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Preface

It is well known that “fuzziness”’—information granules and fuzzy sets as one
of its formal manifestations— is one of important characteristics of human
cognition and comprehension of reality. Fuzzy phenomena exist in nature and
are encountered quite vividly within human society. The notion of a fuzzy
set has been introduced by L. A., Zadeh in 1965 in order to formalize human
concepts, in connection with the representation of human natural language
and computing with words. Fuzzy sets and fuzzy logic are used for model-
ing imprecise modes of reasoning that play a pivotal role in the remarkable
human abilities to make rational decisions in an environment affected by un-
certainty and imprecision. A growing number of applications of fuzzy sets
originated from the “empirical-semantic” approach. From this perspective,
we were focused on some practical interpretations of fuzzy sets rather than
being oriented towards investigations of the underlying mathematical struc-
tures of fuzzy sets themselves. For instance, in the context of control theory
where fuzzy sets have played an interesting and practically relevant function,
the practical facet of fuzzy sets has been stressed quite significantly.

However, fuzzy sets can be sought as an abstract concept with all formal
underpinnings stemming from this more formal perspective. In the context
of applications, it is worth underlying that membership functions do not
convey the same meaning at the operational level when being cast in various
contexts. As a consequence, when we look carefully at the literature on fuzzy
sets, including Zadeh’s own papers, there is no profound uniformity as to
the interpretation of what a membership grade stands for. This situation
has triggered some critical comments outside the fuzzy set community and
has resulted in a great deal of misunderstanding within the field of fuzzy sets
itself. Most negative statements expressed in the literature raised the question
of interpretation and elicitation membership grades. Thus the questions of the
semantics and the empirical foundations as well as the measurement of fuzzy
sets remain partially unresolved. As of now, this is perhaps still a somewhat
under-developed facet of fuzzy set theory.
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Let us begin our discussions from the following example. What is your
perception of the height of a person? An NBA basketball player describes
that some person is not “tall” and a ten year old child describes that the
same person is very “tall’. Because the people the NBA basketball player of-
ten meets are different from the people the child meets, i.e., the “data” they
observed are drawn from different probability spaces. They may have dif-
ferent interpretations (membership functions or membership grades) for the
same linguistic concept “tall’. Therefore the interpretations of fuzzy sets are
strongly dependent on both the semantics of the concepts and the distribu-
tion of the observed data. Fuzzy sets call for efficient calibration mechanisms.
Thus when we consider the interpretation of a concept, the distributions of
the data the concept is applied to must be taken into account when determin-
ing the membership functions of the fuzzy concepts. In real world applica-
tions, the conventional membership functions are usually provided according
to the subjective knowledge or perception of the observer. These membership
functions have not accounted the particular distribution of the observed data.

When moving into the age of machine intelligence and automated decision-
making, we have to deal with both the subjective imprecision of human
perception-based information described in natural language and the objec-
tive uncertainty of randomness universally existing in the real world. There
is a deep-seated tradition in science of dealing with uncertainty—whatever its
form and nature—through the use of probability theory. What we see is that
standard probability theory comes with a number of strengths and limita-
tions. To a significant extent, standard probability theory cannot deal with
information described in natural language; that is, to put it simply, standard
probability theory does not have natural language processing capability. A
basic problem with standard probability theory is that it does not address
partiality of truth. The principal limitation is that standard probability pro-
vides no tools for operating on information that is perception-based and is
described in a natural language. This incapability is rooted in the fact that
perceptions are intrinsically imprecise, reflecting the bounded ability of sen-
sory organs, and ultimately the brain, to resolve detail and store information.
Zadeh has also claimed that “probability must be used in concert with fuzzy
logic to enhance its effectiveness. In this perspective, probability theory and
fuzzy logic are complementary rather than competitive.”

It is this statement that has motivated our proposal and a comprehensive
study of Axiomatic Fuzzy Set (AFS) whose aim is to explore how fuzzy set
theory and probability theory can be made to work in concert, so that uncer-
tainty of randomness and of imprecision can be treated in a unified and coher-
ent manner. In AFS theory—the studies on how to convert the information
in the observed data into fuzzy sets (membership functions), the membership
functions and logic operations of fuzzy concepts are determined by both the
distribution of raw data and semantics of the fuzzy concepts through the
AFS structures a kind of mathematical description of data structures and
AFS algebras a kind of semantic methodology of fuzzy concepts. Since the
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membership functions of fuzzy concepts in AFS theory always emphasizes
the data set they apply to and there are such complicated forms of the de-
scriptions and representations for the attributes of the raw data in the real
world applications, hence the raw data are regularized to be AFS structures
by two axioms. AFS is mainly with respect to AFS structure of the data
and AFS approach mainly studies fuzzy concepts, membership functions and
fuzzy logic on the AFS structure of the data, in stead of the raw data. AFS
theory is a rigorous and unified mathematical theory which is evolved from
two axioms of AF'S structure and three natural language assumptions of AFS
algebra.

An AFS structure is a triple (M, 7, X) which is a special combinatoric
system, where X is the universe of discourse, M is a set of some simple
(or elementary) concepts on X (e.g., linguistic labels on the features such
as “large”, “medium”, “small’ ) and 7 : X x X — 2M is a mathematical
description of the relationship between the distributions of the original data
and semantic interpretations of the simple concepts in M. The AFS algebra
is a family of completely distributive lattices generated by the sets such as
X and M. A large number of complex fuzzy concepts on X and their logic
operations can be expressed by few simple concepts in M via the coherence
membership functions of the AFS algebras and the AFS structures.

Since AF'S theory was proposed in 1998 (Journal of Mathematical Analysis
and Applications, Fuzzy Sets and Systems), a number of interesting develop-
ments in the theory and applications have been reported. For instance, the
topological structures of AFS algebra and AFS structure were presented in
1998 (Journal of Mathematical Analysis and Applications), some combina-
toric properties of AFS structures were introduced in 1999 (Fuzzy Sets and
Systems). Further algebraic properties of the AFS algebra have been explored
in 2004 (Information Sciences), the fuzzy clustering analysis based on AFS
theory were proposed in 2005 (IEEE Transactions on Systems, Man and Cy-
bernetics Part B), the representations and fuzzy logic operations of fuzzy
concepts under framework of AFS theory were outlined in 2007 (Information
Sciences), the relationships between AF'S algebra and Formal Concept Analy-
sis (FCA) were demonstrated in 2007 (Information Sciences), fuzzy decision
trees under the framework of AFS theory were discussed in 2007 (Applied
Soft Computing), AFS fuzzy clustering analysis was applied to management
strategic analysis in 2008 (FEuropean Journal of Operational Research), con-
cept analysis via rough set and AF'S algebra was presented in 2008 (Informa-
tion Sciences), fuzzy classifier designs based on AFS theory were proposed in
2008 (Journal of Industrial and Management Optimization), fuzzy rough sets
under the framework of AFS theory were discussed in 2008 (IEEE Transac-
tions on Knowledge and Data Engineering) ... etc. Last years saw a rapid
growth of the development of the AFS theory. We may witness (maybe not
always that clearly and profoundly) that AFS approach tends to permeate
a number of significant endeavors. The reason is quite straightforward. In a
nutshell, AFS approaches has established a bridge connecting the real world
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problems with many abstract mathematical theories and human natural lan-
guage interpretations of fuzzy concepts via the AFS structures of the data
and AFS algebras of the human natural language. Since, so far, all application
algorithms in AFS approaches imitate human cognitive process with a set of
objects by some given fuzzy concepts and attributes; hence AFS delivers new
approaches to knowledge representations and inference that is essential to
the intelligent systems. The theory offers a far more flexible and powerful
framework for representing human knowledge and studying the large-scale
intelligent systems in real world applications.

While the idea of AFS has been advocated and spelled out in the realm
of fuzzy sets, a fundamental formal framework of AFS based on algebra,
combinatorics, measure theory and probability theory has been gradually
formed. Undoubtedly, AFS theory has systematically established a rigorous
mathematical theory to answer the basic question of the measurement for
membership functions of fuzzy concepts and set up the foundations of fuzzy
sets for its future developments.

The successful applications of AFS theory show that the theory cannot
only serve as the mathematical foundation of fuzzy sets, but also is applicable
and practically viable to model human concepts and their logic operations.
The discovered inherent relationships of AFS theory with formal concept
analysis and rough sets provide a great potential to be explored even further.

In this book, the theory and application results of AFS achieved in a more
than a decade are put into a systematic, a rigorous, and unified framework.
The book is designed to introduce the AFS in both its rigorous mathematical
theory and its flexible application methodology. The material of the mono-
graph is structured into three main sections:

1. mathematical fundamentals which introduce some elementary mathemat-
ical notations and underlying structural knowledge about the subject
matter;

2. rigorous mathematical theory for the readers who are interested in the
mathematical facet of the AFS theory;

3. the applications and case studies which are of particular interest to the
readers involved in the applications of the theory.

The last two parts can be studied independently to a very high extent
as the algorithms (methods) coming directly from the main mathematical
results presented in part 2 are clearly discussed and explained though some
detailed examples. Thus there should not be any difficulties for the reader
who wishes to directly proceed with part 3. We anticipate that the level of
detail at which the material is presented makes this book a useful reference
for many researchers working in the area of fuzzy sets and their applications.

The first part of this book, which consists of Chapter 1 (Fundamentals) and
Chapter 2 (Lattices), is devoted to a detailed overview of the fundamental
knowledge which is required for the rigorous exposure of the mathematical
material covered in the second part. This part makes the book self-contained
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to a significant extent. We would like to note though that most of material
in this part is not required for the readers who are predominantly interested
in the applications of the AF'S theory.

The second part of this book, which consists of Chapter 3 (Boolean Matri-
ces and Binary Relation, Chapter 4 (AFS Logic, AFS Structure and
Coherence Membership Functions), Chapter 5 (AFS Algebras and Their Rep-
resentations of Membership Degrees), introduces the rigorous mathematical
facet of the AFS theory and develops a suite of theorems and results which
can be directly exploited in the studies on real world applications.

The third part of this book, which consists of Chapter 6 (AFS Fuzzy
Rough Sets), Chapter 7 (AFS Topology and Its Applications), Chapter 8
(AFS Formal Concept and AFS Fuzzy Formal Concept Analysis), Chapter 9
(AFS Fuzzy Clustering Analysis), and Chapter 10 (AFS Fuzzy Classifiers),
covers various applications of the theory results developed in the second part.
The chapters in this part are all independent and each chapter focuses on
some direct application of some results discussed in the second part of the
book.

The studies on the AFS theory (primarily reported in journal publications
and conference proceedings) have attracted interest of the community work-
ing within the boundaries of the technology of fuzzy sets. The underlying
concept of AFS could be of interest to a far broader audience. Having this in
mind, there are a number of key objectives of this book:

v" To present a cohesive framework of the AFS by defining its main research
objectives and specifying underlying tasks;

v' To discuss individual technologies of AFS in this uniform setting and for-
malizing the key tasks stemming from AFS theory (that concerns the
measurement of fuzzy sets by taking both fuzziness (subjective impre-
cision) and randomness (objective uncertainty) into account and their
applications to the real world problems);

v' To provide the reader with a well-thought and carefully introduced host
of algorithmic methods available in AFS framework.

The intent is to produce a highly self - contained volume. The reader is
provided with the underlying material on AFS theory as well as exposed
to the current developments where it finds the most visible applications.
Furthermore the book includes an extensive and annotated bibliography - an
indispensable source of information to everybody seriously pursuing research
in this rapidly developing area. Chapters come with a number of open-ended
problems that might be of interest to a significant sector of the readership.
The book exhibits the following features:

e Comprehensive, authoritative and up-to-date publication on AFS theory
(a self-contained volume providing coverage of AFS from its mathematical
foundations through methodology and algorithms to a representative set
of applications).
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e Coverage of detailed mathematical proofs: a complete and rigorous math-
ematical theory based on the underlying axioms of the AFS structure
and natural language assumptions of the AFS algebra itself. The theory
is oriented to link the findings to essential and well-delineated goals of
practical relevance.

e Coverage of detailed algorithms, complete description of underlying ex-
periments, and a thorough comparative analysis illustrated with the aid
of complete numeric examples coming from a broad spectrum of problems
stemming from information systems.

e Breadth of exposure of the material ranging from fundamental ideas and
concepts to detailed, easy to follow examples; the top - down approach
fully supports a systematic and in-depth comprehension of the material.

e Self - containment of the material; the book will include all necessary
prerequisites so that it will appeal to a broad audience that may be diverse
in terms of background and research interests.

e Exercises of different level of complexity following each chapter that help
the reader reflect and build upon key conceptual and algorithmic points
raised in the text. Such exercises can be of significant help to an instructor
offering courses on this subject. The open problems following each chapter
provide some further research topics for the readers.

e An extended and fully updated bibliography and a list of WWW resources
being an extremely valuable source of information in pursuing further
studies.

The audience of this book is diversified. The material could be of interest
to researchers and practitioners (primarily engineers, mathematics, computer
scientists, managers) interested in fuzzy set theory and applications, gradu-
ate students in electrical and computer engineering, software engineering,
mathematics, computer science, operations research and management. The
material will not only be advantageous to the readership in the area of fuzzy
sets but also the readers in the area of mathematics, rough sets, formal con-
cept analysis (FCA) and probabilistic methods.

The book can be used to some extent in graduate courses on intelligent
systems, fuzzy sets, data mining, rough sets, formal concept analysis and
data analysis. The book can be either viewed as a primary text or a reference
material depending upon a way in which the subject matter becomes covered.

Edmonton, Canada Xiaodong Liu
October 2008 Witold Pedrycz
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Part I

Required Preliminary Mathematical
Knowledge



Chapter 1
Fundamentals

The main objective of this chapter is to introduce some preliminaries regarding es-
sential mathematical notions and mathematical structures that have been commonly
encountered in the theory of topological molecular lattices, fuzzy matrices, AFS
(Axiomatic Fuzzy Set) structures and AFS algebras. The proofs of some theorems
or propositions which are not too difficult to be proved are left to the reader as
exercises.

1.1 Sets, Relations and Maps

Set theory provides important foundations of contemporary mathematics. Even if
one is not particularly concerned what sets actually are, sets and set theory still
form a powerful language for reasoning about mathematical objects. The use of the
theory has spilled over into a number of related disciplines. In this section, we recall
and systematize various standard set-theoretical notations and underlying constructs
[6], proceeding with the development of the subject as far as the study of maps and
relations is concerned.

1.1.1 Sets

We view the idea of set as a collection of objects as being a fairly obvious and quite
intuitive. For many purposes we want to single out such a collection for attention,
and it is convenient to be able to regard it as a single set. Usually we name a set
by associating with some meaningful label so that later on we can easily refer to
it. The objects which have been collected into the set are then called its members ,
or elements, and this relationship of membership is designated by the “included in”
symbol €. Thus, a € X is reads as ‘a is a member of the set X’ or just ‘a is in the
set X .

An important point worth stressing here is that everything we can know about a
set is provided by being told what members it is composed of. Put it another way,
‘two sets are equal if and only if they have the same members’. This is referred to as

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 3
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009
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the axiom of extensionality since it tells us that how far a set ‘extends’ is determined
by what its members are.

The other main principle of set formation is called the axiom of comprehension,
which states that ‘for any property we can form a set containing precisely those
objects with the given property’. This is a powerful principle which allows us to
form a great variety of sets for all sorts of purposes. Unfortunately, with too full an
interpretation of the word ‘property’ this gives rise to the Russell’s paradox: Let the
property p(x) be x ¢ x, that is, ‘x is not a member of itself” and R be a set containing
precisely those objects with the property p(x). This means that for every y, y € R if
and only if y ¢ y. If this is true for every y, then it must be true when R is substituted
for y, so that R € R if and only if R ¢ R. Since one of R € R and R ¢ R must hold,
we arrive at an obvious contradiction which is the crux of the Russel paradox. This
means that the axiom of comprehension must be restricted in some way and for most
purposes we encounter there is no difficulty to accomplish that.

There are several quite different ways of specifying sets. In general we enumerate
the elements of the set by including those in curly brackets {}. If the number of
elements forming the set is not large, those can be explicitly listed in entirety. For
example, {7, 8, 9, 10} is a set with four members (i.e., a set containing precisely
those objects with the property: ‘the natural number between 6 and 11). Often a set
could be listed in this manner, but this could be time consuming. One may use a dot
notation . . . to indicate what the missing elements are, provided that this mechanism
is clearly spelled out or is fully understood. Thus the set {1, 2, 3, 4,...,1000} is the
set of all integers from 1 to 1000 inclusive. In other cases we are not at position to
list the entire set, for the reason that it is infinite, so if we are to use this form of
listing, dots are essential. For instance, the set {2, 3, 5,7, 11, 13, 17, 19,... } is the
set of all prime numbers, which is an infinite set. We are assuming that it is clear
which particular set we are intended in on the basis of the elements actually listed.

Since problems often arise when making attempts to list all the members of a
set, it is better to use a defining property to specify it where possible. As we hinted,
there is a definite ambiguity in defining P by the implied listing above, and the same
set {2,3,5,7,11, 13,17, 19,... } may be better expressed as

{n|n is a positive prime number},

which we read as ‘the set of all n such that n is a prime number’. Here the spec-
ification of the set is totally unambiguous. The use of the notation is justified by
the axiom of comprehension: here the property is ‘n is a prime number’, and the
notation tells us to collect together all those numbers fulfilling the property-which
by the axiom of comprehension, is a set.

We first need to define formally the following two relationships, which allow
us to order and equate sets: we say that the set A is contained in the set B or is a
subset of B (or B contains A) and denote this as A C B (or B D A) if every element
x in A is also in B. Symbolically, we can write this statement as x € A = x € B,
where the symbol ‘=’ is read as ‘implies’. The statement A = B is equivalent to the
two statements A C B and B C A. Symbolically, A =B < A C B and B C A, where
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symbol ‘<’ reads ‘if and only if’. If A C B and A # B we write A C B and say that
A is a proper subset of B . Alternatively, we can write B D A.
Given any two sets A and B, we have the following elementary set operations:

Union: The union of A and B, written A U B, is the set of elements that belong to
either A or B or both. Symbolically,

AUB={x|x€AorxecB}.

Intersection: The intersection of A and B, written A N B, is the set of elements that
belong to both A and B. Symbolically,

ANB={x|x€Aandx € B}.

Complementation: The complement of the set A, written A’, is the set of all ele-
ments that are not in A. Symbolically,

A ={x|x¢ A}.
We begin our discussion with a brief survey of some maps and equivalence rela-

tions. Prior to that we list follows.

Empty set: We denote by & the set without any members. That there is only one
such set follows from the axiom of extensionality, in a vacuous way. When we know
what members a set has, that set is then completely determined.

Power set: The set of all subsets of a set X is called its power set, written 2%,
Symbolically,

2X={y |y CX}.
If X has n members, then 2X has 2" members.
Difference: For two sets X and Y, the difference set of X and Y is the set of all
members of X which are not in ¥, written X — Y. Symbolically,
X—-Y={z|z€Xandz¢7Y }.
Disjointness: Two sets X and Y are said to be disjoint if their intersection is empty,
e, XNY =02.

Partition: Let S be a set and I" be a collection of non-empty subsets of S. I' is called
a partition of S if the union of the sets in I" is the whole of S and distinct sets in I
are disjoint. Symbolically,

UserA=SandANB=g forA,Bel’ ,A#B.
Each subset A in the partition I is called a block of I".

Cardinality: The number of members of the set X is denoted by |X|. This definition
makes sense only if X is finite (that is consists of a finite number of elements).

The elementary set operations can be combined, somewhat akin to the way ad-
dition and multiplication operations can be combined. As long as we are careful in
doing that, we can treat sets as if they were numbers. We can now state the following
useful properties of set operations.
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Theorem 1.1. For any three sets A, B, and C, the following assertions hold:

1. AUB=BUA ANB=BNA; ( Commutativity )
2. AU(BUC)=(AUB)UC,AN(BNC)=(ANB)NC; (Associativity)
3. AN(BUC)=(ANB)U(ANC), AU(BNC)=(AUB)N(AUC);(Distributive Laws)
4. (AUB)=A'NB,(ANB) =A"UB. (DeMorgan’s Laws)

Proof. The proof of most of this theorem is left as a list of exercises. To illustrate
the underlying technique, however, we will prove the Distributive Law: AN (BN
C)=(AnB)NC.

To prove that two sets are equal, it must be demonstrated that each set contains
the other. Formally, then

AN(BUC)={x|x€Aandx € (BNC)};
ANB)U(ANC)={x|x€ANBorxe ANC }.

We first show that AN (BUC) C (ANB)U(ANC).Letx € (AN(BUC)). By the
definition of intersection, it must be that x € (BUC), that is, either x € B or x € C.
Since x also must be in A, we have either x € (AN B) or x € (ANC); therefore,

X E((ANB)U(ANC)),

and the containment is established.
Now assume x €(ANB)U(ANC)). This implies thatx € (ANB) orx € (ANC). If
x € (ANB), then x is in both A and B. Since x € B, x € (BUC) and thus x € (AN (BU
C)).If, on the other hand, x € (ANC), the argument is similar, and we again conclude
that x € (AN (BUC)). Thus, we have established (ANB)U(ANC))C AN (BUC),
showing containment in the other direction and, hence, proving the Distributive Law.
O

The operations of union and intersection can be extended to finite or infinite collec-
tions of sets as well. If A;, A,, A3z, ..., A, is a collection of sets, then

UAi = UlgignAi = {x|x € A; for some i =1,2,...,n},
i=1

n
ﬂ]A,- = ﬂlggnA,- ={x[x€A; foralli =1,2,...,n}.

If I is an index set (a set of elements to be used as indices) and A;, i € 1, is a collection
of sets, then the operations of the union and intersection of the sets are as follows:

UieIAi = {x|x € A; for some i €I},

ﬂieIA,- ={x|x€A; forallicl}.
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The index set I can be any finite, infinite, or uncountable set. For instance, let I={1,
.,n}. Then

L—JlAi - UIE{I 2,..., A” ﬂA ﬂie{lﬁzv"ﬁn}Ai.

i=1

If the index set I={A}, A2, ..., A, }, then

LJ]A UEIA” ﬂA ﬂtEI i
=

For example, we take the index set I'={all positive real numbers} and A, =
(0,a) = {x | 0 <x < a}, then Uyer Ay = (0,0) is an uncountable union. For any
collection of sets I and the set B, the distributive laws carry over to arbitrary inter-
sections and unions:

Bn(|JA)=J(BnA), BU([)A)=[)(BUA)

Aell Aell Aell Aell

The proofs of them are left as exercise.
Let A and B be two sets. The Cartesian product set of A and B is the set of pairs
(a,b),a € A, b € B, written A x B. Symbolically, A x B= {(a,b) | a € A,b € B}.
The sets A and B need not be distinct. In the set A x B, the elements (a, b) and (c,
d) are regarded as equal if and only if @ = ¢ and b = d. It is important to extend the
notion of Cartesian product of two sets to the product of any finite number of sets.

Y
If S1, So, ..., S, are any sets, then [] S; or S| X S ... xS, is defined to be the set
i=1

of r-tuples (s1, 2, ..., sr) where the ith component s; € S;. Equality is defined by

(Slss2, ---,Sr)z (615627 ""er)

if and only if 5; = e; for every i. If all the S; = S then we write S” for [T} <;<,Si.

The disjoint union of I and J is a kind of union of 7 and J in which every element
in I and every element in J are always regarded as different elements,denoted as
ITUJ. Thatis, IUJ = (I x {1})U(J x {2}).

1.1.2 Relations

We say that a binary relation is defined on a set S, if given any ordered pair (a, b)
of elements of S, we can determine whether or not « is in the given relation to b.
For example, we have the relation of order “ < in the set of real numbers. Given
two real numbers a and b, presumably we can determine whether or not a < b. An-
other order relation is the lexicographic ordering of words, which determines their
position in a dictionary. Still another example of a relation is the first-cousin rela-
tion among people (a and b have a common grandparent). To abstract the essential
element from these situations and similar ones, we are led to define in a formal way
a binary relation R on a set S to be simply any subset of the product set S x S.
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Definition 1.1. Let S be a set. R is called a binary relation on S if R C § x S. For
a,b € S, if (a,b) € R, then we say that “a is in the relation R to b” or “a and b have
the relation R”; otherwise, “a is not in the relation R to b” or “a and b have not the
relation R”.

Definition 1.2. Let S be a set. A binary relation R on S is called an equivalence
relation if the following conditions hold for any a,b,c in S:

1. (a,a) €R (reflexive property)
2. (a,b) eR= (b,a) €R (symmetry)
3. (a,b) €Rand (b,c) e R= (a,c) ER (transitivity)

An example of an equivalence relation is obtained by letting S to be the set of points
in the plane and defining (a,b) € R if a and b lie on the same horizontal line for
a,b € S. Another example of an equivalence relation R on the same S is obtained by
stipulating that (a,b) € R is a and b are equidistant from the origin O.

Theorem 1.2. An equivalence relation R on the set S determines a partition I' of S
and a partition I" on S determines an equivalence relation R on S.

Proof. First, suppose the equivalence relation R is given. If a € § we let
R(a) = {b € S|(a,b) € R}.

We call R(a) the equivalence class relative to R determined by a. Since (a,a) € R,
a € R(a), hence every element of S is contained in an equivalence class and so
UgzesR(a) = S. We note next that R(a) = R(b) if and only if (a,b) € R. First, let
(a,b) € Rand let ¢ € R(a). Then (c,a) € R and so, by condition 3, (¢,b) € R. Then
¢ € R(a). Then R(a) C R(b). Also, by condition 2, (b,a) € R and so R(b) C R(a).
Hence R(a) = R(D). Conversely, suppose R(a) = R(b). Since a € R(a) = R(b) we
see that (a,b) € R, by the definition of R(b). Now suppose R(a) and R(b) are not
disjointand let ¢ € R(a) NR(b). Then (¢,a) € Rand (c,b) € R. Hence R(a) =R(b) =
R(c). We therefore see that distinct sets in the set of equivalence classes are disjoint.
Hence {R(a)|a € S} is a partition of S.

Conversely, let I" be any partition of the set S. Then, if a € S, a is contained in one
and only one A €I". We define a relation Ry by specifying that (a, ) € Ry if and only
if a and b are contained in the same A €I". Clearly this relation is reflexive, symmet-
ric, and transitive. Hence Ry is an equivalence relation. It is clear also that the equiv-
alence class R(a) of a relative to Rr is the subset A in the partition I" containing a.
Hence the partition associated with R is the given I". It is equally clear thatif Ris a
given equivalence relation and the partition A=R(a)|a € S}, then the equivalence re-
lation R, in which elements are equivalent if and only they are contained in the same
R(a) is the given relation R. O

If R is an equivalence relation on S, the associated partition I' = {R(a)|a € S} is
called the quotient set of S relative to the relation R, written S/R . We emphasize
again that S/R is no a subset of S. In the quotient set S/R, each equivalence class
R(a) is an element of S/R, R(a) and R(b) are the same element if (a, b) € R.
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Example 1.1. Let Z be the set of all integers. On the Cartesian product set (or briefly
product set) Z x (Z—{0}), the binary relation R is defined as follows: for (a,b),
(c.d) € Zx (Z-{0}),

((a,b), (c,d))€ R < ad = bc, where ad and bd are the multiplication of the num-
bers.

It is obvious that ((a,b), (a,b)) € R and ((a,b),(c,d)) € R= ((c,d),(a,b)) € R.
If ((a,b),(c,d)) € R, ((c,d), (e,f)) €R, then ad = bc,cf = de. We have adf =
bef = bde. Since d # 0, hence af = be and ((a,b), (e, f)) € R. Therefore R is an
equivalence relation on Z x (Z—{0}). If for each (a,b) € Z x (Z—{0}), (a,b) rep-
resents a rational number a/b, then any (c,d) in the equivalence class relative to R
determined by (a,b) represents the same rational number a/b and (Z x (Z— {0}))/R,
the quotient set of Z x (Z— {0}) relative to the relation R is the set of all rational
numbers.

1.1.3 Maps

Let A, B be two sets given, a map of A into B is a correspondence rule ¢ such that
Va € A, there exits a @’ € B that a’ corresponds to a. ' is called the image of a under
¢, denoted by @(a); a is called the inverse image of d’. The set A is called domain
of ¢ and the set B co-domain (range) of ¢. Usually, the above facts are denoted by

Q:A— B,a—d = ¢(a)

If S is a subset of A, then we write ¢(S)={¢(a)| a € S} and call this the image of
S under @. In particular, we have @(A), which is called the image (or range) of the
map. We will denote this also as Im¢. If T C B, the subset

¢ (T)={x]x€Aand ¢(x) €T}

of A is called completely inverse image of T under ¢. Fort € B,

¢~ (t)={x|x€Aand ¢(x) = 9(1)}.

It is clear thatg ' (T)=U,cr @ ' (1).

If A is a subset of A and ¢ is a map of A into B, then we get a map of A| to B by
restricting the domain to A;.This map is called restriction of ¢ to A; and denoted
by @|A;. Turning things around we will say that a map ¢ of A to B is an extension
of the map y of Ay to B if y=0|A;.

Two maps @: A — B and y: C — D are said to be equal (denoted p=y) if and
only if A=C, B=D and ¢(a)=y/(a) forany a € A. A map ¢: A — B is called surjective
if Im@=B, that is, if the range coincides with the co-domain. ¢: A — B is injective if
distinct elements of A have distinct images in B, that is, if a; # a, = ¢(a1) # ¢(a2).
If ¢ is both injective and surjective, it is called bijective (or ¢ is said to be one-to-one
correspondence between A and B).
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Example 1.2. For sets A = {a, b, ¢} and B ={1,2,3}, we define the maps f and g
as

fra— 1,b—1,c—2
gra— 1,b—2

Then f is a mapping A into B, Imf=f(A)={1, 2}, and f~'(1)={a, b}. However g
is not a mapping A into B, because there exits no image of ¢ under g. Clearly, f is
neither a surjective nor a injective.

Example 1.3. Let Z and N be integers set and natural number set respectively, we
define the maps ¢, y and v as following

¢0:Z— N v:Z—Z v:Z—Z
n— |n|+1 n+—2n n—n+1

Then ¢ is a surjective, y is a injective, ¥ is a bijective, and y # 7.

Let ¢: A — B and y: B — C. Then we define the map y: A — C as the map having
the domain A and the co-domain C, by definition

(yo)(a) =y(p(a)) (VacA).

We call this map the composite (or product, or sometimes resultant) of ¢ and y (Y
following ¢). It is often useful to indicate the relation Y=y ¢ by saying that the

A ¢ B

-
—>>

C

is commutative. Similarly, we express the fact that y =0y for ¢: A — B, w: B — D,
¥: A — C, 6: C — D by saying that the rectangle triangle is commutative. Compo-
sition of maps satisfies the associative law: if p: A — B, y: B— C, and v: C — D,
then y(y@)=(yy)@. We note first that both of these maps have the same domain A
and the same co-domain D. Moreover, for any a € A we have

Y(yo))(a) = y((yo)(a) = y(y(¢(a)))
((yw)o)(a) = (yw)(9(a))= v(v(e(a)))
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A ® > B

Y v
Y SY

C S D

so Y(w o) and (yy)@ are identical. This can be illustrated by shown the above dia-
gram.

The associative law amounts to the statement that if the triangles ABC and BCD
are commutative then the whole diagram is commutative.

Example 1.4. For any set A one defines the identity map 14 (or 1 if A is clear) as

14:A—A
a—a Va€A).

This map is a mapping A into A.

We now state the following important results:

(1) If ¢: A — B one checks immediately that 1gp=@14.
(2) : A — Bis bijective if and only if there exists a map y: B — A such that yo=14
and oy=13.

The map  satisfying wo=1, and @y=1g is unique since if y': B — A satisfies
the same conditions, y/¢=14 , @y/=1p, then

v/ =1y = (yo)y' =y(oy) =ylz=y.

We will now denote y as ¢! and call this the inverse of the (bijective) map ¢.
Clearly the foregoing result shows that ¢! is bijective and (¢~!)~'=¢.

As a first application of the criterion for bijectivity we give a formal proof of a
fact which is fairly obvious anyhow: the product of two bijective maps is bijective.
For, Let ¢: A — B and y: B — C be bijective. Then we have the inverses ¢ ~': B — A
and y~!: C — B and the composite map ¢ 'y~ !': C — A. Moreover,
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(wo)(o 'y ) =((yp)e Yy ' = (v(op )y ' =yy ' =lc.

Also,
(@ 'y ) (we)= (v (ye)=p (v ' v)p)=0 ' p=14.

Hence ¢ 'y~ ! is an inverse of y¢ , that is

(vo) '=¢ 'y! (1.1)

This important formula has been called the “dressing-undressing principle”: what
goes on in dressing comes off in the reverse order in undressing (e.g., socks and
shoes).

The proofs of the following statements remain as exercises. Let f be a map of X
into Y and A, B be any subsets of X and U, V be any subsets of Y. Then the following
assertions hold.

(Wf(AUB) = f(A)Uf(B), f(ANB) C f(A)Nf(B);
Qf'wuv) =L oyur YV, i wonv)C o) nYv).

It is important to extend the notion of the Cartesian product of two sets to the
product of any finite or infinite number of sets using concept of mapping. Consider
to the Cartesian product A; x A, of two sets Ay, Ay, where I={1, 2} is subscript set
(or indexing set). For every (a1, az) € A| X A, there exists a unique map ffrom
Iinto A1 UA; such that f(1)=a; € Ay, f(2)=ay € A,. Inversely, for every map f: I —
A1 UA; which satisfies f(1)=a; € Ay, f(2)=a, € A,, there exists a unique element
(a1, az) in A} X A, such that a;=f(1), ax=f(2). Therefore, there exists an one-to-
one correspondence between the maps satisfied above properties and elements in
A| X Aj. It follows that, we can extend the notion of the Cartesian product as follows:

Definition 1.3. Let {A;|i € I} be family of sets and I (# @) indexing set (finite or
infinite). The Cartesian product of A; (i € I) is defined as

{fIf : 1= UictAi,Vi € 1, f(i) € A},
and denoted by [];c;A;.

It is clear that f € [];c;A; is determined by image of {f(i)|i € I}. If a;=f(i), we
always consider the fas the set {g;|i € I}. Thus, when I={1, 2, ..., n}, we have

HAi: {(a1,a2,...,an)|ai € A;;i=1,2,...,n}.

iel

Let A be a set and A # &, the map fof A x A into A is called an algebra operation
(binary operation or binary composition) of A, that is, Va, b € A, there exists a
unique element ¢ in A such that f(a, b)=c, denoted by a-b=c (or ab=c). For example,
in 24, the power set of a set A, we have the algebra operation N, U (i.e., for any C,
D €24,(C, D) — CND and (C, D) — CUD). Also, let Q be the set of rational
number, then additive, subtraction and multiplication of numbers all are algebra
operations of Q, but division of numbers does not, for zero cannot be a divisor.
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The concept of algebra operations can be extended to any finite number of sets.
Let A be a non-vacuous set and »n natural numbers, then a n-ary operation of A is a
map ffromA X AX...xAtoA. An algebraic system is a non-vacuous set with n-ary
operation. For example, if “-”, “x” are binary operation of A, algebraic system A is
denoted usually by (A,-,*). Moreover, (Q,+,—, x) and (24,n,U,") are algebraic
systems.

We consider some important connections between maps and equivalence rela-
tions. Suppose ¢: A — B. Then we can define a relation Ry in A by specifying
that aRyb if and only if for a, b € A, ¢(a)=¢@(b). It is clear that this is an equiva-
lence relation in A. If ¢ € B, c=¢(a) for some a € A, then ¢~ (c)=¢~(¢(a))={ b|
¢(b)=¢(a)} and this is just the equivalence class Ry (a) in A determined by the ele-
ment a. We shall refer to this subset of A also as the fiber over the element c€Ime.
The set of these fibers constitutes the partition of A determined by R¢ that is, they
are the elements of the quotient set A/R,, .

In the general, ¢: A — B defines amap ¢* of A/R,, into B: abbreviating Ry (a) =
¢ '(¢(a)). We simply define ¢* by writing down

¢*(Rp(a)) = ¢(a) (1.2)

Since Ryp(a) = Ry (b) if and only if ¢(a) = ¢(b), it is clear that the right-hand side
is independent of the choice of the element a in Ry () and so, indeed, we do have a
map. We call ¢* the map of A/R,, induced by ¢. This is injective since ¢*(Ry(a))
= @*(Ry(b)) gives @(a) = ¢(b) and this implies Ry(a) = Ry(b), by the definition
of Ry. Of course, if ¢ is injective to begin with, then aRyb (¢(a) = @(b)) implies a
= b. In this caseA /R, can be identified with A and ¢* can be regarded as the same
as ¢.

Letv:A— A/R, beamap forany a € A, v(a) = Ry(a) (i.e., the natural map of
A to A/Ry ). We now observe that ¢*(v(a)) = ¢*(Ry(a)) = ¢(a). Hence we have
the factorization of the given map as a product of the natural map v of A to A/R,

=0V (1.3)

and the induced map ¢* of A/R, to B. The map ¢* is injective and v is surjective.
The relation (L3) is equivalent to the commutativity of the diagram A/R, to B.
The map ¢* is injective and Vv is surjective. The relation (I3)) is equivalent to the
commutativity of the diagram.

Since Vv is surjective it is clear that Im¢g = Im¢*. Hence @* is bijective if and only
if ¢ is surjective. We remark finally that ¢* is the only map which can be defined
from A/R to B to make the above commutative diagram. Let y: A/R, — B satisfy
yv = . Then y(Ry(a)) = y(v(a)) = ¢(a). Hence y = ¢*.

There is a useful generalization of these simple considerations. Suppose we are
given a map ¢: A — B and an equivalence relation Ron A. We shall say that ¢ is
compatible with R if aRD for a, b in A implies ¢@(a) = ¢(b). In this case, we can
define a map ¢* of A/R to B by ¢* : R(a) — ¢(a). Clearly this is well defined, and
if v denotes the natural surjection a — R(a), then ¢ = @*v, that is, we have the
commutativity.
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Vi

In this case the map ¢* need not be injective. In fact @* is injective if and only if
the equivalence relation R = Ry. We now call attention to the map v of A into A/E
defined by

vV:a— R(a).

We call this the natural map of A to the quotient set A/R. Clearly, Vv is surjective.

1.1.4 Countable Sets

A set is finite if and only it can be put into one-to-one map with a set of the form
{p|lp € N and p < g} for some g € N, where N is the set of non-negative integers.

Definition 1.4. A set A is called countably infinite if and only if it can be put into
one-to-one map with the set N of non-negative integers; A set is countable if and
only if it is either finite or countably infinite, otherwise it is called uncountable .

Theorem 1.3. A subset of a countable set is countable.
Its proof remains as an exercise.

Theorem 1.4. If <7 is a countable family of countable sets, then Uyc A is count-
able.

Proof. Because <7 is countable there is a one-to-one map F whose domain is a
subset of N and whose range is <. Since F(p) € </ is countable for each p in
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N, it is possible to find an one-to-one map G, on a subset of {p}xN whose range
is the countable set F(p). Consequently there is a one-to-one map on a subset of
N x N whose range is Ugc A, and the problem reduces to showing that N X N is
countable. The key to this proof is the observation that, if we think of N X N as lying
in the upper left to lower right contain only a finite number of members of N x N.
Explicitly, for n in N, let

B,={(p,q) | (p,q) ENxN,and p+q=n}.

Then B,, contains precisely n+ 1 points, and the union U,czB,, is N X N. A one-to-
one map on N with range N X N may be constructed by choosing first the members
of By, next those of By and so on. The explicit definition of such a function is left as
an exercise. a

Corollary 1.1. The set Q of all rational numbers is a countable set.
Its proof remains as an exercise.
Corollary 1.2. The set R of all real numbers is uncountable.

Proof. Before we prove R is uncountable, we first prove that the interval (0, 1) is
uncountable. We suppose that the set of real numbers in (0, 1) is countable and
assume a one-to-one map has been set between the set of non-negative integers
Nand (0, 1). We indicate the correspondence the following diagram:

1 <—>0.a11a12a13a14. ..
1 <—>0.a21a22a23a24. ..

1 <—>0.a31a32a33a34. ..

Where each a;; represents a digit, i.e., 0< a;; <9, and where it is assumed that where
we have two alternate choices for the decimal expression of real number, as for ex-
ample in the case where 2/10 could be written either as 0.2000. .. or as 0.1999. .., we
always choose the one that ends in a tring of zeros. Now this one-to-one correspon-
dence is such that to every positive integer there correspondence some real number
in (0, 1) and conversely to each real number in (0, 1) there correspondence some
integer. Consequently the infinite list of decimals given above is complete in the
sense that every real number of (0, 1) occurs somewhere in the list. If , then, we can
produce a real number in (0, 1) which is not in this list we shall have a contradiction,
and this is precisely what we set out to do. We define b=0.b1b,b5. . . as follows: if a;;
is 5 let b;=6, if a; #5 let b;=5. Now it is clear that b is not equal to any one of the
decimals in our list for it differs from the nth one at the nth place. Also it is clear that
b is between 5/9 and 2/3, so that b €(0, 1). This contradiction then shows that there
cannot exist such a one-to-one correspondence between N and (0, 1), and the set of
real number in (0, 1) is uncountable. Since (0, 1) is a subset of the set of real number
R, hence R is uncountable because of Theorem [[.3 O
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1.1.5 Partially Ordered Sets, Directed Sets and Nets

The most general concept we consider in this section is that of a partially ordered
set. We recall that a binary relation on a set S is a subset R of the product set S x S.
We say that a is in the relation R to b if and only if (a,b) € R.

Definition 1.5. A partially ordered set (S, <) (simply, S) is a set S together with a
binary relation R< on S satisfying the following conditions, where fora,b € S,a <b
simply denotes (a, b) € R<:

(Da<aforanyac€S; (reflexivity)
Q)Ifa<band b <a,thena=b; (anti-symmetry)
B)Ifa<bandb <c,thena<c. (transitivity)

Also, “<”is called a partially ordered relation on set S.

Let (S, <) be a partially ordered set, and a,b € S.If a < b and a # b, then we write
a < b. Also we write a > b as an alternative forb <aanda > bforb<a.Ifa<bor
b < a, then we say that is comparable with a and b. In general we may have neither
a < b nor b < a holding for the pair of elements a, b € S, denoted by a||b, and then
we say that is not comparable or uncomparable between a and b.

Example 1.5. Let 25 be the power set of a set S. If A < B for subsets A and B means
A C B, then (S, Q) is a partially ordered set. Let N be a set of natural numbers. If
a < b for natural numbers a and b means a|b (a is a divisor of b), then (N, | ) is a
partially ordered set.

Definition 1.6. Let (S, <) be a partially ordered set. If we do havea < borb <a
for every pair (a, b), in other word, every pair (a, b) is comparable, then we call (S,
<) (simply, S) a linear ordered set (or a chain , or a totally ordered set), and call the
“<” linear (or totally) order on set S.

Example 1.6. Let N be a set of natural numbers. If a < b for natural numbers a and
b means that a is less than b or equals b, then (N, <) is a linear ordered set.

Let < be a partially ordered relation on the set S and N a subset of S, then inverse
relation <! (or > ) of <is also a partially ordered relation on S. Induced relation
<Nof<onNisa partially ordered relation on N such that for a, b € N, a <N
b < a < b. We say partially ordered set (S, g—l) and (N, <) to be dual ordered
subset of partially ordered set (S, <), respectively. If (N, <V) is a chain, that is, N
with partially ordered relation <N became a chain, then we say N to be a chain in
S. Clearly, if (S, <) is a chain, then it is dual and partially ordered subset are also
chain, respectively. Let C be a chain in S, we call C a maximal chain in S if D is a
chainin S and C C D, then C = D.

In a partially ordered set (S, <) the relation “<” can be expressed in terms of a
relation of covering . We say that a; is a cover of a; (or a; is a prime over of ay,
or aj is a prime under of ay) if a; < a; and there exists no u such that a, < u < ay,
denote by a; < aj. It is clear that a < b in partially ordered set if and only if there
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exists a sequence b = ay, ap, ..., a, = a such that each g; is a cover of a;;. The
notion of cover suggests a way of representing partially ordered set S by a diagram
(Hasse diagram). We represent the elements of S by dots. If a; is a cover of a; then
we place a; above a; and connect the two dots by a straight line. Then b < a if
and only if there is a descending broken line connecting a to b. If a and b are not
comparable, that is a||b, then no line connects a and b. Some examples of Hasse
diagrams of partially ordered sets are shown below.

<P <2

The third example, represent a totally ordered set.
We now define quasi-ordered relation which is weaker than partially ordered re-
lation.

Definition 1.7. A quasi-ordered set (S,<) is a set S together with a binary relation
R< on § satisfying the following conditions, where for a,b € S, a < b simply denotes
(a,b) € R<:

() a<a; (reflexivity)
) Ifa<band b <c,thena <c. (transitivity)

“<” is called a quasi-ordered relation on set S.

It is clear that a partially ordered relation must be a quasi-ordered relation. But the

converse statement is not always true. For example, in the set of real numbers R, we
. . !

define a binary relation < as follows

a< be|a| < |b|, (Ya,beR)
Then <’ is a quasi-ordered relation without being a partially ordered relation.

Definition 1.8. Let (S, <) be a quasi-ordered set. (S, <) is called a quasi-linear
ordered set if we do have a < b or b < a for pair of elements a,b € S.

Definition 1.9. Let (S, <) be a partially ordered set, A a non-empty subset of S, and
a € A. If we have x < a for every x € A, then a is called a maximum element of A.
If there exist no y € A such thata <y (a # y), then a is called a maximal element of
A. Dually, we can define minimum element and minimal element of A.

It is clear that a maximum (minimum) element must be a maximal (minimal) ele-
ment. But in general the converse of the result is not true. In particular, the maximum
element of the partially ordered set (S, <) (if it exists) is called identity element of
S, denoted as I or 1, the minimum element of the partially ordered set (S, <) (if it
exists) is called zero element of S, denoted as O or 0. In a partially ordered set there
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may be more than one maximal (minimal) element, but there is only one maximum
(minimum) element if it has. In virtue of the following theorem, we know that every
finite chain must have a maximal (minimal) element.

Theorem 1.5. Let (S, <) be a partially ordered set and A be a non-empty subset of
S. Then the following assertions hold:

(1) If A has maximum (minimum) element, then the maximal (minimal) element is
unique.

(2) If A is finite subset of S, then there must exist a maximal (minimal) element.

(3) IfAis a chain in S (e.g. linear ordered subset), then maximal (minimal) element
of A (if it exists) must be maximum (minimum) element.

Proof. We only present the proof of (2) here while the others are left as exercise.
Let A = {ay,ay,...,a,}, we define sequence

my,ma, ..., My

of elements in S, such that m; = a; and

a if mp_1<a
my = ke Lf my 1< (1.4)
myg_1, otherwise

It is clear that m,, is a maximal element of A. Similarly, we can prove that A has the
minimal element. g

Let (S,<) be a partially ordered set (resp. chain). If S is a finite set, then (S, <)
is called a finite partially ordered set (resp. finite chain). If not, (S,<) is called a
infinite partially ordered set (resp. infinite chain). Let (S, <) be a partially ordered
set together with maximal element / and minimal element O. Then prime over (or
cover) of O is called an atom of S, and prime under of / is called a dual atom of S.

Definition 1.10. Let D be a non-empty set and R> be a binary relation on D. For
a,b € D, a> b simple denotes (a,b) € R>. R> is said to direct the set D if it satisfies
the following conditions:

(1) if myn,p € D such that m > n and n > p, then m > p;
(2) if m € D, then m > m;
(3) if m,n € D, then there is p in D such that p > m and p > n.

We say that m follows in and n precedes m if and only if m > n.

The family of all finite subsets of a set is directed by D. A directed set is a pair
(D,>) such that > directs the set D. This sometimes called a directed system. A net
is a pair (S, >) such that S is a map and > directs Dthe domain of S, which is simply
written as {S, |n € D, >}. Anet{S, |n€D, >} isinasetAif and only if S, € A
for all n € D; it is eventually in A if and only if there is an element m of D such that,
if n € D and n > m, then S, € A; it is frequently in A if and only if for each m in D
there is nin D such thatn > mand S, € A. If {S,, | n € D, >} is frequently in A, then
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the set E of all members nof D such that S,, € A has the property: for each there is p
in E such that p > m. Such subsets of D are called cofinal . Each cofinal subset E of
D is also directed by > because for elements m and n of E there is p in D such that
p > mand p > n, and there is then an element g of E which follows p.

1.1.6 Maximal Conditions and Minimal Conditions
Let (S, <) be a partially set. We now consider the following conditions.
A. Minimal Condition: Every non-empty subset of S must have minimal elements.

B. Descending Chain Condition: For every sequence of elements {a; | i=1,2,...},
if

a>ay>...>a, >

then there exists a positive integer m such that a, = amin, n=1,2,....

C. Inductive Condition: For any property €, if

(1) Every minimal element (if it exists) has property €,
(2) ForVa,x €S, x < a, x has property € = a has property €.

Then every element in S has also property €.
The duality hold; we have

A’. Maximal Condition: Every non-empty subset of S must have maximal elements.

B'. Descending Chain Condition: For every sequence of elements {a; | i =

1,2, if

aq<am<...<a, <.

then there exists a positive integer m such that a,, = amyn, n=1,2,....

C'. Dual Inductive Condition: For any property €, if

(1) Every maximal element (if it exists) has property €,
(2) ForVa,x €S, x> a, x has property € = a has property €.

Then every element in S has also property €.
The relation among those condition terms from the following

Theorem 1.6. Conditions A, B and C (dually, Conditions A’, B' and C') are equiva-
lent for any partially set (S, <).

Proof. A = C. Let § satisfy the minimal condition (i.e. A), € be a property. The
premises of inductive condition (i.e. C) is satisfied. Let

M = {a| a € S and a has no property €},
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then M C S. If M # @, there exists a minimal element a € M by A, but a is not a
minimal element in S from the premises of inductive condition. However, if x < a
and x € P, then x ¢ M and has property €, consequently, a has also property € from
the premise (2) of inductive condition. This contradicts that a € M and M = &. Thus
inductive condition (i.e. C) holds.

C=B. Let S satisfy inductive condition (i.e. C). Definite: a(a € S) has property
¢ if and only if for every descending chain

a=ay>a;>...>2d, >

ey

there exists a positive integer m such that a,, = a,4,, n = 1,2,... . It is clear that
every minimal element (if it exists) in S has property €. Let a € S, and Vx € S, if
x < a, then x has property &, then a has property €. Consequently, every element in
S has property € by inductive condition (i.e. C), that is, descending chain condition
(i.e. B) holds.

B=-A. Let descending chain condition (i.e. B) holds. Let us suppose that minimal
condition (i.e. A) does not hold, then there exists a non-empty subset N of P such
that N has no minimal element. It is obvious that N is an infinite set. Let a; € S, then
aj is not the minimal element of N, consequently, there exists a; such that a; > a».
Since a; is not the minimal element of NV, there exists a3 such that a; >az ------ .
It follows that, there is a sequence of elements of N such that

a>a>...>ad,> ...,

and this contradicts that descending chain condition (i.e. B) holds.
Similarly, we can show that conditions A’, B’ and C’ are equivalent. O

Definition 1.11. A linear ordered set (or a chain) which satisfies maximal condition
is called a well ordered set . Its linear ordered relation is called well order.

Example 1.7. (N,>), the set of natural numbers N ordered by usually order relation
of numbers >, becomes a well ordered set.

For a well ordered set (S, <), it is easy to verify that every partially ordered subset
of S is also a well ordered set, and there exists a unique minimal element (it is also
minimum element) in S. Moreover, we have the following theorems (their proofs
are left to the reader).

Theorem 1.7. Let (S, <) be a partially ordered set. S satisfies minimal condition if
and only if every chain in S is a well ordered set.

Here, we present the axiom of choice, and line up, without proof, some theorems,
which are equivalent to the axiom of choice. They will play a fundamental role in
what follows.

Theorem 1.8. (Axiom of choice) Let P (S) = 25 — @. Then there exists a mapping
@: P« (S) — A suchthat o(T) €T for every T € Px(S).
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Theorem 1.9. (Zermelo) For any set S, there exists a linear order > such that (S, <)
is a well ordered set.

Theorem 1.10. (Hausdorff) For any partially set (S, <), every chain in S is included
in some maximal chain.

Theorem 1.11. (Kuratowski-Zorn) Let (S,<) be a partially ordered set. If every
chain in S has an upper bound in S, then every element of S is included in some
maximal element of S.

1.2 Topological Spaces

Our purpose here is to study what is ordinarily called point set topology [4]. Point
set topology is one of the fundamentals that we study the theory of topological
molecular lattices, the topology structures on the AFS structure and the applications
to the pattern recognition.

The development of general topology has followed an evolutionary development
which occurs frequently in mathematics. One begins by observing similarities and
recurring arguments in several situations which superficially seem to bear little re-
semblance to each other. We then attempt to isolate the concepts and methods which
are common to the various examples, and if the analysis has been sufficiently pene-
trating we may find a theory containing many or all of our examples, which in itself
seems worthy of study. It is in precisely this way, after much experimentation, that
the notation of a topology space was developed. It is a natural product of a continu-
ing consolidation, abstraction, and extension process. Each such abstraction, if it is
to contain the examples from which it was derived in more than a formal way, must
be tested to find whether we have really found the central ideas involved. In this
case we want to find whether a topological space, at least under some reasonable
restrictions, must necessarily be one of the particular concrete spaces from which
the notation is derived. The “standard” examples with which we compare spaces are
Cartesian products of unit intervals and metric spaces.

1.2.1 Neighborhood Systems and Topologies

In a certain sense, a neighborhood of a point x is a set of points which lie “close”
to the point. For example, you have the sets of “close friends”, “common friends”,
“friends” etc. to describe your relationship with your friends. According to the opin-
ion, the notion of a neighborhood system of a point x of the set is defined as the

following Definition [[.T3] which is abstracted from Euclidean space.

Definition 1.12. Let X be a set and .7 be a family of subsets of X (i.e., .7 C 2%).
The pair (X,.7) is call a topological space, if the following conditions hold.

(1) The union of any number of sets of .7 is again in .7
(2) The intersection of any two of sets of .7 is again in .7;
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3)XeT;
4 oe 7.

It is frequently convenient to say simply that X is a topological space, rather than
having to specify the topology, .7, and having to write (X, .7), since, more often
than not, we are interested not so much in a particular topology, but further in prop-
erties that any topology still possesses. We shall thus feel free to omit any specific
mention of the topology unless it is important to the context to emphasize a partic-
ular topology, or to distinguish between different topologies.

The members of the topology 7 are called open relative to 7, or 7 —open, or
if only one topology is under consideration, simply open sets. LetX be a set. By
Definition 1.2.1, we know that (X, .7) is a topological space if 7 = {X,@}. This is
not a very interesting topology, but it occurs frequently enough to deserve a name;
it is called the indiscrete (or trivial) topology for X, and (X, 7) is then an indiscrete
topological space ). At the other extreme is the family of all subsets of X, .7 = 2%,
which is the discrete topology for X, and (X, 77) is then a discrete topological space.
If Zis the discrete topology, then every subset of the space is open.

The discrete and indiscrete topologies for a set X are respectively the largest and
the smallest topology for X. If .7 and % are topologies for X, then, following
the convention for arbitrary families of sets, 7] is smaller than .% if and only if
T1 € P. In other case, it is also said that .7} is coarser than .75 and .% is finer
than 7. The space (X,.7) is called a finite topological space if X is a finite set.
Otherwise, (X,.7) is called an infinite topological space.

Definition 1.13. Let X be a set and (X,.7") be a topological space. A set U C X is
called a neighborhood of a point x € X if and only if there exists an openset V €
such that x € V C U. The family of all neighborhoods of the point x is called the
neighborhood system of x, written 7.

A neighborhood of a point need not be an open set, but every open set is a neigh-
borhood of each of its points. Each neighborhood of a point contains an open neigh-
borhood of the point. The following theorem shows that a topology for a set X can
be generated by the neighborhood systems of the points in X.

Theorem 1.12. A set is open if and only if it contains a neighborhood of each of its
points.

Proof. The union U of all open subsets of a set A is surely an open subset of A. If A
contains a neighborhood of each of its points, then each member x of A belongs to
some open subset of A and hence x € U. In this case A = U and therefore A is open.
On the other hand, if A is open it contains a neighborhood (namely, A) of each of its
points. a

Example 1.8. Let R be the real line. The usual topology for R is the family of all
those sets which contain an open interval about each of their points (e.g., (a,b) =
{x |a < x < b}). Define
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U, ={U|x € (a,b) C U for some a,b € R,a < b}.

Then %, is a neighborhood system at x and generates the usual topology for R
according to Theorem [[.12]

Example 1.9. Let X be a set, and let ,={U | x € U, U €2X} for each x € X, then
% is a neighborhood system at x, and the topology thus generated is the discrete
topology for X.

Example 1.10. Let X be a set, and let %, = {X} for each x € X, then %, is a neigh-
borhood system at x, and the topology thus generated is the trivial (indiscrete) topol-
ogy for X.

Theorem 1.13. If % is the neighborhood system of a point, then finite intersections
of members of %, and each set which contains a member of % belongs to it.

Proof. Tf U and V are neighborhoods of a point x, there are open neighborhoods Uy
and Vj contained in U and V respectively. Then U NV contains the open neighbor-
hood Uy NVy and is hence a neighborhood of x. Thus the intersection of two (and
hence of any finite number of ) members of U is a member. If a set U contains a
neighborhood of a point x it contains an open neighborhood of x and is consequently
itself a neighborhood. a

1.2.2 Limit Points Closure of a Set and Closed Sets

Now we introduce first the notions of limit points and the derived set of a set, via
the following manner.

Definition 1.14. Let X be a topological space and A be a subset of X. Then the point
x € X is said to be a limit point (sometimes called accumulation point or cluster
point ) of A, provided that for every U € %,, U NA contains a point y # x.

Example 1.11. Let us study the real plane.

1. In the real plane with the usual topology, any point of the form (0, y) is a limit
point of the set D = {(x,y) | x> 0}.

2. On the real line with the usual topology, a as well as b is a limit point of the
interval (a, D).

3. Let X be a nonempty set with the discrete topology, let A C X and let x € X, then
x is not a limit point of A.

Definition 1.15. Let X be a topological space and let A C X. The derived set of A,
written A9, is the set of all x € X such that x is a limit point of A.

Example 1.12. On the real line with the usual topology, let A = (a,b), then A? =
[a,b]. Let B={x | 0 <x < 1orx=2}, then B = [0, 1]. By Definition. [[LT4 and
Definition. [1.13l it is easy to prove the following theorem.
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Theorem 1.14. In any topological space, the following assertions hold.

(1) ifA C B, then AY C BY.
(2) (2 =2.

The closure of a set A in a topological space X has a number of interesting properties.
They are presented though the following definition.

Definition 1.16. Let X be a topological space, and let A C X. The closure of A,
written A, is the set A UA?.

It is clear that the intersection of the members of the family of all closed sets con-
taining A is the closure of A.

Theorem 1.15. Let X be a topological space, and let A C X, then A~ =A".

Proof. By Definition[[TA~~ = A~ U (A~ )?. We show that (A~)? CA~. Letx €
(A7)?, and suppose x ¢ A~ = AUAY, then x ¢ A and further, since also x ¢ A9, by
Definition 1.2.3 there exists some U € %, such that U NA = &. Select O, open,
such that x € O C U, then O € %,, and further since ONA C U NA = &, we have
ONA = &. Now since x € (A_)d, ONA~ contains some point y # x. Thusy € A~
and since ONA = @, y € A?. Since O is open, O € %, by Definition[I[.T4] thus there
exists z # y such that z € ONA. This, however, contradicts ONA = &, consequently
x € A~. This completes the proof that (A~)¢ C A~ Finally A=~ = A~ U (A ™), since
(A)CA. ]

Theorem 1.16. Let X be a topological space and let A C X and B C X, then the
following assertions hold.

(1) IfACB, then A~ C B
(2) (ANB)" CA NB".
(3) (AUB)" =A~UB".

Proof. (1) If A C B, then AY C BY by Theorem[[.T4l Consequently, A~ = AU A4 C
BUBY=B".

(2)Letxe€ (ANB)~,andlet U € %,. Then U N(AUB) # &. Consequently, neither
UNAnor UNB is empty, and x € A~ and x € B™, hence x € A~ N B~ . Therefore
(ANB)"CA NB".

(3) Since A C AUB and B C AU B, we have by part (1) of this theorem that
A~ C(AUB) and B~ C (AUB) ,thatisA~ UB~ C(AUB) . Now letx€ (AUB) ™,
and suppose x ¢ A~ and x ¢ B, then there exist U, V € %, such that UNA = &
and UNB=@.Now UNV € %, and

UNVN(AUB)=(UNVNA)UUNVNB)C (UNA)U(VNB) =g,

but this contradicts x € (A UB)~. Consequently either x € A~ or x € B~, when x €
A~ UB7, and finally AUB)” =A~ UB™. a

Theorem 1.17. Let X be a topological space, and let A C X be open. Let B C X,
then ANB~ C (ANB)~.
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Proof. Let
x€ANB =AN(BNBY) =(ANB)U(ANBY)

If x € ANB, then
x€(ANB)UANB)Y =(ANB)~

Assume x € ANBY. Since A € %, if U € %, ANU € %, by Theorem [[.14 Now
since x € BY, (ANU) N B contains a point y # x. Thus for each U € %, UN(ANB) =
(ANU)NB contains a point y # x, whence

xe€(ANB)Y C(ANB)~

In either case, x € (ANB)~, whence ANB~ C (ANB)~. O

It is perhaps reasonable to ask at this point if there are sets which already contain
all their limit points, and if such sets have any interesting and distinctive properties.
We now set about investigating some of the properties of such sets.

Definition 1.17. Let X be a topological space, let A C X, then A is said to be closed
providedA =A".

Remark 1.1. In any space, the sets & and X (the whole space) are invariably closed,
and for that matter also invariably open.

It is important to remember that open and closed are not antithetical for sets in a
topological space, namely that a set may be both open and closed at the same time,
which it may be open but not closed, that it may be closed but not open, and that it
may be neither open nor closed. Consequently we have that, if we are in a position
to want to prove a set closed, it will do us no good whatever to prove it is not open.
It is, of course, equally true that it does no good to prove a set is not closed if our
object is to prove that it is open. However, open and closed sets are related as is
shown in the following

Theorem 1.18. A set A, in a topological space X, is closed if and only if its comple-
ment, A', is open.

Proof. Let A be closed, and letx € A’. Since x ¢ A = A, there exists a neighborhood
U € %, such that UNA = &. Consequently, U C A’, when by Theorem[[.14 A’ € %,
and by Theorem[T.12] A’ is open.

Conversely, let A’ be open, and let x € A~. Suppose that x € A’, then by Definition
[L13L A’ € %, and so A'NA # @. This is clearly a contradiction, consequently x € A,
and A~ C A. However, since for any set A C A~, we have A =A™, and A is closed.

O

A simple application of this theorem, together with DeMorgan’s rule, establishes
the following

Corollary 1.3. In any topological space, the following assertions hold.

(1) The intersection of any number of closed sets is closed, and
(2) The union of any two (hence any finite number) of closed sets is closed.
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Proof. (1) Let A be an indexing set, and for each o € A let Co. be closed. Further let
C =NgeaCa,then C' = (NgeaCq) = UgeaCly, and since by Theorem[LI8levery Cl,
is open, s0 also is UyeaCy, by Definition[[L12] Thus CJ, is open, again by Theorem
Cis closed. O

1.2.3 Interior and Boundary

Here is another operator defined on the family of all subsets of a topological space,
which is very intimately related to the closure of a set.

Definition 1.18. A point x of a subset A of a topological space is called an interior
point of A if and only if A is a neighborhood of x, and the set of all interior point of
A is said to be the interior of A, denoted A°.

Theorem 1.19. let A be a subset of a topological space X. Then the interior A° of A
is open and is the largest open subset of A. A set A is open if and only if A = A°. A
set of all points of A which are not points of accumulation of X — A is precisely A°.
The closure of X — A is X — A°.

Proof. 1f a point x belongs to the interior of a set A, then x is a member of some open
subset U of A. Every member of U is also a member of A°, and A consequently
contains a neighborhood of each of its points and is therefore open by Theorem
If V is an open subset of A and y € V, then A is a neighborhood of y and so
y € AY. Hence A” contains each open subset of A and it is therefore the largest open
subset of A. If A is open, then A is surely identical with the largest open subset of
A; hence A is open if and only if A = A%, Assume that x is a point of A such that
is not an accumulation point of X —A. There is a neighborhood U of x which does
not intersect X — A and is therefore a subset of A. Then A is a neighborhood of x
and x € A%, On the other hand, A° is a neighborhood of each of its points and A°
does not intersect X — A, so that no point of A? is an accumulation point of X — A.
Finally, since A consists of the points of A which are not accumulation points of
X — A, hence the complement of A?, X — A, is precisely the set of all points which
are either point of X — A or accumulation points of X — A; that is, X —AQ is the
closure of X — A by Definition[[.16 ]

The preceding result can be stated as (A°)’=(A’)~, and, it follows, by taking comple-
ments, that A°=((A’)~)’. Thus the interior of A is the complement of the closure of
the complement of A. If A is replaced by its complement it follows that A~=((A")?’,
so that the closure of a set is the complement of the interior of the complement. If
X is an indiscrete space the interior of every set except X itself is empty. If X is a
discrete space, then each set is open and closed and consequently identical with its
interior and with its closure. If X is the set of real numbers with the usual topology,
then the interior of the set of all integers is empty; the interior of closed interval is
the open interval with the same endpoints. The interior of the set of rational numbers
is empty, and the closure of the interior of this set is consequently empty.
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Definition 1.19. Let A be a set of a topological space X. The set of all points which
are interior to neither A nor X — A is said to be the boundary of A. Equivalently, x is
a point of the boundary if and only if each neighborhood of x intersects both A and
X —A.

It is clear that the boundary of A is identical with the boundary of X —A. If X is
indiscrete space and A is neither X nor empty, then the boundary of A is X, while
if X is discrete space the boundary of every subset is empty. The boundary of an
interval of real numbers, in usual topology for the real numbers, is the set whose
only members are the endpoints of the interval, regardless of whether the interval
is open, closed, or half-open. The boundary of the set of rational numbers, or the
set of irrational, is the set of all real numbers. It is not difficult to discover the
relations between boundary, closure, and interior. The following theorem, whose
proof remains as an exercise, summarizes the facts.

Theorem 1.20. Let A be a subset of a topological space X and let b(A) be the
boundary of A. Then b(A) =A~N(X —A)" =A~ —A% X —b(A) =AU (X —A)°,
A~ =AUb(A) and A’ = A —b(A). A set is closed if and only if it contains its bound-
ary. A set is open if and only if it is disjoint from its boundary.

1.2.4 Bases Countability Axioms Separability

In defining the usual topology for the set of real numbers we began with the family
A of open intervals, and formed this family constructed the topology 7. The same
method is useful in other situations and we now examine the construction in detail.

Definition 1.20. A base (or basis) for a topology , 7, of a space X is % a subset of
7 and for each x € X and each U € %, there exists V € & such that x € V C U.
The sets of A are called basic sets and 4 is said to be a base for the topology 7.
Let A, be a subset of .7 and x € X. If each U € %,, there exists V € 4, such that
x € V C U, then the sets of A, are called basic sets of the neighborhood system of
x and A is said to be a base for the neighborhood system of x.

The family of open intervals is a base (or basis) for usual topology of the real num-
bers, in view of the definition of the usual topology and the fact that open intervals
are open relative to this topology. The following simple characterization of bases is
frequently used as an alternative definition of base.

Corollary 1.4. A subfamily B of a topology 7 for X is a base for .7 if and only if
each member of 7 is the union of members of A.

Proof. Suppose that 4 is a base for the topology .7 and that U € 7. Let V be the
union of all members of . which are subsets of U and suppose that x € U. Then
there is W in Z such that x € W C U by Definition [[.20, and consequently x € V.
So that U C V. Since V is surely a subset of U, hence V = U. Conversely, suppose
P C 7 and each member of .7 is the union of members of . If U € T, then U is
the union of members of a subfamily of %, and for each xin U there is V in & such
that x € V C U. Consequently 4 is a base for .7 by Definition[[.20 O
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Example 1.13. Let X a nonempty set, and let
P ={{x}| xe X}, % ={X}

then A is a base for the discrete topology of X, and %, is a base for the trivial
topology of X.

Although this is a very convenient method for the construction of topology, a little
caution is necessary because not every family of sets is the base for a topology. The
reason for this situation is made clear by the following example and theorem.

Example 1.14. Let X = {0,1,2}, A={0, 1} and B={1,2}.If S = {X, A, B, @}, then
cannot be the base for any topology because the union of members of is always a
member of . Therefore if § were the base of a topology then that topology would
have to be S itself, but S is not a topology due to ANB ¢ S.

We shall enable to distinguish bases from other families of subsets, as in fact is
shown by the following theorem.

Theorem 1.21. A family, B, of subsets of a set X is a base for some topology, 7,
of X if and only if both the following assertion (1) and (2) hold.

(1) X =UpepB;
(2) Foreachx € X and each pair U,V € B, for whichx € U and x € V, there exists
W e B suchthatxe W CUNV.

Proof. Let % be a basis for some topology, .7, for X, and let x € X. Then there
exists U € %, such that x € U, and by Definition [[2{] there exists B, € 4, such
that x € By C U. Clearly X C UyexBy C X, hence X = Uyex By and condition (1) is
met.

LetU,V € B,x €U and x € V, define Q = UNV, then since by Definition[T.20,
U and V are both open, so also is Q, whence Q € %,. Consequently, by Definition
there exists W € £ such thatx € W C Q = U NV, and condition (2) is met.

Conversely, suppose % satisfies both (1) and (2). Let .7 be the family of all
unions of members of %. A union of members of .7 is itself a union of members
of % and is therefore a members of .7, and it is only necessary to show that the
intersection of two members U and V of .7 is a member of 7. If x € UNV, then
we may choose Uy and Vj in & such that x € Uy C U and x € Vy C V, and then a
member W of Z such that x e W C UyNVy CUNV by (2). Consequently U NV is
the union of members of %, and .7 is a topology according to Definition[[.12] O

We have just seen that an arbitrary family S of sets may fail to be the base for
any topology. With persistence we vary the question and enquire whether there is a
unique topology which is, in some sense, generated by S. Such a topology should be
a topology for the set X which is the union of the members of S, and each member
of S should be open relative to the topology; that is, S should be a subfamily of the
topology. This raises the question: Is there a smallest topology for X which contains
S? The following simple result will enable us to exhibit this smallest topology.
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Theorem 1.22. If S is any non-empty family of sets. Then the family of all finite
intersections of members of S is the base for a topology for the set X = UycsU.

Proof. Suppose that S is a family of sets. Let % be the family of finite intersections
of members of S. Then the intersection of two members of Z is again a member of
% and, from Theorem[[.2]] 4 is the base for a topology. |

A family S of sets is a subbase for a topology .7 if and only if the family of finite
intersections of members of S is a base for .7 (equivalently, if and only if each
member of .7 is the union of finite intersections of members of S). In the view of
the preceding theorem every non-empty family S is the subbase for some topology,
and this topology is, of course, uniquely determined by S. It is the smallest topology
containing S (That is, it is a topology containing S and is a subfamily of every
topology containing S).

There will generally be many different bases and subbases for a topology and
the most appropriate choice may depend on the problem under consideration. One
rather natural subbase for the usual topology for real numbers is the family of half-
infinite open intervals; that is, the family of sets of the form (—e, a)={x | x < a}
or (a, +eo)={x | x > a}. Each open interval is the intersection of two such sets, and
this family is consequently a subbase. A space whose topology has a countable base
has many useful properties.

Definition 1.21. A space X, which has a base, %, which is a countable family, i.e.,
B ={B;| i=1,2,...} is said to satisfy the second axiom of countability or some-
times more simply to have a countable basis . We also speak of spaces being second
countable, meaning thereby that they have a countable basis, or satisfy the second
axiom of countability.

Example 1.15. Let R be the real numbers with the usual topology, and let
#1 ={(a, b) | a, b rational numbers, a < b}
then 4, is a countable basis for R and R is second countable.

Theorem 1.23. If A is an uncountable subset of a space whose topology has a count-
able base, then some point of A is an accumulation point of A.

Proof. Suppose that no point of A is an accumulation point and that 4 is a countable
base. By Definition[T.14] we know that for each x in A there is an open set containing
no point of A other than x. Since & is a base we may choose B, in Z such that
BNA={x}. There is then a one-to-one correspondence between the points of A and
the members of a subfamily of %, and A is therefore countable. It contradicts to
the assumption that A is an uncountable set. Therefore some point of A must be an
accumulation point of A. O

Definition 1.22. The set A is said to be dense in the set Bif A~ D B. If A is dense
in the whole space, X, we say that A is everywhere dense, or sometimes, if there is
no chance for misunderstanding, simply dense. If there exists A C X, A is countable
such that A~ = X, then space X is said to be separable.
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A separable space may fail to satisfy the second axiom of countability. For example,
let X be an uncountable set with the topology consisting of the empty set and the
complements of all finite subsets of X. Then every non-finite set is dense because
it intersects every non-empty open set. On the other hand, suppose that there is a
countable base Z and let x be a fixed point of X. The intersection of the family
of all open sets to which x belongs must be {x}, because the complement of every
other point is open. It follows that the intersection of those members of the base
2 to which x belongs is {x}. But the complement of this countable intersection
is the union of a countable number of finite sets, which is equal to X —{x}, hence
countable, and this is a contradiction. There is no difficulty in showing that a space
with a countable base is separable. The relation between second countable spaces
and separable spaces is given by the following theorem.

Theorem 1.24. Let X be a topological space with a countable basis, then X is sep-
arable.

Proof. Let = {B;|i=1,2,...} be acountable base for X, and define A = {x;| x; €
Bi,i=1,2,...},ie,ANB; = {x;}. We prove now that A~ = X.Letx € X, if x =x;
for some i, then x € A C A™, so assume that x # x; for each i. Let U € %, then
there exists B; € 4, such that x € B; CU. Now x; € B; C U, and x; # x, thus every
neighborhood U of x contains a point of A distinct from x, whence x € A~. Thus
X CA ,andsince AC X, A~ CX =X, we have A~ = X, and A is the required
countable dense subset. O

1.2.5 Subspace Separation and Connected Sets

Definition 1.23. Let (X, ) be a topological space, and let ¥ C X. The relative
topology of Fx to Y Fy is defined to be the family of all intersections of members of
Jx with Y; that is, U € J% if and only if there exists V € Jx such that U =V NY.
The topological space (X, Jy) is called a subspace of the space (X, x).

It is not difficulty to see that .y is actually a topology. Each member U of relative
topology Z% is said to be open in Y. It is worth noticing that, in the above definition,
a subset Y of a space X is not necessarily a subspace. Only if the topology of Y
agrees with relative topology of Jx to Y, then Y is called a subspace.

Example 1.16. Let N ={(x, y) | x, y real numbers, y >0}, i.e., N is the closed upper
half of the real plane, and let

N= {(x,y) | x, y real numbers, y > 0}.

For {x, y}€ N, define #(, ;) = %,y NN if y > 0, where %) is the neighborhood
system for (x, y) in the usual topology for the real plane, and define

Py ={V [V 2 (UNN)U{(x, y)}}
forU € %) if y=0. Let
T = {7/(x,}')| (x,y) €N},
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with ¥, ,) as so defined, then (N, 7) is a topological space. N is not a subspace of
the real plane with the usual topology, nor is the real line with its usual topology a
subspace of N. The real line with the discrete topology is a subspace of N, where
we think of the real line here as the set R={(x, y) | y =0}.

The following theorem formulates a criterion to recognize the closed sets, closure
and accumulation points in a subspace.

Theorem 1.25. Let (X, Jx) be a topological space and (Y, Fy) a subspace of X.
Then the following assertions hold.

(1) The set A is closed in space Y if and only if it is the intersection of Y and a
closed set in space X ;

(2) A point y of space Y is an accumulation point of A C Y if and only if it is an
accumulation point of A in space X ;

(3) The closure of A in space Y is the intersection of Y and the closure of A in space
X.

Proof. The set A is closed in Y if and only if its relative complement Y — A is of the
form V NY for some open set V in space X, but this is true if and only if A=(X —
V)NY for some open set V in space X. This proves (1). (2) follows directly from
the definition of the relative topology and the definition of accumulation point. The
closure of A in space Y is the union of A and the set of its accumulation points in
space Y, and hence by (2) it is the intersection of ¥ and the closure of A, thus (3)
holds. O

Definition 1.24. Let (X, .77) be a topological space and A, B be subsets of X. Two
sets A and B are called separated in space X if and only if both A" NB and ANB~
are empty. (X, .7) is called a connected topological space if and only if X is not the
union of two nonempty separated subsets. A subset Y of X is called connected if and
only if the topological space Y with the relative topology is connected. A component
of a topological space is a maximal connected subset; that is, a connected subset
which is properly contained in no other connected subset.

The separation involves the closure operation in X. However, the apparent depen-
dence on the space X is illusory, for A and B are separated X if and only if neither A
nor B contains a point or an accumulation point of the other. This condition may be
restated in terms of the relative topology for AU B, in view of (2) of Theorem[T.23]
as both A and B are closed in subspace A U B (or equivalently A (or B) is both open
and closed in subspace A UB) and A and B are disjoint. A set Y is connected if and
only if the only subsets of ¥ which are both open and closed in subspace Y are Y
and the empty set.

Example 1.17. The open interval (0, 1) and (1, 2) are disjoint subsets of R the real
numbers and there is a point, 1, belonging to the closure of both (0, 1) and (1, 2) in
the usual topology of R. However, (0, 1) is not disjoint with the closed interval [1,
2]=(1, 2)~ because of 1, which is a member of [1, 2], is an accumulation point of
0, 1).
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The real numbers, with the usual topology are connected (exercise 8), but the
rational numbers, as a subspace of the usual topology of R, are not connected. For
any irrational number a € R the sets {x | x < a} and {x | x > a} are separated in the
subspace the rational numbers.

Theorem 1.26. The closure of a connected set is connected.

Proof. Suppose that Y is a connected subset of a topological space and that Y~ =
AUB, where A and B are both open and closed in Y, A and B are disjoint. Then each
of ANY and BNY is open and closed in Y, and since Y=(ANY)U (BNY) and Y is
connected, one of these two sets must be empty. Suppose that BNY is empty. Then
Y is a subset of A and consequently Y~ is a subset of A because A is closed in Y .
Hence B is empty, and it follows that Y is connected. a

Theorem 1.27. Let <7 be a family of connected subsets of a topological space. If no
two members of of are separated, then \J,c ;A is connected.

Its proof remains as an exercise. If a space is connected, then it is its only com-
ponent. If a space is discrete, then each component consists of a single point. Of
course, there are many spaces which are not discrete which have components con-
sisting of a single point, for instance, the space of rational numbers, as the subspace
of the usual topology for the real numbers.

Theorem 1.28. Each connected subset of a topological space is connected in a com-
ponent, and each component is closed. If A and B are distinct components of a space,
then A and B are separated.

Its proof remains as an exercise. It is well to end our remarks on components with a
word of caution. If two points, x and y, belong to the same component of a topolog-
ical space, then they always lie in the same part of a separation of the space.

1.2.6 Convergence and Hausdorff Spaces

In this section, it will turn out that the topology of space can be described com-
pletely in terms of convergence. We also characterize those notions of convergence
which can be described as convergence relative to some topology. Sequential con-
vergence furnishes the pattern on which the theory is developed, and we therefore
list a few definitions and theorems on sequences to indicate this pattern. These will
be particular cases of the theorems proved later. A sequence is a map on the set N
of the non-negative integers. The value of a sequence S at n € N is denoted, inter-
changeably, by S, or S(n). By Definition [L.TQ we can verify that N is a directed set
for the order of integers and the sequence {S,, | n € N} is a net. A sequence S is in a
set A if and only if §,, € Afor each n € N, and S is eventually in A if and only if there
is m € N such that S, € A whenever n > m. A sequence S is frequently in a set A if
and only if for each non-negative integer m there is an integer n such that n > m and
S, € A. This is precisely the same thing as saying that S is not eventually in A’.
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Definition 1.25. Let X be a topological space, let x € X, and let {x,| n=1, 2, ...}
be a sequence of points in X. The sequence {x,} is said to converge to x, and x is
said to be a limit of the sequence {x,} if and only if for each U € %4, there exists an
integer m such that n > m implies x,, € U. A point s is a cluster point of a sequence
S if and only if S is frequently in each neighborhood of s.

Let S be a sequence. T is said to be a subsequence of sequence S if and only if there
is a sequence I of non-negative integers such that T'(i) = S(I(i)) foreach i € N. It
is clear that each cluster point of a sequence is a limit point of a subsequence, and
conversely each limit point of a subsequence is a cluster point of a sequence.

Definition 1.26. Let (X,.7) be a topological space and (S, >) be a net in X. The
net (S, >) is said to converge to s relative to .7 if and only if it is eventually in each
neighborhood of s for topology 7.

It is easy to describe the accumulation points of a set, the closure of a set, and in fact
the topology of a space in terms of convergence.

Theorem 1.29. Let (X,.7) be a topological space. Then the following assertions
hold.

(1) A point s is an accumulation of a subset A of A if and only if there is a net in
A —{s} which converges to s;

(2) A point s belongs to the closure of a subset A of X if and only if there is a net in
A converging to s;

(3) A subset A of X is closed if and only if no net in A converges to a point of

A—{s}.

Proof. If s is an accumulation point of A, then for each neighborhood U of s there is
apoint sy € U—{s}. Uy, the neighborhoods of s, is directed by C, and if U, V € %
such that V. C U, then sy € V C U. The net { sy, U € %, C}, therefore converges
to s. On the other hand, if a net in A—{s} converges to s, then this net has point in
every neighborhood of s and A—{s} surly intersects each neighborhood of s. This
establishes the statement (1). To prove (2), recall that the closure of a set A consists
of A and together with all accumulation points of A. For each accumulation points s
of A there is, by the preceding, a net in A converging to s; for each point s of Aany
net whose point at every element of its domain is s converges to s. Therefore each
point of the closure of A has a net in A converging to it. Conversely, if there is a net
in A converging to s, then every neighborhood of s intersects A and s belongs to the
closure of A. Assertion (3) is now obvious. O

Example 1.18. Let E be the real plane, and define for € > 0,
Se(x,y) ={(u,v) | (u,v) €E, |x—u| < e}
and

U xy)={U | U 2 Se(x, y) for some & > 0}.
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By Definition [L.T3] we can verify that %, ) is a neighborhood system for each (x,
y) € E. Then {%y.,)| (x, y) € E} determines a topology 7 for E by Theorem [LT2}
Let {(xs, yn)} be a sequence in E, with the topology, .7, and let (xo, yo) be a limit
of the sequence {(x,, y»)}, then (x, z) for any z is also a limit of the sequence {(x;,
¥n)}, and observe thus that limits of sequence need not be unique.

We have noticed that, in general, a net in a topological space may converging to
several different points. Thus introduce a new kind of space, with a rather stronger
structure.

Definition 1.27. Let (X, .77) be a topological space, then 7 is said to be a Hausdorff
(Tr—space, or separated space) topology for X, provided that for each pair, x, y,
with x # y, of points of X, there exist U € %, V € %, such that UNV = @. If this
condition is satisfied we call X a Hausdorff (T, or separated) space.

Example 1.19. The real line with the usual topology is a Hausdorff space. The real
plane with the usual topology also is a Hausdorff space. But the real plane with the
topology defined in Example[[.17]is not a Hausdorff space.

Hausdorff spaces have the property that limits of sequences are unique, as in fact is
shown by the following Theorem whose proof remains as a exercise.

Theorem 1.30. A topological space is a Hausdorff space if and only if each net in
the space converges to at most one point.

It is of some interest to know when a topology can be described in terms of se-
quences alone, not only because it is a convenience to have a fixed domain for all
nets, but also because there are properties of sequences which fail to generalize.
The most important class of topological spaces for which sequential convergence is
adequate are those satisfying the first countability axiom: the neighborhood system
of each point has countable base. That is, for each point x of the space X there is a
countable family of neighborhoods of x such that every neighborhood of x contains
some member of family. In this case we may replace “net” by “sequence” in almost
all of the preceding theorems.

Theorem 1.31. Let X be a topological space satisfying the first axiom of countabil-
ity. Then the following assertions hold.

(1) A point s is an accumulation point of a set A of X if and only if there is a
sequence in A — {s} which converges to s.

(2) A set A is open if and only if each sequence which converges to a point of A is
eventually in A.

(3) If s is a cluster point of a sequence S there is a subsequence of S converging to
s.

Proof. Suppose that s is an accumulation point of a subset A of X, and that Uy,
Ui, ...U,, ...is a sequence which is a base for the neighborhood system of s. Let
Vi = No<i<aU; . Then the sequence Vp, Vi, ... V2, ...is also a sequence which is
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a base for the neighborhood system of s and, moreover, V,..| C V, for each n. For
each n select a point s, € V,,N(A—{s}), thus obtaining a sequence {s,, n € N} which
evidently converges to s. This establishes half of (1), and the converse is obvious.
If A is a subset of X which is not open, then there is a sequence in X —A which
converges to a point of A. Such a sequence surely fails to be eventually in A, and
part (2) follows. Finally, suppose that s is a cluster point of a sequence S and that
Vo, Vi, ... Vo, ...is a sequence which is a base for the neighborhood system of s
such that V,, ;1 CV, for each n. For every non-negative integer /, choose N; such that
N; > i and sy; belongs to V;. Then surely {sy;, n € N} is a subsequence of S which
converges to s. O

1.2.7 Various Special Types of Topological Spaces

In this section, we shall investigate briefly a variety of special types of topological
spaces. These spaces will play a fundamental role in the application of topology to
the pattern recognition.

Definition 1.28. Let X be a set, Y C X, and let
{Dqy| o € A, an indexing set}

be a family of subsets of X, then {Dy,} is called a cover or covering for Y provided
UaeA Doc 2 Y.

Definition 1.29. Let X be a topological space, then X is said to be compact provided
each open cover of X contains a finite cover. (Here “open” refers to a property of
the set Dy, while “finite” refers to a property of the indexing set A.)

A simple, but quite useful, consequence of Definition [[.29] comes as the following
theorem.

Theorem 1.32. Let X be a topological space, then X is compact if and only if for
each family of closed sets {Cq| 00 € A} of X, Ngea Ca = @ implies that there exists
F CA, F finite, such that (\yecp Ca = 9.

Proof. Let X be compact, and let {Cy| o0 € A} be a family of closed sets with
vacuous intersection. Define Oy = Cl,, then Oy is open, and

Uou=JC,=1)Cal =2 =X,

ocA ocA oEA
hence by Definition[1.29|there exists F' C A, F finite, such that Uycr Oy = X, and

g = X/ = [ﬁaeFOa]/ = ﬁaeFola = ﬁoceFCot-
Similarly, the converse can be proved. O

Definition 1.30. Let X be a set and {Dy| o € A} be a family of subsets of X. Then
{D¢y} is said to have the finite intersection property provided that for any finite,
non-empty subset F of A, (\yep Do # 9.
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Theorem 1.33. A topological space, X, is compact if and only if for any family
{Dqo| o € A} of closed sets with the finite intersection property.

Theorem 1.34. Let X be a topological space, then X is compact if and only if any
Sfamily {Dy| o € A} of subsets of X with the finite intersection property has the
further property that (\yep Dy # ©.

We now introduce a sequence of axioms, called separation axioms, into the defini-
tion of a space as follows

Definition 1.31. Let (X,.7) be a topological space, then X is said to be a T; space,
provided it satisfies Axiom T;, i =0, 1,2, 3,4, where the axioms are as follow.

Axiom Tj: For each x and y € X, x # y, either there exists U € %, such that
y ¢ U, or there exists V € %, such thatx ¢ V.

Axiom T: For each x and y € X, x # y, there exist U € %, and V € %, such that
y¢Uandx¢V.

Axiom T,: Foreach x and y € X, x # y, there exist U € %, and V € %, such that
unv=ga.

Axiom Tj: For each x € X and each closed set C C X, x ¢ C, there exist U € %,
and O € T suchthat CC Oand ONU = @.

Axiom T4: For each pair of closed disjoint sets, C, D C X, there exists a pair Oy,
O, €T suchthat CC O,DC Oy,and 01 N0, = 2.

A space which is a 7> space is called a Hausdorff space. A space which is at one
and the same time a 71 and a 75 space is called a regular space. A space which is at
one and the same time a 7> and a T space is called a normal space.

Theorem 1.35. A space X is a T\ space if and only if each point is closed.

Proof. Let x € X, then for each y € X, y # x, select U € %, such that x ¢ U. Then
X —{x} DU, whence X — {x} € %, for each y € X — {x}, whence by Definition
X — {x} is open, and {x} is closed. Conversely, let x € X, y € X, and x # y,
then since {x} is closed, X — {x } is open, and since y € X — {x}, X — {x} € %, and
by an identical argument X — {y} € %, whence X is a T} space. a

Theorem 1.36. Each of the following properties of topological spaces is stronger
than the next: Normality, Regularity, To (Hausdorff), T, Ty, in the sense that if a
space satisfies the definitions of any one of these properties, it also satisfies the
definitions for all of the following ones as well.

1.3 Metrization

In this section the elementary properties of metric and pseudo-metric spaces are
developed, and necessary and sufficient conditions are given under which a space is
copy of a metric space or of a subspace of the Cartesian product of intervals.
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1.3.1 Continuous Functions

ELINNT3 LEIT3 99 <

The words “function”, “map”, “correspondence”, “operator” and “transformation”
are synonymous.

Definition 1.32. A map f of a topological space (X,.7]) into a topological space
(Y, %) is continuous if and only if the inverse of each open set is open. More pre-
cisely, f is continuous with respect to .7; and .% if and only if f~!(U) € 7 for
eachU € %.

The concept of continuity depends on the topology of both the range and the domain
space, but we follow the usual practice of suppressing all mention of the topolo-
gies when confusion is unlikely. The following is a list of conditions, each equiva-
lent to continuity; it is useful because it is frequently necessary to prove functions
continuous.

Theorem 1.37. If X and Y are topological space and f is a functionon X to Y, then
the following statements are equivalent.

(1) The function f is continuous.

(2) The inverse of each closed set is closed.

(3) The inverse of each member of a subbase for the topology forY is open.

(4) For each x in X the inverse of every neighborhood of f(x) is a neighborhood of
X.

(5) For each x in X and each neighborhood U of f(x) there is a neighborhoodV of
x such that f(V) CU.

(6) For each net S (or {S,, n € D} ) in X which converges to a point s, the compo-
sition f - S (i.e., {f(Sn), n € D} ) converges to f(s).

(7) For each subset A of X the image of closure is a subset of the closure of the
image; that is, f(A7) C f(A)™.

(8) For each subset B ofY, f~'(B)~ C f~(B7).

Proof. (6)= (7) Assuming (6), let A be a subset of X and s € A~. Then there is a net
Sin A which converges to s, and f-S converges to f(s), which is therefore a member
of f(A)~. Hence f(A~) C f(A)".

(7)= (8) Assuming (7), if A = f~!(B), then f(A~) C f(A)~ C B~ and hence
A= C f~Y(B7). Thatis f~1(B)~ C f~1(B).

(8)= (2) Assuming (8), if B is a closed subset of Y, then f~!(B)~ C f~!(B™)
f~Y(B) is therefore closed. The proofs of other parts remain as exercises.

ol

There is also a localized form of continuity which is useful. A function f on a
topological space X to a topological space Y is continuous at point x if and only
if the inverse under f of each neighborhood of f(x) is a neighborhood of x. A
homeomorphism , or topological transformation, is a continuous one-to-one map of
a topological space X onto a topological space Y such that f~! is also continuous.
If there exists a homeomorphism of one space onto another, the two spaces are said
to be homeomorphic and each is a homeomorphism of the other. Consequently the
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collection of topological spaces can be divided into equivalence classes such that
each topological space is homeomorphic to every member of its equivalence class
and to these spaces only. Two topological spaces are topologically equivalent if and
only if they are homeomorphic.

