n and it is a contradic-
tion. Thus f −1(V ) ⊆U , and x ∈ V ⊆ f (U), whence f (U) is open. Consequently we
have proved that f is a one-to-one continuous open mapping, and f is a homeomor-
phism. 
�

1.4 Measures

In this section, we just briefly introduce some concepts and results of measure the-
ory [7] which are necessary for the representation of fuzzy concepts in the AFS
theory.
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1.4.1 Algebras and Sigma-Algebras

Definition 1.37. Let X be an arbitrary set. A collection A of subsets of X is an
algebra on X if the following conditions are satisfied

(1) X ∈ A ;
(2) For each set A that belongs to A the set A′ belongs to A ;
(3) For each finite sequence A1,A2, . . . ,An ∈ A ,

⋃
1≤i≤n Ai,

⋂
1≤i≤n Ai ∈ A .

Remark 1.2. In conditions (2), (3) we have required that A be closed under com-
plementation, under the formation of finite unions, and under the formation of finite
intersections. It is easy to check that closure under complementation and closure
under the formation of finite unions together imply closure under the formation of
finite intersections (use the fact that

⋂
1≤i≤n Ai = (

⋃
1≤i≤n A′

i)
′. Thus we could have

defined an algebra using only
⋃

1≤i≤n Ai ∈ A in conditions (3).

Definition 1.38. Let X be an arbitrary set. A collection A of subsets of X is a σ -
algebra on X if the following conditions are satisfied

(1) X ∈ A .
(2) For each set A that belongs to A the set A′ belongs to A ;
(3) For each infinite sequence {Ai, n ∈ N+} of sets that belong to A ,

⋃
n∈N+ Ai,⋂

n∈N+ Ai ∈ A .

A subset of X is called A -measurable if it belongs to A .

Remark 1.3. A σ -algebra on X is a family of subsets of X that contains X and is
closed under complementation, under the formation of countable unions, and under
the formation of countable intersections. As in the case of algebras, we could have
used only

⋃
n∈N+ Ai ∈ A or

⋂
n∈N+ Ai ∈ A in conditions (3).

Next we consider ways of constructing σ -algebras.

Theorem 1.44. Let X be a set. Then the intersection of an arbitrary non-empty fam-
ily of σ -algebras on X is a σ -algebra on X.

Proof. Let A be a non-empty family of σ -algebras on X , and let A be the inter-
section of the σ -algebras that belong to L . It is enough to check that A contains
X , is closed under complementation, and is closed under the formation of countable
unions. The set X belongs to A , since it belongs to each σ -algebra that belongs to
L . Now suppose that A ∈ A . Each σ -algebra that belongs to L contains A and
so contains A′; thus A′ belongs to the intersection A of these σ -algebras. Finally,
suppose that {Ai, n ∈ N+} is a sequence of sets that belong to A , and hence to each
σ -algebra in L . Then ∪n∈N+Ai belongs to each σ -algebra in L , and so to A . 
�

Remark 1.4. The union of a family of σ -algebras can fail to be a σ -algebra.
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Definition 1.39. Let A is a σ -algebra on X that includes F ⊆ 2X , and that every
σ -algebra on X that includes F also includes A , then A is called the σ -algebra
generated by F , and denoted by σ(F ). We also say that A is the smallest σ -
algebra on X that includes F .

It is evident that the smallest σ -algebra on X that includes F is unique.

Corollary 1.5. Let X be a set, and let F be a family of subsets of X. Then there is a
smallest σ -algebra on X that includes F .

We now use the preceding corollary to define an important family of σ -algebras.
The Borel σ -algebra on Rd is the σ -algebra on Rd generated by the collection of
open subsets of Rd , and is denoted by B(Rd). The Borel subsets of Rd are those that
belong to B(Rd). In case d = 1, one generally writes B(R) in place of B(R1).

Theorem 1.45. The σ -algebra B(R) of Borel subsets of T is generated by each of
the following collections of sets:

(1) The collection of all closed subsets of R.
(2) The collection of all subintervals of R of the form (−∞,b].
(3) The collection of all subintervals of R of the form (a,b].

Proof. Let B1, B2 and B3 be the σ -algebras generated by the collections of sets in
parts (1), (2), and (3) of the theorem. We shall show that B(R) ⊃ B1 ⊃ B2 ⊃ B3,
and then that B3 ⊃ B(R); this will establish the theorem. Since B(R) includes the
family of open subsets of R and is closed under complementation, it includes the
family of closed subsets of R; thus it includes the σ -algebra generated by the closed
subsets of R, namely B1. The sets of the form (−∞, b] are closed and so belong to
B1; consequently B2 ⊂ B1. Since

(a,b] = (−∞,b]∩ (−∞,a]′

each set of the form (a,b] belongs to B2; thus B3 ⊂B2. Finally, note that each open
subinterval of R is the union of a sequence of sets of the form (a, b], and that each
open subset of R is the union of a sequence of open intervals. Thus each open subset
of R belongs to B3, and so B(R) ⊂ B3. 
�

We should note the following properties of the σ -algebra B(R), it is largely these
properties that explain the importance of B(R).

1. It contains virtually every subset of R that is of interest in analysis.
2. It is small enough that it can be dealt with in a fairly constructive manner.

Theorem 1.46. The σ -algebra B(Rd) of Borel subsets of Rd is generated by each
of the following collections of sets.

(1) The collection of all closed subsets of Rd;
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(2) The collection of all closed half-spaces in Rd that have the form

{(x1,x2, . . . ,xd) | xi ≤ b}

for some index i and some b in R;
(3) The collection of all rectangles in Rd that have the form

{(x1,x2, . . . ,xd) | ai < xi ≤ bi f or i = 1,2, . . . ,d}.

Proof. This theorem can be proved with essentially the argument that was used
for Theorem 1.45, and so most of the proof is omitted. To see that the σ -algebra
generated by the rectangles of part (3) is included in the σ -algebra generated by the
half-spaces of part (2), note that each strip that has the form

{(x1,x2, . . . ,xd) | ai < xi ≤ bi }

for some i is the deference of two of the half-spaces in part (2), and that each of the
rectangles in part (3) is the intersection of d such strips. 
�

A sequence {Ai} of sets is called increasing if Ai ⊆ Ai+1 holds for each i, and de-
creasing if Ai ⊃ Ai+1 holds for each i.

Theorem 1.47. Let X be a set, and let A be an algebra on X. Then A is a σ -algebra
if either the following (1) or (2) holds.

(1) A is closed under the formation of unions of increasing sequences of sets;
(2) A is closed under the formation of intersections of decreasing sequences of

sets.

Proof. First suppose that condition (1) holds. Since A is an algebra, we can check
that it is a σ -algebra by verifying that it is closed under the formation of countable
unions. Suppose that {Ai} is a sequence of sets that belong to A . For each n let Bn =⋃

1≤i≤n Ai. The sequence {Bn} is increasing, and, since A is an algebra, each Bn

belongs to A ; thus assumption (1) implies that
⋃

n∈Z+ Bn belongs to A . However,⋃
n∈Z+ An is equal to

⋃
n∈Z+ Bn, and so belongs to A . Thus A is closed under the

formation of countable unions, and so is a σ -algebra.
Now suppose that condition (2) holds. It is enough to check that condition (1)

holds. If {Ai} is an increasing sequence of sets that belong to A , then {A′
i} is a

decreasing sequence of sets that belong to A , and so condition (2) implies that⋂
i∈Z+ A′

i belongs to A . Since
⋃

i∈Z+ Ai=(
⋂

i∈Z+ A′
i)

′, it follows that
⋃

i∈Z+ Ai belongs
to A . Thus condition (1) follows from condition (2), and the proof is complete. 
�

1.4.2 Measures

A set function is a function whose domain is a class of sets. An extended real valued
set function µ defined on a family E of sets is additive if, whenever A, B ∈ E ,
A∪B ∈ E , and A∩B = ∅, then µ(A∪B) = µ(A)+ µ(B).
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Definition 1.40. Let X be a set, and let A be a σ -algebra on X . A function µ whose
domain is the σ -algebra A and whose values belong to the extended half-line [0,
+∞) is said to be countably additive if it satisfies

µ(
∞⋃

k=1

Ak) =
∞

∑
k=1

µ(Ak)

for each infinite sequence {Ai} of disjoint sets that belong to A . (Since µ(Ai) is
non-negative for each i, the sum ∑∞k=1 µ(Ai) always exists, either as a real number
or as +∞) A measure (or a countably additive measure) on A is a function µ : A →
[0,+∞) that satisfies µ(∅)=0 and is countably additive.

Definition 1.41. Let A be an algebra (not necessarily a σ -algebra) on the set X .
A function µ whose domain is A and whose values belong to [0,+∞) is finitely
additive if it satisfies

µ(
⋃

1≤i≤n

Ai) = ∑
1≤i≤n

µ(Ai)

for each finite sequence A1,A2, . . . ,An of disjoint sets that belong to A . A finitely
additive measure on the algebra A is a function µ : A → [0,+∞) that satisfies
µ(∅)=0 and is finitely additive.

It is easy to check that every countably additive measure is finitely additive: simply
extend the finite sequence A1,A2, . . . ,An to an infinite sequence {Ai} by letting Ai =
∅ if i > n, and then use the fact that µ(∅)=0. There are, however, finitely additive
measures that are not countably additive. Finite additivity might at first seem to
be a more natural property than countable additivity. However countably additive
measures on the one hand seem to be sufficient for almost all applications, and on
the other hand support a much more powerful theory of integration than do finitely
additive measures. Thus we shall follow the usual practice, and devote almost all of
our attention to countably additive measures.

Definition 1.42. Let X be a set, A be a σ -algebra on X , and µ is a measure on A ,
then the triple (X ,A ,µ) is called a measure space . Likewise, if X is a set and if A
is a σ -algebra on X , then the pair (X ,A ) is called a measurable space. If (X ,A ,µ)
is a measure space, then one says that µ is a measure on (X ,A ), or, if the σ -algebra
A is clear from context, a measure on X .

Theorem 1.48. Let (X ,A ,µ) be a measure space, and let A and B be subsets of X
that belong to A and satisfy A ⊂ B. Then µ(A) ≤ µ(B). If in addition A satisfies
µ(A) < +∞, then µ(B−A) = µ(B)− µ(A).

Proof. The sets A and B − A are disjoint and satisfy B = A ∪ (B − A), thus the ad-
ditivity of µ implies that µ(B) = µ(A)+ µ(B−A). Since µ(B−A) ≥ 0, it follows
that µ(B) ≥ µ(A). In case µ(A) < +∞, the relation µ(B)− µ(A) = µ(B − A) also
follows. 
�
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Let µ be a measure on a measurable space (X ,A ). Then µ is a finite measure if
µ(X) < +∞, and is a σ -finite measure if X is the union of a sequence A1, A2, . . . of
sets that belong to A and satisfy µ(Ai) < +∞ for each i. More generally, a set in A
is σ -finite under µ if it is the union of a sequence of sets that belong to A and have
finite measure under µ . The measure space (X ,A ,µ) is also called finite or σ -finite
if µ is finite or σ -finite. The following theorems give some elementary but useful
properties of measures.

Theorem 1.49. Let (X ,A ,µ) be a measure space. If {Ak} is an arbitrary sequence
of sets that belong to A , then

µ(
∞⋃

k=1

Ak) ≤
∞

∑
k=1

µ(Ak)

Proof. Define a sequence {Bk} of subsets of X by letting B1 = A1 and letting
Bk = Ak −∪1≤i≤k−1Ai if k > 1. Then each Bk belongs to A and is a subset of the
corresponding Ak, and so satisfies µ(Bk) ≤ µ(Ak). Since, in addition, the sets Bk are
disjoint and satisfy

⋃∞
k=1 Bk =

⋃∞
k=1 Ak, it follows that

µ(
∞⋃

k=1

Ak) =
∞

∑
k=1

µ(Bk) ≤
∞

∑
k=1

µ(Ak) 
�

Theorem 1.50. Let (X ,A ,µ) be a measure space. The the following assertions
hold.

(1) If {Ak |k ∈ Z+} is an increasing sequence of sets that belong to A , then

µ(
∞⋃

k=1

Ak) = lim
k→∞

µ(Ak).

(2) If {Ak |k ∈ Z+} is a decreasing sequence of sets that belong to A , and if
µ(An) < +∞ holds for some n, then

µ(
∞⋂

k=1

Ak) = lim
k→∞

µ(Ak).

Proof. (1) If we write E0 = ∅, then

µ(
∞⋃

k=1

Ak) = µ(
∞⋃

k=1

(Ak −Ak−1)) =
∞

∑
k=1

µ(Ak −Ak−1)

= lim
n→∞

n

∑
k=1

µ(Ak −Ak−1) = lim
n→∞

µ(
n⋃

k=1

(Ak −Ak−1))

= lim
n→∞

µ(An)
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(2) If µ(Am) <∞, then µ(An) ≤ µ(Am) <∞ for n ≥ m, and {Am −An | n ≥ m} is
an increasing sequence, that is

µ(Am)− µ(
∞⋂

n=1

An) = µ(Am −
∞⋂

n=1

An) = µ(
∞⋃

n=1

(Am −An))

= lim
n→∞

µ(Am −An) = lim
n→∞

(µ(Am)− µ(An))

= µ(Am)− lim
n→∞

µ(An)

Since µ(Am) <∞, the proof is complete. 
�

We shall say that an extended real valued set function µ defined on a family ε is
continuous from below at a set ε if for every increasing sequence {Ek} of sets in ε
for which

⋃∞
k=1 Ek = E , lim

k→∞
µ(Ek) = µ(E). Similarly µ is continuous from above

at E if for every decreasing sequence {Ek} of sets in ε for which |µ(Em)| < ∞ for
at least one value of m and for which

⋂∞
n=1 En = E , we have lim

k→∞
µ(Ek) = µ(E).

Theorem 1.50 assert that if µ is a measure, then µ is continuous from above and
from below and had the following partial converse, which is sometimes useful for
checking that a finitely additive measure is in fact countably additive.

Theorem 1.51. Let (X ,A ) be a measurable space, and let µ be a finitely additive
measure on (X ,A ). If either continuous from below at every E in A , or continuous
from above at ∅, then µ is a measure on A .

Proof. Let {En} be a disjoint sequence of sets in A , whose union, E , is also in A
and write Fn =

⋃
1≤i≤n Ei , Gn = E −Fn . If µ is continuous from below, then since

{Fn } is an increasing sequence of sets in A with
⋃∞

k=1 Fk = E , hence

µ(E) = lim
n→∞

µ(Fn) = lim
n→∞

∑1≤i≤nµ(Ei) = ∑∞i=1 µ(Ei)

If µ is continuous from above at ∅, then, since {Gn} is a decreasing sequence of
sets in A with

⋂∞
n=1 Gn = ∅, and µ is finitely additive, we have

µ(E) = µ(Fn ∪Gn) =

(
∑

1≤i≤n

µ(Ei)

)
+ µ(Gn)

= lim
n→∞ ∑

1≤i≤n

µ(Ei)+ lim
n→∞

µ(Gn) = ∑
1≤i≤∞

µ(Ei). 
�

1.5 Probability

The subject of probability theory is the foundation upon which all of statistics [1,
3] is built, providing a means for modeling populations, experiments, or almost
anything else that could be considered related to a random phenomenon. Through
these models, statisticians are able to draw inferences about populations, inferences
based on examination of only a part of the whole.
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1.5.1 Probability Space and Probability Measure

The set, S, of all possible outcomes of a particular experiment is called the sample
space for the experiment. An event is any collection of possible outcomes of an
experiment, that is, any subset of S (including S itself).

Consider the experiment of rolling an ordinary six-sided die and observing the
number x=1, 2, . . . , 5, or 6 showing on the top face of the die. “the number x is
even”, “it is less than 4”, “it is equal to 6” each such statement corresponds to a pos-
sible outcome of the experiment. From this point of view there are as many events
associated with this particular experiment as there are combinations of the first six
positive integers taken any number at time. If, for the sake of aesthetic completeness
and later convenience, we consider also the impossible event, “the number x is not
equal to any of the first six positive integers,” then there are altogether 26 admissible
events associated with the experiment of the rolling die. We write the set {2, 4, 6}
for the event “x is even”, {1, 2, 3} for “x is less than 4” and so on. An event is a
set, and its opposite event is the complementary set; mutually exclusive events are
disjoint sets, and an event consisting of the simultaneous occurrence of two other
events is a set obtained by intersecting two other sets.

For situations arising in modern theory and practice, and even for the more com-
plicated gambling games, it is necessary to make an additional assumption. This
assumption is that the system of events is closed under the formation of countably
infinites unions, or, in the technical language we have already used σ -algebra. When
we ask “what is the probability of a certain event ? ”, we expect the answer to be a
number, a number associated with the event. In other words, probability is a numer-
ically valued function P of the event E , which is in A the σ -algebra on a sample
space X . On intuitive and practical grounds we demand that the number P(E) should
give information about the occurrence habits of the event E .

If, to begin with, P(E) is to represent the proportion of times that E is expected
to occur, then P(E) must be a non negative real number, in fact a number in the unit
interval [0,1]. If E and F are mutually exclusive events–say E={1} and F = {2,4,6}
in the example of the die–then the proportion of times that the union E ∪F occurs
is clearly the sum of the proportion associated with E and F separately. It follows
therefore that the function P cannot be completely arbitrary; it is necessary to subject
it to the condition of additivity, that is to require that if E ∩F = ∅, then P(E ∪F)
should be equal to P(E)+ P(F). Since the certain event X occurs every time, we
should also require that P(X)=1. To sum up: numerical probability is a measure P
on an σ -algebra S of subsets of a set X , such that P(X) = 1. We are now in a
position to define a probability function.

Definition 1.43. Given a sample space X and an σ -algebra S on X , a probability
function is a function P with domain S that satisfies the following conditions

(1) P(A) ≥0 for all A ∈ S .
(2) P(X)=1.
(3) For each infinite sequence {Ai} of disjoint sets that belong to S

P(
⋃∞

k=1 Ak) = ∑∞k=1 P(Ak).
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The measure space (X ,S ,P) is called a probability space and the measure P is
called a probability measure.

The three properties given in Definition 1.43 are usually referred to as the Axioms of
Probability (or the Kolmogorov Axioms). Any function P that satisfies the Axioms
of Probability is called a probability function. The axiomatic definition makes no
attempt to tell what particular function P to choose; it merely requires P to satisfy the
axioms. For any sample space many different probability functions can be defined.
Which one reflects what is likely to be observed in a particular experiment is still
to be discussed. The following gives a common method of defining a legitimate
probability function.

Theorem 1.52. Let X = {x1,x2, . . . ,xn } be a finite set. Let S be any σ -algebra on
X. Let p1, p2, . . . , pn be nonnegative numbers that sum to 1. For any A ∈ S , define
P(A) by P(A) = ∑i:xi∈A pi. (The sum over an empty set is defined to be 0.) Then P
is a probability function on S . This remains true if X = {x1,x2, . . . } is a countable
set.

Proof. We will give the proof for finite X . For any A ∈ S ,P(A) ≥ 0 because every
pi ≥ 0. Thus, Axiom 1 is true. Now P(X) = ∑1≤i≤n pi = 1. Thus, Axiom 2 is true.
Let A1,A2, . . . ,Ak denote pair wise disjoint events. (S contains only a finite number
of sets, so we need consider only finite disjoint unions.) Then

P(
⋃k

i=1 Ai) = ∑ j:x j∈
⋃k

i=1 Ai
p j = ∑k

i=1∑ j:x j∈Ai
p j = ∑k

i=1 P(Ai).

The first and third equalities are true by the definition of P(A). The disjointedness of
the Ais ensures that the second equality is true, because the same p js appear exactly
once on each side of the equality. Thus, Axiom 3 is true and Kolmogorov’s Axioms
are satisfied. 
�

1.5.2 Some Useful Properties of Probability

From the axioms of Probability we can build up many properties of the probability
function, properties that are quite helpful in the calculation of more complicated
probabilities.

Theorem 1.53. Let (X ,S ,P) be a probability space and A, B be any sets in S .
Then the following assertions hold.

(1) P(A′) = 1−P(A);
(2) P(A) ≤ 1;
(3) P(∅) = 0;
(4) P(B−A) = P(B)−P(A∩B);
(5) P(A∪B) = P(A)+ P(B)−P(A∩B);
(6) If A ⊆ B, then P(A) ≤ P(B).
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Proof. (1) The sets A and A′ form a partition of the sample space X , that is, X =
A ∪ A′. Therefore, P(A ∪ A′) = P(X)=1 by the second Axiom. Also, A and A′ are
disjoint, so by the third axiom, P(A ∪ A′) = P(A)+ P(A′). Therefore we have (1).
Since P(A′) ≥0, (2) is immediately implied by (1). To prove (3), we use a similar
argument on X = X ∪∅. Since X , ∅ ∈S and they are disjoint, we have

1 = P(X) = P(X ∪∅) = P(X)+ P(∅)

and thus (3) holds.
The proofs of (4)-(6) remain as exercises. 
�

Theorem 1.54. Let (X ,S ,P) be a probability space and A be any set in S . Let
{Ci} be an infinite sequence of the sets in S which is a partition of the sample
space X and {Ai} be any sequence of sets in S . Then the following assertions hold.

(1) P(A) = ∑∞k=1 P(A∩Ck);
(2) P(

⋃∞
k=1 Ak) ≤ ⋃∞

k=1 P(Ak).

Definition 1.44. Let (X ,S ,P) be a probability space and the events A, B be any sets
in S . If P(B) > 0, then the conditional probability of A given B, written P(A|B), is

P(A|B) =
P(A∩B)

P(B)
.

Note that what happens in the conditional probability calculation is that B becomes
the sample space: P(B|B)=1. The intuition is that our original sample space, X , has
been updated to B. All further occurrences are then calibrated with respect to their
relation to B. In particular, note what happens to conditional probabilities of disjoint
sets. Suppose A and B are disjoint, so P(A ∩ B)=0. It then follows that P(A|B) =
P(B|A)=0.

Theorem 1.55. (Bayes’Rule) Let (X ,S ,P) be a probability space and A be any
sets in S . Let {Ci} be an infinite sequence of the sets in S which is a partition of the
sample space X. Then for each i = 1,2, . . .,

P(Ci|A) =
P(A|Ci)P(Ci)

∑∞i=1 P(A|Ci)P(Ci)

Proof. By Theorem 1.54, we know that P(A) =∑∞i=1 P(A∩Ci). For each i=1, 2, . . . ,
we have P(A∩Ci) = P(A|Ci)P(Ci) from Definition 1.43. Therefore

P(Ci|A) =
P(Ci ∩A)

P(A)
=

P(A|Ci)P(Ci)
∑∞i=1 P(A|Ci)P(Ci)

. 
�

Definition 1.45. Let (X ,S ,P) be a probability space. Then a finite sequence of
events in S , {Ai|i=1,2,. . . , n} are mutually independent if for any subsequence
{B j | j = 1,2, . . . ,q} ⊆ {Ai|i = 1,2, . . . ,n},
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P(
⋂q

j=1 B j) =∏q
j=1 P(B j).

In many experiments it is easier to deal with a summary variable than with the
original probability structure. For example, in an opinion poll, we might decide to
ask 50 people whether agree or disagree with a certain issue. If we record a “1” for
agree and “0” for disagree, the sample space for this experiment has 250 elements,
each an ordered string of 1s and 0s of length 50. We should be able to reduce this to
a reasonable size! It may be that the only quantity of interest is the number of people
who agree (equivalently, disagree) out of 50 and, if we define a variable X=number
of 1s recorded out of 50, we have captured the essence of the problem. Note that the
sample space for X is the set of integers {0,1, 2, . . . , 50} and is much easier to deal
with than the original sample space. In general, we have the following definition.

Definition 1.46. Let (X ,S ,P) be a probability space. A random variable ξ is a map
from the sample space X into the set of real numbers R. The distribution function of
a random variable, ξ , denoted by Fξ (x), is defined as follows: for any x ∈ R, Fξ (x) =
P(ξ ≤ x). For a discrete random variable, ξ , its probability mass function, denoted
by fξ (x), is given by fξ (x) = P(ξ = x) for all x. For a continuous random variable,
ξ , its probability density function, denoted by fξ (x), is the function satisfies

Fξ (x) =
∫ x

−∞
fξ (t)dt f or all x ∈ R.

A fundamental concept in the analysis of univariate data is the probability density
function. Let ξ be a random variable that has probability density function f (x). A
motivation for the construction of a nonparametric estimate of the density function
can be found using the definition of the density function.

f (x) =
d
dx

F(x) = lim
h→0

F(x + h)−F(x)
h

(1.5)

where F(x) is the distribution function of the random variable ξ . Let {x1, x2, . . . ,xn}
represent a random sample of size n from the density f . A natural finite-sample
analog of (1.5) is to divide the line into a set of k equalized bins with small bin
width h and to replace F(x) with the empirical distribution function F−(x) = |{xi

| xi ≤ x}|/n. This leads to the histogram estimate of the density within a given bin:
for x ∈ (b j, b j+1],

f −(x) =
|{xi|b j ≤ xi ≤ b j+1}|/n

h
=

n j

nh
, (1.6)

where (b j, b j+1] defines the boundaries of the jth bin, n j is the number of the ob-
served samples in the jth bin h = b j+1 −bi. What is needed is some way to evaluate
f −(x) as an estimator of f (x). One way to evaluate f −(x) is via mean integrated
squared error (MISE) shown as follows (refer to [3]).

∫ +∞

−∞
( f −(u)− f (u))2du =

1
nh

+
h2 ∫ +∞

−∞ f
′2(u)du

12
+ O(n−1)+ O(h3),
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providing that f ′(x) is absolutely continuous and square integrable. In order for the
estimator to be consistent, the bins must get narrower, with the number of observed
samples per bin getting larger, as n → ∞; that is, h → 0 with nh → ∞.

All the above definitions and results can be generalized to the multivariate case,
where there are n random variables. Corresponding to Definition 1.46, the values of
the joint probability distribution of n random variables ξ1, ξ2, . . . , ξn are given by

F(x1,x2, . . . ,xn) = P(ξ1 ≤ x1, ξ2 ≤ x2, . . . ,ξn ≤ xn)

for −∞< x1,x2, . . . ,xn <∞. In the continuous case, probabilities are again obtained
by integrating the joint probability density, and the joint distribution function is
given by

F(x1,x2, . . . ,xn) =
∫ xn

−∞
. . .

∫ x2

−∞

∫ x1

−∞
f (t1,t2, . . . ,tn)dt1dt2 . . .dtn

for −∞< x1,x2, . . . ,xn < ∞. Also, partial differentiation yields

f (x1,x2, . . . ,xn) =
∂ n

∂x1∂x2 . . .∂xn
F(x1,x2, . . . ,xn),

wherever these partial derivatives exist.
The normal distribution is in many ways the cornerstone of modern statistical

theory. It was investigated first in the eighteenth century when scientists observed
an astonishing degree of regularity in error of measurement. They found that the
patterns (distributions) that they observed could be closely approximated by contin-
uous curves, which they referred to as “normal curves of errors and attributed to the
law of chance.

Definition 1.47. Let (X ,S ,P) be a probability space. n random variables ξ1,
ξ2, . . . ,ξn have a joint normal distribution if and only if for −∞< x1,x2, . . . ,xn <∞,

F(x1,x2, . . . ,xn) =
∫ xn

−∞
. . .

∫ x2

−∞

∫ x1

−∞

1√
(2π)n|Σ |

e− 1
2 (x−µ)Σ−1(x−µ)dt1dt2 . . .dtn,

(1.7)
where x = (x1,x2, . . . ,xn)T , Σ is a n×n symmetry positive definite matrix and µ is
a n-dimension vector in Rn.

Let X1,X2, . . . ,Xl be the observed samples of size l from a probability space (X ,S ,P)
with a joint normal distribution and X ⊆ Rn. Let matrix X =(X1,X2, . . . ,Xl). If l ≥ n,
then by the Maximum Likelihood Estimate method in [1], the parameters Σ and µ
in (1.7) can be estimated as follows:

µ =
1
l

l

∑
i=1

Xi, Σ =
1
l

XHXT , (1.8)

where H = I − l−1J, I is the identical matrix and J is a n × n matrix whose entries
are all 1.
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1.6 Combinatoric Systems

In this section, we will give the definitions and some simple properties of combi-
natoric systems in [2]. By using them, the structure of data will be described in the
AFS theory.

Definition 1.48. Let V and E be sets and disjoint, f : E → 2V . Then the triple
(V, f ,E) is called a system. The elements of E are called the blocks of the system
(V, f ,E), the elements of V are called the vertices of the system (V, f ,E). If x ∈ f (e),
we say that the block e contains the vertex x, or that x and e are incident with each
other.

Let Λ = (V, f ,E) and Ω = (W,g,F) be systems. The systems Λ and Ω are called
isomorphic systems if there exist bijections, p : E → F,q : V → W such that
q( f (e)) = g(p(e)) for all e ∈ E . The pair (p,q) is called a system-isomorphism.

Definition 1.49. Given two systems Λi = (Vi, fi,Ei) for i=1, 2 where V1 ∩V2 = ∅ =
E1 ∩E2, the system Λ = (V1 ∪V2, f ,E1 ∪E2) where f (e) = fi(ei) for e ∈ Ei is called
the direct sum system of Λ1 and Λ2 and denoted by Λ1 ⊕Λ2.

Since the direct sum of system is commutative and associative, Definition 1.49 may
be extended to any finite number of systems Λi=(Vi, fi, Ei) for i=1, 2, ..., k, as long
as Vi ∩Vj = ∅ = Ei ∩ E j, for any i�=j. the system Λ=(V1∪...∪Vk, f , E1∪...∪Ek),
where f (e) = fi(ei) for e ∈ Ei, i = 1,2, ...,k, is called the direct sum of Λ1, ... Λk

and denoted by ⊕1≤i≤kΛi. EachΛi is called a direct summand ofΛ . The system (∅,
f , ∅) is called the trivial system. Clearly Λ itself and the trivial system are always
direct summands of Λ .

Definition 1.50. A system Λ is called a connected system if Λ itself and the trivial
system are its only direct summands. A connected nontrivial summand ofΛ is called
a component of Λ .

Definition 1.51. Let Λ = (V, f ,E) be a system. xi ∈ V for i = 0,2, . . . ,n and ei ∈ E ,
i = 1,2, . . . ,n − 1. A sequence x = x0,e1,x2,e3, . . . ,en−1,xn = y is called a x − y
path if {xi,xi+2} ⊆ f (ei+1) for i = 0,2, . . . ,n − 1. s ∈ V , t ∈ E , if a sequence s =
s0,t1,s2,t3, . . . ,sn−1,tn = t in which sn−1 ∈ f (tn) and {si−1,si+1} ⊆ f (ti) for i =
1,2, . . . ,n−2, or a sequence t = t0,s1, t2,s3, . . . , tn−1,sn = s in which s1 ∈ f (t0) and
{si,si+2} ⊆ f (ti+1) for i = 1,2, . . . ,n − 2, then the sequence is called a s − t path.
We always define there exists a x− x path for any x ∈ V ∪E .

Proposition 1.1. Let Λ = (V, f ,E) be a system. The binary relation R on V ∪E is
an equivalence relation if (s,t) ∈ R ⇔ there exists a s− t path in Λ for s, t ∈ V ∪E.

Proof. By the definition, we know that there exists a x− x path for any x ∈ V ∪E .
Also by the definition, we know that if there exist x− y path then there also exists a
y− x path for x,y ∈ V ∪E . Suppose there exist the path
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x− y, x = x0, y1, x2, y3, ..., xn−1, yn = y

and the path

y− z, y = y0, z1, y2, z3, ..., yn−1, zn = z

in Λ . If y ∈ V , then

x = x0, y1, x2, y3, ..., xn−1, yn = y = y = y0, z1, y2, z3, ..., yn−1, zn = z

is a x− z path in Λ . If y ∈ E , by the definition, we know that {xn−1, z1}∈ f (y), then

x = x0, y1, x2, y3, ..., xn−1, yn = y = y0, z1, y2, z3, ..., yn−1, zn = z

is also a x− z path in Λ . 
�

Theorem 1.56. The component partition of system Λ = (V, f ,E) is the partition of
the equivalence relation of Proposition 1.1 restricted to V .

Proof. Assume ΛV1 ,ΛV2 , . . . ,ΛVK are the components of Λ = (V, f ,E) and let Fi =
{e ∈ E| f (e) ⊆ Vi}. Let s ∈ Vi and t ∈ Vj for some i�=j. Suppose s = s0, s1, s2, s3, ...,
sn−1, sn = t is a s− t path, and let sk be the last term in the path in Vi ∪Fi. If sk is
a vertex, then sk ∈ f (sk+1) where sk ∈ Vi and sk+1 /∈ Fi. Since ΛV1 ,ΛV2 , . . . ,ΛVK are
the components ofΛ , sk+1 ∈ Fq for some q �= iand f (sk+1) ⊆ Fq, i.e., f (sk+1)∩Vi =
∅. This is clearly impossible. If sk is a block, then sk+1 ∈ f (sk), but f (sk) ⊆ Vi

whilesk /∈ Fi which is impossible. We conclude that there exists no s− tpath.
Now suppose s, t ∈ Vi for some i. Let

S={r ∈ Vi ∪Fi | there is a s− r path}.

Observe that if r ∈ S∩Fi, then f (r) ⊆ S and hence f (r) ⊆ S∩Vi. On the other hand
if r ∈ Fi − (S∩Fi), then f (r)∩S = ∅, i.e., f (r) ⊆ Vi − (S∩Vi). We conclude that

Ω1 = (S∩Vi, f |S∩Fi ,S∩Fi) , Ω2 = (Vi − (S∩Vi), f |Fi−S∩Fi ,Fi − (S∩Fi))

are both well-defined subsystems of Λ . Furthermore ΛVi = Ω1 ⊕Ω2. However ΛVi ,
being a component, is connected. Hence Ω1 or Ω2 is trivial. Since s ∈ S, Ω1 is not
trivial, hence Ω2 is trivial. Thus Vi − (S ∩Vi) = ∅, t ∈ Vi ⊆ S and s is equivalent
to t. 
�

By Theorem 1.56, we immediately have the following corollary.

Corollary 1.6. Let Λ = (V, f ,E) be a system. The following three conditions are
equivalent:

(1) Λ is connected.
(2) f (e) �= ∅ for all e ∈ E, and for every s, t ∈ V there is a s− t path.
(3) For every s, t ∈ V ∪E there is a s− t path.
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Exercises

Exercise 1.1. For any three sets A,B, and C, show the following assertions hold:

(a) A∪B = B∪A, A∩B = B∩A; ( Commutativity )
(b) A∪ (B∪C)=(A∪B)∪C, A∩ (B∩C)=(A∩B)∩C; (Associativity)
(c) (A∪B)′ = A′ ∩B′, (A∩B)′ = A′ ∪B′. (DeMorgan’s Laws)

Exercise 1.2. For any collection of sets Γ and the set B, show the distributive laws
carry over to arbitrary intersections and unions:

B∩ (
⋃

A∈Γ
A) =

⋃
A∈Γ

(B∩A),B∪ (
⋂

A∈Γ
A) =

⋂
A∈Γ

(B∪A).

Exercise 1.3. Let f be a map of X into Y and A, B be any subsets of X . Let U , V be
any subsets of Y . Show the following assertions hold

(a) f (A∪B) = f (A)∪ f (B), f (A∩B) ⊆ f (A)∩ f (B);
(b) f −1(U ∪V ) = f −1(U)∪ f −1(V ), f −1(U ∩V ) ⊆ f −1(U)∩ f −1(V ).

Exercise 1.4. Prove that a subset of a countable set is countable.

Exercise 1.5. Prove that the set Q of all rational numbers is a countable set.

Exercise 1.6. Let (S,≤) be a partially ordered set and A a non-empty subset of S.
Show the following assertions hold:

(a) If A has maximum (minimum) element, then the maximum (minimum) ele-
ment is unique.

(b) If A is a chain in S (e.g. linear ordered subset), then maximal (minimal) ele-
ment of A (if it exists) must be maximum (minimum) element.

Exercise 1.7. Let A be a subset of a topological space X and let b(A) be the bound-
ary of A. Show B(A) = A− ∩ (X − A)− = A− − A0, X − b(A) = A0 ∪ (X − A)0,
A− = A ∪ b(A) and A0 = A − b(A). And prove that a set is closed if and only if
it contains its boundary. Furthermore prove that a set is open if and only if it is
disjoint from its boundary.

Exercise 1.8. Prove that the real numbers, with the usual topology are connected.

Exercise 1.9. Let a be a family of connected subsets of a topological space. If no
two members of a are separated, prove that ∪A∈aA is connected.

Exercise 1.10. Prove that each connected subset of a topological space is connected
in a component and each component is closed. If A and B are distinct components
of a space, prove that A and B are separated.

Exercise 1.11. Prove that a topological space is a Hausdorff space if and only if
each net in the space converges to at most one point.

Exercise 1.12. Prove that a topological space X is compact if and only if for any
family {Dα | α ∈ A} of closed sets with the finite intersection property.
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Exercise 1.13. Let X be a topological space, then X is compact if and only if any
family {Dα | α ∈ A} of subsets of X with the finite intersection property has the
further property that ∩α∈AD−

α �= ∅.

Exercise 1.14. Prove that each of the following properties of topological spaces is
stronger than the next: Normality, Regularity, T2 (Hausdorff), T1, T0, in the sense
that if a space satisfies the definitions of any one of these properties, it also satisfies
the definitions for all of the following ones as well.

Exercise 1.15. If X and Y are topological space and f is a function on X to Y , show
the following statements are equivalent.

(a) The function f is continuous.
(b) The inverse of each closed set is closed.
(c) The inverse of each member of a subbase for the topology for Y is open.
(d) For each x in X the inverse of every neighborhood of f (x) is a neighborhood

of x.
(e) For each x in X and each neighborhood U of f (x) there is a neighborhood V

of x such that f (V ) ⊆ U .
(f) For each net S (or {Sn, n ∈ D} ) in X which converges to a point s, the com-

position f ·S (i.e., { f (Sn), n ∈ D} ) converges to f (s).
(g) For each subset A of X the image of closure is a subset of the closure of the

image; that is, f (A−) ⊆ f (A)−.
(h) For each subset B of Y , f −1(B)− ⊆ f −1(B−).

Exercise 1.16. Prove that a T1 space X is regular if and only if for each x ∈ X and
each U ∈ Ux there is a V ∈ Ux such that V− ⊆ U .

Exercise 1.17. Prove that a T1 space X is normal if and only if for each closed
set C and each open set U such that C ⊆ U , there exists an open set V such that
C ⊆ V ⊆ V− ⊆ U .

Exercise 1.18. Prove that the ρ(x,y) in Definition 1.36 is a distance on H ; The
subspace of H defined by

E1 = {x | x ∈ H , x = {xn,n ∈ N+}, xn = 0 for n > 1 }

is homeomorphic to the real line with the usual topology; More generally En ⊆ H ,
defined by

En = {x | x ∈ H , x = {xi, i ∈ N+}, xi = 0 for i > n }

is homeomorphic to Rn the n-dimension Euclidean space with the usual topology.

Exercise 1.19. Let (X ,S ,P) be a probability space and A, B be any sets in S . Show
the following assertions

(a) P(B−A) = P(B)−P(A∩B);
(b) P(A∪B) = P(A)+ P(B)−P(A∩B);
(c) If A ⊆ B, then P(A) ≤ P(B).
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Exercise 1.20. Let (X ,S ,P) be a probability space and A be any set in S . Let {Ci}
be an infinite sequence of the sets in S which is a partition of the sample space X
and {Ai} be any sequence of sets in S . Show the following assertions.

(a) P(A) = ∑∞k=1 P(A∩Ck);
(b) P(

⋃∞
k=1 Ak) ≤ ∑∞k=1 P(Ak).
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Chapter 2
Lattices

This chapter offers a concise introduction to lattices, Boolean algebras, topological
molecular lattices and shows main relations between them. For details, the readers
may refer to [1, 3, 2]. Our purpose is to familiarize the readers with the concepts
and fundamental results, which will be exploited in further discussion. Some results
listed without proofs is left to the reader.

2.1 Lattices

An element u of a partially ordered set S is an upper bound of a subset A of S if u ≥ a
for every a ∈ A. The element u is a least upper bound or supremum of A (denoted
by supA) if u is an upper bound of A and u ≤ v for every upper bound v of A. It is
clear from anti-symmetry of Definition 1.5 that if a supA exists, then it is unique. In
a similar fashion one defines lower bounds and greatest lower bounds or infimum
of a set A(denoted by infA). Also if infA exists, then it is unique. The set of all of
the upper bounds (resp. lower bounds) of A is denoted by MaA (resp. MiA). We now
introduce the following.

Definition 2.1. A lattice is a partially ordered set in which any two elements have a
least upper bound (supremum) and a greatest lower bound (infimum).

Let a partially ordered set L be a lattice, we denote the least upper bound of a and b
by a∨b (“a cup b” or “a union b”) and the greatest lower bound by a∧b (“a cap b”
or “a meet b”). And the lattice is briefly denoted as (L,∨,∧).

Proposition 2.1. Let ≤ be the ordered relation of the partially ordered set (L,≤)
and (L,∨1,∧1) be a lattice. If ≤−1 is the inverse relation of ≤, then the partially
ordered set (L,≤−1) is a lattice (L,∨2,∧2), where for any a,b ∈ L,

a∨2 b = a∧1 b, a∧2 b = a∨1 b.

The latices (L,∨1,∧1) and (L,∨2,∧2) are called dual lattices. (L,∨2,∧2), the dual
lattice of (L,∨1,∧1), also briefly denoted as L−1.

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 61–94.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Proposition 2.2. Let L be a lattice. For any a,b,c ∈ L, (a ∨ b)∨ c ≥ a,b,c; if v ≥
a,b,c, then v ≥ (a∨b),c and so v ≥ (a∨b)∨ c. Hence (a∨b)∨ c is a supremum of
a,b,c.

Remark 2.1. One shows that any finite set of elements of a lattice has a supremum.
Similarly, any finite subset has an infimum. We denote the supremum and infimum
of a1,a2, . . . ,an by

a1 ∨a2∨. . .∨ an

and

a1 ∧a2 ∧ . . .∧ an

respectively.

Example 2.1. Let S be a set, then (2S, ⊆) is a lattice. Where ∨ and ∧ are defined by
∪ and ∩, respectively. (2S, ⊆) is called power set lattice on set S.

Proposition 2.3. Any totally ordered set is a lattice.

Proof. Let (L,≤) be a totally ordered set. For ∀a,b ∈ L, we have either a ≥ b or
b ≥ a. In the first case, a∨b = a and a∧b = b. If b ≥ a then a∨b = b and a∧b = a.
Thus (L,≤) is a lattice by Definition 2.1.

Definition 2.2. Let L be a lattice with finite elements, then L is called a finite lattice.
Otherwise, L is called an infinite lattice.

Theorem 2.1. Let X be a non-empty partially ordered set. Then X is a lattice if and
only if every non-empty subset of X has a least upper bound and a greatest lower
bound.

Proof. It is straightforward by Definition 2.1. 
�

Definition 2.3. A subset X of a lattice L is called a sublattice if it is closed under
the operation ∨ and ∧, that is, a∨b ∈ X and a∧b ∈ X for ∀a,b ∈ X .

The following facts which remain as exercises are clear from Definition 2.3.

Proposition 2.4. Let L be a lattice. Then the following assertions hold.

(1) Empty set ∅ is a sublattice of lattice L;
(2) Unit set {a} (a ∈ L) is a sublattice of lattice L;
(3) The intersection of any sublattice of lattice L is a sublattice of L.

Remark 2.2. It is evident that a sublattice is a lattice relative to the induced opera-
tions. On the other hand, a subset of a lattice may be a lattice relative to the partial
ordered relation ≤ defined in L without being a sublattice.
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a

b c

d
e

I

O

For example, a fact that L is a lattice can be visualized in the form of the above
diagram. Let X = L−{a,b,c} and Y = L−{e}, then X is a sublattice of L, and Y is
a lattice without being a sublattice of L.

If a is a fixed element of a lattice L, then the subset of elements x such that
x ≥ a(x ≤ a) is clearly a sublattice. If a ≤ b, the subset of elements s ∈ L such that
a ≤ x ≤ b is a sublattice. We call such a sublattice an interval sublattice and we
denote it as I[a,b].

Theorem 2.2. Let (L,≤) be a lattice, x,y ∈ L. Then the following conditions are
equivalent:

(1) x ≤ y;
(2) x∧ y = x;
(3) x∨ y = y.

Proof. If x ≤ y, then x is a lower bound of {x,y}. Let z be any lower bound of
{x,y}, then z ≤ x, that is, x is a greatest lower bound of {x, y}, and so x ∧ y = x.
Conversely, if x∧y = x, we must have x ≤ y. Thus, the condition (1) is equivalent to
the condition (2).

In virtue of the principle of duality, the condition (1) is equivalent to the condi-
tion (3). 
�

In particular, if a lattice (L,≤) has identity element I and zero element O, for ∀x ∈ L,
we have the following relationships

x∧O = O, x∨O = x, x∧ I = x, x∨ I = I

The following results can be directly proved by resorting to the definitions and are
left to the reader.

Theorem 2.3. Let (L,≤) be a lattice, ∀x,y,z ∈ L we have the follows:

L1. x∧ x = x, x∨ x = x. (Idempotency)
L2. x∧ y = y∧ x, x∨ y = y∨ x. (Commutativity)
L3. x∧ (y∧ z) = (x∧ y)∧ z, x∨ (y∨ z) = (x∨ y)∨ z. (Associativity)
L4. x∧ (x∨ y) = x = x∨ (x∧ y). (Absorption)

Corollary 2.1. In lattice (L,≤), operations of union and meet are order-preserving.
That is, ∀x,y,z ∈ L we have

x ≤ y ⇐⇒ x∧ z ≤ y∧ z, x∨ z ≤ y∨ z.
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Corollary 2.2. In lattice (L,≤), distributive inequality holds. That is, ∀x,y,z ∈ L we
have

(1) x∧ (y∨ z) ≥ (x∧ y)∨ (x∧ z);
(2) x∨ (y∧ z) ≤ (x∨ y)∧ (x∨ z).

Corollary 2.3. In a lattice (L,≤), modular inequality holds. That is, ∀x,y,z ∈ L we
have

x ≤ z ⇒ x∨ (y∧ z) ≤ (x∨ y)∧ z

Generally, the equality does not hold in the relationships presented in Corollary 2.2
and Corollary 2.3. The lattice L, which is presented in the form of the following
diagram as shown below, is an example for this. In fact, the algebraic characteristics

I

z

x

y

O

of lattice are completely described by L1∼L4, as we demonstrate in the form of the
following theorem.

Theorem 2.4. Let L be any set in which there are defined two binary operation ∨
and ∧ satisfying the condition L1∼L4 of Theorem 2.3. Then the following assertions
hold.

(1) ∀x,y ∈ L, x∧ y = x ⇔ x∨ y = y;
(2) The L is a lattice relative to the following definition of ≤

x ≤ y ⇐⇒ x∧ y = x

and that x∨ y and x∧ y are the supremum and infimum of x and b in this lattice.

Proof. (1) If x∧ y = x, we have x∨ y = (x∧ y)∨ y = y by L2 and L4. Conversely, if
x∨ y = y, we have x∧ y = x∧ (x∨ y) = x.

(2) Since x ∧ x = x we have x ≥ x so reflexivity holds. If x ≥ yand y ≥ x, then
we have x∨ y = x and y∨ x = y. Since x∨ y = y∨ x this gives x = y, which proves
anti-symmetry. Next assume that x ≥ y and y ≥ z. Then x∨y = x and y∨z = y. Hence

x∨ z = (x∨ y)∨ z = x∨ (y∨ z) = x∨ y = x

which means that x ≥ z. Hence transitivity is valid.
Since (x∨y)∧x = x, by L4, x∨y ≥ x. Similarly, x∨y ≥ y. Now let z be an element

such that z ≥ x and z ≥ y. Then x∨ z = z and y∨ z = z. Hence

(x∨ y)∨ z = x∨ (y∨ z) = x∨ z = z
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so z ≥ x∨ y. Thus x∨ y is a supremum of a and b in L. By duality, x∧ y is an infi-
mum of a and b. This completes the verification that a set L with binary operations
satisfying L1∼L4 is a lattice and x∨ y and x∧ y are the supremum and infimum in
this lattice. 
�

Let us recall that a lattice (in virtue of Theorem 2.3 and Theorem 2.4) is an alge-
braic system with two algebra operation (denoted as ∨ and ∧), which satisfies the
the properties of idempotency, commutativity, associativity and absorption (axioms
L1∼L4). These axioms may be regarded as an equivalent definition of lattices. Sim-
ilarly, we may define a concept of semi-lattice.

Definition 2.4. An algebraic system with an algebra operation ∧ or ∨ which satisfies
axioms L1∼L3 is called a semi-lattice.

Let (S,≤) be a partially ordered set. We can prove that, if there exists infimum x∧y
(resp. supremum x∨y) for any x,y ∈ S, then the algebraic system (S,∧) (resp. (S,∨))
is a semi-lattice, which is called meet semi-lattice (resp. union semi-lattice). Con-
versely, let the algebraic system (S,◦) be a semi-lattice, We define binary relation ≤
as follows

x ≤ y ⇐⇒ x◦ y = x (or y◦ x = y)

Then (S, ≤) is a partially ordered set, and there exists a infimum x ∧ y = x ◦ y (or
supremum x∨ y = x◦ y).

Theorem 2.5. Let (S,≤) is a partially ordered set. Then we have

(1) (S,≤) is a lattice ⇔ (S,≤) is both meet semi-lattice and union semi-lattice;
(2) If (S,≤) is finite meet (union) semi-lattice with identity element I (or zero ele-

ment O), then (S,≤) is a lattice.

Proof. It is clear that (1) holds by Theorem 2.34. We now demonstrate that (2)
holds. Let (S,≤) be a finite meet semi-lattice with identity element I. For ∀x,y ∈ S,
Ma{x, y}�= ∅ by I ∈ Ma{x,y}, where Ma {x, y} is the set of upper bound of {x, y}.
Since (S, ≤) satisfies maximal condition and minimal condition, there exists min-
imal element z0 of Ma{x, y}. It follows that, ∀z′ ∈ Ma{x, y}, z0 ∧ z′ exists and
z0 ∧ z′ ∈ Ma{x, y} since S is a meet semi-lattice. Also, z0 ≤ z′ by minimally of z0,
that is, z0 is minimum element of Ma{x, y}. Thus z0 = x∨y. Consequently, (S,≤) is
a union semi-lattice. It follows that (S,≤) is a lattice by (1).

According to the principle of duality, if (S,≤) is a finite union semi-lattice with
zero element O, then (S,≤) is a lattice. 
�

We now introduce the definition of a complete lattice.

Definition 2.5. A partially ordered set L is called a complete lattice if every subset
A = {ai | i ∈ I} of L has a supremum and infimum.

By the definition of complete lattice, we can directly obtain the following.
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Theorem 2.6. Let L be a lattice. We have the following assertions.

(1) L is a complete lattice if and only if L−1 dual of L) is complete;
(2) If L is a finite lattice, then L is complete.

We denote supremum and infimum of {ai | i ∈ I} by
∨

i∈I ai and
∧

i∈I ai, respectively.
If the set {ai | i ∈ I} coincides with the underlying set of the lattice L then O ≡∧i∈Iai

is the least element of L and I ≡ ∨i∈Iai is the greatest element of L : O ≤ a and I ≥ a
for every a ∈ L. The following comes as a useful criterion for recognizing whether
a given partially ordered set is complete lattice.

Theorem 2.7. A partially ordered set with a greatest element I such that every non-
vacuous subset has a greatest lower bound is a complete lattice. Dually, a partially
ordered set with a least element O such that every non-vacuous subset has a least
upper bound is a complete lattice.

Proof. Assuming the first set of hypotheses we have to show that any A={ai | i ∈ I}
has a supremum. Since I ≥ aα the set B of upper bounds of A is non-vacuous. Let
b = infB. Then it is clear that b = supA. The second statement follows in virtue of
symmetry. 
�
The definition of a lattice provided by means of the axioms L1∼L4 makes it natural
to define a homomorphism of a lattice L into a lattice L′ to be a map ϕ : a → ϕ(a)
such that ϕ(a∨b) = ϕ(a)∨ϕ(b) and ϕ(a∧b) = ϕ(a)∧ϕ(b). In this case if a ≥ b
then we have a∨b = a; hence ϕ(a)∨ϕ(b) =ϕ(a) and ϕ(a)≥ ϕ(b). A map between
partially ordered sets having this property is called order preserving. Thus we have
shown that a lattice homomorphism is order preserving. However, the converse need
not hold. A bijective homomorphism of lattices is called an isomorphism. These can
be characterized by order preserving properties, as we see in the following

Theorem 2.8. A bijective map ϕ(a) of a lattice L onto a lattice L′ is a lattice iso-
morphism if and only if it and its inverse are order preserving.

Proof. We have seen that if a→ϕ(a) is a lattice isomorphism, then this map is order
preserving. It is also apparent that the inverse map is an isomorphism of L′ into L so
it is order preserving. Conversely, suppose a → ϕ(a) is bijective and as well as its
inverse is order preserving. This means that a ≥ b in L if and only if ϕ(a) ≥ ϕ(b) in
L′. Let d = a∨b. Then d ≥ a, b, so ϕ(d) ≥ ϕ(a), ϕ(b). Let ϕ(e) ≥ ϕ(a), ϕ(b) and
let e be the inverse image of ϕ(e). Then e ≥ a, b. Hence e ≥ d and ϕ(e) ≥ ϕ(d).
Thus we have shown that ϕ(d) = ϕ(a)∨ϕ(b). In a similar fashion we can show that
ϕ(a∧b) = ϕ(a)∧ϕ(b). 
�
Finally, we give the concept of ideal of lattice.

Definition 2.6. Let (L,≤) be a lattice (resp. union semi-lattice). If J a subset of L
which satisfies the following conditions, then J is called an ideal (resp. union ideal)
of L.

(1) a∨b ∈ J(∀a,b ∈ J);
(2) ∀a ∈ J,x ∈ L,x ≤ a implies x ∈ J.
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Dually, we can define a dual ideal (resp. meet ideal ) of lattice (resp. meet semi-
lattice). If J is an ideal (or dual ideal) of a lattice L, and J �= ∅, J �= L, we call J a
proper ideal (or proper dual ideal ) of L. Clearly, ∅ and L are ideal (or dual ideal)
of L, we call them usual ideal (or usual dual ideal ) of L. It is easy to verify that
every ideal (or dual ideal) of lattice L is a sublattice of L.

Theorem 2.9. Let L be a lattice, and J a subset of L. Then the following assertions
hold.

(1) J is an ideal (dual ideal) if and only if a ∨ b ∈ J (reap. a ∧ b ∈ J) ⇐⇒ a ∈ J
and b ∈ J, ∀a,b ∈ L;

(2) If J is a sublattice of L, then J is an ideal (resp. dual ideal) of L if and only if
∀a ∈ J, b ∈ L, we have a∧b ∈ J (resp. a∨b ∈ J);

(3) Arbitrary intersections of ideal (or dual ideal) of L is also ideal (or dual ideal)
of L; finite intersections of proper ideal (or dual ideal) of L is also proper ideal
(or proper dual ideal) of L.

2.2 Distributive Lattices

Let L be a lattice. We now formulate the following two distributive laws:

D1 x∧ (y∨ z) = (x∧ y)∨ (x∧ z), ∀x,y,z ∈ L

and its dual

D2 x∨ (y∧ z) = (x∨ y)∧ (x∨ z),∀x,y,z ∈ L

Theorem 2.10. For any lattice L, condition D1 is equivalent to condition D2.

Proof. Let L be a lattice and D1 hold in L. For ∀x,y,z ∈ L, we have

(x∨ y)∧ (x∨ z) = ((x∨ y)∧ x)∨ ((x∨ y)∧ z) (by condition D1)
= x∨ ((x∨ y)∧ z) (by L2 and L4 o f T heorem 2.3)
= x∨ ((x∧ z)∨ (y∧ z)) (by condition D1)
= (x∨ (x∧ z))∨ (y∧ z)
= x∨ (y∧ z) (by L4 o f T heorem 2.3)

which is D2. Dually D2 implies D1. 
�

Definition 2.7. A lattice L in which these distributive laws hold is called distributive
lattice.

From Theorem 2.10, in fact, a lattice L is distributive lattice as long as it satisfies one
of D1 and D2. There are some important examples of distributive lattices. Firstly,
the lattice 2S of subsets of a set S is distributive. Secondly, we have the following
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Lemma 2.1. Any linear ordered set is a distributive lattice.

Proof. We wish to establish D1 for any three elements x, y, z. We distinguish two
cases (1) x ≥ y, x ≥ z, (2) x ≤ y or x ≤ z. In (1) we have x ∧ (y ∨ z) = y ∨ z and
(x∧y)∨ (x∧ z) = y∨ z. In (2) we have x∧ (y∨ z) = x and(x∧y)∨ (x∧ z) = x. Hence
in both cases D1 holds. 
�

Example 2.2. Let N be a set of natural numbers. If a ≤ b for natural numbers a and
b means a|b (a is a divisor of b), then (N, | ) is a distributive lattice.

From Example 2.2, (N, | ) is a partially ordered set. In this example, x ∨ y = (x,y)
the g.c.d. (greatest common divisor ) of x and y and x ∧ y = [x, y] the l.c.m. (least
common multiple ) of x and y. Also, if we write x = pa1

1 pa2
2 . . . pak

k , y = pb1
1 pb2

2 . . . pbk
k

where the pi are distinct primes and the ai and bi are non-negative integers, the

(x,y) =∏1≤i≤k pmin(ai, bi)
i , [x,y] =∏1≤i≤k pmax(ai, bi)

i . Hence if z = pc1
1 pc2

2 . . . pck
k , ci

non-negative integral, then

[x,(y,z)] =∏1≤i≤k pmax(ai, min(bi, ci))
i

and

([x,y], [x,z]) =∏1≤i≤k pmin(max(ai, bi), max(ai, ci))
i

Now the set of non-negative integers with the natural order is totally ordered and
max(ai, bi) = ai ∨bi, min(ai, bi) = ai ∧bi in this lattice. Hence, the distributive law
D2 in this lattice leads to the relation

max(ai,min(ai,ci)) = min(max(ai,bi), max(ai,ci))

Then we have

[x,(y,z)] = ([x,y], [x,z])

which is D1 for the lattice of positive integers ordered by divisibility.
The following results whose proofs is left as exercises are evident from the defi-

nition of distributive lattice.

Theorem 2.11. Let L and Li(i ∈ I) be lattice. Then the following assertions hold.

(1) L is a distributive lattice if and only if L−1 (dual of L) is distributive lattice;
(2) ∏i∈I Li is distributive lattice if and only if Li (∀i ∈ I) is distributive lattice.
(3) If L is a distributive lattice, then sublattices of L are also distributive lattice.

Definition 2.8. Let L be a lattice. If for ∀x,y,z ∈ L, we have

x ≤ z =⇒ x∨ (y∧ z) = (x∨ y)∧ z, (modular law)

then L is called a modular lattice .

It is clear that a distributive lattice is a modular lattice, that is, if L is a lattice, and
D1 and D2 hold for ∀x, y, z ∈ L, then x ≤ z ⇒ x∨ (y∧ z) = (x∨ y)∧ z.
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Theorem 2.12. Let L be a lattice, x,y,z ∈ L. Then the following conditions are
equivalent.

(1) L is a modular lattice;
(2) x∧ (y∨ (x∧ z)) = (x∧ y)∨ (x∧ z), (∀x,y,z ∈ L);
(3) x ≤ y,z∧ x = z∧ y and z∨ x = z∨ y ⇒ x = y, (∀x,y,z ∈ L).

Proof. (1) ⇒ (2). Let L be a modular lattice. Then x ≤ z ⇒ x∨ (y∧ z) = (x∨ y)∧ z
for ∀x,y,z ∈ L. Since x∧ z ≤ x, we have

(x∧ y)∨ (x∧ z) = (x∧ z)∨ (y∧ x) = ((x∧ z)∨ y)∧ x = x∧ (y∨ (x∧ z)).

(2) ⇒ (3). Suppose (2) holds. Form L2, L4 of Theorem 2.3 and Definition 2.8, if
x ≤ y,z∧ x = z∧ y and z∨ x = z∨ y, we have

x = x∨ (z∧ x) = x∨ (z∧ y) = (x∨ z)∧ y = (y∨ z)∧ y = y.

Thus (3) holds.
(3) ⇒ (1). Let a = x∨ (y∧ z), b = (x∨ y)∧ z. If x ≤ z, then

b∧ y ≥ a∧ y ≥ (y∧ z)∧ y = y∧ z = (x∨ y)∧ z∧ y = b∧ y,

that is, b∧y = a∧y. Dually, we have b∨y = a∨y. Thus a = b by (3), that is that (1)
holds. 
�

Theorem 2.13. Let L be a lattice. Then the following conditions are equivalent.

(1) L is a distributive lattice;
(2) x∧ (y∨ z) = (x∧ y)∨ (x∧ z), (∀x, y, z ∈ L);
(3) x∨ (y∧ z) = (x∨ y)∧ (x∨ z), (∀x, y, z ∈ L);
(4) (x∧ y)∨ (y∧ z)∨ (z∧ x) = (x∨ y)∧ (y∨ z)∧ (z∨ x), (∀x, y, z ∈ L);
(5) x∧ (y∨ z) ≤ (x∧ y)∨ (x∧ z), (∀x, y, z ∈ L);
(6) x∧ (y∨ z) ≤ (x∧ y)∨ z, (∀x, y, z ∈ L);
(7) z∧ x = z∧ y and z∨ x = z∨ y ⇒ x = y (∀x, y, z ∈ L).

Proof. From Theorem 2.10, Definition 2.7 and Corollary 2.2, we have (5) ⇔ (1) ⇔
(2) ⇔ (3).

(5) ⇒ (6). Since x∧z ≤ z, by Corollary 2.1, it is obvious that x∧(y∨z) ≤ (x∧y)∨
(x∧ z) ≤ (x∧ y)∨ z for ∀x, y, z ∈ L. It follows that (5) ⇒ (6). Conversely, suppose
(6) holds. Then

x∧ (y∨ z) = x∧ (x∧ (y∨ z)) ≤ x∧((x∧ y)∨ z)

(6) ⇒ (7). For ∀x,y,z ∈ L, if z∧ x = z∧ y and z∨ x = z∨ y, we have

x = x∧ (z∨ x) = x∧ (z∨ y) ≤ (x∧ z)∨ y = (z∧ y)∨ y = y

y = y∧ (z∨ y) = y∧ (z∨ x) ≤ (y∧ z)∨ x = (z∧ x)∨ x = x

by absorption (L4 of Theorem 2.3) and (6). Thus x = y.
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(7) ⇒ (5). Let a = x∧ (y∨ z), b= (x∧ y)∨ (x∧ z). From L2, L4 of Theorem 2.3,
Corollary 2.2 and Corollary 2.3, we have

a∧ y = x∧ (y∨ z)∧ y = x∧((y∨ z)∧ y) = x∧ y

x∧y ≥ [x∧(y∨z)]∧y ≥ b∧y = [(x∧y)∨(x∧z)]∧y ≥ (x∧y)∨(x∧z∧y) ≥ (x∧y)

That is, a∧ y = b∧ y. Dually, we have b∨ y = a∨ y. Thus a = b by (7), that is that
(5) holds.

(3) ⇒ (4). By (3), for ∀x, y, z ∈ L, we have

(x∧ y)∨ (y∧ z)∨ (z∧ x) = [(x∧ y)∨ (y∧ z)∨ z]∧ [(x∧ y)∨ (y∧ z)∨ x]
= [(x∧ y)∨ ((y∨ z)∧ z)]∧ [(y∧ z)∨ ((x∨ y)∧ x)]
= . . . = (x∨ y)∧ (y∨ z)∧ (z∨ x)

That is, (4) holds.
(4) ⇒ (3). Suppose (4) holds. If z ≤ x, for ∀x, y, z ∈ L, we have

(x∧ y)∨ (y∧ z)∨ (z∧ x) = (x∧ y)∨ (y∧ z)∨ z = (x∧ y)∨ z

(x∨ y)∧ (y∨ z)∧ (z∨ x) = (x∨ y)∧ (y∨ z)∧ x = x∧ (y∨ z)

Thus,

z ≤ x ⇒ x∧ (y∨ z) = (x∧ y)∨ z.

That is L is a modular lattice. Consequently, in virtue of the modular law (Definition
2.8),

x∧[(x∧ y)∨ (y∧ z)∨ (z∧ x)] = (x∧ y∧ z)∨ (x∧ y)∨ (z∧ x) = (x∧ y)∨ (z∧ x)

x∧[(x∨ y)∧ (y∨ z)∧ (z∨ x)] = x∧ (y∨ z)∧ (z∨ x) = x∧ (y∨ z).

That is, x∧ (y∨ z) = (x∧ y)∨ (z∧ x) by

(x∧ y)∨ (y∧ z)∨ (z∧ x) = (x∨ y)∧ (y∨ z)∧ (z∨ x). 
�

We now discuss irreducible decomposition of elements of the distributive lattice.

Definition 2.9. Let L be a lattice and a ∈ L. a is called a ∨-irreducible element
(simply, irreducible element) if ∀ x, y ∈ L, we have a = x ∨ y ⇒ a = x or a = y.
Dually, we can define ∧–irreducible element.

If element a of lattice L can be represented by union of some ∨–irreducible elements
xi (i = 1,2, . . . ,r), that is,

a = x1 ∨ x2 ∨ . . .∨ xr (2.1)

then (2.1) is called a ∨–irreducible decomposition of a (simply, irreducible decom-
position of a). If any xi cannot be omitted in 2.1, that is, ∨ j �=ix j < a, then we say
such a irreducible decomposition to be incompressible.
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Theorem 2.14. Let L be a lattice which satisfies minimal condition. Then every ele-
ment of L has a ∨–irreducible decomposition.

Proof. ∀a ∈ L. If a is ∨–irreducible element, then the result holds evidently. Other-
wise, let a = x∨y and x, y < a(x,y ∈ L). If there exist ∨–irreducible decompositions
of x and y, so does a. It follows that, if there does not exist ∨–irreducible decompo-
sition of a, so does at the least one of x and y, and x,y < a. We can assume without
any loss of generality that, there does not exist ∨–irreducible decompositions of
x. Analogously to the above proof, we have that there exists x1 such that x1 has
not ∨–irreducible decomposition and x1 < x. . . . . In this way we obtain a series of
elements xi(i = 1,2, . . . ) which have not ∨–irreducible decompositions such that
a > x > x1 > .. . > xn > .. ., and this contradicts that L satisfies minimal condition.
Thus, there exist ∨–irreducible decompositions of a. 
�

Definition 2.10. Let L be a lattice and a ∈ L. a is called a strong ∨–irreducible
element if ∀ x,y ∈ L, we have

a ≤ x∨ y ⇒ a ≤ x or a ≤ y.

It is clear that strong ∨–irreducible element must be ∨–irreducible element. But
converse of the result is not true in general. For distributive lattice, we have the
result as follows

Theorem 2.15. Let L be a distributive lattice and a ∈ L. Then a is strong ∨–
irreducible element if and only if a is ∨–irreducible element.

Proof. If a is a ∨–irreducible element, a ≤ x∨ y, then a = a ∧ (x∨ y) = (a ∧ x)∨
(a ∧ y). Consequently, a = a ∧ x or a = a ∧ y, that is, a ≤ x or a ≤ y. Thus, a is
strong ∨–irreducible element. Conversely, if a is strong ∨–irreducible element, it is
clear to be ∨–irreducible element. 
�

From Theorem 2.14 and Theorem 2.15, in a distributive lattice, every element can be
represented by union of some strong ∨–irreducible elements. Conversely, we have
the following

Theorem 2.16. Let L be a lattice. If every element in L can be represented by union
of some strong ∨–irreducible elements, then L is a distributive.

Proof. Since there are strong ∨–irreducible elements pi ∈ L (i = 1,2, . . . ,r) such that
a∧(b∨c) = p1 ∨ p2 ∨ . . .∨ pr for ∀a,b,c ∈ L, we have pi ≤ a and pi ≤ b∨c (1 ≤ i ≤
r). Also, pi is strong ∨–irreducible element so pi ≤ a∧b or pi ≤ a∧c. Consequently,
pi ≤ (a∧b)∨(a∧c), and a∧(b∨c) = p1 ∨ p2∨. . .∨pr ≤ (a∧b)∨(a∧c). It follows
from Theorem 2.10 that L is a distributive lattice. 
�

The following result (whose proof remains as an exercise) shows that incompress-
ible ∨–irreducible decomposition is unique in distributive lattice.

Theorem 2.17. Let L be a distributive lattice and a ∈ L. If there are two incompress-
ible ∨–irreducible decomposition of a
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a = x1 ∨ x2 ∨ . . .∨ xr = y1 ∨ y2 ∨ . . .∨ ys,

then r = s, and we have xi = yi (i = 1,2, . . . ,r) by properly adjusting the subscripts.

We now discuss the infinite distributive laws in complete lattices.

Definition 2.11. Let L be a complete lattice. L is called a ∧-infinite distributive lat-
tice if the following D3 is satisfied.

D3: a∧ (∨x∈Nx) = ∨x∈N (a∧ x) for any element a and non-empty subset N of L.

Dually, L is called a ∨-infinite distributive lattice if the following D4 is satisfied.

D4: a∨ (∧x∈Nx) = ∧x∈N (a∨ x) for any element a and non-empty subset N of L.

If L satisfies both D3 and D4, we call L an infinite distributive lattice.

Remark 2.3. D3 and D4 are called ∨–infinite distributive law and ∧–infinite dis-
tributive law, respectively. Clearly that ∧–infinite distributive lattices and ∨–infinite
distributive lattices must be distributive lattices.

It is easy to prove the following theorem by the commutativity.

Theorem 2.18. In a ∧–infinite distributive lattice L, we have

(
∨

x∈M x)∧ (
∨

y∈N y) =
∨

x∈M,y∈N(x∧ y), (∀M,N ⊆ L).

In a ∨–infinite distributive lattice L, we have

(
∧

x∈M x)∨ (
∧

y∈N y) =
∧

x∈M,y∈N(x∨ y), (∀M,N ⊆ L).

Remark 2.4. (1) Condition D3 and D4 are not equivalent. This is different from the
relation between D1 and D2. (2) Generally, a completely distributive lattice (that is
complete lattice satisfied distributive laws) is always not necessary infinite distribu-
tive lattice.

2.3 Boolean Algebra

Historically, Boolean algebras were the first lattices to be studied. They were in-
troduced by Boole to formalize the calculus of propositions. The most important
instances of Boolean algebras are the lattices of subsets of any set.

Definition 2.12. Let L be a lattice which has identity element I and zero element O,
x,y ∈ L. If x∧ y = O, x∨ y = I, then y is called a complement of x. If every element
of L has complements, then L is called a complemented lattice.

The following result holds.

Theorem 2.19. Let L and Li (i ∈ I) be lattices. Then the following assertions hold.

(1) L is a complemented lattice if and only if L−1 is a complemented lattice.
(2) ∏i∈I Li is a complemented lattice if and only if every Li (∀i ∈ I) is a comple-

mented lattice.
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In a lattice L, the complement of an element of L (if it exists) is not always necessary
unique, such as presented in the following diagrams:

But the complement of an element of a distributive lattice, if it exists, is unique.

Definition 2.13. A Boolean algebra (or Boolean lattice) is a lattice with an identity
element I and zero element O which is distributive and complemented.

A collection of subsets of S which is closed under union and intersection, contains S
and ∅, and the complement of any set in the collection is a Boolean algebra. The fol-
lowing theorem outlines the most important elementary properties of complements
in a Boolean algebra.

Theorem 2.20. The complement of any element x of a Boolean algebra B is uniquely
determined (such a complement of x denote by x′).

Proof. Let x ∈ B and let x′ and x1 satisfy x∨ x′ = I, x∧ x1 = O. Then

x1 = x1 ∧ I = x1 ∧ (x∨ x′)=(x1 ∧ x)∨ (x1 ∧ x′)=x1 ∧ x′

Hence, if in addition, x∨x1 = I and x∧x′ = O, then x′ = x′ ∧x1, and so x′ = x1. This
proves the uniqueness of the complement. It is clear that x is the complement of x′.
The proof of theorem has been completed. 
�

Theorem 2.21. Let B be a Boolean algebra and x,y ∈ B. Then we have the following
assertions.

(1) x∧ x′ = O, x∨ x′ = I.
(2) x′′ = x.
(3) (x∨ y)′ = x′ ∧ y′, (x∧ y)′ = x′ ∨ y′.
(4) O′ = I, I′ = O.
(5) x∧ y = O ⇔ x ≤ y′.
(6) x ≤ y ⇔ y′ ≤ x′.

Proof. Here, we just prove (3) and (5). From commutativity, associativity and ab-
sorption (L2∼L4 of Theorem 2.3) we have

(x∧ y)∧ (x′ ∨ y′) = ((x∧ y)∧ x′)∨ ((x∧ y)∧ y′) = ((x∧ x′)∧ y)∨ (x∧ (y∧ y′))
= (O∧ y)∨ (x∧O) = O∨O = O.

Similarly, we have (x∧y)∨(x′ ∨y′) = I. Thus, we have (x∧y)′ = x′ ∨y′. In this way,
we can prove that (x∨y)′ = x′ ∧y′. 
�
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Let L be a lattice with an identity element I and zero element O, and B be a sublattice
of L. If every element x of B has a complement x′, and x′ ∈ B, then we call B a
Boolean subalgebra of L. It is evident that Boolean subalgebra must be a Boolean
algebra. But converse is not true in general, that is, if sublattice B of L is Boolean
algebra, B is always not necessary Boolean subalgebra of L. For instance, let L be a
Boolean algebra, then interval sublattice I[a,b](O �= a ≤ b �= I) is a Boolean algebra,
but is not a Boolean subalgebra of L.

The distributive lattice with an identity element I and zero element O includes
the greatest Boolean subalgebra.

Theorem 2.22. Let L be a distributive lattice with an identity element I and zero
element O, and A = {x | x ∈ L, x has a complement x′}. Then A is sublattice of L,
and A is a greatest Boolean subalgebra of L, further.

Proof. For any x,y ∈ A, it is clear that x′,y′ ∈ A. Similar to Theorem 2.21, we can
prove that x∧y and x∨y have complements, and (x∧y)′ = x′ ∨y′, (x∨y)′ = x′ ∧y′. It
follows that x∧ y ∈ A, x∨ y ∈ A. Thus, A is a sublattice of L. Clearly, A is a greatest
Boolean subalgebra of L. 
�

Theorem 2.23. Every complete Boolean algebra must be an infinite distributive lat-
tice.

Proof. Let L be a complete Boolean algebra, ∅ �= M ⊆ L, a ∈ L. We denote u =∨
x∈M(a∧ x), a′ is a complement of a, then

(a∧ x)∨a′ ≤ u∨a′(∀x ∈ M),

and by the property of distributivity we have

(a∧ x)∨a′ = (a∨a′)∧ (x∨a′) = I ∧ (x∨a′) = x∨a′

Consequently,

x ≤ x∨a′ ≤ u∨a′(∀x ∈ M),

that is,
∨

x∈M x ≤ u∨a′. It follows that,

a∧ (
∨

x∈M x) ≤ a∧ (u∨a′) = a∧u ≤ u

According to the following principle of minimal and maximal, we have u ≤ a ∧
(
∨

x∈M x). Thus,

a∧ (
∨

x∈M x) = u =
∨

x∈M(a∧ x)

Similarly, we can prove that

a∨ (
∨

x∈M x) = u =
∨

x∈M(a∨ x)

This completes the proof of theorem. 
�
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Remark 2.5. (1) Principle of minimal and maximal Let (S,≤) be a partially or-
dered set, {ai j | ai j ∈ S, j ∈ Ti} (i ∈ I) be a family of subset of S, T =∏i∈I Ti. Then

∧
i∈I

(
∨
j∈Ti

ai j) ≥
∨
f∈T

(
∧
i∈I

ai j)

(If sup and inf exist in above formula).
(2) Complete Boolean algebra is always not necessary a completely distributive

lattice (see Definition 2.17). However, A.Tarski had proved the following

Theorem 2.24. Let L be a complete Boolean algebra. Then the following conditions
are equivalent.

(1) L is a completely distributive lattice.
(2) L is isomorphism to power set lattice on certain set.

Now we will introduce an algebraic system, Boolean ring, which is closely related
with Boolean algebra.

Definition 2.14. A ring is an algebraic system consisting of a non-empty set R to-
gether with two binary operations “+”, “·” in R and two distinguished elements 0,
1∈ R such that

(1) (R, +, 0) is an abelian group.
(2) (R, ·,1) is a semigroup.
(3) The distributive laws hold, that is, for all x,y,z ∈ R, we have

x · (y + z) = x · y + x · z, (y + z) · x = y · x + z · x.

Generally, in a ring R, the product x · y of x and y is denoted simply by xy .

Remark 2.6. In Definition 2.14, condition (1) is equivalent to following conditions
(A1∼A5):

A1 x + y ∈ R;
A2 x + y = y + x;
A3 (x + y)+ z = x+ (y + z);
A4 For every x ∈ R there exists a zero element 0 ∈ R such that

x + 0 = x = 0 + x;

A5 For every x ∈ R there exists an inverse element-x ∈ R such that

x +(−x) = 0 = (−x)+ x.

Condition (2) is equivalent to following conditions (M1∼M3):

M1 xy ∈ R;
M2 (xy)z = x(yz);
M3 There exists a unit element (or identity element) 1 ∈ R such that

x1 = x = 1x for any x ∈ R.
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Definition 2.15. Let R be a ring. If xy = yx for all x,y ∈ R, then R is called a com-
mutative ring. If x2 = xx = x, then x is called an idempotent element.

Definition 2.16. A ring is called Boolean ring if all of its elements are idempotent.

Theorem 2.25. Let R be a Boolean ring. Then the following assertions hold.

(1) x + x = 0 (that is, x = −x), for ∀x ∈ R;
(2) xy = yx, for ∀x,y ∈ R.

Proof. (1) For any x,y ∈ R, we have x2 = x and y2 = y. Consequently, we have

(x + y)2 = x2 + xy + yx + y2 = x + xy + yx + y = x + y

that is, xy+yx=0. Let x = y, then xy = yx = x2 = x. It follows that x+x=x2+x2 = 0.
(2) For any x,y ∈ R, we have xy+xy = 0 = xy+yx, that is, xy = yx. 
�

The next two theorems reveal the close relationship between Boolean algebras and
Boolean rings.

Theorem 2.26. Let L be a Boolean algebra together with identity element I and zero
element O. We define the binary operations “+” and “·” as follows:

x + y = (x∧ y′)∨ (x′ ∧ y) and xy = x∧ y, ∀x,y,z ∈ R

Then (L,+, ·) is Boolean ring, where I is unit element of ring (L,+, ·) and O is zero
element.

Proof. For any x,y,z ∈ R, we have

(1) x + y = y + x.
(2) (x + y)+ z = [((x∧ y′)∨ (x′ ∧ y))∧ z′]∨ [((x∧ y′)∨ (x′ ∧ y))′ ∧ z]

= (x∧ y′ ∧ z′)∨ (x′ ∧ y∧ z′)∨ (x′ ∧ y′ ∧ z)∨ (x∧ y∧ z)

x +(y + z) = [x∧ ((y∧ z′)∨ (y′ ∧ z))′]∨ [x′ ∧ ((y∧ z′)∨ (y′ ∧ z))]
= (x∧ y′ ∧ z′)∨ (x′ ∧ y∧ z′)∨ (x′ ∧ y′ ∧ z)∨ (x∧ y∧ z)

Thus (x + y)+ z = x+ (y + z). Similarly (xy)z = x(yz).
(3) x(y + z) = x∧((y∧ z′)∨ (y′ ∧ z)) = (x∧ y∧ z′)∨ (x∧ y′ ∧ z)
xy + xz = [(x∧ y)∧ (x∧ z)′]∨ [(x∧ y)′ ∧ (x∧ z)] = (x∧ y∧ z′)∨ (x∧ y′ ∧ z)

Thus x(y + z) = xy + xz. Similarly, (y + z)x = yx + zx.
(4) For all x ∈ R, x + O = O+ x, that is, O is the zero element.
(5) For all x ∈ R, x + x = O, that is, x is the inverse element of x.

It follows that L is a ring. Also, for all x ∈ R, x2 = xx = x, we have that L is a Boolean
ring. 
�

Theorem 2.27. Let (R,+, ·) be a Boolean ring, I and O unit element and zero ele-
ment respectively. We definite binary operations “∧” and “∨” as follows:



2.4 Completely Distributive Lattices 77

x∧ y = xy and x∨ y = x + y + xy, ∀x,y,z ∈ R

Then (R,∨,∧) is a Boolean lattice (i.e. Boolean algebra), 0 and 1 are zero element
and identity element of lattice (R,∨,∧) respectively, and x′ = x + 1 for ∀ x ∈ R.

Proof. From Theorem 2.25, (R,+, ·) is a commutative ring. Consequently, for any
x,y,z ∈ R, we have

(1) x∧ y = y∧ x, x∨ y = y∨ x.
(2) x∧ x = x, x∨ x = x.
(3) (x∧ y)∧ z = (x∧ y)∧ z),

(x∨ y)∨ z = (x + y + xy)+ z+(x + y+ xy)z
= a +(y + z+ yz)+ x(y + z+ yz)
= x∨ (y∨ z).

(4) x∧ (x∨ y) = x(x + y + xy) = x2 + xy + x2y = x. Similarly, x∨ (x∧ y) = x.
Thus, (R,∨,∧) is a lattice by Theorem 2.4.

(5) x∧ (y∨ z) = x(y+ z+ yz) = xy+ xz+ xyz = xy+ xz+ xyxz = (x∧y)∨ (x∧ z).
Thus, (R,∨,∧) is a distributive lattice by Definition 2.7.

(6) Since x ∧ 0 = 0 and x ∧ 1 = x for any x ∈ R, 0 and 1 are zero element and
identity element of lattice (R,∨,∧) respectively, and we have

x∧ (x + 1) = x(x + 1) = x2 + x = 0, ∀x ∈ R

x∨ (x + 1) = x +(x + 1)+ x(x + 1)= 1, ∀x ∈ R

by Theorem 2.25. Thus, x+1 is complement of x, that is, x′ = x + 1. From (1)∼(6),
we have that (R,∨,∧) is a Boolean lattice (or Boolean algebra). 
�

2.4 Completely Distributive Lattices

In this section, we will introduce concepts and properties of completely distributive
lattices and minimal families, and give a theorem concerning the structure of CD
lattices. Finally, introduced is the generalized order-homomorphism on completely
distributive lattices.

Definition 2.17. Let L be a complete lattice. If for any family {ai j | j ∈ Ji}(i ∈ I,
ai j ∈ L, I and Ji are subscript sets), we have

CD1:
∧

i∈I(
∨

j∈Ji
ai j) =

∨
f∈∏i∈I Ji

(
∧

i∈I ai f (i)),
CD2:

∨
i∈I(

∧
j∈Ji

ai j) =
∧

f∈∏i∈I Ji
(
∨

i∈I ai f (i)),

then L is called a completely distributive lattice (briefly, CD lattice). Where CD1
and CD2 is called completely distributive laws.

It has been proved that a CD lattice must be an infinite distributive lattice, and the
power set lattice on a set is a CD lattice. G.N.Raney had proved the following results
(refer to [1]) which is left to the reader as an exercise.
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Theorem 2.28. In complete lattices, CD1 is equivalent to CD2.

Corollary 2.4. A complete lattice L is a CD lattice if and only if one of CD1 and
CD2 holds.

Lemma 2.2. (Principle of Minimal and maximal ) Let (S,≤) be a partially ordered
set. For any family {xi j | j ∈ Ji}(i ∈ I,xi j ∈ L, I and Ji are indexing sets),

∧
i∈I

(
∨
j∈Ji

xi j) ≥
∨

f∈∏i∈I Ji

(
∧
i∈I

xi f (i)).

Proof. For any i0 ∈ I and f ∈∏i∈I Ji, it is clear that∨
j∈Ji

xi j ≥ xi0 f (i0) ≥
∧
i∈I

xi, f (i).

Consequently, ∧
i∈I

(
∨
j∈Ji

xi j) ≥
∧
i∈I

xi f (i) (∀ f ∈∏
i∈I

Ji). 
�

Theorem 2.29. Every complete chain must be a CD lattice.

Proof. Let L be a complete chain, {xi j | j ∈ Ji}(i ∈ I, xi j ∈ L, I and Ji are indexing
sets) be a subset family of L, and

a =
∧

i∈I(
∨

j∈Ji
xi j) and b =

∨
f∈∏i∈I Ji

(
∧

i∈I xi f (i)).

Then b ≤ a by the principle of minimal and maximal (Lemma 2.2). Now we show
that b ≥ a.

(1) If y < a(y ∈ L), then for every i ∈ I, there is a ji ∈ Ji such that xi ji > y.
(2) If y is a prime under of a, then a ≤ xi ji for every i ∈ I. Consequently, there

exists f ∈∏i∈I Ji, f (i) = ji such that a ≤ ∧i∈Ixi f (i) ≤ b.
(3) In the case, y is not a prime under of a for every y < a. a = ∨{y ∈ L | y < a }.

By (1), there exists a f ∈∏i∈I Ji such that y ≤ ∧i∈Ixi f (i) for every y < a. It follows
that,

a = ∨{y ∈ L | y < a} ≤ ∨
f∈∏i∈I Ji

(
∧

i∈I xi f (i)) = b.

Thus, a = b, that is that L is a CD lattice. 
�

Now we introduce the notion of minimal families on complete lattices.

Definition 2.18. Let L be a complete lattice, a ∈ L, B ⊂ L. B is called a minimal
family of a if B �= ∅ and

(1) supB = a;
(2) ∀A ⊂ L, supA ≥ a implies that ∀x ∈ B, there exists y ∈ A such that y ≥ x.
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Example 2.3. Let L = [0,1] be the lattice with the order of the numbers. Then ∀a ∈
(0,1], [0,a) is a minimal family of a and {0} is the minimal family of 0.

Example 2.4. Let L = 2X be the lattice with the order of set inclusion ⊆. Where X
is a non-empty set. Then ∀E ∈ L,E ⊂ X , {{e}| e ∈ E} is a minimal family of E , and
{∅} is the minimal family of ∅.

The following result whose proof remains as exercise is straightforward by Defini-
tion 2.13.

Theorem 2.30. Let L be a complete lattice, a ∈ L. Then the unions of minimal fami-
lies of a are minimal families of a as well. Especially, if a has a minimal family, then
a has a greatest minimal family, i.e., the union of all maximal families of a, denoted
by β (a).

The following property of the greatest minimal family β (a) remains as an exercise:
β (a) is a lower set, i.e., if x ∈β (a), then for any y ≤ x, y ∈β (a). The next theorem
shows that the CD lattice can be constructed by minimal families.

Theorem 2.31. Let L be a complete lattice. Then L is a CD lattice if and only if
∀α ∈ L, a has a minimal family, and hence, β (a) exists.

Proof. Let L be a CD lattice and a ∈ L. Let B = {B ⊂ L|supB ≥ a} = {Bi | i ∈ I}
and ∀i ∈ I, Bi = {ai j | j ∈ Ji}. Let

B = {∧
i∈I ai f (i)| f ∈∏i∈I Ji }.

Then it is easy to prove that B is a minimal family of a.
Conversely, suppose that ∀a ∈ L, a has a minimal family. In what follows, we

prove that condition CD1 is valid. In fact, let

a =
∧

i∈I
∨

j∈Ji
ai j

Then it is clear that

a ≥ ∨
f∈∏i∈I Ji

(
∧

i∈I ai f (i)).

To prove the inverse of the above inequality, let β (a) be the greatest minimal family
of a and x ∈ β (a). Since for any i ∈ I,∨

j∈Ji

ai j ≥ a,

hence from the definition of β (a) that ∀i ∈ I there exists a j = f (i) ∈ Ji such that
ai j = ai f (i) ≥ x and

∧
i∈I ai f (i) ≥ x. Hence

∨
f∈∏i∈I Ji

(
∧
i∈I

ai f (i)) ≥
∨

x∈β (a)

x = a.

This completes the proof. 
�



80 2 Lattices

Let L be a CD lattice. Definite map, β : L → 2L such that a �→ β (a), ∀a ∈ L, where
β (a) is the greatest minimal family of element a of L. Then β is a well defined map,
we say β to be the minimal map with respect to L.

Theorem 2.32. Let L be a CD lattice, a,b ∈ L and a ≤ b. Then β (a) ⊆ β (b).

Proof. Suppose that y ∈ β (a). We will prove that y ∈ β (b). For this purpose, we
prove that β ∗(b) = β (b)∪{y} is a minimal family of b. In fact, since b ≥ a ≥ y, we
have

supβ ∗(b) = supβ (b) = b.

Next, suppose that B ⊂ L and supB ≥ b and x is any fixed element of β ∗(b). If
x ∈β (b), then there exists z ∈ B such that z ≥ x; if x = y, then x ∈ β (a) and supB ≥ a,
hence there exists z ∈ B such that z ≥ x. This shows that β ∗(b) is a minimal family of
b and hence β ∗(b)⊂ β (b). Thus y ∈ β (b). 
�

Theorem 2.33. Let L be a CD lattice and ∀i ∈ I, ai ∈ L. Then β (
∨

i∈I ai)=
⋃

i∈I β (ai).

Proof. Let a =
∨

i∈I ai, we only need to prove β (a) =
⋃

i∈I β (ai). In fact, it follows
from Theorem 2.23 that β (a) ⊃ ⋃

i∈I β (ai). On the other hand, suppose that b ∈
β (a). Since

sup(
⋃

i∈I β (ai)) = supi∈I(supβ (ai)) = supi∈I ai = a,

By Definition 2.13, we know that there exists c ∈ ⋃
i∈I β (ai) such that c ≥ b, say

c ∈ β (ai0). Then we have

b ∈ β (ai0) ⊂ ⋃
i∈I β (ai),

because β (ai0) is a lower set. Hence β (a)=
⋃

i∈I β (ai). 
�

The next theorem whose proof remains as an exercise can be proved with the aid of
Theorem 2.32, 2.33 and the use of maximal mapping.

Theorem 2.34. Let L be a CD lattice and β : L → 2L be the minimal map with
respect to L. Then the following assertions hold.

(1) β (O) = {O};
(2) ∀a ∈ L, β (a) ⊂ β (I);
(3) β is a union-preserving map, that is, β (

∨
i∈I ai) =

⋃
i∈I β (ai).

In what follows, we introduce the dual concept and properties of minimal families.

Definition 2.19. Let L be a complete lattice, a ∈ L, A ⊂ L. A is called a maximal
family of a if A �= ∅ and

(1) infA = a;
(2) ∀B ⊂ L, infB ≤ a implies that ∀x ∈ A, there exists y ∈ B such that y ≤ x.
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The following results (whose proofs remain as exercises) are similar to Theorem
2.21 and Theorem 2.25.

Theorem 2.35. Let L be a complete lattice, a ∈ L. Then the unions of maximal fam-
ilies of a are maximal families of a as well. Especially, if a has a maximal family,
then a has a greatest maximal family, i.e., the union of all maximal families of a,
denoted by α(a).

Theorem 2.36. Let L be a CD lattice and α : L → 2L be the maximal map with
respect to L, i.e., α : L → 2L such that a �→ α(a), ∀a ∈ L, where α(a) greatest
minimal family of element a. Then the following assertions hold.

(1) α(I) = {I};
(2) ∀a ∈ L, α(a) ⊂ α(O);
(3) α is a ∧ — ∪ map, that is, α(

∧
i∈I ai) =

⋃
i∈I α(ai).

In the following, the set {x ∈ L | x ≤ a, a ∈ L} will be denoted by the symbol ↓ a.

Lemma 2.3. Let L be a CD lattice, a, b ∈ L and b ∈ α(a). Then there exists c ∈ L
such that c ∈ α(a) and b ∈ α(c).

Corollary 2.5. Let L be a CD lattice, a,b ∈ L and b ∈ α(a). Then there exists a
sequence c1,c2, . . . in L such that

c1 ∈ α(a),ck+1 ∈ α(ck),k = 1,2, . . . (2.2)

and
b ∈ α(cn),n = 1,2, . . . (2.3)

Lemma 2.4. Let L be a CD lattice, a,b ∈ L and b ∈ α(a). Then there exists an ideal
I in L such that

(1) a ∈ I ⊂↓ b;
(2) ∀x ∈ L\I, there exists a minimal element m of L\I such that x ≥ m.

Proof. Let c1,c2, . . . be the sequence given in Corollary 2.5 and I =
⋃∞

n=1 ↓ cn. On
account of conditions 2.2 and 2.3 we know that I is an ideal in L and α ∈ I ⊂↓ b.
Suppose x ∈ L\I. Then {x} is a chain contained in L\I, and by Theorem 1.11, there
exists a maximal chain ϕ ⊂ L\I which contains {x}. Let m be the infimum of ϕ in the
complete lattice L, viz., m = infLϕ . We only need to prove m ∈ L\I, or equivalently,
m /∈ I.

In fact, suppose that m ∈ I; then there exists k ∈ N such that m ∈↓ ck, i.e., m ≤ ck.
Let

B = {y∨ ck| y ∈ ϕ}.

Then

infB =
∧

y∈ϕ(y∨ ck) = (
∧

y∈ϕ)∨ ck = m∨ ck = ck.
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It follows from 2.2 that there exists y∨ck ∈ B such that y∨ck ≤ ck+1. Hence y ≤ ck+1
and so y ∈↓ ck+1 ⊂ I, contradicting the fact that y ∈ϕ ⊂ L\I. 
�

Definition 2.20. Let L be a lattice, then the non-null ∨–irreducible elements of L is
called a molecule , and M denote set of all molecule of L. In the sequel, if L is a CD
lattice, we prefer to call L a molecular lattice and write it in the form L(M).

Only the molecular lattices contain full molecules, as is shown by the following:

Theorem 2.37. Let L be a molecular lattice. Then each element of L is a union of
∨–irreducible elements. Consequently, for any x ∈ L, we have

x = ∨{a | a ≤ x, a is a molecule of L}.

Proof. For l ∈ L, let

π(l) = {x ∈ L | x ≤ l and x is ∨–irreducible}.

Then supπ(l) ≤ l, hence we only need to prove that supπ(l) ≥ l.
In fact, suppose that a = supπ(l) ≥ l is not true. Then there exists b ∈ α(a) such

that b � l. Let I be the ideal defined in Lemma 2.4. Then a ∈ I ⊂↓ b. Since l /∈↓ b,
we have l ∈ L\I. By Lemma 2.4, there is a minimal element m in L\I satisfying
m ≤ l. m is a ∨–irreducible element. Indeed, if m ≤ x∨ y and m � x, m � y, then

m = (m∧ x)∨ (m∧ y),

and m ∧ x �= m, m ∧ y �= m. Since m is a minimal element in L\I, it follows that
m∧ x /∈ L\I, m∧ y /∈ L\I, i.e., m∧ x ∈ I, m∧ y ∈ I and so

m = (m∧ x)∨ (m∧ y) ∈ I

because I is an ideal, contradicting the fact that m ∈ L\I. This shows that m is ∨–
irreducible, hence m ∈ π(l) and so m ≤ supπ(l) = a. But this implies that m ∈ I
because I is a lower set. This contradicts the fact that m ∈ L\I. Hence a = supπ(l) ≥
l and the proof has been completed. 
�

Let L be a CD lattice and a ∈ L. By Theorem 2.37 if ∀x ∈ β (a), [x] denotes the set
of all ∨–irreducible elements which are smaller than or equal to x, then x = sup[x].
Let

β ∗(a) = ∪{[x] | x ∈ β (a)}.

Then is a minimal family of a.

Definition 2.21. Let L be a complete lattice, a ∈ L, B ⊂ L. B is said to be a standard
minimal family of a if B is a minimal family of a and members of B are ∨–irreducible
elements.

The following theorem whose proof remains as an exercise can be proved by virtue
of Theorem 2.31 and Theorem 2.37.
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Theorem 2.38. Let L be a complete lattice. Then L is a CD lattice if and only if
∀a ∈ L, a has a standard minimal family.

Example 2.5. Let L = IX . Consider the element xλ ∈ L defined by

xλ (t) =
{
λ , t = x
0, t �= x

(2.4)

It is clear that M={xλ | x ∈ X , λ ∈(0, 1]} is the set of all non-zero ∨–irreducible
elements, and ∀ f ∈ IX ,

β ∗( f ) = {xλ | f (x) �= 0,0 < λ < f (x)}

is a standard minimal family of f .

Finally, we introduce the notion of generalized order-homomorphism on molecular
lattices (i.e. CD lattices).

Definition 2.22. Let L1 and L2 be molecular lattices and f : L1 → L2 a map. f will
be called a generalized order-homomorphism, or briefly, a GOH, if the following
conditions are satisfied.

(1) f (O) = O;
(2) f is union-preserving;
(3) f −1 is union-preserving, where ∀b ∈ L2, f −1(b) = ∨{a ∈ L1 | f (a) ≤ b}.

Example 2.6. (1) Let L1=2X , L2 = 2Y and f : X →Y be a usual map. Then f induces
a map f : 2X →2Y by letting f (A)={ f (x) | x ∈ A} for any A ∈2X . It is clear that f is
a GOH.

(2) Let L1, L2 be molecular lattices and define

f (a) = O, ∀a ∈ L1.

Then f −1(b)=1, ∀b ∈ L2 and f : L1 → L2 is a GOH.

From now on we only consider GOHs which map non-zero elements into non-zero
elements.

Theorem 2.39. Let L1 and L2 be molecular lattices and f : L1 → L2 a GOH. Then
the following assertions hold.

(1) f and f −1 are order-preserving;
(2) f −1 f (a) ≥ a, ∀a ∈ L1;
(3) f f −1(b) ≤ b, ∀b ∈ L2;
(4) f (a) ≤ b if and only if a ≤ f −1(b);
(5) f (a) = ∧{b ∈ L2| f −1(b) ≥ a}, ∀a ∈ L1;
(6) f −1: L2 → L1 is intersection-preserving.
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Proof. It is easy to prove (1)—(5) (which are left as exercises); here we only give
the proof of (6). By (4) we know that the following statements are equivalent;

(i) a ≤ f −1(bi), i ∈ I;
(ii) f (a) ≤ ∧

i∈I bi;
(iii) ∀i ∈ I, f (a) ≤ bi;
(iv)a ≤ ∧

i∈I f −1(bi).

It follows that, a ≤ f −1(
∧

i∈I bi) if and only if a ≤ ∧
i∈I f −1(bi). Since a is arbitrary,

it follows that f −1(
∧

i∈I bi) =
∧

i∈I f −1(bi), viz., f −1 is intersection-preserving. 
�

Theorem 2.40. Let L1 and L2 be molecular lattices and f : L1 → L2a GOH. Then
the following assertions hold.

(1) If a is ∨–irreducible in L1, then f (a) is ∨–irreducible in L2;
(2) If B is a minimal family of a in L1, then f (B) is a minimal family of f (a) in L2;
(3) If B∗ is a standard minimal family of a in L1, then f (B∗) is a standard minimal

family of f (a) in L2.

Proof. (1) Let a ∈ L1 be ∨–irreducible and f (a) ≤ b∨ c. Then

a ≤ f −1(b∨ c) = f −1(b)∨ f −1(c).

Since a is ∨–irreducible we have a ≤ f −1(b) or a ≤ f −1(c), and hence

f (a) ≤ f f −1(b) ≤ b or f (a) ≤ f f −1(c) ≤ c.

This proves that f (a) is ∨–irreducible in L2.
(2) Let B be a minimal family of a in L2, then sup f (B) = f (supB) = f (a) in L2.

Suppose that C ⊂ L2, supC ≥ f (a) and y ∈ f (B). Then there exists x ∈ B such that
f (x) = y. Since

sup f −1(C) = f −1(supC) ≥ f −1 f (a) ≥ a,

by the meaning of B we know that there exists z ∈ f −1(C) such that x ≤ z. Now
y = f (x) ≤ f (z) ∈ C. This proves that f (B) is a minimal family of f (a) in L2.

(3) follows directly from (1) and (2). 
�

Theorem 2.41. Let L1(M1),L2(M2) be molecular lattices and g : M1→ M2 a map.
Then g can be extended to a GOH f : L1 → L2 if and only if ∀m ∈ M1, g maps the
standard minimal family of m into the standard minimal family of g(m).

Proof. The necessity is a consequence of Theorem 2.40 and we only need to show
the sufficiency.

Suppose that g maps standard minimal families into standard minimal families. It
is easy to prove that g is order-preserving. ∀a ∈ L1, let β (a) be the greatest minimal
family of a in L1, and let

β ∗(a) = {m ∈ M1| m ≤ b f or some b ∈ β (a)}.
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Then β ∗(a) is completely determined by a and is clearly a standard minimal family
of a. By the hypothesis we know that ∀m ∈ M1, g(β ∗(m)) is a standard minimal
family of g(m), i.e.,

g(β ∗(m)) ⊂ M2, supg(β ∗(m) = g(m)

and if C ⊂ L2, supC ≥ g(m), then ∀y ∈ g(β ∗(m)), there exists z ∈ C such that y ≤ z.
Now ∀a ∈ L1 define

f (a) =
{

∨g(β ∗(a)), i f a �= 0
0, i f a = 0

(2.5)

Then f : L1 → L2 is a GOH.
In fact, suppose that a = ∨i∈Iai where a, ai ∈ L1. It is clear that ∀i, f (a) ≥ f (ai).

Hence f (a) ≥ ∨i∈I f (ai). On the other hand, ∀m ∈ β ∗(a), by virtue of the fact that

supi∈I ∨β ∗(ai) = supi∈I ai = a.

We know that there exists some i0 and m′ ∈ β ∗(ai0) such that m ≤ m′. Hence

g(m) ≤ g(m′) ≤ ∨g(β ∗(ai0)) = f (ai0)

and therefore

f (a) = ∨g(β ∗(a)) ≤ ∨ f (ai).

This proves that f is union-preserving.
By the condition that ∀m ∈ M1, g(β ∗(m)) is a standard minimal family of g(m)

we know that
∀m ∈ M1, f (m) = ∨g(β ∗(m)) = g(m).

This shows that f : L1 → L2 is an extension of g: M1 → M2.
Let us turn to the inverse of f . On account of Theorem 2.1 it suffices to prove

that f −1 is union-preserving. First we prove that

f −1(b) = ∨{a ∈ L1| f (a) ≤ b} = ∨{m ∈ M| g(m) ≤ b}.

In fact, since

{β ∗(a) | ∨g(β ∗(a)) ≤ b} ⊂ {m ∈ M| g(m) ≤ b},

we have
∨β ∗(a) ≤ ∨{m ∈ M1 | g(m) ≤ b}

whenever f (a) ≤ b. Hence

f −1(b) = ∨{∨β ∗(a) | a ∈ L1 and f (a) ≤ b} ≤ ∨{m ∈ M1 | g(m) ≤ b}

and hence

f −1(b) = ∨{m ∈ M1 | g(m) ≤ b}.
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Now suppose that b = ∨i∈Ibi where b, bi ∈ L2, and m ∈ M1 satisfies g(m) ≤ b.
Consider the standard minimal family β ∗(m) of m. By the condition given in this
theorem g(β ∗(m)) is a standard minimal family of g(m), and so ∀m′ ∈ β ∗(m), since
supi∈I bi = b ≥ g(m) it follows that there exists an i such that g(m′) ≤ bi. Hence

m′ ≤ g−1(bi) ≤ ∨i∈Ig−1(bi)

and therefore

m = supβ ∗(m) ≤ ∨i∈Ig−1(bi)

whenever g(m) ≤ b. This shows that

f −1(b) = ∨{m ∈ M1 | g(m) ≤ b}≤ ∨i∈I f −1(bi),

hence f −1(b) = ∨i∈I f −1(bi) because the opposite inequality f −1(b) ≥ ∨i∈I f −1(bi)
is obviously true. This completes the proof. 
�

Let L1, L2 and L3 be molecular lattices and f : L1 → L2, g : L2 → L3 GOHs. Then gf
(O) = O, gf is union-preserving and

(g f )−1(c) = ∨{a ∈ L1 |(g f )(a) ≤ c} = ∨{a ∈ L1 | g( f (a)) ≤ c}
= ∨{a ∈ L1 | f (a) ≤ g−1(c)} = f −1(g−1(c)).

Hence (gf )−1 is union-preserving and therefore gf : L1 → L3 is a GOH. Moreover,
the identity map I : L → L is a GOH. Hence we have:

Theorem 2.42. Let f : L1 → L2 be a mapping. Then the following assertions are
equivalent.

(1) f is an isomorphism;
(2) f is a bijective GOH;
(3) f −1 is a bijective GOH.

Proof. Suppose that the GOH f : L1 → L2 is a bijection. Then it is easy to prove
that f is intersection-preserving and hence f is an isomorphism.

Conversely, if f : L1 → L2 is an isomorphism, then ( f is bijection and) f is a GOH.
In fact, it is easy to prove that under this condition f (a)=b if and only if a = f −1(b)
where f −1(b) has the meaning given in the beginning of this section. In other words,
for any isomorphism f : L1 → L2, the two inverses, one of which is given in the
beginning of this section and the other given in set theory, coincidentally. Now f −1

is also an isomorphism, so that ( f −1)−1 = f is union-preserving. Hence f −1 is a
GOH because f −1(O) = O is true. 
�

2.5 Topological Molecular Lattices

In this section, we introduce the theory of topological molecular lattices [3, 4]. This
theory is to treat the theories of point set topology, fuzzy topology and L—fuzzy
topology in a unified way.
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In what follows, we often use capital letters A, B, P, . . . to denote elements of a
molecular lattice L(M) and use small letters a, b, m, . . . to denote elements of the set
of molecules M and call them “points”.

Definition 2.23. Let L(M) be a molecular lattice, η ⊂ L. η is said to be a closed
topology, or briefly, co-topology, if O, I ∈ η and η is closed under finite unions (i.e.,
∨) and arbitrary intersections (i.e., ∧), elements of η will be called closed elements,
(L(M), η) will be called a topological molecular lattice, or briefly, TML.

Example 2.7. (1) Let (X ,U ) be a topological space. Then the lattice 2X with the or-
der of set inclusion is a molecular lattice and (2X , η) is a TML, where η={X\U |U ∈
U }. Closed elements of (2X , η) are closed sets of (X ,U ).

(2) Let I=[0,1] and X be a set. Let (IX , δ ) be a L–fuzzy topological space. Then
the lattice IX , in which ξ , ζ ∈ IX , ξ ≤ ζ ⇔ for any x ∈ X , ξ (x)≤ ζ (x), is a molecular
lattice and (IX ,η) is a TML, where η={A′ | A ∈ δ} and A′(x) = 1 − A(x) for all
x ∈ X . Closed elements of (IX , η) are closed fuzzy sets of (IX , δ ).

(3) Let L be a lattice and X be a set. Let (LX , δ ) be a L–fuzzy topological space.
Then it is a TML of which the closed elements are closed L–fuzzy sets.

Definition 2.24. Let (L(M), η) be a TML, a ∈ M, P ∈ η and a � P. Then P is
called a remote-neighborhood of a, and the set of all remote-neighborhoods (briefly,
R-neighborhoods ) of a will be denoted by η(a).

Since a is ∨–irreducible, it is easy to verify that P ∈ η(a) and Q ∈ η(a) imply that
P ∨ Q ∈ η(a). Moreover, it is clear that P ∈ η(a), Q ∈ η and Q ≤ P imply that
Q ∈ η(a). Hence η(a) is an ideal in the complete lattice η .

Definition 2.25. Let (L(M), η) be a TML, A ∈ L. Then the intersection of all closed
elements containing A will be called the closure of A and denoted A−.

Theorem 2.43. Let (L(M), η) be a TML. Then the following assertions hold.

(2) ∀A ∈ L, A ≤ A−;
(2) O−=O;
(3) (A−)−=A−;
(4) (A∨B)−=A− ∨B−.

Definition 2.26. Let (L(M), η) be a TML, A ∈ L, a ∈ M. Then a is called an adher-
ence point of A if ∀P ∈ η(a) we have A � P. If a is an adherence point of A and
a � A, or a ≤ A and for each point b ∈ M satisfying a ≤ b ≤ A we have A � b∨P,
then a is called an accumulation point of A. The union of all accumulation points of
A will be called the derived element of A and denoted by Ad .

The element O has no adherence point because ∀a ∈ M, ∀P ∈ η(a) ⇒ O ≤ P.

Theorem 2.44. Let (L(M), η) be a TML, A ∈ L, a ∈ M. Then the following asser-
tions hold.

(1) a is an adherence point of A if and only if a ≤ A−;
(2) A− equals the union of all adherence points of A;
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(3) A−=A∨Ad;
(4) (Ad)− ≤ A−.

Proof. (1) By Definition 2.26, a is an adherence point of A if and only if P ∈η(a)⇒
A � P, or equivalently, A ≤ P ⇒ P /∈ η(a) for every closed P. This implies that
a ≤ A−.

(2) We have only to consider the case A �= O. By Theorem 2.37 we have
A−=∨{a ∈ M| a ≤ A−}, and by (1), this means that A− is the union of all its adher-
ence points.

(3) We need only prove that A− ≤ A∨Ad . In fact, if for some point a ≤ A− and
a � A, then by (1) and Definition 2.26 we know that a ≤ Ad .

(4) If a ≤ (Ad)−, then by (1) and Definition 2.26 we know that ∀p ∈η(a), Ad � P.
Hence there exists an accumulation point b of A such that b � P, which means
P ∈ η(b). But b is an adherence point of A, hence A � P. This proves that a is an
adherence point of A. 
�

Corollary 2.6. An element A of (L(M),η) is closed if and only if for each point
a � A, there exists P ∈ η(a) such that A ≤ P.

Definition 2.27. Let L(M) be a molecular lattice, A ∈ L, A �= O, m ∈ M. Then m
is called a component of A if (i) m ≤ A, and (ii) u ∈ M, u ≥ m and u ≤ A imply
that u = m. Components of I will be called maximal points. Here O and I are the
minimum and maximum of L(M).

Example 2.8. (1) If L = 2X , A ∈ L, A �=0, then every point of A is a component
of A. (2) If L = IX , A ∈ L, A �= O, then a point xλ is a component of A if and
only if A(x) = λ . In (1) and (2), if m1 and m2 are different components of A, then
m1 ∧m2 = O.

Theorem 2.45. Let L be a molecular lattice, A ∈ L, A �= O, a ∈ M and a < A. Then
A has at least a component m such that a ≤ m.

Proof. Let ϕ be a chain in L. We say that ϕ is in A if ∀x ∈ ϕ , x ≤ A, in symbols,
ϕ ≤ A. Consider the family of chains

C = {ϕ | a ∈ ϕ ⊂ M, ϕ ≤ A}.

Since {a}∈ C we have C �= ∅. Assume that

ϕ1 ≤ ϕ2 if and only if ϕ1 ⊂ ϕ2,

then C becomes a poset. It is clear that every totally ordered subset of C has an
upper bound, and hence there exists a maximal element ϕ0 ∈ C . Let m = supϕ .
Then a ≤ m ≤ A and one readily checks that m is ∨–irreducible, i.e., m ∈ M, and m
is a component of A such that a ≤ m. 
�

Remark 2.7. The component mentioned in Theorem 2.45 may not be unique. For
example, let L={O, I, a, m, u}, define a ≤ m, a ≤ u and suppose m and u are incom-
parable. Then L(M) is a molecular lattice where M = {a, m, u}. Now A=I has two
different components m and u such that both a ≤ m and a ≤ u are true.
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Theorem 2.46. Let L(M) be a molecular lattice, A ∈ L. Then for each point a ≤ A,
A has a unique component m(a,A) such that a ≤ m(a,A) if and only if different
components of A are disjoint, i.e., their intersections are equal to O.

The proof is left to the reader.

Theorem 2.47. Let (L(M), η) be a TML, ∀A ∈ L, different components of A are
disjoint. Then the derived element of every element is closed if and only if the derived
element of every point is closed.

Proof. We only consider the sufficiency. The proof of necessity remains as a exer-
cise. Suppose that a ∈ Mand a ≤ (Ad)−. We have to prove that a ≤ Ad . If a � A,
then by virtue of the fact that a ≤ A−we have a ≤ Ad . Hence we may assume that
a ≤ A. Let m=m(a, A) be the unique component of A such that a ≤ m.

(i) a ≤ md. Let β ∗(a) be the standard minimal family of a. Then we only need
to prove that ∀x ∈ β ∗(a), a ≤ Ad . In fact, ∀x ∈ β ∗(a), since md = ∨{y | y is an
accumulation point of m}≥ a, the point m has an accumulation point dx such that
dx ≥ x. By the meaning of dx one readily verifies that dx � m, hence dx � A (because
otherwise there will be at least two components of A containing the same point x).
On the other hand, dx ≤ m− ≤ A−, and hence dx is an accumulation point of A which
proves that x ≤ dx ≤ Ad .

(ii) a � md . Since md is closed we have md ∈ η(a). Suppose that P ∈ η(a) and
let P1=md ∨P. Then P1 ∈ η(a). Note that a ≤ (Ad)−, i.e., a is an adherence point of
Ad . We have Ad � P1, so that A has an accumulation point c such that c � P1 and so
P1 ∈ η(a). If c � m−, then m−∨P1 ∈ η(c) and hence a � m−∨P1; if c ≤ m−, then it
follows by the facts c � P1 and md ≤ P1 that c � md , hence c ≤ m ≤ A. Moreover, by
the meaning of c and the fact that c ≤ A we know that a � m∨P1. This proves that a
is an accumulation point of A, i.e., a ≤ Ad . 
�

Definition 2.28. Let (L(M), η) be a TML and {Ai} be a subset of L. Then {Ai} is
said to be locally finite if every point a has a R-neighborhood Pa such that Ai � Pa

holds for at most a finite number of i.

This definition is evidently a generalization of the one available in general topology.

Theorem 2.48. Let {Ai | i ∈ I} be a locally finite family. Then the following asser-
tions hold.

(1) {A−
i | i ∈ I} be a locally finite family;

(2) If B j ≤ A−
j for each j ∈ J ⊂ I, then {B j | j ∈ J} be a locally finite family;

(3) (
∨

i∈I Ai)− =
∨

i∈I A−
i .

Proof. (1) Since Pa is closed we have

Ai � Pa if and only if A−
i � Pa.

(2) is trivial.
(3) (

∨
i∈I Ai)− ≥ ∨

i∈I A−
i is obviously true. Now suppose that a ∈ M and a �∨

i∈I A−
i . By virtue of (1) we know that {A−

i } is locally finite, and hence there exists
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Pa ∈ η(a) such that A−
i ≤ P holds for all but a finite number of i ′s, say i1, i2, . . . , in.

Since a � A−
ik , k = 1,2, . . . ,n, there exist pk ∈ η(a) such that

Aik ≤ pk, k = 1,2, . . . ,n.

Put P = (
∨n

k=1 Pk)∨ Pa. Then P ∈ η(a) and ∨Ai ≤ P. Hence a � (
∨

i∈I Ai)−. This
proves (3). 
�

Definition 2.29. Let L(M) be a molecular lattice and D a directed set and S : D→ M
a map. Then S is called a molecular net in L and denoted S = {s(n) |n ∈ D}. S is
said to be in A ∈ L, if ∀n ∈ D, s(n) ≤ A.

Definition 2.30. Let (L(M), η) be a TML, S={s(n) | n ∈ D} a molecular net and a
point a. a is said to be a limit point of S (or S converges to a; in symbols, S → a),
if ∀P ∈ η(a), s(n) � P is eventually true. a is said to be a cluster point of S(or S
accumulates to a; in symbols, S∞a), if ∀P ∈ η(a), s(n) � P is frequently true. The
union of all limit points and all cluster points of S will be denoted by limS and adS,
respectively.

A limit point of S is a cluster point of S but not vice versa.

Corollary 2.7. (1) Suppose that

S={s(n), n ∈ D}→ a(S∞a),

T ={T (n), n ∈ D} is a molecular net with the same domain as S and ∀n ∈ D,
T (n) ≥ S(n) holds. Then T → a(T∞a).

(2) Suppose that S → a(S∞a) and b ≤ a. Then S → b(S∞a).

A subset ξ of η is called a base of η if every element of η is an intersection of
elements of ξ . A subset ζ of η is called a subbase of η if the set consisting of all
finite unions of elements of ζ forms a base of η . The proof of the following results
are left as exercises.

Theorem 2.49. Let (L(M), η) be a TML. ξ and ζ a base and a subbase for η
respectively, S a molecular net and a ∈ M. Then the following assertions hold.

(1) S → a if and only if ∀P ∈ η(a)∩ζ , S is eventually not in P;
(2) S∞a if and only if ∀P ∈ η(a)∩ξ , S is frequently not in P;

Theorem 2.50. Let (L(M), η) be a TML, S a molecular net, a ∈ M, and β ∗(a) a
standard minimal family of a. Then S → a(S∞a) if and only if ∀x ∈ β ∗(a), S →
a(S∞a).

Theorem 2.51. Let (L(M), η) be a TML, S a molecular net, a ∈ M. Then the fol-
lowing assertions hold.

(1) a is a limit point of S if and only if a ≤ limS;
(2) a is a cluster point of S if and only if a ≤adS.
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Proof. (1) We only prove the sufficiency and the necessity is left to the reader. Sup-
pose that a ≤limS and β ∗(a) is a standard minimal family of a. Since

limS = sup{y| y is a limit point of S}≥ a,

∀x ∈ β ∗(a), there exists a limit point y of S such that x ≤ y. By Corollary 2.7(2),
S → x, and by Theorem 2.50 we have S → a.

(2) The proof is similar to that of (1) and is omitted. 
�

Theorem 2.52. Let (L(M), η) be a TML, A ∈ L, a ∈ M. Then the following asser-
tions hold.

(1) If there exists in A a molecular net which accumulates to a, then a ≤ A−;
(2) If a ≤ A−, then there exists in A a molecules net which converges to a.

Proof. (1) Suppose S={s(n), n ∈ D}∞a and ∀n ∈ D, s(n) ≤ A. Then ∀P ∈ η(a),
A � P because of the fact that s(n) � P is frequently true, i.e., for any n ∈ D, there
always exists n0 ∈ D such that s(n0) � P. Hence a ≤ A−.

(2) Suppose that a ≤ A−. Then ∀P ∈ η(a) there exists a point s(P) such that
s(P) ≤ A and s(P) � P. Define S={s(P) | P ∈ η(a)}. Then S is a molecular net in
A because of the fact that η(a) is a directed set in which the order is defined by
inclusion. Clearly, S → a. 
�

Definition 2.31. Let S = {s(n), n ∈ D} and T = {T (m),m ∈ E} be two molecular
nets. T is called a subnet of S if there exists a mapping N : E → D such that

(1) T =S ◦N.
(2) ∀n ∈ D, there exists m ∈ E such that N(k) ≥ n whenever m ≤ k ∈ E .

Theorem 2.53. Let (L(M), η) be a TML, S a molecular net, a ∈ M. Then S∞a if and
only if S has a subnet T which converges to a.

Proof. The sufficiency follows from the definition of subnet, and we only prove the
necessity. Suppose that S∞a. Then ∀P ∈ η(a) and ∀n ∈ D, there exists f (P, n) ∈ D
such that

f (P, n) ≥ n and S( f (P,n)) � P.

Let

E = {( f (P,n),P) | P ∈ η(a), n ∈ D},

and define

( f (P1, n1), P1) ≤ ( f (P2, n2), P2) if and only if n1 ≤ n2 and P1 ≤ P2.

Then E is a directed set. Let

T ( f (P,n),P) = S( f (P,n),P),

then T is a subnet of S and T → a. 
�
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Exercises

Exercise 2.1. Let ≤ be a partially ordered relation on the set S and N a subset of S.
Show the following

(1) Inverse relation ≤−1 (or ≥ ) of ≤, i.e., a ≤−1 b ⇔ b ≤ a, is also a partially
ordered relation on S.

(2) Induced relation ≤N of ≤ on N, i.e., for a, b ∈ N, a ≤N b ⇔ a ≤ b, is a
partially ordered relation on N.

Exercise 2.2. Let (S, ≤) be a partially ordered set and A a non-empty subset of S.
Show that the following assertions hold.

(1) If A has maximum (minimum) element, then the maximum (minimum) ele-
ment is unique.

(2) If A is a chain in S (e.g. linear ordered subset), then maximal (minimal) ele-
ment of A (if it exists) must be maximum (minimum) element.

Exercise 2.3. Let (S, ≤) be a partially ordered set. Prove that S satisfies minimal
condition if and only if every chain in S is a well ordered set.

Exercise 2.4. (Axiom of choice) Let P∗(S) = 2S −∅. Prove that there exists a map-
ping ϕ : P∗(S) → A such that ϕ(T ) ∈ T for every T ∈ P∗(S).

Exercise 2.5. (Zermelo) Prove that for any set S, there exists a linear order ≥ such
that (S, ≥) is a well ordered set.

Exercise 2.6. (Hausdorff) Prove that for any partially set (S, ≤), every chain in S is
included in some maximal chain.

Exercise 2.7. (Kuratowski-Zorn) Let (S, ≤) be a partially ordered set. Prove that if
every chain in S has an upper bound in S, then every element of S is included in
some maximal element of S.

Exercise 2.8. Let ≤ be the ordered relation of the partially ordered set (L,≤) and
(L,∨1,∧1) be a lattice. Prove that if ≤−1 is the inverse relation of ≤, then the par-
tially ordered set (L,≤−1) is a lattice (L,∨2,∧2), where for any a,b ∈ L,

a∨2 b = a∧1 b, a∧2 b = a∨1 b.

The latices (L,∨1,∧1) and (L,∨2,∧2).

Exercise 2.9. Let L be a lattice. Show the following

(a) Empty set ∅ is a sublattice of lattice L.
(b) Unit set {a} (a ∈ L) is a sublattice of lattice L.
(c) The intersection of any sublattice of lattice L is a sublattice of L.

Exercise 2.10. Let (L, ≤) be a lattice. For any x,y,z ∈ L, show the following

L1 x∧ x=x, x∨ x=x. (Idempotency)
L2 x∧ y=y∧ x, x∨ y=y∨ x. (Commutativity)
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L3 x∧ (y∧ z)=(x∧ y)∧ z, x∨ (y∨ z)=(x∨ y)∨ z. (Associativity)
L4 x∧ (x∨ y)=x=x∨ (x∧ y). (Absorption)

Exercise 2.11. In lattice (L, ≤), prove that operations of union and meet are order-
preserving. That is, ∀x, y, z ∈ L the following assertions hold.

x ≤ y ⇔ x∧ z ≤ y∧ z, x∨ z ≤ y∨ z.

Exercise 2.12. Let L be a lattice. show the following

(1) L is a complete lattice if and only if L.−1 (dual of L) is complete.
(2) If L is a finite lattice, then L is complete.

Exercise 2.13. Let Land Li (i ∈ I) be lattice. Show the following

(a) L is a distributive lattice if and only if L.−1 (dual of L) is distributive lattice.
(b)∏i∈I Li is distributive lattice if and only if Li (∀i ∈ I) is distributive lattice.
(c) If L is a distributive lattice, then sublattices of L are also distributive lattice.

Exercise 2.14. In complete lattices, prove that CD1 is equivalent to CD2.

Exercise 2.15. Let Lbe a lattice and a ∈ L. Prove that β (a) is a lower set, i.e., if
x ∈ β (a), then for any y ≤ x, y ∈ β (a).

Exercise 2.16. Let L be a CD lattice and β : L→ 2L be the minimal map with respect
to L. Then the following assertions hold.

(1) β (O)={O}.
(2) ∀a ∈ L, β (a) ⊂ β (I).
(3) β is a union-preserving map, that is, β (

∨
i∈I ai)=

⋃
i∈I β (ai).

Exercise 2.17. Let L be a complete lattice, a ∈ L. Prove that the unions of maximal
families of a are maximal families of a as well. Especially, if a has a maximal family,
then a has a greatest maximal family, i.e., the union of all maximal families of a,
denoted by α(a).

Exercise 2.18. Let L be a CD lattice andα : L→2L be the maximal map with respect
toL, i.e., α : L→ 2L such that a �→α(a), ∀a ∈ L, whereα(a) greatest minimal family
of element a. Show the following

(a) α(I)={I}.
(b) ∀a ∈ L, α(a) ⊂ α(O).
(c) α is a ∧−∪ map, that is, α(

∧
i∈I ai)=

⋃
i∈I α(ai).

Exercise 2.19. Let L be a CD lattice, a, b ∈ Landb ∈ α(a). Then there exists c ∈ L
such that c ∈ α(a) and b ∈ α(c).

Exercise 2.20. Let L be a CD lattice, a, b ∈ L and b ∈ α(a). Prove that there exists
a sequence c1, c2, . . . in L such that

c1 ∈ α(a), ck+1 ∈ α(ck), k=1, 2, . . .

b ∈ α(cn), n=1, 2, . . .

Exercise 2.21. Let L1 and L2 be molecular lattices and f : L1 → L2 a GOH. Prove
that the following assertions hold.
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(a) f and f −1 are order-preserving.
(b) f −1 f (a) ≥ a, ∀a ∈ L1.
(c) f f −1(b) ≤ b, ∀b ∈ L2.
(d) f (a) ≤ b if and only ifa ≤ f −1(b).
(e) f (a)=∧{b ∈ L2| f −1(b) ≥ a}, ∀a ∈ L1.

Exercise 2.22. Let (L(M), η) be a TML. ∀A ∈ L, different components of A are
disjoint. Prove that the derived element of every element is closed if and only if the
derived element of every point is closed.

Exercise 2.23. Suppose that

S={s(n), n ∈ D}→ a(S∞a),

T ={T (n), n ∈ D} is a molecular net with the same domain as S and ∀n ∈ D, T (n) ≥
S(n) holds. Show T → a(T∞a). Suppose that S → a(S∞a) and b ≤ a. Show S →
b(S∞a).

Exercise 2.24. Let (L(M), η) be a TML. ξ and ζ a base and a subbase for η respec-
tively, S a molecular net anda ∈ M. shown the following

(a) S → a if and only if ∀P ∈ η(a)∩ζ , S is eventually not in P.
(b) S∞a if and only if ∀P ∈ η(a)∩ξ , S is frequently not in P.

Exercise 2.25. Let (L(M), η) be a TML, S a molecular net, a ∈ M, and β ∗(a) a
standard minimal family of a. Prove that S → a(S∞a) if and only if ∀x ∈ β ∗(a),
S → a(S∞a).

Exercise 2.26. Let (L(M), η) be a TML, S a molecular net, a ∈ M. show the follow-
ing

(a) a is a limit point of S if and only if a ≤limS.
(b) a is a cluster point of S if and only if a ≤adS.

Exercise 2.27. Let B be a Boolean algebra and x, y ∈ B. Show the following

(a) x∧ x ′=O, x∨ x ′=I.
(b) x ′′=x.
(c) O ′=I, I ′=O.
(d) x ≤ y ⇔ y ′ ≤ x ′.
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Part II

Methodology and Mathematical
Framework of AFS Theory



Chapter 3
Boolean Matrices and Binary Relations

Considering the three types of information-driven tasks where graded membership
plays a role: classification and data analysis, decision-making problems, and ap-
proximate reasoning, Dubois gave the corresponding semantics of the membership
grades, expressed in terms of similarity, preference, and uncertainty [1]. For a fuzzy
concept ξ in the universe of discourse X , by comparison of the graded membership
(Dubois interpretation of membership degree), an “empirical relational member-
ship structure ”

〈
X ,Rξ

〉
is induced [5, 6], where Rξ ⊆ X × X is a binary relation

on X , (x,y) ∈ Rξ if and only if an observer, an expert, judges that “x belongs to
ξ at some extent and the degree of x belonging to ξ is at least as large as that of
y. The fundamental measurement of the gradual-set membership function can be
formulated as the construction of homomorphisms from an “empirical relational
membership structure”,

〈
X ,Rξ

〉
, to a “numerical relational membership structure”,〈

{µξ (x) | x ∈ X},≤
〉
.

In this chapter, we present some new results that help us to analyze and study
the structures of concepts via mathematical tools such as binary relations, Boolean
matrices and lattices. Some properties of the binary relations are represented and
explored by Boolean matrix theory and lattice theory. This is possible as there exists
a one to one correspondence between the Boolean matrices and the binary relations
and a lattice can be established on the set of the Boolean matrices.

Based on the main theorems in this chapter, we will prove, in next chapter, that
any fuzzy concept ξ in a finite set X can be represented by some very simple con-
cepts on X . Thus AFS theory offers a great deal of modeling capabilities which help
model both the mathematical structures and the semantics of human concepts.

In what follows, we will define the Boolean matrices and their operations. Here
the Boolean algebra {0,1} is an algebra system with operations, +, · such that
0+0=0·0=0·1=1·0=0, 0+1=1+1=1·1=1.

Definition 3.1. A m × n matrix on the Boolean algebra {0, 1} is called a Boolean
matrix. The set of all m × n Boolean matrices is denoted by M(B)m×n. Let A =
(ai j) ∈ M(B)m×n. Then ai j is called a (i, j) element. If all ai j = 0, then we call A

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 97–110.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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a zero matrix. If all ai j = 1, then we call A a universal Boolean matrix. If i = j ⇒
ai j = 1 and i �= j ⇒ ai j = 0, then A is called a unit matrix (or identity matrix).

Definition 3.2. Let A = (ai j),B = (bi j) ∈ M(B)m×n. Then C = A + B = (ci j) ∈
M(B)m×n, is defined as ci j = ai j +bi j and called the sum of A and B; Let A = (ai j) ∈
M(B)m×q,B = (bi j) ∈ M(B)q×n. Then C = AB = (ci j) ∈ M(B)m×n, is defined as
follows

ci j =
q

∑
k=1

aikbk j,

and called the product of A and B.

Boolean matrices and their sum and product have almost all the properties of the
matrices expressed for real numbers. The readers can refer to [3] for further details.

Example 3.1. Let

A =

⎡
⎣ 1 1 1

1 0 1
0 1 0

⎤
⎦ , B =

⎡
⎣ 1 1 1

1 1 1
0 1 1

⎤
⎦ .

Then

A + B =

⎡
⎣ 1 1 1

1 1 1
0 1 1

⎤
⎦ , AB =

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦ ,

by Definition 3.2.

Definition 3.3. The binary operation “∗” in M(B)m×n defined as follows

C = M ∗N=(ci j) ∈ M(B)m×n such that ci j = mi jni j,

is called ∗ product of Boolean matrices, where N=(ni j), M=(mi j) ∈ M(B)m×n.

It is clear that for any H, N, M ∈ M(B)m×n, H ∗(N∗M)= (H ∗N)∗M; M∗N = N ∗M,
H ∗ (N + M) = H ∗N + H ∗M.

Their proofs remain as exercise.

Definition 3.4. The in M(B)m×n is defined as follows

A = (ai j) ≤ B=(bi j) ⇔ ai j = 1 implies bi j=1

where A,B ∈ M(B)m×n.

It can prove that ≤ is a partially ordered relation and (M(B)m×n, ≤) is a lattice in
which A∨B=A+B, A∧B=A∗B for any A,B ∈ M(B)m×n. Furthermore (M(B)m×n,≤)
is a distributive lattice. It is convenient to study Boolean matrices via the techniques
of lattice theory.

Definition 3.5. Let X = {x1,x2, . . . ,xn} be a set and R be a binary relation on set X .
A Boolean matrix MR = (ri j) ∈ M(B)n×n is called correspondent matrix of R if

ri j=1 ⇔ (xi, x j) ∈ R, xi, x j ∈ X .
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It is clear that there exists a one to one correspondence between the Boolean ma-
trices and the binary relation via Definition 3.5. If R is a quasi-ordered relation on
X , then correspondent matrix MR is called a quasi-ordered Boolean matrix. The fol-
lowing lemma gives a sufficient and necessary condition which characterizes quasi-
ordered Boolean matrix. It is convenient for us to verify whether a binary relation is
a quasi-order relation.

Theorem 3.1. Let X = {x1,x2, . . . ,xn} be a set, R be a binary relation on X, and
MR be correspondent matrix of R. Then R is quasi-ordered relation (or, MR is a
quasi-ordered Boolean matrix) if and only if

M2
R = MR (i.e., MR is idempotent) and MR + I = MR

Proof. Let MR=(mi j) and M2
R=(ni j). The proof of the necessity condition. Since MR

is a quasi-ordered Boolean matrix, it is clear that MR + I=MR by Definition 3.3 and

M2
R=I2+2MR + M2

R=I + MR + M2
R ≥ MR.

Also, as ni j=1 implies 1=ni j = ∑1≤k≤n mikmk j. Thus ∃k ∈{1, 2, . . . , n} such that
mikmk j=1. Consequently, mik=1 and mk j=1. Since MR is a quasi-ordered matrix, we
have that mik=1 and mk j=1 ⇔ (xi, xk) ∈ R and (xk, x j) ∈ R. It follows that (xi,
x j) ∈ R by transitivity, this implies that mi j=1 and MR ≥ M2

R. Thus, M2
R=MR by “≥”

is a partially ordered relation.
The proof of the sufficiency. Since MR is a correspondent matrix of R and

MR + I=MR, MR is a Boolean matrix whose elements on the main diagonal are
1. Consequently, R satisfies reflexivity by Definition 3.5. Also, if (ai, ak) ∈ R
and (ak, a j) ∈ R for ∀i, j, k ∈{1, 2, . . . , n}, i.e., mik=mk j=1, then we have
mi j=ni j=∑1≤k≤n mikmk j=1 by M2

R=MR. It follows that R satisfies transitivity. Thus, R
is a quasi-ordered relation. 
�

By Theorem 3.1, we have an equivalent definition of quasi-ordered Boolean matrix
as follows: M ∈ M(B)n×n is called a quasi-ordered Boolean matrix if

M2=M (i.e., M is idempotent) and M + I=M.

Theorem 3.2. Let M, N be two idempotent Boolean matrices of order n. If I + N =
N, I + M=M, then (M ∗N)2=M ∗N.

Proof. It is clear that M and N are quasi-ordered Boolean matrices. Let M=(mi j)
and M=(ni j), then M ∗N=(mi jni j). Consequently,

(M ∗N)2=(bi j)=(∑1≤k≤n miknikmk jnk j)=(∑1≤k≤n mikmk jniknk j).

If bi j=1, then ∃k ∈{1, 2, . . . , n} such that mikmk jniknk j=1, that is, mik=1, mk j=1,
nik=1, and nk j=1. It follows that, mi j=1 and ni j=1 by transitivity, that is, mi jni j=1. If
bi j=0, it is clear that mik=0, mk j=0, nik=0, or nk j=0 for all k ∈{1, 2, . . . , n}. Conse-
quently, mi j=0 or ni j=0, that is, mi jni j=0. These facts imply that (M ∗N)2 = M ∗N.


�
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Definition 3.6. Let X = {x1,x2, . . . ,xn} be a set and R be a quasi-ordered relation on
X . Then R is called a quasi-linear ordered relation if for any x,y ∈ X , the following
conditions are satisfied.

(1) (x,x) ∈ R;
(2) either (x,y) ∈ R or (y,x) ∈ R.

The correspondent matrix MR of R is called a quasi-linear ordered Boolean matrix.
Also, if R is a linear ordered relation on X such that

MR=

⎡
⎢⎢⎣

1 1 · · · 1
0 1 · · · 1
· · · · · · · · · · · ·
0 0 · · · 1

⎤
⎥⎥⎦=∆

then R is called canonical linear ordered relation, ∆ is called canonical linear or-
dered matrix.

Theorem 3.3. Let M ∈ M(B)n×n. If M2 = M and ∆ ≤ M, then M is the matrix as
follows ⎡

⎢⎢⎣
J11 J12 · · · J1k

0 J22 · · · J3k

· · · · · · · · · · · ·
0 0 · · · Jkk

⎤
⎥⎥⎦ ,

Where Ji j are the matrices whose elements are all 1, i.e., the universal Boolean
matrix.

Proof. Since I ≤ ∆ ≤ M, we have that M + I=M. Hence M is a quasi-ordered matrix
by Theorem 3.1. Thus M is a quasi-linear ordered matrix by ∆ ≤ M. From Defi-
nition 3.6 we have that, the quasi-ordered relation R which corresponds to M is a
quasi-linear ordered relation. We now can assume without any loss of generality that
M=(mi j), mi j=1 for i ≥ j. Let us consider the principle sub-block M( j, j+1, . . . , i)
of M. Since r ≤ s implies mrs=1 by ∆ ≤ M, in addition mi j=1, we have m jk=1 and
mli=1, for any k, l ∈{ j, j+1, . . . , i}. It follows that, mlk=mlimi jm jk=1 from transitiv-
ity. This completes the proof of the theorem. 
�

By Theorem 3.1, we can verify that the following Boolean matrix is a quasi-linear
ordered matrix. We call the matrix which is the following form⎡

⎢⎢⎣
J11 J12 · · · J1k

0 J22 · · · J3k

· · · · · · · · · · · ·
0 0 · · · Jkk

⎤
⎥⎥⎦ (3.1)

canonical quasi-linear ordered form. In what follows, we will prove the main theo-
rem which show that each quasi-ordered relation can be represented by some quasi-
linear ordered relations.
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Definition 3.7. Let X = {x1,x2, . . . ,xn} be a set and R be a quasi-ordered relation on
X . Let SX be the set of all minimal elements of X . Then for each x ∈ SX , we define,

mx = {C | C ⊆ X , C is a maximum quasi-order chain which contains x},

mx is called the set of maximum quasi-order chains at x.

Theorem 3.4. Let X = {x1,x2, . . . ,xn} be a set and R be a quasi-ordered relation on
X. Then there exist quasi-linear orders R1,R2, ...,Rr such that

MR = MR1 ∗MR2 ∗ ...∗MRr = ∗∏r
i=1 MRi.

Proof. It is obvious that for any x ∈ X , (x, u) ∈ R ⇔ x ∈ ∪{B |B ∈ mu}. Since u is
the minimal element and the definition of mu, hence for any x ∈ X −∪{B |B ∈ mu},
for any y ∈ ∪{B |B ∈ mu}, we have (x, u) /∈ R, (x, y) /∈ R, (u, x) /∈ R.

Let u ∈ X and A ∈ mu. For any a ∈ ∪{B |B ∈ mu}−A, we define Aa={x |x ∈ A,
(a, x) ∈ R}. Since (a, u) ∈ R, hence Aa �= ∅. Because A is a quasi-linear chain, Aa

is a quasi-linear chain. Let LAa be the maximum element of Aa (if there exist more
than one maximum elements, let any one of them be LAa). For any a ∈ A, we define
LAa = a. For any A ∈ mu, we construct a binary relation RA on X as follows:

For any x,y ∈ X = (∪{B |B ∈ mu })∪(X −∪{B |B ∈ mu }), we define

(x, y) ∈ RA ⇔ (LAx, LAy) ∈ R, if y,x ∈ ∪{B |B ∈ mu};
(x,y) ∈ RA and (y,x) ∈ RA, if x, y ∈ X −∪{B |B ∈ mu };

(x, y) ∈ RA, if x ∈ ∪{B |B ∈ mu} and y ∈ X −∪{B |B ∈ mu }.

Since sets ∪{B |B ∈ mu} and (X −∪{B |B ∈ mu}) are the partition of set X , hence the
above binary relation RA is defined well. Furthermore, we prove that RA is a quasi-
linear order on X . For any x,y,z ∈ X , suppose (x, y),(y, z) ∈ RA. Ifz ∈ X −∪{B |B ∈
mu}, then (x, z) ∈ RA; if z ∈ ∪{B |B ∈ mu}, then by the definition of RA, we have
x, y ∈ ∪{B |B ∈ mu} and (LAx, LAy) ∈ R and (LAy, LAz) ∈ R. Because R is a quasi-
ordered relation onX , (LAx, LAz) ∈ R ⇒ (x, z) ∈ RA. For any x,y ∈ X , one can check
either (x, y) ∈ RA or (y,x) ∈ RA. Therefore RA is a quasi-linear order.

Next, we prove that for x,y ∈ X , (x,y) ∈ R ⇒ (x,y) ∈ RA. For x,y ∈ X , suppose
(x,y) ∈ R. If x,y ∈∪{B |B ∈ mu} or x,y ∈ X −∪{B |B ∈ mu}, then by the definitions
of RA, we know that (x,y) ∈ RA. In the case that x ∈ ∪{B |B ∈ mu} and y ∈ X −
∪{B |B ∈ mu}, we also have (x,y) ∈ RA by the above definition of RA. Assume that
y ∈ ∪{B |B ∈ mu} and x ∈ X −∪{B |B ∈ mu}. Since y ∈ ∪{B |B ∈ mu}, hence
(y,u) ∈ R. By (x,y) ∈ R, we have (x,u) ∈ R ⇒ x ∈ ∪{B |B ∈ mu}. It contradicts the
assumption x ∈ X −∪{B |B ∈ mu}. Therefore for x,y ∈ X , (x,y) ∈ R ⇒ (x,y) ∈ RA.
This implies that for any A ∈ mu, any u ∈ SX , the following assertions hold.

MR ≤ MRA , MR ≤ ∗ ∏
A∈mu,u∈SX

MRA . (3.2)

Let ∗∏A∈mu,u∈SX
MRA = N = (ni j), MR = (mi j). From the definition of SX , we

have

X = ∪{B |B ∈ mu,u ∈ SX }.
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Suppose mhk=0. This means (xh, xk) /∈ R. Since

xh,xk ∈ X = ∪{B |B ∈ mu,u ∈ SX},

hence for xh,xk, there are the following situations:

1) there exists A ∈ mu such that xh, xk ∈ A;
2) there exist A, B ∈ mu such that xh ∈ A, xk ∈ B;
3) there exist A ∈ mu, B ∈ mv for some u, v ∈ SX , u �= v such that xh ∈ A, xk ∈ B.

We will prove that nhk = 0 in any situations. This implies that N ≤ MR.

1) From the definition of RA, we know that (xh, xk) ∈ RA ⇔ (xh, xk) ∈ R. By (3.2),
we have nhk=0.

2) Assume that (xh, xk) ∈ RB. By the definition of LBxh , we have (xh,LBxh),
(LBxh ,xk) ∈ R. This implies that (xh,xk) ∈ R and contradicts to mhk = 0. By (3.2),
we have nhk = 0.

3) If xh ∈ ∪{B| B ∈ mv}, then it is the same as situation 2); We can suppose
xh ∈ X −∪{B |B ∈ mv}, by the definition of RB, we know (xh, xk) /∈ RB, and nhk = 0.
Finally we have MR ≥ N ≥ MR ⇒ M = N. 
�

In what follows, applying the lattice theory, we will study the representation of the
quasi-linear ordered relation by some more simple binary relations whose corre-
spondence Boolean matrices are idempotent prime matrices.

Definition 3.8. Let B,X ,Y ∈ M(B)n×n, and B2 = B. B is called an idempotent prime
matrix if

B = X ∗Y = X ∧Y , X2 = X and Y 2 = Y ⇒ B = X or B = Y .

Let A ∈ M(B)n×n. We define

p(A) = {MR ∈ M(B)n×n | R is a linear ordered relation such that MR ≤ A};

i(A) = {M ∈ M(B)n×n | M2 = M and M ≤ A};

li(A) = {M ∈ i(A) | M is a maximal element o f i(A)}.

The proof of the following results is left to the reader.

Theorem 3.5. Let A,B ∈ M(B)n×n, and P is a permutation matrix of order n. We
have the following assertions.