Two discrete spaces, X and Ywith finite number of elements, are homeomorphic
if and only if there is a one-to-one function on X onto Y, that is, if and only if X and
Yhave the same number of elements. This is also true for the indiscrete topologies
of X and Y. The set of all real numbers, with the usual topology, is homeomorphic
to the open interval (0, 1), with the relative topology, for the function f(x) = )(jj:ll 3
which is easily proved to be a homeomorphism. However, the interval (0, 1) is not
homeomorphic to (0, 1)U(1, 2). Because if f were a homeomorphism (or, in fact,
just a continuous function) on (0,1) with range then (0, 1)U(1, 2), then f~'( (0,
1)) would be a proper open and closed subset of (0, 1), and (0, 1) is connected. This
demonstration was achieved by noticing that one of the space is connected, the other
is not, and the homeomorphism of the space is connected, the other is not, and the
homeomorphism of a connected space is again connected. A property which when
possessed by a topological space is also possessed by each homeomorphism is a
topological invariant.

1.3.2 Metric and Pseudo-metric Spaces

We concentrate now to a rather special sort of topological space, one in which there
is defined a distance function or a pseudo-distance function, so that we can say what
the distance between points is. In a sense these spaces, so-called metric spaces, are
rather special, since, as well turn out in the sequel, they will enjoy properties of the
nature we have already discussed, but under less restrictive hypotheses than more
general spaces. On the other hand, metric spaces are still quite general, since all
the common spaces of analysis are metric spaces. We define a metric space in two
stages. We start with the following facts.

Definition 1.33. Let X be a set and p : X X X — R be a function (not necessarily
continuous) of X x X into the non-negative real numbers R™. p is called a distance
onX and (X, p) is called a metric space if for any x, y, z € X, p satisfies the following
conditions.

(1) plx, y)=p(y,x);

(2) p(x, y)+p(y, z) > p(x, 2); (triangle inequality)
(3) p(x,y)=0if x =y, and

@) if p(x, y)=0, then x = y.

p is called a pseudo-distance on X and (X, p) is called a pseudo-metric space if p
satisfies only (1), (2) and (3).

Every set is a metric set if p is defined as follows: p(x, y)=1 for x # y, and p(x,
v)=0 for x = y. It is a simple verification that with this definition of p, any set X
is a metric set. In order to generate the topology for X via the metric, we give the
following definition.
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Definition 1.34. Let (X, p) be a metric (pseudo metric) space. If r is a positive
number, then for x € X, the following sets S, (x) and S, (x) are called the open sphere
of p—radius r about x and closed sphere of p—radius r about x respectively

Sr(x) = {y| p(x,y) <r forye X},
S, (x) ={y|p(x,y) <r forye X}.

X with the following %, as basis is called a metric space (pseudo metric space).
The topology so generated is called a metric topology (pseudo metric topology)
generated by p

By ={S,(x) | x€ X, r>0}.

Now only the rankest of amateurs at mathematics tries to prove definitions; however,
the above definition makes some assertions which must be verified. In particular, it
is asserted that B,, is a basis, and this is perhaps not so evident without some proof.
We deal with this minor matter in the follows.

Theorem 1.38. Let (X, p) be a metric (pseudo metric) space. Then the set %
={S,(x) | x € X, r > 0} is a basis for some topology for X.

Proof. We shall apply Theorem[I.21] Since x € S,(x) for each x € Xclearly we have
X = UpegB. Now let x € X and let S, (x1), Sy, (x2) € £ such that x € S, (x1) N
Sy, (x2). Itis clear that p(x, x;) = dy < ry and p(x, xp) = da < r. Let e=min{r; —d|,
ry —dy}. We consider S, (x). For any y € S.(x), we have p(x, y) = e. Now

pyx1) Sp(yx)+pxx) <et+d <r—d+di=r,
So that y € Sy, (x1). Similarly, we can prove that y € S, (x2). Thus we have found
Se(x) € % such that
x € Se(x) T8 (x1)NSpy (x2),
and by Theorem[[.21] %, is a basis. O

It can happen that a space X is already given us, and we may wish to know if it is
possible to define a metric, p, such that the topology generated by the metric, using
Definition[[.33] is in fact the same as the original topology. We define a space with
this desirable property as follows.

Definition 1.35. Let (X, .77) be a topological space. If it is possible to define a dis-
tance (pseudo-distance) p such that the metric topology (pseudo-topology) gener-
ated by p coincides with .7, then X is said to be a metrizable (pseudo metrizable )
topological space.

1.3.3 Some Properties of Metrizable and Pseudo Metrizable Space

One of the more interesting problems is to decide what sorts of topological spaces
are metrizable or pseudo metrizable. Before we tackle this problem, however, let us
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explore some of the properties of metric spaces. Metric spaces have a fairly strong
structure, and this is demonstrated by the following theorems.

Theorem 1.39. Every metric space is a Hausdorff space.

Proof. Letx,y € X, with x # y, then p(x, y) =d > 0. Let €=d/2 and let U = S¢(x),
V = S¢(y), then U and V are open sets, and we need only show U NV = &. Suppose
that U NV # &. Then there exists az € UNV and since x € U, p(z,x) < €. Similarly
p(y,z) < €. Thus

p(x,y) <p(x,z)+p(yz) <2e=d,

And d = p(x,y) < d. This palpable contradiction shows that U NV = &. Therefore
X is Hausdorff. o

Theorem 1.40. Every metrizable (pseudo metrizable) topological space is a Ty
space.

Proof. We need thus only verify that if A and B are closed disjoint subset of X, then
there exist open sets U, V suchthat A CU,BC U,andUNV = 2.

Now for each a € A, a is not a limit point of B, for if it were we should have
a € B, since B is closed. It contradicts A and B are disjoint. Thus for each a € A,
there exists an €, > 0 such that Sgq(a) "B = @. Let U, = Sgq)2(a). Similarly for
each b € B, there is an €, > 0 such that Sg,(b) NA = @. Let Vi, = Sgp/»(b). Finally
let

U:UueAUu ’V:UbeBVh’

Then U and V are open.

We show now that U NV = @. Suppose that UNV # &, and let x € U NV, then
x e U, forsome a € A and x € Vj, for some b € B. Since p(x,a) < €,/2, p(x,b) < &/2,
hence

p(a,b) <p(a,x)+p(x,a) < (g4 &)/2.
If g, < &, then p(a,b) < (€,+¢&,)/2 < &, and a € S¢p,(b). So that a € Sg,(b) NA #

, co?ltrary to the definition of S¢, (). On the other hand, if €, >¢€;, then p(a,b) <
(ea+€p)/2 <€ and b € Sg4(a). So that b € Sg,(a) N B # @, contrary to the choice

of Sg,. It must be the case that U NV = &, and hence that X is Tj. O

By Theorem we already know that if X is metrizable, then it is a Hausdorff
space, hence T>. Furthermore Theorem[I.41]shows that every metrizable topological
space is a normal space. In what follows, we establish that every regular second
countable space is metrizable. We require a good bit of machinery before we are
ready to prove this result, and this is the purpose of the following theorem.

Theorem 1.41. A T; space X is regular if and only if for each x € X and each U € Uy
thereisaV € Yy suchthatV— CU.
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Theorem 1.42. A T} space X is normal if and only if for each closed set Cand each
open set U such that C C U, there exists an open set V suchthat CCV CV~ CU.

Definition 1.36. Let
A ={y | y={yn, n € NT}, v, is a real number for each in such that ¥,y y2 < o }

i.e., is the collection of all sequences of real numbers such that the series formed
from the squares of the terms of the sequence is a convergent series. For x, y € J7,
the distance p on 7 is defined as follows

12
p(x,y) = < z (xn_yn)2> .

neN+

Then the resulting metrizable topological space is called a Hilbert space. Here N™ =
N—{0}.

The proofs of the following statements remain as exercises. The p(x, y) in Definition
is a distance on J#; The subspace of # defined by

E'={x|x€ H#, x={xp,ne N}, x,=0forn>1}

is homeomorphic to the real line with the usual topology; More generally E" C 7,
defined by

E'={x|xe€ ', x={x;,ie Nt},x;=0fori>n}

is homeomorphic to R" the n-dimension Euclidean space with the usual topology.
The subspace ¢ of 3 defined by

H'={x|x€ A x={xp,n e NT},0<x, <1/nforeachne Nt }

is called the Hilbert cub (or Hilbert parallelotrope ). Let I,=[0, 1] foreachn € N,
i.e., the unit interval with the relative topology inherited from the real numbers,
and let IN* = [];; I;, then " is homeomorphic to IV*. The key of the proof of
the metrization theorem is to show that every second countable regular space is
homeomorphic to a subset of Hilbert space (in fact of the Hilbert cube), that is, the
space is metrizable. Now in order to define the appropriate mapping of our space X
into 7, we need to specify the terms, y,, of the sequence y € #’ which is to be
the image point of some preselected point x € X. We thus need some mechanism for
associating a sequence of real numbers {y, | 0< y, < 1/n} with each point of our
space.

We wish to exploit the regularity of X, and specifically to make use of Theorem
[[41] which tells us that for each open set, consequently for each basic neighborhood
B;, of apoint x € X, there is another open set, which we may choose as a second basic
neighborhood, such that x € B; C ij C B;. Then B; and X — B;, will be disjoint
closed sets. If we consider all pairs of basic neighborhoods, (B;, B;) of X such that
B]T C B;, which set of pairs is countable (by the second countability of X ), and if we
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can associate with each such pair a real-valued function A; such that 0< A;(x) <I,
we would at least be partially on our way. In order to accomplish this we prove first
the following:

Lemma 1.1. (Urysohn) Let X be a normal space, A, B closed disjoint subsets of X,
then exists amap f: X — I, I=[0, 1] such that f(A)=0, f(B)=1.

Proof. Stage 1. Let X — B = G, an open set, since B is closed, then A C G since
ANB = @. By Theorem[[.42] there exists an open set Gy, such that A C G/, C
Gl_/2 CGy.

Stage 2. Again by Theorem[[.42] there exist open sets G, /4 and G3 4 such that

ACG4CG G CGy), Gy C Gy, CG

Stage 3. Once again by Theorem|[.42] there exist open sets Gy g, G3/3, Gs/g and
G7/g such that

ACGI8C G 3CGaC G, CG38CGy3CGipCGy),CGs;sC Gy

G35 C G§/4 CGys C G;/g c Gy

and so forth up to.
Stage N. By Theorem [1.42] for each odd integer 2i—1, 1<2i—1<2¥—1, there
exists an open set Gy;_y) v such that A € Gy v and G, C Gpi_nyv €

(2i-2)/2N
G(2i—1)/2N € Gyifov-

By induction we construct for each dyadic fraction number, #, between 0 and 1,
i.e., for each fraction whose denominator is 2", n > 0, an open G; such that if # and
¢’ are two dyadic fractions that ¢ < ¢’ if and only if G, C G, .

Now for x € X, define

{ infrx¢B
f@) = { +<6
1 x€B
Observe that A C G, for all 7, thus f(x) = 0if x € A, and also note that 0 < f(x) < 1.

We are left with the task of showing f continuous. Let us examine the structure
of £71([0,y)) for 0 <y < 1. New f(x) € [0,y) provided 0 < f(x) < y, and since the
dyadic fractions are dense in [0, 1] there exists a dyadic fraction #y such that

=infr<ity<
f(x) Jinf 1 <to <y

Consequently x € G;,. On the other hand, if fp <y and x € Gy, f(x) € [0,y). We
thus see that £~ ([0, y))=U,<,G;. Since G, is open for each #, f~1([0, y)) is open
for each y. By a similar argument it is clear that £~ !((y, 1)=Us>y(X — G;), where
0<y<1.Since G, C G, ,X—G; CX—G foreacht. Thus

Usy(X = Gr) 2 Uiy (X = G;).

How ever, if x € Uy~ (X — G), then there exists a r >y such that x € X — G,
and again by the density of the dyadic fractions in [0,1] we may select ', a dyadic
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fraction, such that¢ > ¢’ >y, then G, CG,andX -G, DX —G;,sothatx€ X —G,,
for some 1’ >y, whence x € Uy~ (X — G, ). Thus Uy (X — G;) C Up»y (X — G, ) and
finally

Ut>y(X - Gt) = Ut>y(X - Gt_)

Consequently, since each G, is closed, hence each X — G, is therefore open, and
we see that £~ ((y, 11)=U,~,(X — G, ) is open.

Now let U be some opeh set in [0,1], such that f(x) € U, then there exists a
basic set V in [0,1] such that f(x) € V C U, and the basic set V in the relative
topology of [0,1] has one of the following forms: [0,y),0 <y < 1;(y,1],0 <y <
1;(v1,32),0 <y1 <y2 < 15[0,1]. IfV = [0,y), then £~ (V) is open by what we have
proved above. If V = (y, 1], then f~!(V) is open by what we have proved above, also.
IfV = (y1,y2), thenV =[0,y2) N (y1, 1] and £~ (V) = f~1([0,32)) N 1 (01, 1]) s
open as the intersection of open sets, whence f is continuous. a

Theorem 1.43. Every second countable regular space is homeomorphic to a subset
of the Hilbert cube.

Proof. Let (X, 7) be a second countable regular topological space and % =
{B; | i=1,2,...} be the countable basis. It is clear that (X, .77) is normal, thus
by Theorem [[L42] there exists pairs (B;, B J-) of elements of % such that B, C B;.
Since Z is countable, the collection of all such pairs is again countable. Let us
call it & = {P, | n=1,2,...} where P, = (B},B}) and B]” C B". Now since
B! N (X —B}) = @ and both B} and (X — B}) are closed, we may define, by
Lemma [l a map f, : X — I=[0,1] such that f,(B!")=0, f,(X — B'})=1. Finally
define f: X — #”, the Hilbert cube, by for x € X,

fx)={fulx)/n|n=1,2,... }.

Since for each x € X, 0 < f,(x) < 1, hence ¥,,cn (fu(x)/n)? < oo and f(x) € #".

First we show f is one-to-one map. Let x # y, then since X is Hausdorff by
Theorem[I.36] there exist open sets, which we may choose as basic sets, A{, A such
thatx € A,y € A, and A| NA,; = @. Further, since X is normal we can find Ag € £,
such thatx € Ag CA, C Ay, thenx € A, andy € X — A, and the pair (A,A;) € P,
i.e., for some n, (Ag,A1) = (B?,B;?). Thus f,(x) = fu(B' ) = fu(Ay) = 0, while
Ju(y) = fu(X —B"}) = fu(X —A;)=1. This implies that f(x) # f(y), since f(x) differs
from f(y) at the nth place.

Now we prove that f is continuous. Let x € X, and let € > 0. We wish to construct
U € %, in space X such that forany y € U, p(f(x), f(y)) < € in metric subspace ¢
First, since for any point y € X, 0 < £,(y) < 1, we have that | f,(x) — f,(y)|*> < 1.
Now the finite series Y,,cy n~2 converges, thus for N sufficiently large,
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thus
2 @) = )P < ¥ n P <
n=N n=N
Now let k < N, then the function f; : X — I is continuous and there exists a Uy € %
such that y € Uy implies

ke

‘fk(x) _fk(y)| < (Z(N— 1))1/2

@ - RO _ &
k2 2N=1)

Now let U = Nj<k<n—1Uk, thenif y € U,

N—-1
5, 0 -50F 516500, 5 late)_56IF

n=1

2 2

€ €

Doyw_nta=¢

< (N— =€
And finally p(f(x),f(y)) < €. Therefore f is continuous.

Finally we must show that f is an open mapping. Let Ube open in X, and let
x € U, then there exist B;, B; € 9 such that

XEBigB;gngU

by the normality of X and the fact that # is a basis. Thus the pair (B;,B;) € &,
say (B;,Bj) = (B}, B}). Then f,(x) = fu(B;")=0, and since X —U C X — B/}, hence
fa(X =U) = fu(X —B})=1. Thus forany y € X — U,

p(f(x 2 | fu(x) n( )P )1/2 > (‘fn(x) ;2fn()’)‘2)1/2 :;]

So that if V =8, ,,(f(x)) € £,z €V, then we have p(f(x),z) < 1/nand f~'(z) €
U, because if f~'(z) € X — U, then p(f(x), f(f~'(z))) > 1/n and it is a contradic-
tion. Thus f~1(V) CU,andx € V C f(U), whence f(U) is open. Consequently we
have proved that f is a one-to-one continuous open mapping, and f is a homeomor-
phism. O

1.4 Measures

In this section, we just briefly introduce some concepts and results of measure the-
ory which are necessary for the representation of fuzzy concepts in the AFS
theory.
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1.4.1 Algebras and Sigma-Algebras

Definition 1.37. Let X be an arbitrary set. A collection o/ of subsets of X is an
algebra on X if the following conditions are satisfied

(1) Xed,
(2) For each set A that belongs to <7 the set A’ belongs to .27;
(3) For each finite sequence A1,A;,...,A, € &, Uj<i<,Ais Ni<i<nAi € .

Remark 1.2. In conditions (2), (3) we have required that <7 be closed under com-
plementation, under the formation of finite unions, and under the formation of finite
intersections. It is easy to check that closure under complementation and closure
under the formation of finite unions together imply closure under the formation of
finite intersections (use the fact that (), <;<,A; = (Uj<;<,A})". Thus we could have
defined an algebra using only J; <;<,A; € &/ in conditions (3).

Definition 1.38. Let X be an arbitrary set. A collection &7 of subsets of X is a o-
algebra on X if the following conditions are satisfied

() Xedo.

(2) For each set A that belongs to <7 the set A’ belongs to .&;

(3) For each infinite sequence {A;, n € N*} of sets that belong to <7, J,cn Ai,
Mnen+Ai € .

A subset of X is called o7 -measurable if it belongs to o7 .

Remark 1.3. A c-algebra on X is a family of subsets of X that contains X and is
closed under complementation, under the formation of countable unions, and under
the formation of countable intersections. As in the case of algebras, we could have
used only U, ey Ai € &7 or (,ens Ai € &7 in conditions (3).

Next we consider ways of constructing ¢-algebras.

Theorem 1.44. Let X be a set. Then the intersection of an arbitrary non-empty fam-
ily of 6-algebras on X is a 6-algebra on X.

Proof. Let <7 be a non-empty family of c-algebras on X, and let </ be the inter-
section of the c-algebras that belong to .Z. It is enough to check that <7 contains
X, is closed under complementation, and is closed under the formation of countable
unions. The set X belongs to o7, since it belongs to each o-algebra that belongs to
£. Now suppose that A € 7. Each ¢-algebra that belongs to .Z contains A and
so contains A’; thus A’ belongs to the intersection & of these o-algebras. Finally,
suppose that {A;, n € N } is a sequence of sets that belong to <7, and hence to each
o-algebrain .Z. Then U,cn+A; belongs to each o-algebrain £, andsoto /. 0O

Remark 1.4. The union of a family of o-algebras can fail to be a c-algebra.
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Definition 1.39. Let o7 is a o-algebra on X that includes .% C 2% and that every
o-algebra on X that includes .% also includes <7, then &7 is called the c-algebra
generated by %, and denoted by o(.%). We also say that </ is the smallest o-
algebra on X that includes .%.

It is evident that the smallest g-algebra on X that includes .% is unique.

Corollary 1.5. Let X be a set, and let F be a family of subsets of X. Then there is a
smallest c-algebra on X that includes .F.

We now use the preceding corollary to define an important family of o-algebras.
The Borel G-algebra on RY is the -algebra on R? generated by the collection of
open subsets of R, and is denoted by Z(R“). The Borel subsets of R? are those that
belong to Z(R?). In case d = 1, one generally writes Z(R) in place of Z(R").

Theorem 1.45. The c-algebra B(R) of Borel subsets of T is generated by each of
the following collections of sets:

(1) The collection of all closed subsets of R.
(2) The collection of all subintervals of R of the form (—oo,b].
(3) The collection of all subintervals of R of the form (a,b].

Proof. Let %, $, and A5 be the ¢-algebras generated by the collections of sets in
parts (1), (2), and (3) of the theorem. We shall show that Z(R) D B, D %, D %s,
and then that %3 D Z(R); this will establish the theorem. Since Z(R) includes the
family of open subsets of R and is closed under complementation, it includes the
family of closed subsets of R; thus it includes the c-algebra generated by the closed
subsets of R, namely %,. The sets of the form (—eo, b] are closed and so belong to
Ay ; consequently B, C HB. Since

(a,b] = (—o0,b] N (—oo,a]’

each set of the form (a, b] belongs to %,; thus #3 C %,. Finally, note that each open
subinterval of R is the union of a sequence of sets of the form (a, b], and that each
open subset of R is the union of a sequence of open intervals. Thus each open subset
of R belongs to %3, and so (R) C H;. O

We should note the following properties of the o-algebra Z(R), it is largely these
properties that explain the importance of Z(R).

1. It contains virtually every subset of R that is of interest in analysis.
2. It is small enough that it can be dealt with in a fairly constructive manner.

Theorem 1.46. The c-algebra B(R?) of Borel subsets of R? is generated by each
of the following collections of sets.

(1) The collection of all closed subsets of R%;
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(2) The collection of all closed half-spaces in R? that have the form
{(x1,x2,...,xq) | xi < b}

for some index i and some b in R;
(3) The collection of all rectangles in R that have the form

{(x1,%2,...yxq) | @i <x; <Db; fori=1,2,...,d}.

Proof. This theorem can be proved with essentially the argument that was used
for Theorem and so most of the proof is omitted. To see that the c-algebra
generated by the rectangles of part (3) is included in the c-algebra generated by the
half-spaces of part (2), note that each strip that has the form

{2, .0xg) | ai < x; < b }

for some i is the deference of two of the half-spaces in part (2), and that each of the
rectangles in part (3) is the intersection of d such strips. O

A sequence {A;} of sets is called increasing if A; C A;;1 holds for each i, and de-
creasing if A; D A;41 holds for each i.

Theorem 1.47. Let X be a set, and let of be an algebra on X. Then <f is a 6-algebra
if either the following (1) or (2) holds.

(1) < is closed under the formation of unions of increasing sequences of sets;
(2) < is closed under the formation of intersections of decreasing sequences of
sets.

Proof. First suppose that condition (1) holds. Since .27 is an algebra, we can check
that it is a o-algebra by verifying that it is closed under the formation of countable
unions. Suppose that {A;} is a sequence of sets that belong to <7 For each n let B, =
Ui<i<nAi. The sequence {B,} is increasing, and, since </ is an algebra, each B,
belongs to .7; thus assumption (1) implies that [, . B, belongs to «7. However,
Unez+ An is equal to U,z By, and so belongs to 7. Thus &7 is closed under the
formation of countable unions, and so is a o-algebra.

Now suppose that condition (2) holds. It is enough to check that condition (1)
holds. If {A;} is an increasing sequence of sets that belong to <7, then {A}} is a
decreasing sequence of sets that belong to <7, and so condition (2) implies that
Nicz+ Al belongs to 7. Since Ujc 7 Ai=(Nicz, AL)', it follows that | ;e A; belongs
to .o/ . Thus condition (1) follows from condition (2), and the proofis complete. O

1.4.2 Measures

A set function is a function whose domain is a class of sets. An extended real valued
set function u defined on a family E of sets is additive if, whenever A, B € E,
AUB€E,and ANB= g, then u(AUB) = u(A) + u(B).
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Definition 1.40. Let X be a set, and let .7 be a o-algebra on X. A function u whose
domain is the o-algebra <7 and whose values belong to the extended half-line [0,
+o0) is said to be countably additive if it satisfies

=3

w(UJa =Y uan)
k=1 k=1

for each infinite sequence {A;} of disjoint sets that belong to .27. (Since p(A;) is
non-negative for each i, the sum Y7 | (A;) always exists, either as a real number
or as +e) A measure (or a countably additive measure) on <7 is a function U : &7 —
[0, +o0) that satisfies p(2)=0 and is countably additive.

Definition 1.41. Let <7 be an algebra (not necessarily a o-algebra) on the set X.
A function p whose domain is 7 and whose values belong to [0,+c0) is finitely

additive if it satisfies
w(U A=Y ua)

1<i<n 1<i<n

for each finite sequence Ay, A,,...,A, of disjoint sets that belong to <7. A finitely
additive measure on the algebra <7 is a function p : &/ — [0,+e0) that satisfies
1 (2)=0 and is finitely additive.

It is easy to check that every countably additive measure is finitely additive: simply
extend the finite sequence A1,A,, ..., A, to an infinite sequence {A;} by letting A; =
@ if i > n, and then use the fact that p(2)=0. There are, however, finitely additive
measures that are not countably additive. Finite additivity might at first seem to
be a more natural property than countable additivity. However countably additive
measures on the one hand seem to be sufficient for almost all applications, and on
the other hand support a much more powerful theory of integration than do finitely
additive measures. Thus we shall follow the usual practice, and devote almost all of
our attention to countably additive measures.

Definition 1.42. Let X be a set, <7 be a o-algebra on X, and y is a measure on .7,
then the triple (X,.o7, i) is called a measure space . Likewise, if X is a set and if &7
is a o-algebra on X, then the pair (X, .<7) is called a measurable space. If (X, <7, 1)
is a measure space, then one says that u is a measure on (X, /), or, if the c-algebra
o/ 1s clear from context, a measure on X.

Theorem 1.48. Let (X,.o7 | |1) be a measure space, and let A and B be subsets of X
that belong to </ and satisfy A C B. Then u(A) < w(B). If in addition A satisfies
H(A) < oo, then (B —A) = 1(B) — 1(A).

Proof. The sets A and B — A are disjoint and satisfy B=AU (B — A), thus the ad-
ditivity of u implies that u(B) = 1(A)+ u(B—A). Since (B —A) > 0, it follows
that i (B) > (A). In case U(A) < oo, the relation pu(B) — u(A) = u(B—A) also
follows. O
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Let 1 be a measure on a measurable space (X, o). Then U is a finite measure if
1(X) < +oo, and is a o-finite measure if X is the union of a sequence Ay, Ay, ...of
sets that belong to o7 and satisfy 11(A;) < +-eo for each i. More generally, a set in </
is o-finite under 1 if it is the union of a sequence of sets that belong to .7 and have
finite measure under . The measure space (X, <7, 1t) is also called finite or o-finite
if u is finite or o-finite. The following theorems give some elementary but useful
properties of measures.

Theorem 1.49. Let (X, 7, 1) be a measure space. If {A} is an arbitrary sequence
of sets that belong to </, then

=3

w(Ja) < 3 A
k=1

k=1

Proof. Define a sequence {B;} of subsets of X by letting Bj = A; and letting
By = Ay —Ui<i<k—14A; if k > 1. Then each By belongs to A and is a subset of the
corresponding Ay, and so satisfies t(By) < t(Ay). Since, in addition, the sets By, are
disjoint and satisty (J;_; Bx = U Ax. it follows that

=3

UAk = uB) <

k=1 k

M s

1 (Ak) 0
1

Theorem 1.50. Let (X, o7, 11) be a measure space. The the following assertions
hold.

(1) If {Ay |k € Z'} is an increasing sequence of sets that belong to <, then

UAk = lim p1(Ay).
k=1

(2) If {Ax |k € Z'} is a decreasing sequence of sets that belong to </, and if
W(A,) < —+eo holds for some n, then

ﬂAk = lim 11(Ay).
k=1

Proof. (1) If we write Ey = @, then

M(GAk)
=1

s
Ms

(Ax —Ar1)) =
1 2

u( p(Ax —Ag-1)

k 1

n
= lim 2# A — A —hmﬂ U (A —Ac)
=1

= lim N( n)
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(2) If U(Ay) < oo, then (A,) < U(Ay) <eoforn>m,and {A, —A, | n>m} is
an increasing sequence, that is

= lim p(A, —A,) = lim (U (A,) — 1(A,))

n—oo n—o0

= 1(Am) — r}g{}c‘u(An)
Since 1 (A,,) < oo, the proof is complete. O

We shall say that an extended real valued set function pt defined on a family € is
continuous from below at a set € if for every increasing sequence {E;} of sets in €
for which J;_, Ex = E, lim ,LL(Ek) = u(E). Similarly p is continuous from above

at E if for every decreasmg sequence {Ey} of sets in € for which |(E,,)| < e for
at least one value of m and for which (_, E, = E, we have kllIIl W(Ey) = U(E).

Theorem [1.50] assert that if u is a measure, then  is continuous from above and
from below and had the following partial converse, which is sometimes useful for
checking that a finitely additive measure is in fact countably additive.

Theorem 1.51. Let (X, o) be a measurable space, and let | be a finitely additive
measure on (X, o). If either continuous from below at every E in <7, or continuous
from above at @, then [ is a measure on <.

Proof. Let {E,} be a disjoint sequence of sets in .7, whose union, E, is also in &/
and write F,, = U <j<, Ei » Gn = E — F, . If 1 is continuous from below, then since
{F, } is an increasing sequence of sets in ./ with | J;-_, Fy = E, hence

W(E) = lim pu(Fy) = Tim 3y << 1(Ei) = iy 1 (Ei)

n—oo

If u is continuous from above at &, then, since {G,} is a decreasing sequence of
sets in .o/ with (,_; G, = &, and y is finitely additive, we have

1<i<n

u(E) = u(F,UGy) (ZN > Gn)

= lim Zu +hm/,L Z,u a

TR <i<n 1<i<oo

1.5 Probability

The subject of probability theory is the foundation upon which all of statistics [}
is built, providing a means for modeling populations, experiments, or almost
anything else that could be considered related to a random phenomenon. Through
these models, statisticians are able to draw inferences about populations, inferences
based on examination of only a part of the whole.
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1.5.1 Probability Space and Probability Measure

The set, S, of all possible outcomes of a particular experiment is called the sample
space for the experiment. An event is any collection of possible outcomes of an
experiment, that is, any subset of § (including S itself).

Consider the experiment of rolling an ordinary six-sided die and observing the
number x=1, 2, ..., 5, or 6 showing on the top face of the die. “the number x is
even”, “it is less than 47, ‘it is equal to 6” each such statement corresponds to a pos-
sible outcome of the experiment. From this point of view there are as many events
associated with this particular experiment as there are combinations of the first six
positive integers taken any number at time. If, for the sake of aesthetic completeness
and later convenience, we consider also the impossible event, “the number x is not
equal to any of the first six positive integers,” then there are altogether 26 admissible
events associated with the experiment of the rolling die. We write the set {2, 4, 6}
for the event “x is even”, {1, 2, 3} for “x is less than 4” and so on. An event is a
set, and its opposite event is the complementary set; mutually exclusive events are
disjoint sets, and an event consisting of the simultaneous occurrence of two other
events is a set obtained by intersecting two other sets.

For situations arising in modern theory and practice, and even for the more com-
plicated gambling games, it is necessary to make an additional assumption. This
assumption is that the system of events is closed under the formation of countably
infinites unions, or, in the technical language we have already used c-algebra. When
we ask “what is the probability of a certain event ? ”’, we expect the answer to be a
number, a number associated with the event. In other words, probability is a numer-
ically valued function P of the event E, which is in ./ the o-algebra on a sample
space X. On intuitive and practical grounds we demand that the number P(E) should
give information about the occurrence habits of the event E.

If, to begin with, P(E) is to represent the proportion of times that E is expected
to occur, then P(E) must be a non negative real number, in fact a number in the unit
interval [0,1]. If E and F are mutually exclusive events—say E={1} and F = {2,4,6}
in the example of the die—then the proportion of times that the union £ U F occurs
is clearly the sum of the proportion associated with E and F separately. It follows
therefore that the function P cannot be completely arbitrary; it is necessary to subject
it to the condition of additivity, that is to require that if ENF = &, then P(EUF)
should be equal to P(E) + P(F). Since the certain event X occurs every time, we
should also require that P(X)=1. To sum up: numerical probability is a measure P
on an o-algebra . of subsets of a set X, such that P(X) = 1. We are now in a
position to define a probability function.

Definition 1.43. Given a sample space X and an o-algebra . on X, a probability

function is a function P with domain . that satisfies the following conditions

(1) P(A) >0 forallA € ..
(2) P(X)=1.
(3) For each infinite sequence {A;} of disjoint sets that belong to ./

P(Ur=1 Ax) = X5 P(Ag).
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The measure space (X,.7,P) is called a probability space and the measure P is
called a probability measure.

The three properties given in Definition[T.43]are usually referred to as the Axioms of
Probability (or the Kolmogorov Axioms). Any function P that satisfies the Axioms
of Probability is called a probability function. The axiomatic definition makes no
attempt to tell what particular function P to choose; it merely requires P to satisfy the
axioms. For any sample space many different probability functions can be defined.
Which one reflects what is likely to be observed in a particular experiment is still
to be discussed. The following gives a common method of defining a legitimate
probability function.

Theorem 1.52. Let X = {x,x2,...,X, } be a finite set. Let . be any G-algebra on
X. Let py,pa,--.,pn be nonnegative numbers that sum to 1. For any A € .7, define
P(A) by P(A) = X...ca Pi- (The sum over an empty set is defined to be 0.) Then P
is a probability function on .. This remains true if X = {x|,x3,... } is a countable
set.

Proof. We will give the proof for finite X. For any A € ., P(A) > 0 because every
pi > 0. Thus, Axiom 1 is true. Now P(X) = ¥, <;<, pi = 1. Thus, Axiom 2 is true.
LetAj,As,...,Ax denote pair wise disjoint events. (.7 contains only a finite number
of sets, so we need consider only finite disjoint unions.) Then

i
P(Uiz 1 Ai) = Yjel aPi = T Yjxjea Pj = T P(AY).

The first and third equalities are true by the definition of P(A). The disjointedness of
the A;s ensures that the second equality is true, because the same p ;s appear exactly
once on each side of the equality. Thus, Axiom 3 is true and Kolmogorov’s Axioms
are satisfied. O

1.5.2 Some Useful Properties of Probability

From the axioms of Probability we can build up many properties of the probability
function, properties that are quite helpful in the calculation of more complicated
probabilities.

Theorem 1.53. Let (X,.7,P) be a probability space and A, B be any sets in ..
Then the following assertions hold.

(1) P(A)) =1—P(A);

(2) P(A) <1;

(3) P(@)=0;

(4) P(B—A)=P(B)—P(ANB);

(5) P(AUB) = P(A) + P(B) — P(ANB);
(6) IfA C B, then P(A) < P(B).
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Proof. (1) The sets A and A’ form a partition of the sample space X, that is, X =
AUA’. Therefore, P(AUA’) = P(X)=1 by the second Axiom. Also, A and A" are
disjoint, so by the third axiom, P(AUA’) = P(A) + P(A’). Therefore we have (1).
Since P(A’) >0, (2) is immediately implied by (1). To prove (3), we use a similar
argument on X = X U @. Since X, & €S and they are disjoint, we have

1 =P(X)=P(XUQ)=P(X)+P(2)

and thus (3) holds.
The proofs of (4)-(6) remain as exercises. a

Theorem 1.54. Let (X,.”,P) be a probability space and A be any set in .. Let
{Ci} be an infinite sequence of the sets in . which is a partition of the sample
space X and {A;} be any sequence of sets in .. Then the following assertions hold.

(1) P(A) =35 P(ANG);
(2) P(Ue14x) < Uil P(Ap)-

Definition 1.44. Let (X,.7, P) be a probability space and the events A, B be any sets
in .Z. If P(B) > 0, then the conditional probability of A given B, written P(A|B), is

P(A[B) = P(ANB)
P(B)

Note that what happens in the conditional probability calculation is that B becomes
the sample space: P(B|B)=1. The intuition is that our original sample space, X, has
been updated to B. All further occurrences are then calibrated with respect to their
relation to B. In particular, note what happens to conditional probabilities of disjoint
sets. Suppose A and B are disjoint, so P(A N B)=0. It then follows that P(A|B) =
P(B|A)=0.

Theorem 1.55. (Bayes’Rule) Let (X,.#,P) be a probability space and A be any
sets in .. Let {C;} be an infinite sequence of the sets in S which is a partition of the
sample space X. Then for eachi=1,2,...,

P(A|C)P(C;
i—1 P(A|G)P(C)
Proof. By Theorem[[.54] we know that P(A) =Y | P(ANC;). Foreach i=1,2, ...,
we have P(ANC;) = P(A|C;)P(C;) from Definition[T.43] Therefore
P(CiNA P(A|C)P(C;
pca) = FGOA) _  PAICIPE) .
P(A) i—1 P(A|G))P(C)

Definition 1.45. Let (X,.”,P) be a probability space. Then a finite sequence of
events in ., {A;|i=1,2,..., n} are mutually independent if for any subsequence
{Bj|j=12,....q} C{Aili=1,2,...,n},
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P(ﬂ;1-=1Bj) = H;]-=1P(Bj)-

In many experiments it is easier to deal with a summary variable than with the
original probability structure. For example, in an opinion poll, we might decide to
ask 50 people whether agree or disagree with a certain issue. If we record a “1” for
agree and “0” for disagree, the sample space for this experiment has 2°° elements,
each an ordered string of 1s and Os of length 50. We should be able to reduce this to
areasonable size! It may be that the only quantity of interest is the number of people
who agree (equivalently, disagree) out of 50 and, if we define a variable X=number
of 1s recorded out of 50, we have captured the essence of the problem. Note that the
sample space for X is the set of integers {0,1, 2, ..., 50} and is much easier to deal
with than the original sample space. In general, we have the following definition.

Definition 1.46. Let (X,.%, P) be a probability space. A random variable £ is a map
from the sample space X into the set of real numbers R. The distribution function of
arandom variable, &, denoted by Fe (x), is defined as follows: for any x € R, Fe (x)=
P(& < x). For a discrete random variable, &, its probability mass function, denoted
by fe(x), is given by f¢ (x) = P(§ = x) for all x. For a continuous random variable,
&, its probability density function, denoted by f (x), is the function satisfies

Fe(x) = /:;f,g (t)dt forall x € R.

A fundamental concept in the analysis of univariate data is the probability density
function. Let £ be a random variable that has probability density function f(x). A
motivation for the construction of a nonparametric estimate of the density function
can be found using the definition of the density function.

d . F(x+h)—F(x)
R R 09
where F (x) is the distribution function of the random variable £. Let {x;, x2, ... %, }
represent a random sample of size n from the density f. A natural finite-sample
analog of (L3) is to divide the line into a set of k equalized bins with small bin
width 4 and to replace F(x) with the empirical distribution function F~(x) = |{x;
| x; < x}|/n. This leads to the histogram estimate of the density within a given bin:

forx € (bj, bj+1],

- {xilbj <xi <bjia}l/n _ nj

= = 7, 1.6
f @ ; " (16
where (b, bj;1] defines the boundaries of the jth bin, n; is the number of the ob-
served samples in the jth bin 2 = b; | — b;. What is needed is some way to evaluate
/7 (x) as an estimator of f(x). One way to evaluatef ™ (x) is via mean integrated

squared error (MISE) shown as follows (refer to [3]]).

o 2 2 (u)du
[0 = IO o) op),
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providing that f’(x) is absolutely continuous and square integrable. In order for the
estimator to be consistent, the bins must get narrower, with the number of observed
samples per bin getting larger, as n — oo} that is, 4 — 0 with nh — oo,

All the above definitions and results can be generalized to the multivariate case,
where there are n random variables. Corresponding to Definition[[.46] the values of
the joint probability distribution of n random variables &1, &, ..., &, are given by

F(xlax2a~~~7xn) :P(él le, gz §x27"'agn an)

for —eo < x1,X2,...,X, < oo. In the continuous case, probabilities are again obtained
by integrating the joint probability density, and the joint distribution function is
given by

Xn Xy [X]
F(xl,xz,...,xn):/ / / f(t1,t0,... ty)dtydt, .. . dty,

for —eo < x1,x7,...,x, < co. Also, partial differentiation yields

an
S, x0,.0x0) = 8x18x2...8an(xl’x2"”7xn)7

wherever these partial derivatives exist.

The normal distribution is in many ways the cornerstone of modern statistical
theory. It was investigated first in the eighteenth century when scientists observed
an astonishing degree of regularity in error of measurement. They found that the
patterns (distributions) that they observed could be closely approximated by contin-
uous curves, which they referred to as “normal curves of errors and attributed to the
law of chance.

Definition 1.47. Let (X,.”,P) be a probability space. n random variables &,

&, ..., &, have a joint normal distribution if and only if for —eo < x1,x2,...,X, < oo,
Xn X2 X1 1 1 1
F(xi1,x0,...,%;) = / / / e 20TET W g dty . dt,
B Y Y N '
(1.7)
where x = (x1,x2,...,x,)7, X is a n x n symmetry positive definite matrix and u is

a n-dimension vector in R".

LetX;,X>,...,X; be the observed samples of size / from a probability space (X,.%, P)
with a joint normal distribution and X C R". Let matrix X = (X1, X>,...,X;). If > n,
then by the Maximum Likelihood Estimate method in [1]], the parameters X and u
in (I7) can be estimated as follows:

w=, ZXl- > = ;XHXT, (1.8)

where H =1 —["'J, I is the identical matrix and J is a n X n matrix whose entries
are all 1.



56 1 Fundamentals

1.6 Combinatoric Systems

In this section, we will give the definitions and some simple properties of combi-
natoric systems in [2]]. By using them, the structure of data will be described in the
AFS theory.

Definition 1.48. Let V and E be sets and disjoint, f : E — 2". Then the triple
(V,f,E) is called a system. The elements of E are called the blocks of the system
(V. f,E), the elements of V are called the vertices of the system (V, f,E). If x € f(e),
we say that the block e contains the vertex x, or that x and e are incident with each
other.

Let A = (V,f,E) and Q = (W,g,F) be systems. The systems A and Q are called
isomorphic systems if there exist bijections, p : E — F,q : V — W such that
q(f(e)) =g(p(e)) forall e € E. The pair (p,q) is called a system-isomorphism.

Definition 1.49. Given two systems A; = (V;, f;, E;) for i=1, 2 where ViNV, = & =
E1NE,, the system A = (Vi UVa, f,E1 UE,) where f(e) = fi(e;) for e € E; is called
the direct sum system of A| and A, and denoted by A| & A».

Since the direct sum of system is commutative and associative, Definition[[.49 may
be extended to any finite number of systems A;=(V;, f;, E;) for i=1, 2, ..., k, as long
as V; ﬂVj =g =E; ﬂEj, for any 175] the system A=(V|U...UV;, f, E]U...UEk),
where f(e) = fi(e;) for e € E;, i = 1,2,...,k, is called the direct sum of Ay, ... A
and denoted by @©<;<xA;. Each A; is called a direct summand of A. The system (&,
[, @) is called the trivial system. Clearly A itself and the trivial system are always
direct summands of A.

Definition 1.50. A system A is called a connected system if A itself and the trivial
system are its only direct summands. A connected nontrivial summand of A is called
a component of A.

Definition 1.51. Let A = (V, f,E) be asystem. x; € V fori =0,2,...,nand ¢; € E,
i=1,2,...,n—1. A sequence x = xg,e1,Xx2,€3,...,€,_1,X, =y is called a x —y
path if {x;,x; 12} C f(ejq) fori=0,2,....n—1.s €V, € E, if a sequence s =
$0,81,82,03,...,Sp—1,t, =t in which s,_; € f(z,) and {si—lasi-‘rl} C f(f;) for i =
1,2,...,n—2, or asequence = 1,51,12,53,...,l,—1,5, = s in which s; € f(¢y) and
{si,siya} C f(tiy1) fori =1,2,...,n— 2, then the sequence is called a s — 7 path.
We always define there exists a x —x path forany x € VUE.

Proposition 1.1. Let A = (V, f,E) be a system. The binary relation R on V UE is
an equivalence relation if (s,t) € R < there exists a s —t path in A for s,t € VUE.

Proof. By the definition, we know that there exists a x — x path for any x € VUE.
Also by the definition, we know that if there exist x — y path then there also exists a
y—x path for x,y € VUE. Suppose there exist the path
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'x_y3-x:-x07 )’I,X2, )’3, v Xn—1, )’n :y
and the path

Y—2Z,Y=Y0,215 Y25 3235 -+ Yn—1-%n =2

in A.Ify € V, then

x:xo,)’l,x2,)’3, ---,xnfl,)’n :y:y:)’O’ Zl,)’2, 23, ---3yn71’ in=2

isax—zpathin A.If y € E, by the definition, we know that {x,_1, z; }€ f(y), then

x:xo, yl’xz, )’3, sy xn—l’ )’n :y:)’O, Zl, YZ, Z3, ceey y}’l—l, Zn =z
isalsoax—zpathin A. a

Theorem 1.56. The component partition of system A = (V, f,E) is the partition of
the equivalence relation of Proposition[L 1] restricted to V.

Proof. Assume Ay,,Ay,, ..., Ay, are the components of A = (V, f,E) and let F; =
{e€ E| f(e) CV;}. Lets € V; and r € V; for some i#j. Suppose s = o, 51, 52, 53, ...,
Sp—1, Sp =t 18 a s — ¢ path, and let s; be the last term in the path in V; U F;. If s; is
a vertex, then s; € f(sg41) where s; € V; and sp41 € F;. Since Ay, Ay,, ..., Ay, are
the components of A, si| € F, for some g # iand f(sg+1) C Fy, i.e., f(sg1)NVi=
@. This is clearly impossible. If s; is a block, then s;. 1 € f(s), but f(sx) C V;
whiles; ¢ F; which is impossible. We conclude that there exists no s — zpath.
Now suppose s, t € V; for some i. Let

S={r € V;UF; | thereis a s — r path}.

Observe that if r € SN F;, then f(r) C S and hence f(r) C SNV;. On the other hand
ifre F;—(SNE), then f(r)NS =, ie., f(r) CV;— (SNV;). We conclude that

Q= (SNVi flsnr, SNF), = (Vi— (SNV)), flr—snr. Fi— (SN F))

are both well-defined subsystems of A. Furthermore Ay, = £2; @ £2,. However Ay,
being a component, is connected. Hence €2 or €2, is trivial. Since s € S, £2; is not
trivial, hence €2, is trivial. Thus V; — (SNV;) = &, r € V; C S and s is equivalent
tot. O

By Theorem[I.36 we immediately have the following corollary.

Corollary 1.6. Let A = (V, f,E) be a system. The following three conditions are
equivalent:

(1) A is connected.
(2) fle) # @ forall e € E, and for every s, t €V there is a s —t path.
(3) Foreverys,t € VUE there is a s —t path.
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Exercises

Exercise 1.1. For any three sets A, B, and C, show the following assertions hold:

(a) AUB=BUA,ANB=BNA, ( Commutativity )
(b) AU(BUC)=(AUB)UC,AN(BNC)=(ANB)NC; (Associativity)
(©)(AUB)Y =A'NB,(ANB) =A"UB'. (DeMorgan’s Laws)

Exercise 1.2. For any collection of sets I" and the set B, show the distributive laws
carry over to arbitrary intersections and unions:

BN(|JA)=J(BnA),BU([)A) = [)(BUA).
Aell Aell Aell Aell

Exercise 1.3. Let f be amap of X into Y and A, B be any subsets of X. Let U, V be
any subsets of Y. Show the following assertions hold

(@)f(AUB) = f(A)Uf(B), f(ANB) C f(A)Nf(B);
®) L ouv) =l oyur YV, FFiwonv) C o) n ).

Exercise 1.4. Prove that a subset of a countable set is countable.
Exercise 1.5. Prove that the set Q of all rational numbers is a countable set.

Exercise 1.6. Let (S, <) be a partially ordered set and A a non-empty subset of S.
Show the following assertions hold:

(a) If A has maximum (minimum) element, then the maximum (minimum) ele-
ment is unique.

(b) If A is a chain in S (e.g. linear ordered subset), then maximal (minimal) ele-
ment of A (if it exists) must be maximum (minimum) element.

Exercise 1.7. Let A be a subset of a topological space X and let b(A) be the bound-
ary of A. Show B(A) =A " N(X —A)" =A~ —A%, X —b(A) = AU (X —A)°,
A~ =AUb(A) and A = A — b(A). And prove that a set is closed if and only if
it contains its boundary. Furthermore prove that a set is open if and only if it is
disjoint from its boundary.

Exercise 1.8. Prove that the real numbers, with the usual topology are connected.

Exercise 1.9. Let a be a family of connected subsets of a topological space. If no
two members of @ are separated, prove that UscaA is connected.

Exercise 1.10. Prove that each connected subset of a topological space is connected
in a component and each component is closed. If A and B are distinct components
of a space, prove that A and B are separated.

Exercise 1.11. Prove that a topological space is a Hausdorff space if and only if
each net in the space converges to at most one point.

Exercise 1.12. Prove that a topological space X is compact if and only if for any
family {D,, | o € A} of closed sets with the finite intersection property.
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Exercise 1.13. Let X be a topological space, then X is compact if and only if any
family {Dq, | oc € A} of subsets of X with the finite intersection property has the
further property that NgeaD,, # 9.

Exercise 1.14. Prove that each of the following properties of topological spaces is
stronger than the next: Normality, Regularity, 7> (Hausdorff), T, Ty, in the sense
that if a space satisfies the definitions of any one of these properties, it also satisfies
the definitions for all of the following ones as well.

Exercise 1.15. If X and Y are topological space and f is a function on X to Y, show
the following statements are equivalent.

(a) The function f is continuous.

(b) The inverse of each closed set is closed.

(c) The inverse of each member of a subbase for the topology for Y is open.

(d) For each x in X the inverse of every neighborhood of f(x) is a neighborhood
of x.

(e) For each x in X and each neighborhood U of f(x) there is a neighborhood V
of x such that (V) CU.

(f) For each net S (or {S,, n € D} ) in X which converges to a point s, the com-
position f - S (i.e., {f(S,), n € D} ) converges to f(s).

(g) For each subset A of X the image of closure is a subset of the closure of the
image; that is, f(A7) C f(A)~.

(h) For each subset Bof Y, f~!(B)~ C f~1(B™).

Exercise 1.16. Prove that a 77 space X is regular if and only if for each x € X and
eachU € %, thereisaV € %, suchthatV~ C U.

Exercise 1.17. Prove that a 7} space X is normal if and only if for each closed
set C and each open set U such that C C U, there exists an open set V such that
CCvcv CU.

Exercise 1.18. Prove that the p(x,y) in Definition [L.36 is a distance on .7#’; The
subspace of .7 defined by

E'={x|xe# x={x,,neNt},x,=0forn>1}
is homeomorphic to the real line with the usual topology; More generally E" C 7,
defined by
E'"={x|xeH, x={x,icN"},x;=0fori>n}
is homeomorphic to R" the n-dimension Euclidean space with the usual topology.
Exercise 1.19. Let (X,.”, P) be a probability space and A, B be any sets in .. Show
the following assertions

(a) P(B—A)=P(B)—P(ANB);
(b) P(LAUB) =P(A) + P(B) — P(ANB);
(c) If A C B, then P(A) < P(B).
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Exercise 1.20. Let (X,.7, P) be a probability space and A be any set in .. Let {C;}
be an infinite sequence of the sets in .#” which is a partition of the sample space X
and {A;} be any sequence of sets in .#. Show the following assertions.

(@) P(A) = 35 P(ANGY);

(b) P(UiZ1 Ak) < Zizy P(Ak).
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Chapter 2
Lattices

This chapter offers a concise introduction to lattices, Boolean algebras, topological
molecular lattices and shows main relations between them. For details, the readers
may refer to [I} 3, 2]. Our purpose is to familiarize the readers with the concepts
and fundamental results, which will be exploited in further discussion. Some results
listed without proofs is left to the reader.

2.1 Lattices

An element u of a partially ordered set S is an upper bound of a subset A of Sifu > a
for every a € A. The element u is a least upper bound or supremum of A (denoted
by supA) if u is an upper bound of A and u < v for every upper bound v of A. It is
clear from anti-symmetry of Definition[[.3that if a supA exists, then it is unique. In
a similar fashion one defines lower bounds and greatest lower bounds or infimum
of a set A(denoted by infA). Also if infA exists, then it is unique. The set of all of
the upper bounds (resp. lower bounds) of A is denoted by M,A (resp. M;A). We now
introduce the following.

Definition 2.1. A lattice is a partially ordered set in which any two elements have a
least upper bound (supremum) and a greatest lower bound (infimum).

Let a partially ordered set L be a lattice, we denote the least upper bound of a and b
by aV b (“a cup b” or “a union b”) and the greatest lower bound by a Ab (“a cap b”
or “a meet b”). And the lattice is briefly denoted as (L, V,A).

Proposition 2.1. Let < be the ordered relation of the partially ordered set (L,<)
and (L,V1,M1) be a lattice. If <~ is the inverse relation of <, then the partially
ordered set (L,<~') is a lattice (L,\V2,\;), where for any a,b € L,

aVob=aN b, aNyb=aVb.

The latices (L,V1,\1) and (L,V2,/\,) are called dual lattices. (L,V2, /), the dual
lattice of (L,V1,1), also briefly denoted as L™".

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 61
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009
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Proposition 2.2. Let L be a lattice. For any a,b,c € L, (aV'b)V ¢ > a,b,c; if v>
a,b,c, thenv > (aVb),cand sov > (aVb)Vc. Hence (aV b)V cis a supremum of
a,b,c.

Remark 2.1. One shows that any finite set of elements of a lattice has a supremum.
Similarly, any finite subset has an infimum. We denote the supremum and infimum
ofay,ay,...,a, by

arVayV...V a,
and
agNay/N\...N\ ay

respectively.

Example 2.1. Let S be a set, then (ZS , ) is a lattice. Where V and A are defined by
U and N, respectively. (25 , C) is called power set lattice on set S.

Proposition 2.3. Any totally ordered set is a lattice.

Proof. Let (L,<) be a totally ordered set. For Va,b € L, we have either a > b or
b > a.Inthe firstcase,aVb=aandaANb=>b.If b>athenavVb=band aAb=a.
Thus (L, <) is a lattice by Definition 211

Definition 2.2. Let L be a lattice with finite elements, then L is called a finite lattice.
Otherwise, L is called an infinite lattice.

Theorem 2.1. Let X be a non-empty partially ordered set. Then X is a lattice if and
only if every non-empty subset of X has a least upper bound and a greatest lower
bound.

Proof. ltis straightforward by Definition[2Z.1] O

Definition 2.3. A subset X of a lattice L is called a sublattice if it is closed under
the operation V and A, thatis,aVb € X and aAb € X forVa,b € X.

The following facts which remain as exercises are clear from Definition[2.3l

Proposition 2.4. Let L be a lattice. Then the following assertions hold.

(1) Empty set & is a sublattice of lattice L;
(2) Unitset {a} (a € L) is a sublattice of lattice L;
(3) The intersection of any sublattice of lattice L is a sublattice of L.

Remark 2.2. Tt is evident that a sublattice is a lattice relative to the induced opera-
tions. On the other hand, a subset of a lattice may be a lattice relative to the partial
ordered relation < defined in L without being a sublattice.
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For example, a fact that L is a lattice can be visualized in the form of the above
diagram. Let X = L— {a,b,c} and Y = L — {e}, then X is a sublattice of L, and Y is
a lattice without being a sublattice of L.

If a is a fixed element of a lattice L, then the subset of elements x such that
x > a(x < a) is clearly a sublattice. If a < b, the subset of elements s € L such that
a < x < b is a sublattice. We call such a sublattice an interval sublattice and we
denote it as I[a, b].

Theorem 2.2. Let (L, <) be a lattice, x,y € L. Then the following conditions are
equivalent:

(1) x<y;
(2) xNy=2x;
(3) xVy=y.

Proof. If x <y, then x is a lower bound of {x,y}. Let z be any lower bound of
{x,y}, then z < x, that is, x is a greatest lower bound of {x, y}, and so x Ay = x.
Conversely, if x Ay = x, we must have x < y. Thus, the condition (1) is equivalent to
the condition (2).

In virtue of the principle of duality, the condition (1) is equivalent to the condi-
tion (3). O

In particular, if a lattice (L, <) has identity element I and zero element O, for Vx € L,
we have the following relationships

xNO=0,xNO=x,xNI=x,xVI=1

The following results can be directly proved by resorting to the definitions and are
left to the reader.

Theorem 2.3. Let (L, <) be a lattice, Vx,y,z € L we have the follows:

Ll. xAx=x, xVx=x. (Idempotency)
L2. xANy=yAx, xVy=yVax. (Commutativity)
L3. xN(yAz)=(xAY) Az xV(yVz)=(xVy)Vz (Associativity)
4. xAN(xVy)=x=xV(xAYy). (Absorption)

Corollary 2.1. In lattice (L, <), operations of union and meet are order-preserving.
That is, Vx,y,z € L we have

x<y<= xNz<yAzxVz<yVz
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Corollary 2.2. In lattice (L, <), distributive inequality holds. That is, Vx,y,z € L we
have

(1) xA(yVz)
(2) xV(yAz)

(

> (x z);
< (xVy)A(xVz).

Corollary 2.3. In a lattice (L, <), modular inequality holds. That is, Vx,y,z € L we
have

x<z=xV(HAZ) <(xVy)Az

Generally, the equality does not hold in the relationships presented in Corollary
and Corollary 23} The lattice L, which is presented in the form of the following
diagram as shown below, is an example for this. In fact, the algebraic characteristics

I

o

of lattice are completely described by L1~1.4, as we demonstrate in the form of the
following theorem.

Theorem 2.4. Let L be any set in which there are defined two binary operation \V/
and N satisfying the condition L1~14 of Theorem[2Z.3| Then the following assertions
hold.

(1) Vx,ye L, xN\y=x&xVy=y,
(2) The L is a lattice relative to the following definition of <

x<y<= xAy=x
and that x\'y and x \'y are the supremum and infimum of x and b in this lattice.
Proof. (1)If xAy=x, we have xVy = (xAy)Vy=y by L2 and L4. Conversely, if
xVy=y,wehavex Ay=xA(xVy)=ux.
(2) Since x Ax = x we have x > x so reflexivity holds. If x > yand y > x, then

we have xVy =xand yVx =y. Since xVy =y V x this gives x = y, which proves
anti-symmetry. Next assume thatx > yand y > z. ThenxVy=xand yVz=y. Hence

xVz=(xVy)Vz=xV(yVz)=xVy=x

which means that x > z. Hence transitivity is valid.
Since (xVy) Ax = x, by L4, xVy > x. Similarly, xVVy > y. Now let z be an element
such that z > x and z > y. Then xVz =z and yV z = z. Hence

@xVy)Vz=xV(yVz)=xVz=z
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so z > xVy. Thus xVy is a supremum of a and b in L. By duality, x Ay is an infi-
mum of a and b. This completes the verification that a set L with binary operations
satisfying L1~L4 is a lattice and x Vy and x Ay are the supremum and infimum in
this lattice. a

Let us recall that a lattice (in virtue of Theorem [2.3] and Theorem 2.4)) is an alge-
braic system with two algebra operation (denoted as V and A), which satisfies the
the properties of idempotency, commutativity, associativity and absorption (axioms
L1~L4). These axioms may be regarded as an equivalent definition of lattices. Sim-
ilarly, we may define a concept of semi-lattice.

Definition 2.4. An algebraic system with an algebra operation A or VV which satisfies
axioms L1~L3 is called a semi-lattice.

Let (S, <) be a partially ordered set. We can prove that, if there exists infimum x Ay
(resp. supremum xV y) for any x,y € S, then the algebraic system (S, A) (resp. (S, V))
is a semi-lattice, which is called meet semi-lattice (resp. union semi-lattice). Con-
versely, let the algebraic system (S, o) be a semi-lattice, We define binary relation <
as follows

x<y<= xoy=x (oryox=y)

Then (S, <) is a partially ordered set, and there exists a infimum x Ay = xoy (or
supremum xVy = xoy).

Theorem 2.5. Let (S, <) is a partially ordered set. Then we have

(1) (S,<) is a lattice < (S, <) is both meet semi-lattice and union semi-lattice;
(2) If (S,<) is finite meet (union) semi-lattice with identity element I (or zero ele-
ment O), then (S,<) is a lattice.

Proof. Tt is clear that (1) holds by Theorem 2.34. We now demonstrate that (2)
holds. Let (S, <) be a finite meet semi-lattice with identity element /. For Vx,y € S,
My{x, y}# & by I € M{x,y}, where M, {x, y} is the set of upper bound of {x, y}.
Since (S, <) satisfies maximal condition and minimal condition, there exists min-
imal element zy of M,{x, y}. It follows that, Yz’ € M,{x, y}, zo A 7’ exists and
20 AN7 € My{x, y} since S is a meet semi-lattice. Also, zo < z’ by minimally of z,
that is, zo is minimum element of M,{x, y}. Thus zop = x Vy. Consequently, (S, <) is
a union semi-lattice. It follows that (S, <) is a lattice by (1).

According to the principle of duality, if (S, <) is a finite union semi-lattice with
zero element O, then (S, <) is a lattice. O

We now introduce the definition of a complete lattice.

Definition 2.5. A partially ordered set L is called a complete lattice if every subset
A ={a; | i€} of Lhas asupremum and infimum.

By the definition of complete lattice, we can directly obtain the following.
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Theorem 2.6. Let L be a lattice. We have the following assertions.

(1) L is a complete lattice if and only if L' dual of L) is complete;
(2) If L is a finite lattice, then L is complete.

We denote supremum and infimum of {a; | i € I} by \/,c;a; and \;c; ai, respectively.
If the set {a; | i € I'} coincides with the underlying set of the lattice L then O = Ajera;
is the least element of L and I = V¢a; is the greatest elementof L: O <aandl >a
for every a € L. The following comes as a useful criterion for recognizing whether
a given partially ordered set is complete lattice.

Theorem 2.7. A partially ordered set with a greatest element I such that every non-
vacuous subset has a greatest lower bound is a complete lattice. Dually, a partially
ordered set with a least element O such that every non-vacuous subset has a least
upper bound is a complete lattice.

Proof. Assuming the first set of hypotheses we have to show that any A={q; | i € I'}
has a supremum. Since I > a,, the set B of upper bounds of A is non-vacuous. Let
b = infB. Then it is clear that b = supA. The second statement follows in virtue of
symmetry. O

The definition of a lattice provided by means of the axioms L1~1.4 makes it natural
to define a homomorphism of a lattice L into a lattice L’ to be a map ¢@: a — ¢(a)
such that @(aVb) = @(a)V @(b) and @(a Ab) = @(a) A @(b). In this case if a > b
then we have a Vb = a; hence ¢(a)V @(b) = ¢(a) and @(a) > @(b). A map between
partially ordered sets having this property is called order preserving. Thus we have
shown that a lattice homomorphism is order preserving. However, the converse need
not hold. A bijective homomorphism of lattices is called an isomorphism. These can
be characterized by order preserving properties, as we see in the following

Theorem 2.8. A bijective map ¢(a) of a lattice L onto a lattice L' is a lattice iso-
morphism if and only if it and its inverse are order preserving.

Proof. We have seen that if a — ¢(a) is a lattice isomorphism, then this map is order
preserving. It is also apparent that the inverse map is an isomorphism of L’ into L so
it is order preserving. Conversely, suppose a — ¢(a) is bijective and as well as its
inverse is order preserving. This means that a > b in L if and only if ¢(a) > ¢(b) in
L'.Letd=aVb.Thend > a, b,so ¢(d) > @(a), p(b). Let ¢(e) > ¢(a), (b) and
let e be the inverse image of @(e). Then e > a, b. Hence e > d and ¢(e) > ¢(d).
Thus we have shown that ¢(d) = @(a) vV @(b). In a similar fashion we can show that
p(anb)=o(a)\o(b). 0
Finally, we give the concept of ideal of lattice.

Definition 2.6. Let (L, <) be a lattice (resp. union semi-lattice). If J a subset of L

which satisfies the following conditions, then J is called an ideal (resp. union ideal)
of L.

(1) avbeJ(Va,belJ);
(2) VaeJ,xe L,x <aimpliesx € J.
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Dually, we can define a dual ideal (resp. meet ideal ) of lattice (resp. meet semi-
lattice). If J is an ideal (or dual ideal) of a lattice L, and J # @, J # L, we call J a
proper ideal (or proper dual ideal ) of L. Clearly, @ and L are ideal (or dual ideal)
of L, we call them usual ideal (or usual dual ideal ) of L. It is easy to verify that
every ideal (or dual ideal) of lattice L is a sublattice of L.

Theorem 2.9. Let L be a lattice, and J a subset of L. Then the following assertions
hold.

(1) Jis an ideal (dual ideal) if and only if aN' b € J (reap. aANb € J) <= a€J
andb e J,Va,beL;

(2) If J is a sublattice of L, then J is an ideal (resp. dual ideal) of L if and only if
VYa € J, b €L, we have ahb € J (resp. aV' b € J);

(3) Arbitrary intersections of ideal (or dual ideal) of L is also ideal (or dual ideal)
of L; finite intersections of proper ideal (or dual ideal) of L is also proper ideal
(or proper dual ideal) of L.

2.2 Distributive Lattices

Let L be a lattice. We now formulate the following two distributive laws:
DI xA(yVz)=(xAy)V(xAz),Vx,y,z€L

and its dual
D2 xV(yAz)=(xVy)A(xVz),Vx,y,z€L

Theorem 2.10. For any lattice L, condition D1 is equivalent to condition D2.

Proof. Let L be a lattice and D1 hold in L. For Vx,y,z € L, we have

xVY)A(xVZ) = ((xVy)Ax)V((xVy)Az) (by condition D1)
=xV((xVy)Az) (by L2 and LA of Theorem2.3)
=xV((xAz)V(yA2) (by condition D1)
= (xV(xAz)V(Az)
=xV(yAz) (by L4 of Theorem[2.3)
which is D2. Dually D2 implies D1. O

Definition 2.7. A lattice L in which these distributive laws hold is called distributive
lattice.

From Theorem[2.10] in fact, a lattice L is distributive lattice as long as it satisfies one
of D1 and D2. There are some important examples of distributive lattices. Firstly,
the lattice 25 of subsets of a set S is distributive. Secondly, we have the following
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Lemma 2.1. Any linear ordered set is a distributive lattice.

Proof. We wish to establish D1 for any three elements x, y, z. We distinguish two
cases (1) x>y, x>z, 2)x<yorx <z In (1) we have xA (yVz) =yVzand
xAY)V(xAz)=yVz.In(2) wehave x A (yVz) =x and(x Ay) V (x Az) = x. Hence
in both cases D1 holds. O

Example 2.2. Let N be a set of natural numbers. If a < b for natural numbers a and
b means alb (a is a divisor of b), then (N, | ) is a distributive lattice.

From Example 2.2, (N,]| ) is a partially ordered set. In this example, xVy = (x,y)
the g.c.d. (greatest common divisor ) of x and y and x Ay = [x, y] the L.c.m. (least
common multiple ) of x and y. Also, if we write x = p{' p5*... pi*,y = p}l"plz72 . .p:]‘
where the p; are distinct primes and the a; and b; are non-negative integers, the
in(a;, b is bi : 1 C '

(x,y) = ngigkp;mn(a ), [x,y] - ngigkp;nax(u ). Hence if z = ptllpéz .. .p;k, Ci
non-negative integral, then

max (a;, min(b;, ¢;))

[x, (v,2)] = [Ti<i<k P;

and

min(max (a;, b;), max(a;, ¢;))

([x,y], [x,2]) = [Ti<i<k P;

Now the set of non-negative integers with the natural order is totally ordered and
max(a;, b;) = a; V b;, min(a;, b;) = a; A\ b; in this lattice. Hence, the distributive law
D2 in this lattice leads to the relation

max(a;, min(a;,c;)) = min(max(a;, b;), max(a;,c;))
Then we have

[x, (%, 2)] = ([x,y], [x,2])

which is D1 for the lattice of positive integers ordered by divisibility.
The following results whose proofs is left as exercises are evident from the defi-
nition of distributive lattice.

Theorem 2.11. Let L and L;(i € I) be lattice. Then the following assertions hold.

(1) L is a distributive lattice if and only if L™ (dual of L) is distributive lattice;
(2) TlicsLi is distributive lattice if and only if L; (Vi € I) is distributive lattice.
(3) If L is a distributive lattice, then sublattices of L are also distributive lattice.

Definition 2.8. Let L be a lattice. If for Vx,y,z € L, we have
x<z= xV(yAz)=(xVy)Az (modular law)
then L is called a modular lattice .

It is clear that a distributive lattice is a modular lattice, that is, if L is a lattice, and
D1 and D2 hold for Vx, y,z€ L, thenx < z= xV (yAz) =(xVy) Az
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Theorem 2.12. Let L be a lattice, x,y,z € L. Then the following conditions are
equivalent.

(1) Lis a modular lattice;
(2) xA(yV (xA2)) = (xAY)V (xA2), (Vx,,2 € L);
(3) x<yzAx=zAyandzVx=zVy =x=y, (Vx,y,z € L).

Proof. (1) = (2). Let L be a modular lattice. Thenx <z= xV (yAz) = (xVy)Az
for Vx,y,z € L. Since x Az < x, we have

GAY)V(xAZ)=(xA)VAX)=((xA2) VY)Ax=xA(yV (xAZ)).

(2) = (3). Suppose (2) holds. Form L2, L4 of Theorem2.3]and Definition 2.8} if
x<y,zAx=zAyand zVx=zVy, we have

x=xV(zAx)=xV(zAy)=@xV2)Ay=QV)Ay=y.

Thus (3) holds.
3)=().Leta=xV (yAz),b=(xVy)Az.If x <z, then

DAy > ahNy>GANZ)Ay=yAz=(xVY)AzAy=DAY,

thatis, bAy =aAy. Dually, we have bVy =aVy. Thus a = b by (3), that is that (1)
holds. O

Theorem 2.13. Let L be a lattice. Then the following conditions are equivalent.

(1) L is a distributive lattice;

(2) xA(yVz)=(xAy)V(xAz2), (Vx, y, z€L);
(3) xV(yAz)=(xVy)A(xVz), (Vx,y, z€E€L)
(4) (xAy)V A2V (zAx)=(xVY)A (V) A(ZVx), (VX y, z€L);
(5) xA(yVz) < (xAy)V(xAz), (Vx,y, zE€L);

(6) xA(yVz)<(xAy)Vz (Vx, y,z€L);

(7) zAx=zAyandzVx=2zVy = x=y(Vx, y,z€L).

>

Proof. From Theorem2.10] Definition2.71and Corollary 2.2L we have (5) < (1) &
2) = (3).

(5) = (6). Since x Az < z, by Corollary2.1] it is obvious that x A (yVz) < (x Ay)V
(xAz) < (xAy)VzforVx, y, z € L. It follows that (5) = (6). Conversely, suppose
(6) holds. Then

xA(yVz)=xA(xA(yVz)) < xA((xAy)Vz)
(6) = (7). For Vx,y,z € L,if zAx=zAyand zVx=zVy, we have
x=xA(zVx)=xA(zVy) <(xAZ)Vy=(@EAy)Vy=Yy
y=yA(zVy)=yA(zVx) <A Vx=(@Ax)Vx=x

by absorption (L4 of Theorem[2.3)) and (6). Thus x = y.
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(7) = (5).Leta=xA(yVz), b= (xA\y)V (xAz). From L2, L4 of Theorem[2.3]
Corollary 2.2]and Corollary 23] we have
any=xANOYVZI)Ay=xAN(Vz)Ay)=xAYy

XAy > [XA(YVI)IAY = bAY=[(xAy)V (xAZ)|Ay = (xAY)V (XxAzAY) > (xAY)

That is, a Ay = b Ay. Dually, we have bVy = aVy. Thus a = b by (7), that is that
(5) holds.
(3) = (4). By (3), for Vx, y, z € L, we have

(xAY)V(YAZ)V(zAX) = [xAY)V(YAZ) VZIA[(XAY)V (Y AZ) V]
= [(xAY) V(O V) AN AZ)V ((xVy) Ax)]
=...=@xVY)AQVZA(zVx)

That is, (4) holds.
(4) = (3). Suppose (4) holds. If z < x, for Vx, y, z € L, we have

EAY)V(AZ)V(zAX)=(xAY)V (yAZ)VZ=(xAy)Vz
VYAV A(ZVX) =@ VYAV Ax=xA(yVz)
Thus,
z<x = xA(yVz)=(xAy)Vz

That is L is a modular lattice. Consequently, in virtue of the modular law (Definition
2.9),

IN[AYIV(YAZ)V (ZAX)] =@ AYAZ)V (xAY)V (zAX)=(xAY)V (ZAX)
INEVY)AVZ)AZVX)]=xA (V) A(zVx)=xA(yV2).
Thatis, x A (yVz) = (xAy) V (zAx) by
(xAY)V(yAZ)V(zAx)=(xVyY)A (V) A(zVx). ]
We now discuss irreducible decomposition of elements of the distributive lattice.

Definition 2.9. Let L be a lattice and a € L. a is called a V-irreducible element
(simply, irreducible element) if ¥ x, y € L, we have a =xVy = a=xora=y.
Dually, we can define A—irreducible element.

If element a of lattice L can be represented by union of some \V—irreducible elements
x (i=1,2,...,r), thatis,
a=x1VxaV...VXx, 2.1

then 2.1)) is called a \V—irreducible decomposition of a (simply, irreducible decom-
position of a). If any x; cannot be omitted in 211 that is, Vj.x; < a, then we say
such a irreducible decomposition to be incompressible.
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Theorem 2.14. Let L be a lattice which satisfies minimal condition. Then every ele-
ment of L has a \V—irreducible decomposition.

Proof. Ya € L. If a is VV-irreducible element, then the result holds evidently. Other-
wise, leta=xVyandx,y < a(x,y € L). If there exist V—irreducible decompositions
of x and y, so does a. It follows that, if there does not exist V—irreducible decompo-
sition of a, so does at the least one of x and y, and x,y < a. We can assume without
any loss of generality that, there does not exist V—irreducible decompositions of
x. Analogously to the above proof, we have that there exists x; such that x; has
not V—irreducible decomposition and x; < x. .... In this way we obtain a series of
elements x;(i = 1,2,... ) which have not V—irreducible decompositions such that
a>x>x;>...>Xx, > ... and this contradicts that L satisfies minimal condition.
Thus, there exist V—irreducible decompositions of a. O

Definition 2.10. Let L be a lattice and a € L. a is called a strong \V—irreducible
element if V x,y € L, we have

a<xVy = a<xora<y.

It is clear that strong V-irreducible element must be V—irreducible element. But
converse of the result is not true in general. For distributive lattice, we have the
result as follows

Theorem 2.15. Let L be a distributive lattice and a € L. Then a is strong V—
irreducible element if and only if a is \/—irreducible element.

Proof. If a is a V—irreducible element, a < xVy,thena=aA (xVy)= (aAx)V
(aAy). Consequently, a =aAxora=aAy,thatis,a < xora < y. Thus, ais
strong V—irreducible element. Conversely, if a is strong \VV—irreducible element, it is
clear to be V—irreducible element. O

From Theorem[2.14and Theorem2.13] in a distributive lattice, every element can be
represented by union of some strong V—irreducible elements. Conversely, we have
the following

Theorem 2.16. Let L be a lattice. If every element in L can be represented by union
of some strong V—irreducible elements, then L is a distributive.

Proof. Since there are strong V—irreducible elements p; € L (i=1,2,...,r) such that
an(dVe)=pi1VpaV...VpforVa,b,c € L,wehave p; <aand p; <bVc (1 <i<
r). Also, p; is strong V—irreducible element so p; <aAb or p; < a Ac. Consequently,
pi<(anb)V(aNc),andaA(bVc)=piVpaV...Vp,<(aAb)V(aAc). It follows
from Theorem2Z.T0lthat L is a distributive lattice. 0

The following result (whose proof remains as an exercise) shows that incompress-
ible V—irreducible decomposition is unique in distributive lattice.

Theorem 2.17. Let L be a distributive lattice and a € L. If there are two incompress-
ible \/—irreducible decomposition of a
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a=x1VxoV..Vx,=y1Vy»V...Vys,
then r =s, and we have x; =y; (i=1,2,...,r) by properly adjusting the subscripts.
We now discuss the infinite distributive laws in complete lattices.

Definition 2.11. Let L be a complete lattice. L is called a A-infinite distributive lat-
tice if the following D3 is satisfied.

D3: a A (Vxenx) = Vien (a Ax) for any element a and non-empty subset N of L.
Dually, L is called a V-infinite distributive lattice if the following D4 is satisfied.
D4: aV (Axenx) = Axen (aV x) for any element a and non-empty subset N of L.

If L satisfies both D3 and D4, we call L an infinite distributive lattice.

Remark 2.3. D3 and D4 are called V—infinite distributive law and A—infinite dis-
tributive law, respectively. Clearly that A—infinite distributive lattices and V—infinite
distributive lattices must be distributive lattices.

It is easy to prove the following theorem by the commutativity.
Theorem 2.18. In a N—infinite distributive lattice L, we have

(ViemX) A (VyeN y)= VxeM.,yeN (xAy), (VM,N CL).

In a V—infinite distributive lattice L, we have

(Aeemx)V (/\yEN y)= /\xeM,yeN (xVy), (VM,NCL).

Remark 2.4. (1) Condition D3 and D4 are not equivalent. This is different from the
relation between D1 and D2. (2) Generally, a completely distributive lattice (that is
complete lattice satisfied distributive laws) is always not necessary infinite distribu-
tive lattice.

2.3 Boolean Algebra

Historically, Boolean algebras were the first lattices to be studied. They were in-
troduced by Boole to formalize the calculus of propositions. The most important
instances of Boolean algebras are the lattices of subsets of any set.

Definition 2.12. Let L be a lattice which has identity element / and zero element O,
x,ye L.IfxAy=0,xVy=1,theny is called a complement of x. If every element
of L has complements, then L is called a complemented lattice.

The following result holds.

Theorem 2.19. Let L and L; (i € I) be lattices. Then the following assertions hold.

(1) L is a complemented lattice if and only if L™" is a complemented lattice.
(2) TlicrLi is a complemented lattice if and only if every L; (Vi € I) is a comple-
mented lattice.
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In alattice L, the complement of an element of L (if it exists) is not always necessary
unique, such as presented in the following diagrams:

But the complement of an element of a distributive lattice, if it exists, is unique.

Definition 2.13. A Boolean algebra (or Boolean lattice) is a lattice with an identity
element / and zero element O which is distributive and complemented.

A collection of subsets of S which is closed under union and intersection, contains S
and @, and the complement of any set in the collection is a Boolean algebra. The fol-
lowing theorem outlines the most important elementary properties of complements
in a Boolean algebra.

Theorem 2.20. The complement of any element x of a Boolean algebra B is uniquely
determined (such a complement of x denote by x').

Proof. Letx € B and let X’ and x; satisfy x VX' =1, x Ax; = O. Then
x1=xi AL=x; A (xVX)=(x; Ax) V (x1 AX)=x; AX

Hence, if in addition, xVx; =7 and x Ax' = O, then X’ =x’ Axy, and so X' = x;. This
proves the uniqueness of the complement. It is clear that x is the complement of x’.
The proof of theorem has been completed. O

Theorem 2.21. Let B be a Boolean algebra and x,y € B. Then we have the following
assertions.

(1) xAX' =0, xvx =1

(2) X' =x.

(3) (xVy) =x'NY, (xAy) =x"Vy.

(4) O =L1T=0.

(5) xA\y=0=x<y.

(6) x<y&y <X

Proof. Here, we just prove (3) and (5). From commutativity, associativity and ab-
sorption (L2~L4 of Theorem[2.3) we have

AV A VY) = (xAY) AX)V ((xAY)AY) = (xAX)AY)V (xA (Y AY))
= (OANy)V(xNO)=0VO=0.

Similarly, we have (x Ay) V (X' Vy') = I. Thus, we have (x Ay)’ = x'Vy'. In this way,
we can prove that (xVy) = x' Ay, O
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Let L be a lattice with an identity element / and zero element O, and B be a sublattice
of L. If every element x of B has a complement x’, and x’ € B, then we call B a
Boolean subalgebra of L. 1t is evident that Boolean subalgebra must be a Boolean
algebra. But converse is not true in general, that is, if sublattice B of L is Boolean
algebra, B is always not necessary Boolean subalgebra of L. For instance, let L be a
Boolean algebra, then interval sublattice I[a,b](O # a < b # 1) is a Boolean algebra,
but is not a Boolean subalgebra of L.

The distributive lattice with an identity element / and zero element O includes
the greatest Boolean subalgebra.

Theorem 2.22. Let L be a distributive lattice with an identity element I and zero
element O, and A = {x | x € L, x has a complement x'}. Then A is sublattice of L,
and A is a greatest Boolean subalgebra of L, further.

Proof. For any x,y € A, it is clear that x',y’ € A. Similar to Theorem 221 we can
prove that x Ay and x Vy have complements, and (x Ay) =x'Vy/, (xVy) =x' Ay It
follows that x Ay € A, xVy € A. Thus, A is a sublattice of L. Clearly, A is a greatest
Boolean subalgebra of L. O

Theorem 2.23. Every complete Boolean algebra must be an infinite distributive lat-
tice.

Proof. Let L be a complete Boolean algebra, @ # M C L, a € L. We denote u =
Viem(aAx),d is a complement of a, then

(anx)Vd <uvd(VxeM),
and by the property of distributivity we have
(anx)Vd =(avVd)N(xVd)=IN(xVd)=xVd
Consequently,
x<xVd <uvd(VxeM),
that is, \/ e x < uVd'. It follows that,
aN(Vyemx) <an(uvd)=ahu<u

According to the following principle of minimal and maximal, we have u < a A
(Vyem x)- Thus,

an (VxGMx) =u= VXEM(a /\X)

Similarly, we can prove that

av (VXEM'X) =u= VXEM(a \/X)

This completes the proof of theorem. O
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Remark 2.5. (1) Principle of minimal and maximal Let (S, <) be a partially or-
dered set, {a;; | aij € S,j € T;} (i € I) be a family of subset of S, T =[], 7i. Then

AN aij) >\ (Naij)
iel jeT; feT iel

(If sup and inf exist in above formula).
(2) Complete Boolean algebra is always not necessary a completely distributive
lattice (see Definition2.17). However, A.Tarski had proved the following

Theorem 2.24. Let L be a complete Boolean algebra. Then the following conditions
are equivalent.

(1) Lis a completely distributive lattice.
(2) L is isomorphism to power set lattice on certain set.

Now we will introduce an algebraic system, Boolean ring, which is closely related
with Boolean algebra.

Definition 2.14. A ring is an algebraic system consisting of a non-empty set R to-

EEENTIRE]

gether with two binary operations “+”, “-” in R and two distinguished elements 0,
1€ R such that

(1) (R, +, 0) is an abelian group.
(2) (R,-,1) is a semigroup.
(3) The distributive laws hold, that is, for all x,y,z € R, we have

x-(y+z)=xy+x-z,(+2z) - x=y-x+z-x
Generally, in a ring R, the product x - y of x and y is denoted simply by xy .

Remark 2.6. In Definition 2.14] condition (1) is equivalent to following conditions
(A1~AS5):

Al x+y€ER;

A2 x+y=y+x;

A3 (x+y)+z=x+(y+2);

A4 For every x € R there exists a zero element 0 € R such that

x+0=x=0+x;
A5 For every x € R there exists an inverse element-x € R such that
x+(—x)=0=(—x)+x
Condition (2) is equivalent to following conditions (M1~M3):

M1 xy € R;
M2 (xy)z = x(yz);
M3 There exists a unit element (or identity element) 1 € R such that

xl =x=1x foranyxeR.
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Definition 2.15. Let R be a ring. If xy = yx for all x,y € R, then R is called a com-
mutative ring. If x> = xx = x, then x is called an idempotent element.

Definition 2.16. A ring is called Boolean ring if all of its elements are idempotent.

Theorem 2.25. Let R be a Boolean ring. Then the following assertions hold.

(1) x+x =0 (thatis, x = —x), for Vx € R;
(2) xy=yx, forVx,y € R.

Proof. (1) For any x,y € R, we have x> = x and y* = y. Consequently, we have
(x+y)? =2+ xy+yxby? =xtxyFyxty=x+y

that is, xy+yx=0. Let x = y, then xy = yx = x> = x. It follows that x +x=x>+x> = 0.
(2) For any x,y € R, we have xy +xy = 0 = xy+yx, that is, xy = yx. a

The next two theorems reveal the close relationship between Boolean algebras and
Boolean rings.

Theorem 2.26. Let L be a Boolean algebra together with identity element I and zero
element O. We define the binary operations “+” and “-” as follows:

x+y=(xAY)V (X Ay)andxy =xNy, ¥x,y,z € R

Then (L,+,-) is Boolean ring, where I is unit element of ring (L, +,-) and O is zero
element.

Proof. For any x,y,z € R, we have

D x+y=y+x.
@y +z=[(AY)VE A ALV AY)V (X AY)) A
=AY AND)VE AYAND)V (I AY AV (XAYAZ)

x4+ (+2) = kA (A VATV A AZ) V(Y A2))]
=AY AND)VE AYAND)V (I AY ANV (XAYAZ)

Thus (x+y) +z=x+ (y+z). Similarly (xy)z = x(yz).
B)x(y+z) =xAN(AZ)V ' A2)) =@ AYAT)V (xAY Az)
xy+xz=[xAY)AXAZ)]VI(XAY) A(xAZ)]=(xAYAT)V (xAY Az)
Thus x(y +z) = xy + xz. Similarly, (y +z)x = yx + zx.
(4) Forall x € R, x+ O = O+ x, that is, O is the zero element.
(5) For all x € R, x+x = O, that is, x is the inverse element of x.

It follows that L is a ring. Also, for all x € R, x? = xx = x, we have that L is a Boolean
ring. O

Theorem 2.27. Let (R,+,-) be a Boolean ring, I and O unit element and zero ele-
ment respectively. We definite binary operations “A\” and “NV” as follows:
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xANy=xyandxVy=x+y+xy Vx,y,z €R

Then (R,V, ) is a Boolean lattice (i.e. Boolean algebra), 0 and 1 are zero element
and identity element of lattice (R,V, \) respectively, and X' = x+ 1 forV x € R.

Proof. From Theorem[2.23] (R,+,-) is a commutative ring. Consequently, for any
X,¥,Z € R, we have

(DxAy=yAx,xVy=yVux.
QQ)xAx=x,xVx=x.
B) xAY)Az=(xAy)Az),

(xVy)Vz=(x+y+xy)+z+ (x+y+xy)z
=a+(y+z+yz) +x(y+z+yz)
=xV(yVz).

@) xA (xVy) = x(x+y+xy) = 2% +xy +x%y = x. Similarly, x V (x A y) = x.
Thus, (R,V, ) is a lattice by Theorem[2.4l

B)xA(yVz) =x(y+z+yz) =xy+xz+xyz = xy+xz+xyxz2 = (xAy) V (xAz).
Thus, (R,V, A) is a distributive lattice by Definition 2.7l

(6) Since xAO =0 and xA 1 =x for any x € R, 0 and 1 are zero element and
identity element of lattice (R, V, ) respectively, and we have

xAx+1D) =x(x+1)=x*+x=0,Vx€R
xVx+1)=x+x+1)+x(x+1)=1,¥xeR

by Theorem[2.23l Thus, x + 1 is complement of x, that is, x' = x + 1. From (1)~(6),
we have that (R, V, A) is a Boolean lattice (or Boolean algebra). O

2.4 Completely Distributive Lattices

In this section, we will introduce concepts and properties of completely distributive
lattices and minimal families, and give a theorem concerning the structure of CD
lattices. Finally, introduced is the generalized order-homomorphism on completely
distributive lattices.

Definition 2.17. Let L be a complete lattice. If for any family {a;; | j € Ji}(i € 1,
ajj € L, I and J; are subscript sets), we have

CDI: /\iel(\/je!,- aij) = ern,-E,J,- (/\iel aif(i))v
CD2: Vier(ANjes aij) = Nerie,0; Vier airy)

then L is called a completely distributive lattice (briefly, CD lattice). Where CD1
and CD2 is called completely distributive laws.

It has been proved that a CD lattice must be an infinite distributive lattice, and the
power set lattice on a set is a CD lattice. G.N.Raney had proved the following results
(refer to [[1]]) which is left to the reader as an exercise.
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Theorem 2.28. In complete lattices, CD1 is equivalent to CD2.

Corollary 2.4. A complete lattice L is a CD lattice if and only if one of CDI1 and
CD2 holds.

Lemma 2.2. (Principle of Minimal and maximal ) Let (S, <) be a partially ordered
set. For any family {x;; | j € J;} (i € I,x;j € L, I and J; are indexing sets),

ANV %)=\ (Axi)-

icl jeJ; f€llierJ;i i€l

Proof. For any ig € I and f € [];;J;, it is clear that
\/ Xij 2 Xigfig) = /\xi-,f(i)'
JeJi i€l
Consequently,
AV xij) = Nxigay - (¢ f € [T5)- 0
iel jeJ; i€l icl
Theorem 2.29. Every complete chain must be a CD lattice.

Proof. Let L be a complete chain, {x;; | j € J;}(i € I, x;j € L, I and J; are indexing
sets) be a subset family of L, and

a= Nie1(Vjes, xij) and b =V reqy,, 5 (Nier Xig(i))-
Then b < a by the principle of minimal and maximal (Lemma[2.2). Now we show
that b > a.

()Ify <a(y € L), then for every i € I, there is a j; € J; such that x;;, > y.

(2) If y is a prime under of a, then a < x;;, for every i € I. Consequently, there
exists f € [liesJi, f(i) = ji such that a < Ajegxip(;y < b.

(3) In the case, y is not a prime under of a foreveryy <a.a=V{y€L|y<a}.
By (1), there exists a f € [];c;Ji such that y < Aicjx;z(;) for every y < a. It follows
that,

a=V{yeL|y<a}< V rettior s (Nier Xig(iy) = b.
Thus, a = b, that is that L is a CD lattice. O
Now we introduce the notion of minimal families on complete lattices.

Definition 2.18. Let L be a complete lattice, a € L, B C L. B is called a minimal
family of a if B # & and

(1) supB=a;
(2) VA C L, supA > aimplies that Vx € B, there exists y € A such that y > x.
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Example 2.3. Let L = [0, 1] be the lattice with the order of the numbers. Then Va €
(0,1],[0,a) is a minimal family of a and {0} is the minimal family of 0.

Example 2.4. Let L = 2% be the lattice with the order of set inclusion C. Where X
is a non-empty set. Then VE € LLE C X, {{e}| e € E} is a minimal family of E, and
{2} is the minimal family of &.

The following result whose proof remains as exercise is straightforward by Defini-

tion2.131

Theorem 2.30. Let L be a complete lattice, a € L. Then the unions of minimal fami-
lies of a are minimal families of a as well. Especially, if a has a minimal family, then
a has a greatest minimal family, i.e., the union of all maximal families of a, denoted

by B(a).

The following property of the greatest minimal family 3(a) remains as an exercise:
B(a) is a lower set, i.e., if x €B(a), then for any y < x, y €B(a). The next theorem
shows that the CD lattice can be constructed by minimal families.

Theorem 2.31. Let L be a complete lattice. Then L is a CD lattice if and only if
Yo € L, a has a minimal family, and hence, 3 (a) exists.

Proof. Let L be a CD lattice anda € L. Let B= {B C L|supB > a} = {B; | i € I}
andViel, B, = {a,‘j ‘ JE J,‘}. Let

B={ Nerairiy| f € ictJi }-

Then it is easy to prove that B is a minimal family of a.
Conversely, suppose that Va € L, a has a minimal family. In what follows, we
prove that condition CD1 is valid. In fact, let

a= NierVjey, aij
Then it is clear that

a>\V peme 0 (Nier@iriiy)-

To prove the inverse of the above inequality, let B(a) be the greatest minimal family
of a and x € B(a). Since forany i € I,

\/aijzav

JeJi

hence from the definition of B(a) that Vi € I there exists a j = f(i) € J; such that
aij = a;z(;) > x and /\iel air(i) > x. Hence

V' (Aay@) =\ x=a

fellierJi i€l xeP(a)

This completes the proof. d
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Let L be a CD lattice. Definite map, 8 : L — 2% such that a — f(a), Va € L, where
B(a) is the greatest minimal family of element a of L. Then f3 is a well defined map,
we say 3 to be the minimal map with respect to L.

Theorem 2.32. Let L be a CD lattice, a,b € L and a < b. Then (a) C B(b).

Proof. Suppose that y € (a). We will prove that y € B(b). For this purpose, we
prove that B*(b) = B(b) U{y} is a minimal family of b. In fact, since b > a >y, we
have

sup 8*(b) = sup B (b) = b.

Next, suppose that B C L and supB > b and x is any fixed element of 8*(b). If
x € B(b), then there exists z € B such that z > x; if x =y, then x € 3(a) and supB > a,
hence there exists z € B such that z > x. This shows that $*(b) is a minimal family of
b and hence 3*(b) C B(b). Thusy € B(b). O

Theorem 2.33. Let L be a CD lattice and Vi €1, a; € L. Then B(V ¢ ai) =Uic; B (ai).

Proof. Let a = \/;c;ai, we only need to prove f(a) = U;c; B(a;). In fact, it follows
from Theorem [2.23] that (a) D U;c; B(a;). On the other hand, suppose that b €
B(a). Since

sup(Uie B(ai)) = sup;e;(sup B(ai)) = supic; ai = a,

By Definition 213} we know that there exists ¢ € [J;c; B(a;) such that ¢ > b, say
¢ € B(aiy). Then we have

b€ Blaiy) € Uies Blai),
because 3 (a;, ) is a lower set. Hence f3(a) = U;¢; B(a). O

The next theorem whose proof remains as an exercise can be proved with the aid of
Theorem[2.32] [2.33] and the use of maximal mapping.

Theorem 2.34. Let L be a CD lattice and B: L — 25 be the minimal map with
respect to L. Then the following assertions hold.

(1) (o) ={0};
(2) VaeL, B(a)C B(I);
(3) B is a union-preserving map, that is, B(\;crai) = Uier B(ai)-

In what follows, we introduce the dual concept and properties of minimal families.

Definition 2.19. Let L be a complete lattice, a € L, A C L. A is called a maximal
family of aif A # @ and

(1) infA =gq;
(2) VB C L, inf B < a implies that Vx € A, there exists y € B such that y < x.
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The following results (whose proofs remain as exercises) are similar to Theorem
22Tl and Theorem[2.23

Theorem 2.35. Let L be a complete lattice, a € L. Then the unions of maximal fam-
ilies of a are maximal families of a as well. Especially, if a has a maximal family,
then a has a greatest maximal family, i.e., the union of all maximal families of a,
denoted by a(a).

Theorem 2.36. Let L be a CD lattice and o : L — 2% be the maximal map with
respect to L, i.e., o : L — 2L such that a — a(a), Ya € L, where a(a) greatest
minimal family of element a. Then the following assertions hold.

(1) o) ={1};

(2) YaeL, ala) C a(0);

(3) oisa AN—Umap, that is, o.(N\icyai) = Ujer 0t(ai).

In the following, the set {x € L | x < a, a € L} will be denoted by the symbol | a.

Lemma 2.3. Let L be a CD lattice, a, b € L and b € o(a). Then there exists ¢ € L
such that ¢ € o(a) and b € a(c).

Corollary 2.5. Let L be a CD lattice, a,b € L and b € a(a). Then there exists a
sequence c1,Ca, ... in L such that

c| € a(a)7ck+1 S a(ck),k: 1,2,... 2.2)

and
beo(c,),n=1.2,... (2.3)

Lemma 2.4. Let L be a CD lattice, a,b € L and b € a.(a). Then there exists an ideal
I'in L such that

(1) acIC|b;
(2) Vx € L\I, there exists a minimal element m of L\I such that x > m.

Proof. Let c1,c2, ... be the sequence given in Corollary23and I = J;;_; | ¢;. On
account of conditions[2.2] and 23] we know that [ is an ideal in L and o« € I C| b.
Suppose x € L\I. Then {x} is a chain contained in L\, and by Theorem[L.T1] there
exists a maximal chain ¢ C L\ which contains {x}. Let m be the infimum of ¢ in the
complete lattice L, viz., m = inf, ¢. We only need to prove m € L\, or equivalently,
mél.

In fact, suppose that m € I; then there exists k € N such that m € ¢y, i.e., m < ¢;.
Let

B={yVcye o}
Then

infB = Ay (v Ver) = (Ayegp) Vek =mVep = cy.
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It follows from[2. 2] that there exists yV ¢, € B such that yV ¢, < cx4 1. Hence y < iy 1
and soy €| ciy C I, contradicting the fact thaty € ¢ C L\1. a

Definition 2.20. Let L be a lattice, then the non-null VV—irreducible elements of L is
called a molecule , and M denote set of all molecule of L. In the sequel, if L is a CD
lattice, we prefer to call L a molecular lattice and write it in the form L(M).

Only the molecular lattices contain full molecules, as is shown by the following:

Theorem 2.37. Let L be a molecular lattice. Then each element of L is a union of
V—irreducible elements. Consequently, for any x € L, we have
x=V{a|a<x aisamolecule of L}.
Proof. Forl € L, let
n(l)={x € L|x<landxis V-irreducible}.

Then sup (1) < [, hence we only need to prove that supz(l) > 1.

In fact, suppose that a = supm(l) > [ is not true. Then there exists b € ¢¢(a) such
that b % 1. Let I be the ideal defined in Lemma[24l Then a € I C| b. Since [ ¢ b,
we have [ € L\I. By Lemma[24] there is a minimal element m in L\ satisfying
m < [.mis a V-irreducible element. Indeed, if m < xVyand m &£ x, m £ y, then

m=(mAx)V(mAy),

and m Ax # m, m Ay # m. Since m is a minimal element in L\/, it follows that
mAx ¢ L\I,mNy¢ L\l,ie.,mAx€l, mAy¢€Iandso

m=(mAx)V(mAy) €l

because [ is an ideal, contradicting the fact that m € L\I. This shows that m is V—
irreducible, hence m € w(l) and so m < sup7m(/) = a. But this implies that m € [
because [ is a lower set. This contradicts the fact that m € L\I. Hence a = sup (l) >
[ and the proof has been completed. a

Let L be a CD lattice and a € L. By Theorem 2Z37if Vx € f(a), [x] denotes the set
of all V—irreducible elements which are smaller than or equal to x, then x = supl[x].

Let
B*(a) = U{lx] | x € B(a)}-
Then is a minimal family of a.

Definition 2.21. Let L be a complete lattice, a € L, B C L. B is said to be a standard
minimal family of a if B is a minimal family of @ and members of B are \V—irreducible
elements.

The following theorem whose proof remains as an exercise can be proved by virtue
of Theorem2.3T]and Theorem 2371
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Theorem 2.38. Let L be a complete lattice. Then L is a CD lattice if and only if
Ya € L, a has a standard minimal family.

Example 2.5. Let L = IX. Consider the element x; € L defined by
At=x
x(f) = { ot s (2.4)

It is clear that M={x;| x € X, 4 €(0, 1]} is the set of all non-zero V—irreducible
elements, and Vf € I,

B*(f) ={xa | f(x) #0,0 <A < f(x)}
is a standard minimal family of f.

Finally, we introduce the notion of generalized order-homomorphism on molecular
lattices (i.e. CD lattices).

Definition 2.22. Let L; and L, be molecular lattices and f : L; — L, a map. f will
be called a generalized order-homomorphism, or briefly, a GOH, if the following
conditions are satisfied.

1 f(0)=0:
(2) f is union-preserving;
(3) f~!is union-preserving, where Vb € Ly, f~!(b) = V{a € L, | f(a) < b}.

Example 2.6. (1) Let L;=2%, L, = 2¥ and f: X — Y be a usual map. Then f induces
amap f: 2¥ —2Y by letting f(A)={f(x) | x € A} for any A €2X. It is clear that f is
a GOH.

(2) Let Ly, L, be molecular lattices and define

fla)=0,Va € L.
Then f~!(b)=1,Vb € L, and f: L; — L, is a GOH.

From now on we only consider GOHs which map non-zero elements into non-zero
elements.

Theorem 2.39. Let Ly and Ly be molecular lattices and [ : Ly — Ly a GOH. Then
the following assertions hold.

(1) fand f~' are order-preserving;

(2) f'f(a) >a VacLy;

(3) £f~1(b) <b, Vb€ Ly;

(4) f(a) <bifandonlyifa < f'(b);

(5) fla)=nN{beLy| f1(b) >a},Vac Ly
(6) f~': Ly — Ly is intersection-preserving.
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Proof. Tt is easy to prove (1)—(5) (which are left as exercises); here we only give
the proof of (6). By (4) we know that the following statements are equivalent;

a<f(bi). i€l

(i) f(a) < Niesbis

i) Vi € 1, f(a) < bi;

(iv)a < Aier £~ (bi)-
It follows that, a < f~!(A;e; bi) if and only if @ < A;c; f~ ' (b;). Since a is arbitrary,
it follows that £~ (Aic; bi) = Nies f 1 (B;), viz., £~ is intersection-preserving. [

Theorem 2.40. Let Ly and L) be molecular lattices and f : Ly — Lya GOH. Then
the following assertions hold.

(1) If a is V—irreducible in Ly, then f (a) is \—irreducible in Ly;

(2) If B is a minimal family of a in Ly, then f(B) is a minimal family of f(a) in Ly;

(3) If B* is a standard minimal family of a in Ly, then f(B*) is a standard minimal
Samily of f(a) in L.

Proof. (1) Leta € L; be V—irreducible and f(a) < bV c. Then
a< flbve)=f1B)V (o).
Since a is V—irreducible we have a < f~!(b) ora < f~!(c), and hence

fla) < ff~4b) <bor fla) < ff(c)<ec.

This proves that f(a) is VV—irreducible in Lj.

(2) Let B be a minimal family of a in L, then supf(B) = f(supB) = f(a) in L;.
Suppose that C C Ly, supC > f(a) and y € f(B). Then there exists x € B such that
f(x) =y. Since

supf~!(C) = f~(supC) = f ! f(a) > a.

by the meaning of B we know that there exists z € f~!(C) such that x < z. Now
vy = f(x) < f(z) € C. This proves that f(B) is a minimal family of f(a) in L.
(3) follows directly from (1) and (2). a

Theorem 2.41. Let L1 (M,),Ly(M>) be molecular lattices and g : My— M, a map.
Then g can be extended to a GOH f: L| — Ly if and only if Vm € M|, g maps the
standard minimal family of m into the standard minimal family of g(m).

Proof. The necessity is a consequence of Theorem 2,40l and we only need to show
the sufficiency.

Suppose that g maps standard minimal families into standard minimal families. It
is easy to prove that g is order-preserving. Va € Ly, let B (a) be the greatest minimal
family of @ in Ly, and let

B*(a)={meM|m<b for some be B(a)}.
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Then 3*(a) is completely determined by a and is clearly a standard minimal family
of a. By the hypothesis we know that Vm € My, g(*(m)) is a standard minimal
family of g(m), i.e.,

8(B*(m)) C My, supg(B*(m) = g(m)

and if C C Ly, supC > g(m), then Vy € g(B*(m)), there exists z € C such that y < z.
Now Va € L; define

o=@ a70 0%

Then f: Ly — L, is a GOH.
In fact, suppose that a = V;¢ja; where a, a; € Ly. It is clear that Vi, f(a) > f(a;).
Hence f(a) > Vierf(a;). On the other hand, Vm € *(a), by virtue of the fact that

sup;c; VB*(ai) = sup;c; ai = a.
We know that there exists some iy and m’ € B*(a;,) such that m < m’. Hence
g(m) < g(m') < Vg(B*(aiy)) = f(aiy)
and therefore
fla) =Vg(B*(a)) < Vf(ai).

This proves that f is union-preserving.
By the condition that Vi € M, g(B*(m)) is a standard minimal family of g(m)
we know that

Vim € My, f(m) = Vg(B*(m)) = g(m).

This shows that f : L; — L, is an extension of g: M} — M.
Let us turn to the inverse of f. On account of Theorem 2.1l it suffices to prove
that £~! is union-preserving. First we prove that

Fb) = Via € Li| fla) < b} = v{m e M| gm) < b}.
In fact, since
{B*(a) | vg(B*(a)) < b} C {me M|g(m)<b},

we have
VB*(a) < V{me M, | g(m) < b}

whenever f(a) < b. Hence
f1(b)=V{VB*(a) |a€Liand f(a) <b} < V{me M |g(m)<b}
and hence

[ () =V{me M | g(m) < b}.



86 2 Lattices

Now suppose that b = V,e¢ib; where b, b; € Ly, and m € M, satisfies g(m) < b.
Consider the standard minimal family *(m) of m. By the condition given in this
theorem g(3*(m)) is a standard minimal family of g(m), and so Vm' € B*(m), since
sup;c; bi = b > g(m) it follows that there exists an i such that g(m') < b;. Hence

m' < g N (bi) < Vierg ™ (bi)
and therefore
m = sup B*(m) < Vierg™ ' (bi)
whenever g(m) < b. This shows that
[N b) = Vv{m e M | g(m) <bY< Vierf " (bi),

hence f~!(b) = Vi1 f~'(b;) because the opposite inequality £~ (b) > Vie; f~ (b))
is obviously true. This completes the proof. a

Let L, L, and L3 be molecular lattices and f : Ly — L, g : L, — L3 GOHs. Then gf
(0) = 0, gf is union-preserving and

(8)"'(c) = Vi{ae L |(¢f)(a) < c} =V{a € L | g(f(a)) < c}
=vi{aeL|fla)<g ()} =1 """ (e)).

Hence (gf )~! is union-preserving and therefore gf : Ly — L3 is a GOH. Moreover,
the identity map / : L — L is a GOH. Hence we have:

Theorem 2.42. Let f : L1 — Ly be a mapping. Then the following assertions are
equivalent.

(1) fis anisomorphism;
(2) fis a bijective GOH;
(3) f~'is a bijective GOH.

Proof. Suppose that the GOH f : L — L, is a bijection. Then it is easy to prove
that f is intersection-preserving and hence fis an isomorphism.

Conversely, if f: L} — L, is an isomorphism, then (f is bijection and) f is a GOH.
In fact, it is easy to prove that under this condition f(a)=b if and only if a = f~!(b)
where f~!(b) has the meaning given in the beginning of this section. In other words,
for any isomorphism f: L; — L, the two inverses, one of which is given in the
beginning of this section and the other given in set theory, coincidentally. Now f~!
is also an isomorphism, so that (f~')~! = £ is union-preserving. Hence f~! is a
GOH because f~!(0) = Ois true. O

2.5 Topological Molecular Lattices
In this section, we introduce the theory of topological molecular lattices [3} 4]. This

theory is to treat the theories of point set topology, fuzzy topology and L—fuzzy
topology in a unified way.
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In what follows, we often use capital letters A, B, P, ...to denote elements of a
molecular lattice L(M) and use small letters a, b, m, ... to denote elements of the set
of molecules M and call them “points”.

Definition 2.23. Let L(M) be a molecular lattice, n C L. 1] is said to be a closed
topology, or briefly, co-topology, if O,1 € 1 and 1 is closed under finite unions (i.e.,
V) and arbitrary intersections (i.e., A), elements of 1 will be called closed elements,
(L(M), n) will be called a topological molecular lattice, or briefly, TML.

Example 2.7. (1) Let (X, %) be a topological space. Then the lattice 2X with the or-
der of set inclusion is a molecular lattice and (2%, 17) is a TML, where n={X\U|U €
% }. Closed elements of (2%, 17) are closed sets of (X, %/).

(2) Let I=[0,1] and X be a set. Let (IX, §) be a L-fuzzy topological space. Then
the lattice 7%, in which &, { € I*, £ < { < forany x € X, & (x) < {(x), is a molecular
lattice and (IX,n) is a TML, where n={A’ | A € §} and A'(x) = 1 — A(x) for all
x € X. Closed elements of (IX, n) are closed fuzzy sets of (IX, §).

(3) Let L be a lattice and X be a set. Let (LX, §) be a L—fuzzy topological space.
Then it is a TML of which the closed elements are closed L-fuzzy sets.

Definition 2.24. Let (L(M), ) be a TML, a € M, P € 1 and a £ P. Then P is
called a remote-neighborhood of a, and the set of all remote-neighborhoods (briefly,
R-neighborhoods ) of a will be denoted by 11 (a).

Since a is V—irreducible, it is easy to verify that P € 1(a) and Q € 1n(a) imply that
PV Q € n(a). Moreover, it is clear that P € n(a), Q € n and Q < P imply that
0 € Nn(a). Hence n(a) is an ideal in the complete lattice 7.

Definition 2.25. Let (L(M), 1) be a TML, A € L. Then the intersection of all closed
elements containing A will be called the closure of A and denoted A™.

Theorem 2.43. Let (L(M), ) be a TML. Then the following assertions hold.

(2) VAEL A<A~;
(2) 0~ =0;

(3) (A7)"=A";

(4) (AVB) =A~VB".

Definition 2.26. Let (L(M), 1) be a TML, A € L, a € M. Then a is called an adher-
ence point of A if VP € 1n(a) we have A & P. If a is an adherence point of A and
a £ A, or a <A and for each point b € M satisfying a <b <A we have A £ b\ P,
then a is called an accumulation point of A. The union of all accumulation points of
A will be called the derived element of A and denoted by A%,

The element O has no adherence point because Va € M, VP € n(a) = O < P.

Theorem 2.44. Let (L(M), 1) be a TML, A € L, a € M. Then the following asser-
tions hold.

(1) ais an adherence point of A if and only ifa <A™ ;
(2) A~ equals the union of all adherence points of A;
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(3) A==AVAY;
(4) (A9~ <A,

Proof. (1) By Definition2.26 a is an adherence point of A if and only if P € n(a) =
A £ P, or equivalently, A < P = P ¢ n(a) for every closed P. This implies that
a<A".

(2) We have only to consider the case A # O. By Theorem 2.37] we have
A =V{a € M| a <A™}, and by (1), this means that A~ is the union of all its adher-
ence points.

(3) We need only prove that A~ < A V A4, In fact, if for some pointa <A™ and
a % A, then by (1) and Definition 226 we know that a < A“.

(4)Ifa < (A?)~, then by (1) and DefinitionZ226 we know that Vp € 1(a), A? £ P.
Hence there exists an accumulation point b of A such that b f P, which means
P € n(b). But b is an adherence point of A, hence A £ P. This proves that a is an
adherence point of A. a

Corollary 2.6. An element A of (L(M),n) is closed if and only if for each point
a f A, there exists P € 1(a) such that A < P.

Definition 2.27. Let L(M) be a molecular lattice, A € L, A # O, m € M. Then m
is called a component of A if (i) m <A, and (ii) u € M, u > m and u < A imply
that u = m. Components of / will be called maximal points. Here O and I are the
minimum and maximum of L(M).

Example 2.8. (1) If L =2%X, A € L, A #0, then every point of A is a component
of A. Q) If L=1X, A€ L, A+# O, then a point x; is a component of A if and
only if A(x) = A. In (1) and (2), if m; and m; are different components of A, then
my Amy = O.

Theorem 2.45. Let L be a molecular lattice, A € L, A # O, a € M and a < A. Then
A has at least a component m such that a < m.

Proof. Let ¢ be a chain in L. We say that ¢ is in A if Vx € ¢, x <A, in symbols,
¢ < A. Consider the family of chains

C={placpC M, p<A}
Since {a}€ € we have ¢ # &. Assume that
¢ < ¢y if and only if @) C ¢,

then € becomes a poset. It is clear that every totally ordered subset of 4 has an
upper bound, and hence there exists a maximal element ¢y € 4. Let m = sup ¢.
Then a < m < A and one readily checks that m is V—irreducible, i.e., m € M, and m
is a component of A such that a < m. O

Remark 2.7. The component mentioned in Theorem may not be unique. For
example, let L={0O, I, a, m, u}, define @ < m, a < u and suppose m and u are incom-
parable. Then L(M) is a molecular lattice where M = {a, m, u}. Now A=[ has two
different components m and u such that both @ < m and a < u are true.
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Theorem 2.46. Let L(M) be a molecular lattice, A € L. Then for each point a < A,
A has a unique component m(a,A) such that a < m(a,A) if and only if different
components of A are disjoint, i.e., their intersections are equal to O.

The proof is left to the reader.

Theorem 2.47. Let (L(M), ) be a TML, VA € L, different components of A are
disjoint. Then the derived element of every element is closed if and only if the derived
element of every point is closed.

Proof. We only consider the sufficiency. The proof of necessity remains as a exer-
cise. Suppose that a € Mand a < (A%)~. We have to prove that a < A%. If a £ A,
then by virtue of the fact that a < A~ we have a < A9, Hence we may assume that
a < A.Let m=m(a, A) be the unique component of A such that a < m.

(i) a < m® Let B*(a) be the standard minimal family of a. Then we only need
to prove that Vx € B*(a), a < A%. In fact, Vx € B*(a), since m? = V{y | y is an
accumulation point of m}> a, the point m has an accumulation point dy such that
dy > x. By the meaning of d one readily verifies that dy £ m, hence d, % A (because
otherwise there will be at least two components of A containing the same point x).
On the other hand, d, <m~ <A™, and hence d, is an accumulation point of A which
proves that x < d, < A,

(i) a £ m?. Since m? is closed we have m? € 1(a). Suppose that P € 1(a) and
let Pi=m® v P. Then P| € n(a). Note that a < (A?)~, i.e., a is an adherence point of
A?. We have A4 £ Py so that A has an accumulation point ¢ such that ¢ £ Py and so
Pren(a).Ifc£m ,thenm VP €n(c)andhencea < m™ VP if c <m™,thenit
follows by the facts ¢ £ P; and m? < P, that ¢ % m?, hence ¢ < m < A. Moreover, by
the meaning of ¢ and the fact that c < A we know that a ﬁ mV Pj. This proves that a
is an accumulation point of A, i.e., a < Al O

Definition 2.28. Let (L(M), 1) be a TML and {A;} be a subset of L. Then {A;} is
said to be locally finite if every point a has a R-neighborhood P, such that A; £ P,
holds for at most a finite number of i.

This definition is evidently a generalization of the one available in general topology.

Theorem 2.48. Let {A; | i € I} be a locally finite family. Then the following asser-
tions hold.

(1) {A;] | i €I} be alocally finite family;
(2) If B <Aj foreach j € J C 1, then {Bj | j € J} be a locally finite family;
(3) (VierAi)” =Vier4A; -
Proof. (1) Since P, is closed we have
A; £ P, if and only if A;” £ P,.

(2) is trivial.
(3) (ViejAi)~ > Vs A; is obviously true. Now suppose that a € M and a ¢
Vic1A; . By virtue of (1) we know that {A;" } is locally finite, and hence there exists
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P, € N(a) such that A;” < P holds for all but a finite number of i ’s, say i1, iz, ..., iy.
Since a £ Ay, k=1,2,...,n, there exist py € 1(a) such that

AikSPk,k: 1727"'7’1‘

Put P = (\/}_; P) V P.. Then P € 1n(a) and VA; < P. Hence a £ (\/;c;Ai)”. This
proves (3). O

Definition 2.29. Let L(M) be a molecular lattice and D a directed set and S : D — M
a map. Then S is called a molecular net in L and denoted S = {s(n) |n € D}. S is
saidtobeinA € L, if Vn € D, s(n) < A.

Definition 2.30. Let (L(M), 1) be a TML, S={s(n) | n € D} a molecular net and a
point a. a is said to be a limit point of S (or S converges to a; in symbols, S — a),
if VP € n(a), s(n) £ P is eventually true. a is said to be a cluster point of S(or §
accumulates to a; in symbols, Seea), if VP € 1(a), s(n) £ P is frequently true. The
union of all limit points and all cluster points of S will be denoted by limS and adS,
respectively.

A limit point of S is a cluster point of S but not vice versa.
Corollary 2.7. (1) Suppose that
S={s(n), n € D}— a(Sea),

T={T(n), n € D} is a molecular net with the same domain as S and ¥Vn € D,
T(n) > S(n) holds. Then T — a(Ta).
(2) Suppose that S — a(Seea) and b < a. Then S — b(Sea).

A subset & of 7 is called a base of n if every element of 1) is an intersection of
elements of £. A subset { of 1 is called a subbase of 1 if the set consisting of all
finite unions of elements of { forms a base of 7). The proof of the following results
are left as exercises.

Theorem 2.49. Let (L(M), n) be a TML. £ and { a base and a subbase for 1
respectively, S a molecular net and a € M. Then the following assertions hold.

(1) S — aifandonly if VP € n(a)N{, S is eventually not in P;
(2) Seoa if and only if VP € n(a) N&, S is frequently not in P;

Theorem 2.50. Let (L(M), ) be a TML, S a molecular net, a € M, and *(a) a
standard minimal family of a. Then S — a(Seea) if and only if Vx € B*(a), S —
a(Seea).

Theorem 2.51. Let (L(M), 1) be a TML, S a molecular net, a € M. Then the fol-

lowing assertions hold.

(1) ais a limit point of S if and only if a < limS;
(2) ais a cluster point of S if and only if a <adS.
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Proof. (1) We only prove the sufficiency and the necessity is left to the reader. Sup-
pose that a <limS and *(a) is a standard minimal family of a. Since

lim$ = sup {y| y is a limit point of S}> a,

Vx € B*(a), there exists a limit point y of § such that x < y. By Corollary 27(2),
S — x, and by Theorem[2.30] we have S — a.
(2) The proof'is similar to that of (1) and is omitted. a

Theorem 2.52. Let (L(M), ) be a TML, A € L, a € M. Then the following asser-
tions hold.

(1) Ifthere exists in A a molecular net which accumulates to a, then a < A~;
(2) If a <A™, then there exists in A a molecules net which converges to a.

Proof. (1) Suppose S={s(n), n € D}eca and Vn € D, s(n) < A. Then VP € n(a),
A £ P because of the fact that s(n) £ P is frequently true, i.e., for any n € D, there
always exists no € D such that s(np) £ P. Hencea <A™ .

(2) Suppose that a < A~. Then VP € 1n(a) there exists a point s(P) such that
s(P) <A and s(P) % P. Define S={s(P) | P € n(a)}. Then S is a molecular net in
A because of the fact that 1(a) is a directed set in which the order is defined by
inclusion. Clearly, S — a. O

Definition 2.31. Let S = {s(n), n € D} and T = {T (m),m € E} be two molecular
nets. T is called a subnet of § if there exists a mapping N : E — D such that

(1) T=SoN.
(2) Vn € D, there exists m € E such that N(k) > n wheneverm < k € E.

Theorem 2.53. Let (L(M), 1) be a TML, S a molecular net, a € M. Then Sea if and
only if S has a subnet T which converges to a.

Proof. The sufficiency follows from the definition of subnet, and we only prove the
necessity. Suppose that Seea. Then VP € 1(a) and Vn € D, there exists f(P, n) € D
such that

f(P,n) >nand S(f(P,n)) £ P.
Let
E={(f(P,n),P) | Pen(a),n€ D},
and define
(f(P1,ny), P) < (f(Py, na), Py) if and only if ny < ny and Py < P,.
Then E is a directed set. Let
T(f(P.n),P) =S(f(P,n),P),

then T is a subnetof S and T — a. O



92 2 Lattices

Exercises

Exercise 2.1. Let < be a partially ordered relation on the set S and N a subset of S.
Show the following

(1) Inverse relation <! (or > ) of <,ie.,a <" !'b < b <a,is also a partially
ordered relation on S.

(2) Induced relation <V of < on N, i.e., fora, b €N, a<Vb< a<b,isa
partially ordered relation on N.

Exercise 2.2. Let (S, <) be a partially ordered set and A a non-empty subset of S.
Show that the following assertions hold.

(1) If A has maximum (minimum) element, then the maximum (minimum) ele-
ment is unique.

(2) If A is a chain in S (e.g. linear ordered subset), then maximal (minimal) ele-
ment of A (if it exists) must be maximum (minimum) element.

Exercise 2.3. Let (S, <) be a partially ordered set. Prove that S satisfies minimal
condition if and only if every chain in S is a well ordered set.

Exercise 2.4. (Axiom of choice) Let P*(S) = 25 — &. Prove that there exists a map-
ping @: P*(S) — A such that ¢(T) € T for every T € P*(S).

Exercise 2.5. (Zermelo) Prove that for any set S, there exists a linear order > such
that (S, >) is a well ordered set.

Exercise 2.6. (Hausdorff) Prove that for any partially set (S, <), every chain in S is
included in some maximal chain.

Exercise 2.7. (Kuratowski-Zorn) Let (S, <) be a partially ordered set. Prove that if
every chain in S has an upper bound in S, then every element of § is included in
some maximal element of S.

Exercise 2.8. Let < be the ordered relation of the partially ordered set (L, <) and
(L,V1,A1) be alattice. Prove that if <~ is the inverse relation of <, then the par-
tially ordered set (L, <~!) is a lattice (L, V2, /), where for any a,b € L,

aVob=aN b, aNyb=aVb.

The latices (L,V1,A1) and (L, V2, A2).
Exercise 2.9. Let L be a lattice. Show the following

(a) Empty set & is a sublattice of lattice L.
(b) Unit set {a} (a € L) is a sublattice of lattice L.
(c) The intersection of any sublattice of lattice L is a sublattice of L.

Exercise 2.10. Let (L, <) be a lattice. For any x,y,z € L, show the following

L1 x Ax=x, x V x=x. (Idempotency)
L2 x Ay=yAx, xVy=yVx. (Commutativity)
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L3xA(yAZ)=(xAy) Az, xV (yVz)=(xVy)V z (Associativity)
L4 x A (xVy)=x=xV (x Ay). (Absorption)
Exercise 2.11. In lattice (L, <), prove that operations of union and meet are order-
preserving. That is, Vx, y, z € L the following assertions hold.
x<y& xAz<yAz,xVz<yVz
Exercise 2.12. Let L be a lattice. show the following

(1) L is a complete lattice if and only if L~! (dual of L) is complete.
(2) If L is a finite lattice, then L is complete.

Exercise 2.13. Let Land L; (i € I) be lattice. Show the following

() L is a distributive lattice if and only if L' (dual of L) is distributive lattice.
(b) ITic; Li is distributive lattice if and only if L; (Vi € I) is distributive lattice.
(c) If L is a distributive lattice, then sublattices of L are also distributive lattice.

Exercise 2.14. In complete lattices, prove that CD1 is equivalent to CD2.

Exercise 2.15. Let Lbe a lattice and a € L. Prove that () is a lower set, i.e., if
x € B(a), then forany y < x, y € B(a).

Exercise 2.16. Let L be a CD lattice and 3 : L — 2! be the minimal map with respect
to L. Then the following assertions hold.

(1) B(0)={0}.

2)VaeL, B(a) C B(I).

(3) B is a union-preserving map, that is, B(\V,c; ai)=U;c; B(ai).
Exercise 2.17. Let L be a complete lattice, a € L. Prove that the unions of maximal
families of a are maximal families of a as well. Especially, if a has a maximal family,
then a has a greatest maximal family, i.e., the union of all maximal families of a,
denoted by o(a).

Exercise 2.18. Let L be a CD lattice and o : L —2* be the maximal map with respect
toL,i.e., o : L — 2L such that a — o(a), Va € L, where a(a) greatest minimal family
of element a. Show the following

(@) a(I)={I}.
(b)Va e L, ala) C a(0).
(c) ovis a A —U map, that is, 0t(A;c; ai)=Uic; 0t(ai).

Exercise 2.19. Let L be a CD lattice, a, b € Landb € o/(a). Then there exists ¢ € L
such that ¢ € o(a) and b € a(c).

Exercise 2.20. Let L be a CD lattice, a, b € L and b € o(a). Prove that there exists
a sequence ci, €3, ...1in L such that

c| € OC(CZ), Cry1 € OC(Ck), k=1,2, ...
beo(c),n=1,2,...

Exercise 2.21. Let L; and L, be molecular lattices and f : L; — L, a GOH. Prove
that the following assertions hold.
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(a) f and f~! are order-preserving.

(b) f~'f(a) > a,Vae L.

© ff1(b) <b,Vbe L.

(d) f(a) < bif and only ifa < f~1(b).

) fla)=n{b e Ly| f~1(b) >a},Vac L.

Exercise 2.22. Let (L(M), 1) be a TML. VA € L, different components of A are
disjoint. Prove that the derived element of every element is closed if and only if the
derived element of every point is closed.

Exercise 2.23. Suppose that
S={s(n),n € D}— a(Sea),

T={T(n), n € D} is a molecular net with the same domain as S and Vn € D, T (n) >
S(n) holds. Show T — a(Teea). Suppose that S — a(Sea) and b < a. Show § —
b(Seoa).

Exercise 2.24. Let (L(M), 1) be a TML. £ and { a base and a subbase for 1] respec-
tively, S a molecular net anda € M. shown the following

(a) S — aif and only if VP € n(a) N §, S is eventually not in P.
(b) Sooq if and only if VP € n(a) N &, S is frequently not in P.

Exercise 2.25. Let (L(M), 1) be a TML, S a molecular net, « € M, and *(a) a
standard minimal family of a. Prove that S — a(Sea) if and only if Vx € §*(a),
S — a(Seea).

Exercise 2.26. Let (L(M), n) be a TML, S a molecular net, a € M. show the follow-
ing

(a) a is a limit point of S if and only if a <limS.
(b) a is a cluster point of S if and only if a <adS.

Exercise 2.27. Let B be a Boolean algebra and x, y € B. Show the following

(A)xAx'=0, xVx'=I
(b) x "=x.
(¢)0'=I,1"=0.
(dx<yey' <x'
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Framework of AFS Theory



Chapter 3
Boolean Matrices and Binary Relations

Considering the three types of information-driven tasks where graded membership
plays a role: classification and data analysis, decision-making problems, and ap-
proximate reasoning, Dubois gave the corresponding semantics of the membership
grades, expressed in terms of similarity, preference, and uncertainty [1]]. For a fuzzy
concept € in the universe of discourse X, by comparison of the graded membership
(Dubois interpretation of membership degree), an “empirical relational member-
ship structure (X, R¢ ) is induced [5, 6], where Rz C X x X is a binary relation
on X, (x,y) € Re if and only if an observer, an expert, judges that “x belongs to
& at some extent and the degree of x belonging to & is at least as large as that of
y. The fundamental measurement of the gradual-set membership function can be
formulated as the construction of homomorphisms from an “empirical relational
membership structure”, <X ,Rg >, to a “numerical relational membership structure”,
({ue (x) | x€X},<).

In this chapter, we present some new results that help us to analyze and study
the structures of concepts via mathematical tools such as binary relations, Boolean
matrices and lattices. Some properties of the binary relations are represented and
explored by Boolean matrix theory and lattice theory. This is possible as there exists
a one to one correspondence between the Boolean matrices and the binary relations
and a lattice can be established on the set of the Boolean matrices.

Based on the main theorems in this chapter, we will prove, in next chapter, that
any fuzzy concept & in a finite set X can be represented by some very simple con-
cepts on X. Thus AFS theory offers a great deal of modeling capabilities which help
model both the mathematical structures and the semantics of human concepts.

In what follows, we will define the Boolean matrices and their operations. Here
the Boolean algebra {0,1} is an algebra system with operations, +, - such that
0+0=0-0=0-1=1-0=0, 0+1=1+1=1-1=1.

Definition 3.1. A m x n matrix on the Boolean algebra {0, 1} is called a Boolean
matrix. The set of all m x n Boolean matrices is denoted by M(B);,x,. Let A =
(aij) € M(B)mxn. Then a;; is called a (i, j) element. If all a;; = 0, then we call A

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 97
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009
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a zero matrix. If all a;; = 1, then we call A a universal Boolean matrix. If i = j =
aij=1andi # j= a;; =0, then A is called a unit matrix (or identity matrix).
Definition 3.2. Let A = (ai_,-),B = (bij) € M(B)yxn. Then C=A+B = (C,‘j) €
M (B)nxn, is defined as ¢;; = a;;+ b;; and called the sum of A and B; Let A = (a;;) €
M(B)mxq:B = (bij) € M(B)gxn. Then C = AB = (cjj) € M(B)muxn, is defined as
follows .
cij = Y aiby;,

k=1

and called the product of A and B.

Boolean matrices and their sum and product have almost all the properties of the
matrices expressed for real numbers. The readers can refer to [3] for further details.

Example 3.1. Let

111 111
A=({101{, B=|111
010 011
Then
111 111
A+B=|111],4B=[111],
011 111
by Definition

[Tt

Definition 3.3. The binary operation “x” in M(B),;x, defined as follows
C= M*N=(Cij) S M(B)mx" such that ¢;; = m;jnij,
is called * product of Boolean matrices, where N=(n;;), M=(m;;) € M(B)nxn.

It is clear that for any H, N, M € M(B)xn, H* (N*M)=(H+N)*xM; M+N = N+M,
Hx(N+M)=H*N+H=xM.
Their proofs remain as exercise.

Definition 3.4. The in M(B),,x, is defined as follows
A= (a,‘j) < BZ(b,‘j) < ajj = 1 implies bijIl
where A,B € M(B)xn-

It can prove that < is a partially ordered relation and (M (B);,x,, <) is a lattice in
which AV B=A+B,AANB=AxBforany A, B € M(B),x. Furthermore (M (B)xn, <)
is a distributive lattice. It is convenient to study Boolean matrices via the techniques

of lattice theory.

Definition 3.5. Let X = {x,x2,...,x,} be a set and R be a binary relation on set X.
A Boolean matrix Mg = (rij) € M(B)uxy is called correspondent matrix of R if

}",‘j=1 <:>(x,‘,)€j) ER,X,‘,XJ' € X.
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It is clear that there exists a one to one correspondence between the Boolean ma-
trices and the binary relation via Definition If R is a quasi-ordered relation on
X, then correspondent matrix My, is called a quasi-ordered Boolean matrix. The fol-
lowing lemma gives a sufficient and necessary condition which characterizes quasi-
ordered Boolean matrix. It is convenient for us to verify whether a binary relation is
a quasi-order relation.

Theorem 3.1. Letr X = {x,x2,...,X,} be a set, R be a binary relation on X, and
Mpg be correspondent matrix of R. Then R is quasi-ordered relation (or, Mg is a
quasi-ordered Boolean matrix) if and only if

M3 = Mg (i.e., My is idempotent) and Mg + I = Mg

Proof. Let Mg=(m;;) and M,%:(ni ). The proof of the necessity condition. Since Mg
is a quasi-ordered Boolean matrix, it is clear that Mg + I=Mg by Definition 3. 3]and

M3=I’+2Mpg + Mg=I + Mg+ M} > M.

Also, as n;;=1 implies 1=n;; = ¥ <x<, mygmy;. Thus 3k €{1, 2, ..., n} such that
mjmy;=1. Consequently, my=1 and my;=1. Since Mg, is a quasi-ordered matrix, we
have that my=1 and m;j=1 < (x;, x¢) € R and (xt, x;) € R. It follows that (x;,
x;j) € R by transitivity, this implies that m; ;=1 and Mg > M3. Thus, M3=Mp by “>"
is a partially ordered relation.

The proof of the sufficiency. Since Mg is a correspondent matrix of R and
Mg + I=Mpg, Mg is a Boolean matrix whose elements on the main diagonal are
1. Consequently, R satisfies reflexivity by Definition Also, if (aj, a;) € R

and (ar, aj) € R for Vi, j, k €{1, 2, ..., n}, ie., my=my;=1, then we have
mM;j=n; =% <<, Mgy ;=1 by Ma=Mp. It follows that R satisfies transitivity. Thus, R
is a quasi-ordered relation. a

By Theorem[3.1] we have an equivalent definition of quasi-ordered Boolean matrix
as follows: M € M(B),,x,, is called a quasi-ordered Boolean matrix if

M?=M (i.e., M is idempotent) and M + I=M.

Theorem 3.2. Let M, N be two idempotent Boolean matrices of order n. If [+ N =
N, I+M=M, then (M % N)*>=M xN.

Proof. 1t is clear that M and N are quasi-ordered Boolean matrices. Let M=(m;;)
and M=(n;;), then M * N=(m;jn;;). Consequently,

(M % N)2=(b;})=(X 1 <tcn Mty i1 )=(T 1 <o MMy i1k ) -

If b;j=1, then 3k €{1, 2, ..., n} such that mymyjnyng =1, that is, my=1, my;=1,
ni=1, and ny;=1. It follows that, m; ;=1 and n;;=1 by transitivity, that is, m;;n;;=1. If
b;j=0, it is clear that m; =0, m;;=0, ny=0, or n;;=0 for all k €{1, 2, ..., n}. Conse-
quently, m;;=0 or n;;=0, that is, m;;n;;=0. These facts imply that (M N)2 =M=xN.

O
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Definition 3.6. Let X = {x{,x2,...,x,} be a set and R be a quasi-ordered relation on
X. Then R is called a quasi-linear ordered relation if for any x,y € X, the following
conditions are satisfied.

(1) (x,x) €R;
(2) either (x,y) € Ror (y,x) €R.

The correspondent matrix Mg of R is called a quasi-linear ordered Boolean matrix.
Also, if R is a linear ordered relation on X such that

1
e R
() () 1

then R is called canonical linear ordered relation, A is called canonical linear or-
dered matrix.

Theorem 3.3. Let M € M(B) . If M> = M and A < M, then M is the matrix as
follows

Jiw iz Jik
0 Jxn J3
0 0 - Jy

Where J;; are the matrices whose elements are all 1, i.e., the universal Boolean
matrix.

Proof. Since I < A < M, we have that M + =M. Hence M is a quasi-ordered matrix
by Theorem 3.1l Thus M is a quasi-linear ordered matrix by A < M. From Defi-
nition we have that, the quasi-ordered relation R which corresponds to M is a
quasi-linear ordered relation. We now can assume without any loss of generality that
M=(m;;), mjj=1for i > j. Let us consider the principle sub-block M(j, j+1, ..., i)
of M. Since r < s implies m,;=1 by A < M, in addition m;;=1, we have m ;=1 and
my=1, forany k, 1 €{j, j+1, ..., i}. It follows that, m=mym;jm ;=1 from transitiv-
ity. This completes the proof of the theorem. O

By Theorem [3.1] we can verify that the following Boolean matrix is a quasi-linear
ordered matrix. We call the matrix which is the following form

Jin Jiz e Jik
0 Jyp -+ J3 3.0
0 0 - Ju

canonical quasi-linear ordered form. In what follows, we will prove the main theo-
rem which show that each quasi-ordered relation can be represented by some quasi-
linear ordered relations.
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Definition 3.7. Let X = {xy,x2,...,x,} be a set and R be a quasi-ordered relation on
X. Let Sx be the set of all minimal elements of X. Then for each x € Sy, we define,

m, = {C | C C X, C is a maximum quasi-order chain which contains x},

m, is called the set of maximum quasi-order chains at x.

Theorem 3.4. Let X = {x1,x2,...,%, } be a set and R be a quasi-ordered relation on
X. Then there exist quasi-linear orders Ry,Ro, ...,R, such that

Mg = Mg, * Mg, * ... x Mg, = *[1;_; Mg,.

Proof. It is obvious that for any x € X, (x, u) € R < x € U{B |B € m,}. Since u is
the minimal element and the definition of m,, hence for any x € X —U{B |B € m,},
forany y € U{B |B € m,}, we have (x, u) ¢ R, (x,y) ¢ R, (u, x) ¢ R.

Let u € X and A € m,,. For any a € U{B |B € m,,} — A, we define A,={x |x € A,
(a, x) € R}. Since (a, u) € R, hence A, # &. Because A is a quasi-linear chain, A,
is a quasi-linear chain. Let LA, be the maximum element of A, (if there exist more
than one maximum elements, let any one of them be LA, ). For any a € A, we define
LA, = a. For any A € m,,, we construct a binary relation R4 on X as follows:

For any x,y € X = (U{B |B€em, })U(X —U{B |B € m, }), we define

(x,y) €ERy & (LAy, LA)) €R,if y,x € U{B |B e m,};
(x,y) € R4 and (y,x) ERy,if x,ye X —U{B|BEm, };
(x,y) €ERy,ifxe U{B|Bem,}andy e X —U{B|BEm, }.

Since sets U{B |B € m, } and (X —U{B |B € m, }) are the partition of set X, hence the
above binary relation Ry is defined well. Furthermore, we prove that Ry is a quasi-
linear order on X. For any x,y,z € X, suppose (x, y),(y,z) € Ry. Ifz€ X —U{B |B €
m, }, then (x, z) € Ry; if z € U{B |B € m,}, then by the definition of R4, we have
x,y € U{B|Bem,}and (LA, LA,) € R and (LA,, LA;) € R. Because R is a quasi-
ordered relation onX, (LAy, LA;) € R = (x, z) € Ry. For any x,y € X, one can check
either (x, y) € R4 or (y,x) € R4. Therefore Ry is a quasi-linear order.

Next, we prove that for x,y € X, (x,y) € R = (x,y) € R4. For x,y € X, suppose
(x,y) ER.Ifx,y e U{B |[Bem,} orx,y € X —U{B |B € m,}, then by the definitions
of R4, we know that (x,y) € R4. In the case that x € U{B |[B€m,} and y € X —
U{B |B € m,}, we also have (x,y) € R4 by the above definition of R4. Assume that
yeU{B |Bem,} and x € X —U{B |B € m,}. Since y € U{B |B € m,}, hence
(y,u) € R. By (x,y) € R, we have (x,u) € R = x € U{B |B € m,}. It contradicts the
assumption x € X — U{B |B € m, }. Therefore for x,y € X, (x,y) € R = (x,y) € Ra.
This implies that for any A € m,,, any u € S, the following assertions hold.

Mr<Mpg,, Mg<x [] Mg, (3.2)

Aemy ueSy

Let *[Taem, uesy Mry, = N = (nij), Mg = (m;j). From the definition of Sx, we
have

X =U{B|Bemy,uc Sx }.
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Suppose my;=0. This means (xy, x;) ¢ R. Since
Xp, X €X = U{B |B cmy,,uc Sx},
hence for x,, x;, there are the following situations:

1) there exists A € m,, such that x;, x; € A;
2) there exist A, B € m,, such that x;, € A, x;, € B;
3) there exist A € m,, B € m, for some u, v € Sx, u # v such that x;, € A, x; € B.

We will prove that n;,; = 0 in any situations. This implies that N < M.

1) From the definition of R4, we know that (xp,, x;) € Ry < (x4, x¢) € R. By B2,
we have ny;=0.

2) Assume that (x, x;) € Rp. By the definition of LB,,, we have (xh,LBxh),
(LBy,,x;) € R. This implies that (x;,x;) € R and contradicts to my; = 0. By (3.2),
we have ny, = 0.

3) If x;, € U{B| B € m,}, then it is the same as situation 2); We can suppose
xp € X —U{B |B € m, }, by the definition of Rg, we know (x;,, x¢) ¢ Rp, and nj, = 0.
Finally we have Mg > N > Mg = M = N. O

In what follows, applying the lattice theory, we will study the representation of the
quasi-linear ordered relation by some more simple binary relations whose corre-
spondence Boolean matrices are idempotent prime matrices.

Definition 3.8. Let B,X,Y € M(B),,x,, and B> = B. B is called an idempotent prime
matrix if

B=X+xY=XAY,X?=XandY? =Y=B=XorB=Y.
Let A € M(B),x,. We define

p(A) = {Mg € M(B),xn | R is a linear ordered relation such that Mg < A};
i(A) = {M € M(B)xn | M>* =M and M < A};
li(A) = {M € i(A) | M is a maximal element of i(A)}.

The proof of the following results is left to the reader.

Theorem 3.5. Let A,B € M(B),xn, and P is a permutation matrix of order n. We
have the following assertions.

(1) IfA <Band M € M(B),xp, then MA < MB and AM < BM;
(2) P(AxB)PT = (PAPT)x (PBPT);

(3) p(PAP") = {PMgP" | Mg € p(A)} = Pp(A)P";

(4) p(A*B)=p(A)Np(B);

(5) i(A+B) 2 i(A)Ui(B);

(6) i(PAPT) = {PMPT | M € i(A)}.
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Theorem 3.6. Let A € M(B),x,, and A> = A. If p(A) # O, then there exists a per-
mutation matrix P such that PAPT is the canonical quasi-linear order form.

Proof. Since p(A) # &, we can assume that Mg € p(A), Mg corresponds to a linear
order R of X={xj, x2, ..., x, }. It is obvious that any two linear ordered relations
of a finite set are isomorphisms, therefore there exists a permutation matrix P such
that PMrPT = A < PAPT . Tt follows (see Theorem [3.3)) that PAPT is the standard
quasi-linear ordered form. O

Lemma 3.1. The Boolean matrices shown as follows

JuJo | or
P[ 0 Jzz}P 3.3)
and
1 1 1
PLTT R (3.4)

are the idempotent prime elements of M(B),x,. Here P is any permutation Boolean
matrix and all J;; are the same as those in Theorem[3.3

Proof. Suppose that A is the form given by (B.3), that is,

ol diz | or
amr o]

Let A=X Y and X, Y € M(B),xn, X?=X, Y?=Y. We have

_|Iandi| _ o T
N= [ o 2| = (PTXP) (PTYP)
It follows that, N < PTXP, N < PTYP, and so PTXP and PTYP are the canonical
quasi-linear ordered forms by Theorem [3.3] Therefore either PT XP or PTY P must
be equal to N. Let PP XP = N, we have X = PNPT = A. Suppose that B is the form
shown in (3.4), that is,

11 -1
[ TR
B=pP| [P

Let B=X Y and X, Y € M(B) s, X>=X, Y?=Y. We have

1 1 ---1

O -
O -
O -
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It follows that N < PTXP, N < PTYP, and so PT XP and PTY P are the forms shown
as

V= J a 2o J+ab Ja+ca
" \b c¢| " |bJ+cb ba+c

where a=[1,...,117, b=[by, by, ..., by 11.1fb#0,...,0],then bJ +cb=[1,1,...,1].
If b= 0,...,0], then bJ +cb = [0,...,0]. This implies that PY X P and PTY P take
on one of the following forms

1 1 - 1 1 1 1 - 1 1 1 1 - 1 1
1P 1r -1 1’1 1 - 11T 1T - 11
o o0 -+ 0 1 1 1 - 1 1 0o 0 - 00

Therefore either P X P or PTY P must be equal to N. Let P"XP = N, we have X =
PNPT = B, and this completes the proof. a

Definition 3.9. Let A = (a;j) € M(B),x» be a canonical quasi-linear ordered form
shown as (B)). subtr(A) the sub-trace of A is defined as follows.

subtr(A)=(a21 asy.. -an(nfl))
which is a n — 1 dimension Boolean vector.

It is obvious that subtr(A * B)=subtr(A)=*subtr(B), subtr(A + B)=subtr(A )+subtr(B).
Let A,B € M(B),x, and A,B be idempotent matrices such that A < B,A < A. If
subtr(A)=subtr(B). Then we have A=B by Theorem 3.3l Therefore, the following
map

subtr: {B € M(B),x»| B is an idempotent matrix such that A < B}— M(B),_1,

is an isomorphism from the algebra system (M(B),x,,+,*) to the algebra system
(M(B)p—1,4+,%), where M(B),_ is the set of n — 1 dimension vectors.

Theorem 3.7. Let A>=A € M(B),x,. If p(A) # @, then there exists a unique group
of idempotent prime elements Ay, Ay, ..., A such that A = A1 x Ax*. .. Ay which is
irreducible.

Proof. Let M € p(A), M be a linear ordered matrix. There exists a permutation
matrix P such that PMPT=A < PAPT. From Theorem we know that PAPT is
of the following form
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Ju Jio o Ju
0 Jor o I
Where J;; is square matrix of order r; (i=1, 2, ..., k),
=1 -1 r—1

subtr(PAPTY = (17107 1---01 1),
there exists a unique vector sequence Vi, Va, ..., Vi such that every subtr—! (V;) (i=1,
2, ..., k) is an idempotent prime matrix and
subtr(PAPT )=V« Vax ...« Vi, (Vi=(11...101...1),i=1,2,...,k).
Therefore
PAPT=subtr—! (V}) subtr~!(V5) % .. .% subtr (V)
A=(PTsubtr=! (V})P) * (PTsubtr—! (V) P)*. .. *(PT subtr ~'(V})P)

Each PTsubtr_l(Vl-)P is an idempotent prime element (i=1, 2, ..., k). Assume
A=Bj * Byx...*B, which is irreducible. Then

subtr(PAPT )=(P" subtr—! (B1)P) * (PTsubtr ~!(By)P)*...*(PTsubtr—!(B,)P)

Since PB;PT is standard quasi-linear ordered form and idempotent prime element

(i=1, 2, ..., k), hence for every V; there exists a unique PB,,PT such that subtr
(PB,,PT)=V; (i=1, 2, ..., k). This implies that PT subtr—!(V;)P=B,,. This completes
the proof of the theorem. d

Theorem[3.7]implies that each quasi-linear ordered relation can be uniquely repre-
sented by some simpler quasi-linear ordered relations whose correspondence ma-
trices are forms shown in the form (33) and (@.4). The following theorem shows
that each binary relation R on X which satisfies (x, x) € R for any x € X can be
represented by some quasi-ordered relations.

Theorem 3.8. Let M € M(B),x, and I + M=M. Then there exist Ay, Ay, ..., A,
which are idempotent Boolean matrices such that M = A1 +Ay+... +A,.

Proof. Let the Schein rank of M is s [3]]. Then there exist n X s Boolean ma-
trix U=(ay, as, ..., a;) and s x n Boolean matrix V=(b1, b, ..., bs)" such that
M =UV =aby+ayby+...+asbs. Thus we have [ +M=I+a by +1+arby+. ..+ +
asb=M. Let A;=I + a;b;, i=1,2, ..., s.
Then

AiAi=I+ a;b; + a;b;a;b;.
Suppose that a;=(a;1, . . ., ain), bi=(b;1 ,..., bin). One has

AjAi=l+aigbi +aibi=A;,

where a;bi=a; bj1+. .. +aibin=g. O
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Theorem[3.9 which can be directly proved by Theorem 3.4 Theorem[3.7]and The-
orem [3.8] states that each binary relation R on X which satisfies (x, x) € R for any
x € X can be represented by some quasi-linear ordered relations whose correspon-
dence Boolean matrices shown as and (3.4). This result implies that any con-
cept can be represented by the concepts whose binary relations are as simple as the
binary relations shown as (3.3) and (3.4).

Theorem 3.9. Let M € M(B),,x,, and [+ M=M. Then there exist quasi-linear orders
Rij, i=1,2,...,r, j=1,2,...,q; such that

r qi

M= Z(*HMRH()

i=1 k=1

Example 3.2. Let X={x1, x, x3, x4 } be the set of four persons. Concept & is “beau-
tiful”. We also know that x; is the most beautiful of xi, x,, x3. Both x, and x3 are
more beautiful than x4. xo and x3 are incomparable. x4 is more beautiful than x;.
Thus we have the following correspondence Boolean matrix of the binary relation
R of the concept €.

1110

0101

Me=10011

1001

By Theorem[3.8] we have

1110 1000 1000
0100 0101 0100
A=1o010" oo11["  |oo1o0
0001 0001 1001

Mg =A|+Ay+As, A2 = A, T+ A; =A;, i=1,2,3.

According to Theorem 3.1l we know that the binary relations R; on X corre-
sponding to A;, i = 1,2,3 are quasi-ordered relations on X. Applying Theorem 3.4}
we have the following quasi-linear order decompositions of R;, Ry, R3. First we get
the set of all minimal elements of X under the quasi-ordered relation Ry, Sx={x2, x3,
x4} and the sets of m,,, the maximum quasi-order chains at u € Sx as follows. m,,={
{x1, 2} }, my={ {x1, x3} }, my,={ {x4 } }. For each A € m,, the quasi-linear or-
dered relation R4 can be constructed by the method in Theorem[3.4] as follows

Ry, oy =1 (x1s x1), (x2, x2), (x3, X3), (X, X4), (X3, X4), (x4, X3), (X1, X3), (X1, Xa),
(x2, x3), (x2, x4), (x1, x2) },

Ry, w3 =101, x1), (x2, x2), (x3, X3), (xXa, X4), (X2, X4), (x4, X2), (X1, X2), (X1, Xa),
(x3, X2), (x3, x4), (x1.x3) },

Ry ={(x1, x1), (x2, x2), (%3, %3), (x4, X4), (X1, X2), (x1, %3), (x2, X1), (X2, X3), (x3,
x1), (x3, X2), (X4,X1), (X4, x2), (x4, X3) }.
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The Boolean matrices corresponding to these quasi-linear orders are

1110 1111 1110
0111 0101 1110
Mgix 30} = 0011 s MRix) x5} = 0111 s MRixyy = 1110
0001 0101 1111

MR{xl»xz} >klMR{)Cl,)Q} >kA}MR{)m} = =A

[ e
SO = =
S = O =
- o O O

For the quasi-order Ry, we have Sx={ xi, x4}, my, ={ {x1 } }, mq,={ {x2, xa}, {x3,
x4} }. For each A € my,, the quasi-linear ordered relation R4 can be constructed by
the method in Theorem 3.4 as follows

Ry, x =101, x1), (02, x2), (x3, X3), (X, X4), (X2, X3), (x4, X3), (X3, X4), (x2, X1),
(x3, x1), (x4, x1), (X2, X4) },

Ry gy ={0x15 x1), (2, X2), (x3, X3), (x4, Xa), (x3, X2), (x4, X2), (X2, Xa), (x2, X1),
(x3, x1), (x4, x1), (x3,%4) },

Ry ={(x1, x1), (x2, x2), (x3, %3), (x4, Xa), (X1, X2), (X1, X3), (X1, X4), (x2, X3), (x2,
x4), (X3, x2), (¥3,%4), (X4, X2), (X4, X3) }.

Furthermore we have

MR {xysy * MR{xs 4} * MR{x)} = =4

o= O O

0
1
1
1

SO o~
SO = O

For the quasi-order R3, we have Sy={x2, x3, x1 }, my, ={ {xs, x1 } }, my,={{x2}},
m,,={ {x3}}. For each A € m,, the quasi-linear ordered relation R4 can be con-
structed by the method in Theorem[3.4] as follows

Ry ={Ge1, x1), (x2, %2), (33, X3), (x4, xa), (x3, X4, (3, x1), (x1, X3), (x1, Xa), (x4,
x1), (x4, x3), (x2, x1), (X2, X3), (x2, X4) },

Ry ={(x1, x1), (x2, x2), (x3, X3), (X4, Xa), (X2, Xa), (x2, X1), (X1, X2), (x1, X4), (x3,
x2), (x4, X1), (X4,X%2), (x3, x4), (x3,x1)},

Ry, xy =101, x1), (x2, x2), (x3, X3), (X4, X4), (x3, X2), (x2, X3), (X1, X2), (x1, X3),
(x4, x2), (x4, x3), (xa.x1) }.

Finally we have

Mgy} * MRy * MR{xy 2y} =

—_—0 O
S o = O
oS = O O
- o O O
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We should point out that the above representation is not unique. The following is
a different representation of the binary relation R of the “beautiful”. Let

1110 1000 1000 1000
0100 0101 0100 0100
A=10010" loo1o " o011 " {0010
0001 0001 0001 1001

We can verify the followings:
Mg =A|+Ay+A3+A4, A2 =A, [+A; = A;, i=1,2,3, 4.

The binary relations on X, R;, corresponding to A;, i = 1,2, 3,4 are quasi-orders on
X. Similarly, we have the following quasi-linear order decompositions of Aj, A, Az,
Ay via the method presented in Theorem[3.4l

1110 1111 1111 1110
A= 0100 _JOT L1 fO101 | 1110
'“loo010 0011 0111 1110
0001] |oo11 | [0101] [1 111 ]
f[1o00] [r1t1117 [t101] [r10o010]
AF:OlOl _jorrrp jrron) il
0010 0111 1111 1010
[1too01] J|o111] [t10L1] [1OT1T1)]
f[1to0o0] [11117 [to11] [1100]
Ae (0200 _JOT LI AL L1 1100
3 0011 0111 1011 1111
0001 ] |O111] [tO01 1] [110T1]
(10007 [ro11] [1101] [1110]
A 0100 1111 jr1oL] 0110
4 0010 1011 1111 0110
(1001 ] J1ro11| [1101] [1111]

Let M=M +1 € M(B),x,, we define

ri(M)=inf{l | M=A| + A+ ...+ Ay, each A; is an idempotent matrix
(i=1,2,...,D}

There is an open problem: Is the shortest sum of the idempotent matrices of any
Boolean matrix unique? The following theorem addresses the related problems.
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Theorem 3.10. Let M,N € M(B),,xn. Then the following assertions hold

(1) ri(M) < (M)
(2) M =N if and only if li(M) = li(N).
(3)1i(M) =li(N) if and only if (M) = i(N).

Proof. (1) By Theorem B8] we have that there exist idempotent elements Aj,
Ay, ..., A, (r=ri(M)) such that

M=A|+Ay+...+A, = A <M= A; €i(M).

Hence, there exist B; € li(M) for every A; such that A; < B;, i=1, 2, ..., r. Suppose
lilM)={B1,By,...,B;}, there exists amapping f : {1,2,...,r} — {1,2,...,1} such
that A; < Bf(,-). Thus, we have

Bf(l) +Bf(2) +...+Bf(,) <M=A+A+...+A, < Bf(]) -|-Bf(2)+...+Bf(r).

Therefore M = By(1) + By(2) + ... + By(,). It follows that, f is injective by the defi-
nition of ri(M).

(2) Let li(M) = li(N). By (1), there exist B; € li(M) = li(N) (i=1,2,...,r) such
that

M=By+By+...+B, < N.

Similarly we have N < M.
3)i(M)=i(N) =1liM)=1i(N) = M=N=i(M)=Ii(N). O

Exercises

Exercise 3.1. For any H, N, M € M(B),;;x», show that the following assertions hold
Hx+(N+«M)=(H=*N)xM,
MxN=NxM,
H+x(N+M)=H+«N+H=xM.

Exercise 3.2. Show that(M(B)xn, V, ) is a distributive lattice if AV B=A+ B, A\
B=A«Bforany A, B € M(B),xn.

Exercise 3.3. Let A, B € M(B),x», and P is a permutation matrix of order n. Prove
the following

(a) If A <Band M € M(B),xn, then MA < MB and AM < BM.
(b) P(A % B)PT = (PAPT) % (PBPT).

(©) p(PAPT) = {PMrP" | Mg € p(A)} £ Pp(A)P.

(d) p(AxB)=p(A) N p(B).

(e) i(A+B) 2 i(A)Ui(B).

(f) i(PAPT) = {PMPT| M € i(A)}.
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Exercise 3.4. LetM € M(B),,«, and I +M=M. Shown that there exist quasi-linear
ordersR;;, i = 1,2,...,r,j = 1,2,...,q;, whose correspondence Boolean matrices
shown as (3.3) and (3.4), such that

r qi

M= Z(* l_lMRik)’

i=1 k=1

Open Problems

Problem 3.1. Is the shortest sum of the idempotent matrices of any Boolean matrix
unique?
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Chapter 4

AFS Logic, AFS Structure and Coherence
Membership Functions

In this chapter, we start with an introduction to EI algebra and AFS structure. Then
the coherence membership functions of fuzzy concepts for AFS fuzzy logic for the
AFS structure are proposed and a new framework of determining coherence mem-
bership functions is developed by taking both fuzziness (subjective imprecision)
and randomness (objective uncertainty) into account. Singpurwalla’s measure of the
fuzzy events in a probability space has been applied to explore the proposed frame-
work. Finally, the consistency, stability, efficiency and practicability of the proposed
methodology are illustrated and studied via various numeric experiments. The in-
vestigations in this chapter open a door to explore the deep statistic properties of
fuzzy sets. In this sense, they may offer further insights as to the to a role of natural
languages in probability theory.

The aim of this chapter is to develop a practical and effective framework support-
ing the development of membership functions of fuzzy concepts based on semantics
and statistics completed with regard to fuzzy data. We show that the investigations
concur with the main results of the Singpurwalla’s theory [44]].

4.1 AFS Fuzzy Logic

The notion of a fuzzy set has been introduced in in order to formalize the mea-
surement of human concepts on numerical scales, in connection with the represen-
tation of human natural language and computing with words. Fuzzy sets and fuzzy
logic are used for modeling imprecise modes of reasoning that play an essential role
in the remarkable human ability to make rational decisions in an environment of
uncertainty and imprecision ([33]).

As moving further into the age of machine intelligence and automated decision-
making, we have to deal with both the subjective imprecision of human perception-
based information described in natural language and the objective uncertainty of
randomness universally existing in the real world. Zadeh has claimed that “proba-
bility must be used in concert with fuzzy logic to enhance its effectiveness. In this
perspective, probability theory and fuzzy logic are complementary rather than com-
petitive” [57]]. In this chapter, we explore how the imprecision of natural language

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 111
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009
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and the randomness of observed data can be made to work in concert, so that un-
certainty of randomness and of imprecision can be treated in a unified and coherent
manner. Additionally, this treatment opens the door to enlarge the role of natural
languages in probability theory.

In the real world applications, “conventional” membership functions are usually
formed based on by the user’s intuition. But these membership functions cannot be
directly used in the fuzzy observation model because they do not offer us assurance
to meet the requirement as the fuzzy event.

Recently, some new theories have been developed to interpret the membership
functions. The authors in [3,[7,[6] proposed a coherent conditional probability which
is looked on as a general non-additive “uncertainty” measure m(.) = P(E|.) of the
conditioning events. This gives rise to a clear, precise and rigorous mathematical
frame, which allows to define fuzzy subsets and to introduce in a very natural
way the counterparts of the basic continuous #-norms and the corresponding dual
t-conorms, bound to the former by coherence. Some new approaches to De Finetti’s
coherence criterion i41]] provide more powerful results as to further exploration
of these problems. So far, the applicable semantic aspects of fuzzy concepts and
their fuzzy logic operations have not been fully discussed in the framework of con-
ditional probability theory.

Singpurwalla and Booker developed a line of argument that demonstrates that
probability theory has a sufficiently rich structure for incorporating fuzzy sets within
its framework [44]]. Thus probabilities of fuzzy events can be logically induced. The
philosophical underpinnings that make this happen are a subjectivistic interpretation
of probability, an introduction of Laplace’s famous genie, and the mathematics of
encoding expert testimony. Singpurwalla and Booker provide a real advance in our
understanding of fuzzy sets, by identifying a sensible connection between member-
ship functions and likelihood, and thereby probability. However, Singpurwalla and
Booker focus on the interpretation of the probability measure of a fuzzy event with
a predetermined membership function and have not discussed the problem of how
to determine the membership functions of fuzzy concepts based on the theory they
developed.

AFS theory [23] focuses on the study of determining the member-
ship functions and logic operations of fuzzy concepts through AFS structures—a
sort of mathematical descriptions of data structure and AFS algebras—a kind of
completely distributivity lattices generated by a set and some simple (elementary)
concepts defined on it. The AFS theory is based on the following essential observa-
tion: concepts are extracted from what an individual observed and the interpretation
of a concept is strongly dependent on the observed “data” i.e., the world an indi-
vidual observed or the background knowledge. Different people may give greatly
different interpretations for the same concept due to their different observations.
For instance, an NBA basketball player may describe that a person is not “tall”
while a ten year old child may describe that the same person is very “fall”. Because
the “data” the NBA basketball player observed, i.e., the people the NBA basket-
ball player often meets are quite different from those the child often meets. In AFS
theory—the studies on how to convert the information in the observed data into
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fuzzy sets (membership functions), the determination of membership functions of
fuzzy concepts always emphasizes the data set they apply to. Considering that there
are such complicated forms of the descriptions and representations for the attributes
of the raw data in the real world applications, the raw data are “regularized” to be
AFS structures by two axioms. AFS is mainly studied with respect to AFS structure
of the data and AFS theory mainly studies fuzzy concepts, membership functions
and fuzzy logic on the AFS structure of the data, instead of the raw data that are
available through experiments.

An AFS structure is a triple (M, 7, X) which is a special family of combinator-
ical systems [11]], where X is the universe of discourse, M is a set of some sim-
ple (or elementary) concepts on X (e.g., linguistic labels on the features such as
“large”, “medium”, “small” Yand 7 : X x X — 2™ which satisfies two axioms, is a
mathematical description of the relationship of the distributions of the raw data and
the semantics of the simple concepts in M. An AFS algebra is a family of completely
distributive lattices generated by the sets such as X and M. Using the AFS algebras
and the AFS structures, a great number of complex fuzzy concepts on X and their
logic operations can be expressed by a few simple concepts in M. Liu, Pedrycz and
Zhang gave the complement operation of the fuzzy concepts in EI algebra EM-a
sort of the AFS algebra, thus a fuzzy logic system called AFS fuzzy logic has been
developed [27].

4.1.1 EI Algebra

In [23]], defined was a family of completely distributivity lattices, referred to as AFS
algebras, and denoted as EI, EII, ..., EI", E*I, E*II, ..., E*I" algebras. The authors
applied them to study the semantics of expressions and the representations of fuzzy
concepts. The following example serves as an introductory illustration of the ET
algebra.

Example 4.1. Let X = {x|,x2,...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table .1t here the number i in the “hair color” columns which corre-
sponds to some x € X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. For example, the numbers in the
column “hair black” implies some order (denoted here by >)

X7 > X10 > X4 = X8 > X2 = X9 > X5 > Xg = X3 = X]

When moving from right to left, the relationship states how strongly the hair color
resembles black color. In this order, x; > x; (e.g., x7 > x10) states that the hair of x;
is closer to the black color than the color of hair the individual x;. The relationship
x; = x; (e.g., x4 = xg) means that the hair of x; looks as black as the one of x;.
A concept on X may associate to one or more features. For instance, the fuzzy
concept “tall” associates a single feature “height” and the fuzzy concept “old white
hair males” associates three features “age”, “hair color black” and “gender male”.
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Many concepts may associate with a single feature. For instance, the fuzzy concepts
“old”, “young” and “about 40 years old” all associate to feature “age”. Let M =
{mi,my, ..., m2} be the set of fuzzy or Boolean concepts on X and each m € M
associate to a single feature. The following terms are used here m : “old people”,
my . “tall people”, ms : “heavy people”, my : “high salary”, ms : “more estate”,
mg :“male”, my : “female”, mg : “black hair people”, mg : “white hair people”,
myo : “yellow hair people”, my| : “young people”, m; : “the people about 40 years
old”. The elements of M are viewed as “elementary” (or “simple” ) concepts.

Table 4.1 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male female black white yellow
x1 20 19 90 1 0 1 0 6 1 4
x 13 12 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
xg 80 1.8 73 20 80 1 0 3 4 2
x5 34 14 54 15 2 1 0 5 2 2
x¢ 37 16 80 80 28 0 1 6 1 4
x7 45 17 78 268 90 1 0 1 6 4
xg 70  1.65 70 30 45 1 0 3 4 2
xg 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3

For each set of concepts, A C M, [],,ca m represents a conjunction of the con-
cepts in A. For instance, A = {mj,mg} C M, T],,ca m = mmg representing a new
fuzzy concept “old males” which associates to the features of age and gender.
Yici(ITmea; m), which is a formal sum of the concepts [1,,c4,m,A; € M,i € I, is
the disjunction of the conjunctions represented by [],,c4 m’s (i.e., the disjunctive
normal form of a formula representing a concept). For example, we may have
Y = mimg + myms + my which translates as “old males™ or “heavy old people” or
“tall people”. (The “+” denotes here a disjunction of concepts). While M may be a
set of fuzzy or Boolean (two-valued) concepts, every ¥c;(ITnea, m),Ai C M i €1,
has a well-defined meaning such as the one we have discussed above. By a straight-
forward comparison of

mamg ~+ mmgq + mymemy -+ nmymamg

and
m3mg + mymg +mymems,

we conclude that the expressions are equivalent. Considering the terms on left side
of the expressions, for any x, the degree of x belonging to the fuzzy concept rep-
resented by mjmymg is always less than or equal to the degree of x belonging to
the fuzzy concept represented by mm4. Therefore, the term mmymg is redundant
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when forming the left side of the fuzzy concept and the expressions are equivalent
in semantics. In practice, when we form complex concepts using some simple con-
cepts like what we have discussed above, we always accept the following axioms of
natural language:

1) The repeat of a concept can be reduced in the product [] (e.g., mmamsg is equiv-
alent to mymymymg );

2) The sum Y’ is commutative (e.g., msmeg + msmg is equivalent to msmg + msmyg)
and the product is also commutative (e.g., msmg is equivalent to mgms);

3) The product distributes over the sum (e.g.,msmg + msmsg is equivalent to ms (me +
mg)).

Let us take into consideration two expressions of the form o : mm4 + mymsmg,

and v : msmg + msmg. Under the above axioms, the semantic contents of the fuzzy

concepts “o or v’ and “o and v” can be expressed as follows

“oor V’: mymy + mymsme + msme + msmg equivalent to

mimy + msme + msms,
“a and v’: mymamsme + momsme + mymamsms + mymsmemg equivalent to

m|mamsme + Momse + M Mamsmsg.

9 <

The semantics of the logic expressions such as “equivalent to”, “or” and “and” as
expressed by Yc;(ITnea, m),Ai € M,i € I can be formulated in terms of the EI
algebra in the following manner.

Let M be a non-empty set. The set EM* is defined by

EM* = {2( H m) | A; CM,i € I,1is any no empty indexing set} . 4.1)

iel meA;

Definition 4.1. ([23]) Let M be a non-empty set. A binary relation R on EM* is
defined as follows: for ¥;c;(ITneca, ), Xjes(Ilnes; m) € EM,

[Sier(Tnea,m)] R [£jes (Tes, m)| <= () ¥A; (i € 1), 3By (h € J) such that
A; D By; (ii) VBj (] S J), A (k S 1), such thatBj DAL

It is clear that R is an equivalence relation. The quotient set, EM* /R is denoted as
EM. Notice that any element of EM is an equivalence class. Let [Y;c;(ITnea, m)r
be the set of all elements which are equivalent to ¥,c/(ITea,m) € EM*, and
[Xicr(TTnea, m)|r € EM. In general, forany &, { € EM*, &, { are equivalent under R
means § € [{]r, ¢ € [E]r, and [C]r = [E]r. If X/ (TTnea, m) is not specified in EM*,
then the equivalent class [¥,c;(ITuea, m)]r is always denoted as ¥/ ([Tnea, m) for
the sake of simplicity and the notation ¥;c;(ITyea;m) = Xjecs(Ilnep; m) means
that [¥e;(ITnea, m)]r = [Xje;(Tlnes; m)]r- Thus the semantics they represent are
equivalent. In Example 1] for & = mamg + mymy + mymemy + mymgmg, § =
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m3mg +mymg +mimgm; € EM, by Definition .1l we have & = {. In what follows,
each ¥/ ([Tnea,m) € EM is called a fuzzy concept.

Proposition 4.1. Let M be a non-empty set. If ¥c/(ITnea,m) € EM,A; C Ay t,s €1,
t #£s, then

2(ITm= % (ITm.

i€l meA; iEI—{S} meA;

Its proof is left as an exercise.

Theorem 4.1. (/23]]) Let M be a non-empty sets. Then (EM,V,N\) forms a com-
pletely distributive lattice under the binary compositions N/ and A defined as fol-
lows: for any e/ (Tnea;m). Xjes (Tlncs, m) € EM,

SUIITmvI(ITm= X (ITm2X(IIm+X(ITm, @2

i€l meA; J€J mEB; kelllJ meCy icl meA; JEJ meB;
DT mAX(ITm= % ( TT m), (4.3)
icl meA; Jj€J meB; i€l je] meA;UB;

where for any k € I1UJ (the disjoint union of I and J, i.e., every element in I and
every element in J are always regarded as different elements in [11J), C, = Ay if
kel ande:BkikaJ.

Remark 4.1. (EM,V, ) is a completely distributive lattice meaning that the follow-
ing important properties hold.

e For ZiGI(HmEA,' m)vszJ(Hmij m) €EEM,

ST m =D (I] m) < VBj,(j€J), Ak, (k €I) suchthat B; D Ay. (4.4)

icl meA; jeJ meB;

e Let/ be any indexing set and ¥ ;¢ (HmeAij m) € EM,i € I. Then

VO IT m) =X X (I m), (4.5)

iel jel; mGAij i€l jel; mEA,‘j
A (TTm)= % ¢ I m. (4.6)
i€l Jel meAj; Sellierli meUicrA; ;)

e Let /, J; be non-empty indexing sets, i € I. For any l,-j €ceEM,iel,jeJ, the
following CD1 and CD2 hold.

/\(\/’lij): \/ (/\/’Lif(i))v 4.7

i€l je; fellier J; i€l

\/(/\)“ij): /\ (\//lif(i))~ (4.8)

i€l jeJ; fellierdi i€l
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Proof. First, we prove that vV, A are binary compositions. Let ¥c;, (ITnea,, m) =

21612 (HmEAz, ) 2/61] HmEBl 2]6]2 HmEsz ) € EM. m can be direCtly
verified based on DeﬁnltlonEjl From (43),we have

DI mAX(ITm= 2> I m,

i€l] meAy; JjeN mEBlj i€l jeJ; mEAl,'UBlj
ST maX(Ilm= % ( I1 m.
icly meAy; JjEL mGBz_i i€h,je), mGAZiUsz

Since 2161] (HmEAl, ) 21612 (HmGAz, ) 2/61] (HmGBl, ) 2/612 (HmGBz, )

hence by Definition 1] for any Aj; UByj,i € I}, € Ji, there exist Ay, By, k €
1,1 € J; such that Ay; O A2k;Bli/ D By;. Thus Ay; UBIJ D Ayx UBy,;. Similarly, for
any Ay;UBsj,i € b, j € J, there eXiStAlq, Bie.,q € I1,e € Jq, such that Ay; UBy; 2
A14UBj,. This implies that

( IT m= % C I m

i€l jeJ; mEAI,'UBlj i€h,je), mGAinsz

and A is a binary composition. Theorem [2.4] states that two binary compositions
satisfying the condition L1-L4 of Theorem 23] are lattice operations. For any

Yici(Ilmea, m), z/eJ(HmeB m), ¥uev (Ilnec, m) € EM, we can directly verify that
V, A satisfy L1-L3 of Theoremmby the definitions (which remains as an exercise).

In the following, we prove that \, A satisfy L4 of Theorem 2.3l By Proposition
E1] we have

(Zict(Mnea;m) V Ejes(Mmes;m)) A Zier(Tlnea; m)
=% jer(Ilneaua; m) + Zier jes (Mmeaus, m)
= Yic1(TLnea,m) + Ziel,jeJ(HmGA,-UBj m) = Ycs(
(Zicr(Mnea;m) NEjes(Mmes;m)) V Zier(Tlnea; m)
= Yier,jes (Mmea,us; M) + Xici([lnea; m) = Zie/(Tlnea, m)-
Therefore V, A satisfy L4 of Theorem23]and (EM, V, A) is a lattice.

ST =2 (T meX(TTmvI(IITm=2(Tm. ©9

icl meA; JEJ meB; iel meA; JEJ meB; iel meA;

HmEA,- m) .

if and only if VB;, (j € J), A, (k € I) such that Bj D Ay.

In the following, we prove that (EM, V, A) is a complete lat-
tice. Let ¥jer(ITnea,;m) € EM,i € 1. We prove that Ve;(Xjer,(Ilnea;m))
Nie1(Xjer;(Tlmea;;m)) € EM. It is obvious that the following relationships are sat-
isfied

DI m <X (IT m. viel

JEL mGAij i€l jel; mEAl‘j

SY(IIm= > ( I m), viel

JEl meA;; fellier i meUierA;y;)
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For ZuEU(HmEBu m) € EMv if zjeli(HmEA,-j m) S ZMGU(HmGBu m)7Vi € 17 then
VAiyjo» 1o € 1,jo € Ji,, there exists up € U such that A; ;, 2 B,,. Therefore

by @9), we have ¥c;¥jcs,(Inea,;m) < Xucy(Ilnep, m). This implies that
ZiGIZ.,-GIi(HmGAI.j m) € EM is the least upper bound or supremum of the set

{Zjel,«(HmGA,«j m) cEM | ie I}, i.e.,

VO m) =23 (IT m- (4.10)

icl jE€l meA;j i€l jel; meA;;

For ZMGU (HmeBu m) € EM’ if 2]'61,' (HmEA,'/- m) > ZMEU(HWLEBM m)7VI S 17 then vBuo,
ug € U and Vip € I, there exists ji, € Ij, such that B,, 2 Ajyj, . This implies that

for any ug € U there exists f,, € [1ic; i such that f,(io) = ji,,Vio € I and By, 2
UicrAif, (- Therefore by @9), we have

C I1T m= ZU(H'")'

fellier I mEVicrA;y;) meBy

Thus ¥ rery,e, 1 (Thneuiea, o m) € EM is the greatest lower bound or infimum of the
set {ZjEI,'(HmEA,'j m) cEEM ‘ i€ I}, i.e.,

AS(ITm)= Y ( TI m). @.11)

icl jE€L meA;; fellier I mEViciA;y;)

By Definition[2.3] we know that (EM, V, A) is a complete lattice.
For any v,{,n, € EM, the following properties (D1 and D2) can be directly ver-
ified by Definition &} the proof remains as an exercise.

DL yA(EVN) = (YA SV (YAn);
D2: yV(EAN) = (yVE)A(yvn).
Therefore by Definition[2.3] we know that (EM, V, A) is also a distributive lattice.
In the following, we prove that (EM, V, A) is a completely distributive lattice,
i.e., satisfying CD1 and CD2 in Definition Z.17] By Corollary 2.4l we know that a
complete lattice L is a completely distributive lattice if and only if one of CD1 and
CD2 holds. Hence we just prove the lattice (EM, V, A) satisfies that CD1.
Let A;j = ZugUij(HmeALj m) € EM,i€l, j € J;, Ujjis a non-empty indexing set.
For any f € [1;c; Ji,we know that Vk € I, since f(k) € Ji,. Hence for any f € [1;c;J;
and any k € I we have

Nigiy < Xgay <\ e

icl je

Since Vk € I,Vf € ITicrJis Nicr Aigti) <V jes, Mj» hence for any f € [1ie; Ji,

A%igiy < ACV A;).

icl kel jel
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Furthermore

Vo A < ACV 2. (4.12)

fellierJi i€l icl jeJ;
By @.10) and (11), we have
Vo Ax) =V ANCY CTT m)
fellierJi i€l f€lljerJi i€l ueUif(i) mEA,i)f(i)
=Y Y (I m. 4.13)

SellierJi hellier Ui meUielA;,]g?

ANV Aj) = AN(X X (T m)

i€l jeJ; icl jEJ[MGU[j mEALj

AC Y (TTm)

icl ueI—IkEJi Ui mEELi‘

> (I1 m. (4.14)

8€Ilier (Ukes; Uin) meu,-E,E;( )

i

where for any u € | ;. Ui, E! =A7ifue Uij. For any go € [1ic;(Lkey, Uir), since
20(i) € ey, Uin,i € 1, hence for any i € I, there exists k; € J; such that go(i) € Uy,.
This implies that if we define fy (i) = k; € Ji, i € I, then fo € [Tie;Jis go(i) € Uiy (i),
80 € [Ticr Uigy (i) and Eéo 0 = A;fo °<<i;>, for any i € I. Thus, considering the right sides

of @.I3) and @14, for any go € [T;c; (ks Uin), there exist fy € [1;e; Ji such that
80 € ILies Uigy (i) and

i ifo(i)
ﬂEgO<i> - ﬂAgoo(i) :
icl il

By @), we have

Vo Akiri) = AV 2i)- (4.15)

Sf€llictJi i€l icl jeJ;

Therefore the following CD1 hold from (#.12)

AN %)=\ (Akir)- (4.16)

icl jeJ; fellierJ;i i€l

By Corollary 2.4 we know that

\/(/\lij): /\ (\//’Lif(i))- 4.17)

il jeli fe€llicrJi i€l

and (EM, V, A) is a completely distributive lattice. O
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In Example[d.1] for y = mmy + momsmg, v = msmg +msmg € EM, in virtue (&.2))
and (@3) we know that the semantic content of the fuzzy concepts “ ¥ or v and
“y and v” are expressed as “y VvV v” and “y A v”, respectively. The algebra opera-
tions carried out on them come in the form:

YV V = mymy + mpmsme + msie + mMsmg
= msme + msmg + mims,
YAV = mimamsme -+ mymsime + mimamsmg + mymsmehg

= mmamsme + Mamsme + M Ni4MsMg.

(EM,V,N) is called the EI (expanding one set M) algebra over M—one type
of AFS algebra. For y = ¥;c;(ITnea,m), ¥ = Xjej([lnep,m) € EM, ¥ < ¥ <=
wVO=19<VA; (i€l),3B, (h€J)suchthat A; D By In light of the interpretation
of concepts [1,,ca, m and [1,,cp, m, we know that for any x € X, the membership
degree of x belonging to [],,cq, m is always less than or equal to that of [],,cp, m
considering A; D By, i.e., the stricter the constraint of a concept, the lower degree
of x belongs to the concept. Therefore the membership degree of x belonging to
concept Y is always less than or equal to that of ¥ for all x € X due to y < . For
instance, in Example[1l w = mmy +mymsmeg and O = msme +msmg +mimy. By
@A), we have wV ¥ = 0, i.e., W < 9. In the sense of the underlying semantics we
have

y states “ old high salary people” or “tall male with more estate”,
¥ reads “old high salary people” or “male with more estate” or “black hair people
with more estate”,

since the membership degree of x belonging to the concept “tall male with more
estate” is always less than or equal to that of “male with more estate” for all x € X,
hence the membership degree of any x belonging to v is less than or equal to that
of 9.

Theorem 4.2. ([27]) Let M be a set and g : M — M be a map satisfying g(g(m)) =m
for allm € M. If the operator 8 : EM — EM is defined as follows

(Z(Hm)>g=/\<\/ g(m)) =/\<Z g(m)>. (4.18)

i€l meA; i€l \meA; i€l \m€A,;

Then for any o, € EM,“g” has the following properties:

1) (a®)d =a;

2) (aVvB)E=asAB8 (aAB)S =08V Bs;

3) a<B=at>ps

i.e. the operator “8” is an order reversing involution (or conversely ordered involu-
tory mapping) in the EI algebra (EM,V,\).
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Proof. First we prove that the operator “¢” is a map from EM to EM. Let { =

Yiet(lmea;m), N = Xjej(llmep,m) € EM and { = 1. By { =1, we know that for
any A;,i € I there exists By, k € J such that A; O By. This implies that for any i € I,

\ gm)= 3 gm)> Y glm)=\/ g(m)> A\(\/ g(m)=n.

meA; meA; meBy meBy, JEJ meB;

Furthermore we have {8 = A;c; \,yeq, (m) > n¥. Similarly we can prove ¢ < né.
Thus {8 = n¢ and the operator “¢” is a map.

1) For any ¥,c/(ITyea, m) € EM, because (EM,V,A) is a completely distributive
lattice, i.e., it satisfies @.7) and (8], we have

(QUTT m)®E = (ACV g(m)))®

i€l meA; icl meA;

=V (Aer@))®
SellierAi i€l

= N\ (VelG))
fellier A i€l

= AN V5o
fellier A i€l

= VA m) =X (TTm).
icl meA; i€l meA;

2) For any Ye;(ITmea;m), Zjes(Ilmep, m) € EM, we have

ST mV ST ) - (/\( Y g<m>>) A ACY som)

i€l meA; JE€J mEB; i€l mecA; JE€J mEB;
= QX (IT m)s ACLCTT m))e.
i€l meA; jeJ mEB/‘

In the a completely distributive lattice (EM, V, A), one can verify that A;c;(aV ;) =
oV (Nie Bi) for any o, i € EM,i € I. Its proof is left to the reader. Thus we have

CIITmAZ(Imy =%  TT m)*

i€l meA; j€J meB; iel,jeJ meA;UB;

A CV gm)

i€l,jeJ meA;UB;

A LV gm)\( glm)

iel,jeJ meA; mGBj

ALALTCV gsm)\V gm)

i€l \ jeJ MEA; mGBj
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=NV em)\V | ACV gm)

icl MmeEA; jeJ mij

_ (N y g<m>>> VAV gom)

icl meA; jeJ mEB/‘

= QT m)* VXTI m).

i€l meA; J€J mEB;

3) For o, € EM, oo < 3 < oA B = o. From 2) we have a8 = (o A )8 =
o8 Vv B8. Thus o8 > B8. Therefore the operator “$” is an order reversing involution
in the El algebra (EM,V, ). O

If m’ stands for the negation of the concept m € M and m” = m, then for any { € EM,
“ defined as (4.I8) is an order reversing involution in the EI algebra (EM,V,A).
Thus for any { = ¥,c;(TTnea, m) € EM, {' defined as the follow stands for
the logical negation of {.

=N\ m)=N\(Y m). (4.19)

i€l meA; i€l meA;

(EM,V,A,) is called an AFS fuzzy logic system. In Example B1] for y = mymg +
mym3+my € EM, by (4.19), we have

Y = (mimg+mymz+my)
= (m) +mg) A (m) +mh) Am)
= (m} + mgmb) A

A o]
= m1m2 =+ m2m3m6

¥, which is the logical negation of y = mmg + m;m3 + my, reads as “not old and
not tall people” or “not tall and not heavy females™.

The AFS fuzzy logic system (EM,V, A, ) being regarded as a completely distribu-
tive lattice not only provides a sound mathematical tool to study the fuzzy concepts
in EM and to construct their membership functions and logic operations, but also en-
sures us that they are the fuzzy sets of some well-understood underlying semantics.

For M being a set of few fuzzy or Boolean concepts, a large number of fuzzy
concepts can be expressed by the elements of EM and the fuzzy logic operations
can be implemented by the operations V , A and ’ available in the ET algebra sys-
tem (EM,V,A,"), even though we have not specified the membership functions of
the fuzzy concepts in EM. In other words, the expressions and the fuzzy logic op-
erations of the fuzzy concepts in EM just focus on the few simple concepts in M
and the semantics of the fuzzy concepts in EM. As long as we can determine the
fuzzy logic operations of these few concepts in M, the fuzzy logic operations of
all concepts in EM can also be determined. Thus, not only will the accuracy of the
representations and the fuzzy logic operations of fuzzy concepts be improved in
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comparison with the fuzzy logic directly equipped with some #-norms and a nega-
tion operator, but also the complexity of determining membership functions and
their logic operations for the complex fuzzy concepts in EM will be alleviated. Let
us stress that the complexity of human concepts is a direct result of the combina-
tions of a few relatively simple concepts. It is obvious that the simpler the concepts
in M, the more accurately and conveniently the membership functions and the fuzzy
logic operations of the fuzzy concepts in EM will be determined. A collection of a
few concepts in M plays a similar role to the one of a “basis” used in linear vector
spaces. In what follows, we elaborate on a suite of “simple concepts” which can be
regarded as a “basis”.

4.1.2 Simple Concepts and Complex Concepts

In this section, we first recall the interpretations of graded membership [8]]. Then we
discuss the complexity of the concepts through the analysis of the binary relation
structures of concepts.

Identifying the three types of information-driven tasks where graded member-
ship plays a role: classification and data analysis, decision-making problems, and
approximate reasoning, Dubois gave three views at the semantics of the member-
ship grades, respectively, in terms of similarity, preference, and uncertainty [8]]. In
more detail, considering the degree of membership t («) of an element u in a fuzzy
set F, defined on a referential U, three interpretations of this degree are sought:

Degree of similarity: lp(u) is the degree of proximity of u to prototype elements
of F. Historically, this is the oldest semantics of membership grades since Bellman
advocated the interest of the fuzzy set concept in pattern classification from the very
inception of the theory [

Degree of preference: F represents a set of more or less preferred objects (or
values of a decision variable x) and ur(u) represents an intensity of preference in
favor of object u, or the feasibility of selecting u as a value of x. Fuzzy sets then
represent criteria or flexible constraints. This view is the one later put forward by
Bellman and Zadeh in [2]].

Degree of uncertainty: This interpretation was proposed by Zadeh in [53] when
he introduced the possibility theory and developed his theory of approximate rea-
soning [54]. ur(u) is then the degree of possibility that a parameter x has value u,
given that all that is known about it is that “x is F™”.

For a fuzzy set A on the universe of discourse X, by comparison of the graded
membership ( e.g., Dubois’s interpretations of membership degree), Turksen in-
duced an “empirical relational membership structure”[46], < X,R4 >, where Ry C
X x X is a binary relation on X, (x,y) € R4 < an observer, an expert, judges that
“ x is at least as much a member of the fuzzy set A as y” or “x’s degree of mem-
bership in A is at least as large as y’s degree of membership in A. The fundamental
measurement of the gradual-set membership function can be formulated as the con-
struction of homomorphisms from an “empirical relational membership structure”,
< X,R4 >, to a “numerical relational membership structure”, ({ua(x)|x € X},>).
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Furthermore we formulated these ideas as the following definitions of the binary
relations to represent concepts.