(1) If A ≤ B and M ∈ M(B)n×n, then MA ≤ MB and AM ≤ BM;
(2) P(A∗B)PT = (PAPT )∗ (PBPT );
(3) p(PAPT ) = {PMRPT | MR ∈ p(A)} � Pp(A)PT ;
(4) p(A∗B) = p(A)∩ p(B);
(5) i(A + B) ⊇ i(A)∪ i(B);
(6) i(PAPT ) = {PMPT | M ∈ i(A)}.
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Theorem 3.6. Let A ∈ M(B)n×n, and A2 = A. If p(A) �= ∅, then there exists a per-
mutation matrix P such that PAPT is the canonical quasi-linear order form.

Proof. Since p(A) �= ∅, we can assume that MR ∈ p(A), MR corresponds to a linear
order R of X={x1, x2, . . . , xn}. It is obvious that any two linear ordered relations
of a finite set are isomorphisms, therefore there exists a permutation matrix P such
that PMRPT = ∆ ≤ PAPT . It follows (see Theorem 3.3) that PAPT is the standard
quasi-linear ordered form. 
�

Lemma 3.1. The Boolean matrices shown as follows

P

[
J11 J12

0 J22

]
PT (3.3)

and

P

⎡
⎢⎢⎣

1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1
0 0 · · · 0

⎤
⎥⎥⎦PT (3.4)

are the idempotent prime elements of M(B)n×n. Here P is any permutation Boolean
matrix and all Ji j are the same as those in Theorem 3.3.

Proof. Suppose that A is the form given by (3.3), that is,

A = P

[
J11 J12

0 J22

]
PT

Let A=X ∗Y and X , Y ∈ M(B)n×n, X2=X , Y 2=Y . We have

N =
[

J11 J12

0 J22

]
= (PT XP)∗ (PTYP)

It follows that, N ≤ PT XP, N ≤ PTY P, and so PT XP and PTYP are the canonical
quasi-linear ordered forms by Theorem 3.3. Therefore either PT XP or PTYP must
be equal to N. Let PT XP = N, we have X = PNPT = A. Suppose that B is the form
shown in (3.4), that is,

B = P

⎡
⎢⎢⎣

1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1
0 0 · · · 0

⎤
⎥⎥⎦PT

Let B=X ∗Y and X , Y ∈ M(B)n×n, X2=X , Y 2=Y . We have

N =

⎡
⎢⎢⎣

1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1
0 0 · · · 0

⎤
⎥⎥⎦ = (PT XP)∗ (PTYP)
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It follows that N ≤ PT XP, N ≤ PTY P, and so PT XP and PTY P are the forms shown
as

W =

⎡
⎢⎢⎣

1 1 · · · 1 1
· · · · · · · · · · · · · · ·
1 1 · · · 1 1
b1 b2 · · · bn−1 0

⎤
⎥⎥⎦

V =
[

J a
b c

]
= V 2 =

[
J + ab Ja + ca
bJ + cb ba + c

]

where a=[1,. . . ,1]T , b=[b1, b2, . . . , bn−1]. If b �= [0, . . . ,0], then bJ+cb = [1,1, . . .,1].
If b = [0, . . . ,0], then bJ + cb = [0, . . . ,0]. This implies that PT XP and PTY P take
on one of the following forms⎡

⎢⎢⎣
1 1 · · · 1 1
· · · · · · · · · · · · · · ·
1 1 · · · 1 1
0 0 · · · 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 · · · 1 1
· · · · · · · · · · · · · · ·
1 1 · · · 1 1
1 1 · · · 1 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 · · · 1 1
· · · · · · · · · · · · · · ·
1 1 · · · 1 1
0 0 · · · 0 0

⎤
⎥⎥⎦

Therefore either PT XP or PTYP must be equal to N. Let PT XP = N, we have X =
PNPT = B, and this completes the proof. 
�

Definition 3.9. Let A = (ai j) ∈ M(B)n×n be a canonical quasi-linear ordered form
shown as (3.1). subtr(A) the sub-trace of A is defined as follows.

subtr(A)=(a21 a32 . . .an(n−1))

which is a n−1 dimension Boolean vector.

It is obvious that subtr(A ∗ B)=subtr(A)∗subtr(B), subtr(A + B)=subtr(A)+subtr(B).
Let A,B ∈ M(B)n×n and A,B be idempotent matrices such that ∆ ≤ B,∆ ≤ A. If
subtr(A)=subtr(B). Then we have A=B by Theorem 3.3. Therefore, the following
map

subtr: {B ∈ M(B)n×n| B is an idempotent matrix such that ∆ ≤ B}→ M(B)n−1,

is an isomorphism from the algebra system (M(B)n×n,+,∗) to the algebra system
(M(B)n−1,+,∗), where M(B)n−1 is the set of n−1 dimension vectors.

Theorem 3.7. Let A2=A ∈ M(B)n×n. If p(A) �= ∅, then there exists a unique group
of idempotent prime elements A1, A2, . . . , Ak such that A = A1 ∗A2∗. . .∗Ak which is
irreducible.

Proof. Let M ∈ p(A), M be a linear ordered matrix. There exists a permutation
matrix P such that PMPT =∆ ≤ PAPT . From Theorem 3.3, we know that PAPT is
of the following form
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⎡
⎢⎢⎣

J11 J12 · · · J1k

0 J21 · · · J2k

· · · · · · · · · · · ·
0 0 · · · Jkk

⎤
⎥⎥⎦

Where Jii is square matrix of order ri (i = 1, 2, . . . , k),

subtr(PAPT ) = (

r1−1︷ ︸︸ ︷
1 · · ·10

r2−1︷ ︸︸ ︷
1 · · ·1 · · ·0

rk−1︷ ︸︸ ︷
1 · · ·1),

there exists a unique vector sequence V1, V2, . . . , Vk such that every subtr−1(Vi) (i=1,
2, . . . , k) is an idempotent prime matrix and

subtr(PAPT)=V1 ∗V2 ∗ . . .∗Vk (Vi=(1 1 . . . 1 0 1 . . . 1), i = 1,2, . . . ,k).

Therefore

PAPT =subtr−1(V1)∗ subtr−1(V2)∗ . . .∗ subtr−1(Vk)

A=(PT subtr−1(V1)P)∗ (PT subtr−1(V2)P)∗. . .∗(PT subtr −1(Vk)P)

Each PT subtr−1(Vi)P is an idempotent prime element (i=1, 2, . . . , k). Assume
A=B1 ∗B2∗. . .∗Br which is irreducible. Then

subtr(PAPT )=(PT subtr−1(B1)P)∗ (PT subtr −1(B2)P)∗. . .∗(PT subtr−1(Br)P)

Since PBiPT is standard quasi-linear ordered form and idempotent prime element
(i=1, 2, . . . , k), hence for every Vi there exists a unique PBwPT such that subtr
(PBwPT )=Vi (i=1, 2, . . . , k). This implies that PT subtr−1(Vi)P=Bw. This completes
the proof of the theorem. 
�

Theorem 3.7 implies that each quasi-linear ordered relation can be uniquely repre-
sented by some simpler quasi-linear ordered relations whose correspondence ma-
trices are forms shown in the form (3.3) and (3.4). The following theorem shows
that each binary relation R on X which satisfies (x, x) ∈ R for any x ∈ X can be
represented by some quasi-ordered relations.

Theorem 3.8. Let M ∈ M(B)n×n and I + M=M. Then there exist A1, A2, . . . , Ar

which are idempotent Boolean matrices such that M = A1 + A2+. . . +Ar.

Proof. Let the Schein rank of M is s [3]. Then there exist n × s Boolean ma-
trix U=(a1, a2, . . . , as) and s × n Boolean matrix V =(b1, b2, . . . , bs)T such that
M = UV = a1b1 +a2b2+. . . +asbs. Thus we have I +M=I +a1b1 + I +a2b2+. . . +I +
asbs=M. Let Ai=I + aibi, i=1, 2, . . . , s.

Then
AiAi=I + aibi + aibiaibi.

Suppose that ai=(ai1, . . . , ain), bi=(bi1 ,. . . , bin). One has

AiAi=I + aigbi + aibi=Ai,

where aibi=ai1bi1+. . . +ainbin=g. 
�
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Theorem 3.9, which can be directly proved by Theorem 3.4, Theorem 3.7 and The-
orem 3.8, states that each binary relation R on X which satisfies (x, x) ∈ R for any
x ∈ X can be represented by some quasi-linear ordered relations whose correspon-
dence Boolean matrices shown as (3.3) and (3.4). This result implies that any con-
cept can be represented by the concepts whose binary relations are as simple as the
binary relations shown as (3.3) and (3.4).

Theorem 3.9. Let M ∈ M(B)n×n and I +M=M. Then there exist quasi-linear orders
Ri j, i=1,2,. . . ,r, j=1,2,. . . ,qi such that

M =
r

∑
i=1

(∗
qi

∏
k=1

MRik)

Example 3.2. Let X={x1, x2, x3, x4} be the set of four persons. Concept ξ is “beau-
tiful”. We also know that x1 is the most beautiful of x1, x2, x3. Both x2 and x3 are
more beautiful than x4. x2 and x3 are incomparable. x4 is more beautiful than x1.
Thus we have the following correspondence Boolean matrix of the binary relation
R of the concept ξ .

MR =

⎡
⎢⎢⎣

1 1 1 0
0 1 0 1
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦

By Theorem 3.8, we have

A1 =

⎡
⎢⎢⎣

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎤
⎥⎥⎦

MR = A1 + A2 + A3, A2
i = Ai, I + Ai = Ai, i=1, 2, 3.

According to Theorem 3.1, we know that the binary relations Ri on X corre-
sponding to Ai, i = 1,2,3 are quasi-ordered relations on X . Applying Theorem 3.4,
we have the following quasi-linear order decompositions of R1, R2, R3. First we get
the set of all minimal elements of X under the quasi-ordered relation R1, SX ={x2, x3,
x4} and the sets of mu, the maximum quasi-order chains at u ∈ SX as follows. mx2={
{x1, x2} }, mx3 ={ {x1, x3} }, mx4={ {x4 } }. For each A ∈ mu, the quasi-linear or-
dered relation RA can be constructed by the method in Theorem 3.4 as follows

R{x1,x2}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x3, x4), (x4, x3), (x1, x3), (x1, x4),
(x2, x3), (x2, x4), (x1, x2)},

R{x1,x3}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x2, x4), (x4, x2), (x1, x2), (x1, x4),
(x3, x2), (x3, x4), (x1,x3)},

R{x4}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x1, x2), (x1, x3), (x2, x1), (x2, x3), (x3,
x1), (x3, x2), (x4,x1), (x4, x2), (x4, x3) }.
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The Boolean matrices corresponding to these quasi-linear orders are

MR{x1,x2} =

⎡
⎢⎢⎣

1 1 1 0
0 1 1 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ , MR{x1,x3} =

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 1 1 1
0 1 0 1

⎤
⎥⎥⎦ , MR{x4} =

⎡
⎢⎢⎣

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 1

⎤
⎥⎥⎦

MR{x1,x2} ∗MR{x1,x3} ∗MR{x4} =

⎡
⎢⎢⎣

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ = A1

For the quasi-order R2, we have SX ={ x1, x4}, mx1={ {x1 } }, mx4 ={ {x2, x4}, {x3,
x4} }. For each A ∈ mu, the quasi-linear ordered relation RA can be constructed by
the method in Theorem 3.4 as follows

R{x2,x4}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x2, x3), (x4, x3), (x3, x4), (x2, x1),
(x3, x1), (x4, x1), (x2, x4)},

R{x3,x4}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x3, x2), (x4, x2), (x2, x4), (x2, x1),
(x3, x1), (x4, x1), (x3,x4)},

R{x1}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2,
x4), (x3, x2), (x3,x4), (x4, x2), (x4, x3)}.

Furthermore we have

MR{x2,x4} ∗MR{x3,x4} ∗MR{x1} =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ = A2

For the quasi-order R3, we have SX ={x2, x3, x1}, mx1 ={ {x4, x1 } }, mx2={{x2}},
mx3 ={ {x3}}. For each A ∈ mu, the quasi-linear ordered relation RA can be con-
structed by the method in Theorem 3.4 as follows

R{x2}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x3, x4), (x3, x1), (x1, x3), (x1, x4), (x4,
x1), (x4, x3), (x2, x1), (x2, x3), (x2, x4)},

R{x3}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x2, x4), (x2, x1), (x1, x2), (x1, x4), (x3,
x2), (x4, x1), (x4,x2), (x3, x4), (x3,x1)},

R{x1,x4}={(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x3, x2), (x2, x3), (x1, x2), (x1, x3),
(x4, x2), (x4, x3), (x4,x1) }.

Finally we have

MR{x2} ∗MR{x3} ∗MR{x4,x1} =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎤
⎥⎥⎦ = A3
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We should point out that the above representation is not unique. The following is
a different representation of the binary relation R of the “beautiful”. Let

A1 =

⎡
⎢⎢⎣

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ , A4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎤
⎥⎥⎦

We can verify the followings:

MR = A1 + A2 + A3 + A4, A2
i = Ai, I + Ai = Ai, i=1, 2, 3, 4.

The binary relations on X , Ri, corresponding to Ai, i = 1,2,3,4 are quasi-orders on
X . Similarly, we have the following quasi-linear order decompositions of A1, A2, A3,
A4 via the method presented in Theorem 3.4.

A1 =

⎡
⎢⎢⎣

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
0 1 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦∗

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 1 1 1
0 1 0 1

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 1

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 0 1 0
1 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

⎤
⎥⎥⎦∗

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
1 1 1 1
1 1 0 1

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

1 0 1 0
1 1 1 1
1 0 1 0
1 0 1 1

⎤
⎥⎥⎦

A3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

⎤
⎥⎥⎦∗

⎡
⎢⎢⎣

1 0 1 1
1 1 1 1
1 0 1 1
1 0 1 1

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 1 1
1 1 0 1

⎤
⎥⎥⎦

A4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 1 1
1 1 1 1
1 0 1 1
1 0 1 1

⎤
⎥⎥⎦∗

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
1 1 1 1
1 1 0 1

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

1 1 1 0
0 1 1 0
0 1 1 0
1 1 1 1

⎤
⎥⎥⎦

Let M=M + I ∈ M(B)n×n, we define

ri(M)=inf{l | M=A1 + A2 + . . .+ Al, each Ai is an idempotent matrix
(i = 1,2, . . . , l)}.

There is an open problem: Is the shortest sum of the idempotent matrices of any
Boolean matrix unique? The following theorem addresses the related problems.
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Theorem 3.10. Let M,N ∈ M(B)n×n. Then the following assertions hold

(1) ri(M) ≤ |li(M)|.
(2) M = N if and only if li(M) = li(N).
(3) li(M) = li(N) if and only if i(M) = i(N).

Proof. (1) By Theorem 3.8, we have that there exist idempotent elements A1,
A2, . . . , Ar (r = ri(M)) such that

M=A1 + A2 + . . .+ Ar ⇒ Ai ≤ M ⇒ Ai ∈ i(M).

Hence, there exist B j ∈ li(M) for every Ai such that Ai ≤ Bi, i=1, 2, . . . , r. Suppose
li(M) = {B1,B2, . . . ,Bl}, there exists a mapping f : {1,2, . . . ,r}→ {1,2, . . . , l} such
that Ai ≤ B f (i). Thus, we have

B f (1) + B f (2) + . . .+ B f (r) ≤ M = A1 + A2 + . . .+ Ar ≤ B f (1) + B f (2) + . . .+ B f (r).

Therefore M = B f (1) + B f (2) + . . .+ B f (r). It follows that, f is injective by the defi-
nition of ri(M).

(2) Let li(M) = li(N). By (1), there exist Bi ∈ li(M) = li(N) (i = 1,2, . . . ,r) such
that

M = B1 + B2 + . . .+ Br ≤ N.

Similarly we have N ≤ M.
(3) i(M)= i(N) ⇒ li(M)= li(N) ⇒ M = N ⇒ i(M)= i(N). 
�

Exercises

Exercise 3.1. For any H, N, M ∈ M(B)m×n, show that the following assertions hold
H ∗ (N ∗M)= (H ∗N)∗M;
M ∗N = N ∗M,
H ∗ (N + M) = H ∗N + H ∗M.

Exercise 3.2. Show that(M(B)m×n,∨,∧) is a distributive lattice if A∨B=A+B, A∧
B=A∗B for any A, B ∈ M(B)n×n.

Exercise 3.3. Let A, B ∈ M(B)n×n, and P is a permutation matrix of order n. Prove
the following

(a) If A ≤ B and M ∈ M(B)n×n, then MA ≤ MB and AM ≤ BM.
(b) P(A∗B)PT = (PAPT )∗ (PBPT ).
(c) p(PAPT ) = {PMRPT | MR ∈ p(A)} � Pp(A)PT .
(d) p(A∗B)=p(A)∩ p(B).
(e) i(A + B) ⊇ i(A)∪ i(B).
(f) i(PAPT ) = {PMPT | M ∈ i(A)}.
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Exercise 3.4. LetM ∈ M(B)n×n and I + M=M. Shown that there exist quasi-linear
ordersRi j, i = 1,2, . . . ,r, j = 1,2, . . . ,qi, whose correspondence Boolean matrices
shown as (3.3) and (3.4), such that

M =
r

∑
i=1

(∗
qi

∏
k=1

MRik).

Open Problems

Problem 3.1. Is the shortest sum of the idempotent matrices of any Boolean matrix
unique?
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Chapter 4
AFS Logic, AFS Structure and Coherence
Membership Functions

In this chapter, we start with an introduction to EI algebra and AFS structure. Then
the coherence membership functions of fuzzy concepts for AFS fuzzy logic for the
AFS structure are proposed and a new framework of determining coherence mem-
bership functions is developed by taking both fuzziness (subjective imprecision)
and randomness (objective uncertainty) into account. Singpurwalla’s measure of the
fuzzy events in a probability space has been applied to explore the proposed frame-
work. Finally, the consistency, stability, efficiency and practicability of the proposed
methodology are illustrated and studied via various numeric experiments. The in-
vestigations in this chapter open a door to explore the deep statistic properties of
fuzzy sets. In this sense, they may offer further insights as to the to a role of natural
languages in probability theory.

The aim of this chapter is to develop a practical and effective framework support-
ing the development of membership functions of fuzzy concepts based on semantics
and statistics completed with regard to fuzzy data. We show that the investigations
concur with the main results of the Singpurwalla’s theory [44].

4.1 AFS Fuzzy Logic

The notion of a fuzzy set has been introduced in [51] in order to formalize the mea-
surement of human concepts on numerical scales, in connection with the represen-
tation of human natural language and computing with words. Fuzzy sets and fuzzy
logic are used for modeling imprecise modes of reasoning that play an essential role
in the remarkable human ability to make rational decisions in an environment of
uncertainty and imprecision ([55]).

As moving further into the age of machine intelligence and automated decision-
making, we have to deal with both the subjective imprecision of human perception-
based information described in natural language and the objective uncertainty of
randomness universally existing in the real world. Zadeh has claimed that “proba-
bility must be used in concert with fuzzy logic to enhance its effectiveness. In this
perspective, probability theory and fuzzy logic are complementary rather than com-
petitive” [57]. In this chapter, we explore how the imprecision of natural language

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 111–166.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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and the randomness of observed data can be made to work in concert, so that un-
certainty of randomness and of imprecision can be treated in a unified and coherent
manner. Additionally, this treatment opens the door to enlarge the role of natural
languages in probability theory.

In the real world applications, “conventional” membership functions are usually
formed based on by the user’s intuition. But these membership functions cannot be
directly used in the fuzzy observation model because they do not offer us assurance
to meet the requirement as the fuzzy event.

Recently, some new theories have been developed to interpret the membership
functions. The authors in [5, 7, 6] proposed a coherent conditional probability which
is looked on as a general non-additive “uncertainty” measure m(.) = P(E|.) of the
conditioning events. This gives rise to a clear, precise and rigorous mathematical
frame, which allows to define fuzzy subsets and to introduce in a very natural
way the counterparts of the basic continuous t-norms and the corresponding dual
t-conorms, bound to the former by coherence. Some new approaches to De Finetti’s
coherence criterion [17, 41] provide more powerful results as to further exploration
of these problems. So far, the applicable semantic aspects of fuzzy concepts and
their fuzzy logic operations have not been fully discussed in the framework of con-
ditional probability theory.

Singpurwalla and Booker developed a line of argument that demonstrates that
probability theory has a sufficiently rich structure for incorporating fuzzy sets within
its framework [44]. Thus probabilities of fuzzy events can be logically induced. The
philosophical underpinnings that make this happen are a subjectivistic interpretation
of probability, an introduction of Laplace’s famous genie, and the mathematics of
encoding expert testimony. Singpurwalla and Booker provide a real advance in our
understanding of fuzzy sets, by identifying a sensible connection between member-
ship functions and likelihood, and thereby probability. However, Singpurwalla and
Booker focus on the interpretation of the probability measure of a fuzzy event with
a predetermined membership function and have not discussed the problem of how
to determine the membership functions of fuzzy concepts based on the theory they
developed.

AFS theory [25, 23, 27, 30, 35] focuses on the study of determining the member-
ship functions and logic operations of fuzzy concepts through AFS structures—a
sort of mathematical descriptions of data structure and AFS algebras—a kind of
completely distributivity lattices generated by a set and some simple (elementary)
concepts defined on it. The AFS theory is based on the following essential observa-
tion: concepts are extracted from what an individual observed and the interpretation
of a concept is strongly dependent on the observed “data” i.e., the world an indi-
vidual observed or the background knowledge. Different people may give greatly
different interpretations for the same concept due to their different observations.
For instance, an NBA basketball player may describe that a person is not “tall”
while a ten year old child may describe that the same person is very “tall”. Because
the “data” the NBA basketball player observed, i.e., the people the NBA basket-
ball player often meets are quite different from those the child often meets. In AFS
theory—the studies on how to convert the information in the observed data into
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fuzzy sets (membership functions), the determination of membership functions of
fuzzy concepts always emphasizes the data set they apply to. Considering that there
are such complicated forms of the descriptions and representations for the attributes
of the raw data in the real world applications, the raw data are “regularized” to be
AFS structures by two axioms. AFS is mainly studied with respect to AFS structure
of the data and AFS theory mainly studies fuzzy concepts, membership functions
and fuzzy logic on the AFS structure of the data, instead of the raw data that are
available through experiments.

An AFS structure is a triple (M, τ , X) which is a special family of combinator-
ical systems [11], where X is the universe of discourse, M is a set of some sim-
ple (or elementary) concepts on X (e.g., linguistic labels on the features such as
“large”,“medium”,“small” ) and τ : X × X → 2M , which satisfies two axioms, is a
mathematical description of the relationship of the distributions of the raw data and
the semantics of the simple concepts in M. An AFS algebra is a family of completely
distributive lattices generated by the sets such as X and M. Using the AFS algebras
and the AFS structures, a great number of complex fuzzy concepts on X and their
logic operations can be expressed by a few simple concepts in M. Liu, Pedrycz and
Zhang gave the complement operation of the fuzzy concepts in EI algebra EM–a
sort of the AFS algebra, thus a fuzzy logic system called AFS fuzzy logic has been
developed [27].

4.1.1 EI Algebra

In [23], defined was a family of completely distributivity lattices, referred to as AFS
algebras, and denoted as EI, EII, ..., EIn, E#I, E#II, ..., E#In algebras. The authors
applied them to study the semantics of expressions and the representations of fuzzy
concepts. The following example serves as an introductory illustration of the EI
algebra.

Example 4.1. Let X = {x1,x2, ...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table 4.1; here the number i in the “hair color” columns which corre-
sponds to some x ∈ X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. For example, the numbers in the
column “hair black” implies some order (denoted here by >)

x7 > x10 > x4 = x8 > x2 = x9 > x5 > x6 = x3 = x1

When moving from right to left, the relationship states how strongly the hair color
resembles black color. In this order, xi > x j (e.g., x7 > x10) states that the hair of xi

is closer to the black color than the color of hair the individual x j. The relationship
xi = x j (e.g., x4 = x8) means that the hair of xi looks as black as the one of x j.
A concept on X may associate to one or more features. For instance, the fuzzy
concept “tall” associates a single feature “height” and the fuzzy concept “old white
hair males” associates three features “age”, “hair color black” and “gender male”.
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Many concepts may associate with a single feature. For instance, the fuzzy concepts
“old”, “young” and “about 40 years old” all associate to feature “age”. Let M =
{m1,m2, ..., m12} be the set of fuzzy or Boolean concepts on X and each m ∈ M
associate to a single feature. The following terms are used here m1 : “old people”,
m2 : “tall people”, m3 : “heavy people”, m4 : “high salary”, m5 : “more estate”,
m6 :“male”, m7 : “female”, m8 : “black hair people”, m9 : “white hair people”,
m10 : “yellow hair people”, m11 : “young people”, m12 : “the people about 40 years
old”. The elements of M are viewed as “elementary” (or “simple” ) concepts.

Table 4.1 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male f emale black white yellow

x1 20 1.9 90 1 0 1 0 6 1 4
x2 13 1.2 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 1.4 54 15 2 1 0 5 2 2
x6 37 1.6 80 80 28 0 1 6 1 4
x7 45 1.7 78 268 90 1 0 1 6 4
x8 70 1.65 70 30 45 1 0 3 4 2
x9 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3

For each set of concepts, A ⊆ M, ∏m∈A m represents a conjunction of the con-
cepts in A. For instance, A = {m1,m6} ⊆ M, ∏m∈A m = m1m6 representing a new
fuzzy concept “old males” which associates to the features of age and gender.
∑i∈I(∏m∈Ai

m), which is a formal sum of the concepts ∏m∈Ai
m,Ai ⊆ M, i ∈ I, is

the disjunction of the conjunctions represented by ∏m∈A m’s (i.e., the disjunctive
normal form of a formula representing a concept). For example, we may have
γ = m1m6 + m1m3 + m2 which translates as “old males” or “heavy old people” or
“tall people”. (The “+” denotes here a disjunction of concepts). While M may be a
set of fuzzy or Boolean (two-valued) concepts, every ∑i∈I(∏m∈Ai

m),Ai ⊆ M, i ∈ I,
has a well-defined meaning such as the one we have discussed above. By a straight-
forward comparison of

m3m8 + m1m4 + m1m6m7 + m1m4m8

and
m3m8 + m1m4 + m1m6m7,

we conclude that the expressions are equivalent. Considering the terms on left side
of the expressions, for any x, the degree of x belonging to the fuzzy concept rep-
resented by m1m4m8 is always less than or equal to the degree of x belonging to
the fuzzy concept represented by m1m4. Therefore, the term m1m4m8 is redundant
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when forming the left side of the fuzzy concept and the expressions are equivalent
in semantics. In practice, when we form complex concepts using some simple con-
cepts like what we have discussed above, we always accept the following axioms of
natural language:

1) The repeat of a concept can be reduced in the product∏ (e.g., m1m4m8 is equiv-
alent to m1m4m1m8 );

2) The sum ∑ is commutative (e.g., m5m6 + m5m8 is equivalent to m5m8 + m5m6)
and the product is also commutative (e.g., m5m8 is equivalent to m8m5);

3) The product distributes over the sum (e.g.,m5m6 +m5m8 is equivalent to m5(m6 +
m8)).

Let us take into consideration two expressions of the form α : m1m4 + m2m5m6,
and ν : m5m6 + m5m8. Under the above axioms, the semantic contents of the fuzzy
concepts “α or ν” and “α and ν” can be expressed as follows
“α or ν”: m1m4 + m2m5m6 + m5m6 + m5m8 equivalent to

m1m4 + m5m6 + m5m8,

“α and ν”: m1m4m5m6 + m2m5m6 + m1m4m5m8 + m2m5m6m8 equivalent to

m1m4m5m6 + m2m5m6 + m1m4m5m8.

The semantics of the logic expressions such as “equivalent to”, “or” and “and” as
expressed by ∑i∈I(∏m∈Ai

m),Ai ⊆ M, i ∈ I can be formulated in terms of the EI
algebra in the following manner.

Let M be a non-empty set. The set EM∗ is defined by

EM∗ =

{
∑
i∈I

(∏
m∈Ai

m) | Ai ⊆ M, i ∈ I, I is any no empty indexing set

}
. (4.1)

Definition 4.1. ([23]) Let M be a non-empty set. A binary relation R on EM∗ is
defined as follows: for ∑i∈I(∏m∈Ai

m), ∑ j∈J(∏m∈B j
m) ∈ EM∗,[

∑i∈I(∏m∈Ai
m)

]
R
[
∑ j∈J(∏m∈B j

m)
]
⇐⇒ (i) ∀Ai (i ∈ I), ∃Bh (h ∈ J) such that

Ai ⊇ Bh; (ii) ∀B j ( j ∈ J), ∃ Ak (k ∈ I), such that B j ⊇ Ak.

It is clear that R is an equivalence relation. The quotient set, EM∗/R is denoted as
EM. Notice that any element of EM is an equivalence class. Let [∑i∈I(∏m∈Ai

m)]R
be the set of all elements which are equivalent to ∑i∈I(∏m∈Ai

m) ∈ EM∗, and
[∑i∈I(∏m∈Ai

m)]R ∈ EM. In general, for any ξ , ζ ∈ EM∗, ξ , ζ are equivalent under R
means ξ ∈ [ζ ]R, ζ ∈ [ξ ]R, and [ζ ]R = [ξ ]R. If∑i∈I(∏m∈Ai

m) is not specified in EM∗,
then the equivalent class [∑i∈I(∏m∈Ai

m)]R is always denoted as ∑i∈I(∏m∈Ai
m) for

the sake of simplicity and the notation ∑i∈I(∏m∈Ai
m) = ∑ j∈J(∏m∈B j

m) means
that [∑i∈I(∏m∈Ai

m)]R = [∑ j∈J(∏m∈B j
m)]R. Thus the semantics they represent are

equivalent. In Example 4.1, for ξ = m3m8 + m1m4 + m1m6m7 + m1m4m8, ζ =
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m3m8 +m1m4 +m1m6m7 ∈ EM, by Definition 4.1 we have ξ = ζ . In what follows,
each ∑i∈I(∏m∈Ai

m) ∈ EM is called a fuzzy concept.

Proposition 4.1. Let M be a non-empty set. If ∑i∈I(∏m∈Ai
m) ∈ EM,At ⊆ As, t,s ∈ I,

t �= s, then

∑
i∈I

(∏
m∈Ai

m) = ∑
i∈I−{s}

(∏
m∈Ai

m).

Its proof is left as an exercise.

Theorem 4.1. ([23]) Let M be a non-empty sets. Then (EM,∨,∧) forms a com-
pletely distributive lattice under the binary compositions ∨ and ∧ defined as fol-
lows: for any ∑i∈I(∏m∈Ai

m), ∑ j∈J(∏m∈B j
m) ∈ EM,

∑
i∈I

(∏
m∈Ai

m)∨∑
j∈J

(∏
m∈B j

m) = ∑
k∈I�J

(∏
m∈Ck

m) �∑
i∈I

(∏
m∈Ai

m)+∑
j∈J

(∏
m∈B j

m), (4.2)

∑
i∈I

(∏
m∈Ai

m)∧∑
j∈J

(∏
m∈B j

m) = ∑
i∈I, j∈J

( ∏
m∈Ai∪B j

m), (4.3)

where for any k ∈ I � J (the disjoint union of I and J, i.e., every element in I and
every element in J are always regarded as different elements in I � J), Ck = Ak if
k ∈ I, and Ck = Bk if k ∈ J.

Remark 4.1. (EM,∨,∧) is a completely distributive lattice meaning that the follow-
ing important properties hold.

• For ∑i∈I(∏m∈Ai
m),∑ j∈J(∏m∈B j

m) ∈ EM,

∑
i∈I

(∏
m∈Ai

m) ≥∑
j∈J

(∏
m∈B j

m) ⇔ ∀B j,( j ∈ J),∃Ak,(k ∈ I) such that B j ⊇ Ak. (4.4)

• Let I be any indexing set and ∑ j∈Ii(∏m∈Ai j
m) ∈ EM, i ∈ I. Then

∨
i∈I

(∑
j∈Ii

( ∏
m∈Ai j

m)) =∑
i∈I
∑
j∈Ii

( ∏
m∈Ai j

m), (4.5)

∧
i∈I

(∑
j∈Ii

( ∏
m∈Ai j

m)) = ∑
f∈∏i∈I Ii

( ∏
m∈∪i∈IAi f (i)

m). (4.6)

• Let I, Ji be non-empty indexing sets, i ∈ I. For any λi j ∈ EM, i ∈ I, j ∈ Ji, the
following CD1 and CD2 hold.∧

i∈I

(
∨
j∈Ji

λi j) =
∨

f∈∏i∈I Ji

(
∧
i∈I

λi f (i)), (4.7)

∨
i∈I

(
∧
j∈Ji

λi j) =
∧

f∈∏i∈I Ji

(
∨
i∈I

λi f (i)). (4.8)
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Proof. First, we prove that ∨, ∧ are binary compositions. Let ∑i∈I1 (∏m∈A1i
m) =

∑i∈I2(∏m∈A2i
m), ∑ j∈J1

(∏m∈B1 j
m) = ∑ j∈J2

(∏m∈B2 j
m) ∈ EM. (4.2) can be directly

verified based on Definition 4.1. From (4.3),we have

∑
i∈I1

( ∏
m∈A1i

m)∧ ∑
j∈J1

( ∏
m∈B1 j

m) = ∑
i∈I1, j∈J1

( ∏
m∈A1i∪B1 j

m),

∑
i∈I2

( ∏
m∈A2i

m)∧ ∑
j∈J2

( ∏
m∈B2 j

m) = ∑
i∈I2, j∈J2

( ∏
m∈A2i∪B2 j

m).

Since ∑i∈I1(∏m∈A1i
m) = ∑i∈I2 (∏m∈A2i

m), ∑ j∈J1
(∏m∈B1 j

m) = ∑ j∈J2
(∏m∈B2 j

m),
hence by Definition 4.1, for any A1i ∪ B1 j, i ∈ I1, j ∈ J1, there exist A2k, B2l,k ∈
I2, l ∈ J2 such that A1i ⊇ A2k,B1 j ⊇ B2l . Thus A1i ∪B1 j ⊇ A2k ∪B2l . Similarly, for
any A2i ∪B2 j, i ∈ I2, j ∈ J2, there exist A1q, B1e,q ∈ I1,e ∈ J1, such that A2i ∪B2 j ⊇
A1q ∪B1e. This implies that

∑
i∈I1, j∈J1

( ∏
m∈A1i∪B1 j

m) = ∑
i∈I2, j∈J2

( ∏
m∈A2i∪B2 j

m)

and ∧ is a binary composition. Theorem 2.4 states that two binary compositions
satisfying the condition L1-L4 of Theorem 2.3 are lattice operations. For any
∑i∈I(∏m∈Ai

m),∑ j∈J(∏m∈B j
m),∑u∈U(∏m∈Cu m) ∈ EM, we can directly verify that

∨, ∧ satisfy L1-L3 of Theorem 2.3 by the definitions (which remains as an exercise).
In the following, we prove that ∨, ∧ satisfy L4 of Theorem 2.3. By Proposition

4.1, we have
(∑i∈I(∏m∈Ai

m)∨∑ j∈J(∏m∈B j
m))∧∑i∈I(∏m∈Ai

m)
= ∑i, j∈I(∏m∈Ai∪A j

m)+∑i∈I, j∈J(∏m∈Ai∪B j
m)

= ∑i∈I(∏m∈Ai
m)+∑i∈I, j∈J(∏m∈Ai∪B j

m) = ∑i∈I(∏m∈Ai
m).

(∑i∈I(∏m∈Ai
m)∧∑ j∈J(∏m∈B j

m))∨∑i∈I(∏m∈Ai
m)

= ∑i∈I, j∈J(∏m∈Ai∪B j
m)+∑i∈I(∏m∈Ai

m) = ∑i∈I(∏m∈Ai
m).

Therefore ∨, ∧ satisfy L4 of Theorem 2.3 and (EM, ∨, ∧) is a lattice.

∑
i∈I

(∏
m∈Ai

m) ≥∑
j∈J

(∏
m∈B j

m) ⇔∑
i∈I

(∏
m∈Ai

m)∨∑
j∈J

(∏
m∈B j

m) =∑
i∈I

(∏
m∈Ai

m), (4.9)

if and only if ∀B j,( j ∈ J), ∃Ak,(k ∈ I) such that B j ⊇ Ak.
In the following, we prove that (EM, ∨, ∧) is a complete lat-

tice. Let ∑ j∈Ii(∏m∈Ai j
m) ∈ EM, i ∈ I. We prove that

∨
i∈I(∑ j∈Ii(∏m∈Ai j

m)),∧
i∈I(∑ j∈Ii(∏m∈Ai j

m)) ∈ EM. It is obvious that the following relationships are sat-
isfied

∑
j∈Ii

( ∏
m∈Ai j

m) ≤∑
i∈I
∑
j∈Ii

( ∏
m∈Ai j

m), ∀i ∈ I,

∑
j∈Ii

( ∏
m∈Ai j

m) ≥ ∑
f∈∏i∈I Ii

( ∏
m∈∪i∈I Ai f (i)

m), ∀i ∈ I.
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For ∑u∈U(∏m∈Bu m) ∈ EM, if ∑ j∈Ii(∏m∈Ai j
m) ≤ ∑u∈U(∏m∈Bu m),∀i ∈ I, then

∀Ai0 j0 , i0 ∈ I, j0 ∈ Ji0 , there exists u0 ∈ U such that Ai0 j0 ⊇ Bu0 . Therefore
by (4.9), we have ∑i∈I∑ j∈Ii(∏m∈Ai j

m) ≤ ∑u∈U(∏m∈Bu m). This implies that

∑i∈I∑ j∈Ii(∏m∈Ai j
m) ∈ EM is the least upper bound or supremum of the set

{∑ j∈Ii(∏m∈Ai j
m) ∈ EM | i ∈ I}, i.e.,

∨
i∈I

(∑
j∈Ii

( ∏
m∈Ai j

m)) =∑
i∈I
∑
j∈Ii

( ∏
m∈Ai j

m). (4.10)

For∑u∈U(∏m∈Bu m)∈ EM, if∑ j∈Ii(∏m∈Ai j
m)≥∑u∈U(∏m∈Bu m),∀i ∈ I, then ∀Bu0 ,

u0 ∈ U and ∀i0 ∈ I, there exists ji0 ∈ Ii0 such that Bu0 ⊇ Ai0 ji0
. This implies that

for any u0 ∈ U there exists fu0 ∈ ∏i∈I Ii such that fu0(i0) = ji0 ,∀i0 ∈ I and Bu0 ⊇
∪i∈IAi fu0 (i). Therefore by (4.9), we have

∑
f∈∏i∈I Ii

( ∏
m∈∪i∈I Ai f (i)

m) ≥ ∑
u∈U

(∏
m∈Bu

m).

Thus ∑ f∈∏i∈I Ii(∏m∈∪i∈IAi f (i)
m) ∈ EM is the greatest lower bound or infimum of the

set {∑ j∈Ii(∏m∈Ai j
m) ∈ EM | i ∈ I}, i.e.,

∧
i∈I

(∑
j∈Ii

( ∏
m∈Ai j

m)) = ∑
f∈∏i∈I Ii

( ∏
m∈∪i∈I Ai f (i)

m). (4.11)

By Definition 2.5, we know that (EM, ∨, ∧) is a complete lattice.
For any γ,ζ ,η ,∈ EM, the following properties (D1 and D2) can be directly ver-

ified by Definition 4.1; the proof remains as an exercise.

D1: γ ∧ (ζ ∨η) = (γ ∧ζ )∨ (γ ∧η);
D2: γ ∨ (ζ ∧η) = (γ ∨ζ )∧ (γ ∨η).

Therefore by Definition 2.5, we know that (EM, ∨, ∧) is also a distributive lattice.
In the following, we prove that (EM, ∨, ∧) is a completely distributive lattice,

i.e., satisfying CD1 and CD2 in Definition 2.17. By Corollary 2.4 we know that a
complete lattice L is a completely distributive lattice if and only if one of CD1 and
CD2 holds. Hence we just prove the lattice (EM, ∨, ∧) satisfies that CD1.

Let λi j = ∑u∈Ui j
(∏m∈Ai j

u
m) ∈ EM, i ∈ I, j ∈ Ji, Ui j is a non-empty indexing set.

For any f ∈∏i∈I Ji,we know that ∀k ∈ I, since f (k) ∈ Jk,. Hence for any f ∈∏i∈I Ji

and any k ∈ I we have ∧
i∈I

λi f (i) ≤ λk f (k) ≤
∨
j∈Jk

λk j.

Since ∀k ∈ I,∀ f ∈∏i∈I Ji,
∧

i∈I λi f (i) ≤ ∨
j∈Jk
λk j, hence for any f ∈∏i∈I Ji,∧

i∈I

λi f (i) ≤
∧
k∈I

(
∨
j∈Jk

λk j).



4.1 AFS Fuzzy Logic 119

Furthermore ∨
f∈∏i∈I Ji

(
∧
i∈I

λi f (i)) ≤
∧
i∈I

(
∨
j∈Ji

λi j). (4.12)

By (4.10) and (4.11), we have∨
f∈∏i∈I Ji

(
∧
i∈I

λi f (i)) =
∨

f∈∏i∈I Ji

(
∧
i∈I

( ∑
u∈Ui f (i)

( ∏
m∈Ai f (i)

u

m))

= ∑
f∈∏i∈I Ji

( ∑
h∈∏i∈I Ui f (i)

( ∏
m∈∪i∈I A

i f (i)
h(i)

m)). (4.13)

∧
i∈I

(
∨
j∈Ji

λi j) =
∧
i∈I

(∑
j∈Ji

∑
u∈Ui j

( ∏
m∈Ai j

u

m))

=
∧
i∈I

( ∑
u∈⊔

k∈Ji
Uik

(∏
m∈Ei

u

m))

= ∑
g∈∏i∈I(

⊔
k∈Ji

Uik)
( ∏

m∈∪i∈IEi
g(i)

m), (4.14)

where for any u ∈ ⊔
k∈Ji

Uik, Ei
u = Ai j

u if u ∈ Ui j. For any g0 ∈∏i∈I(
⊔

k∈Ji
Uik), since

g0(i) ∈ ⊔
k∈Ji

Uik, i ∈ I, hence for any i ∈ I, there exists ki ∈ Ji such that g0(i) ∈ Uiki .
This implies that if we define f0(i) = ki ∈ Ji, i ∈ I, then f0 ∈∏i∈I Ji, g0(i) ∈ Ui f0(i),

g0 ∈∏i∈I Ui f0(i) and Ei
g0(i) = Ai f0(i)

g0(i)
, for any i ∈ I. Thus, considering the right sides

of (4.13) and (4.14), for any g0 ∈∏i∈I(
⊔

k∈Ji
Uik), there exist f0 ∈∏i∈I Ji such that

g0 ∈∏i∈I Ui f0(i) and

⋂
i∈I

Ei
g0(i) =

⋂
i∈I

Ai f0(i)
g0(i) .

By (4.9), we have ∨
f∈∏i∈I Ji

(
∧
i∈I

λi f (i)) ≥
∧
i∈I

(
∨
j∈Ji

λi j). (4.15)

Therefore the following CD1 hold from (4.12)∧
i∈I

(
∨
j∈Ji

λi j) =
∨

f∈∏i∈I Ji

(
∧
i∈I

λi f (i)). (4.16)

By Corollary 2.4 we know that∨
i∈I

(
∧
j∈Ji

λi j) =
∧

f∈∏i∈I Ji

(
∨
i∈I

λi f (i)). (4.17)

and (EM, ∨, ∧) is a completely distributive lattice. 
�
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In Example 4.1, for ψ = m1m4 +m2m5m6,ν = m5m6 +m5m8 ∈ EM, in virtue (4.2)
and (4.3) we know that the semantic content of the fuzzy concepts “ ψ or ν” and
“ψ and ν” are expressed as “ψ ∨ν” and “ψ ∧ν”, respectively. The algebra opera-
tions carried out on them come in the form:

ψ ∨ν = m1m4 + m2m5m6 + m5m6 + m5m8

= m5m6 + m5m8 + m1m4,

ψ ∧ν = m1m4m5m6 + m2m5m6 + m1m4m5m8 + m2m5m6m8

= m1m4m5m6 + m2m5m6 + m1m4m5m8.

(EM,∨,∧) is called the EI (expanding one set M) algebra over M—one type
of AFS algebra. For ψ = ∑i∈I(∏m∈Ai

m), ϑ = ∑ j∈J(∏m∈B j
m) ∈ EM, ψ ≤ ϑ ⇐⇒

ψ∨ϑ =ϑ ⇔∀Ai (i ∈ I), ∃Bh (h ∈ J) such that Ai ⊇ Bh. In light of the interpretation
of concepts ∏m∈Ai

m and ∏m∈Bh
m, we know that for any x ∈ X , the membership

degree of x belonging to ∏m∈Ai
m is always less than or equal to that of ∏m∈Bh

m
considering Ai ⊇ Bh, i.e., the stricter the constraint of a concept, the lower degree
of x belongs to the concept. Therefore the membership degree of x belonging to
concept ψ is always less than or equal to that of ϑ for all x ∈ X due to ψ ≤ ϑ . For
instance, in Example 4.1, ψ = m1m4 +m2m5m6 and ϑ = m5m6 +m5m8 +m1m4. By
(4.4), we have ψ ∨ϑ = ϑ , i.e., ψ ≤ ϑ . In the sense of the underlying semantics we
have

ψ states “ old high salary people” or “tall male with more estate”,
ϑ reads “old high salary people” or “male with more estate” or “black hair people
with more estate”,

since the membership degree of x belonging to the concept “tall male with more
estate” is always less than or equal to that of “male with more estate” for all x ∈ X ,
hence the membership degree of any x belonging to ψ is less than or equal to that
of ϑ .

Theorem 4.2. ([27]) Let M be a set and g : M →M be a map satisfying g(g(m)) = m
for all m ∈ M. If the operator g : EM → EM is defined as follows(

∑
i∈I

(∏
m∈Ai

m)

)g

=
∧
i∈I

( ∨
m∈Ai

g(m)

)
=

∧
i∈I

(
∑

m∈Ai

g(m)

)
. (4.18)

Then for any α,β ∈ EM,“g” has the following properties:

1) (αg)g = α;
2) (α ∨β )g = αg ∧β g, (α ∧β )g = αg ∨β g;
3) α ≤ β ⇒ αg ≥ β g.

i.e. the operator “g” is an order reversing involution (or conversely ordered involu-
tory mapping) in the EI algebra (EM,∨,∧).
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Proof. First we prove that the operator “g” is a map from EM to EM. Let ζ =
∑i∈I(∏m∈Ai

m),η = ∑ j∈J(∏m∈B j
m) ∈ EM and ζ = η . By ζ = η , we know that for

any Ai, i ∈ I there exists Bk,k ∈ J such that Ai ⊇ Bk. This implies that for any i ∈ I,∨
m∈Ai

g(m) = ∑
m∈Ai

g(m) ≥ ∑
m∈Bk

g(m) =
∨

m∈Bk

g(m) ≥
∧
j∈J

(
∨

m∈B j

g(m)) = ηg.

Furthermore we have ζ g =
∧

i∈I
∨

m∈Ai
g(m) ≥ ηg. Similarly we can prove ζ g ≤ ηg.

Thus ζ g = ηg and the operator “g” is a map.
1) For any∑i∈I(∏m∈Ai

m) ∈ EM, because (EM,∨,∧) is a completely distributive
lattice, i.e., it satisfies (4.7) and (4.8), we have

((∑
i∈I

(∏
m∈Ai

m))g)g = (
∧
i∈I

(
∨

m∈Ai

g(m)))g

= (
∨

f∈∏i∈I Ai

(
∧
i∈I

g( f (i))))g

=
∧

f∈∏i∈I Ai

(
∨
i∈I

g(g( f (i)))

=
∧

f∈∏i∈I Ai

(
∨
i∈I

f (i))

=
∨
i∈I

(
∧

m∈Ai

m) =∑
i∈I

(∏
m∈Ai

m).

2) For any ∑i∈I(∏m∈Ai
m),∑ j∈J(∏m∈B j

m) ∈ EM, we have

(∑
i∈I

(∏
m∈Ai

m)
∨
∑
j∈J

(∏
m∈B j

m))g =

(∧
i∈I

(
∨

m∈Ai

g(m))

)∧⎛
⎝∧

j∈J

(
∨

m∈B j

g(m))

⎞
⎠

= (∑
i∈I

(∏
m∈Ai

m))g
∧

(∑
j∈J

(∏
m∈B j

m))g.

In the a completely distributive lattice (EM,∨,∧), one can verify that
∧

i∈I(α∨βi)=
α ∨ (

∧
i∈I βi) for any α,βi ∈ EM, i ∈ I. Its proof is left to the reader. Thus we have

(∑
i∈I

(∏
m∈Ai

m)
∧
∑
j∈J

(∏
m∈B j

m))g = ( ∑
i∈I, j∈J

( ∏
m∈Ai∪B j

m))g

=
∧

i∈I, j∈J

(
∨

m∈Ai∪B j

g(m))

=
∧

i∈I, j∈J

⎛
⎝(

∨
m∈Ai

g(m))
∨

(
∨

m∈B j

g(m))

⎞
⎠

=
∧
i∈I

⎛
⎝∧

j∈J

⎛
⎝(

∨
m∈Ai

g(m))
∨

(
∨

m∈B j

g(m))

⎞
⎠

⎞
⎠
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=
∧
i∈I

⎛
⎝(

∨
m∈Ai

g(m))
∨⎛

⎝∧
j∈J

(
∨

m∈B j

g(m))

⎞
⎠

⎞
⎠

=

(∧
i∈I

(
∨

m∈Ai

g(m))

)∨⎛
⎝∧

j∈J

(
∨

m∈B j

g(m))

⎞
⎠

= (∑
i∈I

(∏
m∈Ai

m))g
∨

(∑
j∈J

(∏
m∈B j

m))g.

3) For α,β ∈ EM, α ≤ β ⇔ α ∧ β = α . From 2) we have αg = (α ∧ β )g =
αg ∨β g. Thus αg ≥ β g. Therefore the operator “g” is an order reversing involution
in the EI algebra (EM,∨,∧). 
�

If m′ stands for the negation of the concept m ∈ M and m′′ = m, then for any ζ ∈ EM,
“′” defined as (4.18) is an order reversing involution in the EI algebra (EM,∨,∧).
Thus for any ζ = ∑i∈I(∏m∈Ai

m) ∈ EM, ζ ′ defined as the follow (4.19) stands for
the logical negation of ζ .

ζ ′ =
∧
i∈I

(
∨

m∈Ai

m′) =
∧
i∈I

( ∑
m∈Ai

m′). (4.19)

(EM,∨,∧,′ ) is called an AFS fuzzy logic system. In Example 4.1, for γ = m1m6 +
m1m3 + m2 ∈ EM, by (4.19), we have

γ ′ = (m1m6 + m1m3 + m2)′

= (m′
1 + m′

6)∧ (m′
1 + m′

3)∧m′
2

= (m′
1 + m′

6m′
3)∧m′

2

= m′
1m′

2 + m′
2m′

3m′
6

γ ′, which is the logical negation of γ = m1m6 + m1m3 + m2, reads as “not old and
not tall people” or “not tall and not heavy females”.

The AFS fuzzy logic system (EM,∨,∧,′ ) being regarded as a completely distribu-
tive lattice not only provides a sound mathematical tool to study the fuzzy concepts
in EM and to construct their membership functions and logic operations, but also en-
sures us that they are the fuzzy sets of some well-understood underlying semantics.

For M being a set of few fuzzy or Boolean concepts, a large number of fuzzy
concepts can be expressed by the elements of EM and the fuzzy logic operations
can be implemented by the operations ∨ , ∧ and ′ available in the EI algebra sys-
tem (EM,∨,∧,′ ), even though we have not specified the membership functions of
the fuzzy concepts in EM. In other words, the expressions and the fuzzy logic op-
erations of the fuzzy concepts in EM just focus on the few simple concepts in M
and the semantics of the fuzzy concepts in EM. As long as we can determine the
fuzzy logic operations of these few concepts in M, the fuzzy logic operations of
all concepts in EM can also be determined. Thus, not only will the accuracy of the
representations and the fuzzy logic operations of fuzzy concepts be improved in



4.1 AFS Fuzzy Logic 123

comparison with the fuzzy logic directly equipped with some t-norms and a nega-
tion operator, but also the complexity of determining membership functions and
their logic operations for the complex fuzzy concepts in EM will be alleviated. Let
us stress that the complexity of human concepts is a direct result of the combina-
tions of a few relatively simple concepts. It is obvious that the simpler the concepts
in M, the more accurately and conveniently the membership functions and the fuzzy
logic operations of the fuzzy concepts in EM will be determined. A collection of a
few concepts in M plays a similar role to the one of a “basis” used in linear vector
spaces. In what follows, we elaborate on a suite of “simple concepts” which can be
regarded as a “basis”.

4.1.2 Simple Concepts and Complex Concepts

In this section, we first recall the interpretations of graded membership [8]. Then we
discuss the complexity of the concepts through the analysis of the binary relation
structures of concepts.

Identifying the three types of information-driven tasks where graded member-
ship plays a role: classification and data analysis, decision-making problems, and
approximate reasoning, Dubois gave three views at the semantics of the member-
ship grades, respectively, in terms of similarity, preference, and uncertainty [8]. In
more detail, considering the degree of membership µF(u) of an element u in a fuzzy
set F , defined on a referential U , three interpretations of this degree are sought:

Degree of similarity: µF(u) is the degree of proximity of u to prototype elements
of F . Historically, this is the oldest semantics of membership grades since Bellman
advocated the interest of the fuzzy set concept in pattern classification from the very
inception of the theory [1].

Degree of preference: F represents a set of more or less preferred objects (or
values of a decision variable x) and µF(u) represents an intensity of preference in
favor of object u, or the feasibility of selecting u as a value of x. Fuzzy sets then
represent criteria or flexible constraints. This view is the one later put forward by
Bellman and Zadeh in [2].

Degree of uncertainty: This interpretation was proposed by Zadeh in [53] when
he introduced the possibility theory and developed his theory of approximate rea-
soning [54]. µF(u) is then the degree of possibility that a parameter x has value u,
given that all that is known about it is that “x is F”.

For a fuzzy set A on the universe of discourse X , by comparison of the graded
membership ( e.g., Dubois’s interpretations of membership degree), Turksen in-
duced an “empirical relational membership structure”[46], < X ,RA >, where RA ⊆
X × X is a binary relation on X , (x,y) ∈ RA ⇔ an observer, an expert, judges that
“ x is at least as much a member of the fuzzy set A as y” or “x’s degree of mem-
bership in A is at least as large as y’s degree of membership in A. The fundamental
measurement of the gradual-set membership function can be formulated as the con-
struction of homomorphisms from an “empirical relational membership structure”,
< X ,RA >, to a “numerical relational membership structure”, 〈{µA(x)|x ∈ X},≥〉.
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Furthermore we formulated these ideas as the following definitions of the binary
relations to represent concepts.

Definition 4.2. ([30]) Let ζ be any concept on the universe of discourse X . Rζ is
called the binary relation (i.e., Rζ ⊂ X ×X) of the concept ζ if Rζ satisfies: x,y ∈ X ,
(x,y) ∈ Rζ ⇔ x belongs to concept ζ at some extent (or x is a member of ζ ) and the
degree of x belonging to ζ is larger than or equal to that of y, or x belongs to concept
ζ at some degree and y does not at all.

For instance, according to the value of each x ∈ X on the feature of age shown in
Table 4.1, we have the binary relations Rζ , Rζ ′ , Rγ of the fuzzy concepts ζ : “old”,
ζ ′: “not old”, γ: “the person whose age is about 40 years” as follows:

Rζ = { (x,y) | (x,y) ∈ X ×X , agex ≥ agey },
Rζ ′ = { (x,y) | (x,y) ∈ X ×X , agex ≤ agey },
Rγ = { (x,y) | (x,y) ∈ X ×X , |agex −40| ≤ |agey −40| },

where agex is the age of x. Note that (x,x) ∈ Rη implies that x belongs to η at some
degree and that (x,x) /∈ Rη implies that x does not belong to η at all. For the fuzzy
concept m5: “more estate” in Example 4.1, by feature “estate” and Definition 4.2,
we have (x5,x5) ∈ Rm5 although the estate of x5 is just 2, and (x2,x2) /∈ Rm5 because
the estate of x2 is 0. For a Boolean concept ξ , (x,x) ∈ Rξ implies that x belongs to
concept ξ . For instance, the concept m6: “male” in Example 4.1, considering the fea-
ture “male” and Definition 4.2, we have (x1,y),(x4,y),(x5,y),(x7,y),(x8,y) ∈ Rm6

and (x2,y),(x3,y),(x6,y),(x9,y),(x10,y) /∈ Rm6 for any y ∈ X . In real world applica-
tions, the comparison of the degrees of a pair x and y belonging to a concept can
be obtained through the use of the values of the feature or by relying on human
intuition, even though the membership function of the fuzzy concept has not been
specified by the degrees in [0, 1] or a lattice in advance. For instance, we can obtain
the binary relation Rm8 for fuzzy concept m8: “black hair people” in Example 4.1,
just by comparing each pair of people’ hair and expressing our intuitive judgment.
Based on Table 4.1 and following this intuitive assessment, we can construct the
binary relation Rm of each concept m ∈ M being used in Example 4.1.

Compared with “empirical relational membership structure”, < X ,RA > defined
by Turksen in [46], Definition 4.2 stresses that if (x,y)∈ RA then x must be a member
of A to some extent or x’s degree of membership in A is not equal to zero. By the
definition of < X ,RA > in [46], we know that if both x and y are not members of A
then x’s degree of membership in A is at least as large as y’s degree of membership
in A and (x,y) ∈ RA. It is unnatural and un-convenient for us to derive membership
functions from the binary relations.

Definition 4.3. ([28, 30]) Let X be a set and R be a binary relation on X . R is called
a sub-preference relation on X if for x, y, z ∈ X , x �= y, R satisfies the following
conditions:

1. If (x,y) ∈ R, then (x,x) ∈ R;
2. If (x,x) ∈ R and (y,y) /∈ R, then (x,y) ∈ R;
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3. If (x,y), (y,z) ∈ R, then (x,z) ∈ R;
4. If (x,x) ∈ R and (y,y) ∈ R, then either (x,y) ∈ R or (y,x) ∈ R.

A concept ζ is called a simple concept on X if Rζ is a sub-preference relation on X .
Otherwise ζ is called a complex concept on X . Rζ is the binary relation of ζ defined
by Definition 4.2.

In [46] Turksen defined a “weak order” relation R on X as follows: for all x,y,z ∈ X ,
R is called a weak order relation on X , if the following axioms are satisfied:

1. Connectedness: Either (x,y) ∈ R or (y,x) ∈ R;
2. Transitivity: If (x,y), (y,z) ∈ R, then (x,z) ∈ R.

Indeed weak order is equivalent to the preference relation defined by Kim in [16]. It
can be proved that for any sub-preference relation R on X there exists a preference
relation R such that R ⊆ R. So that the binary relations defined in Definition 4.3
are called sub-preference relations. For a sub-preference relation R on X , if ∀x ∈ X ,
(x,x) ∈ R then R is a weak order. Thus the sub-preference relation is a generalization
of the weak order.

The essential difference between a simple concept and a complex concept on
a set X is in that all elements belonging to a simple concept at some degree are
comparable (i.e., they form a linear order or total order) and there exists a pair of
different elements belonging to a complex concept at some degree such that their
degrees of belonging to the complex concept are incomparable. For example, let X
be a set of people. Also assume that X contains two disjoint subsets Y and Z of
male and female respectively. It is easy to see that, if we consider incomparable the
elements of Y with those of Z, then the property of being “beautiful” is a simple
concept if restricted to Y or Z, while it is a complex concept if applied to the whole
set X . In fact, if x,y ∈ X , x ∈ Y and y ∈ Z, then the degree of x,y belonging to
“beautiful” may be incomparable although both x and y may belong to “beautiful”
at some degree, i.e., (x,x),(y,y) ∈ Rbeauti f ul , (y,x) /∈ Rbeauti f ul ,(x,y) /∈ Rbeauti f ul . This
implies that the fourth condition of Definition 4.3 is not satisfied and “beautiful” is
a complex concept on X . By Table 4.1 and Definition 4.3, one can verify that each
concept m ∈ M in Example 4.1 is a simple concept. Many concepts associated with
more than a single feature are complex concepts. In Example 4.1, let fuzzy concept
β = m1m2 ∈ EM meaning “tall old people”. One can verify that (x8,x8),(x4,x4) ∈
Rβ , but neither (x8,x4) nor (x4,x8) in Rβ . This implies that the fourth condition of
Definition 4.3 is not satisfied by Rβ and therefore β is also a complex concept. The
fuzzy concept γ = m1 + m2 ∈ EM reads as “old people” or “tall people”. By the
data shown in Table 4.1, i.e., x8: age=70, height=1.6; x1: age=20, height=1.9; x4:
age=80, height=1.8, we have (x8,x1) ∈ Rγ because x8 is older than x1 and (x1,x4) ∈
Rγ because x1 is taller than x4. But x8 is neither older nor taller than x4, i.e., (x8,x4) /∈
Rγ . Thus the binary relation Rγ does not satisfy the third condition of Definition 4.3
and therefore concept γ is a complex concept.
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It is clear that with any simple concept ζ , X can be divided into three classes.

Tζ = {x ∈ X |(x,y) ∈ Rζ ,∀y ∈ X}, (4.20)

Oζ = {x ∈ X |(x,x) /∈ Rζ},
Fζ = X −Tζ −Oζ .

Let Mζ = (ri j)n×n be the correspondent Boolean matrix of Rζ defined by Definition
3.5. The above (4.20) implies that there exist a permutation Boolean matrix P such
that

Mζ = P

⎡
⎣ J11 J12 J13

O21 N22 J23

O31 O32 O33

⎤
⎦PT , (4.21)

where J11,J12,J13,J23 are Boolean matrices whose elements are all 1; O21, O31, O32,
O33 are Boolean matrices whose elements are all 0 and N22 is a square sub-block
Boolean matrix such that N22 + I = N22,N2

22 = N22 (refer to Theorem 3.1). Moreover,
according to the semantics of the fuzzy concepts,ζ ′ the negation of the simple concept
ζ can be constructed by its correspondent Boolean matrix Mζ ′ shown as follows:

Mζ ′ = P

⎡
⎣O11 O12 O13

J21 NT
22 O23

J31 J32 J33

⎤
⎦PT , (4.22)

where O11,O12,O13,O23 are the Boolean matrices whose elements are all 0; J21,
J31, J32, J33 are Boolean matrices whose elements are all 1. The dimensions of O11,
O12, O13, O23 are the same as J11, J12, J13, J23, respectively and the dimensions of
J21, J31, J32, J33 are the same as O21, O31, O32, O33, respectively.

For each element in Tζ , its degree belongingness to concept ζ is 1 if concept ζ
is represented by an ordinary fuzzy set and its degree belonging to concept ζ is the
maximum element of lattice L if concept ζ is represented by a L-fuzzy set; for each
element in Oζ , its degree belongingness (membership ) to concept ζ is 0 if concept
ζ is represented by an ordinary fuzzy set and its degree belonging to concept ζ
is the minimum element of lattice L if concept ζ is represented by a L-fuzzy set;
the elements in Fζ belong to concept ζ at different degrees in open interval (0,1)
if concept ζ is represented by an ordinary fuzzy set and the degrees of elements in
Fζ belonging to concept ζ form a linearly ordered chain in lattice L if concept ζ
is represented by a L-fuzzy set. Consequently, concept ζ is a Boolean concept if
Fζ = ∅.

Definition 4.4. Let X = {x1,x2, ...,xn} and Rζ be the binary relation of concept ζ
on X . Let Mζ = (ri j)n×n be the correspondent Boolean matrix of Rζ defined by
Definition 3.5. Then the concept ζ is called an atomic fuzzy concept if there exists a
permutation Boolean matrix P such that

PMζPT =

⎡
⎣ J11 J12

O21 J22

O31 O32

⎤
⎦ , (4.23)
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where J11,J12,J22,O21,O22,O32 are sub-block Boolean matrices of appropriate di-
mensionless and each element in J11,J12,J22 is 1 and each element in O21,O22,O32

is equal to 0.

By Definition 4.4, we can easily verify that each atomic fuzzy concept is a simple
concept. Similarly X is also divided into three classes Tζ ,Oζ ,Fζ (refer to (4.20)) by
an atomic fuzzy concept. For each element in Tζ , its degree belonging to concept
ζ is 1 if concept ζ is represented by an ordinary fuzzy set; for each element in Fζ ,
its degree belonging to concept ζ is 0; Compared to the ordinary simple concept,
for the atomic fuzzy concept ζ , the degrees of all elements in Fζ belonging to ζ are
equal to one value in (0,1). By Theorem 3.3, we know that for a simple concept γ,
if Mγ > Mζ and ζ is an atomic fuzzy concept, then Fγ = ∅ and the concept γ is a
Boolean concept. This implies that the atomic fuzzy concepts are the simplest of the
simple concepts except Boolean concepts.

Let X be a set and ζ be any concept on X . Let Rζ be the binary relation of the
simple concept ζ defined by Definition 4.2 and Mζ = (ri j)n×n be the correspondent
Boolean matrix of Rζ defined by Definition 3.5. By the definitions, we can verify
that rii = 0 ⇔ ri j = 0 for all j = 1,2, ...,n. Thus there exists a permutation Boolean
matrix P such that

Mζ = P

[
N J
O1 O2

]
PT , (4.24)

where N is a Boolean matrix such that N + I = N, J is a universal Boolean matrix,
i.e.,whose elements are all 1, O1 and O2 are zero matrices. One can also verify that
the concept ζ on a set X is a simple concept if and only if N is the correspondent
Boolean matrix of a quasi-linear order, i.e., N2 = N,N + I = N. By Definition 4.3,
we can verify that any quasi-linear order on a set is a sub-preference relation on the
set.The proofs of the conclusions remain as exercises.

Theorem 4.3. ([28]) For any fuzzy concept η on a finite set X, there exists M a
set of simple concepts on X and a fuzzy concept ξ = ∑i∈I∏m∈Ai

m ∈ EM such that
Rη = Rξ provided that for x,y ∈ X, (x,y) ∈ Rξ ⇔ ∃k ∈ I such that (x,y) ∈ RAk (i.e.,
∀m ∈ Ak,(x,y) ∈ Rm ).

Proof. Let Mη = (ri j)n×n be the corresponding Boolean matrix of Rη expressed by
Definition 3.5 for concept η . From the above discussion, we know that there exists
a Boolean permutation matrix P such that

Mη = P

[
N J
O1 O2

]
PT ,

where N is a Boolean matrix such that N + I = N.
According to Theorem 3.9, we have that for the Boolean matrix N, there exist

quasi-linear orders Ri j, i = 1,2, ...,r, j = 1,2, ...,qi such that

N =
r

∑
i=1

(
∗

qi

∏
k=1

MRik

)
.
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Furthermore, by Theorem 3.5 we have

Mη = P

[
N J
O1 O2

]
PT = P

[
∑r

i=1

(
∗∏qi

k=1 MRik

)
J

O1 O2

]
PT

=
r

∑
i=1

(
∗

qi

∏
k=1

P

[
MRik J
O1 O2

]
PT

)
. (4.25)

By (4.24), we also know that the concept corresponding to P

[
MRik J
O1 O2

]
PT for

each i,k is a simple concept. Let mik be the simple concept corresponding to

P

[
MRik J
O1 O2

]
PT and M = {mik|i = 1,2, ...,r, j = 1,2, ...,qi}. If ξ =∑r

i=1(∏
qi
k=1 mik)

in EM, then by (4.25) we have Rη = Rξ . 
�

This implies that any fuzzy concept on X can be expressed by some simple con-
cepts on X and the AFS fuzzy logic system (EM,∨,∧,′ ) forms a comprehensive
platform capturing the mathematical structures and the semantics of concepts used
by humans.

4.1.3 AFS Structure of Data

Many data sets involve a mixture of quantitative and qualitative feature variables,
some examples have been shown in Table 4.1. Beside quantitative features, qualita-
tive features, which could be further classified as nominal and ordinal features, are
also commonly encountered. Taking advantage of AFS structure of data, the qual-
itative features evaluated by information-based criteria such as human perception-
based information, gain ratio, symmetric uncertainty, order, binary relation, etc can
be applied to determine the membership functions of fuzzy concepts.

Definition 4.5. ([23, 25]) Let X , M be sets and 2M be the power set of M. Let τ :
X ×X → 2M . (M,τ,X) is called an AFS structure if τ satisfies the following axioms:

AX1: ∀(x1,x2) ∈ X ×X , τ(x1,x2) ⊆ τ(x1,x1);
AX2: ∀(x1,x2), (x2,x3) ∈ X ×X , τ(x1,x2)∩ τ(x2,x3) ⊆ τ(x1,x3).

X is called universe of discourse, M is called a concept set and τ is called a structure.

For an AFS structure (M,τ,X), if we define fτ (x,y) = τ(x,y) ∩ τ(y,y),∀(x,y) ∈
X ×X , then (M, fτ ,X ×X) is a combinatoric system [11].

Let X be a set of objects and M be a set of simple concepts on X . If τ : X ×X → 2M

is defined as follows: for any (x,y) ∈ X ×X

τ(x,y) = {m | m ∈ M,(x,y) ∈ Rm} ∈ 2M, (4.26)

where Rm is the binary relation of simple concept m ∈ M (refer to Definition 4.2
and Definition 4.3). Then (M,τ,X) is an AFS structure. The proof goes as fol-
lows. For any (x1,x2) ∈ X × X , if m ∈ τ(x1,x2), then by (4.26) we know (x1,x2) ∈
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Rm. Because each m ∈ M is a simple concept, we have (x1,x1) ∈ Rm, i.e., m ∈
τ(x1,x1). This implies that τ(x1,x2) ⊆ τ(x1,x1) and AX1 of Definition 4.5 holds.
For (x1,x2),(x2,x3) ∈ X ×X , if m ∈ τ(x1,x2)∩τ(x2,x3), then (x1,x2),(x2,x3) ∈ Rm.
Since m is a simple concept, so by Definition 4.3, we have (x1,x3) ∈ Rm, i.e.,
m ∈ τ(x1,x3). This implies τ(x1,x2)∩ τ(x2,x3) ⊆ τ(x1,x3) and AX2 of Definition
4.5 holds. Therefore (M,τ,X) is an AFS structure. In light of the above discussion,
an AFS structure based on a data set can be established by (4.26), as long as each
concept in M is a simple concept on X .

Let us continue with Example 4.1, in which X = {x1,x2, ...,x10} is the set of 10
people and their features are shown in Table 4.1. M = {m1,m2, ..., m12} is the set
of simple concepts shown in Example 4.1. By Table 4.1 and Definition 4.3, one can
verify that each concept m ∈ M is a simple concept. Thus for any x,y ∈ X , τ(x,y) is
well-defined by (4.26). For instance, we have

τ(x4,x4) = {m1,m2,m3,m4,m5,m6,m8,m9,m10,m11,m12}
τ(x4,x7) = {m1,m2,m6,m9,m10}

by comparing the feature values of x4,x7 shown in Table 4.1 as follows:

age height weigh salary estate m. f . black white yellow
x4 80 1.8 73 20 80 1 0 3 4 2
x7 45 1.7 78 268 90 1 0 1 6 4

Similarly, we can obtain τ(x,y) for other x,y ∈ X . Finally, we arrive at the AFS
structure (M,τ,X) of the data shown in Table 4.1.

Let M be a set of simple concepts on X and g be a map g : X ×X → 2M . In general
g may not be guaranteed to satisfy AX1, AX2 of Definition 4.5. Making use of the
following theorem g can be converted into τ such that (M,τ,X) becomes an AFS
structure.

Definition 4.6. Let M, X = {x1,x2, ...,xn} be finite sets and g : X × X → 2M.
Mg = (mi j)n×n is called a Boolean matrix of the map g if mi j = g(xi,x j) ∈ 2M. For
Mg,Mh, the Boolean matrices of the maps g,h:X ×X → 2M, Mg +Mh = (g(xi,x j)∪
h(xi,x j))n×n, MgMh = (qi j)n×n,qi j =

⋃
1≤k≤n

(g(xi,xk)∩h(xk,x j)), i, j = 1,2, ...,n.

Theorem 4.4. Let M, X = {x1,x2, ...,xn} be finite sets and g : X ×X → 2M. Then g
is a structure of an AFS structure, that is, g satisfies AX1, AX2 of Definition 4.5 if
and only if

M2
g = Mg and

⋃
1≤ j≤n

mi j ⊆ mii, i = 1,2, ...,n.

Its proof remains as an exercise.
Based on the criteria presented in this theorem, one can establish an AFS struc-

ture (M,τ,X) if g does not satisfy AX1 and AX2 in Definition 4.5. One may note
that (M,τ,X) is the mathematical abstraction of the complex relationships existing
among objects in X with the attributes in M. This implies that the information con-
tained in databases and human intuition are aggregated to (M,τ,X) from which we
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can obtain the fuzzy sets and AFS fuzzy logic operations for the fuzzy concepts
expressed by the elements in EM.

4.1.4 Coherence Membership Functions of the AFS Fuzzy Logic
and the AFS Structure of Data

In this section, we discuss how to determine the membership functions for the fuzzy
concepts in EM according to the AFS structure (M,τ,X) of the data and the seman-
tics of the concepts. At the same time, the membership functions are consistent with
both the AFS logic system (M,∨,∧,′ ) in the sense of the underlying semantics and
the distribution of the data.

Definition 4.7. Let (M,τ,X) be an AFS structure of a data set X . For x ∈ X , A ⊆ M,
the set Aτ(x) ⊆ X is defined as follows.

Aτ(x) = {y | y ∈ X ,τ(x,y) ⊇ A}. (4.27)

For ζ ∈ EM, let µζ : X → [0,1] be the membership function of the concept ζ .
{µζ (x) | ζ ∈ EM} is called a set of coherence membership functions of the AFS
fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X), if the following
conditions are satisfied.

1. for α,β ∈ EM, if α ≤ β in lattice (EM,∨,∧,′ ), then µα(x) ≤ µβ (x) for any
x ∈ X ;

2. for x ∈ X ,η = ∑i∈I( ∏
m∈Ai

m) ∈ EM, if Aτi (x) = ∅ for all i ∈ I then µη(x) = 0;

3. for x,y ∈ X ,A ⊆ M, η = ∏
m∈A

m ∈ EM, if Aτ(x) ⊆ Aτ(y), then µη (x) ≤ µη(y); if

Aτ(x) = X then µη (x) = 1.

The following proposition stresses that the coherence membership functions are con-
sistent with the AFS logic system (M,∨,∧,′ ) in terms of the underlying semantics.

Proposition 4.2. Let M be a set of simple concepts on X and (M,τ,X) be an AFS
structure defined as (4.26). Let {µζ (x) | ζ ∈ EM} be a set of coherence membership
functions of (EM,∨,∧,′ ) and (M,τ,X). Then for any α,β ∈ EM, any x ∈ X,

µα∨β (x) ≥ max{µα(x),µβ (x)}, µα∧β (x) ≤ min{µα(x),µβ (x)} (4.28)

Proof. In lattice (EM,∨,∧,′ ), for any α,β ∈ EM, we have α ∨β ≥ α , α ∨β ≥ β
and α ∧β ≤ α , α ∧β ≤ β . Using condition 1 of Definition 4.7, for any x ∈ X , one
has

µα∨β (x) ≥ µα(x), µα∨β (x) ≥ µβ (x),
µα∧β (x) ≤ µα(x), µα∧β (x) ≤ µβ (x).

This implies that (4.28) holds. 
�
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Proposition 4.3. Let M be a set of Boolean concepts on X and (M,τ,X) be an AFS
structure defined as (4.26). Let {µζ (x) | ζ ∈ EM} be a set of coherence membership
functions of (EM,∨,∧,′ ) and (M,τ,X). Then for any ξ ,η ∈ EM, any x ∈ X the
following assertions hold:

1. either µξ (x) = 1 or µξ (x) = 0;
2.

µξ∧η (x) = min{µξ (x),µη (x)},
µξ∨η (x) = max{µξ (x),µη (x)},
µξ ′(x) = 1− µξ (x),

i.e., (EM,∨,∧,′ ) is degenerated to a Boolean logic system (2X ,∩,∪,′ ).

Proof. 1. From Definition 4.3, we know that for each m ∈ M since it is a Boolean
concept, hence either {m}τ(x) = X or {m}τ(x) = ∅. For any A ⊆ M and any x ∈ X ,
by (4.27), we have Aτ(x) =

⋂
m∈A{m}τ(x). Thus either Aτ(x) = X or Aτ(x) = ∅.

By conditions 2,3 of Definition 4.7, either µ∏m∈A m(x) = 1 or µ∏m∈A m(x) = 0. For
any ξ = ∑i∈I∏m∈Ai

m ∈ EM,x ∈ X , if there exists k ∈ I such that Aτk(x) �= ∅ then
µ∏m∈Ak

m(x) = 1. Thus by condition 1 of Definition 4.7 and ∏m∈Ak
m ≤ ξ , we have

1 = µ∏m∈Ak
m(x) ≤ µξ (x) ≤ 1, i.e., µξ (x) = 1. If for any i ∈ I, Aτk(x) = ∅ then by

condition 2 of Definition 4.7 µξ (x) = 0.
2. Let ξ =∑i∈I(∏m∈Ai

m),η =∑ j∈J(∏m∈B j
m) ∈ EM and x ∈ X . In the case that

one of µξ (x) and µη (x) is 0, by Proposition 4.2, we have

0 ≤ µξ∧η (x) ≤ min{µξ (x),µη (x)} = 0.

If µξ (x) = 1 and µη (x) = 1, then by the above proof, we know that there exist
k ∈ I,h ∈ J such that Aτk(x) = X ,Bτh(x) = X . By (4.3), we have

ξ ∧η = ∑
i∈I, j∈J

( ∏
m∈Ai∪B j

m).

Thus for k ∈ I,h ∈ J, (Ak ∪ Bh)τ (x) = Aτk(x) ∩ Bτh(x) = X . By conditions 1, 3 of
Definition 4.7, one has 1 = µ∏m∈Ak∪Bh

m(x) ≤ µξ∧η (x) ≤ 1, i.e., µξ∧η (x) = 1. Thus
we prove that µξ∧η(x) = min{µξ (x), µη(x)}. Similarly, we also can prove that
µξ∨η(x) = max{µξ (x),µη (x)} and µξ ′(x) = 1−µξ (x). 
�

Theorem 4.5 provides a constructive method to define coherence membership func-
tions in which both the distribution of the data and the semantics of the fuzzy con-
cepts are taken into account.

Theorem 4.5. Let M be a set of simple concepts on X and (M,τ,X) be an AFS
structure defined as (4.26). Let S be a σ -algebra over X such that for any m ∈ M
and any x ∈ X, {m}τ(x) ∈ S. For each simple concept γ ∈ M, let Mγ be a measure
over S with 0 ≤ Mγ(U) ≤ 1 for all U ∈ S and Mγ(X) = 1. {µζ (x) | ζ ∈ EM} is
a set of coherence membership functions of (EM,∨,∧,′ ) and (M,τ,X), if for each
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concept ζ = ∑i∈I(∏m∈Ai
m) ∈ EM, µζ : X → [0,1] is defined as follows: for any

x ∈ X

µζ (x) = sup
i∈I

(
∏
γ∈Ai

Mγ(Aτi (x))

)
, (4.29)

or

µζ (x) = sup
i∈I

(
inf
γ∈Ai

Mγ(Aτi (x))
)

. (4.30)

Proof. Let α = ∑i∈I(∏m∈Ai
m), β = ∑ j∈J(∏m∈B j

m) ∈ EM and α ≤ β in lattice
(EM,∨,∧,′ ). By Theorem 4.1, we know that for any Ai (i ∈ I), there exist Bh (h ∈ J)
such that Ai ⊇ Bh. By (4.27), we have Aτi (x) ⊆ Bτh(x) for any x ∈ X . Thus for any
i ∈ I,

∏
γ∈Ai

Mγ(Aτi (x)) ≤ ∏
γ∈Ai

Mγ(Bτh(x))

≤ ∏
γ∈Bh

Mγ(Bτh(x))

≤ µβ (x).

Furthermore, one has

µα(x) = sup
i∈I
∏
γ∈Ai

Mγ(Aτi (x)) ≤ µβ (x).

Thus condition 1 of Definition 4.7 holds.
Since Mγ(∅) = 0 for any γ ∈ M hence condition 2 of Definition 4.7 holds.
For x,y ∈ X ,A ⊆ M, η = ∏

m∈A
m ∈ EM, if Aτ(x) ⊆ Aτ(y), then for any γ ∈ A,

Mγ(Aτ(x)) ≤ Mγ(Aτ(y)). This implies that µη(x) ≤ µη(y). Furthermore, since
Mγ(X) = 1, hence condition 3 of Definition 4.7 holds. Therefore {µζ (x) | ζ ∈ EM}
is the set of coherence membership functions of (EM,∨,∧,′ ) and (M,τ,X). 
�
In theory, as long as for each γ ∈ M and any U ∈ S, 0 ≤Mγ (U)≤ 1 and Mγ(U) = 1,
the functions defined by (4.29) or (4.30) are coherence membership functions. In
real world applications, the measure Mγ can be constructed according to the se-
mantic meaning of the simple concept γ and may have various interpretations de-
pending on the specificity of the problem at hand. In general, Mγ(Aτ(x)) measures
the degree of set Aτ(x) supporting the claim: “x belongs to γ”.

The coherence applied to membership functions of fuzzy concepts in EM to de-
note the membership functions which respect the semantic interpretations expressed
by the fuzzy concepts, the logic relationships among the fuzzy concepts in AFS logic
systems (EM,∨,∧,′ ) and the distribution of the data. In what follows we explain the
conditions of Definition 4.7 and show that the coherence approach to the fuzzy sets
in AFS framework is crucial.

Condition 1: For α,β ∈ EM, let α = β , i.e., α ≤ β and α ≥ β . From condition 1,
we have that µα(x) = µβ (x) for any x ∈ X . Thus condition 1 ensures that the mem-
bership functions of the concepts in EM with equivalent meanings are identical.
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For instance, in Example 4.1, one can verify that the semantic interpretations of
ξ = m3m8 + m1m4 + m1m6m7 + m1m4m8 and ζ = m3m8 + m1m4 + m1m6m7 are
equivalent. Thus the coherence membership functions of them are identical. By con-
dition 1 and Proposition 4.2, we know that for coherence membership functions of
any fuzzy concepts α,β ∈ EM, any x ∈ X ,

µα∨β (x) ≥ max{µα(x),µβ (x)}, µα∧β (x) ≤ min{µα(x),µβ (x)}.

Thus the coherence membership functions of the fuzzy concepts in EM are con-
sistent with their AFS fuzzy logic operations “∨” (OR), “∧” (AND),“ ′” (NO) in
(EM,∨,∧,′ ). For instance, in Example 4.1,

ψ = m1m4 + m2m5m6 states “ old high salary people” or “tall male with more es-
tate”,
ϑ = m1m4 + m5m6 + m5m8 reads “old high salary people” or “male with more es-
tate” or “black hair people with more estate”,

By (4.2), we have ψ ∨ϑ = ϑ , i.e., ψ ≤ ϑ . Since the constraint of the concept “tall
male with more estate” is stricter than that of “male with more estate”, hence in
terms of semantics, the membership degree of x belonging to “tall male with more
estate” must lower than or equal to that of “male with more estate” for all x ∈ X .

Condition 2: It ensures that the fuzzy logic system (EM,∨,∧,′ ) is consistent with
the Boolean logic. For A ⊆ M, we know that Aτ(x) is the set of all y ∈ X such that
the degrees of y belonging to the concept ∏m∈A m is less than or equal that of x by
Definition 4.5 and formula (4.27). Since the AFS structure (M,τ,X) is determined
by the distribution of the data, hence Aτ(x) is determined by both the distribution
of data and the semantics of the simple concepts in A. Aτi (x) = ∅ implies that there
exists a simple concept in Ai such that x does not belong to. Thus the membership
function µη(x) of conceptη =∑i∈I( ∏

m∈Ai

m) has to µη(x) = 0 if for any i ∈ I, Aτi (x) =

∅. This also ensures that for any fuzzy concept η ∈ EM, µη(x) ≥ 0 for any x ∈ X .

Condition 3: It ensures that the coherence membership functions and their fuzzy
logic operations observe both the distributions of the original data and the semantic
interpretations of the fuzzy concepts. For example, what is your image (perception)
of a person? If an NBA basketball player describes that the person is not “tall” and
a ten year old child describes that the same person is very “tall”. Because the peo-
ple the NBA basketball player often meets are different from the people the child
meets, i.e., there are different data they observed. They may have different inter-
pretations (membership functions) for the same concept “tall” due to the data sets
drawn from different distribution probability space. Therefore the interpretations
of concepts are strongly dependent on both the semantics of the concepts and the
distribution of the observed data. The distributions of the observed data must be
considered in the determining of the membership functions of the fuzzy concepts.
Given (4.27), by Definition 4.5, we know that Aτ(x) ⊆ X is the set of all elements in
X whose degrees of belonging to concept∏m∈A m are less than or equal to that of x.
Aτ(x) =

⋂
m∈A{m}τ(x) is determined by both the semantics of the simple concepts
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in A and the AFS structure (M,τ,X) of the dataset which is dominated by a certain
probability distribution, i.e., different distribution of the observed data may have dif-
ferent Aτ(x) for the same A and x. It is clear that condition 3 ensures that the larger
the set Aτ(x), the larger the degree x belongingness ( membership ) to ∏m∈A m will
be. For instance, in Example 4.1, Table 4.1 can be regarded as a set of samples
randomly drawn from a certain population. Let A = {m1,m2} ⊆ M. Concept m1m2

states “old and tall people”. In term of the feature values, age and height shown in
Table 4.1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

age 20 13 50 80 34 37 45 70 60 3
height 1.9 1.2 1.7 1.8 1.4 1.6 1.7 1.65 1.82 1.1

we have Aτ(x5) = {x2,x5,x10} ⊆ Aτ(x4) = {x2,x3,x4,x5,x6,x7,x8,x10}. Therefore
the degree of x5 belonging to concept m1m2 must be less than or equal to that of x4

according to the given data.
For A,B ⊆ M, it is clear that (A ∪ B)τ (x) = Aτ(x) ∩ Bτ(x). For a measure M

on X , we know that M (Aτ(x)) and M (Bτ(x)) are not sufficient to determine
M ((A ∪B)τ(x)) which is dependent on the distributions of the samples in the sets
Aτ(x) and Bτ(x). As both the distributions of the original data and the semantic
meanings of fuzzy concepts are taken into consideration, µη(x),µζ (x), the coher-
ence membership functions of fuzzy concepts η = ∏

m∈A
m,ζ = ∏

m∈B
m ∈ EM based on

some measures on X(refer to Theorem 4.5), are not sufficient to determine µη∧ζ (x),
which is the membership degree of x belonging to the conjunction of η and ζ . This
stands in a sharp contrast with the existing fuzzy logic systems equipped with some
t-norm, in which µη∧ζ (x) = T (µη (x),µζ (x)) is fully determined by the member-
ship degrees µη (x) and µζ (x) which is independent from the distribution of the
original data. Hence, the constructed coherence membership functions and the logic
operations in Theorem 4.5 include more information of the distributions of the orig-
inal data and the semantic interpretations, i.e., it becomes more objective and less
subjective.

4.2 Coherence Membership Functions via AFS Logic and
Probability

In this section, we discuss the construction of coherence membership functions and
provide interpretations of the measure Mγ (in Theorem 4.5) for the simple concept γ
in the setting of probability theory. Thus the coherence membership functions based
on the semantics of fuzzy concepts and the statistic characteristics of the observed
data can be established for applications. Furthermore, the imprecision of natural
language and the randomness of observed data can be put into work together, so
that uncertainty of randomness and of imprecision can be treated in a unified and
coherent manner.

We consider the following setting for the representation of subjective imprecision
and the objective randomness. There is a “probability measure space”, (Ω ,F ,P)
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of possible instances X or the observed samples based on which the coherence mem-
bership functions of fuzzy concepts in EM may be defined, where M is a set of
simple concepts on X selected for the specificity of the problem at hand. We as-
sume that different instances in X may be encountered at different frequencies. A
convenient way to model this is to assume the probability distribution P defines
the probability of encountering each instance in X (e.g.,P might assign a higher
probability to encountering 19-year-old people than 109-year-old people). Notice
P says nothing about the degree of x belonging to a concept ζ ∈ EM; P(x) only
determines the probability that x will be encountered. Let Ω be the universe of dis-
course and F = { f1, f2, · · · , fn} be the set of all features on the objects in Ω . For
any x = (v1,v2, · · · ,vn) ∈Ω , 1 ≤ i ≤ n, v j = f j(x) is the value of x on the feature f j .
In general, the observed data X is drawn from Ω with a sampling density function
p(x) = dP(x)

dx . Let X = {x1,x2, ...,xh} ⊆Ω and Nx be the number of times that x ∈ X
is observed as a sample. If Ω is a discrete (i.e., countable) set, then Nx

|X | → P(x) as
the set X approaching to Ω .

4.2.1 Coherence Membership Functions Based on the Probability
Measures

Let (M,τ,X) be an AFS structure of the observed data X and M be a set of simple
concepts on X . Suppose that for any m ∈ M and any x ∈ X , {m}τ(x) ∈ F . For each
simple concept γ ∈ M, assume that the measure Mγ for the simple concept γ under
probability space be defined as follows: for any U ∈ F ∩2X ,

Mγ(U) = P(U) ≈ ∑x∈U Nx

|X | . (4.31)

Considering the coherence membership functions defined by (4.30) in Theorem 4.5,
we have

µζ (x) = sup
i∈I

(
inf
γ∈Ai

Mγ(Aτi (x))
)

= sup
i∈I

(P(Aτi (x))) . (4.32)

In virtue of (4.27), we have Aτi (x) =
⋂

m∈Ai
{m}τ(x). If for m ∈ Ai, {m}τ(x) as events

are pairwise independent, then P(Aτi (x)) = ∏m∈Ai
P({m}τ(x)). For any simple

concept m ∈ Ai, by (4.31), we have the membership function of m formed as follows:
for any x ∈ X , µm(x) = P({m}τ(x)). Thus by (4.32), for η = ∏m∈Ai

m, i.e., the
conjunction of the concepts m ∈ Ai, its membership function defined by (4.30) is
degenerated to the fuzzy logic equipped by the product t-norm and max t-conorm
as follows: for any x ∈ X ,

µη(x) = P(Aτi (x)) = ∏
m∈Ai

P({m}τ(x)) = ∏
m∈Ai

µm(x). (4.33)

This implies that the membership functions in the “conventional” fuzzy logic sys-
tems equipped by the product t-norm and max t-conorm are coherence membership
functions when for all m ∈ M, {m}τ(x) as events are pairwise independent in the
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probability space for every x ∈ X . This condition is too strict to be applied to the
real world applications.

The measure Mm for the simple concept m defined by (4.31) just evaluates the
occurring frequency of {m}τ(x) ∈ F ∩2X as an event, i.e., the random uncertainty.
In fact, the degree of the set {m}τ(x) supporting the claim: “x belongs to m” is
determined by both the occurring frequency of the even {m}τ(x) and the relationship
of the elements in {m}τ(x) with the semantics expressed by m. For instance, in
Example 4.1, let A = {m1,m2}. The fuzzy concept η = m1m2 states “old and tall
people”. The feature values, age and height are shown in Table 4.1 as follows:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

age 20 13 50 80 34 37 45 70 60 3
height 1.9 1.2 1.7 1.8 1.4 1.6 1.7 1.65 1.82 1.1

Given the AFS structure (M,τ,X) of Table 4.1 defined as (4.26), we have Aτ(x7) =
{x2,x5,x6,x7,x10} and Aτ(x8) = {x2,x5,x6,x8,x10}. From the measures for simple
concepts m1,m2 defined by (4.31) under the assumption that each sample x ∈ X has
the same probability P(x) (i.e., the uniform distribution P), one has

Mmi(A
τ (x7)) = P(Aτ(x7)) = P(Aτ(x8)) = Mmi(A

τ(x8)), i = 1,2

and the membership degrees of x7 and x8 belonging to m1m2: “old and tall people”
defined by (4.32) are equal. However, from our intuitive point of view, the degree
of a person 70 years and 1.65 belonging to m1m2: “old and tall people” should be
larger than that of a person 40 years and 1.7, although 1.7 is a little higher than 1.65.
Since the difference between ages of x8 ∈ Aτ(x8) and x7 ∈ Aτ(x7) is much greater
than that of heights of them, hence the measures of simple concepts m1,m2 should
satisfy

Mm1(A
τ(x8))−Mm1(A

τ(x7)) > Mm2(A
τ(x8))−Mm2(A

τ(x7)) > 0.

This implies that the measures for the simple concepts defined by the probability
shown as (4.31) have not sufficiently considered the distributions of the feature val-
ues of the data, although Aτ(x) =

⋂
m∈A{m}τ(x) is determined by both the semantic

meanings of the simple concepts in A and the AFS structure (M,τ,X) of the dataset
which is dominated by a certain probability distribution.

4.2.2 Coherence Membership Functions Based on Weight
Functions and Probability Distributions

In this section, we propose the measures of simple concepts which are constructed
according to both the semantics of the simple concepts and the probability distribu-
tion of the feature values of the data, i.e., the measure Mγ is induced by a function
ργ : X → [0,∞) as will be clarified in the forthcoming definition.
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Definition 4.8. ([35]) Let ν be a simple concept on X , ρν : X → R+ = [0,∞). ρν is
called a weight function of the simple concept ν if ρν satisfies the following condi-
tions:

1. ρν(x) = 0 ⇔ (x,x) /∈ Rν ,x ∈ X ,
2. ρν(x) ≥ ρν(y) ⇔ (x,y) ∈ Rν ,x,y ∈ X ,
where Rν is the binary relation of the concept ν (refer to Definition 4.2).

Let ργ be the weight function of simple concept γ ∈ M. In continuous case: Let X be
a set, X ⊆ Rn. For each γ ∈ M, ργ is integrable on X under Lebesgue measure with
0 <

∫
X ρdµ < ∞. S (S ⊆ 2X ) is the set of Borel sets in X . For all U ∈ S, we define a

measure Mγ over S as follows:

Mγ (U) =
∫

U ργdP∫
X ργdP

. (4.34)

In discrete case, the definition is formulated as follows. Let X be a finite set and
S ⊆ 2X be a σ -algebra over X . For any U ∈ S, a measure Mγ over σ -algebra S is
expressed in the form

Mγ(U) =
∑x∈U ργ(x)P(x)
∑x∈X ργ(x)P(x)

. (4.35)

It is clear that the measure Mγ defined by (4.34) and (4.35) satisfies Theorem 4.5.
The weight function ργ(x) of a simple concept may have various interpretations
depending on the specificity of the problem at hand. In general, ργ(x) weights degree
of x supporting the claim that “s is γ” if the sample x is observed and the degree of
x belonging to γ is less than or equal to that of s. For example, if γ : “old people”
given the Table 4.1 as the observed data, the weight of the person x8 who is 70 years
to support the claim that “s is an old person” is larger than that of the person x7 who
is 40 years if the age of the person s is larger than both x7 and x8.

Following the line of the Singpurwalla’s theory [44], the weight function ργ(x)
is interpreted as PD(x ∈ γ) which is D’s personal probability that x is classified in
γ . Here we mainly apply the weight functions ργ(x), γ ∈ M to reduce the influence
of less essential samples and increase the influence of more essential ones when
determining the membership functions with the use of (4.29) or (4.30). In other
words, ργ(x), γ ∈ M weight the referring value of every observed sample in X for
the determining of the membership functions of fuzzy concepts in EM.

For example, if Ω ⊆ Rn and mi1,mi2,mi3,mi4 ∈ M, i = 1,2, ...,n, are the fuzzy
concepts, “small” , “medium”, “not medium”, “large” associating to the feature
fi, respectively, then the weight functions of them can be defined according to the
observed data X = {x1,x2, ...,xh} ⊆ Ω and the semantic-oriented interpretations of
the simple concepts in M as follows:

ρmj1(xi) =
h j1 − f j(xi)

h j1 −h j2
, (4.36)

ρmj2(xi) =
h j4 −| f j(xi)−h j3|

h j4 −h j5
, (4.37)
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ρmj3(xi) =
| f j(xi)−h j3|−h j5

h j4 −h j5
, (4.38)

ρmj4(xi) =
f j(xi)−h j2

h j1 −h j2
, (4.39)

with the semantics of the terms of “small”, “medium, “not medium”, and “large”,
respectively, where j = 1,2, ...,n,

h j1 = max{ f j(x1), f j(x2), · · · , f j(xh)},
h j2 = min{ f j(x1), f j(x2), · · · , f j(xh)},

h j3 =
f j(x1)+ f j(x2)+ · · ·+ f j(xh)

h
,

h j4 = max{| f j(xk)−h j3| | k = 1,2, · · · ,h},
h j5 = min{| f j(xk)−h j3| | k = 1,2, · · · ,h}.

By Definition 4.8 and the interpretations of mi1,mi2,mi3,mi4, one can verify that
ρmik , j = 1,2, ...,n are the weight functions of simple concept mik ∈ M. In general,
the weight function ρν of a simple concept ν associating to a feature fi is subjec-
tively defined by users according to the data distribution on the feature fi and the
semantical interpretation of the simple concept ν . It is obvious that for a given sim-
ple concept γ we can define many different functions ργ : X → [0,+∞) such that
satisfies the weight function conditions shown in Definition 4.8. The diversity of
the weight functions of a simple concept results from the subjective imprecision of
human perception of the observed data. However, his diversity is bounded or con-
strained by the sub-preference relation of the individual simple concept defined by
Definition 4.3 according to the semantics of the natural language. This is rooted
in the fact that perceptions are intrinsically imprecise, reflecting the bounded abil-
ity of sensory organs. In order to provide a tool for representing and managing an
infinitely complex reality, the weight functions for simple concepts are mental con-
structs with the subjective imprecision (i.e., subjectively constructing the functions
satisfying Definition 4.8 for the concerned simple concepts). But the constructs of
the weight function for an individual simple concept γ have to observe the objec-
tivity in nature, which is the sub-preference relation Rγ (refer to Definition 4.3) ob-
jectively determined by the observed data X and the semantics of γ . In other words,
the subjective imprecisions of the weight function of γ are constrained by the ob-
jectivity of Rγ . The multi-options of the weight functions just reflect the subjective
imprecisions of the perceptions of the observed data. In what follows, we construct
the coherence membership functions using the weight functions of simple concepts
according to the probability distribution of the data.

Theorem 4.6. Let (Ω ,F ,P) be a probability measure space and M be the set of
some simple concepts on Ω . Let ργ be the weight function of the simple concept
γ ∈ M (refer to Definition 4.8). X ⊆ Ω , X is a finite set of the observed samples
drawn from the probability space (Ω ,F ,P). Let (M,τ,Ω) and (M,τ|X ,X) be the
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AFS structures defined as (4.26). If for any m ∈ M and any x ∈ Ω , {m}τ(x) ∈ F ,
then the following assertions hold:

1. {µζ (x) | ζ ∈ EM} is a set of coherence membership functions of (EM,∨,∧,′ )
and (M,τ,Ω), (M,τ|X ,X), provided the membership functions of each concept ζ =
∑i∈I(∏m∈Ai

m) ∈ EM defined as follows: for any x ∈ X

µξ (x) = sup
i∈I
∏
γ∈Ai

∑u∈Aτi (x) ργ(u)Nu

∑u∈X ργ(u)Nu
, ∀x ∈ X , (4.40)

µξ (x) = sup
i∈I
∏
γ∈Ai

∫
Aτi (x)

ργ(t)dP(t)

∫
Ω
ργ(t)dP(t)

, ∀x ∈Ω , (4.41)

or

µξ (x) = sup
i∈I

inf
γ∈Ai

∑u∈Aτi (x) ργ(u)Nu

∑u∈X ργ(u)Nu
, ∀x ∈ X , (4.42)

µξ (x) = sup
i∈I

inf
γ∈Ai

∫
Aτi (x)

ργ(t)dP(t)

∫
Ω
ργ(t)dP(t)

, ∀x ∈Ω , (4.43)

where Nu is the number of times that u ∈ X is observed as a sample.

2. The membership function defined by (4.40) or (4.42) converges to the membership
function defined by (4.41) or (4.43) respectively for all x ∈ Ω as |X | approaches to
infinity, provided that for every γ ∈ M ργ(x) is continuous on Ω and X is a set of
samples randomly drawn from the probability space (Ω ,F ,P).

Proof. 1. It can be directly proved by Theorem 4.5.
2. Let p(x) be the density function of the probability space (Ω ,F ,P). Since X is a
set of samples randomly drawn from (Ω ,F ,P). Hence by formulas (1.5) and (1.6)
for any x ∈ X , we have

p(x) = lim
|X |→∞,S(∆x)→0

|X∆x|
|X |S(∆x)

. (4.44)

Here x ∈ ∆x ⊆Ω , S(∆x) is the size of the small space ∆x, X∆x is the set of the drawn
samples in X falling into ∆x in which a sample is regarded as n different samples if
it is observed n times.

For any i ∈ I,γ ∈ Ai in (4.40) and (4.42), x ∈ X , assume that Ω is divided into
q small subspaces ∆ j ∈ F , j = 1, ...,q such that for any j either ∆ j ⊆ Aτi (x) or
∆ j ∩ Aτi (x) = ∅. Let JAτi (x) = {∆ j | ∆ j ⊆ Aτi (x), j = 1,2, ...,q}. Let ∆max be the
maximum size of S(∆ j), j = 1,2, ...,q and ∆u be the small space ∆ j such that u ∈ ∆ j.
In virtue of (4.44), we have
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lim
|X |→∞

∑u∈Aτi (x)ργ(u)Nu

∑u∈X ργ(u)Nu

= lim
|X |→∞,∆max→0

∑u∈X∆ ,∆∈JAτi (x)
ργ(u)

∑u∈X∆ j
,1≤ j≤qργ(u)

= lim
|X |→∞,∆max→0

∑∆u∈JAτi (x)
ργ(u)|X∆u |

∑∆u∈{∆ j |,1≤ j≤q}ργ(u)|X∆u |

= lim
|X |→∞,∆max→0

∑∆u∈JAτi (x)
ργ(u) |X∆u |

|X |S(∆u)
S(∆u)

∑∆u∈{∆ j |,1≤ j≤q}ργ(u) |X∆u |
|X |S(∆u)

S(∆u)

=

∫
Aτi (x)

ργ(t)dP(t)

∫
Ω
ργ(t)dP(t)

. (in virtue o f (4.44))

Therefore the membership function defined by (4.40) or (4.42) converges to that
defined by (4.41) or (4.43), respectively for all x ∈Ω as |X | approaches infinity. 
�

Theorem 4.6 defines the membership functions and their fuzzy logic operations on
the observed data and the whole space by taking both the fuzziness (subjective im-
precision: the uncertainty of ργ(x) due to the individual different interpretations of
the simple concepts) and the randomness (objective uncertainty: the uncertainty of
Aτi (x), Nx due to randomly observe of the samples) into account. Since the lattice
(EM,∨,∧,′ ) is closed under the AFS fuzzy logic operations ∨, ∧, ′ , hence Theo-
rem 4.6 also gives the membership functions of all fuzzy logic operations of fuzzy
concepts in EM. According to the observed data or the probability distribution of
the space, (1) of Theorem 4.6 provides a very applicable and simple method to
construct coherence membership functions by the weight functions of the simple
concepts which can be flexibly and expediently defined to represent the individual
perceptions. The following practical aspects of the applications of AFS and proba-
bility framework to the real world can be ensured by (2) of Theorem 4.6 for a large
sample set.

• The membership functions and the fuzzy logic operations determined by the ob-
served data drawn from a probability space (i.e. defined by (4.40) or (4.42)) will
be consistent with ones determined by the probability distribution (i.e., defined
by (4.41) or (4.43)).

• The results via the AFS fuzzy logic based on the membership functions and their
logic operations determined by different data sets drawn from the same probabil-
ity space (i.e. defined by (4.40) or (4.42)) will be stable and consistent.

• The laws discovered based on the membership functions and their logic opera-
tions determined by the observed data drawn from a probability space (i.e. de-
fined by (4.40) or (4.42)) can be applied to the whole space via the membership
functions of the concepts determined by the probability distribution (i.e., defined
by (4.41) or (4.43)).
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Thus uncertainty of randomness and of imprecision can be treated in a unified and
coherent manner under the AFS and probability framework and it offers a new av-
enue to explore the statistical properties of fuzzy set theory and to a major enlarge-
ment of the role of natural languages in probability theory. In the last section of this
chapter, we will test these via the experimental studies completed for a well-known
the Iris data set.

Concerning the applicability, it is clear that the membership functions and their
fuzzy logic operations can be easily obtained according to the finite observed data
set X by exploiting (4.40) or (4.42). However those realized according to the
probability distribution on the whole space Ω by (4.41) or (4.43) involving the
computations of high dimension integral may be too complicated. The essential
advantage of the AFS and probability framework is in that what is easily discov-
ered by the simple computations of the membership functions determined by the
finite data X observed from a system can be applied to predict and describe the
behavior of the system on the whole apace Ω by the computations of the inte-
gral for the continuous functions ργ(x). In order to make the framework more
applicable, in Section 4.4, the coherence membership functions based on Gaus-
sion weight functions and multi-normal distributions has been exhaustively dis-
cussed. Concerning the theory, in the following section, we fit AFS and probability
framework into Singpurwalla’s theory [44] to make its theoretical foundation more
stable.

Finally, we show some links between the AFS approach and Lawry’s Label Se-
mantics which also defines fuzziness in terms of a probability measure. Label se-
mantics [20] is a framework for linguistic reasoning based on a random set model
that uses degrees of appropriateness of a label to describe a given example. In such
systems, fuzzy labels provide a high-level mechanism of discretization and inter-
pretation of modelling uncertainty. In label semantics, labels are assumed to be
chosen from a finite predefined set of labels and the set of appropriate labels for
a value is defined as a random set-valued function from a population of individu-
als into the set of subsets of labels which are the labels the population of individ-
uals consider appropriate to describe the value. Furthermore, appropriateness de-
grees of a value belonging to a label is defined according to the mass assignment
on labels.

In AFS theory, currently, we just study how to determine the membership func-
tion of a concept based on the data drawn from one probability space which can be
regards as “one of a population of individuals’ description of the value”. A probabil-
ity space can be regarded as an individual knowledge. The membership functions of
a concept based on the data drawn from some different probability spaces which can
be regarded as “a population of individuals’ description of the value has remained
as an open problem. Different probability spaces can be regarded as different indi-
viduals’s knowledge. Thus the AFS theory can be expanded under the framework
of label semantics and the label semantics may be explored in virtue of the AFS
theory.
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4.3 Coherence Membership Functions and the Probability
Measures of Fuzzy Events

In this section, we discuss the coherence membership functions defined by Theo-
rem 4.6 under the probability measures of fuzzy events proposed and developed by
Zadeh, Singpurwalla and Booker [44, 52] and fit AFS and probability framework
into the Singpurwalla’s theory.

4.3.1 The Probability Measures of Fuzzy Events

Zadehs article titled “Probability Measures of Fuzzy Events” [52] suggested how
to expand the scope of applicability of probability theory to include fuzzy sets. His
construction proceeds along the following line. Let (Ω ,F ,P) be a “probability
measure space” . Recall that x, an outcome of ε , is a member of A, and assume for
now that A is a countable Boolean set, where A ∈ F , and let IA(x) be the character-
istic function of A, i.e., IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise. Then it is easy to
see that

P(A) = ∑
x∈Ω

IA(x)P(x) (4.45)

where P(x) is the probability of x. An analog of the foregoing result when A is not
countable is a relationship of the form

P(A) =
∫
Ω

IA(x)dP(x)

Motivated by this (well-known) result, Zadeh has declared that the probability mea-
sure of a fuzzy subset A of Ω , which he calls a fuzzy event, is

Π(A) =
∫
Ω
µA(x)d(P(x)) = E(µA(x)) (4.46)

where µA(x) is the membership function of A and E denotes expectation. The point
to be emphasized here is that the expectation is taken with respect to the initial
probability measure P that has been defined on the (Boolean) sets of Ω . Having
defined Π(A) as before, Zadeh proceeded to show that

A ⊆ B ⇒Π(A) ≤Π(B) (4.47)

Π(A∪B) =Π(A)+Π(B)−Π(A∩B) (4.48)

Π(A + B) =Π(A)+Π(B)−Π(A•B) (4.49)

where A • B is the product (not the intersection) of A and B. Finally, A and B are
declared to be independent if

Π(A•B) =Π(A) ·Π(B),
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and the conditional probability of A, were B to occur, denoted byΠ(A|B), is defined
as

Π(A|B) =
Π(A•B)
Π(B)

Thus when A and B are independent,

Π(A|B) =Π(A)

Whereas the definition (4.45) has the virtue that when A is a Boolean set, Π(A) =
P(A), so that the measureΠ can be seen as a generalization of the measure P , the
question still remains as to whether Π is a probability measure. Properties (4.47),
(4.48), and (4.49) seem to suggest that Π could indeed be viewed as a probability
measure. But [44] shown that such a conclusion would be premature by the follow-
ing arguments:

a) With property (4.48), the evaluation of Π(A) and Π(B) is enough to evaluate
Π(A ∩ B), whereas with probability, the evaluation of P(A) and P(B) is not
sufficient to evaluate P(A ∩B), unless A and B are independent. Note that be-
cause

Π(A∩B) = E(µA∩B(x)) = E(min{µA(x),µB(x)}),

it can be easily seen that for A = {x | µA(x) ≤ µB(x)}

Π(A∪B) =
∫

x∈A
µBdP(x)+

∫
x∈A c

µAdP(x)

b) Property (4.49) has no “analog” in probability theory, because the notions of (A+
B) and (A•B) are not part of classical set theory. More importantly, conditional
probability has only been defined in terms of (A•B).

We agree with Singpurwalla and Booker’s view that while [52] attempted at mak-
ing fuzzy set theory and probability theory work together, there are some interesting
points to be pursued further. In what follows, we present Singpurwalla’s line of argu-
ment that is able to achieve Zadeh’s goal of forming constructs such as “probability
measures of fuzzy events” provided that the membership functions are predeter-
mined. Let

PD(A) = PD(X ∈ A).

Here the generic X denotes the uncertain outcome of an experiment ε and the sub-
script D denotes the fact that what is being assessed is D’s personal probability,
that is D’s willingness to bet. To incorporate the role of membership functions in
the assessment of a probability measure of a fuzzy set A, Singpurwalla and Booker
introduced a new component into the analysis – namely an expert, say Z (in honor
of Zadeh), whose expertise lies in specifying a membership function µA(x) for all
x ∈Ω , and a fuzzy set A. Singpurwalla and Booker assume that D has no access to
any membership function of A or a membership function µA(x) is given by Z . With
the fuzzy set A entering the picture, D is confronted with both the imprecision and
the uncertainty, i.e., about the membership of x in A and the other about the outcome
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X = x. If A is a Boolean set (as is normally the case in standard probability theory),
then D would be confronted with only the uncertainty, namely the uncertainty that
X = x. As a subjectivist, D views the imprecision as simply another uncertainty, and
to D all uncertainties can be quantified only by probability. Thus D specifies two
probabilities:

a) PD (x), which is D’s prior probability that an outcome of ε will be x, and
b) PD(x ∈ A), which is D’s prior probability that an outcome x belongs to A.

Whereas the specification of PD (x) is an operation in standard probability theory,
the assessment of PD(x ∈ A) raises an issue. Specifically, because PD (x ∈ A) is
D’s personal probability that x is classified in A.

Once PD (x) and PD (x ∈ A) have been specified by D for all x ∈Ω , D will use
the law of total probability to write

PD (A) = PD (X ∈ A)
= ∑

x∈Ω
PD(X ∈ A|X = x)PD (x)

= ∑
x∈Ω

PD(x ∈ A)PD(x) (4.50)

An analog of the foregoing result when A is not countable is a relationship of the
form

PD(A) =
∫

x∈Ω

PD(x ∈ A)dPD(x) (4.51)

which is the expected value of D’s classification probability with respect to D’s
prior probability of X . Thus Singpurwalla and Booker gave a probability measure
for a fuzzy set A that can be justified on the basis of personal (i.e., subjective) prob-
abilities and the notion that probability is a reflection of one’s partial knowledge
about an event of interest in Equation (4.50) which is based on D’s inputs alone.

No matter how to interpret PD(x ∈ ξ ) (In AFS theory, we interpret it as ρ(x) —
the weight function of the simple concept ξ , refer to Definition 4.8), an assessment
of this quantity is essential for developing a normative approach for assessing prob-
ability measures of fuzzy sets. In introducing PD(x ∈ A), Singpurwalla and Booker
have in fact reaffirmed Lindley’s claim that probability is able to handle any situation
that fuzzy logic can [19]. But the weight functions of simple concepts expressed by
Definition 4.8, which are determined by the semantics of the fuzzy concepts and the
human comparisons of the associating feature values, are mathematical description
of the imprecise perceptions and are different from random uncertainty in probabil-
ity. So that probability itself is not able to handle the AFS fuzzy logic in AFS and
probability framework (see Theorem 4.6).

The authors in [44] discussed the sensible connection between membership func-
tions and probability, and this connection is an important contribution to a better
understanding of the probability measure of the fuzzy events whose membership
functions are predetermined. However, Singpurwalla and Booker have not touched
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the problem of how to determine membership functions for fuzzy sets based on the
theory they developed. In what follows, we discuss the coherence membership func-
tions defined by Theorem 4.6 under Singpurwalla & Booker’s probability measure
of fuzzy events.

4.3.2 Coherence Membership Functions Based on Probability
Measure of the Fuzzy Events

In this section, we apply the probability measure of the fuzzy set [44] to induce the
measures of simple concepts for the coherence membership functions in Theorem 4.6.

Given the considerations presented in Section 4.3.1, we know that PD (x ∈ γ)
(refer to (4.50)) is D’s personal probability that x is classified in γ . Thus PD(x ∈ γ)
is merely a reflection of D’s imprecision (or partial knowledge) of the boundaries
of a concept. For a simple concept γ such as “small” , “medium”, “not medium”,
“large”, by Definition 4.8, we know that ργ(x) = PD(x ∈ γ),∀x ∈ X , is a weight
function of γ . Because if (x,y) ∈ Rγ , i.e., the degree of x belonging to γ is greater
than or equal to that of y, then PD(x ∈ γ) ≥ PD(y ∈ γ) and if (x,x) /∈ Rγ , i.e.,
x does not belong to γ at all, then PD (x ∈ γ) = 0. In other world, we also can
regard PD (x ∈ γ) in (4.50) as an interpretation of weight function ργ(x) defined by
Definition 4.8. For each simple concept γ ∈ M, let

PD (x ∈ γ) = ργ(x), ∀x ∈ X .

Let Nx be the number of times x is observed as a sample and Ω be a discrete
(i.e., countable) set. Then Nx

|X | → P(x) as the set X approaching to Ω . Thus the
probability measure of fuzzy simple concept γ defined by (4.50) is expressed as

PD(γ) = ∑
x∈X

PD(x ∈ γ)PD (x)

= ∑
x∈X
ργ(x)PD (x)

≈ 1
|X | ∑x∈X

ργ(x)Nx (because o f PD(x) ≈ Nx

|X | ) (4.52)

In (4.52), the probability measure of fuzzy event γ takes each x ∈ X in account. Thus
it is natural to define the probability measure of γ take x ∈ W ⊆ X in account and
call it the probability measure of fuzzy simple concept γ on W as follows:

PD (γ : W ) = ∑
x∈W

PD(x ∈ γ)PD (x)

= ∑
x∈W

ργ(x)PD (x)

≈ 1
|X | ∑x∈W

ργ(x)Nx (4.53)
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When W is not countable, the probability measure of fuzzy simple concept γ on
W ⊆Ω is defined as follows:

PD (γ : W ) =
∫
W

ργ(t)dPD(t) (4.54)

In Theorem 4.6, for Aτ(x) ∈ S and γ ∈ M, Mγ(Aτ(x)) measures the degree of set
Aτ(x) supporting the claim: “x belongs to γ”. We can construct Mγ according to the
probability measure of fuzzy simple concept defined by [44] (refer to (4.53), (4.54))
as follows: for U ∈ S

Mγ(U) =
PD(γ : U)
PD (γ : X)

≈ ∑x∈U ργ(x)Nx

∑x∈X ργ(x)Nx
, i f U and X is countable. (4.55)

Mγ(U) =
PD(γ : U)
PD (γ : X)

=

∫
U
ργ(t)dPD (t)∫

Ω
ργ(t)dPD(t)

, i f U and Ω is not countable.(4.56)

Applying the measures in (4.55) and (4.56) to Theorem 4.5, we get the coher-
ence membership functions defined by Theorem 4.6. Thus the AFS and probability
framework fits into Singpurwalla’s probability measure of fuzzy events.

4.4 Coherence Membership Functions of Multi-normal
Distributions and Gaussion Weights

In this section, in order to make AFS and probability framework more applicable, we
study the coherence membership functions based on Gaussion weight functions of
the simple concepts and the multi-normal probability space. Let Ω = Rn and F be
all set of Borel sets in Rn and the probability distribution P in the probability space
(Ω ,F ,P) is a m-normal distribution with the density function shown as follows:

p(x) =
1
m

m

∑
i=1

1√
(2π)n|Σi|

e− 1
2 (x−µi)′Σ−1

i (x−µi), (4.57)

where x ∈ Rn, Σi is a n×n symmetry positive definite matrix and µi is a n-dimension
vector in Rn, i = 1,2, ...,m. Let M be the set of simple concepts on Ω . γ ∈ M is a
simple concept with the semantic meaning: “near to cγ” and γ ′ is a simple concept
with the semantic meaning: “not near to cγ”, where cγ ∈ Rn. For each simple con-
cept γ ∈ M, (x,y) ∈ Rγ ⇔ ‖x− cγ‖ ≤ ‖y− cγ‖; (x,y) ∈ Rγ ′ ⇔ ‖x− cγ‖ ≥ ‖y− cγ‖
where Rγ ,Rγ ′ defined by Definition 4.2 is the binary relation of the concepts γ,γ ′. By
Definition 4.3, one can verify that for any γ ∈ M, γ,γ ′ are simple concepts. (M,τ,Ω)
is an AFS structure in which τ is defined as (4.26). For a simple concept γ ∈ M, the
weight functions are defined as follows: for any x ∈Ω ,

ργ(x) = e−(x−cγ )′∆γ (x−cγ ), (4.58)

ργ ′(x) = 1−ργ(x), (4.59)

where ∆γ ,γ ∈ M are semi-positive definite symmetry matrices.
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Proposition 4.4. Let Ω = Rn and (Ω ,F ,P) be a m-normal distribution with
the density function shown as (4.57). Let M be a set of simple concepts on Ω
whose weight functions are defined as (4.58), (4.59). Then for any fuzzy concept
ξ = ∑i∈I(∏m∈Ai

m) ∈ EM, the coherence membership function of ξ on Ω defined
by (4.41) or (4.43) is formulated as follows: ∀x ∈Ω ,

µξ (x) =

⎧⎨
⎩

sup
i∈I

∏
ζ∈Ai

ϒζ , f or (4.41),

sup
i∈I

inf
ζ∈Ai

ϒζ , f or (4.43),
(4.60)

Where

ϒζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
k=1

e
Γkγ√
πn|Σk |

∫
Aτi ({x})

e
−(t−Ξkγ )

′Θkγ (t−Ξkγ )dt

∑m
k=1

e
Γkγ |Θkγ |

− 1
2

√
|Σk |

, ζ = γ,

P(Aτi ({x}))− 1
m ∑

m
k=1

e
Γkγ√

(2π)n |Σk |
∫

Aτi ({x})
e
−(t−Ξkγ )

′Θkγ (t−Ξkγ )dt

1− 1
m ∑

m
k=1

e
Γkγ |Θkγ |

− 1
2

√
(2)n |Σk |

, ζ = γ ′,

(4.61)

for 1 ≤ k ≤ m, γ ∈ M,

Ξkγ = (∆γ +
1
2
Σ−1

k )−1(∆γcγ +
1
2
Σ−1

k µk), (4.62)

Θkγ = ∆γ +
1
2
Σ−1

k , (4.63)

Γkγ = c′
γ∆γcγ +

1
2
µ ′

kΣ
−1
k µk

−(∆γcγ +
1
2
Σ−1

k µk)′(∆γ +
1
2
Σ−1

k )−1(∆γcγ +
1
2
Σ−1

k µk). (4.64)

Proof. Considering the membership functions defined by (4.41) and (4.43), we
know that the key is to study the following integral for simple concept γ ∈ M and
Φ ⊆Ω , ∫

Φ

ργ(t)dP(t)

=
1
m

m

∑
k=1

1√
(2π)n|Σk|

∫
Φ

e−(t−cγ )′∆γ (t−cγ )− 1
2 (t−µk)′Σ−1

k (t−µk)dt (4.65)

Notice that for any t, any γ ∈ M, (t −cγ)′∆γ(t −cγ) ≥ 0 and 1
2 (t −µk)′Σ−1

k (t −µk) ≥
0. Let us study
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(t − cγ)′∆γ(t − cγ)+
1
2
(t − µk)′Σ−1

k (t − µk)

= t ′∆γ t − c′
γ∆kt − t ′∆γcγ + c′

γ∆γcγ +
1
2
(t ′Σ−1

k t − µ ′
kΣ

−1
k t − t ′Σ−1

k µk + µ ′
kΣ

−1
k µk)

=
(

t − (∆γ +
1
2
Σ−1

k )−1(∆γcγ +
1
2
Σ−1

k µk)
)′

(
∆γ +

1
2
Σ−1

k

)(
t − (∆γ +

1
2
Σ−1

k )−1(∆γcγ +
1
2
Σ−1

k µk)
)

+c′
γ∆γcγ +

1
2
µ ′

kΣ
−1
k µk − (∆γcγ +

1
2
Σ−1

k µk)′(∆γ +
1
2
Σ−1

k )−1(∆γcγ +
1
2
Σ−1

k µk)

Thus by (4.62), (4.63),(4.64) and the above equation, formula (4.65) can be simpli-
fied as follows:∫

Φ

ργ(t)dP(t) =
1
m

m

∑
k=1

eΓkγ√
(2π)n|Σk|

∫
Φ

e−(t−Ξkγ)′Θkγ (t−Ξkγ )dt (4.66)

Since ∆γ is semi-positive definite and Σk is positive definite, henceΘkγ = ∆γ+ 1
2Σ

−1
k

is positive definite. By the properties of density function of the normal distribution
[3], for any µ ∈ Rn and any positive definite matrix Σ ∈ Rn×n,∫

Ω
e−(t−µ)′Σ−1(t−µ)dt = π

n
2 |Σ | 1

2 . (4.67)

Therefore we have ∫
Ω

e−(t−Ξkγ )′Θkγ (t−Ξkγ )dt = π
n
2 |Θkγ |−

1
2 . (4.68)

Then by (4.66) and (4.68), we have

∫
Ω

ργ(t)dP(t) =
1
m

m

∑
k=1

eΓkγ |Θkγ |−
1
2√

(2)n|Σk|
(4.69)

Thus by (4.66), (4.69) and (4.41),(4.43), we have the upper one of (4.61). When
ζ = γ ′, refer to (4.41),(4.43) we have

∫
Aτi ({x})

ρζ (t)dP(t)

∫
Ω
ρζ (t)dP(t)

=

∫
Aτi ({x})

(1−ργ(t))dP(t)

∫
Ω

(1−ργ(t))dP(t)

=

∫
Aτi ({x})

dP(t)−
∫

Aτi ({x})
ργ(t)dP(t)

1−
∫
Ω
ργ(t)dP(t)

(4.70)



4.4 Coherence Membership Functions of Multi-normal Distributions 149

Then by (4.66) and (4.69), we have the lower one of (4.61). Therefore, for any fuzzy
concept ξ = ∑i∈I(∏m∈Ai

m) ∈ EM, the membership function of ξ on Ω defined by
(4.41) and (4.43) is formulated as (4.60). 
�

In some real world applications, a simple concept often associates with a sin-
gle feature. For instance, in Example 4.1, each simple concept in M associates
with a single feature. Thus the weight functions defined by (4.58) and (4.59) can
be simplified as follows if every γ ∈ M associates with a single feature. For any
x = (x1,x2, ...,xn)′ ∈Ω ,

ργ(x) = e−dγ (xi−cγ )2
, cγ ,dγ ∈ R,dγ > 0,1 ≤ i ≤ n; (4.71)

ργ ′(x) = 1−ργ(x), (4.72)

if the simple concept γ associates with feature fi, i.e., ∆γ = diag(0, ...,dγ , ...0) in
the weight functions defined by (4.58). Thus each simple concept γ ∈ M just asso-
ciates with a single feature fi like the simple concepts described by (4.36)–(4.39).
In order to express the results clearly, we introduce some symbols. For A ⊆ M,
let

F(A) = {i | γ ∈ A, simple concept γ associates with the f eature fi},
F ′(A) = {1,2, ...,n}−F(A). (4.73)

F(A) is the set of the features the simple concepts in A associate with and F(A)∪
F ′(A) = {1,2, ...,n}. Let H = {i1, i2, ..., is},Q = { j1, j2, ..., jl} ⊆ {1,2, ..,n}, where
i1 < i2 < ... < is, j1 < j2 < ... < jl . For matrix P = (pi j) ∈ Rn×n, let

PQ
H = (wuv),wuv = piu jv ,1 ≤ u ≤ s,1 ≤ v ≤ l. (4.74)

So PQ
H denotes the sub-block of matrix P which is constituted by the rows i1, i2, ..., is

and the columns j1, j2, ..., jl . For x = (x1,x2, ...,xn)′ ∈ Rn, xH = (xi1 ,xi2 , ...,xis)
′. For

Φ ⊆Ω ⊆ Rn,

ΦH = {xH |x ∈Φ} (4.75)

Proposition 4.5. Let Ω = Rn and (Ω ,F ,P) be a m-normal distribution with
the density function shown as (4.57). Let M be a set of simple concepts on Ω
whose weight functions are defined as (4.71),(4.72). Then for any fuzzy concept
ξ = ∑i∈I(∏m∈Ai

m) ∈ EM, the coherence membership functions of ξ on Ω defined
by (4.41) or (4.43) are formulated as follows: ∀x ∈Ω ,

µξ (x) =

⎧⎨
⎩

sup
i∈I

∏
ζ∈Ai

ϒζ , f or (4.41),

sup
i∈I

inf
ζ∈Ai

ϒζ , f or (4.43),
(4.76)
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Where

ϒζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
k=1

e
Γkγ

∣∣∣∣ΘF′(Ai)
kγF ′(Ai)

∣∣∣∣−
1
2

√
π|F(A)| |Σk |

I
Ai
kγ (x)

∑m
k=1

e
Γkγ |Θkγ |

− 1
2

√
|Σk |

, ζ = γ,

P(Aτi ({x}))− 1
m ∑

m
k=1

e
Γkγ

∣∣∣∣ΘF′(Ai)
kγF ′(Ai)

∣∣∣∣−
1
2

√
2nπ|F(Ai)| |Σk |

I
Ai
kγ (x)

1− 1
m ∑

m
k=1

e
Γkγ |Θkγ |

− 1
2

√
(2)n |Σk |

, ζ = γ ′,

(4.77)

I Ai
kγ (x) =

∫
Aτi ({x})F(Ai)

e−(tF(Ai)−ΞF(Ai)
kγ )′HAi

kγ (tF(Ai)−ΞF(Ai)
kγ )dtF(Ai)

Ξkγ ,Θkγ , Γkγ ,1 ≤ k ≤ m, γ ∈ M, are shown in (4.62),(4.63) and (4.64); i ∈ I,
Aτi ({x})F(Ai) is defined by (4.27) and (4.75); F(Ai),F ′(Ai) are defined by (4.73);

HAi
kγ =

(
ΘF(Ai)

kγF(Ai)
−ΘF′(Ai)

kγF(Ai)

(
ΘF ′(Ai)

kγF ′(Ai)

)−1
ΘF(Ai)

kγF ′(Ai)

)

andΘF(Ai)
kγF(Ai)

,ΘF ′(Ai)
kγF(Ai)

,ΘF ′(Ai)
kγF ′(Ai)

,ΘF(Ai)
kγF ′(Ai)

, tF(Ai) and ΞF(Ai)
kγ are defined by (4.74).

Proof. In what follows, for γ ∈ A ⊆ M, we study
∫

Aτ ({x}) e−(t−Ξkγ )′Θkγ (t−Ξkγ )dt in

(4.61) and let ω1 = (t −Ξkγ)F(A), ω2 = (t −Ξkγ)F ′(A). Then(
t −Ξkγ

)′Θkγ
(
t −Ξkγ

)
= ω ′

1Θ
F(A)
kγF(A)ω1 +ω ′

1Θ
F ′(A)
kγF(A)ω2 +ω ′

2Θ
F(A)
kγF ′(A)ω1 +ω ′

2Θ
F ′(A)
kγF ′(A)ω2

= ω ′
1Θ

F(A)
kγF(A)ω1

+
(
ω2 +(ΘF ′(A)

kγF ′(A))
−1ΘF(A)

kγF ′(A)ω1

)′
ΘF ′(A)

kγF ′(A)

(
ω2 +(ΘF ′(A)

kγF ′(A))
−1ΘF(A)

kγF ′(A)ω1

)
−ω ′

1Θ
F ′(A)
kγF(A)(Θ

F ′(A)
kγF ′(A))

−1ΘF(A)
kγF ′(A)ω1

= ω ′
1

(
ΘF(A)

kγF(A) −Θ
F′(A)
kγF(A)(Θ

F ′(A)
kγF ′(A))

−1ΘF(A)
kγF ′(A)

)
ω1

+
(
ω2 +(ΘF ′(A)

kγF ′(A))
−1ΘF(A)

kγF ′(A)ω1

)′
ΘF ′(A)

kγF ′(A)

(
ω2 +(ΘF ′(A)

kγF ′(A))
−1ΘF(A)

kγF ′(A)ω1

)
.

(4.78)
Thus by (4.67), we have

∫
ΩF′(A)

e

(
ω2+(ΘF′(A)

kγF′(A)
)−1ΘF(A)

kγF ′(A)
ω1

)′
ΘF′(A)

kγF ′(A)

(
ω2+(ΘF′(A)

kγF′(A)
)−1ΘF(A)

kγF ′(A)
ω1

)
dtF ′(A)

=
π

n−|F(A)|
2∣∣∣ΘF ′(A)

kγF ′(A)

∣∣∣ 1
2



4.5 Experimental Studies 151

Furthermore
∫

Aτ({x}) e−(t−Ξkγ )′Θkγ (t−Ξkγ )dt in (4.61) for γ ∈ A ⊆ M can be formulated
as follows: ∫

Aτ ({x})
e−(t−Ξkγ )′Θkγ (t−Ξkγ )dt

=
π

n−|F(A)|
2∣∣∣ΘF ′(A)

kγF ′(A)

∣∣∣ 1
2

∫
Aτ ({x})F(A)

e−(tF(A)−ΞF(A)
kγ )′HA

kγ (t
F(A)−ΞF(A)

kγ )dtF(A) (4.79)

Where

HA
kγ =

(
ΘF(A)

kγF(A) −Θ
F′(A)
kγF(A)

(
ΘF ′(A)

kγF ′(A)

)−1
ΘF(A)

kγF ′(A)

)
Thus by (4.60) and (4.79), we have the upper one of (4.77). When ζ = γ ′, by the
lower one of (4.61) we have the lower one of (4.77). Therefore for any fuzzy concept
ξ = ∑i∈I(∏m∈Ai

m) ∈ EM, the membership function of ξ on Ω defined by (4.41),
(4.43) is formulated as (4.76). 
�

4.5 Experimental Studies

In this section, first in Section 4.5.1 the density function p(x) of the probability
space (Ω ,F ,P) from which Iris data are drawn is estimated by the probability
introduced in Section 1.5.2. Then various experiments on the Iris plant data are con-
sidered in Section 4.5.2, 4.5.3, 4.5.4 by applying the coherence membership func-
tions defined by Theorem 4.6 and the techniques developed in Section 4.4 for the
Gaussion weight functions of the simple concepts in the multi-normal probability
space. In Section 4.5.2, the experiments on Iris data test the consistency of the mem-
bership functions determined by the observed data drawn from a probability space
with the ones determined by the probability distribution. In Section 4.5.3, we study
whether the laws discovered on the observed samples could be applied to the predic-
tions on the whole space via the membership functions of the concepts determined
by the probability distribution. The experiments in Section 4.5.4 show that the in-
ferential results of the AFS fuzzy logic based on different data sets drawn from the
same probability space are very stable and quite consistent.

4.5.1 Probability Distribution of Iris Plant Data

The well-known Iris data is provided by Fisher in 1936 [40]. these data can be
represented by a 150×4 matrix W = (wi j)150×4. The patterns are evenly distributed
in three classes: C1 iris-setosa, C2 iris-versicolor, and C3 iris-virginica. A vector of
sample i, (wi1,wi2,wi3,wi4) has four features: f1 the sepal length and f2 the sepal
width, and f3 the petal length and f4 the petal width (all given in centimeters).
So that X = {x1 , x2, ..., x150} is the set of the 150 observed samples randomly
drawn from a probability space (Ω ,F ,P). Let µi j and σi j be the mean and the
standard variance of the values of the samples in the class Ci on the feature f j ,
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Table 4.2 The mean and the standard variance of each class for iris data

class mean µi j standard variance σi j
C1 (5.0060,3.4180,1.4640,0.2440) (0.3525,0.3810,0.1735,0.1072)
C2 (5.9360,2.7700,4.2600,1.3260) (0.5162,0.3138,0.4699,0.1978)
C3 (6.5880,2.9740,5.5520,2.0260) (0.6359,0.3225,0.5519,0.2747)

i = 1,2,3, j = 1,2,3,4. The values of the means and standard deviations are listed
in Table 4.2.

We assume that P has a multi-normal distribution. By formula (1.8), the density
function p(x) [3] of the probability space (Ω ,F ,P) can be estimated via the 150
observed samples as follows:

p(x) =
1
3

3

∑
i=1

1√
(2π)p|Σi|

e− 1
2 (x−µi)′Σ−1

i (x−µi) (4.80)

where p = 4,

µi =
1

50

50i

∑
j=50(i−1)+1

(wj1,wj2,wj3,wj4)′, i = 1,2,3,

Σi =
1
50

W ′
i HWi, i = 1,2,3,

W1, W2 and W3 are the sub-block matrices of W selecting from 1th to 50th rows,
from 51th to 100th rows, from 101th to 150th rows, respectively, i.e., Wi is the data
of 50 samples in class Ci. H = I − 1

50 J, J is a 4 × 4 matrix whose entries are all 1.
We show them in detail as follows:

µ1 = (5.0060,3.4180,1.4640,0.2440)T, µ2 = (5.9360,2.7700,4.2600,1.3260)T ,
µ3 = (6.5880,2.9740,5.55202.0260)T;

Σ1=

⎡
⎢⎢⎣

0.1218 0.0983 0.0158 0.0103
0.0983 0.1423 0.0114 0.0112
0.0158 0.0114 0.0295 0.0056
0.0103 0.0112 0.0056 0.0113

⎤
⎥⎥⎦ , Σ2=

⎡
⎢⎢⎣

0.2611 0.0835 0.1792 0.0547
0.0835 0.0965 0.0810 0.0404
0.1792 0.0810 0.2164 0.0716
0.0547 0.0404 0.0716 0.0383

⎤
⎥⎥⎦ ,

Σ3 =

⎡
⎢⎢⎣

0.3963 0.0919 0.2972 0.0481
0.0919 0.1019 0.0700 0.0467
0.2972 0.0700 0.2985 0.0478
0.0481 0.0467 0.0478 0.0739

⎤
⎥⎥⎦ .

In the following sections, we study the membership functions and their logical op-
erations defined on the set of the observed samples X and the whole space Ω with
the density function p(x) (refer to (4.80)) by (4.40)-(4.43) in Theorem 4.6 or Propo-
sition 4.5.
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4.5.2 Consistency of the Membership Functions on the Observed
Data and the Whole Space

In this section, by applying Proposition 4.5, we compare the membership functions
and their logic operations defined by (4.40) in Theorem 4.6 on the 150 observed
samples in X with the ones defined by (4.41) in Theorem 4.6 according to the den-
sity function p(x) shown as (4.80). Let M = {mi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 6} be the set
of simple concepts for the Iris data X associating to the features. The semantics of
the simple concepts m ∈ M are expressed as follows: for ci j, the mean of the values
of the samples in class Cj on the feature fi

m1,1: “the sepal length is about c1,1”, m1,2 is the negation of m1,1;
m1,3: “the sepal length is about c1,2”, m1,4 is the negation of m1,3;
m1,5: “the sepal length is about c1,3”, m1,6 is the negation of m1,5;

m2,1: “the sepal width is about c2,1”, m2,2 is the negation of m2,1;
m2,3: “the sepal width is about c2,2”, m2,4 is the negation of m2,3;
m2,5: “the sepal width is about c2,3”, m2,6 is the negation oft m2,5;

m3,1: “the petal length is about c3,1”, m3,2 is the negation of m3,1;
m3,3: “the petal length is about c3,2”, m3,4 is the negation of m3,3;
m3,5: “the petal length is about c3,3”, m3,6 is the negation of m3,5;

m4,1: “the petal width is about c4,1”, m4,2 is the negation of m4,1;
m4,3: “the petal width is about c4,2”, m4,4 is the negation of m4,3;
m4,5: “the petal width is about c4,3”, m4,6 is the negation of m4,5.

By Definition 4.3, one can verify that each m ∈ M is a simple concept. For any
x,y ∈ X , if τ is defined by (4.26) as

τ(x,y) = {m|m ∈ M,(x,y) ∈ Rm},

then (M,τ,X) is an AFS structure. Let the σ -algebra on X be S = 2X . For each
simple concept mi j ∈ M, refer to (4.71) and (4.72), the weight functions are defined
as follows: for any x ∈Ω ,

ρmi j (x) = e−(2σik)−2( fi(x)−cik)2
, i = 1,2,3,4, j = 2k−1, k = 1,2,3, (4.81)

ρmi j (x) = 1−ρmi( j−1)(x), i = 1,2,3,4, j = 2k, k = 1,2,3, (4.82)

where σik is the standard variance of the values of the samples in class Ck on the
feature fi and fi(x) is the value of x on the feature fi, then by the semantics of each
m ∈ M and Definition 4.8 we can verify that ρmi j(x) is a weight function of the
simple concept mi j.

Respectively, applying the weight functions defined by (4.81) and (4.82) to for-
mulas (4.40) in Theorem 4.6 in which Nx = 1 (i.e., assume that each sample in X is
observed one time) and to formulas (4.76) for (4.41) in Proposition 4.5 in which the
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density function p(x) is defined by (4.80), we can obtain the membership functions
of any fuzzy concept ξ ∈ EM on both the observed data X and the total space Ω .
Refer to Figure 4.1, Figure 4.2, and Figure 4.3, in which the membership functions
determined by the observed data X (defined by (4.40)) are denoted as “observed-
memb-fun” and the ones determined by the density function p(x) (refer to (4.76))
are denoted as “total-memb-fun”, show the membership functions of fuzzy concepts
m1,1, m2,1 and m1,1m2,1.
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Fig. 4.1 The membership function of the fuzzy concept m1,1 with the semantic meaning
“sepal length about 5.0061” defined by (4.40) according to the 150 observed samples and the
one defined by (4.41) according to the density function p(x) in (4.80)
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Fig. 4.2 The membership function of the fuzzy concept m2,1 with the semantic meaning
“sepal width about 3.4180” defined by (4.40) according to the 150 observed samples and the
one defined by (4.41) according to the density function p(x) in (4.80)
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Fig. 4.3 The membership function of the fuzzy concept m1,1m2,1 with the underlying seman-
tics “sepal length about 5.0061 and sepal width about 3.4180” defined by (4.40) according
to 150 observed samples and the one defined by (4.41) according to the density function p(x)
in (4.80)

Given these the figures, one can observe that the membership functions defined
by (4.40) in Theorem 4.6 according to the observed samples are consistent with
the ones defined by (4.41) according to the density functions, although they are
calculated by completely different methodologies (i.e., discrete one and continuous
one). 2 of Theorem 4.6 ensures that the membership function defined by (4.40) will
infinitely approximate to the one defined by (4.41) as the number of samples ap-
proaching to infinite. Since (EM,∨,∧,′ ) is a logic system, i.e., the fuzzy concepts
in EM are closed under the fuzzy logic operations ∨, ∧, ′ . Thus the member-
ship functions and the fuzzy logic operations of the fuzzy concepts in EM are fully
determined by (4.40) or (4.41). This implies that the AFS fuzzy logic operations
determined by (4.40) in Theorem 4.6 according to the observed samples are also
consistent with those determined by (4.41) according to the density functions, as
what is shown in Figure 4.3. Therefore, in real world applications, we can apply the
knowledge and rules discovered from the observed data X to predict and analyze
the system behavior on the total space Ω in virtue of Theorem 4.6. The following
Section 4.5.3 shows how this approach works.

4.5.3 Universality of the Laws Discovered on the Observed Data

In the real world applications, we always predict the system behavior by the depen-
dencies discovered based on the observed data. Thus the universality of the laws
discovered on the observed data is very crucial. In AFS and probability framework,
first we discover the knowledge and rules by the membership functions and their
logic operations defined by (4.40) or (4.42) in Theorem 4.6 according to the ob-
served data and describe the discovered laws by some fuzzy concepts in EM. Then
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the laws discovered on the observed data are generalized to the whole space via the
membership functions of the fuzzy concepts defined by (4.41)or (4.43) according
to the density function p(x) of the space. Therefore the universality of the member-
ship functions defined by (4.40) or (4.42) in Theorem 4.6 according to the observed
data is very crucial. In this section, these issues are investigated via the fuzzy clus-
tering applied to the Iris plant data. Fuzzy clustering problems, which have been
studied in [30] by applying AFS fuzzy logic to imitate a way humans cluster data,
will be exhaustively discussed in Chapter 9. For a data set X ⊆ Ω , the algorithm
presented in [30] (refer to AFS Fuzzy Clustering Algorithm Based on the 1/k− A
Nearest Neighbors in Section 9.3.4) not only can cluster the samples in X into clus-
ters C1,C2, ...,Cl , but also give a description of the cluster Ci using a fuzzy concept
ζCi ∈ EM. The cluster labels of the samples are determined by the membership
functions of ζCi , i = 1,2, ..., l as follows: for x ∈ X

q = arg max
1≤k≤l

{µζCk
(x)} ⇒ x ∈ Cq. (4.83)

In the sequel, we will test the universality of cluster rules ζCi , i = 1,2, .., l discovered
on the observed data X by checking the clustering results determined by the mem-
bership functions of the fuzzy concepts ζCi , i = 1,2, .., l defined by (4.43) according
to the density function p(x) of the space. Let M = {mi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4} be
the simple concepts on X . The semantic interpretations of the simple concept in M
are shown as follows:

m1,1 : “short sepal length”, m1,2 : “mid sepal length”, m1,3 : “not mid sepal length”,
m1,4 : “long sepal length”;
m2,1 : “narrow sepal width”, m2,2 : “mid sepal width”, m2,3 : “not mid sepal width”,
m2,4 : “wide sepal width”;
m3,1 : “short petal length”, m3,2 : “mid petal length”, m3,3 : “not mid petal length”,
m3,4 : “long petal length”;
m4,1 : “narrow petal width”, m4,2 : “mid petal width”, m4,3 : “not mid petal width”,
m4,4 : “wide petal width”.