Definition 4.2. ([30]) Let  be any concept on the universe of discourse X. R; is
called the binary relation (i.e., Ry C X x X) of the concept gif Ry satisfies: x,y € X,
(x,y) € R; < x belongs to concept { at some extent (or x is a member of {) and the
degree of x belonging to { is larger than or equal to that of y, or x belongs to concept
¢ at some degree and y does not at all.

For instance, according to the value of each x € X on the feature of age shown in
Table 4.1 we have the binary relations R¢, Ryr, Ry of the fuzzy concepts {: “old”,
{': “not old”, y: “the person whose age is about 40 years™ as follows:

Ry = {(x,y) | (x,y) € X x X, agex > agey },
Ry ={ (x,9) | (x,y) €X x X, agex < agey },
Ry ={(x,y) | (x,y) € X XX, |age, — 40| < |agey, — 40| },

where age, is the age of x. Note that (x,x) € Ry, implies that x belongs to 17 at some
degree and that (x,x) ¢ Ry implies that x does not belong to 1 at all. For the fuzzy
concept ms: “more estate” in Example .1} by feature “estate” and Definition
we have (x5,x5) € R, although the estate of x5 is just 2, and (x2,x2) & R,; because
the estate of x; is 0. For a Boolean concept &, (x,x) € R implies that x belongs to
concept €. For instance, the concept mg: “male” in Example[.1] considering the fea-
ture “male” and Definition @2l we have (x1,y), (x4,¥), (x5,¥), (x7,¥), (x8,y) € Rng
and (x2,y), (x3,¥), (x6,Y), (X9,¥), (x10,¥) & Rm, for any y € X. In real world applica-
tions, the comparison of the degrees of a pair x and y belonging to a concept can
be obtained through the use of the values of the feature or by relying on human
intuition, even though the membership function of the fuzzy concept has not been
specified by the degrees in [0, 1] or a lattice in advance. For instance, we can obtain
the binary relation R, for fuzzy concept mg: “black hair people” in Example @.1]
just by comparing each pair of people’ hair and expressing our intuitive judgment.
Based on Table .]] and following this intuitive assessment, we can construct the
binary relation R,, of each concept m € M being used in Example .11

Compared with “empirical relational membership structure”, < X,R4 > defined
by Turksen in [46]], Definition@.2lstresses thatif (x,y) € R4 then x must be a member
of A to some extent or x’s degree of membership in A is not equal to zero. By the
definition of < X, R, > in [46], we know that if both x and y are not members of A
then x’s degree of membership in A is at least as large as y’s degree of membership
in A and (x,y) € Ry. It is unnatural and un-convenient for us to derive membership
functions from the binary relations.

Definition 4.3. ([28,30]) Let X be a set and R be a binary relation on X. R is called
a sub-preference relation on X if for x, y, z € X, x # y, R satisfies the following
conditions:

1. If (x,y) € R, then (x,x) € R;
2.If (x,x) € Rand (y,y) ¢ R, then (x,y) € R;
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3.1f (x,y), (3,2) € R, then (x,z) € R;
4.If (x,x) € R and (y,y) € R, then either (x,y) € R or (y,x) € R.

A concept { is called a simple concept on X if R¢ is a sub-preference relation on X.
Otherwise { is called a complex concept on X. R¢ is the binary relation of { defined
by Definition

In [46] Turksen defined a “weak order” relation R on X as follows: for all x,y,z € X,
R is called a weak order relation on X, if the following axioms are satisfied:

1. Connectedness: Either (x,y) € R or (y,x) € R;
2. Transitivity: If (x,y), (v,z) € R, then (x,z) € R.

Indeed weak order is equivalent to the preference relation defined by Kim in [16]. It
can be proved that for any sub-preference relation R on X there exists a preference
relation R such that R C R. So that the binary relations defined in Definition F3]
are called sub-preference relations. For a sub-preference relation R on X, if Vx € X,
(x,x) € R then R is a weak order. Thus the sub-preference relation is a generalization
of the weak order.

The essential difference between a simple concept and a complex concept on
a set X is in that all elements belonging to a simple concept at some degree are
comparable (i.e., they form a linear order or total order) and there exists a pair of
different elements belonging to a complex concept at some degree such that their
degrees of belonging to the complex concept are incomparable. For example, let X
be a set of people. Also assume that X contains two disjoint subsets Y and Z of
male and female respectively. It is easy to see that, if we consider incomparable the
elements of Y with those of Z, then the property of being “beautiful” is a simple
concept if restricted to Y or Z, while it is a complex concept if applied to the whole
set X. In fact, if x,y € X, x € Y and y € Z, then the degree of x,y belonging to
“beautiful” may be incomparable although both x and y may belong to “beautiful”
atsome degree? Le., (xax)7 (yvy) € Rbeuutiful’ (yax) ¢ Rheautifulv (X,)’) ¢ Rheautiful~ This
implies that the fourth condition of Definition4.3|is not satisfied and “beautiful” is
a complex concept on X. By Table [4.1] and Definition 3] one can verify that each
concept m € M in Example[T]is a simple concept. Many concepts associated with
more than a single feature are complex concepts. In Example 1] let fuzzy concept
B = mym, € EM meaning “tall old people”. One can verify that (xg,xg), (x4,X4) €
Rg, but neither (xg,x4) nor (x4,xg) in Rg. This implies that the fourth condition of
Definition d.3]is not satisfied by Rg and therefore f3 is also a complex concept. The
fuzzy concept ¥ = mj +my € EM reads as “old people” or “tall people”. By the
data shown in Table 1] i.e., xg: age=70, height=1.6; x|: age=20, height=1.9; x4:
age=80, height=1.8, we have (x3,x) € Ry because xg is older than x; and (x;,x4) €
Ry because x; is taller than x4. But xg is neither older nor taller than x4, i.e., (xg,x4) ¢
Ry. Thus the binary relation Ry does not satisfy the third condition of Definition &3]
and therefore concept y is a complex concept.
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It is clear that with any simple concept £, X can be divided into three classes.

Ty = {x € X|(x,y) € R¢,Vy € X}, (4.20)
O¢ = {x e X|(x,x) ¢ R¢ },
Fr =X—T§—O§.

Let My = (7ij)nxn be the correspondent Boolean matrix of R; defined by Definition
The above (@.20) implies that there exist a permutation Boolean matrix P such
that
Ju Jio Ji3
Mg =P |0y Ny Jo3 | P, 4.21)
031 032 O33

where J11,J12,J13,J23 are Boolean matrices whose elements are all 1; 0,1, O31, O3,
033 are Boolean matrices whose elements are all 0 and N;; is a square sub-block
Boolean matrix such that Noy +1 = N22,N222 = Ny (refer to Theorem 3.1). Moreover,
according to the semantics of the fuzzy concepts, {’ the negation of the simple concept
¢ can be constructed by its correspondent Boolean matrix Mg shown as follows:

011 012 O3
Mg =P |Joy NI, Oy | PT, (4.22)
J31 J32 J33

where O11,07,0:3,0,3 are the Boolean matrices whose elements are all 0; J,,
J31, J32, J33 are Boolean matrices whose elements are all 1. The dimensions of Oy,
O12, O13, O3 are the same as Ji1, Ji2, J13, Jo3, respectively and the dimensions of
Ja1s J31, J32, J33 are the same as O3, O3y, O3;, O33, respectively.

For each element in 7y, its degree belongingness to concept { is 1 if concept §
is represented by an ordinary fuzzy set and its degree belonging to concept { is the
maximum element of lattice L if concept { is represented by a L-fuzzy set; for each
element in O, its degree belongingness (membership ) to concept ¢ is 0 if concept
{ is represented by an ordinary fuzzy set and its degree belonging to concept {
is the minimum element of lattice L if concept { is represented by a L-fuzzy set;
the elements in F belong to concept { at different degrees in open interval (0,1)
if concept { is represented by an ordinary fuzzy set and the degrees of elements in
F; belonging to concept { form a linearly ordered chain in lattice L if concept {
is represented by a L-fuzzy set. Consequently, concept { is a Boolean concept if
FC =J.

Definition 4.4. Let X = {x;,x2,...,x,} and Ry be the binary relation of concept {
on X. Let My = (rij)an be the correspondent Boolean matrix of R¢ defined by
Definition 3.5. Then the concept { is called an atomic fuzzy concept if there exists a
permutation Boolean matrix P such that

Jin Ji2
PM¢P" = | Oy 1y |, (4.23)
031 O3,
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where J11,J12,J22,021,027,03; are sub-block Boolean matrices of appropriate di-
mensionless and each element in J1,J12,J22 is 1 and each element in Oy;,07;,, 03>
is equal to 0.

By Definition [£.4 we can easily verify that each atomic fuzzy concept is a simple
concept. Similarly X is also divided into three classes Ty, 0; Fr (refer to @.20)) by
an atomic fuzzy concept. For each element in 7¢, its degree belonging to concept
¢ is 1 if concept { is represented by an ordinary fuzzy set; for each element in F,
its degree belonging to concept { is 0; Compared to the ordinary simple concept,
for the atomic fuzzy concept ¢, the degrees of all elements in Fy belonging to { are
equal to one value in (0,1). By Theorem 3.3, we know that for a simple concept 7,
if My > M and ¢ is an atomic fuzzy concept, then Fy, = @ and the concept ¥ is a
Boolean concept. This implies that the atomic fuzzy concepts are the simplest of the
simple concepts except Boolean concepts.

Let X be a set and { be any concept on X. Let R¢ be the binary relation of the
simple concept ¢ defined by DefinitionE.2land My = (7ij)nxn be the correspondent
Boolean matrix of Ry defined by Definition By the definitions, we can verify
that r;; =0« r;; =0 forall j =1,2,...,n. Thus there exists a permutation Boolean
matrix P such that N

T

MC—P{O1 OZ}P , (4.24)
where N is a Boolean matrix such that N+ 7 = N, J is a universal Boolean matrix,
i.e.,whose elements are all 1, O; and O, are zero matrices. One can also verify that
the concept { on a set X is a simple concept if and only if N is the correspondent
Boolean matrix of a quasi-linear order, i.e., NZ2=N ,N +1= N. By Definition [£3]
we can verify that any quasi-linear order on a set is a sub-preference relation on the
set.The proofs of the conclusions remain as exercises.

Theorem 4.3. ([28]) For any fuzzy concept M on a finite set X, there exists M a
set of simple concepts on X and a fuzzy concept & = ic;[Ine A, m € EM such that
Ry = R provided that for x,y € X, (x,y) € Rg <> 3k € I such that (x,y) € Ry, (i.e.,
Vm € Ay, (x,y) € Ry ).

Proof. Let My = (rij)nxn be the corresponding Boolean matrix of Ry, expressed by
Definition[3.5] for concept 1. From the above discussion, we know that there exists
a Boolean permutation matrix P such that

L[N T
Mn_P[OlOz}P’

where N is a Boolean matrix such that N+171 = N.
According to Theorem we have that for the Boolean matrix N, there exist
quasi-linear orders R;;,i = 1,2,...,r,j = 1,2,...,g; such that
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Furthermore, by Theorem 3.3 we have

N T [ (RTTE Mgy) T ] or
Mn—P{OIOZ}P _P{ o 0, | P

i=1

r qi Mg, 7] .1
2<*1£[1p[01k Oz}p ) (4.25)

By #24), we also know that the concept corresponding to P {A/ge”‘ OJ ] PT for
1 Oy

each i,k is a simple concept. Let m; be the simple concept corresponding to
Mg, J . . r i

P { ORI"‘ 02] Pland M = {my|i=1,2,....,n,j=1,2,.,q;}. 16 & =3/ (TT, m)

in EM, then by (#.23) we have Ry = R:. O

This implies that any fuzzy concept on X can be expressed by some simple con-
cepts on X and the AFS fuzzy logic system (EM,V,A,’) forms a comprehensive
platform capturing the mathematical structures and the semantics of concepts used
by humans.

4.1.3 AFS Structure of Data

Many data sets involve a mixture of quantitative and qualitative feature variables,
some examples have been shown in Table 4.1l Beside quantitative features, qualita-
tive features, which could be further classified as nominal and ordinal features, are
also commonly encountered. Taking advantage of AFS structure of data, the qual-
itative features evaluated by information-based criteria such as human perception-
based information, gain ratio, symmetric uncertainty, order, binary relation, etc can
be applied to determine the membership functions of fuzzy concepts.

Definition 4.5. ([23, 25]) Let X, M be sets and 2V be the power set of M. Let T :
X xX —2M (M, ,X) is called an AFS structure if T satisfies the following axioms:

AX1:V(x1,x2) € X X X, T(x1,x2) C T(x1,X1)5
AX2:V(x1,x2), (x2,x3) € X x X, T(x1,x%) N T(x2,x3) C T(x1,x3).

X is called universe of discourse, M is called a concept set and 7 is called a structure.
For an AFS structure (M, 1,X), if we define fr(x,y) = t(x,y) Nt(y,y),V(x,y) €
X x X, then (M, fr,X x X) is a combinatoric system [1T].

Let X be a set of objects and M be a set of simple conceptson X. If 7: X x X —2M
is defined as follows: for any (x,y) € X x X

©(x,y) = {m|me M, (x,y) € R} € 2", (4.26)

where R, is the binary relation of simple concept m € M (refer to Definition
and Definition E3)). Then (M,7,X) is an AFS structure. The proof goes as fol-
lows. For any (x1,x2) € X x X, if m € 7(x1,x,), then by @28) we know (x|,x) €
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Ry, Because each m € M is a simple concept, we have (xj,x;) € Ry, i.e., m €
T(x1,x1). This implies that 7(xy,x2) € 7(x1,x;) and AX1 of Definition 3] holds.
For (x1,x2), (x2,x3) € X x X, if m € T(x1,x) N T(x2,x3), then (x1,x2), (x2,%3) € Ry
Since m is a simple concept, so by Definition we have (x1,x3) € Ry, ie.,
m € T(x1,x3). This implies 7(x;,x2) N T(x2,x3) C 7(x1,x3) and AX2 of Definition
E3holds. Therefore (M, 7,X) is an AFS structure. In light of the above discussion,
an AFS structure based on a data set can be established by (4.26), as long as each
concept in M is a simple concept on X.

Let us continue with Example 4.1l in which X = {x1,x2,...,x10} is the set of 10
people and their features are shown in Table &1l M = {m;,ma, ..., m2} is the set
of simple concepts shown in Example[£.]l By Table d.1]and Definition[4.3] one can
verify that each concept m € M is a simple concept. Thus for any x,y € X, 7(x,y) is
well-defined by (£.26). For instance, we have

T()C4,)C4) - {ml , M, M3, M4, ms, Me, Mg, Mg, My, N 7m12}

T(x4,x7) = {my,ma,me,mg,mio}

by comparing the feature values of x4,x7 shown in Table dT]as follows:

age height weigh salary estate m. f. black white yellow
x 80 1.8 73 20 80 1 03 4 2
x745 1.7 78 268 90 1 01 6 4

Similarly, we can obtain T(x,y) for other x,y € X. Finally, we arrive at the AFS
structure (M, 7,X) of the data shown in Table {1l

Let M be a set of simple concepts on X and g be a map g : X x X — 2™ In general
g may not be guaranteed to satisfy AX1, AX2 of Definition 3] Making use of the
following theorem g can be converted into 7 such that (M, 7,X) becomes an AFS
structure.

Definition 4.6. Let M, X = {x,x,...,x,} be finite sets and g : X x X — 2M,
Mg = (mjj)nxn is called a Boolean matrix of the map g if m;; = g(x;,x;) € 2M  For
Mg, My, the Boolean matrices of the maps g, h:X x X — 2™, M, + M), = (g(xi,x;) U
h(xi,X}))nxny MgMp = (Gij)nxn, qij = 1<L,£< (g(xis xi) N (X, 7)) iy j = 1,2,...0m.
n

Theorem 4.4. Let M, X = {x1,x2,...,x, } be finite sets and g : X x X —2M. Then g
is a structure of an AFS structure, that is, g satisfies AX1, AX2 of Definition 4.3 if
and only if

M§ =M, and U mi; Cmy,i=1,2,...,n.
1<j<n

Its proof remains as an exercise.

Based on the criteria presented in this theorem, one can establish an AFS struc-
ture (M, 7,X) if g does not satisfy AX1 and AX2 in Definition 43l One may note
that (M, 7,X) is the mathematical abstraction of the complex relationships existing
among objects in X with the attributes in M. This implies that the information con-
tained in databases and human intuition are aggregated to (M, t,X) from which we
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can obtain the fuzzy sets and AFS fuzzy logic operations for the fuzzy concepts
expressed by the elements in EM.

4.1.4 Coherence Membership Functions of the AFS Fuzzy Logic
and the AFS Structure of Data

In this section, we discuss how to determine the membership functions for the fuzzy
concepts in EM according to the AFS structure (M, 7,X) of the data and the seman-
tics of the concepts. At the same time, the membership functions are consistent with
both the AFS logic system (M,V,A,”) in the sense of the underlying semantics and
the distribution of the data.

Definition 4.7. Let (M, 7,X) be an AFS structure of a data set X. Forx € X, A C M,
the set A%(x) C X is defined as follows.

AT(x) ={y|y€X,1(x,y) 2A}. (4.27)

For { € EM, let pg : X — [0,1] be the membership function of the concept .
{ug(x) | & € EM} is called a set of coherence membership functions of the AFS
fuzzy logic system (EM,V,A,) and the AFS structure (M, T,X), if the following
conditions are satisfied.

1. for o, € EM, if o < B in lattice (EM,V,A,"), then g (x) < ug(x) for any
x € X;
2. forxeX.,n =3, ( [1 m) € EM,if AT(x) = @ for all i € I then iy (x) = 0;
meA;
3. forx,y e X,ACM,n= [l meEM,if A"(x) CA*(y), then uy(x) < pn(y); if
meA
A"(x) = X then iy (x) = 1.

The following proposition stresses that the coherence membership functions are con-
sistent with the AFS logic system (M, V,A,) in terms of the underlying semantics.

Proposition 4.2. Let M be a set of simple concepts on X and (M, 7,X) be an AFS
structure defined as (£.26). Let { iz (x) | { € EM} be a set of coherence membership
functions of (EM,V,\,') and (M,7,X). Then for any o, € EM, any x € X,

Horp (x) = max{plo(x), up (X)}, Hanp(x) < min{pa(x), tp(x)} (4.28)

Proof. In lattice (EM,V,A,'), for any a,3 € EM, we have aV 3 > o, ooV >
and a AB < o, a A < B. Using condition 1 of Definition @7 for any x € X, one
has

Havp (x) > Heo(x), Hovp (x) > Ug (x),
Hanp (x) < Ha(x), Honp (x) < Ug (x).

This implies that (4.28)) holds. O
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Proposition 4.3. Let M be a set of Boolean concepts on X and (M,7,X) be an AFS
structure defined as ({.26). Let {1z (x) | § € EM} be a set of coherence membership
functions of (EM,V,\,)) and (M,7,X). Then for any £,1 € EM, any x € X the
following assertions hold:

1. either pe (x) = 1 or Ug (x) = 0;

2.

Mg np (x) = min{pig (x), iy (1)},
Hevn (x) = max{“i (x)vﬂn (x)}7
e () = 1— g (x),

ie., (EM,V,\)) is degenerated to a Boolean logic system (2%,0,U,").

Proof. 1. From Definition [£3] we know that for each m € M since it is a Boolean
concept, hence either {m}*(x) =X or {m}*(x) = &. Forany A C M and any x € X,
by @27, we have A%(x) = ,ea{m}*(x). Thus either A%(x) = X or A"(x) = .
By conditions 2,3 of Definition &7 either ury, . m(x) = 1 or upy,,, m(x) = 0. For
any & = Yc;[Tnea,m € EMx € X, if there exists k € I such that A{(x) # @ then
T, Akm(x) = 1. Thus by condition 1 of Definition @7 and [],,cq, m < &, we have
1= ul—lmeAkm(x) < pe(x) <1, de., pe(x) = 1 If for any i € I, Af(x) = & then by
condition 2 of Definition B.7 ue (x) = 0.

2.Let & = Yic/(TTmea;m): N = Xjes(Ilmep;m) € EM and x € X. In the case that
one of e (x) and iy (x) is 0, by Proposition[£.2] we have

0 < pepn (x) < minf{pg (x), oy (x)} = 0.

If pe(x) = 1 and py(x) = 1, then by the above proof, we know that there exist
k € I,h e J such that A7 (x) = X,B} (x) = X. By (@3), we have

Ean= % (I m).

iel,jeJ mEA,-UB_,-

Thus for k € I,h € J, (AxUBy)*(x) = A{(x) NBj(x) = X. By conditions 1, 3 of
Definition 7] one has 1 = [.LHmeAkUma(x) < Hean(x) < L, Uepy(x) = 1. Thus
we prove that lg,p(x) = min{ug (x), pn(x)}. Similarly, we also can prove that
M (3) = mar{ g (), by ()} and iz (x) = 1 — p (). 0

Theorem[d.3 provides a constructive method to define coherence membership func-
tions in which both the distribution of the data and the semantics of the fuzzy con-
cepts are taken into account.

Theorem 4.5. Let M be a set of simple concepts on X and (M,7,X) be an AFS
structure defined as [#28)). Let S be a c-algebra over X such that for any m € M
and any x € X, {m}*(x) € S. For each simple concept y € M, let .#y be a measure
over S with 0 < 4y (U) < 1 forall U € S and #,(X) = 1. {ug(x) | { € EM} is
a set of coherence membership functions of (EM,V,\,') and (M, ©,X), if for each
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concept § = Yc;(Ilnca,m) € EM, p¢ : X — [0,1] is defined as follows: for any
xeX

g (x) = sup (H My (AT (x))) : (4.29)
icl yeA;
pg(s) =sup (inf 54509 ). @.30)

Proof. Let o = Xie/(ITnea,m), B = Xjcs(Ilnep;m) € EM and o < P in lattice
(EM,V, A, ). By Theorem[.1] we know that for any A; (i € I), there exist B;, (h € J)
such that A; O By,. By @27), we have Af(x) C B (x) for any x € X. Thus for any
iel,

Furthermore, one has

Ha(x) = sup [T 4(AF (x)) < pp(x).

iel YEA;

Thus condition 1 of Definition 4.7 holds.
Since .#,(@) = 0 for any y € M hence condition 2 of Definition &7 holds.
For x,y e X,ACM, n = H m € EM, if A%(x) C A%(y), then for any y € A,

My(AT(x)) < Ay (AT(y)). Th1s 1mphes that iy (x) < uy(y). Furthermore, since
Ay(X) = 1, hence condition 3 of Definition @7 holds. Therefore { ¢ (x) | § € EM}
is the set of coherence membership functions of (EM,V,A,") and (M, 7,X). O

In theory, as long as foreach ye M andany U € S,0 < .#,(U) < 1 and .#,,(U) =1,
the functions defined by (@29) or (@30) are coherence membership functions. In
real world applications, the measure ./, can be constructed according to the se-
mantic meaning of the simple concept ¥ and may have various interpretations de-
pending on the specificity of the problem at hand. In general, .#, (A" (x)) measures
the degree of set A" (x) supporting the claim: “x belongs to 7.

The coherence applied to membership functions of fuzzy concepts in EM to de-
note the membership functions which respect the semantic interpretations expressed
by the fuzzy concepts, the logic relationships among the fuzzy concepts in AFS logic
systems (EM,V, A, ) and the distribution of the data. In what follows we explain the
conditions of Definition[4.7] and show that the coherence approach to the fuzzy sets
in AFS framework is crucial.

Condition 1: For o, B € EM, let oo = B3, i.e., o < 8 and o > . From condition 1,
we have that Ly (x) = g (x) for any x € X. Thus condition 1 ensures that the mem-
bership functions of the concepts in EM with equivalent meanings are identical.
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For instance, in Example 4.1l one can verify that the semantic interpretations of
5 = mamg + mymy + mymegmy + mymgmg and C = mzmg + mymy + mymen; are
equivalent. Thus the coherence membership functions of them are identical. By con-
dition 1 and Proposition we know that for coherence membership functions of
any fuzzy concepts a, 3 € EM, any x € X,

Mg (x) = max{o (x), g (X)}, Hanp(x) < min{ia(x), ug(x)}.

Thus the coherence membership functions of the fuzzy concepts in EM are con-
sistent with their AFS fuzzy logic operations “V” (OR), “A” (AND),* "’ (NO) in
(EM,V,A,). For instance, in Example[4.1]

W = mymy + mymsmg states “ old high salary people” or “tall male with more es-
tate”,

U = mymy + msmeg + msmg reads “old high salary people” or “male with more es-
tate” or “black hair people with more estate”,

By @2), we have y V¥ = 0, i.e., w < 0. Since the constraint of the concept “tall
male with more estate” is stricter than that of “male with more estate”, hence in
terms of semantics, the membership degree of x belonging to “tall male with more
estate” must lower than or equal to that of “male with more estate” for all x € X.

Condition 2: Tt ensures that the fuzzy logic system (EM,V,A,') is consistent with
the Boolean logic. For A C M, we know that A%(x) is the set of all y € X such that
the degrees of y belonging to the concept [],,c4 m is less than or equal that of x by
Definition 3l and formula @27). Since the AFS structure (M, 7,X) is determined
by the distribution of the data, hence A?(x) is determined by both the distribution
of data and the semantics of the simple concepts in A. AT(x) = & implies that there
exists a simple concept in A; such that x does not belong to. Thus the membership
function py, (x) of concept 1 =Y,;c;( IT m) hasto iy (x) =0ifforanyiel, AT (x) =
meA;

@. This also ensures that for any fuzzy concept n € EM, iy (x) > 0 for any x € X.

Condition 3: It ensures that the coherence membership functions and their fuzzy
logic operations observe both the distributions of the original data and the semantic
interpretations of the fuzzy concepts. For example, what is your image (perception)
of a person? If an NBA basketball player describes that the person is not “fall” and
a ten year old child describes that the same person is very “fall”. Because the peo-
ple the NBA basketball player often meets are different from the people the child
meets, i.e., there are different data they observed. They may have different inter-
pretations (membership functions) for the same concept “tall” due to the data sets
drawn from different distribution probability space. Therefore the interpretations
of concepts are strongly dependent on both the semantics of the concepts and the
distribution of the observed data. The distributions of the observed data must be
considered in the determining of the membership functions of the fuzzy concepts.
Given (@.Z7), by Definition[4.3] we know that A*(x) C X is the set of all elements in
X whose degrees of belonging to concept [],,,c4 m are less than or equal to that of x.
A% (x) = Nmea{m}®(x) is determined by both the semantics of the simple concepts
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in A and the AFS structure (M, 7,X) of the dataset which is dominated by a certain
probability distribution, i.e., different distribution of the observed data may have dif-
ferent A% (x) for the same A and x. It is clear that condition 3 ensures that the larger
the set A7(x), the larger the degree x belongingness ( membership ) to [],,cq m will
be. For instance, in Example 1] Table 1] can be regarded as a set of samples
randomly drawn from a certain population. Let A = {m;,my} C M. Concept m my
states “old and tall people”. In term of the feature values, age and height shown in

Table 4.1
X| X2 X3 X4 X5 Xg X7 X§ X9 X|Q
age 20 13 50 80 34 37 45 70 60 3
height 191.21.71.81.41.61.71.651.821.1

we have AT()C5) = {xz,X5,X10} - AT()C4) = {XQ,X3,X4,X5,XG,X7,)C8,)C10}. Therefore
the degree of x5 belonging to concept mm; must be less than or equal to that of x4
according to the given data.

For A,B C M, it is clear that (AUB)*(x) = A*(x) N B*(x). For a measure .#
on X, we know that .#(A%(x)) and .# (B*(x)) are not sufficient to determine
A ((AUB)™(x)) which is dependent on the distributions of the samples in the sets
A%(x) and B*(x). As both the distributions of the original data and the semantic
meanings of fuzzy concepts are taken into consideration, Ly (x), ¢ (x), the coher-

ence membership functions of fuzzy concepts 1 = [] m,{ = [I m € EM based on
meA meB

some measures on X (refer to Theorem[4.3), are not sufficient to determine Hnng (%),
which is the membership degree of x belonging to the conjunction of 1 and {. This
stands in a sharp contrast with the existing fuzzy logic systems equipped with some
t-norm, in which ;¢ (x) = T (Un (x), Ug (x)) is fully determined by the member-
ship degrees Ly (x) and g (x) which is independent from the distribution of the
original data. Hence, the constructed coherence membership functions and the logic
operations in Theorem[Z.3]include more information of the distributions of the orig-
inal data and the semantic interpretations, i.e., it becomes more objective and less
subjective.

4.2 Coherence Membership Functions via AFS Logic and
Probability

In this section, we discuss the construction of coherence membership functions and
provide interpretations of the measure .#, (in Theorem.3)) for the simple concept y
in the setting of probability theory. Thus the coherence membership functions based
on the semantics of fuzzy concepts and the statistic characteristics of the observed
data can be established for applications. Furthermore, the imprecision of natural
language and the randomness of observed data can be put into work together, so
that uncertainty of randomness and of imprecision can be treated in a unified and
coherent manner.

We consider the following setting for the representation of subjective imprecision
and the objective randomness. There is a “probability measure space”, (Q, %, X)
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of possible instances X or the observed samples based on which the coherence mem-
bership functions of fuzzy concepts in EM may be defined, where M is a set of
simple concepts on X selected for the specificity of the problem at hand. We as-
sume that different instances in X may be encountered at different frequencies. A
convenient way to model this is to assume the probability distribution & defines
the probability of encountering each instance in X (e.g.,”” might assign a higher
probability to encountering 19-year-old people than 109-year-old people). Notice
& says nothing about the degree of x belonging to a concept § € EM; & (x) only
determines the probability that x will be encountered. Let £2 be the universe of dis-
course and F = {f}, f2,--, fx} be the set of all features on the objects in Q. For

any x = (vi,v2,---,vn) € 2,1 <i<n,v; = fj(x) is the value of x on the feature f;.
In general, the observed data X is drawn from 2 with a sampling density function
_d7(x)

p(x) o - LetX = {x1,x,...,x,} C Q and N, be the number of times that x € X
is observed as a sample. If €2 is a discrete (i.e., countable) set, then f\)ﬁ — P(x) as
the set X approaching to €.

4.2.1 Coherence Membership Functions Based on the Probability
Measures

Let (M,7,X) be an AFS structure of the observed data X and M be a set of simple
concepts on X. Suppose that for any m € M and any x € X, {m}*(x) € .%. For each
simple concept y € M, assume that the measure ./ for the simple concept y under
probability space be defined as follows: for any U € .# N 2%,

Ny
My(U)=P(U) ~ EX‘G;(" . (4.31)
Considering the coherence membership functions defined by (@30Q) in Theorem[4£.3]
we have

iel \Y€A iel

o) =sup (nf A7) ) =sp(PAF). @32

In virtue of @.27), we have A7 (x) = (,,ea, {m} 7 (x). If for m € A;, {m}7(x) as events
are pairwise independent, then &?(AF(x)) = [Iea, & ({m}*(x)). For any simple
concept m € A;, by (@.31)), we have the membership function of m formed as follows:
for any x € X, Wu(x) = Z({m}*(x)). Thus by @32), for N = [I,ca, m, i.e., the
conjunction of the concepts m € A;, its membership function defined by @30) is
degenerated to the fuzzy logic equipped by the product -norm and max #-conorm
as follows: for any x € X,

() = Z2(A7(x) = [T 2({m}"(x)) = [T s (). (4.33)

meA; meA;

This implies that the membership functions in the “conventional” fuzzy logic sys-
tems equipped by the product -norm and max z-conorm are coherence membership
functions when for all m € M, {m}7(x) as events are pairwise independent in the
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probability space for every x € X. This condition is too strict to be applied to the
real world applications.

The measure .#,, for the simple concept m defined by (.31)) just evaluates the
occurring frequency of {m}¥(x) € .# N2X as an event, i.e., the random uncertainty.
In fact, the degree of the set {m}*(x) supporting the claim: “x belongs to m” is
determined by both the occurring frequency of the even {m}*(x) and the relationship
of the elements in {m}?(x) with the semantics expressed by m. For instance, in
Example Al let A = {my,m;}. The fuzzy concept 1 = mymy states “old and tall
people’”. The feature values, age and height are shown in Table[d.T] as follows:

X1 X2 X3 X4 X5 Xe X7 Xg§ X9  X]0
age 20 13 50 80 34 37 4570 60 3
height 191.21.71.81.41.61.71.651.821.1

Given the AFS structure (M, 7,X) of Table £l defined as (£.28)), we have A®(x7) =
{x2,x5,x6,%7,x10} and A%(xg) = {x2,x5,X6,%3,X10}. From the measures for simple
concepts mp,m; defined by (£.31) under the assumption that each sample x € X has
the same probability Z?(x) (i.e., the uniform distribution &), one has

M (AT (x7)) = P (AT (x1)) = P (AT (%)) = M (AT (x3)), i=1,2

and the membership degrees of x; and xg belonging to mimy.: “old and tall people”
defined by are equal. However, from our intuitive point of view, the degree
of a person 70 years and 1.65 belonging to mymy: “old and tall people” should be
larger than that of a person 40 years and 1.7, although 1.7 is a little higher than 1.65.
Since the difference between ages of xg € A¥(xg) and x; € A%(x7) is much greater
than that of heights of them, hence the measures of simple concepts m,m, should
satisfy

My (AT(x8)) = My (AT (x7)) > Moy (AT (x8)) — Moy (A" (x7)) > 0.

This implies that the measures for the simple concepts defined by the probability
shown as (£.31)) have not sufficiently considered the distributions of the feature val-
ues of the data, although A% (x) = (,,c4{m}*(x) is determined by both the semantic
meanings of the simple concepts in A and the AFS structure (M, 7,X) of the dataset
which is dominated by a certain probability distribution.

4.2.2 Coherence Membership Functions Based on Weight
Functions and Probability Distributions

In this section, we propose the measures of simple concepts which are constructed
according to both the semantics of the simple concepts and the probability distribu-
tion of the feature values of the data, i.e., the measure ///y is induced by a function
py: X — [0,00) as will be clarified in the forthcoming definition.
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Definition 4.8. ([33]]) Let v be a simple concept on X, py : X — R = [0,). py is
called a weight function of the simple concept v if p, satisfies the following condi-
tions:

L.py(x) =0& (x,x) ¢ Ry,x€X,
2. pV('x) 2 pV(y) s (xvy) € RVv-xay € X’
where R, is the binary relation of the concept v (refer to Definition E.2)).

Let py be the weight function of simple concept y € M. In continuous case: Let X be
a set, X C R". For each y € M, py is integrable on X under Lebesgue measure with
0< fxpdu < 0. § (S C2%) is the set of Borel sets in X. For all U € S, we define a
measure .4/ over S as follows:

_ Jupyd?
Jxpyd?

In discrete case, the definition is formulated as follows. Let X be a finite set and
S C 2% be a o-algebra over X. For any U € S, a measure My over c-algebra S is

expressed in the form
_ Seer PP )
Zrex Py(X) P (x)

It is clear that the measure .#, defined by .34) and satisfies Theorem [£.3
The weight function py(x) of a simple concept may have various interpretations
depending on the specificity of the problem at hand. In general, p,(x) weights degree
of x supporting the claim that “s is ¢ if the sample x is observed and the degree of
x belonging to v is less than or equal to that of s. For example, if y: “old people”
given the Table[d Tl as the observed data, the weight of the person xg who is 70 years
to support the claim that “s is an old person” is larger than that of the person x; who
is 40 years if the age of the person s is larger than both x7 and xg.

Following the line of the Singpurwalla’s theory [44]], the weight function py(x)
is interpreted as Z¢(x € y) which is 2’s personal probability that x is classified in
y. Here we mainly apply the weight functions py(x), ¥ € M to reduce the influence
of less essential samples and increase the influence of more essential ones when
determining the membership functions with the use of or (@30). In other
words, py(x), Yy € M weight the referring value of every observed sample in X for
the determining of the membership functions of fuzzy concepts in EM.

For example, if Q C R" and mj1,mp,m3,myy € M,i = 1,2,...,n, are the fuzzy
concepts, “small” , “medium”, “not medium”, “large” associating to the feature
fi, respectively, then the weight functions of them can be defined according to the
observed data X = {x,x2,...,x;} C Q and the semantic-oriented interpretations of
the simple concepts in M as follows:

Ay(U) (4.34)

AMy(U) (4.35)

N hin—=fi(x)
Pmj (xi) = hj—h (4.36)
Py (xi) _ hj4_ |fj(xi) _hj3| (4.37)

hjs—hjs ’
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P (1) = \fi(xi) = hja| = hys
I’I'L.l'3 1 h]4 _ hJS )

Ny Jilki) =hjp
P (50) = Ty

(4.38)
(4.39)

with the semantics of the terms of “small”, “medium, “not medium”, and “large”,
respectively, where j = 1,2,...,n,

hji = max{f;(x1), fj(x2), -, fi(xn)},
hjp = min{f;(x1), fj(x2), -, fi(xn)},
o = SO0 S (2) 4 £ ()
3= 1 ;
hjs = max{|fj(xx) —hjs| | k=1,2,--- A},
hjs = min{|f;(x¢) —hja| | k=1,2,--- h}.

By Definition [£.8] and the interpretations of m;y,my,m;3,mis, one can verify that
Pmy» J =1,2,...,n are the weight functions of simple concept m;;, € M. In general,
the weight function p, of a simple concept v associating to a feature f; is subjec-
tively defined by users according to the data distribution on the feature f; and the
semantical interpretation of the simple concept v. It is obvious that for a given sim-
ple concept ¥ we can define many different functions py : X — [0,4-e) such that
satisfies the weight function conditions shown in Definition .8l The diversity of
the weight functions of a simple concept results from the subjective imprecision of
human perception of the observed data. However, his diversity is bounded or con-
strained by the sub-preference relation of the individual simple concept defined by
Definition according to the semantics of the natural language. This is rooted
in the fact that perceptions are intrinsically imprecise, reflecting the bounded abil-
ity of sensory organs. In order to provide a tool for representing and managing an
infinitely complex reality, the weight functions for simple concepts are mental con-
structs with the subjective imprecision (i.e., subjectively constructing the functions
satisfying Definition [£.§] for the concerned simple concepts). But the constructs of
the weight function for an individual simple concept y have to observe the objec-
tivity in nature, which is the sub-preference relation Ry (refer to Definition @3] ob-
jectively determined by the observed data X and the semantics of 7. In other words,
the subjective imprecisions of the weight function of y are constrained by the ob-
jectivity of R,. The multi-options of the weight functions just reflect the subjective
imprecisions of the perceptions of the observed data. In what follows, we construct
the coherence membership functions using the weight functions of simple concepts
according to the probability distribution of the data.

Theorem 4.6. Let (Q,.7, ) be a probability measure space and M be the set of
some simple concepts on £2. Let py be the weight function of the simple concept
Y € M (refer to Definition .8). X C Q, X is a finite set of the observed samples
drawn from the probability space (Q,F , ). Let (M,7,Q) and (M, T|x,X) be the
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AFS structures defined as (@28). If for any m € M and any x € Q, {m}*(x) € Z,
then the following assertions hold:

1. {ug(x) | & € EM} is a set of coherence membership functions of (EM,V,\,")
and (M, 7,Q), (M, 7|x,X), provided the membership functions of each concept § =
Yici(Ilmea, m) € EM defined as follows: for any x € X

e (x) = sup T 240 PrMa
s icl yea, 2uex Py(u)Ny
{)Py(f)d«@(f)
Af(x
X)=Ssu
s = i

, VxeX, (4.40)

., VxeQ, 4.41)

or

g (x) = sup inf Sueat(x) Py(u)Nu
5 iel YEAi Yuex Py(u)Nu
| py(0)dZ (1)
IHE

x) =sup inf ' , Vx e Q, 4.43
He()=supinf () (449
Q

, xeX, (4.42)

where N, is the number of times that u € X is observed as a sample.

2. The membership function defined by ([@40) or [{.42) converges to the membership
function defined by [@A1) or (E43) respectively for all x € Q as |X| approaches to
infinity, provided that for every y € M py(x) is continuous on £ and X is a set of
samples randomly drawn from the probability space (2,5, P).

Proof. 1.1t can be directly proved by Theorem[4.3]

2. Let p(x) be the density function of the probability space (2, %, Z?). Since X is a
set of samples randomly drawn from (£2,.%, ). Hence by formulas and
for any x € X, we have

) X4, |
x) = lim o (4.44)
P() X[ —e0.5(40)—0 | X [S(Ay)

Here x € A, C Q, S(A,) is the size of the small space Ay, Xy, is the set of the drawn
samples in X falling into A, in which a sample is regarded as n different samples if
it is observed n times.

Foranyi€l,y€ A; in and @.42), x € X, assume that Q is divided into
g small subspaces A; € .#,j = 1,...,q such that for any j either A; C A (x) or
AJ-ﬁAf(x) = . Let jAlT(x) = {Aj | A; C Af(x),] = 1,2,...,6]}. Let A4« be the
maximum size of S(4;),j=1,2,...,q and A, be the small space A; such thatu € A;.
In virtue of (#.44), we have
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ZMGAT (u)NM
] e Zuexpy( u)Ny
Yuex, A€ Syt Py(u)

lim
X o0, Apax—0 ZuexA 1<j<qPy(u)
ZAMG/AT py(u)|Xa,|

lim
X o0, Apax—0 ZAME{A l,1<j<q} py(u)|Xa,|

‘X U
ZAME/A';(X) py(u) |X|SA S(Au)
= lim !
[X|—e0,Apax—0 ZA“

J py(1)dZ(1)

AW

Jpy(0)d2(t)
Q

X,
clajla<j<q} Pr(u )|X‘|SA” S(Au)

(in virtue of (&44))

Therefore the membership function defined by (4.40) or (4.42) converges to that
defined by (£.41) or [@.43), respectively for all x €  as |X| approaches infinity. O

Theorem[4.6] defines the membership functions and their fuzzy logic operations on
the observed data and the whole space by taking both the fuzziness (subjective im-
precision: the uncertainty of py(x) due to the individual different interpretations of
the simple concepts) and the randomness (objective uncertainty: the uncertainty of
Af(x), Ny due to randomly observe of the samples) into account. Since the lattice
(EM,V,A,) is closed under the AFS fuzzy logic operations V, A, ', hence Theo-
rem 4.6l also gives the membership functions of all fuzzy logic operations of fuzzy
concepts in EM. According to the observed data or the probability distribution of
the space, (1) of Theorem provides a very applicable and simple method to
construct coherence membership functions by the weight functions of the simple
concepts which can be flexibly and expediently defined to represent the individual
perceptions. The following practical aspects of the applications of AFS and proba-
bility framework to the real world can be ensured by (2) of Theorem[4.6] for a large
sample set.

e The membership functions and the fuzzy logic operations determined by the ob-
served data drawn from a probability space (i.e. defined by or [@.42)) will
be consistent with ones determined by the probability distribution (i.e., defined
by @.A1) or @.A3)).

e The results via the AFS fuzzy logic based on the membership functions and their
logic operations determined by different data sets drawn from the same probabil-
ity space (i.e. defined by (€40) or (£42))) will be stable and consistent.

e The laws discovered based on the membership functions and their logic opera-
tions determined by the observed data drawn from a probability space (i.e. de-
fined by (@40) or (£.42)) can be applied to the whole space via the membership
functions of the concepts determined by the probability distribution (i.e., defined

by A1) or @E43)).
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Thus uncertainty of randomness and of imprecision can be treated in a unified and
coherent manner under the AFS and probability framework and it offers a new av-
enue to explore the statistical properties of fuzzy set theory and to a major enlarge-
ment of the role of natural languages in probability theory. In the last section of this
chapter, we will test these via the experimental studies completed for a well-known
the Iris data set.

Concerning the applicability, it is clear that the membership functions and their
fuzzy logic operations can be easily obtained according to the finite observed data
set X by exploiting or (£42). However those realized according to the
probability distribution on the whole space Q by (@41) or (#.43) involving the
computations of high dimension integral may be too complicated. The essential
advantage of the AFS and probability framework is in that what is easily discov-
ered by the simple computations of the membership functions determined by the
finite data X observed from a system can be applied to predict and describe the
behavior of the system on the whole apace 2 by the computations of the inte-
gral for the continuous functions py(x). In order to make the framework more
applicable, in Section 4.4, the coherence membership functions based on Gaus-
sion weight functions and multi-normal distributions has been exhaustively dis-
cussed. Concerning the theory, in the following section, we fit AFS and probability
framework into Singpurwalla’s theory to make its theoretical foundation more
stable.

Finally, we show some links between the AFS approach and Lawry’s Label Se-
mantics which also defines fuzziness in terms of a probability measure. Label se-
mantics [20] is a framework for linguistic reasoning based on a random set model
that uses degrees of appropriateness of a label to describe a given example. In such
systems, fuzzy labels provide a high-level mechanism of discretization and inter-
pretation of modelling uncertainty. In label semantics, labels are assumed to be
chosen from a finite predefined set of labels and the set of appropriate labels for
a value is defined as a random set-valued function from a population of individu-
als into the set of subsets of labels which are the labels the population of individ-
uals consider appropriate to describe the value. Furthermore, appropriateness de-
grees of a value belonging to a label is defined according to the mass assignment
on labels.

In AFS theory, currently, we just study how to determine the membership func-
tion of a concept based on the data drawn from one probability space which can be
regards as “one of a population of individuals’ description of the value”. A probabil-
ity space can be regarded as an individual knowledge. The membership functions of
a concept based on the data drawn from some different probability spaces which can
be regarded as “a population of individuals’ description of the value has remained
as an open problem. Different probability spaces can be regarded as different indi-
viduals’s knowledge. Thus the AFS theory can be expanded under the framework
of label semantics and the label semantics may be explored in virtue of the AFS
theory.
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4.3 Coherence Membership Functions and the Probability
Measures of Fuzzy Events

In this section, we discuss the coherence membership functions defined by Theo-
rem 4.6l under the probability measures of fuzzy events proposed and developed by
Zadeh, Singpurwalla and Booker [44] and fit AFS and probability framework
into the Singpurwalla’s theory.

4.3.1 The Probability Measures of Fuzzy Events

Zadehs article titled “Probability Measures of Fuzzy Events” [52] suggested how
to expand the scope of applicability of probability theory to include fuzzy sets. His
construction proceeds along the following line. Let (Q,.#,4?) be a “probability
measure space” . Recall that x, an outcome of €, is a member of A, and assume for
now that A is a countable Boolean set, where A € %, and let I4(x) be the character-
istic function of A, i.e., Iy (x) = 1 if x € A and I4 (x) = O otherwise. Then it is easy to
see that

PA) = Li(x)P(x) (4.45)

xeQ

where £2(x) is the probability of x. An analog of the foregoing result when A is not
countable is a relationship of the form

P(A) = /Q L (x0)dP(x)

Motivated by this (well-known) result, Zadeh has declared that the probability mea-
sure of a fuzzy subset A of €2, which he calls a fuzzy event, is

1(4) = [ i) = Eua ) (446)

where L4 (x) is the membership function of A and E denotes expectation. The point
to be emphasized here is that the expectation is taken with respect to the initial
probability measure &7 that has been defined on the (Boolean) sets of €. Having
defined IT(A) as before, Zadeh proceeded to show that

ACB=II(A) <II(B) (4.47)
I1(AUB) = I1(A) + I1(B) — [T(ANB) (4.48)
MT(A+B)=TI(A)+I(B)— IT(AeB) (4.49)

where A e B is the product (not the intersection) of A and B. Finally, A and B are
declared to be independent if

[1(AeB) =I1(A) - II(B),
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and the conditional probability of A, were B to occur, denoted by IT(A|B), is defined
as

I1(AeB
iz = 145
I1(B)
Thus when A and B are independent,
I1(A|B) = I1(A)

Whereas the definition has the virtue that when A is a Boolean set, I[T(A) =
P (A), so that the measure IT can be seen as a generalization of the measure &, the
question still remains as to whether IT is a probability measure. Properties (@.47),
#43)), and seem to suggest that IT could indeed be viewed as a probability
measure. But [44]] shown that such a conclusion would be premature by the follow-
ing arguments:

a) With property @.48), the evaluation of IT(A) and I1(B) is enough to evaluate
IT(A N B), whereas with probability, the evaluation of %(A) and &?(B) is not
sufficient to evaluate &?(ANB), unless A and B are independent. Note that be-
cause

IT(ANB) = E(ans(x)) = E(min{pa (), ts()}),

it can be easily seen that for o/ = {x | pa(x) < up(x)}

M(AUB) = /  Hsd P+ / _ d ()

b) Property (@.49) has no “analog” in probability theory, because the notions of (A +
B) and (A e B) are not part of classical set theory. More importantly, conditional
probability has only been defined in terms of (A e B).

We agree with Singpurwalla and Booker’s view that while attempted at mak-
ing fuzzy set theory and probability theory work together, there are some interesting
points to be pursued further. In what follows, we present Singpurwalla’s line of argu-
ment that is able to achieve Zadeh’s goal of forming constructs such as “probability
measures of fuzzy events” provided that the membership functions are predeter-
mined. Let

Py(A) = Py(X €A).

Here the generic X denotes the uncertain outcome of an experiment € and the sub-
script & denotes the fact that what is being assessed is Z’s personal probability,
that is 2’s willingness to bet. To incorporate the role of membership functions in
the assessment of a probability measure of a fuzzy set A, Singpurwalla and Booker
introduced a new component into the analysis — namely an expert, say 2 (in honor
of Zadeh), whose expertise lies in specifying a membership function pi4(x) for all
x € Q, and a fuzzy set A. Singpurwalla and Booker assume that & has no access to
any membership function of A or a membership function 4 (x) is given by 2. With
the fuzzy set A entering the picture, 2 is confronted with both the imprecision and
the uncertainty, i.e., about the membership of x in A and the other about the outcome
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X = x. If A is a Boolean set (as is normally the case in standard probability theory),
then Z would be confronted with only the uncertainty, namely the uncertainty that
X = x. As a subjectivist, Z views the imprecision as simply another uncertainty, and
to Z all uncertainties can be quantified only by probability. Thus & specifies two
probabilities:

a) P4(x), which is 2’s prior probability that an outcome of € will be x, and
b) P4(x € A), which is Z’s prior probability that an outcome x belongs to A.

Whereas the specification of &4 (x) is an operation in standard probability theory,
the assessment of &4 (x € A) raises an issue. Specifically, because Py (x € A) is
2’s personal probability that x is classified in A.

Once P4 (x) and P4 (x € A) have been specified by 2 for all x € Q, 2 will use
the law of total probability to write

Py(A) = Py(X €A)
=Y P5(X €AIX =x)Py(x)
xeQ

=Y Py(xcA)Py(x) (4.50)
xX€Q

An analog of the foregoing result when A is not countable is a relationship of the
form

P(A) = / Poy(x € A)d P () (4.51)
xX€EQ

which is the expected value of 2’s classification probability with respect to Z’s
prior probability of X. Thus Singpurwalla and Booker gave a probability measure
for a fuzzy set A that can be justified on the basis of personal (i.e., subjective) prob-
abilities and the notion that probability is a reflection of one’s partial knowledge
about an event of interest in Equation (d30) which is based on 2’s inputs alone.

No matter how to interpret 24 (x € &) (In AFS theory, we interpret it as p (x) —
the weight function of the simple concept &, refer to Definition 4.8)), an assessment
of this quantity is essential for developing a normative approach for assessing prob-
ability measures of fuzzy sets. In introducing &4 (x € A), Singpurwalla and Booker
have in fact reaffirmed Lindley’s claim that probability is able to handle any situation
that fuzzy logic can [19]. But the weight functions of simple concepts expressed by
Definition[4.8] which are determined by the semantics of the fuzzy concepts and the
human comparisons of the associating feature values, are mathematical description
of the imprecise perceptions and are different from random uncertainty in probabil-
ity. So that probability itself is not able to handle the AFS fuzzy logic in AFS and
probability framework (see Theorem [4.6)).

The authors in [44] discussed the sensible connection between membership func-
tions and probability, and this connection is an important contribution to a better
understanding of the probability measure of the fuzzy events whose membership
functions are predetermined. However, Singpurwalla and Booker have not touched
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the problem of how to determine membership functions for fuzzy sets based on the
theory they developed. In what follows, we discuss the coherence membership func-
tions defined by Theorem 4.6 under Singpurwalla & Booker’s probability measure
of fuzzy events.

4.3.2 Coherence Membership Functions Based on Probability
Measure of the Fuzzy Events

In this section, we apply the probability measure of the fuzzy set to induce the
measures of simple concepts for the coherence membership functions in Theorem[4.6

Given the considerations presented in Section 4.3.1, we know that P4 (x € 7)
(refer to (.530)) is 2’s personal probability that x is classified in y. Thus 24 (x € 7)
is merely a reflection of 2’s imprecision (or partial knowledge) of the boundaries
of a concept. For a simple concept y such as “small” , “medium”, “not medium”,
“large”, by Definition we know that p,(x) = Py (x €7),Vx € X, is a weight
function of y. Because if (x,y) € Ry, i.e., the degree of x belonging to y is greater
than or equal to that of y, then Py (x € y) > Py(y € 7) and if (x,x) € Ry, i.e.,
x does not belong to y at all, then &4 (x € y) = 0. In other world, we also can
regard P4 (x € ) in as an interpretation of weight function p,(x) defined by
Definition[4.8l For each simple concept y € M, let

Py(x€y) =pylx), VxeX.

Let Ny be the number of times x is observed as a sample and €2 be a discrete
(i.e., countable) set. Then |xx| — Z(x) as the set X approaching to Q. Thus the
probability measure of fuzzy simple concept y defined by (4.30) is expressed as

Pa(y) =Y, Po(xey)Py(x)

xeX
= Z py(x)Z
xEX
Nx
(because of P (4.52)

In (@32)), the probability measure of fuzzy event y takes each x € X in account. Thus
it is natural to define the probability measure of y take x € W C X in account and
call it the probability measure of fuzzy simple concept y on W as follows:

Pa(y:W) =Y Palx€y)Pyx)

xeW

= Z Py(x) Pg(x)

XEW

Y pylx (4.53)

|X| xeW
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When W is not countable, the probability measure of fuzzy simple concept y on
W C Q is defined as follows:

Po(r:W) = [ p0)d25(0) (4.54)
w

In Theorem [.6] for A*(x) € S and y € M, .#,(A™(x)) measures the degree of set
A*(x) supporting the claim: “x belongs to y”. We can construct ./ according to the
probability measure of fuzzy simple concept defined by (refer to (€.33), (@.34))
as follows: for U € §

_ Po(y:U) _ ZxevPy(x)Nx :
My(U) = P X) S 3y PN, if U and X is countable. (4.55)
Jpy(1)dP5(1)
_ Py(y:U) . .
Ay (U) = Poly:X) gpy(t)dﬂ_@(t)’ if U and Q is not countable (4.56)

Applying the measures in (£33) and (£36) to Theorem we get the coher-
ence membership functions defined by Theorem .6l Thus the AFS and probability
framework fits into Singpurwalla’s probability measure of fuzzy events.

4.4 Coherence Membership Functions of Multi-normal
Distributions and Gaussion Weights

In this section, in order to make AFS and probability framework more applicable, we
study the coherence membership functions based on Gaussion weight functions of
the simple concepts and the multi-normal probability space. Let 2 = R" and .% be
all set of Borel sets in R" and the probability distribution & in the probability space
(Q,.#,2) is a m-normal distribution with the density function shown as follows:

1 & 1
=

- m& ey

where x € R", X is a n X n symmetry positive definite matrix and (; is a n-dimension
vector in R", i = 1,2,...,m. Let M be the set of simple concepts on 2. y€ M is a
simple concept with the semantic meaning: “near to c,” and 7' is a simple concept
with the semantic meaning: “not near to cy”, where ¢y € R". For each simple con-
cept Y € M, (x,3) € Ry 5 [[x—cyl| < [y —cyll: (x3) € Ry & llr—cyll > [y —cy
where Ry,Ry defined by Definition@.2]is the binary relation of the concepts , 7. By
Definition4.3] one can verify that for any y € M, 7,y are simple concepts. (M, T,£2)
is an AFS structure in which 7 is defined as (@.26). For a simple concept ¥ € M, the
weight functions are defined as follows: for any x € Q,

e Do) =7 (- )

p(x) ) (4.57)

pylx) = e~ erdrlxmer), (4.58)
py(x) = 1—pylx), (4.59)

where Ay, Y € M are semi-positive definite symmetry matrices.
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Proposition 4.4. Ler Q = R" and (Q,.%,%) be a m-normal distribution with
the density function shown as ({37). Let M be a set of simple concepts on
whose weight functions are defined as (E38), [#39). Then for any fuzzy concept
& = Yic/(ITnea,m) € EM, the coherence membership function of & on Q defined
by @41) or [@43) is formulated as follows: Vx € Q,

sup I1 Yz, for @4D),
_ icl {eA;
He ) = sup inf Yz, for #43), (4.60)

icl CEA
Where

iy ~(1=Epy) Opy1=Fpy) dt
R Bl agitan”

” erk'y \@kyf é
Tt
Y= (4.61)

Tj A (=T -g
PO B oz ] (=) Out =iy
L 1
1— 1 Zm eky‘@k}" 2
m “~k=1 \/(Z)H‘Zk‘

for1<k<m,yeM,

— | SR 1

By = (Ay+ sz D I(Aycy+ 221‘ "), (4.62)
1

Oy = A+, %, b (4.63)

1 _
17(,}, = C{yA'yC'y"_ 2/-1«]/(2}( luk
Loy | R |
ZEk ) (Ay+22k ) (Aycy+22k Ug)- (4.64)

Proof. Considering the membership functions defined by (41) and {#43), we
know that the key is to study the following integral for simple concept Yy € M and

b CQ,
/ py(1)d (1)

i / (t—cy) Aylt—cy)— ( Hk)lzkil(tfﬂk)dt (4.65)
k=1 27[ |2k|

— (AfyCy +

Notice that for any , any y € M, (t — ;) Ay(t —cy) > 0and ) ( — i)' %, (T
0. Let us study
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(1) Ayt =)+ (1~ ) 5 (0~ )

1
= 1Ayt = Mt =" Ayey + Avey+, (1, Yo - e 2 )
!
1 —1\—1 1 —1
= (1= Ay, Z0) 7 (Ayey+ 27 1)
| S | 1o
Ay+2zk t—(Ay+22k ) (Aycy+22k L)

1 _ 1__ | I__
e Aveyt % Y — (Ayey + - % L) (Ay + 5% NN Ayey+ - % ')

Thus by (#.62), (.63),#.64) and the above equation, formula (@.63) can be simpli-
fied as follows:

m

1
d» (1=Eky) Oy 1= Z1y) 4.66
q[m(r) 0= ZVZ” |zk/ PO Ear 4.66)

1
Since Ay is semi-positive definite and % is positive definite, hence Oy = Ay + %Zk’ !

is positive definite. By the properties of density function of the normal distribution
[3]], for any € R" and any positive definite matrix X € R"™*",

/ o E =) gy — 15 1Z| 5, (4.67)
Q
Therefore we have
/ e =21 Oy t=Z1y) gy — 1% ‘@kyr; . (4.68)
Q

Then by (4.66) and (£.68), we have

71
1 i el @py| 2
mS V2=

Thus by (.66), (£.69) and (@.41),[.43), we have the upper one of (Z.61). When
¢ =7, refer to (@41),@.43) we have

/ py(1)dP(1) = (4.69)
Q

I pg(1)d2(t) I (=py(1))d 2 (1)

AF()) _ AR
Jpe0)az () JA=py(1)dZ (1)

[ d2) = | py1)dZ()
_ AR AF(1D)

1= [p/(0d2 (1) 70
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Then by (#.66) and (@.69), we have the lower one of .61). Therefore, for any fuzzy
concept & = Y,/ (ITnea, m) € EM, the membership function of § on Q defined by
({@41) and @.43) is formulated as ({.60). O

In some real world applications, a simple concept often associates with a sin-
gle feature. For instance, in Example [£]] each simple concept in M associates
with a single feature. Thus the weight functions defined by and can
be simplified as follows if every Y € M associates with a single feature. For any
X = (X1,X2,..0,%) € Q,

py(x) = e i’ ¢ 4, eRd,>0,1<i<n; 4.71)
Py (x) = 1 — py(x), (4.72)

if the simple concept y associates with feature f;, i.e., Ay = diag(0, ...,dy,...0) in
the weight functions defined by (£.38). Thus each simple concept y € M just asso-
ciates with a single feature f; like the simple concepts described by ([@.36)—(@.39).
In order to express the results clearly, we introduce some symbols. For A C M,
let

F(A) = {i| y €A, simple concept 'y associates with the feature f;},
F'(A) = {1,2,...n} — F(A). (4.73)

F(A) is the set of the features the simple concepts in A associate with and F(A) U
F'(A)={1,2,....n}.Let H = {i\, i, ...is},O = {j1, jo,-oer js} € {1,2,..,n}, where
i1 <ip <..<lsj1 <j2<..< j;.Formatrix P = (p;;) € R"", let

P = (W), Wy = Piju, 1 Su<s,1 <v <L (4.74)

So Pg denotes the sub-block of matrix P which is constituted by the rows iy, i, ..., is
and the columns jy, ja, ..., ji. For x = (x1,x2,...,x,)" € R", xf! = (x;;,xiy,...,x;, ). For
O CQCR",

o = [\ |x c @} (4.75)

Proposition 4.5. Ler Q = R" and (Q,.#,%) be a m-normal distribution with
the density function shown as ({37). Let M be a set of simple concepts on
whose weight functions are defined as (@Z1),EZ2). Then for any fuzzy concept
& = Yici(Ilnea,m) € EM, the coherence membership functions of & on Q defined
by @.41) or (@43) are formulated as follows: Vx € £2,

sup I Yz, for 4D,
_ icl {eA;
Hg (x) sup inf ;. Jfor @), (4.76)

icl §€A;
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Where 1
Jiy|gF ) |72
kyF’ (4;)

T VAF@lg Tk &

Yy = 4.77)

PAFE) b S Vo
T i

1
[ Y ey 2
m =t ops|

T e
AT ({xp)F @)
:ky,@ky, 1’;}),,1 <k<m, yeM, are shown in [€62),H63) and E64); i €I,
AF({x})FU) is defined by E22) and [EZ); F(A;),F'(A;) are defined by (EZ3);

A gF ) FlA) (gF' @) ! gFa)
Hky—<9kyF< % =i (Ohwiny) %F/(A,.))

diF @A)

F(A) oF'(A)  oF'(A) F(A))
and Oy (4 1 Oy iay Oy (ay Cryiay £ A) and E _ky ) are defined by ({.Z4).

Proof. In what follows, for y € A C M, we study fAT({x}) e~ 1=E0) Oy (1=Eky) gt in
@G and let @) = (1 — Z3y)" ™), @ = (t — Zpy)" ). Then

(t“Eﬁv)/C%V(t“Eﬁy)

A (A
= wl@kygpg ) @1 +w19kw<: ) o + 0 kyF, )1 + ) kyF/> ()}
_ F(A)
= 010r(s )“’1

' AF(A) A) \—14F(A)
( + (O Opita wl) Opyr(a )(“’ZJF(@kyF/( ) Oria >“’1)

) o FA) |1 o F(A)
~ 01051 Opyrn) Oy @1
)

= a F'(A) (oF'(4) \~1F(4)
- (D{ (@kVF(A) a @ kyF (A )(@kyF’( )) @k}/F’( )) (1
F'(4) F(A) \—1F(A)
+ ((02 + (@kyF/ ) kyF/ (Dl) @kyF/(A) ((02 + (@kyF’(A)) @kyF/( )601> )
(4.78)
Thus by @.67), we have
W -1gF® ) of @ ) \C1gF@)
/ e<w2+< )€ ()wl> e ) <w2+(@ka’(A>> i) © >th/(A)
Qr')
n—|F(4)]
2
= 1
F'(A) |2
9%
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Furthermore [y« () ¢~ =5)'Oa=Zi) gt in @BT) for y € A C M can be formulated
as follows:

/ e*(tfsky)leky(tfgky)dt
AT ({x})

L Fa)_gF@)yga (F(a) _gF@)
_(, Epy ) Hg (T —E )th(A) (4.79)
ae(ppro ©

‘ kyF’
Where

A _ (oFW) _oF @) (gF' W) \ ' gF@)
Hyy = <9kyF< 4~ Ouyra) (@kyF’(A)> 9kny(A>>
Thus by @.60) and @79), we have the upper one of @.77). When { = 7/, by the
lower one of ({.61)) we have the lower one of (£.77). Therefore for any fuzzy concept
& = Yici/(TTnea,m) € EM, the membership function of & on Q defined by @.41),

@43 is formulated as (@76). O

4.5 Experimental Studies

In this section, first in Section 4.5.1 the density function p(x) of the probability
space (Q,.7,27) from which Iris data are drawn is estimated by the probability
introduced in Section 1.5.2. Then various experiments on the Iris plant data are con-
sidered in Section 4.5.2, 4.5.3, 4.5.4 by applying the coherence membership func-
tions defined by Theorem [£.6 and the techniques developed in Section 4.4 for the
Gaussion weight functions of the simple concepts in the multi-normal probability
space. In Section 4.5.2, the experiments on Iris data test the consistency of the mem-
bership functions determined by the observed data drawn from a probability space
with the ones determined by the probability distribution. In Section 4.5.3, we study
whether the laws discovered on the observed samples could be applied to the predic-
tions on the whole space via the membership functions of the concepts determined
by the probability distribution. The experiments in Section 4.5.4 show that the in-
ferential results of the AFS fuzzy logic based on different data sets drawn from the
same probability space are very stable and quite consistent.

4.5.1 Probability Distribution of Iris Plant Data

The well-known Iris data is provided by Fisher in 1936 [40]. these data can be
represented by a 150 x 4 matrix W = (w;;)150x4. The patterns are evenly distributed
in three classes: Cj iris-setosa, Cy iris-versicolor, and Cs iris-virginica. A vector of
sample i, (w;1,wia,w;3,wia) has four features: f the sepal length and f, the sepal
width, and f3 the petal length and f4 the petal width (all given in centimeters).
So that X = {x; , x2, ..., X150} is the set of the 150 observed samples randomly
drawn from a probability space (2,.%,27). Let y;; and o;; be the mean and the
standard variance of the values of the samples in the class C; on the feature f;,
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Table 4.2 The mean and the standard variance of each class for iris data

class mean [;; standard variance o;;

C (5.0060,3.4180,1.4640,0.2440) (0.3525,0.3810,0.1735,0.1072)
C (5.9360,2.7700,4.2600,1.3260) (0.5162,0.3138,0.4699,0.1978)
Cs (6.5880,2.9740,5.5520,2.0260) (0.6359,0.3225,0.5519,0.2747)

i=1,2,3,j=1,2,3,4. The values of the means and standard deviations are listed
in Table

We assume that & has a multi-normal distribution. By formula (L_8)), the density
function p(x) [3] of the probability space (£2,.%, %) can be estimated via the 150
observed samples as follows:

1 1 | NS )
p(x) = o2 ) E (v ) (4.80)
3 l; V(2m)P ||
where p =4,
1 50i
Hi = 50 z (leaWjZaWj3aWj4)/a i= 1a2a3a
j=50(i—1)+1
1
2[ = SOM/HVVM i= 172737

Wi, W, and W3 are the sub-block matrices of W selecting from 1th to 50th rows,
from 51th to 100th rows, from 101th to 150th rows, respectively, i.e., W; is the data
of 50 samples in class C;. H =1 — 510.1, J is a 4 x 4 matrix whose entries are all 1.
We show them in detail as follows:

1 = (5.0060,3.4180, 1.4640,0.2440)T, 1, = (5.9360,2.7700,4.2600, 1.3260)7,
113 = (6.5880,2.9740,5.55202.0260);

0.1218 0.0983 0.0158 0.0103 0.2611 0.0835 0.1792 0.0547
5= 0.0983 0.1423 0.0114 0.0112 e 0.0835 0.0965 0.0810 0.0404
0.0158 0.0114 0.0295 0.0056 |’ 0.1792 0.0810 0.2164 0.0716 |’
0.0103 0.0112 0.0056 0.0113 0.0547 0.0404 0.0716 0.0383
0.3963 0.0919 0.2972 0.0481
5= 0.0919 0.1019 0.0700 0.0467

0.2972 0.0700 0.2985 0.0478
0.0481 0.0467 0.0478 0.0739

In the following sections, we study the membership functions and their logical op-
erations defined on the set of the observed samples X and the whole space €2 with
the density function p(x) (refer to (£.80)) by #.40)-@.43) in Theorem[4.6 or Propo-
sition
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4.5.2 Consistency of the Membership Functions on the Observed
Data and the Whole Space

In this section, by applying Proposition[£3] we compare the membership functions
and their logic operations defined by in Theorem [4.6] on the 150 observed
samples in X with the ones defined by (#.41)) in Theorem .6 according to the den-
sity function p(x) shown as @.80). Let M = {m;; | 1 <i <4, 1 < j <6} be the set
of simple concepts for the Iris data X associating to the features. The semantics of
the simple concepts m € M are expressed as follows: for ¢;;, the mean of the values
of the samples in class C; on the feature f;

my,1: “the sepal length is about c1,1”, mj  is the negation of my 1;
my3: “the sepal length is about c15”, m 4 is the negation of m 3;
my 5. “the sepal length is about c¢13”, my ¢ is the negation of m 5;

my 1: “the sepal width is about c>1”, my > is the negation of m 1;
mp 3: “the sepal width is about c2»”, ma 4 is the negation of m 3;
my 5: “the sepal width is about c23”, my g is the negation oft m; s;

m31: “the petal length is about c31”, m3 > is the negation of mj3 1;
m33: “the petal length is about c3”, m3 4 is the negation of mj3 3;
m35: “the petal length is about c33”, m3 6 is the negation of m3 5;

my 1 “the petal width is about c41”, my > is the negation of my 1;
my3: “the petal width is about c4”, my 4 is the negation of my 3;
my 5. “the petal width is about c43”, my ¢ is the negation of my 5.

By Definition one can verify that each m € M is a simple concept. For any
x,y € X, if 7 is defined by (&.26) as

7(x,y) = {mlm € M, (x,y) € Rn},

then (M, ,X) is an AFS structure. Let the o-algebra on X be S = 2%, For each
simple concept m;; € M, refer to @.71) and @.72), the weight functions are defined
as follows: for any x € Q,

~QoW) e’ 21234, j=2k—1,k=1,2,3, (481)
Py (@), = 1,2,3,4,j =2k k=123, (4.82)

Pmi; (x) =
Pm;; (x) =

—_— 0

where o is the standard variance of the values of the samples in class C; on the
feature f; and f;(x) is the value of x on the feature f;, then by the semantics of each
m € M and Definition we can verify that p,,;(x) is a weight function of the
simple concept m1;;.

Respectively, applying the weight functions defined by (£.81) and to for-
mulas in Theorem[4.6]in which N, = 1 (i.e., assume that each sample in X is
observed one time) and to formulas (.76)) for (.41} in Proposition[4.3]in which the
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density function p(x) is defined by (@80), we can obtain the membership functions
of any fuzzy concept £ € EM on both the observed data X and the total space €.
Refer to Figure 1] Figure .2 and Figure 4.3 in which the membership functions
determined by the observed data X (defined by (@.40)) are denoted as “observed-
memb-fun” and the ones determined by the density function p(x) (refer to {@.76))
are denoted as “rotal-memb-fun”, show the membership functions of fuzzy concepts
my,1, my1 and my 1my 1.

09l observed—memb—fun—m

1,1 7

- - total—memb—fun—m1 1
0.8+ | ’ )

0.7

0.6

0.5

0.4

The membership degree

0.3

0.2

0.1

4 a5 5 55 6 65 7 75 8
The sepal length in in centimeters

Fig. 4.1 The membership function of the fuzzy concept m; ; with the semantic meaning

“sepal length about 5.0061” defined by (4.40) according to the 150 observed samples and the

one defined by (@41) according to the density function p(x) in {30)

observed—memb—fun—m
0.9 21 i
— — — total-memb—fun—-m,

0.8

0.7

0.6

0.5

0.4

The membership degrees

0.3

0.1

2 2.5 3 3.5 4 4.5
The sepal width in in centimeters

Fig. 4.2 The membership function of the fuzzy concept my; with the semantic meaning
“sepal width about 3.4180” defined by according to the 150 observed samples and the
one defined by (@41) according to the density function p(x) in {30)
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09 i —fun—
observed-memb-fun. my My

- — = tola\l—memb—fun—m1v1m211 i

The membership degree

,
\
N I ! A L o
100 150
1:50 iris-setosa, 51:100 iris-versicolor, 101:150 iris-virginica

Fig. 4.3 The membership function of the fuzzy concept m 1my ; with the underlying seman-
tics “sepal length about 5.0061 and sepal width about 3.4180” defined by (4.40) according
to 150 observed samples and the one defined by (@.4T) according to the density function p(x)
in (4.80)

Given these the figures, one can observe that the membership functions defined
by in Theorem H.6] according to the observed samples are consistent with
the ones defined by (@41 according to the density functions, although they are
calculated by completely different methodologies (i.e., discrete one and continuous
one). 2 of Theorem 4.6 ensures that the membership function defined by (40) will
infinitely approximate to the one defined by @.41)) as the number of samples ap-
proaching to infinite. Since (EM,V,A,") is a logic system, i.e., the fuzzy concepts
in EM are closed under the fuzzy logic operations V, A, ' . Thus the member-
ship functions and the fuzzy logic operations of the fuzzy concepts in EM are fully
determined by (£40) or (@41). This implies that the AFS fuzzy logic operations
determined by in Theorem according to the observed samples are also
consistent with those determined by (£.41) according to the density functions, as
what is shown in Figure 4.3. Therefore, in real world applications, we can apply the
knowledge and rules discovered from the observed data X to predict and analyze
the system behavior on the total space £2 in virtue of Theorem (4.6l The following
Section 4.5.3 shows how this approach works.

4.5.3 Universality of the Laws Discovered on the Observed Data

In the real world applications, we always predict the system behavior by the depen-
dencies discovered based on the observed data. Thus the universality of the laws
discovered on the observed data is very crucial. In AFS and probability framework,
first we discover the knowledge and rules by the membership functions and their
logic operations defined by (£40) or @.42) in Theorem (.6 according to the ob-
served data and describe the discovered laws by some fuzzy concepts in EM. Then
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the laws discovered on the observed data are generalized to the whole space via the
membership functions of the fuzzy concepts defined by @4T)or @.43) according
to the density function p(x) of the space. Therefore the universality of the member-
ship functions defined by or in Theorem[d.6] according to the observed
data is very crucial. In this section, these issues are investigated via the fuzzy clus-
tering applied to the Iris plant data. Fuzzy clustering problems, which have been
studied in by applying AFS fuzzy logic to imitate a way humans cluster data,
will be exhaustively discussed in Chapter 9. For a data set X C €, the algorithm
presented in [30] (refer to AFS Fuzzy Clustering Algorithm Based on the 1/k— A
Nearest Neighbors in Section 9.3.4) not only can cluster the samples in X into clus-
ters Cy,Cs, ...,Cy, but also give a description of the cluster C; using a fuzzy concept
{c, € EM. The cluster labels of the samples are determined by the membership
functions of {¢;,i = 1,2, ...,/ as follows: for x € X

g = arg max {[.Lgck xX)}=xedC,. (4.83)

1<k<I

In the sequel, we will test the universality of cluster rules {¢,,i = 1,2,..,1 discovered
on the observed data X by checking the clustering results determined by the mem-
bership functions of the fuzzy concepts {¢,,i = 1,2,..,1 defined by @.43) according
to the density function p(x) of the space. Let M = {m;; | 1 <i <4, 1< j<4}be
the simple concepts on X. The semantic interpretations of the simple concept in M
are shown as follows:

my 1 : “short sepal length”, m » : “mid sepal length”, my 3 : “not mid sepal length”,
mi 4 : “long sepal length”;
my 1 : “narrow sepal width”, my 5 : “mid sepal width”, my 3 : “not mid sepal width”,
mo 4 @ “wide sepal width”;
m3 1 : “short petal length”, m3 » : “mid petal length”, m3 3 : “not mid petal length”,
m3 4 : “long petal length”,
my 1 : “narrow petal width”, my > : “mid petal width”, my4 3 : “not mid petal width”,
my 4 @ “wide petal width”.

Foreachm € M, x,y € X, (x,y) € Ry, & x >, y. Here x >, y implies that the de-
gree of x belonging to m is larger than or equal to that of y. The degrees of x,y
belonging to m are always comparable by the feature values of x,y and the seman-
tic meanings of m. By Definition 4.3} one can verify that each m € M is a simple
concept. For any x,y € X, if T(x,y) = {m|m € M, (x,y) € Ry}, then (M,7,X) is an
AFS structure. Let the o-algebra on X be § = 2%, For the simplicity of the integral
computations, let the weight function of each simple concept m € M be simply de-
fined as p;,(x) = 1,Vx € Q. The 150 samples in Iris plant data X are clustered into
three clusters by applying the method via the membership functions defined
by @.42) on the observed data X and the fuzzy concepts {o, = m3 jmy | + ma 3ma
states “short petal length and narrow petal width” or “not mid petal width and nar-
row petal width”; Ccz = m3omy o reads “mid petal length and mid petal width”;
Cc3 = my 4m3 4 +my 4 states “long sepal length and long petal length” or “wide
petal width” are obtained to describe the three clusters.
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6 samples xs3 , X57, X71, X78, X34, Xg6 are incorrectly clustered by the membership
functions of {c,, {c,, {c, defined by according to the observed data which are
shown as Figure L4l By (#.83), one knows that the different clustering results may
be obtained by the different interpretations (membership functions) of the fuzzy
concepts {c;,i = 1,2, 3 describing the clustering rules. In order to predict the cluster
labels of all samples in whole space by the cluster rules discovered on the observed
samples, the membership functions of the fuzzy concepts {c,,i = 1,2,3 have to
be redetermined by according to the density function p(x) of the space in
&37). 5 samples: xs7,x71,X78, X84, X120 are incorrectly clustered by the membership
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functions redefined by #.43) according to the density function p(x) of the space
which are shown as Figure 3l The comparison of Figure d.4] with Figure .3l shows
that the laws discovered on the observed data can be generalized to the whole space
very well. Thus the rules and knowledge discovered by the membership functions
defined by (#40Q) or (4.42) on the observed data X can be applied to the whole space
Q through (©.471) or (#.43) and used to predict and analyze the system behavior.

4.5.4 Stability Analysis of AFS Fuzzy Logic on the Different
Observed Data Sets Drawn from the Same Probability Space

In this section, we study the stability of the membership functions determined by
in Theorem (.6 according to different observed data sets. Let X1, X, be two
observed data sets. For each fuzzy concept in EM, its membership functions on
AFS structure (M, 1,X;) and (M, 7,X;) may be different due to the different data
sets X1,X», although every simple concept m € M has the same semantics on X
and X;. For example, for a person, an NBA basketball player may describe that the
person is not “tall” and a ten year old child may describe that the same person
is very “tall”. Because the people the NBA basketball player often meets are dif-
ferent from the people the child meets, i.e., the different data they observed, they
have different membership functions to describe the fuzzy concepts. This differ-
ence of the membership functions is mainly led by the observed data sets drawn
from the different probability distributions. Although the interpretations (member-
ship functions) of concept tall of two NBA basketball players may be different, it is
impossible that a NBA basketball player describes the person not “fall” and another
NBA basketball player describes the same person very “tall”. This implies that the
membership functions of the fuzzy concept determined by the different observed
data sets drawn from the same probability space should be stable. In fact, the people
two NBA basketball players meet are drawn from the same probability distribution
and this difference of membership functions results from the fuzziness (subjective
imprecision, i.e., the weight function of simple concept ¥, py(x)) and the random-
ness (objective uncertainty: randomly observed the data sets X). By Theorem [4.6]
we know that the uncertainty of randomness decreases to 0 as the observed data ap-
proaching to infinity and the uncertainty of fuzziness decreases to O as the difference
of the weight functions of simple concepts approaching to 0.

In the following experiments on the Iris plant data, we analysis the stability
of membership functions and AFS fuzzy logic on the different observed data sets
drawn from the same probability space (Q,.%, ). Let M = {my, my, ..., mg} be
the set of simple concepts on the features f3, f4 the petal length and the petal width.
The semantics of the simple concepts m € M are expressed as

my: “the petal length is long”, m; is the negation of my;
m3: “the petal length is middle”, m4 is the negation of ms3;
ms: “the petal width is wide”, mg is the negation of ms;
my: “the petal width is middle”, , mg is the negation of my.
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By Definition one can verify that each m € M is a simple concept. For any
x,y € X, if 7 is defined by (4.26)) as follows

7(x,y) = {mlm € M, (x,y) € Rn},

then (M, 7,X) is an AFS structure. Let the c-algebra on X be S = 2% . For simplicity,
let the weight function of every simple concept m € M, p,,(x) = 1 for any x € Q.
This implies that every sample is equally important to simple concept m € M. For
each fuzzy conceptin EM, its membership function is defined by (#.42)) in Theorem
E.@in which N, = 1 (i.e., assume that each sample in X is observed one time).

We run 4 experiments. In each experiment, first the 150 samples of the Iris plant
data are randomly parted into two equal number of sample sets, i.e., X = X; UX>,
X1 NX; =, |Xi| = |X2|. Second, the AFS structures (M, 7,X;) and (M, 7,X5) are
separately established according the the data sets X;,X,. Finally, using the mem-
bership functions on (M, 7,X;) and (M, T,X5), we separately apply fuzzy clustering
algorithm based on AFS fuzzy logic in [30] to find the fuzzy concepts {¢;,i = 1,2,3
to describe the clusters Cy: iris-setosa, Cy: iris-versicolor, and Cj: iris-virginica in
X and X5. In (refer to AFS Fuzzy Clustering Algorithm Based on the 1 /k—A
Nearest Neighbors in Section 9.3.4), the author proposed an overall AFS clustering
procedure

1. For each sample x € X the data set, using membership functions defined by (€.42)
and the AFS fuzzy logic system (EM,V,A,') on X, find a fuzzy concept &, € EM
to describe x.

2. Evaluate the degree of similarity between two samples x,y € X based on their
fuzzy descriptions &y, &,.

3. Cluster the data X according to the degrees of the similarity of each pair of sample
in X.

4. For each cluster C, find a fuzzy concept & € EM to describe the character of the
samples in this cluster.

5. Each sample is clustered according to the membership functions of the fuzzy
concepts describing the clusters by (@.83).

Table 3] shows the fuzzy concepts describing the three clusters in data Xi,X»
in the 4 experiments using the above algorithm to the data sets. From 8 differ-
ent data sets in the 4 experiments, three different fuzzy concepts écll = mg + my,
&2 = me +moma, E2| = mems + mymy + mome are extracted to describe Ci: iris-
setosa, one fuzzy concept E» = mj3 + my is extracted to describe C,: iris-versicolor,
two fuzzy concepts &}y = my +ms, E2; = my +msmg are extracted to describe Cj:
iris-virginica. By TheoremELI] we know that &}, > &2, > &3, &Ly > E2,.

This implies that the interpretations of the fuzzy concept discovered by the 8 dif-
ferent observed data sets to describe each cluster are very similar. By each triple
fuzzy descriptions for the three clusters, we can obtain clustering of the 150 sam-
ples by (&83). Thus, by the 3 fuzzy descriptions for Cj, one for C; and two for
Cs, we have 6 triple fuzzy descriptions: {&},, Eca, &L} {EL), Ecas E&3 ) {E2)s Ecas

EL Y AER Ecas EE Y {82 & EL3 Y {ER) s Eca. EG5 ) for the clustering of the 150
Iris plant samples and their accurate rates are 96.67%, 96%, 96.67%, 96%, 96.67%,
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Table 4.3 Descriptions of fuzzy concepts of the clusters in 4 experiments

Fuzzy descriptions determined by the data sets X, X>

no of experiments C\: iris-setosa Cy: iris-versicolor C3: iris-virginica
1th data X me +my m3 +my my +ms

1th data X, me +my m3 +my my +ms

2th data X; me -+ momy ms3 +my my +ms

2th data X, me +momy m3 +my my +ms

3th data X me +my m3 +my my +ms

3th data X, meimg + momy + momg ms3 +my my +ms

4th data X me +my m3 +my my +msmg

4th data Xp me +momy m3 +my my +msmg

96%, respectively. Figures .6l 7] .8 show the membership functions of the differ-
ent fuzzy descriptions of clusters C;,i = 1,2, 3. Based on the figures, we can observe
that although the fuzzy concepts discovered on the different observed data sets to
describe each cluster may exhibit a very little difference, i.e., with slightly differ-
ent interpretations, the membership functions are very similar. These experimental
results imply that inferential results of the AFS fuzzy logic discovered from the dif-
ferent data sets drawn from the same probability space are very stable and quite
consistent.

In this chapter, we propose an algorithm of determining membership functions
and their fuzzy logic operations of fuzzy concepts according to the semantics and
the statistics of the underlying data. Specially, it opens the door to explore the statis-
tic properties of fuzzy set theory and to a major enlargement of the role of natural
languages in probability theory. We prove that the membership functions defined
by or according to the observed data converges to the one defined
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Fig. 4.6 The membership functions of the three different fuzzy descriptions of cluster C;
discovered on the 8 different observed data sets in the 4 experiments
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by @A) or @43) according to the probability distribution for all x € Q as |X|
approaching infinity. Theorem [£.6] not only provides a clear representations of im-
precision and uncertainty which takes both fuzziness (subjective imprecision) and
randomness (objective and uncertainty) into account and treats the uncertainty of
randomness and of imprecision in a unified and coherent manner, but also gives a
practical methodology of knowledge discovery and representation for data analy-
sis. Along this approach direction, more systematic studies may be carried out in
view of an organic integration of the mentioned aspects within a general framework
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for statistical analysis based on a wider notion of information uncertainty including
fuzziness and its statistical treatment.

Exercises

Exercise 4.1. Let M be a non-empty set. If ¥,;c;([Teca,m) € EMA, C A, t,s €1,
t # s, show

2(ITm= % (ITm.

i€l meA; icl—{s} meA;

Exercise 4.2. Prove that the binary compositions V, A in Theorem [£.] satisfy the
following properties: for any y,{, 11 € EM

Ll: yAy=1v,yAy="7. (Idempotency)

L2: {vn=nVv{E, EAn=nAL. (Commutativity)

L3:yv(Evn)=(yvEvn, yA(EAN) = (YA L) An. (Associativity)

Exercise 4.3. For any v,{,n,€ EM, show the following D1 and D2 hold.

DI yA(EVN) = (YyAL)V(YAN);

D2: yv(EAn) = (yVEA(yvn).

Exercise 4.4. For the completely distributive lattice (EM, V, ), prove that

NV B) = oV (AB)

iel iel
forany o, 3 € EM,i € I.

Exercise 4.5. Let X be a set and { be any concept on X. Let R be the binary re-
lation of the simple concept { defined by Definition and My = (rij)nxn be the
correspondent Boolean matrix of Ry defined by Definition 3.5. Show the following
assertions hold

D) ri=0%&r;=0forall j=1,2,...,n
2) There exists a permutation Boolean matrix P such that

[N T
MC_P{OIOJP,

where N is a Boolean matrix such that N+ = N, J is a universal Boolean matrix,
i.e.,whose elements are all 1, O; and O, are zero matrices.

3) The concept § on a set X is a simple concept if and only if N is the correspondent
Boolean matrix of a quasi-linear order, i.e., N Z_N ,N+I=N.

Exercise 4.6. Let M, X = {x,x2,...,x,} be finite sets and g : X x X — 2™ Prove
that g satisfies AX1, AX2 of Definition£.3if and only if

Mg =M, and U mi; Cmyi=1,2,...,n.
1<j<n
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Open Problems

Problem 4.1. Find the simple and effective computing methodology for the mem-
bership functions of the fuzzy concepts defined by formulas (&43) and (@41} on the
whole space, which also could be applied to proceed mathematical analysis.

Problem 4.2. Find the numeric computations of the high dimension integral for
the membership functions of fuzzy concepts via the probability distributions when
many simple concepts involve the fuzzy concepts.

Problem 4.3. Estimation of the error boundary between the membership functions
of fuzzy concepts obtained by the observed data and that determined by the proba-
bility distributions.

Problem 4.4. Estimation of the error boundary between the membership functions
of fuzzy concepts obtained for different weight functions of the simple concepts and
analysis of the influence of subjective imprecision on the interpretations of the fuzzy
concepts.

Problem 4.5. Also apart from product which has been shown in (£.33) is there any
other t-norm which can (in a limited way - for conjunctions of basic expressions) be
captured in the AFS model?

Problem 4.6. Are there links between the AFS theory and Lawrys Label Semantics
which also defines fuzziness in terms of a probability measure?
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Chapter 5

AFS Algebras and Their Representations of
Membership Degrees

In this chapter, first we construct some lattices—AFS algebras using sets X and M
over an AFS structure (M, 7,X) for the representation of the membership degrees of
each sample x € X belonging to the fuzzy concepts in EM. Then the mathematical
properties and structures of AFS algebras are exhaustively discussed. Finally, the
relations, advantages and drawbacks of various kinds of AFS representations for
fuzzy concepts in EM are analyzed. Some results listed without proofs are left for
the reader as exercises.

5.1 AFS Algebra

In [[7]], the author has defined a family of completely distributive lattices AFS al-
gebra and applied AFS algebra to study the lattice value representations for fuzzy
concepts. AFS algebra includes EI" algebras and E*I" algebras, n = 1,2, ...

5.1.1 EI"Algebras

In this section, we introduce an EI" algebra. The EI algebra which is applied to
study the semantics and logic of the fuzzy concepts presented in Chapter 4 is a
particular type of the EI" algebra in case n = 1.

Definition 5.1. ([7]) Let Xi,...,X,,M be n+ 1 non-empty sets. Then the set
EX|...X,M™" is defined as follows

EX,.. X,M" = {Z(uli...unlAi) |A;e2M u,; €2 r=1,2,...ni€l,

icl
I is a non — empty indexing set } .

In the case n =0,
EM'T = {ZA,- |A; € oM i € 1,1 is a non — empty indexing set} .
icl

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 167
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Each Y,c;(uj...unA;) is an element of EX;...X,M" and Y, is a symbol ex-
pressing that element Y ;c;(uy;...unA;) is composed of items (uy;...u,;)A;, uyi C
Xy, Ai CM,r=1,2,..,n,i €I separated by “+7 . e/ (uyp()--Unp(iyAp(i)) and
Yicr(uyi...uniA;) are the same elements of EX;..X,M" if p is a bijection from I
to I.

Definition 5.2. ([7]) Let Xj,...,X,,,M be n+ 1 non-empty sets. A binary relation
R on EX;..X,M" is defined as follows: V¥c;(u1i...uniAi) , Xjes(vij.-.vajBj) €
EX|..X,M",

[Ziel(uli...um‘Ai)]R [ZJEJ(VUV"JB/)] <

@) V(uli...um)Ai (l S 1), El(vlh...vnh)Bh (h S J) such that A; O By, uyi C vy, 1 <
r<m;

(ii) V(V]j...vnj)Bj (] S J), | (ulk...unk)Ak (k S 1)7 such that Bj DAy, Vrj C uy,
1<r<n.

It is obvious that R is an equivalence relation. We denote EX;...X,M™" /R (i.e., the
quotient set) as EX...X,M. The notation ¥,c;(u1;...uniA;) = ¥ je;(v1j...vajB;) im-

plies that the equivalence class containing Y;c;(u1;...upiA;) is the same as the equiv-
alence class containing ¥ ;c;(vij...vajBj).

Proposition 5.1. ([7]) Let X1, ..., X,,,M be n+1 non-empty sets. If A; C A, uy; O iy,
r=1,2,...nt,s €L, t #s, Yici(U1j...uniA;) € EXy..XyM, then

Z(uli...un[Ai): Z (uli...um-A[).

iel iel—{s}

Theorem 5.1. ([[7]) Let X1, ...X,,,M be n+ 1 non-empty sets. Then (EX .. X,M,V,N\)
forms a completely distributive lattice under the binary compositions N/ and N de-
fined as follows: ¥ Yc; (... uniAi), X jcy(vVij.--vajBj) € EXy..XuM,

z Uij...UpiA \/Z Vij-- Vn] = z (Wlk~-~Wnka)

icl jel kEILT
= 2 Ut UniAA +2 Vij-- Vn/BJ , (5.1
icl il
z Uij...UniA; /\z Vij.. v,,j Z [(uliﬂvl_,-...umﬂv,,j)(A,-UBj)]7 5.2)
icl = icljel

where Yk € I1L1J , C, = A, Wy = uyp when k € I and Cy, = By, Wy = vy when k € J,
r=12,...,n

Proof. We just prove the theorem in the case n = 0 and the other cases, which remain
as exercises, are similar to the proof of Theorem[4.1l Let 4 be a map from EM™ to
EM* defined as follows: for any & = Y,c;A; € EM™, h(&§) = Yic/(TTnea, m)- It is
clear that £ is a one-to-one correspondence between EM ™ and EM*. One can verify
that the following assertions hold: for £, € EM,

1. & =n<h(&)=h(n);
2. (VM) =h(E)Vh(n), h(EAN) = h(E) Ah(n).
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This implies that / is an isomorphism from (EM™ /R,V,A) to (EM*/R,V,A\) which
is a completely distributive lattice. Therefore (EM™/R,V, ) is a completely dis-
tributive lattice. o

Considering that (EM™ /R, V, A) and (EM*/R, V, A) are isomorphism, both
EM™ /R and EM* /R are denoted as EM and called EI algebra. (EX;...X,M,V,A)
is called the EI""! (expanding n+ 1 sets Xi,..X,,M) algebra over Xi,...,X,
and M. X;.. X, and &...M are the maximum element and minimum element
of EXi..X,M, respectively. For o = ¥;c/(uyj...niAi), B = X c;(vij...vnjBj) €
EX|.. XM, o < B <— v(“1i~-~uni)Ai (l S I), EI(Vlh-"Vnh)Bh (h S J) such that
Ai DBy, ur Cvg, 1 <r <.

For a set, we know that the subsets of the set often contain or represent some
pieces of useful information. In real world applications, instead of a single set, of-
ten many sets are involved and the information and knowledge represented by the
subsets of different sets may exhibit various types of relationships. In order to study
such diverse relations associated with different sets, we introduce the notation of
EXy..X,M™". Every element of EX;...X,M™" is a “formal sum” of the terms consti-
tuted by the subsets of X1, X, ..., Xp, M. For y =¥, (u1;...uniA;) € EXy..X,M™, y
can be regarded as a result of “synthesis” of the information represented by all terms
uy;...uniA;’s. In practice, M is a set of elementary concepts, and X1, Xy, ..., X, are the
sets associated to the concepts formed in M. For example, let X be a set of persons
and M be a set of concepts such as “male”, “female”, “old”, “tall”, “high salary”,
“black hair persons ”, “white hair persons ”,....etc. For Y;c;(uiA;) € EXM™, every
term u;A;, i € I, expresses that the persons in set u; C X satisfy some “condition”
described by the concepts in A; C M. The AFS theory supports the studies on how
to convert the information represented by the elements of EX;...X,M™ in the train-
ing examples and databases into the membership functions and their fuzzy logic
operations.

Proposition 5.2. Let X, ...X,,, M be n+1 non-empty sets, EXy.. X,M and EX; ... XM
be EI'*', EI" algebra, 1 < h < n. ¥ Yc;(u1j..uniA;) € EXy.. X,M, if

= 2(“1["'uhiAi)a

icl

D [2(”1i-~-“niAi)

icl

then p is a homomorphism from lattice (EX;..X,M,V,\) to lattice
(EX]...XhM,\/M\).

Proof. It can be directly proved by making use of Definition [3.2] and Theorem 3.1l
O

5.1.2 E*I" Algebras

In this section, we introduce E*I" algebra which has different algebraic structures
from the ET" algebra and can be applied to represent the degrees of a sample be-
longing to the fuzzy concepts in EM.
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Definition 5.3. Let X1, X5, ..., X, be n non-empty sets. A binary relation R on the
set
EX1X2...X,,+ = {Zali...am- | ari EZX'",r: 1,...,n, I is a non — empty indexing set}
iel
is defined as follows: for Y ;c; a1iaz;...ani, Zje, byjby;...byj € EX1Xo..X,},
(2561aliazi...an[)R#(szJ b]jsz...bnj) ~

(1) Yay;az;...an; (l S 1), 3b1pbop.. by (h S J) such that a,; C b,y,,r =1,2,...n;
(i1) Vbljsz...bnj (] S J), dajark...an (k S I) such that brj Capy, r=1,2,...n.

It is evident that R* is an equivalence relation on EXiX,..X,. We de-
note EX1X2...Xn+/R# (i.e. the quotient set) as E*X\X5.. X,,. Yic11i;...ani =
2jesbijbaj...byj implies that Yc;a1iar;...an; and X jcybyjba;...by; are equivalent
under the equivalence relation R* and the membership degrees represented by them
are equal.

Proposition 5.3. Let X1,X>,...,X, be n non-empty sets. Y,c;ai1ia;...ani €
E*X\X5.. Xy, if ary Capy r=1,2,...,n,u,vET ,u#v, then

Zalia2i~-~ani = Z ap;ay;...ay;.
i€l iel—{u}

Proof. Tt can be verified by using Definition[3.3l O

Theorem 5.2. Let X1,X>, ..., X, be n non-empty sets. (E*X1X>...X,, V, A) forms a
completely distributive lattice under the binary compositions V and N defined as
follows:

Zaliazi...am\/Zbljsz...bnj = 2 C1kC2%k---Cnk

icl jel kEILJ
£ Zaliazi...an[+Zbljsz...bnj (5.3)
icl =
2611,‘(125...61,”‘ AN Z bljsz...bnj = Z (ali n b]j)(azi N sz)...(am' n bnj) 5.4
icl il icl el

whereVk e IUJ, cop =ap, r=1,...n, ifk€land ¢,y = by, r=1,....n, ifk € J.

Proof. We just prove it for E*X. The proofs for E*X|X;...X,, are similar and re-
main as exercises. First, we prove that V, A are binary compositions. Let ¥.;c;, a1; =
Sien @i Yjey b1j = ey, brj € E*X. (B3) can be directly verified Definition 5.3
By (5.4),we have

Yaih Y bij= Y ainby,

i€l JEJ] i€l ,je;

Zazi/\ szjz z aziﬂsz.

ieh JER ich,jelr
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Since 2[611 ay = Zielz azi,zjejl b]j = zjelz sz, hence for any ay; ﬂb]j,i el,je
Ji, there exist ayy, by, k € I, € Jp, such that ay; C ay,by; € by;. Therefore a;; N
byj C asr N by. Similarly, for any ax; Nbyj,i € b, j € Jo, there exist ayy, bie,q €
Iy,e € Jy, such that ap; N by; C ajy N by.. This implies that ¥, Jjen A Nbyj=
Yich,jes, @2iNbaj and A is a binary composition.

Theorem 2.4 states that two binary compositions satisfying the condition L1-L4
of Theorem 23] are lattice operations. For any ¥,c; a;, Yjerbj Zkek ek € E*X, we
can directly verify that V, A satisfy L1-L3 of Theorem[Z3]by the definitions.

In what follows, we prove that V, A satisfy L4 of Theorem 2.3l By Proposition
we have

(Za,‘\/ZbJ-)/\Zai: za,ﬂaj%— 2 aiﬁbj

i e icl ijel icljel
:zai—i— Z a[ﬂbj:zai.
iel i€l,jeJ iel
(Za,‘/\ZbJ-)\/Zai = Z aiﬁbj+2ai:2ai.
el jeJ icl icl jel icl icl

Therefore V, A satisfy L1-L4 of Theorem2Z3land (E*X, Vv, A) is a lattice. ¥;c;a; >
Yjesbj e YicraiV X jcybj=Yica;. This implies that Vb, (j € J), Jay, (k € I) such
that bj C ay.

Next, we prove that (E*X, v, A) is a complete lattice. Let ¥ jej, aij € E*X i € I.
We prove that \/;c; (X e, aij), Nier(Zjer; aij) € E*X . Itis obvious that

Zaij < ZZaijNiGI,

JEL i€l jel;
Yaz Y (Naviel
JEL; fellieriicl

For Y, cybu € E#X7 if Zjeli ajj < Yycu bu,Vi € 1, then Va,j,,io € 1, jo € Jjy, there
exists ug € U such that ajyj, C by,. Therefore 3,;c; ¥ jcj aij < Xcp bu- This implies

that
V(X @)=Y aijc E*X. (5.5)
ier jel il jel;

For 3,y by € E*X, if 3 jcp aij > Syep bu, Vi € 1, then Vbyy,up € U and Vig € I,
there exists j;, € I;, such that b,, C igji, - This implies that there exists f,,, € [1;c; i,
where fy, (io) = Jjiy, Vio € I, such that b,, C ;¢ Qify (i)- We have

> Nairi) = 2 b

Sfe€llier liicl ucl

and

/\(Zaij): 2 ﬂaif(i)eE#X~ (5.6)

icl JjEl; Se€llierliicl

Therefore (E*X, Vv, A) is a complete lattice.
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Now, we prove that (E*X, V, A) is a completely distributive lattice. Let A;; =
Sueu;, aj € E*X i€, j € J;, U;j is a non-empty indexing set. It is obvious that for
any f € [I;c;Ji, Vk € I, since f(k) € Ji, hence

Nigi) < Mgy <\ e

iel je

Since Vk € I,Vf € Tlics Jis Nicr Aigtiy < V jey, Mij» hence for any f € [Tics Ji,

Ay < AV M)

iel kel jeuy
Therefore
Vo (Adiga) < ACV A). (5.7)
SfellierJi i€l icl jeJ;
By (5.8) and (3.3), we have
V A=V ACY al)
fellierJi i€l f€llierdi i€l u€Uis(;)

S D N )

Sellierdi hellier Uisy i€l

ANV 2) = A Y al)

i€l jeJ; icl jeJiuclij

=AC Y )

icl u€l ey, Ui

= Z ﬂe;(i)‘

8€Ilier (Ukes; Uin) i€l

where for any u € | ;. Uy, €, = al, when u € Uij. For any go € [Tic;(Les, Uin)s
since go(i) € ks, U, € I, hence for any i € I, there exists k; € J; such that go (i) €
Uy, This implies that if we define fy(i) = k; € J;, i € I, then fy € [1;e;Ji, &o(i) €
Uity(i)» 80 € lies Uiy and ef%(l.) = a;’;()((i’)), for any i € I. Therefore for any go €

H[E[(I—IkEJi Uik)7 there exist f() € HiE[ J[ such that go € Hie[ Ui_f()(i) and
i ifo(i)
(et =Nl
icl icl

This implies that

Vo (Aira) = AV Aj).

Sellier )i i€l el jeli
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By (3.7), we have

AN )=\ (Akig)-

icl jel; fellier J; i€l

Therefore (E*X, v/, A) is a completely distributive lattice according to Theorem[Z.28
O

(E*X1X5...X,, V, A) is called a E*I" algebra over X1, X3, ..., X,. Although E*I" alge-
bra and EI" algebra are similar in many ways, they are not dual lattices. E*I algebra
is a lattice which can be applied to represent the membership degrees of the fuzzy
sets in EM. We also can prove that E*I algebra and ET algebra are not isomorphism.
The proofs of the following properties remain as exercises: for any ¥,.,a; € E*X

L. @V Yierai = Xicr ai, I NLicr ai = 95
2. XV Z¥icrai=X,X NYjerai = Zicr i
In E*I algebra E*X, @ is the minimum element and X is the maximum element.

Proposition 5.4. Let X1, ..., X,,,M be n+1 non-empty sets. EX;...X,M and E*X;...X,,
be EI'"' and E*I" algebra, respectively. Y'Y c;(u1;...uniA;) € EXy..X,M, if

zulz Uni,

icl i€l

p[Z(ull UpiA l

then p is a homomorphism from (EXy.. X,M,V,\) to (E*X1..X,,V, \).

Proof. First, we prove that p is a map. o, 8 € EX;...X;,M. Suppose o = 3. By the
equivalence relations R and R¥ defined in Definition[5.3]and Definition[5.2] one can
verify that p(«) = p(B) in E*X;...X,.

Next, we prove that p is a homomorphism. For any Y,c;(uy;...uniA;),
Zjej(vlj...vnij) € EX|..X;,M,

p[z Uj...UpiA \/Z Vij- an ] Zulz um"‘zvl/ Vnj

icl jeJ i€l JjeJ

=p 2(u1i...um-A,<)1 Vp [2(V1.i...vnj3j)] .

Liel jeJ

p[Z Ujj...UniA;) /\2 (Vij..-VnjBj ]:p 2 (uliﬂvlj...um-ﬂvnjA,-UBj)l

icl jel Licl,jer
= Z UMVyjetniMvyj

ieljer
=p Z(uli...um-A[) Ap Z(vlj...v,,ij) .
liel el

O
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5.2 AFS Algebra Representation of Membership Degrees

Generic fuzzy sets, L-fuzzy sets or Boolean subsets of some universe of discourse X
are various representation of fuzzy concepts or Boolean concepts. We regard fuzzy
sets or L-fuzzy sets as different representing forms of fuzzy concepts and fuzzy sets
of X mean all kinds of representing forms for fuzzy concepts. The fuzzy sets and
Boolean subsets on X can be described in the following way.

For a fuzzy set { on universe of discourse X, any x € X, either x belongs to { at
some degree or does not belong to { at all, while for a Boolean subset A of X, any
x € X, either x belongs to A or does not belong to A at all.

In what follows, we introduce three types of L-fuzzy sets proposed in [7] whose
membership degrees are in lattices EI?, EI° and E*I algebras, respectively.

Theorem 5.3. ([[7]) Let (M, t,X) be an AFS structure. U C X, A C M. We introduce
the notation
AT U)={y|yeX,t(x,y) DA foranyx € U}. (5.8)

For any given x € X, if we define a mapping ¢, : EM — EXM as follows: for any
Yic1(Ilmea,m) € EM,

Ox (2( 11 m)> =Y Af(x)A; € EXM, (5.9)

icl meA; il

then ¢y is a homomorphism from lattice (EM,V,\) to lattice (EXM,V,N\), where
AT ({x}) is simply denoted as A} (x) defined as {27).

ForACM,xe X,A%(x) = {y|ly € X,7(x,y) 2 A}, which is the subset of X, for any
y € A%(x), the degree of x belonging to the fuzzy concept [1,,cam € EM is larger
than or equal to that of y since 7(x,y) 2 A. By Theorem[3.3] we know that for any
given fuzzy concept Yc;(ITnea,m) € EM, we form a map ¥,c/(ITnea, m) : X —
EXM defined as follows: for any x € X,

QLTI m)(x) =Y Af (x)Ai € EXM. (5.10)

i€l meA; icl

Since (EXM,V, ) is a lattice, hence the map Y/ (ITyea, m) is a L-fuzzy set (with
membership degrees in lattice EXM ). In this way, ¥,/ ([Tyea, m) is L-fuzzy set on
X and the membership degree of x (x € X) belonging to fuzzy set ¥,c;([Tnea, m)
is YicfAT(x)A; € EXM. If Y,c;AT(x)A; > Yic;Af (v)A; in lattice EXM, then the
degree of x belonging to fuzzy set ¥;c;(I[Tea,m) is larger than or equal to that of
y. For fuzzy sets o = ¥;c/([Tnea,m),B = ZJ-EJ(Hmegj m) € EM, fuzzy set aV 3
and o A B are logic “or” and “and” of L-fuzzy sets o and 3 respectively. ’ is the
negation of the fuzzy concepts in EM. Thus (EM,V, A, ) is a fuzzy logic system.

In order to utilize more information to represent the membership degrees of fuzzy
sets, we introduce EI° algebra representation for fuzzy concepts in EM below.

Let (M, 7;,X) be an AFS structure, where X is a universe of discourse and M is
a set of simple concepts. In some case, for a given x € X, and m, mp € M, we can
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compare the degree of x belonging to m; with that of x belonging to m,. In order
to utilize this kind of information, we can employ another AFS structure (X, 7,M),
where V(mj,my) € M X M, Ta(my,mp) = {x | x € X,m; >, my}, where m| >, m
means that x belongs to concept m; at some degree and the degree of x belonging to
my is larger than or equals to the degree of x belonging to m,. It is obvious that if
the representations of membership degrees of fuzzy sets can utilize both (M, 1;,X)
and (X, T,M), then the representations of fuzzy concepts will be more accurate
than that given just by (M, 71,X). The following definition expresses the conditions
under which two AFS structures capture different aspect abstractions for the same
original data.

Definition 5.4. ([7]) Let X, M be sets, (M, 11,X) and (X, T»,M) be AFS structures.
meM,xeX.If 11, 1 satisfy:

1. x € p(mym) < m € 11(x,x);
2. xe n(mm)={y|yeX,u(x) 2 {m}} C n(mm).

Then we call (M, 11,X) compatible with (X,7,M) and (M, 7,X),(X,1,M)) is
called the cognitive space.

Theorem 5.4. ([[7]]) Let X and M be sets. (M, 11,X) is compatible with (X, T, M).
Vx € X, for any Yc;(Ilnea,m) € EM, if we define

Ox (2 11 m> Y AT (x){x} 2 (A;))A; € EXMM, (5.11)

i€l meA; il

then @y is a homomorphism from lattice (EM,V, ) to lattice (EXMM,V, \), where
A7 (x) and {x}™(A;) are defined by [5.9).

By Theorem[5.4] we know that for any given fuzzy concept ¥;c; [Tnea, m € EM, we
getamap X/ [Tea, m: X — EXMM defined as follows: for any x € X,

XTI m)(x) = S A7 (0){x} 2 (A)A; € EXMM. (5.12)

i€l meA; icl

Since (EXMM,V/,\) is a lattice, hence by Theorem[5.4, EI® algebra representation
for fuzzy concepts in EM is obtained and (EM,V,A,) is a fuzzy logic
system for the EI° algebra representing fuzzy concepts. We know EI° algebra
represented fuzzy sets in EM can utilize more information than EII algebra rep-
resentations. This implies that EI° algebra representation is more accurate than EI]
algebra representation and there may be more elements in X which cannot be com-
pared under EI° algebra representation than EII algebra representation. By Propo-
sition[5.2] one can verify that if ¥;c; A7 (x){x} % (A;))A; < Zic; A (0){y} 2 (A)A; in
lattice (EXMM,V,A), then ¥,c; AT (x)A; < Y A (v)A; in lattice (EXM,V,A).
Thus for the EI° algebra membership degrees of x,y defined by (5.12), we have
(Xier [Tmea, m)(x) < (Xies IInea, m)(y). This implies that the more detail informa-
tion is considered for the membership degrees, the more elements in universe of
discourse may not be compared.
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Although EII, EI? algebra representations of fuzzy concepts containing great in-
formation, in some case, too many pair elements in X may not be compared. The
following E*I algebra representations of the membership degrees for each fuzzy
concept in EM may filter (eliminate) some trivial information to make more pairs
of elements comparable.

By Proposition[3.4, we know for o, § € EX,..X,M, if a > B,i.e., VB = in
lattice (EX1Xp...X,M,V, ), then p(aV ) = p(a)Vp(B) =p(a)ie. p(a) > p(B)
in (E*X1X,...X,,V,A). Given an AFS structure (M, 7,X) and for each x € X, we
have two homomorphisms ¢, : EM — EXM and p : EXM— E*X by Theorem [3.3]
and Proposition[3.4] Since both ¢, and p are homomorphisms, hence the composed
map of ¢, and p, po ¢, : EM — E*X is a homomorphism from the lattice (EM, V/, \)
to the lattice (E*X,V,A). For each fuzzy concept ¥;c; [Tnea,m € EM, we get an-
other kind of L-fuzzy set representation, i.e., the E*I algebra represented member-
ship degrees as follows: Vx € X

S TIm@ =poaY [1m =pEAI(x)A) =Y Af(x) eE*X.  (5.13)

icl meA; i€l meA; icl icl

By Proposition[34] forx, y € X, if ¥,;c; AT (x)A; < Y;c; AT (v)A; in lattice EXM, then
Yic1AF(x) < Y AF(y) in lattice E*X. Therefore, compared with the EII algebra
representing membership degrees, E*I algebra representation is finer. Although E*J
algebra represented membership degrees are finer than E1] algebra representations,
we should notice that E*I algebra representations lost some original information and
are not so strict as EII algebra representations. In what follows, we apply EI° alge-
bra to develop another E*I algebra represented L-fuzzy sets in EM by the following
theorem.

Theorem 5.5. Let M, X be sets. MNX = &. EXMM is the EI® algebra on X,
M, M and E*(X UM) is E*I algebra on X UM. For any Y ,c;aieiA; € EXMM, if
we define p(YciaieiAi) = YicjaiUei, then p is a homomorphism from the lattice
(EXMM,V,\) to the lattice (E*(X UM),V, A).

Proof. First, we prove that p is a map from EXMM to E¥(X UM). Let o =
YicraieiAi, B =Y c;bjqiBj € EXMM. Suppose o = 3. By the equivalence re-
lations R and R* defined in Definition and Definition 53] we have that Vi € I,
dk € J such thata; C by, e; C qi, Bx CA; ande EJ,EU € I such thatbj Cay, qj Cey,
A; C B;. This implies that Vi € I, 3k € J such that ;Ue; C bhyUgqrandVje J, A €1
such that b;Ugq; C a;Ue;. Therefore

p (Zw%) =Y aiUei=3 bjUg;=p (Z bﬂ.fB.f>

icl icl = =

in E¥(X UM) and p is a map from EXMM to E*(X UM).
Next, we prove that p is a homomorphism from the lattice (EXMM,V,A) to the
lattice (E*(X UM),V,A). For any ¥, aieidi, ¥;c;bjqiBj € EXMM,
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p Zaie[A[\/ijquj :ZaiUei+ijqu
i€l jeJ i€l jeJ
=p (ZaieiAi) V(Y ijij> ~

il jeJ

p Zaie[A[/\ijquj =p Z aiﬂbjeiﬂquiUBj
i€l jeJ icl,jeJ

Y. (ainbj)U(eiNg;).

il jel

Since MNX =@, a;, b; € 2X e, q;j € 2M ‘hence foranyi€l,j € J,

(aiUei)N(bjUq;) = ((aiUe;)Nbj)U((aiUei) Ng;)
((ainbj)U(einb;)) U ((aiNg;)U(eiNg;))
= (aiﬁbj)u(eiﬁqj).

Hence

p(ZaieiAi/\ijq_ij> = 2 (ainbj)U(eiNg;)

iel JjeJ iel,jeJ

= Y (aiUe)N(bjUgy)
icl,jeJ

= Z(ai Uei) A Z(bj qu)

il =

=p <2aieiAi) Ap (2 quij> . O
icl jeJ

Similarly, we can verify that for o, § € EXMM, if o < B3, in the lattice (EXMM, V,
A) then p(a) < p(B) in the lattice (E*(X UM),V,A). Given two compatible AFS
structure (M, 11,X), (X,7>,M) and for each x € X , we have two homomorphisms
¢ : EM — EXMM, p : EXMM— E*(X UM) by Theorem[5.4land Theorem[3.3] The
composed map p o ¢, of ¢, and p is a homomorphism form the lattice (EM,V,A\) to
the lattice (E*(X UM),V, A). For each fuzzy concept ¥;c; [T,.ea,m € EM, the E*I
algebra representing membership degree of x is defined as follows:

S TT M) = poon(X, [T m = 3 [A7 () U{x}2(A)] € E*(XUM). (5.14)

i€l meA; icI meA; icl

One can verify that for fuzzy concepts o, € EM, if o« > 3 in lattice EM, then
Vx € X, a(x) > B(x) in E*I algebra.

In what follows, we study the norm of AFS algebra by which we can obtain
coherence membership degrees in [0,1] interval from various AFS algebra repre-
senting fuzzy sets.
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5.3 Norm of AFS Algebra and Membership Functions of Fuzzy
Concepts

In this section, we study the norm of the EI", (n > 1), E*I algebra in order to convert
the AFS algebra -represented membership degrees to the [0,1] interval.

Definition 5.5. Let L be a set and (L, V,A) be a lattice. The map ||.|| : L — [0,1] is
called a fuzzy norm of the lattice L if ||.|| satisfies the following conditions: for any
x,y €L,

1. if x <y, then ||x|| < ||y||;
2. e Ayl < mind]|x][ [[y[[}, [|x vyl = max{[|x[[,[|y]|}.

In what follows, we propose a special family of measure by which EI", (n > 1), E*I
algebra becomes lattices with norms. Such that we can convert AFS algebra rep-
resented membership degrees to [0,1] interval and at great extent to preserve the
information contained in the EII representations.

Definition 5.6. (Continuous case) Let X be aset, X CR". p: X — R" =[0,). p is
integrable on X under Lebesgue measure and 0 < [, pdu < 0. S (S C 2%) is the set
of Borel sets in X. For all A € S, we define a measure .# over S,

_ Japdu
M(A) = [ odu (5.15)

(Discrete case) Let X be a set, S is a g-algebraover X. p : X — RT = [0,0). 0 <
> ex P(x) < oo. Forany A € S, the measure .# over c-algebra S on X is defined as
follows,
ZXEX p (X)

By Definition [[41] we can verify that .# defined in Definition 5.6 is a measure
over X for each function p. Indeed for each simple concept { on X, according to the
distributions of original data and the interpretation of {, { corresponds to a function
pe: X — R =[0,00), by which we can obtain the norm of AFS algebra using
measure mg provided by Definition 3.6

Proposition 5.5. Let X1 ,...X,,,M be n+ 1 non-empty sets, EXy...X,M be EI""! al-
gebra over X1,...,X,,M and M be a finite set of simple concepts, S, be a 6-algebra
over X,, r = 1,2,....n. Let 0(EX,..X,M), a subset of EX;...X,M, be defined as
follows:

G(EX)..X,M) = {Z(u”...umA,-) CEX\..XM | uyi €Sy, r=1, ..n,Viely.
icl
(5.17)
Then (0(EX,..XuM),V, ) is a sublattice of (EX;...X,M,V,N), i.e., EVn, EAN €
G(EX)..X,M) for all £, € G(EX,..XaM).
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Proposition 5.6. Let X,...X,,M be n+ 1 non-empty sets, EX;.. X,M be EI'"!
algebra over Xi,...,Xn,M and M be a finite set of simple concepts, S, be a -
algebra over X,, r = 1,2, ...,n. For each simple concept § € M, let M be the mea-
sure defined by Definition 5.8 for p;. Then the map ||.|| : 0(EX;...X,M) — [0,1]
defined as follows is a fuzzy norm of the lattice (6(EX;..X,M),V,N\): for any
Zie,(uli...uniA[) € O'(EX]...XnM),

iel iel \"M€Ai < <p

1Y (uii..uniAs) || :sup(inf 1T ///m(u,i)> c[o,1]. (5.18)

or
HZ(uli...umA,-)H = sup( H ///m(uri)> S [O, 1}. (5.19)
icl i€l \ meA;1<r<n

For uyg...u A, k € Lif Ay = &, define

inf [] w(uw)= I Aw(ui)= T] {max{///m(u,k)}]. (5.20)

mEAL 1<r<n meA;, 1<r<n 1<r<n meM

Proof. We prove that what (3.18) defines is a fuzzy norm. In virtue of (5.18) and
(5.20), forany A C M, A # & ,Vu;, C Xy, k=1, ...,n, we have

Al = inf [T ) < T1

1<r<n 1<r<n

Let g = Ziel(uli...umAi),n = Zjej(vlj"'vnij) S G(EX]...X,,M). Hg V T]H =
max{||€]|,||n]|} can be directly proved by the (5.I8). Now we prove ||V || <
min{||&]],||n||}- By Theorem[51] we have

a0} | = )

HZ(L{U...M",‘A,‘)/\Z(Vlj...vnij)H = Z [(uliﬁvlj...uniﬁvnj)(AiUBj)] I,
icl ics icljel
= sup {H(uliﬂvlj...umﬂvnj)(A,-UBj)H}.
icl,jeJ

Foranyi€l,j€J, we have

[|(u1;N Vijlpi N an)(Ai UBJ')H = mGHiEB,- ]<1:[<n/fm(uri N Vrj)
< inf M ) < inf M .
< me}qu}qu ]SI:ISVI (i) < nigA,' 1§1:I§n (Ui
<D (it (5.21)
iel

Similarly, we can show that forany i€ l,j € J,

H(uliﬂvlj...u,,,-ﬂvnj)(AiUBj)H < || Z(vlj...vnij)H. (5.22)
Jjel
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By (3.21) and (3.22), we have

HZ(uli...um /\Z vij.vaiBj)|| = sup {||(u1iNvij...uni Nvej)(AiUBj)||}
icl jeJ iel,jeJ
< min || 3 w15t | S 019 B)}-
icl jel

Suppose that & < 7 in lattice o(EX...X,M). By Theorem 5.1] we know that
V(uli...um)Ai, (l S I), 3(V1k~-~vnk)Bka (k S J) such that Uy C VrkaAi D) Bk. By ,
one knows that ||(uy;...un;)Ai|| < ||(Vig-..vak)Bk||- This implies that |[|E|| < [|n]].
Therefore ||.|| defined by (3.18) satisfies Definition[5.3]and it is a fuzzy norm. 0

Proposition 5.7. Let X be a set and E*X be the E*I algebra over X. S is the o-
algebra on X and M is a measure on S with # (X) = 1. Let 6(E*X), a subset of
E*X, be defined as follows:

o(E*X)={Y ai€eE*X |a; €S, Viel}. (5.23)
il
Then the following assertions hold:

1. (6(E*X),V,\) is a sublattice of the lattice (E*X ,\V/,\);
2. the map ||.|| : 6(E*X) — [0, 1] defined as follows is a fuzzy norm of the lattice
(G(E*X),V,A): for any y = Sycyai € G(E'X),

7l = 5;161?{//1(01')}- (5.24)
Proof. Let& = Yicrai,n =Y ey bj € o(E*X). |& V|| = max{||§]],[|n]|} can be

directly proved by the (5.24). Now we prove ||& V7| < min{||&]],||n||}- By Theo-
rem[3.2] we have

12 anYbpll =11 Y, (@nbll= sup {|lainb,|[}
i€l jeJ

iel JjeJ iel,jeJ

| A

Sup {mm{\lazl\ |1 I}}<mm{|2az| 120 I}

i€l JjeJ

Suppose & < 7 in lattice 6(E*X). By Theorem [5.2] we know that Va;, (i € I),
by, (k € J) such that a; C by. By (5.24), one knows that ||A;|| < ||Bx||- This implies
that || X7 ail| < ||Zje;bjl|- Therefore ||.|| defined by (5.24) satisfies Definition 5.3
and it is a fuzzy norm. O

In general, the weight function pg defined by Definition 4.8 can be applied to con-
struct the measure defined by Definition [3.6] for a simple concept &. For a fuzzy
concept § = Yic;[Tnea,m € EM the membership function i (x) can be obtained
by ||.|| a fuzzy norm of AFS algebra as follows:

QT m@)ll,vx e X, (5.25)

icl meA;
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where (¥;c; [Tea, m)(x) is the AFS algebra represented membership degree defined

by one of (.10), 12),(513) and G.14).

Theorem 5.6. Let X be a set and M be a set of simple concepts on X. Let (M, 7,X)
be an AFS structure and ||.|| be a fuzzy norm of an AFS algebra. For any fuzzy
concept & € EM, let & (x) is the AFS algebra representating membership degree by
any one of (510), (12),[E13) and (EI4). Then {ue(x) | & € EM} is the set of
coherence membership functions of the AFS fuzzy logic system (EM,V, A, ) and the
AFS structure (M, 7,X).

The following example shows how to construct the coherence membership functions
of the fuzzy concepts in EM by using the norm of the AFS algebra.

Example 5.1. Let X = {x|,x3,...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table 5.1} there the number i in the “hair color” columns which corre-
sponds to some x € X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {my,my, ..., mjo} be
the set of fuzzy or Boolean concepts on X and each m € M associate to a single fea-
ture. Where m : “old people”, my : “tall people”, m3 : “heavy people”, my : “high
salary”, ms : “more estate”, mg : “male”, my : “female”, mg : “black hair people”,
mg : “white hair people”, myo : “yellow hair people”.

For each numerical attribute m € M, p,(x) is equal to the value of x on the
attribute, for each Boolean attribute m and each attribute m described by a sub-
preference relation p,,(x) = 1 < x possesses attribute m at some extent. For ex-
ample, p,o(x7) = 0 implies that x; has not white hair. For each m € M, let
P (x) = maxyex (Pm(x)) — pm(x) for x € X, where m’ is the negation of simple
concept m. By Definition 8] we can verify that each p,, is the weight function
of concept m. Table shows each weight function of the simple concept in M.
Table B3] shows the membership functions obtained by the norm of the lattice

Table 5.1 Description of features

appearance wealth gender hair color
age height weigh salary estate male female black white yellow
x1 20 19 90 1 0 1 0 6 1 4
x 13 12 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 14 54 15 2 1 0 5 2 2
x¢ 37 1.6 80 80 28 0 1 6 1 4
x7 45 17 78 268 90 1 0 1 6 4
xg 70  1.65 70 30 45 1 0 3 4 2
xg 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3
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Table 5.2 Weight functions of simple concepts in M

Pm; Pm Pm, Pmy Pmy Pms Pmg Pm; Pmg Pmy Prg
X1 20 1.9 90 1 0 1 0 1 1 1
X2 13 1.2 32 0 0 0 1 1 1 1
X3 50 1.7 67 140 34 0 1 1 1 1
X4 80 1.8 73 20 80 1 0 1 1 1
X5 34 1.4 54 15 2 1 0 1 1 1
X6 37 1.6 80 80 28 0 1 1 1 1
X7 45 1.7 78 268 90 1 0 1 0 1
X3 70 1.65 70 30 45 1 0 1 1 1
X9 60 1.82 83 25 98 0 1 1 1 1
X10 3 1.1 21 0 0 0 1 1 1 1

Table 5.3 Membership functions obtained by the norm of the lattice EXM defined by (5.18))

Xy X2 X3 X4 X5 X6 X7 X8 X9 X10
e () 0874 0388 4903 1.0  .1699 2597 3689 .8058 .6359 .0073
e, () 0 0 1698 5013 .0053 0796 .7401 2891 10 0
e, () 1 0 0 1 1 0 1 1 0 0
() O 0 0 5013 .0053 0 3183 2891 0 0
() 0017 0 5371 5013 .0276 2953 3689 2891 1 0
Ho() 6750 1 0609 0431 5124 1504 2448 1012 0 1

Table 5.4 Membership functions obtained by the norm of the lattice E*X defined by (3.24)

X X2 X3 X4 X5 X6 X7 X8 X9 X10
Moy () 23000 2000 .7000 1.0 4000 .5000 .6000 .9000 .8000 .1000
UHopn() O 0 .6000 .8000 .4000 .5000 .9000 .7000 1.0 0
e () 1 0 0 1 1 0 1 1 0 0
UHey,() O 0 0 .8000 4000 O .6000 .7000 O 0
Hos() 3000 0 9000 .8000 .4000 .8000 .6000 .7000 1 0
Mo, () .8000 1 .2000  .3000 .7000 .3000 .5000 .2000 O 1

(EXM,V,A) defined by (3.I8) for the weight functions in Table Table 5.4
shows the membership functions obtained by the norm of the lattice (E*X,V,A)
defined by (3.24) for Va C X, .# (a) = |a|. Where oy = my, 0p = ms, 03 = mg,
Oy = mymsmeg, O5 = M1MgMe + M msme + mMamy + msmsy, OC; € EM. By 19), we
have o = mgm?, + mlymi + mym}.

Compared to t-norm and z-conorm, if Vo, B € EX;...X,M, define 7 (o, ) = ||a A
B||, where |[.|| is the norm of EX;...X,M or E*X, then .7 has the similar property
to the one of any -norm and satisfies the following: o, 3,7, 6 € EX;...X;,M,

[OAO] =0, [[ant][=[1Aall=lal], [leAB|[=[IBAal],
lloe AB|| < [|yAS||, if o <7,B < & inlattice EX;.. X,M or in lattice E*X
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where 1 is the maximum element (X;...X,,)@ in EX;...X,M or X in E*X and O is
the minimum element (@...@)M in EX;...X,M or @ in E*X. Similarly, if Vo, B €
EX)..XuM, define .7 (a,B) = ||V B]||, then . has the similar properties to -
conorm.

For each fuzzy concept Yy € EM, the membership degree of each x belonging
to 7y can be represented by the lattice EXM, EXMM, E*X or E¥(X UM), and by
the norms of these lattice representations, four kinds of [0, 1] representations can
be obtained. If the original information allows us to establish one AFS structure
(M,1,X) instead of two compatible AFS structures, then we have four kinds of
representations of the membership degrees which are all in agreement and in the
following order from left to right more and more finer (i.e. more and more elements
in X are comparable) while more and more original information becomes lost.

1. EXM representations— E*X representations;
2. The norm of EXM representations—the norm of E*X representations;

If the original information allows us to establish two compatible AFS structures
(M,11,X), (X,12,M), then we have eight kinds of representations of the member-
ship degrees which are all consistent and in the following order from left to right
more and more finer (i.e. more and more elements in X are comparable) while more
and more original information are lost.

1. EXMM representations— E*(X UM) representations

2. EXMM representations— EXM representations— E*X representations.

3. The norm of EXMM representations—The norm of E¥#(X UM) representations

4. The norm of EXMM representations—The norm of EXM representations—The
norm of E*X representations.

For a real world problem, the type of representation to be employed depends on how
much original information is provided, how much the original information we have
to preserve and how many elements in the universe of discourse we want to com-
pare their membership degrees by including in decision making. Thus for the fuzzy
concepts in EM, this approach provides 8 kinds of representations of the member-
ship degrees, i.e., EXM, EXMM, E*X, E¥(X UM) algebra and four kinds of [0,1]
interval representations and their fuzzy logic operations, which are automatically
determined by the distribution of original data and the semantic interpretations of
the simple concepts in M. All these representation are harmonic and consistent. That
is, for x,y € X and any fuzzy concept { € EM, if the membership degrees of x and
y belonging to { are comparable in two different AFS representing forms, then the
orders of x and y belonging to ¢ in the two different AFS representing forms must
be the same.

5.4 Further Algebraic Properties of AFS Algebra

In this section, we first elaborate on the order of the E7 algebra. Second, the math-
ematical properties and algebraic structures of EI" algebra have been exhaustively
explored and the expressions of both A-irreducible elements in the molecular lattice
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(EM,V,A) and (EX;...X,M,V,A) are developed. Next the standard minimal fam-
ily of elements in (EM,V,A) and (EX;...X,M,V, ) is formulated. It is proved that
neither (EM,V,A) nor (EX;...X,M,V, ) is a fuzzy lattice.

5.4.1 Order of EI Algebra

In this section, we study the order of EI algebra generated by some finite elements
[21]]. The results shown that AFS algebra leads to structures. It involves difficult
combinatoric problems such as the Sperner class [6].

Definition 5.7. Let M be a finite set. The number of the elements in EM is called
the order of the EI algebra of EM, denoted as O(EM).

Let M be the set of simple concepts on a set X. O(EM) is the number of complex
concepts generated by the simple concepts in M, which are not equivalent in E/
algebra EM,, i.e., they have different semantic interpretations.

Definition 5.8. Let M be any set, >,;c;A;i € EM. Y, A; is called irreducible, if for
any u € I, Yc;Ai # YicpizuAir Otherwise ¥, A; is called reducible.

For any irreducible fuzzy concept o = Y;;A; € EM, if B is a fuzzy concept ob-
tained by omitting an item A; from ¢, then ¢, 3 are different fuzzy concepts.

Lemma 5.1. ([1l 3| [7])Let M be a set. For Y,;c;Ai,Yjc;Bj € EM, if Yic/Ai =
YjerBj, YicAi and Y. jc; Bj are both irreducible, then {B;|j € J} = {A;|i € I}.

Its proof'is left as an exercise. According to Lemma[.1] we arrive at the following
definition.

Definition 5.9. Let M be a set and Y;c;A; € EM. |Y,c;A;|, the set of irreducible
items of Y ;c; A; is defined as follows.

> Al £{A; | i €1, forany jel,i# j, Ai DAj}.

icl
|| ZiciAill = {Ai | i €1, forany jel,i# j, Ai 2 Aj}] is called the length of
Y.icrAi. Thus ||.]| is a map from EX to the set of natural numbers.

For the fuzzy concept ¥y = ¥.;c;B; € EM, ||y is the number of items in y which
cannot be omitted. Let M be a finite set and |M| = n. The set C;(EM) is defined as
follows: fork =1,2,...,n.

Ci(EM) ={a | o« € EM™ o is irreducible, ||o|| = k}, (5.26)

i.e., Cx(EM) is the set of k length irreducible elements in EM. The number of ele-
ments in Cx(EM), |Cy(EM)| is denoted by i (n). It is straightforward to notice

O(EM)= Y, |G(EM)

1<i<eo

) (5.27)
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Theorem 5.7. Let M = {my, m, -+, m, }, then |C;(M)| = 11 (n) = 2".
Theorem 5.8. Let M = {m, my, ---, my }, then
|Co(EM)| = C3  +2"1 =37 — 1,
where CK, = k!(rfik)!.
Proof. LetB={a|a=A|+Ay, A| # Ay, Ay, Ay €2 — {3}, oris reducible}. Let
Bi={aloo=A;+A,A; C Ay Al =i,A1,Ay €2M — {2}},

for1 <i<n-—1.Forl|A;| =1, we have

Bi| = CoCo + oG+ + GG = G2 = 1),
For |A{| = 2, we have

B2| = CoCo oz + oGl p + -+ CCh 3 = Gy (2" 2 = 1)
Similarly, for 3 < |A;] <n—2,itis easy to verify that

‘Bk| = Cﬁc’,llik—FCﬁCﬁik_‘_ .. +C5CZ:]]€€ —_ Cﬁ(znfk _ 1)

If |[Aj| =n—1, then |Ay] = n and [B,_i| = C!~!Cl. 1t is obvious that B =

Ui<i<n1Bi.BiNBj =3, i# j,i,j=1,2,---, n—1.Thus
n— 1 . . .
Bl=| U Bil= Z Bi| =Y. (C,2""=C)

1<i<n—1 i=1 i=1

ZC£,2” i ZC‘ Q2+1)"—2"—1-(2"-2)

=t g3ngg,
Let L={A;+A,| Aj,Ay € 2M}. Forany o = A| +A; € L, we consider the following
cases

case 1: a is reducible, i.e., one of A; and A, contains another, this means that o € B.
case 2: o is irreducible, i.e., each one of A; and A, cannot contain another.

This implies that ¢ € Co(EM). Therefore L can be expressed as C,(EM) U B,
G (EM) N B = @. Now, we have |G, (EM)| = |L| — |B|. As |L| = C3,_, therefore,
we get that

|Gy (EM)| = C3_ +2"1 =371, O

For k > 3, we do not know how many elements in C;(EM) we have so far and this
remains as an open problem. However we have the following theorem to estimate
|C(EM)].
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Theorem 5.9. Let M be set and |M| = n. If C,(EM) is denoted as Iy(n), then

n—2

Lin+1)> Y @2 —1)" (c’g,,fm_1
m=0
g k—3 i j i+1
- 2 Cznim_4C;l't—m—jcﬁ—m(2nim7(l+ )— 1) + Ik (I’l - I’l’l) s
1<i,j<n—m—2

where n > 2,k > 3.

Proof. Let M = {m|,my,...,my,} and My = {my,ma,...,my41}. For any k, the set J
is defined as follows:

J={aloa=A1+Ar+ - +A, 0 €EM" A #Aj i#jij=12,k}.

It is clear that Cy (M) C J. In what follows, J is divided into three disjoint parts
Ci(EM),C and D. Put

k
CZ{OCZ A el | A,‘;ﬁ@,ﬂi],ig,l}E{l,z,---,k}, A CA;, CAi3},
i=1

We now pick o € J such that « is reducible and o ¢ C, such elements form a set D.
It is easy to show that
J=C/(EM)UCUD, (5.28)

and Ct(EM), C, D are pairwise disjointed.

Next we give a partition of the set Cx(EM;). It is obvious that Cx(EM) C
Ci(EMy). For all o € C,(EMy) — CL(EM), 00 = A1 + Ay + - -+ + Ay,s0 there exists
A;(1 <i <k) such that m, 1 € A;. If there is exactly one A;(1 <i < k) such that
{mp4+1} = A, then by removing {my,;} from oc = A| + A, +--- + A, we get

o =A1+Ay+ - F+A A+ A
It is evident that ¢ is irreducible and o € Cy_; (EM). Let
Ji={a|a=p+{mu1}, BeC1(EM)}.

Then we have that |J;| = |C,_| (EM)|. If there are more than one A;(1 < i < k) such
that m,, 1 € A;,by removing m,, ;1 from A;(1 <i <k),we obtain an element (denoted
by ot — {my41}) from EM. Let

h={a|oa=A1+Ar+ - +A, a € CL(EM)), a — {mpy1} € CL(EM)}.
This implies that for any o from J5, o — {m,, | } is irreducible, and

o = (CH+CP+ -+ Ch) |G(EM)| = 2K = 1) |CL(EM)] .
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If o — {m, 1 } is reducible, we put
B={o|a=A1+Ar+ - +A, 00 € Ce(My),00 — {my 41} is reducible} .
Thus, we get a disjoint union
Ce(EMy) = C(EM) UJ, UJy U Js. (5.29)

In the sequel, we need to show that |J3| > |D|.

For all o € D, as o is reducible, therefore, there exist i, j € {1,2,--- ,k} such that
i# jand A; C A;. Adding m, to all such A; (it also denoted by A;), thus, A; CA;
cannot stand in EM 1+, then we get an element ; from EM 1+ We claim that o € J3.
It suffices to show that o) € C(EM,) and ot; — {m;,,1 } is reducible.

It is clear that o — {m,, 1} is reducible, if o is reducible, then there exist i, j €
{1,2,--- ,k} such that i # j and A; C A;. If m, 1 € A;, but m, | ¢ A; then from
the formation of «;, we know that this is impossible, so we have that m,, | € A;,
and my, 1 € Aj, thus there exists A; such that A; C A;. Omitting m,, | from A;, A},
Aj, we get that A; C A; C Ay, this is in conflict with o ¢ C, thus o € C(EM,).
Therefore, a monomorphic mapping o« — ¢ is established. This implies that |J3| >
|D|. Considering (3.28) and (3.29), we have

|73] > |D| = |J| = |Cr (M)| - |C],
|Cr (My)| = |Ci (M)| + [T1| + [J2] + 5] -

Also
|Gk (My)| = ||+ 1]+ 2| = [C]. (5.30)

For the convenience,we denote |C| by N3(n). Then it follows that
L(n4+1)— %= 1D(n) > | +L_1(n) — N3(n). (5.31)
Furthermore

L(n)— X =Dl(n—1) > G | +h1(n—1)=Ns(n—1)  (5.32)

K(3)— 2" =Dh(2) > G +h1(2) (5.33)

By multiplying both sides of the (i + 1) th inequality by (2¥ —1)/,i=1,2,--- ,n—2
(from (&3T) to (333) ), we obtain n — 2 inequalities, After summing them up, we

get
n—2

L(n+1)> Y = 1)(Ch,i | = N3(n) + i1 (n— 1)) (5.34)
i=1
Now we formulate a upper boundary of N3(n). For all o € C, & can be presented as
oa=A|+Ar,+A3+---+A; where A| C Ay C Az. From this, we construct a set B
as follows
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B={a=A+A+A3 €EM"' |A; # @, Ay CAy C A3}.
If |[A|| = 1, |A2| =2, |A3]| = 3,4,--- ,n, then

Bl = CoCp 1(Cr 2+ Cp 2+ Cp y++--+Ci3)
=clc! (272 -1).

If |[A)| =1, |A;| =3, ]A3| =4,5,--- ,n, then

Bl = C,Cy 1(Cp 3+ Cr 3+Cy 3+ +Ci23)
— iz, @ -

If|[A1| =1, |A2] = n— 1, |A3| = n, then |B| = C)C"2C].

n~n—1

If |[A)| =2, |A;| =3, ]A3| =4,5,--+ ,n, then

B = CoCp 2(Cr 34+Cr 3+Co 3+ +Ci23)
=2l (2" 3 ).

If |[A)| =2, |A;| =4, ]A3| =5,6,--- ,n, then

Bl = CoCh 5(Cp g +Cr g +Cy 4+ +Ciy)
=C2C2 (2" ).

If |[A1| =2, |[A2] = n— 1, |A3| = n, then |B| = C2C"~3C}.

n~n—2

Thus A1,A;,A3 are completely defined in this way. Now a € C, we select the other
k —3 items from the set 2Y — {@,A},A2,A3}. As [2¥ — {@,A|,A7,A3}| =2"— 4
and |A|| <n—2, then we get
i+j<n
M) < ¥ GGG 2T -1,
1<i,j<n—2

wheren >2 k> 3. As |J| = C§n_1, We rewrite (3.34) as follows

n—2
lk(n + 1) 2 z (2k - 1)m (anfmfl

m=0
i+j<n—m

- Y GG Gl @) S )y (n —"”) ’

1<i,j<n—m—2

wheren > 2, k > 3. O
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Thus by (5.27) and (3.9), we can obtain the estimation of O(EM).

Definition 5.10. ([6]]) Let I" be the set of some subsets of the finite set {1,2,---,n}
(called n-set for short, denoted by [1,n]). If it satisfied VA,B € I',A ¢ Band B ¢ A,
then I is called a Sperner class on n-set [1,n].

Theorem 5.10. If I is a Sperner class of the n-set [1,n], then |I"| < C,[,nm, where
[n/2] is the least integer larger than n /2.

Proof. Let I be a Sperner class of the n-set [1,n]. First, we prove that

zl<1

p <
Fer Cr‘l |

by the induction with respect to n. Assume that [1,n] ¢ I". Fori € [1,n], let I'(i) =
{F eI'|i¢F}.Itis obvious that I'(i) is a Sperner class of the (n — 1)-set [1,n] —
{i}. By the assumption of the induction, we have

y o< (5.35)

Fer(i) C,llF,ll

Because (3.33) holds for every i € [1,n], we arrive at the the sum of (3.33) for all
i € [1,n] shown as follows.
L 1
D <n. (5.36)

F
i=1Fer (i) C,ll_ll

Checking the number of times 1/ Crlﬁl occur at the left side of (5.36), we know that

1/ Crlﬁl appears one time as long as i ¢ F, thus in total it appears (n — |F|) times.
Therefore we have

_IF
v |F‘\ . (5.37)
Fell C}’l—l

|F]

Each side of (337)is now divided by n. By noting that (n — |F|)/(nC"' ) = 1/C
we have

Y /e <. (5.38)
Fell

/)

It is clear that is the biggest one of all combinatorial numbers C’. From (5.38)),

it follows that
1 1

1
T = < <1. (5.39)
o = B = A,

Therefore |I'| < C,[,"/ 2]. a
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Theorem 5.11. Let M = {m ,my,---,m, }. Then the longest fuzzy concept in EM is

M where [n/2] is the least number which is larger than n/2.

Proof. Tt follows straightforward by Definition[5.9]and Theorem[3. 10} O

For M a set of simple concepts, the fuzzy concept y = Zicz’['nf] A; € EM is the
longest of all fuzzy concepts in EM, where |A;| = [n/2] for all 1 <i < C,[l"/ 2 and
17| = €7 From the above discussions, we know that an enormously great num-
ber of fuzzy sets can be represented by a few simple concepts using the EI algebra.

Interestingly, E1 algebra has a very rich structure and AFS fuzzy logic is an impor-
tant mathematical tool to study human-centric facets of intelligent systems.

5.4.2 Algebraic Structures of EI Algebra

In this section, we further discuss the properties of lattice (EM,V,A) and mainly
focus on the following issues:

1. The structure of the set of irreducible elements in EM;

2. The standard minimal family of an element in EM;

3. We will prove that (EM, Vv, A) is a new type of molecular lattice, which is neither
a Boolean algebra nor a fuzzy lattice. However, the sublattice (SEM,V,A) is a
fuzzy lattice, where

SEM = {ZA,- |A; € oM _ {@},i € 1,1 is any indexing set} CEM.
il

Definition 5.11. Let L be a molecular lattice. L is called a fuzzy lattice if there exists
amap o : L — L such that for any x,y € L the following conditions are satisfied:

1. x<y=y° <x%

2. x=(x%)%.

Theorem 5.12. Let (L,V,A\,0) be a fuzzy lattice, then the strong De Morgan Law
holds, that is, for any a; € L,t € T,

(e} o
(\/at) z/\af, (/\a,) z\/atc.
€T €T €T €T

Proposition 5.8. Let M be a non-empty set and 3¥c;Ai, Y jcyBj € EM. Then the
following assertions hold:

L YiciAiNYje ) Bj=M=A; 2 UjEJB./]-7 Vieland Bj 2 Ui A}, VjE€J;

2. YietAiVYjciBj =2 = YictAi= D orY e Bj = 2.

Proof. Let Xc;Ai Ny jcyBj = M, we have ¥,c; jc;Ai UBj = M, consequently, for
anyicl,je€J,A;UB; D M,ie,A;UB; =M. Itfollows that forany i € I, B; QAg,
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Vj e J, thatis B; O Ujc; Al = (NicsAi)'s Vj € J; and for any j € J, A; D B/ Viel,
thatis A; D UjeJB/j = (ﬂjEJBj)/’ Viel.

Let ¥c;Ai VY jesBj = D, consequently, we have either Jip € I such that & 2
Ay, ie., A, = @ or jo € J such that & D Bj, i.e., Bj, = @. Thus Y;.;A; = @ or
zjej B;j=¢a. O

In what follows, we will show that the lattice (EM, V, A) is not a Boolean algebra if
[M| > 1. Assume that it is a Boolean algebra. By Definition 213] for any ¥,;.;A; €
EM, there exists ¥ ;c;Bj € EM such that Y,c;A; VX c;Bj = @ and X, A A
2jesBj =M. We haveeither ¥,;c;A; = or Y jc;Bj = I by Proposition[3.8] We can
assume without loss of generality, that },;,c;A; = @. Then Ju € I such that A, = @.
From Proposition 5.8] again, we have @ = A, D U ies B’j. It follows that Vj € J,
Bj=M,i.e. Y c;Bj= M. This implies that (EM,V, ) is not a Boolean algebra if
|M| > 1. However, it is easy to prove that (EM,V, A) is a Boolean algebraif |M| = 1.

Theorem 5.13. Let M be a non-empty set and (EM,V,\) be the EI algebra over
M. Then {A | A € 2M} is the set of all strong V—irreducible elements in EM (refer
to Definition[2.10)

Theorem 5.14. Let M be a non-empty set and (EM,V,N\) be the EI algebra over
M. Then {3Y,,ca{m} | A C M} is the set of all A—irreducible elements in EM.

Proof. First, for any VA € 2M, we prove that ¥,,c4 {m} is a A—irreducible element
in EM. For ZiEIAlWZjGJBj € EM, if zmeA{m} = ZiGIAi A ZjGJBj’ we have

Y {m} <> A and Y {m} <Y B

meA il meA jeJ

Furthermore, we have

Z{m}\/ZAiZZAi and Z{m}\/ZBJ = ZBJ"

meA i€l i€l meA jeJ jeJ

Assume that ¥,,ca{m} # Yic;Ai and ¥,,ca{m} # 3. ;c; B;. This implies that there
exist Iy C I and Jy C J suchthat A;NA =B;NA=9,Vie Iy, j € Jp and

Z{m}\/ZAi:ZAi and Z{m}\/ sz: ZB/.

meA icl icl meA i€l jer

Consequently, we have

2= () (30)
<Z{m}+2Ai) A (Z{m}+ Y B,-)

meA i€l meA J€Jy

(Zo)(zm)] | (32) (zm)

+
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(2] ()] {(52) (22)]

=Y {m}+ Y ({miuA)+ Y ({m}uB))+ Y (AiUB))

+

meA meA i€l meA,jedy i€ly,jedy
= Y {m}+ Y (AiUB))
meA i€ly,jely

Therefore, it follows that Vi € Iy, j € Jo, 3m € A such that A; UB; O {m}, that is,
Jm € A such that m € A; U B}, this contradicts that A; VA = B;NB = &. Thus,

Z{m} zzAi or Z{m} = ZBJ-.

meA iel meA jeJ

Secondly, we prove that each A—irreducible element must be in
{> {m}|Ae2"}.
meA

Suppose that ¥;-;A; is a A—irreducible element in EM, and Ju € I,|A,| > 1. Let
B=A,—{m}and m € A,. Since

Y A+BIA| Y Ai+{m}

icl—{u} icl—{u}

( > A,-)/\( > Ai)+B/\< > Ai)+< Y Ai>A{m}+BA{m}
icl—{u} icl—{u} icl—{u} icl—{u}
= Y A+ Y (AUB+ Y (AU{x})+A=Y A

icl—{u} icl—{u} icl—{u} icl

By the assumption, we have either

YictAi = Zier {uyAit Bor jcjAi = Ticp quyAi + {m}.

However, it contradicts the facts that

YAi# Y Ai+Band YAi# Y Ai+{m}.

iel iel—{u} icl iel—{u}

Thus the set of A—irreducible elements in EM is {3,,ca{m} | A C M} and this
completes the proof. O

By Theorem [3.13] and Theorem 314 it is straightforward to note that & is both
V—irreducible element and A—irreducible element in EM. However, M is a V—
irreducible element but not a A—irreducible element in EM. For example, let A, A’ €
EM and A C M, we have that M = AUA’ =AANA"butA #M and A’ £ M, i.e., M is
not a A—irreducible element in EM.

Theorem 5.15. Let M be a non-empty set, ¥,c;A; € EM, & = {B € 2M|B D A;}.
Then B = Uic; P is a standard minimal family of Y;c;A; in molecular lattice
(EM,V, ).
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Proof. Clearly, each element in # is a V—irreducible element in EM. By Theo-
rem[3.1] and Proposition[5.] we have sup Z = Y, A;. Also, let

C ={Xjcs, Axj | k € K, K and J; are indexing sets} C EM,

then Yycx X jcy, Akj is supremum of €. Assume that ¥,c;A; < Ypck 2 jey, Axj- For
any B € % there exists i € I such that B D A;. For this A; there exist kg € K, jo € J,
such that A; 2 Aj g, this leads to the fact that B2O A; 2 Aj,. Thus B < Zjejko Ao

To sum up, 2 is a standard minimal family of ¥;c;A; by Definition 2211 With
this observation, the proof is completed. a

Let Y, A; € EM, the set 4 (X;c;A;) is defined as follows:

MY A)={Ae2M A<Y A} (5.40)
i€l i€l
Proposition 5.9. Let M be a non-empty set and Yc;Ai, Y jcyBj € EM. Then the
following assertions hold:

1. YicrAi = sup A (ici Ai);

2. YictAi < Yges Bj & M (SiciAi) © A (X jes Bj);

3 YictAiNYje Bj =M & M (Xt Ai) N A (X ey Bj) = {M};

4. M (Tic1Ai) is the greatest of those standard minimal families of Y;c; Ai.

Proof.

1. Clearly, ¥;c;A; is a upper bound of # (Y,;c;A;). Assume that > ;g Cy is another
upper bound of .Z (Y;c;A;). We have A < Y, Cy for VA € A (3;c;A;). Since
A€ M (3iciAj) for Vi e I, A; < Ypck Cr. Tt follows that, Y,;c;A; < Y ek Cr. This
implies that >;c;A; = sup A (X;c1 Ai)-

2. Let Y;c;Ai < ¥ ey Bj. Since for VA € 4 (Y1 A;), we have that A < ¥,/ A;.
Thus Jip € I suchthat A D A;. ¥,;c;A; < ¥ ey Bj implies that for Vi € I, 3j € J such
that A; O Bj, it follows that 3 jy such that A D A, thatis, A < ¥ ;-,B;. So we have
thatA € 4 (¥ jc;Bj) and A (Xic;Ai) C A (L jesBj).

Conversely, if .#(X;c;Ai) € 4 (X jcsBj), then for Vi € I, we have that A; €
A (¥ jcyBj). Consequently, 3jo € J such that A; D B, thatis, ¥,;c;A; < ¥jcy B

3. Suppose that ¥,;c;A; A Y ;c;Bj = M. By Proposition 5.8l we have that A; D
UjesB) foralli € I Let A (3ic;Ai) N A (3 jcs Bj) = P, then for VA € P we have

Ae /(Y A)=AD|JB,=ADB,Vjel.
icl jeJ

Also A € /(3. ;c;B;) implies that A D B; for Vj € J, it follows that,
ADBjUBj=M=A=M.
That iS, %(ziEIAi) ﬂ//l(zjeij) = {M}

Conversely, if Y;c;Ai Y jey Bj = Yiek Ck # M, we have that G, C M for Vk € K
and 3ko, ip € I, jo € J such that Cy, O (A, UBj,). Consequently, C, 2 A;, and Gy, 2
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Ajy. That is, G, < X/ A; and Cyy < X ey Bj. It follows that Gy, € A (Xic;Ai) N
A (3 jeyBj) and this contradicts that . (Y,;c;Ai;) A (X jc; Bj) = {M}.
4. From 1., it can be concluded that ¥ ;c;A; = sup.#Z (X;c;Ai). Now, let

C = { Z Axj |k € K,K,Jy are indexing sets} CEM.
J€Jk

Then szK szJkAkj is the supremum of €. If ziEIAi S szszGJkAkj’ for VA €
M (XiciAi), we have

ASDASY D Ay
icl keK jedy
Consequently, ko € K, jo € Ji, such that A D Ay j,, it follows that, A < 3 i€, Aygj.
Also, each element in .Z (3;c;A;) is a V—irreducible element in EM, so we have
that .# (3;c; Ai) is a standard minimal family of >,;c; A;.
Now, by Theorem[5.13] we see that .7 (3;c; A;) is the greatest of those standard
minimal family of };c; A;. This completes the proof. O

The above discussion shows that (EM,V, A) is a molecular lattice but not a Boolean
algebra when |[M| > 1. In point of fact, (EM,V,A) is a new type of molecular lattice
which differs from Boolean algebra and fuzzy lattice based on the following theorem.

Theorem 5.16. Let M be a set and |M| > 1, then (EM,V, \) is not a fuzzy lattice.

Proof. Suppose that (EM,V,A\) is a fuzzy lattice. Then there exists a conversely
ordered involutory map ¢ : EM — EM such that the strong De Morgan law holds
in EM by. It follows that M° = &, @° = M since & and M are identity element and
zero element of EM, respectively.

LetAc2M A+ @, A#Mand A’ =M —A. We have A ANA" = M. Consequently,
by De Morgan law, we have that

A°+ (AN =(ANAN =M° = 2.

Next, without any loss of generality, we assume that A = Y,;.;A; and (A")° =
Y jeJ Bj, it follows that

=A°+(AN =Y A+ Bi= Y G
iel jeJ kel ]J

Where, Ju € I| |J such that & D C,, i.e., C, = &. According to Proposition 5.8, we
have

A° =N A=, whenuel,
icl
or

(A’ =Y Bj=0, whenuel.
jel
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If A° = &, we have that A = M and this contradicts that A # M; if (A')° = &, we
have that A’ = M, i.e.,A = &, which contradicts that A # &. Thus, (EM,V,A) is not
a fuzzy lattice and this completes the proof. a

Proposition 5.10. Let M be a non-empty set and (EM,V,N\) be the EI algebra over
M. Let

SEM = {ZA,- | A; € 2M —{@},i € I,1 is anyindexing set} CEM.

icl

Then (SEM,V,\) be a sublattice of (EM,\V/, \) with minimum element M and max-
imum element Y, ,cpy{m}. Furthermore (SEM,V,\) is a molecular lattice.

Theorem 5.17. Let M be a non-empty set and (EM,V,N\) be the EI algebra over
M. (SEM,V, ) is not a Boolean algebra if |M| > 2. Nevertheless, if |M| =2, i.e.,
M = {m;,my}, then (SEM,V, ) is a Boolean algebra.

Proposition 5.11. Let M be a non-empty set and (EM,V,N\) be the EI algebra
over M. In lattice (SEM,V,N), M — {m} (Ym € M) is an atom of SEM and
Ymem—{eyim} (Ve € M) is a dual atom of SEM.

Proof. First, we prove that M — {m} is an atom of SEM forany m € M. Let Y,c;A; €
SEM and M — {m} > Y,;c;A; > M. Then A; O M — {m} for any i € I, that is, for any
i €1, either A; = M — {m} or A; = M. If there exists u € I such that A, = M — {m},
we have A; D A, forany i € I. Consequently, Y,;.;A; = M — {m} by Definition 5.2l
IfViel, A; =M, we have Y,;,.;A; = M. Thus, for any m € M, any >,c;A; € SEM,
M—{m} >Y,c;Ai > M = Y,;c;Ai = M — {m} or Y,c;A; = M. This implies that
M —{m} (Vm € M) is an atom of SEM.

Secondly, we prove that 3.,,,cp— (o) {1} (Ve € M) is a dual atom of SEM. For any
e €M, let Y A € SEM and ¥, cpp{m} > Yic/Ai > Ypem—(e} {m}. Then for any
m €M —{e},3u € I such that {m} D A,, thatis A, = {m},and foranyi € I,Ime M
such that A; O {m}. If A; # {e} for any i € I, we have Y;c;A; = Xpep—fey {m}- If
Ju € I such that A, = {e}, we have Y,;;A; = X,,cp{m}. Thus for any e € M, if
Ymem{m} = YictAi = Lmem—{ep{m}, then either X1 Ai = ¥pep {m} or Tie/Ai =
Ymem—{eyim}. Thus ¥,cp (3 {m} (Ve € M) is a dual atom of SEM. With this
observation the proof is complete. ad

Proposition 5.12. Let M be a non-empty set and (EM,V,N\) be the EI algebra
over M. If |M| > 2, then in lattice (SEM,V, ), the following assertions hold: for
ZicrAi, 2Zjey Bj € SEM,

1. lfzielA[/\Zje‘/Bj :M, ﬂ’lenAi QUjEJB/j? VlelandBj 2 U[G[A;7 V]EJ,

2. if Tyt AiV T jes Bj = Tem{m}, XiciAi NS je;Bj = M, then either Y;c1Aj =
Smemim}, XjcyBj =M or X ic;Bj = Ypepuim}, LiciAi = M.

Proof. 1. The proof of 1. is the same as that shown in Proposition[3.8]

2. For ZiGIAi’Z.]'GJBJ‘ S SEM, let ZiEIAi \/Z]GJB] = ZmeM{m} and ZiEIAi AN
YjcsBj =M. For any m € M either Ju € I such that A, = {m} or Iv € J such that
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B, = {m}. Now, without any loss in generality, we may assume that A, = {m}, then
by 1. we have

{m}y2|JB;=(\B)) = (\Bj2M—{m}=B; DM —{m},Vje .

jer icJ icJ

By |M| > 2, we know that |[B;| > |M — {m}| > 1. Whence for any m € M there exists
k € I such that Ay = {m}, thatis Y,;c;A; = Y,,cpr{m}. From 1., we also have

B\ JAi=("A) =2 =M, Vjel.

iel iel

Thus szJB/ =M.
Similarly, if 3v € J such that B, = {m}, then we can prove that ¥ ;c;B; =
Smemim} and Y,c; A; = M. This completes the proof. O

Theorem 5.18. Let M be a non-empty set and (EM,V,N\) be the EI algebra over
M. Then (SEM,V, \) is a fuzzy lattice.

Proof. Forany ¥,;c;Ai, Y jc;Bj € SEM, let
Aj={my |lucl}, i€l, Bj={mj, |vel;},jel.

Since (SEM,V, A) is a molecular lattice, hence ¢ : SEM — SEM defined as follows
is a map.

(X407 = A (Z{mm}> = 2 (U{mif(i)}) (5.41)

iel iel \Uu€l; fellier i \i€l
(XB)’=A (2 {mjv}> = X (U{mjf(j)}> (5.42)
j€J jeJ \veJ; felljerd; \jeJ

Now,it is sufficient to show that “c ” satisfies Definition[5.11] If 3 jerBj > YiciAi,
then Vi € I,3k; € J such that

A= {mm ‘ uec Ii} D) Bk,- = {mkiv ‘ Ve Jk,-}~
Thus we have amap ¥ : I — J, forany i € I, W(i) = k; and a map @, : Jy, — I; such
that for any v € J,, m;gp(y) = my,y. Furthermore, let 7, =¥ (I) and 7, =J— 7).
Wehave J = _#1U %, /1N =@ and ¢ # . Itis clear that V=1 (_#)) = 1.

Thus [Tje;J; = (Hjejl Jj> x (HjG/zJ/> and in (5.42), for any g € [];c;J; we
have

Ulmjein} = | U {mjepd U [ U {mjeain} | (5.43)

jeJ e J€ES
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where g1 € []jc , Jjand &> € [1je 4, Jj such that forany j € J1,8(j) =gi1(j) and
forany j € #,g(j) =g2(j). Forany j € _#;, we have

My—1(j)@;(81(j)) = Migi1(j)- (5.44)

Since Uje ¢, Y-1(j) =¥ '(_#1) = I, hence for any i € [ there exists a j € 7,
such that i = ¥~!(j). Let f € [1;c;I; be defined as follows: for any i € I, f(i) =
®;(g1(j)) € I;. Then by (5.44) and (5.43), we have

Ulmis} = U Amjgp} € | U {mjend U [ U {mjgain} | = U{mjgin -

icl JEN JEL JES jeJ

This implies that (3;c;B;)7 < (Yic;A;)°. “o  satisfies condition 1 of Defini-

tion 5. 111
Next, by Theorem[5.1] we have
O
(.2 (Uonor))
Sfe€llierli \i€l
= A <Z{mif<i)})

(=)

fellierli \i€l
= z (U {miu}> = zAiu
il \ucl; icl

that is,“c ” satisfies condition 2 of Definition[5. 11l With this our proof is complete.
O

5.4.3 Algebraic Structures of EI" Algebra

It is worth noting that E1" algebra is more general algebraic class, which includes
ET algebra. Of course, the algebraic structure of EI" algebra is more complicated
than that of the EI algebra. In this section, similarly to the study of the E[ algebra,
we will complete an exhaustive study of properties of the lattice (EX;...X,,M,V,A).

The following proposition is a straightforward consequence of the already intro-
duced definitions.

Proposition 5.13. Let Xy, ..., X;;, M be n+1 non-empty sets and (EXy...X,M,V,N\)
be the EI"'' algebra over X, ... X,, M. For any o = Y;c;(uy;...unA;),B =
YjcsViivuiBj) € EXy..X,M, the following assertions hold:

I.anB=BAro,aVB=BVa; (Commutativity)
2. (aAB)Ay=aAn(BAY), (aVB)Vy=aV(BVYy); (Associativity)
3 (anB)Va=a, (aVB)ANa=a; (Absorbance)
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4. oN(BVY)=(acAB)V(aAy), ooV (BAY) = (oVB)A(aVy); (Distributivity)
S5 oNa=0, aVa=a. (Idempotence)

Proposition 5.14. Let X|, X5,..., X,, M be n+ 1-non-empty sets and (EX1X... X,M,
V, A) be the EI''! algebra over X1, Xa,..., X,, M. Let

icl

SEX1X..X,M = {Z(uli-~-uniAi) |A; € oM _ {@},
iel,u;e 2X’7r =1,2,...,n,i € 1,1 is anyindexing set} CEM.

Then (SEX1X5...XyM,V, ) is a sublattice of (EX1X,... X, M,V , \) with minimum el-
ement &...IM and maximum element Y, cpr X1 ... Xy {m}. Moreover (SEXX;..X;,M,
V, A) is a molecular lattice.

Proposition 5.15. Let X, X;,..., X,,M be n+ 1-non-empty sets and (EX,1X... X,M,
V, A\) be the EI'"V algebra over X1, Xo,..., X,, M. In lattice (SEX1 Xp..XuM,V, N),

o ={2..a(M—{m}) | meM}U{D..x;...0M | x; € X3, k=1,2,...,n}

is the set of all atoms of the lattice SEX1X>...X,M, and

gﬂ:{ Y (XiXa{m}) + X (X — {xnd) - Xa{e}] | xx € X,

meM—{e}
eeM, 1 <k<n}

is the set of all dual atoms of the lattice SEX1X,... X,M.

Proof. First, we prove that <7 is an atom of SEXX;...X,M. Clearly, for any m € M,
any x; € Xy, k=1,2,...,n,we have

. M—{m})>o..0M, and &..S(M—{m})+# o...0M,
. {u}t.M>o..0M, and @..{x;}..M#* S..OM.

If there exists Y. ;c;(u1;...uniA;) € SEX1X;...X,M such that

@...@(M— {m}) > Z(uli...uniAi),
il

then for any i € I, we have A; O M — {m}, u,; C @ (r = 1,2,...,n). It follows
that, A; DM orA; =M — {m}, Uy = (r =1,2, 7I’l) That is, Ziel(uli...uniAi) =
o.M or Yc;(uyj...uniAi) = &...0(M — {m}).

If there exists X (uyj...uniA;) € SEXiXp...X,M such that @...{x;}...oM >
Sicr(uyi...uniA;), then for any i € I, we have A; O M, u; C {x;}, uyy C & (r =
1,2,...,n,r # k). It follows that

Ai=M,ui =2 (r=1,2,...on,r#£k),up; = & or {ug;} = {xx}.
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Thatis, Yc;(u1i...upiA;) = D...0M or Y ic;(uyi...uniA;) = ... {x; }...&M. Therefore
o ={2..a(M—{m}) | meM}U{D..x;...0M | x; € X3, k=1,2,...,n}

is the set of all atoms of the lattice SEX; X;...X,M.
Secondly, let e € M, Y ;c;(ut1;...uniA;) € SEX1X5.. X, M. If

Z (X1..Xy{m}) > 2(“1i~-~uniAi)

meM icl

> Y (XX {m)) + X (X — ). Xa{e}],

meM—{e}

then for m €¢ M — {6}, we have Ziel(uli...umAi) > Zmer{e}(Xl-"Xn{m}) +
Xi...(Xk — {x}).. Xn{e}| = Vm e M = (M — {e})U{e},Tin € I such that A, C
{m},uy, 2 X, and A, C {e},uy, 2 (Xx — {xx}), r = 1,2,...,n. That is, A, =
{m},uy;, =X, form e M,m # e and A, = {e}, either u;, = (X — {x¢}) or uyi, = X,
r=1,2,....n. This implies that

Z(uli...umA,-) = Z (Xan{m}) +Z(M1i...um'A,‘)

i€l meM i€l
or
2(“1i~-~uniAi) = Z(uli...um‘Ai) + Z Xy Xp{m}) + X1...(Xe — {xc})..- Xn{e}.
iel iel meM—{e}

Furthermore by Proposition[5.1] we conclude that
Z(uli...umAi) = Z (Xan{m})
icl meM

or

Z(uli...umA,-) = Z (Xl...Xn{m})+X1...(Xk—{xk})...X,,{e}.

il meM—{e}

Thus

,;zfd—{ D (Xl...xn{m})+[Xl...(xk—{xk})...xn{e}}xkexk,eeM,1<k<n}

meM—{e}

is the set of all dual atoms of the lattice SEX;...X,,M, and this completes the proof.

O
Proposition 5.16. Let Xy, ..., X,, M be n+1 non-empty sets and (EXy...X,M,V,N\)
be the EI''' algebra over Xi, ..., X,, M. For o = Yc;(uij...u; ,) [3 =
YjcsViivuiBj) € EXy..X,M, the following assertions hold:



200 5 AFS Algebras and Their Representations of Membership Degrees

Lifa AB = (2..0M), then A; 2 Uje,B; (Vi€ 1), Bj 2 Ui A} (Vj€J), and
ur,ﬁvrj—Q(VIEIVJEJr—IZ n);
2. ifoVvp=(X..X,9), then oo = (X;..X,9) or B = (X;..X,9).

Proof. Let o = Yc;(u1i---niAi), B = Xjcy(vii--vuiBj). f a AB = (2...9M), then

4 12 J[(uliﬂvlj)...(umﬂvnj)(A,-UBj)] = (@...@M).
1€l,je

Consequently, Vi € I, j € J, we have

AjUB; DM, uNv,jC@(r=12,...,n).
This is,

AjUB; =M, u;Nv,j=2(r=1,2,...,n).

It follows that, A; D B (Vi€ 1), Bj 2 A} (Vj€J)anduyiNv,j =S (Vie LVjel,r
=1,2,...,n). Thisis, A; D UjGJB’j (Viel), Bj 2 Ui A (Yjed)and uNv,j =@
~MielLVjed,r=1,2,...,n).

Let oV B = (X;...X,,@). Consequently, we have that either Jiy € I such that & D
Aiys trig 2 X (r=1,2,...,n), this is @ = A;, uri, =X (r=1,2,...,n); or 3jo €
J such that @ D Bj, v,j, 2 X, (r=1,2,...,n), this is @& = B]O7 Vejo = X (r =
1,2,...,n). Thus, o = (X;...X, &) or B = (Xl...an). This completes the proof. 0O

Let o = Ye (u1i---tniAi), B = X jcy(Vii---vniBj). From Proposition .16 when o Vv
B=X...X,@) and a AP = (&...0M), we have that either o« = (X, ...X,9)
or B = (X;...X,9). Now, without any loss in generality we assume that o =
(X ...X,9), then 3k € I such that

A=, uy =X, (r=1,2,...,n).

It follows that 8 = (... M), from

@=A2|JBj=Bj=M,VjelJ,
jeJ

and
U= (r=12,...,n)=v,;=a@r=12,...,n),VjeJ.

So we have that (EX;...X,M,V,A\) is not a Boolean algebra when there exist at
least two non-empty sets among M, X, (r=1,2, ..., n).

Theorem 5.19. Let X, ..., X,;, M be n+1 non-empty sets and (EX;.. X,M,V,\) be
the EI"! algebra over Xy, ..., X,, M. Then

{uy..upA|A€2M u, €2% r=1,2,..,n}

is the set of all V—irreducible elements in EX;...X,,M.
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Theorem 5.20. Let X, ..., X, M be n+1 non-empty sets and (EX;.. X,M,V,\) be
the EI"*! algebra over Xy, ..., X,, M. Then

£ (ur(m)..un(m){m} | A € 2" u,(m) € 2%, r =1,2,...,n}

meA

is the set of all N—irreducible elements in EX; ... X,,M.

Proof. Let Z={Y,ca(u1(m)...un(m){m} | A € 2M u,(m) € 2% r=1,2,...,n},y=
Smea(ur(m)..up(m){m}) € 2, o = Fjci(u1...uniA;) and B = ¥ jc; (vii...vaiBj).

First, we prove that y is a A—irreducible element in EX;...X,M. As a matter of
fact, if there exist o, § € EX;...X;,;M such that y = ot A 3, from Proposition[5.13] we
have

yta=(aAB)+oa=o,y+B=(xAB)+B=p.
In the sequel, we have ¥ < o, y < B. We assume that y # «, ¥ # B, we have
o =y+ 00, B =7+ Po.

where o9 = Yicp (u1i.uniA;) and either Vi € Iy, A;NA = @ or Jr €

{1,2,...,n}, 3m € A such that u,; € u,(m), Bo = ¥ jcs,(Vii-..vaiB;) and either

Vj€Jo,BijNA=@or3re{l,2,....n}, Im € A such that v; Z u,(m).
Furthermore, from Proposition[3.13] and Theorem[3.1] we have

y=0aAB=(v+a)A(y+Bo)
=AY+ (aoM) (YA Bo) + (aoABo)

= 2 (a(m).ccu(m){m}) 4 3 ([ (m) Nty ot (m) N ({m} UAY)
meA mGAlEI()

+ X (e (m) O] fun (m) Ol ({6} UB)))
meA, /GJO

+ 2 ullﬂvl, [un[ﬂvnj}(AiUBj)).
i€ly,jedy

and u,(m) Nuy Cup(m), {myUA; D {m}; u-(m)vyj Cup(m), {m}UB; O {m} for
Viely, j€Jy, r=1,2,...,n, it follows that

meA meA

+ Y ([winvij]-..[uni Nvaj](A; UBY))
icly,jely

Consequently, y = y+ & (Where 8 = Yy je s ([te1i V1] [ni M| (Ai UB)))), ie.,
y > 8. Therefore, we have that Vi € Iy, j € Jo, 3m € A such that A;UB; O {m} and
ur(m) D uiNvyj (r=1,2,...,n),ie,meA; orme Bj; u(m) 2 uy and u,(m) 2
vrj. This contradicts that ¥ # o and y # B. Thus, we have y= o AB = y= o
ory=f.
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Secondly, we prove that each A—irreducible element must be in 2. Suppose that
Sics(ui...upiA;) is a A—irreducible element in EX;...X,M, and 3k € I, |A;| > 1. Let
B = A, —{x} and x € A;. Since

|:< z (u”...um-A,-)>+(u1k...unkB):| N |:< z (u”...um-A,-)>+(u1k...unk{x}):|

iel—{k} iel—{k}

< D (uli-~-uniAi)> A ( > (uli-~-uniAi)):|
iel—{k} iel—{k}
(ulk...u,,kB) A < z (u”...um-A,-))]

iel—{k}

+

+

( 2 (”1i~-~'4niAi)>/\(ulk-~-unk{x}):|

iel—{k}
+(u1ge -t B) A (Mlk Ui {x})
= Y (junAi)+ Y, [N ugg) ... (uni Nitg ) (A; UB)]

iel—{k} iel—{k}
+ Y [ M) e (i Ot ) (A U {x})] + (ki Ag)
iel—{k}

and for Vi € I — {k},
AiUB DA, AiU{x} DA, uri Ny Cuyi(r=1,2,...,n),
it follows that

Z (uli...uniAi)

iel—{k}

= Z (1. uniAi) + Z [(uri MVurk).-... (ttni N 1) (Ai U B))]
iel—{k} iel—{k}

+ Y [(wriNung) - (i D) (A U {x})],
iel—{k}

that is,

|:< z (u”...um-A,-)>+(u1k...unkB):| N |:< z (u”...um-A,-)>+(u1k...unk{x}):|

iel—{k} iel—{k}
= z (u”...um-A,-)+(u1k...unkAk) :z(u”...uniA,-).
iel—{k} icl

Consequently, from ¥,c; ) (u1;.--4niA;) is a A—irreducible element in
EX;...X,M, we should have that either

Z (M],‘...Mn,‘A,‘):( Z (uli...um-A[)>—l—(ulk...unkB)

iel—{k} iel—{k}
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or

2 (uli...uniAi):< 2 (uli...uniAi)>—|—(u1k...u,,k{x}).

iel—{k} iel—{k}

But, from B C Ay, {x} C Ay, in fact

2 (uli...uniAi)#< 2 (uli...uniAi)>—|—(u1k...unkB)

iel—{k} iel—{k}

and

z (M],‘...MmA,‘)?é( Z (uli...um-A[)>+(u1k...unk{x})7

iel—{k} iel—{k}
This is a palpable contradiction.Therefore, it is concluded that each A—irreducible
element must be in &7. With this the proof is complete. O

Theorem 5.21. Let X, ..., X, M be n+1 non-empty sets and (EX;.. X,M,V,\) be
the EI'"! algebra over Xy, ..., X,, M. For ¥c;(uy;...uniA;) € EX1..X,M, let

Pi={(v1..vuB) | B2 Aj,vy Cupiyr=1,2,....n} CEX;...X,M,
Si C Pi(i €1). Then B =c; P is a standard minimal family of Y;c;(u1;...uniA;)
in molecular lattice (EX;.. X,M,V,\) .

From the above considerations, we know that (EX;...X,M,V,A) is a molecular
lattice but not a Boolean algebra. With analogy lattice (EM, V, A), we have the fol-
lowing theorem.

Theorem 5.22. Let Xi, ..., X,, M be n+1 non-empty sets and |M| > 1. Then
(EXy...XuM,V, ) is not a fuzzy lattice.

Proof. First, from Theorem.1L V¥ e/ (u1j...tniAi), X je s (Vii--vniBj) € EXy ... X,M,
we have

Z(MIi-nuniAi) > Z(VU...V",‘BJ')

icl =
= Z(M1i~-~uniAi) vV Z(VU...V",‘BJ') = Z(uli...umA,-)
icl = il

=

Z(uli...um-Ai)] A [Z(Wiu-‘%iBi)] = Z(VU...V”,‘BJ').

icl jer jer

Suppose that (EX;...X,M,V,A) is a fuzzy lattice. Then, by Definition 5.11] and
Theorem[5.12] there exists a conversely ordered involutory mapping ¢ : EX ... X,M
— EX| ...X,M such that strong De Morgan law holds in EX| ... X,M. It follows that
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(2..oM)° = (X, ...X,@) and (X; ... X,9)° = (2...9M), because (X ...X,2) and
(&...oM) are identity element and zero element of EXj ... X, M, respectively.
LetAc2M A£G A£AMA =M—A,u, €2%  u, # @, u, # Xpul. = M — A,
ur €2X" u, # @, up # Xy ul =X, —u,, r=1,2,...,n. Then, by Definition[S.T1] we
have that
(uy .. uyA)° + (U AN = [(uy ... unA) A (.., A")]° = (2...0M)°
= (Xl...XnQ).

Now, without any loss in generality, we assume that

(u1..nA)® =Y (uriettniAi), ()., A)° =Y (v1)...vnB;).

i€l jel
It follows that

(X1..X,9) = (uy...u,A)° + (.. u,A")°
= Z(uli...umA,-) + Z(vlj...v,,ij)

icl jel
£ Y (wik-wmCr).
keI

Therefore, 31 € I1UJ such that & D C; and X, Cwy; (r =1,2,...,n), thatis, C; = &
and X, = w,; (r=1,2,...,n). From Proposition[5.16 we have that either

(ul...unA)G = Z(uli...umA,-) = (Xl...XnQ), whenie€l,
i€l

or

(uy...u,A)° = Z(vli...vaj) = (X)..X,@), when jeJ.
JjeJ

If (uy...uA)° # (X)...X,2), we have that (u}...u,A") = (&...@M) and this con-
tradicts that A # &, A #M, u, # &, u, Z X, (r=1,2,....n). If (u;...u,A)° #
(X1...X,2), we have that (u;...u,A)° = (X ...X,9) and this also contradicts that
A+, A#M,u, # 3, ur # X, (r=1,2,...,n). Thus, (EX; ...X,M,V,A) is not a
fuzzy lattice and this completes the proof. a

So far, whether (SEX; ... X,M,V, ) is a fuzzy lattice has not been proved. However,
the following theorem shows that the sublattice (SEX, ...X, M,V,A) is a fuzzy
lattice, where

SEX] .. Xy M= {Y (ur..unA;) |A; €2 — {2}, u, €2,
icl
r=1,2,...,n,1 is any indexing set }.

It is clear that (SEX, ...X, M, V, ) is a sublattice of (SEX;...X,M,V,N).
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Theorem 5.23. Let X;, ..., X,, M be n+1 non-empty sets and |M| > 1. Then
(SEX| ... X, M,V,\) is a fuzzy lattice.

Proof. Forany ¥,c/(u1...unAi), Y jcs(vi--vaBj) € SEX| ... X, M, let
A,-:{m,-p|p61,<}7 iel, Bj:{qu ‘ qEJj},jEJ.

Since (SEX, ...X, M,V,A) is a molecular lattice, hence ¢ : SEX| ... X, M —
SEX| ...X, M defined as follows is a map.

D (1 unA)))® = N ( > (uﬁuQ{m})) (5.45)

i€l icl \ImeA;

= Y (u’l...u;U{mif(i)}> (5.46)

fellier di iel

Y (viwB) = (v’l...v:,U{mjﬂj)}) (5.47)

jes fe€lljesd;j jeJ

Now, it is sufficient to show that “c * satisfies Definition 5111 If 3c; (ug...usA;) <
Yjes(vVi...vuB;), then Vi € I, 3k; € J such that

Aj={mi, | p €L} DBy, = {myq | g€ Iy}, ur Cvp,r=12,...n

Thus we have amap ¥ : I — J, forany i € I, W(i) = k; and a map @, : Jy, — I; such
that for any v € Ji;, miq(,) = My, Furthermore, let 7} = ¥(I)and ¢ =J— 7.
Wehave J = _#1U %, /1N =@ and ¢ # 2. Itis clear that V=1 (_#1) = 1.
Thus [Tje;J; = (Hje/1 Jj> X (H/e/ﬂj) and in (5.47), for any g € [];c;J; we
have

Ulmieint = | U {mje i} U U {mjein} | - (5.48)
jeJ j€ JES2

where g € HjG/l Jjand g GHJ-E/ZJ/ such that forany j € 71, g(j) = g:1(j) and
forany j € #,g(j) =g2(j). Forany j € _#;, we have
My =1(j)@;(g1(j) = Mijg1(j)-

Since Ujc ¢, Y-1(j) =¥ '(_#1) =1, hence for any i € I there exists a j € 7,
such that i = ¥~!(j). Let f € [1;c;I; be defined as follows: for any i € I, f(i) =
D;(g1(j)) € I;. Then in virtue of (5.49) and (5.48) we have
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Ulmis = U {mjgin3 € | U {mjeynd |V U {mjgain} | = U mie )

icl i€ 7 Jj€EAN JE jet

Furthermore, by u, C v,, r =1,2,...,n, we have . D V.., r = 1,2,...,n. This implies
that [¥;c;(v1-.vuB;)|” < [(Zics(u1...unA;)]°. “0 * satisfies condition 1 of Defini-

tion[5.111
Next, by Theorem[3.1] we have
o
fe€llicr li iel

fellietdi \i€l
= Z (uy...up U{mm}) :2‘Ai7
icl uel; icl

that is,“o ” satisfies condition 2 of Definition[5.11] With this the proof is completed.
O

5.4.4 Algebraic Structures of E*I" Algebra

In this section, the further exploration of the algebraic properties of E*I" alge-
bra are exhaustively discussed. First,the expressions of special elements such as
A—irreducible elements, V—irreducible elements, atoms and dual atoms, are given
in E*I and E*I" algebra. Then, it is proved that E*I" algebra is a new structure
which is different from EI" algebra.

In what follows, if (S,V,A) is a AFS algebra, by the symmetric property of oper-
ation V, A, when the two operations are exchanged, we denote the one as (*S,V,A\)
or briefly as *S. Now the definition of the dual lattice ("EM,V,A) of (EM,V,A) is
as follows.

Theorem 5.24. Let M be a non-empty set.If we define binary operations V,/\ as
Jollows. For ¥c;Ai Y jcBj € EM,

YAVY B = Y (AiUB)), (5.49)
icl jed icl,jeJ

YAANY B = Y Ci=YA+Y B (5.50)
iel JjeJ kellJ iel JjeJ

Then (*EM,V,\) is a molecular lattice, in which for ¥c;A;,Y c;Bj € EM,
Yic1Ai < XjeyBj if and only if for any B (j € J) there exists Ay (i € I) such that
B; D Ay.

Its proof, which remains as an exercise, is similar to that of Theorem 4.1l
(*EM,V,\) is called the *EI algebra over set M.
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Similarly, by the symmetric property of operation “V, A”, the dual lattice
(*E*X,V,A) can be defined if only we alter the operations “V, A”. Thus for
Sic1ais Yjesbj € E¥X, Y a; < Yjesbj <= Vb;(j € J) there exists ai(k € I) such
that a; O b;. (*E*X,V,A) is called *E*I algebra over set X. In the similar manner,
we have *EI" algebra and *E*I" algebra.

In what follows, we establish isomorphism between the lattices EX and E*X.
Thus the properties about the lattice (E*X,V, A) can be directly derived from those
about (EX,V,A). By Proposition[5.10L we know that (SEM, V/, A) is a sublattice of
the lattice (EM,V,A). It is not difficult to check that the lattice (SE*X,V,A) is a
sublattice of (E*X,V,A), where

SEM = {ZAi | A; ezM—{@}}

icl

SE*X = {Za, | a; € 2% — {X}}

iel

Theorem 5.25. Let X be a non-empty set. Let (EX,V,A) and (E*X,V,N) be the
EI algebra and E*I algebra over X. Then the lattice (EX,V,\) and the lattice
(E*X,V, ) are isomorphism.

Proof. For any ¥, a; € E*X, the map ¢ : E*X — EX is defined as follows.

oY a) =Y a.

icl icl

First, we prove that ¢ is a map from E*X to EX. For ¥, ai, Yierbj € E*X, suppose
that ¥,c;a;i = X jc;bj. Then we have

Za[ § Zbl and Zai Z ij

icl jel iel jel

Yierai < Yjesbj <= Viecl,3k € J such that a; C by, that is b, C a;.