For each m ∈ M, x,y ∈ X , (x,y) ∈ Rm ⇔ x ≥m y. Here x ≥m y implies that the de-
gree of x belonging to m is larger than or equal to that of y. The degrees of x,y
belonging to m are always comparable by the feature values of x,y and the seman-
tic meanings of m. By Definition 4.3, one can verify that each m ∈ M is a simple
concept. For any x,y ∈ X , if τ(x,y) = {m|m ∈ M,(x,y) ∈ Rm}, then (M,τ,X) is an
AFS structure. Let the σ -algebra on X be S = 2X . For the simplicity of the integral
computations, let the weight function of each simple concept m ∈ M be simply de-
fined as ρm(x) = 1,∀x ∈ Ω . The 150 samples in Iris plant data X are clustered into
three clusters by applying the method [30] via the membership functions defined
by (4.42) on the observed data X and the fuzzy concepts ζC1 = m3,1m4,1 + m4,3m4,1

states “short petal length and narrow petal width” or “not mid petal width and nar-
row petal width”; ζC2 = m3,2m4,2 reads “mid petal length and mid petal width”;
ζC3 = m1,4m3,4 + m4,4 states “long sepal length and long petal length” or “wide
petal width” are obtained to describe the three clusters.
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6 samples x53 , x57, x71, x78, x84, x86 are incorrectly clustered by the membership
functions of ζC1 ,ζC2 ,ζC3 defined by (4.42) according to the observed data which are
shown as Figure 4.4. By (4.83), one knows that the different clustering results may
be obtained by the different interpretations (membership functions) of the fuzzy
concepts ζCi , i = 1,2,3 describing the clustering rules. In order to predict the cluster
labels of all samples in whole space by the cluster rules discovered on the observed
samples, the membership functions of the fuzzy concepts ζCi , i = 1,2,3 have to
be redetermined by (4.43) according to the density function p(x) of the space in
(4.57). 5 samples: x57,x71,x78,x84,x120 are incorrectly clustered by the membership
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Fig. 4.4 The membership functions of ζC1 ,ζC2 ,ζC3 , the fuzzy concepts describing the three
clusters, defined by (4.42) according to the observed data X
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functions redefined by (4.43) according to the density function p(x) of the space
which are shown as Figure 4.5. The comparison of Figure 4.4 with Figure 4.5 shows
that the laws discovered on the observed data can be generalized to the whole space
very well. Thus the rules and knowledge discovered by the membership functions
defined by (4.40) or (4.42) on the observed data X can be applied to the whole space
Ω through (4.41) or (4.43) and used to predict and analyze the system behavior.

4.5.4 Stability Analysis of AFS Fuzzy Logic on the Different
Observed Data Sets Drawn from the Same Probability Space

In this section, we study the stability of the membership functions determined by
(4.42) in Theorem 4.6 according to different observed data sets. Let X1,X2 be two
observed data sets. For each fuzzy concept in EM, its membership functions on
AFS structure (M,τ,X1) and (M,τ,X2) may be different due to the different data
sets X1,X2, although every simple concept m ∈ M has the same semantics on X1

and X2. For example, for a person, an NBA basketball player may describe that the
person is not “tall” and a ten year old child may describe that the same person
is very “tall”. Because the people the NBA basketball player often meets are dif-
ferent from the people the child meets, i.e., the different data they observed, they
have different membership functions to describe the fuzzy concepts. This differ-
ence of the membership functions is mainly led by the observed data sets drawn
from the different probability distributions. Although the interpretations (member-
ship functions) of concept tall of two NBA basketball players may be different, it is
impossible that a NBA basketball player describes the person not “tall” and another
NBA basketball player describes the same person very “tall”. This implies that the
membership functions of the fuzzy concept determined by the different observed
data sets drawn from the same probability space should be stable. In fact, the people
two NBA basketball players meet are drawn from the same probability distribution
and this difference of membership functions results from the fuzziness (subjective
imprecision, i.e., the weight function of simple concept γ , ργ(x)) and the random-
ness (objective uncertainty: randomly observed the data sets X). By Theorem 4.6,
we know that the uncertainty of randomness decreases to 0 as the observed data ap-
proaching to infinity and the uncertainty of fuzziness decreases to 0 as the difference
of the weight functions of simple concepts approaching to 0.

In the following experiments on the Iris plant data, we analysis the stability
of membership functions and AFS fuzzy logic on the different observed data sets
drawn from the same probability space (Ω ,F ,P). Let M = {m1, m2, ..., m8} be
the set of simple concepts on the features f3, f4 the petal length and the petal width.
The semantics of the simple concepts m ∈ M are expressed as

m1: “the petal length is long”, m2 is the negation of m1;
m3: “the petal length is middle”, m4 is the negation of m3;
m5: “the petal width is wide”, m6 is the negation of m5;
m7: “the petal width is middle”, , m8 is the negation of m7.
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By Definition 4.3, one can verify that each m ∈ M is a simple concept. For any
x,y ∈ X , if τ is defined by (4.26) as follows

τ(x,y) = {m|m ∈ M,(x,y) ∈ Rm},

then (M,τ,X) is an AFS structure. Let the σ -algebra on X be S = 2X . For simplicity,
let the weight function of every simple concept m ∈ M, ρm(x) = 1 for any x ∈ Ω .
This implies that every sample is equally important to simple concept m ∈ M. For
each fuzzy concept in EM, its membership function is defined by (4.42) in Theorem
4.6 in which Nx = 1 (i.e., assume that each sample in X is observed one time).

We run 4 experiments. In each experiment, first the 150 samples of the Iris plant
data are randomly parted into two equal number of sample sets, i.e., X = X1 ∪X2,
X1 ∩X2 = ∅, |X1| = |X2|. Second, the AFS structures (M,τ,X1) and (M,τ,X2) are
separately established according the the data sets X1,X2. Finally, using the mem-
bership functions on (M,τ,X1) and (M,τ,X2), we separately apply fuzzy clustering
algorithm based on AFS fuzzy logic in [30] to find the fuzzy concepts ζCi , i = 1,2,3
to describe the clusters C1: iris-setosa, C2: iris-versicolor, and C3: iris-virginica in
X1 and X2. In [30] (refer to AFS Fuzzy Clustering Algorithm Based on the 1/k−A
Nearest Neighbors in Section 9.3.4), the author proposed an overall AFS clustering
procedure

1. For each sample x ∈ X the data set, using membership functions defined by (4.42)
and the AFS fuzzy logic system (EM,∨,∧,′ ) on X , find a fuzzy concept ξx ∈ EM
to describe x.

2. Evaluate the degree of similarity between two samples x,y ∈ X based on their
fuzzy descriptions ξx,ξy.

3. Cluster the data X according to the degrees of the similarity of each pair of sample
in X .

4. For each cluster C, find a fuzzy concept ξC ∈ EM to describe the character of the
samples in this cluster.

5. Each sample is clustered according to the membership functions of the fuzzy
concepts describing the clusters by (4.83).

Table 4.3 shows the fuzzy concepts describing the three clusters in data X1,X2

in the 4 experiments using the above algorithm to the data sets. From 8 differ-
ent data sets in the 4 experiments, three different fuzzy concepts ξ 1

C1 = m6 + m2,
ξ 2

C1 = m6 + m2m4, ξ 3
C1 = m6m8 + m2m4 + m2m6 are extracted to describe C1: iris-

setosa, one fuzzy concept ξC2 = m3 +m7 is extracted to describe C2: iris-versicolor,
two fuzzy concepts ξ 1

C3 = m1 + m5, ξ 2
C3 = m1 + m5m8 are extracted to describe C3:

iris-virginica. By Theorem 4.1, we know that ξ 1
C1 ≥ ξ 2

C1 ≥ ξ 3
C1, ξ 1

C3 ≥ ξ 2
C3.

This implies that the interpretations of the fuzzy concept discovered by the 8 dif-
ferent observed data sets to describe each cluster are very similar. By each triple
fuzzy descriptions for the three clusters, we can obtain clustering of the 150 sam-
ples by (4.83). Thus, by the 3 fuzzy descriptions for C1, one for C2 and two for
C3, we have 6 triple fuzzy descriptions: {ξ 1

C1, ξC2, ξ 1
C3}, {ξ 1

C1, ξC2, ξ 2
C3}, {ξ 2

C1, ξC2,
ξ 1

C3}, {ξ 2
C1, ξC2, ξ 2

C3}, {ξ 3
C1, ξC2, ξ 1

C3}, {ξ 3
C1, ξC2, ξ 2

C3} for the clustering of the 150
Iris plant samples and their accurate rates are 96.67%, 96%, 96.67%, 96%, 96.67%,



160 4 AFS Logic, AFS Structure and Coherence Membership Functions

Table 4.3 Descriptions of fuzzy concepts of the clusters in 4 experiments

Fuzzy descriptions determined by the data sets X1,X2

no of experiments C1: iris-setosa C2: iris-versicolor C3: iris-virginica
1th data X1 m6 +m2 m3 +m7 m1 +m5
1th data X2 m6 +m2 m3 +m7 m1 +m5
2th data X1 m6 +m2m4 m3 +m7 m1 +m5
2th data X2 m6 +m2m4 m3 +m7 m1 +m5
3th data X1 m6 +m2 m3 +m7 m1 +m5
3th data X2 m6m8 +m2m4 +m2m6 m3 +m7 m1 +m5
4th data X1 m6 +m2 m3 +m7 m1 +m5m8
4th data X2 m6 +m2m4 m3 +m7 m1 +m5m8

96%, respectively. Figures 4.6, 4.7, 4.8 show the membership functions of the differ-
ent fuzzy descriptions of clusters Ci, i = 1,2,3. Based on the figures, we can observe
that although the fuzzy concepts discovered on the different observed data sets to
describe each cluster may exhibit a very little difference, i.e., with slightly differ-
ent interpretations, the membership functions are very similar. These experimental
results imply that inferential results of the AFS fuzzy logic discovered from the dif-
ferent data sets drawn from the same probability space are very stable and quite
consistent.

In this chapter, we propose an algorithm of determining membership functions
and their fuzzy logic operations of fuzzy concepts according to the semantics and
the statistics of the underlying data. Specially, it opens the door to explore the statis-
tic properties of fuzzy set theory and to a major enlargement of the role of natural
languages in probability theory. We prove that the membership functions defined
by (4.40) or (4.42) according to the observed data converges to the one defined
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Fig. 4.6 The membership functions of the three different fuzzy descriptions of cluster C1
discovered on the 8 different observed data sets in the 4 experiments
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Fig. 4.7 The membership function of the fuzzy description of cluster C2 discovered on the 8
different observed data sets in the 4 experiments
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Fig. 4.8 The membership functions of the two different fuzzy descriptions of cluster C3 dis-
covered on the 8 different observed data sets in the 4 experiments

by (4.41) or (4.43) according to the probability distribution for all x ∈ Ω as |X |
approaching infinity. Theorem 4.6 not only provides a clear representations of im-
precision and uncertainty which takes both fuzziness (subjective imprecision) and
randomness (objective and uncertainty) into account and treats the uncertainty of
randomness and of imprecision in a unified and coherent manner, but also gives a
practical methodology of knowledge discovery and representation for data analy-
sis. Along this approach direction, more systematic studies may be carried out in
view of an organic integration of the mentioned aspects within a general framework
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for statistical analysis based on a wider notion of information uncertainty including
fuzziness and its statistical treatment.

Exercises

Exercise 4.1. Let M be a non-empty set. If ∑i∈I(∏m∈Ai
m) ∈ EM,At ⊆ As, t,s ∈ I,

t �= s, show

∑
i∈I

(∏
m∈Ai

m) = ∑
i∈I−{s}

(∏
m∈Ai

m).

Exercise 4.2. Prove that the binary compositions ∨,∧ in Theorem 4.1 satisfy the
following properties: for any γ,ζ ,η ∈ EM

L1: γ ∧ γ = γ , γ ∧ γ = γ . (Idempotency)
L2: ζ ∨η = η ∨ζ , ζ ∧η = η ∧ζ . (Commutativity)
L3: γ ∨ (ζ ∨η) = (γ ∨ζ )∨η , γ ∧ (ζ ∧η) = (γ ∧ζ )∧η . (Associativity)

Exercise 4.3. For any γ,ζ ,η ,∈ EM, show the following D1 and D2 hold.

D1: γ ∧ (ζ ∨η) = (γ ∧ζ )∨ (γ ∧η);
D2: γ ∨ (ζ ∧η) = (γ ∨ζ )∧ (γ ∨η).

Exercise 4.4. For the completely distributive lattice (EM,∨,∧), prove that∧
i∈I

(α ∨βi) = α ∨ (
∧
i∈I

βi)

for any α,βi ∈ EM, i ∈ I.

Exercise 4.5. Let X be a set and ζ be any concept on X . Let Rζ be the binary re-
lation of the simple concept ζ defined by Definition 4.2 and Mζ = (ri j)n×n be the
correspondent Boolean matrix of Rζ defined by Definition 3.5. Show the following
assertions hold

1) rii = 0 ⇔ ri j = 0 for all j = 1,2, ...,n.
2) There exists a permutation Boolean matrix P such that

Mζ = P

[
N J
O1 O2

]
PT ,

where N is a Boolean matrix such that N + I = N, J is a universal Boolean matrix,
i.e.,whose elements are all 1, O1 and O2 are zero matrices.

3) The concept ζ on a set X is a simple concept if and only if N is the correspondent
Boolean matrix of a quasi-linear order, i.e., N2 = N,N + I = N.

Exercise 4.6. Let M, X = {x1,x2, ...,xn} be finite sets and g : X × X → 2M. Prove
that g satisfies AX1, AX2 of Definition 4.5 if and only if

M2
g = Mg and

⋃
1≤ j≤n

mi j ⊆ mii, i = 1,2, ...,n.



References 163

Open Problems

Problem 4.1. Find the simple and effective computing methodology for the mem-
bership functions of the fuzzy concepts defined by formulas (4.43) and (4.41) on the
whole space, which also could be applied to proceed mathematical analysis.

Problem 4.2. Find the numeric computations of the high dimension integral for
the membership functions of fuzzy concepts via the probability distributions when
many simple concepts involve the fuzzy concepts.

Problem 4.3. Estimation of the error boundary between the membership functions
of fuzzy concepts obtained by the observed data and that determined by the proba-
bility distributions.

Problem 4.4. Estimation of the error boundary between the membership functions
of fuzzy concepts obtained for different weight functions of the simple concepts and
analysis of the influence of subjective imprecision on the interpretations of the fuzzy
concepts.

Problem 4.5. Also apart from product which has been shown in (4.33) is there any
other t-norm which can (in a limited way - for conjunctions of basic expressions) be
captured in the AFS model?

Problem 4.6. Are there links between the AFS theory and Lawrys Label Semantics
which also defines fuzziness in terms of a probability measure?
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Chapter 5
AFS Algebras and Their Representations of
Membership Degrees

In this chapter, first we construct some lattices—AFS algebras using sets X and M
over an AFS structure (M,τ,X) for the representation of the membership degrees of
each sample x ∈ X belonging to the fuzzy concepts in EM. Then the mathematical
properties and structures of AFS algebras are exhaustively discussed. Finally, the
relations, advantages and drawbacks of various kinds of AFS representations for
fuzzy concepts in EM are analyzed. Some results listed without proofs are left for
the reader as exercises.

5.1 AFS Algebra

In [7], the author has defined a family of completely distributive lattices AFS al-
gebra and applied AFS algebra to study the lattice value representations for fuzzy
concepts. AFS algebra includes EIn algebras and E#In algebras, n = 1,2, ....

5.1.1 EIn Algebras

In this section, we introduce an EIn algebra. The EI algebra which is applied to
study the semantics and logic of the fuzzy concepts presented in Chapter 4 is a
particular type of the EIn algebra in case n = 1.

Definition 5.1. ([7]) Let X1, ...,Xn,M be n + 1 non-empty sets. Then the set
EX1...XnM+ is defined as follows

EX1...XnM+ =

{
∑
i∈I

(u1i...uniAi) | Ai ∈ 2M,uri ∈ 2Xr ,r = 1,2, ...,n, i ∈ I,

I is a non− empty indexing set} .

In the case n = 0,

EM+ =

{
∑
i∈I

Ai | Ai ∈ 2M, i ∈ I, I is a non− empty indexing set

}
.
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Each ∑i∈I(u1i...uniAi) is an element of EX1...XnM+ and ∑i∈I is a symbol ex-
pressing that element ∑i∈I(u1i...uniAi) is composed of items (u1i...uni)Ai, uri ⊆
Xr,Ai ⊆ M,r = 1,2, ...,n, i ∈ I separated by “+” . ∑i∈I(u1p(i)...unp(i)Ap(i)) and
∑i∈I(u1i...uniAi) are the same elements of EX1...XnM+ if p is a bijection from I
to I.

Definition 5.2. ([7]) Let X1, ...,Xn,M be n + 1 non-empty sets. A binary relation
R on EX1...XnM+ is defined as follows: ∀∑i∈I(u1i...uniAi) , ∑ j∈J(v1 j...vn jB j) ∈
EX1...XnM+,

[∑i∈I(u1i...uniAi)]R
[
∑ j∈J(v1 j...vn jB j)

]
⇐⇒

(i) ∀(u1i...uni)Ai (i ∈ I), ∃(v1h...vnh)Bh (h ∈ J) such that Ai ⊇ Bh, uri ⊆ vrh, 1 ≤
r ≤ n;

(ii) ∀(v1 j...vn j)B j ( j ∈ J), ∃ (u1k...unk)Ak (k ∈ I), such that B j ⊇ Ak, vr j ⊆ urk,
1 ≤ r ≤ n.

It is obvious that R is an equivalence relation. We denote EX1...XnM+/R (i.e., the
quotient set) as EX1...XnM. The notation ∑i∈I(u1i...uniAi) = ∑ j∈J(v1 j...vn jB j) im-
plies that the equivalence class containing∑i∈I(u1i...uniAi) is the same as the equiv-
alence class containing ∑ j∈J(v1 j...vn jB j).

Proposition 5.1. ([7]) Let X1, ...,Xn,M be n+1 non-empty sets. If At ⊆ As, urt ⊇ urs,
r = 1,2, ...,n, t,s ∈ I, t �= s, ∑i∈I(u1i...uniAi) ∈ EX1...XnM, then

∑
i∈I

(u1i...uniAi) = ∑
i∈I−{s}

(u1i...uniAi).

Theorem 5.1. ([7]) Let X1, ...Xn,M be n+1 non-empty sets. Then (EX1...XnM,∨,∧)
forms a completely distributive lattice under the binary compositions ∨ and ∧ de-
fined as follows: ∀∑i∈I(u1i...uniAi), ∑ j∈J(v1 j...vn jB j) ∈ EX1...XnM,

∑
i∈I

(u1i...uniAi)∨∑
j∈J

(v1 j...vn jB j) = ∑
k∈I�J

(w1k...wnkCk)

�∑
i∈I

(u1i...uniAi)+∑
j∈J

(v1 j...vn jB j), (5.1)

∑
i∈I

(u1i...uniAi)∧∑
j∈J

(v1 j...vn jB j) = ∑
i∈I, j∈J

[
(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)

]
, (5.2)

where ∀k ∈ I �J , Ck = Ak,wrk = urk when k ∈ I and Ck = Bk,wrk = vrk when k ∈ J,
r = 1,2, ...,n.

Proof. We just prove the theorem in the case n = 0 and the other cases, which remain
as exercises, are similar to the proof of Theorem 4.1. Let h be a map from EM+ to
EM∗ defined as follows: for any ξ = ∑i∈I Ai ∈ EM+, h(ξ ) = ∑i∈I(∏m∈Ai

m). It is
clear that h is a one-to-one correspondence between EM+ and EM∗. One can verify
that the following assertions hold: for ξ ,η ∈ EM,

1. ξ = η ⇔ h(ξ ) = h(η);
2. h(ξ ∨η) = h(ξ )∨h(η), h(ξ ∧η) = h(ξ )∧h(η).
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This implies that h is an isomorphism from (EM+/R,∨,∧) to (EM∗/R,∨,∧) which
is a completely distributive lattice. Therefore (EM+/R,∨,∧) is a completely dis-
tributive lattice. 
�

Considering that (EM+/R, ∨, ∧) and (EM∗/R, ∨, ∧) are isomorphism, both
EM+/R and EM∗/R are denoted as EM and called EI algebra. (EX1...XnM,∨,∧)
is called the EIn+1 (expanding n + 1 sets X1, ...Xn,M) algebra over X1, ...,Xn

and M. X1...Xn∅ and ∅...∅M are the maximum element and minimum element
of EX1...XnM, respectively. For α = ∑i∈I(u1i...uniAi), β = ∑ j∈J(v1 j...vn jB j) ∈
EX1...XnM, α ≤ β ⇐⇒ ∀(u1i...uni)Ai (i ∈ I), ∃(v1h...vnh)Bh (h ∈ J) such that
Ai ⊇ Bh, uri ⊆ vrh, 1 ≤ r ≤ n.

For a set, we know that the subsets of the set often contain or represent some
pieces of useful information. In real world applications, instead of a single set, of-
ten many sets are involved and the information and knowledge represented by the
subsets of different sets may exhibit various types of relationships. In order to study
such diverse relations associated with different sets, we introduce the notation of
EX1...XnM+. Every element of EX1...XnM+ is a “formal sum” of the terms consti-
tuted by the subsets of X1, X2, ..., Xn, M. For γ = ∑i∈I(u1i...uniAi) ∈ EX1...XnM+, γ
can be regarded as a result of “synthesis” of the information represented by all terms
u1i...uniAi’s. In practice, M is a set of elementary concepts, and X1, X2, ..., Xn are the
sets associated to the concepts formed in M. For example, let X be a set of persons
and M be a set of concepts such as “male”, “female”, “old”, “tall”, “high salary”,
“black hair persons ”, “white hair persons ”,...,etc. For ∑i∈I(uiAi) ∈ EXM+, every
term uiAi, i ∈ I, expresses that the persons in set ui ⊂ X satisfy some “condition”
described by the concepts in Ai ⊂ M. The AFS theory supports the studies on how
to convert the information represented by the elements of EX1...XnM+ in the train-
ing examples and databases into the membership functions and their fuzzy logic
operations.

Proposition 5.2. Let X1, ...Xn,M be n+1 non-empty sets, EX1...XnM and EX1...XhM
be EIn+1, EIh+1 algebra, 1 < h < n. ∀∑i∈I(u1i...uniAi) ∈ EX1...XnM, if

p

[
∑
i∈I

(u1i...uniAi)

]
=∑

i∈I
(u1i...uhiAi),

then p is a homomorphism from lattice (EX1...XnM,∨,∧) to lattice
(EX1...XhM,∨,∧).

Proof. It can be directly proved by making use of Definition 5.2 and Theorem 5.1.

�

5.1.2 E#In Algebras

In this section, we introduce E#In algebra which has different algebraic structures
from the EIn algebra and can be applied to represent the degrees of a sample be-
longing to the fuzzy concepts in EM.
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Definition 5.3. Let X1,X2, ...,Xn be n non-empty sets. A binary relation R# on the
set

EX1X2...X
+
n =

{
∑
i∈I

a1i...ani | ari ∈2Xr ,r=1, ...,n, I is a non− empty indexing set

}

is defined as follows: for ∑i∈I a1ia2i...ani, ∑ j∈J b1 jb2 j...bn j ∈ EX1X2...X+
n ,

(∑i∈I a1ia2i...ani)R#(∑ j∈J b1 jb2 j...bn j) ⇔
(i) ∀a1ia2i...ani (i ∈ I), ∃b1hb2h...bnh (h ∈ J) such that ari ⊆ brh,r = 1,2, ...n;
(ii) ∀b1 jb2 j...bn j ( j ∈ J), ∃a1ka2k...ank (k ∈ I) such that br j ⊆ ark, r = 1,2, ...n.

It is evident that R# is an equivalence relation on EX1X2...X+
n . We de-

note EX1X2...X+
n /R# (i.e. the quotient set) as E#X1X2...Xn. ∑i∈I a1ia2i...ani =

∑ j∈J b1 jb2 j...bn j implies that ∑i∈I a1ia2i...ani and ∑ j∈J b1 jb2 j...bn j are equivalent
under the equivalence relation R# and the membership degrees represented by them
are equal.

Proposition 5.3. Let X1,X2, ...,Xn be n non-empty sets. ∑i∈I a1ia2i...ani ∈
E#X1X2...Xn, if aru ⊆ arv, r = 1,2, ...,n, u, v ∈ I ,u �= v, then

∑
i∈I

a1ia2i...ani = ∑
i∈I−{u}

a1ia2i...ani.

Proof. It can be verified by using Definition 5.3. 
�

Theorem 5.2. Let X1,X2, ...,Xn be n non-empty sets. (E#X1X2...Xn, ∨, ∧) forms a
completely distributive lattice under the binary compositions ∨ and ∧ defined as
follows:

∑
i∈I

a1ia2i...ani ∨∑
j∈J

b1 jb2 j...bn j = ∑
k∈I�J

c1kc2k...cnk

�∑
i∈I

a1ia2i...ani +∑
j∈J

b1 jb2 j...bn j (5.3)

∑
i∈I

a1ia2i...ani ∧∑
j∈J

b1 jb2 j...bn j = ∑
i∈I, j∈J

(a1i ∩b1 j)(a2i ∩b2 j)...(ani ∩bn j) (5.4)

where ∀k ∈ I � J, crk = ark, r = 1, ...,n, if k ∈ I and crk = brk, r = 1, ...,n, if k ∈ J.

Proof. We just prove it for E#X . The proofs for E#X1X2...Xn are similar and re-
main as exercises. First, we prove that ∨, ∧ are binary compositions. Let ∑i∈I1 a1i =
∑i∈I2 a2i, ∑ j∈J1

b1 j = ∑ j∈J2
b2 j ∈ E#X . (5.3) can be directly verified Definition 5.3.

By (5.4),we have

∑
i∈I1

a1i ∧ ∑
j∈J1

b1 j = ∑
i∈I1, j∈J1

a1i ∩b1 j,

∑
i∈I2

a2i ∧ ∑
j∈J2

b2 j = ∑
i∈I2, j∈J2

a2i ∩b2 j.
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Since ∑i∈I1 a1i = ∑i∈I2 a2i,∑ j∈J1
b1 j = ∑ j∈J2

b2 j, hence for any a1i ∩ b1 j, i ∈ I1, j ∈
J1, there exist a2k, b2l,k ∈ I2, l ∈ J2, such that a1i ⊆ a2k,b1 j ⊆ b2l. Therefore a1i ∩
b1 j ⊆ a2k ∩ b2l. Similarly, for any a2i ∩ b2 j, i ∈ I2, j ∈ J2, there exist a1q, b1e,q ∈
I1,e ∈ J1, such that a2i ∩ b2 j ⊆ a1q ∩ b1e. This implies that ∑i∈I1, j∈J1

a1i ∩ b1 j =
∑i∈I2, j∈J2

a2i ∩b2 j and ∧ is a binary composition.
Theorem 2.4 states that two binary compositions satisfying the condition L1-L4

of Theorem 2.3 are lattice operations. For any ∑i∈I ai, ∑ j∈J b j, ∑k∈K ck ∈ E#X , we
can directly verify that ∨, ∧ satisfy L1-L3 of Theorem 2.3 by the definitions.

In what follows, we prove that ∨, ∧ satisfy L4 of Theorem 2.3. By Proposition
5.3, we have

(∑
i∈I

ai ∨∑
j∈J

b j)∧∑
i∈I

ai = ∑
i, j∈I

ai ∩a j + ∑
i∈I, j∈J

ai ∩b j

=∑
i∈I

ai + ∑
i∈I, j∈J

ai ∩b j =∑
i∈I

ai.

(∑
i∈I

ai ∧∑
j∈J

b j)∨∑
i∈I

ai = ∑
i∈I, j∈J

ai ∩b j +∑
i∈I

ai =∑
i∈I

ai.

Therefore ∨, ∧ satisfy L1-L4 of Theorem 2.3 and (E#X , ∨, ∧) is a lattice. ∑i∈I ai ≥
∑ j∈J b j ⇔∑i∈I ai∨∑ j∈J b j =∑i∈I ai. This implies that ∀b j,( j ∈ J), ∃ak,(k ∈ I) such
that b j ⊆ ak.

Next, we prove that (E#X , ∨, ∧) is a complete lattice. Let ∑ j∈Ii ai j ∈ E#X , i ∈ I.
We prove that

∨
i∈I(∑ j∈Ii ai j),

∧
i∈I(∑ j∈Ii ai j) ∈ E#X . It is obvious that

∑
j∈Ii

ai j ≤∑
i∈I
∑
j∈Ii

ai j,∀i ∈ I,

∑
j∈Ii

ai j ≥ ∑
f∈∏i∈I Ii

⋂
i∈I

ai f (i),∀i ∈ I.

For ∑u∈U bu ∈ E#X , if ∑ j∈Ii ai j ≤ ∑u∈U bu,∀i ∈ I, then ∀ai0 j0 , i0 ∈ I, j0 ∈ Ji0 , there
exists u0 ∈ U such that ai0 j0 ⊆ bu0 . Therefore∑i∈I∑ j∈Ii ai j ≤∑u∈U bu. This implies
that ∨

i∈I

(∑
j∈Ii

ai j) =∑
i∈I
∑
j∈Ii

ai j ∈ E#X . (5.5)

For ∑u∈U bu ∈ E#X , if ∑ j∈Ii ai j ≥ ∑u∈U bu,∀i ∈ I, then ∀bu0 ,u0 ∈ U and ∀i0 ∈ I,
there exists ji0 ∈ Ii0 such that bu0 ⊆ ai0 ji0

. This implies that there exists fu0 ∈∏i∈I Ii,

where fu0(i0) = ji0 ,∀i0 ∈ I, such that bu0 ⊆ ⋂
i∈I ai fu0(i). We have

∑
f∈∏i∈I Ii

⋂
i∈I

ai f (i) ≥ ∑
u∈U

bu

and ∧
i∈I

(∑
j∈Ii

ai j) = ∑
f∈∏i∈I Ii

⋂
i∈I

ai f (i) ∈ E#X . (5.6)

Therefore (E#X , ∨, ∧) is a complete lattice.
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Now, we prove that (E#X , ∨, ∧) is a completely distributive lattice. Let λi j =
∑u∈Ui j

ai j
u ∈ E#X , i ∈ I, j ∈ Ji, Ui j is a non-empty indexing set. It is obvious that for

any f ∈∏i∈I Ji,∀k ∈ I, since f (k) ∈ Jk, hence∧
i∈I

λi f (i) ≤ λk f (k) ≤
∨
j∈Jk

λk j.

Since ∀k ∈ I,∀ f ∈∏i∈I Ji,
∧

i∈I λi f (i) ≤ ∨
j∈Jk
λk j, hence for any f ∈∏i∈I Ji,∧

i∈I

λi f (i) ≤
∧
k∈I

(
∨
j∈Jk

λk j).

Therefore ∨
f∈∏i∈I Ji

(
∧
i∈I

λi f (i)) ≤
∧
i∈I

(
∨
j∈Ji

λi j). (5.7)

By (5.6) and (5.5), we have

∨
f∈∏i∈I Ji

(
∧
i∈I

λi f (i)) =
∨

f∈∏i∈I Ji

(
∧
i∈I

( ∑
u∈Ui f (i)

ai f (i)
u ))

= ∑
f∈∏i∈I Ji

( ∑
h∈∏i∈I Ui f (i)

⋂
i∈I

ai f (i)
h(i) ).

∧
i∈I

(
∨
j∈Ji

λi j) =
∧
i∈I

(∑
j∈Ji

∑
u∈Ui j

ai j
u )

=
∧
i∈I

( ∑
u∈⊔

k∈Ji
Uik

ei
u)

= ∑
g∈∏i∈I(

⊔
k∈Ji

Uik)

⋂
i∈I

ei
g(i).

where for any u ∈ ⊔
k∈Ji

Uik, ei
u = ai j

u , when u ∈ Ui j. For any g0 ∈∏i∈I(
⊔

k∈Ji
Uik),

since g0(i) ∈ ⊔
k∈Ji

Uik, i ∈ I, hence for any i ∈ I, there exists ki ∈ Ji such that g0(i) ∈
Uiki . This implies that if we define f0(i) = ki ∈ Ji, i ∈ I, then f0 ∈ ∏i∈I Ji, g0(i) ∈
Ui f0(i), g0 ∈ ∏i∈I Ui f0(i) and ei

g0(i) = ai f0(i)
g0(i)

, for any i ∈ I. Therefore for any g0 ∈
∏i∈I(

⊔
k∈Ji

Uik), there exist f0 ∈∏i∈I Ji such that g0 ∈∏i∈I Ui f0(i) and

⋂
i∈I

ei
g0(i)

=
⋂
i∈I

ai f0(i)
g0(i)

.

This implies that ∨
f∈∏i∈I Ji

(
∧
i∈I

λi f (i)) ≥
∧
i∈I

(
∨
j∈Ji

λi j).
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By (5.7), we have ∧
i∈I

(
∨
j∈Ji

λi j) =
∨

f∈∏i∈I Ji

(
∧
i∈I

λi f (i)).

Therefore (E#X , ∨, ∧) is a completely distributive lattice according to Theorem 2.28

�

(E#X1X2...Xn, ∨, ∧) is called a E#In algebra over X1,X2, ...,Xn. Although E#In alge-
bra and EIn algebra are similar in many ways, they are not dual lattices. E#I algebra
is a lattice which can be applied to represent the membership degrees of the fuzzy
sets in EM. We also can prove that E#I algebra and EI algebra are not isomorphism.
The proofs of the following properties remain as exercises: for any ∑i∈I ai ∈ E#X ,

1. ∅∨∑i∈I ai = ∑i∈I ai, ∅∧∑i∈I ai = ∅;
2. X ∨∑i∈I ai = X ,X ∧∑i∈I ai = ∑i∈I ai.

In E#I algebra E#X , ∅ is the minimum element and X is the maximum element.

Proposition 5.4. Let X1, ...,Xn,M be n+1 non-empty sets. EX1...XnM and E#X1...Xn

be EIn+1 and E#In algebra, respectively. ∀∑i∈I(u1i...uniAi) ∈ EX1...XnM, if

p

[
∑
i∈I

(u1i...uniAi)

]
=∑

i∈I
u1i...uni,

then p is a homomorphism from (EX1...XnM,∨,∧) to (E#X1...Xn,∨,∧).

Proof. First, we prove that p is a map. α, β ∈ EX1...XnM. Suppose α = β . By the
equivalence relations R and R# defined in Definition 5.3 and Definition 5.2, one can
verify that p(α) = p(β ) in E#X1...Xn.

Next, we prove that p is a homomorphism. For any ∑i∈I(u1i...uniAi),
∑ j∈J(v1 j...vn jB j) ∈ EX1...XnM,

p

[
∑
i∈I

(u1i...uniAi)∨∑
j∈J

(v1 j...vn jB j)

]
=∑

i∈I
u1i...uni +∑

j∈J
v1 j...vn j

= p

[
∑
i∈I

(u1i...uniAi)

]
∨ p

[
∑
j∈J

(v1 j...vn jB j)

]
.

p

[
∑
i∈I

(u1i...uniAi)∧∑
j∈J

(v1 j...vn jB j)

]
= p

[
∑

i∈I, j∈J
(u1i ∩ v1 j...uni ∩ vn jAi ∪B j)

]

= ∑
i∈I, j∈J

u1i ∩ v1 j...uni ∩ vn j

= p

[
∑
i∈I

(u1i...uniAi)

]
∧ p

[
∑
j∈J

(v1 j...vn jB j)

]
.


�
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5.2 AFS Algebra Representation of Membership Degrees

Generic fuzzy sets, L-fuzzy sets or Boolean subsets of some universe of discourse X
are various representation of fuzzy concepts or Boolean concepts. We regard fuzzy
sets or L-fuzzy sets as different representing forms of fuzzy concepts and fuzzy sets
of X mean all kinds of representing forms for fuzzy concepts. The fuzzy sets and
Boolean subsets on X can be described in the following way.

For a fuzzy set ζ on universe of discourse X , any x ∈ X , either x belongs to ζ at
some degree or does not belong to ζ at all, while for a Boolean subset A of X , any
x ∈ X , either x belongs to A or does not belong to A at all.

In what follows, we introduce three types of L-fuzzy sets proposed in [7] whose
membership degrees are in lattices EI2, EI3 and E#I algebras, respectively.

Theorem 5.3. ([7]) Let (M,τ,X) be an AFS structure. U ⊆ X, A ⊆ M. We introduce
the notation

Aτ(U) = {y | y ∈ X ,τ(x,y) ⊇ A for any x ∈ U}. (5.8)

For any given x ∈ X, if we define a mapping φx : EM → EXM as follows: for any
∑i∈I(∏m∈Ai

m) ∈ EM,

φx

(
∑
i∈I

(∏
m∈Ai

m)

)
=∑

i∈I
Aτi (x)Ai ∈ EXM, (5.9)

then φx is a homomorphism from lattice (EM,∨,∧) to lattice (EXM,∨,∧), where
Aτi ({x}) is simply denoted as Aτi (x) defined as (4.27).

For A ⊆ M, x ∈ X ,Aτ(x) = {y|y ∈ X ,τ(x,y) ⊇ A}, which is the subset of X , for any
y ∈ Aτ(x), the degree of x belonging to the fuzzy concept ∏m∈A m ∈ EM is larger
than or equal to that of y since τ(x,y) ⊇ A. By Theorem 5.3, we know that for any
given fuzzy concept ∑i∈I(∏m∈Ai

m) ∈ EM, we form a map ∑i∈I(∏m∈Ai
m) : X →

EXM defined as follows: for any x ∈ X ,

(∑
i∈I

(∏
m∈Ai

m))(x) =∑
i∈I

Aτi (x)Ai ∈ EXM. (5.10)

Since (EXM,∨,∧) is a lattice, hence the map ∑i∈I(∏m∈Ai
m) is a L-fuzzy set (with

membership degrees in lattice EXM ). In this way, ∑i∈I(∏m∈Ai
m) is L-fuzzy set on

X and the membership degree of x (x ∈ X) belonging to fuzzy set ∑i∈I(∏m∈Ai
m)

is ∑i∈I Aτi (x)Ai ∈ EXM. If ∑i∈I Aτi (x)Ai ≥ ∑i∈I Aτi (y)Ai in lattice EXM, then the
degree of x belonging to fuzzy set ∑i∈I(∏m∈Ai

m) is larger than or equal to that of
y. For fuzzy sets α = ∑i∈I(∏m∈Ai

m),β = ∑ j∈J(∏m∈B j
m) ∈ EM, fuzzy set α ∨β

and α ∧β are logic “or” and “and” of L-fuzzy sets α and β respectively. ′ is the
negation of the fuzzy concepts in EM. Thus (EM,∨,∧,′ ) is a fuzzy logic system.

In order to utilize more information to represent the membership degrees of fuzzy
sets, we introduce EI3 algebra representation for fuzzy concepts in EM below.

Let (M,τ1,X) be an AFS structure, where X is a universe of discourse and M is
a set of simple concepts. In some case, for a given x ∈ X , and m1, m2 ∈ M, we can



5.2 AFS Algebra Representation of Membership Degrees 175

compare the degree of x belonging to m1 with that of x belonging to m2. In order
to utilize this kind of information, we can employ another AFS structure (X ,τ2,M),
where ∀(m1,m2) ∈ M × M, τ2(m1,m2) = {x | x ∈ X ,m1 ≥x m2}, where m1 ≥x m2

means that x belongs to concept m1 at some degree and the degree of x belonging to
m1 is larger than or equals to the degree of x belonging to m2. It is obvious that if
the representations of membership degrees of fuzzy sets can utilize both (M,τ1,X)
and (X ,τ2,M), then the representations of fuzzy concepts will be more accurate
than that given just by (M,τ1,X). The following definition expresses the conditions
under which two AFS structures capture different aspect abstractions for the same
original data.

Definition 5.4. ([7]) Let X , M be sets, (M,τ1,X) and (X ,τ2,M) be AFS structures.
m ∈ M, x ∈ X . If τ1, τ2 satisfy:

1. x ∈ τ2(m,m) ⇔ m ∈ τ1(x,x);
2. x ∈ τ2(m,m) ⇒ {y | y ∈ X ,τ1(y,x) ⊇ {m}} ⊆ τ2(m,m).

Then we call (M,τ1,X) compatible with (X ,τ2,M) and ((M,τ1,X),(X ,τ2,M)) is
called the cognitive space.

Theorem 5.4. ([7]) Let X and M be sets. (M,τ1,X) is compatible with (X ,τ2,M).
∀x ∈ X, for any ∑i∈I(∏m∈Ai

m) ∈ EM, if we define

φx

(
∑
i∈I
∏

m∈Ai

m

)
=∑

i∈I
Aτ1i (x){x}τ2(Ai)Ai ∈ EXMM, (5.11)

then φx is a homomorphism from lattice (EM,∨,∧) to lattice (EXMM,∨,∧), where
Aτ1i (x) and {x}τ2(Ai) are defined by (5.8).

By Theorem 5.4, we know that for any given fuzzy concept∑i∈I∏m∈Ai
m ∈ EM, we

get a map ∑i∈I∏m∈Ai
m : X → EXMM defined as follows: for any x ∈ X ,

(∑
i∈I
∏

m∈Ai

m)(x) =∑
i∈I

Aτ1i (x){x}τ2(Ai)Ai ∈ EXMM. (5.12)

Since (EXMM,∨,∧) is a lattice, hence by Theorem 5.4, EI3 algebra representation
for fuzzy concepts in EM is obtained and (EM,∨,∧,′ ) is a fuzzy logic
system for the EI3 algebra representing fuzzy concepts. We know EI3 algebra
represented fuzzy sets in EM can utilize more information than EII algebra rep-
resentations. This implies that EI3 algebra representation is more accurate than EII
algebra representation and there may be more elements in X which cannot be com-
pared under EI3 algebra representation than EII algebra representation. By Propo-
sition 5.2, one can verify that if ∑i∈I Aτ1i (x){x}τ2(Ai)Ai ≤ ∑i∈I Aτ1i (y){y}τ2(Ai)Ai in
lattice (EXMM,∨,∧), then ∑i∈I Aτ1i (x)Ai ≤ ∑i∈I Aτ1i (y)Ai in lattice (EXM,∨,∧).
Thus for the EI3 algebra membership degrees of x,y defined by (5.12), we have
(∑i∈I∏m∈Ai

m)(x) ≤ (∑i∈I∏m∈Ai
m)(y). This implies that the more detail informa-

tion is considered for the membership degrees, the more elements in universe of
discourse may not be compared.
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Although EII,EI3 algebra representations of fuzzy concepts containing great in-
formation, in some case, too many pair elements in X may not be compared. The
following E#I algebra representations of the membership degrees for each fuzzy
concept in EM may filter (eliminate) some trivial information to make more pairs
of elements comparable.

By Proposition 5.4, we know for α , β ∈ EX1...XnM, if α ≥ β , i.e., α ∨β = α in
lattice (EX1X2...XnM,∨,∧), then p(α∨β ) = p(α)∨ p(β ) = p(α) i.e. p(α) ≥ p(β )
in (E#X1X2...Xn,∨,∧). Given an AFS structure (M,τ,X) and for each x ∈ X , we
have two homomorphisms φx : EM → EXM and p : EXM→ E#X by Theorem 5.3
and Proposition 5.4. Since both φx and p are homomorphisms, hence the composed
map of φx and p, p◦φx : EM →E#X is a homomorphism from the lattice (EM,∨,∧)
to the lattice (E#X ,∨,∧). For each fuzzy concept ∑i∈I∏m∈Ai

m ∈ EM, we get an-
other kind of L-fuzzy set representation, i.e., the E#I algebra represented member-
ship degrees as follows: ∀x ∈ X

(∑
i∈I
∏

m∈Ai

m)(x) = p ◦φx(∑
i∈I
∏

m∈Ai

m) = p(∑
i∈I

Aτi (x)Ai) =∑
i∈I

Aτi (x) ∈ E#X . (5.13)

By Proposition 5.4, for x, y ∈ X , if ∑i∈I Aτi (x)Ai ≤∑i∈I Aτi (y)Ai in lattice EXM, then
∑i∈I Aτi (x) ≤ ∑i∈I Aτi (y) in lattice E#X . Therefore, compared with the EII algebra
representing membership degrees, E#I algebra representation is finer. Although E#I
algebra represented membership degrees are finer than EII algebra representations,
we should notice that E#I algebra representations lost some original information and
are not so strict as EII algebra representations. In what follows, we apply EI3 alge-
bra to develop another E#I algebra represented L-fuzzy sets in EM by the following
theorem.

Theorem 5.5. Let M, X be sets. M ∩ X = ∅. EXMM is the EI3 algebra on X ,
M, M and E#(X ∪ M) is E#I algebra on X ∪ M. For any ∑i∈I aieiAi ∈ EXMM, if
we define p(∑i∈I aieiAi) = ∑i∈I ai ∪ ei, then p is a homomorphism from the lattice
(EXMM,∨,∧) to the lattice (E#(X ∪M),∨,∧).

Proof. First, we prove that p is a map from EXMM to E#(X ∪ M). Let α =
∑i∈I aieiAi, β = ∑ j∈J b jq jB j ∈ EXMM. Suppose α = β . By the equivalence re-
lations R and R# defined in Definition 5.2 and Definition 5.3, we have that ∀i ∈ I,
∃k ∈ J such that ai ⊆ bk, ei ⊆ qk, Bk ⊆ Ai and ∀ j ∈ J,∃l ∈ I such that b j ⊆ al , q j ⊆ el ,
Al ⊆ B j. This implies that ∀i ∈ I, ∃k ∈ J such that ai ∪ei ⊆ bk ∪qk and ∀ j ∈ J, ∃l ∈ I
such that b j ∪q j ⊆ al ∪ el. Therefore

p

(
∑
i∈I

aieiAi

)
=∑

i∈I
ai ∪ ei =∑

j∈J
b j ∪q j = p

(
∑
j∈J

b jq jB j

)

in E#(X ∪M) and p is a map from EXMM to E#(X ∪M).
Next, we prove that p is a homomorphism from the lattice (EXMM,∨,∧) to the

lattice (E#(X ∪M),∨,∧). For any ∑i∈I aieiAi, ∑ j∈J b jq jB j ∈ EXMM,
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p

(
∑
i∈I

aieiAi ∨∑
j∈J

b jq jB j

)
= ∑

i∈I
ai ∪ ei +∑

j∈J
b j ∪q j

= p

(
∑
i∈I

aieiAi)∨ p(∑
j∈J

b jq jB j

)
.

p

(
∑
i∈I

aieiAi ∧∑
j∈J

b jq jB j

)
= p

(
∑

i∈I, j∈J
ai ∩b jei ∩q jAi ∪B j

)

= ∑
i∈I, j∈J

(ai ∩b j)∪ (ei ∩q j).

Since M ∩X = ∅, ai, b j ∈ 2X , ei, q j ∈ 2M, hence for any i ∈ I, j ∈ J,

(ai ∪ ei)∩ (b j ∪q j) = ((ai ∪ ei)∩b j)∪ ((ai ∪ ei)∩q j)
= ((ai ∩b j)∪ (ei ∩b j))∪ ((ai ∩q j)∪ (ei ∩q j))
= (ai ∩b j)∪ (ei ∩q j).

Hence

p

(
∑
i∈I

aieiAi ∧∑
j∈J

b jq jB j

)
= ∑

i∈I, j∈J

(ai ∩b j)∪ (ei ∩q j)

= ∑
i∈I, j∈J

(ai ∪ ei)∩ (b j ∪q j)

=∑
i∈I

(ai ∪ ei)∧∑
j∈J

(b j ∪q j)

= p

(
∑
i∈I

aieiAi

)
∧ p

(
∑
j∈J

b jq jB j

)
. 
�

Similarly, we can verify that for α,β ∈ EXMM, if α ≤ β , in the lattice (EXMM, ∨,
∧) then p(α) ≤ p(β ) in the lattice (E#(X ∪M),∨,∧). Given two compatible AFS
structure (M,τ1,X), (X ,τ2,M) and for each x ∈ X , we have two homomorphisms
φx : EM →EXMM, p : EXMM→E#(X ∪M) by Theorem 5.4 and Theorem 5.5. The
composed map p◦φx of φx and p is a homomorphism form the lattice (EM,∨,∧) to
the lattice (E#(X ∪M),∨,∧). For each fuzzy concept ∑i∈I∏m∈Ai

m ∈ EM, the E#I
algebra representing membership degree of x is defined as follows:

(∑
i∈I
∏

m∈Ai

m)(x) = p◦φx(∑
i∈I
∏

m∈Ai

m) =∑
i∈I

[
Aτ1i (x)∪{x}τ2(Ai)

]
∈ E#(X ∪M). (5.14)

One can verify that for fuzzy concepts α,β ∈ EM, if α ≥ β in lattice EM, then
∀x ∈ X , α(x) ≥ β (x) in E#I algebra.

In what follows, we study the norm of AFS algebra by which we can obtain
coherence membership degrees in [0,1] interval from various AFS algebra repre-
senting fuzzy sets.
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5.3 Norm of AFS Algebra and Membership Functions of Fuzzy
Concepts

In this section, we study the norm of the EIn,(n > 1),E#I algebra in order to convert
the AFS algebra -represented membership degrees to the [0,1] interval.

Definition 5.5. Let L be a set and (L,∨,∧) be a lattice. The map ||.|| : L → [0,1] is
called a fuzzy norm of the lattice L if ||.|| satisfies the following conditions: for any
x,y ∈ L,

1. if x ≤ y, then ||x|| ≤ ||y||;
2. ||x∧ y|| ≤ min{||x||, ||y||}, ||x∨ y|| ≥ max{||x||, ||y||}.

In what follows, we propose a special family of measure by which EIn,(n > 1),E#I
algebra becomes lattices with norms. Such that we can convert AFS algebra rep-
resented membership degrees to [0,1] interval and at great extent to preserve the
information contained in the EII representations.

Definition 5.6. (Continuous case) Let X be a set, X ⊆ Rn. ρ : X → R+ = [0,∞). ρ is
integrable on X under Lebesgue measure and 0 <

∫
X ρdµ <∞. S (S ⊆ 2X ) is the set

of Borel sets in X . For all A ∈ S, we define a measure M over S,

M (A) =
∫

Aρdµ∫
X ρdµ

. (5.15)

(Discrete case) Let X be a set, S is a σ -algebra over X . ρ : X → R+ = [0,∞). 0 <

∑x∈X ρ(x) < ∞. For any A ∈ S, the measure M over σ -algebra S on X is defined as
follows,

M (A) = ∑x∈Aρ(x)
∑x∈X ρ(x)

. (5.16)

By Definition 1.41, we can verify that M defined in Definition 5.6 is a measure
over X for each function ρ . Indeed for each simple concept ζ on X , according to the
distributions of original data and the interpretation of ζ , ζ corresponds to a function
ρζ : X → R+ = [0,∞), by which we can obtain the norm of AFS algebra using
measure mζ provided by Definition 5.6.

Proposition 5.5. Let X1, ...Xn,M be n + 1 non-empty sets, EX1...XnM be EIn+1 al-
gebra over X1, ...,Xn,M and M be a finite set of simple concepts, Sr be a σ -algebra
over Xr, r = 1,2, ...,n. Let σ(EX1...XnM), a subset of EX1...XnM, be defined as
follows:

σ(EX1...XnM) =

{
∑
i∈I

(u1i...uniAi) ∈ EX1...XnM | uri ∈ Sr, r = 1, ..., n, ∀i ∈ I

}
.

(5.17)

Then (σ(EX1...XnM),∨,∧) is a sublattice of (EX1...XnM,∨,∧), i.e., ξ ∨η , ξ ∧η ∈
σ(EX1...XnM) for all ξ ,η ∈ σ(EX1...XnM).
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Proposition 5.6. Let X1, ...Xn,M be n + 1 non-empty sets, EX1...XnM be EIn+1

algebra over X1, ...,Xn,M and M be a finite set of simple concepts, Sr be a σ -
algebra over Xr, r = 1,2, ...,n. For each simple concept ζ ∈ M, let Mζ be the mea-
sure defined by Definition 5.6 for ρζ . Then the map ||.|| : σ(EX1...XnM) → [0,1]
defined as follows is a fuzzy norm of the lattice (σ(EX1...XnM),∨,∧): for any
∑i∈I(u1i...uniAi) ∈ σ(EX1...XnM),

||∑
i∈I

(u1i...uniAi)|| = sup
i∈I

(
inf

m∈Ai
∏

1≤r≤n

Mm(uri)

)
∈ [0,1]. (5.18)

or

||∑
i∈I

(u1i...uniAi)|| = sup
i∈I

(
∏

m∈Ai,1≤r≤n

Mm(uri)

)
∈ [0,1]. (5.19)

For u1k...unkAk, k ∈ I,if Ak = ∅, define

inf
m∈Ak

∏
1≤r≤n

Mm(urk) = ∏
m∈Ai,1≤r≤n

Mm(uri) = ∏
1≤r≤n

[
max
m∈M

{Mm(urk)}
]
. (5.20)

Proof. We prove that what (5.18) defines is a fuzzy norm. In virtue of (5.18) and
(5.20), for any A ⊆ M, A �= ∅,∀uk ⊆ Xk, k = 1, ...,n, we have

||(u1...un)A|| = inf
m∈A
∏

1≤r≤n

Mm(ur) ≤ ∏
1≤r≤n

[
max
m∈M

{Mm(ur)}
]

= ||(u1...un)∅||.

Let ξ = ∑i∈I(u1i...uniAi),η = ∑ j∈J(v1 j...vn jB j) ∈ σ(EX1...XnM). ||ξ ∨ η || =
max{||ξ ||, ||η ||} can be directly proved by the (5.18). Now we prove ||ξ ∨η || ≤
min{||ξ ||, ||η ||}. By Theorem 5.1, we have

||∑
i∈I

(u1i...uniAi)∧∑
j∈J

(v1 j...vn jB j)|| = || ∑
i∈I, j∈J

[
(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)

]
||,

= sup
i∈I, j∈J

{||(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)||}.

For any i ∈ I, j ∈ J, we have

||(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)|| = inf
m∈Ai∪B j

∏
1≤r≤n

Mm(uri ∩ vr j)

≤ inf
m∈Ai∪B j

∏
1≤r≤n

Mm(uri) ≤ inf
m∈Ai

∏
1≤r≤n

Mm(uri)

≤ ||∑
i∈I

(u1i...uniAi)||. (5.21)

Similarly, we can show that for any i ∈ I, j ∈ J,

||(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)|| ≤ ||∑
j∈J

(v1 j...vn jB j)||. (5.22)
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By (5.21) and (5.22), we have

||∑
i∈I

(u1i...uniAi)∧∑
j∈J

(v1 j...vn jB j)|| = sup
i∈I, j∈J

{||(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)||}

≤ min{||∑
i∈I

(u1i...uniAi)||, ||∑
j∈J

(v1 j...vn jB j)||}.

Suppose that ξ ≤ η in lattice σ(EX1...XnM). By Theorem 5.1 we know that
∀(u1i...uni)Ai, (i ∈ I), ∃(v1k...vnk)Bk, (k ∈ J) such that uri ⊆ vrk,Ai ⊇ Bk. By (5.18),
one knows that ||(u1i...uni)Ai|| ≤ ||(v1k...vnk)Bk||. This implies that ||ξ || ≤ ||η ||.
Therefore ||.|| defined by (5.18) satisfies Definition 5.5 and it is a fuzzy norm. 
�

Proposition 5.7. Let X be a set and E#X be the E#I algebra over X. S is the σ -
algebra on X and M is a measure on S with M (X) = 1. Let σ(E#X), a subset of
E#X, be defined as follows:

σ(E#X) = {∑
i∈I

ai ∈ E#X | ai ∈ S, ∀i ∈ I}. (5.23)

Then the following assertions hold:

1. (σ(E#X),∨,∧) is a sublattice of the lattice (E#X ,∨,∧);
2. the map ||.|| : σ(E#X) → [0,1] defined as follows is a fuzzy norm of the lattice

(σ(E#X),∨,∧): for any γ = ∑i∈I ai ∈ σ(E#X),

||γ|| = sup
i∈I

{M (ai)}. (5.24)

Proof. Let ξ = ∑i∈I ai,η = ∑ j∈J b j ∈ σ(E#X). ||ξ ∨η || = max{||ξ ||, ||η ||} can be
directly proved by the (5.24). Now we prove ||ξ ∨η || ≤ min{||ξ ||, ||η ||}. By Theo-
rem 5.2, we have

||∑
i∈I

ai ∧∑
j∈J

b j)|| = || ∑
i∈I, j∈J

(ai ∩b j)|| = sup
i∈I, j∈J

{
||ai ∩b j||

}

≤ sup
i∈I, j∈J

{min
{
||ai||, ||b j||}

}
≤ min

{
||∑

i∈I

ai||, ||∑
j∈J

b j||
}

.

Suppose ξ ≤ η in lattice σ(E#X). By Theorem 5.2 we know that ∀ai, (i ∈ I),
∃bk, (k ∈ J) such that ai ⊆ bk. By (5.24), one knows that ||Ai|| ≤ ||Bk||. This implies
that ||∑i∈I ai|| ≤ ||∑ j∈J b j||. Therefore ||.|| defined by (5.24) satisfies Definition 5.5
and it is a fuzzy norm. 
�

In general, the weight function ρξ defined by Definition 4.8 can be applied to con-
struct the measure defined by Definition 5.6 for a simple concept ξ . For a fuzzy
concept ζ = ∑i∈I∏m∈Ai

m ∈ EM,the membership function µζ (x) can be obtained
by ||.|| a fuzzy norm of AFS algebra as follows:

µζ (x) = ||(∑
i∈I
∏

m∈Ai

m)(x)||,∀x ∈ X , (5.25)
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where (∑i∈I∏m∈Ai
m)(x) is the AFS algebra represented membership degree defined

by one of (5.10), (5.12),(5.13) and (5.14).

Theorem 5.6. Let X be a set and M be a set of simple concepts on X. Let (M,τ,X)
be an AFS structure and ||.|| be a fuzzy norm of an AFS algebra. For any fuzzy
concept ξ ∈ EM, let ξ (x) is the AFS algebra representating membership degree by
any one of (5.10), (5.12),(5.13) and (5.14). Then {µξ (x) | ξ ∈ EM} is the set of
coherence membership functions of the AFS fuzzy logic system (EM,∨,∧,′ ) and the
AFS structure (M,τ,X).

The following example shows how to construct the coherence membership functions
of the fuzzy concepts in EM by using the norm of the AFS algebra.

Example 5.1. Let X = {x1,x2, ...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table 5.1; there the number i in the “hair color” columns which corre-
sponds to some x ∈ X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {m1,m2, ..., m10} be
the set of fuzzy or Boolean concepts on X and each m ∈ M associate to a single fea-
ture. Where m1 : “old people”, m2 : “tall people”, m3 : “heavy people”, m4 : “high
salary”, m5 : “more estate”, m6 :“male”, m7 : “female”, m8 : “black hair people”,
m9 : “white hair people”, m10 : “yellow hair people”.

For each numerical attribute m ∈ M, ρm(x) is equal to the value of x on the
attribute, for each Boolean attribute m and each attribute m described by a sub-
preference relation ρm(x) = 1 ⇔ x possesses attribute m at some extent. For ex-
ample, ρm9(x7) = 0 implies that x7 has not white hair. For each m ∈ M, let
ρm′(x) = maxx∈X (ρm(x)) − ρm(x) for x ∈ X , where m′ is the negation of simple
concept m. By Definition 4.8, we can verify that each ρm is the weight function
of concept m. Table 5.2 shows each weight function of the simple concept in M.
Table 5.3 shows the membership functions obtained by the norm of the lattice

Table 5.1 Description of features

appearance wealth gender hair color
age height weigh salary estate male f emale black white yellow

x1 20 1.9 90 1 0 1 0 6 1 4
x2 13 1.2 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 1.4 54 15 2 1 0 5 2 2
x6 37 1.6 80 80 28 0 1 6 1 4
x7 45 1.7 78 268 90 1 0 1 6 4
x8 70 1.65 70 30 45 1 0 3 4 2
x9 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3
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Table 5.2 Weight functions of simple concepts in M

ρmi ρm1 ρm2 ρm3 ρm4 ρm5 ρm6 ρm7 ρm8 ρm9 ρm10

x1 20 1.9 90 1 0 1 0 1 1 1
x2 13 1.2 32 0 0 0 1 1 1 1
x3 50 1.7 67 140 34 0 1 1 1 1
x4 80 1.8 73 20 80 1 0 1 1 1
x5 34 1.4 54 15 2 1 0 1 1 1
x6 37 1.6 80 80 28 0 1 1 1 1
x7 45 1.7 78 268 90 1 0 1 0 1
x8 70 1.65 70 30 45 1 0 1 1 1
x9 60 1.82 83 25 98 0 1 1 1 1
x10 3 1.1 21 0 0 0 1 1 1 1

Table 5.3 Membership functions obtained by the norm of the lattice EXM defined by (5.18)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µα1() .0874 .0388 .4903 1.0 .1699 .2597 .3689 .8058 .6359 .0073
µα2() 0 0 .1698 .5013 .0053 .0796 .7401 .2891 1.0 0
µα3() 1 0 0 1 1 0 1 1 0 0
µα4() 0 0 0 .5013 .0053 0 .3183 .2891 0 0
µα5() .0017 0 .5371 .5013 .0276 .2953 .3689 .2891 1 0
µα ′

5
() .6750 1 .0609 .0431 .5124 .1504 .2448 .1012 0 1

Table 5.4 Membership functions obtained by the norm of the lattice E#X defined by (5.24)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µα1() .3000 .2000 .7000 1.0 .4000 .5000 .6000 .9000 .8000 .1000
µα2() 0 0 .6000 .8000 .4000 .5000 .9000 .7000 1.0 0
µα3() 1 0 0 1 1 0 1 1 0 0
µα4() 0 0 0 .8000 .4000 0 .6000 .7000 0 0
µα5() .3000 0 .9000 .8000 .4000 .8000 .6000 .7000 1 0
µα ′

5
() .8000 1 .2000 .3000 .7000 .3000 .5000 .2000 0 1

(EXM,∨,∧) defined by (5.18) for the weight functions in Table 5.2. Table 5.4
shows the membership functions obtained by the norm of the lattice (E#X ,∨,∧)
defined by (5.24) for ∀a ⊆ X , M (a) = |a|. Where α1 = m1, α2 = m5, α3 = m6,
α4 = m1m5m6, α5 = m1m4m6 + m1m5m6 + m4m7 + m5m7, α ′

5 ∈ EM. By (4.19), we
have α ′

5 = m′
6m′

7 + m′
4m′

5 + m′
1m′

7.

Compared to t-norm and t-conorm, if ∀α,β ∈ EX1...XnM, define T (α,β ) = ||α ∧
β ||, where ||.|| is the norm of EX1...XnM or E#X , then T has the similar property
to the one of any t-norm and satisfies the following: α,β ,γ,δ ∈ EX1...XnM,

‖O∧O‖ = 0, ||α ∧1|| = ||1∧α|| = ||α||, ||α ∧β || = ||β ∧α||,
||α ∧β || ≤ ||γ ∧δ ||, i f α ≤ γ,β ≤ δ in lattice EX1...XnM or in lattice E#X ,
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where 1 is the maximum element (X1...Xn)∅ in EX1...XnM or X in E#X and O is
the minimum element (∅...∅)M in EX1...XnM or ∅ in E#X . Similarly, if ∀α,β ∈
EX1...XnM, define S (α,β ) = ||α ∨ β ||, then S has the similar properties to t-
conorm.

For each fuzzy concept γ ∈ EM, the membership degree of each x belonging
to γ can be represented by the lattice EXM, EXMM, E#X or E#(X ∪ M), and by
the norms of these lattice representations, four kinds of [0,1] representations can
be obtained. If the original information allows us to establish one AFS structure
(M,τ,X) instead of two compatible AFS structures, then we have four kinds of
representations of the membership degrees which are all in agreement and in the
following order from left to right more and more finer (i.e. more and more elements
in X are comparable) while more and more original information becomes lost.

1. EXM representations→ E#X representations;
2. The norm of EXM representations→the norm of E#X representations;

If the original information allows us to establish two compatible AFS structures
(M,τ1,X), (X ,τ2,M), then we have eight kinds of representations of the member-
ship degrees which are all consistent and in the following order from left to right
more and more finer (i.e. more and more elements in X are comparable) while more
and more original information are lost.

1. EXMM representations→ E#(X ∪M) representations
2. EXMM representations→ EXM representations→ E#X representations.
3. The norm of EXMM representations→The norm of E#(X ∪M) representations
4. The norm of EXMM representations→The norm of EXM representations→The

norm of E#X representations.

For a real world problem, the type of representation to be employed depends on how
much original information is provided, how much the original information we have
to preserve and how many elements in the universe of discourse we want to com-
pare their membership degrees by including in decision making. Thus for the fuzzy
concepts in EM, this approach provides 8 kinds of representations of the member-
ship degrees, i.e., EXM, EXMM, E#X , E#(X ∪M) algebra and four kinds of [0,1]
interval representations and their fuzzy logic operations, which are automatically
determined by the distribution of original data and the semantic interpretations of
the simple concepts in M. All these representation are harmonic and consistent. That
is, for x,y ∈ X and any fuzzy concept ζ ∈ EM, if the membership degrees of x and
y belonging to ζ are comparable in two different AFS representing forms, then the
orders of x and y belonging to ζ in the two different AFS representing forms must
be the same.

5.4 Further Algebraic Properties of AFS Algebra

In this section, we first elaborate on the order of the EI algebra. Second, the math-
ematical properties and algebraic structures of EIn algebra have been exhaustively
explored and the expressions of both ∧-irreducible elements in the molecular lattice
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(EM,∨,∧) and (EX1...XnM,∨,∧) are developed. Next the standard minimal fam-
ily of elements in (EM,∨,∧) and (EX1...XnM,∨,∧) is formulated. It is proved that
neither (EM,∨,∧) nor (EX1...XnM,∨,∧) is a fuzzy lattice.

5.4.1 Order of EI Algebra

In this section, we study the order of EI algebra generated by some finite elements
[21]. The results shown that AFS algebra leads to structures. It involves difficult
combinatoric problems such as the Sperner class [6].

Definition 5.7. Let M be a finite set. The number of the elements in EM is called
the order of the EI algebra of EM, denoted as O(EM).

Let M be the set of simple concepts on a set X . O(EM) is the number of complex
concepts generated by the simple concepts in M, which are not equivalent in EI
algebra EM,, i.e., they have different semantic interpretations.

Definition 5.8. Let M be any set, ∑i∈I Ai ∈ EM. ∑i∈I Ai is called irreducible, if for
any u ∈ I, ∑i∈I Ai �= ∑i∈I,i�=u Ai, otherwise ∑i∈I Ai is called reducible.

For any irreducible fuzzy concept α = ∑i∈I Ai ∈ EM, if β is a fuzzy concept ob-
tained by omitting an item Ai from α , then α , β are different fuzzy concepts.

Lemma 5.1. ([1, 3, 7])Let M be a set. For ∑i∈I Ai,∑ j∈J B j ∈ EM, if ∑i∈I Ai =
∑ j∈J B j, ∑i∈I Ai and ∑ j∈J B j are both irreducible, then {B j| j ∈ J} = {Ai|i ∈ I}.

Its proof is left as an exercise. According to Lemma 5.1, we arrive at the following
definition.

Definition 5.9. Let M be a set and ∑i∈I Ai ∈ EM. |∑i∈I Ai|, the set of irreducible
items of ∑i∈I Ai is defined as follows.

|∑
i∈I

Ai| � {Ai | i ∈ I, f or any j ∈ I, i �= j, Ai � A j}.

||∑i∈I Ai|| = |{Ai | i ∈ I, f or any j ∈ I, i �= j, Ai � A j}| is called the length of
∑i∈I Ai. Thus ||.|| is a map from EX to the set of natural numbers.

For the fuzzy concept γ = ∑ j∈J B j ∈ EM, ||γ|| is the number of items in γ which
cannot be omitted. Let M be a finite set and |M| = n. The set Ck(EM) is defined as
follows: for k = 1,2, ...,n.

Ck(EM) = {α | α ∈ EM+,α is irreducible, ||α|| = k}, (5.26)

i.e., Ck(EM) is the set of k length irreducible elements in EM. The number of ele-
ments in Ck(EM), |Ck(EM)| is denoted by lk(n). It is straightforward to notice

O(EM) = ∑
1≤i≤∞

|Ci(EM)|. (5.27)



5.4 Further Algebraic Properties of AFS Algebra 185

Theorem 5.7. Let M = {m1, m2, · · · , mn}, then |C1(M)| = l1(n) = 2n.

Theorem 5.8. Let M = {m 1, m2, · · · , mn}, then

|C2(EM)| = C2
2n−1 + 2n+1 −3n −1,

where Ck
m = m!

k!(m−k)! .

Proof. Let B = {α|α = A1 +A2, A1 �= A2, A1, A2 ∈ 2M −{∅}, α is reducible}. Let

Bi = {α|α = A1 + A2,A1 ⊂ A2, |A1| = i,A1,A2 ∈ 2M −{∅}},

for 1 ≤ i ≤ n−1. For |A1| = 1, we have

|B1| = C1
nC1

n−1 +C1
nC2

n−1 + · · ·+C1
nCn−1

n−1 = C1
n(2n−1 −1).

For |A1| = 2, we have

|B2| = C2
nC1

n−2 +C2
nC2

n−2 + · · ·+C2
nCn−2

n−2 = C2
n(2n−2 −1)

Similarly, for 3 ≤ |A1| ≤ n−2, it is easy to verify that

|Bk| = Ck
nC1

n−k +Ck
nC2

n−k + · · ·+Ck
nCn−k

n−k = Ck
n(2

n−k −1).

If |A1| = n − 1, then |A2| = n and |Bn−1| = Cn−1
n C1

1 . It is obvious that B =⋃
1≤i≤n−1 Bi, Bi ∩B j = ∅, i �= j, i, j = 1, 2, · · · , n−1. Thus

|B| = |
⋃

1≤i≤n−1

Bi| =
n−1

∑
i=1

|Bi| =
n−1

∑
i=1

(Ci
n2n−i −Ci

n)

=
n−1

∑
i=1

Ci
n2n−i −

n−1

∑
i=1

Ci
n = (2 + 1)n −2n −1− (2n −2)

= −2n+1 + 3n + 1.

Let L = {A1 +A2| A1,A2 ∈ 2M}. For any α = A1 +A2 ∈ L, we consider the following
cases

case 1: α is reducible, i.e., one of A1 and A2 contains another, this means that α ∈ B.
case 2: α is irreducible, i.e., each one of A1 and A2 cannot contain another.

This implies that α ∈ C2(EM). Therefore L can be expressed as C2(EM) ∪ B,
C2(EM)∩ B = ∅. Now, we have |C2 (EM)| = |L| − |B|. As |L| = C2

2n−1 therefore,
we get that

|C2 (EM)| = C2
2n−1 + 2n+1 −3n −1. 
�

For k ≥ 3, we do not know how many elements in Ck(EM) we have so far and this
remains as an open problem. However we have the following theorem to estimate
|Ck(EM)|.
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Theorem 5.9. Let M be set and |M| = n. If Ck(EM) is denoted as lk(n), then

lk(n + 1) ≥
n−2

∑
m=0

(2k −1)m
(

Ck
2n−m−1

−
i+ j≤n−m

∑
1≤i, j≤n−m−2

Ck−3
2n−m−4Ci

n−m− jC
j
n−m(2n−m−(i+1) −1)+ lk−1(n−m)

)
,

where n ≥ 2,k ≥ 3.

Proof. Let M = {m1,m2, ...,mn} and M1 = {m1,m2, ...,mn+1}. For any k, the set J
is defined as follows:

J =
{
α | α = A1 + A2 + · · ·+ Ak, α ∈ EM+,Ai �= A j, i �= j, i, j = 1,2, · · · ,k

}
.

It is clear that Ck (M) ⊆ J. In what follows, J is divided into three disjoint parts
Ck(EM),C and D. Put

C =

{
α =

k

∑
i=1

Ai ∈ J | Ai �= ∅,∃i1, i2, i3 ∈ {1,2, · · · ,k}, Ai1 ⊂ Ai2 ⊂ Ai3

}
,

We now pick α ∈ J such that α is reducible and α /∈C, such elements form a set D.
It is easy to show that

J = Ck(EM)∪C ∪D, (5.28)

and Ck(EM), C, D are pairwise disjointed.
Next we give a partition of the set Ck(EM1). It is obvious that Ck(EM) ⊆

Ck(EM1). For all α ∈ Ck(EM1)−Ck(EM),α = A1 + A2 + · · ·+ Ak,so there exists
Ai(1 ≤ i ≤ k) such that mn+1 ∈ Ai. If there is exactly one Ai(1 ≤ i ≤ k) such that
{mn+1} = Ai, then by removing {mn+1} from α = A1 + A2 + · · ·+ Ak, we get

α1 = A1 + A2 + · · ·+ Ai−1 + · · ·Ai+1 + · · ·+ Ak

It is evident that α1 is irreducible and α1 ∈ Ck−1(EM). Let

J1 = {α | α = β +{mn+1}, β ∈ Ck−1(EM)} .

Then we have that |J1| = |Ck−1(EM)|. If there are more than one Ai(1 ≤ i ≤ k) such
that mn+1 ∈ Ai,by removing mn+1 from Ai(1 ≤ i ≤ k),we obtain an element (denoted
by α−{mn+1}) from EM. Let

J2 = {α | α = A1 + A2 + · · ·+ Ak, α ∈ Ck(EM1), α−{mn+1} ∈ Ck(EM)} .

This implies that for any α from J2, α−{mn+1} is irreducible, and

|J2| = (C1
k +C2

k + · · ·+Ck
k) |Ck(EM)| = (2k −1) |Ck(EM)| .
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If α−{mn+1} is reducible, we put

J3 = {α | α = A1 + A2 + · · ·+ Ak,α ∈ Ck(M1),α −{mn+1} is reducible} .

Thus, we get a disjoint union

Ck(EM1) = Ck(EM)∪ J1 ∪ J2 ∪ J3. (5.29)

In the sequel, we need to show that |J3| ≥ |D| .
For all α ∈ D, as α is reducible, therefore, there exist i, j ∈ {1,2, · · · ,k} such that

i �= j and Ai ⊂ A j. Adding mn+1 to all such Ai (it also denoted by Ai), thus, Ai ⊂ A j

cannot stand in EM+
1 , then we get an element α1 from EM+

1 . We claim that α1 ∈ J3.
It suffices to show that α1 ∈ Ck(EM1) and α1 −{mn+1} is reducible.

It is clear that α1 −{mn+1} is reducible, if α1 is reducible, then there exist i, j ∈
{1,2, · · · ,k} such that i �= j and Ai ⊂ A j. If mn+1 ∈ Ai, but mn+1 /∈ A j then from
the formation of α1, we know that this is impossible, so we have that mn+1 ∈ Ai,
and mn+1 ∈ A j, thus there exists Al such that A j ⊂ Al. Omitting mn+1 from Ai, A j,
Al , we get that Ai ⊂ A j ⊂ Al , this is in conflict with α /∈ C, thus α1 ∈ Ck(EM1).
Therefore, a monomorphic mapping α→ α1 is established. This implies that |J3| ≥
|D|. Considering (5.28) and (5.29), we have

|J3| ≥ |D| = |J|− |Ck (M)|− |C| ,
|Ck (M1)| = |Ck (M)|+ |J1|+ |J2|+ |J3| .

Also
|Ck (M1)| ≥ |J|+ |J1|+ |J2|− |C| . (5.30)

For the convenience,we denote |C| by N3(n). Then it follows that

lk(n + 1)− (2k −1)lk(n) ≥ Ck
2n−1 + lk−1(n)−N3(n). (5.31)

Furthermore

lk(n)− (2k −1)lk(n−1) ≥ Ck
2n−1−1 + lk−1(n−1)−N3(n−1) (5.32)

· · · · · · · · ·
lk(3)− (2k −1)lk(2) ≥ Ck

22−1 + lk−1(2) (5.33)

By multiplying both sides of the (i+1) th inequality by (2k −1)i, i = 1,2, · · · ,n−2
(from (5.31) to (5.33) ), we obtain n − 2 inequalities, After summing them up, we
get

lk(n + 1) ≥
n−2

∑
i=1

(2k −1)i(Ck
2n−i−1 −N3(n)+ lk−1(n− i)) (5.34)

Now we formulate a upper boundary of N3(n). For all α ∈ C,α can be presented as
α = A1 + A2 + A3 + · · ·+ Ak where A1 ⊂ A2 ⊂ A3. From this, we construct a set B
as follows
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B =
{
α = A1 + A2 + A3 ∈ EM+ | Ai �= ∅, A1 ⊂ A2 ⊂ A3

}
.

If |A1| = 1, |A2| = 2, |A3| = 3,4, · · · ,n, then

|B| = C1
nC1

n−1(C
1
n−2 +C2

n−2 +C3
n−2 + · · ·+Cn−2

n−2)

= C1
nC1

n−1(2
n−2 −1).

If |A1| = 1, |A2| = 3, |A3| = 4,5, · · · ,n, then

|B| = C1
nC2

n−1(C
1
n−3 +C2

n−3 +C3
n−3 + · · ·+Cn−3

n−3)

= C1
nC2

n−1(2
n−3 −1)

· · · · · ·
If |A1| = 1, |A2| = n−1, |A3| = n, then |B| = C1

nCn−2
n−1C1

1 .
· · · · · ·

If |A1| = 2, |A2| = 3, |A3| = 4,5, · · · ,n, then

|B| = C2
nC1

n−2(C
1
n−3 +C2

n−3 +C3
n−3 + · · ·+Cn−3

n−3)

= C2
nC1

n−2(2
n−3 −1).

If |A1| = 2, |A2| = 4, |A3| = 5,6, · · · ,n, then

|B| = C2
nC2

n−2(C
1
n−4 +C2

n−4 +C3
n−4 + · · ·+Cn−4

n−4)

= C2
nC2

n−2(2
n−4 −1).

· · · · · ·
If |A1| = 2, |A2| = n−1, |A3| = n, then |B| = C2

nCn−3
n−2C1

1 .
· · · · · ·

Thus A1,A2,A3 are completely defined in this way. Now α ∈ C, we select the other
k − 3 items from the set 2M −{∅,A1,A2,A3}. As

∣∣2M −{∅,A1,A2,A3}
∣∣ = 2n −4

and |A1| ≤ n−2, then we get

N3(n) ≤
i+ j≤n

∑
1≤i, j≤n−2

Ck−3
2n−4C j

nCi
n− j(2

n−(i+ j) −1),

where n ≥ 2,k ≥ 3. As |J| = Ck
2n−1, We rewrite (5.34) as follows

lk(n + 1) ≥
n−2

∑
m=0

(2k −1)m
(

Ck
2n−m−1

−
i+ j≤n−m

∑
1≤i, j≤n−m−2

Ck−3
2n−m−4Ci

n−m− jC
j
n−m(2n−m−(i+ j) −1)+ lk−1(n−m)

)
,

where n ≥ 2, k ≥ 3. 
�



5.4 Further Algebraic Properties of AFS Algebra 189

Thus by (5.27) and (5.9), we can obtain the estimation of O(EM).

Definition 5.10. ([6]) Let Γ be the set of some subsets of the finite set {1,2, · · · ,n}
(called n-set for short, denoted by [1,n]). If it satisfied ∀A,B ∈ Γ ,A � B and B � A,
then Γ is called a Sperner class on n-set [1,n].

Theorem 5.10. If Γ is a Sperner class of the n-set [1,n], then |Γ | ≤ C[n/2]
n , where

[n/2] is the least integer larger than n/2.

Proof. Let Γ be a Sperner class of the n-set [1,n]. First, we prove that

∑
F∈Γ

1

C|F |
n

≤ 1

by the induction with respect to n. Assume that [1,n] /∈ Γ . For i ∈ [1,n], let Γ (i) =
{F ∈ Γ | i /∈ F}. It is obvious that Γ (i) is a Sperner class of the (n−1)-set [1,n]−
{i}. By the assumption of the induction, we have

∑
F∈Γ (i)

1

C|F |
n−1

≤ 1. (5.35)

Because (5.35) holds for every i ∈ [1,n], we arrive at the the sum of (5.35) for all
i ∈ [1,n] shown as follows.

n

∑
i=1
∑

F∈Γ (i)

1

C|F |
n−1

≤ n. (5.36)

Checking the number of times 1/C|γ|
n−1 occur at the left side of (5.36), we know that

1/C|γ|
n−1 appears one time as long as i /∈ F , thus in total it appears (n − |F|) times.

Therefore we have

∑
F∈Γ

n−|F|
C|F|

n−1

≤ n. (5.37)

Each side of (5.37)is now divided by n. By noting that (n−|F|)/(nC|F|
n−1) = 1/C|F|

n−1,
we have

∑
F∈Γ

1/C|F|
n ≤ 1. (5.38)

It is clear that C[n/2]
n is the biggest one of all combinatorial numbers Cr

n. From (5.38),
it follows that

|Γ | 1

C[n/2]
n

= ∑
F∈Γ

1

C[n/2]
n

≤ ∑
F∈Γ

1

C|F|
n−1

≤ 1. (5.39)

Therefore |Γ | ≤C[n/2]
n . 
�
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Theorem 5.11. Let M = {m 1,m 2,· · · ,m n}. Then the longest fuzzy concept in EM is

C[n/2]
n , where [n/2] is the least number which is larger than n/2.

Proof. It follows straightforward by Definition 5.9 and Theorem 5.10. 
�

For M a set of simple concepts, the fuzzy concept γ = ∑C[n/2]
n

i=1 Ai ∈ EM is the

longest of all fuzzy concepts in EM, where |Ai| = [n/2] for all 1 ≤ i ≤ C[n/2]
n and

||γ|| = C[n/2]
n . From the above discussions, we know that an enormously great num-

ber of fuzzy sets can be represented by a few simple concepts using the EI algebra.
Interestingly, EI algebra has a very rich structure and AFS fuzzy logic is an impor-
tant mathematical tool to study human-centric facets of intelligent systems.

5.4.2 Algebraic Structures of EI Algebra

In this section, we further discuss the properties of lattice (EM,∨,∧) and mainly
focus on the following issues:

1. The structure of the set of irreducible elements in EM;
2. The standard minimal family of an element in EM;
3. We will prove that (EM,∨,∧) is a new type of molecular lattice, which is neither

a Boolean algebra nor a fuzzy lattice. However, the sublattice (SEM,∨,∧) is a
fuzzy lattice, where

SEM =

{
∑
i∈I

Ai | Ai ∈ 2M −{∅}, i ∈ I, I is any indexing set

}
⊆ EM.

Definition 5.11. Let L be a molecular lattice. L is called a fuzzy lattice if there exists
a map σ : L → L such that for any x,y ∈ L the following conditions are satisfied:

1. x ≤ y ⇒ yσ ≤ xσ ;
2. x = (xσ )σ .

Theorem 5.12. Let (L,∨,∧,σ) be a fuzzy lattice, then the strong De Morgan Law
holds, that is, for any at ∈ L,t ∈ T ,(∨

t∈T

at

)σ
=

∧
t∈T

aσt ,

(∧
t∈T

at

)σ
=

∨
t∈T

aσt .

Proposition 5.8. Let M be a non-empty set and ∑i∈I Ai,∑ j∈J B j ∈ EM. Then the
following assertions hold:

1. ∑i∈I Ai ∧∑ j∈J B j = M ⇒ Ai ⊇
⋃

j∈J B′
j, ∀i ∈ I and B j ⊇

⋃
I∈I A′

i, ∀ j ∈ J;
2. ∑i∈I Ai ∨∑ j∈J B j = ∅ ⇒ ∑i∈I Ai = ∅ or ∑ j∈J B j = ∅.

Proof. Let ∑i∈I Ai ∧∑ j∈J B j = M, we have ∑i∈I, j∈J Ai ∪B j = M, consequently, for
any i ∈ I, j ∈ J, Ai ∪B j ⊇ M, i.e., Ai ∪B j = M. It follows that for any i ∈ I, B j ⊇ A′

i,
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∀ j ∈ J, that is B j ⊇
⋃

i∈I A′
i = (

⋂
i∈I Ai)′, ∀ j ∈ J; and for any j ∈ J, Ai ⊇ B′

j, ∀i ∈ I,
that is Ai ⊇

⋃
j∈J B′

j = (
⋂

j∈J B j)′, ∀i ∈ I.
Let ∑i∈I Ai ∨∑ j∈J B j = ∅, consequently, we have either ∃i0 ∈ I such that ∅ ⊇

Ai0 , i.e., Ai0 = ∅ or ∃ j0 ∈ J such that ∅ ⊇ B j0 , i.e., B j0 = ∅. Thus ∑i∈I Ai = ∅ or
∑ j∈J B j = ∅. 
�

In what follows, we will show that the lattice (EM,∨,∧) is not a Boolean algebra if
|M| > 1. Assume that it is a Boolean algebra. By Definition 2.13, for any ∑i∈I Ai ∈
EM, there exists ∑ j∈J B j ∈ EM such that ∑i∈I Ai ∨∑ j∈J B j = ∅ and ∑i∈I Ai ∧
∑ j∈J B j = M. We have either∑i∈I Ai = ∅ or∑ j∈J B j = ∅ by Proposition 5.8. We can
assume without loss of generality, that ∑i∈I Ai = ∅. Then ∃u ∈ I such that Au = ∅.
From Proposition 5.8 again, we have ∅ = Au ⊇ ⋃

j∈J B′
j. It follows that ∀ j ∈ J,

B j = M, i.e., ∑ j∈J B j = M. This implies that (EM,∨,∧) is not a Boolean algebra if
|M|> 1. However, it is easy to prove that (EM,∨,∧) is a Boolean algebra if |M| = 1.

Theorem 5.13. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over
M. Then {A | A ∈ 2M} is the set of all strong ∨—irreducible elements in EM (refer
to Definition 2.10)

Theorem 5.14. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over
M. Then {∑m∈A{m} | A ⊆ M} is the set of all ∧—irreducible elements in EM.

Proof. First, for any ∀A ∈ 2M, we prove that ∑m∈A{m} is a ∧—irreducible element
in EM. For ∑i∈I Ai,∑ j∈J B j ∈ EM, if ∑m∈A{m} = ∑i∈I Ai ∧∑ j∈J B j, we have

∑
m∈A

{m} ≤∑
i∈I

Ai and ∑
m∈A

{m} ≤∑
j∈J

B j.

Furthermore, we have

∑
m∈A

{m}∨∑
i∈I

Ai =∑
i∈I

Ai and ∑
m∈A

{m}∨∑
j∈J

B j =∑
j∈J

B j.

Assume that ∑m∈A{m} �=∑i∈I Ai and ∑m∈A{m} �=∑ j∈J B j. This implies that there
exist I0 ⊆ I and J0 ⊆ J such that Ai ∩A = Bi ∩A = ∅,∀i ∈ I0, j ∈ J0 and

∑
m∈A

{m}∨∑
i∈I0

Ai =∑
i∈I

Ai and ∑
m∈A

{m}∨ ∑
j∈J0

B j =∑
j∈J

B j.

Consequently, we have

∑
m∈A

{m} =

(
∑
i∈I

Ai

)
∧
(
∑
j∈J

B j

)

=

(
∑

m∈A

{m}+∑
i∈I0

Ai

)
∧
(
∑

m∈A

{m}+ ∑
j∈J0

B j

)

=

[(
∑

m∈A

{m}
)

∧
(
∑

m∈A

{m}
)]

+

[(
∑
i∈I0

Ai

)
∧
(
∑

m∈A

{m}
)]
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+

[(
∑

m∈A

{m}
)

∧
(
∑
j∈J0

B j

)]
+

[(
∑
i∈I0

Ai

)
∧
(
∑
j∈J0

B j

)]

= ∑
m∈A

{m}+ ∑
m∈A,i∈I0

({m}∪Ai)+ ∑
m∈A, j∈J0

({m}∪B j)+ ∑
i∈I0, j∈J0

(Ai ∪B j)

= ∑
m∈A

{m}+ ∑
i∈I0, j∈J0

(Ai ∪B j).

Therefore, it follows that ∀i ∈ I0, j ∈ J0, ∃m ∈ A such that Ai ∪B j ⊇ {m}, that is,
∃m ∈ A such that m ∈ Ai ∪B j, this contradicts that Ai ∩A = B j ∩B = ∅. Thus,

∑
m∈A

{m} =∑
i∈I

Ai or ∑
m∈A

{m} =∑
j∈J

B j.

Secondly, we prove that each ∧—irreducible element must be in

{∑
m∈A

{m} | A ∈ 2M}.

Suppose that ∑i∈I Ai is a ∧—irreducible element in EM, and ∃u ∈ I,|Au| > 1. Let
B = Au −{m} and m ∈ Au. Since[

∑
i∈I−{u}

Ai + B

]
∧
[
∑

i∈I−{u}
Ai +{m}

]

=

(
∑

i∈I−{u}
Ai

)
∧
(
∑

i∈I−{u}
Ai

)
+B∧

(
∑

i∈I−{u}
Ai

)
+

(
∑

i∈I−{u}
Ai

)
∧{m}+ B∧{m}

= ∑
i∈I−{u}

Ai + ∑
i∈I−{u}

(Ai ∪B)+ ∑
i∈I−{u}

(Ai ∪{x})+ Au =∑
i∈I

Ai.

By the assumption, we have either

∑i∈I Ai = ∑i∈I−{u} Ai + B or ∑i∈I Ai = ∑i∈I−{u} Ai +{m}.

However, it contradicts the facts that

∑
i∈I

Ai �= ∑
i∈I−{u}

Ai + B and ∑
i∈I

Ai �= ∑
i∈I−{u}

Ai +{m}.

Thus the set of ∧—irreducible elements in EM is {∑m∈A{m} | A ⊆ M} and this
completes the proof. 
�
By Theorem 5.13 and Theorem 5.14, it is straightforward to note that ∅ is both
∨—irreducible element and ∧—irreducible element in EM. However, M is a ∨—
irreducible element but not a ∧—irreducible element in EM. For example, let A,A′ ∈
EM and A ⊂ M, we have that M = A∪A′ = A∧A′ but A �= M and A′ �= M, i.e., M is
not a ∧—irreducible element in EM.

Theorem 5.15. Let M be a non-empty set, ∑i∈I Ai ∈ EM, Pi = {B ∈ 2M|B ⊇ Ai}.
Then B =

⋃
i∈I Pi is a standard minimal family of ∑i∈I Ai in molecular lattice

(EM,∨,∧).
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Proof. Clearly, each element in B is a ∨—irreducible element in EM. By Theo-
rem 5.1 and Proposition 5.1, we have supB = ∑i∈I Ai. Also, let

C = {∑ j∈Jk
Ak j | k ∈ K, K and Jk are indexing sets} ⊆ EM,

then ∑k∈K∑ j∈Jk
Ak j is supremum of C . Assume that ∑i∈I Ai ≤ ∑k∈K∑ j∈Jk

Ak j. For
any B ∈ B there exists i ∈ I such that B ⊇ Ai. For this Ai there exist k0 ∈ K, j0 ∈ Jk0

such that Ai ⊇ A j0k0 , this leads to the fact that B ⊇ Ai ⊇ A j0k0 . Thus B ≤∑ j∈ jk0
Ak0 j.

To sum up, B is a standard minimal family of ∑i∈I Ai by Definition 2.21. With
this observation, the proof is completed. 
�

Let ∑i∈I Ai ∈ EM, the set M (∑i∈I Ai) is defined as follows:

M (∑
i∈I

Ai) = {A ∈ 2M,A ≤∑
i∈I

Ai}. (5.40)

Proposition 5.9. Let M be a non-empty set and ∑i∈I Ai,∑ j∈J B j ∈ EM. Then the
following assertions hold:

1. ∑i∈I Ai = supM (∑i∈I Ai);
2. ∑i∈I Ai ≤ ∑J∈J B j ⇔ M (∑i∈I Ai) ⊆ M (∑ j∈J B j);
3. ∑i∈I Ai ∧∑ j∈J B j = M ⇔ M (∑i∈I Ai)∩M (∑ j∈J B j) = {M};
4. M (∑i∈I Ai) is the greatest of those standard minimal families of ∑i∈I Ai.

Proof.
1. Clearly, ∑i∈I Ai is a upper bound of M (∑i∈I Ai). Assume that ∑k∈K Ck is another
upper bound of M (∑i∈I Ai). We have A ≤ ∑k∈K Ck for ∀A ∈ M (∑i∈I Ai). Since
Ai ∈ M (∑i∈I Ai) for ∀i ∈ I, Ai ≤ ∑k∈K Ck. It follows that, ∑i∈I Ai ≤ ∑k∈K Ck. This
implies that ∑i∈I Ai = supM (∑i∈I Ai).

2. Let ∑i∈I Ai ≤ ∑J∈J B j. Since for ∀A ∈ M (∑i∈I Ai), we have that A ≤ ∑i∈I Ai.
Thus ∃i0 ∈ I such that A ⊇ Ai0 . ∑i∈I Ai ≤∑J∈J B j implies that for ∀i ∈ I, ∃ j ∈ J such
that Ai ⊇ B j, it follows that ∃ j0 such that A ⊇ Ai0 , that is, A ≤ ∑J∈J B j. So we have
that A ∈ M (∑ j∈J B j) and M (∑i∈I Ai) ⊆ M (∑ j∈J B j).

Conversely, if M (∑i∈I Ai) ⊆ M (∑ j∈J B j), then for ∀i ∈ I, we have that Ai ∈
M (∑ j∈J B j). Consequently, ∃ j0 ∈ J such that Ai ⊇ B j0 , that is, ∑i∈I Ai ≤ ∑J∈J B j.

3. Suppose that ∑i∈I Ai ∧∑ j∈J B j = M. By Proposition 5.8, we have that Ai ⊇⋃
j∈J B′

j for all i ∈ I. Let M (∑i∈I Ai)∩M (∑ j∈J B j) = P, then for ∀A ∈ P we have

A ∈ M (∑
i∈I

Ai) ⇒ A ⊇
⋃
j∈J

B′
j ⇒ A ⊇ B′

j,∀ j ∈ J.

Also A ∈ M (∑ j∈J B j) implies that A ⊇ B j for ∀ j ∈ J, it follows that,

A ⊇ B j ∪B′
j = M ⇒ A = M.

That is, M (∑i∈I Ai)∩M (∑ j∈J B j) = {M}.
Conversely, if ∑i∈I Ai ∧∑ j∈J B j =∑k∈K Ck �= M, we have that Ck ⊂ M for ∀k ∈ K

and ∃k0, i0 ∈ I, j0 ∈ J such that Ck0 ⊇ (Ai0 ∪B j0). Consequently, Ck0 ⊇ Ai0 and Ck0 ⊇
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Ai0 . That is, Ck0 ≤ ∑i∈I Ai and Ck0 ≤ ∑ j∈J B j. It follows that Ck0 ∈ M (∑i∈I Ai)∩
M (∑ j∈J B j) and this contradicts that M (∑i∈I Ai)∩M (∑ j∈J B j) = {M}.

4. From 1., it can be concluded that ∑i∈I Ai = supM (∑i∈I Ai). Now, let

C =

{
∑
j∈Jk

Ak j |k ∈ K,K,Jk are indexing sets

}
⊆ EM.

Then ∑k∈K∑ j∈Jk
Ak j is the supremum of C . If ∑i∈I Ai ≤ ∑k∈K∑ j∈Jk

Ak j, for ∀A ∈
M (∑i∈I Ai), we have

A ≤∑
i∈I

Ai ≤ ∑
k∈K
∑
j∈Jk

Ak j.

Consequently, ∃k0 ∈ K, j0 ∈ Jk0 such that A ⊇ Ak0 j0 , it follows that, A ≤∑ j∈Jk0
Ak j.

Also, each element in M (∑i∈I Ai) is a ∨—irreducible element in EM, so we have
that M (∑i∈I Ai) is a standard minimal family of ∑i∈I Ai.

Now, by Theorem 5.13, we see that M (∑i∈I Ai) is the greatest of those standard
minimal family of∑i∈I Ai. This completes the proof. 
�
The above discussion shows that (EM,∨,∧) is a molecular lattice but not a Boolean
algebra when |M| > 1. In point of fact, (EM,∨,∧) is a new type of molecular lattice
which differs from Boolean algebra and fuzzy lattice based on the following theorem.

Theorem 5.16. Let M be a set and |M| > 1, then (EM,∨,∧) is not a fuzzy lattice.

Proof. Suppose that (EM,∨,∧) is a fuzzy lattice. Then there exists a conversely
ordered involutory map σ : EM → EM such that the strong De Morgan law holds
in EM by. It follows that Mσ = ∅, ∅σ = M since ∅ and M are identity element and
zero element of EM, respectively.

Let A ∈ 2M, A �= ∅, A �= M and A′ = M −A. We have A∧A′ = M. Consequently,
by De Morgan law, we have that

Aσ +(A′)σ = (A∧A′)σ = Mσ = ∅.

Next, without any loss of generality, we assume that Aσ = ∑i∈I Ai and (A′)σ =
∑ j∈J B j, it follows that

∅ = Aσ +(A′)σ =∑
i∈I

Ai +∑
j∈J

B j = ∑
k∈I

⊔
J

Ck.

Where, ∃u ∈ I
⊔

J such that ∅ ⊇ Cu, i.e., Cu = ∅. According to Proposition 5.8, we
have

Aσ =∑
i∈I

Ai = ∅, when u ∈ I,

or

(A′)σ =∑
j∈J

B j = ∅, when u ∈ J.
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If Aσ = ∅, we have that A = M and this contradicts that A �= M; if (A′)σ = ∅, we
have that A′ = M, i.e.,A = ∅, which contradicts that A �= ∅. Thus, (EM,∨,∧) is not
a fuzzy lattice and this completes the proof. 
�

Proposition 5.10. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over
M. Let

SEM =

{
∑
i∈I

Ai | Ai ∈ 2M −{∅}, i ∈ I, I is anyindexing set

}
⊆ EM.

Then (SEM,∨,∧) be a sublattice of (EM,∨,∧) with minimum element M and max-
imum element ∑m∈M{m}. Furthermore (SEM,∨,∧) is a molecular lattice.

Theorem 5.17. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over
M. (SEM,∨,∧) is not a Boolean algebra if |M| > 2. Nevertheless, if |M| = 2, i.e.,
M = {m1,m2}, then (SEM,∨,∧) is a Boolean algebra.

Proposition 5.11. Let M be a non-empty set and (EM,∨,∧) be the EI algebra
over M. In lattice (SEM,∨,∧), M − {m} (∀m ∈ M) is an atom of SEM and
∑m∈M−{e}{m} (∀e ∈ M) is a dual atom of SEM.

Proof. First, we prove that M−{m} is an atom of SEM for any m ∈ M. Let∑i∈I Ai ∈
SEM and M −{m} ≥∑i∈I Ai ≥ M. Then Ai ⊇ M −{m} for any i ∈ I, that is, for any
i ∈ I, either Ai = M −{m} or Ai = M. If there exists u ∈ I such that Au = M −{m},
we have Ai ⊇ Au for any i ∈ I. Consequently, ∑i∈I Ai = M −{m} by Definition 5.2.
If ∀i ∈ I, Ai = M, we have ∑i∈I Ai = M. Thus, for any m ∈ M, any ∑i∈I Ai ∈ SEM,
M −{m} ≥ ∑i∈I Ai ≥ M ⇒ ∑i∈I Ai = M −{m} or ∑i∈I Ai = M. This implies that
M −{m} (∀m ∈ M) is an atom of SEM.

Secondly, we prove that ∑m∈M−{e}{m} (∀e ∈ M) is a dual atom of SEM. For any
e ∈ M, let ∑i∈I Ai ∈ SEM and ∑m∈M{m} ≥ ∑i∈I Ai ≥ ∑m∈M−{e}{m}. Then for any
m ∈ M−{e},∃u ∈ I such that {m}⊇ Au, that is Au = {m}, and for any i ∈ I,∃m ∈ M
such that Ai ⊇ {m}. If Ai �= {e} for any i ∈ I, we have ∑i∈I Ai = ∑m∈M−{e}{m}. If
∃u ∈ I such that Au = {e}, we have ∑i∈I Ai = ∑m∈M{m}. Thus for any e ∈ M, if
∑m∈M{m} ≥ ∑i∈I Ai ≥ ∑m∈M−{e}{m}, then either ∑i∈I Ai = ∑m∈M{m} or ∑i∈I Ai =
∑m∈M−{e}{m}. Thus ∑m∈M−{e}{m} (∀e ∈ M) is a dual atom of SEM. With this
observation the proof is complete. 
�

Proposition 5.12. Let M be a non-empty set and (EM,∨,∧) be the EI algebra
over M. If |M| > 2, then in lattice (SEM,∨,∧), the following assertions hold: for
∑i∈I Ai,∑ j∈J B j ∈ SEM,

1. if ∑i∈I Ai ∧∑ j∈J B j = M, then Ai ⊇
⋃

j∈J B′
j, ∀i ∈ I and B j ⊇

⋃
I∈I A′

i, ∀ j ∈ J;
2. if ∑i∈I Ai ∨∑ j∈J B j = ∑m∈M{m}, ∑i∈I Ai ∧∑ j∈J B j = M, then either ∑i∈I Ai =
∑m∈M{m},∑ j∈J B j = M or ∑ j∈J B j = ∑m∈M{m},∑i∈I Ai = M.

Proof. 1. The proof of 1. is the same as that shown in Proposition 5.8.
2. For ∑i∈I Ai,∑ j∈J B j ∈ SEM, let ∑i∈I Ai ∨∑ j∈J B j = ∑m∈M{m} and ∑i∈I Ai ∧

∑ j∈J B j = M. For any m ∈ M either ∃u ∈ I such that Au = {m} or ∃v ∈ J such that
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Bv = {m}. Now, without any loss in generality, we may assume that Au = {m}, then
by 1. we have

{m} ⊇
⋃
j∈J

B′
j = (

⋂
i∈J

B j)′ ⇒
⋂
i∈J

B j ⊇ M −{m} ⇒ B j ⊇ M −{m},∀ j ∈ J.

By |M| > 2, we know that |B j| ≥ |M−{m}|> 1. Whence for any m ∈ M there exists
k ∈ I such that Ak = {m}, that is ∑i∈I Ai = ∑m∈M{m}. From 1., we also have

B j ⊇
⋃
i∈I

A′
i = (

⋂
i∈I

Ai)′ = ∅′ = M, ∀ j ∈ J.

Thus ∑ j∈J B j = M.
Similarly, if ∃v ∈ J such that Bv = {m}, then we can prove that ∑ j∈J B j =

∑m∈M{m} and∑i∈I Ai = M. This completes the proof. 
�

Theorem 5.18. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over
M. Then (SEM,∨,∧) is a fuzzy lattice.

Proof. For any ∑i∈I Ai,∑ j∈J B j ∈ SEM, let

Ai = {miu | u ∈ Ii}, i ∈ I, B j = {m jv | v ∈ Jj}, j ∈ J.

Since (SEM,∨,∧) is a molecular lattice, hence σ : SEM → SEM defined as follows
is a map.

(∑
i∈I

Ai)σ =
∧
i∈I

(
∑
u∈Ii

{miu}
)

= ∑
f∈∏i∈I Ii

(⋃
i∈I

{mi f (i)}
)

(5.41)

(∑
j∈J

B j)σ =
∧
j∈J

(
∑

v∈Jj

{m jv}
)

= ∑
f∈∏ j∈J Jj

(⋃
j∈J

{m j f ( j)}
)

(5.42)

Now,it is sufficient to show that “σ ” satisfies Definition 5.11. If ∑ j∈J B j ≥ ∑i∈I Ai,
then ∀i ∈ I,∃ki ∈ J such that

Ai = {miu | u ∈ Ii} ⊇ Bki = {mkiv | v ∈ Jki}.

Thus we have a mapΨ : I → J, for any i ∈ I,Ψ (i) = ki and a mapΦki : Jki → Ii such
that for any v ∈ Jki , miΦ(v) = mkiv. Furthermore, let J1 =Ψ (I) and J2 = J −J1.
We have J = J1 ∪J2, J1 ∩J2 = ∅ and J1 �= ∅. It is clear thatΨ−1(J1) = I.

Thus ∏ j∈J Jj =
(
∏ j∈J1

Jj

)
×

(
∏ j∈J2

Jj

)
and in (5.42), for any g ∈ ∏ j∈J Jj we

have

⋃
j∈J

{m jg( j)} =

⎛
⎝ ⋃

j∈J1

{m jg1( j)}

⎞
⎠∪

⎛
⎝ ⋃

j∈J2

{m jg2( j)}

⎞
⎠ , (5.43)
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where g1 ∈∏ j∈J1
Jj and g2 ∈∏ j∈J2

Jj such that for any j ∈ J1, g( j) = g1( j) and
for any j ∈ J2, g( j) = g2( j). For any j ∈ J1, we have

mΨ−1( j)Φ j(g1( j)) = m jg1( j). (5.44)

Since
⋃

j∈J1
Ψ−1( j) =Ψ−1(J1) = I, hence for any i ∈ I there exists a j ∈ J1

such that i =Ψ−1( j). Let f ∈ ∏i∈I Ii be defined as follows: for any i ∈ I, f (i) =
Φ j(g1( j)) ∈ Ii. Then by (5.44) and (5.43), we have

⋃
i∈I

{mi f (i)} =
⋃

j∈J1

{m jg1( j)} ⊆

⎛
⎝ ⋃

j∈J1

{m jg1( j)}

⎞
⎠∪

⎛
⎝ ⋃

j∈J2

{m jg2( j)}

⎞
⎠ =

⋃
j∈J

{m jg( j)}.

This implies that
(
∑ j∈J B j

)σ ≤ (∑i∈I Ai)σ . “σ ” satisfies condition 1 of Defini-
tion 5.11.

Next, by Theorem 5.1, we have((
∑
i∈I

Ai

)σ)σ
=

(
∑

f∈∏i∈I Ii

(⋃
i∈I

{mi f (i)}
))σ

=
∧

f∈∏i∈I Ii

(
∑
i∈I

{mi f (i)}
)

= ∑
i∈I

(⋃
u∈Ii

{miu}
)

=∑
i∈I

Ai,

that is,“σ ” satisfies condition 2 of Definition 5.11. With this our proof is complete.

�

5.4.3 Algebraic Structures of EIn Algebra

It is worth noting that EIn algebra is more general algebraic class, which includes
EI algebra. Of course, the algebraic structure of EIn algebra is more complicated
than that of the EI algebra. In this section, similarly to the study of the EI algebra,
we will complete an exhaustive study of properties of the lattice (EX1...XnM,∨,∧).

The following proposition is a straightforward consequence of the already intro-
duced definitions.

Proposition 5.13. Let X1, ..., Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧)
be the EIn+1 algebra over X1, ..., Xn, M. For any α = ∑i∈I(u1i...uniAi),β =
∑ j∈J(v1i...vniB j) ∈ EX1...XnM, the following assertions hold:

1. α ∧β = β ∧α, α ∨β = β ∨α; (Commutativity)
2. (α ∧β )∧ γ = α ∧ (β ∧ γ), (α ∨β )∨ γ = α ∨ (β ∨ γ); (Associativity)
3. (α ∧β )∨α = α, (α ∨β )∧α = α; (Absorbance)
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4. α ∧(β ∨γ) = (α ∧β )∨(α ∧γ), α ∨(β ∧γ) = (α ∨β )∧(α ∨γ); (Distributivity)
5. α ∧α = α, α ∨α = α . (Idempotence)

Proposition 5.14. Let X1, X2,..., Xn, M be n + 1-non-empty sets and (EX1X2...XnM,
∨, ∧) be the EIn+1 algebra over X1, X2,..., Xn, M. Let

SEX1X2...XnM =

{
∑
i∈I

(u1i...uniAi) | Ai ∈ 2M −{∅},

i ∈ I,uri ∈ 2Xr ,r = 1,2, ...,n, i ∈ I, I is anyindexing set
}

⊆ EM.

Then (SEX1X2...XnM,∨,∧) is a sublattice of (EX1X2...XnM,∨,∧) with minimum el-
ement ∅...∅M and maximum element∑m∈M X1...Xn{m}. Moreover (SEX1X2...XnM,
∨, ∧) is a molecular lattice.

Proposition 5.15. Let X1, X2,..., Xn,M be n + 1-non-empty sets and (EX1X2...XnM,
∨, ∧) be the EIn+1 algebra over X1, X2,..., Xn, M. In lattice (SEX1X2...XnM,∨,∧),

A = {∅...∅(M −{m}) | m ∈ M}∪{∅...xk...∅M | xk ∈ Xk,k = 1,2, ...,n}

is the set of all atoms of the lattice SEX1X2...XnM, and

A d =

{
∑

m∈M−{e}
(X1...Xn{m})+ [X1...(Xk −{xk})...Xn{e}] | xk ∈ Xk,

e ∈ M, 1 ≤ k ≤ n}

is the set of all dual atoms of the lattice SEX1X2...XnM.

Proof. First, we prove that A is an atom of SEX1X2...XnM. Clearly, for any m ∈ M,
any xk ∈ Xk,k = 1,2, ...,n,we have

∅...∅(M −{m}) ≥ ∅...∅M, and ∅...∅(M −{m}) �= ∅...∅M;

∅...{xk}...M ≥ ∅...∅M, and ∅...{xk}...M �= ∅...∅M.

If there exists ∑i∈I(u1i...uniAi) ∈ SEX1X2...XnM such that

∅...∅(M −{m}) ≥∑
i∈I

(u1i...uniAi),

then for any i ∈ I, we have Ai ⊇ M − {m}, uri ⊆ ∅ (r = 1,2, ...,n). It follows
that, Ai ⊇ M or Ai = M −{m}, uri = ∅ (r = 1,2, ...,n). That is, ∑i∈I(u1i...uniAi) =
∅...∅M or ∑i∈I(u1i...uniAi) = ∅...∅(M −{m}).

If there exists ∑i∈I(u1i...uniAi) ∈ SEX1X2...XnM such that ∅...{xk}...∅M ≥
∑i∈I(u1i...uniAi), then for any i ∈ I, we have Ai ⊇ M, uki ⊆ {xk}, uri ⊆ ∅ (r =
1,2, ...,n,r �= k). It follows that

Ai = M, uri = ∅ (r = 1,2, ...,n,r �= k),uki = ∅ or {uki} = {xk}.
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That is, ∑i∈I(u1i...uniAi) = ∅...∅M or∑i∈I(u1i...uniAi) = ∅...{xk}...∅M. Therefore

A = {∅...∅(M −{m}) | m ∈ M}∪{∅...xk...∅M | xk ∈ Xk,k = 1,2, ...,n}

is the set of all atoms of the lattice SEX1X2...XnM.
Secondly, let e ∈ M, ∑i∈I(u1i...uniAi) ∈ SEX1X2...XnM. If

∑
m∈M

(X1...Xn{m}) ≥∑
i∈I

(u1i...uniAi)

≥ ∑
m∈M−{e}

(X1...Xn{m})+ [X1...(Xk −{xk})...Xn{e}],

then for m ∈ M − {e}, we have ∑i∈I(u1i...uniAi) ≥ ∑m∈M−{e}(X1...Xn{m}) +
[X1...(Xk −{xk})...Xn{e}] ⇒ ∀m ∈ M = (M −{e})∪{e},∃im ∈ I such that Am ⊆
{m},urim ⊇ Xr and Ae ⊆ {e},urie ⊇ (Xk − {xk}), r = 1,2, ...,n. That is, Am =
{m},urim = Xr for m ∈ M,m �= e and Ae = {e}, either urie = (Xk −{xk}) or urie = Xk,
r = 1,2, ...,n. This implies that

∑
i∈I

(u1i...uniAi) = ∑
m∈M

(X1...Xn{m})+∑
i∈I

(u1i...uniAi)

or

∑
i∈I

(u1i...uniAi) =∑
i∈I

(u1i...uniAi)+ ∑
m∈M−{e}

(X1...Xn{m})+ X1...(Xk −{xk})...Xn{e}.

Furthermore by Proposition 5.1, we conclude that

∑
i∈I

(u1i...uniAi) = ∑
m∈M

(X1...Xn{m})

or

∑
i∈I

(u1i...uniAi) = ∑
m∈M−{e}

(X1...Xn{m})+ X1...(Xk −{xk})...Xn{e}.

Thus

A d =

{
∑

m∈M−{e}
(X1...Xn{m})+ [X1...(Xk −{xk})...Xn{e}] | xk ∈ Xk,e ∈ M, 1 ≤ k ≤ n

}

is the set of all dual atoms of the lattice SEX1...XnM, and this completes the proof.

�

Proposition 5.16. Let X1, . . . , Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧)
be the EIn+1 algebra over X1, ..., Xn, M. For α = ∑i∈I(u1i...uniAi),β =
∑ j∈J(v1i...vniB j) ∈ EX1...XnM, the following assertions hold:
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1. if α ∧β = (∅...∅M), then Ai ⊇
⋃

j∈J B′
j (∀i ∈ I), B j ⊇

⋃
i∈I A′

i (∀ j ∈ J), and
uri ∩ vr j = ∅,(∀i ∈ I,∀ j ∈ J,r = 1,2, ...,n);

2. if α ∨β = (X1...Xn∅), then α = (X1...Xn∅) or β = (X1...Xn∅).

Proof. Let α = ∑i∈I(u1i...uniAi), β = ∑ j∈J(v1i...vniB j). If α ∧β = (∅...∅M), then

∑
i∈I, j∈J

[(u1i ∩ v1 j)...(uni ∩ vn j)(Ai ∪B j)] = (∅...∅M).

Consequently, ∀i ∈ I, j ∈ J, we have

Ai ∪B j ⊇ M, uri ∩ vr j ⊆ ∅ (r = 1, 2, . . . , n).

This is,

Ai ∪B j = M, uri ∩ vr j = ∅ (r = 1, 2, . . . , n).

It follows that, Ai ⊇ B′
j (∀i ∈ I), B j ⊇ A′

i (∀ j ∈ J) and uri∩ vr j = ∅ (∀i ∈ I, ∀ j ∈ J, r
= 1, 2, . . . , n). This is, Ai ⊇

⋃
j∈J B′

j (∀i ∈ I), B j ⊇
⋃

i∈I A′
i (∀ j ∈ J) and uri∩ vr j = ∅

(∀i ∈ I, ∀ j ∈ J, r = 1, 2, . . . , n).
Let α ∨β = (X1...Xn∅). Consequently, we have that either ∃i0 ∈ I such that ∅ ⊇

Ai0 , uri0 ⊇ Xr (r = 1,2, ...,n), this is ∅ = Ai0 , uri0 = Xr (r = 1,2, ...,n); or ∃ j0 ∈
J such that ∅ ⊇ B j0 , vr j0 ⊇ Xr (r = 1,2, ...,n), this is ∅ = B j0 , vr j0 = Xr (r =
1,2, ...,n). Thus, α = (X1...Xn∅) or β = (X1...Xn∅). This completes the proof. 
�

Let α = ∑i∈I(u1i...uniAi),β = ∑ j∈J(v1i...vniB j). From Proposition 5.16, when α ∨
β = (X1 . . .Xn∅) and α ∧ β = (∅ . . .∅M), we have that either α = (X1 . . .Xn∅)
or β = (X1 . . .Xn∅). Now, without any loss in generality we assume that α =
(X1 . . .Xn∅), then ∃k ∈ I such that

Ak = ∅, urk = Xr (r = 1, 2, . . . , n).

It follows that β = (∅. . . ∅M), from

∅ = Ak ⊇
⋃
j∈J

B′
j ⇒ B j = M, ∀ j ∈ J,

and

urk ∩ vr j = ∅ (r = 1, 2, . . . , n) ⇒ vr j = ∅ (r = 1, 2, . . . , n), ∀ j ∈ J.

So we have that (EX1 . . .XnM,∨,∧) is not a Boolean algebra when there exist at
least two non-empty sets among M, Xr (r = 1, 2, . . . , n).

Theorem 5.19. Let X1, . . . , Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧) be
the EIn+1 algebra over X1, ..., Xn, M. Then

{u1...unA | A ∈ 2M,ur ∈ 2Xr , r = 1,2, ...,n}

is the set of all ∨—irreducible elements in EX1...XnM.
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Theorem 5.20. Let X1, . . . , Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧) be
the EIn+1 algebra over X1, ..., Xn, M. Then

{∑
m∈A

(u1(m)...un(m){m} | A ∈ 2M,ur(m) ∈ 2Xr ,r = 1,2, ...,n}

is the set of all ∧—irreducible elements in EX1...XnM.

Proof. Let P={∑m∈A(u1(m)...un(m){m} | A ∈ 2M,ur(m)∈ 2Xr ,r=1,2, ...,n}, γ =
∑m∈A(u1(m)...un(m){m}) ∈ P , α = ∑i∈I(u1i...uniAi) and β = ∑ j∈J(v1i...vniB j).

First, we prove that γ is a ∧—irreducible element in EX1...XnM. As a matter of
fact, if there exist α,β ∈ EX1...XnM such that γ = α ∧β , from Proposition 5.13, we
have

γ+α = (α ∧β )+α = α , γ+β = (α ∧β )+β = β .

In the sequel, we have γ ≤ α , γ ≤ β . We assume that γ �= α , γ �= β , we have

α = γ+α0, β = γ+β0,

where α0 = ∑i∈I0(u1i...uniAi) and either ∀i ∈ I0, Ai ∩ A = ∅ or ∃r ∈
{1,2, . . . ,n}, ∃m ∈ A such that uri � ur(m), β0 = ∑ j∈J0

(v1i...vniB j) and either
∀ j ∈ J0, B j ∩A = ∅ or ∃r ∈ {1,2, . . . ,n}, ∃m ∈ A such that vri � ur(m).

Furthermore, from Proposition 5.13 and Theorem 5.1, we have

γ = α ∧β = (γ+α0)∧ (γ+β0)
= (γ ∧ γ)+ (α0 ∧ γ)+ (γ ∧β0)+ (α0 ∧β0)
= ∑

m∈A

(u1(m)...un(m){m})+ ∑
m∈A,i∈I0

([u1(m)∩u1i]...[un(m)∩uni]({m}∪Ai))

+ ∑
m∈A, j∈J0

([u1(m)∩ v1i]...[un(m)∩ vni]({x}∪B j))

+ ∑
i∈I0, j∈J0

([u1i ∩ v1 j]...[uni ∩ vn j](Ai ∪B j)).

and ur(m)∩uri ⊆ ur(m), {m}∪Ai ⊇ {m}; ur(m)∩vr j ⊆ ur(m), {m}∪B j ⊇ {m} for
∀i ∈ I0, j ∈ J0, r = 1,2, ...,n, it follows that

∑
m∈A

(u1(m)...un(m){m}) = ∑
m∈A

(u1(m)...un(m){m})

+ ∑
i∈I0, j∈J0

([u1i ∩ v1 j]...[uni ∩ vn j](Ai ∪B j))

Consequently, γ = γ+δ (where δ =∑i∈I0, j∈J0
([u1i ∩v1 j]...[uni ∩vn j](Ai ∪B j))), i.e.,

γ ≥ δ . Therefore, we have that ∀i ∈ I0, j ∈ J0, ∃m ∈ A such that Ai ∪B j ⊇ {m} and
ur(m) ⊇ uri ∩ vr j (r = 1,2, . . . ,n ), i.e., m ∈ Ai or m ∈ B j; ur(m) ⊇ uri and ur(m) ⊇
vr j. This contradicts that γ �= α and γ �= β . Thus, we have γ = α ∧ β ⇒ γ = α
or γ = β .
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Secondly, we prove that each ∧—irreducible element must be in P . Suppose that
∑i∈J(u1i...uniAi) is a ∧—irreducible element in EX1...XnM, and ∃k ∈ I, |Ak|> 1. Let
B = Ak −{x} and x ∈ Ak. Since[(

∑
i∈I−{k}

(u1i...uniAi)

)
+(u1k...unkB)

]
∧
[(

∑
i∈I−{k}

(u1i...uniAi)

)
+(u1k...unk{x})

]

=

[(
∑

i∈I−{k}
(u1i...uniAi)

)
∧
(
∑

i∈I−{k}
(u1i...uniAi)

)]

+

[
(u1k...unkB)∧

(
∑

i∈I−{k}
(u1i...uniAi)

)]

+

[(
∑

i∈I−{k}
(u1i...uniAi)

)
∧ (u1k...unk{x})

]

+(u1k...unkB)∧ (u1k...unk{x})
= ∑

i∈I−{k}
(u1i...uniAi)+ ∑

i∈I−{k}
[(u1i ∩u1k)...(uni ∩unk)(Ai ∪B)]

+ ∑
i∈I−{k}

[(u1i ∩u1k)...(uni ∩unk)(Ai ∪{x})]+(u1k ...unkAk)

and for ∀i ∈ I −{k},

Ai ∪B ⊇ Ai, Ai ∪{x} ⊇ Ai, uri ∩urk ⊆ uri(r = 1,2, . . . ,n),

it follows that

∑
i∈I−{k}

(u1i...uniAi)

= ∑
i∈I−{k}

(u1i...uniAi)+ ∑
i∈I−{k}

[(u1i ∩u1k)...(uni ∩unk)(Ai ∪B)]

+ ∑
i∈I−{k}

[(u1i ∩u1k)...(uni ∩unk)(Ai ∪{x})],

that is,

[(
∑

i∈I−{k}
(u1i...uniAi)

)
+(u1k...unkB)

]
∧
[(

∑
i∈I−{k}

(u1i...uniAi)

)
+(u1k...unk{x})

]

= ∑
i∈I−{k}

(u1i...uniAi)+(u1k...unkAk) =∑
i∈I

(u1i...uniAi).

Consequently, from ∑i∈I−{k}(u1i...uniAi) is a ∧—irreducible element in
EX1 . . .XnM, we should have that either

∑
i∈I−{k}

(u1i...uniAi) =

(
∑

i∈I−{k}
(u1i...uniAi)

)
+(u1k...unkB)
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or

∑
i∈I−{k}

(u1i...uniAi) =

(
∑

i∈I−{k}
(u1i...uniAi)

)
+(u1k...unk{x}).

But, from B ⊂ Ak, {x} ⊂ Ak, in fact

∑
i∈I−{k}

(u1i...uniAi) �=
(
∑

i∈I−{k}
(u1i...uniAi)

)
+(u1k...unkB)

and

∑
i∈I−{k}

(u1i...uniAi) �=
(
∑

i∈I−{k}
(u1i...uniAi)

)
+(u1k...unk{x}),

This is a palpable contradiction.Therefore, it is concluded that each ∧—irreducible
element must be in P . With this the proof is complete. 
�
Theorem 5.21. Let X1, . . . , Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧) be
the EIn+1 algebra over X1, ..., Xn, M. For ∑i∈I(u1i...uniAi) ∈ EX1...XnM, let

Pi = {(v1...vnB) | B ⊇ Ai,vr ⊆ uri,r = 1,2, . . . ,n} ⊆ EX1...XnM,

Si ⊆ Pi(i ∈ I). Then B =
⋃

i∈I Pi is a standard minimal family of ∑i∈I(u1i...uniAi)
in molecular lattice (EX1...XnM,∨,∧) .

From the above considerations, we know that (EX1 . . .XnM,∨,∧) is a molecular
lattice but not a Boolean algebra. With analogy lattice (EM,∨,∧), we have the fol-
lowing theorem.

Theorem 5.22. Let X1, . . . , Xn, M be n+1 non-empty sets and |M| > 1. Then
(EX1 . . .XnM,∨,∧) is not a fuzzy lattice.

Proof. First, from Theorem 5.1, ∀∑i∈I(u1i...uniAi),∑ j∈J(v1i...vniB j)∈ EX1 . . .XnM,
we have

∑
i∈I

(u1i...uniAi) ≥∑
j∈J

(v1i...vniB j)

⇔
[
∑
i∈I

(u1i...uniAi)

]
∨
[
∑
j∈J

(v1i...vniB j)

]
=∑

i∈I
(u1i...uniAi)

⇔
[
∑
i∈I

(u1i...uniAi)

]
∧
[
∑
j∈J

(v1i...vniB j)

]
=∑

j∈J
(v1i...vniB j).

Suppose that (EX1 . . .XnM,∨,∧) is a fuzzy lattice. Then, by Definition 5.11 and
Theorem 5.12, there exists a conversely ordered involutory mappingσ : EX1 . . .XnM
→ EX1 . . .XnM such that strong De Morgan law holds in EX1 . . .XnM. It follows that
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(∅...∅M)σ = (X1 . . .Xn∅) and (X1 . . .Xn∅)σ = (∅...∅M), because (X1 . . .Xn∅) and
(∅...∅M) are identity element and zero element of EX1 . . .XnM, respectively.

Let A ∈ 2M , A �= ∅, A �= M, A′ = M −A, ur ∈ 2Xr , ur �= ∅, ur �= Xr,u′
r = M −A,

ur ∈2Xr, ur �= ∅, ur �= Xr, u′
r = Xr −ur, r = 1,2, . . . ,n. Then, by Definition 5.11, we

have that

(u1 . . .unA)σ +(u′
1...u

′
nA′)σ = [(u1 . . .unA)∧ (u′

1...u
′
nA′)]σ = (∅...∅M)σ

= (X1...Xn∅).

Now, without any loss in generality, we assume that

(u1...unA)σ =∑
i∈I

(u1i...uniAi), (u′
1...u

′
nA′)σ =∑

j∈J
(v1 j...vn jB j).

It follows that

(X1...Xn∅) = (u1 . . .unA)σ +(u′
1...u

′
nA′)σ

= ∑
i∈I

(u1i...uniAi)+∑
j∈J

(v1 j...vn jB j)

� ∑
k∈I�J

(w1k...wnkCk).

Therefore, ∃l ∈ I � J such that ∅ ⊇ Cl and Xr ⊆ wri (r = 1,2, ...,n), that is, Cl = ∅
and Xr = wri (r = 1,2, ...,n). From Proposition 5.16, we have that either

(u1...unA)σ =∑
i∈I

(u1i...uniAi) = (X1...Xn∅), when i ∈ I,

or

(u1...unA)σ =∑
j∈J

(v1i...vniB j) = (X1...Xn∅), when j ∈ J.

If (u1 . . .unA)σ �= (X1 . . .Xn∅), we have that (u′
1...u

′
nA′) = (∅ . . .∅M) and this con-

tradicts that A �= ∅, A �= M, ur �= ∅, ur �= Xr (r = 1,2, . . . ,n). If (u1...unA)σ �=
(X1...Xn∅), we have that (u1 . . .unA)σ = (X1 . . .Xn∅) and this also contradicts that
A �= ∅, A �= M, ur �= ∅, ur �= Xr (r = 1,2, . . . ,n). Thus, (EX1 . . .XnM,∨,∧) is not a
fuzzy lattice and this completes the proof. 
�

So far, whether (SEX1 . . .XnM,∨,∧) is a fuzzy lattice has not been proved. However,
the following theorem shows that the sublattice (SEX−

1 . . .X−
n M,∨,∧) is a fuzzy

lattice, where

SEX−
1 . . .X−

n M = {∑
i∈I

(u1...unAi) | Ai ∈ 2M −{∅}, ur ∈ 2Xr ,

r = 1,2, ...,n, I is any indexing set}.

It is clear that (SEX−
1 . . .X−

n M,∨,∧) is a sublattice of (SEX1 . . .XnM,∨,∧).
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Theorem 5.23. Let X1, . . . , Xn, M be n+1 non-empty sets and |M| > 1. Then
(SEX−

1 . . .X−
n M,∨,∧) is a fuzzy lattice.

Proof. For any ∑i∈I(u1...unAi),∑ j∈J(v1...vnB j) ∈ SEX−
1 . . .X−

n M, let

Ai = {mip | p ∈ Ii}, i ∈ I, B j = {m jq | q ∈ Jj}, j ∈ J.

Since (SEX−
1 . . .X−

n M,∨,∧) is a molecular lattice, hence σ : SEX−
1 . . .X−

n M →
SEX−

1 . . .X−
n M defined as follows is a map.

[∑
i∈I

(u1...unAi)]σ =
∧
i∈I

(
∑

m∈Ai

(u′
1...u

′
n{m})

)
(5.45)

= ∑
f∈∏i∈I Ii

(
u′

1...u
′
n

⋃
i∈I

{mi f (i)}
)

(5.46)

[∑
j∈J

(v1...vnB j)]σ = ∑
f∈∏ j∈J Jj

(
v′

1...v
′
n

⋃
j∈J

{m j f ( j)}
)

(5.47)

Now, it is sufficient to show that “σ ” satisfies Definition 5.11. If ∑i∈I(u1...unAi) ≤
∑ j∈J(v1...vnB j), then ∀i ∈ I,∃ki ∈ J such that

Ai = {mip | p ∈ Ii} ⊇ Bki = {mkiq | q ∈ Jki}, ur ⊆ vr, r = 1,2, ...,n.

Thus we have a mapΨ : I → J, for any i ∈ I,Ψ (i) = ki and a mapΦki : Jki → Ii such
that for any v ∈ Jki , miΦ(v) = mkiv. Furthermore, let J1 =Ψ (I) and J2 = J −J1.
We have J = J1 ∪J2, J1 ∩J2 = ∅ and J1 �= ∅. It is clear thatΨ−1(J1) = I.

Thus ∏ j∈J Jj =
(
∏ j∈J1

Jj

)
×

(
∏ j∈J2

Jj

)
and in (5.47), for any g ∈ ∏ j∈J Jj we

have

⋃
j∈J

{m jg( j)} =

⎛
⎝ ⋃

j∈J1

{m jg1( j)}

⎞
⎠∪

⎛
⎝ ⋃

j∈J2

{m jg2( j)}

⎞
⎠ , (5.48)

where g1 ∈∏ j∈J1
Jj and g2 ∈∏ j∈J2

Jj such that for any j ∈ J1, g( j) = g1( j) and
for any j ∈ J2, g( j) = g2( j). For any j ∈ J1, we have

mΨ−1( j)Φ j(g1( j)) = m jg1( j).

Since
⋃

j∈J1
Ψ−1( j) =Ψ−1(J1) = I, hence for any i ∈ I there exists a j ∈ J1

such that i =Ψ−1( j). Let f ∈ ∏i∈I Ii be defined as follows: for any i ∈ I, f (i) =
Φ j(g1( j)) ∈ Ii. Then in virtue of (5.49) and (5.48) we have
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⋃
i∈I

{mi f (i)}=
⋃

j∈J1

{m jg1( j)}⊆

⎛
⎝ ⋃

j∈J1

{m jg1( j)}

⎞
⎠∪

⎛
⎝ ⋃

j∈J2

{m jg2( j)}

⎞
⎠=

⋃
j∈J

{m jg( j)}.

Furthermore, by ur ⊆ vr, r = 1,2, ...,n, we have u′
r ⊇ v′

r, r = 1,2, ...,n. This implies
that

[
∑ j∈J(v1...vnB j)

]σ ≤ [(∑i∈I(u1...unAi)]σ . “σ ” satisfies condition 1 of Defini-
tion 5.11.

Next, by Theorem 5.1, we have[(
∑
i∈I

(u1...unAi)

)σ]σ
=

(
∑

f∈∏i∈I Ii

(
u′

1...u
′
n

⋃
i∈I

{mi f (i)}
))σ

=
∧

f∈∏i∈I Ii

(
∑
i∈I

(u1...un{mi f (i)})
)

=∑
i∈I

(
(u1...un

⋃
u∈Ii

{miu})
)

=∑
i∈I

Ai,

that is,“σ ” satisfies condition 2 of Definition 5.11. With this the proof is completed.

�

5.4.4 Algebraic Structures of E#In Algebra

In this section, the further exploration of the algebraic properties of E#In alge-
bra are exhaustively discussed. First,the expressions of special elements such as
∧−irreducible elements, ∨−irreducible elements, atoms and dual atoms, are given
in E#I and E#In algebra. Then, it is proved that E#In algebra is a new structure
which is different from EIn algebra.

In what follows, if (S,∨,∧) is a AFS algebra, by the symmetric property of oper-
ation ∨, ∧, when the two operations are exchanged, we denote the one as (∗S,∨,∧)
or briefly as ∗S. Now the definition of the dual lattice (∗EM,∨,∧) of (EM,∨,∧) is
as follows.

Theorem 5.24. Let M be a non-empty set.If we define binary operations ∨,∧ as
follows. For ∑i∈I Ai,∑ j∈J B j ∈ EM,

∑
i∈I

Ai ∨∑
j∈J

B j = ∑
i∈I, j∈J

(Ai ∪B j), (5.49)

∑
i∈I

Ai ∧∑
j∈J

B j = ∑
k∈I�J

Ck =∑
i∈I

Ai +∑
j∈J

B j. (5.50)

Then (∗EM,∨,∧) is a molecular lattice, in which for ∑i∈I Ai,∑ j∈J B j ∈ EM,
∑i∈I Ai ≤ ∑ j∈J B j if and only if for any B j ( j ∈ J) there exists Ak (i ∈ I) such that
B j ⊇ Ak.

Its proof, which remains as an exercise, is similar to that of Theorem 4.1.
(∗EM,∨,∧) is called the ∗EI algebra over set M.
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Similarly, by the symmetric property of operation “∨, ∧”, the dual lattice
(∗E#X ,∨,∧) can be defined if only we alter the operations “∨, ∧”. Thus for
∑i∈I ai, ∑ j∈J b j ∈ E#X , ∑i∈I ai ≤∑ j∈J b j ⇐⇒∀b j( j ∈ J) there exists ak(k ∈ I) such
that ak ⊇ b j. (∗E#X ,∨,∧) is called ∗E#I algebra over set X . In the similar manner,
we have ∗EIn algebra and ∗E#In algebra.

In what follows, we establish isomorphism between the lattices EX and E#X .
Thus the properties about the lattice (E#X ,∨,∧) can be directly derived from those
about (EX ,∨,∧). By Proposition 5.10, we know that (SEM,∨,∧) is a sublattice of
the lattice (EM,∨,∧). It is not difficult to check that the lattice (SE#X ,∨,∧) is a
sublattice of (E#X ,∨,∧), where

SEM =

{
∑
i∈I

Ai | Ai ∈ 2M −{∅}
}

,

SE#X =

{
∑
i∈I

ai | ai ∈ 2X −{X}
}

.

Theorem 5.25. Let X be a non-empty set. Let (EX ,∨,∧) and (E#X ,∨,∧) be the
EI algebra and E#I algebra over X. Then the lattice (EX ,∨,∧) and the lattice
(E#X ,∨,∧) are isomorphism.

Proof. For any ∑i∈I ai ∈ E#X , the map ϕ : E#X → EX is defined as follows.

ϕ(∑
i∈I

ai) =∑
i∈I

a′
i.

First, we prove that ϕ is a map from E#X to EX . For∑i∈I ai,∑ j∈J b j ∈ E#X , suppose
that ∑i∈I ai = ∑ j∈J b j. Then we have

∑
i∈I

ai ≤∑
j∈J

b j and ∑
i∈I

ai ≥∑
j∈J

b j.

As

∑i∈I ai ≤ ∑ j∈J b j ⇐⇒ ∀i ∈ I,∃k ∈ J such that ai ⊆ bk, that is b′
k ⊆ a′

i.

This implies that the following assertions hold in the lattice (EX ,∨,∧)

ϕ (∑i∈I ai) = ∑i∈I a′
i ≤∑ j∈J b′

j = ϕ
(
∑ j∈J b j

)
.

Similarly,we get

∑i∈I ai ≥ ∑ j∈J b j ⇐⇒ ϕ (∑i∈I ai) ≥ ϕ
(
∑ j∈J b j

)
.

Next,

∑i∈I ai = ∑ j∈J b j ⇐⇒ ϕ (∑i∈I ai) = ϕ
(
∑ j∈J b j

)
.

Therefore,ϕ is a map from E#X to EX .
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Let ∑i∈I ai, ∑ j∈J b j ∈ E#X . It is clear that

ϕ

(
∑
i∈I

ai ∨∑
j∈J

b j

)
= ϕ

(
∑
i∈I

ai

)
∨ϕ

(
∑
j∈J

b j

)
.

From Theorem 5.2, we get

ϕ

(
∑
i∈I

ai ∧∑
j∈J

b j

)
= ϕ( ∑

i∈I, j∈J
(ai ∩b j)) = ∑

i∈I, j∈J
(ai ∩b j)′.

By the De Morgan law and Theorem 4.1, it follows that

ϕ

(
∑
i∈I

ai ∧∑
j∈J

b j

)
= ∑

i∈I, j∈J
(ai ∩b j)′ = ∑

i∈I, j∈J
a′

i ∪b′
j = ϕ

(
∑
i∈I

ai

)
∧ϕ

(
∑
j∈J

b j

)
.

Therefore,ϕ is an isomorphism from (E#X ,≥) to (EX ,≥). The proof is complete.

�

The following theorem whose proof is left as an exercise can be proved in a similar
way as discussed earlier.

Theorem 5.26. Let X be a non-empty set. Let (∗EX ,∨,∧) and (∗E#X ,∨,∧) be the
∗EI algebra and ∗E#I algebra over X. Then the following assertions hold.

(1) The sublattices (SE#X ,∨,∧) and (SEX ,∨,∧) are isomorphism;
(2) The sublattices (∗SE#X ,∨,∧) and (∗SEX ,∨,∧) are isomorphism;
(3) The lattices (∗EX ,∨,∧) and (∗E#X ,∨,∧) are isomorphism.

Thus by Theorem 5.26, the corresponding properties of E#I algebra and ∗EI algebra
can be directly obtained in virtue of the ideas we have for EI algebra. However, in
what follows, we will show that E#In is a new algebra families which are quite
different from EIn algebra. Given this, it is necessary to discuss the properties of the
E#In algebra.

Theorem 5.27. Let X1, ...,Xn be n non-empty sets and (E#X1...Xn,∨,∧) be the E#In

algebra over the sets X1, ...,Xn. Then the following assertions hold.

(1) The set of all ∨-irreducible elements in E#X1...Xn is

I ∨ =
{

u1...un | uk ∈ 2Xk ,k = 1,2, · · ·n
}

.

(2) The set of all ∧-irreducible elements in E#X1...Xn is

I ∧ =

{
∑

x∈Dk

[X1 · · · (Xk −{x}) · · ·Xn] | Dk ⊆ Xk,k = 1,2, ...,n

}
.

Here ∑x∈Dk
[X1 · · · (Xk − {x}) · · ·Xn] � X1X2 · · ·Xn if for some k ∈ {1,2, ...,n},

Dk = ∅.
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(3) The set of all atoms in E#X1...Xn is

A = {∅ · · ·∅{xk}∅ · · ·∅ | xk ∈ Xk,k = 1,2, · · · ,n}∪{∅ · · ·∅} .

(4) The set of all dual atom in E#X1...Xn is

A d =

{
∑

1≤k≤n
∑

x∈Xk

[X1 · · · (Xk −{x}) · · ·Xn]

}
.

Proof. (1) It directly results from Definition 2.9.
(2) Let ∑i∈I(u1i...uni) ∈ E#X1...Xn be a ∧−irreducible element. Furthermore, let

∑i∈I(u1i...uni) be irreducible, i. e., for any k ∈ I,∑i∈I(u1i...uni) �=∑i∈I−{k}(u1i...uni).
First, we prove that

|Xk −uki| ≤ 1,∀k ∈ {1,2, · · · ,n},∀i ∈ I.

Suppose there exists a i0 ∈ I such that |Xk −uki0 | ≥ 2, for some k ∈ {1,2, · · · ,n}. Let
xi0 ,yi0 ∈ Xk −uki0 , that is xi0 ,yi0 /∈ uki0 . Let α,β ∈ E#X1...Xn be given as

α = ∑
i∈I−{i0}

(u1i...uni)+ [u1i0...uk−1,i0({xi0}∪uki0)uk+1,i0 · · ·uni0 ],

β = ∑
i∈I−{i0}

(u1i...uni)+ [u1i0...uk−1,i0({yi0}∪uki0)uk+1,i0 · · ·uni0 ].

In lattice (E#X1...Xn,∨,∧), it is clear that ∑i∈I(u1i...uni) ≤ α , ∑i∈I(u1i...uni) ≤ β .
Since ∑i∈I(u1i...uni) is irreducible, hence ∑i∈I(u1i...uni) �= α , ∑i∈I(u1i...uni) �= β .
According to Theorem 5.2, one has

α ∧β = ∑
i∈I−{i0}

(u1i...uni)+ [ ∑
i∈I−{i0}

(u1i...uni)]∧ [u1i0 ...({xi0}∪uki0) · · ·uni0 ]

+ [ ∑
i∈I−{i0}

(u1i...uni)]∧ [u1i0 ...({yi0}∪uki0) · · ·uni0 ]

+ [u1i0 ...({xi0}∪uki0) · · ·uni0 ]∧ [u1i0 ...({yi0}∪uki0) · · ·uni0 ]
=∑

i∈I
(u1i...uni).

This contradicts the assumption that ∑i∈I(u1i...uni) is an ∧–irreducible element.
Therefore, we have

|Xk −uki| ≤ 1,∀k ∈ {1,2, · · · ,n},∀i ∈ I.

This implies that |Xk − uki0 | = 0 or 1. If for some i0 ∈ I, there exist at least two
k1,k2 ∈ {1,2, · · · ,n} such that |Xk1 −uk1i0 | = |Xk2 −uk2i0 | = 1. Without loosing gen-
erality, let k1 = 1,k2 = 2. Then, let u1i0 = X1 −{a1i0} and u2i0 = X2 −{a2i0},a1i0 ∈
X1,a2i0 ∈ X2. Consequently, it follows that
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∑
i∈I

(u1i...uni) = ∑
i∈I−{i0}

(u1i...uni)+ (X1 −{a1i0})(X2 −{a2i0})u3i0 ...uni0 .

Let γ,ν be in E#X1...Xn,

γ = ∑
i∈I−{i0}

(u1i...uni)+ (X1 −{a1i0})X2u3i0 ...uni0 ,

ν = ∑
i∈I−{i0}

(u1i...uni)+ X1(X2 −{a2i0})u3i0 ...uni0 .

We have

λ ∧ν =∑
i∈I

(u1i...uni).

It is clear that ∑i∈I(u1i...uni) �= γ and ∑i∈I(u1i...uni) �= ν because ∑i∈I(u1i...uni) is
irreducible. This conflicts with the assumption that∑i∈I(u1i...uni) is a ∧– irreducible
element in lattice (E#X1...Xn,∨,∧). Thus for any i ∈ I there exists a unique ki ∈
{1,2, ...,n} such that |Xki −ukii|= 1 and |Xj −u ji|= 0 for any j �= ki, j ∈ {1,2, ...,n}.
In other words, ukii = Xki −{xi} for some xi ∈ Xki and for all j �= ki, j ∈ {1,2, ...,n},
u ji = Xj. This implies that

∑
i∈I

(u1i...uni) = ∑
k∈K
∑

x∈Dk

[X1 · · · (Xk −{x}) · · ·Xn],

where K ⊆ {1,2, ...,n}, Dk = {xi | i ∈ Ik} ⊆ Xk,k = 1,2, ...,n, Iu = {i | ki = u}, u =
1,2, ...,n. Assume that |K| ≥ 2. Without loosing generality, let 1,2 ∈ K.

α = ∑
k∈K
∑

x∈Dk

[X1 · · · (Xk −{x}) · · ·Xn]+ [{xi | i ∈ I1}∅...∅] ∈ E#X1 · · ·Xn,

β = ∑
k∈K
∑

x∈Dk

[X1 · · · (Xk −{x}) · · ·Xn]+ [∅{xi | i ∈ I2}∅...∅] ∈ E#X1 · · ·Xn.