This implies that the following assertions hold in the lattice (EX,V,A)
¢ (Ticrai) = Xic1 @ < Xjes b= ¢ (Xjesbj)-
Similarly,we get
Sie1ai > Yierbj <= 0 (Sicrai) > ¢ (Tjesbj) -
Next,
Sierai=Yjerbj <= 0 (Zicrai) = ¢ (Tjesbj) -

Therefore, @ is a map from E*X to EX.
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Let Yc;ai, 3 jesbj € E*X . Itis clear that

(0 (%ai v_,-ez}bj) =¢ (;;) Ve (%@) .

From Theorem[3.2 we get

(P<2ai/\2bf):¢< 2 (a,-ﬁbj)): 2 (a,-ﬁbj)/.

icl jer il jeJ il jel

By the De Morgan law and Theorem[d.1] it follows that

‘P<ZaiAZbJ‘>= Y (anby) = 3 aéub’j=¢<2ai>mp<2b,->.

il jel icl jeJ iel jel icl jer

Therefore, @ is an isomorphism from (E*X,>) to (EX,>). The proof is complete.
O

The following theorem whose proof is left as an exercise can be proved in a similar
way as discussed earlier.

Theorem 5.26. Let X be a non-empty set. Let (*EX,V, ) and (*E*X,V,\) be the
“EI algebra and *E*I algebra over X. Then the following assertions hold.

(1) The sublattices (SE*X,V,\) and (SEX,V,\) are isomorphism;

(2) The sublattices (*SE*X,V,N) and (*SEX,V, ) are isomorphism;

(3) The lattices (*EX,V,N\) and (*E*X,V,N) are isomorphism.

Thus by Theorem[5.28, the corresponding properties of E*I algebra and *ET algebra
can be directly obtained in virtue of the ideas we have for ET algebra. However, in
what follows, we will show that E*I" is a new algebra families which are quite

different from EI" algebra. Given this, it is necessary to discuss the properties of the
E*I" algebra.

Theorem 5.27. Let X1, ..., X,, be n non-empty sets and (E*X1...X,,V,\) be the E*I"
algebra over the sets X1, ..., Xy. Then the following assertions hold.

(1) The set of all V-irreducible elements in E*X,...X, is
IV = {ulun | u € 2% k= 1727---n}.
(2) The set of all N-irreducible elements in E*X,...X,, is
j/\ = { 2 [Xl ---(Xk— {x})Xn] ‘ Dk ng,kZ 1,2,...,1’1} .
x€Dy

Here Y,cp, [Xi -+ (Xx — {x})---X,] £ X1 Xp--- X, if for some k € {1,2,...,n},
D, =a.
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(3) The set of all atoms in E*X,...X, is
o ={D-- D} D | € Xp,k=1,2,--- .n}U{@---T}.
(4) The set of all dual atom in E*X,.. X, is
Md:{ 2 Z[Xr'-(Xk—{X})---Xn]}-
1<k<nx€X;

Proof. (1) It directly results from Definition 229
(2) Let 3c/(u1...un;) € E*X1...X,, be a A—irreducible element. Furthermore, let

Sici(uj...un;) be irreducible, i. e., forany k € I, X ;i (uy;.. .ty # Yiel—{k} (1. Upi)-
First, we prove that

\Xk—uki| <l1,Vke {1,2,"' ,l’l},ViEI.

Suppose there exists a iy € I such that |Xj —ug;,| > 2, forsome k € {1,2,---,n}. Let
Xig»Yig € Xk — Uiy, that is xiy, yiy & ui,- Let o, B € E*X;...X, be given as

o = 2 (uli...um)—i—[ulio...uk_l’io({xio}Uukio)uk+1,io~~~um<0],
iel—{ip}

B = z (“li-"“ni)"'[“150"""16*1-,1'0({)’!‘0}U“kio)ukJrl,io"'unio]'
iel—{io}

In lattice (E*X...X,,,V, ), it is clear that ¥ ;c; (u1j...uni) < 0, Yy (g utni) < B.
Since Y,;c;(uy;...uy;) is irreducible, hence Y ;c;(u1;...uni) # 0, Yicr(U1;...uni) # B.
According to Theorem[5.2] one has

OC/\ﬁ = 2 (uli...uni)+[ Z (uli...uni)]/\[ulio...({xiO}Uukio)---um-o]
iel—{io} iel—{io}
+ [ 2{‘ }(uli...um-)]/\[ulio...({yio}UukiO)---umO}
iel—{iy
+ [uliO...({xio} Uukio) s I/lm‘o] A [“1i0~-~({yi0} Uukio) cee I/tm‘o}
= 2(141,‘...1/!,”').

iel

This contradicts the assumption that Y;c;(u1;...up;) is an A—irreducible element.
Therefore, we have

\Xk—uki| <1,Vke {1,2,"' ,l’l},ViEI.

This implies that |Xi — uy;,| = 0 or 1. If for some iy € I, there exist at least two
ki ko € {1,2,--- ,n} such that [X, —ug,i,| = [Xk, — Ukyi,| = 1. Without loosing gen-
erality, let k; = 1,ky = 2. Then, let u1;, = Xi — {a1;,} and uz;, = X» — {a2i, },a1;, €
X1,a2;, € X». Consequently, it follows that
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Z(ulimum’): Z (u1j...uni) + (Xa {alzo})( {0210})”310 Uni -

il iel—{ip}
Let y,v be in E*X;...X,,

Y= (upjttni) + Xy — {ariy}) Xou3iy Uiy,
iel—{io}

vV = 2 (uli...um)+X1(X2—{azio})u3i0...um-0.
iel—{ig}

We have

AAV = Z(uli...um).

iel

It is clear that Y;c;(uy;...tty;) # v and Y (uy...uni) # v because Yjcr(u;...up;) is
irreducible. This conflicts with the assumption that ¥ ;c;(u1;...up;) is a A— irreducible
element in lattice (E*X;...X,,,V,A). Thus for any i € I there exists a unique k; €
{1,2,...,n} such that |X;, —uz;| =1 and |X; —u;;| =0 forany j #k;, j € {1,2,...,n}.
In other words, u,; = Xj, — {x;} for some x; € X;, and for all j # k;, j € {1,2,...,n},
uj; = X;. This implies that

2 Uij...Uni) 2 2 (X — {X}) ]

il keK xeDy,

where K C {1,2,...,n}, Dy ={xi | i€k} CXp,k=1,2,....n, I, ={i | ki=u}, u=
1,2,...,n. Assume that |K| > 2. Without loosing generality, let 1,2 € K.

a=Y YK X—{x) X+ x| icn}o..o] €EX X,
keK xeDy

B=Y 3 X (X—{x})- X +[@{xi | i€b}@..0] €E*X| X,
kEKXEDk

Itis clear that ¥c;(u1;...un;) # o and Y (uy;...uy;) # B. However, by Theorem[5.2]
we have Y;c;(uy;...un;) = ot A B. This contradicts the assumption that ¥ (uy;...u;)
is a A— irreducible element in lattice (E*X;...X,,V,A). Therefore |[K| = 1 and
Ziel(uli...um) eIN.

Conversely, let ¥ = Yic;(u1i...un;) € F". We prove that Yc;(uy;...uy;) is a
N—irreducible element in the lattice (E*X;...X,,V,A). If ¥ # X1X;...X,, then for
each i € I there exist k; € {1,2,...,n} such that u; = X;, — {x;} for some x; €
Xy, and for all j # k;,j € {1,2,...,n}, uji = X;. For o0 = ¥y (wig---ww), B =
Yics(vij - vnj) € E*X) - X,, assume that ¥, &, B are all irreducible and y = at A B.
Soy=aAB <aand y=aAf < f. Since X1 X;...X, is the maximum element of
the lattice (E*X;...X,,,V,A), hence if y = X1 X;...X,, then y = o = B.

In what follows, we prove that y is a A—irreducible element provided that y #
X1X;...X,. Because ¥y < o and y < B, for any i € I there exist [; € L and j; € J such
that
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ugi © Wit Ui S Vij, k=1,2,...,n.

Considering, for all j # k;, j € {1,2,...,n}, uj; = X; and uz; = X;, — {x;} for some
X; € Xy, we have

Uki = Wkl; = Vkj; :Xka k 7é kiak = 1a2a"'7n;
ukl‘i = in - {xi} g Wk,‘lp ukl‘i = Xkl‘ - {xi} g Vkl‘jl" (551)

If there exists 7 € I such that wy,;, = Xj, or vy, j, = Xj,, then o0 = X1 X5...X,, or B =
X1X;...X,. This implies that y= o AB =o or y=a A = B. Thus yis a A~
irreducible element. If for any i € I, wy,;, # X, and vy, j, # Xi,, then uy,; = Xi, — {x;} =
Wiil;» ukl.l-szi—{xi} =y, foralliel. IfL—{li|iel}=0orJ—{ji|icl} =92
then y= o or y= f and yis a A—irreducible element. Assume that L—{l; | i € [} #
@ and J —{j; | i € I} # &. This implies that

o = Z(uli...um)—F z (Wll"'Wnl)a

iel leL—{i; | iel}
ﬂ = Z(uli...um)—i— 2 (V]j---vnj).
i€l jeJ—{ji | iel}

Let I, = {i | ki = u}, u=1,2,...,n. Because both & and f are irreducible and
@E30), for any I € L—{i; | i € I} there exists u € {1,2,...,n} such that {x; | i €
I,} € wy and for any j € J — {j; | i € I} there exists ¢ € {1,2,...,n} such that
{xi |i € I} Cvgj. Furthermore x,,. By the definition of the set .#, we have ¢ = u and
{xi | i€ L} CwuNvy;. Then for any i € I either ug; D wy; Nvy; NOT g € Wy Nvy;.
This implies that ¥ # o A B and contradicts to the assumption ¥ = o A 8. Therefore
L—{li|iel} =@ orJ—{j;|i€l} =a. Thatfollows y = & or y= f3. Finally
we prove that any ¥ = Y;c;(uy;...un;) € F" is a A-irreducible element in the lattice
(E*X1..X0,V, A).

B)Lety=Yc;(uy;--um) € E*X|---X, be an atom in E*X - --X,, and Y be irre-
ducible. It is straightforward to note

N (uri i) # 2D 2.

i€l
If I contains more than one element, choose ip € I. Let J = I — {ip}.Thus we have

@@---®<Z(u1i~~~um-) <Z(u1,~~~~um-). (5.52)

ieJ iel

It contradicts that y is A—irreducible element. So we derive that |I| = 1, it follows
that 3,/ (uy;...us;) has the form u;...u,. If there exists ko € {1,2,---,n} such that
Ui, 7# D, and |ug,| > 2. Let xy, € ug,, we have

G-I < ul...uko_l(uko - {xko})uko+1...un < uj...Up.
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It is also contradicts that y is A—irreducible element. Thus we arrive that for k =
1,2,---,n, either |ux| = 0 or 1. Furthermore, if there exist two uy, ,ux, such that
luk,| =1, |ug,| = 1, then it follows that

@ B<LD D, } DB <D Dy, } D D, } DD < upty.

This implies that that there exists unique ko € {1,2,...,n} such that |u,| = 1 and for
all k #£ ko, k€ {1,2,...,n}, uy = &. Therefore,we have that y = u;...u, € 7.
Conversely, we prove that any y € &7 is an atom element, that is

y=0--2{q}o-- I, x €Xx, k=1,2---n.
Let e (vij...vnj) € E*X1.. X,k = 1,2, ,n, such that

N (Vi) @ B{x} D@ (5.53)
=

From the Theorem[3.2] for any j € J, we have that

vij €D, vi1,j € D, vij S{x}, iy, €9,V € 9.

It follows that

Y Vijevn) =@ D{x DD or Y (vijo.vpj) =D D.
Jjel jel

In either case,we know that, & ---@{x;}@--- @ is an atom in E*X...X,,. Therefore
any y € ¢/ is an atom element.
(4) Let y = Yc; (u;...un;) € E*X;...X,, be a dual atom in E*X;...X,, and y is irre-
ducible. It is clear that
Z(uli...uni) #Xl...Xn. (554)
icl
If for some k € {1,2,---,n},Jip € I such that |X; — uy,| > 2, then choose x; ¢
Ukig Xk € X, andk=1,2,--- n. Let J =1 — {ip}. Then we have

Z(uli...um) < Z(uli...um) + [M]io...uk_l,‘o(ukio @] {xk})ukH[O cee umo] < Xp..X,.
i€l ieJ

This contradicts the assumption that ¥, (uy;...uy;) is a dual atom. It implies that
X —ui| =0 or |Xp—uy|=1,Viel, Vke {1,2---n}.

If there exists some iy € I such that for all k = 1,2,---,n, |Xp — ug;,| = 0, then we
have uyj, - - - uniy = X1 - - - X, It forces Y (u1i- - upi) = X1 --- X,,. This is in conflict
with the assumption. Therefore, Vi € I, there exists certain k; € {1,2,---,n} such
that |Xj, — ux,i| = 1. It means that there exists x;,; € X such that uy,; = Xj, — {xg;}. If
Vi € I, there exists unique k; € {1,2,---,n} such that [X;, — u;| = 1, then from the
discussion above, we know that
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Suiu) =Y, Y X (Xe—{x}) - Xa), DeCXeo k=1,2,..n

il 1<k<nxeDy

If for some ko € {1,2,...,n}, X, — Dy, # @, then for x, € Xi, — Dy, we have

2(,4”...,4”[) < 2 2[Xl“'(Xk—{x})'“Xn]-i-[Xl"'Xko—l{XkO}Xk0+1“'Xn]

icl 1<k<nxeDy
<X X

This contradicts the assumption that ¥/ (u1;...uy;) is a dual atom. Therefore X, —
Dy, # @ and the dual atom element y € .o/

Conversely, we prove that any y € &7 is a dual atom element. Let X, (uy;...14,;) €
E*X...X, such that

S Y X (X {x)) X < S (retn) <Xy Xy (5.55)

1<k<nxeXj icl

Suppose Yic;(u1;...uni) # X1...X,, then we have that every item uy;...u,; # X;...X,
forall i € I. Thus for any i € I there exists k; € {1,2,--- ,n} such that X, # u; C Xj,,
it follows that, there exists element x;; € X, such that x;; ¢ u;. This implies that
ug,;i C Xi, — {xx,i}, which follows that

u; € Xy, ..., Uk;i Cin — {xkﬂ-}, ey Uni © X, Viel

This means that

3 (urie i) < ZJ co (X = {xij}) - Xl

icl 1<i<n

which contradicts (5.53)). Therefore, we have

Z(uli...um): z z Xy (X — {x}) - Xy).

icl 1<k<nxeX

This indicates that X<, Ycx, [X1---(Xk — {x})---X,] is a dual atom in
E*X| - X,. ]

Example 5.2. Let X; = {a,b},X, = {c,d},then X;{c} + X;{d} + {a} X, + {b}X; is
the only dual atom element in E*X; Xp,while X, {c}, X1{d}, {a} Xz, {b} X2, X\ {c} +
Xi{d}, {a}Xp + {b}X; are all A—irreducible elements in E*X;X;.

In what follows, we will show that E*I"(n > 2) algebra E*X;...X, is indeed
a new structure which is quite different from E[t! algebra EY)...Y,,M, where
Xiyos X, Y1, .., Y, M are sets.

Lemma 5.2. Let (Ly,>),(Ly,>) be two lattices and f be an isomorphism from L,
to Ly. Then for x € Ly, x is a \VV—irreducible element in Ly if and only if f(x) is a
V—irreducible element in Ly; and x is a N—irreducible element in Ly if and only if
f(x) is a A—irreducible element in L.
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Theorem 5.28. Let X1,..., X, Y1, ..., Y, M be n4+ m+ 1 non-empty sets. Then there
is no isomorphism from (EYy...Y,,M,V,A) to (E*X;...X,,V,A) for any n > 1 and
m>1.

Its proof remains as an exercise. The proceeding theorem states that under no cir-
cumstances the two structures are the same, so (E*X)...X,,V,A) is the different
algebra structure from (EX;...X,M,V,\).

Theorem 5.29. Let X1, ..., X, be n non-empty sets and (E*X;...X,,V, ) be the E*I"
algebra over Xy, ..., X,. Then the following assertions hold.

(1) If there exists iy € {1,2,--- ,n} such that |X;)| > 1, then (E*X;...X,,,V,A) is not
a fuzzy lattice.
(2) Ifforalli € {1,2,--- ,n} such that |X;| = 1, then E*X;...X,, is a boolean algebra.

Let X1, X3, ..., X, be n non-empty sets and (E*X;...X,,,V, A\) be the E*I" algebra over
X1, ...,X,. The subset SE*X, .. X, C E*X,...X, is defined as follows.

SE*X|..X, = {Z(Al,-...A,,,-)Ak,- e (X },k=1,2,-- n} : (5.56)

iel

It is clear that (SE*X;...X,,V,A) is a sublattice of the lattice (E*Xj...X,,V,A).
Along the direction we have discussed for (SEX;...X,,V,A), the similar algebraic
properties of the lattice (E*X;...X,,,V,A) could be explored, which are left as open
problems.

5.5 Combinatoric Properties of the AFS Structure

In this section, we study some combinatoric properties of AFS structures which can
be applied to the analysis of complex systems. As we have already pointed out that
the AFS structure is a special combinatoric system. The combinatoric techniques
outlined in Section 1.6 are considered to study the AFS structure.

Definition 5.12. Let X and M be sets, (M, 7,X) be an AFS structure. Let V = M,
E =X xX. If the map f; : E — V is defined as follows: for any xj,x; € X,
Se((x1,%2)) = T(x1,%2) N T(x2,x2) . Then (M, f7,X x X) is a system described by
Definition [T.48] It is called the combinatoric system induced by the AFS structure
(M, 1,X), and denoted as (M, fr,X x X).

Considering f;((x1,x2)) = 7(x1,x) N T(x2,x2) in Definition T(x1,x2) N
T(x2,x2) is the block (a set of simple concepts in M) associating to (x1,x;) which
describes the relationship from x; to x,. So the simple concepts in T(x;,x;) which
x, does not belong have to be excluded from 7(xj,x;). Thus x; belongs to any sim-
ple concept in the block and the membership degree of x| belonging to any simple
concept in the block is larger than or equal to that of x,. Definition builds a
link between the AFS theory and the combinatorics. In virtue of this important as-
sociation, many developed combinatoric techniques can be applied to analysis AFS
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structure of data. As an example, in what follows, we present how to decompose a
complex AFS structure to some simple AFS structures via combinatoric theory.

Definition 5.13. Let X and M be sets, (M, 7,X) be an AFS structure. (M, 7,X) is
called a connected AFS structure if (M, fz,X x X), the system induced by AFS
structure (M, 1,X), is a connected system. V C M,U C X, if (V,f;,U xU) is a
connected component of (M, f;,X x X), then sub-AFS structure (V,7|yxy,U) is
called a connected component of (M, 7,X).

Definition 5.14. Let X and M be sets and (M, 7,X) be an AFS structure. If M =
UietVio X =Uiqt U, Vi# 9, VinV; = 2, UiNU; = @, i # j,i,j € 1, (Vi, T|u;xu;, Ui)
is the connected components of (M, 7,X), then the direct sum of connected compo-
nents of (Vi, T|y,xu;, Ui), i € I is defined as follows.

(Ma T7X) = ®i€[(‘/ia T|U,‘><U,‘a Ul)

By Theorem we know that this direct sum for any given AFS structure is
unique. For any i € I, since (V;, fr,U; X U;) is a connected component of (M, f7,X X
X), hence for any x,y € Uj,

Vi 2 fe(x,y) = (x,y) N1(y,y) # 2.

This implies that for any x,y € U; in the AFS structure (V;, T|y,xu;,U;) there exist
some simple concepts in V; such that x is associated to y. However, for i, j € I, i # J,
for any x € U; in the AFS structure (V;, 7|y, xv;,Ui) and y € U; in the AFS structure

(Vf7T‘Uj><Uj7Uj),
fT('xuy) = T(xvy) mT(yuy) =J.

This implies that there does not exists any simple concept in M such that an object
in U; in (Vi, 7|y, xu;, Ui) is associated to an object in U; in (V;, 7|y, xu;, U;). Thus the
AFS structure of a complex system will be decomposed into some independent sub
AFS structures which are the most simple AFS structures and cannot be decomposed
further.

Theorem 5.30. Let X and M be sets, (M, T,X) be an AFS structure. Then there exist
ViCM,U; CX, i€l such that

(Mu ‘L}X) = ®i€1(Via T|Ui><Ui7 Ui)'

Proof. In virtue of Theorem[I.56] for the system (M, fz,X x X ), we know that there
exist V; C M, E; C X x X, i€ I, such that

VNV, =2, ENE;j=@,i#j,ijel, M=V, XxX=JE,
i€l icl

and

(Maf‘ﬁX XX) = EBiG’(‘/iaf|Ej’Ei)a
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where (V;, f|g;, E;) is the maximum connected sub-system of system (M, fz, X x X).
Let

ib(E) ={y| I eX,(xy) €E} CX.

i(E)={x|3yeX, (xy) €E}CX,

If V; # @, then Vx € i1 (E;),Jy € ir(E;), such that

Je((x,y) = t(x,y) NT(y,y) C Vi

Since V; # @ and (V;, f|g,,Ei) is the maximum connected sub-system of system
(M, fz,X x X), hence

Je((x,y) =t(xy)N1(yy) # 2.
If (x,x) ¢ E;, then there exists j such that (x,x) € E; and
fe((x,x)) = 7(x,x) N T(x,x) = 7(x, %) C V.

By AX1 of Definition 4.3 we know that the following conclusions hold f((x,y)) C
7(x,y) C 7(x,x). Therefore we have

Vl‘ﬂVj 2 T(X,X) me«x?y)) = T(x,x)ﬁr(x,y)ﬁr(y,y) :fT«xvy)) 7’é g.

This fact contradicts V; N V; = @. Therefore (x,x) € E; and x € i>(E;). It also implies
that i (E;) C ip(E;) if V; £ . If V; # &, then Vy € ir(E;), 3x € i1(E;), such that

Je((x,y)) = t(x,y) NT(y,y) C Vi

Since (V;, flg;, Ei) is the maximum connected sub-system of system (M, f7,X x X)
and V; # &, hence

fe((y)) = t(6y)N2(yy) # 2.

If (y,y) ¢ E;, then there exists j such that (y,y) € E;, and

fe(y) = t(ny)NTly,y) = T(y,y) C V.

We have

VinV; 2 1(y,y) 0 fr((x,y) = t(n,y) NT(xy)T(0,y) = fr((x,y)) # .

It contradicts V; NV; = @. Therefore (y,y) € E; and y € i (E;). This implies that
iz(Ei) - i](E,‘) if V; 75 . Thus we prove i](E,‘) = iz(Ei) if V; £ @,i el Let
i1(E) =U,ie., E =i (E;) X ip(E;) = U; x U;. On the other hand, if V; = @. Because
(Vi, fx|E;, Ei) is the maximum connected sub-system of system (M, fr, X x X), E; is
asingleton set E; = {(x,y)}. This implies 7(x,y) N 7(y,y) = &. For the AFS structure
(Vi, t|lu;xu;, Ui), let (x,y) € U; x Uj. Since t(x,x) C V;, hence 7(x,y) C t(x,x) CV;
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from AX1 of Definition @3]l This shows that for each i € I, (V;, T|y.xv;,U;) is a
sub-AFS structure of (M,7,X) and (V;, f|,, E;), which is a connected component
of the AFS structure (M, 7,X), is the combinatoric system of the sub AFS structure
(Vi, 7|y, xu;, Ui). Therefore we have

(M7 TaX) = ®i€1(‘/ia T|U,‘><Uia Ul)
and the proof is complete. O

Definition 5.15. Let X and Y be sets. Let the AFS structure (Y, 71,X) be compatible
with AFS structure (X, 7,,Y)) (refer to Definition[3.4). If

)X,

Y, 7,X) = @iel(Yi(l)’Tl ‘x.(‘ xX!
(2))

i

2
X, n,Y) = @iEJ(Xi( )772‘),(2)

i

)Y

and 1 =7, Xx? =x\V = x,,v/? =y =y, for any i € I = J, then the direct sum

of the cognitive space ((¥,7;,X),(X,2,Y)) is defined as follows.
((¥,71,X), (X, 22,Y)) = Dicr (Vi T x5 Xi), (Xi 2|y, ¥i))-

Theorem 5.31. Let X and Y be sets. Let the AFS structure (Y, 71,X) be compatible
with AFS structure (X,7,,Y)) (refer to Definition [5.4). Then there exist X; C X,
Y; CY, i€l such that

(Y, 71,X),(X,12,Y)) = ©iet(Yi, 1 [x;xx:, Xi), (Xi, 2 |yixy;, Yi))-

AndVx € X;, V8 =Y, cv(llnea, m) € E(Y =Y), i,j € 1,i # j, the following asser-
tions hold

(1) ZMEU(HWLGAM I’l’l) (X) = ZMGUAZI (x)AM = ZMEU QAM € EXY.
(2) Sucv (Tmea, m)(x) = Zucy A () {6} (Aw)Au = Syey DDA, € EXYY.

(3) pg(x) =0 if ug (.) is a coherence membership function.

Proof. Because of Theorem[3.3Q for (¥, 7;,X) and (X, 1,,Y), we have

1 1
¥, 7,X) = @iEI(Y[( )aTI‘X_(l)Xx_(U?Xi( ))’

(X, 0,Y) = @ies (X nl o)oK,

Suppose Xl-(l) DX}Z) #andx € Xi<1> ﬂX;2>. Because each (Yim, Ty |x.“>xx.(1) ,Xim),

i €1, is connected, Vy € Xl-(l), 71 (x,x) C Yi(l), 71 (y,y) C Yim. Then there exist m; €
T (x,x) # &, my € 11(y,y) # @ and a m; — my path in the system
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Y fa |Xi(1)><Xi(1)in(]) xx),
written as vo = my, (x1,y1),V1, (¥2,¥2),v2, (x3,3), ..., (Xg,¥g), Vg = mp and x| =
x,y, =y. By the AX1 of Definition &3 we know 7; (x;,yi) C 71 (x;,x;) € Yi(l) =
T](x,‘,y,‘) ﬂT](yi,yi) - Tl(xi,x,-). Therefore Vo = my, (xl,xl), Vi, (XQ,XQ), Vo,
(%3,%3)5.es (Xg,Xg), Vg = mp is also a m; —my path and vi_j,v; € 71 (x3,%;), § =
1,2,...,g. Because (Y, 11,X) is compatible with (X, 1,Y), x; € Ta(vi_1,vi—1), Xi €
T (vi,vi),i = 1,2,...,8. So that x, (vo,v0), X2, (V2,V2), ..., Xg—1, (Vg,Vg),y, is @ X —y

2, Y.(z)) is connected, hence

path in the system (X, f,,¥ xY). Since (ng2>7 Tz|y_(2>x f
J

(
Yj
yE X}z). This means Xl-(l) - X}z). Similarly, we can prove Xl-(l) ) X}z). Finally we
have Xi(l) = X;z). Since x € Xi(l) ﬁX}z) # @, hence Im € 71 (x,x) C Y,-(l). Because of

the definition of compatible AFS structures, x € T (m,m) = x € T, (m,m) ij(z) £+ .

Since
2 2 2
<X/< >’fTZ‘Yj(2>><Yj(2)’Y/'( ) X Yf( >)

is the maximum connected sub-system of the system (X, f,,Y xY),meY j<2> =>me

Yi(l) ﬁYj(z) # . Anyway, iin(l) ﬁX}z) # &, then Xl.(l) = X;z), Yi(l) ﬁYj(z) # & and
the same as the arguments of Xl.(l) ij(z) = @&, we also can prove that if Yi(l) ny j(z) #+
&, then Yi(l) = Yj(z), Xi(l) ﬁXl(z) # @. This implies that

xVnxP#o s vV nr? 2o,
K0 Ax® 4o = xV = x®.
P ar® 4o o y® _y®,

Therefore we have
((Y7 T17X)7 (X7 T27Y)) = 69[61(()/[7 T ‘X,‘XX,‘in)v (Xi7T2|Y,'><Y,'7Yi))~

In what follows, we prove (1), (2) and (3). Vx € X;, and V{ = ¥,y (ITinea, m) €
E(Y —Y)),i,j€l,i# j, we have 7y (x,x) CY; and 7 (x,x) N (Y —Y¥;) = @. This im-
plies that

Al'(x)={y|yeX,1i(x,y) DA} = @.

It follows (1).
Since for any v € A;, if {x} C 7 (v,u) C 1 (v,v), then v € 71 (x,x). It contradicts
that 7y (x,x) N (Y —Y;) = @. Hence
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{x}2A) ={uluect, nvu) D {x}, WeA}=2a.

Then we have (2).
(3) can be directly proved by (1) and Definition 471
Now, we have completed the proof. O

Theorem [3.31] ensures that any cognitive space can be decomposed into the direct
sum of some independent and connected sub-cognitive spaces and the membership
degree (coherence membership degree or AFS algebra represented membership de-
gree) of any sample from one space belonging to any fuzzy concept from another
space is always 0. In this way, the complexity of a complex system can be greatly
decreased and the system structure can be easily comprehended.

Exercises

Exercise 5.1. Let X;,...,X,,,M be n+1 non-empty sets. If A; C Ay, uy 2 utys, ¥ =
1,2,..,n,t,s €1t # 5, Yici(u1...uniA;) € EX;..X,M. Show the following

Z(uli...un[Ai): Z (uli...um-A[).

icl iel—{s}

Exercise 5.2. Let X,...X,,, M be n+ 1 non-empty sets. Prove that (EX|...X,M,V, )
forms a completely distributive lattice under the binary compositions V and A de-
fined as follows: V¥,c/(u1j...unii), X jes (vij..-vnjB)) € EX1..X,M,

2 uyi.. um i \/2 Vij-. Vn/ = 2 (Wlk~-~wnkck)7

icl = kel
z Uij...UpiA; /\Z Vij.. v,,j z [(uliﬂvl_,-...u,,iﬂvnj)(A[UBj)] s
icl = icljel

where Vk e ILUJ , Cr =AW = up it k € Iand Gy, = By,wiy = v if k€ J, r=
1,2,...,n

Exercise 5.3. Let X;,X>,...,X,, be n non-empty sets. Prove that (E#Xle...X,,, V,
A) forms a completely distributive lattice under the binary compositions V and A
defined as follows:

aiay;...ani V by 'bz'...bnj = C1kC2k---Cnk
J72]

icl jed kEILJ
Zaliazi...am AN 2 bljsz...bnj = 2 (ali ﬁb]j)(azi ﬁsz)...(am ﬁbnj)
icl = icljel

whereVk e ILUJ, cop = ap, r=1,...n,ifk€land ¢,y = by, r=1,...,n,if k € J.

Exercise 5.4. Let X be a set and E*X be the E*I algebra a over X. Show the follow-
ing assertions hold: for any ¥, a; € E*X,
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1. @vziela[:zielah @Aziela[ZQ;
2. XV3¥icrai=X, XNYicrai=Yieai-

Exercise 5.5. Let (M, 7,X) be an AFS structure. For any given x € X, if we define a
mapping @ : EM — EXM,V ¥c;[lnea,m € EM,

o3 TT m) = S AF({x})A; € EXM.

il meA; icl
Prove that ¢, is a homomorphism from lattice (EM, V, A) to lattice (EXM,V,A).

Exercise 5.6. Let X and M be sets. (M, 7,X) is compatible with (X, 1,,M). Vx € X,
forany ¥c;[1eca,m € EM, if we define

0:(X T m) = S AT (1) {x}(4)A; € EXMM,

icl meA; icl

prove that ¢, is a homomorphism from lattice (EM,V, A) to lattice (EXMM,V, M),
where A (x) and {x}%(A;) are defined by (5.8).

Exercise 5.7. Let Xi,..., X,,, M be n+ 1 non-empty sets, EX;...X,M be EI"*! algebra
over Xy, ...,X,,M and M be a finite set of simple concepts, S, be a o-algebra over X,,
r=1,2,...,n.Provethat E VN, E AN € o(EX;...X,M) forall £, n € o(EX;..X;,M),
ie., (0(EX)...X,M),V,A) is a sublattice of (EX;...X,M,V,A). Here 0 (EX]...X,M)
is defined by (3.17).

Exercise 5.8. Let X1, ...,X,,,M be n+ 1 non-empty sets, EX...X,M be E[t! alge-
bra over Xi,...,X,,M and M be a finite set of simple concepts, S, be a c-algebra
over X,, r = 1,2,...,n. For each simple concept { € M, let .#; be the measure
defined by Definition [5.6] for p;. Prove that the map [|.|| : 6(EX;...X,M) — [0, 1]
defined as follows is a fuzzy norm of the lattice (o(EX;...X,M),V,A): for any
Zie,(uli...uniA[) € O'(EX]...XnM),

HZ(uli...umA,-)H = sup H ///m(u,,-) S [0,1}
icl i€l \meA;,1<r<n

Exercise 5.9. Let M be a set. For 3,/ A;, X ey Bj € EM,if 3,0/ A; =Y jc ) Bj, Yic A
and ¥, B; are both irreducible, show {Bj|j € J} = {A;|i € I}.

Exercise 5.10. Let M = {my, mp, -+, m, }. Show |C|(M)| = [} (n) = 2".
Exercise 5.11. Prove that (EM,V,A) is a Boolean algebra if M| = 1.

Exercise 5.12. Let (L,V,A, o) be a fuzzy lattice. Prove that the strong De Morgan
Law holds, that is, forany ¢, € L,t € T,

(e} o
(\/at> :/\af, (/\a,) :\/af.
teT teT teT teT
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Exercise 5.13. Let M be a set and (EM,V, ) be the EI algebra over M. Prove that
{A| A € 2M} is the set of all strong V—irreducible elements in EM (refer to Defi-
nition[2.10).

Exercise 5.14. Let M be a non-empty set and (EM,V,A) be the ET algebra over M.
Let

SEM = {ZA,- |A; € oM _ {&},i € 1,1 is anyindexing set} CEM.
icl

Prove that (SEM,V, A) is a sublattice of (EM,V,A) with minimum element M and

maximum element Y,,,cp{m}. Furthermore (SEM, V, A\) is a molecular lattice.

Exercise 5.15. Let M be a non-empty set and (EM,V,A) be the EI algebra over
M. (SEM,V,A) is not a Boolean algebra if |M| > 2. Nevertheless, if |M| = 2, i.e.,
M = {m,my}, prove that (SEM,V, ) is a Boolean algebra.

Exercise 5.16. Let X;, X>,..., X,;, M be n+ l-non-empty sets and (EX;X,...X,M,
V,A) be the EI"! algebra over Xi, Xa,..., X,, M. Let

SEX1X5..X,M = {Z(uli...umAi) |A; €2 —{a},
iel

iclu,;e 2X’,r =1,2,...,n,i € 1,1 is anyindexing set} CEM.

Prove that (SEX\X,...X,M,V,A) is a sublattice of (EXX;...X,M,V,A\) with
minimum element &...&M and maximum element Y,,cp X;...X,{m}. Moreover
(SEX1X,...X;,M, V/, A\) is a molecular lattice.

Exercise 5.17. Let X, ..., X;;, M be n+1 non-empty sets and (EX;...X,M,V,N\)
be the EI"*! algebra over Xi, ..., X,, M. For any o = Y;c;(uyi...unA;),B =
Z_iej(vli...vniBj) € EX...X,M, show the following assertions hold:

l.oAB=BAa,aVB=BVa; (Commutativity)
2. (aAB)Ay=an(BAY), (aVvB)Vy=aV(BVY); (Associativity)
3. (anB)Vo=a, (aVB) Na=q; (Absorbance)
4. aoN(BVY)=(xAB)V(aAY), oV (BAY)=(aVB)A(aV7y); (Distributivity)
5..ahNa=a, oVa=«a. (Idempotence)

Exercise 5.18. Let X1, ..., X, M be n+1 non-empty sets and (EX;...X,M,V,N\) be
the EI"*! algebra over X, ..., X;;, M. Prove that

{uy..upA|Ae2M u, €2 r=1,2,.,n}
is the set of all V—irreducible elements in EX;...X,,M.

Exercise 5.19. Let X1, ..., X,,, M be n+1 non-empty sets and (EX;...X,M,V,N\) be
the EI"*! algebra over X1, ..., X, M. For Y/ (u1;...uniA;) € EXy.. X, M, let
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Pi={(v1..vuB) | B2 Aj,vy Cupiyr=1,2,....n} CEX;...X,M,
Si € Pi(i € I). Prove that # = ;<% is a standard minimal family of
Sici(uij...upiA;) in molecular lattice (EX;...X,M,V,A) .

Exercise 5.20. Let M be a non-empty set. If we define binary operations V, A\ as
follows. For EiGIAi’Z_iGJ B/ S EM,

DAVYBi= Y (AUB)),

icl = icl,jel

NAANY B =Y C=YA+) B

iel JjeJ kellJ iel JjeJ

Prove that (*EM,V,\) is a molecular lattice, in which for ¥,c;A;, ¥ ;c; B; € EM,
YicrAi < X jcyBj if and only if for any B; (j € J) there exists Ay (i € I) such that
Bj DA

Exercise 5.21. Let X be a non-empty set. Let (*EX,V,A) and (*E*X,V,A) be the
*EI algebra and *E*I algebra over X. Show the following assertions hold.

(1) The sublattices (SE*X,V,A) and (SEX,V, ) are isomorphism;
(2) The sublattices (*SE*X,V,A) and (*SEX, V, \) are isomorphism;
(3) The lattices (*EX,V,A) and (*E*X,V,\) are isomorphism.

Exercise 5.22. Let (L1,>),(Ly,>) be two lattices and f be an isomorphism from
Ly to L. Prove that for x € Ly, x is a V—irreducible element in L; if and only if f(x)
is a V—irreducible element in L;; and x is a A—irreducible element in L; if and only
if f(x) is a A—irreducible element in Lj.

Exercise 5.23. Let Xi,...,X,,,Y1,...,Y,,,M be n+ m+ 1 non-empty sets. Prove that
there is no isomorphism from (EY;...Y;,M,>) to (E*X;...X,,, >).

Exercise 5.24. Let X1, ..., X,, be n non-empty sets and (E*X...X,,,V,A) be the E*I"
algebra over X1, ..., X,,. Prove that the following assertions hold.

(1) If there exists ip € {1,2,---,n} such that |X;,| > 1, then (E*X;...X,, V,A) is not
a fuzzy lattice.
(2) Ifforalli€ {1,2,---,n} such that |X;| = 1, then E*X;...X,, is a boolean algebra.

Exercise 5.25. Let X be a set and M be a set of simple concepts on X. Let (M, 1,X)
be an AFS structure and ||.|| be a fuzzy norm of an AFS algebra. For any fuzzy
concept & € EM, let & (x) is the AFS algebra representation membership degree by

any one of (5.10), (5.12),(5.13) and (5.14). Prove that { ¢ (x) | & € EM} is the set of
coherence membership functions of the AFS fuzzy logic system (EM,V,A,) and

the AFS structure (M, 7,X).

Open problems

Problem 5.1. Let M be a finite set and k > 3. How many elements in C,(EM)?
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Problem 5.2. Let X, ..., X,,, M be n+1 non-empty sets and |M| > 1,n > 1. Whether
(SEX;...X,M,V,N) is a fuzzy lattice?

Problem 5.3. Let X;,X>,...,X, be n non-empty sets and (E*X;...X,,,V,A) be the
E*I" algebra over X1, ..., X,,. What are the algebraic properties of (SE*X]...X,,,V, \)
corresponding to those of the lattice (SEX]...X,, V,A)? i.e., the following problems.

(1) What are the set of all V—irreducible elements and the set of all A—irreducible
elements in the lattice (SEX|...X,,,V,A)?

(2) What are the set of all atom elements and the set of all dual atom elements in
the lattice (SEX;...X,,V,A)?

(3) Is the lattice (SEX]...X,,V,A) a fuzzy lattice?

Problem 5.4. How to explore other combinatoric properties of an AFS structure of
data considering combinatoric techniques? And is there any interpretation of these
combinatoric properties when applied to data analysis?
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Applications of AFS Theory



Chapter 6
AFS Fuzzy Rough Sets

In this chapter, in order to describe the linguistically represented concepts coming
from data available in a certain information system, the concept of fuzzy rough sets
are redefined and further studied in the setting of the Axiomatic Fuzzy Set (AFS)
theory. These concepts will be referred to as AFS fuzzy rough sets [32]. Compared
with the “conventional” fuzzy rough sets, the advantages of AFS fuzzy rough sets
are twofold. They can be directly applied to data analysis present in any informa-
tion system without resorting to the details concerning the choice of the implica-
tion ¢, r-norm and a similarity relation S. Furthermore such rough approximations
of fuzzy concepts come with a well-defined semantics and therefore offer a sound
interpretation.

The underlying objective of this chapter is to demonstrate that the AFS rough sets
constructed for fuzzy sets form their meaningful approximations which are endowed
by the underlying semantics. At the same time, the AFS rough sets become directly
reflective of the available data.

6.1 Rough Sets and Fuzzy Rough Sets

Rough set theory, proposed by Pawlak in 1982 [38] 39] can be viewed as a new
mathematical approach to represent and process vagueness. The rough set philoso-
phy dwells on the assumption that with every object of the universe of discourse we
associate some information (data, knowledge). Objects characterized by the same
information are indiscernible (similar) in view of the available information about
them. The indiscernibility relation generated in this way constitutes a sound math-
ematical basis of the theory of rough sets [41] 42| 44]]. As such, it has underwent a
number of extensions and generalizations since the original inception in 1982. Based
on the notion of a relation of being a (proper) part was proposed by Lesniewski [33]],
Polkowski and Skowron (1996 [43]) extended it to the system of approximate mere-
ological calculus called rough mereology. Dubois and Prade (1990 [6]) introduced
fuzzy rough sets as a generalization of rough sets. Radzikowska and Kerre (2002
[46]]) proposed (¢, t)-fuzzy rough sets as a broad family of fuzzy rough sets, which
are determined by some implication operator (implicator) ¢, and a certain #-norm.

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 227
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009
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6.1.1 Rough Sets and Their Equivalent Definition

We start with some preliminaries of rough set theory which are relevant to this study.
For details, the reader may refer to [20, [38] 40, 142]]. Pawlak derived the
rough probabilities by defining the approximation space o = (U,R) where U is a
finite nonempty set called the universe and R C U x U is an equivalence relation on
U, i.e., R is reflexive, symmetric, and transitive. R partitions the set U into disjoint
subsets. Elements in the same equivalence class are said to be indistinguishable.
Equivalence classes of R are called elementary sets. Every union of elementary sets
is called a definable set. The empty set is considered to be a definable set, thus all
the definable sets form a Boolean algebra. Given an arbitrary set X C U, one can
characterize X by a pair of lower and upper approximations. The lower approxima-
tion A, (X) is the greatest definable set contained in X, and the upper approximation
A*(X) is the least definable set containing X. They can be computed in the following
manner.

{x | Wr <X},
(X) {x | WenX # 2}, (6.1)

where, [x]r denotes the equivalence class of the relation R containing x.

Proposition 6.1. Let U be a set and </ =(U, R) be an approximation space. Then the
lower approximation A (X) and upper approximation A*(X) for any X C U satisfy
the following properties:

(1) A\(X) CX CA*(X )'
(2) Al(@) =A"(9) =2, A(U)=A*(U) =U;

(3) A(XNY)=A.(X)N A( ), A* (XUY) A*(X)UA*(Y);
(4) IfX CY, then A,(X) C A, (Y), A*(X) CA*(Y);

(5) A*(XﬂY)CA*( ) NA*(Y), A,(XUY) DA, (X)UA.(Y);
(6) A*(X') =A*(X), A(X) =A.(X);
(7) Ac(AL(X))=A" (AL(X))=A(X

(8) A*(A*(X))=A. (A*(X))=A"(X

An information system is viewed as a pair S =< U, A >, or a function
f:U xA —V,where U is a nonempty finite set of objects called the universe, A is
a nonempty finite set of attributes, and V stands for a value set such thata : U — V,
for every a € A. The set V,, is called the value set of the attribute a. An information
(decision) system may be represented as an attribute value (decision) table, in which
rows are labeled by objects of the universe and columns by the attributes. Any subset
B of A determines a binary relation Rg on U, i.e., Rg CUXU, called an indiscerni-
bility relation [44]), defined by (x, y) € Rp if and only if a(x) = a(y) for every a € B.
Obviously, Rp is an equivalence relation. The block of the partition of Rp, contain-
ing x will be denoted by [x]g = {y € X |(x,y) € Rg} for x € X and B C A. Thus
in view of the data we are unable, in general, to observe individual objects but we
are forced to reason only about the accessible granules of knowledge. Equivalence
classes of the relation Rp (or blocks of the partition) are referred to as B-elementary

);
)-
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Table 6.1 Hiring Process: An Example of a Decision Table

Diploma(i) Experience(e) French(f) Reference(r) Decision
X1 MBA Medium yes Excellent Accept
BY) MBA Low yes Neutral Reject
X3 MCE Low yes Good Reject
X4 MSc High yes Neutral Accept
X5 MSc Medium yes Neutral Reject
X6 MSc High yes Excellent Reject
X7 MBA High No Good Accept
Xg MCE Low No Excellent Reject

sets or B-elementary granules. In the rough set approach the B-elementary sets are
the basic building blocks (concepts) of our knowledge about reality. The unions of
B-elementary sets are called B-definable sets.

In many situations, the result of classification is provided and represented in the
form of some decision variable. Information systems of this type are called decision
systems. A decision system is any information system of the form D = (U,AU
{d}), where d ¢ A is the decision attribute. The elements of A are called conditional
attributes. For a decision system (U, AU{d}) we can induce the AFS structure (M4 U
My, t, U) where My and M, are the simple concepts associated with the attributes
in A and d, respectively.

In Table[6.1] a data table describes a set of applicants. The individuals x, X, ..., Xg
shown there are characterized by some attributes, i.e., A, a set of attributes, like
Diploma, Experience, French, Reference, etc. With every attribute a € A, a set of its
values is associated, i.e., V,, such as the values of the attribute Experience, V,={Low,
Medium, High }. In data analysis the basic problem we are interested in is to find
patterns in data, i.e., to find a relationship between some sets of attributes, e.g., we
might be interested whether an application is accepted depends on Diploma and Ex-
perience. A decision system is an information system of the form A = (U,AU{d}),
where d ¢ A is the decision attribute, e.g., attribute: Decision in Table The el-
ements of A are called conditional attributes. In the approximation space (U, Rp),
B C A, we can apply B-elementary sets to approximate a set of objects with the ex-
pected values of decision attributes, thus we can know that under which condition
is described by the granules of knowledge in (U, R4 ), the expected result is lead ac-
cording to the data in an information system. For instance, we might be interested
how to describe or interpret the conditions leading an application to accept accord-
ing to the data in Table[6.1] For X ={x1,x4,x7}, the set of accepted people, since both
A.(X) and A*(X) are the unions of the sets [x]p for x € U and every set [x]p has a
definite interpretation with the condition attributes, e.g., [x]y; ) is the set of objects
having the same values of attributes Diploma, Experience as x, hence A, (X) and
A*(X) can be applied to build the relation between the decision attributes and the
condition attributes. It is clear that [x]p = Naelxl{a) for any B C A. This implies
that the lower approximation and upper approximation of any set X C U are some
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unions or intersections of the sets in {[x]{a}\a € B, x € U}, i.e., they are members
of the Boolean algebra generated by the family of sets {[x]{q|a € B,x € U}.

Following the above discussion, we observe that the rough sets defined by an
equivalence relation (6.1)) have raised some difficulties when being directly applied
to the above information systems. Thus, we give the following equivalent definition
of rough sets which relies on a family of subsets of U. This definition is also helpful
to expand the concept of rough sets to fuzzy rough sets.

Definition 6.1. Let U be a set and A be the set of some Boolean subsets of U.
The upper approximation (denoted by $*(X)) and lower approximation (denoted by
S.(X)) of X CU inregard to A is defined by:

s =UJés, s0)= U & (6.2)

xeX x€U,0,CX

where x € U, 6, €A™, 8, is the smallest set containing x, A~ be the set of all sets
generated by the sets in A, using set intersection N and complementation ’.

Because 0, is the smallest subset in A~, §, is a description of x using Boolean
concepts in A~ such that x can be distinguished among other elements in X at the
maximum extent. If for any x € U, y(x)= 0y, then y is a mapping from U into A~
and y determines a classification of U (i.e., x, y € U, x, y in the same class if and
only if y(x) = y(y) or 6,=0,). The equivalence relation which corresponds to the
classification induced by A is denoted as Ry and [x]x={y | (x, ¥) € Ry }. We can
prove that for any x € X, [x]4 =0 as follows. For any y €[x],, since §,=8,, hence
y €0,. This implies that [x]4 CJ,. Assume that there exists z €8, such that z ¢[x],,
i.e., 0x #0;. Since §; is the smallest set containing z, hence for z €6,NJ,, we have
0,N6,=08,, i.e., Ox 20 and x ¢5,. This implies that x €6,NJ’. €A, contradicting
that J, is the smallest set containing x. Thus, for any x € X, [x]4=06,. Therefore the
rough sets defined by (6.1) in the approximation space &/ = (U,R, ) are equivalent
to that defined by (&.2).

In practice, the attributes or features of many information systems may be de-
scribed by real numbers, Boolean variables, ordered relations or fuzzy ( linguistic )
labels. Thus in this chapter we expand Definition[6.Ilto fuzzy sets, i.e., A is a set of
fuzzy linguistic terms in the framework of AFS theory.

6.1.2 Fuzzy Rough Sets

Since the initial concept of rough sets theory, the extension of this fundamental
idea to a fuzzy environment has been a topic of study. In real world applications,
some attributes are often measured in a continuous domain and their values are
described according to a partition of this domain, which is discretized making use
of intervals, linguistic terms or ordered relations. The application of rough sets to
data analysis will depend greatly on the values taken by the limits that define these
intervals. Smoothing these limits through membership functions of fuzzy sets could
be a viable alternative to improve the system’s robustness to small variations in the
collected data.
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In practice, the fuzzy partition can be constructed using any clustering technique.
Constructing fuzzy similarity relations for the most general type of fuzzy data de-
scribed by [8] proceeds as follows: In a dataset of N samples, sample x; (i € [1,N])
is described by N features, while the value of each feature j is expressed by a set
of Ny; grades of membership, ul:’k (k=1,...,Nrp), to Ny linguistic labels. Thus,
sample x; can be characterized with the aid of the following values:

X = [(yi117...,ui1NLL)7...,(uijl7...,uijNLL),...7(usF1,...7usFNLL)L (6.3)

wherei=1,....,N;j=1,...,Np.

All of “conventional” fuzzy rough sets are based on the same concept: the sub-
stitution, in Pawlak’s original set approximation definitions of the Boolean equiv-
alence relation R by a fuzzy relation S, on which several conditions are imposed.
The most general approach, as provided by Greco et al. [17] only requires that S be
a reflexive fuzzy relation (S(x,x) = 1). Further restrictions are imposed by Dubois
and Prade [5}[6]], who demand that S be a T -similarity relation, i.e., a fuzzy relation,
S:U x U — [0,1] for which the following conditions should hold:

(1) Forany x € U, S(x,x) = 1; (Reflexivity)
(2) Forany x,y € U, S(x,y) = S(y,x); (Symmetry)
(3) Forany x,y,z €U, S(x,z) > T(S(x,y),S(3,2))- (T-transitivity)

Here, T is a t-norm, that is, a commutative, monotonic and associative aggre-
gation operator, T'(x,y) : [0,1] x [0,1] — [0, 1], that satisfies the boundary condi-
tion T'(a,1) = a. If T is the minimum operator, then this definition coincides with
Zadeh’s original expression for similarity relations [53].

Instead of directly substituting R with a fuzzy relation, its set of equivalence
classes (quotient set), U/R, can also be replaced by a family ¢ of fuzzy sets
Fi,F, ..., F,, for which it is usually required that they form a weak fuzzy partition,
that is, the following conditions should be satisfied: for any x € U,

(1) inf max up(x) >0,
(2) For any i, j, supmin(ur, (x), tr; (x)) < 1,
xeU

where ur (x) is the membership function of fuzzy sets F, i = 1,2,...,n. The first
requirement ensures that ¢ covers all elements of U, while the second one imposes
a disjointness condition to be satisfied between the elements of F;.

Using either a fuzzy similarity relation, S, or a weak fuzzy partition, ¢, the fol-
lowing three approaches have been proposed:

(1) Approach based on possibility theory (Dubois, Prade and Farinas del Cerro).
This is probably the most cited approach to Fuzzy Rough Sets, which was intro-
duced in the seminal papers [5} 6} [9]. According to this proposal, if F represents
a fuzzy set with membership function ur and S is a fuzzy similarity relation
(which here is assumed to be reflexive, symmetric and T-transitive) with mem-
bership degree (is(x,y), then the upper approximation and lower approximation
of F in regard to S can be calculated as the degrees of necessity and possibility
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of F (in the sense of Zadeh [4][54]]) taking as referential the equivalence classes
of S. These approximations are

Ps=(r)(x) = Slelgmiﬂ(NF(Y),Ns(x7Y))a (6.4)
s, () (x) = jggmaX(NF()’)a 1 — ps(x,y)). (6.5)

If S is Boolean, the reflexivity, symmetry and T-transitivity requirements would
make it a Boolean equivalence relation (Note that this does not depend on T').
These equations would then be reduced to Pawlak’s original definitions.

Greco et al. [17] presented a fuzzy extension of Slowinski and Vanderpooten’s
proposal in which only Boolean reflexive relations were used (as opposed to
Pawlak’s equivalence relations). According to their proposal, if T (x,y) represents
a r-norm, C(x,y) its associated #-conorm, N(x) is a negation operator, S(x,y) a
fuzzy reflexive relation (which does not have to be symmetric or transitive), and
F afuzzy set with membership function pr(x,y), then the upper approximation
and lower approximation of S can be defined as

ts+(ry(x) = Cyeu T (Ur (¥), Hs(x,y)), (6.6)
s, (r)(x) = TevC(ur (), N(Us(x,y)))- (6.7)

We can see that these formulas become Dubois and Prade’s expressions (Eqgs.
(6.4) and (&.3)) when T and C represent the standard intersection and union op-
erators (minimum and maximum) and § is also symmetric and transitive for a
certain #-norm, N, which does not necessarily have to coincide with 7. Using
logic transformations, these equations can also be expressed in terms of -norms
and related implication operators. Based on this, Radzikowska and Kerre have
carried out an exhaustive formal study on the theoretical properties of these fuzzy
rough sets [46].

Ziarko’s Variable Precision Rough Set model [56], can also be introduced in
Dubois and Prade’s Fuzzy Rough Set framework. To do this, Eqs. (€.4) and (6.3)
should be rewritten in the following form: for any x € U,

ax(ur (x), Is(r) (%)), (6.8)
in(uF (x)7IS*(F) (X)), (6.9)

s+ (F) (x) =
Us, (F) (x)

m.
m
where

Lo+ = i

s+ (F) (%) max, min(ur (), hs(x,)),

I, (7 (x) = min max(ur(y),1 — ts(x,y))

yeU (y#x)

Is, () (x) is an index that expresses the degree of inclusion of all similar objects
to x in the fuzzy set F. In the same fashion, I (s (x) expresses the degree of
inclusion of at least one similar object to x in F'.
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It may be noted that the mere presence of only one sample that is very similar
to x but has low degree of membership in F* will force /g, () (x) to be low and x
will be considered to be excluded from S, (F). In the same way, only one sample
that may be very similar to x but has a high degree of membership in F* will
cause a high value of I () (x). If the cardinality of the dataset is high, this single
sample may be the result of noise or an error in classification. In this case, the
values of membership calculated for Ig, () (x) and I, (r)(x) may not be adequate
for further decision making.

In order to deal with this limitation, Salido and Murakami in [§] have de-
veloped the concept B-precision aggregation operators. These aggregators allow
for some tolerance to distorting values in the aggregation operands when the car-
dinality of the aggregated values is high. The properties associated to this con-
cept were characterized in [[10]. Its application to -norms and 7-conorms results
in what are called B-precision quasi-z-norms and B-precision quasi-f-conorms,
whose formal definition can be found in [10]]. Therefore, Salido and Murakami
proposed to extend Ziarko’s Variable Precision Rough Set Model to the Dubois
and Prade Fuzzy Rough Set framework by extending the maximum and mini-
mum operators used to calculate the inclusion indexes of Egs. (&.3) and to
their B-precision counterparts, maxg and ming as follows:

IS* (F)B ()C) = maxﬁyeu(y#x) min(uF (y) ’ [.ls(.x,y))
Is,(r) (x) = ming ., max(pr(y), 1 = ps(x,y))

Dubois and Prade’s lower and upper approximation equations can then be ex-
pressed in the -precision context as follows: for any x € U,

Hse(F), (x) = max(Ur (x), Is- (), (%)), (6.10)
s, (p), (x) = min(pr (x), Is, (), (x)- (6.11)

In the practical implementation of these formulas, adequate values for 8 could
be around 0.98 or 0.99, which allow for a 1-2 % of noisy operands in the aggre-
gation process. However, the optimal value of § will depend on the problem’s
domain and the accuracy of the description of the attributes. The maximum value
to which 8 can be set (which should determine the generalization capability of
this approach) will also depend on these circumstances.

(2) Approach based on fuzzy inclusions (Kuncheva and Bodjanova). Kuncheva
and Bodjanova [2] give new definitions of Fuzzy Rough Sets. Both approaches
deal with the approximation of a fuzzy set in terms of a weak fuzzy partition,
for which they use different measures of fuzzy set inclusion, many of which
have been studied in [3]]. As to the generation of the weak fuzzy partition from
a set of fuzzy data, Kuncheva does not impose any restrictions on how this is to
be done: she implies that this can be resolved through fuzzy clustering or any
other technique like, for example, the generation of fuzzy equivalence classes
from a fuzzy similarity relation. Bodjanova, on the other hand, generates fuzzy
partitions using unions and intersections of the fuzzy features measured in the
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data. This way of resolving a rough set analysis of fuzzy data through degrees
of inclusions of fuzzy sets can also be considered to be an extension of Ziarko’s
Variable Precision Rough Set Model [36].

(3) Approach based on «-levels of fuzzy sets (Yao and Nakamura). First Naka-
mura [35][36]], and later on Yao proposed a rough set analysis of fuzzy data
through the application of Boolean rough set theory to the a-levels of a fuzzy
similarity relation obtained from this data. The computational complexity of this
approach increases with the level of resolution with which the o-levels of the
fuzzy similarity relation are formed.

In practice, the implementation of all three approaches requires a prior determi-
nation of a fuzzy similarity relation or a partition of fuzzy similarity classes, and
the choice of a certain implication operator ¢ operator and the -norm. Those com-
ponents are determined on a basis of some available experimental data. The fuzzy
partition can be obtained using any clustering technique applied to these data. The
construction of fuzzy similarity relations for some general type of fuzzy data has
been described in [8]. The fuzzy similarity relation matrix S=(s;;), sij=ts(xi, X;),
formed on the data set X={x,x,. .., x, }, can be derived or constructed by means of
various optimization mechanisms such as, e.g., Fuzzy C-Means (FCM), k-NN fuzzy
clustering algorithms or some aggregative algorithms such as the one presented by
Salido and Murakami [8]. The similarity relation S obtained in this manner might
not exhibit any semantics with well-defined linguistic labels formed for each fea-
ture (attribute) shown in (@.3). Thus the upper approximation $*(F) and lower ap-
proximation S.(F) of a fuzzy set F based on S are just the numerical membership
functions, and the semantic relationships between the linguistic labels and F', which
is acceptable by being comprehended by humans, might not be clearly expressed.

As discussed in the above section, let D = (U,AU {d}) be a decision system,
where d ¢ A is the decision attribute. The elements of A are conditional attributes.
For a decision system (U, AU{d}) we can induce the AFS structure (Ms UM, T,
U) where M4 and M, are the simple concepts associated with the attributes in A and
d, respectively. The AFS fuzzy rough sets support the determination of fuzzy sets
in EM 4 that are used to approximate a given fuzzy set yeEM, by the AFS algebra
E(MyUMy). It is worth noting that in comparison with the forenamed conventional
fuzzy rough sets, the AFS fuzzy rough sets can be directly applied to process data
in the information systems without explicitly using the implicator ¢, a #-norm and
a similarity relation S. The upper and lower approximation S*(F) and S.(F) of a
fuzzy set F in EM; are fuzzy sets in EM4 which have well-defined semantics with
the simple concepts on the conditional attributes. AFS fuzzy rough sets approximate
a given fuzzy concept on the decision attributes using the fuzzy concepts on the
condition attributes. Thus, adhering to existing data in an information system, AFS
fuzzy rough sets can offer semantically meaningful interpretation for the conditions
under which some expected result may lead to. They are essential in knowledge
engineering, decision-making and intelligent systems, in general as pointed out in
the context of computing with words [53].
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6.2 Fuzzy Rough Sets under Framework of AFS Theory

In this section, we introduce AFS fuzzy rough sets by expanding Definition
to fuzzy sets, i.e., we apply a set of simple concepts associating to the condition
attributes to approximate a fuzzy set, which associates to the decision attribute and
is given in advance, to describe the decision result in a data under the framework of
AFS theory.

6.2.1 AFS Structure of Information Systems

Many information systems involve a mixture of quantitative and qualitative feature
variables like those shown in Table[6.J]and Table 1] Besides quantitative features,
qualitative features, which could be further divided into nominal and ordinal fea-
tures, are also commonly seen. The information systems described by information-
based criteria such as human perception-based information, gain ratio, symmetric
uncertainty, order are regularized to be the AFS structures by the two axioms in
Definition Thus the fuzzy concepts, membership functions and fuzzy logic on
the raw data can be explored by the AFS theory using the AFS structure of the
data.

Let D = (U,AU{d}) be a decision system shown as Table [6.1] and M be a set
of some fuzzy or Boolean concepts on U. Every m € M associates to an attribute
a € AU{d} and by the values a(x), a(y) € V,, one can compare the degrees of x,
y € U belonging to m. For example, let m be the fuzzy concept “Low Experience”
which associates to attribute e € A, i.e., e: “Experience”. By V,={Low, Medium,
High } and the attribute value ¢(x) shown in Table[6.1] we can construct the binary
relation R, defined by Definition 4.2] as follows:

(x, X) € Ry, if e(x)=Low or Medium;
(x,y) € Ry, forany y € U, if e(x)=Low;
(x,y) € Ry, if e(x)=Medium, and e(y)=Medium or High.

For Boolean concept m: “French-yes” which associates to attribute f € A, i.e., f:
“French”, R,, is constructed as follows: (x, y) € R, for any y € U, if f(x)=yes.
Similarly, we can construct R,, for each concept m € M={m1, e, M3 } according
to the information system f: U x A — V, where m;: MBA 1, my: MCE i, m3: MSc i,
my: Low e, ms: Medium e, mg: High e, my: yes f, mg: No f, mg: Excellent r, m:
Neutral r, my1: Good r, m>: Accept d, m3: Reject d. By Definition one can
verify that each concept in M is a simple concept. Thus the information system can
be represented by the AFS structure (M, 7, U) using (@.26). Let M4 and My be the
sets of simple concepts associating to the condition attributes in A and the decision
attribute d, respectively. We apply fuzzy concepts in EM4 to approximate a given
fuzzy set yeEM, in order to know that under what condition is described by the
fuzzy concepts in EM4, the expected result 7 is lead according to the data in an
information system.
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6.2.2 Representations of Fuzzy Concepts in the Information
Systems

In the decision system D = (U,AU{d}), where d ¢ A is the decision attribute, we
always need to learn the conditions which can lead to a decision ( result ) which
may be represented by a fuzzy or Boolean set with given membership function u :
X —[0,1]. For instance, in Table [6.1] the decision is “accept”. In order to study the
E*I algebra represented fuzzy concept approximations of a given fuzzy or Boolean
set representing a decision result, we transfer a fuzzy set with given membership
degrees in the interval [0,1] into a fuzzy set with membership degrees in the E*I
algebra as follows. Let X be a set and .# (X) = {n|uy, : X — [0, 1]}. For 6 Z(X),
the E*I algebra represented membership function of the fuzzy set 6 is defined as
follows: for any x € X,

0(x) =0(x) € E*X, (6.12)

where

J{yeX | uo(y) < po(x)}, Ho(x) #0
Bx) = { 2, Ho(x) =0

Thus for any fuzzy set 0 € .% (X), the lower and upper approximations of 6 under
the meaning of the E*I algebra represented fuzzy sets defined by (5.13) can be
studied via the lattices EM and E*X.

Let S C2¥ be an o-algebra over X and m,, be a measure on S with 0 <m,(A) < 1
forany A € S,

_ ZXEA p (x)
ZxGX p(x) ’

which is defined as Definition 5.6 for the map p : X — R* = [0, ). From Propo-
sition [5.7] the fuzzy norm of the lattice E*X can be constructed by measure m,, as
follows. For ¥,c;a; € E*X,

mp(A) (6.13)

1 X ail| = sup{mp (a;)}

icl iel

and for any fuzzy concept § = Y;c;(ITnea,m) € EM, its membership function is
defined as follows: for any x € X,

e (x) = X AT )l = S_lely{mp (A7 (x))}- (6.14)

icl

From Theorem[3.6 one knows that the membership function of fuzzy set 6 defined
by the formula (&.14) is the coherence membership function of the AFS fuzzy logic
(EM,V,\,) and the AFS structure (M, 7,X).

We can verify that the above m,, for the function p is a measure over X by Def-
inition p (x) may have various interpretations depending on the specificity of
the problem at hand. For instances one can allude to what we have discussed in
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Chapter 4, 5. In general, p(x) weights how essential is the relationship of the sam-
ple x to the category of concepts under consideration. Later on we show how to
derive the weight function p(x) from a given membership function of a fuzzy set in
order to study the lower and upper approximations of this fuzzy set.

Given @.27), we know that in (6.14), AT(x) C X is the set of all elements
in X whose degrees belonging to [],,c4,m are less than or equal to that of x.
A](x) = Nieai {m}*(x) is determined by the semantic meanings of the simple con-
cepts in A; and the distribution of the original data. In general, the larger the set
Af(x), the higher the degree x belonging to [],c4, m if all elements in X have the
equally essential relation to the considering group of concepts, i.e., for any x, y € X,
p(x)=p(y). For x € X, if x has so limited relationship with the considering group of
concepts that whether or not they are included in A} (x) has not significant influence
on the evaluating the degree of x belongingness (membership) to [,,ca, m- Then
p(x) should be very small or practically be equal to 0. Since AT (x) and AT(y) are
independent on p(x) and p(y), hence p(x) > p(y) does not mean that AT (x) D AT (y)
or m(Af(x)) > m(A](y)). In other words, the more essential a sample is does not en-
tail that the degree of the membership to the fuzzy concept in EM is always higher.
In other words, p(.) weights the referring value of each sample in X for the deter-
mining of the membership functions of fuzzy concepts in EM.

In the decision system D=(U, AU{d}), for a fuzzy concept v with the member-
ship function uy (x): X —[0,1], which is given in advance to describe the decision
results in a data, we find the interpretations or descriptions with the fuzzy concepts
in EM4 for v, where M} is the set of simple concepts on the condition attributes.
We can explore the lower and upper approximations of v under the membership
degrees defined by (3.13) and via the AFS algebras EM and E*X. Further-
more, if we can construct a function p : X — [0,ee) for the measure m,, such that the
membership function of v defined by (6.14) is equal the given gy (x), then the lower
and upper approximations of v under the membership degrees defined by (6.14)
can be explored. In what follows, we find p, which is induced by t,(.) satisfying
Wy (x)=my(v(x)), for any x € X. Let X be a finite set and u, (X)={y=uy(x) | x € X }.
Let

[.lv(X) = {y17y27'“7yn}

and y; < y; for any i < j. For any u € X, py(u) can be obtained by solving the
following equation:

Z pV(u) = ,LLV(X), xeX,

uev(x)

Following this expression we derive

Yk —Yi—1 = z pv(u), k=2.3,... n,
uepy ! (i)

where i, ! (y) = {x € X | y(x) = y}. Considering for any u €u;, ' (y1), ty(u) =y,
let the weights of all u €u;, ! (y;) be equal. Therefore we have
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Y1 i
_ ) wtonl Py (x) =1

R 6.15
o { Iﬁ;‘}&;w ty(x) =y, 2<k<n (6.15)

and Y, cxpv(#) = y,. Thus the membership function py(x) is represented by the
measure my as follows: for any x € X

Uy (x) = yomy (v(x)), (6.16)
where for any A € 2%, A # &,

_ Zu APV(”) _ 2 APV(”)
mv(A) - ZLEXPV("‘) - Eyn

is expressed by (6.13) for function p, and
yn =max {y(x) | x € X}. (6.17)

Example 6.1. Let us consider the Japanese Credit Screening data [34]. Here the
number of instances is equal to 125 where each of them is described by 17 features.
The first 12 features are Boolean while the remaining ones assume real values. Let
U={x1, x2, ..., x125} be the set of the 125 instances, from the samples x| to xgs
are examples of positive credit (positive credit decision) and xgs to x125 are nega-
tive credit samples. Let M={mj, my, ..., mas} be the concepts formulated on the
attributes of the information system < U,A >.

On each of the first 12 features, two concepts are chosen and the semantic meanings
of m to my4 are shown as follows:

my: positive credit, my: negative credit; m3: jobless, my: no jobless; ms: purchase
pc, mg: no purchase pc, my: purchase car, mg: no car purchase ; mg: stereo pur-
chase, myg: no stereo purchase ; my: purchase jewelery, mi,: no purchase jewelery;
my3: purchase medinstru, mi4: no purchase medinstru; mys: purchase bike, mig: no
purchase bike; my7: purchase furniture, mg: no purchase furniture; myg: male, myy:
female; my1: unmarried, moyy: married; mys: located in problematic region, mp4: lo-
cated in non- problematic region.

For each of the features (from 13 to 17", in order to describe the concept “pos-
itive credit”, we choose four fuzzy concepts with the following semantic meanings
to express linguistic labels “large”, “not large”, “middle”, “not middle”.

For the 13th feature (age) we choose mys: old, mag: not old, mss: average age,
m3g: not an average age. On the 14th feature which is the amount of money in the
bank we choose my7: more money on deposit in the bank, myg: not more money in
the bank, mz7: the amount of money in the bank about average, msg: the amount of
money in the bank not about average. On the 15th feature which is “monthly loan
payment amount” we choose myg: loan payment amount large, mso: loan payment
amount not large, msg: loan payment about average, myg: loan payment not about
average. For the 16th feature viz. “the number of months expected to pay off the
loan” we choose m31: expected to pay off loan more, mszy: expected to pay off loan
not more, myy: expected to pay off loan about average, mysy: expected to pay off
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loan not about average. For the feature 17th the number of years working at current
company we choose m33: the number of years working more, msy: the number of
years working not more, ma3: the number of years working about average, myy: the
number of years working not about average.

By Definition[£2] we can obtain R,,, the binary relation for every m € M by com-
paring the degree of each pair of persons belonging to m according to its underlying
semantics. To show that, as an example consider ms7: “the amount of money on
deposit in bank about average”. The average deposit in bank of all samples in U is
69.46. Let deposit, denote the amount of money deposited in bank of the given sam-
ple x € U. Then (x, y) € R, if and only if |69.46 — deposit,| < [69.46 — deposity)|.
Making use of Definition 4.3 we can verify that each m € M is a simple concept.
(M, 7, X) is an AFS structure if 7 is defined by @.26) as follows: for any x;,x; € U,

T(xi,x;) ={m | me M, (xi,x;) € Rn}. (6.18)

Let S=2Y be the o-algebra over U. Let v be a given fuzzy set on U, for x € X,
Wy (x)=1, if sample x comes with a positive credit decision, otherwise tt, (x)=0.15
to stress that v be a fuzzy concept here. Any small number can be associated with
the negative samples. By (6.13), we have py(x)=0.85/85=0.01 if sample x comes
with a positive credit decision, otherwise p (x)=0.15/40=0.0037. The positive credit
samples have higher weight than the negative ones and our intent is to stress the
importance of positive samples.

Thus we are able to construct p, for the measure mp, defined by (6.13) and
then apply (©.14) to determine the membership function for any fuzzy concept
in EM. Since (EM, A, V,' ) is an algebra system, i. e., EM is closed under the
fuzzy logic operations A, V, ’, hence for any fuzzy concepts o, BE€EM, the mem-
bership functions of their fuzzy logic operations, fynpg(x), Heyp(x) and Ue(x)
are also well defined by (6.14). Figures - show the membership func-
tions of fuzzy concepts o,y , o A ¥, respectively, where oi=m m3 + mjgmssmaqy +
momymy3, Y=maomy3 + miegmssm; €EM. ¥ is the negation of the fuzzy concept
v (refer to ). By inspecting the plots in Figure one cannote that for
most samples x, L ng(x) = min{ g (x), g (x)} however for few samples we have
Honp(x) < min{ply(x), Ug(x)}. By Theorem we know that the membership
functions defined by (6.14) are coherence membership functions, hence for any
X €X, Ugpp(x) < min{piy (x), g (x)} because of Proposition .2l This implies that
in the AFS fuzzy logic tq(x) and pg(x) are not sufficient to determine f4,g(x),
which is the membership degree of x belongingness (membership) to the conjunc-
tion of the two fuzzy concepts o, 8, and {1 4p(x) is determined by the distributions
of the original data and the semantics of fuzzy concepts themselves. This stands in
contrast with the existing fuzzy logic systems equipped by some #-norm, in which
Honp(x) =T (e (x), up(x)) is fully determined by the membership degrees i (x)
and ug(x) and is independent from the distribution of the original data.

Hence, the constructed membership functions and the logic operations in the AFS
theory include more information about the distributions of the original data and
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the underlying interpretations., i.e., They veritably reflect the logical relationships
among the fuzzy concepts described by given data.

Again by inspecting Figure[6.2] we note that for any sample x, one of the follow-
ing three situations may occur:

My () +py ()=1, oy () +y (x) <1, py(x)+py (x) > 1,
where V' is the negation of y. This situation emphasizes that in the AFS fuzzy logic
the knowledge of the membership t1y(x) is not sufficient to determine the value of
the negation, that is u, (x). As before the distribution of the original data influ-
ences the degree x belongs to ¥ and y. For example, if { is the fuzzy concept of
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the form: “beautiful car” and x is a person, then f¢(x)+p ¢ (x) < 1 and the differ-
ences of the degrees of x belonging to {’ and { may be not too much significant,
or some x may belong both to the concept of “beautiful car” and the concept “not
beautiful car” to a very low degree. In other ways, ¢ (x) + g (x) < 1if x cannot
be distinguished when considering the terms of a beautiful car and a car that is not
beautiful. Thus in practice, the sum of the degrees of an element belonging to the
fuzzy concept and its negation may not be equal to 1. In general, for a two-valued
concept Vv, Uy (x) + Wy (x) always equals to 1 and for simple concept & the sum,
He (x) + per(x) might be almost equal to 1, however for some complex concept 7
like ¥, the fiy (x)+Ly (x) can assume values that could be larger or lower than 1. It is
the vagueness of the concept 1] that breaks the fundamental law of excluded middle.
A systematic comparison between AFS fuzzy logical systems and the conventional
fuzzy logic equipped by some 7-norm still remains as an open problem.

Again, let us emphasize that in fuzzy logic systems equipped by some negation
operator N, we have [1,(x) = N(iy(x)) and the value of the complement is fully
determined by the membership degree ty(x) and becomes independent from the
distribution of the original data and the relationship between x and the semantics
of 7.

6.2.3 Definitions of AFS Fuzzy Rough Sets

Since AFS fuzzy rough sets as a generalization in the sense of Definition are
based on the set inclusion relation “C”, hence in what follows, we define four types
of set inclusions according to the representations of the fuzzy concepts in the frame-
work of the AFS theory.

Definition 6.2. Let X be a set and M be a set of simple concepts on X. Let (M, 7, X)
be an AFS structure, S be a o-algebra over X and p be a weight function X —[0,e0).
The EI algebra inclusion “Cg;”, the EI1I algebra inclusion “Cgy;”, the E*I algebra
inclusion “C ;" and the inclusion with the weight function p “C,” as follows:

(1) o Cgr B < a<finlattice (EM,V,N), for o, € EM,

2) a Cen B VxeX, o(x) < B(x)inlattice (EXM,V,N), a(x), B (x) are the EIT
algebra represented membership function of fuzzy concepts o, 8 € EM defined
as (5.10);

(3) a Cpyy B & Vxe X, a(x) < B(x) in lattice (E*X,V,A), a(x),B(x) are the
E*I algebra represented membership function of fuzzy concepts o, 3 defined as
(G13) or (6.12);

@ aCpBe VxeX Uglx) < pgx),to(x), tg(x) are membership function
defined of fuzzy concepts ¢, B by (6.14) using the measure m,, defined by (6.13)
for weight function p or given beforehand as the fuzzy set on X (e.g., the fuzzy
set associating to the decision attribute in a decision system).

By Theorem[3.3] Proposition[3.4]and what is defined by (6.12)), we know that

oCpB=>alB=>0aCB=>a,p (6.19)
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for o, € EM and for any weight function p. This implies that the membership
functions of the fuzzy concepts in EM defined by (10), (Z13) and are
consistent, and they reflect the semantics of the concepts and the distributions of
the original data. We will define different AFS fuzzy rough sets based on these set
inclusions.

Example 6.2. Let X = {x|,x3,...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table there the number i in the “hair color” columns which corre-
sponds to some x € X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {my,my, ..., mjo} be
the set of fuzzy or Boolean concepts on X and each m € M associate to a single fea-
ture. Where m : “old people”, my : “tall people”, m3 : “heavy people”, my : “high
salary”, ms : “more estate”, mg : “male”, my : “female”, mg : “black hair people”,
mg : “white hair people”, myo : “yellow hair people”.

Let (M, 7,X) be the AFS structure of the data shown in Table [6.2] For simplicity,
let S=2X be the o-algebra over X and m, be the measure defined by for
p(x)=1, Vx € X. Let a=mpymzms + mymemy + nmpmg + nmpymzmy + maymsme my +
mamsmy + m3mams + mego, [3=m6mgm9 + mgms +my. By Theorem@]l we can
verify that & < 8. Thus by Definition[6.2] we have otC ;3. This inclusion relation
is determined in terms of the semantics of & and 3. Let v=mm; +mym7, y=m7mg +
msmymyg, {=myme + momz, E=mamimg + my mg + maymzmsmymyy €EM. Then by
the AFS structure (M, T, X), formula (5.13)) and Theorem [5.24] we can verify that
in lattice (E*X, Vv, A), for any x € X, v(x) <y(x), {(x) <&(x). Thus by Definition
we have v Cp4; v, § Cp#; &. This inclusion relation is determined by both the
semantic interpretations of ¢, B and the distribution of the original data shown in
Table [6.21 By Theorem 1] we have £<{ in lattice (EM, V, A). This implies that
& Cp#; ¢ and for any x € X, {(x)=&(x) in lattice (E*X, V, A) and p¢(x)=p¢ (x)
under meaning (6.14), in this case denoted as & =g+, , & =, {. Itis obvious that for

Table 6.2 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male female black white yellow
x1 20 19 90 1 0 1 0 6 1 4
x 13 12 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
xg 80 1.8 73 20 80 1 0 3 4 2
x5 34 14 54 15 2 1 0 5 2 2
x¢ 37 1.6 80 80 28 0 1 6 1 4
x7 45 17 78 268 90 1 0 1 6 4
xg 70 1.65 70 30 45 1 0 3 4 2
xg 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3
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nekEM,if E <n <, then & =p4; N =p#; § and & =, N =, {. The following Table
shows the membership functions of v and y defined by (6.14). By Table[6.3]and
Definition[6.2] one knows that v C p Y- This inclusion relation is determined by the
semantics of v and 7, the distribution of the original data and the function p which
expresses how much each x € X contributes to the concepts under consideration.

Table 6.3 Membership functions defined by (6.14)

fuzzy concepts X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
wy () 0 02 07 0 0 05 0 0 09 01
Hy(.) 0 0.6 1.0 0 0 1.0 0 0 1.0 0.2

Proposition 6.2. Let X be a set and M be a set of simple concepts on X. Let (M, 7,
X) be an AFS structure. Then the following assertions hold: for o, 3,v,n € EM,

(1) Forthe EI algebra inclusions
yCrro= o Cpry
YCer o, NCerB=yANCegranf, yvnCeraVvp

o0Cery, B<o=BCery
YCer o, o <P = yCgB;

(2) Forthe EII algebra inclusions

YCen o= o Cen Y

YCen o, N Ceu B = yANCenaAB, yVn Cepp oV
aCenY, B<oa=BCeny
Y<en o, a<B = yClenpP;

(3) For the E*I algebra inclusions

Y Cpr &, nQE#Iﬂ:>V/\TI QE#IOC/\ﬁv Yvn QE#IOC\/ﬁ
0Cp Y, B<o= B Cruy
Y Cp#p O, (XS[} :>7g5#1[3;

ForanyA, BC M, ifVx€ X, A" (x) CB*(x) = Zpea{m'}" (x) > Zpep{m'}*(x),
then

!/ !/
oCpy B=pB Cpy o,
where m' is the negation of the simple concept m € M.

Proof. (1) to (2) can be proved through the direct use of the definitions. Their proofs
are left to the reader.
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(3) For any x € X, o=Yc;(ITnecaim), B=X jc;(ITnepjm) EEM, if ¥;c;Af(x) <
3 jes B} (x) in lattice (EX, V, A), then for any i € I, Sk € J such that A7 (x) C Bf(x).
By the assumption, we have Y,,cq, {m'}* (x) > ¥,,cp, {m'}*(x). This implies that
for any x € X, there exists a map py [ — J, Vi € I, py(i) = k € J such that
Sea {im' Y (x) > Sep, {m'}"(x) in lattice (E*X,V, A). Thus for any x € X,

@H’”@‘"m)) () = Nier( X, {m}7(x))

meA;
> Neel( Z {m'}7(x))
mEBpy(i)
> Njer( Y {m'}¥(x))
mEB_,'
= (Z(HmeB_,-m)> (x)
jeJ
Therefore (ziEI HmeAim)/ QE#I (Zje/ HmeB.jm)/. O

In what follows, by making use of the four types of fuzzy set inclusions defined in
Definition[6.2] the four types of fuzzy rough sets ( AFS fuzzy rough sets) are defined
in Definition

Definition 6.3. Let X be a set and M be a set of simple concepts on X. Let A C EM,
Smemm € A, Yo € A, o € A. Let (A)g; be the sub EI algebra generated by the
fuzzy conceptsin A and p : X — [0, ). Let the fuzzy set inclusions “Cg;”, “Cg”,
“Cp#;” and “Cp” be denoted by “C;” where i denotes EI, E1I, E*I or p (in virtue of
Definition p induces a measure for the membership function defined by
). For any fuzzy concept YEEM or any fuzzy set y which is given in advance to
describe the decision result in an information system (under “C;”, i=E1, EIl, E*I or
p), the upper approximation and lower approximation (denoted as S*(y) and S.(7)
respectively) of y are called AFS rough sets with regard to the set of fuzzy concepts
A and defined as follows:

ssm= '\ B, Snm= N B (6.20)

Be(A)er, BSiy Be(A)er, Y<iB

Where (A )g; is the sub EI algebra generated by the fuzzy concepts in A. The AFS
fuzzy approximation spaces are denoted by A = (M, A), AP = (M, A, X), AE¥ =
(M,A,X) and AP = (M,A,p,X), respectively.

For the fuzzy concept y, the AFS fuzzy rough sets S*(y), S«(y)€EM with well-
defined semantic interpretations are the approximate descriptions of fuzzy concept
7Y using the given fuzzy concepts in A.
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6.2.4 Some Properties of AFS Fuzzy Rough Sets

In this section, we will prove that AFS fuzzy rough sets not only have all the prop-
erties of the “conventional” rough sets defined by (&.1)), but also are equivalent to
the rough sets defined (6.1)) if every concept in A is a Boolean one.

Theorem 6.1. Let X be a non-empty set and M be a set of Boolean concepts on X.
Then the rough sets in A" = (M, A, X), AE¥ = (M,A,X) or AP = (M,A,p,X)
defined by (6.20) is equivalent to the rough sets defined by (6.2) in Definition
(i.e., rough sets in the classic sense defined by (16.1)).

Proof. We just prove the theorem for AE/ and the others remain as exercises. Since
every concept in M is a Boolean concept, hence from Definition and formula
(GI3) and @.ID), either y(x) = X or y(x) = & in the lattice E*X, for any ycEM
and any x € X. It can be verified that {X, @}C E*X is a sub E*I algebra. If p:
{X, @}—{1,0} defined by p(X)=1, p(@)=0, then p is an E*I algebra isomorphism
from {X, @} to the Boolean algebra. Thus each fuzzy set in EM is degenerated to a
Boolean subset in X. Furthermore the fuzzy logic operations V, A,” in (EM, V/, A, ")
are degenerated to the set operations N, U, ’ and the inclusion “C g#/ 1s degenerated
to set inclusion “C”. (A)g; is the set of sets generated by sets in A, using Boolean
set operations N, U, ’. This implies that Vx € X, 6, €A~ C (A)gs (6, and A~ refer
to Definition [6.1)) and for any d €EM,

V B2 U 6. (6.21)

Be(A)er,BSd x€X,8:Cd
Since d C Uy O € (A)Es. Hence

N BclJé. (6.22)

Be(A)g.d<p xed

For any x € Vge(p),, pca B> 3B € A such thatx € B C d. This implies that 6, C d
and x € U,ex 5,cq Oy- Therefore

V B= U & (6.23)

Be(A)gr,BSd x€X,8:Cd
If there exists x € d such that,

&8¢ N B

Be(A)gr,d<p

then 3B € A such that D d and &,  B. One can verify thatx € 6,3 and 6, N €
A~. This implies that 6, N B is a proper subset of J,, contradicting the fact that
0, € A~ and 6, is the smallest set containing x. Therefore

A B=Ué (6.24)

BE(A)Er,d<p xed
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The following Proposition [6.3] prove that all properties (1)-(8) of the conventional
rough sets listed in Proposition [6.1] hold for the AFS fuzzy rough sets defined by
Definition[6.3]

Proposition 6.3. Let X be a set and M be a set of simple conceptson X. Let (M, 1,X)
be an AFS structure and A' be the AFS fuzzy approximation spaces defined by (6.20)
for i = ELLEII,LE*I,p. Then for any fuzzy sets a, B € EM or whose membership
functions are given in advance, the following assertions of AFS fuzzy rough sets
S*(a), S«(B) hold:

(1) S.(a) C; a C; S*ax) for i = EI,EILLE*I,p;

(2) S.(M) =M = S*(M) fori=EILEII.E*I,p;

(3) Si(Zpmemm) = ZmeMm:S*(ZmeMm)fori:ElvEII’E#I’p;

(4) Ifa C; B, then S.(ax) C; S. (,B)andS*(oc) C;S*(B) fori=EI,EIIl,E*I,p;

(5) S.(S:()) = S.(ax), S*(S*(t)) = S*(cx) for i = EI,EILE*I, p;
(6) S*(S.(ax)) = S.(), S.(S*(&x)) =S*(x) fori=EIEIIE*I,p;
(7) (§*(a)) =S.(a), (S«(')) =S*(&)fori=EILEI and o. € EM;
(S*(a')) = Se(a), (Si(a')) =S*(a) fori= E*I and o € EM provided that
forA,BC M, Vx €X,A%(x) CB™(x) = Tpea{m'}" (x) = Xpep{m'}*(x);
(8) Si(aAB)=S.(a)AS.(B), S*(aAB)C;S* () AS*(B) fori= EIEIIEI,p;

«( ), S*(aA
(9) S* (Vv B)=S*(a)VS*(B), Su(c)VS.(B)C;iSi(aVP)fori=EILEILE*Ip.

Proof. The proofs of (1)-(6) which remain as exercises can be proved directly by
the definitions and the theorems. The proof of (7) is completed as follows. First we
prove it hold for i=EI. Using formula @.19), for every fuzzy set oo € EM, we have

(5"()) = A B
Be(A)gr.0 CriB
- A i
Be(A)gr.0/ CeiB
— A i3
Be(A)prB Crra

= A y

Ye(A)ELYSEI®

= Si(a)

Similarly, one can prove that (S.(¢'))’ = S*(). In a similar fashion, one can prove
(7) fori = EII,E*I.
Let us present a proof of (8). For any fuzzy sets &, B € EM and i = EI, we have

Si(anB)= V r< \V  r=S.d(a).

YE(A)ELYSEI(QNB) Ye(A)ErYSEIO

Similarly, one can prove that S.(azAB)< S.(B). This implies that
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Si(aAB) < Su(o) NS« (B).

S.(0) NS.(B) = Voor|A AV
Ye(A)Er, Y<EIO ne(A)er, NSeB
= V yAn | < V g
Y, N€(A)er, Y<E10, NCEB Ce(A)Er, ECEranp
= S.(anp)

For any fuzzy sets o, BEEM, we have

S (aAB)= A < A r=5(w.

Ye(A)Er, (@AB)CEry ve(A)Er, aCEry

Similarly, we can prove that S*(aAB)< S*(B). Therefore S*(xAB)< S*(a)AS*(B)
and S*(/\B)C g7 S*(0OAS*(B).

For i = E*I, a, BEEM or whose membership functions are given in advance. We
have aABC;a and aABC; B. Tt follows by (4), S.(aAB)C; S«(c)AS«(B).

S.(0) AS.(B) = VoA (VA
Ce(A)Er, S0 ne(A)er, NS, B
= V CAn

§.ne(A)er, §Cp,0, NC o4 B

& \/ ¢

Ce(A)Er, ECpu,anB

= S«(anB)

Thus S.(axAB)=S.(x)AS.(B). By the similar method, we can prove that S*(aAB)C;
S*(a)AS*(B) and S*(aAB)C; S*()AS*(B). For i = EII, p, we also can prove them
in the same way as i = E*I. Therefore (8) holds.

The proof of (9). For i = EI and any fuzzy sets o, 3 € EM, we have

savp) =\ 7y

Ye(A)Er, Y<Ei(aVB)

> \/ y

Ye(A)Er, YCEIO

= S.(a).
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Similarly, one can prove S.(otV)> S.(B). Therefore S.(aVB)> S.(0)VS.(B) and

S*(OC)\/S*(B)QE] S*((X\/ﬁ)
For any fuzzy sets o, B€EM, we have

S*(avp) = A Y
Ye(A)Er, (aVB)CEry

ANy

Ye(A)gr, aCEry

= §*(at).

Y

Similarly, one can prove S*(ctV3)> S*(). This implies that S* (V) > S*(a) VS*(B).

§ () VS (B) = AN N A

ve(A)Er, aCEry ne(A)gr, BSem

= A YV

Y, n€(A)er, aCrry, BSEm

< A ¢

Ce(A)er, (aVB)CElC
— §*(aV )

Similarly, for i = EII, E*I, p, we can prove (9). ]

Proposition 6.4. Let X be a set and M be a set of simple concepts on X. Let (M,
T, X) be an AFS structure and S be a c-algebra over X and p: X —[0,). Let
ACEMand M, ¥,,cpym € A, Vo€ A, o' € A. Let AFl = (M, A), AFT = (M, A, X),
AET = (M,A,X), AP = (M,A,p,X) be the AFS fuzzy approximation spaces de-
fined by (6.20). For any YEEM or whose membership function is given in advance,
let

* * * # *
SEI(Y)? Sf[(}/)’ SEII(V)? Sf[l(},); E#[(V)a S*E I(Y); Sp(}/)a S’:(Y)

be the upper and lower approximations for y in AF!, AFIl AE'T AP, respectively.
Then in lattice (EM, A,V) the following assertions hold

# * * * *
S (y) <SE(y) <SET(p) < S2(y) <7< Sp(1) < Spn () < Sgu(¥) < Sr(y)
(6.25)

Proof. Since for o, BEEM, o0 Cg; B = a Cep B = o QE? B = a C, B, hence

(6:23) holds. O
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6.2.5 Algorithm of Approximating Upper and Lower
Approximations of Fuzzy Concepts

If there are a few fuzzy concepts in A, then S.(y),5*(y), defined by (€.20), the
upper and lower approximations for ye EM or whose membership function is given
in advance, can be easily determined. To determine S.(y), S*(y) given a large set
A becomes a challenging problem and quite often we have to resort ourselves to
some approximate solutions. An algorithm to determine S.(y), S*(y) forming the
approximate solutions to is outlined below.

Let (M,7,X) be an AFS structure of a given information system. In AFS fuzzy
approximation space AE = (M, A, X), AE"T = (M,A,X) or AP = (M,A,p,X).
Let yEEM or whose membership function is given in advance. For AE/ or AE™
suppose that Vx € X, Ja€ A, such that o(x) > y(x) in the lattice EXM or E*X,
where o/(x) and y(x) are the AFS algebra membership degrees of x belonging to the
fuzzy concepts o,y defined by (3.10), (313D or &I12). For AP, suppose that Vx €
X, Jae A, such that pg(x) > py(x), where fiq(x) and p,(x) are the membership
degrees of x belonging to the fuzzy concepts ¢, ¥ defined by (6.14).

e STEP 1: For each x € X, find the set B, C A defined as follows

BET = {oc A | afx) > y(x)}, in AFT (6.26)
BE = {a e A | a(x) > y(x)}, in AF, (6.27)
BY ={a €A | Uo(x) = py(x)}, in AP. (6.28)

Since for any x € X, Ja€ A such that or s (x) > ty(x), hence for any x € X,
B, # . It is clear that

BEN C BE C BP C A CEM.

In practice, each of BE/, BE'/ and B has a much lower number of elements than
the A.

e STEP 2: The approximate solutions to the upper approximations defined by
in AF11 AE" and AP are listed as follows.

Seum =V | N n|e@e, (6.29)

x€X \ neBEN

Se =V | N\ n]e@e, (6.30)

xeX TIGBE#I

Sp(v) = \/arg min {n|ug(x)>py(x)} €A (63D

xex ne(BE)er
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In what follows, we will prove that

S;(Y) (1), SE#I(V) < SE#I(V), Sen(y) < 5211(7)7
Sp(1) < Sp(¥) < Ser () < Seu(y).

That is, what are given in (6.29), (6.30) and (6.31)) are the approximate solutions
to the upper approximations of y defined by (6:20). Since BE! C BE" C B,
hence S;(}/) < Sp#;(7) < Spy(y). From Theorem 53] and Proposition B4, we
know that over the AFS structure (M, 7,X), for any given x € X, the maps p; :
EM — EXM, g, : EM — E*X defined as follows are homomorphisms from the
lattice (EM, A, V) to the lattice (EXM,A,V) and from the lattice (EM,A,V) to
the lattice (E*X, A, V), respectively. For any [],,c4;m € EM,

*
*
<,

Px [Z( I1 m)] = Y Af (YA € EXM,

i€l mecAi iel

qx [Z( I m)] = Y Af(x) e E*X.

icl mecAi iel

Hence by (6.26) and (&.277)), for any x € X we have

N nl@= A nkx=>rx), (6.32)
neBEN neBEl
A n|x@= A n&=>ryw. (6.33)
neBE*! neBE

This implies that for any x € X,

VI An]|®=V{[ A n&)|=rw,
xeX \ neBEll ] x€X \ neBEl

VI An)@=V{| A n)|&=rw.
xeX nEB,\E#I ] xeX nEBf#’

Furthermore, by Definition[6.2] we have

Y CEn \/ /\ n | €@ern

XEX \ neBEN

Y Cetr \/ /\ n|€A)ern

xeX n EBf#’
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It follows by Definition[6.3] we have S%, () < Sg#/(¥), Si;;(v) < Sgy(y). Since
for any x € X, Bf C A, hence (BY)g; C (A)gs and

& Sarg min N | pn(x) > py(x)} € (A (6.34)
neBL)er

For any x € X, we have
g (0) =ty &, (%) > by (x) = 7 Sp S, ().
By Definition[6.3] we have S () < S, (7). Thus we have

SH(Y) < S, (7) < Spwr (V) < Seu ().

Next, we find the approximate solutions to the lower approximations of y defined
by (6.20). For each x € X, since (6.32)), (6.33) and (6.34), the lower approxima-
tions of yin AE/, AE" AE*I should be searched in the following sets: DE/| DE'!
and Df? .

DIM=c&eMml&< N np S A,

neBEl
#
Dt =déeMmlE< N\ nyp S (A,
neBE!

DY ={8 €M)l & <&} S (A)er

. # .
Since Ayepenn = /\neBE#1 n > &, hence DE!! O DE'! O D In practice, D!

DE'! and D? have a much lower number of elements than (A )g;. Thus we have
the approximate solutions to the lower approximations defined by (6.20) in A/,

AE'T and AP listed as follows.
Sim =\ V.  n)e@, (6.35)
xeX nEDf\"r n<iy

for i = EII,E*I,p. It is clear that Si(}/) < S (y). We should note that for each
x € X,if n C; 7, then for any ¢ € D, ¢ < 1 in lattice EM,

svl V n)|= \V n
nebi, nC;y nebi, n<;y

By noting this, we can reduce computing overhead when looking for Si (7). Fur-
thermore \/, ¢ pi, nciyM> X € X can be computed independently which brings
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some thoughts about its potential parallel realization of the overall process. By
Definition[6.2] we know that for any weight function p

S (y) Cp SE(Y) Sp 7S 5(1) Sp S;(V)~

Thus we can apply this algorithm to find Si(}/)ﬁf(}/) being the approximate so-
lutions to (6.20) in AFS fuzzy approximation space A’ for i = EII, E*I,p.

In the following examples, Si(}/) and S (7) are found with the use of this algo-
rithm for i = EII, E*I,p.

Example 6.3. Let M={my, my, ..., mig} where m; to mj( are the same as presented
Example [6.2 while mg= m}, mi7 = mly, mig = mg, mis = mg, my3 = mg, myp= mj,
my = m). Here for m € M, m’ is the negation of concept m. According to Table
the AFS structure (M, T, X) is established by means of (£.26)). Let -algebra on
X be $=2% and the measure m be defined as m(A) = |A|/|X|, i.e., the weight function
px)=1,vx e X.

Suppose that y=mm7 + mymy + mym, €EM to describe some decision result in a

data shown as Table Then the set of simple concepts associating to condition

features is A=M—{m,, my, m7}. Running the algorithm presented above we obtain
E*I

S, (y) = mamamemgmomym3mie + m3mamemont oty 1m3me

+m3mamemomny | mM3M 16118 +HMIMAMEIMYIN | | 11311611117 ~+ M3M4MeNIQNL| 11112111316

+m3mamom oM 3msmeM | 7+M3mom oM 3m 5mie 7m g

+m3momyom M 3mysmehn 7 + Msmomy M 3Mms + Mo M 2m3mis

+mein5 + mamsmemghi M2 y7 + Msmeig + msmeii e + mMsmeni 3

+m3msmyiomys + msmgmiomis+msmoni oy s + msmionsnig

+msmyomismy7 +msmionsmie +msmyom3nmys +msmomanys +msnmiomins,

Sp#(y) = mamomyomyzmismigmyz + momyymyzmis + me + msmyomys.

# * .
The membership functions of fuzzy concepts Sf I(}/),S e#1(Y) € EM are shown in
Table[6.4] Since they are approximate solutions to (6.20) in AFS fuzzy approxima-

tion space AE"/, hence the results of the real solution of (6.20) should be better than
this.

# *
Table 6.4 The membership functions of S° 1(}/) and Sg#;(y) defined by

fuzzy concepts X1 X2 X3 X4 X5 X6 X7 Xg X9 X10
B, () 10 02 10 10 10 10 10 10 10 01
Uy(.) 0.3 02 07 08 0.3 0.5 0.5 05 09 0.1

,LLSE#,( )() 0.1 0.1 06 03 0.3 0.5 0.1 02 0.6 0.1
« Y
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6.2.6 Experiments

In this section, some experiments involving the Credit-Screening, Iris Data, the
Wine Classification Data, and Wisconsin Breast Cancer coming from the Machine-
learning database at University of California, Irvine [34] are presented to clarify the
concepts and properties of AFS fuzzy rough sets and demonstrate the computational
details of the approach.

A. Credit-Screening Data: Let (M, 7, X) be the AFS structure of the credit-
screening data established in Example and the c-algebra over X be S=2%. Let
us study the credit assignment problems using the data presented in Example
by viewing positive (samples 1 to 85) and negative (samples 86 to 150) instances
(that is people who were and were not granted credit). Let { be a fuzzy set de-
fined as follows. For x € X, u¢(x)=1, if sample x comes with a positive credit
decision, otherwise ¢ (x)=0.15 to indicate the membership degrees of negative
samples belonging to fuzzy concept “credit’. Any small number can be arranged
to each negative sample to show its extent belonging to “credit’. The differences
of membership degrees of positive samples and negative samples reflect the grades
we distinguish positive instances from negative ones. However, it is clear that the
larger the difference, the more difficult is to find the lower and upper approxima-
tion. Here if iy (x)=0.1 for the negative samples, then its lower approximation will
be difficult to determine following the algorithm presented here. By formula (6.13),
we have p¢(x)=0.85/85=0.01 if sample x comes with a positive credit decision,
otherwise p¢ (x)=0.15/40=0.0037. Let mg be the measure over o-algebra S for
p¢ defined as (&I3). If we view this as an information system, My = M—{m;,
my}, Mg={my, mp}, where m;: “positive credit” and my: “negative credit”. Let
A=M—{m, my}, then AP¢ = (M, A, pr,X) becomes an AFS fuzzy approximation
space in sense of definition given by (©.20). With the help of (&.31) and (€.33), we

*

obtain $°° (€), S, . (&), which are approximate solutions to (6.20) shown in Figure

0, S;g (§) € EM have 490 terms and 50 terms, respectively.

*
Sp (C) = M4msmgniohi2m4m61M181M20M211M24
+mamsmgmyon2Mm4my 618Nt Mo4

+mymsmgmgnmam4meh1gMooma M3 + ...

P

S:°(8) = mamomigmoomypmoams) + mamemgmomy4miomanms,

+mamemgnign6Mmi9Moam3| + MaMemgmomm g omoomsy + ...

*

As illustrated in Figure although SQC(C )’SPC(C ) € EM have a large number
of terms (490 and 50, respectively), they come with a well defined semantics ex-
pressed by the simple concepts in M shown in Example For instance, the
first term in S’:C (&) “mamomygmoomyimogms;” states that IF a person is charac-
terized as the one with “Job, purchase stereo, purchase furniture, female, unmar-
ried, located in no- problematic region, expected to pay off loan more” , THEN

the person is characterized by a positive credit score. The first term in S; ; &)
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Membership degree
[=}
o
T

Fig. 6.3 Membership functions of 87 ({),{ = credit7S;;C (9

“mymsmgmiomiymgmiemgmoomy myy” states that IF a person is described as
“job, purchase pc, no purchase car, no purchase stereo, no purchase jewel, no pur-
chase medinstru, no purchase bike, no purchase furniture, female, unmarried, lo-
cated in no- problematic region”, THEN the person has positive credit score.
Similarly, one can find the semantics of other terms in them. In the following
Example we will show the semantics of the lower and upper approxima-
tions using the concepts with few terms. Thus through the data given in Exam-
ple the concept “positive credit” formed on the decision attributes and which
is modeled by some fuzzy set is approximated by its upper and lower bounds

S(0),8p,(§) € E(M — {my,ms}).

B. Iris Data: The iris data set is one of the most popular data sets to examine the
performance of novel methods in pattern recognition and machine learning. Here
the number of instances is equal to 150, evenly distributed in three classes:1:50 iris-
setosa, 51:100 iris-versicolor, and 101:150 iris-virginica, where each of the sam-
ples is described by 4 features: sepal length, sepal width, petal length, petal width.
A=M={m, my, ..., mg} is the concepts formulated on the features of the infor-
mation system < X,A >, where my;_1)y1,M4(—1)12:Ma(i—1)+3,M4(i—1)14> =1, 2,
3, 4 are the simple concepts “large”, “medium”, “not medium”, “small” associat-
ing to the ith feature respectively and the weight function of them p(x) is defined
by p(x)=1 for all x € X. AP = (M,A,p,X) becomes an AFS fuzzy approximation
space in sense of definition given by (6.20). Let { be a fuzzy set defined as follows.
Forx € X, f¢(x)=0.7, if sample x in the class iris-setosa, otherwise (¢ (x)=0.1 to in-
dicate the membership degrees of negative samples belonging to “iris-setosa”. With
the help of and (6:33), we obtain S (¢), S5 () listed as follows, which are
approximate solutions to (&.20) shown in Figurelé

Sk
Sp(8) = mia+ma+migmig +mamamg
+momemymyamysmyg + m3memymyomy 1 M4mys,

P
S (§) = megmymyemig + mamymiomiemig + mamymonmizmien;s.
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Fig. 6.5 Membership functions of ¥ ({), {:“class—2", S; (&) for Wine data

C. Wine Classification Data: Chemical analysis of wines grown in the same region
in Italy, but derived from three different cultivars, should be sufficient to recognize the
source of the wine. Here the number of instances is equal to 178, evenly distributed
in three classes:1:59 class-1, 60:130 class-2, and 131:178 class-3, where each of the
samples is described by 13 features, including alcohol content, hue, color intensity,
and content 9 chemical compounds. A=M={m,, my, ..., mye} is the concepts formu-
lated on the features of the information system < X,A >, where my(;_ 1)1, Ma(i—1)42,
i=1,2,..., 13 are the simple concepts “large”, “small” associating to the ith feature
respectlvely and the weight function of them p(x) is defined by p(x)=1 forall x € X.
AP = (M,A,p,X) becomes an AFS fuzzy approximation space in sense of defini-
tion given by (&.20). Let { be a fuzzy set defined as follows. For x € X, ¢ (x)=0.7,
if sample x in the class-2, otherwise (¢ (x)=0.31 to indicate the membership degrees
of negative samples belonging to “class-2”. With the help of (6.31) and (6.33), we

»
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obtain 8* (¢), S; (&), which are approximate solutions to (6.20) shown in Figure[6.3]
sP(Q), S; (§) € EM, respectively are described as follows.

S;(C) = my +me + Moo + M15M24 + M11M13,

S () = mamgmyamay -+ mamy1myemag -+ mamysmygma3
+momem3ma3 + menym3mog + MaMeM | 6M20M23
+my5moomymM3Mmo4 + MM 5M0M3M24
+momemoomo3mog -+ moMmsmoon2Mo3 + Mismon2m3Mo4
+momyemaomazmog + Mo 2Mm 6MR0M23 + M2 6M0M22M23
+momsmenm 3maomy| + MmN 4Mo0n 1 M3
+momemy4m smyomy3 + mamen 2Mm5smMoma3

+momsmenomysmy3 + mamsmeni smoma3.

We can observe that the number of items of the S (&), S;; . (&), which are approxi-
mate solutions to (6.20) for Credit-screening are much larger than that of Iris data
and the Wine classification data. The main reason is that 12/17 features of Credit-
screening are described by Boolean value while all features of Iris data and the Wine
classification data are numerical and the associating simple concepts are all fuzzy.
This implies that the AFS fuzzy rough sets have some advantages to deal with fuzzy
information systems.

D. Wisconsin Breast Cancer Data: The Wisconsin Breast Cancer Diagnostic data
set contains 699 patterns distributed into two output classes, “benign” and “malig-
nant”. Each pattern consists of nine input features. There are 16 patterns with incom-
plete feature descriptions. We use 683 patterns 1:444 class benign, 445:683 class
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Fig. 6.6 Membership functions of S° ({), {:“malignant”, S; (&) for Wisconsin Breast Cancer
data
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malignant, to evaluate the performance of the proposed fuzzy algorithm. A=M={m;,
my, ..., mg} is the concepts formulated on the features of the information sys-
tem < X,A >, where My(i—1)+1, Mo(i-1)42 i=1,2,3,4,5,6,7, 89, are the simple
concepts “large”, “small” associating to the ith feature respectively and the weight
function of them p(x) is defined by p(x)=1 for all x € X. A? = (M,A,p,X) be-
comes the fuzzy approximation space in sense of definition given by (6.20). Let
¢ be a fuzzy set defined as follows. For x € X, U (x)=0.85, if sample x in the
class malignant, otherwise u;(x)=0.6 to indicate the membership degrees of nega-
tive samples belonging to “malignant”. With the help of and (6.33), we obtain
sP(0), S; (), which are approximate solutions to (€.20) shown in Figure[6:8 S ({),

S;(C) € EM are shown as follows.

Sp(8) = my+mz+ms+m7+mo+my3,

S’:(C) = mmzmyme + mmym||m3my7 + mymamsmym3
+mymsmom 3my7 + mymzmsmomsmy7 + mim3msm3msmiy
+mzmsmynigmymis + mymsnymoni 1M 5mi7

+msmymonym3mysny7 + mMmsmymgm 1 m3ms.

If the data includes noisy samples or the knowledge in A is insufficient, then
for some sample x, there may not exist &, 8 €(A)gs such that us(x) <pte(x) or
up(x) >pe(x) and 8, B satisfying (6.20). Therefore in Figure 6.6l one can observe
that the degrees of some samples belonging to S; (&) are less than that of { or the

degree of some samples belonging to S° () are larger than that of {. This implies
that these samples cannot be distinguished by the given simple concepts in A, may
be noisy samples or our algorithm fails to determine 8, B €(A)g; satisfying
for these samples.

6.3 Comparisons with Fuzzy Rough Sets and Other Constructs
of Rough Sets

Here we provide some comparative analysis of the AFS fuzzy rough sets with pre-
viously developed forms of rough sets. This will cast the investigations in some
broader perspective.

6.3.1 Comparisons with Fuzzy Rough Sets

The main question addressed by previous fuzzy rough sets can be formulated as
follows: how to represent a fuzzy set y € . (X) = {B : X — [0,1]} by some fuzzy
sets S.(y), S*(y)e F(X), according to a border implicator ¢: [0,1]x[0,1]—[0,1]
and a similarity relation R, i.e., a fuzzy relation, R: X x X —[0,1] for which the
following conditions should hold:
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(1) Vxe X, R(x, x)=1; (Reflexivity)
2) Vx,yeX,R(x,y) =R(y, x); (Symmetry)
3) Yx,y,z€X,R(x,2) > T(R(x,y), R(y, 2)). (T-transitivity)

Here, T is a t-norm. In [8], the authors defined S.(y), S*(y) the lower and upper
fuzzy approximations of y € % (X) as follows: for x € X,

Hg-() () = sg}gmin{uy(y)7R(x7y)}, (6.36)
‘uS*(J/) (X) = 31€1§max{uy(y)7l —R(X,y)}. (637)

Which are the same as what are described by (&.4) and (&.3). In order to compare
AFS fuzzy rough sets with the fuzzy rough sets, we study the following example.

Example 6.4. Let X={x, x2, ..., x10} and R=(r;), rij = R(x;, x;), where R is a
similarity relation

1.56 1 .50.67 1 .37.50 .54 .11
1 .56 .50 .56 .56 .37 .50 .54 .11

1 .50.67 1 .37.50 .54 .11

1 .50.50 .37 .81 .50 .11

1 .67 .37 .50 .54 .11

k= 1 .37 .50 .54 .11 (6.38)
1 .37 .37 .11
1 .50 .11
1 .11

One can verify that R is a T-similarity relation [§]] on X if 7-norm is the minimum and
t-conorm is the maximum operator. For the fuzzy set y with pty(x1)=1, t,(x2)=.50,
Wy (x3)=1, ty(x4)=.70, Ly(x5)=.50, y(x6)=1, ty(x7)=.20, Uy (x3)=.60, ty(x9)=.50,
Uy(x10)=.10. The lower and upper fuzzy approximations of y defined by (6.36) and
(637) are shown as Table

Table 6.5 The fuzzy rough sets based on fuzzy relation Rdefined by (6.36) and (6.37)

X X2 X3 X4 X5 X6 X7 X3 X9 X10
Hgp(x) 10 056 10 .70 .67 10 37 70 54 .11
1y (x) 10 5 10 70 50 10 20 .60 .50 .10

s, (7)(x) .50 .50 .50 .50 .50 .50 .20 .50 .50 .10

Let M={m, my, ..., my} be the set of some fuzzy concepts on X. Where the fuzzy
concept moy1: “similar to xp1”, k=0, 1, ..., 9 and myyp: “not similar to xp4,”
is the negation of myy 1. For the fuzzy similarity relation R=(r;;), ri; > ry; implies
that the degree of x; being similar to x; is larger than or equal to that of x;. Thus
each concept in M is a simple concept on X. According to the information provided
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by the fuzzy similarity relation R=(r;;) shown as (6.38), we can establish the AFS
structure (M, 7, X) as follows. For any x;, x j € X, introduce

T(xi, %)= Mokt | T 1)i = Py js 05k <9 U mappa | 1=r(pyi = 1—r( 1y

0<1<9}.
Let o-algebra over X be S=2X and m be the measure over S defined by for
p: X —[0, =), p(x)=1 for any x € X. Thus for any fuzzy concept N€EM, we can
obtain the membership function i, (x) by (©.I4). Let A={m; | i=1,2,...,20}CEM.
There exist the lower and upper fuzzy sets S.(1) and S*(n) in AP = (M A,p,X)
defined by for any fuzzy set n€ .7 (X). Based on (6.31) and (©.33) which are
the algonthm of finding the approximate solutions of (&.20), we have the following
¥) and S v) of the above fuzzy set y and their membership functions are shown

in Table Iﬁf

*
Sp (7) = Mymsny1myo + MaMmaMeiM7miom 2Mm3my 1My 5migni9mao
+mmym3mamsmeni7 MMM | M 121M13M 4115116111 71M1811191M20,

)
S5 (y) = mimamag + msmymag + mymymyg.

Table 6.6 The approximate solutions to (6.20) for AFS upper and lower approximations of
fuzzy set y

fuzzy concepts X X X3 X4 X5 X6 X7 X3 X9 X10
qu(y)(.) 1.0 .60 1.0 .70 .70 1.0 .20 .70 .50 .10

P
Hy(.) 1.0 .50 1.0 .70 .50 1.0 .20 .60 .50 .10
'“s‘.’(y)(') .80 .40 .80 .40 .50 .80 .20 .30 .30 0

Although the fuzzy similarity relation R is not required for AFS fuzzy rough sets,
this example shows that we also can find AFS rough sets based on the same in-
formation provided by R as for other fuzzy rough sets. Thus Example is the
comparison under the same conditions. The MSEs of the upper and lower approxi-
mations in Table[6.3] which are 0.00731, 0.08, respectively are larger than the MSEs
reported in Table[6.6] which are 0.006, 0.036, respectively. This implies that the up-
per and lower approximation in Table provide less information than those in
Table 66l In that way, the approximate AFS rough sets S” (y) and S;(}/) obtained
with the help of (6.31) and (6.33) shown in Table[6.6] provide a better interpretation
than that fuzzy rough sets shown in Table [6.3] This raises an open problem: Is this
result universal? Considering

S’:(Y) gP S’*)(V) gp VQP S:;(V) CP Sp(y)

S2(y), S5 () which are defined by (©.20), can provide more accurate approximations
of y than S” (y) and S; (7).

In light of the simple concepts in M shown above, S?(y) = mymmag +
msmamyq + mymymyg states that “similar to xy,x4 and not similar to x1y” or “sim-
ilar to x3,x4 and not similar to x19” or “similar to x4,x¢ and not similar to xjo”.
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As a lower approximation of the given fuzzy set y, S7 () describes the approxi-
mate semantics of y with the simple concepts in M, according to the given member-
ship function py(.) and the similar relation R shown in (6.38). By p,(.) shown in
Table[6.6l we can observe that the semantic interpretation of % (7) is very close to
the fuzzy concept represented by pi(.). For instance, the degrees of x; belonging to
y and Sf (y) are 1 and 0.8, respectively. Taking into the consideration the similarity
relation R, we know x; is similar to x3, x4 and xjq at the degrees 1, 0.67, 0.11, re-
spectively. This implies that x; should belong to the fuzzy concept msmymyn with
the semantics “similar to x3,x4 and not similar to x1¢” at high degree. In Table[6.6] x;
belongs to the lower approximation of y at the degree 0.8. Similarly, other samples
in Table also show that the lower and upper approximation of y approximately
interpret ¥ by both the semantic meanings and the membership degrees based on the
data shown in (&38). The membership function of the fuzzy concept St (y) € EM
defined by (6.14), which is determined by its semantic meaning and the similar re-
lations of the 10 elements in X described by the fuzzy relation R (6.38), gives the
degree of each element in X approximately belonging to y. The similar phenomena
can be observed for S; (7), that is the upper approximation of y.

6.3.2 Comparisons with Other Constructs of Rough Sets

Boolean reasoning has been used for many years and was helpful in solving many
problems relative to rough sets such as those reported in [[I} 37, [42]]. It is well-known
[37]] that any Boolean function f: {0, 1}" —{0, 1} can be presented in its canonical
form, particularly in a so-called Conjunctive Normal Form (CNF) and Disjunctive
Normal Form (DNF). Boolean reasoning is based on encoding the investigated opti-
mization representations of a Boolean function f. In AFS fuzzy rough sets, we find
the lower, upper approximations, which are some fuzzy sets in (A)g;, A CEM and
approximately represent fuzzy set & on universe X with membership degrees in the
interval [0, 1] or AFS algebras.

In Boolean reasoning, the representations of Boolean functions can be found by
searching in the lattice of all subsets of attributes which is a Boolean algebra. In AFS
fuzzy rough sets, the lower and upper approximations can be found by searching in
the lattice EM. In [23], the author has proved that AFS algebra is a more general
algebraic structure than Boolean algebra. Therefore Boolean reasoning and AFS
reasoning revolve around search processes realized in different lattice structures.

In [23]], the authors have proved that EI algebra EM is degenerated to Boolean
algebra if each concept in M is a Boolean concept. Thus many Boolean reasoning
ideas and techniques can be applied to study AFS fuzzy rough sets.

There are a great deal of papers on rough sets and multi-criteria decision mak-
ing, in particular related to preference relations such as those discussed in [50].
Sub-preference relations (refer to Definition [£3)), which are applied to define sim-
ple concepts in AFS theory, are more general than preference relations, i.e., any
preference relation is a sub-preference relation. In [[14], the author pointed that the
main difficulty with application of many existing multiple-criteria decision aiding
(MCDA) methods lays in acquisition of the decision maker’s (DM’s) preferential



6.3 Comparisons with Fuzzy Rough Sets and Other Constructs of Rough Sets 261

information. Very often, this information has to be given in terms of preference
model parameters, like importance weights, substitution rates and various thresh-
olds. Formally, for each g € C being a criterion there exists an outranking relation
Sy on the set of actions U such that (x, y) € S, means “x is at least as good as y with
respect to criterion g”. S, is a total pre-order, i.e., a strongly complete and transitive
binary relation defined on U on the basis of evaluations f(.,q). In [11], the author
described the problems as follows. Let X = IT" | X; be a product space including a
set of actions, where X; is a set of evaluations of actions with respect to criterion
i=1, ..., n; each action x is thus seen as a vector [x;, X2, ..., x,] of evaluations on
n criteria. A comprehensive weak preference relation > needed to define on X such
that for each x, y € X, x > y means “x is at least as good as y”. The symmetric part
of > is the indifference relation, denoted by ~, while the asymmetric part of > is
the preference relation, denoted by >.

These approaches to study how to establish evaluations f(., g) or a comprehen-
sive weak preference relation > by the pair wise comparison tables (PCT) which
represent preferential information provided by the decision makers in form of a pair
wise comparison of reference actions. In general, evaluations f(., ¢) or a compre-
hensive weak preference relation > are defined by the rules defined in advance and
for the same PCT, different f(., ¢) or > may be defined because of different rule
sets. These researches mainly focus on the comparison of each pair of actions for
decision and rarely apply preference relations to study the fuzzy sets. In AFS the-
ory, the sub-preference relation on X of each simple concept in M is determined
by the given data sets and each fuzzy set in EM is represented by the AFS fuzzy
logic combination of the simple concepts in M. The membership functions and the
fuzzy logic operations of fuzzy sets in EM are determined by the AFS structure (M,
7, X), a special family of combinatorial systems [13], which is directly established
according to the distributions of the original data. And in AFS framework we do not
need to define evaluations f(., ¢) or a comprehensive weak preference relation >
in advance. In [13], by regarding each preference relation on X as a sub set of the
product set X x X, the lower, upper approximations of a preference relation are the
Pawlak’s rough sets, i.e., represented by some given preference relations as sub sets
of X x X. In the framework of AFS theory, first, we apply sub-preference relations,
AFS logic and the norm on AFS algebras to obtain membership functions and fuzzy
logic operations of fuzzy sets, then the AFS fuzzy rough sets are based on the es-
tablished AFS fuzzy logic. The upper, lower approximations of each fuzzy set on
the universe X can be represented by the fuzzy sets in EM which have well-defined
semantics meaning.

There is a significant deal of study on rough sets based on the concept of toler-
ance (similarity) such as e.g., [T9]]. The tolerant rough set extends the existing
equivalent rough sets, i.e., Pawlak’s rough sets. Let us recall that the binary rela-
tion R defined on U x U is a tolerance (similarity) relation if and only if (a, a) € R
and (a, b) € R = (b, a) € R, where a, b € U. The similarity class of x, denoted by
[x]g, the set of objects that are similar to x € U, is defined as [x]g ={y € U | (3, x)
€ R}C U. The rough approximation of a set X C U is a pair of sets called lower
and upper approximations of X, denoted by R,(X) and R*(X), respectively, where



262 6 AFS Fuzzy Rough Sets

R*(X) = Uyex[x]g, R«(X)={x € X | [x]g C X}.Compared with the AFS fuzzy rough
sets, the tolerant relation R has to be given in advance, R.(X), R*(X) and X are all
Boolean sets and the tolerant rough sets do not have a direct semantics.

In order to apply the equivalent rough sets or the tolerant rough sets to study the
data shown in Example the continuous valued attributes such as age, height,
weigh, salary ... etc, are often discretized as intervals of real values taken by the
Boolean attributes [57], or define a similarity measure that quantifies the close-
ness between attribute values of objects to construct a tolerance relation among
the data [19]. The quality of rules discovered by the equivalent or tolerant rough
sets is strongly affected by the result of the discretization or the similarity measure.
For AFS fuzzy rough sets, the discretization of continuous valued attributes and the
similarity measure are not required.

Following the investigations in the study one can observe that the proposed three
types of AFS fuzzy rough sets are more practical and efficient when dealing with
information systems in comparison with some other generalizations of rough fuzzy
sets. It can be directly applied to handling data without a need to deal with an im-
plicator @, a z-norm and a similarity relation R that are required to be provided in
advance. The AFS rough approximations for the fuzzy concepts have well-defined
semantics with the given simple concepts formed for the individual features.

Exercises

Exercise 6.1. Let U be a set and &/=(U, R) be an approximation space. Prove that
the lower approximation A,(X) and upper approximation A*(X) for any X C U
satisfy the following properties:

(1) A(X) CX CA*(X);

(2) Ai(2) = A*( )=2,A,(U) =A"(U) = U;

3) A(XNY)=A.(X)N A*(Y) A*(XUY)=A*(X)UA*(Y);

(4) fX CY,thenA.(X) CAL(Y), A*(X) CA*(Y);

(5) A¥(XNY) CA*( )ﬂA*( ), Au(XUY) DA(X)UAL(Y);

(6) A*(X')' =A"(X), A (X") = A.(X);
(7) Ax(A(X))=A" (A (X))=A.(X);
(8) A*(A"(X))=A. (A*(X))=A"(X).

Exercise 6.2. Let X be a set and M be a set of simple concepts on X. Let (M, T, X)
be an AFS structure. Show the following assertions hold: for o, 8,y,1 € EM,

(1) For the EI algebra inclusions

YCeroo= o Cpry
YCero, NCeB=yANCrralB, yvnCgaVvp
o0CerY, B<a=BCery
yCrra, a <B = yCeB;
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(2) For the EII algebra inclusions

YCen o= o Cep Y

YCen o, N Cen B = yANnCen aAB, yVn Cen oV B
aCeny, B<oa=BCeny
YCen o, a<B = yCeyp.

Exercise 6.3. Let X be a non-empty set and M be a set of Boolean concepts on X.
Prove that the rough sets in AP = (M, A, X) or AP = (M, A, p,X) defined by (6.20)
is equivalent to the rough sets defined by (6.2) in Definition [6.] (i.e., rough sets in
the classic sense defined by (G.1))).

Exercise 6.4. Let X be a set and M be a set of simple concepts on X. Let (M, 1,X)
be an AFS structure and A’ be the AFS fuzzy approximation spaces defined by
for i = EI,EII,E*I,p. Prove that for any fuzzy sets o, B € EM or whose
membership functions are given in advance, the following assertions of AFS fuzzy
rough sets S*(), S«(f) hold:

(1) Si(a) C; a C; S*a) fori = EILEII,E*I, p;

() S.(M) =M = S*(M) for i = EI,EIl,E*I, p;

3) Si(Spep ) = ey = S* (T peyym) fori = EILEIIL E*I, p;

(4) If o C; B, then S. () C; S.(B) and S* (o) C; S*(B) for i = EI,EII,E*I, p;

(5) S.(Si(a)) =S.(), S*(S*(ex)) =S*(x) fori = EI,EIILE*I,p;

(6) S*(S.(@)) =S.(ax), S.(S*(a)) =S*(ax) fori=EIEIIE*I p;

Open problems

Problem 6.1. A systematic comparison between the AFS fuzzy logic systems and
the conventional fuzzy logic system equipped by some ¢#-norm.

Problem 6.2. Let X be a set and M be a set of simple concepts on X. Let (M, 1,X)
be an AFS structure. What are the necessary and sufficient conditions that o C g4,
B=pC E#] o

Problem 6.3. Let (M, 7,X) be an AFS structure of a given information system.
In AFS fuzzy approximation space A*" = (M, A, X), AET = (M,A,X) or AP =
(M,A,p,X). Let YEEM or whose membership function is given in advance. For
AEI op AET suppose that Vx € X, Jo€ A, such that a(x) > y(x) in the lattice
EXM or E*X, where a(x) and y(x) are the AFS algebra membership degrees of
x belonging to the fuzzy concepts o,y defined by (3.10), (3.13) or @.12). For AP,
suppose that Vx € X, o€ A, such that pi4(x) > ty(x), where tg (x) and py(x) are
the membership degrees of x belonging to the fuzzy concepts o, y defined by (6.14).

* « #
Sen(y) » S5 (7) (refer to 629 and @33), Spa;(y), S° (1) (refer to (630 and
(&33))and S:; (7). 8 (y) (refer to 631) and (6:33)) are the approximate solutions to

the upper and lower approximations defined by (6.20) in AE”/, AE*! and AP. What
are the sufficient and necessary conditions of the following assertions.
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*

Sp(), Sis,(v) = 32#1(7)7 St (V) = Seu(y);
#r EIl
SP(y), SEI(y) =S (y), SEM(y)=5."(y).

(1) Sp(y)
2 SE(y)

Problem 6.4. Let X = {x{,x2,...,x,} be a set and R = (ri;),rij = R(x;,x;) be a
similarity relation which is a T-similarity relation [8] on X. For any fuzzy set y €
F(X), let $*(y) and S.(7) be the lower and upper fuzzy approximations of fuzzy
set y defined by (©36) and @.37). Let M = {my,my,...,ma,} be the set of some
fuzzy concepts on X. Where the fuzzy concept my1: “similar to xp,”, k=0, 1,

., n— 1 and myg2: “not similar to x;” is the negation of myy . For the fuzzy
similarity relation R=(r;;), r; > ry; implies that the degree of x; being similar to x;
is larger than or equal to that of x ;. Thus each conceptin M is a simple concept on X..
According to the information provided by the fuzzy similarity relation R=(r;;) like
(638) shown in Example[6.4] we can establish AFS structure (M, 7, X) as follows.

For any x;, x; € X, introduce

T(xi, )= mawir | Py = Py, 0Sk <n— U myn | 1=r(pq) 21—
V(z+1)u0§l§n—1}

Let o-algebra over X be S=2% and m be the measure over S defined by for p:
X —[0, ), p(x)=1 for any x € X. There exist the lower and upper fuzzy sets S.(1n)
and $*(n) in AP = (M, A, p,X) defined by (6.20) for any fuzzy set n€ .7 (X ). Based

n (©31) and (6.33) which are the algorithm of finding the approximate solutions
of ([€20), one can obtain S°(y) and S;;(y) for any y € .Z(X). Do the following
assertions hold? For any y € .7 (X),

% (“S;m () = “7()‘))2 < %{ (ts+ () () — ()%
2
%( (520~ () < ;( (s, (x) = 1y())”.

Are there similar results for the other conventional fuzzy rough sets?

Problem 6.5. The design of feasible algorithms for solving (6.20) by making use
of the properties of the AFS algebras and the combinatorial properties of the AFS
structures.

Problem 6.6. The lower and upper approximations of an fuzzy concept in an AFS
fuzzy approximation space A’ may have a significant number of terms as shown in
some examples. This calls for the development of algorithms leading to the reduc-
tion of terms forming the lower and upper approximation.

Problem 6.7. Do any properties of conventional fuzzy rough sets and rough sets
hold in the AFS fuzzy approximation space A'?

Problem 6.8. How does the weight function p (x) influence the AFS rough sets?
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Chapter 7
AFS Topology and Its Applications

In this chapter, first we construct some topologies on the AFS structures, discuss the
topological molecular lattice structures on EI, *EI, EII, *EII algebras, and elabo-
rate on the main relations between these topological structures. Second, we apply
the topology derived by a family of fuzzy concepts in EM, where M is a set of simple
concepts, to analyze the relations among the fuzzy concepts. Thirdly, we propose the
differential degrees and fuzzy similarity relations based on the topological molec-
ular lattices generated by the fuzzy concepts on some features. Furthermore, the
fuzzy clustering problems are explored using the proposed differential degrees and
fuzzy similarity relations. Compared with other fuzzy clustering algorithms such
as the Fuzzy C-Means and k-nearest-neighbor fuzzy clustering algorithms, the pro-
posed fuzzy clustering algorithm can be applied to data sets with mixed feature vari-
ables such as numeric, Boolean, linguistic rating scale, sub-preference relations, and
even descriptors associated with human intuition. Finally, some illustrative exam-
ples show that the proposed differential degrees are very effective in pattern recog-
nition problems whose data sets do not form a subset of a metric space such as the
Eculidean one. This approach offers a promising avenue that could be helpful in
understanding mechanisms of human recognition.

7.1 Topology on AFS Structures and Topological Molecular
Lattice on *E[" Algebras

In this section, we first study the topological molecular lattice on the *EI algebra
over a set M, i.e.,(*EM,V, ), in which the lattice operators V, A are defined as
follows: for any Y,c;Ai, Xjc;Bj € EM,

ZA,‘\/ZBJ': z A,‘UBJ'7 (7.1)

icl e icljel
zAi/\sz = ZA,‘%-ZB]'. (7.2)
el jes icl jel

M is the maximum element of the lattice *EM and <& is the minimum element of
this lattice. That is, the above lattice *EM is a dual lattice of EM. In the lattice *EM,
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for Yic;Ai,XjesBj € EM, ¥c/Ai < ¥ jcy Bj if and only if for any B; (j € J) there
exists A (i € I) such that Bj D A (refer to Theorem[5.24). Secondly, we study the
topology on the universe of discourse X induced by the topological molecular lattice
of some fuzzy concepts in EM. Finally the topological molecular lattice on the *EI>
algebra over the sets X, M, i.e.,(*EXM,V,\), in which the lattice operators V, A are
defined as follows: for any ¥,;c;aiA;, Xjc;bjB; € EXM,

Za[A,-\/ijBj: Z a,‘ﬂbinUBj, (7.3)
icl jeJ iel,jeJ

ZaiAi/\ Ebij = ZaiAi+ ZbJ‘BJ‘. (7.4)
icl jeJ il Jjes

@M is the maximum element of the lattice *EM and X< is the minimum element
of the lattice *EM. That is, the lattice *EXM is a dual lattice of EXM. In the lat-
tice "EXM, for Yc;aiAi, X jcybjBj € EM, YiciaiA; < ¥ jc;b;B; if and only if for
any b;B; (j € J) there exists arAy (i € I) such that B; O Ay and a; D b; (refer to
Theorem [5.1)).

Lemma 7.1. Let M be a set and EM be the *EI algebra over M. For A C M, Y ;<1 A;,
YjesBj € EM, the following assertions hold:

(]) A 2 ziEIAi andA 2 szJBj @A 2 ZiGIAivszJBj;
(2) A>3iciAiorA> 3 icyBj = A>YiciAiNYjcsBj.

Its proof is left as an exercise.

Definition 7.1. Let M be a set and (*EM,V, A\) be the *ET algebra over M defined by
(Z1) and (Z2). Let n C *EM.If @,M € 1 and 1) is closed under finite unions (i.e.,
V ) and arbitrary intersections (i.e., A ), then 1 is called a topological molecular
lattice on the lattice *EM, denoted as (*EM,n). Let 1 be a topological molecular
lattice on the lattice *EM. If for any Y ;c;A; € 1, A; € ) forany i € I, then 1 is called
an elementary topological molecular lattice on the lattice *EM.

It is easy proved that if 1} is a topological molecular on the lattice *EM and 1 is a
dual idea of the lattice *EM, then 1 is an elementary topological molecular lattice
on the lattice *EM. In what follows, we apply the elementary topological molecular
lattice on the lattice *EM to induce some topological structures on X via the AFS
structure (M, 7,X) of a data. Thus the pattern recognition problem can by explored
in the setting of these topological structures on X.

Definition 7.2. Let X and M be sets and (M, T,X ) be an AFS structure. Let (*EM, 1)
be a topological molecular lattice on *EI algebra over M. For any x € X, >,;c;A; €
n C *EM, the set Ngiel Ai(x) C X is defined as follows.

NgielAi () = {y €X | t(x,y) > ZAi}v (7.5)

iel
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and it is called the neighborhood of x induced by the fuzzy concept Y ;c;A; in the
AFS structure (M, 7,X). The set Njj (x) C 2% is defined as follows.

Ny (x) = {Nz,e,A,-(x) | YAie 11}7 (7.6)

icl

and it is called the neighborhood of x induced by the topological molecular lattice
7 in the AFS structure (M, 7,X).

Since 7(x,y) C M, hence 7(x,y) is an element in EM and 7(x,y) > ¥, A; in (Z3)
is well-defined.

Definition 7.3. Let X and M be sets and (M, 7,X) be an AFS structure. (M, 7,X) is
called a strong relative AFS structure if V(x,y) € X x X, t(x,y) Ut(y,x) = M.

Since in a strong relative AFS structure (M, 1,X), Vx € X, T(x,x) = M, hence Vx €
X.,Vm € M, x belongs to the simple concept m to some extent.

Proposition 7.1. Let X and M be sets and (M, 7,X) be a strong relative AFS struc-
ture. Let M be a topological molecular lattice on *EI algebra over M. For any
YiciAi, XjeyBj € EM, the following assertions hold: for any x € X

(1) If TictAi 2 Xjey Bj in "EM, then Ny _ 4 (x) © Ny p (x);
(2) NgielAi(x) mNg,‘eJBj (x) = NgielAiVZjelB_i (x)’.

T T _ AT
(3) NZielAi(x) UNZ_,'eJBj (x) - NZielAi/\ZjeJBj (x)

Proof. (1)Lety € Ngiel A (x). Then there exists Ay, k € I such that 7(x,y) 2 A;. On
the other hand, since Y ;c;A; > Y, el Bj, hence for A there exists Bj, j € J such that
7(x,y) 2 Ay D B;. This implies that y € N%je] 5 (x). It follows that Ny, a; (x) C
T
NZ_/EJ Bj (x)-
(2) Forany y € Ny ,.(x) mN§,€, 5 (x), in virtue of Lemmal[7.1] we have

ye NE,«QA,' (x) QNEJ@B/- (x) &ye NE,«e,A,' (x) and y € NEKJB/- (x)
& tly) > YA and t(xy) > Y B,

il =

T(X,y)z 2 AiUBj
icl jel

T(x,y) > (2;141‘) v <2;Bj>

=ye NgielAi\/z_jEJBj (x)-

So we have showed that (2) holds.
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(3) Forany y e Ng._ . (x) UNE]GJ Bj

(x), from Lemmal[Z1l we have
y 6N§ie]l4i(x)UN§jeJBj(x) =Y ENgielAi(x) ory €N§jeJBj(x)

& T(x,y) > Y A or T(x,y) > Y B;

icl jer
<~ T(X,y) > 2Ai+ ZBJ'
icl jer

== T(X,y) > <2;A1> N (2131'>

RAS NgielAi/\Zjel Bj (x)
This implies that (3) is satisfied. a

Theorem 7.1. Let X and M be sets and (M, T,X) be a strong relative AFS structure.
Let 1 be a topological molecular lattice on the lattice *EM. If 1 is an elementary
topological molecular lattice on the lattice *EM and we define

icl

By = {Ni‘eIAi(x) | xeX, ZAien},

then %y is a base for some topology of X.

Proof. Firstly, because (M, 1,X) is a strong relative AFS structure, for any x € X,
T(x,x) = M. M is the maximum element of the lattice *EM. This implies that for
any Y;erAi €1, T(x,x) > Xjgr A so thatx € Ny, 4 (x) and X =Upe, B-

Secondly, suppose x € X, U,V € %y, and x € UNV. We will prove there ex-
ists W € %y such that x € W C U NV. By the hypothesis, we know there exists
Yic1Ai,XjesBj € N such that U = Ny (u), V = NgjaBj(v) for some u,v € X
and 3 € I,Fk € J, 1(u,x) 2 A; and 1(v,x) D By. Since (M, 7,X) is a strong relative,
hence x € N (x) and x € Nj, (x). Forany y € N (x), i.e., T(x,y) 2 A, by Definition
we have 7(u,y) 2 t(u,x) N 7(x,y) 2 Ay, thatis y € U. It follows N} (x) C U.
For the same reason, Ngk (x) C V. By Proposition[Z.I] we have

X € NZI(X) ﬂNék(x) :Nzlka(x) cunv.

Since 7 is an elementary topological molecular lattice on the lattice *EM, hence
A;,Bi € and we have x € W = NJ g (x) € %y such that W C UNV. Now by
Theorem[[.21] %, is a base for some topology on X. ]

The topological space (X, .7, ), in which %, is the base for .7,, is called the fopol-
ogy of X induced by the topological molecular lattice 1.

Theorem 7.2. Let X and M be sets and (M, T,X) be a strong relative AFS structure.
Let 1 be a topological molecular lattice on the lattice *EM and
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iel iel

Iy = {Z“iAi €EXM | ZAi €n,a; € Iy foranyi€l,
I is any non — empty indexing set} . (7.7)

Then £y is a topological molecular lattice on the lattice *EXM. It is called the “EI?
topological molecular lattice induced by the *ET the topological molecular lattice 7.

Proof. For any finite integer n, let 1; = 2,-61/. ajjAij € EXM, j=1,2,...,n. Because
forany f € [Ti<j<nljs Mi<j<nty(); € In and

V (ZA,-,): 2 U 4men

1<j<n \i€l; felli<j<nlj1<j<n

then we have

V= X ( M am; U Af(/)/) €.

1<j<n Jelli<jenl; \1<j<n 1<j<n

This implies that .5 is closed under finite unions (i.e.,V). It is obvious that A is
closed under arbitrary intersection. Therefore (*EXM,.%;) is a *EI* topological
molecular lattice on the lattice *EXM. a

It is clear that .7, the topology on X is determined based on the distribution of raw
data and the chosen set of fuzzy concepts 1 C EM and it is an abstract geometry
relation among the objects in X under the fuzzy concepts under consideration, i.e.,
1. What are the interpretations of the special topological structures on X obtained
from given database? What are the topological structures associated with the essen-
tial nature of database? All these questions are related to the metric space of the
topology. With a metric in the topological space on X, it will be possible to handle
pattern recognition problems for the databases with various data types.

Let X be a set and M be a set of simple concepts on X. Let (M, 7,X) be an AFS
structure and S be the o-algebra over X. In real world applications, it is obvious that
only some fuzzy concepts in EM are related with the problem under consideration.
Let these fuzzy concepts form the set A C EM. Let 1 be the topological molecular
lattice generated by A and (X, ;) be the topology induced by 1. Let S be the o-
algebra generated by .7, i.e., the Borel set corresponding to the topological space
(X, 7y) and (S,m) be a measure space. For the fuzzy concept Y,;.;A; € EM, if for
any x € X, any i € I, A7 (x) € S, then ;A is called a measurable fuzzy concept
under the c-algebra S. Thus the membership function of each measurable fuzzy
concept in EM can be obtained by the norm of E*I algebra via (5.13), and
(S,m).

Theorem 7.3. Let X and M be sets. Let (M, 7,X) be a strong relative AFS structure
and M be an elementary topological molecular lattice on the lattice "EM. Let 1 be a
topological molecular lattice on the lattice *EM and the topological space (X, Ty)
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be the topology induced by 1. Let S be the c-algebra generated by Ty and £y be
the *EI? topological molecular lattice on *EXM induced by 1. Then the following
assertions hold.

(1) For any fuzzy concept Y,c1Ai € M, YicAi is a measurable concept under S ;
(2) For each fuzzy concept Y= Y;c;A; €1, let y: X — EXM be the EI* algebra
representation membership degrees defined by (3.10) as follows: for any x € X,

Y(x) =D AT (x)A; € EXM. (7.8)
il

Let D be a directed set and 0 : D — X be a net (i.e., {6(d) | d € D}). If 6 is
converged to xo € X under topology F, then the net of the composition y- 8 :
D — EXM (i.e.{y(6(d)) | d € D}) converges to y(xo) = Xc; Af (x0)A; under the
topological molecular lattice 5. That is, the membership function of any fuzzy
concept in EM defined by (Z8) is a continuous function from the topological
space (X, Iy) to the topological molecular lattice (*"EXM, Zy).

Proof. (1)Forany Y ,c;A; € n,since A; > Y,;c;A; foralli € I and 1) is an elementary
topological molecular lattice on the lattice *EM, hence A; € 1 for all i € I and

Af(x) =Ny (x) € Ty = Al (x) €S, foranyx € X and anyi€ I.

Therefore Y ;c; A; is a measurable concept under S.

(2) Suppose 3. jc; pjP; € £y and ¥ jc; p;Pj is a R-neighborhood of ¥.;c; Af (xo)A;,
ie., YAl (x0)A; £ X jes pjPj. This implies that there exists p;P; (I € J) such that
forany i € 1, either AT (xo) 2 p; or P, 2 A;. First, assume Vk € I, P, 2 Ag. It follows,
forany d € D, X,e;Af(8(d))Ai £ X jes PiP)-

Second, assume that k € I, Af(x) 2 p;. Since xo € Af(x9) € I and § is con-
verged to xo € X under ﬁn, hence the exists N € D such that for any d € D,
d >N, 8(d) € Af(xo) 2 pi. For any y € A}(8(d)), i.e., T(6(d),y) 2 Ay, since
0(d) € A{(xo), i.e., T(x0,0(d)) 2 Ay and 7 is an AFS structure, hence we have

T(x0,y) 2 T(x0,6(d)) N T(8(d),y) 2 Ak =y € A{(x0) = Af (x0) 2 A{(8(d)).

This implies that for i € I if Af(x) 2 p;, then exists N € D such that for any d €
D,d > N, Af(6(d)) 2 p;. Thus for any R-neighborhood of ¥;;Af (x0)A;, v € %4,
there exists N € D such that forany d € D,d > N,

Y A7 (8(d))A; £ v.

icl
Therefore the net y- 0 is converged to ¥,.;AT(xp)A; under the topological lattice
L. O

In a strong relative AFS structure (M, 7,X),Vx € X, 7(x,x) =M, i.e. Vx€e X,Vm € M,
x belongs to the simple concept m at some extent. It is too strict to be exploited
in the setting of real world applications. In order to offer an abstract description
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of the similar relation between the objects in X concerning some given concepts,
Definition[Z.2] should be modified as follows.

Definition 7.4. Let X and M be sets and (M, 7,X) be an AFS structure. Let 1 be a
topological molecular lattice on the lattice *EM. For any x € X, >,c;A; € 1, the set

NZAI' ; A; (x) C X is defined as follows.

A
Nyt ()= {y€X|T(xy YNT(y,y >§A} (7.9)
and it is called the limited neighborhood of x induced by the fuzzy concept Y ,;c;A; €
n, if NXA,I‘:]Ai (x) # . The set NnAT(x) C 2X is defined as follows.

icl

NTIAT('X) = {NZielAi('x) 7é ) ‘ ZAI € Tl}7

and it is called the limited neighborhood of x induced by the topological molecular
lattice m.

By the definition of the AFS structure (refer to Definition[4.3)), we know that for any
x,y €X,

7(x,x) 2 7(x,y) 2 T(x,y) NT(y,¥)-

Therefore NZA,-; 4,00 © NS

S, (%) for any x € X, any ¥,/ Ai € 1 and

A
NZi:1Ai (x) # T & x €Ny, 4,(%).

Proposition 7.2. Let X and M be sets and (M, ©,X) be an AFS structure. Let 1 be a
topological molecular lattice on the lattice "EM. For any x € X, Yc;Ai, Y jesBj €
EM, the following assertions hold.

. - AN A
(1) If YietAi > X jey Bj in the lattice *EM, then NZ,-;A,- (x) C NZ_,-Z,B, (x) for any

xeX;

AT AT

(2) Ny, 4,(x) ONZIEJ B; (x) = NZ,ezA Vs B; (x) foranyx € X;
AT AT

(3) Ns._ 4, (x) UNZjeJ 5 (x) = NZ,ezA NS e B (x) for any x € X.

Proof. (1) Suppose y € NZ LA (x), x € X. By [Z9), we know that there exists Ay,
k € I such that 7(x,y) N 7(y,y) 2 Ag. Since X;c;A; > ¥ jc; Bj, then for Ay, there

exists By, [ € J such that
T(x,y) N T(y,y) 2 Ak 2 By = 1(x,y) N T(y,y) > X s B

.. . AN A A
This implies that y € sz; g, (x). It follows Ng.fa,(x) C sz; g, (%).
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A
(2) For any y GNLez A (x )QNEI_; 5 (x),
AT AT
yENZzeIA( ) NZjeJBj(x) <:>y€NZ 1A< ) and y € N, ZeJB ( )

& 1(x,y)NT(y,y) =D Aiand T(x,y) N T(y,y) > Y, B;
icl jeJ

& 1(x,y)Nt(y.y) > YAV Y Bj (by LemmalLT)
icl jeJ

AT
=ye NZielAi\/ZjeJ Bj (x)

AT AT
Therefore NZiEI ( )mN JBI( ) NZ,QA VZ/eJB ( )
(3) Foranyy € NZezA ( )UNZ,GJB (x).

AT () AT

yE NZigAi X UNngij (x) & y €N

ZIA()OryENZeJB()
& 1(x,y)NT(yy) > D Ai or T(x,y)N1(y,y) > Y B;

i€l JjeJ
T(x,y)NT(y,y) > D AiN ) Bj (by Lemma
)T,y (by
icl jeJ

<$yENZtEIA /\ZIGJB ( )

Subsequently (3) is satisfied. a

Theorem 7.4. Let X and M be sets and (M, ©,X) be an AFS structure. Let 1 be a
topological molecular lattice on the lattice "EM. If 1 is an elementary topological
molecular lattice on the lattice *EM and 93,? is defined as follows

By = {Ns,_ () | xeXx,YAren), (7.10)

il
then %nA is a base for some topology of X.

Proof. Firstly, for any x € X, since @ € 1, hence 7(x,x) > @, i.e., x € N5 ¥ (x). This

implies that X = UNEQA N. Secondly, suppose x € X, U,V € %’n ,andx e UNV.

We will prove that there exists W € 33,7 such that x € W C UNV. By (Z10), we
know that there exists Y,;c;A, Y ;c; Bj € N, u,v € X such that there U = N2 A (u),
V= NZAJ,;B/,(V). That is, 3 € I, 3k € J, T(u,x) N7(x,x) D A; and 7(v,x) N 7(x,x) D
By. By 7(u,x) Nt(x,x) C 7(x,x) and 7(v,x) N 7(x,x) C 7(x,x), we have x € N/ﬁf(x)
and x € NBAkT(x). For any y € NAAIT(x), ie., T(x,y)N1(y,y) D A}, by AX1 and AX2
in Definition .3 we have 7(x,y) C 7(x,x) and 7(u,x) N 7(x,y) C T(u,y). It follows

T(u,y) N 1(y,y) 2 t(u,x) NT(x,x) N T(x,y) NT(y,y) DA
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This fact implies that T(u,y) N T(y,y) > Y;c;A and y € NZA,-::A,-(”)' Thus we have

NAA]T(x) C U. Similarly, we can prove NBAi (x) C V. Since 7 is an elementary topo-
logical molecular lattice on the lattice *EM, hence A;, B, € 1, and A; UB;, = A; V

By € 1. In virtue of Proposition[Z2] one has W = NAAIT(x) ﬁNBAk T(x) = Nﬁ@Bk (x) €

93,? such that x € W C U NV. Therefore by Theoremm%’ﬁ is a base for some
topology on X. O

The topological space (X, %A), in which 93,? is a base for 7", is called the limited
topology of X induced by the topological molecular lattice 1.

In what follows, we look more carefully at these topological structures by dis-
cussing the following illustrative examples.

Example 7.1. Let X = {x1,x2,...,xs5} be a set of 5 persons. M = {old, heavy, tall,
high salary, more estate, male, female } be a set of simple concepts on the attributes
which are shown as Table [Z.1

Table 7.1 Description of attributes

age heigh weigh salary estate male female
X1 21 1.69 50 0 0 1 0
X2 30 1.62 52 120 200,000 0 1
X3 27 1.80 65 100 40,000 1 0
X4 60 1.50 63 80 324,000 0 1
X5 45 1.71 54 140 940,000 1 0

We can construct the AFS structure T according to the data shown in Table [Z.1land
the semantics of the simple concepts in M. T is shown as the following Table [7.2]
Here A: old, M: male, W: female, H: tall, We: heavey, S: high salary, Q: more estate.

Table 7.2 The AFS structure (M, 7,X) of data shown in Table[Z.1]

‘L'(.,A) X1 X2 X3 X4 X5

xi {AMHWeS} {MH} M} {MH} M}

xrn  {AWWeSQ} {AWHWeS.Q} {AWS.Q} {WH,S } w1l

x3  {AMHWeS,Q} {MHWe} {AM,H,We,S.Q} {M,H,We,S} {M,H,We}

x {AWWeQ} {AWWeQ} {AWQ} {A,W,We,H,S,Q} {A,W,We }

x5 {AMS.Q} {AMHWeS.Q} {AMSQ} {MHS.Q} {AMH,S,We,Q}

We can verify that 7 satisfies DefinitionE3land (M, 7,X) is an AFS structure. Since
for any x € X, 7(x,x) # M, hence (M, 1,X) is not an strong relative AFS structure.
If we consider some health problem and suppose the problem just involves the at-
tributes age, high and weight. Thus we just consider simple concepts A,H,We € M
and let M, = {A,H,We}. (M, Ty, ,X) is an AFS structure if the map 7y, : X x X —
2M1 is defined as follows: for any x,y € X, Ty, (x,y) = 7(x,y) N M;. Obviously,
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(My,7m,,X) is a strong relative AFS structure. Let n C EM be the topological
molecular lattice generated by the fuzzy concepts {A},{H},{We} € EM on the
lattice *EM. 1 consists of the following elements.

o, M, {A} + {H} + {We}, {A} + {H}, {A} + {We}, {H} + {We}, {A},

{H}, {We}, {A,H} + {A,We} + {We, H}, {A,H} + {A,We}, {A,H} +{We,H},
{A,We} +{We,H}, {A,H}, {A,We}, {We,H}, {A} + {We,H}, {H} + {A,We},
{We} +{A,H}, {A,H,We}.
It could be easily verified that 1] is an elementary topological molecular lattice on
the lattice *EM. Now we study .7, the topology on X induced by n via the AFS
structure (M, Ty, , X ). The neighborhood of x; induced by the fuzzy concepts in 7,
which is obtained by Definition [Z.2] are listed as follows.

N{TAH{HH{We}(xl) = {xlaxz,x4},NfA}+{H} (x1)= {X],Xz,X4},NPA}+{We}(X1) ={x1},
NEH}vL{We} (Xl) = {xl,XQ,X4}, N{TA}(xl) = {X]}, NEH} (xl) = {X],XZ,X4},

N{nWe}(xl) = b Ny iawe e gwerry 01 = {018 Nig gy awey (1) = s
N ay gweny 1) = L NG ey gy (1) = {31k Njy gy (1) = {a

N ey 1) = 001 h Ny 061) = 0011 Niyy 4 ey (1) = {11 NG = X
N{TH}+{A,We} (1) = {x1,x2, x4}, N{TWe}+{A,H}(x1) ={nl, N{TA,H,We} (1) = {x1}.

Therefore the neighborhood of x| induced by the fuzzy concepts in 11 comes as

Ny (x1) = {X, {x1,x2,x4}, {x1}}.

Similarly, we have the neighborhood of other elements in X as follows.

Np(x2) = {X, {x1,20,x3,xa}, {xi,x0,0}, {x,x0,05), {x,n}, {0}, {a}},
Ny (x3) = {X, {x1,x3}},

Ny (xa) = {X, {x1,22,x4,x5}, {xa}},

N;(XS) = {X7 {xl,X2,x3,X5}, {xz,X4,X5}, {x2,X5}}.

What is the interpretations of the above topological structure on X obtained from
the given data shown as Table [Z.I? This remains an open problem. How to estab-
lish a distance function according the above topology on X for a pattern recognition
problem will be explored in Section 7.3. Here we just simply analyze it alluding
to intuition. One can observe that x;,x;,x4 are discrete points for the topology 7.
Coincidentally, their membership degrees to the fuzzy concepts {A},{H},{We} €
EM taken on minimal values, respectively. For any U € .7, we can prove that
if x5 € U then x € U. This implies that the degree of x5 belonging to any con-
cept in EM; is always larger than or equal to that of x,. Since xs ¢ {x|,x3} €
I, x3 & {x2,x5} € Iy, 1e., the separation property of topology 7. This im-
plies that there exist two fuzzy concepts in 1 such that x5,x3 can be distinguished
by them.
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7.2 Topology on AFS Structures and Topological Molecular
Lattice on E/" Algebras

Most of the results in this section can be proved by using the similar methods to
those we exercised in the previous section, since the lattice of EI" algebras is the
dual lattice of *EI" algebras. We first list the corresponding results of the topological
molecular lattice on the E7 algebra over a set M, in which the lattice operators V, A
are defined as follows: for any ¥,/ Ai, Y jc;Bj € EM,

ZAi/\ZBj = z A,'UBj,

icl = icljel
ZAI'\/ ZBJ' = ZAI'—F ZB]'.
icl el i e

& is the maximum element of the lattice EM and M is the minimum element of
the lattice EM. That is, the above lattice EM is a dual lattice of *EM. In the lattice
EM, for ¥,c/Ai, Y jc;Bj € EM, ¥,c1Ai > ¥ jc; B if and only if for any B; (j € J)
there exists Ay (i € I) such that Bj D Ay (refer to Theorem[L.]). Secondly, we list
the results for the topology on the universe of discourse X induced by the topo-
logical molecular lattice of some fuzzy concepts in EM. Finally, we present the
results of the topological molecular lattice on the EI* algebra over the sets X, M,
i.e.,(EXM,V,N), in which the lattice operators V, A are defined as follows: for any
Yier@ili, YjeybiBj € EXM,

zaiAi/\ijBjZ z aiﬁbJ‘AiUBj,

icl = icl jeJ
Za,-A,-\/ ijBj = Za,-A,-—i— ijBj.
icl jel icl il

X @ is the maximum element of the lattice EM and @M is the minimum element
of the lattice EM. That is, the lattice EXM is a dual lattice of *EXM. In the lat-
tice EXM, for ¥,c;aiAi,XjcsbjB;j € EM, YciaiAi > Y.jc;b;B; if and only if for
any b;B; (j € J) there exists a;Ax (i € I) such that B; D Ay and a; D b; (refer to
Theorem [5.1).

Definition 7.5. Let M be set and (EM, V, ) be the EI algebraover M. Letn C EM.
If @,M € n and 1 is closed under finite unions (i.e., V ) and arbitrary intersections
(i.e., A\ ), then n is called a topological molecular lattice on the lattice EM, de-
noted as (EM, ). Let 1 be a topological molecular lattice on the lattice EM. If for
any Y,c;A; € n, A; € n for any i € I, then 7 is called an elementary topological
molecular lattice on the lattice EM.

In what follows, we apply the elementary topological molecular lattice on the lattice
EM to induce some topological structures on X via the AFS structure (M, 7,X) of a
data. Thus the pattern recognition problem can by explored under these topological
structures on X.
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Definition 7.6. Let X and M be sets and (M, 7,X) be an AFS structure. Let (EM,7n)
be a topological molecular lattice on EI algebra over M. For any x € X, Y,;c;A; €
n € EM, the set Niel A (x) C X is defined as follows.

icl

NEieIAz(x) = {y €X [ 1(x,y) < zAi}, (7.11)

and it is called the neighborhood of x induced by the fuzzy concept Y ;c;A; in the
AFS structure (M, 7,X). The set Njj (x) C 2% is defined as follows.

Ny (x) = {Nz,-e,A,-(x)l YA€ n} , (7.12)

icl

and it is called the neighborhood of x induced by the topological molecular lattice
7 in the AFS structure (M, 7,X).

Since 7(x,y) € M, hence T(x,y) is an element in EM and t(x,y) < Y;c;A; in (Z11)
is well-defined.

Proposition 7.3. Let X and M be sets and (M, T,X) be an strong relative AFS struc-
ture. Let M be a topological molecular lattice on EI algebra over M. For any x € X,
YierAi, XjejBj € EM, the following assertions hold: for any x € X

(1) IfZieiAi 2 ZIGJB/ in EM, then NgielAi(x) 2 Ng_ieJB.i (x);
(2) Ngl_el A; (x)N Ng/a B (x) = Ngiel AINSjes B (x);
(3) Ni.e,A,-(x) UN{,-EJBI» (x) = NE,-G,A,-\/ZIEJB_,- (x)

Its proof, which is similar to the proof of Proposition[Z.]] remains as an exercise.

Theorem 7.5. Let X and M be sets and (M, T,X) be a strong relative AFS structure.
Let M be a topological molecular lattice on the lattice EM. If 1 is an elementary
topological molecular lattice on the lattice EM and we define

Py = {NgielAi(x) |xeX, ZA,- € n},
icl
then %y is a base for some topology of X.
Its proof, which is similar to the proof of Theorem[Z.1] is left to the reader.

Theorem 7.6. Let X and M be sets, (M, T,X) be a strong relative AFS structure. Let
N be a topological molecular lattice on the lattice EM and

Zn = {ZatAi €EXM | Y Aien, aic Ty foranyiel}. (7.13)

icl icl
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Then £y is a topological molecular lattice on the lattice EXM. It is called the EI?
topological molecular lattice induced by the ET topological molecular lattice 7.

Its proof ( similar to the proof of Theorem[7.2)) remains as an exercise.

Theorem 7.7. Let X and M be sets. Let (M, 7,X) be a strong relative AFS structure
and M be an elementary topological molecular lattice on the lattice EM. Let 1 be a
topological molecular lattice on the lattice EM and the topological space (X, Iy)
be the topology induced by 1. Let S be the c-algebra generated by Ty and £y be
the EI? topological molecular lattice on EXM induced by 1. Then the following
assertions hold.

(1) For any fuzzy concept Y ,;c;Ai € N, Y,iciAi is a measurable concept under S ;
(2) For each fuzzy concept Yy = Y;c;A; € 1, let y: X — EXM be the EI* algebra
representation membership degrees defined by (5.10) as follows: for any x € X,

y(x) =D Af(x)A; € EXM. (7.14)
i€l

Let D be a directed set and 8 : D — X be a net (i.e., {8(d) | d € D}). If 6
is converged to xo € X under topology T, then the net of the composition
y-0:D — EXM (ie.{y(8(d)) | d € D}) converges to y(xo) = Yic; AT (x0)Ai
under the topological molecular lattice . That is the membership function de-
fined by (Z14) is a continuous function from the topological space (X , Ty ) to the
topological molecular lattice (EXM,.2y).

Its proof, which is similar to the proof of Theorem[Z.3] can be treated as an exercise.

Example 7.2. Let us study the topological structures on the same AFS structure
(M1, Ty, ,X) of the same data we used in Example[Z]]

Let n C EM be the topological molecular lattice generated by the fuzzy concepts
{A},{H},{We} € EM on the lattice EM. 1 consists of the following elements
which are the same as for 1) in Example[Z.1]

g, M, {A} + {H} + {We}, {A} + {H}, {A} + {We}, {H} + {We}, {A},
{H}, {We}, {A,H} + {A,We} + {We,H}, {A,H} +{A,We}, {A,H} +{We,H},
{A,We} +{We,H}, {A,H}, {A,We}, {We,H}, {A} + {We,H}, {H} + {A,We},
{We} +{A,H}, {A,H,We}.

It can be easily to verify that 1 is an elementary topological molecular lattice on
the lattice EM. Now we study .7;;-the topology on X induced by 1 via the AFS

structure (M, Ty, ,X ). The neighborhood of x; induced by the fuzzy concepts in 7,
which is obtained by Definition [7.6] is listed as follows.

NEA}+{H}+{W6}(XI) = {x1,%2,%3,x4, %5}, NEA}+{H}(X1) = {x1,%2,%3,x4, %5},
N{TA}+{We}(x1) = {x1 7)62,)63,)64,)65}, NfH}+{We}(x1) = {xl,xz,X3,X4},

N{ay (1) = {xn,22,03,04, %5}, Ny (01) = {x1, 03}, Ny, (01) = {x1,x2,x3, x4},
NfA,H}+{A,W€}+{W€,H}('x1) = {xlaxZax3ax4}, NfA,H}«(»{A,We}('xl) = {x17x27x37x4},
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N{TA,H}+{We,H}(x1) = {x1,x3}, NfA,We}—&-{We,H}(xl) = {x1,%2,%3,%4},
N{TA,H}(XI) = {xl,x3}, NfA,We}(xl) = {xl,xz,x3,x4}, NfWe,H}(xl) = {xl,)@},
NfA}+{We,H}(x1) = {xl,xz,x3,x4,x5}, NEH}+{A7W€}(XI) = {xl,xz,x3,x4,x5},
wae}+{A7H}(X1) = {xl,xz,x3,x4}, NfA,H,We}(xl) = {xl,x3,x5}, NAZ()C]) =X.

Therefore the neighborhood of x| induced by the fuzzy concepts in 1 is

NT‘;(XI) = {Xa {X],Xz,X3,X4}, {x17x37x5}7 {x17x3}}-

Similarly, we have the neighborhood of other elements in X as follows.

N,:L;()Q) = {X7 {)627)637)647)65}7 {xl,X2,X3,X4}, {XQ,)C4,)C5}, {)62,)63,)65}7{)62,)65}}7
Np(x3) = {X, {x2,x3,24,x5}, {x3}},

Ny (xa) = {X, {x3,x4}, {xa}},

Np(xs) = {X, {x3,x4,x5}, {xa,xs5}, {x3,x5}, {xs}}.

Here we just simply analyze the topology on X resorting ourselves to intuition. One
can observe that x3, x4, X5 are discrete points for the topology .7,. Coincidentally,
their membership degrees to the fuzzy concepts {A},{H},{We} taken on the max-
imal values, respectively. For any U € .7, we can prove that if x; € U thenx3 € U.
This implies that the degree of x3 belonging to any fuzzy concept in EM; is always
larger than or equal that of x;. Since x € {x1,x3} € T, x1 € {x2,x5} € T ie,
the separation property of topology 7y, hence there exist two fuzzy concepts in 7
such that x,,x; can be distinguished by them. Compared with the topological struc-
ture on X induced by the topological molecular lattice on *E[" algebra, the above
topological structure has many differences. What are the relationship between these
topological structures still remains as an open problem.

7.3 Fuzzy Similarity Relations Based on Topological Molecular
Lattices

In this section, by considering the AFS structure (M, 7,X) of a data, we apply 7y
the topology on X induced by the topological molecular lattice 7 of some fuzzy
concepts on *EM to study the fuzzy similarity relations on X for problems of pat-
tern recognition. The topology .7; on X is determined by the original data and some
selected fuzzy concepts in EM. It represents the abstract geometry relations among
the objects in X. We study the interpretations of the induced topological structures
on the AFS structures directly obtained by a given data set through the differential
degrees between objects in X and the fuzzy similarity relations on X in the topo-
logical space (X, 7). We know that human can classify, cluster and recognize the
objects in the set X without any metric in Euclidean space. What is human recog-
nition based on if X is not a subset of some metric space in Euclidean space? For
example, if you want to classify all your friends into two classes {close friends} and
{common friends}. The criteria/metric you are using in the process is very important
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though it may not be based on the Euclidean metric. By the fuzzy clustering analysis
based on the topological spaces induced by the fuzzy concepts in EM, we hope find
some clues for these challenge problems.

Theorem 7.8. The following three conditions on a topological space are equivalent.

(1) The space is metrizable;
(2) The space is Ty and regular, and the topology has a c-locally finite base;
(3) The space is T and regular, and the topology has a 6-discrete base.

Here a topological space is a T\ space if and only if each set which consists of a
single point is closed, a topological space is regular if and only if for each point
x and each neighborhood U of x there is a closed neighborhood V of x such that
V C U, and a family is 6-locally finite (o-discrete) if and only if it is the union of a
countable number of locally finite (respectively, discrete) subfamilies.

Its proof (refer to Theorem[[.43) is left to the reader.

The topology 7, on X induced by the topological molecular lattice 7 of some
fuzzy concepts in EM is a description of the abstract geometry relations among the
objects determined by the semantic interpretations of the fuzzy concepts in 1 and
the distributions of the original data. We can state the problem in mathematical ways
as follows: Let X be a set of some objects and f/ be the set of all features, including
features which are independent or irrelated to the problems under considering. M
is the set of simple concepts on the features in f. A C EM, A is the set of fuzzy
concepts an individual considers crucial to his problem. 7} is the topological molec-
ular lattice generated by A. If the topology 7y satisfies (2) or (3) in Theorem [7.8]
then the topology space (X, 7;) is metrizable. Thus we can study the clustering and
recognition problems by the metric induced by topology 7y, i.e., the distance func-
tion d on the cartesian product X x X to the non-negative reals defined by Definition
[[33] as follows: for all points x,y, and z of X,

L d(x,y) =d(yx),

2. d(x,y)+d(y,z) > d(x,z2), (triangle inequality)
3. d(x,y)=0ifx=y, and

4. ifd(x,y) =0, thenx=y.

However, for a real world applications, it is very difficult to satisfy the conditions of
Theorem[Z8l In other words, this theorem cannot be directly applied to real world
classification scenarios. By the analysis of the definition of metric in metrizable
topology space (X, .7y) in mathematics (refer to Urysohn Lemma Lemma [[])), we
know that the more fuzzy concepts distinguish x from y are there in 7, the larger the
distance of x and y, i.e., d(x,y). In practice, for X a set of objects and A C EM a
set of selected fuzzy or Boolean concepts, although .7, the topology induced by the
topological molecular lattice 1 seldom satisfies (2) or (3) in Theorem[Z.8] .7;, also
can reflect the similar relations between the objects in X determined by the concepts
in A and the distributions of the original data. Thus we define the differential degree
and the similarity degree of x, y € X based on the topology .7 as follows.
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Definition 7.7. Let X and M be finite sets and (M, 7,X) be an AFS structure. Let
7N be a topological molecular lattice on the lattice *EM and (X, ;) be the topol-
ogy space on X induced by 1. We define the partial distance function D(x,y), the
differential degree d(x,y) and the similarity degree s(x,y) in the topological space
(X, ) as follows: for x,y € X,

Dx,y)= >  8]; (7.15)
d€ Ty xed y¢o

d(x,y) = D(x,y) +D(y,x); (7.16)

s(x,y) =1 d(xy) (7.17)

 max.ex {d(z,y)}

Because there are too many fuzzy concepts in 7, in practice, it is difficult or im-
possible to calculate d(x,y) by Definition [Z77] for the topological molecular lattice
7N generated by A, if |A| > 4. The following Definition [Z.8] and Definition [Z.9] in-
troduce the differential degrees of x,y, d(x,y) which are more expedient to compute
than that in Definition [Z77] although they may loose some information compared
with the concept captured by Definition [Z77] Definition [Z.§] and Definition [Z.9] are
applicable to discuss real world problems while Definition [Z7] is more appealing
from the theoretical perspective.

Definition 7.8. Let X and M be finite sets and (M, 7,X) be an AFS structure. Let n
be an elementary topological molecular lattice on the lattice *EM and (X, .7;;) be the
topology space on X induced by 1. We define Dy (x,y), the distance function on the
molecular A; duy (x,y), the molecular differential degree; and sp (x,y), the molecular
similarity degree in the topological space (X, ;) as follows: for x,y € X, A C M,
Aen,

Da(x,y) = > | NCT(w); (7.18)
uEX,xENfT(u),y¢NAAT (u)

du(x,y) = Y (Da(x,y)+Da(y,x)); (7.19)
ACM Aen

su(x,y) =1 i (x,3) (7.20)

- max.ex{du(z,y)}

Dy(x,y) in Definition [Z§] is considered under the fuzzy molecular concept A € n
and dy(x,y), the molecular differential degree of x,y is the sum of the distances of
x,y under all fuzzy molecular concepts in 7.

Definition 7.9. Let X and M be finite sets and (M, 7,X) be an AFS structure. Let n
be an elementary topological molecular lattice on the lattice *EM. Let (X, 7;) be
the topology space on X induced by 1. We define the elementary partial distance
Sfunction D°(x,y), the elementary differential degree d°(x,y) and the elementary sim-
ilarity degree s.(x,y) in the topological space (X, .7,) as follows: for any x,y € X,
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De(x,y) = D 8]; (7.21)
RIS AR A

dE(an) = fo(xa)’) +D6()’ax); (7.22)

se(x,y) =1 de(x.) (7.23)

- maxgex{de(z,)}

Here

BET = {NAAT(x) |ACMAc mxeX}.

Itis clear that %’,ﬁf C I, is the set of all neighborhoods induced by the fuzzy molec-
ular concepts in 1 which determine the distances and similarity degrees defined by
Definition[Z.9 However, in Definition[Z.7, they are determined by all neighborhoods
in 7. Since the number of the elements of .7;; is much larger than that of the set

931‘%7, hence much time will save if Definition or Definition [7.8is applied to a
pattern recognition problem. The problem is still open: are the similarity degrees
defined by Definition [Z7] Definition[Z.§ and Definition equivalent?

Proposition 7.4. Let X and M be finite sets and (M,7,X) be an AFS structure. Let
1N be an elementary topological molecular lattice on the lattice *EM and (X, 7)) be

the topology space on X induced by 1. Then for any x,y € X the following assertions
hold.

(1) d(x,x) =0, d(x,y) = d(y,x) and s(x,y) = 5(y,x) < s(x,x);
(2) dy(x) = 0, dys(x.y) = iy (3.x) and sy (x.3) = 5w (3.) < 514 (x.);
(3) de(xax) =0, de(xuy) = de(yax) and Se(xv)’) = se(y,x) < Se(xux)'

Its proof is left to the reader.

7.4 Fuzzy Clustering Algorithms Based on Topological
Molecular Lattices

Numerous mathematical tools, investigated for clustering, have been considered to
detect similarities between objects inside a cluster. The two-valued clustering is
described by a characteristic function. This function assigns each object to one and
only one of the clusters, with a degree of membership equal to one. However, the
boundaries between the clusters are not often well-defined and this description does
not fully reflect the reality. The fuzzy clustering, founded upon fuzzy set theory [33]],
is meant to deal with not well-defined boundaries between clusters. Thus, in fuzzy
clustering, the membership function is represented by grades located anywhere in-
between zero and one. Therefore, this membership degree indicates how the object is
classified ( allocated ) to each cluster. This can be advantageous for patterns located
in the boundary region which may not be precisely defined. In particular, we could
flag some patterns that are difficult to assign to a single cluster as being inherently
positioned somewhere at the boundary of the clusters.
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Many fuzzy clustering algorithms have been developed, but the most widely used
is the Fuzzy C-Means algorithm (FCM) along with a significant number of their
variants. Conceived by Dunn [2] and generalized by Bezdek [1]], this family of algo-
rithms is based on iterative optimization of a fuzzy objective function. The conver-
gence of the algorithm, proved by Bezdek, shows that the method converges to some
local minima [4]]. Nevertheless, the results produced by these algorithms depend on
some predefined distance formulated in a metric space, for instance Euclidean space
R". However, in this section we will cluster the objects in ordinary data set X g RP*"
according to the fuzzy concepts or attributes on the features without using any kind
of distance functions expressed in the Euclidean space.

In general, FCM is an objective function optimization approach to solve the fol-
lowing problem [[1} 4]

minimize : J,(U,V) = ZZM%dZ(xhvi)
ik

with respect to U = [uy] € R°*", a fuzzy c-partition of n data set X = {xj,...,x,} €
RP*" and V, a set of ¢ cluster centers V = {vy,...,v.} € RP*. The parameter m > 1
is a fuzziness coefficient. d(x;,v;) is a distance from x; to the ith cluster center
vi. The performance of FCM is affected by different distances d(.,.). In general,
the distance is expressed in some metric space [4} 34], if data set X is a subset of
a metric space. FCM fuzzy clustering algorithms are very efficient if the data set
X C RP*" as in this case there exists a distance function. Let ¢ be a positive integer
greater than one. u = {Uy,...,U.} is called a fuzzy c-partition of X, if u;(x) is the
membership functions in fuzzy sets ; on X assuming values in the [0, 1] such that
> 1i(x) =1 for all x in X. Thus, the Fuzzy C-Mean (FCM) objective function
J(u,V) is also defined as

= 2 2 x|l =il %, (7.24)

where ;(x;) = u;j = p;j and d(xy,vi) = ||xx — vi||. The FCM clustering is an iterative
algorithm where the update formulas for the prototypes and the partition matrix read

as follows: 5 "
Vi = 1;1“-’,”’,1': 1,..,c (7.25)
j=1H;j

and

[lej — vl /¢

—1 . .
l |2/ 1) d=1,..,c,j=1,...,n (7.26)

Hij u,xj:z

If the feature vectors are numeric data in R?, the FCM clustering algorithm is a
suitable optimization tool. However, when applying the FCM to data set with mixed
features such as Boolean, partial order and linguistic rating scale, we encounter
some problems, because the conventional distance ||.|| is not suitable any longer.
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To overcome these problems, the differential degrees d(x,y) (or de(x,y), dum(x,y))
defined in the above section can substitute the Euclidean distance ||.|| and the FCM
can be modified as follows.

micz - J(u,v)= z z w (x;)d (xj,vi)? (7.27)

subject to

This algorithm is called the AFS fuzzy c-mean algorithm (AFS FCM).

In order to compare the differential functions defined in the above section with
the Euclidean distance function, we directly apply the similarity matrix derived by
the differential function and Euclidean distance function to the clustering problem.
Let X = {x1, x2, ..., x,} and the similarity matrix § = (8;;)nxn, Where s;; = s¢(x;,x;)
is elementary similarity degree of x,y defined by Definition[Z.8 For the similarity
matrix S, we know s;; = sj; and s;; < s34, 1 < i, j < n from Proposition [7.4] hence
there exists an integer 7 such that S < §? < ... < §" = §"", where $? = (r;;) =
SS is the fuzzy matrix product, i.e., r;j = max;<x<, min{si,s; }. Thus, () =8"
(8" is the transitive closure matrix of ) and the fuzzy equivalence relation matrix
Q = (gij) = S" can yield a partition tree with equivalence classes in which x; and x;
are in the same cluster (i.e., in the same equivalence classe ) under some threshold
o € [0,1] if and only if ¢;; > o

7.5 Empirical Studies

In this section, we apply the similarity relations and the differential functions defined
by Definition 7.8 to the conventional FCM and compare the elementary differential
function with the Euclidean distance function in the clustering analysis of the Iris
data. Furthermore, they are also applied to Taiwan airfreight forwarder data which
is just described by means of linguistic terms. These examples show that the topol-
ogy Iy on a universe of discourse X induced by the topological molecular lattice
n of some fuzzy concepts in EM can be applied to the real world pattern recogni-
tion problems for the data set with mixed features on which the classical distance
functions could not be defined.

7.5.1 Empirical Examples of Taiwan Airfreight Forwarder

In what follows, we apply the elementary differential degree and elementary simi-
larity degree defined by Definition [Z§] to empirical examples of Taiwan airfreight
forwarder for the clustering and analyzing current operation strategies in [27]. In
[27], the authors gathered 28 strategic criteria from scholars, experts and proprietors.
They select 30 companies of airfreight forwarder in Taiwan by random selection.
Using Statistical Analysis System (SAS), they obtain seven factors: Factorl: Core
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ability, Factor2: Organization management, Factor3: Pricing, Factord: Competitive
forces, Factor5: Finance, Factor6: Different advantage, Factor7: Information tech-
nology. The decision-makers may tackle preference rating system by adopting one
of various rating scales assumed in the literature [8, 28] or may develop their
own rating scales system by using trapezoidal fuzzy number to show the individual
conception of the linguistic variable “attention degree”. According to the preference
ratings proposed by Liang and Wang [28], it is suggested that the decision-makers
utilize the linguistic rating set

W ={VL,B.VL&L,L,B.L&M,M,B.M&H H,B.H&VH VH},

where VL: Very Low, B.VL&L: Between Very Low and Low, L: Low, B.L&M: Be-
tween Low and Medium, M: Medium, B.M&H : Between Medium and High, H:High,
B.H&VH:Between High and Very High, VH:Very High, to assess the attention
degree of subjects of companies under each of the management strategies. The
decision-makers utilize the linguistic rating as above and obtain the evaluation re-
sults as Table[Z3l Let X = {Cy,...,Cs} and M = {m;,m5,...,m7} be the set of sim-
ple concepts on the features Factorl to Factor7. Where m;: great attention degree of
Factori,i=1,2,...,7. The following order relation of the elements in the linguistic
rating set W is determined by their linguistic rating scales:

VL<BVL&L <L <B.L&M <M < BM&H < H <BH&VH <VH (7.28)

For each m; € M, we can define a binary relation R,, on X by Table [Z.3] and the
order relation shown as (Z28): (Cy,Cy) € R;, for any k = 1,...,5 and for any k # [,
(Cx,C)) € Ri & Ci(Factor i)> Cj(Factor i), where C;(Factor i) is the linguistic rating
scale of C; for Factor i. By Definition one can verify that for each m; € M,
R; is a simple concept. (X,T,M) is an AFS structure if 7 is defined as follows:
For any C;, C; € X, ©(C;,C;) = {my € M|(C;,C;) € Ry} (refer to (d.26)). Let A =
{{mi},....,{m7}} C EM and n be the topological molecular lattice generated by
A. Let (X, 7,) be the topology space on X induced by 7. Let d.(C;,C;) be the
elementary differential degree of C;,C; and s.(C;,C;) be the elementary similarity
degree of x, y defined by Definition[Z.8] We obtain the following fuzzy similar matrix
S = (8ij)nxn> Sij = 5¢(Ci,Cj) and the following elementary differential matrix 7 =
(tij)nxns tij = de(Ci, C;).

Table 7.3 The evaluation results of five companies

Company Factor
Factorl Factor2 Factor3 Factor4 Factor5 Factor6  Factor7

Cl1 M H H BH & VH VH L BM&H
Cc2 H BL&M M BM&H H BM&H VL
C3 H H BM&H H H VH BM&H
C4 VL M H B.VL&L H BL&M M

C5 L M BH& VH H BH&VH B.VL&L BM&H
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0 1513 1175 1112 666
15130 638 1067 1391
T=|1175638 0 1161 1263
1112 1067 11610 918
666 13911263918 0

1.0 O 0.2234 0.2650 0.5598
0 1.0 0.57830.2948 0.0806
§=10.22340.5783 1.0  0.2327 0.1652
0.2650 0.2948 0.2327 1.0  0.3933
0.5598 0.0806 0.1652 0.3933 1.0

Then, the transitive closure of similar matrix S is $%, i.e.,

1.0 0.29480.2948 0.3933 0.5598
02948 1.0  0.57830.2948 0.2948

(54)2=5*=[0.29480.5783 1.0  0.2948 0.2948
0.39330.2948 02948 1.0 0.3933
0.5598 0.2948 0.2948 0.3933 1.0

Let the threshold o = 0.5. Then the clusters are {C1, C5}, {C2, C3} and {C4}. In
[27), the transitive closure of the compatibility relation Ry of Table[Z3]is obtained
as follows:

1 0.3890.415 0.590 0.679
0.3891 0.3890.389 0.389
Rr=10.4150.389 1 0.4150.415
0.5900.3890.415 1 0.590
0.679 0.389 0.415 0.590 1

By taking A € (0.590, 0.679], the authors in obtained the clusters: {C1,C5},
{C2}, {C3} and {C4}.

By the application of the AFS-FCM algorithm described by (Z.27) with the ele-
mentary differential degree defined by Definition[Z.8]to the data of the 30 companies
shown in Appendix A, let the cluster number ¢ be equal to 5, we obtain the cluster-
ing results

cluster1={C2, C3, C6,C7}, cluster2={C1, C4, C5, C10, C16, C21, C23, C25, C28},
cluster3={C9, C11, C13, C17, C19, C27},
cluster4={C8, C18, C20, C24, C26, C29}, cluster5={C12, C14, C15, C22, C30}.

Figure [Z 1l in which the x-axis is the re-order of the C1,..., C30 by the order clus-
ter 1,...,cluster 5, i.e., 1:4 cluster 1; 5:13 cluster 2; 14:19 cluster 3; 20:25 cluster 4;
26:30 cluster 5, shows the membership functions of the fuzzy partition matrix of X,

p={,..., us}.
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membership degree
o
o
T

5 10 15 20 25
1:4 cluster1; 5:13 cluster2; 14:19 cluster3; 20:25 cluster4; 26:30 cluster5

Fig. 7.1 The membership functions y; of the fuzzy 5-partition of X, u = {uy,..., s}

7.5.2 Experimental Studies on the Iris Data Set

The Iris data have 150 x 4 matrix W = (w;;)150x4 evenly distributed in three
classes: iris-setosa, iris-versicolor, and iris-virginica. Vector of sample i, (w;1, wp,
wis, wis) has four features: sepal length and width, and petal length and width (all
given in centimeters). Let X = {x|,x2,...,x;50} be the set of the 150 samples, where
xi = (wi1,wia, wiz,wia). Let M = {my, my, ..., mg} be the set of simple concepts on
the features, where

my: the sepal is long, my: sepal is wide, ms3: petal is long, my: petal is wide;
ms = m)y: petal is not wide, me = ml: petal is not long, m7 = mb: sepal is not
wide, mg = m) : the sepal is not long.

Given the original Iris data, we can verify that each concept m € M is a simple con-
ceptand (M, 7,X) is an AFS structure if for any x,y € X, we define 7(x,y) = {m|m €
M, (x,y) € Ry} (refer to (@.26). For example, 7(x1,x1) = {my, mp, m3, mq, ms, mg,
m7, mg }, since the sample x| has sepal length and width, and petal length and width.
Similarly we can get 7(x;,x;), i = 2, ..., 150. For sample x4 = (4.6,3.1,1.5,0.2) and
sample x; = (4.6,3.4,1.4,0.3), we have 7(x4,x7) = {my,m3,ms,m7,mg }, since the
degrees of x4 belonging to simple concepts long sepal, long petal, not wide petal,
not wide sepal, not long sepal are larger than or equal to that of x7. Similarly, we can
determine 7(x;,x;) for any i, j according to the given feature values of the samples
or the binary relation R, of the simple concepts m € M.