It is clear that∑i∈I(u1i...uni) �=α and∑i∈I(u1i...uni) �= β . However, by Theorem 5.2,
we have ∑i∈I(u1i...uni) = α ∧β . This contradicts the assumption that ∑i∈I(u1i...uni)
is a ∧– irreducible element in lattice (E#X1...Xn,∨,∧). Therefore |K| = 1 and
∑i∈I(u1i...uni) ∈ I ∧.

Conversely, let γ = ∑i∈I(u1i...uni) ∈ I ∧. We prove that ∑i∈I(u1i...uni) is a
∧–irreducible element in the lattice (E#X1...Xn,∨,∧). If γ �= X1X2...Xn, then for
each i ∈ I there exist ki ∈ {1,2, ...,n} such that ukii = Xki − {xi} for some xi ∈
Xki and for all j �= ki, j ∈ {1,2, ...,n}, u ji = Xj. For α = ∑l∈L(w1l · · ·wnl), β =
∑ j∈J(v1 j · · ·vn j) ∈ E#X1 · · ·Xn, assume that γ,α,β are all irreducible and γ = α ∧β .
So γ = α ∧β ≤ α and γ = α ∧β ≤ β . Since X1X2...Xn is the maximum element of
the lattice (E#X1...Xn,∨,∧), hence if γ = X1X2...Xn then γ = α = β .

In what follows, we prove that γ is a ∧–irreducible element provided that γ �=
X1X2...Xn. Because γ ≤ α and γ ≤ β , for any i ∈ I there exist li ∈ L and ji ∈ J such
that
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uki ⊆ wkli , uki ⊆ vk ji , k = 1,2, ...,n.

Considering, for all j �= ki, j ∈ {1,2, ...,n}, u ji = Xj and ukii = Xki −{xi} for some
xi ∈ Xki , we have

uki = wkli = vk ji = Xk, k �= ki,k = 1,2, ...,n;

ukii = Xki −{xi} ⊆ wkili , ukii = Xki −{xi} ⊆ vki ji . (5.51)

If there exists t ∈ I such that wkt lt = Xkt or vkt jt = Xkt , then α = X1X2...Xn or β =
X1X2...Xn. This implies that γ = α ∧ β = α or γ = α ∧ β = β . Thus γ is a ∧–
irreducible element. If for any i ∈ I, wkili �= Xki and vki ji �= Xki , then ukii = Xki −{xi}=
wkili , ukii = Xki −{xi} = vki ji for all i ∈ I. If L−{li | i ∈ I} = ∅ or J−{ ji | i ∈ I} = ∅
then γ = α or γ = β and γ is a ∧–irreducible element. Assume that L−{li | i ∈ I} �=
∅ and J −{ ji | i ∈ I} �= ∅. This implies that

α =∑
i∈I

(u1i...uni)+ ∑
l∈L−{li | i∈I}

(w1l · · ·wnl),

β =∑
i∈I

(u1i...uni)+ ∑
j∈J−{ ji | i∈I}

(v1 j · · ·vn j).

Let Iu = {i | ki = u}, u = 1,2, ...,n. Because both α and β are irreducible and
(5.51), for any l ∈ L −{li | i ∈ I} there exists u ∈ {1,2, ...,n} such that {xi | i ∈
Iu} ⊆ wul and for any j ∈ J −{ ji | i ∈ I} there exists q ∈ {1,2, ...,n} such that
{xi | i ∈ Iq}⊆ vq j. Furthermore xq. By the definition of the set I ∧, we have q = u and
{xi | i ∈ Iu} ⊆ wul ∩vq j. Then for any i ∈ I either uqi ⊇ wul ∩vq j nor uqi ⊆ wul ∩vq j.
This implies that γ �= α ∧β and contradicts to the assumption γ = α ∧β . Therefore
L −{li | i ∈ I} = ∅ or J −{ ji | i ∈ I} = ∅. That follows γ = α or γ = β . Finally
we prove that any γ = ∑i∈I(u1i...uni) ∈ I ∧ is a ∧–irreducible element in the lattice
(E#X1...Xn,∨,∧).

(3) Let γ = ∑i∈I(u1i · · ·uni) ∈ E#X1 · · ·Xn be an atom in E#X1 · · ·Xn and γ be irre-
ducible. It is straightforward to note

∑
i∈I

(u1i · · ·uni) �= ∅∅ · · ·∅.

If I contains more than one element, choose i0 ∈ I. Let J = I −{i0}.Thus we have

∅∅ · · ·∅ <∑
i∈J

(u1i · · ·uni) <∑
i∈I

(u1i · · ·uni). (5.52)

It contradicts that γ is ∧–irreducible element. So we derive that |I| = 1, it follows
that ∑i∈I(u1i...uni) has the form u1...un. If there exists k0 ∈ {1,2, · · · ,n} such that
uk0 �= ∅k0 and |uk0 | ≥ 2. Let xk0 ∈ uk0 , we have

∅ · · ·∅ < u1...uk0−1(uk0 −{xk0})uk0+1...un < u1...un.
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It is also contradicts that γ is ∧–irreducible element. Thus we arrive that for k =
1,2, · · · ,n, either |uk| = 0 or 1. Furthermore, if there exist two uk1 ,uk2 such that
|uk1 | = 1, |uk2 | = 1, then it follows that

∅ · · ·∅ < ∅ · · ·∅{xk2}∅ · · ·∅ < ∅ · · ·∅{xk1}∅ · · ·∅{xk2}∅ · · ·∅ < u1...un.

This implies that that there exists unique k0 ∈ {1,2, ...,n} such that |uk0 | = 1 and for
all k �= k0, k ∈ {1,2, ...,n}, uk = ∅. Therefore,we have that γ = u1...un ∈ A .

Conversely, we prove that any γ ∈ A is an atom element, that is

γ = ∅ · · ·∅{xk}∅ · · ·∅, xk ∈ Xk, k = 1,2 · · ·n.

Let ∑ j∈J(v1 j...vn j) ∈ E#X1...Xn,k = 1,2, · · · ,n, such that

∑
j∈J

(v1 j...vn j) ≤ ∅ · · ·∅{xk}∅ · · ·∅ (5.53)

From the Theorem 5.2, for any j ∈ J, we have that

v1 j ⊆ ∅, ...,vk−1, j ⊆ ∅, vk j ⊆ {xk}, vk+1, j ⊆ ∅, ...,vn j ⊆ ∅.

It follows that

∑
j∈J

(v1 j...vn j) = ∅ · · ·∅{xk}∅ · · ·∅ or ∑
j∈J

(v1 j...vn j) = ∅ · · ·∅.

In either case,we know that, ∅ · · ·∅{xi}∅ · · ·∅ is an atom in E#X1...Xn. Therefore
any γ ∈ A is an atom element.

(4) Let γ = ∑i∈I(u1i...uni) ∈ E#X1...Xn be a dual atom in E#X1...Xn and γ is irre-
ducible. It is clear that

∑
i∈I

(u1i...uni) �= X1...Xn. (5.54)

If for some k ∈ {1,2, · · · ,n},∃i0 ∈ I such that |Xk − uki0 | ≥ 2, then choose xk /∈
uki0 ,xk ∈ Xk, and k = 1,2, · · · ,n. Let J = I −{i0}. Then we have

∑
i∈I

(u1i...uni) <∑
i∈J

(u1i...uni)+
[
u1i0 ...uk−1i0(uki0 ∪{xk})uk+1i0 · · ·uni0

]
< X1...Xn.

This contradicts the assumption that ∑i∈I(u1i...uni) is a dual atom. It implies that

|Xk −uki| = 0 or |Xk −uki| = 1, ∀i ∈ I, ∀k ∈ {1,2 · · ·n}.

If there exists some i0 ∈ I such that for all k = 1,2, · · · ,n, |Xk − uki0 | = 0, then we
have u1i0 · · ·uni0 = X1 · · ·Xn. It forces ∑i∈I(u1i · · ·uni) = X1 · · ·Xn. This is in conflict
with the assumption. Therefore, ∀i ∈ I, there exists certain ki ∈ {1,2, · · · ,n} such
that |Xki −ukii| = 1. It means that there exists xkii ∈ X such that ukii = Xki −{xkii}. If
∀i ∈ I, there exists unique ki ∈ {1,2, · · · ,n} such that |Xki −ukii| = 1, then from the
discussion above, we know that
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∑
i∈I

(u1i · · ·uni) = ∑
1≤k≤n

∑
x∈Dk

[X1 · · · (Xk −{x}) · · ·Xn], Dk ⊆ Xk, k = 1,2, ...,n.

If for some k0 ∈ {1,2, ...,n}, Xk0 −Dk0 �= ∅, then for xk0 ∈ Xk0 −Dk0 we have

∑
i∈I

(u1i · · ·uni) < ∑
1≤k≤n

∑
x∈Dk

[X1 · · · (Xk −{x}) · · ·Xn]+
[
X1 · · ·Xk0−1{xk0}Xk0+1 · · ·Xn

]
< X1 · · ·Xn.

This contradicts the assumption that ∑i∈I(u1i...uni) is a dual atom. Therefore Xk0 −
Dk0 �= ∅ and the dual atom element γ ∈ A .

Conversely, we prove that any γ ∈A is a dual atom element. Let∑i∈I(u1i...uni)∈
E#X1...Xn such that

∑
1≤k≤n

∑
x∈Xk

[X1 · · · (Xk −{x}) · · ·Xn] <∑
i∈I

(u1i...uni) < X1 · · ·Xn. (5.55)

Suppose ∑i∈I(u1i...uni) �= X1...Xn, then we have that every item u1i...uni �= X1...Xn

for all i ∈ I. Thus for any i ∈ I there exists ki ∈ {1,2, · · · ,n} such that Xki �= ukii ⊆ Xki ,
it follows that, there exists element xkii ∈ Xki such that xkii /∈ ukii. This implies that
ukii ⊆ Xki −{xkii}, which follows that

u1i ⊆ X1, ..., ukii ⊆ Xki −{xkii}, ..., uni ⊆ Xn, ∀i ∈ I.

This means that

∑
i∈I

(u1i · · ·uni) ≤ ∑
1≤i≤n

∑
j∈Ji

[X1 · · ·(Xi −{xi j}) · · ·Xn]

which contradicts (5.55). Therefore, we have

∑
i∈I

(u1i · · ·uni) = ∑
1≤k≤n

∑
x∈Xk

[X1 · · · (Xk −{x}) · · ·Xn].

This indicates that ∑1≤k≤n∑x∈Xk
[X1 · · · (Xk − {x}) · · ·Xn] is a dual atom in

E#X1 · · ·Xn. 
�

Example 5.2. Let X1 = {a,b},X2 = {c,d},then X1{c}+ X1{d}+{a}X2 +{b}X2 is
the only dual atom element in E#X1X2,while X1{c}, X1{d}, {a}X2 , {b}X2, X1{c}+
X1{d}, {a}X2 +{b}X2 are all ∧−irreducible elements in E#X1X2.

In what follows, we will show that E#In(n ≥ 2) algebra E#X1...Xn is indeed
a new structure which is quite different from EIn+1 algebra EY1...YmM, where
X1, ...,Xn,Y1, ...,Ym,M are sets.

Lemma 5.2. Let (L1,≥),(L2,≥) be two lattices and f be an isomorphism from L1

to L2. Then for x ∈ L1, x is a ∨−irreducible element in L1 if and only if f (x) is a
∨−irreducible element in L2; and x is a ∧−irreducible element in L1 if and only if
f (x) is a ∧−irreducible element in L2.
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Theorem 5.28. Let X1, ...,Xn,Y1, ...,Ym,M be n + m + 1 non-empty sets. Then there
is no isomorphism from (EY1...YmM,∨,∧) to (E#X1...Xn,∨,∧) for any n ≥ 1 and
m ≥ 1.

Its proof remains as an exercise. The proceeding theorem states that under no cir-
cumstances the two structures are the same, so (E#X1...Xn,∨,∧) is the different
algebra structure from (EX1...XnM,∨,∧).

Theorem 5.29. Let X1, ...,Xn be n non-empty sets and (E#X1...Xn,∨,∧) be the E#In

algebra over X1, ...,Xn. Then the following assertions hold.

(1) If there exists i0 ∈ {1,2, · · · ,n} such that |Xi0 | > 1, then (E#X1...Xn,∨,∧) is not
a fuzzy lattice.

(2) If for all i ∈ {1,2, · · · ,n} such that |Xi|= 1, then E#X1...Xn is a boolean algebra.

Let X1,X2, ...,Xn be n non-empty sets and (E#X1...Xn,∨,∧) be the E#In algebra over
X1, ...,Xn. The subset SE#X1...Xn ⊆ E#X1...Xn is defined as follows.

SE#X1...Xn =

{
∑
i∈I

(A1i...Ani)|Aki ∈ 2Xk −{Xk},k = 1,2, · · · ,n
}

. (5.56)

It is clear that (SE#X1...Xn,∨,∧) is a sublattice of the lattice (E#X1...Xn,∨,∧).
Along the direction we have discussed for (SEX1...Xn,∨,∧), the similar algebraic
properties of the lattice (E#X1...Xn,∨,∧) could be explored, which are left as open
problems.

5.5 Combinatoric Properties of the AFS Structure

In this section, we study some combinatoric properties of AFS structures which can
be applied to the analysis of complex systems. As we have already pointed out that
the AFS structure is a special combinatoric system. The combinatoric techniques
outlined in Section 1.6 are considered to study the AFS structure.

Definition 5.12. Let X and M be sets, (M,τ,X) be an AFS structure. Let V = M,
E = X × X . If the map fτ : E → V is defined as follows: for any x1,x2 ∈ X ,
fτ ((x1,x2)) = τ(x1,x2)∩ τ(x2,x2) . Then (M, fτ ,X × X) is a system described by
Definition 1.48. It is called the combinatoric system induced by the AFS structure
(M,τ,X), and denoted as (M, fτ ,X ×X).

Considering fτ ((x1,x2)) = τ(x1,x2) ∩ τ(x2,x2) in Definition 5.12, τ(x1,x2) ∩
τ(x2,x2) is the block (a set of simple concepts in M) associating to (x1,x2) which
describes the relationship from x1 to x2. So the simple concepts in τ(x1,x2) which
x2 does not belong have to be excluded from τ(x1,x2). Thus x2 belongs to any sim-
ple concept in the block and the membership degree of x1 belonging to any simple
concept in the block is larger than or equal to that of x2. Definition 5.12 builds a
link between the AFS theory and the combinatorics. In virtue of this important as-
sociation, many developed combinatoric techniques can be applied to analysis AFS
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structure of data. As an example, in what follows, we present how to decompose a
complex AFS structure to some simple AFS structures via combinatoric theory.

Definition 5.13. Let X and M be sets, (M,τ,X) be an AFS structure. (M,τ,X) is
called a connected AFS structure if (M, fτ ,X × X), the system induced by AFS
structure (M,τ,X), is a connected system. V ⊆ M,U ⊆ X , if (V, fτ ,U ×U) is a
connected component of (M, fτ ,X × X), then sub-AFS structure (V,τ|U×U ,U) is
called a connected component of (M,τ,X).

Definition 5.14. Let X and M be sets and (M,τ,X) be an AFS structure. If M =⋃
i∈I Vi, X =

⋃
i∈I Ui, Vi �= ∅, Vi ∩Vj = ∅, Ui ∩Uj = ∅, i �= j, i, j ∈ I, (Vi,τ|Ui×Ui ,Ui)

is the connected components of (M,τ,X), then the direct sum of connected compo-
nents of (Vi,τ|Ui×Ui ,Ui), i ∈ I is defined as follows.

(M,τ,X) = ⊗i∈I(Vi,τ|Ui×Ui ,Ui).

By Theorem 1.56, we know that this direct sum for any given AFS structure is
unique. For any i ∈ I, since (Vi, fτ ,Ui ×Ui) is a connected component of (M, fτ ,X ×
X), hence for any x,y ∈ Ui,

Vi ⊇ fτ (x,y) = τ(x,y)∩ τ(y,y) �= ∅.

This implies that for any x,y ∈ Ui in the AFS structure (Vi,τ|Ui×Ui ,Ui) there exist
some simple concepts in Vi such that x is associated to y. However, for i, j ∈ I, i �= j,
for any x ∈ Ui in the AFS structure (Vi,τ|Ui×Ui ,Ui) and y ∈ Uj in the AFS structure
(Vj,τ|Uj×Uj ,Uj),

fτ (x,y) = τ(x,y)∩ τ(y,y) = ∅.

This implies that there does not exists any simple concept in M such that an object
in Ui in (Vi,τ|Ui×Ui ,Ui) is associated to an object in Uj in (Vj,τ|Uj×Uj ,Uj). Thus the
AFS structure of a complex system will be decomposed into some independent sub
AFS structures which are the most simple AFS structures and cannot be decomposed
further.

Theorem 5.30. Let X and M be sets, (M,τ,X) be an AFS structure. Then there exist
Vi ⊆ M,Ui ⊆ X, i ∈ I such that

(M,τ,X) = ⊗i∈I(Vi,τ|Ui×Ui ,Ui).

Proof. In virtue of Theorem 1.56, for the system (M, fτ ,X ×X), we know that there
exist Vi ⊆ M, Ei ⊆ X ×X , i ∈ I, such that

Vi ∩Vj = ∅, Ei ∩E j = ∅, i �= j, i, j ∈ I,M =
⋃
i∈I

Vi, X ×X =
⋃
i∈I

Ei,

and

(M, fτ ,X ×X) = ⊕i∈I(Vi, f |Ei ,Ei),
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where (Vi, f |Ei ,Ei) is the maximum connected sub-system of system (M, fτ ,X ×X).
Let

i1(Ei) = {x | ∃y ∈ X ,(x,y) ∈ Ei} ⊆ X ,

i2(Ei) = {y | ∃x ∈ X ,(x,y) ∈ Ei} ⊆ X .

If Vi �= ∅, then ∀x ∈ i1(Ei),∃y ∈ i2(Ei), such that

fτ ((x,y)) = τ(x,y)∩ τ(y,y) ⊆ Vi.

Since Vi �= ∅ and (Vi, f |Ei ,Ei) is the maximum connected sub-system of system
(M, fτ ,X ×X), hence

fτ ((x,y)) = τ(x,y)∩ τ(y,y) �= ∅.

If (x,x) /∈ Ei, then there exists j such that (x,x) ∈ E j and

fτ ((x,x)) = τ(x,x)∩ τ(x,x) = τ(x,x) ⊆ Vj.

By AX1 of Definition 4.5, we know that the following conclusions hold fτ ((x,y)) ⊆
τ(x,y) ⊆ τ(x,x). Therefore we have

Vi ∩Vj ⊇ τ(x,x)∩ fτ ((x,y)) = τ(x,x)∩ τ(x,y)∩ τ(y,y) = fτ ((x,y)) �= ∅.

This fact contradicts Vi ∩Vj = ∅. Therefore (x,x) ∈ Ei and x ∈ i2(Ei). It also implies
that i1(Ei) ⊆ i2(Ei) if Vi �= ∅. If Vi �= ∅, then ∀y ∈ i2(Ei),∃x ∈ i1(Ei), such that

fτ ((x,y)) = τ(x,y)∩ τ(y,y) ⊆ Vi.

Since (Vi, f|Ei ,Ei) is the maximum connected sub-system of system (M, fτ ,X ×X)
and Vi �= ∅, hence

fτ ((x,y)) = τ(x,y)∩ τ(y,y) �= ∅.

If (y,y) /∈ Ei, then there exists j such that (y,y) ∈ E j, and

fτ ((y,y)) = τ(y,y)∩ τ(y,y) = τ(y,y) ⊆ Vj.

We have

Vi ∩Vj ⊇ τ(y,y)∩ fτ ((x,y)) = τ(y,y)∩ τ(x,y)τ(y,y) = fτ ((x,y)) �= ∅.

It contradicts Vi ∩Vj = ∅. Therefore (y,y) ∈ Ei and y ∈ i1(Ei). This implies that
i2(Ei) ⊆ i1(Ei) if Vi �= ∅. Thus we prove i1(Ei) = i2(Ei) if Vi �= ∅, i ∈ I. Let
i1(Ei) =Ui, i.e., Ei = i1(Ei)× i2(Ei) =Ui ×Ui. On the other hand, if Vi = ∅. Because
(Vi, fτ |Ei ,Ei) is the maximum connected sub-system of system (M, fτ ,X ×X), Ei is
a singleton set Ei = {(x,y)}. This implies τ(x,y)∩τ(y,y) = ∅. For the AFS structure
(Vi,τ|Ui×Ui ,Ui), let (x,y) ∈ Ui ×Ui. Since τ(x,x) ⊆ Vi, hence τ(x,y) ⊆ τ(x,x) ⊆ Vi
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from AX1 of Definition 4.5. This shows that for each i ∈ I, (Vi,τ|Ui×Ui ,Ui) is a
sub-AFS structure of (M,τ,X) and (Vi, f |Ei ,Ei), which is a connected component
of the AFS structure (M,τ,X), is the combinatoric system of the sub AFS structure
(Vi,τ|Ui×Ui ,Ui). Therefore we have

(M,τ,X) = ⊗i∈I(Vi,τ|Ui×Ui ,Ui)

and the proof is complete. 
�

Definition 5.15. Let X and Y be sets. Let the AFS structure (Y,τ1,X) be compatible
with AFS structure (X ,τ2,Y )) (refer to Definition 5.4). If

(Y,τ1,X) = ⊕i∈I(Y
(1)
i ,τ1|X(1)

i ×X(1)
i

,X (1)
i ),

(X ,τ2,Y ) = ⊕i∈J(X
(2)
i ,τ2|Y (2)

i ×Y
(2)
i

,Y (2)
i ),

and I = J, X (2)
i = X (1)

i = Xi,Y
(2)
i = Y (1)

i = Yi, for any i ∈ I = J, then the direct sum
of the cognitive space ((Y,τ1,X),(X ,2,Y )) is defined as follows.

((Y,τ1,X),(X ,τ2,Y )) = ⊕i∈I((Yi,τ1|Xi×Xi ,Xi),(Xi,τ2|Yi×Yi ,Yi)).

Theorem 5.31. Let X and Y be sets. Let the AFS structure (Y,τ1,X) be compatible
with AFS structure (X ,τ2,Y )) (refer to Definition 5.4). Then there exist Xi ⊆ X,
Yi ⊆ Y , i ∈ I such that

((Y,τ1,X),(X ,τ2,Y )) = ⊕i∈I((Yi,τ1|Xi×Xi ,Xi),(Xi,τ2|Yi×Yi ,Yi)).

And ∀x ∈ Xj, ∀ζ = ∑u∈U(∏m∈Au m) ∈ E(Y −Yi), i, j ∈ I, i �= j, the following asser-
tions hold

(1) ∑u∈U(∏m∈Au m)(x) = ∑u∈U Aτ1u (x)Au = ∑u∈U ∅Au ∈ EXY.

(2) ∑u∈U(∏m∈Au m)(x) = ∑u∈U Aτ1u (x){x}τ(Au)Au = ∑u∈U ∅∅Au ∈ EXYY .

(3) µζ (x) = 0 if µζ (.) is a coherence membership function.

Proof. Because of Theorem 5.30, for (Y,τ1,X) and (X ,τ2,Y ), we have

(Y,τ1,X) = ⊕i∈I(Y
(1)
i ,τ1|X(1)

i ×X
(1)
i

,X (1)
i ),

(X ,τ2,Y ) = ⊕i∈J(X
(2)
i ,τ2|Y (2)

i ×Y
(2)
i

,Y (2)
i ),

Suppose X (1)
i ∩X (2)

j �= ∅ and x ∈ X (1)
i ∩X (2)

j . Because each (Y (1)
i ,τ1|X(1)

i ×X
(1)
i

,X (1)
i ),

i ∈ I, is connected, ∀y ∈ X (1)
i , τ1(x,x) ⊆ Y (1)

i ,τ1(y,y) ⊆ Y (1)
i . Then there exist m1 ∈

τ1(x,x) �= ∅, m2 ∈ τ1(y,y) �= ∅ and a m1 −m2 path in the system
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(Y (1)
i , fτ1 |X(1)

i ×X(1)
i

,X (1)
i ×X (1)

i ),

written as v0 = m1,(x1,y1),v1,(x2,y2),v2,(x3,y3), ...,(xg,yg),vg = m2 and x1 =
x,yg = y. By the AX1 of Definition 4.5, we know τ1(xi,yi) ⊆ τ1(xi,xi) ⊆ Y (1)

i ⇒
τ1(xi,yi) ∩ τ1(yi,yi) ⊆ τ1(xi,xi). Therefore v0 = m1, (x1,x1), v1, (x2,x2), v2,
(x3,x3),..., (xg,xg), vg = m2 is also a m1 − m2 path and vi−1,vi ∈ τ1(xi,xi), i =
1,2, ...,g. Because (Y,τ1,X) is compatible with (X ,τ2,Y ), xi ∈ τ2(vi−1,vi−1), xi ∈
τ2(vi,vi), i = 1,2, ...,g. So that x,(v0,v0),x2,(v2,v2), ...,xg−1,(vg,vg),y, is a x − y

path in the system (X , fτ2 ,Y ×Y ). Since (X (2)
j ,τ2|Y (2)

j ×Y
(2)
j

,Y (2)
j ) is connected, hence

y ∈ X (2)
j . This means X (1)

i ⊆ X (2)
j . Similarly, we can prove X (1)

i ⊇ X (2)
j . Finally we

have X (1)
i = X (2)

j . Since x ∈ X (1)
i ∩X (2)

j �= ∅, hence ∃m ∈ τ1(x,x) ⊆Y (1)
i . Because of

the definition of compatible AFS structures, x ∈ τ2(m,m)⇒ x ∈ τ2(m,m)∩X (2)
j �= ∅.

Since (
X (2)

j , fτ2 |Y (2)
j ×Y

(2)
j

,Y (2)
j ×Y (2)

j

)

is the maximum connected sub-system of the system (X , fτ2 ,Y ×Y ), m ∈Y (2)
j ⇒ m ∈

Y (1)
i ∩Y (2)

j �= ∅. Anyway, if X (1)
i ∩X (2)

j �= ∅, then X (1)
i = X (2)

j , Y (1)
i ∩Y (2)

j �= ∅ and

the same as the arguments of X (1)
i ∩X (2)

j �= ∅, we also can prove that if Y (1)
i ∩Y (2)

j �=
∅, then Y (1)

i = Y (2)
j , X (1)

i ∩X (2)
j �= ∅. This implies that

X (1)
i ∩X (2)

j �= ∅ ⇔ Y (1)
i ∩Y (2)

j �= ∅.

X (1)
i ∩X (2)

j �= ∅ ⇒ X (1)
i = X (2)

j .

Y (1)
i ∩Y (2)

j �= ∅ ⇒ Y (1)
i = Y (2)

j .

Therefore we have

((Y,τ1,X),(X ,τ2,Y )) = ⊕i∈I((Yi,τ1|Xi×Xi ,Xi),(Xi,τ2|Yi×Yi ,Yi)).

In what follows, we prove (1), (2) and (3). ∀x ∈ Xj, and ∀ζ = ∑u∈U(∏m∈Au m) ∈
E(Y −Yi), i, j ∈ I, i �= j, we have τ1(x,x) ⊆ Yi and τ1(x,x)∩ (Y −Yi) = ∅. This im-
plies that

Aτ1i (x) = {y | y ∈ X ,τ1(x,y) ⊇ Ai} = ∅.

It follows (1).
Since for any v ∈ Ai, if {x} ⊆ τ2(v,u) ⊆ τ2(v,v), then v ∈ τ1(x,x). It contradicts

that τ1(x,x)∩ (Y −Yi) = ∅. Hence
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{x}τ2(Ai) = {u | u ∈ Y, τ2(v,u) ⊇ {x}, ∀v ∈ Ai} = ∅.

Then we have (2).
(3) can be directly proved by (1) and Definition 4.7.
Now, we have completed the proof. 
�

Theorem 5.31 ensures that any cognitive space can be decomposed into the direct
sum of some independent and connected sub-cognitive spaces and the membership
degree (coherence membership degree or AFS algebra represented membership de-
gree) of any sample from one space belonging to any fuzzy concept from another
space is always 0. In this way, the complexity of a complex system can be greatly
decreased and the system structure can be easily comprehended.

Exercises

Exercise 5.1. Let X1, ...,Xn,M be n+1 non-empty sets. If At ⊆ As, urt ⊇ urs, r =
1,2, ...,n, t,s ∈ I, t �= s, ∑i∈I(u1i...uniAi) ∈ EX1...XnM. Show the following

∑
i∈I

(u1i...uniAi) = ∑
i∈I−{s}

(u1i...uniAi).

Exercise 5.2. Let X1, ...Xn,M be n+1 non-empty sets. Prove that (EX1...XnM,∨,∧)
forms a completely distributive lattice under the binary compositions ∨ and ∧ de-
fined as follows: ∀∑i∈I(u1i...uniAi), ∑ j∈J(v1 j...vn jB j) ∈ EX1...XnM,

∑
i∈I

(u1i...uniAi)∨∑
j∈J

(v1 j...vn jB j) = ∑
k∈I�J

(w1k...wnkCk),

∑
i∈I

(u1i...uniAi)∧∑
j∈J

(v1 j...vn jB j) = ∑
i∈I, j∈J

[
(u1i ∩ v1 j...uni ∩ vn j)(Ai ∪B j)

]
,

where ∀k ∈ I � J , Ck = Ak,wrk = urk if k ∈ I and Ck = Bk,wrk = vrk if k ∈ J, r =
1,2, ...,n.

Exercise 5.3. Let X1,X2, ...,Xn be n non-empty sets. Prove that (E#X1X2...Xn, ∨,
∧) forms a completely distributive lattice under the binary compositions ∨ and ∧
defined as follows:

∑
i∈I

a1ia2i...ani ∨∑
j∈J

b1 jb2 j...bn j = ∑
k∈I�J

c1kc2k...cnk

∑
i∈I

a1ia2i...ani ∧∑
j∈J

b1 jb2 j...bn j = ∑
i∈I, j∈J

(a1i ∩b1 j)(a2i ∩b2 j)...(ani ∩bn j)

where ∀k ∈ I � J, crk = ark, r = 1, ...,n, if k ∈ I and crk = brk, r = 1, ...,n, if k ∈ J.

Exercise 5.4. Let X be a set and E#X be the E#I algebra a over X . Show the follow-
ing assertions hold: for any ∑i∈I ai ∈ E#X ,
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1. ∅∨∑i∈I ai = ∑i∈I ai, ∅∧∑i∈I ai = ∅;
2. X ∨∑i∈I ai = X , X ∧∑i∈I ai = ∑i∈I ai.

Exercise 5.5. Let (M,τ,X) be an AFS structure. For any given x ∈ X , if we define a
mapping φx : EM → EXM, ∀ ∑i∈I∏m∈Ai

m ∈ EM,

φx(∑
i∈I
∏

m∈Ai

m) =∑
i∈I

Aτi ({x})Ai ∈ EXM.

Prove that φx is a homomorphism from lattice (EM,∨,∧) to lattice (EXM,∨,∧).

Exercise 5.6. Let X and M be sets. (M,τ1,X) is compatible with (X ,τ2,M). ∀x ∈ X ,
for any ∑i∈I∏m∈Ai

m ∈ EM, if we define

φx(∑
i∈I
∏

m∈Ai

m) =∑
i∈I

Aτ1i (x){x}τ2(Ai)Ai ∈ EXMM,

prove that φx is a homomorphism from lattice (EM,∨,∧) to lattice (EXMM,∨,∧),
where Aτ1i (x) and {x}τ2(Ai) are defined by (5.8).

Exercise 5.7. Let X1, ...,Xn,M be n+1 non-empty sets, EX1...XnM be EIn+1 algebra
over X1, ...,Xn,M and M be a finite set of simple concepts, Sr be a σ -algebra over Xr,
r = 1,2, ...,n. Prove that ξ ∨η , ξ ∧η ∈ σ(EX1...XnM) for all ξ ,η ∈ σ(EX1...XnM),
i.e., (σ(EX1...XnM),∨,∧) is a sublattice of (EX1...XnM,∨,∧). Here σ(EX1...XnM)
is defined by (5.17).

Exercise 5.8. Let X1, ...,Xn,M be n + 1 non-empty sets, EX1...XnM be EIn+1 alge-
bra over X1, ...,Xn,M and M be a finite set of simple concepts, Sr be a σ -algebra
over Xr, r = 1,2, ...,n. For each simple concept ζ ∈ M, let Mζ be the measure
defined by Definition 5.6 for ρζ . Prove that the map ||.|| : σ(EX1...XnM) → [0,1]
defined as follows is a fuzzy norm of the lattice (σ(EX1...XnM),∨,∧): for any
∑i∈I(u1i...uniAi) ∈ σ(EX1...XnM),

||∑
i∈I

(u1i...uniAi)|| = sup
i∈I

(
∏

m∈Ai,1≤r≤n

Mm(uri)

)
∈ [0,1].

Exercise 5.9. Let M be a set. For∑i∈I Ai,∑ j∈J B j ∈ EM, if∑i∈I Ai =∑ j∈J B j,∑i∈I Ai

and ∑ j∈J B j are both irreducible, show {B j| j ∈ J} = {Ai|i ∈ I}.

Exercise 5.10. Let M = {m1, m2, · · · , mn}. Show |C1(M)| = l1(n) = 2n.

Exercise 5.11. Prove that (EM,∨,∧) is a Boolean algebra if |M| = 1.

Exercise 5.12. Let (L,∨,∧,σ) be a fuzzy lattice. Prove that the strong De Morgan
Law holds, that is, for any at ∈ L, t ∈ T ,(∨

t∈T

at

)σ
=

∧
t∈T

aσt ,

(∧
t∈T

at

)σ
=

∨
t∈T

aσt .
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Exercise 5.13. Let M be a set and (EM,∨,∧) be the EI algebra over M. Prove that
{A | A ∈ 2M} is the set of all strong ∨—irreducible elements in EM (refer to Defi-
nition 2.10).

Exercise 5.14. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over M.
Let

SEM =

{
∑
i∈I

Ai | Ai ∈ 2M −{∅}, i ∈ I, I is anyindexing set

}
⊆ EM.

Prove that (SEM,∨,∧) is a sublattice of (EM,∨,∧) with minimum element M and
maximum element ∑m∈M{m}. Furthermore (SEM,∨,∧) is a molecular lattice.

Exercise 5.15. Let M be a non-empty set and (EM,∨,∧) be the EI algebra over
M. (SEM,∨,∧) is not a Boolean algebra if |M| > 2. Nevertheless, if |M| = 2, i.e.,
M = {m1,m2}, prove that (SEM,∨,∧) is a Boolean algebra.

Exercise 5.16. Let X1, X2,..., Xn, M be n + 1-non-empty sets and (EX1X2...XnM,
∨,∧) be the EIn+1 algebra over X1, X2,..., Xn, M. Let

SEX1X2...XnM =

{
∑
i∈I

(u1i...uniAi) | Ai ∈ 2M −{∅},

i ∈ I,uri ∈ 2Xr ,r = 1,2, ...,n, i ∈ I, I is anyindexing set
}

⊆ EM.

Prove that (SEX1X2...XnM,∨,∧) is a sublattice of (EX1X2...XnM,∨,∧) with
minimum element ∅...∅M and maximum element ∑m∈M X1...Xn{m}. Moreover
(SEX1X2...XnM, ∨, ∧) is a molecular lattice.

Exercise 5.17. Let X1, ..., Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧)
be the EIn+1 algebra over X1, ..., Xn, M. For any α = ∑i∈I(u1i...uniAi),β =
∑ j∈J(v1i...vniB j) ∈ EX1...XnM, show the following assertions hold:

1. α ∧β = β ∧α, α ∨β = β ∨α; (Commutativity)
2. (α ∧β )∧ γ = α ∧ (β ∧ γ), (α ∨β )∨ γ = α ∨ (β ∨ γ); (Associativity)
3. (α ∧β )∨α = α, (α ∨β )∧α = α; (Absorbance)
4. α ∧(β ∨γ) = (α ∧β )∨(α ∧γ), α ∨(β ∧γ) = (α ∨β )∧(α∨γ); (Distributivity)
5. α ∧α = α, α ∨α = α . (Idempotence)

Exercise 5.18. Let X1, . . . , Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧) be
the EIn+1 algebra over X1, ..., Xn, M. Prove that

{u1...unA | A ∈ 2M,ur ∈ 2Xr , r = 1,2, ...,n}

is the set of all ∨—irreducible elements in EX1...XnM.

Exercise 5.19. Let X1, . . . , Xn, M be n+1 non-empty sets and (EX1...XnM,∨,∧) be
the EIn+1 algebra over X1, ..., Xn, M. For ∑i∈I(u1i...uniAi) ∈ EX1...XnM, let
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Pi = {(v1...vnB) | B ⊇ Ai,vr ⊆ uri,r = 1,2, . . . ,n} ⊆ EX1...XnM,

Si ⊆ Pi(i ∈ I). Prove that B =
⋃

i∈I Pi is a standard minimal family of
∑i∈I(u1i...uniAi) in molecular lattice (EX1...XnM,∨,∧) .

Exercise 5.20. Let M be a non-empty set. If we define binary operations ∨,∧ as
follows. For ∑i∈I Ai,∑ j∈J B j ∈ EM,

∑
i∈I

Ai ∨∑
j∈J

B j = ∑
i∈I, j∈J

(Ai ∪B j),

∑
i∈I

Ai ∧∑
j∈J

B j = ∑
k∈I�J

Ck =∑
i∈I

Ai +∑
j∈J

B j.

Prove that (∗EM,∨,∧) is a molecular lattice, in which for ∑i∈I Ai,∑ j∈J B j ∈ EM,
∑i∈I Ai ≤ ∑ j∈J B j if and only if for any B j ( j ∈ J) there exists Ak (i ∈ I) such that
B j ⊇ Ai.

Exercise 5.21. Let X be a non-empty set. Let (∗EX ,∨,∧) and (∗E#X ,∨,∧) be the
∗EI algebra and ∗E#I algebra over X . Show the following assertions hold.

(1) The sublattices (SE#X ,∨,∧) and (SEX ,∨,∧) are isomorphism;
(2) The sublattices (∗SE#X ,∨,∧) and (∗SEX ,∨,∧) are isomorphism;
(3) The lattices (∗EX ,∨,∧) and (∗E#X ,∨,∧) are isomorphism.

Exercise 5.22. Let (L1,≥),(L2,≥) be two lattices and f be an isomorphism from
L1 to L2. Prove that for x ∈ L1, x is a ∨−irreducible element in L1 if and only if f (x)
is a ∨−irreducible element in L2; and x is a ∧−irreducible element in L1 if and only
if f (x) is a ∧−irreducible element in L2.

Exercise 5.23. Let X1, ...,Xn,Y1, ...,Ym,M be n + m + 1 non-empty sets. Prove that
there is no isomorphism from (EY1...YmM,≥) to (E#X1...Xn,≥).

Exercise 5.24. Let X1, ...,Xn be n non-empty sets and (E#X1...Xn,∨,∧) be the E#In

algebra over X1, ...,Xn. Prove that the following assertions hold.

(1) If there exists i0 ∈ {1,2, · · · ,n} such that |Xi0 | > 1, then (E#X1...Xn,∨,∧) is not
a fuzzy lattice.

(2) If for all i ∈ {1,2, · · · ,n} such that |Xi| = 1, then E#X1...Xn is a boolean algebra.

Exercise 5.25. Let X be a set and M be a set of simple concepts on X . Let (M,τ,X)
be an AFS structure and ||.|| be a fuzzy norm of an AFS algebra. For any fuzzy
concept ξ ∈ EM, let ξ (x) is the AFS algebra representation membership degree by
any one of (5.10), (5.12),(5.13) and (5.14). Prove that {µξ (x) | ξ ∈ EM} is the set of
coherence membership functions of the AFS fuzzy logic system (EM,∨,∧,′ ) and
the AFS structure (M,τ,X).

Open problems

Problem 5.1. Let M be a finite set and k ≥ 3. How many elements in Ck(EM)?
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Problem 5.2. Let X1, . . . , Xn, M be n+1 non-empty sets and |M| > 1,n > 1. Whether
(SEX1 . . .XnM,∨,∧) is a fuzzy lattice?

Problem 5.3. Let X1,X2, ...,Xn be n non-empty sets and (E#X1...Xn,∨,∧) be the
E#In algebra over X1, ...,Xn. What are the algebraic properties of (SE#X1...Xn,∨,∧)
corresponding to those of the lattice (SEX1...Xn,∨,∧)? i.e., the following problems.

(1) What are the set of all ∨–irreducible elements and the set of all ∧–irreducible
elements in the lattice (SEX1...Xn,∨,∧)?

(2) What are the set of all atom elements and the set of all dual atom elements in
the lattice (SEX1...Xn,∨,∧)?

(3) Is the lattice (SEX1...Xn,∨,∧) a fuzzy lattice?

Problem 5.4. How to explore other combinatoric properties of an AFS structure of
data considering combinatoric techniques? And is there any interpretation of these
combinatoric properties when applied to data analysis?
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Part III

Applications of AFS Theory



Chapter 6
AFS Fuzzy Rough Sets

In this chapter, in order to describe the linguistically represented concepts coming
from data available in a certain information system, the concept of fuzzy rough sets
are redefined and further studied in the setting of the Axiomatic Fuzzy Set (AFS)
theory. These concepts will be referred to as AFS fuzzy rough sets [32]. Compared
with the “conventional” fuzzy rough sets, the advantages of AFS fuzzy rough sets
are twofold. They can be directly applied to data analysis present in any informa-
tion system without resorting to the details concerning the choice of the implica-
tion φ , t-norm and a similarity relation S. Furthermore such rough approximations
of fuzzy concepts come with a well-defined semantics and therefore offer a sound
interpretation.

The underlying objective of this chapter is to demonstrate that the AFS rough sets
constructed for fuzzy sets form their meaningful approximations which are endowed
by the underlying semantics. At the same time, the AFS rough sets become directly
reflective of the available data.

6.1 Rough Sets and Fuzzy Rough Sets

Rough set theory, proposed by Pawlak in 1982 [38, 39] can be viewed as a new
mathematical approach to represent and process vagueness. The rough set philoso-
phy dwells on the assumption that with every object of the universe of discourse we
associate some information (data, knowledge). Objects characterized by the same
information are indiscernible (similar) in view of the available information about
them. The indiscernibility relation generated in this way constitutes a sound math-
ematical basis of the theory of rough sets [41, 42, 44]. As such, it has underwent a
number of extensions and generalizations since the original inception in 1982. Based
on the notion of a relation of being a (proper) part was proposed by Lesniewski [33],
Polkowski and Skowron (1996 [43]) extended it to the system of approximate mere-
ological calculus called rough mereology. Dubois and Prade (1990 [6]) introduced
fuzzy rough sets as a generalization of rough sets. Radzikowska and Kerre (2002
[46]) proposed (φ , t)-fuzzy rough sets as a broad family of fuzzy rough sets, which
are determined by some implication operator (implicator) φ , and a certain t-norm.

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 227–267.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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6.1.1 Rough Sets and Their Equivalent Definition

We start with some preliminaries of rough set theory which are relevant to this study.
For details, the reader may refer to [20, 38, 40, 41, 42]. Pawlak [39] derived the
rough probabilities by defining the approximation space A = (U,R) where U is a
finite nonempty set called the universe and R ⊆ U ×U is an equivalence relation on
U , i.e., R is reflexive, symmetric, and transitive. R partitions the set U into disjoint
subsets. Elements in the same equivalence class are said to be indistinguishable.
Equivalence classes of R are called elementary sets. Every union of elementary sets
is called a definable set. The empty set is considered to be a definable set, thus all
the definable sets form a Boolean algebra. Given an arbitrary set X ⊆ U , one can
characterize X by a pair of lower and upper approximations. The lower approxima-
tion A∗(X) is the greatest definable set contained in X , and the upper approximation
A∗(X) is the least definable set containing X . They can be computed in the following
manner.

A∗(X) = {x | [x]R ⊆ X},
A∗(X) = {x | [x]R ∩X �= ∅}, (6.1)

where, [x]R denotes the equivalence class of the relation R containing x.

Proposition 6.1. Let U be a set and A =(U, R) be an approximation space. Then the
lower approximation A∗(X) and upper approximation A∗(X) for any X ⊆ U satisfy
the following properties:

(1) A∗(X) ⊆ X ⊆ A∗(X);
(2) A∗(∅) = A∗(∅) = ∅, A∗(U) = A∗(U) = U;
(3) A∗(X ∩Y ) = A∗(X)∩A∗(Y ), A∗(X ∪Y ) = A∗(X)∪A∗(Y );
(4) If X ⊆ Y , then A∗(X) ⊆ A∗(Y ), A∗(X) ⊆ A∗(Y );
(5) A∗(X ∩Y ) ⊆ A∗(X)∩A∗(Y ), A∗(X ∪Y ) ⊇ A∗(X)∪A∗(Y );
(6) A∗(X ′)′ = A∗(X), A∗(X ′)′ = A∗(X);
(7) A∗(A∗(X))=A∗ (A∗(X))=A∗(X);
(8) A∗(A∗(X))=A∗ (A∗(X))=A∗(X).

An information system [45] is viewed as a pair S =< U, A >, or a function
f : U ×A →V , where U is a nonempty finite set of objects called the universe, A is
a nonempty finite set of attributes, and V stands for a value set such that a : U →Va

for every a ∈ A. The set Va is called the value set of the attribute a. An information
(decision) system may be represented as an attribute value (decision) table, in which
rows are labeled by objects of the universe and columns by the attributes. Any subset
B of A determines a binary relation RB on U , i.e., RB ⊆U×U, called an indiscerni-
bility relation [44], defined by (x, y) ∈ RB if and only if a(x) = a(y) for every a ∈ B.
Obviously, RB is an equivalence relation. The block of the partition of RB, contain-
ing x will be denoted by [x]B = {y ∈ X |(x,y) ∈ RB} for x ∈ X and B ⊆ A. Thus
in view of the data we are unable, in general, to observe individual objects but we
are forced to reason only about the accessible granules of knowledge. Equivalence
classes of the relation RB (or blocks of the partition) are referred to as B-elementary
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Table 6.1 Hiring Process: An Example of a Decision Table

Diploma(i) Experience(e) French(f) Reference(r) Decision
x1 MBA Medium yes Excellent Accept
x2 MBA Low yes Neutral Reject
x3 MCE Low yes Good Reject
x4 MSc High yes Neutral Accept
x5 MSc Medium yes Neutral Reject
x6 MSc High yes Excellent Reject
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

sets or B-elementary granules. In the rough set approach the B-elementary sets are
the basic building blocks (concepts) of our knowledge about reality. The unions of
B-elementary sets are called B-definable sets.

In many situations, the result of classification is provided and represented in the
form of some decision variable. Information systems of this type are called decision
systems. A decision system is any information system of the form D = (U,A ∪
{d}), where d /∈ A is the decision attribute. The elements of A are called conditional
attributes. For a decision system (U , A∪{d}) we can induce the AFS structure (MA∪
Md , τ , U) where MA and Md are the simple concepts associated with the attributes
in A and d, respectively.

In Table 6.1, a data table describes a set of applicants. The individuals x1,x2, . . . ,x8

shown there are characterized by some attributes, i.e., A, a set of attributes, like
Diploma, Experience, French, Reference, etc. With every attribute a ∈ A, a set of its
values is associated, i.e., Va, such as the values of the attribute Experience,Ve={Low,
Medium, High }. In data analysis the basic problem we are interested in is to find
patterns in data, i.e., to find a relationship between some sets of attributes, e.g., we
might be interested whether an application is accepted depends on Diploma and Ex-
perience. A decision system is an information system of the form A = (U,A∪{d}),
where d /∈ A is the decision attribute, e.g., attribute: Decision in Table 6.1. The el-
ements of A are called conditional attributes. In the approximation space (U , RB),
B ⊆ A, we can apply B-elementary sets to approximate a set of objects with the ex-
pected values of decision attributes, thus we can know that under which condition
is described by the granules of knowledge in (U , RA), the expected result is lead ac-
cording to the data in an information system. For instance, we might be interested
how to describe or interpret the conditions leading an application to accept accord-
ing to the data in Table 6.1. For X={x1,x4,x7}, the set of accepted people, since both
A∗(X) and A∗(X) are the unions of the sets [x]B for x ∈ U and every set [x]B has a
definite interpretation with the condition attributes, e.g., [x]{i,e} is the set of objects
having the same values of attributes Diploma, Experience as x, hence A∗(X) and
A∗(X) can be applied to build the relation between the decision attributes and the
condition attributes. It is clear that [x]B = ∩a∈B[x]{a} for any B ⊆ A. This implies
that the lower approximation and upper approximation of any set X ⊆ U are some
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unions or intersections of the sets in {[x]{a}|a ∈ B, x ∈ U}, i.e., they are members
of the Boolean algebra generated by the family of sets {[x]{a}|a ∈ B, x ∈ U}.

Following the above discussion, we observe that the rough sets defined by an
equivalence relation (6.1) have raised some difficulties when being directly applied
to the above information systems. Thus, we give the following equivalent definition
of rough sets which relies on a family of subsets of U . This definition is also helpful
to expand the concept of rough sets to fuzzy rough sets.

Definition 6.1. Let U be a set and Λ be the set of some Boolean subsets of U .
The upper approximation (denoted by S∗(X)) and lower approximation (denoted by
S∗(X)) of X ⊆ U in regard to Λ is defined by:

S∗(X) =
⋃
x∈X

δx, S∗(X) =
⋃

x∈U,δx⊆X

δx (6.2)

where x ∈ U , δ x ∈Λ−, δ x is the smallest set containing x, Λ− be the set of all sets
generated by the sets in Λ , using set intersection ∩ and complementation ′.

Because δ x is the smallest subset in Λ−, δ x is a description of x using Boolean
concepts in Λ− such that x can be distinguished among other elements in X at the
maximum extent. If for any x ∈ U , ψ(x)= δ x, then ψ is a mapping from U into Λ−

and ψ determines a classification of U (i.e., x, y ∈ U , x, y in the same class if and
only if ψ(x) = ψ(y) or δ x=δ y). The equivalence relation which corresponds to the
classification induced by Λ is denoted as RΛ and [x]Λ={y | (x, y) ∈ RΛ }. We can
prove that for any x ∈ X , [x]Λ=δ x as follows. For any y ∈[x]Λ , since δ x=δ y, hence
y ∈δ x. This implies that [x]Λ ⊆δ x. Assume that there exists z ∈δ x such that z /∈[x]Λ ,
i.e., δ x �=δ z. Since δ z is the smallest set containing z, hence for z ∈δ x∩δ z, we have
δ x∩δ z=δ z, i.e., δ x ⊇δ z and x /∈δ z. This implies that x ∈δ x∩δ ′

z ∈Λ−, contradicting
that δ x is the smallest set containing x. Thus, for any x ∈ X , [x]Λ=δ x. Therefore the
rough sets defined by (6.1) in the approximation space A = (U,RΛ ) are equivalent
to that defined by (6.2).

In practice, the attributes or features of many information systems may be de-
scribed by real numbers, Boolean variables, ordered relations or fuzzy ( linguistic )
labels. Thus in this chapter we expand Definition 6.1 to fuzzy sets, i.e., Λ is a set of
fuzzy linguistic terms in the framework of AFS theory.

6.1.2 Fuzzy Rough Sets

Since the initial concept of rough sets theory, the extension of this fundamental
idea to a fuzzy environment has been a topic of study. In real world applications,
some attributes are often measured in a continuous domain and their values are
described according to a partition of this domain, which is discretized making use
of intervals, linguistic terms or ordered relations. The application of rough sets to
data analysis will depend greatly on the values taken by the limits that define these
intervals. Smoothing these limits through membership functions of fuzzy sets could
be a viable alternative to improve the system’s robustness to small variations in the
collected data.
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In practice, the fuzzy partition can be constructed using any clustering technique.
Constructing fuzzy similarity relations for the most general type of fuzzy data de-
scribed by [8] proceeds as follows: In a dataset of N samples, sample xi (i ∈ [1,N])
is described by NF features, while the value of each feature j is expressed by a set
of NLL grades of membership, µ jk

i (k = 1, ...,NLL), to NLL linguistic labels. Thus,
sample xi can be characterized with the aid of the following values:

xi = [(µ11
i , ...,µ1NLL

i ), ...,(µ j1
i , ...,µ jNLL

i ), ...,(µNF 1
i , ...,µNF NLL

i )], (6.3)

where i = 1, ...,N; j = 1, ...,NF .
All of “conventional” fuzzy rough sets are based on the same concept: the sub-

stitution, in Pawlak’s original set approximation definitions of the Boolean equiv-
alence relation R by a fuzzy relation S, on which several conditions are imposed.
The most general approach, as provided by Greco et al. [17] only requires that S be
a reflexive fuzzy relation (S(x,x) = 1). Further restrictions are imposed by Dubois
and Prade [5, 6], who demand that S be a T -similarity relation, i.e., a fuzzy relation,
S : U ×U → [0,1] for which the following conditions should hold:

(1) For any x ∈ U , S(x,x) = 1; (Reflexivity)
(2) For any x,y ∈ U , S(x,y) = S(y,x); (Symmetry)
(3) For any x,y,z ∈ U , S(x,z) ≥ T (S(x,y),S(y,z)). (T-transitivity)

Here, T is a t-norm, that is, a commutative, monotonic and associative aggre-
gation operator, T (x,y) : [0,1]× [0,1] → [0,1], that satisfies the boundary condi-
tion T (a,1) = a. If T is the minimum operator, then this definition coincides with
Zadeh’s original expression for similarity relations [53].

Instead of directly substituting R with a fuzzy relation, its set of equivalence
classes (quotient set), U/R, can also be replaced by a family φ of fuzzy sets
F1,F2, ...,Fn, for which it is usually required that they form a weak fuzzy partition,
that is, the following conditions should be satisfied: for any x ∈ U ,

(1) inf
x∈U

max
1≤i≤n

µFi(x) > 0,

(2) For any i, j, sup
x∈U

min(µFi(x),µFj (x)) < 1,

where µFi(x) is the membership function of fuzzy sets Fi, i = 1,2, ...,n. The first
requirement ensures that φ covers all elements of U , while the second one imposes
a disjointness condition to be satisfied between the elements of Fi.

Using either a fuzzy similarity relation, S, or a weak fuzzy partition, φ , the fol-
lowing three approaches have been proposed:

(1) Approach based on possibility theory (Dubois, Prade and Farinas del Cerro).
This is probably the most cited approach to Fuzzy Rough Sets, which was intro-
duced in the seminal papers [5, 6, 9]. According to this proposal, if F represents
a fuzzy set with membership function µF and S is a fuzzy similarity relation
(which here is assumed to be reflexive, symmetric and T -transitive) with mem-
bership degree µS(x,y), then the upper approximation and lower approximation
of F in regard to S can be calculated as the degrees of necessity and possibility
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of F (in the sense of Zadeh [4, 54]) taking as referential the equivalence classes
of S. These approximations are

µS∗(F)(x) = sup
y∈U

min(µF(y),µS(x,y)), (6.4)

µS∗(F)(x) = inf
y∈U

max(µF(y),1− µS(x,y)). (6.5)

If S is Boolean, the reflexivity, symmetry and T -transitivity requirements would
make it a Boolean equivalence relation (Note that this does not depend on T ).
These equations would then be reduced to Pawlak’s original definitions.

Greco et al. [17] presented a fuzzy extension of Slowinski and Vanderpooten’s
proposal [47] in which only Boolean reflexive relations were used (as opposed to
Pawlak’s equivalence relations). According to their proposal, if T (x,y) represents
a t-norm, C(x,y) its associated t-conorm, N(x) is a negation operator, S(x,y) a
fuzzy reflexive relation (which does not have to be symmetric or transitive), and
F a fuzzy set with membership function µF(x,y), then the upper approximation
and lower approximation of S can be defined as

µS∗(F)(x) = Cy∈U T (µF(y),µS(x,y)), (6.6)

µS∗(F)(x) = Ty∈UC(µF(y),N(µS(x,y))). (6.7)

We can see that these formulas become Dubois and Prade’s expressions (Eqs.
(6.4) and (6.5)) when T and C represent the standard intersection and union op-
erators (minimum and maximum) and S is also symmetric and transitive for a
certain t-norm, N, which does not necessarily have to coincide with T . Using
logic transformations, these equations can also be expressed in terms of t-norms
and related implication operators. Based on this, Radzikowska and Kerre have
carried out an exhaustive formal study on the theoretical properties of these fuzzy
rough sets [46].

Ziarko’s Variable Precision Rough Set model [56], can also be introduced in
Dubois and Prade’s Fuzzy Rough Set framework. To do this, Eqs. (6.4) and (6.5)
should be rewritten in the following form: for any x ∈ U ,

µS∗(F)(x) = max(µF(x), IS∗(F)(x)), (6.8)

µS∗(F)(x) = min(µF(x), IS∗(F)(x)), (6.9)

where

IS∗(F)(x) = max
y∈U(y�=x)

min(µF(y),µS(x,y)),

IS∗(F)(x) = min
y∈U(y�=x)

max(µF(y),1− µS(x,y))

IS∗(F)(x) is an index that expresses the degree of inclusion of all similar objects
to x in the fuzzy set F . In the same fashion, IS∗(F)(x) expresses the degree of
inclusion of at least one similar object to x in F .
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It may be noted that the mere presence of only one sample that is very similar
to x but has low degree of membership in F will force IS∗(F)(x) to be low and x
will be considered to be excluded from S∗(F). In the same way, only one sample
that may be very similar to x but has a high degree of membership in F will
cause a high value of IS∗(F)(x). If the cardinality of the dataset is high, this single
sample may be the result of noise or an error in classification. In this case, the
values of membership calculated for IS∗(F)(x) and IS∗(F)(x) may not be adequate
for further decision making.

In order to deal with this limitation, Salido and Murakami in [8] have de-
veloped the concept β -precision aggregation operators. These aggregators allow
for some tolerance to distorting values in the aggregation operands when the car-
dinality of the aggregated values is high. The properties associated to this con-
cept were characterized in [10]. Its application to t-norms and t-conorms results
in what are called β -precision quasi-t-norms and B-precision quasi-t-conorms,
whose formal definition can be found in [10]. Therefore, Salido and Murakami
proposed to extend Ziarko’s Variable Precision Rough Set Model to the Dubois
and Prade Fuzzy Rough Set framework by extending the maximum and mini-
mum operators used to calculate the inclusion indexes of Eqs. (6.5) and (6.4) to
their β -precision counterparts, maxβ and minβ as follows:

IS∗(F)β (x) = maxβy∈U(y�=x)
min(µF(y),µS(x,y))

IS∗(F)β (x) = minβy∈U(y�=x)
max(µF(y),1− µS(x,y))

Dubois and Prade’s lower and upper approximation equations can then be ex-
pressed in the β -precision context as follows: for any x ∈ U ,

µS∗(F)β (x) = max(µF(x), IS∗(F)β (x)), (6.10)

µS∗(F)β (x) = min(µF(x), IS∗(F)β (x)). (6.11)

In the practical implementation of these formulas, adequate values for β could
be around 0.98 or 0.99, which allow for a 1-2 % of noisy operands in the aggre-
gation process. However, the optimal value of β will depend on the problem’s
domain and the accuracy of the description of the attributes. The maximum value
to which β can be set (which should determine the generalization capability of
this approach) will also depend on these circumstances.

(2) Approach based on fuzzy inclusions (Kuncheva and Bodjanova). Kuncheva [21]
and Bodjanova [2] give new definitions of Fuzzy Rough Sets. Both approaches
deal with the approximation of a fuzzy set in terms of a weak fuzzy partition,
for which they use different measures of fuzzy set inclusion, many of which
have been studied in [3]. As to the generation of the weak fuzzy partition from
a set of fuzzy data, Kuncheva does not impose any restrictions on how this is to
be done: she implies that this can be resolved through fuzzy clustering or any
other technique like, for example, the generation of fuzzy equivalence classes
from a fuzzy similarity relation. Bodjanova, on the other hand, generates fuzzy
partitions using unions and intersections of the fuzzy features measured in the
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data. This way of resolving a rough set analysis of fuzzy data through degrees
of inclusions of fuzzy sets can also be considered to be an extension of Ziarko’s
Variable Precision Rough Set Model [56].

(3) Approach based on α-levels of fuzzy sets (Yao and Nakamura). First Naka-
mura [35, 36], and later on Yao [52] proposed a rough set analysis of fuzzy data
through the application of Boolean rough set theory to the α-levels of a fuzzy
similarity relation obtained from this data. The computational complexity of this
approach increases with the level of resolution with which the α-levels of the
fuzzy similarity relation are formed.

In practice, the implementation of all three approaches requires a prior determi-
nation of a fuzzy similarity relation or a partition of fuzzy similarity classes, and
the choice of a certain implication operator φ operator and the t-norm. Those com-
ponents are determined on a basis of some available experimental data. The fuzzy
partition can be obtained using any clustering technique applied to these data. The
construction of fuzzy similarity relations for some general type of fuzzy data has
been described in [8]. The fuzzy similarity relation matrix S=(si j), si j=µS(xi, x j),
formed on the data set X={x1,x2,. . . , xn}, can be derived or constructed by means of
various optimization mechanisms such as, e.g., Fuzzy C-Means (FCM), k-NN fuzzy
clustering algorithms or some aggregative algorithms such as the one presented by
Salido and Murakami [8]. The similarity relation S obtained in this manner might
not exhibit any semantics with well-defined linguistic labels formed for each fea-
ture (attribute) shown in (6.3). Thus the upper approximation S∗(F) and lower ap-
proximation S∗(F) of a fuzzy set F based on S are just the numerical membership
functions, and the semantic relationships between the linguistic labels and F , which
is acceptable by being comprehended by humans, might not be clearly expressed.

As discussed in the above section, let D = (U,A ∪ {d}) be a decision system,
where d /∈ A is the decision attribute. The elements of A are conditional attributes.
For a decision system (U , A∪{d}) we can induce the AFS structure (MA ∪ Md , τ ,
U) where MA and Md are the simple concepts associated with the attributes in A and
d, respectively. The AFS fuzzy rough sets support the determination of fuzzy sets
in EMA that are used to approximate a given fuzzy set γ∈EMd by the AFS algebra
E(MA ∪Md). It is worth noting that in comparison with the forenamed conventional
fuzzy rough sets, the AFS fuzzy rough sets can be directly applied to process data
in the information systems without explicitly using the implicator φ , a t-norm and
a similarity relation S. The upper and lower approximation S∗(F) and S∗(F) of a
fuzzy set F in EMd are fuzzy sets in EMA which have well-defined semantics with
the simple concepts on the conditional attributes. AFS fuzzy rough sets approximate
a given fuzzy concept on the decision attributes using the fuzzy concepts on the
condition attributes. Thus, adhering to existing data in an information system, AFS
fuzzy rough sets can offer semantically meaningful interpretation for the conditions
under which some expected result may lead to. They are essential in knowledge
engineering, decision-making and intelligent systems, in general as pointed out in
the context of computing with words [55].
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6.2 Fuzzy Rough Sets under Framework of AFS Theory

In this section, we introduce AFS fuzzy rough sets by expanding Definition 6.1
to fuzzy sets, i.e., we apply a set of simple concepts associating to the condition
attributes to approximate a fuzzy set, which associates to the decision attribute and
is given in advance, to describe the decision result in a data under the framework of
AFS theory.

6.2.1 AFS Structure of Information Systems

Many information systems involve a mixture of quantitative and qualitative feature
variables like those shown in Table 6.1 and Table 4.1. Besides quantitative features,
qualitative features, which could be further divided into nominal and ordinal fea-
tures, are also commonly seen. The information systems described by information-
based criteria such as human perception-based information, gain ratio, symmetric
uncertainty, order are regularized to be the AFS structures by the two axioms in
Definition 4.5. Thus the fuzzy concepts, membership functions and fuzzy logic on
the raw data can be explored by the AFS theory using the AFS structure of the
data.

Let D = (U,A ∪{d}) be a decision system shown as Table 6.1 and M be a set
of some fuzzy or Boolean concepts on U . Every m ∈ M associates to an attribute
a ∈ A∪{d} and by the values a(x), a(y) ∈ Va, one can compare the degrees of x,
y ∈ U belonging to m. For example, let m be the fuzzy concept “Low Experience”
which associates to attribute e ∈ A, i.e., e: “Experience”. By Ve={Low, Medium,
High } and the attribute value e(x) shown in Table 6.1, we can construct the binary
relation Rm defined by Definition 4.2 as follows:

(x, x) ∈ Rm, if e(x)=Low or Medium;
(x, y) ∈ Rm, for any y ∈ U , if e(x)=Low;
(x, y) ∈ Rm, if e(x)=Medium, and e(y)=Medium or High.

For Boolean concept m: “French-yes” which associates to attribute f ∈ A, i.e., f :
“French”, Rm is constructed as follows: (x, y) ∈ Rm for any y ∈ U , if f (x)=yes.
Similarly, we can construct Rm for each concept m ∈ M={m1, . . . , m13 } according
to the information system f : U ×A→V , where m1: MBA i, m2: MCE i, m3: MSc i,
m4: Low e, m5: Medium e, m6: High e, m7: yes f, m8: No f, m9: Excellent r, m10:
Neutral r, m11: Good r, m12: Accept d, m13: Reject d. By Definition 4.3, one can
verify that each concept in M is a simple concept. Thus the information system can
be represented by the AFS structure (M, τ , U) using (4.26). Let MA and Md be the
sets of simple concepts associating to the condition attributes in A and the decision
attribute d, respectively. We apply fuzzy concepts in EMA to approximate a given
fuzzy set γ∈EMd , in order to know that under what condition is described by the
fuzzy concepts in EMA, the expected result γ is lead according to the data in an
information system.
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6.2.2 Representations of Fuzzy Concepts in the Information
Systems

In the decision system D = (U,A ∪{d}), where d /∈ A is the decision attribute, we
always need to learn the conditions which can lead to a decision ( result ) which
may be represented by a fuzzy or Boolean set with given membership function µ :
X →[0,1]. For instance, in Table 6.1, the decision is “accept”. In order to study the
E#I algebra represented fuzzy concept approximations of a given fuzzy or Boolean
set representing a decision result, we transfer a fuzzy set with given membership
degrees in the interval [0,1] into a fuzzy set with membership degrees in the E#I
algebra as follows. Let X be a set and F (X) = {η |µη : X → [0,1]}. For θ∈ F (X),
the E#I algebra represented membership function of the fuzzy set θ is defined as
follows: for any x ∈ X ,

θ (x) = θ (x) ∈ E#X , (6.12)

where

θ (x) =
{

{y ∈ X | µθ (y) ≤ µθ (x)}, µθ (x) �= 0
∅, µθ (x) = 0

Thus for any fuzzy set θ ∈ F (X), the lower and upper approximations of θ under
the meaning of the E#I algebra represented fuzzy sets defined by (5.13) can be
studied via the lattices EM and E#X .

Let S ⊆2X be an σ -algebra over X and mρ be a measure on S with 0 ≤ mρ(A) ≤ 1
for any A ∈ S,

mρ(A) = ∑x∈Aρ(x)
∑x∈X ρ(x)

, (6.13)

which is defined as Definition 5.6 for the map ρ : X → R+ = [0,∞). From Propo-
sition 5.7, the fuzzy norm of the lattice E#X can be constructed by measure mρ as
follows. For ∑i∈I ai ∈ E#X ,

||∑
i∈I

ai|| = sup
i∈I

{mρ(ai)}

and for any fuzzy concept ζ = ∑i∈I(∏m∈Ai
m) ∈ EM, its membership function is

defined as follows: for any x ∈ X ,

µζ (x) = ||∑
i∈I

Aτi (x)|| = sup
i∈I

{mρ(Aτi (x))}. (6.14)

From Theorem 5.6, one knows that the membership function of fuzzy set θ defined
by the formula (6.14) is the coherence membership function of the AFS fuzzy logic
(EM,∨,∧,′ ) and the AFS structure (M,τ,X).

We can verify that the above mρ for the function ρ is a measure over X by Def-
inition 1.40. ρ(x) may have various interpretations depending on the specificity of
the problem at hand. For instances one can allude to what we have discussed in
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Chapter 4, 5. In general, ρ(x) weights how essential is the relationship of the sam-
ple x to the category of concepts under consideration. Later on we show how to
derive the weight function ρ(x) from a given membership function of a fuzzy set in
order to study the lower and upper approximations of this fuzzy set.

Given (4.27), we know that in (6.14), Aτi (x) ⊆ X is the set of all elements
in X whose degrees belonging to ∏m∈Ai

m are less than or equal to that of x.
Aτi (x) = ∩m∈Ai {m}τ(x) is determined by the semantic meanings of the simple con-
cepts in Ai and the distribution of the original data. In general, the larger the set
Aτi (x), the higher the degree x belonging to ∏m∈Ai

m if all elements in X have the
equally essential relation to the considering group of concepts, i.e., for any x, y ∈ X ,
ρ(x)=ρ(y). For x ∈ X , if x has so limited relationship with the considering group of
concepts that whether or not they are included in Aτi (x) has not significant influence
on the evaluating the degree of x belongingness (membership) to ∏m∈Ai

m. Then
ρ(x) should be very small or practically be equal to 0. Since Aτi (x) and Aτi (y) are
independent on ρ(x) and ρ(y), hence ρ(x) > ρ(y) does not mean that Aτi (x) ⊇ Aτi (y)
or m(Aτi (x)) > m(Aτi (y)). In other words, the more essential a sample is does not en-
tail that the degree of the membership to the fuzzy concept in EM is always higher.
In other words, ρ(.) weights the referring value of each sample in X for the deter-
mining of the membership functions of fuzzy concepts in EM.

In the decision system D=(U , A∪{d}), for a fuzzy concept ν with the member-
ship function µν(x): X →[0,1], which is given in advance to describe the decision
results in a data, we find the interpretations or descriptions with the fuzzy concepts
in EMA for ν , where MA is the set of simple concepts on the condition attributes.
We can explore the lower and upper approximations of ν under the membership
degrees defined by (5.13) and (6.12) via the AFS algebras EM and E#X . Further-
more, if we can construct a function ρ : X → [0,∞) for the measure mρ such that the
membership function of ν defined by (6.14) is equal the given µν(x), then the lower
and upper approximations of ν under the membership degrees defined by (6.14)
can be explored. In what follows, we find ρν which is induced by µν(.) satisfying
µν(x)=mν (ν(x)), for any x ∈ X . Let X be a finite set and µν(X)={y=µν(x) | x ∈ X}.
Let

µν(X) = {y1,y2, . . . ,yn}

and yi < y j for any i < j. For any u ∈ X , ρν(u) can be obtained by solving the
following equation:

∑
u∈ν(x)

ρν(u) = µν(x), x ∈ X ,

Following this expression we derive

yk − yk−1 = ∑
u∈µ−1

ν (yk)

ρν(u), k = 2,3, . . . ,n,

where µ−1
ν (y) = {x ∈ X | µν(x) = y}. Considering for any u ∈µ−1

ν (yk), µν(u) = yk,
let the weights of all u ∈µ−1

ν (yk) be equal. Therefore we have
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ρ(x) =

{ y1
|µ−1
ν (y1)| , µν(x) = y1

yk−yk−1

|µ−1
ν (yk)|

, µν(x) = yk,2 ≤ k ≤ n
(6.15)

and ∑u∈Xρν(u) = yn. Thus the membership function µν(x) is represented by the
measure mν as follows: for any x ∈ X

µν(x) = ynmν (ν(x)), (6.16)

where for any A ∈ 2X , A �= ∅,

mν(A) = ∑u∈A ρν (u)
∑u∈X ρν (u) = ∑u∈A ρν (u)

yn

is expressed by (6.13) for function ρν and

yn = max{µν (x) | x ∈ X}. (6.17)

Example 6.1. Let us consider the Japanese Credit Screening data [34]. Here the
number of instances is equal to 125 where each of them is described by 17 features.
The first 12 features are Boolean while the remaining ones assume real values. Let
U={x1, x2, . . . , x125} be the set of the 125 instances, from the samples x1 to x85

are examples of positive credit (positive credit decision) and x86 to x125 are nega-
tive credit samples. Let M={m1, m2, . . . , m44} be the concepts formulated on the
attributes of the information system < U,A >.

On each of the first 12 features, two concepts are chosen and the semantic meanings
of m1 to m24 are shown as follows:

m1: positive credit, m2: negative credit; m3: jobless, m4: no jobless; m5: purchase
pc, m6: no purchase pc; m7: purchase car, m8: no car purchase ; m9: stereo pur-
chase, m10: no stereo purchase ; m11: purchase jewelery, m12: no purchase jewelery;
m13: purchase medinstru, m14: no purchase medinstru; m15: purchase bike, m16: no
purchase bike; m17: purchase furniture, m18: no purchase furniture; m19: male, m20:
female; m21: unmarried, m22: married; m23: located in problematic region, m24: lo-
cated in non- problematic region.

For each of the features (from 13th to 17th), in order to describe the concept “pos-
itive credit”, we choose four fuzzy concepts with the following semantic meanings
to express linguistic labels “large”, “not large”, “middle”, “not middle”.

For the 13th feature (age) we choose m25: old, m26: not old, m35: average age,
m36: not an average age. On the 14th feature which is the amount of money in the
bank we choose m27: more money on deposit in the bank, m28: not more money in
the bank, m37: the amount of money in the bank about average, m38: the amount of
money in the bank not about average. On the 15th feature which is “monthly loan
payment amount” we choose m29: loan payment amount large, m30: loan payment
amount not large, m39: loan payment about average, m40: loan payment not about
average. For the 16th feature viz. “the number of months expected to pay off the
loan” we choose m31: expected to pay off loan more, m32: expected to pay off loan
not more, m41: expected to pay off loan about average, m42: expected to pay off
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loan not about average. For the feature 17th the number of years working at current
company we choose m33: the number of years working more, m34: the number of
years working not more, m43: the number of years working about average, m44: the
number of years working not about average.

By Definition 4.2, we can obtain Rm, the binary relation for every m ∈ M by com-
paring the degree of each pair of persons belonging to m according to its underlying
semantics. To show that, as an example consider m37: “the amount of money on
deposit in bank about average”. The average deposit in bank of all samples in U is
69.46. Let depositx denote the amount of money deposited in bank of the given sam-
ple x ∈ U . Then (x, y) ∈ Rm if and only if |69.46−depositx| ≤ |69.46−deposity|.
Making use of Definition 4.3 we can verify that each m ∈ M is a simple concept.
(M, τ , X) is an AFS structure if τ is defined by (4.26) as follows: for any xi,x j ∈ U ,

τ(xi,x j) = {m | m ∈ M,(xi,x j) ∈ Rm}. (6.18)

Let S=2U be the σ -algebra over U . Let ν be a given fuzzy set on U , for x ∈ X ,
µν(x)=1, if sample x comes with a positive credit decision, otherwise µν(x)=0.15
to stress that ν be a fuzzy concept here. Any small number can be associated with
the negative samples. By (6.15), we have ρν(x)=0.85/85=0.01 if sample x comes
with a positive credit decision, otherwise ρν(x)=0.15/40=0.0037.The positive credit
samples have higher weight than the negative ones and our intent is to stress the
importance of positive samples.

Thus we are able to construct ρν for the measure mρν defined by (6.13) and
then apply (6.14) to determine the membership function for any fuzzy concept
in EM. Since (EM, ∧, ∨, ′) is an algebra system, i. e., EM is closed under the
fuzzy logic operations ∧, ∨, ′, hence for any fuzzy concepts α , β∈EM, the mem-
bership functions of their fuzzy logic operations, µα∧β (x), µα∨β (x) and µα ′(x)
are also well defined by (6.14). Figures 6.1 – 6.2 show the membership func-
tions of fuzzy concepts α,γ ′,α ∧ γ , respectively, where α=m1m3 + m16m35m42 +
m9m11m43, γ=m42m43 + m16m35m1 ∈EM. γ ′ is the negation of the fuzzy concept
γ (refer to (4.19) ). By inspecting the plots in Figure 6.1, one cannote that for
most samples x, µα∧β (x) = min{µα(x),µβ (x)} however for few samples we have
µα∧β (x) < min{µα(x),µβ (x)}. By Theorem 5.6, we know that the membership
functions defined by (6.14) are coherence membership functions, hence for any
x ∈ X , µα∧β (x) ≤ min{µα(x),µβ (x)} because of Proposition 4.2. This implies that
in the AFS fuzzy logic µα(x) and µβ (x) are not sufficient to determine µα∧β (x),
which is the membership degree of x belongingness (membership) to the conjunc-
tion of the two fuzzy concepts α , β , and µα∧β (x) is determined by the distributions
of the original data and the semantics of fuzzy concepts themselves. This stands in
contrast with the existing fuzzy logic systems equipped by some t-norm, in which
µα∧β (x) = T (µα(x), µβ (x)) is fully determined by the membership degrees µα(x)
and µβ (x) and is independent from the distribution of the original data.

Hence, the constructed membership functions and the logic operations in the AFS
theory include more information about the distributions of the original data and
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Fig. 6.1 Membership functions of fuzzy concept α , γ , and α ∧ γ
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Fig. 6.2 Membership functions of γ ,γ ′

the underlying interpretations., i.e., They veritably reflect the logical relationships
among the fuzzy concepts described by given data.

Again by inspecting Figure 6.2, we note that for any sample x, one of the follow-
ing three situations may occur:

µγ(x)+µγ′(x)=1, µγ (x)+µγ′(x) < 1, µγ(x)+µγ ′(x) > 1,

where γ ′ is the negation of γ . This situation emphasizes that in the AFS fuzzy logic
the knowledge of the membership µγ(x) is not sufficient to determine the value of
the negation, that is µγ ′(x). As before the distribution of the original data influ-
ences the degree x belongs to γ ′ and γ . For example, if ζ is the fuzzy concept of
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the form: “beautiful car” and x is a person, then µζ (x)+µζ ′(x) < 1 and the differ-
ences of the degrees of x belonging to ζ ′ and ζ may be not too much significant,
or some x may belong both to the concept of “beautiful car” and the concept “not
beautiful car” to a very low degree. In other ways, µζ (x)+ µζ ′(x) < 1 if x cannot
be distinguished when considering the terms of a beautiful car and a car that is not
beautiful. Thus in practice, the sum of the degrees of an element belonging to the
fuzzy concept and its negation may not be equal to 1. In general, for a two-valued
concept ν,µν (x) + µν ′(x) always equals to 1 and for simple concept ξ the sum,
µξ (x)+ µξ ′(x) might be almost equal to 1, however for some complex concept η
like γ , the µη (x)+µη ′(x) can assume values that could be larger or lower than 1. It is
the vagueness of the concept η that breaks the fundamental law of excluded middle.
A systematic comparison between AFS fuzzy logical systems and the conventional
fuzzy logic equipped by some t-norm still remains as an open problem.

Again, let us emphasize that in fuzzy logic systems equipped by some negation
operator N, we have µγ′(x) = N(µγ (x)) and the value of the complement is fully
determined by the membership degree µγ(x) and becomes independent from the
distribution of the original data and the relationship between x and the semantics
of γ .

6.2.3 Definitions of AFS Fuzzy Rough Sets

Since AFS fuzzy rough sets as a generalization in the sense of Definition 6.1 are
based on the set inclusion relation “⊆”, hence in what follows, we define four types
of set inclusions according to the representations of the fuzzy concepts in the frame-
work of the AFS theory.

Definition 6.2. Let X be a set and M be a set of simple concepts on X . Let (M, τ , X)
be an AFS structure, S be a σ -algebra over X and ρ be a weight function X →[0,∞).
The EI algebra inclusion “⊆EI”, the EII algebra inclusion “⊆EII”, the E#I algebra
inclusion “⊆E#I” and the inclusion with the weight function ρ “⊆ρ” as follows:

(1) α ⊆EI β ⇔ α ≤ β in lattice (EM,∨,∧), for α,β ∈ EM;
(2) α ⊆EII β ⇔ ∀x ∈ X , α(x) ≤ β (x) in lattice (EXM,∨,∧), α(x),β (x) are the EII

algebra represented membership function of fuzzy concepts α,β ∈ EM defined
as (5.10);

(3) α ⊆E#I β ⇔ ∀x ∈ X , α(x) ≤ β (x) in lattice (E#X ,∨,∧), α(x),β (x) are the
E#I algebra represented membership function of fuzzy concepts α , β defined as
(5.13) or (6.12);

(4) α ⊆ρ β ⇔ ∀ x ∈ X ,µα(x) ≤ µβ (x),µα(x), µβ (x) are membership function
defined of fuzzy concepts α,β by (6.14) using the measure mρ defined by (6.13)
for weight function ρ or given beforehand as the fuzzy set on X (e.g., the fuzzy
set associating to the decision attribute in a decision system).

By Theorem 5.3, Proposition 5.4 and what is defined by (6.12), we know that

α ⊆EI β ⇒ α ⊆E#I β ⇒ α ⊆EII β ⇒ α ⊆ρ β (6.19)
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for α,β ∈ EM and for any weight function ρ . This implies that the membership
functions of the fuzzy concepts in EM defined by (5.10), (5.13) and (6.14) are
consistent, and they reflect the semantics of the concepts and the distributions of
the original data. We will define different AFS fuzzy rough sets based on these set
inclusions.

Example 6.2. Let X = {x1,x2, ...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table 6.2; there the number i in the “hair color” columns which corre-
sponds to some x ∈ X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {m1,m2, ..., m10} be
the set of fuzzy or Boolean concepts on X and each m ∈ M associate to a single fea-
ture. Where m1 : “old people”, m2 : “tall people”, m3 : “heavy people”, m4 : “high
salary”, m5 : “more estate”, m6 :“male”, m7 : “female”, m8 : “black hair people”,
m9 : “white hair people”, m10 : “yellow hair people”.

Let (M,τ,X) be the AFS structure of the data shown in Table 6.2. For simplicity,
let S=2X be the σ -algebra over X and mρ be the measure defined by (6.13) for
ρ(x)=1, ∀x ∈ X . Let α=m2m3m5 + m2m6m7 + m2m9 + m2m3m4 + m4m5m6 m7 +
m4m5m9 +m3m4m5 +m6m8m9, β=m6m8m9 +m4m5 +m2. By Theorem 4.1, we can
verify that α ≤ β . Thus by Definition 6.2, we have α⊆EIβ . This inclusion relation
is determined in terms of the semantics of α and β . Let ν=m1m7 +m2m7, γ=m7m9 +
m5m7m10, ζ=m1m6 + m2m7, ξ=m2m7m9 + m1 m6 + m2m3m5m7m10 ∈EM. Then by
the AFS structure (M, τ , X), formula (5.13) and Theorem 5.24, we can verify that
in lattice (E#X , ∨, ∧), for any x ∈ X , ν(x) ≤γ(x), ζ (x) ≤ξ (x). Thus by Definition
6.2, we have ν ⊆E#I γ , ζ ⊆E#I ξ . This inclusion relation is determined by both the
semantic interpretations of α , β and the distribution of the original data shown in
Table 6.2. By Theorem 4.1, we have ξ≤ζ in lattice (EM, ∨, ∧). This implies that
ξ ⊆E#I ζ and for any x ∈ X , ζ (x)=ξ (x) in lattice (E#X , ∨, ∧) and µζ (x)=µξ (x)
under meaning (6.14), in this case denoted as ξ =E#I ζ , ξ =ρ ζ . It is obvious that for

Table 6.2 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male f emale black white yellow

x1 20 1.9 90 1 0 1 0 6 1 4
x2 13 1.2 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 1.4 54 15 2 1 0 5 2 2
x6 37 1.6 80 80 28 0 1 6 1 4
x7 45 1.7 78 268 90 1 0 1 6 4
x8 70 1.65 70 30 45 1 0 3 4 2
x9 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3
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η∈EM, if ξ ≤ η ≤ ζ , then ξ =E#I η =E#I ζ and ξ =ρ η =ρ ζ . The following Table
6.3 shows the membership functions of ν and γ defined by (6.14). By Table 6.3 and
Definition 6.2, one knows that ν ⊆ρ γ . This inclusion relation is determined by the
semantics of ν and γ , the distribution of the original data and the function ρ which
expresses how much each x ∈ X contributes to the concepts under consideration.

Table 6.3 Membership functions defined by (6.14)

fuzzy concepts x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µν (.) 0 0.2 0.7 0 0 0.5 0 0 0.9 0.1
µγ(.) 0 0.6 1.0 0 0 1.0 0 0 1.0 0.2

Proposition 6.2. Let X be a set and M be a set of simple concepts on X. Let (M, τ ,
X) be an AFS structure. Then the following assertions hold: for α,β ,γ,η ∈ EM,

(1) For the EI algebra inclusions

γ ⊆EI α ⇒ α ′ ⊆EI γ ′

γ ⊆EI α, η ⊆EI β ⇒ γ ∧η ⊆EI α ∧β , γ ∨η ⊆EI α ∨β
α ⊆EI γ, β ≤ α ⇒ β ⊆EI γ
γ ⊆EI α, α ≤ β ⇒ γ ⊆EI β ;

(2) For the EII algebra inclusions

γ ⊆EII α ⇒ α ′ ⊆EII γ ′

γ ⊆EII α, η ⊆EII β ⇒ γ ∧η ⊆EII α ∧β , γ ∨η ⊆EII α ∨β
α ⊆EII γ, β ≤ α ⇒ β ⊆EII γ
γ ⊆EII α, α ≤ β ⇒ γ ⊆EII β ;

(3) For the E#I algebra inclusions

γ ⊆E#I α, η ⊆E#I β ⇒ γ ∧η ⊆E#I α ∧β , γ ∨η ⊆E#I α ∨β
α ⊆E#I γ, β ≤ α ⇒ β ⊆E#I γ
γ ⊆E#I α, α ≤ β ⇒ γ ⊆E#I β ;

For any A, B ⊆ M, if ∀x ∈ X, Aτ(x)⊆ Bτ(x) ⇒ Σm∈A{m′}τ (x)≥ Σm∈B{m′}τ(x),
then

α ⊆E#I β ⇒ β ′ ⊆E#I α
′,

where m′ is the negation of the simple concept m ∈ M.

Proof. (1) to (2) can be proved through the direct use of the definitions. Their proofs
are left to the reader.



244 6 AFS Fuzzy Rough Sets

(3) For any x ∈ X , α=∑i∈I(Πm∈Aim), β=∑ j∈J(Πm∈B jm) ∈EM, if ∑i∈I Aτi (x) ≤
∑ j∈J Bτj (x) in lattice (EX, ∨, ∧), then for any i ∈ I, ∃k ∈ J such that Aτi (x) ⊆ Bτk(x).
By the assumption, we have ∑m∈Ai

{m′}τ (x) ≥ ∑m∈Bk
{m′}τ(x). This implies that

for any x ∈ X , there exists a map px :I → J, ∀i ∈ I, px(i) = k ∈ J such that
∑m∈Ai

{m′}τ(x) ≥ ∑m∈Bk
{m′}τ(x) in lattice (E#X ,∨,∧). Thus for any x ∈ X ,(

∑
i∈I

(Πm∈Aim)

)′

(x) = ∧i∈I( ∑
m∈Ai

{m′}τ(x))

≥ ∧i∈I( ∑
m∈Bpx(i)

{m′}τ(x))

≥ ∧ j∈J( ∑
m∈B j

{m′}τ(x))

=

(
∑
j∈J

(Πm∈B j m)

)′

(x)

Therefore (∑i∈IΠm∈Aim)′ ⊆E#I (∑ j∈JΠm∈B j m)′. 
�

In what follows, by making use of the four types of fuzzy set inclusions defined in
Definition 6.2, the four types of fuzzy rough sets ( AFS fuzzy rough sets) are defined
in Definition 6.3.

Definition 6.3. Let X be a set and M be a set of simple concepts on X . LetΛ ⊆ EM,
∑m∈M m ∈ Λ , ∀α ∈ Λ , α ′ ∈ Λ . Let (Λ )EI be the sub EI algebra generated by the
fuzzy concepts inΛ and ρ : X → [0,∞). Let the fuzzy set inclusions “⊆EI”, “⊆EII”,
“⊆E#I” and “⊆ρ” be denoted by “⊆i” where i denotes EI, EII, E#I or ρ (in virtue of
Definition 6.2, ρ induces a measure for the membership function defined by (6.14)
). For any fuzzy concept γ∈EM or any fuzzy set γ which is given in advance to
describe the decision result in an information system (under “⊆i”, i=EI, EII, E#I or
ρ), the upper approximation and lower approximation (denoted as S∗(γ) and S∗(γ)
respectively) of γ are called AFS rough sets with regard to the set of fuzzy concepts
Λ and defined as follows:

S∗(γ) =
∨

β∈(Λ)EI , β⊆iγ
β , S∗(γ) =

∧
β∈(Λ)EI , γ⊆iβ

β , (6.20)

Where (Λ)EI is the sub EI algebra generated by the fuzzy concepts in Λ . The AFS
fuzzy approximation spaces are denoted by AEI = (M,Λ), AEII = (M,Λ ,X), AE#I =
(M,Λ ,X) and Aρ = (M,Λ ,ρ ,X), respectively.

For the fuzzy concept γ , the AFS fuzzy rough sets S∗(γ), S∗(γ)∈EM with well-
defined semantic interpretations are the approximate descriptions of fuzzy concept
γ using the given fuzzy concepts in Λ .
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6.2.4 Some Properties of AFS Fuzzy Rough Sets

In this section, we will prove that AFS fuzzy rough sets not only have all the prop-
erties of the “conventional” rough sets defined by (6.1), but also are equivalent to
the rough sets defined (6.1) if every concept in Λ is a Boolean one.

Theorem 6.1. Let X be a non-empty set and M be a set of Boolean concepts on X.
Then the rough sets in AEII = (M,Λ ,X), AE#I = (M,Λ ,X) or Aρ = (M,Λ ,ρ ,X)
defined by (6.20) is equivalent to the rough sets defined by (6.2) in Definition 6.1
(i.e., rough sets in the classic sense defined by (6.1)).

Proof. We just prove the theorem for AE#I and the others remain as exercises. Since
every concept in M is a Boolean concept, hence from Definition 4.3 and formula
(5.13) and (6.12), either γ(x) = X or γ(x) = ∅ in the lattice E#X , for any γ∈EM
and any x ∈ X . It can be verified that {X , ∅}⊆ E#X is a sub E#I algebra. If p:
{X , ∅}→{1,0} defined by p(X)=1, p(∅)=0, then p is an E#I algebra isomorphism
from {X , ∅} to the Boolean algebra. Thus each fuzzy set in EM is degenerated to a
Boolean subset in X . Furthermore the fuzzy logic operations ∨, ∧, ′ in (EM, ∨, ∧, ′)
are degenerated to the set operations ∩, ∪, ′ and the inclusion “⊆E#I” is degenerated
to set inclusion “⊆”. (Λ)EI is the set of sets generated by sets in Λ , using Boolean
set operations ∩, ∪, ′. This implies that ∀x ∈ X , δ x ∈Λ− ⊆ (Λ)EI (δ x and Λ− refer
to Definition 6.1) and for any d ∈EM,∨

β∈(Λ)EI ,β⊆d

β ⊇
⋃

x∈X ,δx⊆d

δx. (6.21)

Since d ⊆ ⋃
x∈d δx ∈ (Λ)EI . Hence∧

β∈(Λ)EI ,d⊆β
β ⊆

⋃
x∈d

δx. (6.22)

For any x ∈ ∨
β∈(Λ)EI ,β⊆d β , ∃β ∈ Λ such that x ∈ β ⊆ d. This implies that δx ⊆ d

and x ∈ ⋃
y∈X ,δy⊆d δy. Therefore

∨
β∈(Λ)EI ,β⊆d

β =
⋃

x∈X ,δx⊆d

δx (6.23)

If there exists x ∈ d such that,

δx �
∧

β∈(Λ)EI ,d⊆β
β ,

then ∃β ∈Λ such that β ⊃ d and δx � β . One can verify that x ∈ δx ∩β and δx ∩β ∈
Λ−. This implies that δx ∩ β is a proper subset of δx, contradicting the fact that
δx ∈Λ− and δx is the smallest set containing x. Therefore∧

β∈(Λ)EI ,d⊆β
β =

⋃
x∈d

δx (6.24)


�



246 6 AFS Fuzzy Rough Sets

The following Proposition 6.3 prove that all properties (1)-(8) of the conventional
rough sets listed in Proposition 6.1 hold for the AFS fuzzy rough sets defined by
Definition 6.3.

Proposition 6.3. Let X be a set and M be a set of simple concepts on X. Let (M,τ,X)
be an AFS structure and Ai be the AFS fuzzy approximation spaces defined by (6.20)
for i = EI,EII,E#I,ρ . Then for any fuzzy sets α , β ∈ EM or whose membership
functions are given in advance, the following assertions of AFS fuzzy rough sets
S∗(α), S∗(β ) hold:

(1) S∗(α) ⊆i α ⊆i S∗α) for i = EI,EII,E#I,ρ;
(2) S∗(M) = M = S∗(M) for i = EI,EII,E#I,ρ;
(3) S∗(∑m∈M m) = ∑m∈M m = S∗(∑m∈M m) for i = EI,EII,E#I,ρ;
(4) If α ⊆i β , then S∗(α) ⊆i S∗(β ) and S∗(α) ⊆i S∗(β ) for i = EI,EII,E#I,ρ;
(5) S∗(S∗(α)) = S∗(α), S∗(S∗(α)) = S∗(α) for i = EI,EII,E#I,ρ;
(6) S∗(S∗(α)) = S∗(α), S∗(S∗(α)) = S∗(α) for i = EI,EII,E#I,ρ;
(7) (S∗(α ′))′ = S∗(α), (S∗(α ′))′ = S∗(α) for i = EI,EII and α ∈ EM;

(S∗(α ′))′ = S∗(α), (S∗(α ′))′ = S∗(α) for i = E#I and α ∈ EM provided that
for A, B ⊆ M, ∀x ∈ X, Aτ(x) ⊆ Bτ(x) ⇒ ∑m∈A{m′}τ (x) ≥ ∑m∈B{m′}τ(x);

(8) S∗(α∧β ) = S∗(α)∧S∗(β ), S∗(α∧β )⊆i S∗(α)∧S∗(β ) for i = EI,EII,E#I,ρ;
(9) S∗(α∨β ) = S∗(α)∨S∗(β ), S∗(α)∨S∗(β )⊆i S∗(α∨β ) for i = EI,EII,E#I,ρ .

Proof. The proofs of (1)-(6) which remain as exercises can be proved directly by
the definitions and the theorems. The proof of (7) is completed as follows. First we
prove it hold for i=EI. Using formula (4.19), for every fuzzy set α ∈ EM, we have

(S∗(α
′
))

′
=

⎛
⎝ ∧
β∈(Λ)EI ,α

′⊆EIβ

β

⎞
⎠

′

=
∧

β∈(Λ)EI ,α
′⊆EIβ

β
′

=
∧

β∈(Λ)EI ,β
′⊆EIα

β
′

=
∧

γ∈(Λ)EI ,γ⊆EIα
γ

= S∗(α)

Similarly, one can prove that (S∗(α ′))′ = S∗(α). In a similar fashion, one can prove
(7) for i = EII,E#I.

Let us present a proof of (8). For any fuzzy sets α , β ∈ EM and i = EI, we have

S∗(α ∧β ) =
∨

γ∈(Λ)EI ,γ⊆EI (α∧β )

γ ≤
∨

γ∈(Λ)EI ,γ⊆EIα
γ = S∗(α).

Similarly, one can prove that S∗(α∧β )≤ S∗(β ). This implies that
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S∗(α ∧β ) ≤ S∗(α)∧S∗(β ).

S∗(α)∧S∗(β ) =

⎛
⎝ ∨
γ∈(Λ)EI , γ⊆EIα

γ

⎞
⎠∧

⎛
⎝ ∨
η∈(Λ)EI , η⊆EIβ

η

⎞
⎠

=

⎛
⎝ ∨
γ, η∈(Λ)EI , γ⊆EIα , η⊆EIβ

γ ∧η

⎞
⎠ ≤

⎛
⎝ ∨
ζ∈(Λ)EI , ζ⊆EIα∧β

ζ

⎞
⎠

= S∗(α ∧β )

For any fuzzy sets α , β∈EM, we have

S∗(α ∧β ) =
∧

γ∈(Λ)EI , (α∧β )⊆EIγ
γ ≤

∧
γ∈(Λ)EI , α⊆EIγ

γ = S∗(α).

Similarly, we can prove that S∗(α∧β )≤ S∗(β ). Therefore S∗(α∧β )≤ S∗(α)∧S∗(β )
and S∗(α∧β )⊆EI S∗(α)∧S∗(β ).

For i = E#I, α , β∈EM or whose membership functions are given in advance. We
have α∧β⊆iα and α∧β⊆i β . It follows by (4), S∗(α∧β )⊆i S∗(α)∧S∗(β ).

S∗(α)∧S∗(β ) =

⎛
⎝ ∨
ζ∈(Λ)EI , ζ⊆E#Iα

ζ

⎞
⎠∧

⎛
⎝ ∨
η∈(Λ)EI , η⊆E#Iβ

η

⎞
⎠

=

⎛
⎝ ∨
ζ , η∈(Λ)EI , ζ⊆E#Iα , η⊆E#Iβ

ζ ∧η

⎞
⎠

⊆i

⎛
⎝ ∨
ζ∈(Λ)EI , ζ⊆E#Iα∧β

ζ

⎞
⎠

= S∗(α ∧β )

Thus S∗(α∧β )=S∗(α)∧S∗(β ). By the similar method, we can prove that S∗(α∧β )⊆i

S∗(α)∧S∗(β ) and S∗(α∧β )⊆i S∗(α)∧S∗(β ). For i = EII,ρ , we also can prove them
in the same way as i = E#I. Therefore (8) holds.

The proof of (9). For i = EI and any fuzzy sets α,β ∈ EM, we have

S∗(α ∨β ) =
∨

γ∈(Λ)EI , γ⊆EI(α∨β )

γ

≥
∨

γ∈(Λ)EI , γ⊆EIα
γ

= S∗(α).
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Similarly, one can prove S∗(α∨β )≥ S∗(β ). Therefore S∗(α∨β )≥ S∗(α)∨S∗(β ) and
S∗(α)∨S∗(β )⊆EI S∗(α∨β ).

For any fuzzy sets α , β∈EM, we have

S∗(α ∨β ) =
∧

γ∈(Λ)EI , (α∨β )⊆EIγ
γ

≥
∧

γ∈(Λ)EI , α⊆EIγ
γ

= S∗(α).

Similarly, one can prove S∗(α∨β )≥ S∗(β ). This implies that S∗(α∨β )≥ S∗(α)∨S∗(β ).

S∗(α)∨S∗(β ) =

⎛
⎝ ∧
γ∈(Λ)EI , α⊆EIγ

γ

⎞
⎠∨

⎛
⎝ ∧
η∈(Λ)EI , β⊆EIη

η

⎞
⎠

=

⎛
⎝ ∧
γ, η∈(Λ)EI , α⊆EIγ, β⊆EIη

γ ∨η

⎞
⎠

≤

⎛
⎝ ∧
ζ∈(Λ)EI , (α∨β )⊆EIζ

ζ

⎞
⎠

= S∗(α ∨β )

Similarly, for i = EII,E#I,ρ , we can prove (9). 
�

Proposition 6.4. Let X be a set and M be a set of simple concepts on X. Let (M,
τ , X) be an AFS structure and S be a σ -algebra over X and ρ: X →[0,∞). Let
Λ⊆EM and M, ∑m∈M m ∈Λ , ∀α∈Λ , α ′ ∈Λ . Let AEI = (M,Λ), AEII = (M,Λ ,X),
AE#I = (M,Λ ,X), Aρ = (M,Λ ,ρ ,X) be the AFS fuzzy approximation spaces de-
fined by (6.20). For any γ∈EM or whose membership function is given in advance,
let

S∗
EI(γ), SEI

∗ (γ); S∗
EII(γ), SEII

∗ (γ); S∗
E#I(γ), SE#I

∗ (γ); S∗
ρ(γ), Sρ∗ (γ)

be the upper and lower approximations for γ in AEI , AEII , AE#I , Aρ , respectively.
Then in lattice (EM, ∧,∨) the following assertions hold

SEI
∗ (γ) ≤ SEII

∗ (γ) ≤ SE#I
∗ (γ) ≤ Sρ∗ (γ) ≤ γ ≤ S∗

ρ(γ) ≤ S∗
E#I(γ) ≤ S∗

EII(γ) ≤ S∗
EI(γ)
(6.25)

Proof. Since for α , β∈EM, α ⊆EI β ⇒ α ⊆EII β ⇒ α ⊆E#
I
β ⇒ α ⊆ρ β , hence

(6.25) holds. 
�
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6.2.5 Algorithm of Approximating Upper and Lower
Approximations of Fuzzy Concepts

If there are a few fuzzy concepts in Λ , then S∗(γ),S∗(γ), defined by (6.20), the
upper and lower approximations for γ∈EM or whose membership function is given
in advance, can be easily determined. To determine S∗(γ), S∗(γ) given a large set
Λ becomes a challenging problem and quite often we have to resort ourselves to
some approximate solutions. An algorithm to determine S∗(γ), S

∗(γ) forming the
approximate solutions to (6.20) is outlined below.

Let (M,τ,X) be an AFS structure of a given information system. In AFS fuzzy
approximation space AEII = (M,Λ ,X), AE#I = (M,Λ ,X) or Aρ = (M,Λ ,ρ ,X).
Let γ∈EM or whose membership function is given in advance. For AEII or AE#I ,
suppose that ∀x ∈ X , ∃α∈ Λ , such that α(x) ≥ γ(x) in the lattice EXM or E#X ,
where α(x) and γ(x) are the AFS algebra membership degrees of x belonging to the
fuzzy concepts α,γ defined by (5.10), (5.13) or (6.12). For Aρ , suppose that ∀x ∈
X , ∃α∈ Λ , such that µα(x) ≥ µγ(x), where µα(x) and µγ(x) are the membership
degrees of x belonging to the fuzzy concepts α,γ defined by (6.14).

• STEP 1: For each x ∈ X , find the set Bx ⊆Λ defined as follows

BEII
x = {α ∈Λ | α(x) ≥ γ(x)}, in AEII , (6.26)

BE#I
x = {α ∈Λ | α(x) ≥ γ(x)}, in AE#I, (6.27)

Bρx = {α ∈Λ | µα(x) ≥ µγ(x)}, in Aρ . (6.28)

Since for any x ∈ X , ∃α∈ Λ such that or µα(x) ≥ µγ(x), hence for any x ∈ X ,
Bx �= ∅. It is clear that

BEII
x ⊆ BE#I

x ⊆ Bρx ⊆Λ ⊆ EM.

In practice, each of BEII
x , BE#I

x and Bρx has a much lower number of elements than
the Λ .

• STEP 2: The approximate solutions to the upper approximations defined by
(6.20) in AEII , AE#I and Aρ are listed as follows.

S
∗
EII(γ) =

∨
x∈X

⎛
⎝ ∧
η∈BEII

x

η

⎞
⎠ ∈ (Λ)EI , (6.29)

S
∗
E#I(γ) =

∨
x∈X

⎛
⎝ ∧
η∈BE#I

x

η

⎞
⎠ ∈ (Λ)EI , (6.30)

S
∗
ρ(γ) =

∨
x∈X

arg min
η∈(Bρx )EI

{
η | µη(x) ≥ µγ(x)

}
∈ (Λ)EI . (6.31)
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In what follows, we will prove that

S∗
ρ(γ) ≤ S

∗
ρ(γ), S∗

E#I(γ) ≤ S
∗
E#I(γ), S∗

EII(γ) ≤ S
∗
EII(γ),

S∗
ρ(γ) ≤ S

∗
ρ(γ) ≤ S

∗
E#I(γ) ≤ S

∗
EII(γ).

That is, what are given in (6.29), (6.30) and (6.31) are the approximate solutions
to the upper approximations of γ defined by (6.20). Since BEII

x ⊆ BE#I
x ⊆ Bρx ,

hence S
∗
ρ(γ) ≤ S

∗
E#I(γ) ≤ S

∗
EII(γ). From Theorem 5.3 and Proposition 5.4, we

know that over the AFS structure (M,τ,X), for any given x ∈ X , the maps px :
EM → EXM, qx : EM → E#X defined as follows are homomorphisms from the
lattice (EM,∧,∨) to the lattice (EXM,∧,∨) and from the lattice (EM,∧,∨) to
the lattice (E#X ,∧,∨), respectively. For any∏m∈Ai m ∈ EM,

px

[
∑
i∈I

(∏
m∈Ai

m)

]
=∑

i∈I
Aτi (x)Ai ∈ EXM,

qx

[
∑
i∈I

(∏
m∈Ai

m)

]
=∑

i∈I
Aτi (x) ∈ E#X .

Hence by (6.26) and (6.27), for any x ∈ X we have⎛
⎝ ∧
η∈BEII

x

η

⎞
⎠(x) =

∧
η∈BEII

x

η(x) ≥ γ(x), (6.32)

⎛
⎝ ∧
η∈BE#I

x

η

⎞
⎠(x) =

∧
η∈BE#I

x

η(x) ≥ γ(x). (6.33)

This implies that for any x ∈ X ,⎡
⎣∨

x∈X

⎛
⎝ ∧
η∈BEII

x

η

⎞
⎠

⎤
⎦(x) =

∨
x∈X

⎛
⎝ ∧
η∈BEII

x

η(x)

⎞
⎠ ≥ γ(x),

⎡
⎣∨

x∈X

⎛
⎝ ∧
η∈BE#I

x

η

⎞
⎠

⎤
⎦(x) =

∨
x∈X

⎛
⎝ ∧
η∈BE#I

x

η(x)

⎞
⎠(x) ≥ γ(x).

Furthermore, by Definition 6.2 we have

γ ⊆EII

∨
x∈X

⎛
⎝ ∧
η∈BEII

x

η

⎞
⎠ ∈ (Λ)EI ,

γ ⊆E#I

∨
x∈X

⎛
⎝ ∧
η∈BE#I

x

η

⎞
⎠ ∈ (Λ)EI .
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It follows by Definition 6.3, we have S∗
E#I

(γ) ≤ S
∗
E#I(γ), S∗

EII(γ) ≤ S
∗
EII(γ). Since

for any x ∈ X , Bρx ⊆Λ , hence (Bρx )EI ⊆ (Λ)EI and

ξx � arg min
η∈(Bρx )EI

{
η | µη(x) ≥ µγ (x)

}
∈ (Λ)EI (6.34)

For any x ∈ X , we have

µS
∗
ρ (γ)(x) = µ∨

x∈X ξx
(x) ≥ µγ(x) ⇒ γ ⊆ρ S

∗
ρ(γ).

By Definition 6.3, we have S∗
ρ(γ) ≤ S

∗
ρ(γ). Thus we have

S∗
ρ(γ) ≤ S

∗
ρ(γ) ≤ S

∗
E#I(γ) ≤ S

∗
EII(γ).

Next, we find the approximate solutions to the lower approximations of γ defined
by (6.20). For each x ∈ X , since (6.32), (6.33) and (6.34), the lower approxima-
tions of γ in AEII , AE#I ,AE#I should be searched in the following sets: DEII

x , DE#I
x

and Dρx .

DEII
x =

⎧⎨
⎩ξ ∈ (Λ)EI | ξ ≤

∧
η∈BEII

x

η

⎫⎬
⎭ ⊆ (Λ)EI ,

DE#I
x =

⎧⎨
⎩ξ ∈ (Λ)EI | ξ ≤

∧
η∈BE#I

x

η

⎫⎬
⎭ ⊆ (Λ)EI ,

Dρx = {ξ ∈ (Λ)EI | ξ ≤ ξx} ⊆ (Λ)EI .

Since
∧
η∈BEII

x
η ≥ ∧

η∈BE#I
x
η ≥ ξx, hence DEII

x ⊇ DE#I
x ⊇ Dρx . In practice, DEII

x ,

DE#I
x and Dρx have a much lower number of elements than (Λ)EI . Thus we have

the approximate solutions to the lower approximations defined by (6.20) in AEII ,
AE#I and Aρ listed as follows.

S
i
∗(γ) =

∨
x∈X

⎛
⎝ ∨
η∈Di

x, η⊆iγ

η

⎞
⎠ ∈ (Λ)EI , (6.35)

for i = EII,E#I,ρ . It is clear that S
i
∗(γ) ≤ Si

∗(γ). We should note that for each
x ∈ X , if η ⊆i γ , then for any ς ∈ Di

x, ς ≤ η in lattice EM,

ς ∨

⎛
⎝ ∨
η∈Di

x, η⊆iγ

η

⎞
⎠ =

⎛
⎝ ∨
η∈Di

x, η⊆iγ

η

⎞
⎠ .

By noting this, we can reduce computing overhead when looking for S
i
∗(γ). Fur-

thermore
∨
η∈Di

x, η⊆iγ η , x ∈ X can be computed independently which brings
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some thoughts about its potential parallel realization of the overall process. By
Definition 6.2, we know that for any weight function ρ

S
ρ
∗ (γ) ⊆ρ Sρ∗ (γ) ⊆ρ γ ⊆ρ S∗

ρ(γ) ⊆ρ S
∗
ρ(γ).

Thus we can apply this algorithm to find S
i
∗(γ),S

∗
i (γ) being the approximate so-

lutions to (6.20) in AFS fuzzy approximation space Ai for i = EII,E#I,ρ .

In the following examples, S
i
∗(γ) and S

∗
i (γ) are found with the use of this algo-

rithm for i = EII,E#I,ρ .

Example 6.3. Let M={m1, m2, . . . , m18} where m1 to m10 are the same as presented
Example 6.2 while m18= m′

3, m17 = m′
4, m16 = m′

5, m15 = m′
6, m13 = m′

8, m12= m′
9,

m11 = m′
10. Here for m ∈ M, m′ is the negation of concept m. According to Table

6.2, the AFS structure (M,τ , X) is established by means of (4.26). Let σ -algebra on
X be S=2X and the measure m be defined as m(A) = |A|/|X |, i.e., the weight function
ρ(x)=1, ∀x ∈ X .

Suppose that γ=m1m7 + m2m7 + m1m2 ∈EM to describe some decision result in a
data shown as Table 6.2. Then the set of simple concepts associating to condition
features is Λ=M−{m1, m2, m7}. Running the algorithm presented above we obtain

S
E#I
∗ (γ) = m3m4m6m8m9m11m13m16 + m3m4m6m9m10m11m13m16

+m3m4m6m9m11m13m16m18+m3m4m6m9m11m13m16m17 +m3m4m6m9m11m12m13m16

+m3m4m9m10m13m15m16m17+m3m9m10m13m15m16m17m18

+m3m9m10m12m13m15m16m17 + m5m9m11m13m15 + m9m11m12m13m15

+m6m15 + m4m5m6m8m11m12m17 + m5m6m9 + m5m6m16 + m5m6m13

+m3m5m10m15 + m5m8m10m15+m5m9m10m15 + m5m10m15m18

+m5m10m15m17 +m5m10m15m16 +m5m10m13m15 +m5m10m12m15 +m5m10m11m15,

S
∗
E#I(γ) = m3m9m10m13m15m16m17 + m9m11m13m15 + m6 + m5m10m15.

The membership functions of fuzzy concepts S
E#I
∗ (γ),S∗

E#I(γ) ∈ EM are shown in
Table 6.4. Since they are approximate solutions to (6.20) in AFS fuzzy approxima-
tion space AE#I , hence the results of the real solution of (6.20) should be better than
this.

Table 6.4 The membership functions of S
E#I
∗ (γ) and S

∗
E#I(γ) defined by (6.14)

fuzzy concepts x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µS
∗
E# I(γ)

(.) 1.0 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1

µγ(.) 0.3 0.2 0.7 0.8 0.3 0.5 0.5 0.5 0.9 0.1
µ

S
E# I
∗ (γ)

(.) 0.1 0.1 0.6 0.3 0.3 0.5 0.1 0.2 0.6 0.1
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6.2.6 Experiments

In this section, some experiments involving the Credit-Screening, Iris Data, the
Wine Classification Data, and Wisconsin Breast Cancer coming from the Machine-
learning database at University of California, Irvine [34] are presented to clarify the
concepts and properties of AFS fuzzy rough sets and demonstrate the computational
details of the approach.

A. Credit-Screening Data: Let (M, τ , X) be the AFS structure of the credit-
screening data established in Example 6.1 and the σ -algebra over X be S=2X . Let
us study the credit assignment problems using the data presented in Example 6.1,
by viewing positive (samples 1 to 85) and negative (samples 86 to 150) instances
(that is people who were and were not granted credit). Let ζ be a fuzzy set de-
fined as follows. For x ∈ X , µζ (x)=1, if sample x comes with a positive credit
decision, otherwise µζ (x)=0.15 to indicate the membership degrees of negative
samples belonging to fuzzy concept “credit”. Any small number can be arranged
to each negative sample to show its extent belonging to “credit”. The differences
of membership degrees of positive samples and negative samples reflect the grades
we distinguish positive instances from negative ones. However, it is clear that the
larger the difference, the more difficult is to find the lower and upper approxima-
tion. Here if µζ (x)=0.1 for the negative samples, then its lower approximation will
be difficult to determine following the algorithm presented here. By formula (6.15),
we have ρζ (x)=0.85/85=0.01 if sample x comes with a positive credit decision,
otherwise ρζ (x)=0.15/40=0.0037. Let mζ be the measure over σ -algebra S for
ρζ defined as (6.13). If we view this as an information system, MA = M−{m1,
m2}, Md={m1, m2}, where m1: “positive credit” and m2: “negative credit”. Let
Λ=M−{m1, m2}, then Aρζ = (M,Λ ,ρζ ,X) becomes an AFS fuzzy approximation
space in sense of definition given by (6.20). With the help of (6.31) and (6.35), we
obtain S

ρζ
∗ (ζ ), S

∗
ρζ (ζ ), which are approximate solutions to (6.20) shown in Figure

6.3. S
ρζ
∗ (ζ ),S∗

ρζ (ζ ) ∈ EM have 490 terms and 50 terms, respectively.

S
∗
ρζ (ζ ) = m4m5m8m10m12m14m16m18m20m21m24

+m4m5m8m10m12m14m16m18m20m22m24

+m4m5m8m10m12m14m16m18m20m21m23 + . . . . . . .

S
ρζ
∗ (ζ ) = m4m9m18m20m21m24m31 + m4m6m8m9m14m19m22m31

+m4m6m8m9m16m19m22m31 + m4m6m8m9m18m19m22m31 + . . . .

As illustrated in Figure 6.3, although S
ρζ
∗ (ζ ),S∗

ρζ (ζ ) ∈ EM have a large number
of terms (490 and 50, respectively), they come with a well defined semantics ex-
pressed by the simple concepts in M shown in Example 6.1. For instance, the
first term in S

ρζ
∗ (ζ ) “m4m9m18m20m21m24m31” states that IF a person is charac-

terized as the one with “Job, purchase stereo, purchase furniture, female, unmar-
ried, located in no- problematic region, expected to pay off loan more” , THEN
the person is characterized by a positive credit score. The first term in S

∗
ρζ (ζ )
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Fig. 6.3 Membership functions of S
ρζ
∗ (ζ ),ζ = credit,S

∗
ρζ (ζ )

“m4m5m8m10m12m14m16m18m20m21m24” states that IF a person is described as
“job, purchase pc, no purchase car, no purchase stereo, no purchase jewel, no pur-
chase medinstru, no purchase bike, no purchase furniture, female, unmarried, lo-
cated in no- problematic region”, THEN the person has positive credit score.
Similarly, one can find the semantics of other terms in them. In the following
Example 6.4, we will show the semantics of the lower and upper approxima-
tions using the concepts with few terms. Thus through the data given in Exam-
ple 6.1, the concept “positive credit” formed on the decision attributes and which
is modeled by some fuzzy set is approximated by its upper and lower bounds
S
ρζ
∗ (ζ ),S∗

ρζ (ζ ) ∈ E(M −{m1,m2}).

B. Iris Data: The iris data set is one of the most popular data sets to examine the
performance of novel methods in pattern recognition and machine learning. Here
the number of instances is equal to 150, evenly distributed in three classes:1:50 iris-
setosa, 51:100 iris-versicolor, and 101:150 iris-virginica, where each of the sam-
ples is described by 4 features: sepal length, sepal width, petal length, petal width.
Λ=M={m1, m2, . . . , m16} is the concepts formulated on the features of the infor-
mation system < X ,A >, where m4(i−1)+1,m4(i−1)+2,m4(i−1)+3,m4(i−1)+4, i=1, 2,
3, 4 are the simple concepts “large”, “medium”, “not medium”, “small” associat-
ing to the ith feature respectively and the weight function of them ρ(x) is defined
by ρ(x)=1 for all x ∈ X . Aρ = (M,Λ ,ρ ,X) becomes an AFS fuzzy approximation
space in sense of definition given by (6.20). Let ζ be a fuzzy set defined as follows.
For x ∈ X , µζ (x)=0.7, if sample x in the class iris-setosa, otherwise µζ (x)=0.1 to in-
dicate the membership degrees of negative samples belonging to “iris-setosa”. With
the help of (6.31) and (6.35), we obtain S

ρ
∗ (ζ ), S

∗
ρ(ζ ) listed as follows, which are

approximate solutions to (6.20) shown in Figure 6.4.

S
∗
ρ(ζ ) = m12 + m4 + m16m18 + m4m7m10

+m2m6m11m14m15m18 + m3m6m7m10m11m14m15,

S
ρ
∗ (ζ ) = m6m7m16m18 + m4m7m10m16m18 + m4m7m9m12m16m18.
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Fig. 6.4 Membership functions of S
ρ
∗ (ζ ), ζ :“iris-setosa”, S

∗
ρ (ζ ) for Iris data
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Fig. 6.5 Membership functions of S
ρ
∗ (ζ ), ζ :“class–2”, S

∗
ρ (ζ ) for Wine data

C. Wine Classification Data: Chemical analysis of wines grown in the same region
in Italy, but derived from three different cultivars, should be sufficient to recognize the
source of the wine. Here the number of instances is equal to 178, evenly distributed
in three classes:1:59 class-1, 60:130 class-2, and 131:178 class-3, where each of the
samples is described by 13 features, including alcohol content, hue, color intensity,
and content 9 chemical compounds.Λ=M={m1, m2, . . . , m26} is the concepts formu-
lated on the features of the information system < X ,A >, where m2(i−1)+1,m2(i−1)+2,
i=1, 2, . . . , 13 are the simple concepts “large”, “small” associating to the ith feature
respectively and the weight function of them ρ(x) is defined by ρ(x)=1 for all x ∈ X .
Aρ = (M,Λ ,ρ ,X) becomes an AFS fuzzy approximation space in sense of defini-
tion given by (6.20). Let ζ be a fuzzy set defined as follows. For x ∈ X , µζ (x)=0.7,
if sample x in the class-2, otherwise µζ (x)=0.31 to indicate the membership degrees
of negative samples belonging to “class-2”. With the help of (6.31) and (6.35), we
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obtain S
ρ
∗ (ζ ), S

∗
ρ(ζ ), which are approximate solutions to (6.20) shown in Figure 6.5.

S
ρ
∗ (ζ ), S

∗
ρ(ζ ) ∈ EM, respectively are described as follows.

S
∗
ρ(ζ ) = m2 + m6 + m20 + m15m24 + m11m13,

S
ρ
∗ (ζ ) = m2m6m12m21 + m2m11m16m20 + m2m15m19m23

+m2m6m13m23 + m6m11m13m20 + m2m6m16m20m23

+m15m20m21m23m24 + m14m15m20m23m24

+m2m6m20m23m24 + m2m5m20m22m23 + m15m20m22m23m24

+m2m16m20m23m24 + m2m12m16m20m23 + m2m16m20m22m23

+m2m5m6m13m20m21 + m2m6m14m20m21m23

+m2m6m14m15m20m23 + m2m6m12m15m20m23

+m2m5m6m12m15m23 + m2m5m6m15m20m23.

We can observe that the number of items of the S
ρζ
∗ (ζ ),S∗

ρζ (ζ ), which are approxi-
mate solutions to (6.20) for Credit-screening are much larger than that of Iris data
and the Wine classification data. The main reason is that 12/17 features of Credit-
screening are described by Boolean value while all features of Iris data and the Wine
classification data are numerical and the associating simple concepts are all fuzzy.
This implies that the AFS fuzzy rough sets have some advantages to deal with fuzzy
information systems.

D. Wisconsin Breast Cancer Data: The Wisconsin Breast Cancer Diagnostic data
set contains 699 patterns distributed into two output classes, “benign” and “malig-
nant”. Each pattern consists of nine input features. There are 16 patterns with incom-
plete feature descriptions. We use 683 patterns 1:444 class benign, 445:683 class
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malignant, to evaluate the performance of the proposed fuzzy algorithm.Λ=M={m1,
m2, . . . , m18} is the concepts formulated on the features of the information sys-
tem < X ,A >, where m2(i−1)+1, m2(i−1)+2, i=1, 2, 3, 4, 5, 6, 7, 8 9, are the simple
concepts “large”, “small” associating to the ith feature respectively and the weight
function of them ρ(x) is defined by ρ(x)=1 for all x ∈ X . Aρ = (M,Λ ,ρ ,X) be-
comes the fuzzy approximation space in sense of definition given by (6.20). Let
ζ be a fuzzy set defined as follows. For x ∈ X , µζ (x)=0.85, if sample x in the
class malignant, otherwise µζ (x)=0.6 to indicate the membership degrees of nega-
tive samples belonging to “malignant”. With the help of (6.31) and (6.35), we obtain
S
ρ
∗ (ζ ), S

∗
ρ(ζ ), which are approximate solutions to (6.20) shown in Figure 6.6. S

ρ
∗ (ζ ),

S
∗
ρ(ζ ) ∈ EM are shown as follows.

S
∗
ρ(ζ ) = m1 + m3 + m5 + m7 + m9 + m13,

S
ρ
∗ (ζ ) = m1m3m7m9 + m1m7m11m13m17 + m1m3m7m11m13

+m1m5m9m13m17 + m1m3m5m9m15m17 + m1m3m5m13m15m17

+m3m5m7m9m11m15 + m1m5m7m9m11m15m17

+m5m7m9m11m13m15m17 + m1m5m7m9m11m13m15.

If the data includes noisy samples or the knowledge in Λ is insufficient, then
for some sample x, there may not exist δ , β ∈(Λ )EI such that µδ (x) ≤µζ (x) or
µβ (x) ≥µζ (x) and δ , β satisfying (6.20). Therefore in Figure 6.6, one can observe

that the degrees of some samples belonging to S
∗
ρ(ζ ) are less than that of ζ or the

degree of some samples belonging to S
ρ
∗ (ζ ) are larger than that of ζ . This implies

that these samples cannot be distinguished by the given simple concepts in Λ , may
be noisy samples or our algorithm fails to determine δ , β ∈(Λ )EI satisfying (6.20)
for these samples.

6.3 Comparisons with Fuzzy Rough Sets and Other Constructs
of Rough Sets

Here we provide some comparative analysis of the AFS fuzzy rough sets with pre-
viously developed forms of rough sets. This will cast the investigations in some
broader perspective.

6.3.1 Comparisons with Fuzzy Rough Sets

The main question addressed by previous fuzzy rough sets can be formulated as
follows: how to represent a fuzzy set γ ∈ F (X) = {β : X → [0,1]} by some fuzzy
sets S∗(γ), S∗(γ)∈ F (X), according to a border implicator φ : [0,1]×[0,1]→[0,1]
and a similarity relation R, i.e., a fuzzy relation, R: X × X →[0,1] for which the
following conditions should hold:
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(1) ∀ x ∈ X , R(x, x)=1; (Reflexivity)
(2) ∀ x, y ∈ X , R(x, y) = R(y, x); (Symmetry)
(3) ∀ x, y, z ∈ X , R(x, z) ≥ T (R(x, y), R(y, z)). (T-transitivity)

Here, T is a t-norm. In [8], the authors defined S∗(γ), S∗(γ) the lower and upper
fuzzy approximations of γ ∈ F (X) as follows: for x ∈ X ,

µS∗(γ)(x) = sup
y∈X

min{µγ(y),R(x,y)}, (6.36)

µS∗(γ)(x) = inf
y∈X

max{µγ(y),1−R(x,y)}. (6.37)

Which are the same as what are described by (6.4) and (6.5). In order to compare
AFS fuzzy rough sets with the fuzzy rough sets, we study the following example.

Example 6.4. Let X={x1, x2, . . . , x10} and R=(ri j), ri j = R(xi, x j), where R is a
similarity relation

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .56 1 .50 .67 1 .37 .50 .54 .11
1 .56 .50 .56 .56 .37 .50 .54 .11

1 .50 .67 1 .37 .50 .54 .11
1 .50 .50 .37 .81 .50 .11

1 .67 .37 .50 .54 .11
1 .37 .50 .54 .11

1 .37 .37 .11
1 .50 .11

1 .11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.38)

One can verify that R is a T-similarity relation [8] on X if t-norm is the minimum and
t-conorm is the maximum operator. For the fuzzy set γ with µγ(x1)=1, µγ(x2)=.50,
µγ(x3)=1, µγ(x4)=.70, µγ (x5)=.50, µγ (x6)=1, µγ(x7)=.20, µγ(x8)=.60, µγ(x9)=.50,
µγ(x10)=.10. The lower and upper fuzzy approximations of γ defined by (6.36) and
(6.37) are shown as Table 6.5.

Table 6.5 The fuzzy rough sets based on fuzzy relation Rdefined by (6.36) and (6.37)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µS∗(γ)(x) 1.0 0.56 1.0 .70 .67 1.0 .37 .70 .54 .11
µγ(x) 1.0 .50 1.0 .70 .50 1.0 .20 .60 .50 .10
µS∗(γ)(x) .50 .50 .50 .50 .50 .50 .20 .50 .50 .10

Let M={m1, m2, . . . , m20} be the set of some fuzzy concepts on X . Where the fuzzy
concept m2k+1: “similar to xk+1”, k=0, 1, . . . , 9 and m2k+2: “not similar to xk+1”
is the negation of m2k+1. For the fuzzy similarity relation R=(ri j), rki ≥ rk j implies
that the degree of xi being similar to xk is larger than or equal to that of x j. Thus
each concept in M is a simple concept on X . According to the information provided
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by the fuzzy similarity relation R=(ri j) shown as (6.38), we can establish the AFS
structure (M, τ , X) as follows. For any xi, x j ∈ X , introduce

τ(xi,x j)={ m2k+1 | r(k+1)i ≥ r(k+1) j, 0≤ k ≤9 }∪{ m2l+2 | 1−r(l+1)i ≥ 1− r(l+1)i,
0≤ l ≤9 }.

Let σ -algebra over X be S=2X and m be the measure over S defined by (6.13) for
ρ : X →[0, ∞), ρ(x)=1 for any x ∈ X . Thus for any fuzzy concept η∈EM, we can
obtain the membership function µη(x) by (6.14). LetΛ={mi | i=1, 2, . . . , 20}⊆EM.
There exist the lower and upper fuzzy sets S∗(η) and S∗(η) in Aρ = (M,Λ ,ρ ,X)
defined by (6.20) for any fuzzy set η∈ F (X). Based on (6.31) and (6.35) which are
the algorithm of finding the approximate solutions of (6.20), we have the following
S
ρ
∗ (γ) and S

∗
ρ(γ) of the above fuzzy set γ and their membership functions are shown

in Table 6.6.

S
∗
ρ(γ) = m1m5m11m20 + m2m4m6m7m10m12m13m11m15m18m19m20

+m1m2m3m4m5m6m7m8m10m11m12m13m14m15m16m17m18m19m20,

S
ρ
∗ (γ) = m1m7m20 + m5m7m20 + m7m11m20.

Table 6.6 The approximate solutions to (6.20) for AFS upper and lower approximations of
fuzzy set γ

fuzzy concepts x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µS
∗
ρ (γ)

(.) 1.0 .60 1.0 .70 .70 1.0 .20 .70 .50 .10

µγ(.) 1.0 .50 1.0 .70 .50 1.0 .20 .60 .50 .10
µS

ρ
∗ (γ)(.) .80 .40 .80 .40 .50 .80 .20 .30 .30 0

Although the fuzzy similarity relation R is not required for AFS fuzzy rough sets,
this example shows that we also can find AFS rough sets based on the same in-
formation provided by R as for other fuzzy rough sets. Thus Example 6.4 is the
comparison under the same conditions. The MSEs of the upper and lower approxi-
mations in Table 6.5 which are 0.00731, 0.08, respectively are larger than the MSEs
reported in Table 6.6 which are 0.006, 0.036, respectively. This implies that the up-
per and lower approximation in Table 6.5 provide less information than those in
Table 6.6. In that way, the approximate AFS rough sets S

ρ
∗ (γ) and S

∗
ρ(γ) obtained

with the help of (6.31) and (6.35) shown in Table 6.6 provide a better interpretation
than that fuzzy rough sets shown in Table 6.5. This raises an open problem: Is this
result universal? Considering

S
ρ
∗ (γ) ⊆ρ Sρ∗ (γ) ⊆ρ γ ⊆ρ S∗

ρ(γ) ⊆ρ S
∗
ρ(γ),

Sρ∗ (γ),S∗
ρ(γ) which are defined by (6.20), can provide more accurate approximations

of γ than S
ρ
∗ (γ) and S

∗
ρ(γ).

In light of the simple concepts in M shown above, Sρ∗ (γ) = m1m7m20 +
m5m7m20 + m7m11m20 states that “similar to x1,x4 and not similar to x10” or “sim-
ilar to x3,x4 and not similar to x10” or “similar to x4,x6 and not similar to x10”.
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As a lower approximation of the given fuzzy set γ , Sρ∗ (γ) describes the approxi-
mate semantics of γ with the simple concepts in M, according to the given member-
ship function µγ (.) and the similar relation R shown in (6.38). By µγ (.) shown in
Table 6.6, we can observe that the semantic interpretation of Sρ∗ (γ) is very close to
the fuzzy concept represented by µγ(.). For instance, the degrees of x1 belonging to
γ and Sρ∗ (γ) are 1 and 0.8, respectively. Taking into the consideration the similarity
relation R, we know x1 is similar to x3, x4 and x10 at the degrees 1, 0.67, 0.11, re-
spectively. This implies that x1 should belong to the fuzzy concept m5m7m20 with
the semantics “similar to x3,x4 and not similar to x10” at high degree. In Table 6.6, x1

belongs to the lower approximation of γ at the degree 0.8. Similarly, other samples
in Table 6.6 also show that the lower and upper approximation of γ approximately
interpret γ by both the semantic meanings and the membership degrees based on the
data shown in (6.38). The membership function of the fuzzy concept Sρ∗ (γ) ∈ EM
defined by (6.14), which is determined by its semantic meaning and the similar re-
lations of the 10 elements in X described by the fuzzy relation R (6.38), gives the
degree of each element in X approximately belonging to γ . The similar phenomena
can be observed for S

∗
ρ(γ), that is the upper approximation of γ .

6.3.2 Comparisons with Other Constructs of Rough Sets

Boolean reasoning has been used for many years and was helpful in solving many
problems relative to rough sets such as those reported in [1, 37, 42]. It is well-known
[37] that any Boolean function f : {0, 1}n →{0, 1} can be presented in its canonical
form, particularly in a so-called Conjunctive Normal Form (CNF) and Disjunctive
Normal Form (DNF). Boolean reasoning is based on encoding the investigated opti-
mization representations of a Boolean function f . In AFS fuzzy rough sets, we find
the lower, upper approximations, which are some fuzzy sets in (Λ)EI , Λ ⊆EM and
approximately represent fuzzy set ξ on universe X with membership degrees in the
interval [0, 1] or AFS algebras.

In Boolean reasoning, the representations of Boolean functions can be found by
searching in the lattice of all subsets of attributes which is a Boolean algebra. In AFS
fuzzy rough sets, the lower and upper approximations can be found by searching in
the lattice EM. In [23], the author has proved that AFS algebra is a more general
algebraic structure than Boolean algebra. Therefore Boolean reasoning and AFS
reasoning revolve around search processes realized in different lattice structures.

In [23], the authors have proved that EI algebra EM is degenerated to Boolean
algebra if each concept in M is a Boolean concept. Thus many Boolean reasoning
ideas and techniques can be applied to study AFS fuzzy rough sets.

There are a great deal of papers on rough sets and multi-criteria decision mak-
ing, in particular related to preference relations such as those discussed in [48, 50].
Sub-preference relations (refer to Definition 4.3), which are applied to define sim-
ple concepts in AFS theory, are more general than preference relations, i.e., any
preference relation is a sub-preference relation. In [14], the author pointed that the
main difficulty with application of many existing multiple-criteria decision aiding
(MCDA) methods lays in acquisition of the decision maker’s (DM’s) preferential
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information. Very often, this information has to be given in terms of preference
model parameters, like importance weights, substitution rates and various thresh-
olds. Formally, for each q ∈ C being a criterion there exists an outranking relation
Sq on the set of actions U such that (x, y) ∈ Sq means “x is at least as good as y with
respect to criterion q”. Sq is a total pre-order, i.e., a strongly complete and transitive
binary relation defined on U on the basis of evaluations f (.,q). In [11], the author
described the problems as follows. Let X = Π n

i=1Xi be a product space including a
set of actions, where Xi is a set of evaluations of actions with respect to criterion
i=1, . . . , n; each action x is thus seen as a vector [x1, x2, . . . , xn] of evaluations on
n criteria. A comprehensive weak preference relation ≥ needed to define on X such
that for each x, y ∈ X , x ≥ y means “x is at least as good as y”. The symmetric part
of ≥ is the indifference relation, denoted by ∼, while the asymmetric part of ≥ is
the preference relation, denoted by ≥.

These approaches to study how to establish evaluations f (., q) or a comprehen-
sive weak preference relation ≥ by the pair wise comparison tables (PCT) which
represent preferential information provided by the decision makers in form of a pair
wise comparison of reference actions. In general, evaluations f (., q) or a compre-
hensive weak preference relation ≥ are defined by the rules defined in advance and
for the same PCT, different f (., q) or ≥ may be defined because of different rule
sets. These researches mainly focus on the comparison of each pair of actions for
decision and rarely apply preference relations to study the fuzzy sets. In AFS the-
ory, the sub-preference relation on X of each simple concept in M is determined
by the given data sets and each fuzzy set in EM is represented by the AFS fuzzy
logic combination of the simple concepts in M. The membership functions and the
fuzzy logic operations of fuzzy sets in EM are determined by the AFS structure (M,
τ , X), a special family of combinatorial systems [15], which is directly established
according to the distributions of the original data. And in AFS framework we do not
need to define evaluations f (., q) or a comprehensive weak preference relation ≥
in advance. In [13], by regarding each preference relation on X as a sub set of the
product set X ×X , the lower, upper approximations of a preference relation are the
Pawlak’s rough sets, i.e., represented by some given preference relations as sub sets
of X ×X . In the framework of AFS theory, first, we apply sub-preference relations,
AFS logic and the norm on AFS algebras to obtain membership functions and fuzzy
logic operations of fuzzy sets, then the AFS fuzzy rough sets are based on the es-
tablished AFS fuzzy logic. The upper, lower approximations of each fuzzy set on
the universe X can be represented by the fuzzy sets in EM which have well-defined
semantics meaning.

There is a significant deal of study on rough sets based on the concept of toler-
ance (similarity) such as e.g., [48, 19]. The tolerant rough set extends the existing
equivalent rough sets, i.e., Pawlak’s rough sets. Let us recall that the binary rela-
tion R defined on U ×U is a tolerance (similarity) relation if and only if (a, a) ∈ R
and (a, b) ∈ R ⇒ (b, a) ∈ R, where a, b ∈ U . The similarity class of x, denoted by
[x]R, the set of objects that are similar to x ∈ U , is defined as [x]R ={y ∈ U | (y, x)
∈ R}⊆ U . The rough approximation of a set X ⊆ U is a pair of sets called lower
and upper approximations of X , denoted by R∗(X) and R∗(X), respectively, where
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R∗(X) =∪x∈X [x]R, R∗(X)={x∈ X | [x]R ⊆ X}. Compared with the AFS fuzzy rough
sets, the tolerant relation R has to be given in advance, R∗(X), R∗(X) and X are all
Boolean sets and the tolerant rough sets do not have a direct semantics.

In order to apply the equivalent rough sets or the tolerant rough sets to study the
data shown in Example 6.2, the continuous valued attributes such as age, height,
weigh, salary ... etc, are often discretized as intervals of real values taken by the
Boolean attributes [57], or define a similarity measure that quantifies the close-
ness between attribute values of objects to construct a tolerance relation among
the data [19]. The quality of rules discovered by the equivalent or tolerant rough
sets is strongly affected by the result of the discretization or the similarity measure.
For AFS fuzzy rough sets, the discretization of continuous valued attributes and the
similarity measure are not required.

Following the investigations in the study one can observe that the proposed three
types of AFS fuzzy rough sets are more practical and efficient when dealing with
information systems in comparison with some other generalizations of rough fuzzy
sets. It can be directly applied to handling data without a need to deal with an im-
plicator φ , a t-norm and a similarity relation R that are required to be provided in
advance. The AFS rough approximations for the fuzzy concepts have well-defined
semantics with the given simple concepts formed for the individual features.

Exercises

Exercise 6.1. Let U be a set and A =(U , R) be an approximation space. Prove that
the lower approximation A∗(X) and upper approximation A∗(X) for any X ⊆ U
satisfy the following properties:

(1) A∗(X) ⊆ X ⊆ A∗(X);
(2) A∗(∅) = A∗(∅) = ∅, A∗(U) = A∗(U) = U ;
(3) A∗(X ∩Y ) = A∗(X)∩A∗(Y ), A∗(X ∪Y ) = A∗(X)∪A∗(Y );
(4) If X ⊆ Y , then A∗(X) ⊆ A∗(Y ), A∗(X) ⊆ A∗(Y );
(5) A∗(X ∩Y ) ⊆ A∗(X)∩A∗(Y ), A∗(X ∪Y ) ⊇ A∗(X)∪A∗(Y );
(6) A∗(X ′)′ = A∗(X), A∗(X ′)′ = A∗(X);
(7) A∗(A∗(X))=A∗ (A∗(X))=A∗(X);
(8) A∗(A∗(X))=A∗ (A∗(X))=A∗(X).

Exercise 6.2. Let X be a set and M be a set of simple concepts on X . Let (M, τ , X)
be an AFS structure. Show the following assertions hold: for α,β ,γ,η ∈ EM,

(1) For the EI algebra inclusions

γ ⊆EI α ⇒ α ′ ⊆EI γ ′

γ ⊆EI α, η ⊆EI β ⇒ γ ∧η ⊆EI α ∧β , γ ∨η ⊆EI α ∨β
α ⊆EI γ, β ≤ α ⇒ β ⊆EI γ
γ ⊆EI α, α ≤ β ⇒ γ ⊆EI β ;
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(2) For the EII algebra inclusions

γ ⊆EII α ⇒ α ′ ⊆EII γ ′

γ ⊆EII α, η ⊆EII β ⇒ γ ∧η ⊆EII α ∧β , γ ∨η ⊆EII α ∨β
α ⊆EII γ, β ≤ α ⇒ β ⊆EII γ
γ ⊆EII α, α ≤ β ⇒ γ ⊆EII β .

Exercise 6.3. Let X be a non-empty set and M be a set of Boolean concepts on X .
Prove that the rough sets in AEII = (M,Λ ,X) or Aρ = (M,Λ ,ρ ,X) defined by (6.20)
is equivalent to the rough sets defined by (6.2) in Definition 6.1 (i.e., rough sets in
the classic sense defined by (6.1)).

Exercise 6.4. Let X be a set and M be a set of simple concepts on X . Let (M,τ,X)
be an AFS structure and Ai be the AFS fuzzy approximation spaces defined by
(6.20) for i = EI,EII,E#I,ρ . Prove that for any fuzzy sets α , β ∈ EM or whose
membership functions are given in advance, the following assertions of AFS fuzzy
rough sets S∗(α), S∗(β ) hold:

(1) S∗(α) ⊆i α ⊆i S∗α) for i = EI,EII,E#I,ρ ;
(2) S∗(M) = M = S∗(M) for i = EI,EII,E#I,ρ ;
(3) S∗(∑m∈M m) = ∑m∈M m = S∗(∑m∈M m) for i = EI,EII,E#I,ρ ;
(4) If α ⊆i β , then S∗(α) ⊆i S∗(β ) and S∗(α) ⊆i S∗(β ) for i = EI,EII,E#I,ρ ;
(5) S∗(S∗(α)) = S∗(α), S∗(S∗(α)) = S∗(α) for i = EI,EII,E#I,ρ ;
(6) S∗(S∗(α)) = S∗(α), S∗(S∗(α)) = S∗(α) for i = EI,EII,E#I,ρ ;

Open problems

Problem 6.1. A systematic comparison between the AFS fuzzy logic systems and
the conventional fuzzy logic system equipped by some t-norm.

Problem 6.2. Let X be a set and M be a set of simple concepts on X . Let (M,τ,X)
be an AFS structure. What are the necessary and sufficient conditions that α ⊆E#I
β ⇒ β ′ ⊆E#I α ′.

Problem 6.3. Let (M,τ,X) be an AFS structure of a given information system.
In AFS fuzzy approximation space AEII = (M,Λ ,X), AE#I = (M,Λ ,X) or Aρ =
(M,Λ ,ρ ,X). Let γ∈EM or whose membership function is given in advance. For
AEII or AE#I , suppose that ∀x ∈ X , ∃α∈ Λ , such that α(x) ≥ γ(x) in the lattice
EXM or E#X , where α(x) and γ(x) are the AFS algebra membership degrees of
x belonging to the fuzzy concepts α,γ defined by (5.10), (5.13) or (6.12). For Aρ ,
suppose that ∀x ∈ X , ∃α∈ Λ , such that µα(x) ≥ µγ(x), where µα(x) and µγ (x) are
the membership degrees of x belonging to the fuzzy concepts α,γ defined by (6.14).

S
∗
EII(γ) , S

EII
∗ (γ) (refer to (6.29) and (6.35)), S

∗
E#I(γ), S

E#I
∗ (γ) (refer to (6.30) and

(6.35))and S
∗
ρ(γ), S

ρ
∗ (γ) (refer to (6.31) and (6.35)) are the approximate solutions to

the upper and lower approximations defined by (6.20) in AEII , AE#I and Aρ . What
are the sufficient and necessary conditions of the following assertions.
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(1) S∗
ρ(γ) = S

∗
ρ(γ), S∗

E#I
(γ) = S

∗
E#I(γ), S∗

EII(γ) = S
∗
EII(γ);

(2) Sρ∗ (γ) = S
ρ
∗ (γ), SE#I

∗ (γ) = S
E#I
∗ (γ), SEII

∗ (γ) = S
EII
∗ (γ).

Problem 6.4. Let X = {x1,x2, . . . ,xn} be a set and R = (ri j),ri j = R(xi,x j) be a
similarity relation which is a T-similarity relation [8] on X . For any fuzzy set γ ∈
F (X), let S∗(γ) and S∗(γ) be the lower and upper fuzzy approximations of fuzzy
set γ defined by (6.36) and (6.37). Let M = {m1,m2, . . . ,m2n} be the set of some
fuzzy concepts on X . Where the fuzzy concept m2k+1: “similar to xk+1”, k=0, 1,
. . . , n − 1 and m2k+2: “not similar to xk+1” is the negation of m2k+1. For the fuzzy
similarity relation R=(ri j), rki ≥ rk j implies that the degree of xi being similar to xk

is larger than or equal to that of x j. Thus each concept in M is a simple concept on X .
According to the information provided by the fuzzy similarity relation R=(ri j) like
(6.38) shown in Example 6.4, we can establish AFS structure (M, τ , X) as follows.
For any xi, x j ∈ X , introduce

τ(xi,x j)={ m2k+1 | r(k+1)i ≥ r(k+1) j, 0≤ k ≤ n − 1}∪{ m2l+2 | 1−r(l+1)i ≥ 1 −
r(l+1)i, 0≤ l ≤ n−1 }.

Let σ -algebra over X be S=2X and m be the measure over S defined by (6.13) for ρ :
X →[0, ∞), ρ(x)=1 for any x ∈ X . There exist the lower and upper fuzzy sets S∗(η)
and S∗(η) in Aρ = (M,Λ ,ρ ,X) defined by (6.20) for any fuzzy set η∈F (X). Based
on (6.31) and (6.35) which are the algorithm of finding the approximate solutions
of (6.20), one can obtain S

ρ
∗ (γ) and S

∗
ρ(γ) for any γ ∈ F (X). Do the following

assertions hold? For any γ ∈ F (X),

∑
x∈X

(
µS

∗
ρ (γ)(x)− µγ(x)

)2
≤ ∑

x∈X

(
µS∗(γ)(x)− µγ(x)

)2
,

∑
x∈X

(
µS

ρ
∗ (γ)(x)− µγ(x)

)2
≤ ∑

x∈X

(
µS∗(γ)(x)− µγ(x)

)2
.

Are there similar results for the other conventional fuzzy rough sets?

Problem 6.5. The design of feasible algorithms for solving (6.20) by making use
of the properties of the AFS algebras and the combinatorial properties of the AFS
structures.

Problem 6.6. The lower and upper approximations of an fuzzy concept in an AFS
fuzzy approximation space Ai may have a significant number of terms as shown in
some examples. This calls for the development of algorithms leading to the reduc-
tion of terms forming the lower and upper approximation.

Problem 6.7. Do any properties of conventional fuzzy rough sets and rough sets
hold in the AFS fuzzy approximation space Ai?

Problem 6.8. How does the weight function ρ(x) influence the AFS rough sets?
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Chapter 7
AFS Topology and Its Applications

In this chapter, first we construct some topologies on the AFS structures, discuss the
topological molecular lattice structures on EI, ∗EI, EII, ∗EII algebras, and elabo-
rate on the main relations between these topological structures. Second, we apply
the topology derived by a family of fuzzy concepts in EM, where M is a set of simple
concepts, to analyze the relations among the fuzzy concepts. Thirdly, we propose the
differential degrees and fuzzy similarity relations based on the topological molec-
ular lattices generated by the fuzzy concepts on some features. Furthermore, the
fuzzy clustering problems are explored using the proposed differential degrees and
fuzzy similarity relations. Compared with other fuzzy clustering algorithms such
as the Fuzzy C-Means and k-nearest-neighbor fuzzy clustering algorithms, the pro-
posed fuzzy clustering algorithm can be applied to data sets with mixed feature vari-
ables such as numeric, Boolean, linguistic rating scale, sub-preference relations, and
even descriptors associated with human intuition. Finally, some illustrative exam-
ples show that the proposed differential degrees are very effective in pattern recog-
nition problems whose data sets do not form a subset of a metric space such as the
Eculidean one. This approach offers a promising avenue that could be helpful in
understanding mechanisms of human recognition.

7.1 Topology on AFS Structures and Topological Molecular
Lattice on ∗EIn Algebras

In this section, we first study the topological molecular lattice on the ∗EI algebra
over a set M, i.e.,(∗EM,∨,∧), in which the lattice operators ∨, ∧ are defined as
follows: for any ∑i∈I Ai, ∑ j∈J B j ∈ EM,

∑
i∈I

Ai ∨∑
j∈J

B j = ∑
i∈I, j∈J

Ai ∪B j, (7.1)

∑
i∈I

Ai ∧∑
j∈J

B j =∑
i∈I

Ai +∑
j∈J

B j. (7.2)

M is the maximum element of the lattice ∗EM and ∅ is the minimum element of
this lattice. That is, the above lattice ∗EM is a dual lattice of EM. In the lattice ∗EM,
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for ∑i∈I Ai,∑ j∈J B j ∈ EM, ∑i∈I Ai ≤ ∑ j∈J B j if and only if for any B j ( j ∈ J) there
exists Ak (i ∈ I) such that B j ⊇ Ak (refer to Theorem 5.24). Secondly, we study the
topology on the universe of discourse X induced by the topological molecular lattice
of some fuzzy concepts in EM. Finally the topological molecular lattice on the ∗EI2

algebra over the sets X , M, i.e.,(∗EXM,∨,∧), in which the lattice operators ∨, ∧ are
defined as follows: for any ∑i∈I aiAi, ∑ j∈J b jB j ∈ EXM,

∑
i∈I

aiAi ∨∑
j∈J

b jB j = ∑
i∈I, j∈J

ai ∩b jAi ∪B j, (7.3)

∑
i∈I

aiAi ∧∑
j∈J

b jB j =∑
i∈I

aiAi +∑
j∈J

b jB j. (7.4)

∅M is the maximum element of the lattice ∗EM and X∅ is the minimum element
of the lattice ∗EM. That is, the lattice ∗EXM is a dual lattice of EXM. In the lat-
tice ∗EXM, for ∑i∈I aiAi,∑ j∈J b jB j ∈ EM, ∑i∈I aiAi ≤ ∑ j∈J b jB j if and only if for
any b jB j ( j ∈ J) there exists akAk (i ∈ I) such that B j ⊇ Ak and ak ⊇ b j (refer to
Theorem 5.1).

Lemma 7.1. Let M be a set and EM be the ∗EI algebra over M. For A ⊆ M, ∑i∈I Ai,
∑ j∈J B j ∈ EM, the following assertions hold:

(1) A ≥ ∑i∈I Ai and A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∨∑ j∈J B j;
(2) A ≥ ∑i∈I Ai or A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∧∑ j∈J B j.

Its proof is left as an exercise.

Definition 7.1. Let M be a set and (∗EM,∨,∧) be the ∗EI algebra over M defined by
(7.1) and (7.2). Let η ⊆ ∗EM. If ∅,M ∈ η and η is closed under finite unions (i.e.,
∨ ) and arbitrary intersections (i.e., ∧ ), then η is called a topological molecular
lattice on the lattice ∗EM, denoted as (∗EM,η). Let η be a topological molecular
lattice on the lattice ∗EM. If for any∑i∈I Ai ∈ η , Ai ∈η for any i ∈ I, then η is called
an elementary topological molecular lattice on the lattice ∗EM.

It is easy proved that if η is a topological molecular on the lattice ∗EM and η is a
dual idea of the lattice ∗EM, then η is an elementary topological molecular lattice
on the lattice ∗EM. In what follows, we apply the elementary topological molecular
lattice on the lattice ∗EM to induce some topological structures on X via the AFS
structure (M,τ,X) of a data. Thus the pattern recognition problem can by explored
in the setting of these topological structures on X .

Definition 7.2. Let X and M be sets and (M,τ,X) be an AFS structure. Let (∗EM,η)
be a topological molecular lattice on ∗EI algebra over M. For any x ∈ X , ∑i∈I Ai ∈
η ⊆ ∗EM, the set Nτ∑i∈I Ai

(x) ⊆ X is defined as follows.

Nτ∑i∈I Ai
(x) =

{
y ∈ X | τ(x,y) ≥∑

i∈I
Ai

}
, (7.5)
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and it is called the neighborhood of x induced by the fuzzy concept ∑i∈I Ai in the
AFS structure (M,τ,X). The set Nτη(x) ⊆ 2X is defined as follows.

Nτη (x) =

{
N∑i∈I Ai(x) | ∑

i∈I
Ai ∈ η

}
, (7.6)

and it is called the neighborhood of x induced by the topological molecular lattice
η in the AFS structure (M,τ,X).

Since τ(x,y) ⊆ M, hence τ(x,y) is an element in EM and τ(x,y) ≥ ∑i∈I Ai in (7.5)
is well-defined.

Definition 7.3. Let X and M be sets and (M,τ,X) be an AFS structure. (M,τ,X) is
called a strong relative AFS structure if ∀(x,y) ∈ X ×X ,τ(x,y)∪ τ(y,x) = M.

Since in a strong relative AFS structure (M,τ,X), ∀x ∈ X , τ(x,x) = M, hence ∀x ∈
X ,∀m ∈ M, x belongs to the simple concept m to some extent.

Proposition 7.1. Let X and M be sets and (M,τ,X) be a strong relative AFS struc-
ture. Let η be a topological molecular lattice on ∗EI algebra over M. For any
∑i∈I Ai, ∑ j∈J B j ∈ EM, the following assertions hold: for any x ∈ X

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in ∗EM, then Nτ∑i∈I Ai
(x) ⊆ Nτ∑ j∈J B j

(x);
(2) Nτ∑i∈I Ai

(x)∩Nτ∑ j∈J B j
(x) = Nτ∑i∈I Ai∨∑ j∈J B j

(x);
(3) Nτ∑i∈I Ai

(x)∪Nτ∑ j∈J B j
(x) = Nτ∑i∈I Ai∧∑ j∈J B j

(x).

Proof. (1) Let y ∈ Nτ∑i∈I Ai
(x). Then there exists Ak,k ∈ I such that τ(x,y) ⊇ Ak. On

the other hand, since ∑i∈I Ai ≥∑ j∈J B j, hence for Ak there exists B j, j ∈ J such that
τ(x,y) ⊇ Ak ⊇ B j. This implies that y ∈ Nτ∑ j∈J B j

(x). It follows that Nτ∑i∈I Ai
(x) ⊆

Nτ∑ j∈J B j
(x).

(2) For any y ∈ Nτ∑i∈I Ai
(x)∩Nτ∑ j∈J B j

(x), in virtue of Lemma 7.1, we have

y ∈ Nτ∑i∈I Ai
(x)∩Nτ∑ j∈J B j

(x) ⇔ y ∈ Nτ∑i∈I Ai
(x) and y ∈ Nτ∑ j∈J B j

(x)

⇔ τ(x,y) ≥∑
i∈I

Ai and τ(x,y) ≥∑
j∈J

B j

⇔ τ(x,y) ≥ ∑
i∈I, j∈J

Ai ∪B j

⇔ τ(x,y) ≥
(
∑
i∈I

Ai

)
∨
(
∑
j∈J

B j

)

⇔ y ∈ Nτ∑i∈I Ai∨∑ j∈J B j
(x).

So we have showed that (2) holds.
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(3) For any y ∈ Nτ∑i∈I Ai
(x)∪Nτ∑ j∈J B j

(x), from Lemma 7.1, we have

y ∈ Nτ∑i∈I Ai
(x)∪Nτ∑ j∈J B j

(x) ⇔ y ∈ Nτ∑i∈I Ai
(x) or y ∈ Nτ∑ j∈J B j

(x)

⇔ τ(x,y) ≥∑
i∈I

Ai or τ(x,y) ≥∑
j∈J

B j

⇔ τ(x,y) ≥∑
i∈I

Ai +∑
j∈J

B j

⇔ τ(x,y) ≥
(
∑
i∈I

Ai

)
∧
(
∑
j∈J

B j

)

⇔ y ∈ Nτ∑i∈I Ai∧∑ j∈J B j
(x).

This implies that (3) is satisfied. 
�

Theorem 7.1. Let X and M be sets and (M,τ,X) be a strong relative AFS structure.
Let η be a topological molecular lattice on the lattice ∗EM. If η is an elementary
topological molecular lattice on the lattice ∗EM and we define

Bη =

{
Nτ∑i∈I Ai

(x) | x ∈ X , ∑
i∈I

Ai ∈ η
}

,

then Bη is a base for some topology of X.

Proof. Firstly, because (M,τ,X) is a strong relative AFS structure, for any x ∈ X ,
τ(x,x) = M. M is the maximum element of the lattice ∗EM. This implies that for
any ∑i∈I Ai ∈ η , τ(x,x) ≥ ∑i∈I Ai so that x ∈ Nτ∑i∈I Ai

(x) and X =
⋃
β∈Bη β .

Secondly, suppose x ∈ X ,U,V ∈ Bη , and x ∈ U ∩V . We will prove there ex-
ists W ∈ Bη such that x ∈ W ⊆ U ∩V . By the hypothesis, we know there exists
∑i∈I Ai,∑ j∈J B j ∈ η such that U = Nτ∑i∈I Ai

(u), V = Nτ∑ j∈J B j
(v) for some u,v ∈ X

and ∃l ∈ I,∃k ∈ J, τ(u,x) ⊇ Al and τ(v,x) ⊇ Bk. Since (M,τ,X) is a strong relative,
hence x ∈ NτAl

(x) and x ∈ NτBk
(x). For any y ∈ NτAl

(x), i.e., τ(x,y) ⊇ Al , by Definition
4.5, we have τ(u,y) ⊇ τ(u,x)∩ τ(x,y) ⊇ Al , that is y ∈ U . It follows NτAl

(x) ⊆ U .
For the same reason, NτBk

(x) ⊆ V . By Proposition 7.1, we have

x ∈ NτAl
(x)∩NτBk

(x) = NτAl∨Bk
(x) ⊆ U ∩V.

Since η is an elementary topological molecular lattice on the lattice ∗EM, hence
Al,Bk ∈ η and we have x ∈ W = NτAl∨Bk

(x) ∈ Bη such that W ⊆ U ∩V . Now by
Theorem 1.21, Bη is a base for some topology on X . 
�

The topological space (X ,Tη), in which Bη is the base for Tη , is called the topol-
ogy of X induced by the topological molecular lattice η .

Theorem 7.2. Let X and M be sets and (M,τ,X) be a strong relative AFS structure.
Let η be a topological molecular lattice on the lattice ∗EM and
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Lη =

{
∑
i∈I

aiAi ∈ EXM | ∑
i∈I

Ai ∈ η ,ai ∈ Tη f or any i ∈ I,

I is any non− empty indexing set} . (7.7)

Then Lη is a topological molecular lattice on the lattice ∗EXM. It is called the ∗EI2

topological molecular lattice induced by the ∗EI the topological molecular lattice η .

Proof. For any finite integer n, let λ j = ∑i∈Ij
ai jAi j ∈ EXM, j = 1,2, ...,n. Because

for any f ∈∏1≤ j≤n I j,
⋂

1≤ j≤n a f ( j) j ∈ Tη and

∨
1≤ j≤n

(
∑
i∈Ij

Ai j

)
= ∑

f∈∏1≤ j≤n Ij

⋃
1≤ j≤n

A f ( j) j ∈ η ,

then we have

∨
1≤ j≤n

λ j = ∑
f∈∏1≤ j≤n Ij

( ⋂
1≤ j≤n

a f ( j) j

⋃
1≤ j≤n

A f ( j) j

)
∈ Lη .

This implies that Lη is closed under finite unions (i.e.,∨). It is obvious that ∧ is
closed under arbitrary intersection. Therefore (∗EXM,Lη) is a ∗EI2 topological
molecular lattice on the lattice ∗EXM. 
�

It is clear that Tη the topology on X is determined based on the distribution of raw
data and the chosen set of fuzzy concepts η ⊆ EM and it is an abstract geometry
relation among the objects in X under the fuzzy concepts under consideration, i.e.,
η . What are the interpretations of the special topological structures on X obtained
from given database? What are the topological structures associated with the essen-
tial nature of database? All these questions are related to the metric space of the
topology. With a metric in the topological space on X , it will be possible to handle
pattern recognition problems for the databases with various data types.

Let X be a set and M be a set of simple concepts on X . Let (M,τ,X) be an AFS
structure and S be the σ -algebra over X . In real world applications, it is obvious that
only some fuzzy concepts in EM are related with the problem under consideration.
Let these fuzzy concepts form the set Λ ⊆ EM. Let η be the topological molecular
lattice generated by Λ and (X ,Tη ) be the topology induced by η . Let S be the σ -
algebra generated by Tη , i.e., the Borel set corresponding to the topological space
(X ,Tη) and (S,m) be a measure space. For the fuzzy concept ∑i∈I Ai ∈ EM, if for
any x ∈ X , any i ∈ I, Aτi (x) ∈ S, then ∑i∈I Ai is called a measurable fuzzy concept
under the σ -algebra S. Thus the membership function of each measurable fuzzy
concept in EM can be obtained by the norm of E#I algebra via (5.13), (5.24) and
(S,m).

Theorem 7.3. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice ∗EM. Let η be a
topological molecular lattice on the lattice ∗EM and the topological space (X ,Tη)
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be the topology induced by η . Let S be the σ -algebra generated by Tη and Lη be
the ∗EI2 topological molecular lattice on ∗EXM induced by η . Then the following
assertions hold.

(1) For any fuzzy concept ∑i∈I Ai ∈ η , ∑i∈I Ai is a measurable concept under S ;
(2) For each fuzzy concept γ = ∑i∈I Ai ∈ η , let γ : X → EXM be the EI2 algebra

representation membership degrees defined by (5.10) as follows: for any x ∈ X,

γ(x) =∑
i∈I

Aτi (x)Ai ∈ EXM. (7.8)

Let D be a directed set and δ : D → X be a net (i.e., {δ (d) | d ∈ D}). If δ is
converged to x0 ∈ X under topology Tη , then the net of the composition γ · δ :
D → EXM (i.e.,{γ(δ (d)) | d ∈ D}) converges to γ(x0) =∑i∈I Aτi (x0)Ai under the
topological molecular lattice Lη . That is, the membership function of any fuzzy
concept in EM defined by (7.8) is a continuous function from the topological
space (X ,Tη ) to the topological molecular lattice (∗EXM,Lη).

Proof. (1) For any∑i∈I Ai ∈ η , since Ai ≥∑i∈I Ai for all i ∈ I and η is an elementary
topological molecular lattice on the lattice ∗EM, hence Ai ∈ η for all i ∈ I and

Aτi (x) = NτAi
(x) ∈ Tη ⇒ Aτi (x) ∈ S, f or any x ∈ X and any i ∈ I.

Therefore ∑i∈I Ai is a measurable concept under S.
(2) Suppose∑ j∈J p jPj ∈Lη and∑ j∈J p jPj is a R-neighborhood of∑i∈I Aτi (x0)Ai,

i.e., ∑i∈I Aτi (x0)Ai � ∑ j∈J p jPj. This implies that there exists plPl (l ∈ J) such that
for any i ∈ I, either Aτi (x0) � pl or Pl � Ai. First, assume ∀k ∈ I, Pl � Ak. It follows,
for any d ∈ D, ∑i∈I Aτi (δ (d))Ai � ∑ j∈J p jPj.

Second, assume that k ∈ I, Aτk(x0) � pl . Since x0 ∈ Aτk(x0) ∈ Tη and δ is con-
verged to x0 ∈ X under Tη , hence the exists N ∈ D such that for any d ∈ D,
d ≥ N, δ (d) ∈ Aτk(x0) � pl . For any y ∈ Aτk(δ (d)), i.e., τ(δ (d),y) ⊇ Ak, since
δ (d) ∈ Aτk(x0), i.e., τ(x0,δ (d)) ⊇ Ak and τ is an AFS structure, hence we have

τ(x0,y) ⊇ τ(x0,δ (d))∩ τ(δ (d),y) ⊇ Ak ⇒ y ∈ Aτk(x0) ⇒ Aτk(x0) ⊇ Aτk(δ (d)).

This implies that for i ∈ I if Aτi (x0) � pl , then exists N ∈ D such that for any d ∈
D,d ≥ N, Aτi (δ (d)) � pl . Thus for any R-neighborhood of ∑i∈I Aτi (x0)Ai, υ ∈ Lη ,
there exists N ∈ D such that for any d ∈ D,d ≥ N,

∑
i∈I

Aτi (δ (d))Ai � υ .

Therefore the net γ · δ is converged to ∑i∈I Aτi (x0)Ai under the topological lattice
Lη . 
�

In a strong relative AFS structure (M,τ,X), ∀x ∈ X , τ(x,x) = M, i.e. ∀x ∈ X ,∀m∈ M,
x belongs to the simple concept m at some extent. It is too strict to be exploited
in the setting of real world applications. In order to offer an abstract description
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of the similar relation between the objects in X concerning some given concepts,
Definition 7.2 should be modified as follows.

Definition 7.4. Let X and M be sets and (M,τ,X) be an AFS structure. Let η be a
topological molecular lattice on the lattice ∗EM. For any x ∈ X , ∑i∈I Ai ∈ η , the set
N%τ
∑i∈I Ai

(x) ⊆ X is defined as follows.

N%τ
∑i∈I Ai

(x) =

{
y ∈ X | τ(x,y)∩ τ(y,y) ≥∑

i∈I
Ai

}
, (7.9)

and it is called the limited neighborhood of x induced by the fuzzy concept ∑i∈I Ai ∈
η , if N%τ

∑i∈I Ai
(x) �= ∅. The set N%τ

η (x) ⊆ 2X is defined as follows.

N%τ
η (x) =

{
N∑i∈I Ai(x) �= ∅ | ∑

i∈I
Ai ∈ η

}
,

and it is called the limited neighborhood of x induced by the topological molecular
lattice η .

By the definition of the AFS structure (refer to Definition 4.5), we know that for any
x,y ∈ X ,

τ(x,x) ⊇ τ(x,y) ⊇ τ(x,y)∩ τ(y,y).

Therefore N%τ
∑i∈I Ai

(x) ⊆ Nτ∑i∈I Ai
(x) for any x ∈ X , any ∑i∈I Ai ∈ η and

N%τ
∑i∈I Ai

(x) �= ∅ ⇔ x ∈ Nτ∑i∈I Ai
(x).

Proposition 7.2. Let X and M be sets and (M,τ,X) be an AFS structure. Let η be a
topological molecular lattice on the lattice ∗EM. For any x ∈ X, ∑i∈I Ai,∑ j∈J B j ∈
EM, the following assertions hold.

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in the lattice ∗EM, then N%τ
∑i∈I Ai

(x) ⊆ N%τ
∑ j∈J B j

(x) for any
x ∈ X;

(2) N%τ
∑i∈I Ai

(x)∩N%τ
∑ j∈J B j

(x) = N%τ
∑i∈I Ai∨∑ j∈J B j

(x) for any x ∈ X;

(3) N%τ
∑i∈I Ai

(x)∪N%τ
∑ j∈J B j

(x) = N%τ
∑i∈I Ai∧∑ j∈J B j

(x) for any x ∈ X.

Proof. (1) Suppose y ∈ N%τ
∑i∈I Ai

(x), x ∈ X . By (7.9), we know that there exists Ak,
k ∈ I such that τ(x,y) ∩ τ(y,y) ⊇ Ak. Since ∑i∈I Ai ≥ ∑ j∈J B j, then for Ak, there
exists Bl , l ∈ J such that

τ(x,y)∩ τ(y,y) ⊇ Ak ⊇ Bl ⇒ τ(x,y)∩ τ(y,y) ≥ ∑ j∈J B j.

This implies that y ∈ N%τ
∑ j∈J B j

(x). It follows N%τ
∑i∈I Ai

(x) ⊆ N%τ
∑ j∈J B j

(x).



276 7 AFS Topology and Its Applications

(2) For any y ∈ N%τ
∑i∈I Ai

(x)∩N%τ
∑ j∈J B j

(x),

y ∈ N%τ
∑i∈I Ai

(x)∩N%τ
∑ j∈J B j

(x) ⇔ y ∈ N%τ
∑i∈I Ai

(x) and y ∈ N%τ
∑ j∈J B j

(x)

⇔ τ(x,y)∩ τ(y,y)≥∑
i∈I

Ai and τ(x,y)∩ τ(y,y) ≥∑
j∈J

B j

⇔ τ(x,y)∩ τ(y,y) ≥∑
i∈I

Ai ∨∑
j∈J

B j (by Lemma 7.1)

⇔ y ∈ N%τ
∑i∈I Ai∨∑ j∈J B j

(x).

Therefore N%τ
∑i∈I Ai

(x)∩N%τ
∑ j∈J B j

(x) = N%τ
∑i∈I Ai∨∑ j∈J B j

(x).

(3) For any y ∈ N%τ
∑i∈I Ai

(x)∪N%τ
∑ j∈J B j

(x),

y ∈ N%τ
∑i∈I Ai

(x)∪N%τ
∑ j∈J B j

(x) ⇔ y ∈ N%τ
∑i∈I Ai

(x) or y ∈ N%τ
∑ j∈J B j

(x)

⇔ τ(x,y)∩ τ(y,y) ≥∑
i∈I

Ai or τ(x,y)∩ τ(y,y) ≥∑
j∈J

B j

⇔ τ(x,y)∩ τ(y,y) ≥∑
i∈I

Ai ∧∑
j∈J

B j (by Lemma 7.1)

⇔ y ∈ N%τ
∑i∈I Ai∧∑ j∈J B j

(x).

Subsequently (3) is satisfied. 
�

Theorem 7.4. Let X and M be sets and (M,τ,X) be an AFS structure. Let η be a
topological molecular lattice on the lattice ∗EM. If η is an elementary topological
molecular lattice on the lattice ∗EM and B%

η is defined as follows

B%
η = {N∑i∈I Ai(x) | x ∈ X ,∑

i∈I
Ai ∈ η}, (7.10)

then B%
η is a base for some topology of X.

Proof. Firstly, for any x ∈ X , since ∅ ∈ η , hence τ(x,x) ≥ ∅, i.e., x ∈ N%τ
∅ (x). This

implies that X =
⋃

N∈B%
η

N. Secondly, suppose x ∈ X , U , V ∈ B%
η , and x ∈ U ∩V .

We will prove that there exists W ∈ B%
η such that x ∈ W ⊆ U ∩V . By (7.10), we

know that there exists ∑i∈I A, ∑ j∈J B j ∈ η , u,v ∈ X such that there U = N%τ
∑i∈I Ai

(u),

V = N%τ
∑ j∈J B j

(v). That is, ∃l ∈ I, ∃k ∈ J, τ(u,x) ∩τ(x,x) ⊇ Al and τ(v,x)∩ τ(x,x) ⊇
Bk. By τ(u,x) ∩τ(x,x) ⊆ τ(x,x) and τ(v,x)∩ τ(x,x) ⊆ τ(x,x), we have x ∈ N%τ

Al
(x)

and x ∈ N%τ
Bk

(x). For any y ∈ N%τ
Al

(x), i.e., τ(x,y)∩ τ(y,y) ⊇ Al , by AX1 and AX2
in Definition 4.5, we have τ(x,y) ⊆ τ(x,x) and τ(u,x)∩ τ(x,y) ⊆ τ(u,y). It follows

τ(u,y)∩ τ(y,y) ⊇ τ(u,x)∩ τ(x,x)∩ τ(x,y)∩ τ(y,y) ⊇ Al.
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This fact implies that τ(u,y)∩ τ(y,y) ≥ ∑i∈I A and y ∈ N%τ
∑i∈I Ai

(u). Thus we have

N%τ
Al

(x) ⊆ U . Similarly, we can prove N%τ
Bk

(x) ⊆ V . Since η is an elementary topo-
logical molecular lattice on the lattice ∗EM, hence Al , Bk ∈ η , and Al ∪Bk = Al ∨
Bk ∈ η . In virtue of Proposition 7.2, one has W = N%τ

Al
(x)∩N%τ

Bk
(x) = N%τ

Al∨Bk
(x) ∈

B%
η such that x ∈ W ⊆ U ∩V . Therefore by Theorem 1.21 B%

η is a base for some
topology on X . 
�

The topological space (X ,T %
η ), in which B%

η is a base for T %
η , is called the limited

topology of X induced by the topological molecular lattice η .
In what follows, we look more carefully at these topological structures by dis-

cussing the following illustrative examples.

Example 7.1. Let X = {x1,x2, ...,x5} be a set of 5 persons. M = {old, heavy, tall,
high salary, more estate, male, female } be a set of simple concepts on the attributes
which are shown as Table 7.1.

Table 7.1 Description of attributes

age heigh weigh salary estate male f emale
x1 21 1.69 50 0 0 1 0
x2 30 1.62 52 120 200,000 0 1
x3 27 1.80 65 100 40,000 1 0
x4 60 1.50 63 80 324,000 0 1
x5 45 1.71 54 140 940,000 1 0

We can construct the AFS structure τ according to the data shown in Table 7.1 and
the semantics of the simple concepts in M. τ is shown as the following Table 7.2.
Here A: old, M: male, W: female, H: tall, We: heavey, S: high salary, Q: more estate.

Table 7.2 The AFS structure (M,τ,X) of data shown in Table 7.1

τ(., .) x1 x2 x3 x4 x5
x1 {A,M,H,We,S } {M,H } {M } {M,H } {M }
x2 {A,W,We,S,Q } {A,W,H,We,S,Q } {A,W,S,Q} {W,H,S } {W }
x3 {A,M,H,We,S,Q } {M,H,We } {A,M,H,We,S,Q} {M,H,We,S} {M,H,We}
x4 {A,W,We,Q} {A,W,We,Q } {A,W,Q } {A,W,We,H,S,Q} {A,W,We }
x5 {A,M,S,Q} {A,M,H,We,S,Q } {A,M,S,Q } {M,H,S,Q } {A,M,H,S,We,Q }

We can verify that τ satisfies Definition 4.5 and (M,τ,X) is an AFS structure. Since
for any x ∈ X , τ(x,x) �= M, hence (M,τ,X) is not an strong relative AFS structure.

If we consider some health problem and suppose the problem just involves the at-
tributes age, high and weight. Thus we just consider simple concepts A,H,We ∈ M
and let M1 = {A,H,We}. (M1,τM1 ,X) is an AFS structure if the map τM1 : X ×X →
2M1 is defined as follows: for any x,y ∈ X , τM1(x,y) = τ(x,y) ∩ M1. Obviously,
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(M1,τM1 ,X) is a strong relative AFS structure. Let η ⊆ EM be the topological
molecular lattice generated by the fuzzy concepts {A},{H},{We} ∈ EM on the
lattice ∗EM. η consists of the following elements.

∅, M, {A} + {H} + {We}, {A} + {H}, {A} + {We}, {H} + {We}, {A},
{H}, {We}, {A,H}+ {A,We}+ {We,H}, {A,H} + {A,We}, {A,H} + {We,H},
{A,We} + {We,H}, {A,H}, {A,We}, {We,H}, {A} + {We,H}, {H} + {A,We},
{We}+{A,H}, {A,H,We}.

It could be easily verified that η is an elementary topological molecular lattice on
the lattice ∗EM. Now we study Tη the topology on X induced by η via the AFS
structure (M1,τM1 ,X). The neighborhood of x1 induced by the fuzzy concepts in η ,
which is obtained by Definition 7.2, are listed as follows.

Nτ
{A}+{H}+{We}(x1)= {x1,x2,x4}, Nτ

{A}+{H}(x1)= {x1,x2,x4}, Nη
{A}+{We}(x1)= {x1},

Nτ
{H}+{We}(x1) = {x1,x2,x4}, Nτ

{A}(x1) = {x1}, Nτ
{H}(x1) = {x1,x2,x4},

Nη
{We}(x1) = {x1}, Nτ

{A,H}+{A,We}+{We,H}(x1) = {x1}, Nτ
{A,H}+{A,We}(x1) = {x1},

Nτ
{A,H}+{We,H}(x1) = {x1}, Nτ

{A,We}+{We,H}(x1) = {x1}, Nτ
{A,H}(x1) = {x1},

Nτ
{A,We}(x1) = {x1}, Nτ

{We,H}(x1) = {x1}, Nτ
{A}+{We,H}(x1) = {x1}, Nτ

∅ = X

Nτ
{H}+{A,We}(x1) = {x1,x2,x4}, Nτ

{We}+{A,H}(x1) = {x1}, Nτ
{A,H,We}(x1) = {x1}.

Therefore the neighborhood of x1 induced by the fuzzy concepts in η comes as

Nτη (x1) = {X , {x1,x2,x4}, {x1}} .

Similarly, we have the neighborhood of other elements in X as follows.

Nτη (x2) = {X , {x1,x2,x3,x4}, {x1,x2,x4}, {x1,x2,x3}, {x1,x2}, {x2,x4}, {x2}} ,

Nτη (x3) = {X , {x1,x3}} ,

Nτη (x4) = {X , {x1,x2,x4,x5}, {x4}} ,

Nτη (x5) = {X , {x1,x2,x3,x5}, {x2,x4,x5}, {x2,x5}} .

What is the interpretations of the above topological structure on X obtained from
the given data shown as Table 7.1? This remains an open problem. How to estab-
lish a distance function according the above topology on X for a pattern recognition
problem will be explored in Section 7.3. Here we just simply analyze it alluding
to intuition. One can observe that x1,x2,x4 are discrete points for the topology Tη .
Coincidentally, their membership degrees to the fuzzy concepts {A},{H},{We} ∈
EM taken on minimal values, respectively. For any U ∈ Tη , we can prove that
if x5 ∈ U then x2 ∈ U . This implies that the degree of x5 belonging to any con-
cept in EM1 is always larger than or equal to that of x2. Since x5 /∈ {x1,x3} ∈
Tη , x3 /∈ {x2,x5} ∈ Tη , i.e., the separation property of topology Tη . This im-
plies that there exist two fuzzy concepts in η such that x5,x3 can be distinguished
by them.
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7.2 Topology on AFS Structures and Topological Molecular
Lattice on EIn Algebras

Most of the results in this section can be proved by using the similar methods to
those we exercised in the previous section, since the lattice of EIn algebras is the
dual lattice of ∗EIn algebras. We first list the corresponding results of the topological
molecular lattice on the EI algebra over a set M, in which the lattice operators ∨, ∧
are defined as follows: for any ∑i∈I Ai, ∑ j∈J B j ∈ EM,

∑
i∈I

Ai ∧∑
j∈J

B j = ∑
i∈I, j∈J

Ai ∪B j,

∑
i∈I

Ai ∨∑
j∈J

B j = ∑
i∈I

Ai +∑
j∈J

B j.

∅ is the maximum element of the lattice EM and M is the minimum element of
the lattice EM. That is, the above lattice EM is a dual lattice of ∗EM. In the lattice
EM, for ∑i∈I Ai,∑ j∈J B j ∈ EM, ∑i∈I Ai ≥ ∑ j∈J B j if and only if for any B j ( j ∈ J)
there exists Ak (i ∈ I) such that B j ⊇ Ak (refer to Theorem 4.1). Secondly, we list
the results for the topology on the universe of discourse X induced by the topo-
logical molecular lattice of some fuzzy concepts in EM. Finally, we present the
results of the topological molecular lattice on the EI2 algebra over the sets X , M,
i.e.,(EXM,∨,∧), in which the lattice operators ∨, ∧ are defined as follows: for any
∑i∈I aiAi, ∑ j∈J b jB j ∈ EXM,

∑
i∈I

aiAi ∧∑
j∈J

b jB j = ∑
i∈I, j∈J

ai ∩b jAi ∪B j,

∑
i∈I

aiAi ∨∑
j∈J

b jB j =∑
i∈I

aiAi +∑
j∈J

b jB j.

X∅ is the maximum element of the lattice EM and ∅M is the minimum element
of the lattice EM. That is, the lattice EXM is a dual lattice of ∗EXM. In the lat-
tice EXM, for ∑i∈I aiAi,∑ j∈J b jB j ∈ EM, ∑i∈I aiAi ≥ ∑ j∈J b jB j if and only if for
any b jB j ( j ∈ J) there exists akAk (i ∈ I) such that B j ⊇ Ak and ak ⊇ b j (refer to
Theorem 5.1).

Definition 7.5. Let M be set and (EM,∨,∧) be the EI algebra over M. Let η ⊆ EM.
If ∅,M ∈ η and η is closed under finite unions (i.e., ∨ ) and arbitrary intersections
(i.e., ∧ ), then η is called a topological molecular lattice on the lattice EM, de-
noted as (EM,η). Let η be a topological molecular lattice on the lattice EM. If for
any ∑i∈I Ai ∈ η , Ai ∈ η for any i ∈ I, then η is called an elementary topological
molecular lattice on the lattice EM.

In what follows, we apply the elementary topological molecular lattice on the lattice
EM to induce some topological structures on X via the AFS structure (M,τ,X) of a
data. Thus the pattern recognition problem can by explored under these topological
structures on X .
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Definition 7.6. Let X and M be sets and (M,τ,X) be an AFS structure. Let (EM,η)
be a topological molecular lattice on EI algebra over M. For any x ∈ X , ∑i∈I Ai ∈
η ⊆ EM, the set Nτ∑i∈I Ai

(x) ⊆ X is defined as follows.

Nτ∑i∈I Ai
(x) =

{
y ∈ X | τ(x,y) ≤∑

i∈I
Ai

}
, (7.11)

and it is called the neighborhood of x induced by the fuzzy concept ∑i∈I Ai in the
AFS structure (M,τ,X). The set Nτη(x) ⊆ 2X is defined as follows.

Nτη (x) =

{
N∑i∈I Ai(x)|∑

i∈I
Ai ∈ η

}
, (7.12)

and it is called the neighborhood of x induced by the topological molecular lattice
η in the AFS structure (M,τ,X).

Since τ(x,y) ⊆ M, hence τ(x,y) is an element in EM and τ(x,y) ≤ ∑i∈I Ai in (7.11)
is well-defined.

Proposition 7.3. Let X and M be sets and (M,τ,X) be an strong relative AFS struc-
ture. Let η be a topological molecular lattice on EI algebra over M. For any x ∈ X,
∑i∈I Ai, ∑ j∈J B j ∈ EM, the following assertions hold: for any x ∈ X

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in EM, then Nτ∑i∈I Ai
(x) ⊇ Nτ∑ j∈J B j

(x);
(2) Nτ∑i∈I Ai

(x)∩Nτ∑ j∈J B j
(x) = Nτ∑i∈I Ai∧∑ j∈J B j

(x);
(3) Nτ∑i∈I Ai

(x)∪Nτ∑ j∈J B j
(x) = Nτ∑i∈I Ai∨∑ j∈J B j

(x).

Its proof, which is similar to the proof of Proposition 7.1, remains as an exercise.

Theorem 7.5. Let X and M be sets and (M,τ,X) be a strong relative AFS structure.
Let η be a topological molecular lattice on the lattice EM. If η is an elementary
topological molecular lattice on the lattice EM and we define

Bη =

{
Nτ∑i∈I Ai

(x) | x ∈ X , ∑
i∈I

Ai ∈ η
}

,

then Bη is a base for some topology of X.

Its proof, which is similar to the proof of Theorem 7.1, is left to the reader.

Theorem 7.6. Let X and M be sets, (M,τ,X) be a strong relative AFS structure. Let
η be a topological molecular lattice on the lattice EM and

Lη =

{
∑
i∈I

aiAi ∈ EXM | ∑
i∈I

Ai ∈ η , ai ∈ Tη f or any i ∈ I

}
. (7.13)
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Then Lη is a topological molecular lattice on the lattice EXM. It is called the EI2

topological molecular lattice induced by the EI topological molecular lattice η .

Its proof ( similar to the proof of Theorem 7.2) remains as an exercise.

Theorem 7.7. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice EM. Let η be a
topological molecular lattice on the lattice EM and the topological space (X ,Tη)
be the topology induced by η . Let S be the σ -algebra generated by Tη and Lη be
the EI2 topological molecular lattice on EXM induced by η . Then the following
assertions hold.

(1) For any fuzzy concept ∑i∈I Ai ∈ η , ∑i∈I Ai is a measurable concept under S ;
(2) For each fuzzy concept γ = ∑i∈I Ai ∈ η , let γ : X → EXM be the EI2 algebra

representation membership degrees defined by (5.10) as follows: for any x ∈ X,

γ(x) =∑
i∈I

Aτi (x)Ai ∈ EXM. (7.14)

Let D be a directed set and δ : D → X be a net (i.e., {δ (d) | d ∈ D}). If δ
is converged to x0 ∈ X under topology Tη , then the net of the composition
γ · δ : D → EXM (i.e.,{γ(δ (d)) | d ∈ D}) converges to γ(x0) = ∑i∈I Aτi (x0)Ai

under the topological molecular lattice Lη . That is the membership function de-
fined by (7.14) is a continuous function from the topological space (X ,Tη) to the
topological molecular lattice (EXM,Lη).

Its proof, which is similar to the proof of Theorem 7.3, can be treated as an exercise.

Example 7.2. Let us study the topological structures on the same AFS structure
(M1,τM1 ,X) of the same data we used in Example 7.1.

Let η ⊆ EM be the topological molecular lattice generated by the fuzzy concepts
{A},{H},{We} ∈ EM on the lattice EM. η consists of the following elements
which are the same as for η in Example 7.1.

∅, M, {A} + {H} + {We}, {A} + {H}, {A} + {We}, {H} + {We}, {A},
{H}, {We}, {A,H}+ {A,We}+ {We,H}, {A,H} + {A,We}, {A,H} + {We,H},
{A,We} + {We,H}, {A,H}, {A,We}, {We,H}, {A} + {We,H}, {H} + {A,We},
{We}+{A,H}, {A,H,We}.

It can be easily to verify that η is an elementary topological molecular lattice on
the lattice EM. Now we study Tη -the topology on X induced by η via the AFS
structure (M1,τM1 ,X). The neighborhood of x1 induced by the fuzzy concepts in η ,
which is obtained by Definition 7.6, is listed as follows.

Nτ{A}+{H}+{We}(x1) = {x1,x2,x3,x4,x5}, Nτ{A}+{H}(x1) = {x1,x2,x3,x4,x5},

Nτ{A}+{We}(x1) = {x1,x2,x3,x4,x5}, Nτ{H}+{We}(x1) = {x1,x2,x3,x4},
Nτ{A}(x1) = {x1,x2,x3,x4,x5}, Nτ{H}(x1) = {x1,x3}, Nτ{We}(x1) = {x1,x2,x3,x4},

Nτ{A,H}+{A,We}+{We,H}(x1) = {x1,x2,x3,x4}, Nτ{A,H}+{A,We}(x1) = {x1,x2,x3,x4},
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Nτ{A,H}+{We,H}(x1) = {x1,x3}, Nτ{A,We}+{We,H}(x1) = {x1,x2,x3,x4},
Nτ{A,H}(x1) = {x1,x3}, Nτ{A,We}(x1) = {x1,x2,x3,x4}, Nτ{We,H}(x1) = {x1,x3},

Nτ{A}+{We,H}(x1) = {x1,x2,x3,x4,x5}, Nτ{H}+{A,We}(x1) = {x1,x2,x3,x4,x5},

Nτ{We}+{A,H}(x1) = {x1,x2,x3,x4}, Nτ{A,H,We}(x1) = {x1,x3,x5}, NτM(x1) = X .

Therefore the neighborhood of x1 induced by the fuzzy concepts in η is

Nτη (x1) = {X , {x1,x2,x3,x4}, {x1,x3,x5}, {x1,x3}} .

Similarly, we have the neighborhood of other elements in X as follows.

Nτη(x2) = {X , {x2,x3,x4,x5}, {x1,x2,x3,x4}, {x2,x4,x5}, {x2,x3,x5},{x2,x5}} ,

Nτη(x3) = {X , {x2,x3,x4,x5}, {x3}} ,

Nτη(x4) = {X , {x3,x4}, {x4}} ,

Nτη(x5) = {X , {x3,x4,x5}, {x4,x5}, {x3,x5}, {x5}} .

Here we just simply analyze the topology on X resorting ourselves to intuition. One
can observe that x3, x4, x5 are discrete points for the topology Tη . Coincidentally,
their membership degrees to the fuzzy concepts {A},{H},{We} taken on the max-
imal values, respectively. For any U ∈ Tη , we can prove that if x1 ∈ U then x3 ∈ U .
This implies that the degree of x3 belonging to any fuzzy concept in EM1 is always
larger than or equal that of x1. Since x2 ∈ {x1,x3} ∈ Tη , x1 ∈ {x2,x5} ∈ Tη i.e.,
the separation property of topology Tη , hence there exist two fuzzy concepts in η
such that x2,x1 can be distinguished by them. Compared with the topological struc-
ture on X induced by the topological molecular lattice on ∗EIn algebra, the above
topological structure has many differences. What are the relationship between these
topological structures still remains as an open problem.

7.3 Fuzzy Similarity Relations Based on Topological Molecular
Lattices

In this section, by considering the AFS structure (M,τ,X) of a data, we apply Tη
the topology on X induced by the topological molecular lattice η of some fuzzy
concepts on ∗EM to study the fuzzy similarity relations on X for problems of pat-
tern recognition. The topology Tη on X is determined by the original data and some
selected fuzzy concepts in EM. It represents the abstract geometry relations among
the objects in X . We study the interpretations of the induced topological structures
on the AFS structures directly obtained by a given data set through the differential
degrees between objects in X and the fuzzy similarity relations on X in the topo-
logical space (X ,Tη). We know that human can classify, cluster and recognize the
objects in the set X without any metric in Euclidean space. What is human recog-
nition based on if X is not a subset of some metric space in Euclidean space? For
example, if you want to classify all your friends into two classes {close friends} and
{common friends}. The criteria/metric you are using in the process is very important
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though it may not be based on the Euclidean metric. By the fuzzy clustering analysis
based on the topological spaces induced by the fuzzy concepts in EM, we hope find
some clues for these challenge problems.

Theorem 7.8. The following three conditions on a topological space are equivalent.

(1) The space is metrizable;
(2) The space is T1 and regular, and the topology has a σ -locally finite base;
(3) The space is T1 and regular, and the topology has a σ -discrete base.

Here a topological space is a T1 space if and only if each set which consists of a
single point is closed, a topological space is regular if and only if for each point
x and each neighborhood U of x there is a closed neighborhood V of x such that
V ⊆ U, and a family is σ -locally finite (σ -discrete) if and only if it is the union of a
countable number of locally finite (respectively, discrete) subfamilies.

Its proof (refer to Theorem 1.43) is left to the reader.
The topology Tη on X induced by the topological molecular lattice η of some

fuzzy concepts in EM is a description of the abstract geometry relations among the
objects determined by the semantic interpretations of the fuzzy concepts in η and
the distributions of the original data. We can state the problem in mathematical ways
as follows: Let X be a set of some objects and � be the set of all features, including
features which are independent or irrelated to the problems under considering. M
is the set of simple concepts on the features in �. Λ ⊆ EM, Λ is the set of fuzzy
concepts an individual considers crucial to his problem. η is the topological molec-
ular lattice generated by Λ . If the topology Tη satisfies (2) or (3) in Theorem 7.8,
then the topology space (X ,Tη) is metrizable. Thus we can study the clustering and
recognition problems by the metric induced by topology Tη , i.e., the distance func-
tion d on the cartesian product X ×X to the non-negative reals defined by Definition
1.33 as follows: for all points x,y, and z of X ,

1. d(x,y) = d(y,x),
2. d(x,y)+ d(y,z) ≥ d(x,z), (triangle inequality)
3. d(x,y) = 0 if x = y, and
4. if d(x,y) = 0, then x = y.

However, for a real world applications, it is very difficult to satisfy the conditions of
Theorem 7.8. In other words, this theorem cannot be directly applied to real world
classification scenarios. By the analysis of the definition of metric in metrizable
topology space (X ,Tη) in mathematics (refer to Urysohn Lemma Lemma 1.1), we
know that the more fuzzy concepts distinguish x from y are there in η , the larger the
distance of x and y, i.e., d(x,y). In practice, for X a set of objects and Λ ⊆ EM a
set of selected fuzzy or Boolean concepts, although Tη the topology induced by the
topological molecular lattice η seldom satisfies (2) or (3) in Theorem 7.8, Tη also
can reflect the similar relations between the objects in X determined by the concepts
inΛ and the distributions of the original data. Thus we define the differential degree
and the similarity degree of x, y ∈ X based on the topology Tη as follows.
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Definition 7.7. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let
η be a topological molecular lattice on the lattice ∗EM and (X ,Tη) be the topol-
ogy space on X induced by η . We define the partial distance function D(x,y), the
differential degree d(x,y) and the similarity degree s(x,y) in the topological space
(X ,Tη) as follows: for x,y ∈ X ,

D(x,y) = ∑
δ∈Tη ,x∈δ ,y/∈δ

|δ |; (7.15)

d(x,y) = D(x,y)+ D(y,x); (7.16)

s(x,y) = 1− d(x,y)
maxz∈X{d(z,y)} . (7.17)

Because there are too many fuzzy concepts in η , in practice, it is difficult or im-
possible to calculate d(x,y) by Definition 7.7 for the topological molecular lattice
η generated by Λ , if |Λ | > 4. The following Definition 7.8 and Definition 7.9 in-
troduce the differential degrees of x,y, d(x,y) which are more expedient to compute
than that in Definition 7.7, although they may loose some information compared
with the concept captured by Definition 7.7. Definition 7.8 and Definition 7.9 are
applicable to discuss real world problems while Definition 7.7 is more appealing
from the theoretical perspective.

Definition 7.8. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let η
be an elementary topological molecular lattice on the lattice ∗EM and (X ,Tη ) be the
topology space on X induced by η . We define DA(x,y), the distance function on the
molecular A; dM(x,y), the molecular differential degree; and sM(x,y), the molecular
similarity degree in the topological space (X ,Tη ) as follows: for x,y ∈ X , A ⊆ M,
A ∈ η ,

DA(x,y) = ∑
u∈X ,x∈N%τ

A (u),y/∈N%τ
A (u)

| N%τ
A (u)|; (7.18)

dM(x,y) = ∑
A⊆M,A∈η

(DA(x,y)+ DA(y,x)); (7.19)

sM(x,y) = 1− dM(x,y)
maxz∈X{dM(z,y)} . (7.20)

DA(x,y) in Definition 7.8 is considered under the fuzzy molecular concept A ∈ η
and dM(x,y), the molecular differential degree of x,y is the sum of the distances of
x,y under all fuzzy molecular concepts in η .

Definition 7.9. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let η
be an elementary topological molecular lattice on the lattice ∗EM. Let (X ,Tη ) be
the topology space on X induced by η . We define the elementary partial distance
function De(x,y), the elementary differential degree de(x,y) and the elementary sim-
ilarity degree se(x,y) in the topological space (X ,Tη) as follows: for any x,y ∈ X ,
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De(x,y) = ∑
δ∈B%τ

M ,x∈δ ,y/∈δ

|δ |; (7.21)

de(x,y) = De(x,y)+ De(y,x); (7.22)

se(x,y) = 1− de(x,y)
maxz∈X{de(z,y)}

. (7.23)

Here

B%τ
M =

{
N%τ

A (x) | A ⊆ M,A ∈ η ,x ∈ X
}

.

It is clear that B%τ
M ⊆Tη is the set of all neighborhoods induced by the fuzzy molec-

ular concepts in η which determine the distances and similarity degrees defined by
Definition 7.9. However, in Definition 7.7, they are determined by all neighborhoods
in Tη . Since the number of the elements of Tη is much larger than that of the set

B%τ
M , hence much time will save if Definition 7.9 or Definition 7.8 is applied to a

pattern recognition problem. The problem is still open: are the similarity degrees
defined by Definition 7.7, Definition 7.8 and Definition 7.9 equivalent?

Proposition 7.4. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let
η be an elementary topological molecular lattice on the lattice ∗EM and (X ,Tη) be
the topology space on X induced by η . Then for any x,y ∈ X the following assertions
hold.

(1) d(x,x) = 0, d(x,y) = d(y,x) and s(x,y) = s(y,x) ≤ s(x,x);
(2) dM(x,x) = 0, dM(x,y) = dM(y,x) and sM(x,y) = sM(y,x) ≤ sM(x,x);
(3) de(x,x) = 0, de(x,y) = de(y,x) and se(x,y) = se(y,x) ≤ se(x,x).

Its proof is left to the reader.

7.4 Fuzzy Clustering Algorithms Based on Topological
Molecular Lattices

Numerous mathematical tools, investigated for clustering, have been considered to
detect similarities between objects inside a cluster. The two-valued clustering is
described by a characteristic function. This function assigns each object to one and
only one of the clusters, with a degree of membership equal to one. However, the
boundaries between the clusters are not often well-defined and this description does
not fully reflect the reality. The fuzzy clustering, founded upon fuzzy set theory [35],
is meant to deal with not well-defined boundaries between clusters. Thus, in fuzzy
clustering, the membership function is represented by grades located anywhere in-
between zero and one. Therefore, this membership degree indicates how the object is
classified ( allocated ) to each cluster. This can be advantageous for patterns located
in the boundary region which may not be precisely defined. In particular, we could
flag some patterns that are difficult to assign to a single cluster as being inherently
positioned somewhere at the boundary of the clusters.
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Many fuzzy clustering algorithms have been developed, but the most widely used
is the Fuzzy C-Means algorithm (FCM) along with a significant number of their
variants. Conceived by Dunn [2] and generalized by Bezdek [1], this family of algo-
rithms is based on iterative optimization of a fuzzy objective function. The conver-
gence of the algorithm, proved by Bezdek, shows that the method converges to some
local minima [4]. Nevertheless, the results produced by these algorithms depend on
some predefined distance formulated in a metric space, for instance Euclidean space
Rn. However, in this section we will cluster the objects in ordinary data set X � Rp×n

according to the fuzzy concepts or attributes on the features without using any kind
of distance functions expressed in the Euclidean space.

In general, FCM is an objective function optimization approach to solve the fol-
lowing problem [1, 4]:

minimize : Jm(U,V ) =∑
i
∑
k

um
ikd2(xk,vi)

with respect to U = [uik] ∈ Rc×n, a fuzzy c-partition of n data set X = {x1, ...,xn} ∈
Rp×n and V , a set of c cluster centers V = {v1, ...,vc} ∈ Rp×c. The parameter m > 1
is a fuzziness coefficient. d(xk,vi) is a distance from xk to the ith cluster center
vi. The performance of FCM is affected by different distances d(., .). In general,
the distance is expressed in some metric space [4, 34], if data set X is a subset of
a metric space. FCM fuzzy clustering algorithms are very efficient if the data set
X ⊂ Rp×n, as in this case there exists a distance function. Let c be a positive integer
greater than one. µ = {µ1, ...,µc} is called a fuzzy c-partition of X , if µi(x) is the
membership functions in fuzzy sets µi on X assuming values in the [0,1] such that
∑c

i=1 µi(x) = 1 for all x in X . Thus, the Fuzzy C-Mean (FCM) objective function
J(µ ,V ) is also defined as

J(µ ,V ) =
c

∑
i=1

n

∑
j=1

µm
i (x j)||x j − vi||2, (7.24)

where µi(x j)= ui j = µi j and d(xk,vi) = ‖xk −vi‖. The FCM clustering is an iterative
algorithm where the update formulas for the prototypes and the partition matrix read
as follows:

vi =
∑n

j=1 µm
i j x j

∑n
j=1 µm

i j
, i = 1, ...,c (7.25)

and

µi j = µi(x j) = (
c

∑
k=1

||x j − vi||2/(m−1)

||x j − vk||2/(m−1) )
−1, i = 1, ...,c, j = 1, ...,n. (7.26)

If the feature vectors are numeric data in Rd , the FCM clustering algorithm is a
suitable optimization tool. However, when applying the FCM to data set with mixed
features such as Boolean, partial order and linguistic rating scale, we encounter
some problems, because the conventional distance ||.|| is not suitable any longer.
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To overcome these problems, the differential degrees d(x,y) (or de(x,y), dM(x,y))
defined in the above section can substitute the Euclidean distance ||.|| and the FCM
can be modified as follows.

min :
{v1,...,vc}⊆X

J(µ ,V ) =
c

∑
i=1

n

∑
j=1

µm
i (x j)d(x j,vi)2 (7.27)

subject to

µi(x j) = (∑c
k=1

d(x j ,vi)2/(m−1)

d(x j ,vk)2/(m−1) )
−1, i = 1, ...,c, j = 1, ...,n.

This algorithm is called the AFS fuzzy c-mean algorithm (AFS FCM).
In order to compare the differential functions defined in the above section with

the Euclidean distance function, we directly apply the similarity matrix derived by
the differential function and Euclidean distance function to the clustering problem.
Let X = {x1, x2, ..., xn} and the similarity matrix S = (si j)n×n, where si j = se(xi,x j)
is elementary similarity degree of x,y defined by Definition 7.8. For the similarity
matrix S, we know si j = s ji and si j ≤ sii, 1 ≤ i, j ≤ n from Proposition 7.4, hence
there exists an integer r such that S ≤ S2 ≤ ... ≤ Sr = Sr+1, where S2 = (ri j) =
SS is the fuzzy matrix product, i.e., ri j = max1≤k≤n min{sik,sk j}. Thus, (Sr)2 = Sr

(Sr is the transitive closure matrix of S) and the fuzzy equivalence relation matrix
Q = (qi j) = Sr can yield a partition tree with equivalence classes in which xi and x j

are in the same cluster (i.e., in the same equivalence classe ) under some threshold
α ∈ [0,1] if and only if qi j ≥ α .

7.5 Empirical Studies

In this section, we apply the similarity relations and the differential functions defined
by Definition 7.8 to the conventional FCM and compare the elementary differential
function with the Euclidean distance function in the clustering analysis of the Iris
data. Furthermore, they are also applied to Taiwan airfreight forwarder data which
is just described by means of linguistic terms. These examples show that the topol-
ogy Tη on a universe of discourse X induced by the topological molecular lattice
η of some fuzzy concepts in EM can be applied to the real world pattern recogni-
tion problems for the data set with mixed features on which the classical distance
functions could not be defined.

7.5.1 Empirical Examples of Taiwan Airfreight Forwarder

In what follows, we apply the elementary differential degree and elementary simi-
larity degree defined by Definition 7.8 to empirical examples of Taiwan airfreight
forwarder for the clustering and analyzing current operation strategies in [27]. In
[27], the authors gathered 28 strategic criteria from scholars, experts and proprietors.
They select 30 companies of airfreight forwarder in Taiwan by random selection.
Using Statistical Analysis System (SAS), they obtain seven factors: Factor1: Core
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ability, Factor2: Organization management, Factor3: Pricing, Factor4: Competitive
forces, Factor5: Finance, Factor6: Different advantage, Factor7: Information tech-
nology. The decision-makers may tackle preference rating system by adopting one
of various rating scales assumed in the literature [8, 28, 29] or may develop their
own rating scales system by using trapezoidal fuzzy number to show the individual
conception of the linguistic variable “attention degree”. According to the preference
ratings proposed by Liang and Wang [28], it is suggested that the decision-makers
utilize the linguistic rating set

W = {VL,B.V L&L,L,B.L&M,M,B.M&H,H,B.H&V H,VH},

where VL: Very Low, B.VL&L: Between Very Low and Low, L: Low, B.L&M: Be-
tween Low and Medium, M: Medium, B.M&H: Between Medium and High, H:High,
B.H&VH:Between High and Very High, VH:Very High, to assess the attention
degree of subjects of companies under each of the management strategies. The
decision-makers utilize the linguistic rating as above and obtain the evaluation re-
sults as Table 7.3. Let X = {C1, ...,C5} and M = {m1,m2, ...,m7} be the set of sim-
ple concepts on the features Factor1 to Factor7. Where mi: great attention degree of
Factor i, i = 1,2, ...,7. The following order relation of the elements in the linguistic
rating set W is determined by their linguistic rating scales:

VL < B.VL&L < L < B.L&M < M < B.M&H < H < B.H&VH < VH (7.28)

For each mi ∈ M, we can define a binary relation Rmi on X by Table 7.3 and the
order relation shown as (7.28): (Ck,Ck) ∈ Ri, for any k = 1, ...,5 and for any k �= l,
(Ck,Cl) ∈ Ri ⇔Ck(Factor i)≥Cl(Factor i), where Cj(Factor i) is the linguistic rating
scale of Cj for Factor i. By Definition 4.3, one can verify that for each mi ∈ M,
Ri is a simple concept. (X ,τ,M) is an AFS structure if τ is defined as follows:
For any Ci, Cj ∈ X , τ(Ci,Cj) = {mk ∈ M|(Ci,Cj) ∈ Rk} (refer to (4.26)). Let Λ =
{{m1}, ...,{m7}} ⊆ EM and η be the topological molecular lattice generated by
Λ . Let (X ,Tη) be the topology space on X induced by η . Let de(Ci,Cj) be the
elementary differential degree of Ci,Cj and se(Ci,Cj) be the elementary similarity
degree of x,y defined by Definition 7.8. We obtain the following fuzzy similar matrix
S = (si j)n×n, si j = se(Ci,Cj) and the following elementary differential matrix T =
(ti j)n×n, ti j = de(Ci,Cj).

Table 7.3 The evaluation results of five companies

Company Factor
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

C1 M H H B.H & VH VH L B.M & H
C2 H B.L& M M B.M & H H B.M & H VL
C3 H H B.M & H H H VH B.M & H
C4 VL M H B.VL&L H B.L& M M
C5 L M B.H & VH H B.H & VH B.VL&L B.M & H
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T =

⎡
⎢⎢⎢⎢⎣

0 1513 1175 1112 666
1513 0 638 1067 1391
1175 638 0 1161 1263
1112 1067 1161 0 918
666 1391 1263 918 0

⎤
⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎣

1.0 0 0.2234 0.2650 0.5598
0 1.0 0.5783 0.2948 0.0806
0.2234 0.5783 1.0 0.2327 0.1652
0.2650 0.2948 0.2327 1.0 0.3933
0.5598 0.0806 0.1652 0.3933 1.0

⎤
⎥⎥⎥⎥⎦

Then, the transitive closure of similar matrix S is S4, i.e.,

(S4)2 = S4 =

⎡
⎢⎢⎢⎢⎣

1.0 0.2948 0.2948 0.3933 0.5598
0.2948 1.0 0.5783 0.2948 0.2948
0.2948 0.5783 1.0 0.2948 0.2948
0.3933 0.2948 0.2948 1.0 0.3933
0.5598 0.2948 0.2948 0.3933 1.0

⎤
⎥⎥⎥⎥⎦

Let the threshold α = 0.5. Then the clusters are {C1, C5}, {C2, C3} and {C4}. In
[27], the transitive closure of the compatibility relation RT of Table 7.3 is obtained
as follows:

RT =

⎡
⎢⎢⎢⎢⎣

1 0.389 0.415 0.590 0.679
0.389 1 0.389 0.389 0.389
0.415 0.389 1 0.415 0.415
0.590 0.389 0.415 1 0.590
0.679 0.389 0.415 0.590 1

⎤
⎥⎥⎥⎥⎦ .

By taking λ ∈ (0.590, 0.679], the authors in [27] obtained the clusters: {C1,C5},
{C2}, {C3} and {C4}.

By the application of the AFS-FCM algorithm described by (7.27) with the ele-
mentary differential degree defined by Definition 7.8 to the data of the 30 companies
shown in Appendix A, let the cluster number c be equal to 5, we obtain the cluster-
ing results

cluster1={C2, C3, C6,C7}, cluster2={C1, C4, C5, C10, C16, C21, C23, C25, C28},
cluster3={C9, C11, C13, C17, C19, C27},
cluster4={C8, C18, C20, C24, C26, C29}, cluster5={C12, C14, C15, C22, C30}.

Figure 7.1, in which the x-axis is the re-order of the C1,..., C30 by the order clus-
ter 1,...,cluster 5, i.e., 1:4 cluster 1; 5:13 cluster 2; 14:19 cluster 3; 20:25 cluster 4;
26:30 cluster 5, shows the membership functions of the fuzzy partition matrix of X ,
µ = {µ1, ...,µ5}.
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Fig. 7.1 The membership functions µi of the fuzzy 5-partition of X , µ = {µ1, ...,µ5}

7.5.2 Experimental Studies on the Iris Data Set

The Iris data [30] have 150 × 4 matrix W = (wi j)150×4 evenly distributed in three
classes: iris-setosa, iris-versicolor, and iris-virginica. Vector of sample i, (wi1, wi2,
wi3, wi4) has four features: sepal length and width, and petal length and width (all
given in centimeters). Let X = {x1,x2,...,x150} be the set of the 150 samples, where
xi = (wi1,wi2,wi3,wi4). Let M = {m1, m2, ..., m8} be the set of simple concepts on
the features, where

m1: the sepal is long, m2: sepal is wide, m3: petal is long, m4: petal is wide;
m5 = m′

4: petal is not wide, m6 = m′
3: petal is not long, m7 = m′

2: sepal is not
wide, m8 = m′

1 : the sepal is not long.

Given the original Iris data, we can verify that each concept m ∈ M is a simple con-
cept and (M,τ,X) is an AFS structure if for any x,y ∈ X , we define τ(x,y) = {m|m ∈
M,(x,y) ∈ Rm} (refer to (4.26)). For example, τ(x1,x1) = {m1, m2, m3, m4, m5, m6,
m7, m8}, since the sample x1 has sepal length and width, and petal length and width.
Similarly we can get τ(xi,xi), i = 2, ..., 150. For sample x4 = (4.6,3.1,1.5,0.2) and
sample x7 = (4.6,3.4,1.4,0.3), we have τ(x4,x7) = {m1,m3,m5,m7,m8}, since the
degrees of x4 belonging to simple concepts long sepal, long petal, not wide petal,
not wide sepal, not long sepal are larger than or equal to that of x7. Similarly, we can
determine τ(xi,x j) for any i, j according to the given feature values of the samples
or the binary relation Rm of the simple concepts m ∈ M.

Let (M,τ,X) be the AFS structure of the Iris data set and η be the topologi-
cal molecular lattice on the lattice ∗EM generated by all simple concepts in M,i.e.,
Λ = {{m1}, ...,{m8}} ⊆ EM. Let (X ,Tη) be the topology space of X induced by
the topological molecular lattice η . In order to compare the elementary differential
degree of x,y in topology Tη with Euclidean distance in R4. Let Rη be the fuzzy
relation matrix derived by topology Tη , where Rη = Sr

η , (Sr
η)

2 = Sr
η , Sη = (si j),

si j = se(xi,x j), the elementary similarity degree is defined by Definition 7.8. Let
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RE be the fuzzy relation matrix derived by the Euclidean distance where RE = Sk
E ,

(Sk
E)2 = Sk

E , SE = (ei j), ei j = 1 − (∑1≤k≤4(xik − x jk)2)
1
2 . Let fuzzy equivalence re-

lation matrix Q = (qi j) = Rη or RE , and for each threshold α ∈ [0,1], let Boolean
matrix Qα = (qa

i j), qa
i j = 1 ⇔ qi j ≥ α . Since R2

η = Rη , R2
E = RE , hence for each

threshold α ∈ [0,1], Qα is an equivalence relation Boolean matrix and it can yield a
partition on X (refer to [23]). The following Figure 7.2 shows the clustering accuracy
rates of fuzzy equivalence relation matrices Rη and RE for threshold α ∈ [0.1,1].
The accuracy is determined as follows: Suppose that the clusters C1, C2, ...,Cl are
obtained by the fuzzy equivalence relation matrices Rη or RE for some specific
thresholdα . Let N1 = {1,2, ...,50}, N2 = {51,52, ...,100}, N3 = {101,102, ...,150}.
For l ≥ 3, the clustering accuracy rate r is

r = max1≤i, j,k≤l,i�= j,i�=k, j �=i{
|N1∩Ci |+|N2∩Cj |+|N3∩Ck |

150 };

For l = 2, let

|Nk ∩C1| = max1≤u≤3{|Nu ∩C1|}, 1 ≤ k ≤ 3,
|Nl ∩C2| = max1≤u≤3,u �=k{|Nu ∩C2|}, 1 ≤ l ≤ 3, l �= k,

r = |Nk∩C1|+|Nl∩C2|
150 . For l = 1, let r = 1

3 . When threshold α = 0.8409, the clustering
accuracy rate of Rη is 90.67% (the best one), 9 clusters are obtained, the error clus-
tering samples are x23, x42, x69, x71, x73, x78, x84, x88, x107, x109, x110, x118, x132, x135.
When threshold α = 0.8905, the clustering accuracy rate of RE is 72.67% (the best
one), and 29 clusters have been obtained. In Figures 7.2, we can observe that the
elementary differential degrees defined by Definition 7.8 are better than those ob-
tained for the Eculidean distance when it comes to the description of the difference
of objects for this cluster analysis.

In order to compare the fuzzy equivalence relation matrices Rη with RE , we show
that the similar relation degrees of xk to ∀x ∈ X ,i.e., Rη(xk,x) and RE(xk,x), k =
71,72, ...,130 in Figures 7.3- 7.14 in Appendix B as examples. Since for Iris-data,
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Fig. 7.2 The clustering accuracy rates of fuzzy equivalence relation matrices Rη and RE for
threshold α ∈ [0.1,1]
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the samples x71, ...,x130 are most difficult to be clustered, hence we show Rη (xk,x)
and RE(xk,x), k = 71,72, ...,130 in the figures. For Iris-data, samples 1:50 are cluster
1, i.e., iris-setosa; samples 51:100 are cluster 2, i.e., iris-versicolor; samples 101:150
are cluster 3, i.e., iris-virginica. In Figures 7.3 and Figures 7.4, for x71,x72, ...,x80

which are cluster 2, Rη(xk,x) and RE(xk,x), x ∈ X are shown. Compared with Figure
7.4, we can observe that in Figure 7.3, the similarity degrees of xk to most samples
in cluster 2 are larger than that of xk to the samples in cluster 1,3. This implies that
xk are more similar to the samples in cluster 2 and Rη (xk,x), k = 71, ...,80, in Figure
7.3 are more clearly distinguish xk from the samples in cluster 1, 3 than RE(xk,x),
k = 71, ...,80, in Figure 7.4. Similar phenomenon can be observed in Figures 7.4-
7.14 and the others for k = 1, ...,70,131, ...,150 which are not shown here. These
examples show that the fuzzy equivalence relation matrix based on the topology is
obviously better than that based on Eculidean distance for clustering of Iris data.

By the application of the AFS-FCM algorithm shown in (7.27) to the distance
matrix T = (ti j)150×150, ti j = de(xi,x j) defined by Definition 7.8, the clustering ac-
curacy rate is 86.67%. Using the function k means in MATLAB toolbox, which
is based on the well known k-mean clustering algorithm [32], the clustering ac-
curacy rate is 89.33%. And using the function FCM in MATLAB toolbox, which
is based on the FCM clustering algorithm [1], the clustering accuracy rate is also
89.33%. Considering that the cluster centers of AFS-FCM must be the samples,
i.e., {v1, ...,vc} ⊆ X , while the cluster centers of FCM can be any vectors, i.e.,
{v1, ...,vc} ⊆ Rn, the clustering accuracy rate of AFS-FCM is acceptable.

In some situations, it is difficult or impossible to describe some features of objects
using real numbers, considering some inevitable errors and noise. For example, we
do not describe a degree “white hair” of a person by counting the number of white
hair on his head. But the order relations can be easily and accurately established
by the simple comparisons of each pair of person’s hair. In the framework of AFS
theory, (M,τ,X) is determined by the binary relations Rm, m ∈ M and the order re-
lations are enough to establish the AFS structure of a data system. The membership
functions and their logic operations of the fuzzy concepts in EM can be obtained by
the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X). Therefore
the AFS-FCM can be applied to the data set with the attributes described by mixed
features such as numeric data, Boolean, order, even descriptors of human intuition,
but FCM and k-mean can only be applied to the data set with the attributes described
by numeric data.

The differential degrees and similarity degrees based on the topology induced
by some fuzzy concepts are the criteria/metric human are using in their recognition
process. This criteria/metric may not be the metric in the Euclidean space. The il-
lustrative examples give some interpretations of the special topological structures
on the AFS structures directly obtained by a given data set. Thus this approach also
offers a new idea to data mining, artificial intelligence, pattern recognition,..., etc.
Furthermore the real world examples demonstrate that this approach is promising.
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Exercises

Exercise 7.1. Let M be a set and EM be the ∗EI algebra over M. For A ⊆ M, ∑i∈I Ai,
∑ j∈J B j ∈ EM, show the following assertions hold:

(1) A ≥ ∑i∈I Ai and A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∨∑ j∈J B j.
(2) A ≥ ∑i∈I Ai or A ≥ ∑ j∈J B j ⇔ A ≥ ∑i∈I Ai ∧∑ j∈J B j.

Exercise 7.2. Let X and M be sets and (M,τ,X) be an strong relative AFS structure.
Letη be a topological molecular lattice on EI algebra over M. For any x ∈ X ,∑i∈I Ai,
∑ j∈J B j ∈ EM, show the following assertions hold: for any x ∈ X

(1) If ∑i∈I Ai ≥ ∑ j∈J B j in EM, then Nτ∑i∈I Ai
(x) ⊇ Nτ∑ j∈J B j

(x);
(2) Nτ∑i∈I Ai

(x)∩Nτ∑ j∈J B j
(x) = Nτ∑i∈I Ai∧∑ j∈J B j

(x);
(3) Nτ∑i∈I Ai

(x)∪Nτ∑ j∈J B j
(x) = Nτ∑i∈I Ai∨∑ j∈J B j

(x).

Exercise 7.3. Proved that if η is a topological molecular on the lattice ∗EM and η is
a dual idea of the lattice ∗EM, then η is an elementary topological molecular lattice
on the lattice ∗EM.

Exercise 7.4. ([13]) Let X and M be sets and (M,τ,X) be a strong relative AFS
structure. Let η be a topological molecular lattice on the lattice EM. If η is an
elementary topological molecular lattice on the lattice EM and we define

Bη =

{
Nτ∑i∈I Ai

(x) | x ∈ X , ∑
i∈I

Ai ∈ η
}

,

prove that Bη is a base for some topology of X .

Exercise 7.5. Let X and M be sets, (M,τ,X) be a strong relative AFS structure. Let
η be a topological molecular lattice on the lattice EM and

Lη =

{
∑
i∈I

aiAi ∈ EXM | ∑
i∈I

Ai ∈ η ,ai ∈ Tη f or any i ∈ I

}
. (7.29)

Prove that Lη is a topological molecular lattice on the lattice EXM.

Exercise 7.6. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice EM. Let η be
a topological molecular lattice on the lattice EM and the topological space (X ,Tη)
be the topology induced by η . Let S be the σ -algebra generated by Tη and Lη be
the EI2 topological molecular lattice on EXM induced by η . Show the following
assertions hold.

(1) For any fuzzy concept ∑i∈I Ai ∈ η , ∑i∈I Ai is a measurable concept under S ;
(2) The membership function defined by (7.14) is a continuous function from the

topological space (X ,Tη) to the topological molecular lattice (EXM,Lη).

Exercise 7.7. Prove that the following three conditions on a topological space are
equivalent.
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(1) The space is metrizable;
(2) The space is T1 and regular, and the topology has a σ -locally finite base;
(3) The space is T1 and regular, and the topology has a σ -discrete base.

Exercise 7.8. Let X and M be finite sets and (M,τ,X) be an AFS structure. Let η be
an elementary topological molecular lattice on the lattice ∗EM and (X ,Tη ) be the
topology space on X induced by η . Show for any x,y ∈ X the following assertions
hold.

(1) d(x,x) = 0, d(x,y) = d(y,x) and s(x,y) = s(y,x) ≤ s(x,x);
(2) dM(x,x) = 0, dM(x,y) = dM(y,x) and sM(x,y) = sM(y,x) ≤ sM(x,x);
(3) de(x,x) = 0, de(x,y) = de(y,x) and se(x,y) = se(y,x) ≤ se(x,x).

Open problems

Problem 7.1. Let X be a set and M be the set of simple concepts on X . Let (M,τ,X)
be an AFS structure. If M is a finite set, then for any topological molecular lattice
η on the EI algebra EM is also a topological molecular lattice on the ∗EI algebra
∗EM. What are the relationships between the topological structures on X induced
by η as a topological molecular on EM and that induced by η as a topological
molecular on ∗EM?

Problem 7.2. It is clear that Tη the topology on X is determined based on the distri-
bution of raw data and the chosen set of fuzzy concepts η ⊆ EM and it is an abstract
geometry relation among the objects in X under the considering fuzzy concepts,
i.e., η .

1. What are the interpretations of the special topological structures on X obtained
from given database?

2. What are the topological structures associating with the essential nature of
database?

Problem 7.3. Let X and M be sets. Let (M,τ,X) be a strong relative AFS structure
and η be an elementary topological molecular lattice on the lattice EM. Let η be
a topological molecular lattice on the lattice EM and the topological space (X ,Tη)
be the topology induced by η .

(1) How to induce a topological molecular lattice L 2
η on the lattices ∗EXMM,

EXMM and a topological molecular lattice L 1
η on the lattices ∗E#X , E#X?

(2) Are the membership functions defined on the lattices EXMM by (5.12) and
E#X by (5.13) continuous from the topological space (X ,Tη ) to the topological
molecular lattices (EXMM,L 2

η ), (∗EXMM,L 2
η ), (∗E#X ,L 1

η ), (E#X ,L 1
η )?

Problem 7.4. With a metric in the topological space on X , solving the pattern recog-
nition problems will be possible for the database with various data types. Though
we can have different choices from the topological theory for the metrics, what is
suitable metric for this data of the pattern recognition problem?
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Problem 7.5. Are the similarity degrees defined by Definition 7.7, Definition 7.8
and Definition 7.9 equivalent?

Problem 7.6. Let (X ,Tη ) be the topological space induced by η . Where η is the
topological molecular lattice generated by some fuzzy concepts in EM. So far, we
cannot obtain the differential degree and the similarity degree if η is the topologi-
cal molecular lattice generated by more than 12 fuzzy concepts in EM. The more
effective algorithm for the computation of the differential degree and the similarity
degree in (X ,Tη) are the most required.

Appendix A

Table 7.4 Evaluate results of 30 companies

Company Factor
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

C1 H H H B.H & VH VH B.M & H B.M & H
C2 H H B.M & H B.M & H H B.M & H B.M & H
C3 H H B.M & H H H B.M & H B.M & H
C4 H B.H & VH H B.H & VH H B.H & VH B.M & H
C5 H B.H & VH H B.H & VH B.H & VH B.H & VH B.M & H
C6 H H B.M & H M B.M & H B.M & H B.M & H
C7 H H M B.H & VH B.M & H B.M & H M
C8 B.M & H H M B.M & H B.M & H H B.L& M
C9 B.M & H H H H B.H & VH B.M & H M
C10 H VH H B.M & H B.H & VH H B.M & H
C11 M H M H B.M & H B.H & VH B.H & VH
C12 VH VH H B.H & VH VH H M
C13 B.M & H H B.M & H H B.H & VH B.M & H B.M & H
C14 H H B.M & H B.H & VH B.H & VH H M
C15 H H H H B.H & VH VH M
C16 H H H B.H & VH B.H & VH B.H & VH B.H & VH
C17 B.M & H H M H B.H & VH B.M & H B.M & H
C18 M H B.M & H B.H & VH B.H & VH M M
C19 B.M & H H B.M & H B.M & H VH B.M & H B.H & VH
C20 B.M & H M M H B.H & VH B.M & H B.L& M
C21 B.H & VH VH B.H & VH B.H & VH B.H & VH B.H & VH VH
C22 H B.H & VH B.M & H B.H & VH B.H & VH H M
C23 B.H & VH VH H B.H & VH H B.M & H B.M & H
C24 H B.M & H M M B.H & VH M M
C25 VH VH H B.H & VH B.H & VH B.H & VH B.M & H
C26 H M H B.H & VH B.H & VH B.H & VH L
C27 B.M & H B.M & H H H B.H & VH H B.M & H
C28 B.H & VH B.H & VH B.M & H H B.H & VH B.M & H B.H & VH
C29 H B.M & H M H B.M & H B.M & H L
C30 H B.H & VH H B.H & VH H H M
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Appendix B

The following figures show the plots of Rη(xk,x)and RE(xk,x),∀x ∈ X .k=71, ...,130.

Fig. 7.3 The degrees of sim-
ilarity relation of xk to x ∈ X
based on topology, i.e.,
Rη (xk,x), k = 71,72, ...,80
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Fig. 7.4 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 71,72, ...,80
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Fig. 7.5 The degrees of sim-
ilarity relation of xk to x ∈ X
based on topology, i.e.,
Rη (xk,x), k = 81,82, ...,90
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Fig. 7.6 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 81,82, ...,90
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Fig. 7.7 The degrees of sim-
ilarity relation of xk to x ∈ X
based on topology, i.e.,
Rη (xk,x), k = 91,92, ...,100
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Fig. 7.8 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 91,92, ...,100
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Fig. 7.9 The degrees
of similarity relation of
xk to x ∈ X based on
topology, i.e., Rη(xk,x),
k = 101,102, ...,110
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Fig. 7.10 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 101,102, ...,110
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Fig. 7.11 The degrees
of similarity relation of
xk to x ∈ X based on
topology, i.e., Rη(xk,x),
k = 111,112, ...,120
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Fig. 7.12 The degrees of
similarity relation of xk
to x ∈ X based Euclidean
distance, i. e., RE(xk,x),
k = 111,112, ...,120
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Fig. 7.13 The degrees
of similarity relation of
xk to x ∈ X based on
topology, i.e., Rη(xk,x),
k = 121,122, ...,130
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Chapter 8
AFS Formal Concept and AFS Fuzzy Formal
Concept Analysis

In this chapter, based on the original idea of Wille of formal concept analysis and the
AFS (Axiomatic Fuzzy Set) theory, we presents a rigorous mathematical treatment
of fuzzy formal concept analysis referred to as an AFS Formal Concept Analysis
(AFSFCA). It naturally augments the existing formal concepts to fuzzy formal con-
cepts, with the aim of deriving their mathematical properties and applying them
in the exploration and development of knowledge representation. Compared with
other fuzzy formal concept approaches such as the L-concept [1, 2] and the fuzzy
concept [48], the main advantages of AFSFCA are twofold. One is that the original
data and facts are the only ones required to generate AFSFCA lattices thus human
interpretation is not required to define the fuzzy relation or the fuzzy set on G×M
to describe the uncertainty dependencies between the objects in G and the attributes
in M. Another advantage comes with the fact that is that AFSFCA is more expedient
and practical to be directly applied to real world applications.

FCA(Formal Concept Analysis) was introduced by Rudolf Wille in 1980s [10].
In the past two decades, FCA has been a topic of interest both from the concep-
tual as well as applied perspective. In artificial intelligence community, FCA is used
as a knowledge representation mechanism [15, 50, 51] as well as it can support
the ideas of a conceptual clustering [4, 40] for Boolean concepts. Traditional FCA-
based approaches are hardly able to represent vague information. To tackle with
this problem, fuzzy logic can be incorporated into FCA to facilitate handling un-
certainty information for conceptual clustering and concept hierarchy generation.
Pollandt [42], Burusco and Fuentes-Gonza lez [3], Huynh and Nakamori [16], and
Belohlavek [1, 2] have proposed the use of the L-Fuzzy context as an attempt to
combine fuzzy logic with the FCA. The primary notion in this investigation is that
of a fuzzy context (L-context): it comes as a triple (G,M,I), where G and M are
sets interpreted as the set of objects (G) and the set of attributes (M), and I ∈ LG×M

is a fuzzy relation between G and M. The value I(g,m) ∈ L (L is a lattice) is inter-
preted as the truth value of the fact “the object g ∈ G has the attribute m ∈ M”. In
accordance with the Port-Royal definition, a (formal) fuzzy concept (L-concept) is
a pair (A,B), A ∈ LG,B ∈ LM , A plays the role of the extent (fuzzy set of objects
which determine the concept), B plays the role of the intent (fuzzy set of attributes

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 303–349.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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which determine the concept). The L-Fuzzy context uses linguistic variables, which
are linguistic terms associated with fuzzy sets, to represent uncertainty in the con-
text. However, human interpretation is required to define the linguistic variables and
the fuzzy relation between G and M (i.e., I ∈ LG×M). Moreover, the fuzzy concept
lattice generated from the L-fuzzy context usually causes a combinatorial explosion
of concepts as compared to the traditional concept lattice.

Tho, Hui, Fong, and Cao [48] proposed a technique that combines fuzzy logic
and FCA giving rise to the idea of the Fuzzy Formal Concept Analysis (FFCA),
in which the uncertainty information is directly represented by membership grades.
The primary notion is that of a fuzzy context: it is a triple (G,M,I), where G is
a set of objects, M is a set of attributes, and I is a fuzzy set on domain G ×M.
Each relation (g,m) ∈ I has a membership value µI(g,m) in [0,1]. Compared to the
fuzzy concept lattice generated from the L-fuzzy context, the fuzzy concept lattice
generated by using FFCA is simpler in terms of the number of formal concepts.
However, human interpretation is still referring to it as the required to define the
membership function of the fuzzy set I for FFCA. In real world applications, just
based on human interpretation, it is very difficult to properly define the fuzzy set I
to describe the uncertainty relations between the objects and the attributes.

In order to cope with the above problems, we propose a new framework of fuzzy
formal concept analysis based on the AFS (Axiomatic Fuzzy Set) theory [18, 54]
referring to it as the AFS Formal Concept Analysis (AFSFCA,for brief). In the pro-
posed AFSFCA, each fuzzy complex attribute in EM, which plays the role of the
intent of an AFS formal concept, corresponds to a fuzzy set, which is automatically
determined by the AFS structure and the AFS algebra via what we have discussed
in Chapter 4, 5, and plays the role of the extent of the AFS formal concept. Thus the
original data and facts are only required to generate AFSFCA lattices and human
interpretation is not required to define the fuzzy relation or the fuzzy set I on G×M
to describe the uncertainty relations between the objects and the attributes. Com-
pared with the fuzzy concept lattices based on L-fuzzy context, the fuzzy concept
lattice generated using AFSFCA will be simpler in terms of the number of formal
concepts. Compared with FFCA, the fuzzy concept lattice generated using AFSFCA
will be richer in expression, more relevant and practical.

8.1 Concept Lattices and AFS Algebras

In Chapter 4, 5, various kinds of representations and logic operations for fuzzy con-
cepts in EM have been extensively discussed in the framework of AFS theory, in
which the membership functions and their logic operations are automatically de-
termined in an algorithmic fashion by taking advantage of the existing distribution
of the original data. The purpose of this section is to extend these approaches by
combining the AFS and FCA theories.

Let us briefly recall the Wille’s notion of formal concept [57]: The basic notions
of FCA are those of a formal context and a formal concept. A formal context is
a triple (G,M, I) where G is a set of objects, M is a set of features or attributes,
and I is a binary relation from G to M, i.e., I ⊆ G×M. gIm, which is also written as
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(g,m)∈ I, denotes that the object g possesses the feature m. An example of a context
(G,M, I) is shown in Table 8.1, where G = {g1,g2, ...,g6} and M = {m1,m2, ...,m5}.
An “×” is placed in the ith row and jth column to indicate that (gi,m j) ∈ I. For a
set of objects A ⊆ G, β (A) is defined as the set of features shared by all the objects
in A, that is,

β (A) = {m ∈ M|(g,m) ∈ I,∀g ∈ A}. (8.1)

Similarly, for B ⊆ M, α(B) is defined as the set of objects that possesses all the
features in B, that is,

α(B) = {g ∈ G|(g,m) ∈ I,∀m ∈ B}. (8.2)

The pair (β ,α) is a Galois connection between the power sets of G and M. For
more information on Galois connections, interested readers are referred to [57]. In
this chapter, the symbols α,β always denote the Galois connection defined by (8.1)
and (8.2). In the FCA, concept lattice, or Galois lattice is the core of its mathematical
theory and can be used as an effective tool for symbolic data analysis and knowledge
acquisition.

Table 8.1 Example of a context

m1 m2 m3 m4 m5
g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × ×
g5 × ×
g6 × ×

Lemma 8.1. Let (G,M, I) be a context. Then the following assertions hold:

(1) for A1,A2 ⊆ G, A1 ⊆ A2 implies β (A1) ⊇ β (A2) and
for B1,B2 ⊆ M, B1 ⊆ B2 implies α(B1) ⊇ α(B2);

(2) A ⊆ α(β (A)) and β (A) = β (α(β (A))) for all A ⊆ G, and
B ⊆ β (α(B)) and α(B) = α(β (α(B))) for all B ⊆ M.

Its proof is left to the reader.

Definition 8.1. ([51]) A formal concept in the context (G,M, I) is a pair (A,B) such
that β (A) = B and α(B) = A, where A ⊆ G and B ⊆ M.

In other words, a formal concept is a pair (A,B) of two sets A⊆G and B⊆M, where
A is the set of objects that possesses all the features in B and B is the set of features
common to all the objects in A. In what follows, a formal concept (A,B) in (G,M, I)
briefly noticed as (A,B) ∈ (G,M, I). The set A is called the extent of the concept and
B is called its intent. If we review B ⊆ M as a new attribute generated by the “and”
of all attributes in B like that in [28], then A is the set of objects that possess the
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new attribute B. The adjective “formal” in formal concept means that the concept is
a rigorously defined mathematical object [8]. From the point of view of logic, the
intent of a formal concept can be seen as a conjunct of features that each object of
the extent must possess. For any given context (G,M, I), neither every subset of G
nor every subset of M corresponds to a concept.

Definition 8.2. ([51]) A set B ⊆ M is called a feasible intent if set B is the intent
of the unique formal concept (α(B),B). Similarly, a set A ⊆ G is called a feasible
extent if A is the extent of the unique formal concept (A,β (A)). A set X is called a
feasible set if it is either a feasible extent or a feasible intent. Otherwise, X is called
non-feasible.

An important notion in FCA is that of a concept lattice, which makes it possible to
depict the information represented in a context as a complete lattice. Let L (G,M, I)
denote the set of all formal concepts of the context (G,M, I). An order relation on
L (G,M, I) is defined as follows [51]. Let (A1,B1) and (A2,B2) be two concepts in
L (G,M, I), then (A1,B1) ≤ (A2,B2) if and only if A1 ⊆ A2 (or equivalently B1 ⊇
B2). The formal concept (A1,B1) is called a sub formal concept of the formal concept
(A2,B2) and (A2,B2) is called a super formal concept of (A1,B1). The fundamental
theorem of Wille about concept lattices, states that (L (G,M, I),∨,∧) is a complete
lattice called the concept lattice of the context (G,M, I).

Lemma 8.2. (Will’s Lemma) Let (G,M, I) be a context and L (G,M, I) denote the
set of all formal concepts of the context (G,M, I). Then

L (G,M, I) = {(α(B),β (α(B))) | B ⊆ M}. (8.3)

Proposition 8.1. Let (G,M, I) be a context. Then for any Ai ⊆ G, i ∈ I, B j ⊆ M,
j ∈ J,

α

(⋃
j∈J

B j

)
=
⋂
j∈J

α(B j),

β

(⋃
i∈I

Ai

)
=
⋂
i∈I

β (Ai).

Proof. By the definitions, for any g ∈ α(
⋃

j∈J B j), we have

g ∈ α
(⋃

j∈J

B j

)
⇔ ∀m ∈

⋃
j∈J

B j, (g,m) ∈ I

⇔ ∀ j ∈ J, ∀m ∈ B j, (g,m) ∈ I

⇔ ∀ j ∈ J, g ∈ α(B j)

⇔ g ∈
⋂
j∈J

α(B j).

Similarly, we can prove that β (
⋃

i∈I Ai) =
⋂

i∈I β (Ai). 	
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Theorem 8.1. (Fundamental Theorem of FCA) Let (G,M, I) be a context. Then
(L (G,M, I),∨,∧) is a complete lattice in which suprema and infima are given as
follows: for any formal concepts (A j,B j) ∈ L (G,M, I), j ∈ J,

∨
j∈J

(A j,B j) =

(
γG

(⋃
j∈J

A j

)
,
⋂
j∈J

B j

)
, (8.4)

∧
j∈J

(A j,B j) =

(⋂
j∈J

A j, γM

(⋃
j∈J

B j

))
, (8.5)

where γG = α ·β , γM = β ·α .

Proof. First, let us explain the formula for the infimum. Since A j = α(B j), for each
j ∈ J, (⋂

j∈J

A j,γM

(⋃
j∈J

B j

))

by Proposition 8.1 it can be transformed into(
α

(⋃
j∈J

B j

)
,γM

(⋃
j∈J

B j

))
,

i.e., it has the form (α(X),γM(X)) and is therefore a concept. That this can only be
the infimum, i.e., the largest common subconcept of the concepts (A j,B j), follows
immediately from the fact that the extent of this concept is exactly the intersection of
the extents of (A j,B j). The formula for the supremum is substantiated correspond-
ingly. Thus, we have proven that (L (G,M, I),∨,∧) is a complete lattice. 	

In what follows, we denote the subsets of G with small letters and the subsets of M
with capital letters in order to distinguish subsets of objects in G from subsets of
attributes in M.

By sets G,M, we can establish the EII algebra over G,M and (EGM,∨,∧) is a
completely distributivity lattice. Now, we study the relationship between the lattice
(L (G,M, I),∨,∧) and the lattice (EGM,∨,∧). We define α(EM) a sub sets of
EGM as follows

α(EM) =

{
γ ∈ EGM | γ =∑

i∈I

biBi, ∀i ∈ I, bi = α(Bi)

}
. (8.6)

Lemma 8.3. Let (G,M, I) be a context. Then α(EM) is a sub EII algebra of
EGM, i.e. k ∈ K, ζk = ∑i∈Ik bkiBki ∈ α(EM),

∨
k∈K ζk,

∧
k∈K ζk ∈ α(EM), and

(α(EM),∨,∧) is also a completely distributivity lattice.

Proof. It could be easily verified that
∨

k∈K ζk ∈α(EM). Since EGM is a completely
distributivity lattice, hence
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∧
k∈K

ζk = ∑
f∈Πk∈KIk

(
⋂

k∈K

bk f (k)
⋃
k∈K

Bk f (k)).

By Proposition 8.1 and α(Bk j) = bk j, for any k ∈ K, j ∈ I j, we have

α

(⋃
k∈K

Bk f (k)

)
=
⋂

k∈K

α(Bk f (k)) =
⋂
k∈K

bk f (k).

Therefore
∧

k∈K ζk ∈ α(EM). Because (EGM,∨,∧) is a completely distributivity
lattice, (α(EM),∨,∧) is also a completely distributivity lattice. 	

Theorem 8.2. Let (G,M, I) be a context. pI is a homomorphism from lattice
(EM,∨,∧) to lattice (L (G,M, I),∨,∧) provided pI is defined as follows: for any
∑i∈I Bi ∈ EM,

pI

(
∑
i∈I

Bi

)
=
∨
i∈I

(α(Bi),β ·α(Bi)) =

(
α ·β (

⋃
i∈I

α(Bi)),
⋂
i∈I

β ·α(Bi)

)
. (8.7)

Proof. By Lemma 8.2, for any ∑i∈I Bi ∈ EM, one knows that ∀i ∈ I,(α(Bi),β ·
α(Bi)) ∈ L (G,M, I). Since lattice (L (G,M, I),≤) is a complete lattice, hence
∀∑i∈I Bi ∈ EM,

pI

(
∑
i∈I

Bi

)
=

(
α ·β (

⋃
i∈I

α(Bi)),
⋂
i∈I

β (α(Bi))

)

=
∨
i∈I

(α(Bi), β ·α(Bi)) ∈ L (G,M, I).

Next, we prove that pI is a map from EM to L (G,M, I). Suppose ∑i∈I1 B1i =
∑i∈I2 B2i ∈ EM. By Lemma 8.1, one has ∀i ∈ I1,∃k ∈ I2 such that B1i ⊇ B2k ⇒
α(B1i)⊆α(B2k) and ∀ j ∈ I2,∃l ∈ I1 such that B2 j ⊇ B1l ⇒α(B2 j)⊆α(B1l). There-
fore ∪i∈I1α(B1i) = ∪ j∈I2α(B2i) and

α ·β
(⋃

i∈I1

α(B1i)

)
= α ·β

(⋃
j∈I1

α(B2 j)

)
.

Since both (
(α ·β

⋃
i∈I1

α(B1i)),
⋂
i∈I1

β ·α(B1i)

)

and (
α ·β (

⋃
i∈I2

α(B2i)),
⋂
i∈I2

β ·α(B2i)

)

are formal concepts in (G,M, I), hence
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(α ·β (∪i∈I1α(B1i)),∩i∈I1β ·α(B1i)) = (α ·β (∪i∈I2α(B2i)),∩i∈I2β ·α(B2i)),

pI

(
∑
i∈I1

B1i

)
= pI

(
∑
i∈I2

B2i

)
.

For any ζ =∑i∈I Ai,η =∑ j∈J B j ∈ EM, by (8.7), (8.4) and Proposition 8.1, we have

pI(ζ ∨η)

= (α ·β [(∪i∈Iα(Ai))∪ (∪ j∈Jα(B j))], [(∩i∈Iβ ·α(Ai))∩ (∩ j∈Jβ ·α(B j))]).

pI(ζ )∨ pI(η)

= (α ·β (∪i∈Iα(Ai)),∩i∈Iβ ·α(Ai))∨ (α ·β (∪ j∈Jα(B j)),∩ j∈Jβ ·α(B j))

= (α ·β [α ·β (∪i∈Iα(Ai))∪α ·β (∪ j∈Jα(B j))], [(∩i∈Iβ ·α(Ai))∩ (∩ j∈Jβ ·α(B j))])

Since both pI(ζ ∨η) and pI(ζ )∨ pI(η) are formal concepts of the context (G,M, I),
hence pI(ζ ∨η) = pI(ζ )∨ pI(η). By (8.7), we have

pI(ζ ∧η) = pI

(
∑

i∈I, j∈J
Ai ∪B j

)
=

∨
i∈I, j∈J

(α(Ai ∪B j),β ·α(Ai ∪B j)).

In addition, for any i ∈ I, j ∈ J, it follows by (8.5)

(α(Ai),β ·α(Ai))∧(α(Bi),β ·α(Bi))=(α(Ai)∩α(B j),β ·α[β ·α(Ai)∪β ·α(B j)]).

By Proposition 8.1, we have α(Ai)∩α(B j) = α(Ai ∪B j) and

β ·α[β ·α(Ai)∪β ·α(B j)] = β ·α(β (α(Ai))∪β (α(B j)))
= β (α(β (α(Ai)))∩α(β (α(B j))))
= β (α(Ai)∩α(B j))
= β ·α(Ai ∪B j)).

Therefore for any i ∈ I, j ∈ J,

(α(Ai ∪B j),β ·α(Ai ∪B j)) = (α(Ai),β ·α(Ai))∧ (α(Bi),β ·α(Bi)).

and

pI(ζ ∧η) =
∨

i∈I, j∈J

(α(Ai ∪B j),β ·α(Ai ∪B j))

=
∨

i∈I, j∈J

[(α(Ai),β ·α(Ai))∧ (α(Bi),β ·α(Bi))]

=

[∨
i∈I

(α(Ai),β ·α(Ai))

]
∧
[∨

j∈J

(α(Bi),β ·α(Bi))

]

= pI(ζ )∧ pI(η).

This demonstrates that pI is homomorphism. 	
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Theorem 8.3. Let (G,M, I) be a context. pI is homomorphism from lattice (α(EM),
∨,∧) to lattice (L (G,M, I),∨,∧), if for any ∑i∈I biBi ∈ α(EM), pI is defined as

pI

(
∑
i∈I

biBi

)
=
∨
i∈I

(bi,β (bi)) =

(
α ·β (

∨
i∈I

bi),
⋂
i∈I

β (bi)

)
. (8.8)

Proof. By Lemma 8.2 and (8.6), for any ∑i∈I biBi ∈ α(EM), one knows that ∀i ∈ I,
(bi,β (bi)) = (α(Bi),β (α(Bi))) ∈ L (G,M, I). This implies that

(α ·β (∪i∈Ibi),∩i∈Iβ (bi)) =
∨
i∈I

(bi,β (bi)) ∈ L (G,M, I).

Now, we prove that pI is a map from α(EM) to L (G,M, I). Suppose∑i∈I1 b1iB1i =
∑i∈I2 b2iB2i ∈α(EM), i.e., ∀i∈ I1,∃k ∈ I2 such that B1i ⊇ B2k, b2k ⊇ b1i ⇒ β (b2k)⊆
β (b1i) and ∀ j ∈ I2,∃l ∈ I1 such that B2 j ⊇ B1l , b2 j ⊆ b1l , β (b2 j) ⊇ β (b1l). This
implies that

∪i∈I1 b1i = ∪ j∈I2 b2 j, ∩i∈I1β (b1i) = ∩i∈I2β (b2i).

Therefore pI(∑i∈I1 b1iB1i) = pI(∑i∈I2 b2iB2i), i.e., pI is a map. Then for any ζ =
∑i∈I aiAi,η =∑ j∈J b jB j ∈ α(EM), by (8.4) and (8.8), we have

pI(ζ ∨η) = (α ·β [(∪i∈Iai)∪ (∪ j∈Jb j)], [(∩i∈Iβ (ai))∩ (∩ j∈Jβ (b j))])
pI(ζ )∨ pI(η) = (α ·β (∪i∈Iai), ∩i∈Iβ (ai))∨ (α ·β (∪ j∈Jb j), ∩ j∈Jβ (b j))

= (α ·β [α ·β (∪i∈Iai)∪α ·β (∪ j∈Jb j)], [(∩i∈Iβ (ai))∩(∩ j∈Jβ (b j))])

Since both pI(ζ ∨η) and pI(ζ )∨ pI(η) are formal concepts of the context (G,M, I),
hence pI(ζ ∨η) = pI(ζ )∨ pI(η). By (8.5) and (8.8), we have

pI(ζ ∧η) = pI

(
∑

i∈I, j∈J

ai ∩b jAi ∪B j

)

=

(
α ·β

( ⋃
i∈I, j∈J

ai

⋂
b j

)
,
⋂

i∈I, j∈J

β (ai ∩bi)

)

=
∨

i∈I, j∈J

(ai ∩b j,β (ai ∩bi)).

In addition, for any i ∈ I, j ∈ J, it follows by (8.5)

(ai,β (ai))∧ (b j,β (b j)) = (ai ∩b j,β ·α[β (ai)∪β (b j)]).

By Proposition 8.1 and Lemma 8.2, for any i ∈ I, j ∈ J, we have

β ·α[β (ai)∪β (b j)] = β ·α(β (ai)∪β (b j))
= β (α(β (ai))∩α(β (b j)))
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= β (α(β (α(Ai)))∩α(β (α(B j))))
= β (α(Ai)∩α(B j))
= β (ai ∩b j).

Therefore
(ai,β (ai))∧ (b j,β (b j)) = (ai ∩b j,β (ai ∩bi))

and

pI(ζ ∧η) =
∨

i∈I, j∈J

(ai ∩b j,β (ai ∩bi))

=
∨

i∈I, j∈J

[(ai,β (ai))∧ (b j,β (b j))]

=

[∨
i∈I

(ai,β (ai))

]
∧
[∨

j∈J

(b j,β (b j))

]

= pI(ζ )∧ pI(η).

Therefore pI is homomorphism. 	

By Theorem 8.2, 8.3, we know that concept lattice L (G,M, I) has similar algebraic
properties to EI algebra and EII algebra. L (G,M, I) as a lattice is finer than the
lattices α(EM) and L (G,M, I) as an algebra structure is more rigorous than EI, EII
algebras. EI, EII algebras can be applied to study fuzzy attributes while L (G,M, I)
can only be applied to Boolean attributes.

Theorem 8.4. Let (G,M, I) be a context and L (G,M, I) be a concept lattice of
the context (G,M, I). Let EGM be the EI2 algebra over the sets G,M. If the map
h : L (G,M, I) → EGM is defined as follows: for any formal concept (b,B) ∈
L (G,M, I), h(b,B) = bB ∈ EGM, then the following assertions hold.

(1) If (a,A),(b,B) ∈ L (G,M, I), (a,A) ≤ (b,B), then h(a,A) ≤ h(b,B);
(2) For (a,A),(b,B) ∈ L (G,M, I),

h((a,A)∨ (b,B)) ≥ h(a,A)∨h(b,B),
h((a,A)∧ (b,B)) ≤ h(a,A)∧h(b,B).

Proof. (1) (a,A) ≤ (b,B) ⇒ a ⊆ b, A ⊇ B. By Definition 5.2 and Theorem 5.1, one
has

h(a,A)∨h(b,B) = aA + bB = bB = h(b,B).

This implies that h(a,A) ≤ h(b,B) in the lattice EGM.
(2) By the definition of the map h and (8.4), (8.5), we have

h((a,A)∨ (b,B)) = h(α ·β (a∪b),A∩B) = α ·β (a∪b)A∩B.
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By Proposition 8.1 and Lemma 8.2, we have

α ·β (a∪b) = α ·β (α(A)∪α(B)) = α ·β (α(A∩B))
= α(β (α(A∩B))) = α(A∩B).

Thus

α ·β (a∪b) = α(A∩B) ⊇ α(A) = a,

α ·β (a∪b) = α(A∩B) ⊇ α(B) = b.

Similarly, we can prove β ·α(A∪B) ⊇ A∪B. Then by Theorem 5.1, we have

h((a,A)∨ (b,B)) = α ·β (a∪b)A∩B ≥ aA + bB = h(a,A)∨h(b,B).
h((a,A)∧ (b,B)) = a∩b[β ·α(A∪B)] ≤ aA∧bB = h(a,A)∧h(b,B). 	


8.2 Some AFS Algebraic Properties of Formal Concept
Lattices

In order to explore some algebraic properties of formal concept lattices, we define a
new algebra class ECII for a context (G,M, I), which is a new family of AFS algebra
different from the AFS algebras discussed in some other chapters.

Definition 8.3. Let G and M be sets and (G,M, I) be a context, EGMI is a set defined
as follows:

EGMI =

{
∑

u∈U
auAu | Au ⊆ M,au = α(Au), u ∈U, U is a non−empty indexing set

}
.

Where each ∑u∈U auAu as an element of EGMI is the “formal sum” of terms auAu.
∑u∈U auAu and ∑u∈U ap(u)Ap(u) are the same elements of EGMI if p is a bijec-
tion from I to I. R is a binary relation on EGMI defined as follows: ∑u∈U auAu,
∑v∈V bvBv ∈EGMI , (∑u∈U auAu,∑v∈V bvBv)∈R⇔ (i) ∀auAu (u∈U) ∃bkBk (k∈V )
such that au ⊆ bk, Au ⊆ Bk, (ii) ∀bvBv (v ∈ V ) ∃alAl (l ∈ U) such that bv ⊆ al ,
Bv ⊆ Al .

It is obvious that R is an equivalence relation on EGMI . The quotient set EGMI/R
is denoted as EIGM. ∑u∈U auAu = ∑v∈V bvBv means that ∑u∈U auAu and ∑v∈V bvBv

are equivalent under the equivalence relation R.

Proposition 8.2. Let G and M be sets, (G,M, I) be a context and EIGM be defined
as Definition 8.3. For ∑u∈U auAu ∈ EIGM, if aq ⊆ aw, Aq ⊆ Aw, w,q ∈ U, w �= q,
then

∑
u∈U

auAu = ∑
u∈U,u �=q

auAu.

Its proof remains as an exercise.
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Definition 8.4. Let G and M be sets, (G,M, I) be a context and EIGM be the set
defined as Definition 8.3. We introduce the following definitions.

(1) For ∑u∈U auAu ∈ EIGM, ∑u∈U auAu is called ECII irreducible if ∀w ∈ U ,
∑u∈U auAu �= ∑u∈U,u �=w auAu.

(2) For any ∑u∈U auAu ∈ EIGM, |∑u∈U auAu|, the set of all ECII irreducible items
in ∑u∈U auAu, is defined as follows.

| ∑
u∈U

auAu| �
{

auAu | u ∈U,au � a j,Au � A j f or any j ∈U
}

.

||∑u∈U auAu||, the length of ∑u∈U auAu, is defined as follows

|| ∑
u∈U

auAu|| � |{auAu | u ∈U,au � a j,Au � A j f or any j ∈U
} |.

Proposition 8.3. Let G and M be sets, (G,M, I) be a context and EIGM be the
set defined as Definition 8.3. The binary relation ≤ is a partial order relation if
∑u∈U auAu, ∑v∈V bvBv ∈ EIGM, ∑u∈U auAu ≤ ∑v∈V bvBv ⇔ ∀auAu (u ∈ U) ∃bkBk

(k ∈V) such that au ⊆ bk, Au ⊆ Bk.

Its proof remains as an exercise.

Proposition 8.4. Let G and M be sets, (G,M, I) be a context and EIGM be de-
fined as Definition 8.3. Then for any Γ ⊆ {A ∈ 2M | A = β ·α(A)} ⊆ M, ∅ �= Γ ,
∑B∈Γ α(B)B is ECII irreducible.

Proof. Suppose there exists A ∈ Γ such that ∑B∈Γ α(B)B = ∑B∈Γ ,B �=Aα(B)B. By
Definition 8.3, for α(A)A standing on the left side of the equation, we know that
∃E ∈ Γ , E �= A such that α(A) ⊆ α(E),A ⊆ E . By the properties of the Galois
connection α,β shown in Lemma 8.1 and A ⊆ E , we have α(A) ⊇ α(E). This
implies that α(A) = α(E) and A = β · α(A) = β · α(E) = E . It contradicts that
E �= A. Therefore∑B∈Γ α(B)B is ECII irreducible. 	

Proposition 8.5. Let (G,M, I) be a context and EIGM be defined as Definition 8.3.
If for any ∑u∈U auAu, ∑v∈V bvBv ∈ EIGM, we define

(∑
u∈U

auAu)∗ (∑
v∈V

bvBv) = ∑
u∈U,v∈V

au ∩bvAu ∪Bv, (8.9)

(∑
u∈U

auAu)+ (∑
v∈V

bvBv) = ∑
u∈U
V

cuCu, (8.10)

where u∈U 
V (the disjoint union of indexing sets U, V), cu = au, Cu = Au,if u∈U;
cu = bu, Cu = Bu,if u ∈U. Then “+” and “∗” are binary compositions on EIGM.

Its proof remains as an exercise.
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The algebra system (EIGM,∗,+,≤) is called the ECII algebra of context
(G,M, I) and denoted as EIGM, where ∗ and + are defined by (8.9) and ( 8.10),
and ≤ is defined by Proposition 8.3. For ∑u∈U auAu ∈ EIGM, let

(
∑

u∈U
auAu

)h

=

h︷ ︸︸ ︷
∑

u∈U
auAu ∗ ...∗ ∑

u∈U
auAu.

The algebra system (EIGM,∗,+,≤) has the following properties which can be fur-
ther applied to study the formal concept lattice.

Proposition 8.6. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,
≤) be the ECII algebra of context (G,M, I). Then the following assertions hold. For
any ψ , ϑ , γ , η ∈ EIGM,

(1) ψ+ϑ = ϑ +ψ , ψ ∗ϑ = ϑ ∗ψ;
(2) (ψ+ϑ)+ γ = ψ+(ϑ + γ), (ψ ∗ϑ)∗ γ = ψ ∗ (ϑ ∗ γ);
(3) (ψ+ϑ)∗ γ = (ψ ∗ γ)+ (ϑ ∗ γ), ψ ∗ (∅M) = (∅M), ψ ∗ (X∅) = ψ;
(4) If ψ ≤ ϑ , γ ≤ η , then ψ+ γ ≤ ϑ + γ , ψ ∗ γ ≤ ϑ ∗ γ;
(5) For any ζ ∈ EIGM, any positive integer n,

ζ ≤ ζ n, (ζ +∅M)n = ζ n +∅M.

(6) Let A j ⊆ M, j ∈ J, J be any non-empty indexing set. For any A ⊆ M, U(A) the
set of all intents containing A is defined as follows.

U(A) = {B | A ⊆ B ⊆ M,B = β ·α(B)}.

Then the following assertions hold.⎛
⎝∑

j∈J
∑

A∈U(A j)
α(A)A

⎞
⎠2

=∑
j∈J
∑

A∈U(A j)
α(A)A.

(7) For any ∑ j∈J a jA j ∈ EIGM and any positive integer l,

(
∑
j∈J

a jA j

)l

≤∑
j∈J
∑

A∈U(A j)
α(A)A.

(8) If γ = ∑m∈M α({m}){m}, then there exists an positive integer h such that
(γh)2 = γh, |γh| is the set of all concepts of context (G,M, I) except (X ,∅) (|γh|
defined by Definition 8.4).

Proof. (1), (2), (3) and (4) can be directly proved by using the definitions.
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Now we prove (5). Let ζ = ∑u∈U auAu ∈ EIGM.(
∑

u∈U
auAu

)
∗
(
∑

u∈U
auAu

)
= ∑

u,v∈U
au ∩avAu ∪Av

= ∑
u∈U

auAu + ∑
u,v∈U,u �=v

au ∩avAu ∪Av

≥ ∑
u∈U

auAu.

Thus ζ ≤ ζ 2. By (4), one has ζ ≤ ζ 2 ≤ ζ 3 ⇒ ζ ≤ ζ 2 ≤ ζ 3 ≤ ζ 4 ⇒ ... ⇒ ζ ≤
ζ 2... ≤ ζ n. From (1), (2), (3), we have

(∑u∈U auAu +∅M)∗ (∑u∈U auAu +∅M)
= ∑u∈U auAu ∗∑u∈U auAu +∅M ∗∑u∈U auAu +∑u∈U auAu ∗∅M +∅M ∗∅M
= (∑u∈U auAu)2 +∅M.

Now we prove it by induction with respect on n. Suppose

(∑
u∈U

auAu +∅M)n−1 = (∑
u∈U

auAu)n−1 +∅M.

We have

(∑u∈U auAu +∅M)n

= ((∑u∈U auAu)n−1 +∅M)∗ (∑u∈U auAu +∅M)
= (∑u∈U auAu)n +(∑u∈U auAu)n−1 ∗∅M +∅M ∗∑u∈U auAu +∅M
= (∑u∈U auAu)n +∅M.

Therefore the assertion holds.
(6) Let ∑ j∈J a jA j ∈ EIGM. For any u,v ∈ J,(
∑

A∈U(Au)
α(A)A

)
∗
(
∑

A∈U(Av)
α(A)A

)
= ∑

A∈U(Au),B∈U(Av)
α(A)∩α(B)A∪B.

For any A ∈U(Au),B ∈U(Av), if A∪B is an intent of a concept of context (G,M, I),
then A∪B∈U(Au)∩U(Av). If A∪B is not an intent of a concept of context (G,M, I),
then A ∪ B ⊂ β · α(A ∪ B) ∈ U(Au) ∩U(Av) and α · β · α(A ∪ B) = α(A ∪ B) =
α(A)∩α(B). Thus in any case, for any A ∈ U(Au),B ∈ U(Av) there exists D ∈
U(Av) such that α(A)∩α(B) ⊆ α(D) and A∪B ⊆ D (e.g., D = β ·α(A∪B)). By
Proposition 8.3, one has(

∑
A∈U(Au)

α(A)A

)
∗
(
∑

A∈U(Au)
α(A)A

)
≤ ∑

A∈U(Au)
α(A)A

From (5), we have(
∑

A∈U(Au)
α(A)A

)
∗
(
∑

A∈U(Au)
α(A)A

)
= ∑

A∈U(Au)
α(A)A
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It follows from (1), (2) and (3),(
∑

u∈U
∑

A∈U(Au)
α(A)A

)2

= ∑
u,v∈U

(
∑

A∈U(Au)
α(A)A∗ ∑

A∈U(Au)
α(A)A

)

= ∑
u,v∈U

(
∑

A∈U(Au)
α(A)A

)

= ∑
u∈U

∑
A∈U(Au)

α(A)A

(7) Let ∑ j∈J a jA j ∈ EIGM. It is obvious that ∀u ∈ J,Au ⊆ β ·α(Au) ∈U(Au) and
au = α(Au) = α ·β ·α(Au). This implies that ∑ j∈J a jA j ≤∑ j∈J∑A∈U(A j)α(A)A. By
(4), (5) and (6), for any integer l, we have

(
∑
j∈J

a jA j

)l

≤
⎛
⎝∑

j∈J
∑

A∈U(A j)
α(A)A

⎞
⎠l

=∑
j∈J
∑

A∈U(A j)
α(A)A.

(8) By (5), we know that

∑
m∈M

α({m}){m} ≤
(
∑

m∈M
α({m}){m}

)2

≤ ... ≤
(
∑

m∈M
α({m}){m}

)r

.

Since both G and M are finite sets, hence there are finite number of elements in
EIGM and there exists an integer h such that(

∑
m∈M

α({m}){m}
)h

=

(
∑

m∈M

α({m}){m}
)2h

.

From (7), we know that for any integer r,(
∑

m∈M
α({m}){m}

)r

≤
(
∑

m∈M
α({m}){m}

)h

≤ ∑
m∈M

∑
A∈U({m})

α(A)A.

Then for any m ∈ M,A ∈ U(m), there exists an item α(B)B in
(∑m∈M α({m}){m})|M| such that α(B) =∩m∈Aα({m})⊇α(A), B =∪m∈A{m}⊇A.
This implies that (

∑
m∈M

α({m}){m}
)|M|

≥ ∑
m∈M

∑
A∈U({m})

α(A)A
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Therefore(
∑

m∈M

α({m}){m}
)|M|

=

(
∑

m∈M

α({m}){m}
)h

= ∑
m∈M

∑
A∈U({m})

α(A)A.

Let (
∑

m∈M

α({m}){m}
)h

= ∑
m∈M

∑
A∈U({m})

α(A)A =∑
j∈J

a jA j,

and ∑ j∈J a jA j is ECII irreducible. Since for any concept (α(A),A) of
the context (G,M, I), α(A)A is an item in ∑m∈M∑A∈U({m})α(A)A and
∑m∈M∑A∈U({m})α(A)A = ∑ j∈J a jA j. Then for any concept (α(A),A) there exists
j ∈ J, such that α(A)⊆ a j = α(A j), A ⊆ A j. By the properties of Galois connection
α,β in Lemma 8.1 and A ⊆ A j, we have α(A) ⊇ α(A j) = a j, α(A) = a j = α(A j),
A = β ·α(A) = β ·α(A j) = A j. Thus (α(A),A) ∈ {(a j,A j)| j ∈ J}. For any w ∈ J,
if (aw,Aw) is not a concept of the context (G,M, I), then Aw is a proper subset of
β (aw) = β ·α(Aw) and (aw,β (aw)) is a concept of the context (G,M, I). This im-
plies that awβ (aw) is an item in ∑m∈M∑A∈U({m})α(A)A. By Proposition 8.2, we
know that item awAw will be reduced and it cannot appear in ∑ j∈J a jA j. It is a con-
tradiction. Therefore {(a j,A j)| j ∈ J} is the set of all concepts of context (G,M, I)
except (X ,∅). 	

Theorem 8.5. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,≤)
be the ECII algebra of context (G,M, I). Let γ = ∑m∈M α({m}){m}. For an item
aA ∈ |γk| (|γk| defined by Definition 8.4), if |A| < k, then (a,A) is a formal concept
of the context (G,M, I), i.e., β (a) = A, α(A) = a, where k is any positive integer.

Proof. Assume that there exists an item aA∈ |γk| with |A|< k in |γk| such that (a,A)
isn’t a formal concept of the context (G,M, I). This implies that there exist B ⊆ M,
A ⊆ B and |B|= |A|+1 such that a =α(B). It is obvious that aB is an item in γ |A|+1.
By 5 of Proposition 8.6, one knows that γ |A|+1 ≤ γk. From Proposition 8.3, we know
there exist an item cC in γk such that a = α(B)⊆ c, A ⊆ B ⊆C. By Proposition 8.2,
item aA can be reduced and it contradicts aA ∈ |γk|. Therefore (a,A) is a concept of
the context (G,M, I). 	

In what follows, we discuss how to find concepts of a context using the above results.
The following theorem gives a very simple way to compute the power of an ECII
element.

Theorem 8.6. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,
≤) be the ECII algebra of the context (G,M, I). For any nonempty set C ⊆ M, let
γ = ∑m∈Cα({m}){m} and γk = ∑i∈I α(Ai)Ai,where k is a positive integer, k ≤ |C|.
Then

γ2k = ∑
i∈I,|Ai |<k

α(Ai)Ai +

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

,

where ∑i∈I,|Ai|=kα(Ai)Ai � ∅C, if there does not exist i ∈ I such that |Ai| = k.
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Proof. Let γk = ∑i∈I α(Ai)Ai = ∑i∈I,|Ai|<kα(Ai)Ai +∑i∈I,|Ai|=kα(Ai)Ai. Then

γ2k =

(
∑

i∈I,|Ai|<k

α(Ai)Ai + ∑
i∈I,|Ai|=k

α(Ai)Ai

)2

=

(
∑

i∈I,|Ai|<k

α(Ai)Ai

)2

+

(
∑

i∈I,|Ai|<k

α(Ai)Ai

)
∗
(
∑

i∈I,|Ai|=k

α(Ai)Ai

)

+

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

(8.11)

Because γ = ∑m∈Cα({m}){m}. For any set B ⊆ C, |B| < k, α(B)B is an
item in ∑i∈I,|Ai|<kα(Ai)Ai. Although α(B)B may be reduced by other items in
∑i∈I,|Ai|<kα(Ai)Ai, we always have α(B)B ≤ ∑i∈I,|Ai|<kα(Ai)Ai and

α(B)B + ∑
i∈I,|Ai|<k

α(Ai)Ai = ∑
i∈I,|Ai|<k

α(Ai)Ai. (8.12)

Similarly, since for every set B ⊆ C, |B| = k, B′B ≤ ∑i∈I,|Ai|=k A′
iAi and for any set

E ⊆ C, k ≤ |E| ≤ 2k, there exist F,H ⊆ C, |F | = |H| = k such that E = F ∪H.
By 4 of Proposition 8.3 and the facts α(F)F ≤ ∑i∈I,|Ai|=kα(Ai)Ai and α(H)H ≤
∑i∈I,|Ai|=kα(Ai)Ai, we have

α(E)E = α(F)∩α(H)F ∪H ≤
(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

,

α(E)E +

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

=

(
∑

i∈I,|Ai |=k

α(Ai)Ai

)2

. (8.13)

According to (8.11), (8.12) and (8.13), we have

γ2k =

(
∑

i∈I,|Ai|<k

α(Ai)Ai

)2

+

(
∑

i∈I,|Ai |=k

α(Ai)Ai

)2

= ∑
i∈I,|Ai|<k

α(Ai)Ai +

(
∑

i∈I,|Ai|=k

A′
iAi

)2

. 	


The above discussion shows that the algebra characteristics of the formal concepts
of a context can be explored by the ECII algebra of the context. For example, The-
orem 8.5, Theorem 8.6 and Proposition 8.6 can be applied to identify all formal
concepts of a context. For any context (G,M, I), let γ = ∑m∈M α({m}){m}. By
8 of Proposition 8.6, we know that |γ |M|| defined by Definition 8.4 is the set of
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all formal concepts of the context (G,M, I). Notice that there is only one formal
concept whose extent is ∅, i.e., ∅M for (G,M, I). In order to simplify the com-

putation of γ |M|, we compute (γ + ∅M)2, (γ + ∅M)4, (γ + ∅M)8,...,(γ + ∅M)2k
,

until 2k ≥ |M|. By 5 of Proposition 8.6, one knows that (γ + ∅M)n = γn + ∅M
for any positive integer n. So each item ∅A in γn can be reduced by ∅M and the
number of items of (γ + ∅M)n is much lower than γn. Let γk = ∑i∈I α(Ai)Ai =
∑i∈I,|Ai|<kα(Ai)Ai +∑i∈I,|Ai|=kα(Ai)Ai. According to Theorem 8.5 and Theorem
8.6, we know that for any formal concept (a,A), aA is in |∑i∈I,|Ai|<kα(Ai)Ai| if
|A| < k and aA is in |(∑i∈I,|Ai|=kα(Ai)Ai)2| if k ≤ |A| ≤ 2k, where k is a positive
integer. This fact and the following equation can further facilitate the computing,

γ2k = ∑
i∈I,|Ai |<k

α(Ai)Ai +

(
∑

i∈I,|Ai|=k

α(Ai)Ai

)2

.

Example 8.1 demonstrates how the detailed calculations are carried out.

Table 8.2 The Reduced Mushroom

m1 m2 m3 m4 m5
Mushroom 1 × ×
Mushroom 2 × × ×
Mushroom 3 × × ×
Mushroom 4 × × ×
Mushroom 5 × × ×
Mushroom 6 × ×
Mushroom 7 × × ×
Mushroom 8 × × ×
Mushroom 9 × × ×
Mushroom 10 × ×

Example 8.1. The Table 8.2 shows the reduced mushroom example database from
the UCI KDD Archive (http://kdd.ics.uci.edu) in [43]. Where m1: edible, m2: poi-
sonous, m3: cap shape:convex, m4: cap-shape: flat, m5: cap-surface:fibrous. Let
(G,M, I) be the context of Table 8.2, G = {1,2, ...,10}, M = {m1, m2, m3, m4,
m5}. Let us find all formal concepts of the context (G,M, I) by ECII algebra via
the computing on the power of the following γ .

γ = {1,2,3,4,5,6}{m1}+{7,8,9,10}{m2}+{1,2,5,6}{m3}
+{3,4,7,8,9,10}{m4}+{2,3,4,5,7,8,9}{m5} ∈ EIGM.

For any positive integer k > 1, let γk = ∑i∈I α(Ai)Ai = γk + γ̄k. Where γk =
∑i∈I|Ai|<kα(Ai)Ai, γ̄k = ∑i∈I|Ai|=kα(Ai)Ai.
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(γ+∅M)2 = {1,2,3,4,5,6}{m1}+{3,4,7,8,9,10}{m4}+{2,3,4,5,7,8,9}{m5}
+{1,2,5,6}{m1m3}+{2,3,4,5}{m1m5}+{3,4}{m1m4}
+{7,8,9,10}{m2m4}+{7,8,9}{m2m5}+{2,5}{m3m5}
+{3,4,7,8,9}{m4m5}+∅M.

(γ+∅M)4 = γ4 +∅M = γ2 +(γ̄2)2 +∅M

= {1,2,3,4,5,6}{m1}+{3,4,7,8,9,10}{m4}+{2,3,4,5,7,8,9}{m5}
+{1,2,5,6}{m1m3}+{2,3,4,5}{m1m5}+{7,8,9,10}{m2m4}+
{3,4,7,8,9}{m4m5}+{2,5}{m1m3m5}+{3,4}{m1m4m5}+
{7,8,9}{m2m4m5}+∅M

Since there does not exist item aA in γ4 such that |A| = 4, hence γ4 = ∅M and

(γ+∅M)8 = γ8 +∅M = γ4 +(γ4)2 +∅M = γ2 +(γ̄2)2 +∅M = (γ+∅M)4.

According to Theorem 8.5 and 8 of Proposition 8.6, all concepts of the context for
Table 8.2 are the items shown in the above (γ+∅M)4 except (X ,∅). It is the same
result as what has been obtained by the TITANIC algorithm presented in [43].

8.3 Concept Analysis via Rough Set and AFS Algebra

In this section, combining formal concept analysis (FCA) and AFS algebra, we pro-
pose AFS formal concept, which can be viewed as the generalization and develop-
ment of monotone concept proposed by Deogun and Saquer (2003) [8]. Moreover,
we show that the set of all AFS formal concepts forms a complete lattice. AFS
formal concept can be applied to represent the logic operations of queries in in-
formation retrieval. Furthermore, we present an approach to find the AFS formal
concepts whose intents (extents) approximate any fuzzy concepts in EM by virtue
of rough set theory.

The characteristic of concept lattice theory lies in reasoning on the possible at-
tributes of data sets [66]. Currently, FCA has been extended to other types for re-
quirements of real word applications, such as fuzzy concept lattice [2, 46], triadic
concept [57], monotone concept [8], variable threshold concept lattice [65], rough
formal concept [66], etc.

Rough set and FCA are related and complementary. In recent years, many efforts
have been made to compare and combine these two theories [61, 62, 64, 65]. The
combination of FCA and rough set theory provides some new approaches for data
analysis and knowledge discovery [44, 45, 55, 66].

In [8], Deogun and Saquer discussed some of limitations of Wille’s formal con-
cept [10] and proposed monotone concept. In Wille’s notation of concepts, only one
set is allowed as extent (intent). For many applications, it is necessary to allow in-
tents to be disjunction expression. Monotone concept is a generalization of Wille’s
notion of concept where disjunctions are allowed in the intent and set unions are
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allowed in the extent. This generalization allows an information retrieval query con-
taining disjunctions to be understood as the intent of a monotone concept whose
answer is the extent of that concept. In [44], by using rough set theory, Saquer and
Deogun formulated a general solution to find monotone concepts whose intents are
close to the query, and show how to find monotone concepts whose extents approx-
imate any given set of objects.

In this section, we propose AFS formal concept, which extend the Galois connec-
tion α,β of a context (X ,M, I) to the connection between two AFS algebra systems
(EM,∨,∧) and (E#X ,∨,∧). The intent of an AFS formal concept is an element of
the EI algebra (EM,∨,∧)—a kind of AFS algebra over M; correspondingly, the
extent of the AFS formal concept is an element of the E#I algebra (E#X ,∨,∧)—
another kind of AFS algebra over X . Where M is a set of elementary attributes on
X , EM is the set of attributes logically compounded by some elementary attributes
in M under logic operations ∨ and ∧ (i.e., “and ” and “or ”). Each element of EM
is called a complex attribute (or a fuzzy concept), and has definitely semantic inter-
pretation. The extent and intent of an AFS formal concept can uniquely determine
each other. Thus, the intent of an AFS formal concept not only generalizes that of
the formal concept, but also has a well-defined semantic interpretation.

In an information retrieval system, the logic relationships between queries are
usually expressed by logic connectives such as “and ” and “or ”. AFS formal con-
cepts can be used to represent the query with complex logic operations. When using
the information retrieval system, we often find that not all queries are exactly con-
tained in database, but some items close to those are enough to satisfy user’s need.
Thus, it is necessary to investigate how to approximate a complex attribute by AFS
formal concepts such that the intents of lower and upper approximating concept are
closely to the complex attribute underlying semantics.

In this section, first, FCA and rough set are briefly summarized. Monotone con-
cept is also introduced and studied. Second, AFS formal concept is proposed and
the mathematical properties of AFS formal concepts are discussed. Third, we show
that the set of all AFS formal concepts forms a complete lattice. Fourth, an approach
to approximate the element of the EM (E#X) is proposed.

8.3.1 Monotone Concept

Let us first recall monotone concept [8] and study the aspects which should be
improved in concept representation and approximation. In [8], Deogun and Sa-
quer introduced some notations as follows: (X ,M, I) is a context. Associating with
every set B ⊆ M, a Boolean conjunctive expression B̂ is the conjunction of the
elements of B. For example, if B = {a,b,c}, then the associated Boolean con-
junctive expression is B̂ = a∧ b∧ c. A disjunction of Boolean conjunctive expres-
sions is referred to as a monotone Boolean formula. If B̂1, B̂2, ..., B̂n are Boolean
conjunctive expressions, then F = B̂1 ∨ B̂2 ∨ ... ∨ B̂n =

∨n
i=1 B̂i is monotone for-

mula. For example, let B1 = {a,b,c}, B2 = {a,d}, then B̂1 = a∧b∧ c, B̂2 = a∧d,
F = B̂1∨ B̂2 = (a∧b∧c)∨(a∧d) is monotone formula. For simplicity, F would be
written as abc∨ad [44].
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Definition 8.5. ([8]) Let (X ,M, I) be a context. For the monotone formula F =
∨n

i=1B̂i, Bi ⊆ M, δ (F) is defined as the set of all objects that satisfy F , that is,
δ (F) = ∪n

i=1δ (B̂i) ⊆ X , where δ (B̂i) is the set of all objects that satisfy B̂i . For
A = ∪n

j=1A j, define γ(A) to be ∨n
j=1γ(A j) ⊆ M, where A j ⊆ X , γ(A j) is defined to

be the Boolean conjunctive expression associated with β (A j), “β” is Galois con-
nection.

Example 8.2. Let X = {1,2, ...,13} and M = {a,b,c,d,e, f ,h, i, j, l,x} be the set of
attributes on X . The context (X ,M, I) is shown as Table 8.3. Assume that the mono-
tone formula F = B̂1 ∨ B̂2 = abc∨ lx, A = ∪3

i=1Ai = {4,6}∪{6,7}∪{5}. By Defi-
nition 8.5, we have the following δ (F) and γ(A).

δ (F) = δ (B̂1)∪δ (B̂2) = {4}∪{6}= {4,6},
γ(A) = ∨3

i=1γ(Ai) = e f hl ∨ f hi jx∨ cde f hix.

Table 8.3 Relationship between objects and attributes [44]

a b c d e f h i j k l x
1 ×
2 × × ×
3 × ×
4 × × × × × × × ×
5 × × × × × × ×
6 × × × × × × × ×
7 × × × × ×
8 × × × × ×
9 × × × ×

10 × × × × ×
11 × ×
12 × × × × × × ×
13 × × × × × × ×

Definition 8.6. ([8]) Let (X ,M, I) be a context, Ai ⊆ X ,B j ⊆ M, 1 ≤ i, j ≤ n. A pair
(A,F) where A = ∪n

i=1Ai, F = ∨n
j=1B̂ j is monotone concept if δ (F) = A, γ(A) = F .

A is called its extent of the monotone concept (A,F), F its intent of the monotone
concept (A,F). Where B j is the set of features associated with B̂ j, and for each Ai,
there exists a B j such that (Ai,B j) is a formal concept.

A monotone formula F is called feasible if it is the intent of a monotone concept;
otherwise, F is called non-feasible. Similarly, A ⊆ X is called feasible if it is the
extent of a monotone concept; otherwise, A is called non-feasible. For instance,
assume F = e f ∨ f hix, A = {4,5,6,8,10,12,13}∪ {5,6,7,12,13} in Table 8.3 of
Example 8.2. One can verify that δ (F) = {4,5,6,8,10,12,13}∪{5,6,7,12,13}=
A, and γ(A) = e f ∨ f hix = F . Hence (A,F) is a monotone concept, and A, F are
feasible. If F = B̂1 ∨ B̂2 = abc∨ lx, A = {4,6,7}. According to Table 8.3, we have
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δ (F) = δ (B̂1)∪ δ (B̂2) = {4,6} �= A, γ(δ (F)) �= F , δ (γ(A)) �= A. (A,F) is not a
monotone concept, and A, and F are non-feasible.

Although the monotone concept overcomes some limitations of the Wille’s for-
mal concept [10], there remain two aspects that could be improved:

1) In monotone concept, intent and extent may not uniquely determine each
other. In Example 8.2, according to Table 8.3 and Definition 8.6, we know that
({4,5,6,7,8,10,12,13}, abcde f hl∨ e f ∨ f hix) is a monotone concept which is
different from ({4,5,6,7,8,10,12,13},e f ∨ f hix), but their extents are identical.

2) Consider {4},{4,5,6,8,10,12,13},{5,6,7,12,13} and abcde f hl, f hix,e f in
Table 8.3. It is easy to verify that {4}∪{4,5,6,8,10,12,13}∪{5,6,7,12,13}=
{4,5,6,7,8,10,12,13}, and ({4,5,6,7,8,10,12,13},abcde f hl∨ e f ∨ f hix) is a
monotone concept. If considering abcde f hl, e f and f hix as query words in an in-
formation retrieval system, we can find that abcde f hl∨ e f ∨ f hix represents the
logical relations “or ” among them. Notice {e, f} ⊂ {a,b,c,d,e, f ,h, l}. Thus,
if one object satisfies the condition expressed by abcde f hl, then it must satisfy
that expressed by e f , i.e., abcde f hl is redundant when abcde f hl ∨ e f ∨ f hix
forms a query. In other words, the queries abcde f hl ∨ e f ∨ f hix and e f ∨ f hix
are equivalent in semantics. However, they are intents of different monotone con-
cepts defined by Definition 8.6.

In [44], Saquer and Deogun gave a general solution to find monotone concepts
whose intents are close to the queries, and show how to find monotone concepts
whose extents approximate any given set of objects. However, it seems that the
following aspects of extents and intents approximations could be developed.

i) Let D be a set of objects. In [44], D is written as the union of the maxi-
mal extents of formal concepts that are contained in D and, possibly, a subset
containing whatever elements remain in D. For example, the non-feasible ob-
ject set {4,5,6,7} is written as {4,6}∪ {6,7}∪ {5}. But it is also reasonable
in practice to write it down as {4}∪{4,6}∪{6,7}∪{5}. For instance, similar
expressions have existed in [44] (see L(ψ) in Example 8.3). Accordingly, both
({4,5,6,7,12,13},e f hl ∨ f hi jx ∨ cde f hix) and ({4,5,6,7,12,13},abcde f hl∨
e f hl ∨ f hi jx ∨ cde f hix) could be the upper approximation monotone concepts
of {4,5,6,7} in Table 8.3.
ii) When approximating D = {2,3,4,5,6,7,8,9,10,11,12,13} in Table 8.3, one
can get an approximation of the monotone concept (D, f ) by using the approxi-
mation method presented in [44]. However, we can verify that (D,cd f ∨e f ∨ f h)
is also a monotone concept which is another approximation monotone concept
of D.

In order to deal with these problems, in the sequel we propose the AFS formal
concept.

8.3.2 AFS Formal Concept

In this section, we propose AFS formal concept in which the Galois connec-
tion “α,β” of context (X ,M, I) [10] can be extended to the connection between
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the EI algebra (EM,∨,∧) and the E#I algebra (E#X ,∨,∧) as follows: for any
∑i∈I(∏m∈Ai

m) ∈ EM, ∑ j∈J a j ∈ E#X ,

α

(
∑
i∈I

(
∏

m∈Ai

m

))
=∑

i∈I
α(Ai) ∈ E#X , (8.14)

β

(
∑
j∈J

a j

)
=∑

j∈J

⎛
⎝ ∏

m∈β (a j)
m

⎞
⎠ ∈ EM. (8.15)

For any A⊆M,a⊆ X , we notice that α(∏m∈A m) =α(A),β (a) =∏m∈β (a) m, which
are the same as the Galois connection “α,β” defined by (8.1) and (8.2). Thus the
conventional formal concept lattice [10] can be explored in a more general mathe-
matical framework—the AFS formal concept lattice.

In what follows, we denote the subsets of X with the lower case letters and the
subsets of M with the capital letters, in order to distinguish the subsets of X from
those of M.

Theorem 8.7. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over M and E#X be the E#I algebra over X. Then
the following assertions hold:

(1) α , β are maps, where α,β are defined by (8.14) and (8.15).

(2) For any ζ , η ∈ EM, ν , ς ∈ E#X,

α(ζ ∨η) = α(ζ )∨α(η), α(ζ ∧η) = α(ζ )∧α(η),
β (ν ∨ ς) = β (ν)∨β (ς), β (ν ∧ ς) ≤ β (ν)∧β (ς).

(3) For any ζ , η ∈ EM, ν , ς ∈ E#X,

ζ ≤ η ⇒ α(ζ ) ≤ α(η),
ν ≤ ς ⇒ β (ν) ≤ β (ς).

(4) For any ζ ∈ EM, ς ∈ E#X,
ζ ≥ β (α(ζ )), α(ζ ) = α(β (α(ζ ))),
ς ≤ α(β (ς)), β (ς) = β (α(β (ς))).

Proof. (1) Suppose ζ = ∑i∈I(∏m∈Ai
m), η = ∑ j∈J(∏m∈B j

m) ∈ EM, ζ = η . That
is, ∀Ai (i ∈ I), ∃Bk (k ∈ J) such that Ai ⊇ Bk and ∀B j ( j ∈ J), ∃Al (l ∈ I) such that
B j ⊇ Al . This implies that ∀α(Ai) (i ∈ I), ∃α(Bk) (k ∈ J) such that α(Ai) ⊆ α(Bk)
and ∀α(B j) ( j ∈ J), ∃α(Al) (l ∈ I) such that α(B j) ⊆ α(Al). Therefore

α

(
∑
i∈I

(
∏

m∈Ai

m

))
=∑

i∈I
α(Ai) =∑

j∈J
α(B j) = α

(
∑
j∈J

(
∏

m∈B j

m

))

and α is a map. Similarly, we can prove that β is also a map.
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(2) α(ζ ∨η) = α(ζ )∨α(η) and β (ν ∨ ς) = β (ν)∨β (ς) can be directly ver-
ified by (8.14) and (8.15). Let ζ = ∑i∈I(∏m∈Ai

m), η = ∑ j∈J(∏m∈B j
m) ∈ EM,

ν =∑i∈I ai, ς = ∑ j∈J b j ∈ E#X .

α(ζ ∧η) = α

(
∑

i∈I, j∈J

(
∏

m∈Ai∪B j

m

))
= ∑

i∈I, j∈J
α(Ai ∪B j)

= ∑
i∈I, j∈J

α(Ai)∩α(B j) = α(ζ )∧α(η).

β (ν ∧ ς) = β

(
∑

i∈I, j∈J
ai ∩b j

)
= ∑

i∈I, j∈J
β (ai ∩b j).

For any i ∈ I, j ∈ J, since β (ai∩b j)⊇ β (ai), β (ai∩b j)⊇ β (b j), hence β (ai∩b j)⊇
β (ai)∪β (b j). This implies that

β (ν ∧ ς) = ∑
i∈I, j∈J

( ∏
m∈β (ai∩b j)

m) ≤ ∑
i∈I, j∈J

( ∏
m∈β (ai)∪β (b j)

m)

=

(
∑
i∈I

( ∏
m∈β (ai)

m)

)
∧
⎛
⎝∑

j∈J
( ∏

m∈β (b j)
m)

⎞
⎠= β

(
∑
i∈I

ai

)
∧β
(
∑
j∈J

b j

)
.

(3) It can be directly verified by Theorem 4.1 and Theorem 5.24 and the proper-
ties of the Galois connection in Proposition 8.1.

(4) For ζ = ∑i∈I(∏m∈Ai
m) ∈ EM, since for any i ∈ I, Ai ⊆ β ·α(Ai), α(Ai) =

α ·β ·α(Ai), hence

β (α(ζ )) = β

(
∑
i∈I

α(Ai)

)
=∑

i∈I

( ∏
m∈β ·α(Ai)

m) ≤∑
i∈I

(∏
m∈Ai

m),

α(β (α(ζ ))) =∑
i∈I
α ·β ·α(Ai) =∑

i∈I
α(Ai) = α(ζ ).

For ν =∑i∈I ai ∈ E#X , since for any i ∈ I, ai ⊆ α ·β (ai), β (ai) = β ·α ·β (ai), hence

α(β (ν)) = α

(
∑
i∈I

( ∏
m∈β (ai)

m)

)
=∑

i∈I

α ·β (ai) ≥∑
i∈I

ai,

β (α(β (ν))) =∑
i∈I
β ·α ·β (ai) =∑

i∈I
β (ai) = β (ν).

The proof is complete. 	

Definition 8.7. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over M and E#X be the E#I algebra over X . Let ζ =
∑i∈I(∏m∈Ai

m) ∈ EM, ν ∈ ∑ j∈J a j ∈ E#X . (ν , ζ ) is called an AFS formal concept
of the context (X ,M, I), if α(ζ ) = ν , β (ν) = ζ . ν is called the extent of the AFS
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formal concept (ν , ζ ) and ζ is called the intent of the AFS formal concept (ν , ζ ).
L (E#X ,EM, I) is the set of all AFS formal concepts of the context (X ,M, I).

In virtue of the semantics of each element in EM demonstrated in the previous
chapters, we know the complex attributes in EM are much richer in expressions than
the attributes in 2M. In real world situations, many phenomena can be described by
AFS formal concepts. For example, it is necessary to allow a query containing few
search conditions when we use an information retrieval system. The relationships
among the search conditions are usually “or ” and “and ” logic expression. Thus
the query can be represented by the intent of an AFS formal concept. For example,
ab + bcd + e + hi in Table 8.3 can be used to represent the query “ab OR bcd OR
e OR hi”. The answer to query can be represented by the extent of an AFS formal
concept.

Definition 8.8. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context, EM be the EI algebra over M and E#X be the E#I algebra over X . ζ =
∑i∈I(∏m∈Ai

m)∈EM, ν =∑ j∈J a j ∈E#X , if β (α(ζ )) �= ζ , ζ is called a non-feasible
fuzzy concept. If α(β (ν)) �= ν , ν is called a non-feasible E#I element.

For example, let ζ = ab + f in Table 8.3. Due to β · α({a,b}) = β ({4}) =
{a,b,c,d,e, f ,h, l} �= {a,b}, β ·α({ f}) = f . Then, β (α(ζ )) �= ζ , ζ is non-feasible.

Lemma 8.4. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context. Then the following assertions hold:

(1) For any (ν,ζ ) ∈ L (E#X ,EM, I), let ν = ∑i∈I ai, ζ = ∑ j∈J(∏m∈A j
m). If

∑ j∈J(∏m∈A j
m) and ∑i∈I ai are irreducible, then |I| = |J| (|I| denotes the car-

dinality of I) and for any i ∈ I, j ∈ J, A j is the intent of a formal concept of
(X ,M, I), ai is the extent of a formal concept of (X ,M, I).

(2) Let ν =∑i∈I ai ∈ E#X, ζ =∑ j∈J(∏m∈A j
m) ∈ EM, and ∑i∈I ai, ∑ j∈J(∏m∈A j

m)
be irreducible. If for any j ∈ J, A j is the intent of a formal concept of context
(X ,M, I), then (α(ζ ),ζ ) ∈ L (E#X ,EM, I). If for any i ∈ I, ai is the extent of a
formal concept of context (X ,M, I), then (ν,β (ν)) ∈ L (E#X ,EM, I).

Proof. (1) Assume |I| �= |J|. Without loss of generality, let |I| < |J|. By the fact that
(ν,ζ ) is an AFS formal concept (Definition 8.7), we know that β (ν) = ζ and the
cardinality of β (ν) is |I|. Since |I| < |J|, hence ∑ j∈J(∏m∈A j

m) is not irreducible,
which contradicts the fact that ∑ j∈J(∏m∈A j

m) is irreducible.
Next, we will prove for any j ∈ J, A j is the intent of a formal concept of (X ,M, I)

and ai is an extent of some formal concept with an intent in {A j | j ∈ J}. By Def-
inition 8.7, we have β (α(ζ )) = ζ , α(β (ν)) = ν . This implies that there exists a
bijection p from I to J such that for any i ∈ I, β (ai) = Ap(i). Since α(β (ν)) = ν ,
then

α(β (ν)) = α

⎛
⎝∑

i∈I
( ∏

m∈Ap(i)

m)

⎞
⎠=∑

i∈I
α(Ap(i)) =∑

i∈I
ai.



8.3 Concept Analysis via Rough Set and AFS Algebra 327

If there exists i ∈ I such that α(Ap(i)) = α(β (ai)) �= ai, which means there exists ak,
i �= k, such that α(Ap(i)) = α(β (ai)) = ak. By the properties of Galois connection
“α,β”, we have ak =α(β (ai))⊇ ai. It contradicts the fact that∑i∈I ai is irreducible.
Thus, α(Ap(i)) = α(β (ai)) = ai and (ai,Ap(i)) is a concept of context (X ,M, I).

(2) One can directly verify that (α(ζ ),ζ ) is an AFS formal concept of the context
(X ,M, I) by Definition 8.7, (8.14) and (8.15). Similarly, the second conclusion holds
as well. 	

Theorem 8.8. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context and L (E#X ,EM, I) be the set of all AFS formal concepts of the context
(X ,M, I). Then, for any (ν,ζ ) ∈ L (E#X ,EM, I), ν and ζ are uniquely determined
by each other.

Proof. Let ν = ∑i∈I ai ∈ E#X , ζ = ∑ j∈J(∏m∈A j
m) ∈ EM. Without loss of gen-

erality, let ∑i∈I ai and ∑ j∈J(∏m∈A j
m) be irreducible. By the Lemma 8.4, we get

|I|= |J|. For simplicity, let I = J. Assume that ν and ζ are not uniquely determined
by each other. Then, for ν , there exists ρ = ∑k∈I(∏m∈Bk

m) ∈ EM (ρ �= ζ ) such
that (ν,ρ) ∈ L (E#X ,EM, I). Thus, there is at least one i0 ∈ I such that Ai0 �= Bi

for any i ∈ I. From the Lemma 8.4 and Definition 8.7, we get that there exist k ∈ I,
j ∈ I such that (ak,Ai0), (ak,B j) are formal concepts of the context (X ,M, I), then
ai0 is not an extent of a formal concept, which contradicts to (ν,ζ ) is an AFS
formal concept (by Lemma 8.4). Similarly, for ζ , there exists unique ν such that
(ν,ζ ) ∈L (E#X ,EM, I). 	

Definition 8.9. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context and L (E#X ,EM, I) be the set of all AFS formal concepts of the context
(X ,M, I). Let (ν1,ζ1),(ν2,ζ2) ∈ L (E#X ,EM, I). Define (ν1,ζ1) ≤ (ν2,ζ2) if and
only if ν1 ≤ ν2 in lattice E#X (or equivalently ζ1 ≤ ζ2 in lattice EM).

It is obvious that ≤ defined by Definition 8.9 is a partial order on L (E#X ,EM, I).
The following theorem shows that the set L (E#X ,EM, I) forms a complete lattice.

Theorem 8.9. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context and L (E#X ,EM, I) be the set of all AFS formal concepts of the context
(X ,M, I). Then L (E#X ,EM, I,≤) is a complete lattice in which suprema and infima
are given as follows: for any (νk,ζk) ∈ L (E#X ,EM, I),

∨
k∈K

(νk,ζk) =

(∨
k∈K

α(ζk), β

(∨
k∈K

α(ζk)

))
, (8.16)

∧
k∈K

(νk,ζk) =

(∧
k∈K

α(ζk), β

(∧
k∈K

α(ζk)

))
, (8.17)

where k ∈ K, K is any non-empty indexing set.

Proof. In order to show that L (E#X ,EM, I,≤) is a complete lattice, we need
to show that any subset of L (E#X ,EM, I) has a least upper bound (suprema)
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and a greatest lower bound (infima). Let S = {(νk,ζk) | k ∈ K} be any subset of
L (E#X ,EM, I). Let ζk =∑sk∈Jk

(∏m∈Aksk
m),k ∈ K, Jk be the indexing set associat-

ing to ζk. We claim,

suprema =

(∨
k∈K

α(ζk), β

(∨
k∈K

α(ζk)

))
,

in f ima =

(∧
k∈K

α(ζk), β

(∧
k∈K

α(ζk)

))
.

First, we show that suprema = (
∨

k∈K α(ζk), β (
∨

k∈K α(ζk))). By Theorem 8.7,
we have

α

(
β

(∨
k∈K

α(ζk)

))

= α

⎛
⎝β
⎛
⎝∑

k∈K

α

⎛
⎝ ∑

sk∈Jk

( ∏
m∈Aksk

m)

⎞
⎠
⎞
⎠
⎞
⎠= α

⎛
⎝∑

k∈K

β

⎛
⎝α
⎛
⎝ ∑

sk∈Jk

( ∏
m∈Aksk

m)

⎞
⎠
⎞
⎠
⎞
⎠

= ∑
k∈K
∑

sk∈Jk

α

⎛
⎝β
⎛
⎝α
⎛
⎝ ∏

m∈Aksk

m

⎞
⎠
⎞
⎠
⎞
⎠= ∑

k∈K
∑

sk∈Jk

α

⎛
⎝ ∏

m∈Aksk

m

⎞
⎠

= ∑
k∈K

α

⎛
⎝ ∑

sk∈Jk

∏
m∈Aksk

m

⎞
⎠=

∨
k∈K

α(ζk).

This implies (
∨

k∈K α(ζk),β (
∨

k∈K α(ζk))) ∈ L (E#X ,EM, I), i.e., it is an AFS
formal concept. Moreover, for any k ∈ K, νk = α(ζk) ≤ ∨k∈K α(ζk) holds. Fur-
thermore, (

∨
k∈K α(ζk), β (

∨
k∈K α(ζk))) is an upper bound for S. Let (ν,ζ ) ∈

L (E#X ,EM, I) and for any k ∈ K, (νk,ζk) ≤ (ν,ζ ), i.e., (ν,ζ ) is another up-
per bound for S. It is easy to get νk = α(ζk) ≤ ν for any k ∈ K. Therefore,
∨k∈Kα(ζk) ≤ ν and (

∨
k∈K α(ζk), β (

∨
k∈K α(ζk))) ≤ (ν,ζ ), i.e.,

suprema =

(∨
k∈K

α(ζk), β

(∨
k∈K

α(ζk)

))
.

Next, we show that in f ima = (
∧

k∈K α(ζk), β (
∧

k∈K α(ζk))). Since E#X is a
complete distributive lattice according to Theorem 5.2. Hence for any k ∈ K, one
has ∧

k∈K

α(ζk) = ∑
f∈Θ

⋂
k∈K

α(Ak f (k))

whereΘ = { f | f : K →⋃
k∈K Jk s.t. f (k) ∈ Jk}. Thus by the definitions of α,β (i.e.,

(8.14) and (8.15)), we have
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α

(
β

(∧
k∈K

α(ζk)

))

= α

(
β

(
∑
f∈Θ

⋂
k∈K

α(Ak f (k))

))
= α

(
β

(
∑
f∈Θ
α

(⋃
k∈K

Ak f (k)

)))

= α

⎛
⎝∑

f∈Θ
∏

m∈β ·α(⋃k∈K Ak f (k))
m

⎞
⎠= ∑

f∈Θ
α ·β ·α

(⋃
k∈K

Ak f (k)

)

= ∑
f∈Θ
α

(⋃
k∈K

Ak f (k)

)
= ∑

f∈Θ

⋂
k∈K

α(Ak f (k)) =
∧
k∈K

α(ζk).

This shows (
∧

k∈K α(ζk), β (
∧

k∈K α(ζk))) ∈ L (E#X ,EM, I), i.e., it is an AFS
formal concept. Moreover, for any k ∈ K,

∧
k∈K α(ζk) ≤ νk = α(ζk) holds, so

(
∧

k∈K α(ζk), β (
∧

k∈K α(ζk))) is a lower bound for S. Let (ν,ζ ) ∈ L (E#X ,EM, I)
and for any k ∈ K, (νk,ζk) ≥ (ν,ζ ), i.e., (ν,ζ ) is another lower bound for S. This
implies that for any k ∈ K, νk = α(ζk) ≥ ν . Therefore, both

∧
k∈K α(ζk) ≥ ν and(∧

k∈K

α(ζk), β

(∧
k∈K

α(ζk)

))
≥ (ν,ζ )

hold, i.e., in f ima = (
∧

k∈K α(ζk),β (
∧

k∈K α(ζk))). 	

In an AFS formal concept, its intent is a complex attribute of EM; correspondingly,
its extent is an element of E#X . The extent and intent of an AFS formal concept can
uniquely determine each other. Given some extents a1,a2, ...,an of formal concept
[10], we can find a unique ζ ∈ EM, as the intent of the AFS concept with extent
∑n

i=1 ai. ζ is a semantic description of ∑n
i=1 ai. On the contrary, given some intents

A1,A2, ...,An of formal concept [10], we can find a unique ν ∈ E#X , as the extent of
the AFS concept with intent∑n

i=1(∏m∈Ai
m). ν is uniquely suitable to the description

of ∑n
i=1(∏m∈Ai

m).

Remark 8.1. By using AFS formal concepts, we can avoid the following two issues
discussed above.

1. In the AFS formal concept, intent and extent can be uniquely determined by
each other (Theorem 8.8), and there exists a bijection between each item of intent
and each item of extent (Lemma 8.4).

2. AFS formal concept is based on the EI algebra (EM,∨,∧) and the E#I algebra
(E#X ,∨,∧). In (EM,∨,∧), we can consider whether two complex attributes are
equivalent or not under the semantics (Definition 4.1)existing in an information
table. Thus we can filter some complex attributes without loss of main informa-
tion. For instance, let us continue discussing items {4}, {4,5,6,8,10,12,13},
{5,6,7,12,13} and abcde f hl,e f , f hix in Table 8.3. In terms of the AFS algebra,
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abcde f hl + e f + f hix = e f + f hix (Definition 4.1). Thus items {4}, {4, 5, 6, 8,
10, 12, 13}, {5,6,7,12,13} and abcde f hl,e f , f hix can consist of an AFS for-
mal concept ({4, 5, 6, 8, 10, 12, 13}+ {5,6,7,12,13}, e f + f hix). Moreover,
{5,6,7,12,13}∪ {4,5,6,8,10,12,13} is just identical with extent of ({4, 5, 6, 7,
8, 10, 12, 13}, abcde f hl ∨ e f ∨ f hix). Then, AFS formal concept have not lost a
crucial original information, although the intents of AFS formal concepts are usu-
ally simpler than those of monotone concepts. Thus AFS formal concept constitutes
an improvement of the monotone concept.

In general, not all queries are exactly contained in an information system, but there
exist many words (or phrases) close to those. For example, in Example 8.3, there
does not exist an AFS formal concept with intent f +cd, but AFS formal concepts
with intent e f + cd f and f h + cd f exist in information Table 8.3. Accordingly, we
study how to approximate a complex attribute in EM (or an element in E#X) by AFS
formal concepts. In next section, we will investigate this issue in terms of rough set
theory.

8.3.3 Rough Set Theory Approach to Concept Approximation

Let (X ,M, I) be a context. Inspired by [44], for each m ∈ M, denote set

Im = {x ∈ X | (x,m) ∈ I}

represent all objects that possess the attribute m. Define a binary relation RI over M
as follows, for any mi,m j ∈ M,

(mi,m j) ∈ RI ⇔ Imi = Im j. (8.18)

That is to say, two attributes are related under RI if and only if they are possessed by
the same object set. It is easy to demonstrate that RI is an equivalence relation over
M. Denote M/RI to be the set of all equivalence classes deduced by RI over M, i.e.,
M/RI = {[mi] | mi ∈ M}, where [mi] = {m j | (mi,m j) ∈ RI} = {m j | Imi = Im j}.

Similarity, we can define an equivalence relation TI over X :

(xi,x j) ∈ TI ⇔ xiI = x jI, (8.19)

where xi,x j ∈ X , xiI = {m ∈ M | (xi,m) ∈ I} represent all attributes which are pos-
sessed by the object xi. X/TI be the set of all equivalence classes deduced by TI over
X , i.e., X/TI = {[xi] | xi ∈ X}, where [xi] = {x j | (xi,x j) ∈ TI} = {x j | xiI = x jI}.

The lower and upper approximations of subset B of M in the approximation space
A = (M,RI) defined by (6.1) are listed as follows:

A∗(B) = {m ∈ M | [m] ⊆ B} =
⋃
{Y ∈ M/RI | Y ⊆ B}, (8.20)

A∗(B) = {m ∈ M | [m]∩B �= ∅} =
⋃
{Y ∈ M/RI | Y ∩B �= ∅}. (8.21)



8.3 Concept Analysis via Rough Set and AFS Algebra 331

Similarity, the lower and upper approximations of subset a of X in the approximation
space A = (X ,TI) defined by (6.1) are listed as follows:

A∗(a) = {x ∈ X | [x] ⊆ X} =
⋃
{z ∈ X/TI | z ⊆ a}, (8.22)

A∗(a) = {x ∈ X | [x]∩a �= ∅} =
⋃
{z ∈ X/TI | z∩a �= ∅}. (8.23)

Definition 8.10. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra over
the set X . For any ψ =∑i∈I(∏m∈Bi

m) ∈ EM, ψ the lower approximation and ψ the
upper approximation of the fuzzy concept ψ are given in the form:

ψ =∑
i∈I

( ∏
m∈A∗(Bi)

m) ∈ EM, ψ =∑
i∈I

( ∏
m∈A∗(Bi)

m) ∈ EM. (8.24)

For any θ =∑i∈I ai ∈ E#M, θ the lower approximation and θ the upper approxima-
tion of the E#I algebra element θ are defined as follows.

θ =∑
i∈I

A∗(ai) ∈ E#M, θ =∑
i∈I

A∗(ai)) ∈ E#M. (8.25)

Proposition 8.7. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then the following assertions hold.

(1) for any ψ1,ψ2,γ ∈ EM,

γ ≤ γ ≤ γ,
(ψ1 ∨ψ2) = (ψ1)∨ (ψ2) , (ψ1 ∨ψ2) = (ψ1)∨ (ψ2),

(ψ1 ∧ψ2) ≤ (ψ1)∧ (ψ2) , (ψ1 ∧ψ2) = (ψ1)∧ (ψ2).

(2) for any θ1,θ2,ϑ ∈ E#X,

ϑ ≤ ϑ ≤ ϑ ,

(θ1 ∨θ2) = (θ1)∨ (θ2) , (θ1 ∨θ2) = (θ1)∨ (θ2),

(θ1 ∧θ2) ≤ (θ1)∧ (θ2) , (θ1 ∧θ2) = (θ1)∧ (θ2).

Its proof is left to the reader. Whether the upper and lower approximations defined
by (8.24) and (8.25) have the same properties as the upper and lower approximation
defined by (6.1) remains an open problem.

Let (X ,M, I) be a context, M be set of elementary attributes, Bi ⊆ M, ψ =
∑i∈I(∏m∈Bi

m) ∈ EM be non-feasible, i.e., β (α(ψ)) �= ψ (Definition 8.8). We are
interested in finding AFS formal concepts whose intents approximate ψ . Let L(ψ)
and U(ψ) be two AFS formal concepts, whose intents are the lower and upper ap-
proximations of ψ respectively, as follows:
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L(ψ) =

(
∑
i∈I
α(A∗(Bi)), ∑

i∈I
∏

m∈β ·α(A∗(Bi))
m

)
∈ L (E#X ,EM, I), (8.26)

U(ψ) =

(
∑
i∈I

α(A∗(Bi)), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
∈ L (E#X ,EM, I). (8.27)

where A∗(Bi), A∗(Bi) defined by (8.20) and (8.21), respectively. “α,β” is Galois
connection defined by (8.1) and (8.2). The following Proposition 8.8 shows that
L(ψ) and U(ψ) are AFS formal concepts of the context (X ,M, I). L(ψ) is called the
lower AFS formal concept approximation of the fuzzy conceptψ and U(ψ) is called
the upper AFS formal concept approximation of the fuzzy concept ψ .

Proposition 8.8. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then for any ψ =∑i∈I(∏m∈Bi

m) ∈ EM, the following assertions hold for the
lower and upper AFS formal concept approximations of the fuzzy concept ψ:

L(ψ) =

(
∑
i∈I

α(A∗(Bi))), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
= (α(ψ),β ·α(ψ)),

U(ψ) =

(
∑
i∈I

α(A∗(Bi)), ∑
i∈I

∏
m∈β ·α(A∗(Bi))

m

)
= (α(ψ),β ·α(ψ)).

where α and β defined by (8.14) and (8.15), respectively. ψ andψ defined by (8.24).

The proof of this proposition remains as an exercise. By Proposition 8.8, Definition
8.7 and Theorem 8.7, we know that both L(ψ) and U(ψ) are AFS formal concepts
of the context (X ,M, I).

Proposition 8.9. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then the following assertions hold:

(1) For any ψ ∈ EM, L(ψ) ≤ (α(ψ),β (α(ψ))) ≤ U(ψ), where α,β defined by
(8.14) and ( 8.15);

(2) For ψ1,ψ2 ∈ EM, ψ1 ≤ ψ2 ⇒ L(ψ1) ≤ L(ψ2), U(ψ1) ≤U(ψ2),

where L(.) and U(.) are defined by (8.26) and (8.27), respectively.

Proof. (1) Let ψ = ∑i∈I(∏m∈Ai
m) ∈ EM. For any i ∈ I, we can get A∗(Ai) ⊆ Ai ⊆

A∗(Ai) from the formulas (8.20) and (8.21). By using properties of the Galois con-
nection “α,β” Proposition 8.1, we have α(A∗(Ai)) ⊇ α(Ai)⊇ α(A∗(Ai)). From the
definition of AFS formal concept (Definition 8.7) and the formulas (8.26)–(8.27),
we get L(ψ) ≤ (α(ψ),β (α(ψ))) ≤U(ψ).

(2) Let ψ1 = ∑ j∈J(∏m∈B j
m),ψ2 = ∑i∈I(∏m∈Ai

m) ∈ EM. Since ψ1 ≤ ψ2, hence
for any j ∈ J, there exists an i ∈ I such that Ai ⊆ B j. By proposition 6.1, A∗(Ai) ⊆
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A∗(B j). From the definition of AFS formal concept (Definition 8.7) and the formulas
(8.26)–(8.27), we get L(ψ2)≤ L(ψ1). Similarly, we obtain U(ψ2)≤U(ψ1). 	

In Example 8.3, we compare AFS formal concept approximations with results in
[44].

Example 8.3. Let X be a set and M be a set of attributes on X . Consider the context
(X ,M, I) given in Table 8.3. An “×” is placed in the p-th row and q-th column to
indicate that object p has attribute q. Let B = { f ,h, i}, from (8.18), (8.20) and (8.21),
one can get that M/RI = {ab,c,d,e, f ,h, ix, j,k, l}. In the approximation space A =
(X ,RI), A∗(B) = { f ,h}, A∗(B) = { f ,h, i,x}. Let ϕ = f hi ∈ EM. Then owing to
formulas (8.26)–(8.27), we have

L(ϕ) = ({5,6,7,12,13}, f hix),
U(ϕ) = ({2,3,4,5,6,7,8,11,12,13}, f h).

The authors in [44] gave an example on approximating a non-feasible monotone
formula in which ψ = ab∨ bcd ∨ e∨ hi∨ f hi. Due to α · β ({a,b}) = α({4}) =
{a,b,c,d,e, f ,h, l} �= {a,b}, ψ is non-feasible. L(ψ) and U(ψ) are computed as
illustrated in Table 8.4.

Table 8.4 The lower and upper approximation of ψ [44]

i Bi A∗(Bi) A∗(Bi) L(Bi) U(Bi)
1 {a,b} {a,b} {a,b} ({4}, abcde f hl) ({4}, abcde f hl)
2 {b,c,d} {a,b,c,d} {c,d} ({4}, abcde f hl) ({4,5,8,9,10,12,13}, cd f )
3 {e} {e} {e} ({4,5,6,8,10,12,13}, e f ) ({4,5,6,8,10,12,13}, e f )
4 {h, i} {h, i,x} {h} ({5,6,7,12,13}, f hix) ({2,3,4,5,6,7,8,11,12,13}, f h)
5 { f ,h, i} { f ,h, i,x} { f ,h} ({5,6,7,12,13}, f hix) ({2,3,4,5,6,7,8,11,12,13}, f h)

The authors concluded that

L(ψ) = ({4}∪{4,5,6,8,10,12,13}∪{5,6,7,12,13},
abcde f hl∨ e f ∨ f hix)

= ({4,5,6,7,8,10,12,13}, abcde f hl∨ e f ∨ f hix),

U(ψ) = ({4}∪{4,5,8,9,10,12,13}∪{4,5,6,8,10,12,13}
∪{2,3,4,5,6,7,8,11,12,13}, abcde f hl∨ cd f ∨ e f ∨ f h)

= ({2,3,4,5,6,7,8,9,10,11,12,13}, abcde f hl∨ cd f ∨ e f ∨ f h).

However, by using Definition 4.1, we find that in EM

abcde f hl + e f + f hix = e f + f hix,

abcde f hl + cd f + e f + f h = cd f + e f + f h.
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By Definition 5.3, we find that in E#X

{4}+{4,5,6,8,10,12,13}+{5,6,7,12,13}
= {4,5,6,8,10,12,13}+{5,6,7,12,13},

{4}+{4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}+{2,3,4,5,6,7,8,11,12,13}
= {4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}+{2,3,4,5,6,7,8,11,12,13}.

By the formulas L(ψ) and U(ψ), we can get that

L(ψ) = ({4}+{4,5,6,8,10,12,13}+{5,6,7,12,13},
abcde f hl + e f + f hix)

= ({4,5,6,8,10,12,13}+{5,6,7,12,13},e f + f hix),

and

U(ψ) = ({4}+{4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}
+{2,3,4,5,6,7,8,11,12,13},abcde f hl+ cd f + e f + f h)

= ({4,5,8,9,10,12,13}+{4,5,6,8,10,12,13}
+{2,3,4,5,6,7,8,11,12,13},cd f + e f + f h).

It is easy to verify that ψ , L(ψ), U(ψ) satisfy (1) of Proposition 8.9.

Remark 8.2. From Example 8.3, one can observe that the semantics of the intents
of the lower and upper approximations of ψ by AFS formal concepts are equivalent
to those of ψ by monotone concepts. However, the extents of them are different,
and the extents of AFS formal concepts preserve more information than those of
monotone concepts. In addition, the semantic equivalence and logic operations are
introduced in AFS formal concepts. These are more conveniently to represent the
logic operations of queries in information retrieval.

Let (X ,M, I) be a context, ai ⊆ X , θ = ∑i∈I ai ∈ E#X . We are interested in finding
AFS formal concepts whose extents approximate θ . Let L(θ ) and U(θ ) be two AFS
formal concepts, whose extents represent the lower and upper approximations of θ ,
respectively, as follows

L(θ ) =

(
∑
i∈I
α ·β (A∗(ai)), ∑

i∈I
∏

m∈β (A∗(ai))
m

)
∈ L (E#X ,EM, I), (8.28)

U(θ ) =

(
∑
i∈I
α ·β (A∗(ai)), ∑

i∈I
∏

m∈β (A∗(ai))
m

)
∈ L (E#X ,EM, I). (8.29)

where A∗(ai) and A∗(ai) defined by (8.22) and (8.23), respectively. “α,β” are Galois
connection defined by (8.14) and (8.15). The following Proposition 8.10 shows that
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L(θ ) and U(θ ) are AFS formal concepts of the context (X ,M, I). L(θ ) is called the
lower AFS formal concept approximation of the E#I algebra element θ and U(ψ) is
called the upper AFS formal concept approximation of the E#I algebra element θ .

Proposition 8.10. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X. Then for any θ = ∑i∈I ai ∈ E#X, the following assertions hold for the lower
and upper AFS formal concept approximations of θ :

L(ψ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
= (α ·β (θ), β (θ )),

U(ψ) =

(
∑
i∈I
α ·β (A∗(ai)), ∑

i∈I
∏

m∈β (A∗(ai))
m

)
= (α ·β (θ), β (θ )).

where α and β defined by (8.14) and (8.15), respectively. θ and θ defined by (8.25).

The proof of this proposition remains as an exercise. By Proposition 8.10, Definition
8.7 and Theorem 8.7, we know that both L(θ ) and U(θ ) are AFS formal concepts
of the context (X ,M, I).

Proposition 8.11. Let X be a set and M be a set of attributes on X. Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra over
the set X. Then the following assertions hold:

(1) For any θ ∈ E#X, L(θ ) ≤ (α · β (θ ), β (θ )) ≤ U(θ ), where α,β defined by
(8.14) and ( 8.15);

(2) For θ1,θ2 ∈ EM, θ1 ≤ θ2 ⇒ L(θ1) ≤ L(θ2), U(θ1) ≤U(θ2),

where L(.) and U(.) defined by (8.28) and (8.29), respectively.

Example 8.4. Let X be a set and M be a set of attributes on X . Consider the context
(X ,M, I) given in Table 8.3. From formula (8.19), one obtains

X/TI = {{1},{2},{3,11},{4},{5,12,13},{6},{7},{8},{9},{10}}.

Let θ = ∑i∈I ai = {2,3}+{4}+{5,6,7}∈ E#X . From formulas (8.22) and (8.23),
L(θ ) and U(θ ) are computed as presented in Table 8.5.

Table 8.5 The lower and upper approximation of θ

i ai A∗(ai) A∗(ai) L(ai) U(ai)
1 {2,3} {2} {2,3,11} ({2,4,5,8,12,13}, d f h) ({2,3,4,5,6,7,8,11,12,13}, f h)
2 {4} {4} {4} ({4}, abcde f hl) ({4}, abcde f hl)
3 {5,6,7} {6,7} {5,6,7,12,13} ({6,7}, f hi jx) ({5,6,7,12,13}, f hix)
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Therefore, from properties of EI, E#I algebra and the formulas (8.28)-(8.29), we
get

L(θ ) = ({2,4,5,8,12,13}+{4}+{6,7},d f h +abcde f hl+ f hi jx)
= ({2,4,5,8,12,13}+{6,7},d f h + f hi jx),

and

U(θ ) = ({2,3,4,5,6,7,8,11,12,13}+{4}+{5,6,7,12,13},
f h + abcde f hl + f hix)

= ({2,3,4,5,6,7,8,11,12,13}, f h).

Remark 8.3. The extent and intent of AFS formal concept can uniquely deter-
mine each other. Thus, concept approximation by AFS formal concepts can avoid
the issues i) and ii) stated in the abvoe section of monotone concepts and is
more conveniently for query. When approximating {2,3,4,5,6,7,8,11,12,13}+
{4,5,8,9,10,12,13}+ {4,5,6,8,10,12,13} by AFS formal concepts, we get that
({4,5,8,9,10,12,13}+ {4,5,6,8,10,12,13}+ {2,3,4,5,6,7,8,11,12,13},cd f +
e f + f h) instead of (D, f ), where D = {2,3,4,5,6,7,8,9,10,11,12,13}. When ap-
proximating D by AFS formal concepts, one also can obtain that (D, f ) by union all
of the items of extent of the AFS formal concept, which is the same as the approxi-
mation realized by monotone concepts.

In this section, the AFS formal concept is proposed, which can be more conveniently
applied to represent query in information retrieval systems than both the monotone
concept and the formal concept. The set of all AFS formal concepts forms a com-
plete lattice. Furthermore, by virtue of rough set theory, we discuss how to find AFS
formal concepts whose intents (extents) approximate a fuzzy concept in EM (or an
element of E#X). The examples and remarks demonstrate that not only the forms of
approximation results by using AFS formal concepts may be concise, but they do
not lead to any loss of crucial information. In this way, the AFS formal concepts can
be viewed as the generalization of the monotone concept and the formal concept.

8.4 AFS Fuzzy Formal Concept Analysis

In the above sections, the set M in any context (G,M, I) is a set of Boolean attributes
on X . However, in the real world applications the set M often represents a set of
fuzzy or Boolean attributes. Given this, in the this section, we show that any context
(G,M,I) with fuzzy attributes in M, where I stresses that there are fuzzy attributes
in M, can be described by an AFS structure. Let G be a set of objects and M be a set
of fuzzy or Boolean attributes. ∀g1,g2 ∈ G,τ is defined by

τ(g1,g2) = {m|m ∈ M,(g1,g2) ∈ Rm},

where (g1,g2) ∈ Rm (refer to Definition 4.2 )⇔ g1 belongs to attribute m at some
degree and the degree of g1 belonging to m is larger than or equal to that of g2, or
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g1 belongs to m at some degree and g2 does not at all. For a given context (G,M, I),
we can establish an AFS structure (M,τI ,G) according to (G,M, I) in the following
manner.

τI(g1,g2) = {m ∈ M|(g1,g2) ∈ Rm},
where for m ∈ M and binary relation I ⊆ G×M, g1 belongs to attribute m at some
degree which means that (g1,m) ∈ I. Since each m ∈ M, m is a Boolean attribute,
hence (g1,m) ∈ I implies that the degree of g1 belonging to m is larger than or equal
to that of g2 for any g2 ∈ G. Therefore

τI(g1,g2) = {m ∈ M|(g1,g2) ∈ Rm} = {m ∈ M|(g1,m) ∈ I}.

Now, we discuss the AFS formal concept analysis, in which M is a set of fuzzy
or Boolean attributes on X .

Definition 8.11. Let X , M be sets and (M,τ,X) be an AFS structure. A binary rela-
tion Iτ from X ×X to M is defined as follows: for (x,y) ∈ X ×X ,m ∈ M,

((x,y),m) ∈ Iτ ⇔ m ∈ τ(x,y). (8.30)

It is clear that (X ×X , M, Iτ ) is a formal context defined by [10]. The formal con-
text (X ×X ,M,Iτ ) is called the fuzzy context associating with the AFS structure
(M,τ,X).

Definition 8.12. Let X be a set and E#(X ×X) be the E#I algebra on X ×X . For any
a ⊆ X ×X , any x ∈ X , we define

aR(x) = {y ∈ X | (x,y) ∈ a} ⊆ X . (8.31)

For any γ = ∑i∈I ai ∈ E#(X ×X), the E#I algebra valued membership function γR :
X → E#X is defined as follows: for any x ∈ X ,

γR(x) =∑
i∈I

aR
i (x) ∈ E#X . (8.32)

By the fuzzy norm (5.24) with Mρ the measure shown as (5.16) for the function
ρ : X → [0,+∞), the membership function µγR(x) of γR is defined as follows: for
any x ∈ X ,

µγR(x) = ||γR(x)||ρ = sup
i∈I

{Mρ(aR
i (x))} ∈ [0,1]. (8.33)

Thus every γ ∈ E#(X ×X) can be regarded as a fuzzy set on X whose membership
functions are defined by (8.32) or (8.33).

Since E#X is a lattice, hence for each γ ∈ E#(X ×X), γR : X → E#X defined by the
formula (8.32) is a lattice valued fuzzy set. One can verify that for γ,η ∈ E#(X ×X),
if γ ≤ η in lattice E#(X ×X), then for any x∈ X , γR(x)≤ ηR(x) in lattice E#X . Thus
in (X ×X , M, Iτ ), the fuzzy context associated with the AFS structure (M,τ,X), for
each attribute η ∈ EM, α(η) is a fuzzy set on X with the membership functions
defined by (8.32) or (8.33), where “α” is the Galois connection defined by (8.15).
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Contrastively, for any γ ∈ E#(X × X) as a fuzzy set defined by (8.32) or (8.33),
β (γ) is an attribute in EM, where “β” is the Galois connection defined by (8.14).
If (γ,η) is an AFS formal concept defined by Definition 8.7, then the fuzzy set γ is
the extent of (γ,η) and the attribute η , which is the AFS logic combination of the
simple attributes in M and has a definitely semantic interpretation, is the intent of
(γ,η).

Theorem 8.10. Let X be a set and M be a set of simple attributes on X. Let (M,τ,X)
be an AFS structure in which for any x,y ∈ X,τ(x,y) = {m ∈ M | (x,y) ∈ Rm} (re-
fer to (4.26)) and (X ×X, M, Iτ) be the fuzzy context associating with (M,τ,X).
Then for ζ ,ς ∈ EM, if β (α(ζ )) = β (α(ς)),i.e., both β (α(ζ )) and β (α(ς)) are
the intent of an AFS formal concept, then ∀x ∈ X, ζ (x) = ς(x) and µζ (x) = µς (x),
where “α,β” are the Galois connections defined by (8.14) and (8.15); for any fuzzy
attribute γ = ∑u∈U(∏m∈Cu m) ∈ EM,γ(x) = ∑u∈U Cτu (x) ∈ E#X is the E#I valued
membership function of γ defined by (5.13) and µγ (x) = ||∑u∈U Cτu(x)||ρ ∈ [0,1] is
the membership function of γ defined by (5.25) for the fuzzy norm (5.24) with Mρ
the measure shown as (5.16) for the function ρ : X → [0,+∞).

Proof. According to the definitions of (X ×X ,M,Iτ) and the Galois connection α ,
for any m ∈ M, we have

α({m}) = {(x,y) ∈ X ×X | m ∈ τ(x,y)}.

By Proposition 8.1 and (8.32), we can verify that for any A ⊆ M, any x ∈ X ,

α(A)R(x) =

(⋂
m∈A

α({m})
)R

(x)

=

(⋂
m∈A

{(x,y) ∈ X ×X | m ∈ τ(x,y)}
)R

(x)

= ({(x,y) ∈ X ×X |A ⊆ τ(x,y)})R(x). (8.34)

By (4.27) and (8.31), we have

({(x,y) ∈ X ×X |A ⊆ τ(x,y)})R(x) = Aτ(x). (8.35)

Furthermore for any γ = ∑u∈U(∏m∈Cu m) ∈ EM and any x ∈ X , from (8.35) and
(8.32), one has

α(γ)R(x) = ∑
u∈U

α(Cu)R(x) = ∑
u∈U

Cτu(x) = γ(x) (8.36)

That is the E#I valued membership function of the fuzzy attribute γ defined by
(5.13). For ζ ,ς ∈ EM, if β (α(ζ )) = β (α(ς)), then

α(ζ ) = α(β (α(ζ ))) = α(β (α(ς))) = α(ς).
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It follows from (8.36) that for any x ∈ X ,

ζ (x) = α(ζ )R(x) = α(ς)R(x) = ς(x),

Since ||.|| is a fuzzy norm on the lattice E#X , we have

µζ (x) = ||ζ (x)||ρ = ||ς(x)||ρ = µς (x). 	


Assume that each attribute in M is a Boolean attribute on X . For any m ∈ M, let
Rm be the binary relation of m defined by Definition 4.2. Since m ∈ M is Boolean
concept, hence for any x ∈ X , either (x,y) ∈ Rm for any y ∈ X or (x,y) /∈ Rm for
any y ∈ X . By (8.31), one has that for any m ∈ M, any x ∈ X , either {m}R(x) = X
or {m}R(x) = ∅. This implies that for any A ⊆ M, any x ∈ X , either AR(x) = X
or AR(x) = ∅. Further, by (8.32) and (8.33), for any ζ ∈ E#(X ×X), any x ∈ X ,
either ζR(x) = X or ζR(x) = ∅, and either µζR(x) = 1 or µζR(x) = 0, i.e., µζR(x)
is the characteristic function of a Boolean set Cζ ⊆ X . Proposition 4.3 has showed

that the AFS logic system (EM,∨,∧,
′
) will degenerate into Boolean logic system

(2X ,∪,∩,
′
) if every attribute in M is a Boolean attribute. Therefore if each m ∈ M

is a Boolean attribute, then the AFS formal concept lattice of an AFS structure
(M,τ,X) will degenerate into the formal concept lattice of context (X ,M, I), where
for x ∈ X and m ∈ M, (x,m) ∈ I ⇔ ((x,y),m) ∈ Iτ for any y ∈ X ⇔ (x,y) ∈ Rm for
any y∈ X ⇔ x has attribute m (refer to Definition 4.2). For each AFS formal concept
(γ,η), the intent η = ∑i∈I(∏m∈Ai

m) ∈ EM corresponds to the disjunctive normal
form of a monotone Boolean formula

∨
i∈I Ai, where each ∏m∈Ai

m is a Boolean
conjunctive expression

∧
a∈Ai

a, and the extent γ ⊆ X is

γ = α(η) =
⋃
i∈I

⋂
a∈Ai

α(a).

For instance, in Example 8.1, for instance, the attribute ξ = m1 + m2m4 + m4m5 ∈
EM read as “edible” or “poisonous and cap-shape” or “cap-shape and cap-surface:
fibrous”. According to Table 8.2, we know that {m1}, {m2,m4} and {m4,m5} are all
intents of some concepts of the context (G,M, I). From Lemma 8.4, one has that(

α({m1})+
(
α({m2})

⋂
α({m4})

)
+
(
α({m4})

⋂
α({m5})

)
, ξ
)

is an AFS formal concept of the context (X ,M, I). The following Example 8.5
demonstrates how to implement AFS fuzzy formal concept analysis for a data with
both fuzzy and Boolean attributes.

Example 8.5. Let X = {x1,x2, ...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table 8.6; there the number i in the “hair color” columns which corre-
sponds to some x ∈ X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {m1,m2, ..., m10} be
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Table 8.6 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male f emale black white yellow

x1 20 1.9 90 1 0 1 0 6 1 4
x2 13 1.2 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 1.4 54 15 2 1 0 5 2 2
x6 37 1.6 80 80 28 0 1 6 1 4
x7 45 1.7 78 268 90 1 0 1 6 4
x8 70 1.65 70 30 45 1 0 3 4 2
x9 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3

the set of fuzzy or Boolean concepts on X and each m ∈ M associate to a single fea-
ture. Where m1 : “old people”, m2 : “tall people”, m3 : “heavy people”, m4 : “high
salary”, m5 : “more estate”, m6 :“male”, m7 : “female”, m8 : “black hair people”,
m9 : “white hair people”, m10 : “yellow hair people”.

Let (M,τ,X) be the AFS structure of the data shown in Table 8.6. For simplicity,
let S=2X be the σ -algebra over X and mρ be the measure defined by (5.16) for the a
weight function ρ(x)=1, ∀x ∈ X . Let

ζ = m1m3m4 + m1m3m7, ξ = m1m2m3m4 + m1m2m3m7

be two fuzzy attributes in EM. It is obvious that ζ ≥ ξ and ζ �= ξ in lattice EM.
One can verify that

β (α( ∏
m∈{m1,m3,m4}

m)) = ∏
m∈{m1,m2,m3,m4}

m,

β (α( ∏
m∈{m1,m3,m7}

m)) = ∏
m∈{m1,m2,m3,m7}

m.

Although ζ and ξ are different attributes in EM, i.e., ζ and ξ capture different
semantics, the fuzzy sets defined by (5.13) or the norm of the lattice E#X defined by
(5.24) are identical, i.e., their extents are equal as shown in Table 8.7.

Table 8.7 Membership functions of ζ and ξ defined by (8.33)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µζ (.) = µξ (.) 0.3 0.2 0.4 0.4 0.3 0.4 0.4 0.4 0.7 0.1

Let N = {m1,m2,m3,m6,m7} ⊆ M. Here, we study the AFS fuzzy formal con-
cept lattice L (E#(X ×X),EN,Iτ). According to Lemma 8.4, we know that for any
AFS formal concept (ν,η) ∈ L (E#(X ×X),EN,Iτ ) there exist Ai ⊆ N, i ∈ I, Ai

is the intent of a formal concept of context (X ×X ,N,Iτ) which is the fuzzy con-
text associating with the AFS structure (N,τ,X) (refer to Definition 8.11) such that
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m3
m2

m1

m6
m7

m2m3 m1m3
m1m2m3m6 m3m7 m2m6 m2m7m1m6

m1m7

m1m2m3
  m2m3m6m1m3m6

m1m2m7
 m2m3m7m1m2m6

m1m2m3m6
m1m2m3m7

  m1m2m3m6m7

Fig. 8.1 Concept lattice of context (X ×X ,N,Iτ )

Table 8.8 Membership functions of the extents of the formal concepts shown in Figure 8.1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µm1(·) 0.3 0.2 0.7 1 0.4 0.5 0.6 0.9 0.8 0.1
µm1m2(·) 0.3 0.2 0.6 0.8 0.3 0.4 0.5 0.5 0.7 0.1
µm1m3(·) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.5 0.7 0.1
µm1m6(·) 0.3 0 0 1 0.4 0 0.6 0.9 0 0
µm1m7(·) 0 0.2 0.7 0 0 0.5 0 0 0.8 0.1
µm1m2m3(·) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.4 0.7 0.1
µm1m2m6(·) 0.3 0 0 0.8 0.3 0 0.5 0.5 0 0
µm1m2m7(·) 0 0.2 0.6 0 0 0.4 0 0 0.7 0.1
µm1m3m6(·) 0.3 0 0 0.6 0.3 0 0.4 0.5 0 0
µm1m2m3m6(·) 0.3 0 0 0.6 0.3 0 0.4 0.4 0 0
µm1m2m3m7(·) 0 0.2 0.4 0 0 0.4 0 0 0.7 0.1
µm2(·) 1 0.2 0.7 0.8 0.3 0.4 0.7 0.5 0.9 0.1
µm2m3(·) 1 0.2 0.4 0.6 0.3 0.4 0.6 0.4 0.9 0.1
µm2m6(·) 1 0 0 0.8 0.3 0 0.7 0.5 0 0
µm2m7(·) 0 0.2 0.7 0 0 0.4 0 0 0.9 0.1
µm2m3m6(·) 1 0 0 0.6 0.3 0 0.6 0.4 0 0

η = ∑i∈I(∏m∈Ai
m). So we show the concept lattice generated by the fuzzy context

(X ×X ,N,Iτ) in Figure 8.1 and the membership functions of the extents are shown
in Table 8.8. Notice that although both the extents and the intents of the formal con-
cepts in (X ×X ,N,Iτ ) may be fuzzy sets and fuzzy attributes, (X ×X ,N,Iτ ) is a
traditional context [10]. This implies that its complexity is the same as a traditional
context with |X |2 objects and |N| attributes.
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m1 m6 m7

m1m6 m1m7

m1m2m3m6m7

m2m3m6
m1m2m3

m1m2m3m6 m1m2m3m7

m2m3

Fig. 8.2 Concept lattice of context (X1 ×X1,N,Iτ )

Table 8.9 Membership functions of the extents of the formal concept shown in Figure 8.2

µm1 µm1m6 µm1m7 µm1m2m3 µm1m2m3m6 µm1m2m3m7 µm2m3 µm2m3m6 µm6 µm7

x1 0.6 0.6 0 0.6 0.6 0 1 1 1 0
x2 0.4 0 0.4 0.4 0 0.4 0.4 0 0 1
x5 0.8 0.8 0 0.6 0.6 0 0.6 0.6 1 0
x6 1 0 1 0.8 0 0.8 0.8 0 0 1
x10 0.2 0 0.2 0.2 0 0.2 0.2 0 0 1

Let X1 = {x1,x2,x5,x6,x10} ⊆ X . Figure 8.2 shows the concept lattice gener-
ated by (X1 ×X1,N,Iτ ) and the membership functions of the extents are shown in
Table 8.9. Although the intent and extent of an AFS formal concept are a fuzzy
attribute in EM and a fuzzy set on X respectively, the context (X ×X ,M,Iτ) associ-
ating with an AFS structure (M,τ,X) is a traditional context which can be directly
established by the original data without the use of the fuzzy set I to describe the
uncertainty between the objects and the attributes. Thus the AFS formal concept
lattices preserve more information contained in original data than the other fuzzy
formal concept lattices. This observation stresses that the AFS formal concept anal-
ysis naturally extends the traditional formal concepts to the fuzzy formal concepts.

In order to cope with the data with various data types such as real numbers, Boolean
value and even the human intuition description with sub-preferences, the AFS fuzzy
formal concept analysis, which intuitively augments the traditional formal concepts
to fuzzy formal concepts and overcomes the difficulties of other fuzzy formal con-
cepts to define the fuzzy binary relation by human interpretations, is proposed and
developed. The examples demonstrate that the AFS fuzzy formal concept analysis
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can be directly applied to the original data with both fuzzy and Boolean attributes
and preserve more information contained in the original data than other fuzzy for-
mal concepts. In the framework of AFS fuzzy formal concept analysis, the original
data is only required to generate AFSFFCA lattices, human interpretation is not re-
quired to define the fuzzy binary relations and the fuzzy sets corresponding to all
attributes in EM are automatically determined by a consistent algorithm according
to the AFS structure and the AFS algebra. So AFSFFCA lattices are more objective
and comprehensive representations of the knowledge contained in the original data
than traditional and other fuzzy formal concepts. The theorems prove that AFS fuzzy
formal concept lattices are more general mathematization of the traditional formal
concept lattices. Many already existing mathematical tools such as topology, mea-
sure theory, combinatorics and algebras can be applied to the research of the AFS
theory. These facts encourage us to derive mathematical properties of AFSFFCA
and apply them to future research and development of knowledge representation
schemes.

Exercises

Exercise 8.1. Let (G,M, I) be a context. Show that the following assertions hold:

(1) for A1,A2 ⊆ G, A1 ⊆ A2 implies β (A1) ⊇ β (A2) and
for B1,B2 ⊆ M, B1 ⊆ B2 implies α(B1) ⊇ α(B2);

(2) A ⊆ α(β (A)) and β (A) = β (α(β (A))) for all A ⊆ G, and
B ⊆ β (α(B)) and α(B) = α(β (α(B))) for all B ⊆ M.

Exercise 8.2. (Wille’s Lemma) Let (G,M, I) be a context and L (G,M, I) denote
the set of all formal concepts of the context (G,M, I). Show that

L (G,M, I) = {(α(B),β (α(B))) | B ⊆ M}.

Exercise 8.3. (Fundamental Theorem of FCA) Let (G,M, I) be a context. Prove that
(L (G,M, I),∨,∧) is a complete lattice in which suprema and infima are given as
follows: for any formal concepts (A j,B j) ∈ L (G,M, I), j ∈ J,

∨
j∈J

(A j,B j) =

(
γG

(⋃
j∈J

A j

)
,
⋂
j∈J

B j

)
,

∧
j∈J

(A j,B j) =

(⋂
j∈J

A j, γM

(⋃
j∈J

B j

))
,

where γG = α ·β , γM = β ·α .

Exercise 8.4. Let X and M be sets, (G,M, I) be a context and EIXM be defined as
Definition 8.3. For ∑u∈U auAu ∈ EIXM, if aq ⊆ aw, Aq ⊆ Aw, w,q ∈U , w �= q, prove
that
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∑
u∈U

auAu = ∑
u∈U,u �=q

auAu.

Exercise 8.5. Let X and M be sets, (G,M, I) be a context and EIXM be the set
defined as Definition 8.3. Prove that the binary relation ≤ is a partial order relation
if ∑u∈U auAu, ∑v∈V bvBv ∈ EIXM, ∑u∈U auAu ≤ ∑v∈V bvBv ⇔∀auAu (u ∈U) ∃bkBk

(k ∈V ) such that au ⊆ bk, Au ⊆ Bk.

Exercise 8.6. Let (G,M, I) be a context and EIGM be defined as Definition 8.3. If
for any ∑u∈U auAu, ∑v∈V bvBv ∈ EIGM, we define(

∑
u∈U

auAu

)
∗
(
∑
v∈V

bvBv

)
= ∑

u∈U,v∈V

au ∩bvAu ∪Bv,(
∑

u∈U

auAu

)
+

(
∑
v∈V

bvBv

)
= ∑

u∈U
V

cuCu,

where u ∈ U 
V (the disjoint union of indexing sets U , V ), cu = au, Cu = Au,if
u ∈ U ; cu = bu, Cu = Bu,if u ∈ U . Prove that “+” and “∗” are binary compositions
on EIGM.

Exercise 8.7. Let G and M be finite sets, (G,M, I) be a context and (EIGM,∗,+,≤)
be the ECII algebra of context (G,M, I). Show that the following assertions hold.
For any ψ , ϑ , γ , η ∈ EIGM,

(1) ψ+ϑ = ϑ +ψ , ψ ∗ϑ = ϑ ∗ψ ;
(2) (ψ+ϑ)+ γ = ψ+(ϑ + γ), (ψ ∗ϑ)∗ γ = ψ ∗ (ϑ ∗ γ);
(3) (ψ+ϑ)∗ γ = (ψ ∗ γ)+ (ϑ ∗ γ), ψ ∗ (∅M) = (∅M), ψ ∗ (X∅) = ψ ;
(4) If ψ ≤ ϑ , γ ≤ η , then ψ+ γ ≤ ϑ + γ , ψ ∗ γ ≤ ϑ ∗ γ;
Exercise 8.8. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . Show the validity of the following assertions hold.

(1) for any ψ1,ψ2,γ ∈ EM,

γ ≤ γ ≤ γ,
(ψ1 ∨ψ2) = (ψ1)∨ (ψ2) , (ψ1 ∨ψ2) = (ψ1)∨ (ψ2),

(ψ1 ∧ψ2) ≤ (ψ1)∧ (ψ2) , (ψ1 ∧ψ2) = (ψ1)∧ (ψ2).

(2) for any θ1,θ2,ϑ ∈ E#X ,

ϑ ≤ ϑ ≤ ϑ ,

(θ1 ∨θ2) = (θ1)∨ (θ2) , (θ1 ∨θ2) = (θ1)∨ (θ2),

(θ1 ∧θ2) ≤ (θ1)∧ (θ2) , (θ1 ∧θ2) = (θ1)∧ (θ2).
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Exercise 8.9. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . Let (X ,M, I) be a context, Bi ⊆ M, ψ = ∑i∈I(∏m∈Bi

m) ∈ EM be a complex
attribute. Prove that for any ψ ∈ EM, the lower and upper AFS formal concept
approximations of the fuzzy concept ψ satisfy the relationships

L(ψ) = (∑
i∈I
α(A∗(Bi))),∑

i∈I
∏

m∈β ·α(A∗(Bi))
m) = (α(ψ),β (α(ψ)))

U(ψ) = (∑
i∈I
α(A∗(Bi)),∑

i∈I
∏

m∈β ·α(A∗(Bi))
m) = (α(ψ),β (α(ψ)))

where α and β are defined by (8.14) and (8.15), respectively. ψ and ψ are defined
by (8.24).

Exercise 8.10. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . For any θ = ∑i∈I ai ∈ E#X , show the following assertions hold for the lower
and upper AFS formal concept approximations of θ :

L(ψ) =

(
∑
i∈I
α ·β (A∗(ai)), ∑

i∈I
∏

m∈β (A∗(ai))
m

)
= (α ·β (θ), β (θ )),

U(ψ) =

(
∑
i∈I

α ·β (A∗(ai)), ∑
i∈I

∏
m∈β (A∗(ai))

m

)
= (α ·β (θ), β (θ )).

where α and β are defined by (8.14) and (8.15), respectively. θ and θ are defined
by (8.25).

Exercise 8.11. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the
set X . Show the following assertions hold:

(1) For any θ ∈ E#X , L(θ ) ≤ (α · β (θ ), β (θ )) ≤ U(θ ), where α,β defined by
(8.14) and ( 8.15);

(2) For θ1,θ2 ∈ EM, θ1 ≤ θ2 ⇒ L(θ1) ≤ L(θ2), U(θ1) ≤U(θ2),

where L(.) and U(.) are defined by (8.28) and (8.29), respectively.

Open problems

Problem 8.1. Let X and M be sets, (G,M, I) be a context and (EIXM,≤) be the
partially ordered set defined as Definition 8.3. Show whether (EIXM,≤) is a lattice.
What are the lattice operations ∨ and ∧?

Problem 8.2. Demonstrate whether the upper and lower approximations defined by
(8.24) and (8.25) have the same properties as the upper and lower approximation
defined by (6.1).
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Problem 8.3. Discuss whether the upper and lower AFS formal concept approxi-
mations defined by (8.26) and (8.27) (or (8.28) and (8.29)) have the same properties
as the upper and lower approximation defined by (6.1).

Problem 8.4. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be
a context, EM be the EI algebra over the set X and E#X be the E#I algebra
over the set X . For any ψ ∈ EM, whether L(ψ) is the maximal formal concept
smaller than (α(ψ),β (α(ψ))) and U(ψ) is the minimal formal concept larger than
(α(ψ),β (α(ψ)))? Here α,β are defined by (8.14) and ( 8.15), L(.) and U(.) are
defined by (8.26) and (8.27), respectively.

Problem 8.5. Let X be a set and M be a set of attributes on X . Let (X ,M, I) be a
context, EM be the EI algebra over the set X and E#X be the E#I algebra over the set
X . For any ψ ∈ EM and θ ∈ E#X , what are the relationships between the following
pairs?

L(ψ) and L(α(ψ)), U(ψ) and U(α(ψ)),
L(θ ) and L(β (θ )), U(θ ) and U(β (θ )).

Here L(.) is defined by (8.26) or (8.28), and U(.) is defined by (8.27) or (8.29),
respectively.
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Chapter 9
AFS Fuzzy Clustering Analysis

In this chapter, we apply the AFS theory to propose an elementary algorithm of
fuzzy clustering. In the proposed approach, each cluster is interpreted by taking ad-
vantage of the semantics captured by the AFS logic. Within the framework of AFS
theory, we develop new techniques of feature selection, concept categorization and
characteristic description (i.e.,the characteristic description of an object or a group
of objects using the fuzzy concepts) which are often encountered in tasks of ma-
chine learning and pattern recognition. The elementary fuzzy clustering algorithm
is evolved to three more elaborate fuzzy clustering techniques by incorporating new
techniques of feature selection, concept categorization and characteristic descrip-
tion. We show that they are simpler and produce more interpretable results when
contrasted with some existing techniques. Several benchmark data and the evalua-
tion data of 30 companies are considered to evaluate the effectiveness of the pro-
posed AFS fuzzy clustering algorithms. We provide a detailed comparative analysis
in which we compare the obtained results with those produced by some “conven-
tional” methods such as FCM, k-means, and some newer algorithms including a
two-level SOM-based clustering algorithm. The proposed algorithms can be applied
to the data sets with mixed features such as sub-preference relations and even those
including descriptions of human intuitive judgment. We show that the flexibility of
the approach comes from the fact that the distance function and the class number
need not be given beforehand. These two facets offers a far more higher flexible and
contribute to a powerful framework for representing human knowledge and studying
intelligent systems encountered in real world applications.

Clustering algorithms are mainly based on partitioning a set of objects into “nat-
ural” clusters. Numerous mathematical tools, investigated for clustering, have been
considered to detect similarities between objects within a cluster. The two-valued
clustering is described by characteristic functions. This function assigns each object
to one and only one of the clusters with a degree of membership equal to one. How-
ever, the boundaries between the clusters might not be well-defined and this Boolean
description may not fully reflect the reality. The fuzzy clustering, founded upon
fuzzy set theory [81], is intended to deal with ill-defined boundaries between clus-
ters. Membership degrees captured by membership functions indicates how much

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 351–421.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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the object is assigned to (belongs to) a certain cluster. This quantification can be ad-
vantageous in case of the the boundary region which may not be precisely defined.

Many fuzzy clustering algorithms have been developed, but the most widely used
technique is the Fuzzy C-Means (FCM). Proposed by Dunn [12] and generalized by
Bezdek [1], this family of algorithms is based on an iterative optimization of a cer-
tain objective function. The objective function produces a local minima or partial
optimal points [2]. The algorithms of this family depend on initial guesses (clus-
ter number, clusters centers,...). These prior arrangements are necessary but they
do not guarantee that the method may reach the global minimum. In general, the
objective function-based optimization is concerned with the following problem cf.
[1, 2]: minimize Jm(U,V ) = ∑i∑k um

ikd2(xk,Vi) with respect to U = [uik] ∈ Rc×n, a
fuzzy c-partition of n unlabeled data set X = {x1, ...,xn} ∈ Rp×n and to V , a set of c
fuzzy cluster centers V = (V1, ...,Vc)∈ Rp×c. The parameter m > 1 is referred to as a
fuzziness index (fuzziness factor). d(xk,Vi) is a distance from xk to the center (pro-
totype) of ith cluster Vi. The performance of the FCM is significantly affected by the
choice of distance d(., .). In general, the distance is expressed in some metric space
[2, 29, 74], if data set X itself is a subset of this metric space. Another fuzzy clus-
tering algorithm–the fuzzy k-nearest neighbor algorithm, k-NN algorithm [29], pro-
duces the membership degree for each sample j belonging to class i. More specifi-
cally, in [29] proposed was the following class assignment: µi j = 0.51+0.49(ni j/k),
when the class label of sample j is i; and µi j = 0.49(ni j/k), otherwise, where ni j is
the number of the neighbors of sample j belonging to the ith class.

FCM and k-NN fuzzy clustering algorithms are efficient if for the data set X ⊂
Rp×n, there exists a distance function, and the number of classes has been properly
specified beforehand. For the FCM, we should notice that the objective function
optimization problem is very difficult to solve for any ordinary data X � Rp×n. For
k-NN, it is too strict to solve real world problem that the class label of each sample
has to be given in advance. The partition matrix U = (ui j)c×n obtained by FCM and
U = (µi j)c×n obtained by k-NN do not show how the fuzzy concepts or attributes
formed for each feature influence the clustering results. In contrast, humans can
cluster the objects in ordinary data set X � Rp×n according to the fuzzy concepts or
attributes on the features and give some linguistic descriptions to each class by the
fuzzy concepts on some feature without using distance function.

In this chapter, we propose a new methodology of fuzzy clustering. Compared
with the current state of development the art in the area, the fuzzy clustering to be
discussed exhibits several essential advantages:

• The attributes of objects can involve various data types or sub-preference rela-
tions, even descriptors that are reflective of a human intuition.

• The distance function and the objective function are not required, and the cluster
number or the class label need not to be given beforehand.

• Each class is described by a fuzzy set in EM, which is the AFS fuzzy logic
compound of the simple attributes formed on some features with well-structured
semantics which determines the degree of each pattern belongs to this class.
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Given massive data available, knowledge acquisition and representation consti-
tute a major bottleneck. There are various approaches aimed at alleviating this prob-
lem. The incorporation of fuzzy sets into the representation of fuzzy concepts makes
it possible to combine the capabilities of uncertainty handling and approximate rea-
soning with comprehensibility of description of the phenomenon.

In many pattern recognition and decision making tasks, there is often a very lim-
ited prior information available about the data. Thus data preprocessing becomes an
indispensable step. It is a genuine prerequisite in data mining and machine learning,
which aims to turn data into business intelligence or knowledge. Feature selection
is a preprocessing technique commonly used for high dimensional data. Feature se-
lection focuses on how to select a subset of features that are to be effectively used to
construct models describing data. The purpose of feature selection is to reduce di-
mensionality by removing irrelevant and redundant features, reducing the amount of
data needed for learning, and enhance the comprehensibility of the constructed mod-
els. Feature selection has been widely studied in the context of supervised learning
(see [8, 27, 34, 35] and references therein). However, feature selection has received
comparatively little attention in unsupervised learning. In the theory of fuzzy sets
we see a limited number of studies focused on this subject. One important reason
is that it is not at all clear at all on how to assess the relevance of a subset of fea-
tures without resorting to class labels. The problem becomes even more challenging
when the number of clusters is unknown, since the optimal number of clusters and
the optimal feature subset are interrelated. In this chapter, we propose a new method
to deal with the fuzzy feature selection problem, which is expressed in terms of un-
supervised learning within the framework of the AFS theory. Actually, the feature
selection is carried out by making use of the idea of the fuzzy similarities occurring
among features determined by the AFS fuzzy logic.

In general, the concepts exhibiting a significant level of correlation are often
placed in the same category when carrying out data analysis. For instance, height
and weight seem to be highly correlated, i.e., in general, the higher the person is, the
heavier the person is. So in practice, height and weight are placed in the same cate-
gory which describes human appearance. Usually, a group of the highly correlated
concepts is always related to a particular characteristic of the objects in the clusters.
The concepts height and weight are related to the appearance of human and they are
salient concepts if we cluster the set of people according to their appearance. The
aim of studying the concept categorization problem is to find different categories
(i.e., the clusters of fuzzy concepts) so as to properly describe different character-
istics of objects. In other words, a particular characteristic will be described by a
corresponding category of concepts. Based on the AFS theory, an algorithm of clus-
tering concepts into categories is proposed which could exhibit significant relevance
to ideas of pattern recognition and decision-making.

Let us briefly analyze the human recognition process. For a sample, human al-
ways apply the selected collection of simple concepts to form complex fuzzy con-
cepts which serve as the description of this sample. Other people can find the sample
from all the samples according to the given description. Take clustering as an exam-
ple: the samples with the same or similar descriptions form the same cluster. In this
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chapter, we study how to describe a sample in the framework of the AFS fuzzy logic,
and argue that the fuzzy descriptions could be similar to the descriptions generated
by humans.

In order to illustrate the feasibility, applicability and effectiveness of the fea-
ture selection, the concept categorization and the characteristic description, these
techniques are applied to fuzzy clustering. Thus, based on the feature selection, the
concept categorization and the characteristic description, some new fuzzy cluster-
ing algorithms in the framework of AFS theory are to be developed. Compared with
other fuzzy clustering algorithms such as the conventional algorithms FCM [4] and
k-means [73], SOM-based clustering algorithm [79], the proposed algorithms come
with the main advantage except the aforementioned ones: they do not require train-
ing which are typically needed when dealing with other clustering techniques.

9.1 Elementary Fuzzy Clustering Method via AFS Fuzzy Logic

In this section, we apply the AFS theory to study the essence of fuzzy clustering.
Clustering realized by humans is a procedure whose results are determined by the
objectivity of the original data and the subjectivity of individual point of view,
i.e., from the total attributes of original data and facts, an individual subjectively
chooses some attributes he regards to be important within the setting of the cluster-
ing problem. The individual clusters (set of objects) follow the procedure shown in
Figure 9.1. For each object, we always find a description (in general, a fuzzy de-
scription) of the object using some chosen attributes. Next given the description of
the object, we can find similar objects in the entire collection of objects. Thus the
similar objects will be viewed as a cluster. Second, one evaluates the similarity be-
tween the objects according to the descriptions of the objects. Third the clusters are
formed by looking at the similarity degrees which are determined by the similarity
between the objects. Finally, we select the most visible clustering result from all
feasible clustering outcomes coming with the similarity degrees. The descriptions
always involve some fuzzy or Boolean concepts.

In what follows, we study how to describe an object for the clustering in the
framework of AFS fuzzy logic. The level of correlations between the two objects
is determined by their fuzzy descriptions. We can state the problem more formally
as follows: Let X be a set of objects and � be the set of all attributes or concepts
(including attributes which are independent or unrelated to the clustering problem)
involved the objects in X . For each attribute m ∈ �, m is a Boolean or fuzzy at-
tribute on X . Λ ⊆ �, Λ is the set of attributes ( features ), which are some rel-
atively important attributes subjectively chosen from an individual point of view.
For instance, suppose that each α ∈ Λ , α is simply a Boolean set, i.e., α ⊆ X . For
x,y ∈ X ,x,y belong to the same cluster if and only if there does not exist α ∈Λ such
that x ∈ α,y /∈ α or x /∈ α,y ∈ α . In other words, x,y cannot be distinguished by
any attributes in Λ . It is obvious that for a different choice ofΛ , different clustering
results may be produced. Therefore human clustering comes as a procedure whose
results are determined by the objectivity of the original data and the subjectivity of
an individual opinions, i.e., Λ , which is a set of the fuzzy attributes subjectively
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Original Data
    Find the Description
        of each Object

     Evalate the Similarity
     Between the Objects
  Based on the Description

End
   Select the Clear
     Cluster Result

  Cluster According to
  the Similarity Degree

Fig. 9.1 Clustering procedure realized by human beings

chosen from � by an individual. Using the following simple example, we first ex-
plain the idea in the situation when all attributes in Λ are Boolean. Then we expand
the idea to situations in which we are faced with fuzzy attributes.

Example 9.1. Let X = {x1,x2, ...,x10} be a set of 10 persons, � = {male, engineer,
lawyer, f emale, male, weight, age, salary high, ..., etc}. For each attribute m ∈ �,
m is a fuzzy or Boolean attribute which is objectively dependent on the original data
and facts. We study the clustering under Λ = {male, engineer, lawyer, f emale,
no-engineer,no-lawyer} ⊆ � and suppose we are provided with Table 9.1 for the
attributes in Λ . Where A1,A2,A3 are attributes such as male, engineer and lawyer,
respectively. Let Λ be the set generated by sets A1, A2, A3,A′

1, A′
2, A′

3, using logic
operators ∩. δxi ∈Λ , δxi is the smallest set which contains xi. Given Table 9.1, one
has:

δx1 = A1 ∩A3 ∩A′
2;

δx2 = δx8 = δx10 = A1 ∩A2 ∩A′
3;

δx3 = δx5 = A2 ∩A′
1 ∩A′

3;

δx4 = A1 ∩A′
2 ∩A′

3;

δx6 = δx7 = A3 ∩A′
2 ∩A′

1.

In this way we obtain a mappingΨ : X →Λ , for any x ∈ X ,Ψ (x) = δx, which is a
description of x using attributes in Λ such that x can be distinguished among other
elements in X to the maximum extent. SinceΨ is a mapping, henceΨ determines a

Table 9.1 Boolean description of attributes

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

A1 1 1 0 1 0 0 0 1 0 1
A2 0 1 1 0 1 0 0 1 0 1
A3 1 0 0 0 0 1 1 0 0 0
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classification in X (i.e., x,y ∈ X , x,y in the same cluster if and only ifΨ(x) =Ψ(y)
or δx = δy). Since δx, δy form the smallest set containing x,y, hence δx = δy ⇔
x,y ∈ δx∩δy. Ten persons are then clustered into six classes (the finest classification
obtained when using attributes A1, A2, A3,A′

1,A
′
2,A

′
3):

Class1: {x1} = A1 ∩A′
2 ∩A3, describing as “male, not-engineer, lawyer”.

Class2: {x2,x8,x10} = A1 ∩A2 ∩A′
3, describing as “male, not-lawyer, engineer”.

Class3: {x3,x5} = A′
1 ∩A2 ∩A′

3, describing as “female, not-lawyer, engineer”.
Class4: {x4} = A1 ∩A′

2 ∩A′
3, describing as “not-lawyer, not-engineer, male”.

Class5: {x6,x7} = A′
1 ∩A′

2 ∩A3, describing as “female, lawyer, not-engineer”.
Class6: {x9} = A′

1 ∩A′
2 ∩A′

3,describing as “female, not-lawyer, not-engineer”.

Next, we summarize the clustering algorithm by introducing the Boolean attributes
A1,A2, ...,Ak on X as follows.

• Step 1: Generate the Boolean algebra Λ by Boolean attributes in Λ , using logic
operator ∩.

• Step 2: For each x ∈ S, find δx which is the smallest set δx ∈Λ such that x ∈ δx.
• Step 3: For x,y ∈ S, x,y are in the same cluster if and only if x,y ∈ δx ∩δy.

Now, we expand the above algorithm to the case of fuzzy attributes by using the
AFS fuzzy logic. This will give rise to the elementary fuzzy clustering method via
AFS fuzzy logic. Let X be the universe of discourse, M be a set of simple attributes
on X , (M,τ,X) be an AFS structure of the original data and facts. Let {µξ (x) | ξ ∈
EM} be a set of coherence membership functions of the AFS fuzzy logic system
(EM,∨,∧,′ ) and the AFS structure (M,τ,X). (refer to Definition 4.7). Assume that
Λ ⊆ EM, Λ is a family of fuzzy sets which are selected to cluster the objects in
X . The elementary fuzzy clustering method via AFS fuzzy logic can be outlined as
follows.

The elementary fuzzy clustering method realized via AFS fuzzy logic

• Step 1: Find fuzzy set ϑ =
∨

b∈Λ b, x ∈ X , µ∨
b∈Λ b(x) is the highest degree of

x belonging to any cluster, due to ϑ being the maximum element in (Λ)EI . In
order to produce a well-defined clustering result, each x should belong to ϑ to
the highest extent. Proposition 9.1 outlines the properties of the fuzzy set ϑ .

• Step 2: Find the fuzzy description of each object: for each x ∈ X , find the fuzzy
description ζx of x, which is δx for the Boolean case. For fuzzy set ζx ∈ (Λ)EI ,
where (Λ)EI is the sub EI algebra generated byΛ , not only is µζx

(x) approaching
µ∨

b∈Λ b(x), but also µζx (y) is as small as possible for y ∈ X , y �= x. In other words,
x can be distinguished by ζx from other objects in X at the highest extent.

• Step 3: Evaluating the similarity between objects based on the fuzzy descrip-
tions: apply ζx the fuzzy description of each x ∈ X to establish the fuzzy matrix
M = (mi j) on X = {x1,x2, ...,xn}, where mi j the similarity degree between xi and
x j which is defined as follows: for any xi,x j ∈ X ,

mi j = min{µζxi∧ζx j
(xi),µζxi∧ζx j

(x j)}. (9.1)
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Theorem 9.2 demonstrates that there exists an integer r such that (Mr)2 = Mr,
i.e., fuzzy matrix Q = Mr can yield a partition tree with equivalence classes.

• Step 4: Cluster according to the determined similarity degrees: let Q = Mr

= (qi j) and the Boolean matrix Qα = (qαi j), where qαi j = 1 ⇔ qi j ≥ α, the thresh-
old α ∈ [0,1]. For α ∈ [0,1], xi,x j ∈ X ,xi,x j are in the same cluster for given
threshold α if and only if qαi j = 1. For some xi ∈ X , if qαii = 0, then the clustering
label of xi cannot be determined for fuzzy attributes in Λ under the threshold α .

• Step 5: Select the well-delineated clustering results: for each cluster C ⊆ X under
the threshold α , the fuzzy description of C, ζC is defined as follows.

ζC =
∨
x∈C

ζx, (9.2)

the fuzzy description ζC of class C whose membership degree µζC
(x) is not only

the most approachable µ∨
b∈Λ b(x), for each x ∈ C, but also µζC (y) is as small

as possible for y ∈ X , y /∈ C. In other words, the objects in cluster C can be
distinguished from other objects in X to the highest possible extent. Theorem 9.1
shows how to obtain ζx for each x ∈ X while Proposition 9.3 shows that the fuzzy
descriptions of two different clusters do not have common molecular elements of
the lattice EM (i.e., fuzzy point). The fuzzy description of the boundary among
the clusters C1,C2, ...,Cl is a fuzzy set ζbou ∈ EM,

ζbou =
∨

1≤i, j≤l,i�= j

(ζCi ∧ζCj ), (9.3)

where ζCi , i = 1,2, ..., l is the fuzzy description for the ith cluster Ci. The clarity
of the fuzzy clustering for some the threshold α can be evaluated by Iα a fuzzy
cluster validity index defined as follows. For any threshold α ∈ [0,1],

Iα =
∑x∈⋃1≤i≤l Ci

µζbou
(x)

∑x∈⋃1≤i≤l Ci
µζTatal

(x)
, (9.4)

where ζTotal =
∨

1≤i≤l ζCi ∈ EM, l ≥ 2. The ith cluster is described by a fuzzy
set ζCi ∈ EM which determines the degree each object belong to the ith cluster.
Fuzzy set ζbou which describes the boundary between the clusters implies the
maximal degree of each object belonging to two different clusters. It is clear that
the lower Iα is, the clearer and the better the clustering result under threshold α
is. Thus the best clustering outcome can be selected from all clustering results
under threshold α ∈ [0,1].

This fuzzy clustering algorithm can apply to the data sets with mixed features taking
on values for integers, real numbers, Boolean values, and sub-preference relations.
Likewise the distance function and the number of cluster number are not required
to be supplied in advance. Since each cluster is described by ξC a fuzzy set in EM
with well-formed semantics, hence the clustering results are more interpretable than
those produced by some conventional fuzzy clustering.
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In what follows, we give some proofs and include pertinent analysis to ensure
that the proposed clustering algorithm is feasible. Let X be a finite set and M be a
set of simple concepts on X . Assume Λ ⊆ EM. Then (Λ)EI the sub algebra of EM
generated by the fuzzy concepts in Λ is shown as follows.

(Λ )EI =

{∨
i∈I

(
∧
j∈Ji

ai j) | ai j ∈Λ , i ∈ I, j ∈ Ji, I and Ji are any indexing sets

}
. (9.5)

Its proof remains as an exercise. It is the smallest sub EI algebra of EM which
containsΛ .

Proposition 9.1. Let X be a universe of discourse and M be a finite set of simple
concepts. Let {µξ (x) | ξ ∈ EM} be a set of coherence membership functions of
the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X). (seeing
Definition 4.7). Let Λ ⊆ EM. Then for any β ∈ (Λ)EI , for any x ∈ X , µβ (x) ≤
µ∨

b∈Λ b(x).

Proposition 9.1 implies that for each x ∈ X , the degree of x belonging to fuzzy
set
∨

b∈Λ b is the largest of other fuzzy sets in (Λ)EI . But
∨

b∈Λ b is not the fuzzy
description of x, because

∨
b∈Λ b is the maximum fuzzy set in lattice (Λ)EI and for

each y ∈ X , y �= x the degree of y belonging to fuzzy set
∨

b∈Λ b is also the largest of
other fuzzy sets in (Λ)EI . Therefore for a given x ∈ X , we should find the fuzzy set
ζx in (Λ)EI such that not only is µζx

(x) approaches µ∨
b∈Λ b(x), but also µζx (y) is as

small as possible for each y ∈ X and y �= x. In what follows, we find the fuzzy set ζx

in (Λ)EI for each given x. For ε ≥ 0 (in general, ε is very small), we define

Bεx =

{
Ak | µAk(x) ≥ µ∨b∈Λ b(x)− ε, k ∈ I, a =∑

i∈I

Ai ∈Λ
}

, (9.6)

B
ε
x =

⎧⎨
⎩∧
β∈H

β | H ⊆ Bεx , µ∧β∈H β (x) ≥ µ∨b∈Λ b(x)− ε
⎫⎬
⎭ . (9.7)

Λεx =
{
γ | γ is a minimal element in B

ε
x

}
. (9.8)

Since
µ∨

β∈Λ β (x) = sup
β∈Λ

µβ (x) = sup
β∈Λ

sup
k∈Iβ

µ
Aβk

(x),

where β = ∑k∈Iβ
Aβk ∈ Λ , hence for any ε > 0, Bεx �= ∅, Λεx �= ∅ and Λε1x ⊇ Λε2x if

ε1 > ε2. Next, we analyze the composition of the set Bεx . For each fuzzy set ∑i∈I Ai,
each Ai, i ∈ I, is a molecular element which play a role similar to a “ point” of the
fuzzy set. Bεx is the set of molecular elements (in other words, “fuzzy point”) of
the fuzzy sets in Λ ,∀A ∈ Bεx , µA(x) ≥ µ∨

b∈Λ b(x)− ε . In some cases, there may be
A,B ∈ Bεx ,A �= B, such that µA∧B(x) ≥ µ∨

b∈Λ b(x)− ε. We know that the molecule
A∧B produces a more accurate description of x than A or B. Λεx is the set of the
minimal molecules

∧
β∈H β ,H ⊆ Bεx , such that µ∧

β∈H β (x) ≥ µ∨b∈Λ b(x)− ε .
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Theorem 9.1. Let X be a universe of discourse and M be a finite set of simple con-
cepts, (M,τ,X) be an AFS structure. Let {µξ (x) | ξ ∈ EM} be a set of coherence
membership functions of the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS struc-
ture (M,τ,X). (seeing Definition 4.7). Let Λ ⊆ EM. For a given x ∈ X and a given
ε > 0, α ∈ Λεx , let ϑ x

α = {β ∈ (Λ)EI | β ≥ α}. Where Λεx is defined by (9.8). Then
the following observations hold:

(1) ϑ x
α is a sub-EI algebra of (Λ)EI .

(2) µ∧
b∈ϑx

α
b(x) ≥ µα(x) ≥ µ∨

b∈Λ b(x)− ε.
(3) For η ∈ (Λ)EI , if µη(x) > µ∨

b∈Λ b(x)− ε , then ∃α ∈Λεx , for any y ∈ X, y �= x,

µη(y) ≥ µ∧b∈ϑx
α

b(y) ≥ µα(y).

(4) ζ x =
∨
α∈Λεx (

∧
b∈ϑ x

α
b) ≥ ζx =

∨
α∈Λεx α.

Proof. (1) and (2) can be proved directly by taking into account the corresponding
definitions.

(3) For given ε > 0,x ∈ X , suppose η =
∨

i∈I
∧

j∈Ji
ai j ∈ (Λ)EI , ai j =∑k∈Kj

Ai j
k ∈

Λ , j ∈ Ji, i ∈ I, Kj, and µη(x) > µ∨
b∈Λ b(x)− ε . Since (Λ)EI is a molecular lattice,

hence

η =
∨
i∈I

∧
j∈Ji

ai j =
∨
i∈I

∧
j∈Ji

∨
k∈Kj

Ai j
k

=
∨
i∈I

∨
f∈∏ j∈Ji

Kj

(
∧
j∈Ji

Ai j
f ( j)).

Since
µη(x) ≥ µ∨b∈Λ b(x)− ε

hence ∃l ∈ I, ∃g ∈∏ j∈Ji
Kj such that

µ∧
j∈Jl

Ai j
g( j)

(x) ≥ µ∨
b∈Λ b(x)− ε.

Therefore for any j ∈ Jl,

µ
Ai j

g( j)
(x) ≥ µ∧

j∈Jl
Ai j

g( j)
(x) ≥ µ∨

b∈Λ b(x)− ε.

This implies that∀ j ∈ Jl,A
i j
g( j) ∈ Bεx and ∃α ∈Λεx such that

∧
j∈Jl

Ai j
g( j) ≥ α and

η ≥
∧
j∈Jl

Ai j
g( j) ≥ α.

Since ϑ x
α is an upper set of (Λ)EI , hence η ∈ ϑ x

α and µη(y) ≥ µ∧b∈ϑx
α

b(y) ≥ µα(y)
for any y ∈ X , y �= x.

(4) They can be proved by (1). 	
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Remark 9.1. Since ϑ x
α is a sub-EI algebra of (Λ)EI for each α ∈ Λεx , hence ζ x =∨

α∈Λεx (
∧

b∈ϑ x
α
) ∈ (Λ)EI . If ζ x and ζx are applied to describe x, then ζ x is a fuzzy

description of x by the fuzzy sets in (Λ)EI and ζx is a fuzzy description of x by
the molecular elements of the fuzzy sets in (Λ)EI . ζ x is a rougher description of x
than ζx. But we should notice that in some case, ζx /∈ (Λ)EI . By 3 of Theorem 9.1,
one knows that for α ∈ Λεx , fuzzy set

∧
b∈ϑ x

α
b ensures that any y �= x,y belongs to∧

b∈ϑ x
α

b at low degree while x belongs
∧

b∈ϑ x
α

b at high degree. It could be easily

proved that ζ x = ζx, if any selected attribute γ ∈ Λ , γ is a molecular element, i.e.,
γ = A, A ⊆ M.

Therefore both ζ x and ζx shown below can serve as the fuzzy description of x ∈ X .

ζ x =
∨
α∈Λεx

(
∧

b∈ϑ x
α

b), (9.9)

ζx =
∨
α∈Λεx

α. (9.10)

In this section, we employ ζx as the fuzzy description of x. {ζx | x ∈ X} is called a
fuzzy description of X underΛ and ε . Now we get the fuzzy description ζx for each
x ∈ X (step 2). Next, we study step 3 and step 4 of the elementary fuzzy clustering
method via the AFS fuzzy logic.

Definition 9.1. Let M be a set. Let A = (ai j)m×k,B = (bi j)l×n be the matrices over
the EI algebra EM (called EI matrices ), where ai j,bi j,c ∈ EM. Then the matrix
operations are defined as follows

(1) A + B = (ai j ∨bi j), if m = l,k = n.

(2) AB = (
∨k

u=1(aiu ∧bu j)), if k = l.
(3) cA = Ac = (c∧ai j).

Proposition 9.2. Let M be a set and EM be the EI algebra over M. Let A,B,C be
any EI matrices with appropriate dimensions. Then the following assertions hold.

(1) A(B +C) = AB + AC;
(2) A(BC) = (AB)C.

Let X = {x1, x2,..., xn} and M be a set of simple concepts on X . Let (M,τ,X) be an
AFS structure and {µξ (x) | ξ ∈ EM} be a set of coherence membership functions
of the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X). Let
{ζx | x ∈ X} be the fuzzy description of X under Λ and ε . The EI matrix B = (ζxi∧
ζx j )n×n is the EI algebra relation matrix which determines a fuzzy relation matrix
M = (mi j) on X ,, i.e., the degree of xi,x j satisfying the fuzzy relation is

mi j = min{µζxi∧ζx j
(xi),µζxi∧ζx j

(x j)}.

Theorem 9.2. Let X = {x1, x2,..., xn} and M be a set of simple concepts on X. Let
(M,τ,X) be an AFS structure and {µξ (x) | ξ ∈ EM} be a set of coherence mem-
bership functions of the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure
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(M,τ,X). Let {ζx | x∈X} be the fuzzy description of X underΛ and ε . Let B = (ζxi∧
ζx j )n×n be the EI algebra relation matrix and M = (mi j)n×n be the fuzzy relation
matrix, where mi j = min{µζxi∧ζx j

(xi), µζxi∧ζx j
(x j)}. Then the following assertions

hold.

(1) B2 = B;
(2) M2 ≥ M;
(3) There exists an integer r such that (Mr)2 = Mr.

Here for fuzzy relation matrices A = (ai j)n×n,B = (bi j)n×n, AB = (ci j)n×n, ci j =
max1≤k≤n{min{aik,bk j}}.

Proof. (1) By Definition 9.1, we have

B = (ζxi ∧ζx j )n×n =

⎛
⎜⎜⎜⎝
ζx1

ζx2
...
ζxn

⎞
⎟⎟⎟⎠( ζx1 ζx2 · · · ζxn

)
,

hence

B2 =

⎛
⎜⎝ ζx1

...
ζxn

⎞
⎟⎠
( ∨

1≤i≤n

(ζxi ∧ζxi)

)
1×1

(
ζx1 · · · ζxn

)

=

⎛
⎜⎝ ζx1

...
ζxn

⎞
⎟⎠
( ∨

1≤k≤n

ζxk

)
1×1

(
ζx1 · · · ζxn

)

=

(
(
∨

1≤k≤n

ζxk )∧ (ζxi ∧ζx j )

)
n×n

=
(
ζxi ∧ζx j

)
n×n

= B.

(2) Since the EI matrix B = (ζxi∧ ζx j )n×n = (bi j)n×n, bii = ζxi ≥ ζxi∧ ζx j = bi j

in EM, hence

M2 =

( ∨
1≤k≤n

(µζxi∧ζxk
(xi)∧µζxi∧ζxk

(xk))∧ (µζxk∧ζx j
(xk)∧µζxk∧ζx j

(x j)))

)
n×n

≥
(
µζxi∧ζxi

(xi)∧µζxi∧ζxi
(xi)∧µζxi∧ζx j

(xi)∧µζxi∧ζx j
(x j)
)

n×n

=
(

min{µζxi∧ζx j
(xi), µζxi∧ζx j

(x j)}
)

n×n

= M.
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(3) Since mi j = min{µζxi∧ζx j
(xi),µζxi∧ζx j

(x j)}= m ji, 1≤ i, j ≤ n, hence MT = M.

Because the fuzzy matrix M has a finite numbers of different elements and M2 ≥ M,
there exists an integer r such that Mr = Mr+1 = ... = M2r. 	

We should notice that Theorem 9.2 ensures that EI algebra relation matrix B and
fuzzy relation matrix Q = Mr can yield a partition tree with equivalence classes.
This implies that for any α ∈ [0,1], Qα = (qαi j) is an equivalence relation (Boolean
matrix) and it can yield a partition on X . Next, we study the step 5.

Proposition 9.3. Let C1,C2, ...,Cl be the clusters determined by equivalence rela-
tion Boolean matrix Qα = (qαi j) obtained in step 4 for the threshold α ∈ [0,1]. For
each i = 1, 2, ..., l, let

ΛCi =
⋃

x∈Ci

{A ∈Λεx | µA(x) ≥ α}.

Where Λεx is defined by (9.8). Then ΛCi ∩ΛCj = ∅, i �= j, for any i, j = 1,2, ..., l.

Proof. Suppose that for some i, j = 1,2, ..., l, i �= j,A ∈ ΛCi ∩ΛCj �= ∅. By the
definition of Λεx given in (9.8), we know there exist x ∈ Ci and y ∈ Cj such that
A ∈Λεx ,µA(x) ≥ α and A ∈Λεy ,µA(y) ≥ α. This implies that

ζx =
∨

B∈Λεx
B ≥ A,

ζy =
∨

B∈Λεy
B ≥ A.

Therefore ζx ∧ζy ≥ A and the degree of relationship between x and y comes as

min{µζx∧ζy
(x),µζx∧ζy

(y)} ≥ min{µA(x),µA(y)} ≥ α.

By Q = (qi j) ≥ M = (mi j), we know that qαxy = 1 and x and y are in the same class.
It contradicts that x ∈Ci and y ∈Cj, i �= j. 	

Example 9.2. Let X = {x1,x2, ...,x10} be a set of 10 persons. M = {m1,m2, ...,m10},
where m1 : “old”, m2 : “height high”, m3 : “weigh, m4 : “salary high, m5 : “larger
fortune”, m6 : “male”, m7 : “female, m8 : “black hair ”, m9 : “white hair ”, m10 :
“yellow hair ”. About the universe of discourse X and the attribute set M, the original
data and facts are shown as Table 9.2 and sub-preference relations expressed by the
chains. x = y in the chain means the degrees of x and y belonging to the attribute are
equal, instead of x and y being the same element in X .

m8 : x7 > x10 > x4 = x8 > x2 = x9 > x5 > x6 = x3 = x1;

m9 : x6 = x3 = x1 > x5 > x2 = x9 > x4 = x8 > x10 > x7;

m10 : x2 = x9 > x4 = x8 = x5 > x10 > x6 = x3 = x1 = x7.
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Table 9.2 Description of Attributes

m1 m2 m3 m4 m5 m6 m7

x1 20 1.9 90 1 0 1 0
x2 13 1.2 32 0 0 0 1
x3 50 1.7 67 140 34 0 1
x4 80 1.8 73 20 80 1 0
x5 34 1.4 54 15 2 1 0
x6 37 1.6 80 80 28 0 1
x7 45 1.7 78 268 90 1 0
x8 70 1.65 70 30 45 1 0
x9 60 1.82 83 25 98 0 1
x10 3 1.1 21 0 0 0 1

First, we determine the weight function ρm(x) for each simple attribute m ∈ M ac-
cording to available data and facts: ρmi(x), for i = 1,2, ...,7, is the value of x j for
attribute mi in Table 9.2, for example, ρm2(x1) = 1.9, ρm4(x2) = 0, ρm6(x2) = 0,
ρm7(x2) = 1; ρmi(x j) = 1, for i = 8,9,10, if x j belongs to simple concept mi, oth-
erwise ρmi(x j) = 0, for example, ρm8(x7) = 1,ρm9(x7) = 0, according to the order
relations m8,m9 given above. For each m ∈ M, let

ρm′(x) = max
y∈X

{ρm(y)}−ρm(x), x ∈ X ,

where m′ is the negation of the simple concept m. By Definition 4.8, we can verify
that each ρm is the weight function of concept m. τ is defined according to Table
9.2 and the meaning of the simple concepts in M quantified by formula (4.26). Thus
the set of coherence membership functions {µξ (x) | ξ ∈ EM} can be obtained by
formula (5.18) in Proposition 5.6.

In what follows, we apply the elementary fuzzy clustering method via AFS fuzzy
logic to study the fuzzy clustering problems involving the data and facts shown
in Example 9.2. Let the fuzzy concept “high credit” be expressed by the fuzzy
set m6m4m1 + m6m5m1 + m7m4 + m7m5 ∈ EM with the semantic interpretation:
“high salary old male” or “more fortune old male” or “high salary female” or
“more fortune female” (refer to Table 9.2). In the following examples, we apply
the AFS structure (M,τ,X) and the weight functions given in Example 9.2 to estab-
lish the set of coherence membership functions {µξ (x) | ξ ∈ EM} and the study
the clustering problems of the 10 persons by the different selected attribute set
Λ ⊆ EM.

Example 9.3. Let us consider the clustering based on the following attributes “gen-
der, age”, “gender, credit”, “gender, hair white” , i.e., Λ = {α1,α2,β1,β2,γ1,γ2},
where α1 = m1m6, α2 = m1m7, γ1 = m9m6, γ2 = m9m7, credit = m6m4m1 +
m6m5m1 + m7m4 + m7m5,
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β1 = credit ∧m6 = m6m4m1 + m6m5m1 + m7m4m6 + m7m5m6,

β2 = credit ∧m7 = m6m4m1m7 + m6m5m1m7 + m7m4 + m7m5 = m7m4 + m7m5.

Step 1: Find the fuzzy set ϑ . Owing to (4.19), we form ϑ ′ which is the negation of
the fuzzy concept ϑ .

ϑ =
∨

b∈Λ
b = α1 ∨α2 ∨β1 ∨β2 ∨ γ1 ∨ γ2

= m1m6 + m1m7 + m7m4 + m7m5 + m9m6 + m9m7

ϑ ′ = m′
9m′

5m′
4m′

1 + m′
9m′

7m1′ + m′
7m′

6.

Table 9.3 Membership degrees of belongingness to the fuzzy concepts ϑ and ϑ ′

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µϑ (.) 1 .56 1 1 .67 1 .37 .80 1 .11
µϑ ′(.) 0 .43 0 0 .14 0 .24 .03 0 .86

The resulting membership functions are shown in Table 9.3. We notice that accord-
ing to Λ and the original data and facts in Example 9.2, the highest degree of each
xi belonging to any cluster is µϑ (xi).

Step 2: Using (4) of Theorem 9.1, for each x ∈ X , find the fuzzy description ζx of x:

ζx1 = ζx5 = m6m9, ζx2 = ζx3 = ζx6 = ζx10 = m7m9,

ζx4 = ζx8 = m6m1, ζx7 = m1m4m6 + m1m5m6, ζx9 = m5m7.

Step 3: Apply ζx the fuzzy description of each x ∈ X to establish the fuzzy relation
matrix mi j = min{µζxi∧ζx j

(xi), µζxi∧ζx j
(x j)},

M = (mi j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 .09 .67 0 0 .09 0 0
.56 .56 0 0 .56 0 0 0 .11

1 0 0 1 0 0 .17 .11
1 .12 0 .37 .80 0 0

.67 0 0 .12 0 0
1 0 0 .08 .11

.37 .29 0 0
.80 0 0

1 0
.11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can check that for each xi ∈ X , occurring in relation matrix M, the similarity
degree of xi with other persons are less than µϑ (xi) (refer to Table 9.3). Q2 = Q, if
Q = M3,Q can yield a partition tree with equivalence classes.
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 .12 .67 0 .12 .12 0 0
.56 .56 0 0 .56 0 0 .17 .11

1 0 0 1 0 0 .17 .11
1 .12 0 .37 .80 0 0

.67 0 .12 .12 0 0
1 0 0 .17 .11

.37 .37 0 0
.80 0 0

1 .11
.11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 4: When threshold α = 1, then Iα = 0.2451.
C1 = {x1}, ζC1 = m6m9 states “person who is a white hair male”;
C2 = {x3,x6}, ζC2 = m7m9 states “person who is a white hair female”;
C3 = {x4}, ζC3 = m6m1 states “person who is an age male”;
C4 = {x9}, ζC4 = m5m7 states “person who is a credit female”.

Similarly, when threshold α = 0.8, Iα = .2496.

C1 = {x1}, C2 = {x3,x6}, C3 = {x4,x8}, C4 = {x9};
ζC1 = m6m9, ζC2 = m7m9, ζC3 = m6m1, ζC4 = m5m7.
ζboun = m6m7m9 + m1m6m9 + m5m7m9 + m1m5m6m7.

The membership functions are shown in Table 9.4. Compared with Table 9.3, for
each xi, the degree of belonginess (membership) of xi to any cluster is less than
µϑ (xi), whereϑ is the sum of all selected attributes. This implies that the selected at-
tribute setΛ not only determines the cluster results, but also implies the degree each
object belongs to every cluster. When we consider the threshold value α = 0.5, then
Iα = 0.2235,C1 = {x1,x5}, C2 = {x2,x3,x6},C3 = {x4,x8},C4 = {x9};ζC1 = m6m9,
ζC2 = m7m9, ζC3 = m6m1, ζC4 = m5m7. ζboun = m6m7m9 + m1m6m9 + m5m7m9 +
m1m5m6m7.

In the above example, since we have considered the Boolean attribute “gender” in
the clustering process, hence the persons in each class are characterized by the same
gender. Compared with the above example, in the next example, we consider the
attributes “age”, “credit”, “hair white” without the attribute of “gender”.

Table 9.4 Membership degrees to each cluster and the boundary

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µζC1
1 0 0 .33 .67 0 0 .33 0 0

µζC2
0 .56 1 0 0 1 0 0 .56 .11

µζC3
.09 0 0 1 .17 0 .37 .80 0 0

µζC4
0 0 .17 0 0 .08 0 0 1 0

ζboun .09 0 .17 .33 .12 .08 0 .22 .56 0
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Example 9.4. Let us now consider the clustering realized according to attributes
“age”, “credit”, “hair white”, i.e., Λ = {α,β ,γ},where α = m1, γ = m9, β =
credit = m6m4m1 + m6m5m1 + m7m4 + m7m5. By repeating steps 1-3, we obtain
fuzzy descriptions for each x ∈ X ,

ζx1 = ζx2 = ζx3 = ζx5 = ζx6 = ζx10 = m9;

ζx4 = ζx8 = m1, ζx7 = m1m4m6 + m1m5m6, ζ9 = m5m7.

The fuzzy equivalence matrix Q yields a partition tree with equivalence classes.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .56 1 .33 .67 1 .33 .33 .17 .11
.56 .56 .33 .56 .56 .33 .33 .17 .11

1 .33 .67 1 .33 .33 .17 .11
1 .33 .33 .37 .81 .17 .11

.67 .67 .33 .33 .17 .11
1 .37 .33 .17 .11

.37 .37 .17 .11
.81 .17 .11

1 .11
.11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Considering the threshold α = 1, Iα = 0.3613 one has

C1 = {x1,x3,x6}, ζC1 = m9 reads “person who is white hair”;
C2 = {x4}, ζC2 = m1 reads “person who is age”;
C3 = {x9}, ζC4 = m5m7 reads “person who is credit”.
ζbou = m1m9 + m5m7m9 + m1m5m7.

Similarly, when threshold α = 0.8,Iα = .3495, we obtain

C1 = {x1,x3,x6}, C2 = {x4,x8}, C3 = {x9};
ζC1 = m9, ζC2 = m1, ζC3 = m5m7.
ζbou = m1m9 + m5m7m9 + m1m5m7.

The membership functions are shown in Table 9.5. When the value of the threshold
α = 0.5, C1 = {x1, x2, x3, x4, x5, x6, x8, x9}, ζC1 = m1 + m9 + m4m7 + m5m7.

Table 9.5 Membership degrees pertaining to each cluster and the boundary

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µζC1
1 .56 1 .33 .67 1 0 .33 .56 .11

µζC2
.09 .04 .50 1 .17 .26 .37 .81 .64 .01

µζC3
.00 0 .54 .50 .03 .30 .37 .29 1 0

µζbou
.09 .04 .49 .33 .12 .26 0 .22 .64 .01
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Since in this example we did not choose attribute of male and female, hence the
males and females can be located in a same cluster. In the above examples, we
note that X �= ⋃1≤i≤l Ci. This implies that since the membership degrees of x (x ∈
X −⋃1≤i≤l Ci) belonging to the fuzzy set ϑ the sum of all selected attributes is too
small, hence there is not enough information to determine its cluster. In the real-
world problem we cannot ignore the existence of the elements in X −⋃1≤i≤l Ci,

we should consider the clustering under the fuzzy attribute set Λ = {α ′|α ∈ Λ}∪
Λ , or let X −⋃1≤i≤l Ci be single one cluster where its fuzzy description becomes
(∨1≤i≤lζCi)

′.

Example 9.5. In this example, let us consider the clustering problem with the at-
tributes “old”, “credit”, “hair white” and “not old”, “not credit”, “not hair white”
i.e., Λ = {α,β ,γ,α ′,β ′,γ ′}, where α = m1, γ = m9, β = credit = m6m4m1 +
m6m5m1 + m7m4 + m7m5, α ′ = m′

1, γ ′ = m′
9 , β ′ = m′

6m′
7 + m′

4m′
5 + m′

7m′
1. By run-

ning steps 1-3, we form the fuzzy descriptions for each x ∈ X ,

ζx1 = ζx3 = ζx5 = ζx6 = m9; ζx2 = m′
5m′

4,

ζx4 = m1, ζx7 = m′
9, ζx8 = m1 + m′

9,

ζx9 = m5m7, ζx10 = m′
1 + m′

5m′
4,

The fuzzy equivalence matrix Q gives rise to the partition tree with the following
equivalence classes.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .46 1 .33 .67 1 .33 .33 .17 .46
1 .46 .33 .46 .46 .33 .33 .17 1

1 .33 .67 1 .33 .33 .17 .46
1 .33 .33 .71 .81 .17 .17

.67 .67 .33 .33 .17 .46
1 .33 .33 .17 .46

1 .71 .17 .33
.81 .17 .33

1 .17
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When threshold α = 1, then Iα = 0.5692.
C1 = {x1,x3,x6}, ζC1 = m9 whose interpretation comes as “person who has white

hair”;
C2 = {x2,x10}, ζC2 = m′

5m′
4 + m′

1 with the meaning “person who is not aged, or
not high salary-not more fortune”;

C3 = {x4}, ζC3 = m1 with sematic interpretation “person who is aged”;
C4 = {x7}, ζC4 = m′

9 with sematic interpretation “person who does not have white
hair”;

C5 = {x9}, ζC5 = m5m7 with sematic interpretation “person who has credit”.
ζbou = m9m′

1 +m9m′
5m′

4 +m1m9 +m9m′
9 +m5m7m9 +m1m′

1 +m1m′
5m′

4 +m′
9m′

1 +
m′

9m′
5m′

4 + m5m7m′
1 + m5m7m′

5m′
4 + m1m′

9 + m1m5m7 + m5m7m′
9.
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Table 9.6 Membership degrees of the concepts, see the details above

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

µζC1
1 .56 1 .33 .67 1 0 .33 .56 .11

µζC2
.68 1 .15 .04 .51 .36 .24 .10 .08 1

µζC3
.09 .43 .49 1 .17 .26 1 .81 .64 .86

µζC4
0 0 .17 0 0 .08 0 0 1 0

µζbou
.68 .46 .49 .33 .29 .36 .24 .22 .64 .86

Similarly, when threshold α = 0.6, Iα = .4815.

C1 = {x1,x3,x5,x6}, C2 = {x2,x10}, C3 = {x4,x7,x8}, C4 = {x9}, ζC1 = m9,
ζC2 = m′

1 + m′
5m′

4, ζC3 = m1 + m′
9, ζC4 = m5m7.

ζbou = m9m′
1 +m9m′

5m′
4 +m1m9 +m9m′

9 +m5m7m9 +m1m′
1 +m′

9m′
1 +m1m′

5m′
4 +

m′
9m′

5m′
4 + m5m7m′

1 + m5m7m′
5m′

4 + m1m5m7 + m5m7m′
9.

Compared with the two previous examples, since in this example we consider the
negation of each selected attributes, hence any person belongs to at least one cluster
at a high degree of membership. The fuzzy set ζbou indicates that a certain person
may belong to more than one cluster at high degree; for example this happens in case
of x10. Making use of these examples, we can conclude that the clustering results
are appealing from an intuitive point of view.

Example 9.6. The data set [15, 24] used for this problem is shown in Table 9.7. It
consists of data of fats and oils having four quantitative features of interval type and
one qualitative feature. First, for the attributes in Table 9.7 represented by interval
[a,b], the interval [a,b] is normalized ( represented ) as two numbers (a+b)/2, b−a.
For example, the original data for sample Linseed oil are normalized as 0.9325,
0.0050, -17.5000, 19.0000, 187.0000, 34.0000, 157.0000, 78.0000. Let sample No.
i be normalized as Si = (si1,si2, ...,si8), i = 0,1, ...,7. Let m1 be the simple concept:
“the average Gravity of the sample is high”, m2 be the negation of simple concept
m1, i.e., m2 = m′

1; m3 be the simple concept: “the difference between highest and
lowest values of the Gravity of sample is high”, m4 be the negation of simple con-
cept m3; m5 be the simple concept: “the average Freezing point of the sample is

Table 9.7 Fat-Oil data

No. Sample name Gravity(g/cm3) Freezing point io.value sa.value m.f.acids
0 Linseed oil 0.930-0.935 -27 to -8 170-204 118-196 L,Ln,O,P,M
1 Perilla oil 0.930-0.937 -5 to -4 192-208 188-197 L.Ln,O,P,S
2 Cotton-seed 0.916-0.918 -6 to -1 99-113 189-198 L,O,P,M,S
3 Seaame oil 0.920-0.926 -6 to -4 104-116 187-193 L,O,P,S,A
4 Camellia 0.916-0.917 -21 to -15 80-82 189-193 L,O
5 Olive-oil 0.914-0.919 0 to 6 79-90 187-196 L,O,P,S
6 beef-tallow 0.860-0.870 30 to 38 40-48 190-199 O,P,M,S,C
7 Lard 0.858-0.864 22 to 32 53-77 190-202 L,O,P,M,S,Lu
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high”, m6 be the negation of simple concept m5; m7 be the simple concept: “the
difference between highest and lowest values of the Freezing point of sample is
high”, m8 be the negation of simple concept m7; m9 be the simple concept: “the
average io.value of the sample is high”, m10 be the negation of simple concept m9;
m11 be the simple concept: “the difference between highest and lowest values of
io.value of sample is high”, m12 be the negation of simple concept m11; m13 be
the simple concept: “the average sa.value of the sample is high”, m14 be the nega-
tion of simple concept m13; m15 be the simple concept: “the difference between
highest and lowest values of sa.value of sample is high”, m16 be the negation of
simple concept m15; m17 be the simple concept: “symbol likes ‘L,Ln,O,P,M’ ”, m18

is the negation of simple concept m17; m19 be the simple concept: “symbol likes
‘L.Ln,O,P,S’”, m20 be the negation of simple concept m19; m21 be the simple con-
cept: “symbol likes ‘L,O,P,M,S’”, m22 be the negation of simple concept m21; m23

be the simple concept: “symbol likes ‘L,O,P,S,A’”, m24 be the negation of simple
concept m23; m25 be the simple concept: “symbol likes ‘L,O’ ”, m26 be the negation
of simple concept m25; m27 be the simple concept: “symbol likes ‘L,O,P,S’”, m28

be the negation of simple concept m27; m29 be the simple concept “symbol likes
‘O,P,M,S,C’”, m30 be the negation of simple concept m29; m31 be the simple con-
cept: “symbol likes ‘L,O,P,M,S,Lu’”, m32 be the negation of simple concept m31. We
obtain the weight function ρmi for the simple concept mi in the following way: For
q = 2k + 1,0 ≤ k ≤ 7, let Lk = min{s0k,s1k, ...,s7k}, Hk = max{s0k,s1k, ...,s7k}.

ρmq(Si) =

⎧⎨
⎩

sik−Lk
Hk−Lk

Hk, when Lk < sik ≤ Hk,

0, when sik ≤ Lk,
1, when Hk < sik,

ρm′
q
(Si) = 1−ρmq(Si).

For the fuzzy concept on words, q = 2k + 1,8 ≤ k ≤ 15, we have

ρmq(Si) = 1− |wk−8|+ |wi|−2|wk−8 ∩wi|
|wk−8 ∪wi| ,

where wi is the set of words representing attribute m.f.acids, for sample, Si. For
example k = 8, m17 be the simple concept “symbol likes ‘L,Ln,O,P,M’”, ρm17(S0) =
1, ρm17(S1) = 0.8, ρm17(S2) = 0.8, ρm17(S3) = 0.6, ρm17(S4) = 0.57, ρm17(S5) =
0.67, ρm17(S6) = 0.6, ρm17(S7) = 0.73. In what follows, we set up the AFS structure
(M,τ,X) according to the data and facts in Table 9.7, where X = {S0, S1,...,S7} and
M = {m1, m2,...,m32}.

τ(Si,Si) = {ml | ρml (Si) > 0 }, τ(Si,S j) = {ml | ρml (Si) ≥ ρml (S j)}, f or i �= j.

One can verify that (M,τ,X) is an AFS structure. Thus the set of coherence mem-
bership functions {µξ (x) | ξ ∈ EM} can be obtained by formula (5.18) given in
Proposition 5.6. In this example, let us Λ = M. Through step 2, we get the fuzzy
description ζSi for each sample Si as follows:
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ζS0 =m1m7m9m11m14m15m17, ζS1 = m1m8m9m19, ζS2 = m4m13m21 + m4m16m21,

ζS3 = m8m16m23,ζS4 = m4m6m12m16m25, ζS5 = m12m27 + m16m27,

ζS6 = m3m5m10m29, ζS7 = m2m13m31.

By carrying out steps 3-4, we obtain

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 .28 .28 .15 .28 .14 .14
0 .28 .66 .34 .15 .34 .14 .14
0 .28 .34 .67 .15 .35 .14 .14
0 .15 .15 .15 1 .15 .14 .14
0 .28 .34 .35 .15 .70 .14 .14
0 .14 .14 .14 .14 .14 1 .48
0 .14 .14 .14 .14 .14 .48 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If the threshold α is set to 0.15, then C1 = {S0},C2 = {S1,S2,S3,S4,S5},C3 =
{S6,S7} which are the same as the result in [23]. The fuzzy descriptions of the
classes are shown as follows.

ζC1 = m1m7m9m11m14m15m17, ζC3 = m3m5m10m29 + m2m13m31,

ζC2 = m1m8m9m19 + m4m13m21 + m4m16m21 + m8m16m23

+m4m6m12m16m25 + m12m27 + m16m27,

Their membership functions are included in Table 9.8. If more detailed clustering is
required, then a higher value of the threshold α can be selected.

Table 9.8 Membership degrees belonging to each cluster and the boundary

S0 S1 S2 S3 S4 S5 S6 S7

µζC1
1 0 .04 .02 0 .05 0 0

µζC2
0 1 .66 .71 1 .70 .17 .29

µζC3
0 0 .13 .08 .08 .22 1 1

µζbou
0 0 .13 .08 .08 .14 .17 .29

9.2 Applications of the Elementary Fuzzy Clustering for
Management Strategic Analysis

Cluster analysis has been used frequently in product position, strategy formulation,
market segmentation studies and business system planning. In addition, we could
discriminate one or more strategies from airfreight industry and to comprehend the
competitive situation in more detail.

In this section, first the elementary fuzzy clustering method via AFS fuzzy logic
is investigated further by amending the algorithm to be more applicable to manage-
ment strategic analysis. Next it will be used to analyze the evaluation results of 30
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companies which have been studied and analyzed by G.-S. Liang et al. [56]. Com-
pared with the Liang’s algorithm, the elementary fuzzy clustering method is more
transparent, understandable and the results are easy to interpret. The method can be
applied to the management strategic analysis based on the data sets described by
mixed features such as real numbers, Boolean logical values, and linguistic descrip-
tions. The illustrative examples show that the interpretations of the clustering results
of the 30 companies are highly consistent with the expert’s intuition.

In [56], the authors defined the linguistic values by the trapezoidal fuzzy numbers
which are represented as four-dimension vectors. For example, they defined “Very
Low”as (0,0,0,0.2). They proposed a clustering which is based on the following
idea.

First, the distance function between two trapezoidal fuzzy numbers is used to
aggregate the linguistic values about attribute ratings to obtain the compatibility
relation. Then a fuzzy equivalence relation based on the fuzzy compatibility relation
is constructed. Finally, they determined the best number of clusters using a cluster
validity index which also depends on the distances computed for the trapezoidal
fuzzy numbers.

In this section, instead of subjectively defining the linguistic values as done in
[56], the membership functions are determined by the AFS algorithm according to
the ordered relations formed for the attributes and the semantics of the fuzzy con-
cepts. Compared with the Liang’s method, the clustering algorithm has the following
advantages:

• The features of the data sets can be mixed.
• The trapezoidal fuzzy numbers and their distance function are not required. This

can help avoid inconsistent results of Liang’s algorithm due to different choices
of the fuzzy numbers and the distance functions. (This shortcoming will be
shown in Section 9.2.2 by running some experiments).

• The clustering results are easy to interpret.

The experimental study on the evaluation results of 30 companies shows that
some aspects of the elementary fuzzy clustering method via AFS fuzzy logic need
to be improved. Thus, the algorithm has been enhanced in the following manner:

1. The description of each object is optimized by a selecting method.
2. The fuzzy cluster validity index is improved by adding the rate of the number of

clusters and the threshold α .

The applications of the improved clustering algorithm to the evaluation results of
the data sets in [56] show that the interpretation of each cluster is consistent with
experts’ intuitions, and the algorithm can be applied to the management strategic
analysis for the data sets with mixed features.

Example 9.7 serves as an introductory illustration to show how to undertake
strategic analysis using the elementary fuzzy clustering method.

Example 9.7. Let {c1,c2, ...,c5} be the set of five companies. Factor1,..., Factor7
are seven factors (attributes or features) obtained from experts, where Factor1:
“Core ability”, Factor2: “Organization management”, Factor3: “Pricing”, Factor4:
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Table 9.9 Evaluation Results of the Five Companies

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
c1 M H H B.H&VH VH L B.M &H
c2 H B.L& M M B.M & H H B.M &H VL
c3 H H B.M &H H H VH B.M & H
c4 VL M H B.VL & L H B.L &M M
c5 L M B.H &VH H B.H &VH B.VL &L B.M& H

“Competitive forces”, Factor5: “Finance”, Factor6: “Different advantage”, Factor7:
“Information technology”. The evaluation results of the five companies are shown
in Table 9.9 which is taken from [56]. Where VL = Very Low, B.VL&L = Between
Very Low and Low, L = Low, B.L&M = Between Low and Medium, M = Medium,
B.M&H = Between Medium and High, H = High, B.H&VH = Beween High and
Very High, VH = Very High.

Let X = {c1,c2, ...,c5} be a set of the five companies, M = {m1,m2, ...,m7} be a set
of fuzzy attributes on X . Where m1: “Factor1 is strong”, m2: “Factor2 is strong”,...,
m7: “Factor7 is strong”. Each fuzzy concept in EM represents a definitely sematic
interpretation. For instance, we may have γ: m2m3 +m2m4 which translates as “Or-
ganization management and Pricing are strong ”or “Organization management and
Competitive force are strong ”.

Next, we demonstrate how to establish an AFS structure according to the origi-
nal data in Example 9.7. Let X = {c1,c2, ...,c5}, M = {m1,m′

1,m2,m′
2, ...,m7,m′

7},
where m′

1: “Factor1 is not strong”, m′
2: “Factor2 is not strong”; ..., m′

7: “Factor7 is
not strong”. For the semantic meanings of the linguistic values, we have the follow-
ing order relation:

“VH”> “B.H&VH”> “H”> “B.M&H”> “M”> “B.L&M”> “L”> “B.VL&L”>
“VL”.

Using Table 9.9 and taking into account the semantics the attributes in M, we have
the following order relations of the simple concepts in M:

m1: c4 <m1 c5 <m1 c1 <m1 c3 =m1 c2, m′
1: c4 >m′

1
c5 >m′

1
c1 >m′

1
c3 =m′

1
c2.

m2: c2 <m2 c4 =m2 c5 <m2 c3 =m2 c1, m′
2: c2 >m′

2
c4 =m′

2
c5 >m′

2
c3 =m′

2
c1.

m3: c2 <m3 c3 <m3 c4 =m3 c1 <m3 c5, m′
3: c2 >m′

3
c3 >m′

3
c4 =m′

3
c1 >m′

3
c5.

m4: c4 <m4 c2 <m4 c5 =m4 c3 <m4 c1, m′
4: c4 <m′

4
c2 <m′

4
c5 =m′

4
c3 <m′

4
c1.

m5: c2 =m5 c3 =m5 c4 <m5 c5 <m5 c1, m′
5: c2 =m′

5
c3 =m′

5
c4 >m′

5
c5 >m′

5
c1

m6: c5 <m6 c1 <m6 c4 <m6 c2 <m6 c3, m′
6: c5 >m′

6
c1 >m′

6
c4 >m′

6
c2 >m′

6
c3

m7: c2 <m7 c4 <m7 c5 =m7 c3 =m7 c1, m′
7: c2 >m′

7
c4 >m′

7
c5 =m′

7
c3 =m′

7
c1.

Thus by (4.26), the AFS structure (M,τ,X) of Table 9.9 is well-defined. For the
weight function ρ : X → [0,1], ρ(x) = 1 for any x ∈ X . Then the set of coherence
membership functions {µξ (x) | ξ ∈ EM} can be obtained by (5.24) in Proposi-
tion 5.7.
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µη(x) = sup
i∈I

|Aτi (x)|
|X | , (9.11)

The esxpression Aτi (x) is calculated by (4.27). If σ = 2X , for W ∈ 2X , M (W ) = |W |
(|W | is the cardinal number of the set W , i.e., the number of elements in W ) in
Proposition 5.7. In Example 9.7, let η1 = m1, η2 = m2, η3 = m1m2, η4 = m1 +m2 ∈
EM. By the formula (9.11), we get:

For η1, A = {m1}, Aτ(c1) = {c1,c4,c5}, µη1(c1) = |Aτ (c1)|
|X | = 3/5 = 0.6.

For η2, A = {m2}, Aτ(c1) = {c1,c2,c3,c4,c5} µη2(c1) = |Aτ (c1)|
|X | = 5/5 = 1.0.

For η3, A = {m1,m2}, Aτ(c1) = {c1,c4,c5}, µη3(c1) = |Aτ (c1)|
|X | = 3/5 = 0.6.

For η4, A1 = {m1}, A2 = {m2}, µη4(c1) = supi=1,2(
|Aτi (c1)|

|X | ) = sup{3/5,5/5}= 1.0.

Remark 9.2. Compared with the Liang’s method, the membership function defined
by (9.11) depends on the ordered relations on the attributes and the AFS structure
of the data without relying on the subjectively defined membership functions of the
trapezoidal fuzzy numbers.

9.2.1 Improvements of the Elementary Fuzzy Clustering Method

By immediate applications of the elementary fuzzy clustering method to the data of
[56] shown as Table 7.4 in the Appendix A in Chapter 7, it is sometimes difficult to
obtain satisfactory results. Through a careful analysis of the algorithm, we find that
the following two issues (i.e., step 2 and step 5 in the algorithm) contribute to the
lower performance:

a) The description of each object cannot characterize it well enough. In the al-
gorithm, ζci =

∨
α∈Λεci

α , the final description of an object ci is the sum (i.e., the

EI algebra operation “∨”, refer to (9.10)) of all fuzzy concepts in Λεci
defined by

(9.8), where Λεci
is the set of all feasible fuzzy descriptions of the object. Because

Λεci
often includes the descriptions of both essential and redundant characteristics

of the object, the final description of the object may be too “rough” so that it may
include the “improper” descriptions in Λεci

which describe the redundant nature of
the object. The improper description always lowers the clustering accuracy. In the
improved algorithm, we just choose the best description from all the feasible de-
scriptions in Λεci

as the final description of the object through running a selection
method.

b) The fuzzy cluster validity index (9.4) which is used to select the best clus-
tering result considers only the clarity of the boundary among the clusters. How-
ever, the number of the clusters is also an important factor which influences
the quality of the clustering results. Thus, in the new fuzzy cluster validity in-
dex, both the clarity of the boundary and the number of the clusters have been
considered.
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Improvements of the elementary fuzzy clustering method via the AFS fuzzy
logic

Let X = {c1,c2, ...,cn} be the set of the objects, M = {m1,m2, ...,mp} be a set of
attributes on X . In what follows, the AFS structure is constructed by (4.26) and
the membership functions of the fuzzy concepts in EM are defined by (9.11). Let
ϑ = ∑mi∈M mi.

STEP 1: Find the fuzzy concept ζci ∈ EM to describe the object ci ∈ X , which
satisfies that not only the membership degree of ci belonging to ζci (i.e., µζci

(ci))
is the most approach to the membership degree of ci belonging to ϑ (i.e., µϑ (ci)),
but also µζci

(c j) is as small as possible for c j ∈ X , i �= j. In other words, ci can
be distinguished by ζci from other objects in X to a maximal extent.

The best fuzzy description ζci for each object ci is determined by running the
following procedure:

– Let ε ≥ 0 (in the examples in this section ε = 0). Find the set Bεci
defined as

follows:

Bεci
=
{

mk ∈ M | µmk(ci) ≥ µϑ (ci)− ε
}

(9.12)

Bεci
is the set of the fuzzy attributes in M the degrees of ci belonging them are

larger than or equal to µϑ (ci)− ε .
– Find the set B

ε
ci

defined as follows:

B
ε
ci

=

{
∏
m∈A

m| µ∏m∈A m(ci) ≥ µϑ (ci)− ε, A ⊆ Bεci

}
(9.13)

B
ε
ci

is the set of the conjunctions of the attributes in Bεci
such that the degrees

of ci belonging to the conjunctions are larger than or equal to µϑ (ci)− ε .
– Select the best fuzzy description ζci ∈ B

ε
ci

for the object ci:

ζci = arg min
ζ∈Bεci

{
∑

c∈X ,c�=ci

µζ (c)

}
(9.14)

Thus ci can be distinguished by ζci from other objects in X to the highest
degree.

Remark 9.3. For α,β ∈ B
ε
ci

, if α ≤ β in the lattice (EM,∧,∨), then for any c ∈
X , µα(c) ≤ µβ (c). By (9.14), the description ζci can be simply found just by
checking the membership degrees of ci belonging to the minimal elements in
B
ε
ci

. In general, there may be many elements in B
ε
ci

, but there are often just a few
of the minimal elements.

STEP 2: Apply the fuzzy description ζci of each ci ∈ X to establish the fuzzy
relation matrix F = ( fi j)n×n on X = {c1,c2, ...,cn}, where

fi j = min
{
µζci∧ζc j

(ci), µζci∧ζc j
(c j)
}

.
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Remark 9.4. In [56], the authors used the distance function dp(Ni,Nk) between
two fuzzy numbers Ni,Nk to define the fuzzy compatibility relation. Different
distance functions may lead to different fuzzy compatibility relations. Thus the
inconsistent clustering results may be obtained for the same data set. However, in
STEP 2, the fuzzy relation matrix F is uniquely determined by the AFS structure
(M,τ,X) of the data. This implies that the results of the proposed clustering
algorithm are objectively determined by the original data.

STEP 3: Find the feasible clusters corresponding to the threshold α ∈ [0,1].
Let Q = Fr = (qi j)n×n and the Boolean matrix Qα = (qαi j)n×n, where qαi j = 1 ⇔
qi j ≥ α , α ∈ [0,1]. For α ∈ [0,1], ci,c j ∈ X , ci,c j are in the same cluster under
threshold α if and only if qαi j = 1. For some ci ∈ X , if qαii = 0 then the threshold
α cannot be determined which cluster the object ci belongs to. For each object
ci ∈ X , if qαii = 1, qαi j = 0, for any j, i �= j, i.e., the object ci itself is a cluster, then
this clustering result under the threshold α is considered to be invalid.

Remark 9.5. In practice, the values of the thresholdsα in the range {qi j|1≤ i, j ≤
n} are just considered.

STEP 4: Determine the best clustering result out of all the results under the
threshold α ∈ {qi j|1 ≤ i, j ≤ n} using the fuzzy cluster validity index Iα de-
fined by (9.15) and compute the fuzzy description ζCk of the cluster Ck via the
AFS logic operation ∨. For each cluster Ck ⊆ X , where Ck is a cluster under the
threshold α , ζCk =

∨
c∈Ck

ζc is the fuzzy description of the cluster Ck. It is clear
that for each c ∈Ck, not only the membership degree of c belonging to the clus-
ter Ck, which is µζCk

(c), is as large as possible, but also µζCk
(y) is as small as

possible for y ∈ X ,y /∈ Ck. In other words, the objects in the cluster Ck can be
distinguished by ζCk from the objects outside Ck to the maximal extent.

The fuzzy concept ζbou =
∨

1≤k1,k2≤l,k1 �=k2
(ζCk1

∧ ζCk2
) ∈ EM describes the

boundary among the feasible clusters C = {C1, C2, ..., Cl}. Since µζbou
(c) pro-

duces the membership degree of each object in X belonging to the boundary ζbou,
hence it can be used to evaluate the clarity of the boundary among the clusters.
Thus the new fuzzy cluster validity index Iα is defined as follows:

Iα =
1
α2 × ∑c∈⋃1≤k≤l Ck

µζbou(c)

∑c∈⋃1≤k≤l Ck
µζTotal(c)

+
|C|
|X | . (9.15)

Where ζTotal =
∨

1≤k≤l ζCk for l ≥ 2. |C| is the number of the clusters, |X | is the
number of the objects. It is obvious that the lower the value of Iα is, the clearer
and the better the clustering result under threshold α is. Thus the best clustering
result can be selected by looking at the value of Iα .

9.2.2 Experimental Study of the Liang’s Algorithm

In [56], the authors proposed a cluster analysis method based on fuzzy equiva-
lence relation by the distance function between two trapezoidal fuzzy numbers. The
method comprises of 5 steps:
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• Express the original attributes in terms of predefined trapezoidal fuzzy numbers
and normalize the original attribute preference rating.

• Using the distance function between two trapezoidal fuzzy numbers to aggregate
the linguistic values to obtain the compatibility relation matrix.

• Find the fuzzy equivalence relation matrix based on the fuzzy compatibility rela-
tion matrix.

• Find all feasible clusters induced by the fuzzy equivalence relation matrix.
• Using a cluster validity index determine the best number of clusters.

By the application of Liang’s algorithm, we find that the different choices of the
trapezoidal fuzzy numbers and their distance functions can lead to different clus-
tering results. For example, two different selections of fuzzy numbers and distance
function are shown as follows:

Selection 1: “VL”: (0,0,0,0), “B.VL&L”: (0,0,0.1,0.2), “L”: (0,0.2,0.2,0.2),
“B.L&M”: (0,0.2,0.4,0.5), “M”: (0,0.3,0.6,0.7), “B.M&H”: (0.3,0.5,0.8,1),
“H”: (0.6,0.8,0.8,1), “B.H&VH”: (0.6,0.8,0.9,1), “VH”:(1,1,1,1), and p = 3
for the distance function dp(· , ·).
Selection 2: “VL”: (0,0,0,0.2), “B.VL&L”: (0,0,0.2,0.4), “L”: (0,0.2,0.2,0.4),
“B.L&M”: (0,0.2,0.5,0.7), “M”: (0.3,0.5,0.5,0.7), “B.M&H”: (0.3,0.5,0.8,1),
“H”: (0.6,0.8,0.8,1), “B.H&VH”: (0.6,0.8,1,1), “VH”:(0.8,1,1,1), and p = 2
for the distance function dp(· , ·). This selection is the same as Liang’s in [56].

Applying Liang’s algorithm to the same data as shown in Table 9.9, different results
from [56] are obtained by Selection 1. More details are shown in Table 9.10.

Table 9.10 The clustering results for Selection 1

λ interval Number of clusters L value clusters
(0.3788,0.3842) 2 0.3497 {c2,c3}, {c1,c4,c5}
(0.3842,0.5308) 3 0.1925 {c2}, {c3}, {c1,c4,c5}
(0.5308,0.5543) 4∗ 0.0936 {c1},{c2}, {c3} {c4,c5}

Thus, the best fuzzy clustering result for Selection 1 is {c1}, {c2}, {c3}, {c4,c5}.
However, in [56] the best clustering result for Selection 2 is {c2}, {c3}, {c4} and
{c1,c5}.

It is clear that the different selections of the fuzzy numbers and the distance
function for Liang’s algorithm may lead to inconsistent results. Furthermore the
method to select the suitable fuzzy numbers and distance function has not been
established yet. Thus it is very hard to objectively analyze management strategy
formed on a base of this data.

Applying the Liang’s algorithm with the same fuzzy numbers and the distance
function in [56] (i.e., Selection 2 ) to the evaluation results of 30 companies, we
obtain the following clustering result: C1 = {c8}, C2 = {c11}, C3 = {c24}, C4 =
{c26}, C5 = {The rest of the objects} through the same cluster validity index L
given in [56]. However, it is difficult to explain and interpret the clustering result.
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9.2.3 Applications of the Improved Algorithm

In this section, we apply the improved algorithm to the example which has been
studied in [56]. The data set contains 30 objects and seven factors (attributes) shown
in Table 9.9 of Example 9.7. Table 9.9 lists the data for 5 companies. For simplicity,
we first use the small data with 5 companies to illustrate the performance of the
proposed algorithm. Next we proceed with the entire data set.

9.2.3.1 Application of the Improved Algorithm to Data of 5 Companies

We continue to study the data shown in Example 9.7. Let X = {c1,c2, ...,c5},
M = {m1,m′

1, ...,m7,m′
7}, ϑ = m1 + m′

1 + ... + m7 + m′
7. By (9.11), we can get:

µϑ (c1) = µϑ (c2) = µϑ (c3) = µϑ (c4) = µϑ (c5) = 1.0.

STEP 1. Let ε = 0, for c1: µm2(c1) = µm4(c1) = µm5(c1) = µm7(c1) = 1 = µϑ (c1).
By (9.12), we have B0

c1 = {m2,m4,m5,m7}.
Since µm2m4m5m7(c1) = 1 = µϑ (c1), by (9.13) and Remark 9.3, we know that

m2m4m5m7 is the minimal element in Λ0
c1

= {m2,m4,m5,m7,m2m4,m2m5,m2m7,
m4m5,m4m7,m5m7,m2m4m5,m2m4m7,m4m5m7,m2m5m7,m2m4m5m7}. So,

ζc1 = m2m4m5m7. In the same way we obtain the others:

B0
c2

= {m1,m′
2,m

′
3,m

′
5,m

′
7}, ζc2 = m1m′

2m′
3m′

5m′
7.

B0
c3

= {m1,m2,m′
5,m6,m7}, ζc3 = m1m2m′

5m6m7.
B0

c4
= {m′

1,m
′
4,m

′
5}, ζc4 = m′

1m′
4m′

5.
B0

c5
= {m3,m′

6,m7}, ζc5 = m3m′
6m7.

STEP 2. The fuzzy relation matrix F and F2 are shown as follows.

F =

⎡
⎢⎢⎢⎣

1.0 0.2 0.2 0.2 0.6
1.0 0.2 0.2 0.2

1.0 0.2 0.2
1.0 0.4

1

⎤
⎥⎥⎥⎦ , F2 =

⎡
⎢⎢⎢⎣

1.0 0.2 0.2 0.4 0.6
1.0 0.2 0.2 0.2

1.0 0.2 0.2
1.0 0.4

1.0

⎤
⎥⎥⎥⎦.

Since F2 = (F2)2, hence Q = (qi j) = F2 can yield a partition tree with equiva-
lence classes. By Remark 9.5, the threshold α can be chosen as 0.2, 0.4, 0.6, 1.0.

STEP 3-4. When threshold α = 0.2, there is only one cluster:

C1 = {c1,c2,c3,c4,c5}, I0.2 = 25.2000.

When threshold α = 0.4, we encounter the following three clusters:

C1 = {c2}, C2 = {c3}, C3 = {c1,c4,c5}, I0.4 = 2.6000.

When threshold α = 0.6, there are four clusters shown as follows:

C1 = {c2}, C2 = {c3}, C3 = {c4}, C4 = {c1,c5}.
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The descriptions ζCi , i = 1,2, ...5 of the clusters C1 −C5 come in the form:

ζC1 = ζc2 = m1m′
2m′

3m′
5m′

7, ζC2 = ζc3 = m1m2m′
5m6m7,

ζC3 = ζc4 = m′
1m′

4m′
5, ζC4 = ζc1 ∨ζc5 = m2m4m5m7 + m3m′

6m7,
I0.6 = 1.9111.

When threshold α = 1, there are five clusters:

C1 = {c1}, C2 = {c2}, C3 = {c3}, C4 = {c4}, C5 = {c5}.

This clustering result is invalid.
In virtue of the above facts, we know that I0.6 is the smallest of Iα for all α ∈

{qi j | 1≤ i, j ≤ 5}= {0.2,0.4,0.6,1.0}. Thus the best clustering result is C1 = {c2},
C2 = {c3}, C3 = {c4}, C4 = {c1,c5}. The clustering results are the same as the result
given in [56]. Also, we can obtain the description of each cluster as follows:

The fuzzy description ζC1 of Cluster C1 is m1m′
2m′

3m′
5m′

7 with the following in-
terpretation: “Core ability is strong but Organization management, Pricing, Finance
and Information technology are not strong ”.

The fuzzy description ζC2 of Cluster C2, m1m2m′
5m6m7, states: “Core ability, Or-

ganization management, Different advantage and Information technology are strong
but Finance is not strong ”.

The fuzzy description ζC3 of Cluster C3, m′
1m′

4m′
5, reads as follows: “Core ability,

Competitive forces and Finance are not strong ”.
The fuzzy description ζC4 of Cluster C4 is m2m4m5m7 +m3m′

6m7 with the sematic
interpretation: “Organization management, Competitive force, Finance and Infor-
mation technology are strong ”or “Pricing and Information technology are strong
but Different advantage is not strong”.

9.2.3.2 Evaluation Results of the 30 Companies via the Improved Algorithm

In what follows, we apply the proposed clustering algorithm to the data of the
30 companies [56] shown as Table 7.4 in the Appendix A in Chapter 7. Let
X = {c1,c2, ...,c30}, M = {m1,m′

1, ...,m7,m′
7}, ϑ = m1 + m′

1 + ...+ m7 + m′
7.

STEP 1. Let ε = 0. We just show c1, c13 as an example:

B0
c1

= {m4,m5}, ζc1 = m4m5.
B0

c13
= {m′

1,m
′
6}, Λ0

c13
= {m′

1,m
′
6}. By considering method (9.14), we obtain

∑
c j∈X , j �=13

µm′
1
(c j) = 19.4333, ∑

c j∈X , j �=2

µm′
6
(c j) = 18.600.

Therefore ζc13 = m′
6 is selected as the best fuzzy description of the object c13.

STEP 2. The fuzzy relation matrix (F4)2 = F4 and Q = F4.
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STEP 3-4. When the value of the threshold α = 0.5667, there are two clusters:

C1 = {c2,c3,c6,c8,c9,c10,c11,c13,c15,c17,c19,c20,c24,c27,c28,c29},
C2 = {c1,c4,c5,c7,c12,c14,c16,c18,c21,c22,c23,c25,c26,c30}.

The description ζCi of each cluster:

ζC1 = m2 + m3 + m′
3 + m′

4m′
5 + m5 + m6 + m′

6 + m7, ζC2 = m4.
I0.5667 = 2.1425.

When threshold α = 0.6667, there are three clusters:

C1 = {c7}, C2 = {c2,c3,c6,c8,c9,c10,c11,c13,c15,c17,c19,c20,c24,c27,c28,c29},
C3 = {c1,c4,c5,c12,c14,c16,c18,c21,c22,c23,c25,c26,c30}.

The description ζCi of each cluster :

ζC1 = m′
3m4m′

5, ζC2 = m2 + m3 + m′
3 + m′

4m′
5 + m5 + m6 + m′

6 + m7,
ζC3 = m4. I0.6667 = 1.5999.

When threshold α = 0.7333, there are five clusters:

C1 = {c7}, C2 = {c18}, C3 = {c9,c15,c27},
C4 = {c2,c3,c6,c8,c10,c11,c13,c17,c19,c20,c24,c28,c29},
C5 = {c1,c4,c5,c12,c14,c16,c21,c22,c23,c25,c26,c30}.

The description ζCi of each cluster :

ζC1 = m′
3m4m′

5, ζC2 = m′
1m4m′

6, ζC3 = m3 + m6,
ζC4 = m2 + m′

3 + m′
4m′

5 + m5 + m′
6 + m7, ζC5 = m4.

I0.7333 = 1.6611.

When threshold α = 0.7667, we obtain six clusters:

C1 = {c7}, C2 = {c15}, C3 = {c18}, C4 = {c9,c27},
C5 = {c2,c3,c6,c8,c10,c11,c13,c17,c19,c20,c24,c28,c29},
C6 = {c1,c4,c5,c12,c14,c16,c21,c22,c23,c25,c26,c30}.

The description ζCi of each cluster is the following:

ζC1 = m′
3m4m′

5, ζC2 = m6, ζC3 = m′
1m4m′

6, ζC4 = m3,
ζC5 = m2 + m′

3 + m′
4m′

5 + m5 + m′
6 + m7, ζC6 = m4.

I0.7667 = 1.5709.

Remark 9.6. For the above results, the clustering result obtained under α = 0.7667
is different from that underα = 0.7333 by just one object c15. From the original data
in [56], we can observe that the data of c15 is quite dissimilar to those of others. Thus
the difference of the clustering for c15 may cause great differences in the values of
the invalidity index Iα .

All clustering results and associated values of Iα for the threshold
α ∈ {qi j | 1 ≤ i, j ≤ 30} are shown in Table 9.11. The smallest value of Iα
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Table 9.11 The clustering results of the evaluation results of 30 companies

α 0.5667 0.6667 0.7333 0.7667 0.8 0.8333 0.8667 0.9 0.9333 0.9667
Num.of Cluster 2 3 5 6∗ 10 11 16 17 19 21
Iα 2.1425 1.5999 1.6611 1.5709 1.7994 1.7195 1.8078 1.7500 1.7337 1.7303

is 1.5709. Therefore, the “best” number of fuzzy clusters is six. Here each cluster
can be described as follows.

• The description of Cluster 1: The fuzzy description of cluster C1, ζC1 = m′
3m4m′

5
states: “Competitive force is strong but Pricing and Finance are not strong”. It
is consistent with the experts’ intuitive description of Group 4 shown in [56] as
follows: “The character of this group is that there is not a particular strategy of
operation. The managers think that all of the strategic items are equally impor-
tant. The financial performance of this group is not successful in the airfreight
forwarder industry”.

• The description of Cluster 2: The fuzzy description of Cluster C2, ζC2 = m6

states: “Different advantage is strong ”. It is consistent with the experts’ intu-
itive description of Group 5 presented in [56] as follows: “Differential advantage
is the principal operating strategy for this group. The main differential strategy is
risk reduction for customers. Based on the research of Global Trade the safety of
cargo is the minimum requirement of customers. This group is focused on cargo
tracking and security of consignment. Using this strategy, a young company will
make the profit ny keep growing”.

• The description of Cluster 3: The fuzzy description of Cluster C3, ζC3 = m′
1m4m′

6
states: “Core ability and Different advantage are not strong but Competitive
forces is strong ”.

• The description of Cluster 4: The fuzzy description of Cluster C4, ζC4 = m3

states: “Pricing is strong ”. It is consistent with the experts’ intuitive descrip-
tion of Group 3 shown in [56]: “In this group, pricing is the main strategy. The
strategies of “Competitive weapon”and “Innovation/ development”are not im-
portant for them. Financial performance in this group is not perfect. Thus, we
can suggest that the strategy of price war is not a good policy in the Taiwan’s
airfreight market.”

• The description of Cluster 5: The fuzzy description of Cluster C5, ζC5 = m2 +
m′

3 + m′
4m′

5 + m5 + m′
6 + m7 states: “Competitive forces and Finance are not

strong ”or “Different advantage is not strong ”or “Pricing is not strong ”or
“Organization management is strong ”or “Finance is strong ”or “Information
technology is strong ”. It is consistent with the experts’ intuitive description of
Group 1 presented in [56]: “Compared with other groups, the objects in group 1
pay more attention to each strategic item compared to the others. Especially, the
strategies of organization management and information technology are the most
important for them. Regarding the financial performance of group 1, we get the
trend of profit is on the downside. To judge the reason, we find that the main line
of the objects of group 1 is Japan and Korea. After Asia finance storm, the import
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cargo quantity of Japan and Korea area is withered. And it causes the financial
performance inferior to other groups”.

• The description of Cluster 6: The fuzzy description of Cluster C6, ζC6 = m4

states: “Competitive forces is strong”. It means that compared with other factors,
“Competitive forces ”is the strongest. According to the companies of this clus-
ter in the original data, the factor “Core ability”,“Differential advantagement”are
also strong. This result does not conflict with the experts’ intuitive description
of Group 2 as shown in [56]: “Many objects belong to group 2. We can judge
that the operation strategy of airfreight forwarders in Taiwan is learning mutu-
ally from the phenomenon. In this group, the main strategies are core ability and
differential advantage. Pricing and information technology are less important for
them”.

Remark 9.7. The expert’s intuition groups considered the respectable degree of air-
freight forwarder which could not be considered in our current study. This may be
the reason that the clustering result C3 does not fully coincide with experts’ intuition.

As the examples showed, the results of the improved algorithm are almost consistent
with the experts’ assessment. Compared with the Liang’s algorithm, our algorithm
is more transparent, understandable, and interpretable. It can be applied to the data
with the mixed features and linguistic descriptions. The results obtained so far indi-
cate that the proposed fuzzy clustering method are practical and useful.

9.3 Feature Selection, Concept Categorization and
Characteristic Description via AFS Theory

The AFS theory will be applied to study some new techniques of feature selection,
concept categorization and characteristic description; those problems are often en-
counter in machine learning, pattern recognition and data mining. These techniques
developed under the framework of AFS theory are simpler and more interpretable
than those supplied by the conventional methods. In order to evaluate the effective-
ness of the feature selection, the concept categorization and the characteristic de-
scription, these new techniques are applied to fuzzy clustering. Several benchmark
data sets are used for this purpose. Accuracy of clustering is comparable with or su-
perior to the results produced by the conventional algorithms such as FCM, k-means,
and some newer algorithms such as e.g., two-level SOM-based clustering etc.

In this section, for an AFS structure (M,τ,X) of some data, we always select the
weight function ρ : X → [0,1], ρ(x) = 1 for any x ∈ X . Then the set of coherence
membership functions {µξ (x) | ξ ∈ EM} can be obtained by (5.24) presented in
Proposition 5.7, which is defined as follows.

µη(x) = sup
i∈I

|Aτi (x)|
|X | , (9.16)

Here Aτi (x) is calculated by (4.27). If σ = 2X , for W ∈ 2X , M (W ) = |W | (|W | is the
cardinal number of the set W , i.e., the number of elements in W ) in Proposition 5.7.
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9.3.1 Feature Selection

In this section, we present a technique to select salient features by the similarities
among features and the entropy of the features in the framework of AFS theory.

9.3.1.1 Similarity and Entropy of Features

Let X = {x1,x2, · · · ,xn} be a set of samples and F = { f1, f2, · · · , fs} be a set of the
features on X , xi = (wi1,wi2, · · · ,wis) ∈ Rs, 1≤ i ≤ n, where wi j = f j(xi) is the value
of xi on the feature f j ∈ F . (F,τF ,X) is an AFS structure in which τF is defined as
follows: for any xi,x j in X ,

τF(xi,x j) = { f | f (xi) ≥ f (x j), f ∈ F}. (9.17)

Definition 9.2. Let X = {x1,x2, . . . ,xn} be a set of samples, F = { f1, f2, · · · , fs} be
a set of features. Let (F,τF ,X) be an AFS structures defined as (9.17). For α,β ∈ F ,
the similarity between the features α,β is defined as follows:

SI(α,β ) =
∑x∈X µα∧β (x)
∑x∈X µα∨β (x)

(9.18)

where the membership functions µα∧β (x) and µα∨β (x) are given by (9.16).

The similarity defined by (9.18) shows that the fuzzy similarity degree between the
features α,β ∈ F , is determined by µα∧β (x) and µα∨β (x). The larger SI(α,β ) is,
the higher similarity degree between the features α and β is.

Definition 9.3. Let X = {x1,x2, . . . ,xn} be a set of samples, F be a set of features.
The entropy E( f j) of a feature f j ∈ F is defined as follows:

E( f j) = −
n

∑
k=1

p j(xk)log2 p j(xk), (9.19)

where

p j(xi) =
∑x∈{ f j}τ (xi) f j(x)

∑n
k=1 f j(xk)

∈ [0,1],

{ f j}τ(xi) = {x ∈ X | f j(xi) ≥ f j(x)}.

Entropy characterizes the (im)purity of an arbitrary collection of examples. Here,
we just take into account entropy of a single feature. The selected features are the
ones coming with small values of entropies.

9.3.1.2 Selecting Features

The feature selection strategy we propose for selecting the salient ones involves two
stages: First, a fuzzy equivalence similarity matrix is established according to the
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similarity provided by Definition 9.2. Next the features are clustered assuming a
certain value of threshold p. Second, the clusters in which the features have large
similarities will be maintained, and the cluster which has a single feature and the
feature exhibits large entropy will be discarded. The optimal clustering of the fea-
tures, i.e., the optimal threshold p, is determined by the feature selecting validation
index (9.20) based on similarity and entropy of the features. The detailed scheme of
the feature selection is outlined as follows:

a. Establish a fuzzy equivalence similarity matrix G of features:
H = (yi j)s×s, where yi j = SI( fi, f j), fi, f j ∈ F . There exists an integer r
such that (Hr)2 = Hr and G = Hr is a fuzzy equivalence similarity matrix.

Hr =

r︷ ︸︸ ︷
H ·H · . . . ·H is the fuzzy matrix product of the r fuzzy matrix H (refer to

Theorem 9.2), i.e., let H2 = (oi j),oi j = max
1≤k≤s

{min{yik,yk j}}.

b. Determine the initial clusters Uα
1 ,Uα

2 , . . . ,Uα
d :

The fuzzy equivalence matrix G = Hr = (qi j) can yield a partition tree with
equivalence classes. If qi j ≥ α , then fi, f j are in the same cluster under the
threshold α ∈ [0,1]. The cluster which just has a single element will be dis-
carded, then we can obtain the clusters Uα

1 ,Uα
2 , . . . ,Uα

d . Thus, each cluster is a
group of features with relatively large level of similarity.

c. Determine optimal clusters U p
1 ,U p

2 , . . . ,U p
d by index V (p) :

Let P = {p1, p2, . . . , pl} = {qi j| 1 ≤ i ≤ s,1 ≤ j ≤ s} be the set of all the entries
in the fuzzy matrix G and p1 < p2 < .. . < pl . The best clustering result can be
obtained by searching for the largest feature selecting validation index V (p), p ∈
P defined as follows:

V (p) = L (�p)
∑ f j∈B E( f j)

|B| , (9.20)

where B = F −⋃1≤i≤d U p
i , and

L (�p) =

{
1, i f �p ≤ �s/10�,

s+1−�p
s+1−�s/10� , otherwise,

(9.21)

and

�p = max
1≤ j≤d

{|U p
j |}− min

1≤ j≤d
{|U p

j |} (�p = |U p
1 | i f d = 1).

E( f j) is the entropy of the feature f j defined by formula (9.19). Each feature
in B = F −⋃1≤i≤d U p

i becomes a cluster by itself, i.e., it has too low similarity

with other features to be clustered with other features into one group.
∑ f j∈B E( f j)

|B|
is the average entropy of the features in B. A larger value of the average entropy
implies that the features in B contain the less valuable information about the
data. Thus the larger value of the average entropy, the more valuable features in
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⋃
1≤i≤d U p

i . On the other hand, L (�p) in (9.21) normalizes �p into [0,1]. The
smaller �p is, the larger L (�p) is. Intuitively, smaller value of �p implies that
the features in each cluster have large similarities, and the numbers of features
in different clusters are evenly distributed. In summary, the larger the V (p), the
better the features are clustered under threshold p. If p0 = argmax

p∈P
{V (p)}, the

final selected features set is

Fselect =
⋃

1≤i≤d

U p0
i . (9.22)

Fselect is the set of the selected features which are considered as the salient fea-
tures for ensuing learning. The experimental study of the fuzzy clustering on
benchmark data sets will demonstrate and quantify its effectiveness.

This feature selection procedure is performed in unsupervised mode, i.e., any
prior information about data is unknown. It is a challenging task yet a practical tool
for exploratory data analysis. Compared with other algorithms such as MFCMS
[65] and EM algorithm [59], our feature selection can be directly applied to the
data. However, for MFCMS, its final membership degrees, weights and prototypes
depend upon initialization, and it may return different results for different trials;
For the EM algorithm, data set was first randomly divided into two parts, that is a
training set and a testing one.

9.3.2 Principal Concept Selection and Concept Categorization

A critical issue in fuzzy pattern analysis is to select the relative concepts to describe
the objects. Instead of using all available concepts in the data, one selects a sub-
set of concepts to describe the characteristics of the system under consideration.
In general, for different aims, different experiences, different perception, different
knowledge background, etc., different people may select different concepts to study
the system. Therefore, before further studies, humans often select the important (or
relative) simple concepts from the predetermined concept set. In the following study,
a principal concept selection method is proposed to achieve this goal.

Furthermore, the concepts which exhibit strong correlations are often placed in a
single category. For instance, height and weight, hair black and hair melanin show
strong correlations, i.e., in general, the higher the person is, the heavier the person is,
and the more the hair melanin, the blacker the hair color. So in practice, height and
weight are located in a single category associated with the appearance of human.
Hair melanin and hair black are the same category being associated with the hair of
human. Thus, we will present the simple concept categorization and show how to
describe different characteristics of objects with different categories below.

9.3.2.1 Principal Concepts Selection by PCA

PCA (Principal Component Analysis)[17] constructs eigenvectors and eigenvalues
from a covariance matrix constructed from the input data. The first orthogonal
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dimension of this eigenspace captures the greatest amount of variance in the
database whilst the last dimension captures the least amount of variance. This allows
for a suitable dimension of eigenspace to be chosen. Then the data are projected into
the eigenspace, thus creating a lower dimensional space. The simple concept set M0

will be selected from the total simple concepts M by using PCA.
Let X = {x1,x2, · · · ,xn} be a data set with r features and M = {m j,k | 1 ≤ j ≤

r,1 ≤ k ≤ l} be a set of simple concepts on X . Here m jk be the kth simple concept
on the jth feature and there are l simple concepts on each feature. For any x,y ∈ X , τ
is defined as (4.26) according to the given data and the semantics of the simple con-
cepts in M. Then (M,τ,X) is an AFS structure. For each simple concept m ∈ M, its
membership function µm(x) is defined as (9.16). Let the matrix Y = (yu,v)n×lr, where

yu,v = µmj,k (xi),u = i,v = l( j−1)+ k, 1 ≤ i ≤ n, 1 ≤ j ≤ r, 1 ≤ k ≤ l (9.23)

Let the correlation matrix be denoted as C = (Y −Y)T (Y −Y ), where

Y = Jn×lrdiag(
1
n

n

∑
u=1

yu,1,
1
n

n

∑
u=1

yu,2, . . . ,
1
n

n

∑
u=1

yu,lr),

where Jn×lr is the n rows and lr columns matrix whose elements are all 1 (i.e.,
the universal matrix). By SVD decomposition, we can obtained the eigenvalues
of C: λ1,λ2, . . . ,λlr ( λ1 > λ2 > .. . > λlr), and the corresponding eigenvectors
of C: v1,v2, . . . ,vlr, vi = (ai

1,1, . . . ,a
i
1,l, . . . ,a

i
j,k, . . . ,a

i
r,1, . . . ,a

i
r,l)

T . Usually, the

normalization constraint vT
i vi = 1 on vi has been adopted. Notice that ai

j,k associates

with the simple concept m j,k, and ai
j,k indicates the contribution of m j,k in the ith

axe vi. The larger |ai
j,k| is, the larger the projection of m j,k on the axe vi is, i.e., the

more principal contribution of m j,k for vi is.
The information retention ratio ei [33] is defined as:

ei =
λi

λ1
. (9.24)

Here, we just take some principal trends into consideration, and analysis the effects
(proportions) of each simple concept on such principal trends, finally the concepts
whose effects are weak will be discarded. In detail, if

ei > δ , (9.25)

the vi will be retained. Given C, {vi|i = 1, . . . ,h} are retained. ai
1,1, ai

1,2,. . . , ai
1,l . . .,

ai
j,k, . . ., ai

r,1, ai
r,2,. . . , ai

r,l can be considered as the projections of lr simple concepts

on vi, and if (ai
j,k)

2 is larger than 1/(4× lr), then m j,k can be considered as an
important simple concept for partitioning samples on the ith trend.

M0 = {m j,k | (ai
j,k)

2 > 1/(4× lr),1 ≤ i ≤ h} (9.26)

is the final set of principal simple concepts for next stage.
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Notice that we did not select the new (extracted) concepts created by PCA that are
linear combinations of the initial simple concepts which do not have clear interpre-
tation, but select the initial principal concepts m j,k from M which retain the original
semantics. Thus the descriptions of the characteristic of the systems or objects with
the principal concepts exhibit sound semantics.

9.3.2.2 Concept Categorization

We introduce the concept of correlation between two concepts.

Definition 9.4. Let X = {x1,x2, · · · ,xn} be a data set with r features and M =
{m j,k | 1 ≤ j ≤ r,1 ≤ k ≤ l} be a set of simple concepts on X . Here m jk be the
kth simple concept on the jth feature and there are l simple concepts on each fea-
ture. Let (M,τ,X) be an AFS structure. For α,β ∈ M, the correlation between the
simple concepts α,β is calculated as follows:

Co(α,β ) =
∑n

i=1 µα(xi)µβ (xi)√
∑n

i=1 µ2
α(xi)

√
∑n

i=1 µ2
β (xi)

, (9.27)

where the membership functions µα(x) and µβ (x) are given by (9.16).

Example 9.8. Let X = {x1,x2, ...,x10} be a set of 10 persons and their features (at-
tributes) which are described by real numbers (age, height, weight), Boolean values
(gender), nominal values (melanin) and the order relations (hair black, hair white);
see Table 9.12. Where H : High, i.e., the content of hair melanin is high, M : Medium,
L : Low. Here the number i in the “hair black or hair white” columns which corre-
sponds to some x ∈ X implies that the hair color of x has been ordered following our
perception of the color ith. For example, the numbers in the column “hair black”
imply a certain order (>)

x7 > x10 > x4 = x8 > x2 = x9 > x5 > x6 = x3 = x1

When moving from the right to the left, the relationship states how strongly the
hair color resembles black color. In this order, xi > x j (e.g., x7 > x10) states that the
hair of xi is closer to the black color than the color of hair the individual x j. The
relationship xi = x j (e.g., x4 = x8) means that the hair of xi looks as black as the
one of x j. Let M = {m1,m2, ..., m11} be the set of fuzzy or Boolean concepts on
X and each m ∈ M associate with a single feature. Where m1 : “old persons”, m2 :
“tall persons”, m3 : “heavy persons”, m4 : “more hair melanin”, m5 :“male”, m6 :
“female”, m7 : “black hair persons”, m8 : “white hair persons”, m9 : “yellow hair
persons”, m10 : “young persons”, m11 : “the persons about 40 years old”.

In Example 9.8, given (9.27), we obtain

Co(m2,m3) = 0.9912, Co(m4,m7) = 0.9924,

Co(m2,m7) = 0.7887, Co(m1,m5) = 0.7293,



9.3 Feature Selection, Concept Categorization and Characteristic Description 387

Table 9.12 Descriptions of features

Sample Age Appearance Gender Hair
height weight male female melanin black white

x1 20 1.9 90 1 0 L 6 1
x2 13 1.2 32 0 1 M 4 3
x3 50 1.7 67 0 1 L 6 1
x4 80 1.8 73 1 0 M 3 4
x5 34 1.4 54 1 0 L 5 2
x6 37 1.6 65 0 1 L 6 1
x7 45 1.7 78 1 0 H 1 6
x8 70 1.65 70 1 0 M 3 4
x9 60 1.82 83 0 1 M 4 3
x10 3 1.1 21 0 1 H 2 5

Co(m2,m3) = 0.9912 and Co(m4,m7) = 0.9924 implies “height” has strong corre-
lation with “weight” and implies “hair melanin” has strong correlation with “hair
black”. While Co(m2,m7) = 0.7887 implies “height” has low correlation with “hair
black”, Co(m1,m5) = 0.7293 implies “age” has low correlation with “gender”.

Based on the correlations between the concepts, concepts categorization method
is summarized as follows:

Let X = {x1,x2, . . . ,xn} be a set of objects, M = {m1,m2, . . . ,mz} be a set of
simple concepts.

a. Establish a fuzzy equivalence correlation matrix B on the set of simple
concepts M:
MCo = (li j)z×z, where li j = Co(mi,m j), mi, m j are simple concepts in M. There
exists an integer t such that (Mt

Co)
2 = Mt

Co, B = Mt
Co = (bi j)z×z is a fuzzy

equivalence correlation matrix.

b. Determine the initial clusters Mα
1 ,Mα

2 , . . . ,Mα
d :

The fuzzy equivalence correlation matrix B = Mt
Co can yield a partition

tree with equivalence classes. If qi j ≥ α , then ni,n j are in the same cluster
assuming a certain level of the threshold α . The cluster which just has a sin-
gle element will be discarded, then the clusters Mα

1 ,Mα
2 , . . . ,Mα

d can be obtained.

c. Determine the final clusters M1,M2, . . . ,Mt:
Let {α1,α2, ...,αv} = {bi j| 1 ≤ i, j ≤ z} be the set of all the entries in the fuzzy
equivalence correlation matrix B = (bi j)z×z and α1 < α2 < ... < αv. For u from
1 to v, check Mαu

1 ,Mαu
2 , . . . ,Mαu

t (|Mαu
i |> 1, t ≥ 2), once the following condition

is satisfied

max
1≤i≤t

{|Mαu
i |} ≤ 2 min

1≤i≤t
{|Mαu

i |}, (9.28)

then we let Mi = Mαu
i (i = 1,2, . . . ,t).
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The concepts in each Mi possess strong correlations, so Mi is regarded as a simple
concept category to describe some characteristics of the objects in X . In the above
algorithm, Mi is just a set of fuzzy concepts which is selected to describe a particular
characteristic of the objects in X . In practice, such cluster can be regarded as a
category and a particular characteristic of objects is usually described by the fuzzy
concepts in a category.

9.3.2.3 Concept Selection for the Description of a Sample via
1/k−A-Nearest Neighbors

In human clustering and recognition procedures shown in Figure 9.1 and following
the elementary fuzzy clustering method, humans first choose some features or some
simple concepts formed on the features which they regard important to his cluster-
ing or recognition problems. These are the following procedures: feature selection,
concept selection, and concept categorization as we discussed in the previous sec-
tions. Then for each object or sample, they choose some concepts from the above
selected set of concepts to describe the sample. In what follows, we discuss how to
select some simple concepts for the description of an object. That is, for the sample
x, by the 1/k−A-nearest neighbors of x (defined by Definition 9.6), a special set Λx

of simple concepts is selected to form the fuzzy description of x.
In Chapter 4, the weight function ρν of a simple concept ν (seeing Definition 4.8)

associating to a feature, which can be defined according to the data and the semantic
meaning of ν , are applied to derive the coherence membership functions of an AFS
structure and an AFS fuzzy logic system. In this section, the weight functions of
simple concepts are applied to define the distances associating to a set of simple
concepts.

Let X = {x1,x2, · · · ,xn} be a set of some samples and F = { f1, f2, · · · , fr} be the
set of the features on X , xi = (wi1,wi2, · · · ,wir), 1 ≤ i ≤ r, where wi j = f j(xi) is the
value of xi on the feature f j . For the sake of simplicity, let M = {mi j | 1 ≤ i ≤ r, 1 ≤
j ≤ 4} be a set of simple concepts on X . Where mi1,mi2,mi3,mi4 are the simple
concepts, “small” , “medium”, “no-medium”, “large” associating to the feature fi

respectively. We discuss the weight functions of simple concepts with the following
semantics:

ρmj1(xi) =
h j1 − f j(xi)

h j1 −h j2
, (9.29)

ρmj2(xi) =
h j4 −| f j(xi)−h j3|

h j4 −h j5
, (9.30)

ρmj3(xi) =
| f j(xi)−h j3|−h j5

h j4 −h j5
, (9.31)

ρmj4(xi) =
f j(xi)−h j2

h j1 −h j2
, (9.32)

with the semantics of terms of “small, “medium”, “not medium”, and “large”, re-
spectively. Here j = 1,2, ...,s,
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h j1 = max{ f j(x1), f j(x2), · · · , f j(xn)},
h j2 = min{ f j(x1), f j(x2), · · · , f j(xn)},
h j3 =

f j(x1)+ f j(x2)+ · · ·+ f j(xn)
n

,

h j4 = max{| f j(xk)−h j3| | k = 1,2, · · · ,n},
h j5 = min{| f j(xk)−h j3| | k = 1,2, · · · ,n}.

By Definition 4.8, ones can verify that for every mi j ∈ M, ρmi j (x) defined by (9.29)–
(9.32) is a weighting function of the simple concept mi j. For example, let X be a set
of ten people and their ages are 19, 8, 65, 80, 20, 23, 59, 70, 68, and 6, respectively.
Let m11,m12,m13,m14 be the simple concept on “age ”and their semantic meanings
are “age is small ”, “age is medium ”, “age is not-medium ”, “age is large, ” re-
spectively. We have

h11 = max{19,8,65,80,20,23,59,70,68,6}= 80,
h12 = min{19,8,65,80,20,23,59,70,68,6}= 6,
h13 = (19 + 8 + 65 + 80+20+23+59+70+68+6)/10 = 41.8,
h14 = max{|19 − 41.8|, |8 − 41.8|, |65 − 41.8|, |80 − 41.8|, |20 − 41.8|, |23 −
41.8|, |59−41.8|, |70−41.8|, |68−41.8|, |6−41.8|}= 38.2,
h15 = min{|19 − 41.8|, |8 − 41.8|, |65 − 41.8|, |80 − 41.8|, |20 − 41.8|, |23 −
41.8|, |59−41.8|, |70−41.8|, |68−41.8|, |6−41.8|}= 17.2.
ρm11(x1) = h11−w11

h11−h12
= 80−19

80−6 = 0.82, ρm11(x2) = h11−w21
h11−h12

= 80−8
80−6 = 0.97,

ρm11(x3) = h11−w31
h11−h12

= 80−65
80−6 = 0.20, ρm12(x1) = h14−|w11−h13|

h14−h15
= 0.73,

ρm13(x1) = |w11−h13|−h15
h14−h15

= 0.27, ρm14(x1) = w11−h12
h11−h12

= 19−6
80−6 = 0.18.

Definition 9.5. Let X be a set of samples and M be the set of simple concepts on X .
Let X and M be finite sets. For A ⊆ M, and x,y ∈ X , we define dA(x,y) the distance
of x,y associating to the simple concepts in A as follows:

dA(x,y) =

(
∑

m∈A

(ρm(x)−ρm(y))2

) 1
2

(9.33)

where ρm(x) is a weight function of m defined by Definition 4.8.

For x ∈ X , and an positive integer k, A ⊆ M, the following Definition 9.6 defines
the 1/k − A-nearest neighbor DA

1/k−x of x in order to select simple concepts for
the descriptions of the sample x, i.e., the set of |X |/k samples in X whose distances
associating to the simple concepts in A with x are the nearest of the others |X |−|X |/k
samples in X .

Definition 9.6. Let X be a set of samples and M be the set of simple concepts on X .
Let X and M be finite sets. For A ⊆ M, and x ∈ X , k is a positive integer, a subset of
X is called a 1/k−A-nearest neighbor of x, denoted as DA

1/k−x, if for any y ∈ DA
1/k−x

and any z ∈ X −DA
1/k−x, dA(x,y) < dA(x,z), and |DA

1/k−x|/|X |= 1/k.
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9.3.3 Characteristic Description of Samples

Let us recall the essence of the recognition process as it is typically carried out by
humans. Human always form a complex fuzzy concepts from the selected (given)
simple concepts, in order to describe the object (sample). The complex fuzzy con-
cepts can be served as the fuzzy characteristic description of the object. This descrip-
tion can represent the characteristic of the sample, and can distinguish this sample
from other objects. In what follows, we study how to describe a sample in the AFS
framework. There are many alternative methods [44, 70, 71] to determine a fuzzy set
ζx ∈ EM to describe each x (x ∈ X). Fuzzy set ζx describes the prototype of x with
the simple concepts in M in order to distinguish x among other samples in X to the
highest extent. However fuzzy descriptions ζx of sample x given in [44, 70, 71] are
too particular to appropriately to represent its cluster. In this section, we present two
kinds of the fuzzy descriptions of a sample based on the Occam’s razor principle
[64] (we always prefer the simplest hypothesis that fits the data) and the Minimum
Description Length Principle. We describe a sample by using a minimal number of
possible simple concepts. Sometimes we can describe some samples just by using
one simple concept, which is the most salient characteristic of the sample.

For example, we want to find a people in the crowd with a description and there
are two descriptions of the people: “high height and large eyes and lameness” or
“female with long hair and yellow skin” or “wearing a red dust coat and a white
cap”, another is “lameness” which is the most primary characteristic of the people.
It is clear that we can quickly and accurately find the people using the latter one.
In what follows, we provide two methods to obtain the descriptions which will be
applied to two different fuzzy clustering algorithms.

Description Method A: Description based on principal concepts or a category of
concepts

Let X be the universe of discourse, x ∈ X , N be a set of principal concepts selected
by PCA or a category of concepts described in the above section. We establish an
AFS structure (N,τ,X) on a basis on the original data and facts. The membership
functions of the fuzzy concepts in EN are defined by (9.16).

Bx = {m ∈ N | µm(x) = µ∨b∈Nb(x)},
ζx = ∧β∈Bxβ ∈ EN, (9.34)

ζx is the fuzzy description of x under the concept set N, which can represent the
most salient characteristics.

Description Method B: Description based on the 1/k−A-Nearest Neighbors

Now, we describe how to select simple concepts for the fuzzy description of each
sample. For x ∈ X , and m ∈ M, we calculate the 1/k−M−nearest neighbor DM

1/k−x

of x and the 1/k−{m}−nearest neighbor Dm
1/k−x of x. The larger |Dm

1/k−x ∩DM
1/k−x|

is, the greater the representative ability of the simple concept m is. Therefore, the
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importance of simple concept m to describe x is determined by |Dm
1/k−x ∩DM

1/k−x|.
We choose |M|/k simple concepts in M whose |Dm

1/k−x ∩DM
1/k−x| are the largest of

the other |M| − |M|/k simple concepts in M as the selected simple concepts and
denote the set of the selected |M|/k simple concepts as Λx.

For every x ∈ X , let ϑ = ∑mi∈Λx mi. Then ϑ is the maximum element of the
completely distributive lattice (EΛx,∨,∧) (refer to Theorem 4.1). Therefore µϑ (x)
is the maximum membership degree of x belonging to the concepts in EΛx (i.e.,
(Λx)EI ) which is the set of all concepts generated by the simple concepts in Λx. In
order to distinguish x among other samples in X at the maximal degree, we choose
a fuzzy concept ζx ∈ EΛx which satisfies that not only µζx

(x) approaches µϑ (x) to
the highest extent, but also µζx(y) becomes as low as possible for y ∈ X ,x �= y. In
other words, x can be distinguished by ζx among other samples in X to the highest
degree. The details of this procedure are presented as follows.

Find-Fuzzy-Description-Algorithm:

1 Let ε ≥ 0. Find set Bεx defined as follows:

Bεx = {m ∈Λx | µm(x) ≥ µϑ (x)− ε} (9.35)

Bεx is the set of the simple concepts in Λx such that the degrees of x belonging to
them are larger than or equal µϑ (x)−ε . Where ε controls the “roughness” extent
of the description of x. In our algorithm, ε is a certain predetermined constant for
all samples.

2 Find the set Aεx defined as follows:

Aεx =

{
∏
m∈B

m | µ∏m∈B m(x) ≥ µϑ (x)− ε, B ⊆ Bεx

}
(9.36)

Aεx is the set of the conjunctions of the simple concepts in Bεx such that the degrees
of x belonging to them are larger than or equal to µϑ (x)− ε .

3 Choose the best description of x from ζx ∈ Aεx as follows:

ζx = arg min
ϕ∈Aεx

| {y ∈ X |µϕ(y) ≥ µϕ(x)} | . (9.37)

Thus x can be distinguished by ζx among other samples in X at maximal extent.

In the following sections two AFS fuzzy clustering algorithms are developed via
the “Description Method A” and “Description Method B”as described above.

9.3.4 AFS Fuzzy Clustering Algorithm Based on the 1/k−A
Nearest Neighbors

The AFS clustering scheme based on the 1/k − A-nearest neighbors shown as
Figure 9.2 consists of the following design phases: A. Select simple concepts for
the fuzzy description of each sample; B. Find the description of every sample using
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Original Data
A. Select simple concepts
for the fuzzy description
of each sample

B. Find the
description
of each sample

C. Evaluate the similarity
between the objects
based on the
descriptions

D. Cluster according to
the similarity degree

F. Re−clustering by
the
fuzzy descriptions
of clusters

E. Select the clear
cluster result,
and get the
description of
every clusters

Fig. 9.2 The procedure of our clustering algorithm

the selected simple concepts; C. Evaluate the similarity between the samples based
on their descriptions; D. Cluster the samples according to the similarity degrees
deriving from their descriptions; E. Select the clear clustering result via the fuzzy
cluster validity index defined by (9.40), and obtain the descriptions of the clusters;
F. All samples are re-clustered according to the descriptions of clusters. In what
follows, we introduce each phase in detail.

A. Evaluate the similarity between the samples

For every x ∈ X , the fuzzy description ζx of x is obtained in the above Description
Method B: description based on the 1/k−A-Nearest Neighbors. The fuzzy descrip-
tions ζx of x ∈ X are applied to establish the fuzzy relation matrix Fζ = ( fi j) on
X = {x1,x2, ...,xn}, where

fi j = min
{
µζxi∧ζx j

(xi), µζxi∧ζx j
(x j)
}

. (9.38)

where fi j is the similarity degree between the sample xi and x j determined by
their descriptions. Theorem 9.2 ensures us that there exists an integer h such
that (Fh

ζ )2 = Fh
ζ , i.e., the fuzzy relation Q = Fh

ζ can yield a partition tree with
equivalence classes.

B. Cluster the samples, and get the description of every cluster

Fuzzy relation matrix Q = (qi j) is obtained by the above Procedure A. For the
threshold α ∈ [0,1], we have the Boolean matrix Qα = (qαi j), qαi j = 1 ⇔ qi j ≥ α .
xi,x j are clustered in the same cluster under the threshold α if and only if qi j ≥ α
(i.e., qαi j = 1). Thus, some clusters C1,C2, . . . ,Cr are obtained for the threshold α .
In general, X �= C1 ∪C2 ∪ . . .∪Cr, because of the following reasons: 1) if qii < α
then xi cannot be determined by Q under the threshold α; 2) a cluster C contains too
few samples to be considered as a cluster. In this clustering algorithm, the cluster
C is considered to be invalid if |C| < |X |/30. The cluster labels of the samples in
X −C1 ∪C2 ∪ . . .∪Cr can be determined by the following Procedure D. Re-cluster
the samples.
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For the cluster Ci, let TCi = {ζx | x ∈ Ci} (the descriptions of all samples in Ci),
i = 1,2, ...,r. The set of the typical descriptions selected from TCi , denoted as DCi ,
is defined as follows

DCi =
{
ζx | x ∈Ci, max

u∈Ci
{µζx(u)} > max

v∈X−Ci
{µζx(v)}+ 0.1

}
. (9.39)

Thus, the cluster Ci is described by the fuzzy concept ζCi =
∨
ζx∈DCi

ζx ∈ EM.

C. Select the best clustering result

For different threshold values α ∈ [0,1], the different clustering results: C1, C2, · · · ,
Cr and their fuzzy descriptions ζC1 , ζC2 , · · · , ζCr may be obtained by running the
Procedure B discussed above. The threshold α controls level of roughness of the
clustering results. We can determine the optimal fuzzy clustering result C1, C2, · · · ,
Cr and their fuzzy descriptions ζC1 , ζC2 , · · · , ζCr by Iα the fuzzy cluster validity index
defined as follows:

Iα =
1

r|X |

(
∑
x∈X

r

∑
i=1
µζCi

(x)−∑
x∈X

∑
1≤i< j≤r

µζCi
(x)µζCj

(x)µζCi∧ζCj
(x)

)
. (9.40)

Here α ∈ [0,1], r is the number of clusters. The fuzzy cluster validity index Iα
evaluates the clear and discriminate extent between the clusters obtained by the
algorithm under the threshold α ∈ (0,1). The larger the value of Iα , the clearer and
more discriminative the clustering result becomes.

D. Re-cluster the samples

Let the clusters C1, C2, · · · , Cr and their fuzzy describe ζC1 , ζC2 , · · · , ζCr be the
optimal clustering result determined by the above Procedure C. All samples in X
are re-clustered to the clusters C1, C2, · · · , Cr by the fuzzy descriptions ζC1 , ζC2 , · · · ,
ζCr as follows: for each sample x ∈ X , x ∈ Cq, if q = arg max

1≤i≤r
{µζCi

(x)}. Thus, the

cluster labels of all sample in X including those samples in X −C1 ∪C2 ∪ . . .∪Cr

can be determined.

9.3.5 AFS Fuzzy Clustering Algorithm Based on Principal
Concepts and the Categories of Concepts

Let X = {x1,x2, . . . ,xn} be a set of objects and F = { f1, f2, . . . , fs} be a set of features.

• Fselect is the set of the selected features shown as (9.22) via the feature selecting
algorithm described in Section 9.3.1.2. The selecting features, Fselect ⊆ F .

• M = {m j,k | 1 ≤ j ≤ r, 1 ≤ k ≤ l}, where m j,1,m j,2, ...,m j,l are the simple con-
cepts associating with the features f j in Fselect , respectively.

• M0 is the set of principal concepts which is selected from M by PCA shown as
(9.26) according to the method described in Section 9.3.2.1 Principal Concepts
Selection by PCA.
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• Mi, i = 1,2, . . . ,t are the concept categories on M0 according to the method de-
scribed in Section 9.3.2.2. Concept Categorization Mi, i = 1,2, . . . ,t are shown as
given by (9.28).

• For x j ∈ X , ζ i
x j

is the description of x j under the concept set (concept category)
Mi shown as (9.34) according to the method described by Description Method
A in Section 9.3.3 Characteristic Description of Each Sample. The final fuzzy
description of x j is expressed as:

ζx j = ζ k
x j

, i f k = arg max
1≤i≤t

{µζ i
x j

(x j)}. (9.41)

Once the fuzzy characteristic description of each sample has been obtained, the set
of the samples is clustered by the AFS clustering algorithm presented in Table 9.13
for each threshold α ∈ [0,1]. The best clustering result is obtained by Iα , the fuzzy
cluster validation index shown as (9.4) in the elementary fuzzy clustering method.

In what follows, we offer some explanation for the procedure Find the fuzzy de-
scription ζCi

for each cluster Ci ⊆ X in Table 9.13. ζCi
= ∧γ∈Γiγ , and the elements

in Γi are the fuzzy descriptions of some samples in the ith clusters Ci. Obviously, we
do not consider the fuzzy descriptions of all the samples in the ith cluster, because in
our opinion, the fuzzy descriptions of some samples are typical, and others may be
not typical enough to represent its cluster or be noise. Thus, we want to choose the
fuzzy descriptions of some typical samples from the ith clusters. On the other hand,
we want to present the algorithm of finding the fuzzy description ζCi based on the

Table 9.13 AFS Fuzzy Clustering Algorithm Based on Principal Concepts and the Cate-
gories of Concepts

AFS-Clustering-Algorithm(X,α ,ζxi , i = 1,2, . . .,n)
X = {x1,x2, . . .,xn}, α is a threshold, ζxi is the fuzzy description of xi, xi ∈ X.

• Establish a fuzzy equivalence relation matrix Q

– R ←− (ri j), where ri j = min{µζxi∧ζx j
(xi), µζxi∧ζx j

(x j)}, 1 ≤ i, j ≤ n

– Find an integer t such that (Rt)2 = Rt , Rt is the fuzzy equivalence relation matrix
– Q ←− Rt

• Determine the initial clusters C1,C2, . . .,Cl for Q = (qi j) under a given threshold α ∈ [0,1]

– If qi j ≥ α , then xi,x j are in the same cluster under threshold α . The clusters C1,C2, . . .,Cl ,
which have more than one samples, can be obtained (i.e., the cluster with one single sample
is discarded)

• Find the fuzzy description ζCi
for each cluster Ci ⊆ X

– Γi ←− {ζx j |
|{y|y∈Ci,µζx j

(y)≥λ}|
|Ci| ≥ ω,x j ∈Ci}, i = 1, . . . , l

– ζCi
←− ∧

γ∈Γi
γ , if Γi �= ∅

• Return C1,C2, . . .,Cl , ζC1 ,ζC2 , . . . ,ζCl
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Occam’s razor principle [64] in order to describe one cluster by using the concepts
as simple as possible.

The fuzzy description ζxk , for which the proportion between the samples in clus-
ter Ci whose degrees belonging to ζxk are higher than λ and the samples in Ci with
levels higher thanω , will be placed intoΓi. Each description ζx j of x j in Ci represents
one of the different characters of the cluster Ci. It is obvious that some characters
may be more universal, e.g., ζx j (x j ∈ Ci), more samples in Ci belong to ζx j at large
degree, than other characters which are more particular. By this observation, the ap-
propriate characteristics, i.e., appropriate ζx j (x j ∈Ci) should be selected to describe
the prototype of Ci. The universality and particularity of the fuzzy description of Ci

can be controlled by the values of ω and λ .

Remark 9.8. In the following experimental study, we choose the same numeric val-
ues for the parameters ω and λ to be used the three benchmark data sets. The ex-
perimental study shows that the effect of varying the values of the parameters ω
and λ on clustering results of AFS Fuzzy Clustering Algorithm Based on Principal
Concepts or the Categories of Concepts is not very significant.

9.4 Experimental Evaluation of the Algorithms

We consider the application of the clustering algorithms studied so far, that is “AFS
Fuzzy Clustering Algorithm Based on the 1/k−A Nearest Neighbors” and “AFS
Fuzzy Clustering Algorithm Based on Principal Concepts and the Categories of
Concepts” to three benchmark data sets coming from the UCI Repository of ma-
chine learning databases obtained via an anonymous ftp server (ftp://ftp.ics.uci.edu/
pub/ machine-learning-databases/).

9.4.1 Experimental Studies of AFS Fuzzy Clustering Algorithm
Based on Principal Concepts and the Categories of
Concepts

In order to show the efficiency of the proposed approach, we present experimental
results of the applications of the feature selection, the principal concept selection,
concept categorization, and the characteristic description to the AFS fuzzy cluster-
ing problem.

9.4.1.1 Wine Data

Chemical analysis of wines grown in the same region in Italy, but derived from three
different cultivars, should be sufficient to recognize the source of the wine. The
analysis determined 13 quantities, including alcohol content, hue, color intensity,
and content of 9 chemical compounds. The data is stored in UC Irvine repository
of Machine Learning [3], where more details about it may be found as well. The
number of data samples coming Classes 1, 2, and 3 is 59, 71 and 48, respectively.
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We illustrate the use of the feature selection, the principal concept selection, the
concept categorization and the characteristic description via the AFS clustering.

Feature selection

Let X = {x1,x2, ...,x178} be the set of 178 samples, and F = { f1, f2, . . . , f13} be
the set of features on X , xi =(wi,1,wi,2, . . . ,wi,13), i = 1,2, . . . ,178, where wi,1 =
f1(xi) is alcohol content (AL) of xi, wi,2 = f2(xi) is malic acid content (MAC) of
xi, wi,3 = f3(xi) is ash content of xi, wi,4 = f4(xi) is alcalinity of ash (AA) of xi,
wi,5 = f5(xi) is magnesium content (MA) of xi, wi,6 = f6(xi) is total phenols (TP)
of xi, wi,7 = f7(xi) is flavanoids (FL) of xi, wi,8 = f8(xi) is nonflavanoids phenols
(NFP) of xi, wi,9 = f9(xi) is proanthocyaninsm (PR) of xi, wi,10 = f10(xi) is color
intensity (CI) of xi, wi,11 = f11(xi) is hue of xi, wi,12 = f12(xi) is OD280/OD315 (O)
of diluted wines of xi, wi,13 = f13(xi) is praline (P) of xi. For each simple concept
fi ∈ F , the structure τF of AFS structure (F,τF ,X) is well defined by (9.17).

When p = 0.56, V (0.56) shown in (9.20) is maximum value and the final selected
sets of features shown as (9.22) are listed as follows.

U0.56
1 = { f6, f7, f9, f11, f12},

U0.56
2 = { f1, f10, f13},

Fselect = U0.56
1 ∪U0.56

2 = { f1, f6, f7, f9, f10, f11, f12, f13}.

In order to demonstrate the effectiveness of the proposed Feature Selection de-
scribed in Section 9.3.1.2, we conducted several experiments with the FCM [4] clus-
tering algorithm and experimental results of three real world data sets are shown in
Table 9.14. When all the features are applied, the obtained precision is 94.9%. While
8 of 13 features f1, f6, f7, f9, f10, f11, f12, f13 have been selected to be applied to the
FCM, a little bit lower accuracy of 92.7% has been reported. However, feature selec-
tion has resulted in the lower computing cost. For Iris data and WDBC data, when all
4 features of Iris and 30 features of WDBC are used to run the FCM, we obtained ac-
curacies of 89.3% (Iris) and 92.8% (WDBC). But for Iris data, even when only 50%
features f3, f4 have been selected, accuracy of 96.7% are obtained. And for WDBC
data, when only 46.7% features f1, f3, f4, f7, f8, f11, f13, f14, f21, f23, f24, f26, f27, f28

are selected, accuracies of 93.2% is reported. Thus, the results obtained using the
proposed selected feature method are comparable. In fact, this shows that the fea-
ture selection method is able to effectively extract significant features for running
the FCM method.

Table 9.14 Accuracy obtained by the FCM clustering for the data based on the selected
features and the complete set of features

Data Selected features All features
Accuracy Number of features Accuracy Number of features

Wine 92.7% 8 94.9% 13
Iris 96.7% 2 89.3% 4
WDBC 93.2% 14 92.8% 30
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Principal concept selection and concept categorization

Let M be the set of simple concepts on the selected features in Fselect (i.e., f1, f6,
f7, f9, f10, f11, f12, f13) shown as follows.

M = {m j,k| j = 1,6,7,9,10,11,12,13,1≤ k ≤ 3}
= {m1,1,m1,2,m1,3,m6,1,m6,2,m6,3,m7,1,m7,2,m7,3,m9,1,m9,2,m9,3,m10,1,m10,2,

m10,3,m11,1,m11,2,m11,3,m12,1,m12,2,m12,3,m13,1,m13,2,m13,3},

where m j,1,m j,2,m j,3 are the simple concepts, “ large”, “small” , “medium” asso-
ciating with the feature f j ∈ Fselect , respectively. For any x,y ∈ X , τ is defined by
(4.26), then (M,τ,X) is an AFS structure. Let σ = 2X . For each simple concept
m ∈ M, its membership function µm(x) is defined as (9.16). Let Y = (yu,v)178×24.
We have yu,v being defined by (9.23) as follows.

yu,1 = µm1,1(xu),yu,2 = µm1,2(xu),yu,3 = µm1,3(xu),
yu,4 = µm6,1(xu),yu,5 = µm6,2(xu),yu,6 = µm6,3(xu),
yu,7 = µm7,1(xu),yu,8 = µm7,2(xu),yu,9 = µm7,3(xu),

yu,10 = µm9,1(xu),yu,11 = µm9,2(xu),yu,12 = µm9,3(xu),
yu,13 = µm10,1(xu),yu,14 = µm10,2(xu),yu,15 = µm10,3(xu),
yu,16 = µm11,1(xu),yu,17 = µm11,2(xu),yu,18 = µm11,3(xu),
yu,19 = µm12,1(xu),yu,20 = µm12,2(xu),yu,21 = µm12,3(xu),
yu,22 = µm13,1(xu),yu,23 = µm13,2(xu),yu,24 = µm13,3(xu)

and u = 1, . . . ,178. Considering the SVD decomposition, we obtained the eigen-
values of (Y − Y )T (Y − Y ), that are equal to λ1 = 0.6974,λ2 = 0.4552,λ3 =
0.1483, . . . ,λ23 = 0.0003,λ24 = 0.0002. According to (9.24), we have e1 = 1,e2 =
0.6527,e3 = 0.2127, . . . ,e23 = 0.0004,e24 = 0.0003. In this section, we always let
δ = 0.4 for all the data sets according to our experiences. Because e1,e2 > δ (refer
to (9.25)), v1,v2 are retained which are considered as some meaningful trend, where

v1 = (a1
1,1,a

1
1,2,a

1
1,3,a

1
6,1, . . . ,a

1
12,3,a

1
13,1,a

1
13,2,a

1
13,3)

T

= (−0.1135,0.0845,0.1263,−0.3089, . . .,−0.1240,−0.1911,0.1590,0.1716)T,

v2 = (a2
1,1,a

2
1,2,a

2
1,3,a

2
6,1, . . . ,a

2
12,3,a

2
13,1,a

2
13,2,a

2
13,3)

T

= (0.3390,−0.3558,0.0737,0.0763, . . .,−0.1720,0.2538,0.2898,0.0444)T.

The number of concepts in M is 3r = 24 (where r is the number of features in the
selected feature set and here r = 8). We have

(a1
1,1)

2,(a1
1,3)

2,(a1
6,1)

2,(a1
6,2)

2,(a1
7,1)

2,(a1
7,2)

2,(a1
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2,(a1
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10,3)

2,(a1
11,1)

2,

(a1
11,2)

2,(a1
11,3)

2,(a1
12,1)

2,(a1
12,2)

2,(a1
12,3)

2,(a1
13,1)

2,(a1
13,2)

2,(a1
13,3)

2>1/(4×24);
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(a2
1,1)

2,(a2
1,2)

2,(a2
6,3)

2,(a2
7,3)

2,(a2
9,3)

2,(a2
10,1)

2,(a2
10,2)

2,(a2
11,1)

2,(a2
11,2)

2,(a2
12,2)

2,

(a2
12,3)

2,(a2
13,1)

2,(a2
13,2)

2 > 1/(4×24),

By formula (9.26), M0 the set of the principle simple concepts is shown as follows.

M0 = {m1,1,m1,2,m1,3,m6,1,m6,2,m6,3,m7,1,m7,2,m7,3,m9,1,m9,2,m9,3,m10,1,m10,2,

m10,3,m11,1,m11,2,m11,3,m12,1,m12,2,m12,3,m13,1,m13,2,m13,3}.

When applying the Concept Categorization method described in Section 9.3.2.2 to
the principal simple concepts in M0, we obtain two concept categories M1 and M2

shown as follows.

M1 = {m1,1,m6,1,m7,1,m9,1,m10,1,m11,1,m12,1,m12,3,m13,1},
M2 = {m1,2,m6,2,m6,3,m7,2,m7,3,m9,2,m10,2,m11,2,m12,2,m13,2,m13,3}.

Find the fuzzy characteristic description ζx of x:

Using Description Method A: Description based on principal concepts or a category
of concepts shown in formula (9.34), we study the fuzzy characteristic descriptions
of 178 samples by the concept categories M1 and M2. As an example, the fuzzy
characteristic descriptions of x1, x27, x65, x99, x147, x178 are listed as follows:

The fuzzy characteristic descriptions under the simple concepts in category M1:

ζ 1
x1

=m12,1, ζ 1
x27

=m13,1, ζ 1
x65

=m11,1, ζ 1
x99

= m6,1m7,1, ζ 1
x147

= m1,1, ζ 1
x178

= m10,1.

The fuzzy characteristic descriptions under the simple concepts in category M2:

ζ 2
x1

=m6,3, ζ 2
x27

=m11,2, ζ 2
x65

= m13,2, ζ 2
x99

= m13,3, ζ 2
x147

= m6,2m7,2, ζ 2
x178

= m11,2.

For each xi ∈ X , the best fuzzy description of ζ 1
xi

and ζ 2
xi

is selected by (9.37) ac-
cording to their membership degrees µζ 1

xi
(xi) and µζ 2

xi
(xi). For instance,

1 = arg max
1≤i≤2

{µζ i
x1

(x1)},

so the final fuzzy characteristic description of x1 is ζx1 = ζ 1
x1

= m12,1 with the
semantic interpretation: “the value of OD280/OD315 (O) of diluted wines is large”.
Similarly, ζx27 = m13,1, ζx65 = m11,1, ζx99 = m6,1m7,1, ζx147 = m6,2m7,2, ζx178 = m10,1.

AFS Clustering

Input ζx, the fuzzy characteristic description of each x ∈ X into the “AFS Fuzzy
Clustering Algorithm Based on Principal Concepts or the Categories of Concepts”
shown in Table 9.13, we get the clusters C1,C2, ...,Cl and the fuzzy description ζCi

of each cluster Ci. Figure 9.3 shows when α ∈ (0.9045,0.9157], Iα = 0.1626 ( the
fuzzy cluster validation index shown as (9.4) in the elementary fuzzy clustering
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Fig. 9.4 Membership functions of ζC1 , ζC2 ,
ζC3 , the fuzzy descriptions of three clusters
for Wine data

method) is the smallest, i.e., the clustering is the most distinguishable. When α =
0.9101, we have the fuzzy descriptions of the clusters listed as follows.

The fuzzy description of cluster 1:

ζC1 = m6,1m7,1m13,1, with the semantic interpretation: “the value of total phenols,
flavanoids and praline are large”.

The fuzzy description of cluster 2:

ζC2 = m1,2m10,2, i.e., with the semantic interpretation: “the value of alcohol con-
tent and color intensity are small”.

The fuzzy description of cluster 3:

ζC3 = m6,2m7,2m11,2m12,2, i.e., with the semantics: “the value of total phenols,
flavanoids, hue and OD280/OD315 (O) of diluted wines are small”.

All samples in X are re-clustered into three clusters C1,C2,C3 by the fuzzy de-
scriptions ζC1 ,ζC2 ,ζC3 of 3 clusters. In detail, if q = arg max

1≤i≤3
{µζCi

(x)}, x ∈ Cq.

4 samples x62,x74,x84,x119 are incorrectly clustered comparing with the expected
clusters: the samples xi,1 ≤ i ≤ 59 are in C1; xi,60 ≤ i ≤ 130 are in C2; xi,131 ≤
i ≤ 178 are in C3. The clustering accuracy is 97.8%. Iα achieves the lowest value
equal to 0.1626, i.e., C1,C2,C3 are the most compact (clearest) clustering. Figure 9.4
shows the membership degrees of every sample in X belonging to the fuzzy descrip-
tions of the three clusters, ζC1 ,ζC2 ,ζC3 ∈EM. It is evident that the fuzzy descriptions
of the samples can be applied to other recognition problems. The proposed cluster-
ing algorithm is comparable with other methods in terms of the achieved clustering
accuracy, which is reported in Table 9.15. The reason is that the algorithm can select
approximately optimal (suboptimal) feature subset and in this way mimic the human
reasoning processes. In this example, we encountered four errors, corresponding to
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Table 9.15 Clustering accuracy compared with other pattern clustering algorithms for the
Wine data set

Algorithm Accuracy (%)

Proposed algorithm 97.8
New two-level SOM-based clustering algorithm [79] 98.3
Iterative Fuzzy Clustering Algorithm [57] 95.4
Localized feature selection-k-means [58] 97.7
Global feature selection-k-means [58] 96.1
Robust deterministic annealing (RDA) algorithm [80] 97.2
Information cut clustering algorithm [28] 97.2
Robust clustering based on Laplace mixture [11] 94.2-96.2
Mixture-based clustering [59] 93.4
Extended SOM (minimum variance) [79] 93.3
The Gath–Geva (GG) algorithm [22] 95.5
Maximum certainty data partitioning [69] 97.8
Mercer kernel based clustering algorithm [21] 97.8
Neural network for cluster-detection-and-labelling [16] 91.57
General fuzzy min-max neural network [20] 88.64-100
FCM [4] 94.9
Direct k-means [79] 97.8

an equivalent clustering performance of 97.8%. A new two-level SOM-based clus-
tering algorithm can achieve the best clustering result with a highest clustering ac-
curacy 98.3%. But the main drawback of this SOM clustering algorithm is a lack of
transparent interpretation. Furthermore the method itself, is dependent on the ker-
nel function, training data and the techniques of filtering. The three clusters are of
near spherical shape, but exhibit some level of noise which places some points in-
between the clusters. Therefore, the direct k-means algorithm comes with a sound
clustering accuracy of 97.8%. Although the clustering accuracy achieved by the
proposed algorithm is lower than a new two-level SOM-based clustering algorithm,
the proposed algorithm exhibits some advantages such as higher interpretability and
independence from the predetermined distance function and the number of clusters.

9.4.1.2 Iris Data

The Iris data can be represented in the form of a 150×4 matrix W = (wi j)150×4 with
patterns evenly distributed into three classes: Iris-setosa, Iris-versicolor, and Iris-
virginica. Let X = {x1,x2, ...,x150} be the set of 150 samples, and F = { f1, f2, f3, f4}
be the set of features on X . Here we just list the results in each step of the algorithm.
The set of the selected salient features is Fselect = { f3, f4} ⊂ F .

M = {m j,k| j = 3,4,1 ≤ k ≤ 3}, where m j,1,m j,2,m j,3 are the simple concepts,
“large”, “small”, “medium” associating with the feature f j in Fselect , respectively.

The set of the selected principle concepts is M0 = {m3,1,m3,2,m3,3,m4,1,
m4,2,m4,3}.
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Table 9.16 Clustering accuracy compared with other pattern clustering algorithms for Iris
data

Algorithm Accuracy (%)

Proposed algorithm 97.3
New two-level SOM-based clustering algorithm [79] 96
Extended SOM (minimum variance) [79] 90.3
Iterative Fuzzy Clustering Algorithm [57] 95.1
Localized feature selection-k-means [58] 96
Global feature selection-k-means [58] 95.3
Robust deterministic annealing (RDA) algorithm [80] 92.7
Gath–Geva (GG) algorithm [22] 93.3
Mercer kernel based clustering algorithm [21] 98
Neural network for cluster-detection-and-labelling [16] 96
General fuzzy min-max neural network [20] 92–100
Support Vector Clustering [7] 97.3
A Novel Kernel Method for Clustering [9] 94.7
Gustafson–Kessel (GK) algorithm [19] 90
Neural Gas Network for Vector Quantization [63] 91.7
The Ng-Jordan algorithm [66] 84.3
Generalization of learning vector quantization [68] 91.3
FCM [4] 89.3
k-means [73] 89.3

Two concept categories formed on the set of principal simple concepts M0 are M1 =
{m3,1,m3,3,m4,1,m4,3},M2 = {m3,2,m4,2}.

Figure 9.5 shows that when α ∈ (0.63333,0.96], Iα returns the most discriminant
result, i.e., the clustering is clearest. When threshold α = 0.70667, the algorithm
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clusters the samples into three clusters and gives the fuzzy descriptions of the three
clusters as follows: ζC1 = m3,2m4,2, ζC2 = m3,3m4,3, ζC3 = m3,1m4,1.

4 samples x71,x78,x84,x107 are incorrectly clustered. The clustering accuracy
is 97.3%. Figure 9.6 shows the membership functions of the fuzzy descriptions
ζC1 ,ζC2 ,ζC3 of the three clusters. Results shown in Table 9.16 help complete some
comparative analysis.

9.4.1.3 Wisconsin Diagnostic Breast Cancer Data (WDBC)

Wisconsin Diagnostic Breast Cancer data (WDBC) has 569 patients, each of which
is characterized by 30 features. These 30 features are the mean, the standard error,
and the largest error of radius, texture, perimeter, area, smoothness, compactness,
concavity, concave points, symmetry and fractal dimension. Three values are cal-
culated on these ten features, average, standard error and the “worst” or the largest.
There are 357 benign patients and 212 malignant patients. Let X = {x1,x2, . . . ,x569}
be the set of 569 samples, F = { f1, f2, . . . , f30} be the set of features.

The set of the selected salient features is Fselect = { f1, f3, f4, f7, f8, f11, f13, f14,
f21, f23, f24, f26, f27, f28} ⊂ F .

M = {m j,k| j = 1,3,4,7,8,11,13,14,21,23,24,26,27,28,1 ≤ k ≤ 3}, where
m j,1,m j,2,m j,3 are the simple concepts, “ large”, “ small”, “ medium” associated
with the feature f j in Fselect , respectively.

The set of the selected principle concepts is M0 = {m1,1, m1,2, m3,1, m3,2, m4,1, m4,2,
m7,1, m7,2, m8,1, m8,2, m11,1, m11,2, m13,1, m13,2, m14,1, m14,2, m21,1, m21,2, m23,1,
m23,2, m24,1, m24,2, m26,1, m26,2, m27,1, m27,2, m28,1, m28,2}.

The concept categories on the set of principal simple concepts M0 are M1 = {m1,1,
m3,1, m4,1, m7,1, m8,1, m11,1, m13,1, m14,1, m21,1, m23,1, m24,1, m26,1, m27,1, m28,1}
and M2 = {m1,2,m3,2,m4,2,m7,2,m8,2,m11,2,m13,2,m14,2,m21,2,m23,2,
m24,2,m26,2,m27,2,m28,2}.

Figure 9.7 shows that when α ∈ (0.8770,0.8858], the clustering returns the most
compact structure. When threshold α = 0.8805, this method clusters the samples
into two clusters and produces the fuzzy descriptions of the two clusters:

ζC1 = m1,1m3,1m4,1m7,1m8,1m11,1m13,1m14,1m21,1m23,1m24,1m26,1m27,1m28,1,
ζC2 = m7,2m8,2m21,2m23,2m24,2m28,2.

31 samples x11,x35,x37,x38,x41,x53,x71,x74,x80,x90,x96,x135,x137,x142,x146,x170,
x176,x192,x206,x241,x257,x266,x277,x282,x358,x396,x451,x457,x500,x508,x518 are in-
correctly clustered comparing with the expected clusters: the samples xi,1 ≤ i ≤ 212
are in C1; xi,213 ≤ i ≤ 569 are in C2. The clustering accuracy is 94.6%. Figure
9.8 shows the membership functions of the fuzzy descriptions ζC1 ,ζC2 of the two
clusters. The clustering accuracy is now 94.6%.

Table 9.17 offers a comparison between the proposed method and other published
models. The proposed algorithm achieved the best clustering result with the high-
est clustering accuracy of 94.6%. The FCM and the k-means come with the same
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Table 9.17 Clustering accuracy obtained for different clustering methods for WDBC data

Algorithm Accuracy (%)

Proposed algorithm 94.6
FCM [4] 92.8
k-means [73] 92.8

Mixture-based clustering [59] 90.7
Localized feature selection-k-means [58] 90
Global feature selection-k-means [58] 91
Robust clustering based on Laplace mixture [11] 91.2-93.8

clustering accuracy of 92.8% which is lower than obtained here. The Mixture-based
clustering [59] achieves accuracy of 90.7%. It can only be applied to the data sets
with numeric valued features.

9.4.1.4 Parameters Analysis

The “AFS Fuzzy Clustering Algorithm Based on Principal Concepts and the Cat-
egories of Concepts”, comes with two parameters, that is λ and ω . Section 9.3.5
elaborates on their intuitive meaning and offers some insights into their nature.
In what follows, we analyze the effects of varying their values on the quality of
the obtained results. Figure 9.9, Figure 9.10 and Figure 9.11 show the clustering
accuracies are stable when λ ∈ [0.5,0.9] and ω ∈ [0.5,0.9]. For these three data
sets, we see that the accuracy level lower than 90% occur when the parameters
λ and ω are set unreasonably, i.e., the choice of the parameters are not consis-
tent with the intuitive meaning of λ and ω presented in Section 9.3.5, such as
(λ ,ω) = (0.9,0.9),(λ ,ω) = (0.5,0.5). Thus, the underlying experience tells that
the clustering algorithm is not overly sensitive to the numeric setting of these param-
eters assuming that these values come from “sound” intervals as described above.
In this section, we let λ = 0.6 and ω = 0.76 to be applied to the three data sets.
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The experimental results show that, the proposed technique of the feature se-
lection, the principal concept selection and concept categorization, the characteris-
tic description are effective in supporting the clustering process. High accuracy of
clustering may be due to the fact that the salient features and the principal simple
concepts are selected, the optimal concept categories are obtained, and the fuzzy
descriptions are similar to the descriptions consistent with a human intuition.

The feature selection is the task of selection the “best” feature subset. The con-
cept categorization we are interested in clustering, the fuzzy concepts of high corre-
lations. The characteristic description, concepts are built from simple concepts using
the logic connectives, and thus can present the fuzzy characteristic of the object.

Many other methods do need initial structure learning to determine the ini-
tial structure of the fuzzy system, including the rules, the shape of membership
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functions, the number of rules and the number of membership functions associated
with each feature. The clustering result is also interpretable, as each cluster have a
fuzzy set in EM with a definite linguistic interpretation.

9.4.2 Experimental Results of AFS Fuzzy Clustering Algorithm
Based on the 1/k−A Nearest Neighbors

We evaluate the performance of the AFS Fuzzy Clustering Algorithm Based on the
1/k−A Nearest Neighbors and using the same three benchmark data sets as in the
previous experiment. In all experiments presented in this section, the values of the
parameters are k = 3, ε is about 0.4 and the weight functions of concepts “small”
, “medium”, “no-medium”, “large” associated with the features are defined by
(9.29)-(9.32). Then the set of coherence membership functions {µξ (x) | ξ ∈ EM}
can be obtained by (5.24) in Proposition 5.7, which is defined as (9.16). We will
show the details of the experiment when using the Iris data.

9.4.2.1 Iris Data

In the Iris data we encounter four features: sepal length and width, and petal length
and width (all given in centimeters). Let X = {x1 , x2, ..., x150} be the set of 150 sam-
ples, and F = { f1 , f2, f3, f4} be the set of the features on X . xi = (wi1,wi2,wi3,wi4),
i = 1,2, ...,150, where wi1 = f1(xi) is the sepal-length of xi, wi2 = f2(xi) is the
sepal-width of xi, wi3 = f3(xi) is the petal-length of xi, wi4 = f4(xi) is the petal-width
of xi. Let M = {mi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4} be the set of the simple concepts on X .
Where mi1,mi2,mi3,mi4 are the fuzzy concepts, “small”, “medium”, “not medium”,
“large” associating to the feature fi respectively and the weight functions of them
are defined by (9.29)-(9.32). The semantic meanings of the simple concepts in M are
shown as follows: m1,1 : “short sepal length”, m1,2 : “mid sepal length”, m1,3 : “not
mid sepal length”, m1,4 : “long sepal length”; m2,1 : “narrow sepal width”, m2,2 :
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“mid sepal width”, m2,3 : “not mid sepal width”, m2,4 : “wide sepal width”; m3,1 :
“short petal length”, m3,2 : “mid petal length”, m3,3 : “not mid petal length”, m3,4 :
“long petal length”; m4,1 : “narrow petal width”, m4,2 : “mid petal width”, m4,3 :
“not mid petal width”, m4,4 : “wide petal width”. One can verify that every m ∈ M
is a simple concept by Definition 4.3. For any x,y ∈ X , τ is defined by (4.26), then
(M,τ,X) is an AFS structure. In what follows, we illustrate the Description Method
B: Description based on the 1/k−A-Nearest in Section 9.3.3 and Procedure A-D of
the algorithm in Section 9.3.4 by its applications to cluster the samples of Iris data
in a detailed fashion.

Select simple concepts for the fuzzy description of each sample

Using the 1/k-A-nearest neighbor described in Section 9.3.2.3, for each x ∈ X , the
set of simple conceptsΛx ⊆ M is selected by the Description Method B presented in
Section 9.3.3. Here, as an example, we just show the detailed results of its every step
to select simple concepts for the fuzzy description of the sample x1. For each simple
concept mi j ∈ M, the number of the intersection of the 1/k-M-nearest neighbor of
x1 and the 1/k-{mi j}-nearest neighbor of x1 defined by Definition 9.6 is shown as
follows:

|DM
1/3−x1

∩D
m1,1
1/3−x1

| = 38, |DM
1/3−x1

∩D
m1,2
1/3−x1

| = 23, |DM
1/3−x1

∩D
m1,3
1/3−x1

| = 23,

|DM
1/3−x1

∩D
m1,4
1/3−x1

| = 38, |DM
1/3−x1

∩D
m2,1
1/3−x1

| = 32, |DM
1/3−x1

∩D
m2,2
1/3−x1

| = 17,

|DM
1/3−x1

∩D
m2,3
1/3−x1

| = 17, |DM
1/3−x1

∩D
m2,4
1/3−x1

| = 32, |DM
1/3−x1

∩D
m3,1
1/3−x1

| = 50,

|DM
1/3−x1

∩D
m3,2
1/3−x1

| = 42, |DM
1/3−x1

∩D
m3,3
1/3−x1

| = 42, |DM
1/3−x1

∩D
m3,4
1/3−x1

| = 50,

|DM
1/3−x1

∩D
m4,1
1/3−x1

| = 50, |DM
1/3−x1

∩D
m4,2
1/3−x1

| = 41, |DM
1/3−x1

∩D
m4,3
1/3−x1

| = 41,

|DM
1/3−x1

∩D
m4,4
1/3−x1

| = 50 .

The |M|/3 = 16/3 simple concepts (i.e., 5 simple concepts ) in M correspond-
ing to the largest |Dm

1/k−x1
∩ DM

1/k−x1
| (i.e., 50, 42) of the others in M are se-

lected. Since there are 4 simple concepts m4,1,m4,4,m3,1,m3,4 corresponding to
50 and 2 simple concepts m3,2,m3,3 corresponding to 42, hence one of m3,2 and
m3,3 can be randomly selected as the fifth one. Finally, the 5 simple concepts in
Λx1 = {m4,1,m4,4,m3,1,m3,4,m3,3} are selected to describe the sample x1. The se-
lected concepts to describe x21,x66,x108 are listed below:

Λx21 = {m4,1,m4,4,m3,1,m3,4,m4,3},
Λx66 = {m3,3,m3,1,m3,4,m2,2,m4,1},
Λx108 = {m1,1,m1,4,m3,1,m3,4,m4,1}.

Find the description of each sample

From the Description Method B: Description based on the 1/k−A-Nearest in Sec-
tion 9.3.3, for every x ∈ X , the setΛx of the selected simple concepts to describe x is
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obtained by the above procedure. The fuzzy description ζx of x based on the selected
simple concepts in Λx can be formed using the formulas (9.35), (9.36), (9.37) in the
Find-Fuzzy-Description-Algorithm of the Description Method B in which ε = 0.34
is a predetermined constant for all the samples. We just show the detailed results
of its every step to determine the descriptions of the samples x1, x21 and x66 taken
here as selected examples. Let ϑ = ∑m∈Λx1

m = m4,1 + m4,4 + m3,1 + m3,4 + m3,3.
Then for any fuzzy concept η ∈ EΛx1 , the set of all fuzzy concepts generated by the
simple concepts, where

Λx1 = {m4,1,m4,4,m3,1,m3,4,m3,3},

µη(x) ≤ µϑ (x) for any x ∈ X . µϑ (x1)− ε = 0.62. By

µm4,1(x1) = 0.9600 ≥ 0.62, µm4,4(x1) = 0.2267 ≤ 0.62,

µm3,1(x1) = 0.9267 ≥ 0.62, µm3,4(x1) = 0.1533 ≤ 0.62,

µm3,3(x1) = 0.8867 ≥ 0.62,

we have B0.34
x1

= {m4,1,m3,1,m3,3} defined by (9.35). From µm3,1m3,3m4,1(x1) =
0.8533 ≥ 0.62, we have A0.34

x1
= {m4,1m3,1m3,3} defined by (9.36). ζx1 =

m4,1m3,1m3,3 is selected to describe x1 by (9.37) due to A0.34
x1

just having one ele-
ment.

For x21 ∈ X ,

Λx21 = {m4,1,m4,4,m3,1,m3,4,m4,3},
ϑ = m4,1 + m4,4 + m3,1 + m3,4 + m4,3,

µϑ (x21)− ε = 0.62. By

µm4,1(x21) = 0.9600 ≥ 0.62, µm4,4(x21) = 0.2267 ≤ 0.62,

µm3,1(x21) = 0.7067 ≥ 0.62, µm3,4(x21) = 0.3200 ≤ 0.62,

µm4,3(x21) = 0.8467 ≥ 0.62,

we have B0.34
x21

= {m4,1,m3,1,m4,3}. From

µm4,1m3,1(x21) = 0.7067 ≥ 0.62, µm4,1m4,3(x21) = 0.8467 ≥ 0.62,

µm4,3m3,1(x21) = 0.5933 < 0.62,

we have A0.34
x21

= {m4,1m3,1, m4,1m4,3}. By (9.37), ζx21 = m4,1m4,3 is selected to
describe x21 according to

|{x ∈ X |µm4,1m3,1(x) ≥ µm4,1m3,1(x21)}| = 43,

|{x ∈ X |µm4,1m4,3(x) ≥ µm4,1m4,3(x21)}| = 34.
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Similarly, for x66 ∈ X ,

Λx66 = {m3,3,m3,1,m3,4,m3,2,m4,1}, B0.34
x66

= {m3,4,m3,1,m3,2},
A0.34

x66
= {m3,1m3,2, m3,4}, ζx66 = m3,1m3,2.

For x108 ∈ X ,

Λx108 = {m1,1,m1,4,m3,1,m3,4,m4,1}, B0.34
x108

= {m1,4,m3,4},
A0.34

x108
= m1,4m3,4, ζx108 = m1,4m3,4.

Figures 9.12 to 9.15 present the membership functions of ζx the fuzzy descriptions
of the 4 samples x1,x21 in cluster Iris-setosa, x66 in cluster Iris-versicolor, x108 in
Iris-virginica. One can observe that most of the samples in the same cluster as x
belong to ζx the fuzzy description of x at relatively high degrees.
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Fig. 9.12 Membership function of ζx1
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Fig. 9.13 Membership function of ζx21
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Fig. 9.14 Membership function of ζx66
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Fig. 9.15 Membership function of ζx108

Evaluate the similarity between the samples

The above fuzzy descriptions ζxi of xi ∈ X are applied to establish the fuzzy relation
matrix Fζ = ( fi j) in which fi j is the similarity degree between xi and x j defined
by (9.38)(i.e., the procedure A in Section 9.3.4). The similarity degrees between
some samples are listed here as examples: f1,1 = 0.8533, f1,21 = 0.5467, f1,66 =
0.0133, f1,108 = 0.0067, f21,21 = 0.8467, f21,66 = 0.0467, f21,108 = 0.08, f66,66 =
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0.5, f66,108 = 0.0067, f108,108 = 0.9533. For the fuzzy relation matrix Q = F4
ζ ,

Q2 = Q.

Cluster the samples, and get the description of every cluster

In what follows, we demonstrate the procedure B is described in Section 9.3.4. As
an example, here we just show the results of the algorithm for threshold α = 0.55
under which the best clustering result is obtained (i.e., Iα the fuzzy cluster validity
index defined by (9.40) reaches the maximum at α = 0.55 ). The valid clusters
C1,C2,C3 are obtained by the Boolean matrix Q0.55 and the set of the descriptions
of all samples in Ci, TCi = {ζx | x ∈Ci}, i = 1,2,3 are shown as follows:

TC1 = {m3,1m3,3m4,1, m1,1m3,1m4,1, m3,1m4,1, m3,1m3,1m4,3, m4,1m4,3},
TC2 = {m3,2, m4,2, m3,2m4,2, m2,1m4,2, m2,1m3,2},
TC3 = {m4,4, m1,4m3,4, m1,4m4,4, m3,4m4,4}.

DCi , the sets of the typical descriptions selected by formula (9.39) from TCi , are
shown as follows:

DC1 = {m3,1m4,1, m4,3m4,1}, DC2 = {m3,2m4,2}, DC3 = {m1,4m3,4, m4,4}.

Thus, the cluster Ci is described by the fuzzy concept ζCi =
∨
ζx∈DCi

ζx ∈ EM in the
following manner:

ζC1 = m3,1m4,1 + m4,3m4,1, ζC2 = m3,2m4,2, ζC3 = m1,4m3,4 + m4,4.

Select the best result

Using the values of the Iα , the fuzzy cluster validity index defined by (9.40) and ex-
ploited in the procedure C in Section 9.3.4, forα ∈ [0.52,0.54],α ∈ [0.5229,0.5352]
is the largest of the other α ∈ [0,1] and this clustering algorithm clusters the samples
into two clusters: all samples Iris-setosa are placed in one cluster and all samples
in Iris-versicolor or Iris-virginica are positioned in another cluster. According to
the distribution of the Iris data, indeed this is the clearest clustering of the data,
although the expected number of clusters equal to three. For α ∈ [0.5667,0.5901],
Iα = 0.4291 is the largest of all α ∈ [0.54,0.9], under which the samples are clus-
tered into three clusters and the clustering accuracy is the highest, and the fuzzy
descriptions of the three clusters:

ζC1 = m3,1m4,1 + m4,3m4,1 states “short petal length and narrow petal width” or
“not mid petal width and narrow petal width”;
ζC2 = m3,2m4,2 reads “mid petal length and mid petal width”;
ζC3 = m1,4m3,4 + m4,4 with the semantic interpretation: “long sepal length and

long petal length” or “wide petal width”.

Figure 9.16 shows the values of the fuzzy cluster validity index Iα defined by (9.40),
the clustering accuracy and the number of clusters of this algorithm versus the values
of the threshold α .
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Fig. 9.16 The number of clusters, the clustering accuracy and the fuzzy cluster validity index
Iα of the algorithm applying to Iris data versus the threshold α; the values of the threshold α
are shown here in the [0.4, 0.9] interval

Re-cluster the samples

According to Procedure D in Section 9.3.4, all samples in X are re-clustered into
three clusters C1, C2, C3 by using ζC1 , ζC2 , ζC3 , the fuzzy descriptions of the clus-
ters which are the best clustering result selected by the fuzzy cluster validity index
defined by (9.40). In detail, if q = arg max

1≤i≤3
{µζCi

(x)} then x ∈ Cq. 6 samples x53,

x57, x71, x78, x84, x86 are incorrectly clustered compared with the expected clus-
ters: the samples xi,1 ≤ i ≤ 50 are Iris-setosa, xi,51 ≤ i ≤ 100 are iris-versicolor,
xi,101 ≤ i ≤ 150 are iris-virginica. The clustering accuracy is 96%. Figure 9.17
shows the membership degrees of every sample in X belonging to the fuzzy de-
scriptions of the three clusters, ζC1 , ζC2 , ζC3 ∈ EM. The fuzzy descriptions of the
samples can be applied to other recognition problems.

Given Figure 9.16, one can observe that the clustering accuracies of the clustering
results determined by the thresholds α ∈ [0.5667,0.8333] fall in-between 96% and
96.67%. Different fuzzy descriptions of the clusters may be obtained by choosing
different threshold values. Table 9.18 shows the different fuzzy descriptions of the
clusters for threshold α ∈ [0.5667,0.8333]. However, for all threshold levels α ∈
[0.5667,0.8333], only four different fuzzy descriptions of C1 Iris-setosa are found
and they have the following relationships in the lattice EM,

m1,1m4,1m3,1 ≤ m4,1m3,1m3,3 + m1,1m4,1m3,1 + m4,1m3,1m4,3

≤ m4,1m3,1 ≤ m4,1m3,1 + m4,1m4,3;

One fuzzy description of C2 Iris-versicolor is m3,2m4,2; two different fuzzy descrip-
tions of C3 are found and they exhibit the following relationships in the lattice EM,

m1,4m3,4 + m4,4m3,4 + m1,4m4,4 ≤ m1,4m3,4 + m4,4.
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Fig. 9.17 Membership functions of the fuzzy descriptions of C1,C2,C3 for iris data

Table 9.18 Different fuzzy descriptions of the clusters obtained for different threshold α

α ∈ [0.55,0.83] ζC1 ζC2 ζC3

α = [0.55,0.59] m4,1m3,1 +m4,1m4,3 m3,2m4,2 m1,4m3,4 +m4,4

α = [0.6,0.63] m4,1m3,1 m3,2m4,2 m1,4m3,4 +m4,4

α = [0.64,0.71] m4,1m3,1m3,3 m3,2m4,2 m1,4m3,4 +m4,4
+m1,1m4,1m3,1
+m3,1m4,1m4,3

α = [0.72,0.77] m1,1m4,1m3,1 m3,2m4,2 m1,4m3,4 +m4,4

α = [0.78,0.83] m1,1m4,1m3,1 m3,2m4,2 m1,4m3,4
+m4,4m3,4
+m1,4m4,4

This implies that both the clustering accuracy and the fuzzy descriptions of the al-
gorithm are very stable.

9.4.2.2 Wine Classification Data

The wine data set contains 178 wines that are brewed in the same region of Italy but
derived from three different cultivars. Thirteen continuous features are measured
on each wine: f1 alcohol content (AL), f2 malic acid content (MA), f3 ash content
(AS), f4 alcalinity of ash (AA), f5 magnesium content (MAG), f6 total phenols (TP),
f7 flavanoids (FL), f8 nonflavanoids phenols (NP), f9 proanthocyaninsm (PR), f10

color intensity (CI), f11 hue (HU), f12 OD280/OD315 (OD) of diluted wines, and
f13 praline (PRO). The numbers of patterns in the three classes are |C1|= 59, |C2|=
71 and |C3| = 48, respectively. Let X = {x1,x2, · · · ,x178} and F = { f1, f2, . . . , f13}
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be a set of features on X . Let M = {mi j | 1 ≤ i ≤ 13, 1 ≤ j ≤ 2}. Where mi1,mi2

are the fuzzy concepts “low”, “high” associating to the feature fi respectively and
the weight functions of them is defined by (9.29) and (9.32). By same procedures as
what we applied to Iris Data with the same parameters setting, for α = 0.5021, at
which the fuzzy cluster validity index Iα = 0.4040 ( defined by (9.40)) reaches the
maximum value and the clustering accuracy is the highest (reference to Figure 9.18),
the clustering algorithm places the samples into three clusters and gives the fuzzy
descriptions of the three clusters in the following manner:

ζC1 = m1,2m7,2m13,2 + m4,1m8,1m13,2 + m1,2m4,1m13,2 + m6,2m7,2m13,2

+m3,2m7,2m12,2 + m7,2m11,2m13,2 + m4,1m7,2m13,2 + m1,2m6,2m7,2

+m4,1m11,2m13,2 + m6,2m7,2m9,2 + m1,1m7,2m12,2,

ζC2 = m3,1m4,1m8,1m10,1 + m2,1m3,1m13,1 + m1,1m10,1 + m2,1m10,1

+m7,1m10,1 + m8,2m13,1 + m4,2m10,1m13,1 + m4,2m5,1m10,1,

ζC3 = m2,2m6,1m8,2m12,1 + m5,1m7,1m12,1 + m6,1m9,1m11,1m12,1 + m6,1m7,1m9,1m12,1

+m7,1m8,2m12,1 + m2,2m6,1m7,1m12,1 + m6,1m7,1m8,2m9,1 + m6,1m7,1m9,1m11,1

+m2,2m7,1m9,1m12,1 + m2,2m6,1m7,1m11,1 + m6,1m7,1m11,1m12,1m2,2m7,1m11,1m12,1

+m2,2m6,1m11,1m12,1 + m6,1m10,2m11,1m12,1 + m4,2m7,1m11,1m12,1

+m8,2m10,2m11,1m12,1 + m7,1m10,2m11,1m12,1.

6 samples x66,x67,x74,x99,x122,x127 are incorrectly clustered in comparison with the
expected clusters: the samples xi,1 ≤ i ≤ 59 are in C1, xi,60 ≤ i ≤ 130 are in C2,
xi,131 ≤ i ≤ 178 are in C3. The clustering accuracy is 96.63%. Figure 9.19 shows
the membership functions of the fuzzy descriptions of the three clusters ζC1 ,ζC2 ,ζC3 .
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Fig. 9.18 The number of clusters, the clustering accuracy and the fuzzy cluster validity index
Iα of the algorithm applying to wine data versus the threshold α; the values of the threshold
α are shown here in the [0.3, 0.8] interval



9.4 Experimental Evaluation of the Algorithms 413

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1:59 class1; 60:130 class2; 131:178 class3

me
mb

er
sh

ip 
de

gr
ee

 of
 ea

ch
 sa

mp
le 

be
lon

gin
g t

o ζ
C 1,ζ C 2,ζ C 3

ζ
C

1

ζ
C

2

ζ
C

3

Fig. 9.19 Membership functions of the fuzzy descriptions of C1,C2,C3 for wine data

9.4.2.3 Wisconsin Breast Cancer Diagnostic Data

The Wisconsin Breast Cancer Diagnostic data set contains 699 patterns distributed
into two output classes, namely “benign” and “malignant”. Each pattern consists
of nine features: f1 clump thickness (CT), f2 uniformity of cell size (UC), f3

uniformity of cell shape (UCS), f4 marginal adhesion (MA), f5 single epithelial
cell size (SECS), f6 bare nuclei (BN), f7 bland chromatin (BC), f8 normal nuclei
(NN), and f9 mitoses (MI). The nine features have integer values in the range
of 1—10 that describe visually assessed characteristics of fine needle aspiration
(FNA) samples. There are 458 patterns for “benign” (labeling as “2” in the data
set) and 241 patterns for “malignant” (labeling as “4” ). There are 16 patterns with
incomplete feature descriptions marked as “?”. We used 683 patterns to evaluate
the performance of the proposed fuzzy clustering algorithm, X = {x1,x2, · · · ,x683}.
The samples xi, 1 ≤ i ≤ 444 are “benign” and the samples xi, 445 ≤ i ≤ 683
are “malignant”. Let M = {mi j | 1 ≤ i ≤ 9, 1 ≤ j ≤ 2}. Here mi1,mi2 are the
fuzzy concepts “low”, “high” associating to the feature fi, respectively and the
weight functions of them is defined by (9.29) and (9.32). Let k also be 3 and
ε be 0.3. The maximum fuzzy cluster validity index Iα is 0.5384 at α = 0.66.
Considering Figure 9.20, one can also observe that the clustering result of this
algorithm under threshold α = 0.66 reaches the highest clustering accuracy. For
α = 0.66, the method clusters the 683 samples into two clusters and produces the
fuzzy descriptions of C1 the class “benign” and C2 the class “malignant” as follows:

ζC1 = m5,1m7,1 + m2,1m5,1m6,1 + m1,1m3,1 + m1,1m6,1m7,1 + m1,1m5,1 + m1,1m6,1m9,1

+m3,1m8,1m9,1 + m1,1m2,1m8,1 + m1,1m7,1m8,1 + m1,1m8,1m9,1 + m1,1m2,1m6,1

+m1,1m6,1m8,1 + m4,1m5,1m6,1 + m1,2m7,1 + m3,1m7,1 + m1,1m4,1 + m1,2m2,1m6,1,
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ζC2 = m2,2m6,2 + m2,2m3,2m8,2 + m6,2m7,2m8,2 + m2,2m6,1 + m4,2m6,2m8,2

+m2,2m3,2m9,1 + m4,2m5,2m6,2 + m2,2m3,2m7,2 + m2,2m5,2m8,2 + m1,2m2,2

+m4,2m6,2m7,2 + m5,2m6,2m8,2 + m1,2m3,2 + m1,2m5,2m8,2 + m2,2m3,2m5,2

+m2,2m4,2m5,2 + m3,2m6,2 + m3,2m7,2m8,2 + m1,2m7,2m8,2 + m1,2m6,2

+m3,2m4,2 + m2,2m7,2m8,2.

25 samples x2, x4, x61, x73, x108, x125, x135, x139, x152, x164, x182, x191, x200, x206, x229,
x231, x244, x285, x381, x413, x489, x504, x507, x539, x626 are incorrectly clustered compar-
ing with the expected clusters: the samples xi,1≤ i≤ 444 are in C1, xi,445≤ i≤ 685
are in C2. The clustering accuracy is 96.34%. Figure 9.21 shows the membership
functions of the fuzzy descriptions of the two clusters ζC1 ,ζC2 .
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Fig. 9.20 The number of clusters, the clustering accuracy and the fuzzy cluster validity index
Iα of our algorithm applying to breast cancer data versus the threshold α; the values of the
threshold α are shown here in the [0.45, 0.95] interval
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9.4.2.4 Comparative Analysis

In this section, the AFS fuzzy logic clustering algorithm is compared with the con-
ventional algorithms: FCM [25], K-means [73], and some recently developed clus-
tering algorithms: A Novel Kernel Method for Clustering [9], Mercer kernel based
clustering algorithm [21], Support Vector Clustering [7], The Gath–Geva (GG)
algorithm [22], the newer methods, two-level SOM-based clustering algorithm [79],
Relative approach to hierarchical clustering [62], neural network for cluster-
detection-and-labeling [16], Extended SOM (minimum variance) [30], the
Gustafson–Kessel (GK) algorithm [19], Neural-Gas Network for Vector Quantiza-
tion [63], the Ng-Jordan algorithm [66], generalization of learning vector quanti-
zation [68], General fuzzy min-max neural network [20], Mixture-based clustering
[60], Maximum certainty data partitioning [69], General fuzzy min-max neural net-
work [20], Self-Organized Formation of Feature Maps [31], Neural-Gas Network
for Vector Quantization [63]. In Table 9.19, Table 9.20 and Table 9.21, the clustering
accuracies of our algorithm reported for the three data sets already used in the previ-
ous experiments. From the comparative analysis, we conclude that the performance
of the proposed algorithm is comparable with many other clustering algorithms. The
interpretation facet of the algorithm is worth underlying here.

Through a thorough comparative analysis, one can observe that the AFS Fuzzy
Clustering Algorithm Based on the 1/k−A Nearest Neighbors is comparable with
the others in terms of the produced performance. Moreover, the fuzzy description

Table 9.19 A comparative analysis for some clustering algorithms – Iris data

Algorithm Clustering accuracy (%)

Proposed fuzzy clustering algorithm 96–96.67
SOM-based clustering algorithm [79] 96
Mercer kernel based clustering algorithm [1] 98
Support Vector Clustering [7] 97.8
Relative approach to hierarchical clustering [62] 96–96.7
neural network for cluster-detection-and-labeling [16] 96
The Gath–Geva (GG) algorithm [22] 93.3
A Novel Kernel Method for Clustering [9] 94.7
Extended SOM (minimum variance) [30] 90.3
FCM [25] 89.3
K-Means [73] 89.3
the Gustafson–Kessel (GK) algorithm [19] 90
Neural-Gas Network for Vector Quantization [63] 91.7
the Ng-Jordan algorithm [66] 84.3
generalization of learning vector quantization. [68] 91.3
General fuzzy min-max neural network [20] 92–100
A relative approach to hierarchical clustering [62] 88.7–91.3
Maximum certainty data partitioning [69] 98
fully self-organizing simplified adaptive resonance theory [5] 69.1–95.5
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Table 9.20 A comparative analysis for some clustering algorithms – Wine data

Algorithm Clustering accuracy (%)

Proposed fuzzy clustering algorithm 96.63
SOM-based clustering algorithm [79] 98.3
Mixture-based clustering [60] 96.09
Extended SOM (minimum variance) [30, 79] 93.3
Maximum certainty data partitioning [69] 97.8
FCM [25] 94.9
neural network for cluster-detection-and-labeling [16] 91.57
Mercer kernel based clustering algorithm [21] 97.75
General fuzzy min-max neural network [20] 88.64–100

Table 9.21 A comparative analysis for some clustering algorithms – Wisconsin Breast Can-
cer Data

Algorithm Clustering accuracy (%)
Proposed fuzzy clustering algorithm 96.34%
FCM [25] 95.6%
K-Means [73] 96.1%
Self-Organized Formation of Feature Maps [31, 9] 96.7%
Neural-Gas Network for Vector Quantization [63, 9] 96.1%
the Ng-Jordan algorithm [66, 9] 95.5%
A Novel Kernel Method for Clustering [9] 97%

ζC ∈ EM for each cluster C, which determines degree of each sample belong to
the cluster C, has a sound interpretation with the simple concepts formed for the
features.

Exercises

Exercise 9.1. Let X be a finite set and M be a set of simple concepts on X . Assume
thatΛ ⊆ EM. Prove that the following (Λ)EI is the sub algebra of EM generated by
the fuzzy concepts in Λ .

(Λ)EI =

{∨
i∈I

(
∧
j∈Ji

ai j) | ai j ∈Λ , i ∈ I, j ∈ Ji, I and Ji are any indexing sets

}
.

Exercise 9.2. Let X be a universe of discourse and M be a finite set of simple con-
cepts. Let {µξ (x) | ξ ∈ EM} be a set of coherence membership functions of the AFS
fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X). (seeing Definition
4.7). LetΛ ⊆ EM. Prove that for any β ∈ (Λ)EI , for any x ∈ X , µβ (x)≤ µ∨b∈Λ b(x).

Exercise 9.3. Let M be a set and EM be the EI algebra over M. Let A,B,C be any
EI matrices with appropriate orders. Show the following assertions hold.
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(1) A(B +C) = AB + AC;
(2) A(BC) = (AB)C.

Exercise 9.4. Replace the coherent membership functions and the AFS fuzzy logi-
cal operations in the algorithms used in this chapter with the “conventional” mem-
bership functions and the fuzzy logic equipped with t-norms and analyze the results.

Open problems

Problem 9.1. How to apply both ζ x and ζx defined by (9.9) and (9.10) as the fuzzy
descriptions of x ∈ X to design fuzzy clustering algorithm.

Problem 9.2. What is the relationship between Description Method A: description
based on principal concepts and a category of concepts description and Method B:
description based on the 1/k−A-nearest neighbors?

Problem 9.3. The comparison and analysis of the three fuzzy cluster validity indices
defined by (9.4), (9.15) and (9.40). What are relationships between them. How to
improve these validity indices?

Problem 9.4. The convergence, consistency and stability of the AFS clustering
fuzzy clustering algorithms presented in this chapter.
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Chapter 10
AFS Fuzzy Classifiers

In this chapter, we introduce three design strategies of classifiers which exploit the
unified usage of the AFS fuzzy logic, entropy measures and decision trees. The ad-
vantage of these classifiers is two-fold. First, they can mimic the human reasoning
and in this manner offer a far more transparent and comprehensible way supporting
the design of the classifiers. An important aspect is concerned with the simplicity of
the design methodology and the clarity of the underlying semantics. We use three
well known data to illustrate the effectiveness of the classifiers and present the rela-
tionship between the parameters of the classifiers and their performance.

We are faced with a genuine abundance of data. However, knowledge represen-
tation and information acquisition from huge data constitute a serious bottleneck
present in numerous engineering applications. Extracting useful information via de-
signing effective classifiers becomes of paramount relevance. There are many ap-
proaches available aimed at alleviating this bottleneck including fuzzy sets [116].
The incorporation of fuzzy sets into the representation of fuzzy concepts enables
us to combine the uncertainty handling and approximate reasoning capabilities with
the comprehensibility associated with fuzzy sets [37].

Classification becomes important in a variety of fields, such as pattern recogni-
tion, artificial intelligence, and computer vision.

In this chapter, we propose a new framework for the design of fuzzy classi-
fiers in which the AFS logic plays an essential role. The illustrative numeric ex-
amples involve the Wine, Iris and Breast Cancer data coming from the machine-
learning database at the University of California, Irvine [67]. They help us reveal and
emphasize the main advantages of the proposed classification environment. Actu-
ally, compared to other fuzzy classifiers, the proposed classifier comes with several
advantages:

1. The proposed classifiers can be applied to high-dimensional problems without
suffering from the curse of dimensionality.

2. The design of the proposed classifiers, in which each class is represented by a
fuzzy set in the EM and the degree of the new sample belonging to the class is
determined by it, is linguistically interpretable, comprehensible and similar to the
classification schemes exercised by humans. Because each fuzzy set in the EM

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 423–489.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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representing a class is semantically sound in the AFS fuzzy logic, the linguistic
interpretation of the proposed classifiers is viable.

3. The design of the proposed classifier is valid without making the assumptions
about data set X ⊂ Rp×n. This is possible owing to the fact that the AFS struc-
ture (M, τ , X) can be established for database with any types of attributes, even
linguistic descriptions based on human intuition.

4. Since the new classifiers are simply built-up by the AFS logic on the fuzzy con-
cepts in EM and amended separately by adding the information of each training
sample, hence the classifiers can be designed and implemented by parallel pro-
cessing and tuned online.

10.1 Classifier Design Based on AFS Fuzzy Logic

First, let us elaborate on how a human being can classify data with resorting to
some training samples. Let X be a set of training samples and M be a set of simple
concepts on X . Let Γ ⊆ EM be the set of all relative fuzzy concepts. Suppose that X
is classified into l classes X1,X2, ...,Xl . In order to characterize each class Xi based
on the training samples, for each x ∈ Xi, we intend to find a fuzzy set ζx ∈ Γ , such
that at the largest degree x belongs to ζx, while for any y ∈ X −Xi, at smallest degree
y belongs to ζx and for z ∈ Xi, z �= x, at comparatively larger degree z belongs to ζx.
In other words, x can be distinguished from any y∈X −Xi by the fuzzy concept ζx at
the maximal extent. Finally, the fuzzy set ζXi =

∨
x∈Xi

ζx forms the fuzzy description
of class i. For each new sample s, the degree of s belongingness (membership) to
class i is µζXi

(s), i = 1,2, ..., l.
The above process is convincing. However, it still be facing the computational

bottleneck as the number of fuzzy sets in EM is very large. In order to solve
this problem in a tractable yet approximate manner, we introduce the following
concepts.

Let X be the universe of discourse and M be a set of simple concepts and (M,τ,X)
be an AFS structure. Λ ⊆ EM, Λ is the set of some fuzzy sets which are relatively
important (essential) fuzzy features required to consider in the context of the classi-
fication problem. The fuzzy description of each element x ∈ X in the setting of the
fuzzy feature set Λ is a fuzzy set ζx ∈ (Λ)EI such that the degree of x membership
to ζx is the largest among other fuzzy sets in (Λ)EI while for y ∈ X , y �= x, the de-
gree of y belonging to ζx is quite small. In other words, by using the fuzzy concept
ζx ∈ (Λ)EI , x can be distinguished among other elements in X to the maximal extent.
In what follows, we will study the fuzzy description for each x ∈ X .

Now we discuss how to take advantage of Theorem 9.1 to derive the fuzzy de-
scriptions of the samples for the classifiers. For each α ∈ Λεx , since ϑ x

α is a sub-EI
algebra of (Λ)EI , hence

∧
b∈ϑ x

α
b ∈ (Λ)EI .

∧
b∈ϑ x

α
b is a fuzzy description of x based

on molecular element α ∈ Λεx . It is obvious that ζ x =
∨
α∈Λεx (

∧
b∈ϑ x

α
b) ∈ (Λ)EI .

This implies ζ x is a fuzzy set in (Λ)EI and ζx =
∨

b∈Λεx b is the fuzzy description

of x by the molecular elements of the fuzzy sets in (Λ)EI . By ζ x ≥ ζx, we know
that ζ x forms a rougher description of x than ζx. But we should notice that in some
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cases, ζx /∈ (Λ)EI . By (4) of Theorem 9.1, one knows that for α ∈ Λεx , the fuzzy
set
∧

b∈ϑ x
α

b can guarantee that for any y �= x,y belongs to
∧

b∈ϑ x
α

b not at maximum

degree while x belongs to
∧

b∈ϑ x
α

b to maximal degree. This implies that both ζ x and

ζx are fuzzy descriptions of x. We should notice that ζ x = ζx, if for each α ∈ Λ , it
is a molecular element of (EM,∨,∧), i.e., α = A, A ⊆ M.

With these theoretical analysis, we can now describe the fuzzy classification
algorithm. Let X be a set of training samples with n features to describe the
samples and M be a set of simple concepts formed on these features. The train-
ing samples are labeled and belong to c classes, which are X1, X2, ..., Xc, i.e.,
X =

⋃
1≤i≤c Xi, Xi∩Xj = ∅, i �= j. Let (M,τ,X) be an AFS structure of the data. Let

ρν be the weight function of the simple concept ν ∈ M and {µξ (x) | ξ ∈ EM} be a
set of coherence membership functions of the AFS fuzzy logic system (EM,∨,∧,′ )
and the AFS structure (M,τ,X), defined by (4.29) of Theorem 4.5 in which the
measure Mν derived via (4.35) for the weight function of the simple concept ρν .
Λ ⊆ EM, Λ is a set of fuzzy concepts which are selected to design the classifier.

10.1.1 Classifier Design Based on AFS Fuzzy Logic

In this section, we describe the procedure of the classifier design based on AFS
fuzzy logic.

Step 1: Select Λ ⊆ EM, a set of fuzzy concepts used to design the classifier.
(Λ)EI is the sub EI algebra generated by Λ .

Step 2: Given small positive numbers ε > 0,δ > 0, for each i = 1,2, ...,c, find
the fuzzy set ζXi ∈ (Λ)EI , such that

ζXi = arg max
ξ∈Fδε

{∑
y∈Xi

µξ (y)}, (10.1)

where

EδΛ = {γ|γ ∈ (Λ)EI ,∀y ∈ X −Xi,µγ(y) < δ}, (10.2)

Fδε = {ξ |ξ ∈ EδΛ ,∀y ∈ Xi,µξ (y) ≥ µ∨b∈Λ b(y)− ε}. (10.3)

ζXi is the fuzzy description for class Xi, i = 1,2, ...,c. δ is a parameter to control
the extent of fuzzy set ζXi distinguishing x ∈ Xi and y /∈ Xi. ε is a parameter to
control the degree of each training sample x (x ∈ Xi) belonging to ζXi .

Step 3: For each testing sample s, we estimate the degree of s belonging to the
fuzzy set ζXi , i = 1,2, ...,c. Although s /∈ X , we can estimate the degree of s
belonging to the fuzzy set ζXi by the AFS structure (M,τ,X). For each simple
concept m ∈ M, with the weighting function ρm, one can derive ρm(s) ∈ R+.
More specifically, for each A ⊆ M, let us define

A({s}) = {x|x ∈ X ,∀m ∈ A,ρm(x) ≤ ρm(s)},
A({s}) = X −{x|x ∈ X ,∀m ∈ A,ρm(s) < ρm(x)}.
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For any fuzzy concept∑i∈I(∏m∈Ai
m) ∈ EM, the EII algebra degree of s belong-

ing to the fuzzy concept ∑i∈I(∏m∈Ai
m) is (∑i∈I∏m∈Ai

m)(s) defined by (5.10),
then the lower bound and upper bound of (∑i∈I∏m∈Ai

m)(s) in lattice EXM are

∑i∈I Ai({s})Ai and ∑i∈I Ai({s})Ai, respectively. According to Theorem 4.5, for
µ∑i∈I Ai(s), the membership degree of s belonging to the fuzzy set ∑i∈I∏m∈Ai

m,
we have

sup
i∈I
∏
ν∈Ai

Mν(Ai({s}))
Mν(X)

≤ µ∑i∈I Ai(s) ≤ sup
i∈I
∏
ν∈Ai

Mν(Ai({s}))
Mν(X)

.

Here, we simply let

µζXi
(s) = sup

i∈I
∏
ν∈Ai

Mν(Ai({s}))
Mν(X)

(10.4)

to be the membership degree of s belonging to class i, i = 1,2, ...,c, where
ζXi ∈ EM. For each testing sample s, it belongs to the class i if i =
argmax1≤k≤c{µζXk

(s)}. Therefore, the designed classifier is actually of fuzzy

representations of each class which can be denoted as C = (ζX1 ,ζX2 , ...,ζXc),
where ζXi ∈ EM.

In theory, we can apply the probability distribution of the observed data X
and the membership functions of fuzzy concepts in EM determined by (4.41) in
Theorem 4.6 to classify any sample in the whole space. However, we have to face
the complex computation of the high dimension integral in formula (4.41). Thus
how to apply it to the classification remains an open problem.

It should be noted that the optimization problem in Step 2 is very computation-
ally demanding since it is based on the set (Λ)EI , which may have a large number
of elements. In order to overcome this difficulty, we can solve the problem based
on the sets ϑ x

α and Λεx according to Theorem 9.1, which will be detailed in the next
section along with an illustrative example. In this case, we will obtain an approxi-
mate solution for the optimization problem present in Step 2. The primordial issue
to obtain the approximate solution is to computeΛεx , which can be described below.

Suppose that for each α ∈ Λ , it is a molecular element. Then for ε > 0,x ∈ X ,
one can follow the two steps to computeΛεx .

STEP 1: For each α ∈Λ check if µα(x) ≥ µ∨
b∈Λ b(x)− ε and obtain Bεx .

STEP 2: For each α ∈ Bεx , with the decision tree algorithm C4.5 [65], one can find
a tree with α being its root and its nodes are some other elements in Bεx obtained
as following. β ∈ Bεx is a child of root α if µα∧β (x) ≥ µ∨b∈Λ b(x)− ε . For γ ∈ Bεx a
node of the tree, ν ∈ Bεx is a child of node γ if µζγ∧ν(x) ≥ µ∨b∈Λ b(x)− ε , where

ζγ =
∧
{ς ∈ Bεx | ς is a node in the path from the tree root α to γ}

Thus, for each α ∈ Bεx , it corresponds to a tree with the fuzzy operation “and”.
Therefore the “and” operations of all nodes in a path from the tree root to a leaf
(including the root and the leaf) is an element in Λεx .
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In practice, once we have obtained Λεx , the number of elements in ϑ x
α is usually

small and we can easily compute the fuzzy sets ζ x or ζx

ζ x =
∨
α∈Λεx

(
∧

b∈ϑ x
α

b) (10.5)

or

ζx =
∨

b∈Λεx
b. (10.6)

Then we have the approximate solution of (10.1) as follows:

ζXi =
∨

x∈Xi

ζ x (10.7)

or

ζXi =
∨

x∈Xi

ζx. (10.8)

10.1.2 Experimental Results

In this section we show how the AFS fuzzy logic can be used in data classifica-
tion making use of the data. The wine data contains thirteen continuous attributes
are measured for each wine: alcohol content (AL), malic acid content (MAC),
ash content, alkalinity of ash (AA), magnesium content (MA), total phenols (TP),
flavonoids (FL), nonflavanoids phenols (NFP), proanthocyaninsm (PR), color inten-
sity (CI), hue, OD280/OD315 (O) of diluted wines, and praline (P). The number of
patterns in the three classes is 59, 71, and 48, respectively. The wine data has been
widely used to test the performance of various classifiers [2, 86]. Here we randomly
select 106 samples to form a training set (training samples) to design the classifier
and the 72 patterns are left to form the testing samples. We randomly select 60%
samples as training examples from each class, i.e., class 1: 36, class 2: 43, class
3: 27. We present the data in a compact matrix form of W = (wi j)178×14, where the
first column is the class label of each sample and the i-th column is the value of each
sample on feature i. Then the matrix N = (ni j)178×14 is obtained by normalizing W,
where

ni j =
wi j

max1≤k≤178{|wk j |} , i = 1,2, ...,178, j = 2,3, ...,14.

Let X be the set of the 106 randomly selected training samples, i.e., we randomly
select 36 rows, 43 rows, 27 rows form 1 to 59, 60 to 130, 131 to 178 row of matrix
N, respectively while the indexes of the selected rows of N are:

Class 1: 2, 3, 4, 7, 8, 10, 11, 15, 16, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33,
35, 36, 38, 39, 42, 44, 46, 48, 49, 50, 51, 53, 54, 55, 57;
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Class 2: 60, 61, 67, 68, 69, 70, 72, 74, 75, 77, 78, 80, 83, 85, 87, 88, 91, 92, 94,
95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 115, 116, 118, 119,
120, 121, 122, 124, 129, 130;

Class 3: 131, 133, 136, 138, 139, 142, 145, 146, 149, 151, 152, 153, 154, 155,
156, 158, 159, 162, 163, 164, 166, 167, 171, 172, 173, 174, 175;

For each s = (s1,s2, ...,s14) ∈ X , s1 = 1,2, or 3 is the class label of sample s,
i.e., X is divided into 3 classes X1,X2,X3 and if s ∈ Xi, then s1 = i. si is the value of
sample s on feature i, i = 2,3, ...,14. For each feature i, we define 6 simple concepts.

“about the center of class 1 for feature i”;
“about the center of class 2 for feature i”;
“about the center of class 3 for feature i”;
“not about the center of class 1 for feature i”;
“not about the center of class 2 for feature i”;
“not about the center of class3 for feature i”;

Now it is ready to design the classifier. We show the design process step by step.

Step 1: Let M = {m1,m2, ...,m84} be the set of the 14× 6 = 84 simple con-
cepts on the 14 features where m1,m2,m3,m84,m83,m82 are Boolean concepts
for feature 1: {class1, class2, class3, not-class1, not-class2, not-class3}. For each
mk ∈ M, 3 < k ≤ 42, k = 3×q+ r (0 < r ≤ 3), we define the weighting function
ρmk : X → R+ = [0,∞) as follows: for any s = (s1,s2, ...,s14) ∈ X ,

ρmk(s) = exp(− (si − µir)2

2σ2
ir

), (10.9)

where i = q + 1, µir is the mean of si for total s = (s1,s2, ...,s14) ∈ Xr, i.e., the
center of class r on feature i and σir is the standard deviation of si for the total
s =(s1,s2, ...,s14)∈Xr,r = 1,2,3. For k = 1, 2, 3, ρmk(s) = 1⇔ s belongs to class
k. If k > 42, then ρmk = 1−ρm(85−k) . The AFS structure (M,τ,X) is established
in the following manner: for any x,y ∈ X , x �= y

τ(x,x) = {m | m ∈ M,ρm(x) > 0},
τ(x,y) = {m | m ∈ M,ρm(x) ≥ ρm(y)}.

We can verify that τ satisfies AX1, AX2 of Definition 4.5 and (M,τ,X) is an AFS
structure. Let {µξ (x) | ξ ∈ EM} be a set of coherence membership functions of
the AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M,τ,X), de-
fined by (4.29) of Theorem 4.5 in which the measure Mν derived via (4.35) for
the weight function ρν defined by (10.9).

Step 2: For each simple concept m ∈ M − {m1,m2,m3,m84,m83,m82}, it is a
fuzzy set describing the center of class r on some features. Hence any fuzzy set
in (Λ)EI will have impact on the classification, where

Λ = {m | m ∈ M−{m1,m2,m3,m84,m83,m82}} ⊂ EM.



10.1 Classifier Design Based on AFS Fuzzy Logic 429

Because Boolean concepts m1,m2,m3,m84,m83,m82 are included only the label
information, they are not included in Λ . Select Λ ⊆ EM and Λ is a set of fuzzy
concepts selected to design the classifier. Denote (Λ)EI as the sub EI algebra
generated by Λ .

Step 3: Let ε = 0.3,δ = 0.1. For each i = 1,2,3, find the fuzzy set ζXi ∈ (Λ)EI

such that
ζXi : ∑

y∈Xi

µζXi
(y) = max

ξ∈Fδε

{∑
y∈Xi

µξ (y)},

where

EδΛ = {γ | γ ∈ (Λ)EI ,∀y ∈ X −Xi,µγ (y) < δ},
Fδε = {ξ | ξ ∈ EδΛ ,∀y ∈ Xi,µξ (y) ≥ µ∨b∈Λ b(y)− ε}.

ζXi is the fuzzy description for class Xi.

Step 4: For each testing sample s, µηXi
(s) is the membership degrees of s belong-

ing to class i, i = 1, 2, 3 and calculated by (10.4).

In the above Step 3, since there are a great number of different fuzzy concepts in
(Λ)EI , hence it is very difficult to find ζXi which satisfies (10.1), (10.2), (10.3) by
checking each elements in (Λ)EI . In what follows, we propose an algorithm to find
a fuzzy set, which can approximate ζXi . For each x ∈ Xi, by (10.3), we have

µζXi
(x) ≥ µ∨

b∈Λ b(x)− ε.

Therefore by (4) of Theorem 9.1, ∃α ∈Λεx , for any y ∈ X we get,

µζXi
(y) ≥ µ∧

b∈ϑx
α

b(y) ≥ µα(y).

Actually, in this example the number of elements in ϑ x
α is very small. Thus we can

determine a fuzzy set ζx ∈⋃α∈Λεx ϑ x
α such that

ζx : ∑
y∈Xi

µζx(y) = max
ξ∈EδΛ

{∑
y∈Xi

µξ (y)}, (10.10)

EδΛ = {γ | γ ∈
⋃
α∈Λεx

ϑ x
α , ∀y ∈ X −Xi,µγ(y) < δ} (10.11)

By (3) of Theorem 9.1, we know that for any η ∈⋃α∈Λεx ϑ x
α , µη (x)≥ µ∨

b∈Λ b(x)−ε .
For each training sample x and α ∈ Λεx , ζx can be obtained by parallel processing.
This implies that we can efficiently obtain ηXi =

∨
x∈Xi

ζx, here ζx is obtained by

(10.6). By (10.11), ∀y ∈ X −Xi,µηXi
(y) < δ , i.e., ηXi ∈ EδΛ and since for any x ∈

Xi,ζx ∈⋃α∈Λεx ϑ x
α , hence ∀y ∈ Xi,µηXi(y)≥ µ∨b∈Λ b(y)−ε , i.e., ηXi ∈ Fδε . Although

this ηXi may not be the best solution of (10.1), the classifier based on the fuzzy sets
ηXi , i = 1,2,3 could have a satisfactory performance as illustrated by means of the
experimental results.



430 10 AFS Fuzzy Classifiers

With the above procedure, we can find all the fuzzy description ζx for each x ∈ X
in virtue of (10.6). For space limitation, only a few of them are listed here

ζx1 = m22m34m40 + m35m40m70 + m19m34m40 + m11m35m71 + m18m22m70;

ζx2 = m19m31m40 + m31m37m40 + m19m25m40 + m18m25m40 + m6m18m19m40.

For x12 ∈ X1, there does not exist ζx12 satisfying (10.10) and (10.11). There are not
concepts in (Λ)EI satisfying the required conditions for the samples in D = {x6,
x12, x14, x17, x18, x21, x25, x26, x27, x29, x31, x34, x36, x43, x47, x49, x53, x59, x60,x61,
x73, x79, x80, x87, x92, x103}. Let us note again that every fuzzy description can
be easily interpreted. Furthermore Figure 10.1 shows the membership functions for
each class. Figure 10.2 depicts the membership degrees of all 178 samples including
106 training samples and 72 testing samples. Table 10.1 shows the misclassified
patterns (data). We notice that there does not exist fuzzy set in (Λ)EI satisfying
(10.10), (10.11) for each training sample in D, and this implies that each training
sample in D is not typical enough to represent the class it belongs to. Therefore we
employ fuzzy set ηXi =

∨
x∈Xi−D ζx in EM to describe the class i, i = 1,2,3, where

ηX1 = m22m34m40 + m35m40m70 + m19m34m40 + m11m35m71 + m18m22m70

+m19m31m40 + m31m37m40 + m19m25m40 + m18m25m40 + m6m18m19m40

+m33m64m80 + m8m13m80 + m64m65m80 + m31m46m80 + m12m25m80

+m10m28m80 + m7m13m46 + m7m44 + m19m44 + m37m44 + m31m44 + m13m44

+m16m44 + m43m44 + m44m80 + m44m70 + m44m55 + m25m44 + m16m44

+m43m56 + m33m43 + m18m44 + m8m22m33 + m13m19m33 + m4m13m22

+m4m13m25 + m8m33m38 + m43m44 + m44m61 + m13m44 + m16m44 + m28m44

+m43m62 + m38m44 + m33m43 + m26m44 + m11m31m46 + m17m40m46

+m13m17m46 + m8m22m27 + m6m7m37 + m22m26m40 + m19m26m40

+m11m40m46 + m11m19m40 + m17m34m46 + m4m18m25 + m4m18m25m31

+m25m34m40 + m4m38m40 + m4m20m25m40 + m25m29m40 + m4m12m22

+m6m20m25m40 + m19m31m40 + m19m25m40 + m19m30m40 + m22m26m40

+m19m26m40 + m16m22m40 + m18m22m35 + m19m33m40 + m19m38m40m58

+m12m40m61 + m26m40m64 + m4m12m61 + m10m37m40 + m4m28m40m64

+m10m61m62 + m4m61m65 + m10m33m61 + m22m31m40 + m4m22m29m40

+m4m37m40 + m11m22m40.

ηX2 = m5m52 + m41m52m75 + m5m52m73 + m41m52m76 + m5m52m71 + m41m52m70

+m35m52m57 + m24m35m52 + m25m41m52 + m35m39m52 + m18m32m59

+m6m37m41 + m31m37m41 + m5m23m41 + m5m14m23 + m23m25m41

+m32m57m76 + m5m32m69 + m5m67m69 + m32m58m69 + m32m58m68m69

+m5m37m69 + m5m13m69 + m32m69m71 + m32m67m71 + m69m71m72
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+m32m68m69m71 + m15m32m37 + m15m23m37 + m15m29m37 + m15m32m58

+m14m32m58 + m15m18m23 + m6m23m76 + m12m18m27m37 + m32m37m41

+m32m37m76 + m23m41m76 + m20m32m41 + m17m37m41 + m13m32m41

+m41m49 + m5m27m49 + m5m29m49 + m21m27m49 + m49m81 + m49m79m81

+m12m15m29m35 + m37m45 + m5m37m45 + m11m23m45 + m11m20m45

+m13m20m45 + m9m11m45 + m32m45 + m8m23m45 + m38m45m58 + m8m13m45

+m8m18m45 + m7m29m42 + m29m42m58 + m15m29m58 + m7m24m58

+m8m15m21 + m5m28m32 + m5m25m28 + m5m15m32 + m5m23m26 + m26m52

+m32m35m42 + m37m45 + m32m45 + m5m21m45 + m23m45m60 + m23m32m59

+m11m15m45 + m5m23m37 + m23m37m41 + m5m29m37 + m26m37m41

+m5m21m37 + m32m45 + m5m23m45 + m20m32m45 + m23m26m45 + m17m23m45

+m38m81 + m32m79m81 + m38m41m55 + m14m38m81 + m32m57m79 + m32m56m81

+m32m36m81 + m9m79m81 + m16m32m81 + m45m52 + m52m81 + m52m79m81

+m49m81 + m23m81 + m38m81 + m20m81 + m11m52m79 + m49m50m81

+m49m51m81 + m15m38m81 + m45m52 + m5m52 + m23m38m45 + m29m45m52

+m26m52 + m11m45m52 + m16m35m52 + m26m52 + m26m28m52 + m9m26m52

+m32m79m81 + m19m26m81 + m14m22m81 + m17m22m81 + m22m42m81

+m28m81 + m73m79m81 + m75m81 + m46m81 + m46m72m81 + m74m81

+m61m81 + m62m73m79 + m28m81 + m27m28m81 + m15m37m76 + m37m76m78

+m37m76m77 + m25m76m77 + m36m37m76 + m6m37m77m78 + m45m52

+m5m52 + m20m38m45.

ηX3 = m48m66 + m47m66 + m48m65 + m36m47m48 + m24m33m60 + m36m39m59

+m21m33m36 + m24m41m60 + m24m41m59m76 + m30m39m60 + m4m14m63

+m14m31m63 + m31m36m63 + m26m31m63 + m30m36m66 + m24m33m36

+m11m33m66 + m5m33m36 + m25m36m66 + m33m51 + m33m50 + m9m24m33

+m39m50m51 + m42m50m51 + m30m39m51 + m15m39m50 + m27m30m39m51

+m9m17m51 + m9m47m48 + m48m53 + m47m51 + m50m53 + m47m53m54

+m33m48 + m33m47m48 + m24m33m42 + m24m33m39 + m14m33m39 + m16m24m33

+m6m24m33 + m30m33m60 + m36m39m59 + m24m33m36 + m9m33m39

+m17m33m60 + m42m53 + m42m53m54 + m42m54m80 + m52m53 + m18m42m53

+m19m52m53 + m4m9m39 + m4m9m42 + m4m14m39 + m9m24m31 + m16m21m31

+m15m24m31 + m16m36m66 + m24m31m36 + m16m39m66 + m16m42m66

+m9m16m66 + m4m30m63 + m4m63m66 + m4m39m63 + m30m33m63 + m4m41m63

+m4m11m63 + m24m53 + m21m53m54 + m31m63m66 + m17m36m63

+m17m31m41m63 + m9m17m63 + m5m31m63 + m14m24m36m39 + m4m24m77
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+m4m24m78 + m33m76m77 + m33m39m77 + m33m36m39 + m21m33m36

+m30m76m77 + m15m17m39 + m14m33m39 + m24m33m36 + m33m36m39

+m21m24m33 + m24m27m33 + m16m24m33 + m18m24m33.

Actually, in this case there are only two errors on the testing set. In what follows, we
show that the proposed classifier can determine the class of a testing sample even
when the testing sample is coming with some missing features. Given the list of
the selected training samples, we know the sample represented by the 1-th row of
the data matrix N is not a training sample, it is a test sample and the values of the
features are

t1 = (1, .9595, .2948, .7523, .5200, .7840, .7216, .6024, .4242, .6397,

.4338, .6082, .9800, .6339)

In practice, one can substitute the missing feature by zero or by the mean value of
the attribute. In the first case, we have

t1 = (1, .9595, .2948, .7523, .5200, .7840, .7216, .6024,

.4242, .6397, .4338, .6082,0, .6339)

With the classifier and t1, we obtain the degrees of this sample belonging to class 1,
2, 3 to be 0.8147, 0.0091, 0.3821, respectively. This still gives us a clear indication
that this pattern belongs to class 1. If the data for 8-th, 13-th features are missing,
we have,

t1 = (1, .9595, .2948, .7523, .5200, .7840, .7216,0, .4242, .6397, .4338, .6082,0, .6339)

With the classifier and t1, we can also obtain the degrees of this sample belonging
to class 1, 2, 3 and they are equal to 0.8147, 0.0091, 0.3821, respectively. This
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Fig. 10.1 The results of 1-th experiment: The membership degrees of training samples be-
longing to ηXi , the fuzzy description of class i, i = 1,2,3
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Fig. 10.2 The results of 1-th experiment: The membership degrees of total samples belonging
to ηXi , the fuzzy description of class i, i = 1,2,3

Table 10.1 The misclassified samples

Labels of the sample s 62 84
µηX1

(.) .0250 .0067
µηX2

(.) .2041 .0988
µηX3

(.) .3032 .1711

result produces the same answer as before. If the data come with the three missing
features, that is 4-th, 8-th, 13-th features, one has,

t1 = (1, .9595, .2948,0, .5200, .7840, .7216,0, .4242, .6397, .4338, .6082,0, .6339),

and the membership degrees of this sample belonging to classes 1, 2, 3 are 0.8147,
0.3461, 0.3821, respectively. Moving on with the missing features such as 4-th, 6-th,
8-th, 13-th, 14-th features one has

t4 = (1, .9595, .2948,0, .5200,0, .7216,0, .4242, .6397, .4338, .6082,0,0),

and the degrees of this sample belonging to class 1, 2, 3 are 0.4613 0.3461 and
0.3821, respectively. These experiments show that even so many features are miss-
ing in the testing sample, we can still classify this sample correctly.

In addition, we carried out some other 9 experiments and the obtained results are
shown in Table 10.2 which includes the number of misclassified patterns.

Table 10.2 Number of misclassified samples in other 9 experiments

i-th experiment 2 3 4 5 6 7 8 9 10
number of misclassification 4 2 4 3 5 2 5 1 1
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The average number of misclassified patterns reported over 10 rounds is 3. This
performance is still better than the results reported in [20, 88], where in both cases
there were 4 misclassified patterns.

Based on the previous experimental results, we conclude that the new fuzzy clas-
sification based on the AFS logic comes with the following advantages.

1. In step 3, we notice that the 106 fuzzy descriptions ζx for the training samples
can be computed independently. This implies that this design method can be
implemented through parallel processing.

2. Since each simple concepts in M exhibits some semantics, hence for class 1,
2, 3, the fuzzy descriptions ηXi ∈ (Λ)EI , i = 1,2,3, also express their semantic
contents separately.

3. This classifier not only can determine the class of a testing sample when it loses
information about some features, but also can determine the important features of
each training sample, i.e., if we eliminate some feature and this does not influence
the classification results, then this feature is not important for classification in this
training sample.

The main findings of this section can be summarized as follows.

• A new framework for the design of fuzzy classifier has been established.
• An optimization problem is proposed in order to design the fuzzy classifier and

an approximate solution is presented.

Furthermore, the design of the new classifiers can mimic the recognition process
carried out by humans via the use of some predefined fuzzy concepts, attributes, and
features.

10.2 AFS Classifier Design Based on Entropy Analysis

In this section, we propose a new classifier design approach based on the AFS fuzzy
logic and entropy measures. The main difference of the approach here from the
above AFS classifier design based on AFS fuzzy logic is that the entropy technique
is applied to select better descriptions of the samples and in this way the descriptions
of the classes become simpler.

Throughout this section, we always make the following assumptions: X is the set
of training samples and there are s features to describe the samples. The training
samples are labeled by l classes, which are X1, X2, ..., Xl , i.e., X =

⋃
1≤i≤l Xi,Xi ∩

Xj = ∅, i �= j. Let F = { f1, f2, · · · , fs} be the set of the features to describe the
samples. For any x = (ν1,ν2, · · · ,νs),1 ≤ i ≤ s,ν j = f j(x) is the value of x on the
features f j. Let M = {mi j | 1 ≤ i ≤ s,1 ≤ j ≤ ki} be the set of simple concepts
associating to the features. Where mi1,mi2, · · · ,miki are the simple concepts, such as
“small”, “medium”, “not medium”, “large” etc associating to the feature fi and there
are ki simple concepts on the feature fi. Let (M,τ,X) be an AFS structure of the data.
Let ρν be the weight function of simple concept ν ∈ M and {µξ (x) | ξ ∈ EM} be a
set of coherence membership functions of the AFS fuzzy logic system (EM,∨,∧,′ )
and the AFS structure (M,τ,X), defined by (4.29) of Theorem 4.5 in which the
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measure Mν derived via (4.35) for the weight function ρν . Λ ⊆ EM, Λ is a set of
fuzzy concepts which are selected to design the classifier.

Let Λ be all relative concepts (fuzzy or Boolean) on X . Λ ⊆ EM, where M is a
set of simple concepts on X . For each x ∈ Xi, find a fuzzy set ζx ∈ (Λ)EI , such that
at the largest degree x belongs to ζx, while for any y ∈ X −Xi, at smallest degree y
belongs to ζx and for z ∈ Xi, z �= x, at comparatively larger degree z belongs to ζx.
In other words, x can be distinguished from any y ∈ X −Xi by fuzzy concept ζx at
the maximal extent. Finally, a fuzzy set ζXi ∈ (Λ)EI based on entropy idea will be
selected from {ζx | x ∈ Xi} for the fuzzy characterization of class i. For each new
sample y, the degree of y belonging to class i is µζXi

(y), i = 1,2, ..., l.
In order to present the classifier design procedure, we first introduce the concept

of the fuzzy entropy.

10.2.1 Fuzzy Entropy

Entropy is a measure of the amount of uncertainty in the outcome of a random ex-
periment, or equivalently, a measure of the information obtained when the outcome
is observed. This concept has been defined in various ways such as [40, 91] and
generalized in different applied fields, such as communication theory, mathematics,
statistical thermodynamics etc.The entropy of a system as defined by Shannon [96]
gives a measure of our ignorance about its actual structure. In what follows, we will
first introduce Shannon’s entropy and then describe the four de Luca-Termini ax-
ioms [40] that a well-defined fuzzy entropy measure must satisfy. Finally, the fuzzy
entropy measure, which is an extension of Shannon’s definition, is proposed in [60].

10.2.1.1 Shannon’s Entropy

Entropy can be considered as a measure of the uncertainty of a random variable X .
Let X be a discrete random variable with a finite alphabet set containing N symbols
given by x0,x1, . . . ,xN−1. If an output x j occurs with probability p(x j), then the
amount of information associated with the known occurrence of the output x j is
defined as

I(x j) = − log2 p(x j) (10.12)

That is, for a discrete source, the information generated in selecting symbol x j is
[− log2 p(x j)] bits. On the average, the symbol x j, will be selected n · p(x j) times in
a total of N selections, so the average amount of information obtained from n source
outputs is

−n · p(x0) log2 p(x0)−n · p(x1) log2 p(x1)−·· ·−n · p(xN−1) log2 p(xN−1) (10.13)

Dividing (10.13) by n, we obtain the average amount of information per source
output symbol. This is known as the average information, the uncertainty, or the
entropy, and is defined as follows:
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Definition 10.1. ([96]) The entropy H(X) of a discrete random variable X is defined
as follows.

H(X) = −
N−1

∑
j=0

p(x j) log2 p(x j) or H(X) =
N−1

∑
j=0

p jlog2 p j,

where p j denotes p(x j). Note that entropy is a function of the distribution of X . It
does not depend on the actual values taken by the random variable X, but only on
the probabilities. Hence, entropy is also written as H(p).

De Luca-Termini Axioms for Fuzzy Entropy: Kosko [40] pointed out that a well-
defined fuzzy entropy measure must satisfy the four de Luca-Termini axioms.

a. E(A) = 0 iff A ∈ 2X , where A is a nonfuzzy set and 2X indicates the power set of
set X .

b. E(A) = 1 iff µÃ(x) = 0.5 for all x ∈ X , where µÃ(x) indicates the membership
degree of the element x to fuzzy set Ã.

c. E(Ã) ≤ E(B̃) if Ã is less fuzzy than B̃ , i.e., if µÃ(x) ≤ µB̃(x) when µB̃(x) ≤ 0.5
and µÃ(x) ≥ µB̃(x) when µB̃(x) ≥ 0.5, where Ã and B̃ are fuzzy sets.

d. E(A) = E(A
′
), A

′
is the negation of A.

10.2.1.2 Fuzzy Entropy

The fuzzy entropy based on the Shannon’s entropy was defined in [60] as follows:

Definition 10.2. ([60]) Let X = {x1,x2, · · · ,xn} be a universal set with elements xi

distributed in a pattern space, where i = 1,2, . . . ,n. Let Ã be a fuzzy set defined
on an interval of pattern space which contains k elements (k < n). The membership
degree of the element xi belonging to the fuzzy set Ã is denoted by µÃ(xi). The match
degree D j with the fuzzy set Ã for the elements of class j, where j = 1,2, . . . ,m, is
defined as

D j =
∑

x∈Xj

µÃ(x)

∑
x∈X
µÃ(x)

. (10.14)

The fuzzy entropy FECj (Ã) of the elements of class j is defined as

FECj (Ã) = −D jlog2D j. (10.15)

The fuzzy entropy FE(Ã) on the universal set X is defined as

FE(Ã) =
l

∑
j=1

FECj (Ã). (10.16)

In (10.15), the fuzzy entropy FECj (Ã) is a nonprobabilistic entropy. Therefore, the
new term is coined such as “matching degree” that applies to D j. The basic property
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of the fuzzy entropy is similar to that of the Shannon’s entropy and it satisfies the
four de Luca-Termini axioms; however, their ways of measuring information are not
the same. The probability p j of the Shannon’s entropy is measured via the number
of occurrence of elements. In contrast, the matching degree D j in fuzzy entropy is
measured via the membership values of the elements.

10.2.2 Classifier Design

With these concepts of the AFS fuzzy logic and the fuzzy entropy, we can proceed
with an introduction of the algorithm. In general, we choose the number of the sim-
ple concepts associated with each feature according to the number of the classes in
the training data.

AFS Classifier Design Based on Entropy Analysis

Step1: For each training sample x0 ∈ X , compute the membership degree µθ (x0),
where θ =

∨
m∈Λ m. Actually, µθ (x0) is the maximum membership degree of x0

belonging to the fuzzy concept in (Λ)EI .

Step2: For each training sample x0 ∈ X and given small positive number ε , com-
pute the following simple concepts set

Bεx0
= {m ∈Λ | µm(x0) ≥ µθ (x0)− ε} (10.17)

This is the set which includes all possible simple concepts in M which can char-
acterize x0 well.

Step 3: Given appropriate positive numbers 0 ≤ δ ≤ β ≤ 1, and assume that x0

belong to class Xi, we compute the following set

Ξεx0
=

{
γ = ∏

m∈H
m | H ⊆ Bεx0

; µγ(x0) ≥ β ; ∀y ∈ X −Xi, µγ(y) < δ

}
(10.18)

Then we also compute the following fuzzy set for the best characterization of
training sample x0.

ζx0 =

{
arg max

γ∈Ξεx0

{µγ(x0)}, Ξx0 �= ∅,

0, Ξx0 = ∅.
(10.19)

Remark 10.1. For α,β ∈ Λεx0
if α ≤ β in the sub EI algebra (Λ)EI , then for any

x ∈ X , µα(x) ≤ µβ (x) . By (10.19), the characterization ζx0 can be simply found
just by checking the membership degrees of x0 belonging to the maximal elements
in Ξεx0

, instead of checking every one in Ξεx0
. In general, just very few elements

in Ξεx0
are its maximal elements, even Ξεx0

may have a great amount of elements.
For instance, if β ∈ Ξεx0

, then any α ∈ Ξεx0
which α ≤ β need not be checked. The
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perfect algebraic properties of the completely distributivity lattices (EM,∨,∧,′ ) can
be applied to determine the maximal elements in Ξεx0

.

Step 4: From the last step, we can obtain the best characterization of each training
sample describing by the fuzzy concept sets in EM, let

CXi = {ζx | ζx �= 0,x ∈ Xi} (10.20)

Usually, some training sample x ∈ Xi may not be typical enough or too specific to
represent the characteristic of the class Xi and they may lead to the low classification
rate of testing data. Thus we need to filter out these fuzzy sets in CXi via applying the
concept of entropy. Assume further that ni is the number of x ∈ Xi such that ζx �= 0,
i.e., CXi = {ζl | 1 ≤ l ≤ ni}. Then we compute the following set

ΓXi =

{
ζk ∈ CXi | λikE(ζk) ≤ 1

ni

ni

∑
l=1

λilE(ζl)

}
, (10.21)

where k = 1,2, ...,ni,

λik =
δ + ∑

x∈X−Xi

µζk
(x)

∑
x∈Xi

µζk
(x)

,

and the condition δ > 0 prevents us from the case where ∑
x∈X−Xi

µζk
(x) = 0,

E(ζk) = −
m

∑
i=1

⎛
⎝ ∑

x∈Xi

µζk
(x)

∑
x∈X
µζk

(x)
log2

∑
x∈Xi

µζk
(x)

∑
x∈X
µζk

(x)

⎞
⎠ .

For the training sample x, ζx = ζk ∈ ΓXi , the lower the value of λik, the more typical
x in the class Xi. Recall from de Luca-Termini axioms that a fuzzy entropy is a
function on fuzzy set that becomes smaller when the level of fuzziness of the fuzzy
set is reduced. This implies that the less E(ζk) is, the clearer ζx is to represent the
class Xi. Thus the fuzzy sets in ΓXi is selected to describe the characterization of the
class Xi:

ζXi =
∨
ζ∈ΓXi

ζ ∈ EM. (10.22)

Step 5: Determine the class label of each testing sample or new sample by its mem-
bership degree belonging to ζXi , i = 1,2, ..., l. Suppose y /∈ X is a testing sample or
new sample. Let ργ(y) be the weight function for the simple concept γ ∈ M. Let
the characterization of class i, ζXi =

∨
ζ∈ΓXi

ζ = ∑i∈I(∏m∈Ai
m) ∈ EM, i = 1,2, ..., l.

In virtue of (4.26), one has

Aτk(y) = {x ∈ X | τ(y,x) ⊇ Ak} ⊆ X , k ∈ I.
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By Theorem 4.5, in which the measure Mν has been derived via (4.35), we obtain
the membership degree of y belonging to ζXi as follows.

µζXi
(y) = sup

i∈I

(
∏
γ∈Ai

mγ(Aτi (y))

)
= sup

i∈I

(
∏
γ∈Ai

∑x∈Aτi (y)∪{y}ργ(x)
∑x∈X∪{y} ργ(x)

)
(10.23)

The class label of y is expressed as arg max
1≤k≤l

{µζXk
(y)}.

In virtue of Theorem 4.6, the membership degree of any sample in the whole
space belongingness to ζXi , the fuzzy description of class Xi, can be determined by
(4.41) or (4.43) and the class label of any new sample can be determined by its
membership degree. In practice, the high dimension integral may be too complex to
be obtained.

Remark 10.2. Based on this idea, we can apply AFS fuzzy logic to design classi-
fiers for the database with various data types such as integer, real number, Boolean
value, the sub-preference relations, even concepts of human intuition. With the clas-
sification algorithms presented in [1, 26], it is difficult or impossible to solve these
problems.

10.2.3 Experimental Studies

The main aim of this section is to illustrate the effectiveness of the AFS fuzzy clas-
sifier design based on entropy technique. We design classifiers using the proposed
procedure for the Wine data, Iris data, and the Breast data [67]. We proceed with
a tenfold cross-validation that generates an 90−10 split by taking 90% samples of
each class as a training set and testing the remaining 10% of the data set. Further-
more, the experiments are repeated ten times by taking random splits of data into
the training and testing part, respectively. In the following experimental studies, the
weight functions of the fuzzy concepts in M can be defined by the following method.
Let mi1,mi2,mi3,mi4 are the simple concepts, “small”, “medium”, “not medium”,
“large” associated with the feature fi, respectively, according to the observed data
X and their semantics, the weight functions for them can be defined as follows:

ρmj1(xi) =
h j1 − f j(xi)

h j1 −h j2
(10.24)

ρmj2(xi) =
h j4 −| f j(xi)−h j3|

h j4 −h j5
(10.25)

ρmj3(xi) =
| f j(xi)−h j3|−h j5

h j4 −h j5
(10.26)

ρmj4(xi) =
f j(xi)−h j2

h j1 −h j2
(10.27)
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where j = 1,2, . . . ,s,

h j1 = max1≤k≤n{ f j(xk)}, h j2 = min1≤k≤n{ f j(xk)},
h j3 = ∑1≤k≤n f j(xk)

n , h j4 = max1≤k≤n{| f j(xk)−h j3|},
h j5 = min

1≤k≤n
{| f j(xk)−h j3|}.

By Definition 4.8 and considering the semantics of mi1,mi2,mi3,mi4, one can verify
that ρmj,k , j = 1,2, . . . ,s are weight functions of the simple concepts m j,k. Let ρν
be the weight function of simple concept ν ∈ M and {µξ (x) | ξ ∈ EM} be a set of
coherence membership functions of the AFS fuzzy logic system (EM,∨,∧,′ ) and
the AFS structure (M,τ,X), defined by (4.29) of Theorem 4.5 in which the measure
Mν derived via (4.35) for the weight function ρν .

Wine Data

In each of the ten experiments of the tenfold cross-validation, there are 160 samples
in the training set, and 18 samples in the testing set. Let X = {x1,x2, · · · ,x160}. Let
F = { f1, f2, · · · , f13} be a set of features on X . Let

M = {mi j | 1 ≤ i ≤ 13,1 ≤ j ≤ 3},

where mi1,mi2,mi3 are the simple concepts meaning “small”, “medium”, “large”,
respectively on the feature fi, and their weight functions are defined as (10.24),
(10.25), (10.27) mentioned above. For example, the semantics of fuzzy concepts
m1,1, m1,2, m1,3 in M are: m1,1: “small alcohol content (AL)”, m1,2: “medium alcohol
content (AL)”, m1,3: “large alcohol content (AL)”. Figures 10.3 to 10.15 display the
membership functions of the simple concepts in M on each feature. LetΛ = M. The
results of each step are listed below.

Step 1: Let θ =
∨

m∈M m. Actually, µθ (x) is the maximum membership degree
of x ∈ X belonging to the fuzzy concept in EM.

Step 2: Given ε = 0.1, it is easy to get set B0.1
x0

⊆ M for each x0 ∈ X by (10.17).
As examples, some of them are listed as follows:

B0.1
x1

= {m1,3,m5,3,m12,3}, B0.1
x7

= {m2,2,m10,2,m12,3},
B0.1

x21
= {m1,2,m5,2,m6,2,m12,3,m13,2}, B0.1

x40
= {m5,2,m9,2,m13,2},

B0.1
x47

= {m4,1,m6,3,m7,3}, B0.1
x50

= {m8,1,m9,3,m11,2},
B0.1

x54
={m2,1,m3,1,m4,1,m7,1,m9,1,m10,1}, B0.1

x62
={m3,1,m5,3,m8,1,m11,3,m13,2},

B0.1
x63

= {m6,1,m8,2}, B0.1
x79

= {m1,1,m2,2,m5,1,m11,2,m12,2,m13,2},
B0.1

x85
= {m1,1,m5,2,m8,1,m13,1}, B0.1

x94
= {m3,1,m5,1,m6,2,m7,2,m12,3},

B0.1
x99

= {m1,1,m11,2}, B0.1
x124

= {m6,1,m7,1,m9,1,m12,1,m13,2},
B0.1

x148
= {m6,1,m10,3}, B0.1

x154
= {m2,2,m4,2,m7,1,m9,1,m10,3,m11,1},

B0.1
x159

= {m2,2,m3,2,m10,3,m11,1}.
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Fig. 10.3 Membership func-
tions of the simple concepts
for the feature f1
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Fig. 10.4 Membership func-
tions of the simple concepts
for the feature f2
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Fig. 10.6 Membership func-
tions of the simple concepts
for the feature f4

70 80 90 100 110 120 130 140 150 160 170
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the numerical value of the training samples in feature5

th
e

 m
e

m
b

e
rs

h
ip

 d
e

g
re

e
 o

f 
th

e
 s

a
m

p
le

s

 

 
m5,1
m5,2
m5,3

Fig. 10.7 Membership func-
tions of the simple concepts
for the feature f5
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Fig. 10.8 Membership func-
tions of the simple concepts
for the feature f6
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Fig. 10.9 Membership func-
tions of the simple concepts
for the feature f7
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Fig. 10.10 Membership
functions of the simple
concepts for the feature f8
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Fig. 10.11 Membership func-
tions of the simple concepts for
the feature f9
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Fig. 10.12 Membership
functions of the simple
concepts for the feature
f10
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Fig. 10.13 Membership
functions of the simple
concepts for the feature
f11
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Fig. 10.15 Membership
functions of the simple
concepts for the feature f13
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Step 3: Let δ = 0.2,β = 0.5. By (10.18), we can obtain the set of fuzzy concepts
Ξ 0.1

x0
⊆ EM for every x0 ∈ X . We just list some of them.

Ξ 0.1
x1

= {m1,3m5,3m12,3}, Ξ 0.1
x7

= {m2,2m10,2m12,3}, Ξ 0.1
x21

= {m1,2m12,3m13,2},
Ξ 0.1

x47
= ∅, Ξ 0.1

x50
= ∅, Ξ 0.1

x54
= {m2,1m4,1m7,1, m2,1m9,1m10,1, m3,1m4,1m7,1,

m3,1m9,1m10,1,m4,1m7,1m9,1,m4,1m9,1m10,1,m7,1m9,1m10,1},
Ξ 0.1

x62
= {m3,1m5,3m8,1,m3,1m11,3m13,2,m5,3m8,1m11,3,m8,1m11,3m13,2},

Ξ 0.1
x63

= ∅, Ξ 0.1
x79

= {m1,1m11,2,m1,1m12,2},
Ξ 0.1

x85
= {m1,1m5,2m8,1, m1,1m8,1m13,1, m5,2m8,1m13,1},

Ξ 0.1
x94

= {m3,1m5,1m6,2,m3,1m7,2m12,3,m5,1m6,2m7,2}, Ξ 0.1
x99

= {m1,1m11,2},
Ξ 0.1

124 = {m6,1m7,1m9,1,m6,1m9,1m12,1,m6,1m12,1m13,2,m7,1m12,1m13,2},
Ξ 0.1

x148
= {m6,1m10,3}, Ξ 0.1

x154
= {m2,2m4,2m7,1, m2,2m7,1m9,1, m2,2m9,1m10,3,

m2,2m10,3m11,1, m4,2m7,1m9,1, m4,2m9,1m10,3, m4,2m10,3m11,1, m7,1m9,1m10,3,

m7,1m10,3,m9,1m10,3m11,1}, Ξ 0.1
x159

= {m3,2m10,3m11,1}

From (10.19), we can obtain the fuzzy description of each sample. Here are some
illustrative examples:

ζx1 = m1,3m5,3m12,3, ζx7 = m2,2m10,2m12,3, ζx21 = m1,2m12,3m13,2,

ζx47 = 0, ζx50 = 0, ζx54 = m4,1m9,1m10,1, ζx62 = m3,1m5,3m8,1,

ζx63 = 0, ζx79 = m1,1m12,2, ζx85 = m1,1m8,1m13,1,

ζx94 = m5,1m6,2m7,2, ζx99 = m1,1m11,2, ζx124 = m7,1m12,1m13,2,

ζx148 = m6,1m10,3, ζx154 = m2,2m4,2m7,1, ζx159 = m3,2m10,3m11,1.

Step 4: By (10.20), we get CXi , i = 1,2,3 as follows:

CX1 = {m1,3m13,3, m7,3m13,3, m4,1m13,3, m1,3m5,3m12,3, m2,2m5,2m9,3,

m2,2m10,2m12,3, m1,3m4,1m10,2, m6,2m9,2m10,2, m1,3m4,1m7,3, m1,3m3,3m12,2,

m8,1m10,2m11,2, m5,3m12,3m13,2, m1,2m12,3m13,2, m3,3m4,2m8,2, m3,2m4,2m13,3,

m3,3m4,1m8,2, m1,2m5,2m12,2, m5,2m6,2m12,2, m10,2m12,3m13,2, m1,3m6,3m10,2,

m5,2m7,3m8,1, m1,3m6,3m11,2, m1,2m4,1m8,1m9,3}
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CX2 = {m6,3m7,2, m2,1m13,1, m1,1m11,3, m1,1m12,2, m10,1m13,1, m11,3m13,1,m9,3m10,1,

m1,1m11,2, m1,1m9,3, m1,1m7,2, m1,1m7,3, m9,3m13,1, m4,1m9,1m10,1, m2,1m3,1m9,1,

m3,1m4,1m5,1, m3,1m5,1m7,2, m2,1m9,1m13,2, m3,1m5,3m8,1, m4,3m8,1m11,3,

m1,2m3,1m7,2, m2,1m8,2m13,2, m5,1m10,1m11,3, m1,2m9,2m10,2, m2,1m6,2m7,2,

m9,2m10,1m11,3, m5,1m6,2m10,1, m5,1m9,2m10,1, m5,1m9,2m11,2, m1,1m8,1m13,1,

m4,2m5,3m9,3, m2,2m9,2m11,2, m2,2m7,2m8,2, m3,1m4,2m8,2, m5,1m6,2m7,2, m7,2m8,2m9,2,

m5,1m6,1m9,2, m6,2m7,2m13,1, m4,2m8,2m10,1, m1,2m2,3m13,1, m2,2m8,2m13,1,

m2,2m4,3m11,2, m2,1m5,2m8,3m9,1}

CX3 = {m6,1m10,3, m6,1m10,2m12,1, m2,2m6,1m12,1, m3,2m10,2m12,1, m7,1m12,1m13,2,

m1,2m7,1m9,1, m3,2m8,2m9,1, m5,1m6,1m7,1, m3,2m11,1m12,1, m5,3m11,1m12,1,

m6,2m11,1m12,1, m8,3m10,3m11,1, m2,3m12,1m13,2, m4,2m9,2m11,1, m4,3m7,1m8,3,

m1,3m10,3m11,1, m3,2m6,2m11,1, m6,1m7,1m9,1, m2,2m4,2m7,1, m5,3m10,3m11,1,

m3,2m10,3m11,1, m2,3m4,3m8,3m10,2}

By (10.21) and (10.22), the following fuzzy description of characterization of
each class, ζXi , i = 1,2,3 can be computed.

ζX1 = m1,3m5,3m12,3 + m2,2m10,2m12,3 + m1,3m4,1m10,2 + m4,1m13,3 + m1,3m4,1m7,3

+m1,3m13,3 + m1,3m3,3m12,2 + m7,3m13,3 + m5,3m12,3m13,2 + m3,3m4,1m8,2

+m10,2m12,3m13,2 + m1,3m6,3m10,2 + m5,2m7,3m8,1 + m1,3m6,3m11,2,

ζX2 = m2,1m13,1 + m1,1m11,3 + m1,1m12,2 + m10,1m13,1 + m11,3m13,1 + m9,3m10,1

+m1,1m11,2 + m1,1m9,3 + m1,1m7,2 + m1,1m7,3 + m9,3m13,1 + m4,1m9,1m10,1

+m2,1m3,1m9,1 + m3,1m5,1m7,2 + m2,1m8,2m13,2 + m5,1m10,1m11,3 + m2,1m6,2m7,2

+m9,2m10,1m11,3 + m5,1m6,2m10,1 + m5,1m9,2m10,1 + m5,1m9,2m11,2 + m1,1m8,1m13,1

+m3,1m4,2m8,2 + m5,1m6,2m7,2 + m5,1m6,1m9,2 + m6,2m7,2m13,1 + m4,2m8,2m10,1

+m2,2m8,2m13,1 + m2,2m4,3m11,2 + m2,1m5,2m8,3m9,1,

ζX3 = m6,1m10,3 + m6,1m10,2m12,1 + m3,2m10,2m12,1 + m7,1m12,1m13,2 + m1,2m7,1m9,1

+m3,2m11,1m12,1 + m5,3m11,1m12,1 + m6,2m11,1m12,1 + m8,3m10,3m11,1 + m2,3m12,1m13,2

+m1,3m10,3m11,1 + m6,1m7,1m9,1 + m5,3m10,3m11,1 + m3,2m10,3m11,1.

ζX1 ,ζX2 ,ζX3 come with a well-defined semantics. For instance, ζX1 states that
“small total phenols and large color intensity” or “small total phenols and
medium color intensity and small OD280 /OD315 of diluted wines” or “medium
ash content and medium color intensity and small OD280/OD315 of diluted
wines” or “small flacanoids and small OD280/OD315 of diluted wines and
medium praline” or “medium alcohol content and small flavanoids and small
proanthocyaninsm” or “medium ash content and small hue and small OD280
/OD315 of diluted wines” or “large magnesium content and small hue and small
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OD280 /OD315 of diluted wines” or “medium total phenols and small hue and
small OD280 /OD315 of diluted wines” or “large nonflacanoids phenols and
large color intensity and small hue” or “large malic acid content and small
OD280 /OD315 of diluted wines and medium praline” or “large alcohol content
and large color intensity and small hue” or “small total phenols and small fla-
canoids and small proanthocyaninsm” or “large magnesium content and large
color intensity and small hue” or “medium ash content and large color intensity
and small hue”

Figure 10.16 shows the membership functions of the fuzzy sets ζX1 ,ζX2 ,ζX3 for
the training data.

Step 5: By (10.23), we can assign the class label of each testing sample according
to the membership degrees of the sample belonging to ζX1 ,ζX2 ,ζX3 ∈ EM.

Figure 10.17 shows the membership functions of the fuzzy sets ζX1 ,ζX2 ,ζX3 for
the test samples. Table 10.3 shows the results of the tenth experiment.
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Fig. 10.16 The membership functions of the
fuzzy sets ζX1 ,ζX2 ,ζX3 on training samples
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Fig. 10.17 The membership functions of the
fuzzy sets ζX1 ,ζX2 ,ζX3 on testing samples

Table 10.3 The numbers of misclassifying samples and the number of rules for the Wine
Data

No. of the experiment 1 2 3 4 5 6 7 8 9 10
No. of the misclassifying training samples 2 2 1 1 1 3 2 1 3 3
No. of the misclassifying testing samples 0 0 1 0 1 0 0 1 0 0
No. of the rules 58 59 51 59 60 63 57 57 54 65

The number of the rules is the total length of the fuzzy concepts ζX1 ,ζX2 ,ζX3 , i.e.,
||ζX1 ||+ ||ζX2 ||+ ||ζX3 || ( refer to Definition 5.9). In ten experiments of the tenfold
cross-validation, the average accuracy and the standard deviation for the training set
are 98.81% and 2.9600e− 005, and its corresponding average accuracy for testing
set and the standard deviation for the testing set are 98.315% and 7.2016e−004.
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Iris Data

The Iris data set is one of the most popular data sets to examine the performance of
algorithms of pattern recognition. The Iris data can be arranged into a 150×4 matrix
W = (ωi, j)150×4 evenly distributed in three classes: iris-setosa, iris-versicolor, and
iris-virginica. The vector of the sample i, (ωi1,ωi2,ωi3,ωi4) has four features: sepal
length, sepal width, petal length, and petal width.

Let X = {x1,x2, · · · ,x135} be the set of 135 training samples and M = {m j,k|1 ≤
j ≤ 4,1 ≤ k ≤ 3}, where m j,1,m j,2,m j,3 are the fuzzy concepts, “small”, “medium”,
“large” associating to the feature f j, respectively. We use the numeric values of the
parameters: ε = 0.15, δ = 0.25, β = 0.6. Those are selected considering the same
procedure as the one used for the Wine data. The experimental results are listed in
Table 10.4.

Table 10.4 Numbers of misclassified samples and the number of rules for the Iris Data

1 2 3 4 5 6 7 8 9 10
No. of misclassifying. in training samples 5 2 4 4 5 5 5 6 5 4
No. of misclassifying. in testing samples. 0 2 1 0 0 0 0 0 0 3
No. of rules 10 7 8 10 6 9 8 5 6 8

The average accuracy and the standard deviation for the training set are 96.67%
and 6.40e−005, and its corresponding average accuracy for testing set and the the
standard deviation for the testing set are 96% and 0.0051.

10.2.3.1 Breast Data

The Wisconsin Breast Cancer Diagnostic data set contains 699 patterns distributed
into two output classes, “benign” and “malignant”. Each pattern consists of nine
input features: clump thickness (CT), uniformity of cell size (UC), uniformity of
cell shape (UCS), marginal adhesion (MA), single epithe- lial cell size (SECS), bare
nuclei (BN), bland chromatin (BC), normal nuclei (NN), and mitoses (MI). The nine
features have integer values in the range of 1− 10 that describe visually assessed
characteristics of fine needle aspiration (FNA) samples. There are 458 patterns for
benign (labeling as “2” in the dataset) and 241 patterns for malignant (labeling as
“4”) category.

Let X = {x1,x2, · · · ,x639}. Since the samples are classified into two classes, hence
we select two simple concepts for each feature, i.e., M = {mi j|1 ≤ i ≤ 9,1≤ j ≤ 2}.
Where mi,1,mi,2 are the simple concepts, “small”, “large” associated with the feature
fi, respectively. We use the parameters ε = 0.05,δ = 0.5,β = 0.6 in the tenfold
cross-validation and follow the same procedure as the above wine data. The ten
experimental results are listed in Table 10.5.

The average accuracy and the the standard deviation for the training set are
97.19% and 8.46e− 006, and its corresponding average accuracy for testing set
and the standard deviation for the testing set are 97% and 6.12e−004.
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Table 10.5 The numbers of misclassifying samples and the number of rules for Breast Data

No. of experiment 1 2 3 4 5 6 7 8 9 10
No. of misclassifying training samples 14 19 17 16 20 20 18 18 18 17
No. of misclassifying testing samples 5 0 2 2 5 1 1 1 1 3
No. of rules 35 36 37 33 24 34 33 37 38 42

10.2.4 Experiment Studies of Parameters

In this section, we study how to select suitable values of the parameters ε , δ , and
β according to the training sets to achieve the best performance of the classifiers.
The influence of these parameters on the performance of the classifier are shown as
the following Table 10.6 to 10.8 for the Wine, Iris and Breast data and the Figures
10.18 to 10.29. We can observe that a high accuracy can be achieved by the proposed
algorithm for most parameters positioned in the range 0.05 ≤ ε ≤ 0.2, 0.1 ≤ δ ≤
β ≤ 0.9.

By analyzing Figures 10.51 to 10.93 presented in Appendix A, we arrive at the
following conclusions: The accuracy of both training set and testing set is not sensi-
tive to the choice of the parameter ε . Large differences between β and δ will result
in low classification accuracy both on the training as well as the testing set.

The suitable numeric values of the parameters ε , δ , and β are selected by experi-
menting with the training data. We developed some guidelines regarding this choice.

Table 10.6 Experimental results for different values of the parameters of the Wine Data

ε δ , β training variation training average testing variation training average
0.05 0.1 ≤ δ ≤ β ≤ 0.9 0.0031321 92.545 0.0032816 90.861
0.1 0.1 ≤ δ ≤ β ≤ 0.9 0.0026383 94.653 0.0027112 92.605
0.15 0.1 ≤ δ ≤ β ≤ 0.9 0.003179 94.717 0.0028821 92.399
0.2 0.1 ≤ δ ≤ β ≤ 0.9 0.0038353 94.299 0.0034942 92.201

Table 10.7 Experimental results for different values of the parameters of the Iris Data

ε δ , β training variation training average testing variation testing average
0.05 0.1 ≤ δ ≤ β ≤ 0.9 0.0181 81.69 0.0184 80.10
0.1 0.1 ≤ δ ≤ β ≤ 0.9 0.0060 89.46 0.0064 87.95
0.15 0.1 ≤ δ ≤ β ≤ 0.9 0.0058 89.84 0.0062 88.34
0.2 0.1 ≤ δ ≤ β ≤ 0.9 0.0059 89.61 0.0063 88.22

Table 10.8 Experimental results for different values of the parameters of the Breast Data

ε δ , β training variation training average testing variation testing average
0.05 0.1 ≤ δ ≤ β ≤ 0.9 2.1843e−006 96.91 4.9141e−006 96.72
0.1 0.1 ≤ δ ≤ β ≤ 0.9 4.6520e−006 96.88 1.2853e−005 96.66
0.15 0.1 ≤ δ ≤ β ≤ 0.9 5.2756e−006 96.885 1.4568e−006 96.681
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Fig. 10.18 Wine Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.05
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Fig. 10.19 Wine Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.1
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Fig. 10.20 Wine Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.15
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Fig. 10.21 Wine Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.2
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Fig. 10.22 Iris Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.05

0.2 0.4 0.6 0.8
0.2

0.4
0.6

0.8
0

0.5

1

β

training samples

δ

a
c
c
u
r
a
c
y

0.2 0.4 0.6 0.8
0.2

0.4
0.6

0.8
0

0.5

1

β

testing samples

δ

a
c
c
u
r
a
c
y

Fig. 10.23 Iris Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.1
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Fig. 10.24 Iris Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.15
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Fig. 10.25 Iris Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.2
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Fig. 10.26 Breast Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.05
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Fig. 10.27 Breast Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.1
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Fig. 10.28 Breast Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.15
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Fig. 10.29 Breast Data: The relationship be-
tween the accuracy and parameters β ,δ with
ε = 0.2
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First, ε which corresponds to the smallest variation and high average accuracy for
training data is preferred. For instance, ε = 0.1 in Table 10.6 is opted, and ε = 0.15
in Table 10.7 is opted. Then δ and β are selected by looking for the highest accuracy
on the training data and the smallest number of the rules. Where the number of rules
is ∑1≤k≤l ||ζXk || (refer to Definition 5.9).

10.2.5 Stability and Universality of the Coherence Membership
Functions

In this section, each of the data sets: Iris data, Wine data and Breast data can be re-
garded as the observed data from a probability space (Ω ,F ,P). The training data
of the ten experiments completed for the one of Iris, Wine, and Breast can be re-
garded as the different data drawn from the same probability space. In what follows,
we study the stability and universality of the membership functions determined by
(4.40) in Theorem 4.6 via the membership functions of the fuzzy descriptions of
each class obtained by the classifier design algorithm applying to the data sets in
the above. Thus there are ten membership functions of each class in the ten exper-
iments which obtained by different data. Following Figures 10.30-10.37, one can
observe that the ten membership functions of ζXi the fuzzy descriptions of the class
i for a data set are quite similar, although different fuzzy descriptions ζXi ∈ EM
may be obtained for the different training samples. In virtue of Theorem 4.6, we
know that when the number of the training samples approaches infinity, the ten
membership functions will converge to one. These figures verify the stability of the
coherence membership functions. In addition, each fuzzy description is obtained
by the application of the classifier design to the training data (i.e.,90% of the total
samples) and the membership functions shown in the figures are on the total sam-
ples. Thus these figures also show that universality of the coherence membership
functions.
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Fig. 10.30 Membership functions of the fuzzy descriptions of class 1 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Iris Data
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Fig. 10.31 Membership functions of the fuzzy descriptions of class 2 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Iris Data
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Fig. 10.32 Membership functions of the fuzzy descriptions of class 3 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Iris Data
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Fig. 10.33 Membership functions of the fuzzy descriptions of class 1 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Wine Data
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Fig. 10.34 Membership functions of the fuzzy descriptions of class 2 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Wine Data
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Fig. 10.35 Membership functions of the fuzzy descriptions of class 3 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Wine Data
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Fig. 10.36 Membership functions of the fuzzy descriptions of class 1 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Breast Data
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Fig. 10.37 Membership functions of the fuzzy descriptions of class 2 obtained by the algo-
rithm applied to every training data of the ten experiments completed for the Breast Data

10.2.6 Comparative Analysis

In this section, the results of proposed algorithm are compared with two rule-based
classification methods C4.5 rules [79] and RIPPER(Repeated Incremental Pruning
to Produce Error Reduction) [11], BooR (a Boosting algorithm) [94] and a hybrid of
rule-based methods and associative classifiers (CPAR)(Classification based on Pre-
dictive Association Rules) [112], CMAR(Classification based on Multiple Associa-
tion Rules),2SARC1 and 2SARC2 (Two-Stage Approach to Classification) [3].

Rule-based classification approaches have been developed for decades in the ma-
chine learning community due to the readability of rules when compared to other
classifiers. These algorithms use greedy techniques in the rule generation process.
C4.5 searches the space for the best attribute according to the heuristic used, di-
vides the search space according to the values of the attribute and then continues
the process recursively in those subspaces. Rules are generated following the paths
that cover the feature space. RIPPER [11] is built upon IREP (Incremental Reduced
Error Pruning) algorithm [16]. Following IREP’s strategy, RIPPER splits the train-
ing set in two sets. One of them is used to grow the rules and the other to prune
the rules. The algorithm starts with an empty rule and it repeatedly adds conditions
that maximize the information gain criterion. Once the rule is grown, conditions are
deleted to maximize a function during pruning phase. When a rule has been discov-
ered, all the examples that are covered by this rule are removed from the training
set. The above process continues and we learn rules for the remaining training set.

CPAR [112] is a hybrid between associative classifiers and rule-based classifiers
that use greedy techniques. It uses a greedy algorithm to search the space of at-
tributes.The main difference is that it keeps all close-to-the-best attributes in rule
generation, unlike rule-based methods which use only the best attribute.

CMAR [59], i.e., Classification based on Multiple Association Rules. The method
extends an efficient frequent pattern mining method, FP-growth, constructs a class
distribution-associated FP-tree, and mines large database efficiently. Moreover,
it applies a CR-tree structure to store and retrieve mined association rules effi-
ciently, and prunes rules effectively based on several measure such as confidence,
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correlation and database coverage. The classification is performed based on a
weighted χ2 analysis using multiple strong association rules.

The following Table 10.9 lists the accuracies over a tenfold cross-validation of
various classifier designs which were reported in [3] and the proposed algorithm.

Table 10.9 Results of Several Classifiers

dataset ARC 2SARC1 2SARC2 C4.5 Ripper BooR CBA CMAR CPAR proposed
breast 96.42 96.13 95.85 94.71 95.28 95.85 96.28 96.40 96 97
iris 95.33 94.67 96 94 94 94.67 94.67 94 94.7 96
wine 88.79 95.50 97.18 92.12 92.12 96.67 94.96 95 95.5 98.31

In this section, a novel fuzzy classifier is proposed via AFS fuzzy logic and fuzzy
entropy. The relationship between the parameters and the classifier quality is investi-
gated through experimental studies and the optimum parameter selection principles
are outlined. Considering the successive steps of the design of the classifier, one can
observe that the computation and the procedure in each step are directly AFS fuzzy
logic operations which are very interpretable and understandable. The final classi-
fier results in some fuzzy concepts with well-defined semantics where each of them
describing the character of a class. The experimental studies show that the proposed
classifier can achieve very high accuracy both on the training set and the testing set
and it is very robust to the changes in the value of the parameters. The proposed
classifier can also be regarded as the knowledge representation of the data since it is
simply constructed in terms of fuzzy sets with a well-defined semantics using AFS
logic operations.

It is clear that the proposed classifier is just an initial stage of this approach
and there is much room for possible improvement. With the strong mathematical
background of AFS structure and the AFS algebra, the proposed classifier can be
analyzed by many mathematical tools and implemented in a setting of parallel com-
puting. This provides great opportunity to establish mathematical theorems for en-
hancing its practicality and efficiency.

10.3 AFS Fuzzy Classifier Based on Fuzzy Decision Trees

This section introduces a method to construct a fuzzy rule-based classifier via fuzzy
decision trees. Given such theoretical underpinnings, these systems are referred to as
AFS classifiers based on fuzzy decision trees. Compared with other fuzzy classifier
systems, the classifier exhibits several essential advantages being of practical rele-
vance. The reliability (relevance) of classification results is quantified by associated
confidence levels (degrees). This quantification can be applied to the data sets with
mixed data type attributes. The proposed algorithm consists of the following major
steps: (a) estimation of the value of the optimal threshold to be used in the generation
of the fuzzy decision trees; (b) generation and tuning of the fuzzy decision trees by
information gain and the estimated threshold; and (c) pruning the rule-base by rule
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post-pruning. We have experimented with various data sets commonly discussed in
the literature. We have also compared obtained results with those reported for C4.5
and C-decision trees. It has been found that the accuracy on test data is higher than
the one produced by the other decision trees.

There have been numerous approaches to the development (extraction) of clas-
sification fuzzy rules from numerical data [24, 30, 97, 102, 110]. One of the quite
often used alternatives is to construct a decision tree from the training data and af-
terwards extract rules from it. There are different types of decision trees. The well
developed underlying methodology comes with efficient design techniques support-
ing their construction, cf. [8, 29, 74]. The decision trees generated by these methods
have been dound useful in building knowledge-based expert systems. Due to the
character of continuous attributes as well as various facets of uncertainty one has
to take into consideration, there has been a visible trend to cope with the factor of
fuzziness when carrying out learning from examples in the case of tree induction.
In a nutshell, this trend gave rise to the generalizations known as fuzzy decision
trees, cf. [25, 33]. The incorporation of fuzzy sets into decision trees enables us
to combine the uncertainty handling and approximate reasoning capabilities of the
former with the comprehensibility and ease of application of the latter. This combi-
nation augments the representation capabilities of decision trees with the knowledge
component inherent to fuzzy logic subsequently leading to their robustness, noise
immunity, and substantial applicability level in particular when dealing with situa-
tions we encounter a factor of uncertainty.

The existing fuzzy decision trees [33] assume that all domain attributes or lin-
guistic variables come with some predefined fuzzy linguistic terms. This means that
every node of the tree except for its root comes equipped with some fuzzy set that
can be represented as a conjunction of several fuzzy linguistic terms. Here the con-
junction operation is implemented by some standard logic operators encountered
in fuzzy sets. Zhao and Hong [105] discretized continuous attributes using fuzzy
numbers and the mechanisms of possibility theory. Pedrycz and Sosnowski [72],
on the other hand, employed context-based fuzzy clustering for this purpose. Yuan
and Shaw [110] induced a fuzzy decision tree by reducing classification ambigu-
ity with fuzzy evidence. The input data is transformed using triangular membership
functions formed around cluster centers obtained with the use of a Kohonen’s fea-
ture map [38]. Wang et al. [101] presented optimization principles of fuzzy decision
trees by minimizing the total number and an average depth of leaves, proving that
the algorithmic complexity of the construction of a minimum tree is NP-hard. X.
-Z. Wang et al. [102] studied heuristic algorithms for generating fuzzy decision
trees. Mitra et al. [64] introduced a novel concept useful in measuring the good-
ness of a decision tree, which is expressed in terms of its compactness (size) and
efficient performance. In general, the approaches shown above dwell on the generic
design algorithm [33] or one of its variants. The improvement or enhancement of
[33] comes with the combination of the tree with some other development machin-
ery such as genetic algorithms, neural networks, mechanisms of fuzzy granulation,
etc. An interesting commonality occurring across all of them is worth emphasizing:
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such development algorithms require some knowledge about membership functions
of the linguistic values of the attributes as well as specific aggregation operations
(such as t-norms) prior to any optimization technique being considered and utilized.
It becomes apparent that to significant extent the obtained fuzzy decision trees are
pre-determined by the membership functions of the fuzzy terms and the fuzzy logic
operators. Besides, like the classical decision trees, the class label of the node is
determined by the label of the majority of the training samples falling into it. It is so
simple that the difference of the membership degrees and the disproportion between
the classes are ignored.

In this chapter, we use the fuzzy sets (membership functions) and underlying
logic operations generated by AFS to eliminate potential subjective bias of the con-
ventional fuzzy decision tree resulting from the use of different membership func-
tions of the fuzzy terms. We focus on a new scheme of rule extraction. The scheme
helps to deal with cases where we encountered imbalanced classes. The confidence
degrees of a test samples lead to a generation of a certain confidence level asso-
ciated with the resulting decision. The tuning and pruning methods help generate
a sound and efficient fuzzy rule-based classifier. To offer a thorough comparative
tested, we experimented with the algorithm using seven well-known real data sets
coming from the UCI Repository for Machine Learning data [67], and compared
the proposed decision tree with C-decision tree [75] and C4.5 [80].

10.3.1 Generation of Fuzzy Rules from AFS Decision Trees

In this section, the following assumptions are made. Let X be a set and M be a set
of simple concepts on X . Let (M, τ , X) be an AFS structure of the data set and the
weight function ρ : X → [0,1], ρ(x) = 1 for any x ∈ X . Then the set of coherence
membership functions {µξ (x) | ξ ∈ EM} can be obtained from Proposition 5.7.

µη(x) = sup
i∈I

|Aτi (x)|
|X | , (10.28)

where Aτi (x) is calculated by (4.27). If σ = 2X , for W ∈ 2X , M (W ) = |W | (|W | is
the cardinality of the set W , i.e., the number of elements in W ) in Proposition 5.7.

The membership function defined by (10.28) depends only on the AFS structure
of the data which is determined by the distribution of the data and the semantic in-
terpretations of the simple concepts in M. Since EI algebra (EM, ∨, ∧) is closed
for the logic operation ∨, ∧ defined by (4.3) and (4.2), hence for any fuzzy con-
cepts in EM, their membership functions and logic operations ∨, ∧, (or, and) can be
determined by (10.28) and (EM, ∨, ∧) is a logic system.

We use fuzzy logic operations defined by (4.3) and (4.2) as well as the member-
ship functions expressed by (10.28) in the construction of fuzzy decision trees for
such as the data shown as Table 10.10. The resulting classifiers are referred to as
AFS decision trees.
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Table 10.10 A Collection of Training Examples

Training V1 = inc V2 = emp credit
Examples U1 U2 Y

u1
j u2

j y j

x1 0.20 0.15 0.00
x2 0.35 0.25 0.00
x3 0.90 0.20 0.00
x4 0.60 0.50 0.00
x5 0.90 0.50 1.00
x6 0.10 0.85 1.00
x7 0.40 0.90 1.00
x8 0.85 0.85 1.00

10.3.1.1 Basic Notions

Let us recall some notions and definitions pertaining to the study presented in [33].
Each internal node of the tree comes with a branch for each linguistic value of the
split variable, except when no training examples satisfy the fuzzy restriction.

In Table 10.10, xi is a training example,Ui is the universe of discourse of the fuzzy
variable or attribute Vi, the two fuzzy variables are V1 = income (abbreviated as inc)
and V2 = employment (emp), Y is the universe of discourse of decision variable
Dc. Before we define the fuzzy decision trees and rule-generate procedures, let us
introduce some additional notations.

1) The set of fuzzy variables or attributes is denoted by

V = {V1,V2, · · · ,Vn}.

where Vi is a fuzzy variable over the universe of discourse Ui, i=1, 2, · · · , n.

2) For each variable Vi ∈V

• value of training example j is ui
j ∈Ui.

• Di denotes the set of fuzzy terms (i.e., simple concepts) associating with Vi.
• vi

p ∈ Di denotes the fuzzy term for the variable Vi. (e.g., vinc
low, as necessary to

stress the variable or with anonymous values—otherwise p alone may be used).

3) The set of fuzzy terms (simple concepts) for the decision variable is denoted
by Dc. Each fuzzy term vc

k ∈ Dc is a fuzzy concept expressed over universe of dis-
course Y .

4) The set of training examples is

X = {x j | x j = (u1
j ,u

2
j , · · · ,un

j ,y j)}.
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5) M is the set of all simple concepts

M = Dc ∪ (
n⋃

i=1

Di).

(M, τ , E) is the AFS structure and EM is the EI algebra over M. In general, for
each pair fuzzy terms vc

p, vc
q ∈ Dc (on decision attribute Y ), vc

p �= vc
q, µvc

p∧vc
q(x) < ε

(ε is a very small positive number), for any x ∈ X . This implies that the fuzzy terms
in Dc implement a fuzzy classification on X , e.g., Xvc

k
, vc

k ∈ Dc.

6) For each node N of the fuzzy decision trees

• FN denotes the set of fuzzy restrictions on the path from the root to the node N,
e.g.,

F5 = {[emp is high], [inc is high]}
in Fig.10.38.

• V N is the set of attributes appearing on the path leading to the node N

V N = {Vi | ∃p ([Vi is vi
p] ∈ FN)}.

• βN is a fuzzy concept in EM, and µβN (x j) is the membership degree of sample
x j in the node N, where

βN = ∏
m∈{vi

p | ∃p ([Vi is vi
p]∈FN)}

m

Fig. 10.38 An example of a fuzzy decision tree
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• βN
δ is the δ (δ ∈(0, 1)) cut set of fuzzy set βN , i.e.,

βN
δ = {x ∈ X | µβN (x) > δ}. (10.29)

• N|vi
p denotes the particular child node of node N created by the use of the fuzzy

attribute Vi to split N, vi
p ∈ Di.

• SN
Vi

denotes the set of N’s children when Vi ∈ (V −V N) is used for the split. Note
that

SN
Vi

= {(N|vi
p) | vi

p ∈ DN
i }, DN

i = {vi
p ∈ Di | ∃x ∈ X , µβN∧vi

p
(x j) > δ}; (10.30)

in other words, some fuzzy terms vi
p ∈ Di which satisfy µβN∧vi

p
(x) ≤ δ for any

x ∈X may not be used to create sub-trees.
• PN

vc denotes the example count for decision vc ∈ Dc in node N, where

PN
vc =

|X |
∑
j=1

µβN∧vc(x j), PN = ∑
vc∈Dc

PN
vc ,

P
N|vi

p
vc =

|X |
∑
j=1
µβN∧vi

p∧vc(x j), PN|vi
p = ∑

vc∈Dc

P
N|vi

p
vc . (10.31)

It is important to note that unless the sets are such that the sum of all memberships

for any is 1, PN
vc �=∑vi

p∈Di
P

N|vi
p

vc ; that is, the membership sum from all children of
N can differ from that of N. This is due to the existence of the fuzzy concepts,
the total membership can either increase or decrease while building the tree.

• PN and IN denote the total example count and information measure for the node
N, where IN is the standard information content

IN = − ∑
vc∈Dc

PN
vc

PN log
PN

vc

PN (10.32)

• GN
Vi

= IN − I
SN

Vi denotes the information gain when using the fuzzy attribute Vi to
split N, where

I
SN

Vi = ∑
vi

p∈DN
i

PN|vi
p

∑vi
p∈DN

i
PN|vi

p
IN|vi

p (10.33)

is the weighted information content.

10.3.2 Construction of AFS Decision Trees

The AFS decision trees are constructed by the algorithm shown in Table 10.11.
It consists of the following design steps: Discretization with Fuzzy Terms, Node
Splitting Criterion, and Stopping Condition.
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Table 10.11 The Algorithm of Building AFS Decision Trees

AFSDT=BuildTree(X , V , N, δ )

{ % X denotes the training data set with l classes, X =
l⋃
1

Xvc
k
; V is the set of fuzzy

% variables or attributes; N denotes the current node; δ is the given threshold; an AFS
% decision tree starts with N = ∅.
1. calculate the information content IN of node N;
2. calculate the information gain GN

Vi
for each Vi from V ;

3. Vmax = argmaxVi∈V {GN
Vi};

4. V = V −Vmax; % delete Vi from V .
5. % check child and update the current node.
for k = 1 : l

if (∃x ∈ X , µβN∧vmax
k

(x) > δ )
N = N ∧ vmax

k
AFSDT=BuildTree(X , V , N, δ )

end
end
}

10.3.2.1 Discretization with Fuzzy Terms

The attributes need to be transformed into fuzzy terms. Suppose that the training
samples belong to l different classes, then we assign l fuzzy terms (i.e., simple
concepts) for each attribute Vi. The set of fuzzy terms for Vi is Di = {vi

1, vi
2, · · · , vi

l},
the simple concept vi

k with the semantics “ the value of Vi is closer to the kth cut
point”. In the experimental studies, we will illustrate how to determine the values of
the cut points.

10.3.2.2 Node Splitting Criterion

The growth process of the tree is guided by the maximum information gain. The
information gain of the use of fuzzy attribute Vi to split the current node N is GN

Vi
=

IN − I
SN

Vi , where IN and I
SN

Vi are defined by (10.32) and (10.33). The fuzzy attribute
Vi which exhibits the maximum information gain at the current node N is applied to
split N. The children of the node N is the set SN

Vi
(defined by (10.30)).

10.3.2.3 Stopping Condition

First, a given node N can be expanded if the samples in the set βN
δ defined by

(10.29) are not in the same class, otherwise, the node is not expanded any longer.
The second stopping condition is self-evident: the current node N can be expanded
if V N �= V , the set V N is the attributes applied from root to the node N, V is the set of
all the attributes. The final termination criterion is the information gain we monitor
for each mode of the tree when the tree is begin built. In case when the maximum
information gain at the current node N is negative or the set of N’s children is empty,
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i.e., SN
Vi

= ∅, we stop expanding this node. The first two stopping criteria are a sort
of precondition: if they are not satisfied, we stop expanding the node. The third
one comes in a form of some postcondition: to make sure if it is satisfied, we have
to expand the node first and then determine its value, if not satisfied, we should
backtrack and refused to expand the particular node.

10.3.3 Rule Extraction and Pruning

After the AFS decision tree has been built for the given threshold δ , the extraction
of the rule base is extracted via the algorithm shown in Table 10.12, which consists
of the following steps: Rule Extraction, Pruning the Rule-Base.

Table 10.12 The Algorithm of Rule Extraction

Rule Extraction(X , AFSDT, δ )

{ % X denotes the training data set with l classes, X =
l⋃
1

Xvc
k
; AFSDT is an AFS

% decision tree with t classifier node (terminal node).
for i = 1 : t

Ari = {x | x ∈ X , µβNi (x) ≥ µβN j (x), ∀ j = 1, 2, · · · , t, j �= i}
end
for i = 1 : t

if (Ari �= ∅)
Class label o f ri = argmax1≤k≤l{βNi

δ ∩Xvc
k
} % βNi

δ is defined by (10.29).
else

Class label o f ri = argmax1≤k≤l{Ari ∩Xvc
k
}

end
end
}

Rule Extraction

Each path starting from the root down to a classifier node (terminal node) is con-
verted to a rule. Suppose the rules r1, r2, · · · , rt are extracted form the fuzzy decision
tree, the antecedent part of the rule ri is a fuzzy set—-the conditions leading to the
terminal node, i.e., βNi ∈EM, where Ni is the terminal node of the corresponding
path. The class labels of the rules are essential to the classifier. The class label
methods for fuzzy decision tree in the existing papers are not suitable for the de-
cision tree discussed here. Instead we consider the following scheme for the fuzzy
set βNi representing the antecedent part of rule ri. Let us introduce the notation

Ari = {x | x ∈ X , µβNi (x) ≥ µβNj (x), ∀ j = 1,2, · · · , t, j �= i}

|Ari | measures the amount of training samples covered by the rule ri. However,
Ari = ∅ does not imply that rule ri is incorrect. The condition Ari = ∅ implies
that the contribution of rule ri to the classification process is not so significant
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in the current rule set. Its importance to the classification process may increase
in the process of pruning. Thus, the class label of the rule ri is computed as
argmax1≤k≤l{|Xri ∩Xvc

k
|}, where Xvc

k
is the set of the samples of the kth class,

Xri =
{

Ari , if Ari �= ∅,

βNi
δ , otherwise,

(10.34)

where βNi
δ is defined by (10.29) for the above given threshold δ .

10.3.3.1 Pruning the Rule-Base

The rules directly extracted from the AFS decision tree, may include redundant
structures as well as involve poorly performing rules, which should be removed
from the rule-base to enhance an overall performance of the classifier and improve
its efficiency. In what follows, we prune the rule-base making use of the available
training data:

1 Remove each rule from the rule-base, and classify the training data using the
remaining rules.

2 Delete the rule, whose corresponding remaining rules have the maximal increase
of accuracy on training data.

3 Repeat steps 1—2 and stop the pruning if the resulting pruned rule-base performs
worse than the original one when applied to the training data.

4 Using the fuzzy logic operation “∨” defined by (4.2), sum all fuzzy concepts
representing the antecedents of the rules with the same consequent.

Thus, for a training data set with l classes, we can represent the rule-base with l
fuzzy concepts ξ1, ξ2, · · · , ξl ∈ EM. For each class vc

k ∈ Dc, k = 1, 2, · · · , l, a rule
can be obtained and read as:

Rule k: If x is ξk, then x belongs to the class vc
k, k = 1, 2, · · · , l.

Example 10.1. We consider the pruning process of the tree, which is built in Exper-
iment 1 of Wine data set. The un-pruned tree is shown in Figure 10.39.

The rules directly extracted from the AFS decision tree by the algorithm Rule
extraction are listed as follows:

r1: If x is m19m28, then x belongs to class 2;
r2: If x is m19m29, then x belongs to class 3;
r3: If x is m19m30, then x belongs to class 3;
r4: If x is m20m28, then x belongs to class 2;
r5: If x is m20m29m39, then x belongs to class 1;
r6: If x is m21m37, then x belongs to class 2;
r7: If x is m21m38m1, then x belongs to class 2;
r8: If x is m21m38m3, then x belongs to class 1;
r9: If x is m21m39m2m29, then x belongs to class 1;
r10: If x is m21m39m2m30, then x belongs to class 1;
r11: If x is m21m39m3, then x belongs to class 1.
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Fig. 10.39 An AFS decision tree with δ = 0.63 in the experiment of Wine data set

Fig. 10.40 The AFS decision tree (pruned) with δ = 0.63 for the Wine data set

The classification rate achieved on training set with the rule-base shown above
is 92.25%. The standard deviation of the classification rate reported for the training
set while the pruning process is shown in Table 10.13. After pruning, the classifica-
tion rate on the training set increased to 97.89%. Then we sum all fuzzy concepts
representing the antecedents of the rules with the same consequent in the pruned
rule-base, using the logic operation “∨” defined by (4.2). The pruned AFS decision
tree is shown in Figure 10.40 and the pruned rule-base is shown as follows:

Rule 1: If x is ξ1, then x belongs to class 1;
Rule 2: If x is ξ2, then x belongs to class 2;
Rule 3: If x is ξ3, then x belongs to class 3;
where ξ1 = m21m39m3, ξ2 = m19m28 + m21m37, ξ3 = m19m29 + m19m30.
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Table 10.13 The standard deviation of the classification rate on the training Set and the
corresponding number of rules obtained in the Pruning Process for the Wine data

1 2 3 4 5 6
Training accuracy 96.48% 97.18% 97.89% 97.89% 97.89% 97.89%
Deleted rule r4 r5 r9 r7 r8 r10

10.3.4 Determining the Optimal Threshold δ

The amount of the “trivial detailed information” included in the decision trees can
be controlled by value of the threshold δ ∈ (0, 1). The larger the value of δ , the less
overlap occurs between the membership functions. In other words, we can conclude
that the larger the value of δ , the more “trivial detailed information” becomes fil-
tered out (ignored). In the procedure of building AFS decision trees, different values
of δ can produce different trees. In fact, following (10.30), we know that when we
use a smaller δ in the growth process of a tree, we build a bigger tree (consisting of
more nodes). Clearly the performance of the tree depends on the threshold δ . Here,
optimal threshold δ means that the pruned rule-base induced by the AFS decision
tree with it has the highest accuracy on testing data. However, it is very difficult to
determine the optimal threshold δ on a basis of the existing training data. Thus, in
this study, we compute the sub-optimal value of the threshold δ by following Fitness
Index F(δ ). More specifically the sub-optimal threshold δ maximizes the following
Fitness Index computed for the training data.

F(δ ) = |X | ·Classi f ication rate− δ ·Number o f nodes (10.35)

|X | is the number of training samples, “Classi f ication rate” is the classification
accuracy reported on the training samples for the rule-base obtained by threshold
δ via the algorithm of Build an AFS Decision Tree shown in Table 10.11 and the
algorithm of Rule Extraction shown in Table 10.12, and “Number o f nodes” is the
total nodes of the pruned tree.

Example 10.2. Let X = {x1, x2, · · · , x14} be a set of 14 people characterized by
some attributes which are described by real numbers, Boolean values and the order
relations are shown in Table 10.14. The number i in the “black”, “white”, “yellow”
columns which corresponds to some x ∈ X implies that the hair color of x has or-
dered ith following our perception of the color. For example, the numbers in the
column “white” imply the order (>)

x7 > x10 > x4 = x8 = x11 = x13 > x2 = x9 = x12 = x14 > x5 > x1 = x3 = x6

i.e., when moving from right to left, the relationship states how strongly the hair
color under consideration resembles white color. In this order, xi > x j (e.g., x7 > x10)
states that the hair of xi is closer to the white color than the color of hair the individ-
ual x j. We illustrate the proposed scheme using the data shown in Table 10.14. The
data set consists of 14 samples with 8 credit samples and 6 not credit samples. Each
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Table 10.14 Description of attributes

age height self- salary estate male black white yellow credit
appraisement

x1 20 1.9 90 1 0 1 6 1 4 0
x2 13 1.2 32 0 0 0 4 3 1 0
x3 50 1.7 67 140 34 0 6 1 4 1
x4 80 1.8 73 20 80 1 3 4 2 1
x5 34 1.4 54 15 2 1 5 2 2 0
x6 37 1.6 80 80 28 0 6 1 4 1
x7 45 1.7 78 268 90 1 1 6 4 1
x8 70 1.65 70 30 45 1 3 4 2 1
x9 60 1.82 83 25 98 0 4 3 1 1
x10 3 1.1 21 0 0 0 2 5 3 0
x11 8 1.4 45 0 0 0 3 4 3 0
x12 19 1.73 56 1 0 1 4 3 4 0
x13 40 1.6 50 30 20 1 3 4 2 0
x14 23 2 80 19 5 0 4 3 2 0

sample is described by nine condition attributes (see Table 10.14) and one decision
attribute (credit). We take all 14 samples as training samples. On each attribute Vi,
two fuzzy terms are specialized, since the training samples form two classes. The set
of fuzzy terms for attribute Vi is Di = {vi

small , vi
large}, and the set of fuzzy terms for

the decision variable (decision attribute) is Dc = {vc
credit , vc

notcredit}. Let M = {m1,
m2, · · · , m22} be the set of simple concepts on U , where m2i−1 = vi

small with the
semantics “the value on Vi is small”, m2i = vi

large with the semantic meaning “the
value on Vi is large” (i=1, 2, · · · , 9) and m21 = vc

credit , m22 = vc
notcredit . Now, we

can establish the AFS structure (M, τ , X), where τ is defined by (4.26) while the
membership functions of the fuzzy concepts in EM are defined by (10.28).

To start with, we choose a threshold level δ=0.8 (as it will be shown later on, the
value of this threshold will be optimized). The root node starts with all the training
samples without any restrictions, that is β root = ∅. By using the node splitting cri-
terion, the 5th attribute “estate” is selected to split the root node and the children of
the root node form the set {(root|vestate

samll ), (root|vestate
large )}. According to the stopping

condition, we obtain the decision tree shown as Figure 10.41. Node 1 contains 5
samples and all of them belong to the “not credit” category. There are 3 samples at
node 2 which belong to the “credit” category. 6 samples were left out and they were
neither assigned to node 1 nor node 2. This implies that these samples are not typi-
cal and significant enough for the predefined value of the threshold (δ = 0.8). They
may be included in the AFS fuzzy decision tree when considering smaller values of
the threshold δ .

In what follows, we show how to extract rules from this tree. In order to de-
termine the class labels of the rules with the antecedent represented by fuzzy con-
cepts corresponding to node 1 and node 2, using (10.34), we calculate Xr1 = {x1,
x2, x5, x10, x11, x12, x14}, Xr2 = {x3, x4, x6, x7, x8, x9, x13}. The class label of
r1 is argmaxk∈{notcredit, credit}{Xr1 ∩ Xvc

k
} = notcredit and the class label of r2 is
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Fig. 10.41 The AFS fuzzy decision tree with δ = 0.8

argmaxk∈{notcredit, credit}{Xr2 ∩Xvc
k
} = credit, where Xvc

credit
, Xvc

notcredit
are the sets of

credit samples and not credit samples. After pruning, we have Rule 1, Rule 2 as
follows:

Rule 1: If x is ξ1, then x belongs to the class of not credit;
Rule 2: If x is ξ2, then x belongs to the class of credit.
where ξ1 = vestate

small , ξ2 = vestate
lagre and the membership functions of the fuzzy concepts

ξ1, ξ2 are shown in Table 10.15.

Table 10.15 Membership degree of samples belonging to ξ1, ξ2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

µξ1
1 1 0.36 0.21 0.64 0.43 0.14 0.29 0 1 1 1 0.5 0.57

µξ1
0 0 0.71 0.86 0.43 0.64 0.93 0.79 1 0 0 0 0.57 0.5

Next, let the threshold assume lower value of δ = 0.43. In figure 10.42, the
root node is split by the 5th attribute “estate”, the children of the node is the set
{(root|vestate

samll ), (root|vestate
large )}. The node 1 contains 8 samples have membership

Fig. 10.42 The first layer of the AFS fuzzy decision tree with δ = 0.43
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Fig. 10.43 The AFS fuzzy decision tree with δ = 0.43

degrees larger than δ = 0.43 and the 8 samples all belong to not credit. Accord-
ing to the stopping condition, the decision tree stops growing at this node. Unlike at
node 1, the tree at node 2 will continue to grow. There are 8 samples which belong
to different classes while falling into node 2, and the node 2 should be split further.
The 3rd attribute “self-appraisement” is selected by the node splitting criterion via
the formula (10.33). The child of node N2 is (N2|vsel f−appraisement

large ).
In figure 10.43, there are 6 samples falling into node 3 and these samples belong

to the “credit” category. According to the stopping condition, the growth of the
decision tree is terminated. After rule extraction and pruning, we have two rules,
Rule 1 and Rule 2 as follows:

Rule 1: If x is ξ1, then x belongs to the class of not credit;
Rule 2: If x is ξ2, then x belongs to the class of credit.
where ξ1 = vestate

small , ξ2 = vestate
large vsel f−appraisement

large . The accuracy of the tree reported on
the training data is 100%.

Comparing the threshold δ = 0.8 with the case δ = 0.43, we find that the detailed
information included in the AFS decision trees can be effectively controlled by the
value of this threshold.

Now we use the Fitness Index (10.35) to determine the optimal value of the
threshold δ . The plot of this index is displayed in Figure 10.44; clearly δ = 0.43
leads to the maximization of the index.

For comparison, the C4.5 decision tree produced the following rules

Rule 1: If x is estate ≤ 20, then x is not credit;
Rule 2: If x is estate > 20, then x is credit.
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Fig. 10.44 The Fitness Index of the AFS fuzzy decision trees versus the threshold δ ; the
values of the threshold are shown here in the [0.4, 0.8] interval

The accuracy reported for the training data is also 100%. One can observe that the
rules extracted by C4.5 are similar to the rules extracted from AFS decision tree
with δ = 0.8.

10.3.5 Inference of Decision Assignment and Associated
Confidence Degrees

We should note that for each concept ξi ∈ EM representing the antecedent of the
Rules i, the universe of discourse of its membership function defined by (10.28) is
the training sample set X . In order to predict the class label of the new samples which
are not included in X , we need the fuzzy concept ξ expressed over the entire input
space U1 ×U2 × ·· ·×Un ⊆ Rn(X ⊆ U1 ×U2 × ·· ·×Un). In what follows, for each
fuzzy concept ξ ∈ EM, we expand its universe of discourse X to U1 ×U2 × ·· ·×
Un. For each x = (u1, u2, · · · ,un) ∈ U1 ×U2 × ·· ·×Un, ξ = ∑i∈I(∏m∈Ai

m) ∈ EM,
the lower bound and upper bound of membership function of fuzzy concept ξ are
defined over U1 ×U2 ×·· ·×Un as follows:

µU
ξ (x) = sup

i∈I

(
inf

g∈Ux
Ai

(µAi(g))

)
, µL

ξ (x) = sup
i∈I

|Lx
Ai
|

|X | , (10.36)

where Ux
Ai
⊆ X , Lx

Ai
⊆ X , i ∈ I are defined as

Ux
Ai

= {x j ∈ X |(x j,x) ∈ Rm,∀ m ∈ Ai},

Lx
Ai

= {x j ∈ X |(x,x j) ∈ Rm,∀ m ∈ Ai},
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here Rm is the binary relation of simple concept m by Definition 4.2. We call µL
ξ (x)

the lower bound of membership function of ξ and µU
ξ (x) serves as the upper bound

of membership function of ξ . It is clear that the following assertions hold:

• µU
ξ (x) ≥ µL

ξ (x) for each x ∈U1 ×U2 ×·· ·×Un.

• µU
ξ (x) = µξ (x) = µL

ξ (x) for each x ∈ X .

In virtue of (10.36), we can expand the fuzzy concept ξ = ∑i∈I(∏m∈Ai
m) ∈ EM,

from universe of discourse X to the universe of discourse U1×U2×·· ·×Un. There-
fore, by the fuzzy rule-base, we can establish fuzzy-inference systems whose input
space is U1 ×U2 ×·· ·×Un. The membership functions µU

ξ (x), µL
ξ (x) are dependent

on the distribution of training examples and the AFS fuzzy logic.
When we are provided with a new pattern x ∈U1 ×U2 ×·· ·×Un with unknown

class label, we calculate the membership degree µL
ξ (x) by (10.36) and x belongs

to the class argmaxvc
k∈Dc{µL

ξk
(x)}, k = 1, 2, · · · , l. Furthermore, considering the

training samples, the confidence degree of the membership degree µξ (x) estimated
by µL

ξ (x) is defined as follows:

Cξ (x) = 1− (µU
ξ (x)− µL

ξ (x)). (10.37)

The confident degree Cξ (x) quantifies confidence we associate with µL
ξ (x), the es-

timate of the membership degree of x belonging to ξ , x ∈ U1 ×U2 × ·· · ×Un. For
sample x, the closer the upper bound of membership function of ξ to the lower
bound, the larger value of Cξ (x) we have. In fact, the value of Cξ (x) depends on
how many training samples are similar to x considering the fuzzy concept ξ . Larger
value of Cξ (x) advises us to trust µL

ξ (x) as the membership degree of x belonging
to ξ . Especially, if x ∈ X , Cξ (x) = 1, then there exist a training sample x0 such that
the values of both x0 and x on the attributes associating to ξ are equal. For each
testing sample x, we know that it belongs to the class argmaxvc

k∈Dc{µL
ξk

(x)}, k = 1,

2, · · · , l, which is determined by µL
ξk

(x), the estimate of all membership degree of x

belonging to ξk. In order to achieve a high reliability prediction of the class label of
x, every confidence degree Cξ (x) of µL

ξk
(x), k = 1, 2, · · · , l, has to be high. Thus the

reliability of the classification result of each testing sample can be measured by the
confidence degrees. In practice we can refuse to classify the testing samples whose
confidence degree belonging to some µL

ξk
(x) is low or require more information to

produce high confidence degrees.

10.3.6 Experimental Studies

In this section, seven well-known data sets are used in our experiments. They come
from the Machine Learning repository [67], which makes the experiments fully re-
producible and facilitates further comparative analysis. The description of the per-
tinent data sets is covered in Table 10.16. Experiments 1 concerns the well-known
Wisconsin breast cancer data sets, Iris data sets and Wine data sets. In experiment 2
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the data sets are as follows: (a) Pima-diabetes, (b) Ionosphere, (c) Hepatitis, and (d)
Auto data. In the experiments, for each experiment set, five complete five-fold cross
validations are carried out, the cases are partitioned into five equal-sized subsets
with similar class distributions. In turn, each subset was then used as test data for
the AFS decision tree inference systems generated from the remaining four subsets.
All missing values were replaced by the averages of the corresponding attributes.

Table 10.16 Descriptions of data sets from UCI repository

No. Data set Classes Sizes Missing values Num. of attributes
1 Breast-W 2 699 Yes 9
2 Iris 3 150 No 4
3 Wine 3 178 No 13
4 Pima 2 768 No 8
5 Ionosphere 2 351 No 34
6 Hepatitis 2 155 Yes 19
7 Auto 3 398 Yes 8

10.3.6.1 Experiment 1

A Wisconsin Breast Cancer: The data set consists of 699 samples which are clas-
sified two classes, 458 benign samples and 241 malignant samples. Each sample is
described by nine attributes: a) clump thickness, b) uniformity of cell size, c) unifor-
mity of cell shape, d) marginal adhesion, e) single epithelial cell size, f) bare nuclei,
g) bland chromatin, h) normal nucleoli, and i) mitoses. In the data set, the values of
the sixth attributes of 16 samples are missing. X is the training set, on each attribute
Vi, two fuzzy terms are specialized, since the training samples are two classes. The
set of fuzzy terms for attribute Vi is Di = {vi

small , vi
large}, and the set of fuzzy terms

for the decision variable (class attribute) is Dc = {vc
benign, vc

malignant}. Let M = {m1,

m2, · · · , m20} be the set of simple concepts on U , Where m2i−1 = vi
small with the

semantics “the value on Vi is small”, m2i = vi
large with the interpretation “the value

on Vi is large”(i = 1, 2, · · · , 9) and m19 = vc
benign,m20 = vc

malignant . Now, we can
establish the AFS structure (M, τ , X), where τ is defined by (4.26).

The tree with sub-optimal thresholds δ obtained by the Fitness Index (10.35)
starts with all the training samples without any restrictions, β root = ∅. The tree
grows following the node splitting criterion, and the stopping condition shown as
the algorithm of Build an AFS Decision Tree shown as Table 10.11. The trees in
the five-fold cross validations induced by the sub-optimal thresholds have 56.8 (av-
erage of the five experiments) terminal nodes, so we extract a rule-base with 56.8
rules (on average). The average classification accurate rate on training set is 95.28%
and the average accuracy on testing set is 93.51%. Then, we prune the rule-base.
The number of rules has been reduced to 5.9 (on average), and for this case, the
percentage of correct classification on training set by the rule-base is increase to
96.78% (on average), the average accuracy on testing data set is increase to 95.65%.
The membership functions of the fuzzy concepts ξ1,ξ2 which are the antecedents of
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Fig. 10.45 The membership functions of ξ1, ξ2 in the 5th experiment of Breast data

Rule 1 and Rule 2 are shown in Figure 10.45. The rule-base with optimal δ consists
of 59.7 rules. The average classification rate on the training samples is 95.19% and
on testing data is 93.96%. After pruning, the number of rules are reduced to 8.4 (on
average), and the percentage of correct classification on training samples is increase
to 96.52%, while 96.54% on testing samples (on average). In general, the high accu-
racy on training data does not imply that high accuracy on testing data, since the tree
may be overfitting. Thus we estimated the optimal threshold δ by (10.35) to avoid
overfitting. The percentage of misclassification on testing data of each experiment
in the five fold experiment is shown in Table 10.17, where AFS1 and AFS2 are the
results of the sub optimal threshold and optimal threshold, respectively.

Table 10.17 The percentage of misclassification of five experiments and the number of rules
and the number of nodes of Breast-W

Error: Training data (%) Error: Testing data (%) Number of rules Number of nodes
AFS1 AFS2 C4.5 AFS1 AFS2 C4.5 AFS1 AFS2 C4.5 AFS1 AFS2 C4.5

1 3.04 3.68 2.44 4.29 3.72 5.28 7.0 7.4 8.2 31.6 30.8 15.4
2 3.15 2.72 1.44 4.15 3.58 6.44 6.0 8.6 12.6 27.4 37.6 24.2
3 3.54 4.08 1.98 4.86 3.43 5.16 5.2 8.2 10.0 20.8 31.4 19.0
4 3.00 3.61 2.02 4.43 3.43 6.00 6.8 8.6 10.2 31.6 34.8 19.4
5 3.36 3.29 1.96 4.01 3.15 5.88 4.6 9.4 10.4 22.6 41.8 19.8
mean 3.22 3.48 1.97 4.35 3.46 5.75 5.9 8.4 10.3 26.8 35.3 19.6

Figure 10.46-a shows the distribution of the number of testing samples in the 2nd
experiment of the five-fold cross validations fall into different square regions of the
confidence degree of the estimate of membership degree of the samples belonging
to ξ1, ξ2 which are the fuzzy concepts to describe class 1 and class 2, respectively.
Figure 10.46-b shows the distribution of the misclassification rate of testing samples
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in the 2nd experiment of the five-fold cross validations fall into different square re-
gions of confidence degree of the estimate of the membership degree of the samples
belonging to ξ1, ξ2, the fuzzy descriptions of the classes. By Figure 10.46-a, one can
observe that the confidence degrees (defined by (10.37)) of the membership degrees
(defined by (10.36)) of almost of the testing samples (448 of 699) belonging to ξ1,
ξ2 are larger than 0.9 and just 6 misclassified testing samples fall into this region.
The misclassification rate in this region is 1.34%. This implies that the classification
result of a testing sample x with Cξ1

(x) ≥ 0.9, Cξ2
(x) ≥ 0.9 is of high reliability.
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Fig. 10.46 a) The distribution of the number of testing samples falling into different square
regions of the confidence degree of the estimate of membership degree of the samples be-
longing to ξ1,ξ2; b) The distribution of the misclassification rate of testing samples falling
into different square regions of the estimate of confidence degree of the membership degree
of the samples belonging to ξ1, ξ2

B Iris Plants Database: The data set consists of 150 samples involving three
classes, that is 50 setosa samples, 50 versicolour samples and 50 virginica samples.
Each sample is described by four attributes: a) sepal length, b) sepal width, c) petal
length, d) petal width. X is the training set, on each attribute Vi, three fuzzy terms are
specialized, since the training samples are three classes. The set of fuzzy terms for
attribute Vi is Di = {vi

small ,v
i
mid ,v

i
large}, and the set of fuzzy terms for the decision

variable (class attribute) is Dc = {vc
setosa,v

c
versicolour,v

c
virginica}. Let m3i−2 = vi

small

with the semantics “the value on Vi is small”, m3i = vi
large with the semantics “the

value on Vi is large”, m3i−1 = vi
mid with the semantics “the value is closer to the

mediacy on Vi” (i = 1,2,3,4) and m13 = vc
Setosa,m14 = vc

Versicolour,m15 = vc
Virginica.

The percentage of misclassification in five experiments and the number of rules
and the number of nodes are summarized in Table 10.18, where AFS1 and AFS2

are the results of the sub optimal threshold and optimal threshold, respectively. The
trees in the five-fold cross validations induced by the sub-optimal thresholds have
3 (average of the five experiments) terminal nodes, so we extract a rule-base with 3
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Fig. 10.47 The membership functions of ξ1, ξ2, ξ3 in the 1st experiment of Iris data

rules (on average). The average classification rate on the training set is 96.83% and
the average accuracy on the testing set is 96.00%. After pruning, the number of
rules is 3 (on average), and the percentage of correct classification on training set
is 96.83% (on average), the accuracy on the testing is 96.00%. The membership
functions of the fuzzy concepts ξ1, ξ2, ξ3 which are the antecedents of Rule 1, Rule
2 and Rule 3 are shown in Figure 10.47. The rule-base with optimal δ consists of 6.4
rules. The average accuracy is 94.97% and the accuracy is 96.67%for the training
and testing sets, respectively. After pruning, the number of rules are reduced to 4.0
(on average), and the accuracy on training set is increase to 95.73% (average), the
accuracy on testing set is 98.00%.

Table 10.18 Percentage of misclassification of five experiments and the number of rules and
the number of nodes of Iris

Error: Training data (%) Error: Testing data (%) Number of rules Number of nodes
AFS1 AFS2 C4.5 AFS1 AFS2 C4.5 AFS1 AFS2 C4.5 AFS1 AFS2 C4.5

1 3.17 3.50 1.84 5.33 2.67 4.68 3.0 4.0 4.8 5.4 8.6 8.6
2 3.00 5.00 1.84 3.33 0.67 7.34 3.0 4.0 4.4 5.6 7.6 7.8
3 3.83 4.50 1.84 3.33 2.00 5.98 3.0 4.2 4.4 5.2 8.8 7.8
4 3.00 4.00 1.66 3.33 2.00 4.66 3.0 3.8 4.4 5.8 7.6 7.8
5 2.83 4.33 2.00 4.67 2.67 4.66 3.0 3.8 4.4 5.6 7.0 7.8
mean 3.17 4.27 1.84 4.00 2.00 5.47 3.0 4.0 4.5 5.5 7.9 8.0

C Wine Recognition Data: The data set consists of 178 samples which are clas-
sified three classes, class 1: 59 samples, class 2: 71 samples and class 3: 48 sam-
ples. Each sample is described by thirteen attributes. X is the training set, on each
attribute Vi, three fuzzy terms are specialized, since the training samples are three
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classes. The set of fuzzy terms for attribute Vi is Di = {vi
small , vi

mid , vi
large}, and the

set of fuzzy terms for the decision variable (class attribute) is Dc = {vc
1, vc

2, vc
3}. Let

m3i−2 = vi
small with the semantics “the value on Vi is small”, m3i = vi

large with the

semantics “the value on Vi is large”, m3i−1 = vi
mid with the semantics “the value is

closer to the mediacy on Vi” (i = 1, 2, · · · , 13) and m40 = vc
1,m41 = vc

2,m42 = vc
3.

Thus, the set of all fuzzy terms is M = Dc ∪ (
13⋃

i=1
Di) = {m1, m2, · · · , m39, m40,

m41, m42}. Now, we can establish the AFS structure (M, τ , X), where τ is defined
by (4.26).
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Fig. 10.48 The membership functions of ξ1, ξ2, ξ3 in the 3rd experiment of Wine data

The percentage of misclassification of five experiments and the number of rules
and number of nodes are summarized in Table 10.19, where AFS1 and AFS2 are the
results of the sub optimal threshold and optimal threshold respectively. The trees
in the five-fold cross validations induced by the sub-optimal thresholds have 32.2
(average of the ten experiments) terminal nodes, so we extract a rule-base with 32,2
rules (on average). The average classification rate on training samples is 98.23% and
the accuracy on testing set is 94.38%. After pruning, the number of rules are reduced
to 6.5 (on average), and the percentage of correct classification on training samples
is increase to 99.27% (on average) and the accuracy on testing set is 95.17%. The
membership functions of the fuzzy concepts ξ1, ξ2, ξ3 which are the antecedents of
Rule 1, Rule 2 and Rule 3 are shown in Figure 10.48. The rule-base with optimal δ
consist of 15.0 rules. The average accuracy on training set is 94.94% and the average
accuracy on testing set is 94.38%. After pruning, the number of rules are reduced to
6.1 (on average), and the average accuracy on training set is increase to 96.86%, the
average accuracy on testing set is 98.09%.
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Table 10.19 The Percentage of Misclassification of Five Experiments and the Number of
Rules and the Number of Nodes of Wine

Error: Training data (%) Error: Testing data (%) Number of rules Number of nodes
AFS1 AFS2 C4.5 AFS1 AFS2 C4.5 AFS1 AFS2 C4.5 AFS1 AFS2 C4.5

1 0.84 5.34 1.26 6.18 1.69 9.02 6.4 6.0 5.8 15.8 11.8 10.6
2 0.70 2.38 1.40 2.81 2.25 8.44 6.0 5.8 5.8 15.8 14.2 10.6
3 0.14 2.67 0.84 4.49 1.69 6.24 8.2 6.6 5.6 19.8 14.8 10.2
4 0.56 2.67 1.40 5.62 2.25 8.42 6.4 5.4 5.8 16.2 11.6 10.6
5 1.41 2.67 1.68 5.06 1.69 10.58 5.4 6.6 5.6 15.0 14.4 10.2
mean 0.73 3.14 1.32 4.83 1.91 8.54 6.5 6.1 5.7 16.5 13.4 10.4

The performance of the rule-base extracted by AFS decision tree is summarized
in Table 10.20, where AFS1 and AFS2 are the results of the sub optimal thresh-
old and optimal threshold, respectively. Comparing the case Not Pruned with the
case Pruned, we find that pruning of the rule-base improves the performance of the
rule-base both on the training set and the testing set. It implies that there are some
improper rules in the original rule-base, which are incorrectly classifying some sam-
ples both on training set and testing set. And there are many redundant rules in the
original rule-base, so through pruning the number of rules in the rule-base could be
decreased.

Table 10.20 Performance of the Rule-base on Different Data Sets

Data sets Error: Training data (%) Error: Testing data (%) Number of rules Number of nodes
Not Pruned Pruned Not Pruned Pruned Not Pruned Pruned Not Pruned Pruned

Breast-W AFS1 4.72 3.22 6.49 4.35 56.8 5.9 114.8 26.8
Breast-W AFS2 4.81 3.48 6.04 3.46 59.7 8.4 121.3 35.3
Iris AFS1 3.17 3.17 4.00 4.00 3.0 3.0 5.5 5.5
Iris AFS2 5.03 4.27 3.33 2.00 6.4 4.0 11.3 7.9
Wine AFS1 1.73 0.73 5.62 4.83 32.2 6.5 61.7 16.5
Wine AFS2 5.06 3.14 5.62 1.91 15.0 6.1 27.4 13.4

10.3.6.2 Experiment 2

It is of interest to compare the results produced by the AFS decision tree with
those obtained by C-decision tree and C4.5. In this analysis, the results obtained by
C-decision tree and C4.5 are reported by [75]. The results are summarized in Table
10.21, where AFS1 and AFS2 are the results of the suboptimal threshold and optimal
threshold respectively.

Overall, we note that the accuracy on testing set of AFS decision tree with sub-
optimal threshold δ are better than the C-decision trees at the level of 1%-6% and
better than C4.5 at the level of 1%-16%(except for the auto data set), although the
accuracy on training set is less than C-decision tree and C4.5. For Hepatitis C4.5
achieves a training error of 6.46%, the test error percentage is 43.86% which is
16% larger than that achieved by the AFS decision tree, and C-decision tree have
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Table 10.21 AFS-decision Tree, C-decision Tree and C4.5: a comparative analysis for sev-
eral machine learning data sets: (a) Pima-diabetes, (b) Ionosphere, (c) Hepatitis, (d) Auto
data

(a)

Type of tree and their Error : Training data Error : Testing data Number of nodes
structural parameters
C4.5 rev.8 16.01%(average) 27.95%(average) 43(average)

2.36%(st. deviation) 2.75%(st. deviation) 9.52(st. deviation)
C-decision tree 10.26%(average) 27.4%(average) 30
c=5 clusters, 6 iterations 1.32%(st. deviation) 3.21%(st. deviation)
C-decision tree 13.02%(average) 28.18%(average) 15
c=3 clusters, 5 iterations 1.33%(st. deviation) 3.78%(st. deviation)
AFS1 21.34%(average) 24.74%(average) 22(average)

0.52%(st. deviation) 0.82%(st. deviation) 7.33(st. deviation)
AFS2 22.51%(average) 21.59%(average) 18(average)

0.31%(st. deviation) 0.53%(st. deviation) 0.67(st. deviation)

(b)

Type of tree and their Error : Training data Error : Testing data Number of nodes
structural parameters
C4.5 rev.8 1.78%(average) 13.54%(average) 23.8(average)

1.52%(st. deviation) 4.60%(st. deviation) 7.69(st. deviation)
C-decision tree 10.79%(average) 15.49%(average) 24
c=4 clusters, 6 iterations 1.39%(st. deviation) 6.75%(st. deviation)
C-decision tree 13.14%(average) 16.62%(average) 4
c=2 clusters, 2 iterations 2.67%(st. deviation) 4.61%(st. deviation)
AFS1 7.86%(average) 15.16%(average) 27.25(average)

0.67%(st. deviation) 0.91%(st. deviation) 1.89(st. deviation)
AFS2 10.81%(average) 10.60%(average) 21(average)

0.53%(st. deviation) 0.37%(st. deviation) 2.12(st. deviation)

(c)

Type of tree and their Error : Training data Error : Testing data Number of nodes
structural parameters
C4.5 rev.8 6.46%(average) 43.86%(average) 45(average)

0.85%(st. deviation) 7.05%(st. deviation) 7.87(st. deviation)
C-decision tree 17.58%(average) 36.13%(average) 12
c=2 clusters, 6 iterations 3.34%(st. deviation) 0.08%(st. deviation)
C-decision tree 24.84%(average) 34.19%(average) 27
c=9 clusters, 3 iterations 5.21%(st. deviation) 3.68%(st. deviation)
AFS1 1.68%(average) 27.23%(average) 52.8(average)

1.15%(st. deviation) 7.43%(st. deviation) 5.30(st. deviation)
AFS2 5.90%(average) 17.03%(average) 39(average)

2.00%(st. deviation) 2.22%(st. deviation) 8.58(st. deviation)
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Table 10.21 (continued)

(d)

Type of tree and their Error : Training data Error : Testing data Number of nodes
structural parameters
C4.5 rev.8 8.58%(average) 25.9%(average) 139.8(average)

3.89%(st. deviation) 4.08%(st. deviation) 21.5(st. deviation)
C-decision tree 31.4%(average) 34.3%(average) 133
c=19 clusters, 7 iterations 1.86%(st. deviation) 4.56%(st. deviation)
C-decision tree 13.14%(average) 16.62%(average) 91
c=13 clusters, 7 iterations 2.67%(st. deviation) 4.61%(st. deviation)
AFS1 20.83%(average) 26.48%(average) 22.5(average)

0.35%(st. deviation) 1.60%(st. deviation) 4.81(st. deviation)
AFS2 23.25%(average) 22.36%(average) 17.1(average)

0.49%(st. deviation) 0.59%(st. deviation) 1.29(st. deviation)

a classification error on testing data 34.19% which is 6% larger than that achieved
by the AFS decision tree. The standard deviation of the error is closer to C-decision
tree and C4.5 for AFS decision tree. The nodes of AFS decision tree are more than
C-decision tree and C4.5 for the following reasons: the depth of AFS decision tree
is controlled by one threshold δ (we just use the same threshold in each node to
control the size of the tree). Thus, for a well fitting of training data, more ‘trivial
detailed information’ have to be considered, and a low level of the threshold should
be used in the procedure of tree building, then we get a large tree with more nodes.

10.3.7 Structure Complexity

AFS decision trees are compact structures. The AFS decision tree has six leaf nodes
shown in Figure 10.40. Figure 10.49 shows two AFS decision trees using Breast-W
dataset (with classification accuracy of 95.71% and 94.29%) in the five-fold cross
validation. The AFS decision trees may have complicated tree structure as each
AFS decision tree may have up to |V |l leaf nodes, i.e., for Breast-W dataset, the
number may be up to 29 = 512. After pruning they usually, however, have not so
many nodes as they are fully spanned. Figure 10.50 shows an AFS decision tree
using Wine Recognition dataset in one of the five-fold cross validations. Such a
tree has only 5 leaf nodes, much less than the maximum of 313 = 1,594,323. For
a rough comparison, the average number of leaf nodes of FDTs constructed using
Wine Recognition dataset is 59 [21]. This reveals that AFS decision trees, especially
after pruning, can have more compact tree structures than FDTs. However, it can be
argued that FDTs may be simplified by tree pruning as well.

In general, AFS decision trees with large threshold δ not only produce high clas-
sification accuracy, but also preserve compact tree structures, while AFS decision
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Fig. 10.49 Two AFS decision tress of Breast-W with the threshold δ = 0.63 and δ = 0.65,
respectively

Fig. 10.50 An AFS decision tree of Wine with threshold δ = 0.45

trees with smaller threshold δ can produce even better accuracy, but as a compro-
mise produce more complex tree structures.

In this section, we have introduced and studied the AFS fuzzy rule-based clas-
sifier. We presented a way of building the AFS-decision trees, and elaborated on a
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way in which the rules can be extracted from the tree and pruned. We introduced
the Fitness Index to estimate the threshold δ which is used to control the design of
the AFS decision tree. We considered the fuzzy sets (membership functions) and
the underlying logic operators generated by AFS to eliminate potential subjective
bias in the construction of tree. The experiments demonstrated that the obtained
results outperformed those produced by the C4.5 and the C-decision trees. We also
showed the effectiveness of the rule extraction scheme. Interestingly even if the tree
cannot result in an initial rule-base of good quality, the pruned rule-base can lead
to a much higher performance which is consistently better both on the training and
testing data.

Exercises

Exercise 10.1. Apply the design of fuzzy classifiers to other data and try to prune
the terms in the fuzzy description of each class.

Exercise 10.2. Study how the parameters and the number of the simple concepts on
each feature influence the prediction results.

Open problems

Problem 10.1. How to apply the new techniques of feature selection, concept cat-
egorization and characteristic description developed in chapter 9 to the design of
fuzzy classifiers in this chapter?

Problem 10.2. For each classifier presented in this chapter, the fuzzy concept ξCi ∈
EM which is the fuzzy description of class Ci determines the membership degree of
a sample belongingness to class Ci. How to apply the probability distribution of the
observed data X and the membership function of ξCi determined by (4.41) or (4.43)
in Theorem 4.6 to classify any sample in the whole space?

Problem 10.3. How to design the efficient algorithms to find the fuzzy descriptions
satisfying (10.1).

Problem 10.4. If the distribution of the data is given in advance, how to estimate
the error bounds of the fuzzy classifiers in this chapter?

Problem 10.5. How to prove the relationship between the prediction accuracy and
the confident degree Cξ (x) defined by (10.37) if the probability distribution of the
data is given in advance?
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Appendix A
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Fig. 10.51 Wine Data: Clas-
sifying accuracy with δ = 0.1
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Fig. 10.52 Wine Data: Clas-
sifying accuracy with δ =
0.15
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Fig. 10.53 Wine Data: Clas-
sifying accuracy with δ = 0.2
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Fig. 10.54 Wine Data: Clas-
sifying accuracy with δ =
0.25
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Fig. 10.55 Wine Data: Clas-
sifying accuracy with δ = 0.3
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Fig. 10.56 Wine Data: Clas-
sifying accuracy with δ =
0.35
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Fig. 10.57 Wine Data: Clas-
sifying accuracy with δ = 0.4
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Fig. 10.58 Wine Data: Clas-
sifying accuracy with δ =
0.45
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Fig. 10.59 Wine Data: Clas-
sifying accuracy with δ = 0.5
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Fig. 10.60 Wine Data:
Classifying accuracy with
δ = 0.55
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Fig. 10.61 Wine Data: Clas-
sifying accuracy with δ = 0.6
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Fig. 10.62 Wine Data:
Classifying accuracy with
δ = 0.65
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Fig. 10.63 Wine Data: Clas-
sifying accuracy with δ = 0.7
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Fig. 10.64 Wine Data:
Classifying accuracy with
δ = 0.75
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Fig. 10.65 Wine Data: Clas-
sifying accuracy with δ = 0.8
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Fig. 10.66 Wine Data: Classifying accuracy
with δ = 0.85
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Fig. 10.67 Wine Data: Classifying accuracy
with δ = 0.9
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Fig. 10.68 Iris Data: Classi-
fying accuracy with δ = 0.1
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Fig. 10.69 Iris Data: Classi-
fying accuracy with δ = 0.15
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Fig. 10.70 Iris Data: Classi-
fying accuracy with δ = 0.2
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Fig. 10.71 Iris Data: Clas-
sifying accuracy with δ =
0.25
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Fig. 10.72 Iris Data: Classi-
fying accuracy with δ = 0.3
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Fig. 10.73 Iris Data: Clas-
sifying accuracy with δ =
0.35
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Fig. 10.74 Iris Data: Classi-
fying accuracy with δ = 0.4
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Fig. 10.75 Iris Data: Clas-
sifying accuracy with δ =
0.45
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Fig. 10.76 Iris Data: Classi-
fying accuracy with δ = 0.5
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Fig. 10.77 Iris Data: Clas-
sifying accuracy with δ =
0.55
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Fig. 10.78 Iris Data: Classi-
fying accuracy with δ = 0.6
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Fig. 10.79 Iris Data: Clas-
sifying accuracy with δ =
0.65
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Fig. 10.80 Iris Data: Classi-
fying accuracy with δ = 0.7
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Fig. 10.81 Iris Data: Clas-
sifying accuracy with δ =
0.75
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Fig. 10.82 Iris Data: Classi-
fying accuracy with δ = 0.8
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Fig. 10.83 Iris Data: Classifying accuracy
with δ = 0.85

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

β

tr
a

in
in

g
 s

a
m

p
le

s
 a

c
c
u

ra
c
y

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

β

te
s
ti
n

g
 s

a
m

p
le

s
 a

c
c
u

ra
c
y

 

 

ε=0.05 ε=0.1 ε=0.15 ε=0.2

ε=0.05 ε=0.1 ε=0.15 ε=0.2

Fig. 10.84 Iris Data: Classifying accuracy
with δ = 0.9
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Fig. 10.85 Breast Data: Clas-
sifying accuracy with δ = 0.1
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Fig. 10.86 Breast Data: Clas-
sifying accuracy with δ = 0.2
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Fig. 10.87 Breast Data: Clas-
sifying accuracy with δ = 0.3
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Fig. 10.88 Breast Data: Clas-
sifying accuracy with δ = 0.4
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Fig. 10.89 Breast Data: Clas-
sifying accuracy with δ = 0.5
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Fig. 10.90 Breast Data: Clas-
sifying accuracy with δ = 0.6
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Fig. 10.91 Breast Data: Clas-
sifying accuracy with δ = 0.7
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Fig. 10.92 Breast Data: Clas-
sifying accuracy with δ = 0.8
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Fig. 10.93 Breast Data: Clas-
sifying accuracy with δ = 0.9



References 485

References

1. Ait Kbir, M., Benkirane, H., Maalmi, K., Benslimane, R.: Hierarchical fuzzy partition
for pattern classification with fuzzy if-then rules. Pattern Recognition Letters 21, 503–
509 (2000)

2. Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact accurate and
linguistically sound fuzzy classifiers based on a decision-tree initialization. Interna-
tional Journal of Approximate Reasoning 32, 1–21 (2003)

3. Antonie, M.L., Zaiane, O.R., Holte, R.C.: Learning to Use a Learned Model: A Two-
Stage Approach to Classification. In: Perner, P. (ed.) ICDM 2006. LNCS, vol. 4065.
Springer, Heidelberg (2006)

4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum,
New York (1981)

5. Bellman, R., Kalaba, R., Zadeh, L.A.: Abstraction and pattern classification. J. Math.
Anal. Appl. 2, 581–585 (1966)

6. Bajcsy, R., Kovacic, S.: Multi-resolution elastic matching. Computer Vision Graphics
Image Processing 46, 1–21 (1989)

7. Chiang, I.J., Hsu, J.Y.J.: Integration of fuzzy classifiers with decision trees. In: Proc.
Asian Fuzzy Syst. Symp., pp. 266–271 (1996)

8. Chang, R.L.P., Pavlidis, T.: Fuzzy decision tree algorithms. IEEE Trans. Syst., Man,
Cybern. 7, 28–35 (1977)

9. Carse, B., Fogarty, T.C., Munro, A.: Evolving fuzzy rule based controllers using genetic
algorithms. Fuzzy Sets System 80, 273–293 (1996)

10. Ciesielski, K.: Set Theory for the Working Mathematician. Cambridge University Press,
Cambridge (1997)

11. Cohen, W.: Fast effective rule induction. In: Proc. of ICML, pp. 115–123 (1995)
12. Chang, X.G., Lilly, J.H.: Evolutionary design of a fuzzy classifier from data. IEEE

Transactions on Systems, Man, and Cybernatics-part B: Cybernetics 34(4), 1894–1906
(2004)

13. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J. General Sys-
tems 17(2-3), 191–209 (1990)

14. Dubois, D., Prade, H.: Putting fuzzy sets and rough sets together. In: Slowinski, R. (ed.)
Intelligent Decision Support, pp. 203–232. Kluwer Academic, Dordrecht (1992)

15. Fernandez Salido, J.M., Murakami, S.: Rough set analysis of a general type of fuzzy
data using transitive aggregations of fuzzy similarity relations. Fuzzy Sets and Sys-
tems 139, 635–660 (2003)

16. Furnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Proc. of ICML, pp.
70–77 (1994)

17. Feng, X.H.: Extraction of Fuzzy Rules from Fuzzy Decision Trees: An Axiomatic
Fuzzy Sets, Master Degree Thesis, Dalian Maritime university (2007)

18. Graver, J.E., Watkins, M.E.: Combinatorics with Emphasis on the Theory of Graphs.
Springer, New York (1977)

19. Grenander, U.: General Pattern Theory. Oxford University Press, Oxford (1993)
20. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Transactions on

Neural Networks 13, 780–784 (2002)
21. Huang, Z.H., Gedeon, T.D., Nikravesh, M.: Pattern Trees Induction: A New Machine

Learning Method. Springer, New York (1974)
22. Hu, B.Q., Wang, S.: A novel approach to fuzzy programming part I: New arithmetic

and order relations for interval numbers. Journal of Industrial and Management Opti-
mization 2, 351–372 (2006)



486 10 AFS Fuzzy Classifiers

23. Hu, B.Q., Wang, S.: A novel approach to fuzzy programming part II: A class of con-
strained nonlinear programming problems with interval objective functions. Journal of
Industrial and Management Optimization 2, 373–386 (2006)

24. Hayashi, I.: Acquisition of fuzzy rules using fuzzy ID3 with ability of learning. In: Proc.
ANZIIS 1996, pp. 187–190 (1996)

25. Hayashi, I., Maeda, T., Bastian, A., Jain, L.C.: Generation of fuzzy decision trees by
fuzzy ID3 with adjusting mechanism of and/or operators. In: Proc. Int. Conf. Fuzzy
Syst., pp. 681–685 (1998)

26. Halgamuge, S.K., Poechmueller, W., Glesner, M.: An alternative approach for genera-
tion of membership functions and fuzzy rules based on radial and cubic basis function
networks. Int. J. Approx. Reas. 12, 279–298 (1995)

27. Halmos, P.R.: Measure theory. Springer, New York (1974)
28. Hartley, R.V.: Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)
29. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for

classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270
(1995)

30. Ichihashi, H., Shirai, T., Nagasaka, K., Miyoshi, T.: Neuro fuzzy ID3: A method of
inducing fuzzy decision trees with linear programming for maximizing entropy and
algebraic methods. Fuzzy Sets System 81(1), 157–167 (1996)

31. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier
systems for multidimensional pattern classification problems. IEEE Transactions on
Systems, Man, and Cybernatics-part B: Cybernetics 29(5), 601–618 (1999)

32. Jain, A.K., Duin, R.P.W., Mao, J.C.: Statistical pattern recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

33. Janikow, C.Z.: Fuzzy decision trees: Issues and Methods. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part B: Cybernetics 28(1), 1–14 (1998)

34. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks. Computer, 628–633
(1996)

35. Keller, J.M., Gray, M., Givens, J.: A fuzzy k-nearest neighbor algorithm. IEEE
Trans.Syst., Man, Cybern. 15, 580–585 (1985)

36. Kim, K.H.: Boolean matrix Theory and Applications. Marcel Dekker, New York (1982)
37. Kosko, B.: Fuzzy Engineering. Prentice Hall, New Jersey (1998)
38. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1989)
39. Kohonen, I.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30,

Berlin (1995)
40. Kosko, B.: Fuzzy entropy and conditioning. Inform. Sci. 40, 165–174 (1986)
41. Liu, X.D.: The fuzzy theory based on AFS algebras and AFS structure. Journal of Math-

ematical Analysis and Applications 217, 459–478 (1998)
42. Liu, X.D.: The topology on AFS algebra and AFS structure. Journal of Mathematical

Analysis and Applications 217, 479–489 (1998)
43. Liu, X.D.: The structure of fuzzy matrices. Journal of Fuzzy Mathematics 2, 311–325

(1994)
44. Liu, X.D.: The fuzzy sets and systems based on AFS structure, EI algebra and EII

algebra. Fuzzy Sets and Systems 95, 179–188 (1998)
45. Liu, X.D.: A new fuzzy model of pattern recognition and hitch diagnoses of complex

systems. Fuzzy Sets and Systems 104, 289–297 (1999)
46. Liu, X.D., Zhang, Q.L.: AFS Fuzzy logic and its applications to fuzzy information

processing. Dongbei Daxue Xuebao 23, 321–323 (2002) (in Chinese)
47. Liu, X.D., Pedrycz, W., Zhang, Q.L.: Axiomatics fuzzy sets logic. In: IEEE Interna-

tional Conference on Fuzzy Systems, vol. 1, pp. 55–60 (2003)



References 487

48. Liu, X.D., Zhang, Q.L.: The EI algebra representations of fuzzy concept. Fuzzy Sys-
tems and Mathematics 16, 27–35 (2002)

49. Liu, X.D., Zhu, K.J., Huang, H.Z.: The representations of fuzzy concepts based on
the fuzzy matrix theory and the AFS theory. In: IEEE International Symposium on
Intelligent Control, Texas, USA, October 5–8 (2003)

50. Liu, X.D., Liu, W.Q.: The Framework of Axiomatics Fuzzy Sets Based Fuzzy Classi-
fiers. Journal of Industrial and Mangenment Optimization 4(3), 581–609 (2008)

51. Liu, X.D., Wang, W., Chai, T.Y.: The Fuzzy Clustering Analysis Based on AFS Theory.
IEEE Transactions on Systems, Man and Cybernetics Part B 35(5), 1013–1027 (2005)

52. Liu, X.D., Liu, W.Q.: Credit Rating Analysis with AFS Fuzzy Logic. In: Proceedings
o f the Second International Conference on Fuzzy Systems and Knowledge Discovery,
Changsha, China, August 27-29, 2005, pp. 1198–1204 (2005)

53. Liu, X.D., Chai, T.Y., Wang, W.: Approaches to the Representations and Logic Op-
erations for Fuzzy Concepts in the Framework of Axiomatic Fuzzy Set Theory I, II.
Information Sciences 177, 1007–1026, 1027–1045 (2007)

54. Liu, X.D., Pedrycz, W.: The Development of Fuzzy Decision Trees in the Framework
of Axiomatic Fuzzy Set Logic. Applied Soft Computing 7, 325–342 (2007)

55. Liu, X.D.: The Development of AFS Theory Under Probability Theory. International
Journal of Information and Systems Sciences 3(2), 326–348 (2007)

56. Liu, X.D., Liu, W.Q., Yang, B., Yan, H.: A New Framework of Axiomatic Fuzzy Set
Classifiers via Entropy Analysis. Pattern Recognition (submitted)

57. Liu, X.D., Feng, X.H., Pedrycz, W.: Extraction of Fuzzy Rules from Fuzzy Decision
Trees: An Axiomatic Fuzzy Sets. Knowledge and Data Engineering (submitted)

58. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proc.
of SIGKDD, pp. 80–86 (1998)

59. Li, W.M., Han, J.W., Pei, J.: Accurate and Efficient Classification Based on Multiple
Class-Association Rules. In: Proc. of ICDM, pp. 369–376 (2001)

60. Lee, H.M., Chen, C.M., Chen, J.M., Jou, Y.L.: An Efficient Fuzzy Classifier with fea-
ture Selection Based on Fuzzy Entropy. IEEE Transactions on Systems, Man, And
Cybernetics-Part B: Cybernetics 31(3), 25–40 (2001)

61. Mizumoto, M.: Fuzzy controls under various fuzzy reasoning methods. Information
Sciences 45, 129–151 (1988)

62. Maher, P.E., Clair, D.S.: Uncertain reasoning in an ID3 machine learning framework.
In: Proc. IEEE ICFS 1993, pp. 7–12 (1993)

63. Michalski, R.S.: Understanding the nature of learning. In: Michalski, R., Carbonell, J.,
Mitchell, T. (eds.) Machine Learning: An Artificial Intelligence Approach, vol. 2, pp.
3–26. Morgan Kaufmann, San Mateo (1986)

64. Mitra, S., Konwar, K.M., Sankar, K.P.: Fuzzy decision tree, linguistic rules and fuzzy
knowledge-based network: generation and evaluation. IEEE Transactions an Systems,
Man, and Cybernetics–Part C: Applic. and Reviews 32(4), 328–339 (2002)

65. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
66. Mitra, S., Pal, S.K.: Self-organizing neural network as a fuzzy classifier. IEEE Trans.

Syst., Man, Cybern. 24, 385–399 (1994)
67. Merz, C.J., Murphy, P.M.: UCI Repository for Machine Learning Data-Bases. Dept. of

Information and Computer Science, University of California, Irvine, CA (1996),
http://www.ics.uci.edu/˜mlearn/MLRepository.html

68. Nozaki, K., Ishibuchi, H., Tanaka, H.: Adaptive fuzzy rule-based classification systems.
IEEE Trans. Fuzzy Syst. 4, 238–250 (1996)

69. Pedrycz, W., Sosnowski, Z.A.: The design of decision trees in the framework of granu-
lar data and their application to software quality models. Fuzzy Sets and Systems 123,
271–290 (2001)

http://www.ics.uci.edu/~mlearn/MLRepository.html


488 10 AFS Fuzzy Classifiers

70. Pedrycz, W., Vukovich, G.: Logic-oriented fuzzy clustering. Pattern Recognition Let-
ters 23, 1515–1527 (2002)

71. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, and classification. IEEE Trans.
Neural Networks 3, 683–697 (1992)

72. Pedrycz, W., Sosnowski, Z.A.: Designing decision trees with the use of fuzzy granula-
tion. IEEE Trans. Syst., Man, Cybern. part A 30, 151–159 (2000)

73. Perlovsky, L.I.: Conundrum of combinatorial complexity. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20, 666–670 (1998)

74. Pao, Y.H.: Adaptive Patter-Recognition and Neural Network. Addison-Wesley, Reading
(1989)

75. Pedrycz, W., Sosnowski, Z.A.: C-fuzzy decision trees. IEEE Transactions on Systems,
Man, cybernetics, Part C: Applications and Reviews 35(4), 498–511 (2005)

76. Pawlak, Z.: Rough set. International Journal of Computer and Information Sciences 11,
341–356 (1982)

77. Pedrycz, W.: Fuzzy neural networks with reference neurons as pattern classifiers. IEEE
Trans. Neural Networks 3, 770–775 (1992)

78. Pal, S.K., Chakraborty, B.: Fuzzy set theoretic measure for automatic feature evaluation.
IEEE Trans. Syst., Man, Cybern. 16, 754–760 (1986)

79. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

80. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo
(1993)

81. Quinlan, J.R.: Induction on decision trees. Mach. Learn. 1, 81–106 (1986)
82. Quinlan, J.R.: Decision trees as probabilistic classifiers. In: Proc. 4th Int. Workshop

Machine Learning, pp. 31–37 (1987)
83. Quinlan, J.R.: Unknown attribute-values in induction. In: Proc. 6th Int. Workshop Ma-

chine Learning, pp. 164–168 (1989)
84. Radzikowska, A., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and

Systems 126, 137–155 (2004)
85. Ruspini, E.H.: A new approach to clustering. Information and Control 15, 22–32 (1969)
86. Roubos, J.A., Setnes, M., Abonyi, J.: Learning fuzzy classification rules from labeled

data. Information Sciences 150, 77–93 (2003)
87. Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers through

iterative complexity reduction. IEEE Transations on Fuzzy Systems 9, 516–524 (2001)
88. Roberts, S.J., Everson, R., Rezek, I.: Maximum certainty data partitioning. Pattern

Recognition 33, 833–839 (2000)
89. Ren, Y., Song, M.L., Liu, X.D.: New approaches to the fuzzy clustering via AFS theory.

International Journal of Information and Systems Sciences 3(2), 307–325 (2007)
90. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets

and Systems 126, 137–155 (2002)
91. Renyi, A.: On the measure of entropy and information. In: Proc. Fourth Berkeley Symp.

Math. Statistics Probability, vol. 1, pp. 541–561 (1961)
92. Schaffer, C.: Overfitting avoidance as bias. Mach. Learn. 10, 153–178 (1993)
93. Sestino, S., Dillon, T.: Using single-layered neural networks for the extraction of con-

junctive rules and hierarchical classifications. J. Appl. Intell. 1, 157–173 (1991)
94. Schapire, R.E.: Theoretical views of boosting. In: Proc. of European Conference on

Computational Learning Theory (EuroCOLT), pp. 1–10 (1999)
95. Setnes, M., Roubos, H.: GA-fuzzy modeling and classification: Complexity and Perfor-

mance. IEEE Transactions on Fuzzy Systems 8(5), 509–522 (2000)



References 489

96. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–
423 (1948)

97. Tsang, E.C.C., Wang, X.Z., Yeung, D.S.: Improving learning accuracy of fuzzy decision
trees by hybrid neural networks. IEEE Trans. Fuzzy Syst. 8, 601–614 (2000)

98. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling
and control. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernet-
ics 15, 116–132 (1985)

99. Uebele, V., Abe, S., Lan, M.S.: A neural-network-based fuzzy classifier. IEEE Trans.
Syst., Man, Cybern. 25, 353–361 (1995)

100. Wang, G.J.: Theory of topological molecular lattices. Fuzzy Sets and Systems 47, 351–
376 (1992)

101. Wang, X., Chen, B., Qian, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy
Sets System 112, 117–125 (2000)

102. Wang, X.Z., Yeung, D.S., Tsang, E.C.C.: A comparative study on heuristic algo-
rithms for generating fuzzy decision trees. IEEE Transactions an Systems, Man, and
Cybernetics–Part B: Cybernetics 31(2), 215–226 (2001)

103. Wang, L.D., Yen, J.: Extracting fuzzy rules for system modeling using a hybride of
genetic algorithms and Kalman filter. Fuzzy Sets and Systems 101, 353–362 (1999)

104. Wiener, N.: Cybernetics. Wiley, New York (1961)
105. Xizhao, W., Hong, J.: On the handling of fuzziness for continuous valued attributes in

decision tree generation. Fuzzy Sets System 99, 283–290 (1998)
106. Yang, B.: A New Framework of Axiomatic Fuzzy Set Classifiers via Entropy Analysis,

Master Degree Thesis, Dalian Maritime university (2008)
107. Yao, Y.Y.: Semantics of fuzzy sets in rough set theory. In: Peters, J.F., Skowron, A.,

Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on
Rough Sets II. LNCS, vol. 3135, pp. 297–318. Springer, Heidelberg (2004)

108. Yang, M.S.: A survey of fuzzy clustering. Math. Comput. Modelling 18, 1–16 (1993)
109. Yang, M.S., Ko, C.H.: On cluster-wise fuzzy regression analysis. IEEE Transactions

Systems Man Cyberenet, Part B 27, 1–13 (1997)
110. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69, 125–139

(1995)
111. Yeung, D.S., Wang, X.Z., Tsang, E.C.C.: Learning weighted fuzzy rules from examples

with mixed attributes by fuzzy decision trees. In: Proc. IEEE Int. Conf. on Systems,
Man, and Cybernetics, Tokyo, Japan, October 12-15, 1999, pp. 349–354 (1999)

112. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In: Proc.
of SDM (2003)

113. Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30, 407–428 (1975)
114. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, Michie, Mikulich (eds.)

Machine Intelligence, vol. 9, pp. 149–194. Wiley, Chichester (1979)
115. Zadeh, L.A.: The role of fuzzy logic in the management of uncertainty in expert sys-

tems. Fuzzy Sets Syst. 11, 199–227 (1983)
116. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
117. Zadeh, L.A.: Fuzzy logic=computing with word. IEEE Transactions on Fuzzy Sys-

tems 4, 103–111 (1996)
118. Zhang, Y.J., Liang, D.Q., Tong, S.C.: On AFS Algebra Part I, II. Information Sci-

ences 167, 263–286, 287-303 (2004)



Bibliography

Mathematical Fundamentals

1. Lesniewski, S.: Foundations of the general theory of sets. Polish Scientific Circle,
Moscow (1916)

2. Hartley, R.V.: Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)
3. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech.

J. 27, 379–423 (1948)
4. Kelley, J.L.: General Topology. Springer, New York (1955)
5. Renyi, A.: On the measure of entropy and information. In: Proc. Fourth Berke-

ley Symp. Math. Statistics Probability, Berkeley, CA, vol. 1, pp. 541–561 (1961)
6. Baum, J.D.: Elements of Point Set Topology. Prentice-Hall, Englewood Cliffs

(1964)
7. Bellman, R., Kalaba, R., Zadeh, L.A.: Abstraction and pattern classification.

J. Math. Anal. Appl. 2, 581–585 (1966)
8. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematics Society, Provi-

dence (1967)
9. John, L.K.: General Topology. Springer, New York (1955)

10. John, D.B.: Elements of Point Set Topology. Prentice-Hall, Inc., Englewood
Cliffs (1964)

11. Halmos, P.R.: Measure Theory. Springer, New York (1974)
12. Huang, Z.H., Gedeon, T.D., Nikravesh, M.: Pattern Trees Induction: A New

Machine Learning Method. Springer, New York (1974)
13. Halmos, P.R.: Measure theory. Springer, New York (1974)
14. Graver, J.E., Watkins, M.E.: Combinatorics with Emphasis on the Theory of

Graphs. Springer, New York (1977)
15. Ciesielski, K.: Set Theory for the Working Mathematician. Cambridge Univer-

sity Press, Cambridge (1997)
16. Pu, B.M., Liu, Y.M.: Fuzzy Topology I, Neighborhood structure of Fuzzy Point

and Moore-Smith Convergence. Journal of Mathematical Analysis and Appli-
cations 76, 571–599 (1980)

17. Kim, K.H.: Boolean Matrix Theory and Applications. Marcel Dekker, New
York (1982)



492 Bibliography

18. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps.
Biological Cybernetics 43(1), 59–69 (1982)

19. Seber, G.A.F.: Multivariate Observations. Wiley, New York (1984)
20. Jacobson, N.: Basic Algebra I. W H Freeman and Company, New York (1985)
21. Quinlan, J.R.: Induction on decision trees. Mach. Learn. 1, 81–106 (1986)
22. Michalski, R.S.: Understanding the nature of learning. In: Michalski, R., Car-

bonell, J., Mitchell, T. (eds.) Machine Learning: An Artificial Intelligence Ap-
proach, vol. 2, pp. 3–26. Morgan Kaufmann, San Francisco (1986)

23. Lindley, D.V.: The Probability Approach to the Treatment of Uncertainty in
Artifical Intelligence and Expert Systems. Statistical Science 2, 17–24 (1987)

24. Bajcsy, R., Kovacic, S.: Multi-resolution elastic matching. Computer Vision
Graphics Image Processing 46, 1–21 (1989)

25. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin
(1989)

26. Pao, Y.H.: Adaptive Patter-Recognition and Neural Network. Addison-Wesley,
Reading (1989)

27. Martinetz, T.E., Schulten, K.J.: Neural-Gas network for vector quantization
and its application to time-series prediction. IEEE Trans. Neural Networks 4(4),
558–569 (1993)

28. Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine
Learning. Artificial Intelligence 97(1-2), 245–271 (1997)

29. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proc. of SIGKDD, pp. 80–86 (1998)

30. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pat-
tern Anal. Mach. Intell. 11(7), 773–781 (1989)

31. Booker, J.M., Mayer, M.A.: Common problem in the elicitation and analysis of
expert opinion affecting probabilistic safety assessments. In: CSNI Workshop
on PSA Application and Limitation, Santa Fe, NM, September 4-6, pp. 353–368
(1990)

32. Quinlan, J.R.: Decision trees and decision making. IEEE Transactions on Sys-
tems, Man and Cybernetics Part C 20, 339–346 (1990)

33. Gowda, K.C., Diday, E.: Symbolic clustering using a new dissimilarity measure.
Pattern Recogn. 24(6), 567–578 (1991)

34. Sestino, S., Dillon, T.: Using single-layered neural networks for the extraction
of conjunctive rules and hierarchical classifications. J. Appl. Intell. 1, 157–173
(1991)

35. Wang, G.J.: Theory of Topological Molecular Lattices. Fuzzy Sets and Sys-
tems 47, 351–376 (1992)

36. Pal, N., Bezdek, J., Tsao, E.: Generalized clustering networks and Kohonen’s
self-organizing scheme. IEEE Trans. Neural Netw. 4(4), 549–557 (1993)

37. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo (1993)

38. Schaffer, C.: Overfitting avoidance as bias. Mach. Learn. 10, 153–178 (1993)
39. Kohonen, I.: Self-Organizing Maps, Berlin. Springer Series in Information Sci-

ences, vol. 30, Berlin (1995)
40. Uebele, V., Abe, S., Lan, M.S.: A neural-network-based fuzzy classifier. IEEE

Trans. Syst., Man, Cybern. 25, 353–361 (1995)



Bibliography 493

41. Simonoff, J.S.: Smoothing Methods in Statistics. Springer, New York (1996)
42. Koller, D., Sahami, M.: Toward Optimal Feature Selection. In: Proc. 13th Int’l

Conf. Machine Learning, pp. 284–292 (1996)
43. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks. Computer,

628–633 (1996)
44. Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine

Learning. Artificial Intelligence 97(1-2), 245–271 (1997)
45. Jain, A., Zongker, D.: Feature Selection: Evaluation, Application, and Small

Sample Performance. IEEE Trans. Pattern Analysis and Machine Intelli-
gence 19(2), 153–157 (1997)

46. Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelli-
gence 97(1-2), 273–324 (1997)

47. Eltoft, T., de Figueiredo, R.: A new neural network for cluster-detection-and-
labeling. IEEE Trans. Neural Netw. 9(5), 1021–1035 (1998)

48. Kosko, B.: Fuzzy Engineering. Prentice Hall, New Jersey (1998)
49. Perlovsky, L.I.: Conundrum of combinatorial complexity. IEEE Transactions

on Pattern Analysis and Machine Intelligence 20, 666–670 (1998)
50. Gabrys, B., Bargiela, A.: General fuzzy min-max neural network for clustering

and classification. IEEE Trans. Neural Netw. 11(3), 769–783 (2000)
51. Kirby, M.: Data Analysis: An empirical approach to dimensionality reduction

and the study of Pattern. Wiley, New York (2000)
52. Mollineda, R., Vidal, E.: A relative approach to hierarchical clustering. In: Tor-

res, M., Sanfeliu, A. (eds.) Pattern Recognition and Applications. Frontiers in
Artificial Intelligence and Applications, vol. 56, pp. 19–28. IOS Press, Amster-
dam (2000)

53. Roberts, S.J., Everson, R., Rezek, I.: Maximum certainty data partitioning.
Pattern Recognition 33, 833–839 (2000)

54. Jain, A.K., Duin, R.P.W., Mao, J.C.: Statistical pattern recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

55. Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V.: Support vector clustering.
J. Mach. Learn. Res. 2, 125–137 (2001)

56. Hathaway, R., Bezdek, J.: Fuzzy c-means clustering of incomplete data. IEEE
Trans. Syst., Man, Cybern. 31(5), 735–744 (2001)

57. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems 14, 849–856
(2001)

58. Girolami, M.: Mercer kernel based clustering in feature space. IEEE Trans.
Neural Netw. 13(3), 780–784 (2002)

59. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern
Recognition 35, 2267–2278 (2002)

60. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Transac-
tions on Neural Networks 13, 780–784 (2002)

61. George, C., Roger, L.B.: Statistical Inference. Wadsworth Group (2002)
62. Mitchell, T.M.: Machine Learning. China Machine Press (2003)
63. Singpurwalla, N.D., Booker, J.M.: Membership Functions and Probability Mea-

sures of Fuzzy Sets. Journal of the American Statistical Association 99(467),
867–877 (2004)



494 Bibliography

64. Fortuna, J., Capson, D.: Improved support vector classification using PCA and
ICA feature space modification. Pattern Recognition 37, 1117–1129 (2004)

65. Law, M., Figueiredo, M., Jain, A.K.: Simultaneous Feature Selection and Clus-
tering Using Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 26(9),
124–138 (2004)

66. Wu, S.T., Chow, T.W.S.: Clustering of the Self-organizing Map Using a Clus-
tering Validity Index Based on Inter-cluster and Intra-cluster Density. Pattern
Recognition 37, 175–188 (2004)

67. Camastra, F., Verri, A.: A novel kernel method for clustering. IEEE Trans.
Pattern Anal. Mach. Intell. 27(5), 801–805 (2005)

68. Grzegorzewski, P.: The coefficient of concordance for vague data. Computa-
tional Statistics and Data Analysis 51, 314–322 (2006)

69. Chen, Y.L., Hu, H.L.: An overlapping cluster algorithm to provide non-
exhaustive clustering. European Journal of Operational Research 173, 762–780
(2006)

70. Cord, A., Ambroise, C., Cocquerez, J.: Feature selection in robust clustering
based on Laplace mixture. Pattern Recognition Letters 27, 627–635 (2006)

71. Jenssen, R., Erdogmus, D.: Information cut for clustering using a gradient
descent approach. Pattern Recognition 40, 796–806 (2007)

72. Yang, X., Song, Q., Wu, Y.: A robust deterministic annealing algorithm for
data clustering. Data & Knowledge Engineering 62, 84–100 (2007)

73. Li, Y., Dong, M., Hua, J.: Localized feature selection for clustering. Pattern
Recognition Letters 29, 10–18 (2008)

AFS Theory

1. Liu, X.D.: The Structure of Fuzzy Matrices. International Journal of Fuzzy
Mathematics 2, 311–325 (1994)

2. Liu, X.D.: The Solution of Fuzzy Equations. International Journal of Fuzzy
Mathematics 2, 326–333 (1994)

3. Liu, X.D.: A New Mathematical Axiomatic System of Fuzzy Sets and Systems.
International Journal of Fuzzy Mathematics 3, 559–560 (1995)

4. Liu, X.D.: Two Algebra Structures of AFS structure. International Journal of
Fuzzy Mathematics 3, 561–562 (1995)

5. Liu, X.D.: The Fuzzy Theory Based on AFS Algebras and AFS Structure.
Journal of Mathematical Analysis and Applications 217, 459–478 (1998)

6. Liu, X.D.: The Topology on AFS Algebra and AFS Structure. Journal of Math-
ematical Analysis and Applications 217, 479–489 (1998)

7. Liu, X.D.: The Fuzzy Sets and Systems Based on AFS Structure, EI Algebra
and EII algebra. Fuzzy Sets and Systems 95, 179–188 (1998)

8. Liu, X.D.: A new fuzzy model of pattern recognition and hitch diagnoses of
complex systems. Fuzzy Sets and Systems 104, 289–297 (1999)

9. Liu, X.D., Zhang, Q.L.: The EI algebra Representations of Fuzzy Concept.
Fuzzy Systems and Mathematics 16(2), 27–35 (2002) (in Chinese)

10. Liu, X.D., Zhang, Q.L., Wang, Y.: AFS Fuzzy Logic System and Its Appli-
cations to Fuzzy Information Processing. J. of Northeastern University 23(4),
321–324 (2002) (in Chinese)

11. Liu, X.D., Pedrycz, W., Zhang, Q.L.: Axiomatics Fuzzy sets logic. In: The
Proceedings of IEEE International Conference on Fuzzy Systems, vol. 1, pp.
55–60 (2003)



Bibliography 495

12. Liu, X.D., Zhu, K.J., Huang, H.Z.: The Representations of Fuzzy Concepts
Based on the Fuzzy Matrix Theory and the AFS Theory. In: IEEE International
Symposium on Intelligent Control, Houston, Texas, USA, October 5-8, 2003,
pp. 1006–1011 (2003)

13. Zhang, Y.J., Liang, D.Q., Tong, S.C.: On AFS Algebra Part I. Information
Sciences 167, 263–286 (2004)

14. Zhang, Y.J., Liang, D.Q., Tong, S.C.: On AFS Algebra Part II. Information
Sciences 167, 287–303 (2004)

15. Wang, X., Liu, X.D.: The Base of finite EI Algebra. In: 3rd IEEE International
Conference on Machine Learning and Cybernetics, Shanghai, China, pp. 2005–
2009 (2004)

16. Ding, R., Liu, X.D., Chen, Y.: The fuzzy clustering algorithm based on AFS
topology. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006.
LNCS, vol. 4223, pp. 89–98. Springer, Heidelberg (2006)

17. Zhang, L.S., Liu, X.D.: Concept lattice and AFS algebra. In: Wang, L., Jiao,
L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS, vol. 4223, pp. 290–299.
Springer, Heidelberg (2006)

18. Zhang, L.S., Su, Y., Liu, X.D.: AFS Structures and Concept Lattices. In: Sixth
World Congress on Intelligent Control and Automation, Dalian, China, June
21-23, vol. I3, pp. 2541–2545 (2006)

19. Zhang, L.S., Liu, X.D.: Concept Lattice and its Topological Structure. In: Sixth
World Congress on Intelligent Control and Automation, Dalian, China, June
21-23, vol. 4, pp. 2633–2636 (2006)

20. Liu, X.D., Chai, T.Y., Wang, W., Liu, W.Q.: Approaches to the Representa-
tions and Logic Operations for Fuzzy Concepts in the Framework of Axiomatic
Fuzzy Set Theory I. Information Sciences 177, 1007–1026 (2007)

21. Liu, X.D., Wang, W., Chai, T.Y., Liu, W.Q.: Approaches to the Representa-
tions and Logic Operations for Fuzzy Concepts in the Framework of Axiomatic
Fuzzy Set Theory II. Information Sciences 177, 1027–1045 (2007)

22. Liu, X.D.: The Development of AFS Theory Under Probability Theory. Inter-
national Journal of Information and Systems Sciences 3(2), 326–348 (2007)

23. Liu, X.D., Zhang, L.S., Zhou, J., Zhou, K.J., Zhang, Q.L.: The Structures
of EI Algebras Generated by Information Attributes. International Journal of
Intelligent Systems Technologies and Applications 3(3/4), 341–355 (2007)

24. Wang, L.D., Liu, X.D.: Concept Analysis via Rough Set and AFS Algebra.
Information Sciences 178, 4125–4137 (2008)

Application of AFS Theory

1. Liu, X.D.: A New Fuzzy Model of Pattern Recognition and Hitch Diagnoses of
Complex Systems. Fuzzy Sets and Systems 104, 289–297 (1999)

2. Liu, X.D., Zhang, Q.L.: The Fuzzy Cognitive Maps Based on AFS Fuzzy Logic.
Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathemat-
ical Analysis 11(5-6), 787–796 (2004)

3. Liu, X.D., Wang, Y.B., Liu, W.: The Decomposition Algorithm of AFS Struc-
ture and Its Applications to Failure Diagnosis. In: Proc. IEEE Conference on
Robotics, Automation and Mechitronics, Singapore, December, 1-3, 2004, pp.
729–733 (2004)



496 Bibliography

4. Liu, X.D., Zhou, X.Y., Wang, X.: The Fuzzy Inference Rule Extraction and At-
tribute Reduction Based on AFS Theory and Closeness degrees. In: IEEE Inter-
national Conference on Machine Learning and Cybernetics, Shanghai, China,
pp. 2005–2009 (2004)

5. Liu, X.D., Wang, W., Chai, T.Y.: The Fuzzy Clustering Analysis Based on AFS
Theory. IEEE Transactions on Systems, Man and Cybernetics Part B 35(5),
1013–1027 (2005)

6. Liu, X.D., Liu, W.Q.: Credit rating analysis with AFS fuzzy logic. In: Wang,
L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1198–1204.
Springer, Heidelberg (2005)

7. Liu, X.D.: AFS Theory and Its Applications. IEEE Systems, Man and Cyber-
netics, Society eNewsletter 13 (December 2005),
http://www.ieeesmc.org/Newsletter/Dec2005/R8xdliu.php

8. Liu, X.D., Zhang, Q.L., Tong, S.C.: Fuzzy Identification of Systems Based on
AFS Fuzzy Logic. Dynamics of Continuous, Discrete And Impulsive Systems,
Series B 12b, 90–102 (2005)

9. Liu, X.D., Chai, T.Y., Wang, W.: AFS Fuzzy Logic Systems and Its Applica-
tions to Model and Control. International Journal of Information and Systems
Sciences 2(3), 285–305 (2006)

10. Ding, R., Liu, X.D., Chen, Y.: The fuzzy clustering algorithm based on AFS
topology. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006.
LNCS, vol. 4223, pp. 89–98. Springer, Heidelberg (2006)

11. Zhang, L., Liu, X.: Concept lattice and AFS algebra. In: Wang, L., Jiao, L., Shi,
G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS, vol. 4223, pp. 290–299. Springer,
Heidelberg (2006)

12. Wang, X.C., Ren, Y., Liu, X.D.: Fuzzy Clustering Approaches Based On AFS
Fuzzy Logic II. In: Sixth World Congress on Intelligent Control and Automa-
tion, Dalian, China, June 21-23, vol. 5, pp. 4199–4203 (2006)

13. Ren, Y., Wang, X.C., Liu, X.D.: Fuzzy Clustering Approaches Based On AFS
Fuzzy Logic I. In: Sixth World Congress on Intelligent Control and Automation,
Dalian, China, June 21-23, vol. 5, pp. 4244–4248 (2006)

14. Ren, Y.: Feature Selection, Concept Categorization and Characteristic Descrip-
tion Based on AFS Theory, Master Degree Thesis, Dalian Maritime university
(2006)

15. Wang, X.C.: The Fuzzy Clustering via Axiomatic Fuzzy Set Theory, Master
Degree Thesis, Dalian Maritime university (2006)

16. Liu, X.D., Chai, T.Y., Wang, W.: Approaches to the Representations and Logic
Operations for Fuzzy Concepts in the Framework of Axiomatic Fuzzy Set The-
ory II. Information Sciences 177, 1027–1045 (2007)

17. Liu, X.D.: The Development of AFS Theory Under Probability Theory. Inter-
national Journal of Information and Systems Sciences 3(2), 326–348 (2007)

18. Liu, X.D., Pedrycz, W.: The Development of Fuzzy Decision Trees in the Frame-
work of Axiomatic Fuzzy Set Logic. Applied Soft Computing 7, 325–342 (2007)

19. Ren, Y., Song, M.L., Liu, X.D.: New Approaches to the Fuzzy Clustering via
AFS Theory. International Journal of Information and Systems Sciences 3(2),
307–325 (2007)

20. Feng, X.H., Xu, X.L., Liu, X.D.: Fuzzy Rule Extraction From Fuzzy Decision
Tree. Advances in Information and Systems Sciences 2, 168–178 (2007)

21. Feng, X.H.: Extraction of Fuzzy Rules from Fuzzy Decision Trees: An Axiomatic
Fuzzy Sets, Master Degree Thesis, Dalian Maritime university (2007)

http://www.ieeesmc.org/Newsletter/Dec2005/R8xdliu.php


Bibliography 497

22. Wang, L.D., Liu, X.D.: Concept analysis via rough set and AFS algebra. Infor-
mation Sciences 178, 4125–4137 (2008)

23. Liu,X.D.,Liu,W.Q.:TheFrameworkofAxiomaticsFuzzySetsBasedFuzzyClas-
sifiers. Journal of Industrial and Mangenment Optimization 4(3), 581–609 (2008)

24. Yang, B.: A New Framework of Axiomatic Fuzzy Set Classifiers via Entropy
Analysis, Master Degree Thesis, Dalian Maritime university (2008)

25. Liu, X.D., Zhang, Y.L., Ren, Y.: Dynamic System Description and Control
Based on Data. International Journal of Information and Systems Sciences 4(3),
335–347 (2008)

26. Liu, X.D., Pedrycz, W., Chai, T.Y., Song, M.L.: The Development of Fuzzy
Rough Sets with the Use of Structures and Algebras of Axiomatic Fuzzy Sets.
IEEE Transactions on Knowledge and Data Engineering 21(3), 443–462 (2009)

27. Xu, X.L., Liu, X.D., Cheng, Y.: Applications of Axiomatic Fuzzy Set Clustering
Method on Management Strategic. European Journal of Operational Research
(accepted) (2008) doi: 10.1016 / j.ejor. 2008.08. 010

Fuzzy Sets: Fundamentals and Application

1. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
2. Zadeh, L.A.: Probability Measures of Fuzzy Events. Journal of Mathematical

Analysis and Applications 23, 421–427 (1968)
3. Ruspini, E.H.: A new approach to clustering. Information and Control 15, 22–32

(1969)
4. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. 3, 177–200

(1971)
5. Bezdek, J.C.: Fuzzy mathematics in pattern classification, Ph.D. Dissertation,

Appl. Math. Cornell Univ., Ithaca, NY (1973)
6. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters. J. Cybernet 3(3), 32–57 (1974)
7. Chang, R.L.P., Pavlidis, T.: Fuzzy decision tree algorithms. IEEE Trans. Syst.,

Man, Cybern. 7, 28–35 (1977)
8. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and

Systems 1, 3–28 (1978)
9. Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30, 407–428

(1975)
10. Zadeh, L.A.: Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and

Systems 1, 3–28 (1978)
11. Zadeh, L.A.: A Theory of Approximate Reasoning. In: Hayes, J.E., Michie, D.,

Mikulich, L.I. (eds.) Machine Intelligence, vol. 9, pp. 149–194. Elsevier, New
York (1979)

12. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Aca-
demic Press, New York (1980)

13. Bezdek, J.C.: A convergence theorem for the fuzzy ISODATA clustering algo-
rithms. IEEE Trans. Pattern Anal. Machine Intell. PAMI 2(1), 1–8 (1980)

14. Bezdek, J.C.: A convergence theorem for the fuzzy ISODATA clustering algo-
rithms. IEEE Trans. Pattern Anal. Machine Intell. 2(1), 1–8 (1980)

15. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York (1981)

16. Zadeh, L.A.: The role of fuzzy logic in the management of uncertainty in expert
systems. Fuzzy Sets Syst. 11, 199–227 (1983)



498 Bibliography

17. Keller, J.M., Gray, M.R., Givens Jr., J.A.: A fuzzy K-nearest neighbors algo-
rithm. IEEE Trans. Systems Man, Cybernet. SMC 15(4), 580–585 (1985)

18. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics-
part B: Cybernetics 15, 116–132 (1985)

19. Kosko, B.: Fuzzy entropy and conditioning. Inform. Sci. 40, 165–174 (1986)
20. Pal, S.K., Chakraborty, B.: Fuzzy set theoretic measure for automatic feature

evaluation. IEEE Trans. Syst., Man, Cybern. 16, 754–760 (1986)
21. Zadeh, L.A.: Fuzzy Logic. IEEE Trans. Comput. 35, 83–93 (1988)
22. Mizumoto, M.: Fuzzy controls under various fuzzy reasoning methods. Infor-

mation Sciences 45, 129–151 (1988)
23. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
24. Turksen, I.B.: Measurement of Membership Functions and Their Acquisition.

Fuzzy Sets and Systems 40, 5–38 (1991)
25. Liang, G.S., Wang, M.J.: A fuzzy multi-criteria decision-making method for

facility site selection. International Journal of Product Research 29(11), 2313–
2330 (1991)

26. Wang, G.J.: Theory of Topological Molecular Lattices. Fuzzy Sets and Sys-
tems 47, 351–376 (1992)

27. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski,
R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances
of the Rough Sets Theory, pp. 203–222. Kluwer, Dordrecht (1992)

28. Nakamura, A., Gao, J.M.: A logic for fuzzy data analysis. Fuzzy Sets and
Systems 39, 127–132 (1992)

29. Pal, S.K., Mitra, S.: Multi-layer perception, fuzzy sets, and classification. IEEE
Trans. Neural Networks 3, 683–697 (1992)

30. Pedrycz, W.: Fuzzy neural networks with reference neurons as pattern classi-
fiers. IEEE Trans. Neural Networks 3, 770–775 (1992)

31. Liou, T.S., Wang, M.J.J.: Subjective assessment of mental workload-a fuzzy
linguistic multi-criteria approach. Fuzzy Sets and Systems 62, 155–165 (1994)

32. Mitra, S., Pal, S.K.: Self-organizing neural network as a fuzzy classifier. IEEE
Trans. Syst., Man, Cybern. 24, 385–399 (1994)

33. Mineau, G., Godin, R.: Automatic structuring of knowledge bases by conceptual
clustering. IEEE Transactions on Knowledge and Data Engineering 7, 824–829
(1995)

34. Zadeh, L.A.: Discussion: Probability Theory and Fuzzy Logic Are Complemen-
tary Rather Than Competitive. Technometrics 37, 271–276 (1995)

35. Halgamuge, S.K., Poechmueller, W., Glesner, M.: An alternative approach for
generation of membership functions and fuzzy rules based on radial and cubic
basis function networks. Int. J. Approx. Reas. 12, 279–298 (1995)

36. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then
rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy
Syst. 3, 260–270 (1995)

37. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69,
125–139 (1995)

38. Hayashi, I.: Acquisition of fuzzy rules using fuzzy ID3 with ability of learning.
In: Proc. ANZIIS 1996, pp. 187–190 (1996)

39. Zadeh, L.A.: Fuzzy logic=computing with word. IEEE Transactions on Fuzzy
Systems 4, 103–111 (1996)



Bibliography 499

40. Nozaki, K., Ishibuchi, H., Tanaka, H.: Adaptive fuzzy rule-based classification
systems. IEEE Trans. Fuzzy Syst. 4, 238–250 (1996)

41. Ichihashi, H., Shirai, T., Nagasaka, K., Miyoshi, T.: Neuro fuzzy ID3: A method
of inducing fuzzy decision trees with linear programming for maximizing en-
tropy and algebraic methods. Fuzzy Sets System 81(1), 157–167 (1996)

42. Carse, B., Fogarty, T.C., Munro, A.: Evolving fuzzy rule based controllers using
genetic algorithms. Fuzzy Sets System 80, 273–293 (1996)

43. Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Cen-
trality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 90,
111–127 (1997)

44. Bodjanova, S.: Approximation of fuzzy concepts in decision making. Fuzzy Sets
and Systems 85, 23–29 (1997)

45. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Sys-
tems 90, 141–150 (1997)

46. Yang, M.S., Ko, C.H.: On cluster-wise fuzzy regression analysis. IEEE Trans-
actions Systems Man Cyberenet, Part B 27, 1–13 (1997)

47. El-Sonbaty, Y., Ismail, M.A.: Fuzzy Clustering for Symbolic Data. IEEE Trans-
actions on Fuzzy Systems 6(2), 195–204 (1998)

48. Hayashi, I., Maeda, T., Bastian, A., Jain, L.C.: Generation of fuzzy decision
trees by fuzzy ID3 with adjusting mechanism of and/or operators. In: Proc.
Int. Conf. Fuzzy Syst., pp. 681–685 (1998)

49. Janikow, C.Z.: Fuzzy decision trees: Issues and Methods. IEEE Transactions
on Systems, Man, and Cybernetics-Part B: Cybernetics 28(1), 1–14 (1998)

50. Xizhao, W., Hong, J.: On the handling of fuzziness for continuous valued at-
tributes in decision tree generation. Fuzzy Sets System 99, 283–290 (1998)

51. Gbyym, S.H.: A semi-linguistic fuzzy approach to multifactor decision-making:
Application to aggregation of experts judgments. Annals of Nuclear Energy 26,
1097–1112 (1999)

52. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy
classifier systems for multidimensional pattern classification problems. IEEE
Transactions on Systems, Man, and Cybernatics-part B: Cybernetics 29(5),
601–618 (1999)

53. Belohlavek, R.: Lattices generated by binary fuzzy relations. Tatra Mountains
Mathematical Publications 16, 11–19 (1999); special issue on fuzzy sets

54. Wang, L.D., Yen, J.: Extracting fuzzy rules for system modeling using a hybride
of genetic algorithms and Kalman filter. Fuzzy Sets and Systems 101, 353–362
(1999)

55. Roberts, S.J., Everson, R., Rezek, I.: Maximum certainty data partitioning.
Pattern Recognition 33, 833–839 (2000)

56. Wang, X., Chen, B., Qian, G., Ye, F.: On the optimization of fuzzy decision
trees. Fuzzy Sets System 112, 117–125 (2000)

57. Ait Kbir, M., Benkirane, H., Maalmi, K., Benslimane, R.: Hierarchical fuzzy
partition for pattern classification with fuzzy if-then rules. Pattern Recognition
Letters 21, 503–509 (2000)

58. Pedrycz, W., Sosnowski, Z.A.: Designing decision trees with the use of fuzzy
granulation. IEEE Trans. Syst., Man, Cybern. part A 30, 151–159 (2000)

59. Setnes, M., Roubos, H.: GA-fuzzy modeling and classification: Complexity and
Performance. IEEE Transactions on Fuzzy Systems 8(5), 509–522 (2000)

60. Tsang, E.C.C., Wang, X.Z., Yeung, D.S.: Improving learning accuracy of fuzzy
decision trees by hybrid neural networks. IEEE Trans. Fuzzy Syst. 8, 601–614
(2000)



500 Bibliography

61. Lee, H.M., Chen, C.M., Chen, J.M., Jou, Y.L.: An Efficient Fuzzy Classifier
with feature Selection Based on Fuzzy Entropy. IEEE Transactions on Sys-
tems,Man,And Cybernetics-Part B: Cybernetics 31(3), 25–40 (2001)

62. Wang, X.Z., Yeung, D.S., Tsang, E.C.C.: A comparative study on heuristic
algorithms for generating fuzzy decision trees. IEEE Transactions an Systems,
Man, and Cybernetics–Part B: Cybernetics 31(2), 215–226 (2001)

63. Pedrycz, W., Sosnowski, Z.A.: The design of decision trees in the framework of
granular data and their application to software quality models. Fuzzy Sets and
Systems 123, 271–290 (2001)

64. Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers
through iterative complexity reduction. IEEE Transations on Fuzzy Systems 9,
516–524 (2001)

65. Mitra, S., Konwar, K.M., Sankar, K.P.: Fuzzy decision tree, linguistic rules and
fuzzy knowledge-based network: generation and evaluation. IEEE Transactions
an Systems, Man, and Cybernetics–Part C: Applic. and Reviews 32(4), 328–339
(2002)

66. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern
Recognition 35, 2267–2278 (2002)

67. Baraldi, A., Alpaydin, E.: Constructive feedforward ART clustering networks—
Part I and II. IEEE Trans. Neural Netw. 13(3), 645–677 (2002)

68. Pedrycz, W., Vukovich, G.: logic-oriented fuzzy clustering. Pattern Recognition
Letters 23, 1515–1527 (2002)

69. Fern’andez Salido, J.M., Murakami, S.: On β-precision aggregation. Fuzzy Sets
and Systems 139, 15–25 (2003)

70. Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact ac-
curate and linguistically sound fuzzy classifiers based on a decision-tree initial-
ization. International Journal of Approximate Reasoning 32, 1–21 (2003)

71. Nguyen, H.S.: On the Decision Table with Maximal Number of Reducts. Elec-
tronic Notes in Theoretical Computer Science 82(4), 8 pages (2003),
http://www.elsevier.nl/locate/entcs/volume82.html

72. Zhong, N., Dong, J.Z., Ohsuga, S.: Meningitis data mining by cooperatively
using GDT-RS and RSBR. Pattern Recognition Letters 24, 887–894 (2003)

73. Marcelloni, F.: Feature selection based on a modified fuzzy C-means algorithm
with supervision. Information Sciences 151, 201–226 (2003)

74. Fernandez Salido, J.M., Murakami, S.: Rough set analysis of a general type
of fuzzy data using transitive aggregations of fuzzy similarity relations. Fuzzy
Sets and Systems 139, 635–660 (2003)

75. Roubos, J.A., Setnes, M., Abonyi, J.: Learning fuzzy classification rules from
labeled data. Information Sciences 150, 77–93 (2003)

76. Yao, Y.Y.: Semantics of Fuzzy Sets in Rough Set Theory. In: Peters, J.F.,
Skowron, A., Dubois, D., Grzyma�la-Busse, J.W., Inuiguchi, M., Polkowski, L.
(eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 297–318. Springer,
Heidelberg (2004)

77. Geng, L., Chan, C.W.: An Algorithm for Case Generation from a Database.
Applied Mathematics Letters 17, 269–274 (2004)

78. Chang, X.G., Lilly, J.H.: Evolutionary design of a fuzzy classifier from data.
IEEE Transactions on Systems, Man, and Cybernatics-part B: Cybernet-
ics 34(4), 1894–1906 (2004)

http://www.elsevier.nl/locate/entcs/volume82.html


Bibliography 501

79. Greco, S., Matarazzo, B., Slowinski, R.: Axiomatic characterization of a general
utility function and its particular cases in terms of conjoint measurement and
rough-set decision rules. European Journal of Operational Research 158, 271–
292 (2004)

80. Liang, G.S., Chou, T.Y., Han, T.C.: Cluster analysis based on fuzzy equivalence
relation. European Journal of Operational Research 166, 160–171 (2005)

81. Pedrycz, W., Sosnowski, Z.A.: C-fuzzy decision trees. IEEE Transactions on
Systems, Man, cybernetics-Part C: Applications and Reviews 35(4), 498–511
(2005)

82. Beliakov, G., King, M.: Density based fuzzy c-means clustering of non-convex
patterns. European Journal of Operational Research 173, 717–728 (2006)

83. Hu, B.Q., Wang, S.: A novel approach to fuzzy programming part I: New arith-
metic and order relations for interval numbers. Journal of Industrial and Man-
agement Optimization 2, 351–372 (2006)

84. Lee, H., Park, K., Bien, Z.: Iterative fuzzy clustering algorithm with super-
vision to construct probabilistic fuzzy rule base from numerical data. IEEE
Transactions on Fuzzy Systems 16, 263–277 (2008)

85. Pedrycz, W.: Statistically grounded logic operators in fuzzy sets. European
Journal of Operational Research (2008) doi:10.1016/j.ejor.2007.12.009

Formal Concept Analysis (FCA) and Its Generalization

1. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: Ivan Rival, R. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordecht
(1982)

2. Missikoff, M., Scholl, M.: An algorithm for insertion into a lattice: application
to type classification. In: Litwin, W., Schek, H.-J. (eds.) FODO 1989. LNCS,
vol. 367, pp. 64–82. Springer, Heidelberg (1989)

3. Wille, R.: Knowledge acquisition by methods of formal concept analysis. In:
Diday, E. (ed.) Data Analysis, Learning Symbolic and Numeric Knowledge,
pp. 365–380. Nova Science, NewYork (1989)

4. Burusco, A., Gonzalez, R.F.: The Study of the L-Fuzzy Concept Lattice. Math-
ware and Soft Computing 1(3), 209–218 (1994)

5. Mineau, G., Godin, R.: Automatic structuring of knowledge bases by conceptual
clustering. IEEE Transactions on Knowledge and Data Engineering 7(5), 824–
829 (1995)

6. Vogt, F., Wille, R.: TOSCANA—-A graphical tool for analyzing and exploring
data. In: Tamassia, R., Tollis, I(Y.) G. (eds.) GD 1994. LNCS, vol. 894, pp.
226–233. Springer, Heidelberg (1995)

7. Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158
(1995)

8. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its ap-
plication to browsing retrieval. Mach. Learning 10, 95–122 (1996)

9. Pollandt, S.: Fuzzy-Begriffe: Formale Begriffsanalyse Unscharfer Daten.
Springer, Heidelberg (1996)

10. Bodjanova, S.: Approximation of fuzzy concepts in decision making. Fuzzy Sets
and Systems 85, 23–29 (1997)



502 Bibliography

11. Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.: Design of
class hierarchies based on concept Galois lattices. TAPOS 4(2), 117–134 (1998)

12. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

13. Belohlavek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45,
497–504 (1999)

14. Stumme, G., Wille, R. (eds.): Begriffliche Wissensverarbeitung—-Methoden
und Anwendungen. Springer, Heidelberg (2000)

15. Diaz-Agudo, B., Gonzalez-Calero, P.A.: Formal concept analysis as a support
technique for CBR. Knowledge-Based Systems 14, 163–171 (2001)

16. Huynh, V.N., Nakamori, Y.: Fuzzy Concept Formation Based on Context
Model. Knowledge-Based Intelligent Information Eng. Systems and Allied
Technologies, 687–691 (2001)

17. Saquer, J., Deogun, J.: Concept approximations based on rough sets and simi-
larity measure. International Journal of Appllied Mathematics and Compututer
Science 11, 655–674 (2001)

18. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing ice-
berg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–
222 (2002)

19. Fern’andez Salido, J.M., Murakami, S.: On β-precision aggregation. Fuzzy Sets
and Systems 139, 15–25 (2003)

20. Saquer, J., Deogun, J.: Approximating monotone concepts. In: Design and Ap-
plication of Hybrid Intelligent System, pp. 605–613 (2003)

21. Nguyen, H.S.: On the Decision Table with Maximal Number of Reducts. Elec-
tronic Notes in Theoretical Computer Science 82(4), 8 pages (2003),
http://www.elsevier.nl/locate/entcs/volume82.html

22. Zhong, N., Dong, J.Z., Ohsuga, S.: Meningitis data mining by cooperatively
using GDT-RS and RSBR. Pattern Recognition Letters 24, 887–894 (2003)

23. Deogun, J.S., Saquer, J.: Monotone concepts for formal concept analysis. Dis-
crete Applied Mathematics 144, 70–78 (2004)

24. Geng, L., Chan, C.W.: An Algorithm for Case Generation from a Database.
Applied Mathematics Letters 17, 269–274 (2004)

25. du Boucher-Ryana, P., Bridge, D.: Collaborative recommending using formal
concept analysis. Knowledge-Based Systems 19, 309–315 (2006)

26. Tho, Q.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic Fuzzy Ontology
Generation for Semantic Web. IEEE Transactions on Knowledge and Data
Engineering 18(6), 842–856 (2006)

27. Zhang, L.S., Liu, X.D.: Concept lattice and AFS algebra. In: Wang, L., Jiao,
L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp.
290–299. Springer, Heidelberg (2006)

28. Shao, M., Liu, M., Zhang, W.: Set approximations in fuzzy formal concept
analysis. Fuzzy Sets and Systems 23, 2627–2640 (2007)

29. Zhang, W., Ma, J., Fan, S.: Variable threshold concept lattices. Information
Sciences 177, 4883–4892 (2007)

30. Zhao, Y., Halang, W.A., Wang, X.: Rough ontology mapping in E-Business
integration. Studies in Computational Intelligence 37, 75–93 (2007)

31. Hu, Q., Liu, J., Yu, D.: Mixed feature selection based on granulation and ap-
proximation. Knowledge-Based Systems 21, 294–304 (2008)

http://www.elsevier.nl/locate/entcs/volume82.html


Bibliography 503

32. Wang, L.D., Liu, X.D.: Concept analysis via rough set and AFS algebra. Infor-
mation Sciences 178, 4125–4137 (2008)

33. Wang, L.D., Liu, X.D.: A new model of evaluating concept similarity.
Knowledge-Based Systems 21, 842–846 (2008)

Rough Sets and Fuzzy Rough Sets

1. Zadeh, L.A.: A Theory of Approximate Reasoning. In: Hayes, J.E., Michie, D.,
Mikulich, L.I. (eds.) Machine Intelligence, vol. 9, pp. 149–194. Elsevier, New
York (1979)

2. Pawlak, Z.: Rough sets. Internat. J. Comput. Inform. Sci. 11(5), 341–356 (1982)
3. Pawlak, Z.: Rough sets. International Journal of Computer and Information

Science 11, 341–356 (1982)
4. Pawlak, Z.: Rough Probability. Bull. Polish Acad. Sci., Math. 32, 607–612

(1984)
5. Farinas del Cerro, L., Prade, H.: Rough sets, twofold fuzzy sets and modal logic-

Fuzziness in indiscernibility and partial information. In: di Nola, A., Ventre,
A.G.S. (eds.) The Mathematics of Fuzzy Systems, pp. 103–120. Verlag TU V,
Rheinland (1986)

6. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J.
General Systems 17(2-3), 191–209 (1990)

7. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski,
R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances
of the Rough Sets Theory, pp. 203–222. Kluwer, Dordrecht (1992)

8. Kuncheva, L.I.: Fuzzy rough sets: application to feature extraction. Fuzzy Sets
and Systems 51, 147–153 (1992)

9. Nakamura, A.: Application of fuzzy-rough classifications to logics. In: Slowinski,
R. (ed.) Intelligent Decision Support: Handbook ofApplications and Advances
ofthe Rough Sets Theory, pp. 233–250. Kluwer, Dordrecht (1992)

10. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Infor-
mation Systems, Intelligent Decision Support. In: Slowinski, R. (ed.) Handbook
of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer
Academic, Dordrecht (1992)

11. Ziarko, W.: Variable precision rough set model. J. Comput. System Sci. 46,
39–59 (1993)

12. Pawlak, Z.: Hard and soft sets. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets
and Knowledge Discovery, pp. 130–135. Springer, London (1994)

13. Slowinski, R., Vanderpooten, D.: Similarity relations as a basis for rough ap-
proximations. In: Wang, P.P. (ed.) Advances in Machine Intelligence and Soft
Computing, Bookwrights, Raleigh, NC, pp. 17–33 (1997)

14. Yao, Y.: Combination of rough and fuzzy sets based on α-level sets. In: Lin,
T.Y., Cercone, N. (eds.) Rough sets and Data Mining, pp. 301–321. Kluwer,
Dordrecht (1997)

15. Greco, S., Matarazzo, B., Slowinski, R.: Fuzzy similarity relations as a basis
for rough approximations. In: Polkowski, L., Skowron, A. (eds.) Proc. 1st Int.
Conf. on Rough Sets and Current Trends in Computing, RSTC 1998, Warsaw,
Poland, pp. 283–289 (1998)

16. Yao, Y.: A comparative study of fuzzy sets and rough sets. Information Sci-
ences 109, 227–242 (1998)



504 Bibliography

17. Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a prefer-
ence relation by dominance relations. European Journal of Operational Re-
search 117, 63–83 (1999)

18. Slowinski, R., Vanderpooten, D.: A Generalized Definition of Rough Approxi-
mations Based on Similarity. IEEE Transactions on Knowledge and Data En-
gineering 12(2), 331–336 (2000)

19. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research 129, 1–47 (2001)

20. Kim, D.: Data classification based on tolerant rough set. Pattern Recogni-
tion 34, 1613–1624 (2001)

21. Zaras, K.: Rough approximation of a preference relation by a multi-attribute
stochastic dominance for determinist and stochastic evaluation problems. Eu-
ropean Journal of Operational Research 130, 305–314 (2001)

22. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting
problems in presence of multiple attributes and criteria. European Journal of
Operational Research 138, 247–259 (2002)

23. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets.
Fuzzy Sets and Systems 126, 137–155 (2002)

24. Bonikowski, Z.: Algebraic Structures of Rough Sets in Representative Approx-
imation Spaces. Electronic Notes in Theoretical Computer Science 82(4), 1–12
(2003), http://www.elsevier.nl/locate/entcs/volume82.html

25. Fern’andez Salido, J.M., Murakami, S.: On β-precision aggregation. Fuzzy Sets
and Systems 139, 15–25 (2003)

26. Dembczynski, K., Pindur, R., Susmag, R.: Generation of Exhaustive Set of
Rules within Dominance-based Rough Set Approach. Electronic Notes in The-
oretical Computer Science 82(4), 1–12 (2003),
http://www.elsevier.nl/locate/entcs/volume82.html

27. Fernandez Salido, J.M., Murakami, S.: Rough Set Analysis of a General Type
of Fuzzy Data Using Transitive Aggregations of Fuzzy Similarity Relations.
Fuzzy Sets and Systems 139, 635–660 (2003)

28. Wang, Q.H., Li, J.R.: A rough set-based fault ranking prototype system for
fault diagnosis. Engineering Applications of Artificial Intelligence 17, 909–917
(2004)

29. Greco, S., Matarazzo, B., Slowinski, R.: Axiomatic characterization of a general
utility function and its particular cases in terms of conjoint measurement and
rough-set decision rules. European Journal of Operational Research 158, 271–
292 (2004)

30. Pal, S.K., Mitra, P.: Case Generation Using Rough Sets with Fuzzy Represen-
tation. IEEE Transactions on Knowledge and Data Engineering 16(3), 292–300
(2004)

31. Yao, Y.: Concept lattices in rough set theory. In: Proceedings of 2004 Annual
Meeting Meeting of the North American Fuzzy Information Processing Society,
pp. 796–801 (2004)

32. Radzikowska, A., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy
Sets and Systems 126, 137–155 (2004)

33. Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Information Sciences 177,
3–27 (2007)

34. Pawlak, Z., Skowron, A.: Rough sets: Some Extensions. Information Sci-
ences 177, 28–40 (2007)

http://www.elsevier.nl/locate/entcs/volume82.html
http://www.elsevier.nl/locate/entcs/volume82.html


Bibliography 505

35. Pawlak, Z., Skowron, A.: Rough Sets and Boolean Reasoning. Information Sci-
ences 177, 41–70 (2007)

36. Wang, C., Wu, C., Chen, D.: A systematic study on attribute reduction with
rough sets based on general binary relations. Information Sciences 178, 2237–
2261 (2008)

37. Wang, L.D., Liu, X.D.: Concept analysis via rough set and AFS algebra. Infor-
mation Sciences 178, 4125–4137 (2008)

38. Zhang, J., Wang, Y.: A rough margin based support vector machine. Informa-
tion Sciences 178, 2204–2214 (2008)



Index

⇒ implication 4
∨–irreducible decomposition 70
∨-infinite distributive lattice 72
∨-irreducible element 70
∧–irreducible element 70
∧-infinite distributive lattice 72
(X ×X ,M,Iτ ) fuzzy context associating

with the AFS structure (M,τ,X)
337

∗ product of Boolean matrices 98
1/k−A-nearest neighbor of a sample 389
A×B Cartesian product of the sets A and B

7
A− closure of A 87
A− closure of the set A 24
A0 interior point of the set A 26
A∗(X) upper approximation of X 228
Aτ(.) 174
Aτ(x) 174
Ad derived element of A 87
Ad derived set of a set 23
A∗(X) lower approximation of X 228
B-definable sets 229
B-elementary granules 229
B-elementary sets 229
Bεx , Bεx , Λεx 358
Ck(EM) set of k length irreducible EI

algebra elements 184
Co(α,β ) correlation between simple

concepts α,β 386
D(x,y) partial distance function 284
De(x,y) elementary partial distance function

284

DA(x,y) distance function on a molecular A
284

EI algebra 120
EI algebra inclusion 241
EI algebra relation matrix 360
EI matrices 360
EII algebra inclusion 241
EIn+1 algebra 169
EM 115
EX1...XnM+ 167
EX1X2...X+

n 170
ECII algebra of context 314
ECII irreducible 313
EIGM ECII algebra of the context (G,M, I)

314
E#I algebra representation of a given fuzzy

set 236
E#I algebra inclusion 241
E#In algebra 173
EδΛ = {γ | γ ∈ (Λ )EI ,∀y∈ X −Xi,µγ(y) < δ}

425
Fδε = {ξ | ξ ∈ EδΛ ,∀y ∈ Xi,µξ (y) ≥

µ∨
b∈Λ b(y)− ε} 425

Iα fuzzy cluster validity index 357, 393
L(M) molecular lattice L with the set of

molecules M 82
L(ψ) lower AFS formal concept approx-

imation of the fuzzy concept ψ
332

L(θ ) lower AFS formal concept approxi-
mation of the E#I algebra element θ
335

M(B)m×n set of all m×n Boolean matrices
97



508 Index

M0 set of principal simple concepts selected
by PCA 385

MR correspondent Boolean matrix of the
binary relation R 98

Mζ correspondent Boolean matrix of the
concept ζ 126

Nτη (x) neighborhood of x induced by the
topological molecular lattice η 271

N%τ
η (x) limited neighborhood induced by

the topological molecular lattice η
275

Nτ∑i∈I Ai
(x) neighborhood of x induced by the

fuzzy concept ∑i∈I Ai 271

N%τ
∑i∈I Ai

(x) limited neighborhood of x
induced by the fuzzy concept ∑i∈I Ai
275

O(EM) number of elements in EM 184
R(a) equivalence class relative to R

determined by a 8
Rζ binary relation of the concept ζ 124
S/R quotient set of S relative to the relation

R 8
SEM 190
SI(α,β ) similarity between the features

α,β 382
S∗,S∗ 244
S∗(X) upper approximation of X 230
SX set of all minimal elements of X 101
S∗(X) lower approximation of X 230
T -similarity relation 231
T2−space 34
Ti space 36
U(A) set of all intents containing A 314
U(ψ) upper AFS formal concept approx-

imation of the fuzzy concept ψ
332

U(θ ) upper AFS formal concept approxi-
mation of the E#I algebra element θ
335

[x]B = {y ∈ X |(x,y) ∈ RB} block of the
partition of RB containing X 228

[x]R equivalence class of the relation R
containing x 228

∆ canonical linear ordered matrix 100
Λ1 ⊕Λ2 direct sum system of Λ1 and Λ2

56
α(.) Galois connection from 2M to 2G

305

α(ζ ) Galois connection of the fuzzy concept
ζ = ∑i∈I(∏m∈Ai

m) ∈ EM 324
α(a) greatest maximal family 81
α(EM) a subset of EII algebra EGM

determined by the Galois connection
α 307

∗∏i∈I 101
β (.) Galois connection from 2G to 2M

305
β (γ) Galois connection of

γ = ∑ j∈J a j ∈ E#X 324
β (a) greatest minimal family 79⋂

i∈I Ai,
⋃

i∈I Ai 7
∩, ∪, ′, ∅, 2X , − 5
δ (B̂i) set of all objects that satisfy B̂i 322
↓ a = {x ∈ L| x ≤ a, a ∈ L} 81
γ(A j) Boolean conjunctive expression

associated with β (A j) 322
γR(x) membership function of the fuzzy set

γ ∈ E#(X ×X) 337
∈ included in 3
≤−1 16
AEI = (M,Λ ), AEII = (M,Λ ,X),

AE#I = (M,Λ ,X),Aρ = (M,Λ ,ρ,X)
244

D = (U,A∪{d}) decision system 229
S =< U, A > information system 228
A -measurable 45
A = (U,R) approximation space 228
B(Rn) Borel subsets of Rn 46
Bη base of the topology on X induced by

the topological molecular lattice η
272

B%
η limited topology induced by a

topological molecular lattice η 277
F (X) = {η | µη : X → [0,1]} 236
L (E#X ,EM, I) set of all AFS formal

concepts of the context (X ,M, I)
326

L (G,M, I) set of all formal concepts of the
context (G,M, I) 306

Lη ∗EI2 topological molecular lattice
induced by the ∗EI topological
molecular lattice η 273

PD (γ : W ) probability measure of fuzzy
simple concept γ on W 145

Tη topology induced by the topological
molecular lattice η 272



Index 509

V (p), p ∈ P the feature selecting validation
index 383

ψ upper approximation of the fuzzy concept
ψ ∈ EM 331

θ upper approximation of the E#I algebra
element θ 331

∏i∈I Ai Cartesian product of Ai 12
σ -algebra generated 46
σ -finite measure 49
σ(F ) σ -algebra generated by F 46
σ -algebra 45
σ -finite under µ 49
� disjoint union 7
⊆EI ,⊆EII ,⊆E#I ,⊆ρ 241
mx set of maximum quasi-ordered chains at

x 101
ψ lower approximation of the fuzzy concept

ψ ∈ EM 331
θ lower approximation of the E#I algebra

element θ 331
θ(x) set of all elements whose membership

degrees belonging to θ is less than or
equal to that of x 236

ϕ|A restriction of ϕ to A 9
ϕ−1 inverse map of bijective map ϕ 11
ϕ−1(T ) completely inverse image of under

ϕ 9
ϑ x
α = {β ∈ (Λ )EI | β ≥ α} 359
ζ (x) = ∑i∈I Aτ1

i (x){x}τ2 Ai EI3 algebra
membership degree of x belonging to
the fuzzy concept ζ = ∑i∈I∏m∈Ai

m
175

ζ (x) = ∑i∈I Aτi (x) E#I algebra membership
degree of x belonging to the fuzzy
concept ζ = ∑i∈I∏m∈Ai

m 176
ζ (x) = ∑i∈I Aτi (x)Ai EII algebra member-

ship degree of x belonging to the fuzzy
concept ζ = ∑i∈I∏m∈Ai

m 174
{ζx | x ∈ X} fuzzy description of X under

the set of fuzzy concepts Λ 360
a||b 16
d(x,y) differential degree between x and y

284
de(x,y) elementary differential degree

284
dA(x,y) distance associated to a set of

simple concepts 389
dM(x,y) molecular differential degree

between x and y 284

i(A) set of all idempotent prime matrices
less than the Boolean matrix A 102

li(A) set of all maximal elements in i(A)
102

p(A) set of all linear ordered matrices less
than the Boolean matrix A 102

s(x,y) similarity degree between x and y
284

sM(x,y) molecular similarity degree of x and
y 284

se(x,y) elementary similarity degree 284
subtr(A) sub-trace of A 104
EI2 TML induced by a EI TML 281
“≤” ordered relation on Boolean matrices

98

accumulation point 23, 87
additive 47
adherence point 87
AFS formal concept of a context 325
AFS fuzzy approximation spaces 244
AFS fuzzy c-mean algorithm 287
AFS fuzzy logic system 122
AFS fuzzy rough sets 244
AFS rough sets with regard to a set of fuzzy

concepts 244
AFS structure 128
algebra 45
algebraic system 13
algebra operation 12
approximation space 228
associative law 10
associativity 6
atom 18
atomic fuzzy concept 126
Axiom of choice theorem 20
axiom of extensionality 4

base 90
base for a topology 27
basic sets 27
Bayes’Rule 53
bijective 9
binary relation 7
binary relation of a concept 124
blocks 56
Boolean algebra 73
Boolean matrix 97
Boolean matrix of a map 129
Boolean ring 76



510 Index

Boolean subalgebra 74
Borel subsets of a topological space 46
boundary 27

canonical linear ordered relation 100
canonical quasi-linear ordered form 100
cardinality 5
cartesian product 7
chain 16
closed sphere 39
closed topology 87
closure 87
closure of a set 24
cluster point 23, 90
co-domain 9
co-topology 87
cofinal 19
cognitive space 175
coherence membership functions 130
combinatoric system induced by an AFS

structure 214
commutative ring 76
commutativity 6
compact 35
comparable 16
compatible with 13, 175
complement 72
complementation 5
complemented lattice 72
complete lattice 65
completely distributive lattice 77
complex concept 125
component 56, 88
composite 10
concept lattice of a context 306
concept set 128
conditional probability 53
connected AFS structure 215
connected component 215
connected system 56
connected topological space 31
contained in 4
continuous 37
continuous at point 37
continuous from above 50
continuous from below 50
converge 33
conversely ordered involutory mapping

120

countable 14
countable basis 29
countably additive 48
countably additive measure 48
countably infinite 14
cover 16, 35
covering 16, 35

DeMorgan’s laws 6
dense 29
derived element 87
derived set of a set 23
Description Method A: Description based

on principal concepts or a category of
concepts 390

Description Method B: Description based
on the 1/k −A-Nearest Neighbors
390

difference 5
differential degree 284
direct 18
directed set 18
direct sum of connected components 215
direct sum system 56
discrete topological space 22
disjointness 5
disjoint union 7
distance 38
distribution function 54
distributive lattice 67
distributive laws 6
domain 9
dual atom 18
dual ideal 67
dual lattices 61
dual ordered subset 16

elementary fuzzy clustering method via AFS
fuzzy logic 356

elementary topological molecular lattice on
an ∗EI algebra 270

elementary topological molecular lattice on
an EI algebra 279

elements 3
empty set 5
entropy of a discrete random variable 436
equivalence relation 8
event 51
eventually in 18
extension of the map 9



Index 511

extent of a concept 305
extent of a monotone concept 322
extent of an AFS formal concept 326

feasible extent 306
feasible intent 306
feasible monotone formula 322
feasible set 306
feasible set for a monotone concept 322
fiber 13
Find-Fuzzy-Description-Algorithm 391
finite lattice 62
finitely additive 48
finite measure 49
finite or σ -finite 49
Fitness Index 464
follows 18
formal concept 305
formal context 304
frequently in 18
fuzzy description of a cluster 357
fuzzy description of an object 356
fuzzy description of a sample 356
fuzzy description of the boundary of the

clusters 357
fuzzy entropy FE(Ã) on a set 436
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