Let (M,7,X) be the AFS structure of the Iris data set and 7 be the topologi-
cal molecular lattice on the lattice *EM generated by all simple concepts in M.i.e.,
A ={{m},....,{mg}} CTEM. Let (X, Ty) be the topology space of X induced by
the topological molecular lattice 1. In order to compare the elementary differential
degree of x,y in topology .7, with Euclidean distance in R*. Let Ry be the fuzzy
relation matrix derived by topology .7, where Ry = Sy, (S7)* = Sp. Sy = (sij)
Sij = Se(xi,x;), the elementary similarity degree is defined by Definition Let
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Rg be the fuzzy relation matrix derived by the Euclidean distance where Rg = S%,
(k)2 = Sk, Sp = (eij), eij = 1 — (X <kea (v — xjx)%) 2. Let fuzzy equivalence re-
lation matrix Q = (g;;) = Ry or Rg, and for each threshold o € [0, 1], let Boolean
matrix Qg = (q?j), q?j =1 g;; > a. Since R,27 =Ry, R% = Rg, hence for each
threshold o € [0, 1], Oy, is an equivalence relation Boolean matrix and it can yield a
partition on X (refer to [23]]). The following Figure[Z2]shows the clustering accuracy
rates of fuzzy equivalence relation matrices Ry, and Rg for threshold o € [0.1,1].
The accuracy is determined as follows: Suppose that the clusters Cy, Cy, ...,C; are
obtained by the fuzzy equivalence relation matrices Ry or R for some specific
threshold a. Let Ny = {1,2,...,50}, N, = {51,52,...,100}, N3 = {101,102,....,150}.
For [ > 3, the clustering accuracy rate r is

{ [N1NCi|-+N2NC | +|N3NC | 1
b

I'=Max|<i,jk<lijitk,j#i 150

Forl =2, let

|NkﬂC1\ = max1§u§3{|NuﬂC1\}, 1<k<3,
INtNCa| = maxi<u<3usx{ [NuNCal}, 1 <1< 3,1k,

r= |N"OC1{J5”(‘)N’ NGl Eor = 1,letr = % . When threshold o = 0.8409, the clustering
accuracy rate of Ry, is 90.67% (the best one), 9 clusters are obtained, the error clus-
tering samples are x23, x42, X69, X71, X73, X78, X84, X88, X107, X109, X110 X1185 X132, X135-
When threshold o = 0.8905, the clustering accuracy rate of Rg is 72.67% (the best
one), and 29 clusters have been obtained. In Figures we can observe that the
elementary differential degrees defined by Definition are better than those ob-
tained for the Eculidean distance when it comes to the description of the difference
of objects for this cluster analysis.

In order to compare the fuzzy equivalence relation matrices Ry with Rg, we show
that the similar relation degrees of x; to Vx € X i.e., Ry (%, x) and R (xx,x), k =
71,72,...,130 in Figures [Z3} [Z14]in Appendix B as examples. Since for Iris-data,

T T T
— — R-Eculidean—distance

o9 —— R-topology

08

0.7F

0.6

0.4

Clustering accurate rate

I
I
I
I
05 |
|
|
|
Il

0.3

0.2

0.1

L L L L L L L L
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Threshold

Fig. 7.2 The clustering accuracy rates of fuzzy equivalence relation matrices Ry and Rg for
threshold o € [0.1, 1]
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the samples x71, ...,x130 are most difficult to be clustered, hence we show Ry (xg,x)
and Rg (xy,x), k=71,72,...,130in the figures. For Iris-data, samples 1:50 are cluster
1,1.e., iris-setosa; samples 51:100 are cluster 2, i.e., iris-versicolor; samples 101:150
are cluster 3, i.e., iris-virginica. In Figures [Z.3] and Figures [Z.4] for x71,x72, ...,Xxg0
which are cluster 2, Ry, (x,x) and Rg (x,x), x € X are shown. Compared with Figure
[Z4] we can observe that in Figure[7.3] the similarity degrees of x; to most samples
in cluster 2 are larger than that of x; to the samples in cluster 1,3. This implies that
Xy are more similar to the samples in cluster 2 and Ry (x¢,x), k=71, ...,80, in Figure
[Z3] are more clearly distinguish x; from the samples in cluster 1, 3 than Rg (%, %),
k=171,...,80, in Figure [Z4l Similar phenomenon can be observed in Figures [Z.4-
[Z14 and the others for k = 1,...,70,131, ..., 150 which are not shown here. These
examples show that the fuzzy equivalence relation matrix based on the topology is
obviously better than that based on Eculidean distance for clustering of Iris data.

By the application of the AFS-FCM algorithm shown in (Z27) to the distance
matrix T = (1) 150x 150, ij = de(xi,xj) defined by Definition[Z.8] the clustering ac-
curacy rate is 86.67%. Using the function k means in MATLAB toolbox, which
is based on the well known k-mean clustering algorithm [32], the clustering ac-
curacy rate is 89.33%. And using the function FCM in MATLAB toolbox, which
is based on the FCM clustering algorithm [1]], the clustering accuracy rate is also
89.33%. Considering that the cluster centers of AFS-FCM must be the samples,
ie., {vi,...,vc} C X, while the cluster centers of FCM can be any vectors, i.e.,
{vi,...,vc} C R", the clustering accuracy rate of AFS-FCM is acceptable.

In some situations, it is difficult or impossible to describe some features of objects
using real numbers, considering some inevitable errors and noise. For example, we
do not describe a degree “white hair” of a person by counting the number of white
hair on his head. But the order relations can be easily and accurately established
by the simple comparisons of each pair of person’s hair. In the framework of AFS
theory, (M, 7,X) is determined by the binary relations R,,, m € M and the order re-
lations are enough to establish the AFS structure of a data system. The membership
functions and their logic operations of the fuzzy concepts in EM can be obtained by
the AFS fuzzy logic system (EM,V,A,’) and the AFS structure (M, 7,X). Therefore
the AFS-FCM can be applied to the data set with the attributes described by mixed
features such as numeric data, Boolean, order, even descriptors of human intuition,
but FCM and k-mean can only be applied to the data set with the attributes described
by numeric data.

The differential degrees and similarity degrees based on the topology induced
by some fuzzy concepts are the criteria/metric human are using in their recognition
process. This criteria/metric may not be the metric in the Euclidean space. The il-
lustrative examples give some interpretations of the special topological structures
on the AFS structures directly obtained by a given data set. Thus this approach also
offers a new idea to data mining, artificial intelligence, pattern recognition,..., etc.
Furthermore the real world examples demonstrate that this approach is promising.
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Exercises

Exercise 7.1. Let M be a set and EM be the *E1 algebra over M. ForA C M, Y, A,
2 jesBj € EM, show the following assertions hold:

(1) A 2 EiGIAi andA 2 ZJEJB/ <:>A 2 EiEIAi \/Z]GJBJ

(2) AZZicfAiorA> Y i) Bj < A>3 icAiNY ey Bj.

Exercise 7.2. Let X and M be sets and (M, 7,X) be an strong relative AFS structure.

Let 1 be a topological molecular lattice on E7 algebra over M. Forany x € X, Y,/ Ai,
YjesBj € EM, show the following assertions hold: for any x € X

(1) If ¥icsAi > XjeyBjin EM, then Ng _ . (x) 2 Ni,’e/ 5 (x);

(@) NgielAi (x) N Ng,‘eJ Bj (x) = NgielAi/\Zjel Bj (x);

€) NgielAi (x) U Ng,‘eJ Bj (x) = NgielAi\/ZjeJ Bj (x)

Exercise 7.3. Proved that if 7] is a topological molecular on the lattice *EM and 7 is

a dual idea of the lattice *EM, then 7 is an elementary topological molecular lattice
on the lattice *EM.

Exercise 7.4. ([13]]) Let X and M be sets and (M, 7,X) be a strong relative AFS
structure. Let 1) be a topological molecular lattice on the lattice EM. If n is an
elementary topological molecular lattice on the lattice EM and we define

Py = {NgielAi(x) lxeX, YA€ n},

i€l
prove that %), is a base for some topology of X.

Exercise 7.5. Let X and M be sets, (M, 7,X) be a strong relative AFS structure. Let
N be a topological molecular lattice on the lattice EM and

Ly = {ZaiA,- €EXM | Y Ajen,a;€ Iy foranyic 1}. (7.29)

icl icl
Prove that .%; is a topological molecular lattice on the lattice EXM.

Exercise 7.6. Let X and M be sets. Let (M, 7,X) be a strong relative AFS structure
and 1 be an elementary topological molecular lattice on the lattice EM. Let 1 be
a topological molecular lattice on the lattice EM and the topological space (X, 7y)
be the topology induced by 7. Let S be the c-algebra generated by 7 and .23, be
the EI” topological molecular lattice on EXM induced by 7. Show the following
assertions hold.

(1) For any fuzzy concept X,;c;A; € N, Xic;Ai is a measurable concept under S ;
(2) The membership function defined by (Z.14) is a continuous function from the
topological space (X, .7y ) to the topological molecular lattice (EXM,.%y).

Exercise 7.7. Prove that the following three conditions on a topological space are
equivalent.
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(1) The space is metrizable;
(2) The space is T7 and regular, and the topology has a o-locally finite base;
(3) The space is 77 and regular, and the topology has a o-discrete base.

Exercise 7.8. Let X and M be finite sets and (M, 7,X) be an AFS structure. Let 1 be
an elementary topological molecular lattice on the lattice *EM and (X, ;) be the
topology space on X induced by 1. Show for any x,y € X the following assertions
hold.

(1) d(x,x) =0,d(x,y) = d(y,x) and s(x,y) = s(y,x) < s(x,x);
(2) dyr(x,%) = 0, dog (x,y) = dyg (3, x) and s (x,5) = s (3,) < sp1(x,2);
(3) de(x,x) =0, de(x,y) = de(y,x) and s¢(x,y) = s¢(y, %) < se(x,x).

Open problems

Problem 7.1. Let X be a set and M be the set of simple concepts on X. Let (M, 7,X)
be an AFS structure. If M is a finite set, then for any topological molecular lattice
n on the EI algebra EM is also a topological molecular lattice on the *ET algebra
*EM. What are the relationships between the topological structures on X induced
by 1 as a topological molecular on EM and that induced by 7 as a topological
molecular on *EM?

Problem 7.2. It is clear that .7, the topology on X is determined based on the distri-
bution of raw data and the chosen set of fuzzy concepts 1 C EM and it is an abstract
geometry relation among the objects in X under the considering fuzzy concepts,
ie., 1.

1. What are the interpretations of the special topological structures on X obtained
from given database?

2. What are the topological structures associating with the essential nature of
database?

Problem 7.3. Let X and M be sets. Let (M, 7,X) be a strong relative AFS structure
and 71 be an elementary topological molecular lattice on the lattice EM. Let n be
a topological molecular lattice on the lattice EM and the topological space (X, 7y)
be the topology induced by 1.

(1) How to induce a topological molecular lattice .an on the lattices *EXMM,
EXMM and a topological molecular lattice %)} on the lattices *E*X, E*X?

(2) Are the membership functions defined on the lattices EXMM by (3.12) and
E*X by (5.13) continuous from the topological space (X, 75 ) to the topological
molecular lattices (EXMM, £7), ("EXMM, 7). (*E*X, £)), (E*X, £;)?

Problem 7.4. With a metric in the topological space on X, solving the pattern recog-
nition problems will be possible for the database with various data types. Though
we can have different choices from the topological theory for the metrics, what is
suitable metric for this data of the pattern recognition problem?
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Problem 7.5. Are the similarity degrees defined by Definition [7.7, Definition [Z.8]
and Definition[7.9] equivalent?

Problem 7.6. Let (X,.7;) be the topological space induced by 7). Where 7 is the
topological molecular lattice generated by some fuzzy concepts in EM. So far, we
cannot obtain the differential degree and the similarity degree if 7 is the topologi-
cal molecular lattice generated by more than 12 fuzzy concepts in EM. The more
effective algorithm for the computation of the differential degree and the similarity
degree in (X, .7, ) are the most required.

Appendix A

Table 7.4 Evaluate results of 30 companies

Company Factor
Factor 1  Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

C1 H H H B.H & VH VH BM&H BM&H
Cc2 H H BM&H BM&H H BM&H BM&H
C3 H H BM&H H H BM&H BM&H
C4 H BH & VHH BH& VHH BH& VHBM&H
C5 H BH& VHH BH&VHBH& VHBH& VHBM&H
C6 H H BM&H M BM&H BM&H BM&H
C7 H H M BH&VHBM&H BM&H M

C8 BM&H H M BM&H BM&H H B.L&M
Cc9 BM&H H H H BH&VHBM&H M

C10 H VH H BM&H BH&VHH BM & H
Cl1 M H M H BM&H BH&VHBH&VH
C12 VH VH H B.H & VH VH H M

C13 BM&H H BM&H H BH& VHBM&H BM&H
Cl14 H H BM&H BH&VHBH&VHH M

C15 H H H H B.H & VH VH M

C16 H H H BH& VHBH& VHBH & VHBH & VH
C17 BM&H H H BH& VHBM&H BM&H
C18 M H BM&H BH&VHBH&VHM M

C19 BM&H H BM&H BM&H VH BM&H BH&VH
C20 BM&H M M H BH& VHBM&H BL&M
C21 B.H & VH VH BH& VHBH&VHBH&VHBH& VH VH

C22 H BH& VHBM&H BH&VHBH&VHH M

C23 B.H & VH VH H B.H & VH H BM&H BM&H
C24 H BM&H M M BH& VHM M

C25 VH VH H BH&VHBH& VHBH& VHBM&H
C26 H M H BH&VHBH& VHBH& VHL

C27 BM&H BM&H H H BH & VHH BM & H
C28 BH&VHBH& VHBM&H H BH& VHBM&H B.H&VH
C29 H BM&H M H BM&H BM&H L

C30 H B.H & VHH BH & VHH H M
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Appendix B

The following figures show the plots of Ry (xk, x) and Rg (xk, x), Vx € X k=71, ...,130.
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Fig. 7.6 The degrees of
similarity relation of x;
to x € X based Euclidean
distance, i. e., Rg(xg,x),
k=281,82,...,90

Fig. 7.7 The degrees of sim-
ilarity relation of x; to x € X
based on topology, i.e.,

Ry (xg,x), k=91,92,...,100

Fig. 7.8 The degrees of
similarity relation of x;
to x € X based Euclidean
distance, i. e., Rg(x,x),
k=91,92,...,100
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Fig. 7.9 The degrees
of similarity relation of
X, to x € X based on
topology, i.e., Ry (x,x),
k=101,102,...,110

Fig. 7.10 The degrees of
similarity relation of x
to x € X based Euclidean
distance, i. e., Rg(x,x),
k=101,102,...,110

Fig. 7.11 The degrees
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Chapter 8

AFS Formal Concept and AFS Fuzzy Formal
Concept Analysis

In this chapter, based on the original idea of Wille of formal concept analysis and the
AFS (Axiomatic Fuzzy Set) theory, we presents a rigorous mathematical treatment
of fuzzy formal concept analysis referred to as an AFS Formal Concept Analysis
(AFSFCA). It naturally augments the existing formal concepts to fuzzy formal con-
cepts, with the aim of deriving their mathematical properties and applying them
in the exploration and development of knowledge representation. Compared with
other fuzzy formal concept approaches such as the L-concept and the fuzzy
concept [48]], the main advantages of AFSFCA are twofold. One is that the original
data and facts are the only ones required to generate AFSFCA lattices thus human
interpretation is not required to define the fuzzy relation or the fuzzy set on G x M
to describe the uncertainty dependencies between the objects in G and the attributes
in M. Another advantage comes with the fact that is that AFSFCA is more expedient
and practical to be directly applied to real world applications.

FCA(Formal Concept Analysis) was introduced by Rudolf Wille in 1980s [10].
In the past two decades, FCA has been a topic of interest both from the concep-
tual as well as applied perspective. In artificial intelligence community, FCA is used
as a knowledge representation mechanism 50, as well as it can support
the ideas of a conceptual clustering (4}, [40] for Boolean concepts. Traditional FCA-
based approaches are hardly able to represent vague information. To tackle with
this problem, fuzzy logic can be incorporated into FCA to facilitate handling un-
certainty information for conceptual clustering and concept hierarchy generation.
Pollandt [42]], Burusco and Fuentes-Gonza lez 3], Huynh and Nakamori [16], and
Belohlavek have proposed the use of the L-Fuzzy context as an attempt to
combine fuzzy logic with the FCA. The primary notion in this investigation is that
of a fuzzy context (L-context): it comes as a triple (G,M,I), where G and M are
sets interpreted as the set of objects (G) and the set of attributes (M), and I € L&*M
is a fuzzy relation between G and M. The value I(g,m) € L (L is a lattice) is inter-
preted as the truth value of the fact “the object g € G has the attribute m € M. In
accordance with the Port-Royal definition, a (formal) fuzzy concept (L-concept) is
a pair (A,B), A € L° B € LM, A plays the role of the extent (fuzzy set of objects
which determine the concept), B plays the role of the intent (fuzzy set of attributes

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 303
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009
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which determine the concept). The L-Fuzzy context uses linguistic variables, which
are linguistic terms associated with fuzzy sets, to represent uncertainty in the con-
text. However, human interpretation is required to define the linguistic variables and
the fuzzy relation between G and M (i.e., [ € LG*My Moreover, the fuzzy concept
lattice generated from the L-fuzzy context usually causes a combinatorial explosion
of concepts as compared to the traditional concept lattice.

Tho, Hui, Fong, and Cao proposed a technique that combines fuzzy logic
and FCA giving rise to the idea of the Fuzzy Formal Concept Analysis (FFCA),
in which the uncertainty information is directly represented by membership grades.
The primary notion is that of a fuzzy context: it is a triple (G,M,I), where G is
a set of objects, M is a set of attributes, and I is a fuzzy set on domain G x M.
Each relation (g,m) € I has a membership value py(g,m) in [0, 1]. Compared to the
fuzzy concept lattice generated from the L-fuzzy context, the fuzzy concept lattice
generated by using FFCA is simpler in terms of the number of formal concepts.
However, human interpretation is still referring to it as the required to define the
membership function of the fuzzy set I for FFCA. In real world applications, just
based on human interpretation, it is very difficult to properly define the fuzzy set I
to describe the uncertainty relations between the objects and the attributes.

In order to cope with the above problems, we propose a new framework of fuzzy
formal concept analysis based on the AFS (Axiomatic Fuzzy Set) theory [18,
referring to it as the AFS Formal Concept Analysis (AFSFCA for brief). In the pro-
posed AFSFCA, each fuzzy complex attribute in EM, which plays the role of the
intent of an AFS formal concept, corresponds to a fuzzy set, which is automatically
determined by the AFS structure and the AFS algebra via what we have discussed
in Chapter 4, 5, and plays the role of the extent of the AFS formal concept. Thus the
original data and facts are only required to generate AFSFCA lattices and human
interpretation is not required to define the fuzzy relation or the fuzzy set [ on G x M
to describe the uncertainty relations between the objects and the attributes. Com-
pared with the fuzzy concept lattices based on L-fuzzy context, the fuzzy concept
lattice generated using AFSFCA will be simpler in terms of the number of formal
concepts. Compared with FFCA, the fuzzy concept lattice generated using AFSFCA
will be richer in expression, more relevant and practical.

8.1 Concept Lattices and AFS Algebras

In Chapter 4, 5, various kinds of representations and logic operations for fuzzy con-
cepts in EM have been extensively discussed in the framework of AFS theory, in
which the membership functions and their logic operations are automatically de-
termined in an algorithmic fashion by taking advantage of the existing distribution
of the original data. The purpose of this section is to extend these approaches by
combining the AFS and FCA theories.

Let us briefly recall the Wille’s notion of formal concept [57]: The basic notions
of FCA are those of a formal context and a formal concept. A formal context is
a triple (G,M,I) where G is a set of objects, M is a set of features or attributes,
and / is a binary relation from G to M, i.e., I C G x M. gIm, which is also written as
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(g,m) € I, denotes that the object g possesses the feature m. An example of a context
(G,M,I) is shown in Table[B.1l where G = {g1,g2,...,86} and M = {my,my, ...,ms}.
An “x” is placed in the ith row and jth column to indicate that (g;,m;) € I. For a
set of objects A C G, B(A) is defined as the set of features shared by all the objects
in A, that is,

B(A)={meM|(g,m)ecl,VgeA}. (8.1

Similarly, for B C M, o(B) is defined as the set of objects that possesses all the
features in B, that is,

o(B) = {g € G|(g,m) € I,Vm € B}. (8.2)

The pair (B, ) is a Galois connection between the power sets of G and M. For
more information on Galois connections, interested readers are referred to [37]. In
this chapter, the symbols ¢, § always denote the Galois connection defined by (8:1))
and (82)). In the FCA, concept lattice, or Galois lattice is the core of its mathematical
theory and can be used as an effective tool for symbolic data analysis and knowledge
acquisition.

Table 8.1 Example of a context

my my m3 my ms
g1 X X X X
& X X X X
£3 X X X X
84 X X
&5 X X
86 X X

Lemma 8.1. Let (G,M,I) be a context. Then the following assertions hold:

(1) for A1,Ay C G, A} C A, implies B(Ay) 2 B(Az) and
for Bi,B, C M, By C B, implies o.(B1) 2 o(By);

))) forall A C G, and

(2) AC a(B(A)) and B(A) = B(e(B(A
o(B))) forall BC M.

B C B(a(B)) and a(B) = o(B
Its proof is left to the reader.

Definition 8.1. ([51]) A formal concept in the context (G,M,I) is a pair (A, B) such
that B(A) = B and o(B) = A, where A C G and B C M.

In other words, a formal concept is a pair (A, B) of two sets A C G and B C M, where
A is the set of objects that possesses all the features in B and B is the set of features
common to all the objects in A. In what follows, a formal concept (A, B) in (G,M,I)
briefly noticed as (A,B) € (G,M,I). The set A is called the extent of the concept and
B is called its intent. If we review B C M as a new attribute generated by the “and”
of all attributes in B like that in [28], then A is the set of objects that possess the
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new attribute B. The adjective “formal” in formal concept means that the concept is
a rigorously defined mathematical object [8]. From the point of view of logic, the
intent of a formal concept can be seen as a conjunct of features that each object of
the extent must possess. For any given context (G,M,I), neither every subset of G
nor every subset of M corresponds to a concept.

Definition 8.2. ([31]]) A set B C M is called a feasible intent if set B is the intent
of the unique formal concept (¢t (B),B). Similarly, a set A C G is called a feasible
extent if A is the extent of the unique formal concept (A,3(A)). A set X is called a
feasible set if it is either a feasible extent or a feasible intent. Otherwise, X is called
non-feasible.

An important notion in FCA is that of a concept lattice, which makes it possible to
depict the information represented in a context as a complete lattice. Let £ (G, M, I)
denote the set of all formal concepts of the context (G,M,I). An order relation on
Z(G,M,I) is defined as follows [51]]. Let (A, B;) and (A;,B,) be two concepts in
Z(G,M,I), then (A,B;) < (A3,B,) if and only if A} C A; (or equivalently B; D
B5). The formal concept (A1, By ) is called a sub formal concept of the formal concept
(A2,B») and (A, B,) is called a super formal concept of (A1, By). The fundamental
theorem of Wille about concept lattices, states that (£ (G,M,I),V, ) is a complete
lattice called the concept lattice of the context (G,M,]I).

Lemma 8.2. (Will’s Lemma) Let (G,M,I) be a context and £ (G,M,I) denote the
set of all formal concepts of the context (G,M,I). Then
L(GM,1) = {(o(B),B(c(B))) | BE M}, 83)

Proposition 8.1. Let (G,M,I) be a context. Then for any A; C G,i €I, B C M,
JEJ,

o (UBJ> = [ (B)),

jes jel
B (UAi> =(\B(A).
icl icl

Proof. By the definitions, for any g € a/(U,¢, B;), we have

gea(UBj> & Vme UBj, (g;m) el

jet jel
& Vjeld, VmeBj, (g;m) el
& Vjel, g€ a(B))

~ gc ﬂ OC(BJ').
jeJ

Similarly, we can prove that 8 (U;c;Ai) = Nier B(Ai). O
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Theorem 8.1. (Fundamental Theorem of FCA) Let (G,M,I) be a context. Then
(ZL(G,M,I),V,N) is a complete lattice in which suprema and infima are given as
follows: for any formal concepts (A;,B;) € Z(G,M.,I), j € J,

\/(4;,B)) = (yG (UA_,-), ﬂBJ->, (8.4)

jet jeJ jeJ
N@;.Bj) = (ﬂA;, T (UB,,)), (8.5)
jet jeJ jeJ

where yg =B, vy = - o

Proof. First, let us explain the formula for the infimum. Since A; = o/(B;), for each

Jeld,
(0 (0))

by Proposition[8.1]it can be transformed into

[«() ()

i.e., it has the form (o¢(X), Y (X)) and is therefore a concept. That this can only be
the infimum, i.e., the largest common subconcept of the concepts (A}, B;), follows
immediately from the fact that the extent of this concept is exactly the intersection of
the extents of (A;,B;). The formula for the supremum is substantiated correspond-
ingly. Thus, we have proven that (£ (G,M,I),V, ) is a complete lattice. O

In what follows, we denote the subsets of G with small letters and the subsets of M
with capital letters in order to distinguish subsets of objects in G from subsets of
attributes in M.

By sets G,M, we can establish the EII algebra over G,M and (EGM,V,A) is a
completely distributivity lattice. Now, we study the relationship between the lattice
(ZL(G,M,I),V,N\) and the lattice (EGM,V,A). We define oc(EM) a sub sets of
EGM as follows

a(EM) = {yeEGM Y=Y biBi, Viel, bi:a(Bi)}. (8.6)
il
Lemma 8.3. Let (G,M,I) be a context. Then t(EM) is a sub EII algebra of

EGM, ie. k€ K, § = Yicy, buiBri € Q(EM), ek ks Nkck Gk € 0(EM), and
(a(EM),V,N) is also a completely distributivity lattice.

Proof. Ttcould be easily verified that \/;cx & € a(EM). Since EGM is a completely
distributivity lattice, hence



308 8 AFS Formal Concept and AFS Fuzzy Formal Concept Analysis

AN&= X (N byw UByw)

kek S€llyexly kek kek

By Proposition[8.1land o/(By;) = by;, forany k € K, j € I;, we have

o (U ka(k)) = () aBisw) = [ brsy

kek kek kek

Therefore Apcg G € 0t(EM). Because (EGM,V, ) is a completely distributivity
lattice, (a(EM),V, A\) is also a completely distributivity lattice. O

Theorem 8.2. Let (G,M,I) be a context. p; is a homomorphism from lattice
(EM,V,N) to lattice (£ (G,M,I),V,N\) provided py is defined as follows: for any
YiciBi € EM,

(23) \ (a(Bi),B - (B ):<a-ﬁ<Ua(Bi)), ﬂﬁ-a(Bl-)>. (8.7)

i€l il il il

Proof. By Lemma for any Y,;B; € EM, one knows that Vi € I, (o (B;),f -
o(Bi)) € Z(G,M,I). Since lattice (.Z(G,M,I),<) is a complete lattice, hence
VYc1Bi € EM,

m<23>=:QWNUa@M7ﬂﬁW@M>
ic iel icl

=\/(a( (B)) € ZL(G,M,]I).

iel

Next, we prove that p; is a map from EM to Z(G,M,I). Suppose ¥,c; Bii =
Yien, Boi € EM. By Lemma 8.1l one has Vi € 11,3k € I, such that By; 2 By, =
OC(B],‘) - OC(BZk) andVj € I,3l € I such that sz OB = (X(sz) - Ot(B”). There-
fore Uier, OC(B],‘) = Ujelza(Bzi) and

a-B (U oc(B],-)> =o-p (U oc(Bz_,-)> .
icl Jeh

QWﬁUa@m%ﬂﬁﬂ@m>

i€l icl)

Since both

and

(a-mu (52) mﬁazsz,)

ich ich

are formal concepts in (G, M, ), hence
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(a-B(Uier, 0(B1i)),Nicr, B - a(B1;)) = (ot - B(Uier, (B2i)), Nicr, B - 0t(Bai)),

174 (Z Bli> = DI (2 th) .
i€l ich

Forany  =3,c;A;,n =Y ;c;B; € EM, by @), (8.4) and Proposition[8.T] we have

pi(&vn)

= (o B[(Viera(Ai) U (Ujesa(B;)] [(Nier - a(Ai)) N (Njes B - a(B)))])-

pi(&)V pr(n)

= (o B(Uicra(Ai)), NierB - a(Ai)) V (- B(Ujesa(Bj)),Njes B - a(B;))

= (o Blo- B(Uiera(Ai)) Vo B(Ujeya(B;))], [(NierB - a(Ai)) N (Njes B - oe(B}))])

Since both p;({Vn) and p;({)V pr(n) are formal concepts of the context (G, M, 1),
hence p;(§v 1) = pi(§) V pi(n). By @), we have

pi(CAN) =pi ( > A,-uB,-) =V (@(AiUB)),B-a(A;UB))).
icl,jeJ icl,jel

In addition, for any i € I, j € J, it follows by (8.3)

(ot(Ai), B~ a(Ai)) N (a(Bi), B-a(Bi))=(ee(Ai) Nou(Bj), B-t[B - 0e(Ai) UB - 0(Bj)]).
By Proposition[8.1]l we have a:(A;) N ot(B;j) = ot(A; UB;) and

B-olB-o(A)UB-a(B))] = B-o(B(a(A:)UB(a(B))))
(a(B(ax(Ai))) Ne(B(e(B)))))

Therefore forany i € I, j € J,
(0(A;UBj), B - a(AiUBj)) = (ax(Ai), B - ot(Ai)) A (ee(Bi), B - (Bi))-
and

piEAn) =\ (a(AiUB)), B a(A;UB;))

il jel

=\ [(a(A),B-a(A) A (a(Bi),B - o(B)))]
il jel

= [\/(a(Ai),ﬂﬂ(Ai))] A [\/(a(Bi),ﬂ-a(Bi))
icl jeJ

= pi(&) Api(M).

This demonstrates that p; is homomorphism. a
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Theorem 8.3. Let (G,M,I) be a context. py is homomorphism from lattice (0.(EM),
V,A) to lattice (£ (G,M,I),V, ), if for any Y;c; biB; € (EM), p; is defined as

pr (ZbiBl) =\/(bi,B(b:)) = (a-ﬁ(\/bi% ﬂﬁ(h))- (8.8)

icl icl icl icl

Proof. By Lemma[82]and (8.8), for any ¥;.; b;B; € a.(EM), one knows that Vi € I,
(bi,B(b;)) = (at(Bi), B(e(By))) € ZL(G,M,]I). This implies that

(o B(Uietbi), NierB(bi)) = \/ (b1, B(b1)) € Z(G, M. I).

icl

Now, we prove that p; is a map from a(EM) to £ (G,M,I). Suppose Y.;c;, b1;B1; =
21‘612 byiByi € (EM), i.e., Vi € I}, 3k € I such that By; D By, bay 2 by = B(ba) C
B(by;) and Vj € L,3l € I} such that By 2 By, byj C by, ﬂ(sz) D B(by;). This
implies that

Uier,b1i = Ujenbaj, Nicr, B(b1i) = Nicn B(b2i)-

Therefore p;(Xe;, b1:B1i) = pr(Ticp, b2iB2i), i.e., pr is a map. Then for any { =
Yic1aiAi,n =3 e b;B;j € a(EM), by (84 and B.8), we have

pi(&vn) = (o Bl(Uierai) U (Ujesbj)l, [(MierB(ai)) N (NjesB(b)))])
pi(&)Vpi(n) = (- B(Uicrai), NierP(ai))V (oc-B(Ujerbj), NjesB(bj))
= (a-Bla-B(Uiciai)Va - B(Ujesb;)], [(NicrB(ai))N(NjesB(b;)))])

Since both p; (V1) and p;(E)V pr(n) are formal concepts of the context (G, M, 1),
hence p;(EVN) = pr(§)V pr(n). By B3) and (8:8), we have

C/\T] a,ﬂbjA[UBj
icl,jeJ

(a-ﬂ( U aiﬂbj>, N ﬁ(aﬂb,))
icl jeJ icl,jeJ
= \/ (a,-ﬂbjﬁ(a[ﬂbi)).

icl,jel

In addition, for any i € I, j € J, it follows by (8.3)

(ai, B(ai)) A (bj; B(b))) = (aiNbj, B - e[ (ai) UB(b;)])-

By Proposition[8.1land Lemma[8.2] for any i € I, j € J, we have

B-alBla)UB (b)) = B-o(Blai) UB (b))
= Ba(Blai)) Na(B(b))))
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= Bla(B(a(A))) Na(f(a(B)))))
= B(a(A) Na(Bj)))
= B(a,ﬂbj).
Therefore
(ai,B(ai)) N (bj,B(bj)) = (aiNbj, B(aiNb;))
and
pr(CAn) = \/ (ainbj,B(ainby))
iel,jel
=\ [(ai,B(a) A (bj,B(b)))]
iel,jel
= l\/(ai,ﬁ(ai))] A l\/(ijﬁ(bj))]
il jel
= pi(&) Api(n).
Therefore p; is homomorphism. O

By Theorem[82] we know that concept lattice £ (G, M, I) has similar algebraic
properties to EI algebra and EII algebra. £ (G,M,I) as a lattice is finer than the
lattices c(EM) and £ (G, M, ) as an algebra structure is more rigorous than EI, EI]
algebras. EI, EII algebras can be applied to study fuzzy attributes while £ (G, M, I)
can only be applied to Boolean attributes.

Theorem 8.4. Let (G,M,I) be a context and £ (G,M,I) be a concept lattice of
the context (G,M,I). Let EGM be the EI* algebra over the sets G,M. If the map
h: %2(G,M,I) — EGM is defined as follows: for any formal concept (b,B) €
Z(G,M.,I), h(b,B) = bB € EGM, then the following assertions hold.

(1) If (a,A),(b,B) € £(G,M,I), (a,A) < (b,B), then h(a,A) < h(b,B);
(2) For(a,A),(b,B) € £(G,M,I),

h((a,A)V (b,B)) =

> h(a,A)V h(b,B),
h((a,A) N (b,B)) <

h(a,
h(a,A) Ah(b,B).

Proof. (1) (a,A) < (b,B) = a C b, A D B. By Definition[5.2]and Theorem[3.1] one
has
h(a,A)\ h(b,B) = aA +bB = bB = h(b, B).

This implies that #(a,A) < h(b,B) in the lattice EGM.
(2) By the definition of the map 4 and ®.4), (83), we have

h((a,A)V (b,B)) = h(c.-B(aUb),ANB) = o.- B(aUb)ANB.
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By Proposition[8.1land Lemma[8.2] we have

o-B(aUb) = a-B(elA) Ua(B)) = - B(ex(ANB))

Thus

(@Ub) = a(ANB) 2 a(A)

o0 a
(aUb) = a(ANB) 2 a(B) = b.

)

=™ ™

a .
a .
Similarly, we can prove 8 - «(AUB) 2 AUB. Then by Theorem[3.1] we have

h((a,A)V (b,B)) = o- B(aUbB)ANB > aA + bB = h(a,A)V h(b, B).
h((a,A) A (b,B)) = anb[B- a(AUB)] < aA AbB = h(a,A) Ah(b,B). 0

8.2 Some AFS Algebraic Properties of Formal Concept
Lattices

In order to explore some algebraic properties of formal concept lattices, we define a
new algebra class ECII for a context (G, M, I), which is a new family of AFS algebra
different from the AFS algebras discussed in some other chapters.

Definition 8.3. Let G and M be sets and (G, M, I) be a context, EGM! is a set defined
as follows:

EGM! = { z ayAy | Ay CM,a, = a(A,), uc U, U is a non—empty indexing set}.
uclU

Where each <y a,A, as an element of E GM! is the “formal sum” of terms a,A,,.
Yuev auAu and ¥ cy dp)A ) are the same elements of EGM! if p is a bijec-
tion from 7 to /. R is a binary relation on EGM! defined as follows: >uct WAu,
Soey buBy, EEGM!, (3cv @uhu, Yoy byBy) € RS (i) Ya,A, (u € U) 3byBy (k€ V)
such that a, C by, A, C By, (i) Vb,B, (v € V) da;A; (I € U) such that b, C ay,
B, CA,.

Itis obvious that R is an equivalence relation on EGM!. The quotient set EGM! /R
is denoted as E/GM. ¥,y a A, = Y,ey byB, means that ¥,y a,A, and Y,y b,B,
are equivalent under the equivalence relation R.

Proposition 8.2. Let G and M be sets, (G,M,I) be a context and E'GM be defined
as Definition For ¥cy auAu € E'GM, if ag C ay, Ag C Ay, w,q €U, w# g,
then

ZauAu: z a,Ay.

uel uel uz#q

Its proof remains as an exercise.
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Definition 8.4. Let G and M be sets, (G,M,I) be a context and E/GM be the set
defined as Definition[8.3l We introduce the following definitions.

(1) For 3,cpaiAy € E'GM, ¥,cpy a,A, is called ECII irreducible if Yw € U,
Yuev Glu F ZMGU,uaéw auAuy.

(2) Forany Y,cy avA, € E'GM, |Y,cy auAu|, the set of all ECII irreducible items
inY,cu auAy, s defined as follows.

| ZauAu| £{a,Ay | ueU,ayZ aj,Ay L Aj forany jeU}.
uclU

|| Xucy auAul|, the length of ¥,y auAy, is defined as follows

H ZauAuH é|{auAu | MEUaaugaﬁAu gAjforanijU}|.
uclU

Proposition 8.3. Let G and M be sets, (G,M,I) be a context and E'GM be the
set defined as Definition The binary relation < is a partial order relation if
Suct @hu, Yoy buBy € EIGM, Y ,cy auAy < Xy buBy < Va,A, (u € U) IbiBy
(k € V) such that a, C by, A, C By.

Its proof remains as an exercise.

Proposition 8.4. Let G and M be sets, (G,M,I) be a context and E'GM be de-
fined as Definition83) Then for any I’ C{A€2M |A=B-a(A)} CM, o #T,
Sger 0(B)B is ECII irreducible.

Proof. Suppose there exists A € I" such that ¥z 0(B)B = Ypcr 24 0(B)B. By
Definition [83] for 0/(A)A standing on the left side of the equation, we know that
JE €T, E # A such that a(A) C a(E),A C E. By the properties of the Galois
connection ¢, shown in Lemma 8] and A C E, we have a.(A) 2 o(E). This
implies that c(A) = o(E) and A = B - o(A) = B - a(E) = E. It contradicts that
E # A. Therefore Y g ot(B)B is ECII irreducible. O

Proposition 8.5. Let (G,M,I) be a context and E'GM be defined as Definition
Iffor any ¥ ,cu aulu, Yvey byBy € E'GM, we define

(Y auhu)* (DX, byBy) = Y, auNbA,UB,, (8.9)
uclU veV ucl eV
(Y @)+ (Y, buBy) = Y cCu, (8.10)
uclU veV ucuv

where u € U UV (the disjoint union of indexing sets U, V), ¢, = ay, C, = A, ifucU;
cu=by, Cu =B, ifu € U. Then “+” and “x” are binary compositions on E'GM.

Its proof remains as an exercise.
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The algebra system (E/GM,x,+,<) is called the ECII algebra of context
(G,M,I) and denoted as E'GM, where % and + are defined by (8.9) and ([8.10),
and < is defined by Proposition83l For ¥,cy a,A, € E'GM, let

h

<2auAu>h ZauA %, *Zau -

uclU uclU uclU

The algebra system (E/GM, *,+, <) has the following properties which can be fur-
ther applied to study the formal concept lattice.

Proposition 8.6. Let G and M be finite sets, (G,M,I) be a context and (E'GM,*, +,
<) be the ECII algebra of context (G,M,I). Then the following assertions hold. For
anyy, 9,7, ne€ E'GM,

(1) y+o=0+vy, yx=0x*y;

2) (y+0)+r=y+0+7), (vxd)xy=yx(Dxy);

(3) (W+0)xy=(yxy)+(F*y), yx(@M)=(aM), y*(X2)=y;

(4) Ify<v,y<ntheny+y<v+y, yxy<vxy

(5) Forany € E'GM, any positive integer n,

£<L, (C+oM) ="+ oM.

(6) Let Aj CM,j€J,J be any non-empty indexing set. For any A C M, U(A) the
set of all intents containing A is defined as follows.

U(A)={B|ACBCM,B=p-a(B))}.

Then the following assertions hold.

2

2 X oAl =3 3 «

JEJACU(A)) JEJACU(A))
(7) Foranyy cjajAj € E'GM and any positive integer I,
(500) <3 3 @
jeJ JEJACU(A))

(8) If Y=Y em({m}){m}, then there exists an positive integer h such that
(Y2 = 7", || is the set of all concepts of context (G,M,I) except (X,2) (Y|
defined by Definition[8.4).

Proof. (1), (2), (3) and (4) can be directly proved by using the definitions.
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Now we prove (5). Let { = ¥,cy avA, € EIGM.

(2%/4”) * (ZauAu> = Y auNaA,UA,

uclU uclU u,vel

= z aMAM+ z ay mavAu UAV
uel u,vel u#v

> 2 ayAy.

Thus { <¢2. By 4),onehas { <2< = (<P <<t = .. =<
£2... < {" From (1), (2), (3), we have

(Zuev auAu+ DM) * (Lyey auAu + SM)

= Yuey Gl * Yucy Ay + M+ Y cp ayAu+ Yucy Ay * SM + SM x« M

= (Sucv aulu)?* + M.

Now we prove it by induction with respect on n. Suppose

(Y, awhu+oM)" " = (Y ahn) + oM.
uclU uclU

We have

(Zuev auAu+oM)"
= (Suev auAu)Fl + M) * (Xyey avlu+ M)
= (Buev @Au)" + (Zucu auAu)nil * OM + OM * 3, cy ayAy + M
= ey auAu)" + M.
Therefore the assertion holds.
(6) Let ¥ ;e ajA; € E'GM. For any u,v € J,

( D oc(A)A)*( D oc(A)A>: D a(A)Na(B)AUB.
A A AcU(

cU(Ay) cU(Ay) Ay),BeU(A,))

Forany A € U(A,),B € U(A,), if AUB is an intent of a concept of context (G, M,I),
then AUB e U(A,)NU(A,).If AUB is not an intent of a concept of context (G, M, 1),
then AUBC B-a(AUB) e U(A,)NU(A,)) and a-B-o(AUB) = a(AUB) =
o(A) N o(B). Thus in any case, for any A € U(A,),B € U(A,) there exists D €
U(A,) such that a(A) N a(B) € o(D) and AUB C D (e.g., D = B - (AUB)). By
Proposition[8.3] one has

( D oc(A)A>>k< D a(A)A>< Y a(A)A
AcU(Ay) AcU(Ay) AcU(Ay)
From (5), we have

(AZ a(A)A>*<AeZ a(A)A>= Y a(A)A

eU(Ay)
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It follows from (1), (2) and (3),

2
(z » a<A>A) » ( S o a<A>A>
uclU AcU(Ay) u,vel

AcU(A,) A€U(Ay)

Y ( Y a(A)A)

uvel \AcU(A,)

DY

uclUAcU(Ay)

(T)Let ¥ jcja;A; € E'GM. Itis obvious that Vu € J,A, C B - at(A,) € U(A,) and
ay = Ot(Au) =0 ﬁ . Ot(Au) This lmphes that zje! Clej S zje! zAEU(A_,‘) Ot(A)A By
(4), (5) and (6), for any integer /, we have

(8) By (5), we know that
2 r
Zl,wa({m}){m} < (%Oﬂ({m}){m}> <..< (%Oﬂ({m}){m}> :

Since both G and M are finite sets, hence there are finite number of elements in
E!GM and there exists an integer / such that

h 2h
(Z a({m}){m}> - (Z a({m}){m}> :
meM meM

From (7), we know that for any integer r,

r h
(Z a({m}){M}> < <Z a({M}){M}> <Y 2 oA

meM meM meM AeU ({m})

Then for any m € M,A € U(m), there exists an item o(B)B in
(Smesr (L) {m}) M such that @(B) = Neact({m}) 2 €(A), B = Upea {m} 2 A.
This implies that

M|
(za<{m}>{m}> >Y Y o

meM meM AcU ({m})
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Therefore

(2 a({m}){m}>wl = (Z o({m}) {m}> DIEED VRIS

meM meM meM AeU ({m})

Let X
(Z a({m}){m}> =2 D oaA=)aA;
meM meM AcU({m}) jel

and Y;c;a;A; is ECII irreducible. Since for any concept (ct(A),A) of
the context (G,M,I), a(A)A is an item in ¥,cpyYacu(m)) *(A)A and
Yomem Zacu({m)) A(A)A =X jc;ajA;. Then for any concept (c¢(A),A) there exists
j€J,suchthat o(A) Caj=t(Aj), A CAj. By the properties of Galois connection
o, in Lemma[8Jland A C Aj, we have a(A) D ot(A;) = aj, a(A) =aj = o(A;j),
A=B-o(A)=B-a(Aj) =A;. Thus (a(A),A) € {(a,A})|j € J}. Forany w € J,
if (ay,A,) is not a concept of the context (G,M,I), then AW is a proper subset of
Blaw) =B o(Ay) and (ay,B(aw)) is a concept of the context (G,M,I). This im-
plies that a,,f3(ay) is an item in ¥,,cp Xacu({my) %(A)A. By Proposition we
know that item a,,A,, will be reduced and it cannot appear in ¥, ;c;a;A;. It is a con-
tradiction. Therefore {(a;,A;)|j € J} is the set of all concepts of context (G,M,I)
except (X, 9). O

Theorem 8.5. Let G and M be finite sets, (G,M,I) be a context and (E'GM ,*,+, <)
be the ECII algebra of context (G,M,I). Let Y = Y,cpy 0({m}){m}. For an item
aA € |¥*| (|| defined by Definitionl84), if |A| < k, then (a,A) is a formal concept
of the context (G,M,I), i.e., B(a) = A, o(A) = a, where k is any positive integer.

Proof. Assume that there exists an item aA € |y¥| with |A| < k in |y*| such that (a,A)
isn’t a formal concept of the context (G,M,I). This implies that there exist B C M,
A C Band |B| = |A| + 1 such that a = o(B). It is obvious that aB is an item in yAI*1,
By 5 of Proposition[8.6 one knows that y'AHl < 7*. From Proposition[83] we know
there exist an item cC in ¥ such that a = o(B) C ¢, A C B C C. By Proposition[8.2
item aA can be reduced and it contradicts aA € |¥|. Therefore (a,A) is a concept of
the context (G, M, 1). O

In what follows, we discuss how to find concepts of a context using the above results.
The following theorem gives a very simple way to compute the power of an ECII
element.

Theorem 8.6. Let G and M be finite sets, (G,M,I) be a context and (E'GM ,*,+,
<) be the ECII algebra of the context (G,M,I). For any nonempty set C C M, let
Y=Y neco({m}){m} and y* = ¥;c; a(A;)A,where k is a positive integer, k < |C|.
Then

2
j/Zk: z OC(A,‘)A,‘—F( z OC(A,‘)A,‘) s

i€l |A;| <k il |A =k

where Ycq|a, 1=k %(Ai)A; = @C, if there does not exist i € I such that |A;| = k.



318 8 AFS Formal Concept and AFS Fuzzy Formal Concept Analysis

Proof. Let ¥* = e 0(Ai)A; = icra <k %(AD)Ai + Tie o=k ©:(Ai)A;. Then

2
j/zk = ( 2 OC(A,‘)A,‘—F Z O((Ai)Ai>

iel |A | <k i€l |A;|=k

:< S a(Ai)Ai>2+< D a(A,-)Ai>*< D a(Ai)A,->

iel |A | <k i€l |A;| <k iel |A;|=k

2
+< ) oc(Ai)Ai> (8.11)

iE[,lA,“=k

Because ¥ = Y,,cca({m}){m}. For any set B C C, |B| < k, o(B)B is an
item in Y 4, <k @(A;)A;. Although o(B)B may be reduced by other items in
Yier | <k O(Ai)A;, we always have o/(B)B < Ycj |4, <k ®(Ai)A; and

a(B)B+ Y, a(A)Ai= Y  a(A)A. (8.12)
i€L]A;|<k i€l,|A;|<k

Similarly, since for every set B C C, |B| = k, B'B < Y,/ |a, 1 AjA; and for any set
E CC, k < |E| <2k, there exist F,H C C, |F| = |H| = k such that E = FUH.
By 4 of Proposition 8.3 and the facts ot(F)F < Yic/|a,— ®(Ai)A; and a(H)H <
Yier A=k ®(Ai)A;, we have

2
a(E)E=a(F)No(H)FUH < ( D a(A,-)A,-> ,

iE[,lA,“=k

2 2
a(E)E+< D oc(Al-)A[) :( D oc(Ai)Ai>. (8.13)

iE[,‘A,‘l=k iE[,‘A,“=k

According to (811)), (812) and (8.13), we have
2 2
( Y oc(Al-)Ai) + ( D oc(A[)A[>

icl,|A;|<k icl,|A;|=k

YZk

2
D oc(Ai)Ai+< D AgAl-). O

icl,|Aj|<k icl,|Aj|=k

The above discussion shows that the algebra characteristics of the formal concepts
of a context can be explored by the ECII algebra of the context. For example, The-
orem Theorem [8.6] and Proposition [8.6] can be applied to identify all formal
concepts of a context. For any context (G,M,1), let vy =3,.cpr0.({m}){m}. By
8 of Proposition we know that |y!™|| defined by Definition is the set of
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all formal concepts of the context (G,M,I). Notice that there is only one formal
concept whose extent is @, i.e., @M for (G,M,I). In order to simplify the com-
putation of ™!, we compute (y+@M)2, (y+@M)*, (y+ @M)8,....(y+ oM)?,
until 2¢ > |M|. By 5 of Proposition [8.6] one knows that (y+ oM)" = y' + oM
for any positive integer n. So each item @A in " can be reduced by @M and the
number of items of (y+ @M)" is much lower than Y. Let ¥ = ¥,c; a(A;)A; =
Yictla <k O(AiD)A; + Yicy|a;—k ¢(Ai)A;. According to Theorem and Theorem
we know that for any formal concept (a,A), aA is in | Xies|a,|<k ¢(Ai)Ai] if
|A| < k and aA is in [(Xics|a; =k a(A)A;)?| if k < |A| < 2k, where k is a positive
integer. This fact and the following equation can further facilitate the computing,

2
,)/2k = 2 OC(A,‘)A,‘-F ( 2 OC(A,‘)A,’) .

i€l,|A;|<k il |Ai|=k

Example [8J]demonstrates how the detailed calculations are carried out.

Table 8.2 The Reduced Mushroom

mp ny ms ny ms

Mushroom 1 X X

Mushroom 2 X X X
Mushroom 3 X X X
Mushroom 4 X X X
Mushroom 5 X X X
Mushroom 6 X X

Mushroom 7 X X X
Mushroom 8 X X X
Mushroom 9 X X X
Mushroom 10 X X

Example 8.1. The Table shows the reduced mushroom example database from
the UCI KDD Archive (http:/kdd.ics.uci.edu) in [43]. Where m,: edible, my: poi-
sonous, mz: cap shape:convex, my: cap-shape: flat, ms: cap-surface:fibrous. Let
(G,M,I) be the context of Table 82 G = {1,2,...,10}, M = {my, my, m3, my,
ms}. Let us find all formal concepts of the context (G,M,I) by ECII algebra via
the computing on the power of the following 7.

y=1{1,2,3,4,5,6{m} +{7,8,9,10} {ms} + {1,2,5,6 }{m3}
+{3,4,7,8,9,10}{my} +{2,3,4,5,7,8,9}{ms} € E'GM.

For any positive integer k > 1, let ¥* = ¥,.; at(A)A; = ¥* + 7. Where ¥ =
Sictiaf<k “(ANAL 7 = Ticra -k 0 (A)A;.
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(v+ @M)z ={1,2,3,4,5,6}{m } +{3,4,7,8,9,10}{mq} + {2,3,4,5,7,8,9}{ms}
+{1,2,5,6 H{mims} +{2,3,4,5}}{mms} + {3,4}{mm4 }
—|—{77 8,9, 10}{1"121114} + {7, 8,9}{m2m5} + {2,5}{"131115}
+{3,4,7,8,9}{mams} + oM.

(r+oM)* = ¥'+ oM = ¥+ (V) + oM
— {1,2,3,4,5,6){mi} +{3,4,7,8,9,10} {ma} + {2.3,4,5,7,8,9} {ms]
£{1,2,5,6 {mims)} +{2,3,4,5) {myms} + {7,8,9, 10} {momy} +
{3,4,7,8,9}{mams} +{2,5}{mimsms} + {3,4} {mymams } +
{7,8,9}{mymyms} + oM

Since there does not exist item aA in y* such that |[A| = 4, hence y* = @M and
(y+oMPE =P+ oM =y + (V) +oM =y +(P)*+ oM = (y+oM)*.

According to Theorem [8.3] and 8 of Proposition[8.6] all concepts of the context for
Table 8.2 are the items shown in the above (y + IM)* except (X, D). It is the same
result as what has been obtained by the TITANIC algorithm presented in [43]].

8.3 Concept Analysis via Rough Set and AFS Algebra

In this section, combining formal concept analysis (FCA) and AFS algebra, we pro-
pose AFS formal concept, which can be viewed as the generalization and develop-
ment of monotone concept proposed by Deogun and Saquer (2003) [8]. Moreover,
we show that the set of all AFS formal concepts forms a complete lattice. AFS
formal concept can be applied to represent the logic operations of queries in in-
formation retrieval. Furthermore, we present an approach to find the AFS formal
concepts whose intents (extents) approximate any fuzzy concepts in EM by virtue
of rough set theory.

The characteristic of concept lattice theory lies in reasoning on the possible at-
tributes of data sets [66]]. Currently, FCA has been extended to other types for re-
quirements of real word applications, such as fuzzy concept lattice [2} [46]], triadic
concept [57]], monotone concept [8]], variable threshold concept lattice [63], rough
formal concept [66]], etc.

Rough set and FCA are related and complementary. In recent years, many efforts
have been made to compare and combine these two theories [61}, [62), 64 [65]]. The
combination of FCA and rough set theory provides some new approaches for data
analysis and knowledge discovery [44} 45,55 [66]].

In [8], Deogun and Saquer discussed some of limitations of Wille’s formal con-
cept and proposed monotone concept. In Wille’s notation of concepts, only one
set is allowed as extent (intent). For many applications, it is necessary to allow in-
tents to be disjunction expression. Monotone concept is a generalization of Wille’s
notion of concept where disjunctions are allowed in the intent and set unions are
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allowed in the extent. This generalization allows an information retrieval query con-
taining disjunctions to be understood as the intent of a monotone concept whose
answer is the extent of that concept. In [44]], by using rough set theory, Saquer and
Deogun formulated a general solution to find monotone concepts whose intents are
close to the query, and show how to find monotone concepts whose extents approx-
imate any given set of objects.

In this section, we propose AFS formal concept, which extend the Galois connec-
tion o, B of a context (X, M,I) to the connection between two AFS algebra systems
(EM,V,A) and (E*X,V, ). The intent of an AFS formal concept is an element of
the EI algebra (EM,V,\)—a kind of AFS algebra over M; correspondingly, the
extent of the AFS formal concept is an element of the E*I algebra (E*X, Vv, A\)—
another kind of AFS algebra over X. Where M is a set of elementary attributes on
X, EM is the set of attributes logically compounded by some elementary attributes
in M under logic operations V and A (i.e., “and” and “or”). Each element of EM
is called a complex attribute (or a fuzzy concept), and has definitely semantic inter-
pretation. The extent and intent of an AFS formal concept can uniquely determine
each other. Thus, the intent of an AFS formal concept not only generalizes that of
the formal concept, but also has a well-defined semantic interpretation.

In an information retrieval system, the logic relationships between queries are
usually expressed by logic connectives such as “and” and “or”. AFS formal con-
cepts can be used to represent the query with complex logic operations. When using
the information retrieval system, we often find that not all queries are exactly con-
tained in database, but some items close to those are enough to satisfy user’s need.
Thus, it is necessary to investigate how to approximate a complex attribute by AFS
formal concepts such that the intents of lower and upper approximating concept are
closely to the complex attribute underlying semantics.

In this section, first, FCA and rough set are briefly summarized. Monotone con-
cept is also introduced and studied. Second, AFS formal concept is proposed and
the mathematical properties of AFS formal concepts are discussed. Third, we show
that the set of all AFS formal concepts forms a complete lattice. Fourth, an approach
to approximate the element of the EM (E*X) is proposed.

8.3.1 Monotone Concept

Let us first recall monotone concept [§]] and study the aspects which should be
improved in concept representation and approximation. In [8]], Deogun and Sa-
quer introduced some notations as follows: (X, M, 1) is a context. Associating with
every set B C M, a Boolean conjunctive expression B is the conjunction of the
elements of B. For example, if B = {a,b,c}, then the associated Boolean con-
junctive expression is B =a A b Ac. A disjunction of Boolean conjunctive expres-
sions is referred to as a monotone Boolean formula. If B\, B,, . B,, are Boolean
conjunctive expressions, then F = BiVB,V..VB, = Vi, B; is monotone for-
mula. For example, let By = {a,b,c}, B, = {a,d}, then Bi=aAbAc, B, =ald,
F=BVB,=(aAbAc)V (aAd)is monotone formula. For simplicity, F would be
written as abc V ad [44]).
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Definition 8.5. ([8]) Let (X,M,I) be a context. For the monotone formula F =
V", Bi, B; C M, §(F) is defined as the set of all objects that satisfy F, that is,
8(F) = U™ ,8(B;) C X, where §(B;) is the set of all objects that satisfy B; . For
A =Uj_Aj, define y(A) to be V'i_;y(A;) € M, where A; C X, y(A;) is defined to
be the Boolean conjunctive expression associated with B(A;), “B” is Galois con-
nection.

Example 8.2. Let X = {1,2,...,13} and M = {a,b,c,d,e, f,h,i, j,1,x} be the set of
attributes on X. The context (X, M, ) is shown as Table[8.3] Assume that the mono-
tone formula F = By VB, = abc V Ix, A = U3_|A; = {4,6} U{6,7} U{5}. By Defi-
nition[83] we have the following 8(F) and y(A).

8(F) = 8(B1)U8(B2) = {4} U{6} = {4,6},
Y(A) = Vi 7(A;) = efhlV fhijxV cdefhix.
Table 8.3 Relationship between objects and attributes [44]]

a b c d e f h i j k l X

1 X

2 X X X

3 X X

4 X X X X X X X X

5 X X X X X X X
6 X X X X X X X X
7 X X X X X
8 X X X X X

9 X X X X

10 X X X X X

11 X X

12 X X X X X X X
13 X X X X X X X

Definition 8.6. ([8]]) Let (X,M,I) be a context, A; CX,B; C M, 1 <i,j < n. A pair
(A,F)where A=U! |A;, F = \/;?ZIBAJ- is monotone concept if §(F) =A, y(A) =F.
A is called its extent of the monotone concept (A,F), F its intent of the monotone
concept (A, F). Where B j is the set of features associated with l? j» and for each A;,
there exists a B; such that (A;, B;) is a formal concept.

A monotone formula F is called feasible if it is the intent of a monotone concept;
otherwise, F is called non-feasible. Similarly, A C X is called feasible if it is the
extent of a monotone concept; otherwise, A is called non-feasible. For instance,
assume F = ef V fhix, A = {4,5,6,8,10,12,13} U {5,6,7,12,13} in Table B3] of
Example[8.2] One can verify that §(F) = {4,5,6,8,10,12,13}U{5,6,7,12,13} =
A, and y(A) = ef V fhix = F. Hence (A, F) is a monotone concept, and A, F are
feasible. If F = By V By = abc V Ix, A = {4,6,7}. According to Table B3] we have
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8(F) = 8(B1) US(By) = {4,6} # A, Y(8(F)) # F. 8(v(A)) # A. (A,F) is not a
monotone concept, and A, and F are non-feasible.

Although the monotone concept overcomes some limitations of the Wille’s for-
mal concept [[10], there remain two aspects that could be improved:

1) In monotone concept, intent and extent may not uniquely determine each
other. In Example according to Table [8.3] and Definition we know that
({4,5,6,7,8,10,12,13}, abedefhlV ef \V fhix) is a monotone concept which is
different from ({4,5,6,7,8,10,12,13},efV fhix), but their extents are identical.

2) Consider {4},{4,5,6,8,10,12,13},{5,6,7,12,13} and abcdefhl, fhix,ef in
Table[83] It is easy to verify that {4} U{4,5,6,8,10,12,13}U{5,6,7,12,13} =
{4,5,6,7,8,10,12,13}, and ({4,5,6,7,8,10,12,13},abcdefhiV ef V fhix) is a
monotone concept. If considering abcde fhl, e f and fhix as query words in an in-
formation retrieval system, we can find that abcde fhl\ ef \ fhix represents the
logical relations “or” among them. Notice {e, f} C {a,b,c,d,e, f,h,I}. Thus,
if one object satisfies the condition expressed by abcdefhl, then it must satisfy
that expressed by ef, i.e., abcdefhl is redundant when abcdefhlV ef V fhix
forms a query. In other words, the queries abcdefhlV ef V fhix and ef \V fhix
are equivalent in semantics. However, they are intents of different monotone con-
cepts defined by Definition 8.6

In [44]), Saquer and Deogun gave a general solution to find monotone concepts
whose intents are close to the queries, and show how to find monotone concepts
whose extents approximate any given set of objects. However, it seems that the
following aspects of extents and intents approximations could be developed.

i) Let D be a set of objects. In [44], D is written as the union of the maxi-
mal extents of formal concepts that are contained in D and, possibly, a subset
containing whatever elements remain in D. For example, the non-feasible ob-
ject set {4,5,6,7} is written as {4,6} U{6,7} U {5}. But it is also reasonable
in practice to write it down as {4} U {4,6} U {6,7} U{5}. For instance, similar
expressions have existed in (see L(y) in Example [B3). Accordingly, both
({4,5,6,7,12,13},efhlV fhijx V cdefhix) and ({4,5,6,7,12,13},abcdefhlV
efhlV fhijxV cdefhix) could be the upper approximation monotone concepts
of {4,5,6,7} in Table B3]

ii) When approximating D = {2,3,4,5,6,7,8,9,10,11,12,13} in Table[83] one
can get an approximation of the monotone concept (D, f) by using the approxi-
mation method presented in [44]. However, we can verify that (D,cdfVefV fh)
is also a monotone concept which is another approximation monotone concept
of D.

In order to deal with these problems, in the sequel we propose the AFS formal
concept.

8.3.2 AFS Formal Concept

In this section, we propose AFS formal concept in which the Galois connec-
tion “or, B of context (X,M,I) [10] can be extended to the connection between
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the EI algebra (EM,V,A) and the E*I algebra (E*X,V,A) as follows: for any
Yict([lnea,m) € EM, 3 jc a; € E*X,

a(Z(Hm)) Y a(A;) € E*X, (8.14)

iel \méeA; il

ﬁ(Za,-)=2 1 m|cEm (8.15)

jeJ JjeJ \ mep(a;)

Forany A C M,a C X, we notice that ot([T,uea m) = a(A), B(a) = [1yep(a) m> which
are the same as the Galois connection “o;, 87 defined by (8.1) and (8.2). Thus the
conventional formal concept lattice [10] can be explored in a more general mathe-
matical framework—the AFS formal concept lattice.

In what follows, we denote the subsets of X with the lower case letters and the
subsets of M with the capital letters, in order to distinguish the subsets of X from
those of M.

Theorem 8.7. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over M and E*X be the E*I algebra over X. Then
the following assertions hold:

(1) o, B are maps, where o, B are defined by (814) and (813).
(2) Forany &, n € EM, v, ¢ € E*X,
a(Cvn)=al)van), alfan)=all)A
Bvve)=B(v)VB(), B(vAg)<B(v)AB f;)
(3) Forany &, n € EM, v, ¢ € E*X,

(4) Forany { € EM, ¢ € E*X,
¢=p(a()). all)=a(B(a(l)))
c<a(f(g). Blg)=PB(a(B(g)))

Proof. (1) Suppose { = Fie;(ITnea;m), N = Xje;(Ilnep;m) € EM, { = 1. That
is, VA; (i € I), 3By (k € J) such that A; D By and VB; (j € J), 3A; (I € I) such that
Bj D A;. This implies that Vou(4;) (i € I), Ja(By) (k € J) such that ot(A;) € a(By)
and Vo(Bj) (j € J), Jo(4;) (I € I) such that o(B;) C o(A;). Therefore

(211 -z zem (5 (11-))

and o is a map. Similarly, we can prove that 3 is also a map.
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@) agvn)=a(l)Vva(n)and B(vVve)=B(v)VB(g) can be directly ver-

ified by (€I4) and @I3). Let { = X/ (TITmea,m), N = Y jcs(Ilmep;m) € EM,
\% ZZielai’ g :zjefbj EE#X

acrn a3 (11 n))- 5 awon)

icl,je] \meAUB; il jeJ
= Y a(Ad)na(B))=a(f)Aa(n).
icl,jel
ﬁ(VA€)=ﬁ< > a,ﬂbj> = Y Blainb,)).
iel,jeJ iel,jeJ

Foranyi€l, jeJ,since B(a;Nb;) 2 B(a;), B(ainb;) D B(b;), hence B(a;Nb;) 2
B(a;)UB(b;). This implies that

Bvag)= > ( IT m=< X II m

i€l jeJ mef(ainb;) i€l,jeJ mep(a;)UB(b;)

(3. ) (200 ) o (ze) o (5)

(3) It can be directly verified by Theorem .1 and Theorem [5.24] and the proper-
ties of the Galois connection in Proposition [§.1]

(4) For = ¥,c/(ITnea, m) € EM, since for any i € I, A; C B - o(A;), a(A;) =
o-fB-a(A;), hence

B(a(&)) =B (ZOW%)) =20 IT m<X(IIm.

iel i€l meB-a(A;) i€l meA;
a(B((8))) = 2;06 Bra(di) = Z;a(A,-) =o(8).

For v =Y,c;a; € E*X, since foranyi €1, a; C o B(a;), B(a;) = B - ¢ B(a;), hence

a(ﬁ(v))=a<2( I1 M)>=Za-ﬁ(ai)22ai7

icl meP(a;) i€l icl

Bla(B(v)) =B o Blai) = Blai) = B(v).

icl icl

The proof is complete. O

Definition 8.7. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over M and E*X be the E*I algebra over X. Let { =
Sici(llmea,m) € EM, v € ¥ jc a; € E*X. (v, {) is called an AFS formal concept
of the context (X,M,I), if o(§) = v, B(v) = . v is called the extent of the AFS
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formal concepr (v, §) and £ is called the infent of the AFS formal concept (v, §).
L(E*X,EM,]I) is the set of all AFS formal concepts of the context (X ,M,]I).

In virtue of the semantics of each element in EM demonstrated in the previous
chapters, we know the complex attributes in EM are much richer in expressions than
the attributes in 2M. In real world situations, many phenomena can be described by
AFS formal concepts. For example, it is necessary to allow a query containing few
search conditions when we use an information retrieval system. The relationships
among the search conditions are usually “or” and “and” logic expression. Thus
the query can be represented by the intent of an AFS formal concept. For example,
ab + bed + e + hi in Table B3] can be used to represent the query “ab OR bcd OR
e OR hi”. The answer to query can be represented by the extent of an AFS formal
concept.

Definition 8.8. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context, EM be the EI algebra over M and E*X be the E*I algebra over X. { =
Yici(Tlnea,m) EEM, v =Y ;c;a; € E*X,if B(a({)) # £, { is called a non-feasible
fuzzy concept. If a(B(Vv)) # v, v is called a non-feasible E*I element.

For example, let { = ab+ f in Table 83l Due to B - a({a,b}) = B({4}) =
{a,b,c,d,e, f,h,1} #{a,b}, B-a({f})=f. Then, B(c({))# &, ¢ is non-feasible.

Lemma 8.4. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context. Then the following assertions hold:

(1) For any (v,0) € L(E*X,EM,I), let v = Yiciai, § = X jcs(Tlnea,m)- If
Y jcs(llnea;m) and Licyai are irreducible, then |I| = |J| (|1| denotes the car-
dinality of I) and for any i € I, j € J, A; is the intent of a formal concept of
(X,M,I), a; is the extent of a formal concept of (X,M,I).

(2) Let v =Yc;a; € E*X, { = ¥ jc;(Ilnea,;m) € EM, and Sic; ai, 3. jc; (Mmea, m)
be irreducible. If for any j € J, A; is the intent of a formal concept of context
(X,M,I), then (a({),8) € L(E*X,EM,I). If for any i € 1, a; is the extent of a
formal concept of context (X,M,I), then (v,B(v)) € L (E*X,EM,]I).

Proof. (1) Assume |I| # |J|. Without loss of generality, let |I| < |J|. By the fact that
(v,{) is an AFS formal concept (Definition B.7), we know that §(v) = { and the
cardinality of B(v) is |/]. Since |I| < |J|, hence ¥ jc;(TTneca; m) is not irreducible,
which contradicts the fact that ¥ jc ;(ITnea, m) is irreducible.

Next, we will prove for any j € J, A; is the intent of a formal concept of (X, M,I)
and ¢; is an extent of some formal concept with an intent in {A; | j € J}. By Def-
inition B7] we have B(a({)) = ¢, o(B(v)) = v. This implies that there exists a
bijection p from  to J such that for any i € I, B(a;) = Ap ;). Since a(B(v)) = v,
then

aBW)=a | X [T m) | =Y e, = a

icl mEAp(i) i€l icl
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If there exists i € I such that (A ,(;y) = a(B(a;)) # a;, which means there exists az,
i # k, such that (A ;) = (B (a;)) = ar. By the properties of Galois connection
“or, 7, we have a, = (B (a;)) 2 a;. It contradicts the fact that Y, a; is irreducible.
Thus, a(A,(;)) = (B (a;)) = a; and (a;,Ap ;) is a concept of context (X, M, I).

(2) One can directly verify that (a({), §) is an AFS formal concept of the context
(X,M,]I) by Definition[877] (814) and (8.13). Similarly, the second conclusion holds
as well. O

Theorem 8.8. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context and £ (E*X ,EM,I) be the set of all AFS formal concepts of the context
(X,M,I). Then, for any (v,{) € L(E*X,EM,I), v and { are uniquely determined
by each other.

Proof. Let v = Yicia; € E*X, § = 3/ (Tlnea,m) € EM. Without loss of gen-
erality, let ¥c;a; and ¥ je;(TTnea, m) be irreducible. By the Lemma B4l we get
|I| = |J]. For simplicity, let I = J. Assume that v and { are not uniquely determined
by each other. Then, for v, there exists p = Yic;(ITnep, m) € EM (p # £) such
that (v,p) € Z(E*X,EM,I). Thus, there is at least one iy € I such that A;, # B;
for any i € I. From the Lemma [8.4] and Definition 8.7} we get that there exist k € I,
J € I such that (a,Aj,), (ax,B;) are formal concepts of the context (X,M,I), then
aj, is not an extent of a formal concept, which contradicts to (v,{) is an AFS
formal concept (by Lemma [8.4). Similarly, for {, there exists unique v such that
(v,8) € L(E*X,EM,]I). O

Definition 8.9. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context and . (E*X,EM,I) be the set of all AFS formal concepts of the context
(X,M,I). Let (v, 1), (v2,8) € L(E*X,EM,I). Define (vi,¢1) < (v2,&) if and
only if v; < v; in lattice E*X (or equivalently {; < { in lattice EM).

It is obvious that < defined by Definition [8.9is a partial order on . (E*X,EM.I).
The following theorem shows that the set .2 (E*X, EM,I) forms a complete lattice.

Theorem 8.9. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context and £ (E*X ,EM,I) be the set of all AFS formal concepts of the context
(X,M,I). Then £ (E*X ,EM,I,<) is a complete lattice in which suprema and infima
are given as follows: for any (v, &) € L(E*X,EM,I),

\ (i, &) = (\/ (), B (V a(ck)>> , (8.16)

kekK kekK kekK
A Vi, &) = (/\ (&), B (/\ a(@)) , (8.17)
kekK kekK kekK

where k € K, K is any non-empty indexing set.

Proof. In order to show that Z(E*X,EM,I,<) is a complete lattice, we need
to show that any subset of .Z(E*X,EM,I) has a least upper bound (suprema)
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and a greatest lower bound (infima). Let S = {(vk, &) | kK € K} be any subset of

ZL(E*X,EM.I). Let § =3¢, (HmGAksk m),k € K, J; be the indexing set associat-
ing to {;. We claim,

suprema = (\/ o(&), ( ))
kek kek

infima = (/\ (&), ( ))
kek kek

First, we show that suprema = (\/jcx (&), B (Viek ©(&))). By Theorem [87
we have

oy

=al|lB| Yol X (I m =alYBla| X (]I m

kekK SkEJy mEAksk kek S EJy mGAka
~ySalple Om||]-SSal On
keK spedy mEAksk keK sy, mGAka
=Xof Y [l m)=Vad)
kek Sk EJx meAk.vk keK

This implies (Viex @(&),B(Viek @(&))) € L(E*X,EM,I), ie., it is an AFS
formal concept. Moreover, for any k € K, vy = 0t(&;) < Viegx (&) holds. Fur-

thermore, (Viex (&), B(Viex @(&))) is an upper bound for S. Let (v,{) €
L(E*X,EM,I) and for any k € K, (vi,&) < (v,§), ie., (v,{) is another up-
per bound for S. It is easy to get v, = a({;) < v for any k € K. Therefore,

Viek@(8&) < vand (Vieg (&), B(Viex @(&))) < (v, ), ie.,

suprema = (\/ a(G). B (\/ a(Ck)>> .

kek kek

Next, we show that infima = (Agegx 0(&), B(Aex @(&))). Since E*X is a
complete distributive lattice according to Theorem Hence for any k € K, one
has

N (&) =3, () aAw)

kekK fE€Okek

where © = {f|f : K — Urex Ji 5-t. f(k) € Ji}. Thus by the definitions of o, 8 (i.e.,
(814) and (8.13)), we have
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o(s(es)
o(p(3000)) (2 (32 (Ue))

o5 T n)-sana(Uno)

feo meﬁu(UkekAkf(k)) fee keK

5 a(Un) = 5 Nt = A acs).

f€o kek fEO kK kek

This shows (Agex @(&)s B(Akek @(&))) € L(E*X,EM,I), ie., it is an AFS
formal concept. Moreover, for any k € K, Aycx 0(&) < v = a(&y) holds, so
(Akex @(&), B(Arex @(&))) is a lower bound for S. Let (v,{) € Z(E*X,EM,I)
and for any k € K, (v, &) > (v,{), i.e., (v,{) is another lower bound for S. This
implies that for any k € K, v, = a({;) > v. Therefore, both Aycgx 0t(&) > v and

(/\ (&), B (/\ a@))) > (v,{)
keK keK
hold, ie., infima = (Aex 0/(8c), B(Arek ©(Sk))). 0

In an AFS formal concept, its intent is a complex attribute of EM; correspondingly,
its extent is an element of E#X. The extent and intent of an AFS formal concept can
uniquely determine each other. Given some extents ap,as,...,a, of formal concept
[10], we can find a unique { € EM, as the intent of the AFS concept with extent
>, a;. § is a semantic description of Y7 a;. On the contrary, given some intents
A1,As,...,A, of formal concept [10], we can find a unique v € E*X, as the extent of
the AFS concept with intent 3/ ([T,,c4,m). V is uniquely suitable to the description

of 2?:1 (HmGAi m)

Remark 8.1. By using AFS formal concepts, we can avoid the following two issues
discussed above.

1. In the AFS formal concept, intent and extent can be uniquely determined by
each other (Theorem [8.8)), and there exists a bijection between each item of intent
and each item of extent (Lemma[8.4).

2. AFS formal concept is based on the E[ algebra (EM,V, A) and the E*I algebra
(E*X,V,A). In (EM,V,\), we can consider whether two complex attributes are
equivalent or not under the semantics (Definition . I)existing in an information
table. Thus we can filter some complex attributes without loss of main informa-
tion. For instance, let us continue discussing items {4}, {4,5,6,8,10,12,13},
{5,6,7,12,13} and abcdefhl,ef, fhix in Table 83l In terms of the AFS algebra,



330 8 AFS Formal Concept and AFS Fuzzy Formal Concept Analysis

abcdefhl + ef + fhix = ef + fhix (Definition E.1). Thus items {4}, {4, 5, 6, 8,
10, 12, 13}, {5,6,7,12,13} and abcdefhl,ef, fhix can consist of an AFS for-
mal concept ({4, 5, 6, 8, 10, 12, 13}+ {5,6,7,12,13}, ef + fhix). Moreover,
{5,6,7,12,13} U{4,5,6,8,10,12,13} is just identical with extent of ({4, 5, 6, 7,
8, 10, 12, 13}, abedefhiV ef V fhix). Then, AFS formal concept have not lost a
crucial original information, although the intents of AFS formal concepts are usu-
ally simpler than those of monotone concepts. Thus AFS formal concept constitutes
an improvement of the monotone concept.

In general, not all queries are exactly contained in an information system, but there
exist many words (or phrases) close to those. For example, in Example B3] there
does not exist an AFS formal concept with intent f+cd, but AFS formal concepts
with intent ef + cd f and fh+ cd f exist in information Table[83l Accordingly, we
study how to approximate a complex attribute in EM (or an element in E*X) by AFS
formal concepts. In next section, we will investigate this issue in terms of rough set
theory.

8.3.3 Rough Set Theory Approach to Concept Approximation
Let (X,M,I) be a context. Inspired by [44], for each m € M, denote set
Im={xeX| (x,m)el}

represent all objects that possess the attribute m. Define a binary relation R; over M
as follows, for any m;,m; € M,

(mi,mj)€R1<i>Imi=Imj. (8.18)

That is to say, two attributes are related under R; if and only if they are possessed by

the same object set. It is easy to demonstrate that R; is an equivalence relation over

M. Denote M /R; to be the set of all equivalence classes deduced by R; over M, i.e.,

M/R; = {[mj] | m; € M}, where [m;] = {m; | (mj,m;) € Ri} = {m; | Im; = Im;}.
Similarity, we can define an equivalence relation 77 over X:

(xi,xj) €T1<:>xi12le, (8.19)

where x;,x; € X, x;l = {m € M | (x;,m) € I} represent all attributes which are pos-
sessed by the object x;. X /T be the set of all equivalence classes deduced by 7; over
X,ie, X /T ={[x] | xi € X}, where [x;] = {x; | (x;,xj) € T;} = {x; | xil =x;I}.

The lower and upper approximations of subset B of M in the approximation space
o = (M,R;) defined by (6. are listed as follows:

A.(B)={meM|[m CB}=|J{y eM/R;|Y C B}, (8.20)
A*B)={meM|[mnB+o}={Y eM/R |YNB#2}. (821
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Similarity, the lower and upper approximations of subset a of X in the approximation
space & = (X, T;) defined by (6.1)) are listed as follows:

Aa)={xeX | CX}=|J{zeX/Ti|zCa}, (8.22)
Aa)={xeX|[na# o} = J{zeX/T1|zNna#o}.  (8.23)
Definition 8.10. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context, EM be the EI algebra over the set X and E*X be the E*I algebra over

the set X. For any y = ¥,/ ([Tep, m) € EM, y the lower approximation and y the
upper approximation of the fuzzy concept y are given in the form:

v=>( I mecem, w=>( [ m<cEM. (8.24)

i€l meA*(B;) i€l meA,(B;)

For any 8 = ¥,.;a; € E*M, 6 the lower approximation and 6 the upper approxima-
tion of the E*I algebra element 0 are defined as follows.

0=>A.(a) EE*M, 0=Y A%(a)) €E'M. (8.25)

i€l icl

Proposition 8.7. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Then the following assertions hold.

(I) for any lVlalVZaYEEMy

y<v<7,
(WivVya)=(y1)V(y2)
(viAy) < (1) A (v2)

(2) forany 6,6,,9 € E*X,

(61V6)=(6)V (6 ) (1V92) (61)V (62),
(01A60) <(01)A(62) , (B1A62)=(01)N(6).

Its proof is left to the reader. Whether the upper and lower approximations defined
by (®.24) and (8.23) have the same properties as the upper and lower approximation
defined by remains an open problem.

Let (X,M,I) be a context, M be set of elementary attributes, B; C M, y =
Yic1(Tlnes, m) € EM be non-feasible, i.e., B(ct(y)) # y (Definition B.8). We are
interested in finding AFS formal concepts whose intents approximate . Let L(y)
and U (y) be two AFS formal concepts, whose intents are the lower and upper ap-
proximations of y respectively, as follows:
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:(Za(A*(Bi)L | m>e$(E#X,EM7I)7 (8.26)

icl i€l meB-a(A*(B;))

= (Za(A*(Bi)), | m> € Z(E*X,EM,I). (8.27)

iel i€l meB-a(Aw(B;))

where A.(B;), A*(B;) defined by 820) and (821, respectively. “o;, 7 is Galois
connection defined by (81) and (82). The following Proposition shows that
L(y) and U(y) are AFS formal concepts of the context (X, M,I). L(y) is called the
lower AFS formal concept approximation of the fuzzy concept y and U (y) is called
the upper AFS formal concept approximation of the fuzzy concept .

Proposition 8.8. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Then for any ¥ = Y;c;(Ilnep, m) € EM, the following assertions hold for the
lower and upper AFS formal concept approximations of the fuzzy concept y:

L) = (za<A*< s oo ))m) _ (a(w),B-a(w))

i€l i€l mef-o(A*(B

- <2a< IS ))m> = (a(y),B - ().
B;

i€l i€l mef-a(A

where o and B defined by (8.14) and ([812), respectively. y and v defined by (8.24).

The proof of this proposition remains as an exercise. By Proposition[8.8] Definition
and Theorem [§.7] we know that both L(y) and U (y) are AFS formal concepts
of the context (X,M,I).

Proposition 8.9. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Then the following assertions hold:

(1) For any y € EM, L(y) < (o((y),B(a(y))) < U(w), where o, defined by
(814) and (813);
(2) Foryi,ya € EM, y; <y = L(y1) < L(y2), U(y1) <U(y2),

where L(.) and U(.) are defined by (826) and (827), respectively.

Proof. (1) Let W = ¥;c/(ITnea,m) € EM. For any i € I, we can get A.(A;) CA; C
A*(A;) from the formulas 820) and (8.21)). By using properties of the Galois con-
nection “o, B PropositionB.1] we have o(A.(A;)) 2 a(A;) D ol(A*(A;)). From the
definition of AFS formal concept (Definition [8.7) and the formulas §.26)-(8.27),
we get L(y) < (a(y), B(a(y))) < U(y).

(2) Let yi = ¥ e (TTmep; m); W2 = Lie(Ilnea; m) € EM. Since y; < y, hence
for any j € J, there exists an i € I such that A; C B;. By proposition[6.1l A.(A;) C
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A«(Bj). From the definition of AFS formal concept (Definition[8.7) and the formulas
B28)-B27), we get L(y») < L(yy). Similarly, we obtain U (y») < U (y). O

In Example B3l we compare AFS formal concept approximations with results in

(44).

Example 8.3. Let X be a set and M be a set of attributes on X. Consider the context
(X,M,I) given in Table 83l An “Xx” is placed in the p-th row and g-th column to
indicate that object p has attribute g. Let B = { f, h, i}, from (8.18), and (821,
one can get that M /Ry = {ab,c,d,e, f, h,ix, j,k,1}. In the approximation space &/ =
(X,R1), Au(B) = {f,h}, A*(B) = {f,h,i,x}. Let ¢ = fhi € EM. Then owing to
formulas (826)—(8.27), we have

L(op) = ({5,6,7,12,13}, fhix),
U(p) = ({2,3,4,5,6,7,8,11,12,13}, fh).
The authors in [44] gave an example on approximating a non-feasible monotone
formula in which y = abV bed VeV hiV fhi. Due to o - ({a,b}) = o({4}) =

{a,b,c,d e, f,h,1} # {a,b}, v is non-feasible. L(y) and U(y) are computed as
illustrated in Table[8.4]

Table 8.4 The lower and upper approximation of v [44]]

i B A*(B))  A.(B) L(B) U(B;)

1 {a,b} {a,b} {a,b} ({4}, abcdefhl) ({4}, abedefhl)

2 {bedy {abed {cd} ({4}, abedefhl) ({4,5.8,9,10,12,13}, cdf)

3 e} e} (&} ({4568,10,12,13}, ¢f) ({4,56,8,10,12,13}, ef)

4 {niy  {mix}  {hy {5.67.1213) fhivy  ({2345.67.8.11,12,13}, fh)
5 {f,hi} {f,hix} {f.h} ({5,6,7,12,13}, fhix) ({2,3,4,5,6,7,8,11,12,13}, fh)

The authors concluded that

L(y) = ({4} U{4,5,6,8,10,12,13} U{5,6,7,12,13},
abcdefhlV ef V fhix)
= ({4,5,6,7,8,10,12,13}, abcdefhlV ef V fhix),
U(y) = ({4}U{4,5,8,9,10,12,13} U{4,5,6,8,10,12,13}
U{2,3,4,5,6,7,8, 11,12, 13}, abedefhiV cdf V ef V/ fh)
= ({2,3,4,5,6,7,8,9,10,11,12, 13}, abedefhi\ cdf V ef v fh).

However, by using Definition[4.1] we find that in EM

abcdefhl+ef + fhix = ef + fhix,
abcdefhl+cdf+ef+ fh = cdf+ef + fh.
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By Definition[5.3] we find that in E*X

{4} +{4,5,6,8,10,12,13} + {5,6,7,12,13}
= {4,5,6,8,10,12,13} +{5,6,7,12,13},

{4} +{4,5,8,9,10,12,13} +{4,5,6,8,10,12,13} + {2,3,4,5,6,7,8,11,12,13}
={4,5,8,9,10,12,13} + {4,5,6,8,10,12,13} + {2,3,4,5,6,7,8,11,12,13}.

By the formulas L(y) and U (y), we can get that

L(y) = ({4} +{4.5,6,8,10,12,13} +{5,6,7,12,13},
abcdefhl+ ef + fhix)
= ({4,5,6,8,10,12,13} +{5,6,7,12,13},ef + fhix),

and

U(y) = ({4} +1{4,5,8,9,10,12,13} +{4,5,6,8,10,12,13}
+{2,3,4,5,6,7,8,11,12,13},abcde fhl+ cdf + ef + fh)
= ({4,5,8,9,10,12,13} + {4,5,6,8,10,12, 13}
+{2,3,4,5,6,7,8,11,12,13},cdf + ef + fh).

It is easy to verify that v, L(y), U(y) satisfy (1) of Proposition[8.9

Remark 8.2. From Example one can observe that the semantics of the intents
of the lower and upper approximations of y by AFS formal concepts are equivalent
to those of y by monotone concepts. However, the extents of them are different,
and the extents of AFS formal concepts preserve more information than those of
monotone concepts. In addition, the semantic equivalence and logic operations are
introduced in AFS formal concepts. These are more conveniently to represent the
logic operations of queries in information retrieval.

Let (X,M,I) be a context, a; CX, 0 =Y,ca; € E*X. We are interested in finding
AFS formal concepts whose extents approximate 6. Let L(6) and U(0) be two AFS
formal concepts, whose extents represent the lower and upper approximations of 0,

respectively, as follows

(z(xﬁ ) | m)e.,sf(E#&EM,I), (8.28)

icl i€l meB(Av(ai))

(Zaﬂ ), > H >e$(E#X,EM7I). (8.29)

icl i€l mef(A*(a;))

where A, (a;) and A*(a;) defined by (822) and (823)), respectively. “o, 7 are Galois
connection defined by (8.14) and (8.13). The following Proposition[8. 10 shows that
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L(6) and U(0) are AFS formal concepts of the context (X, M,I). L(0) is called the
lower AFS formal concept approximation of the E*I algebra element @ and U () is
called the upper AFS formal concept approximation of the E*I algebra element .

Proposition 8.10. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Then for any @ = Y,c;a; € E*X, the following assertions hold for the lower
and upper AFS formal concept approximations of 0:

<20‘ BA-(a), X, H ))m> = (a-B(6), B(8)),

icl i€lmep(A

(Za BA @), Y TI ))m> = (- B(6), B(8)).

icl i€lmef(A*(a

where ov and B defined by ([814) and (813, respectively. 0 and 0 defined by (823).

The proof of this proposition remains as an exercise. By Proposition[8.10] Definition
and Theorem[8.7] we know that both L(0) and U(6) are AFS formal concepts
of the context (X,M,I).

Proposition 8.11. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context, EM be the EI algebra over the set X and E*X be the E*I algebra over
the set X. Then the following assertions hold:

(1) Forany 6 € E*X, L(6) < (a-B(6), B(0)) <U(6), where o, 3 defined by

(814) and (I813);
(2) For 0,,0, € EM, 6, < 6, = L(6,) <L(6,), U(6)) <U(6),

where L(.) and U(.) defined by (828) and (829), respectively.

Example 8.4. Let X be a set and M be a set of attributes on X. Consider the context
(X,M,I) given in Table[83 From formula (8:19), one obtains

X/ ={{1},{2}, {3, 11}, {4}, {5,12,13}, {6}, {7}, {8}, {9}, {10} }.

Let 0 =Y, a; = {2,3} + {4} +{5,6,7} € E*X. From formulas (822) and (823),
L(6) and U(0) are computed as presented in Table [83)

Table 8.5 The lower and upper approximation of 6

i a A(a;) A*(a) L(a;) U(a;)

123} {23 {2311} ({2,45.8,12,13}, dfh) ({234,5.6,7.8,11,12,13}, fh)
2 {4} {4} {4} ({4}, abcdefhl) ({4}, abedefhl)

3 (567 {67} {567.1213} ({67}, fhijx) ({5.6.7,12,13}, fhix)
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Therefore, from properties of EI, E*I algebra and the formulas (8.28)-(8.29), we
get

L(6) = ({2,4,5,8,12,13} + {4} + {6,7},d fh+ abcde fhl+ fhijx)
= ({2,4,5,8,12,13} +{6,7},dfh+ fhijx),

and

U(o)=({2,3,4,5,6,7,8,11,12,13} + {4} +{5,6,7,12,13},
Sfh+abcdefhl+ fhix)
= ({2,3,4,5,6,7,8,11,12,13}, fh).

Remark 8.3. The extent and intent of AFS formal concept can uniquely deter-
mine each other. Thus, concept approximation by AFS formal concepts can avoid
the issues i) and ii) stated in the abvoe section of monotone concepts and is
more conveniently for query. When approximating {2,3,4,5,6,7,8,11,12,13} +
{4,5,8,9,10,12,13} + {4,5,6,8,10,12,13} by AFS formal concepts, we get that
({4,5,8,9,10,12,13} + {4,5,6,8,10,12,13} + {2,3,4,5,6,7,8,11,12,13},cdf +
ef + fh) instead of (D, f), where D = {2,3,4,5,6,7,8,9,10,11,12,13}. When ap-
proximating D by AFS formal concepts, one also can obtain that (D, f) by union all
of the items of extent of the AFS formal concept, which is the same as the approxi-
mation realized by monotone concepts.

In this section, the AFS formal concept is proposed, which can be more conveniently
applied to represent query in information retrieval systems than both the monotone
concept and the formal concept. The set of all AFS formal concepts forms a com-
plete lattice. Furthermore, by virtue of rough set theory, we discuss how to find AFS
formal concepts whose intents (extents) approximate a fuzzy concept in EM (or an
element of E*X). The examples and remarks demonstrate that not only the forms of
approximation results by using AFS formal concepts may be concise, but they do
not lead to any loss of crucial information. In this way, the AFS formal concepts can
be viewed as the generalization of the monotone concept and the formal concept.

8.4 AFS Fuzzy Formal Concept Analysis

In the above sections, the set M in any context (G, M, 1) is a set of Boolean attributes
on X. However, in the real world applications the set M often represents a set of
fuzzy or Boolean attributes. Given this, in the this section, we show that any context
(G,M,1) with fuzzy attributes in M, where I stresses that there are fuzzy attributes
in M, can be described by an AFS structure. Let G be a set of objects and M be a set
of fuzzy or Boolean attributes. Vg1,g2 € G, T is defined by

7(g1,82) = {mlm € M, (g1,82) € Ru},

where (g1,82) € Ry, (refer to Definition 2] )< g| belongs to attribute m at some
degree and the degree of g; belonging to m is larger than or equal to that of g,, or



8.4 AFS Fuzzy Formal Concept Analysis 337

g1 belongs to m at some degree and g, does not at all. For a given context (G, M, 1),
we can establish an AFS structure (M, 77, G) according to (G, M, ) in the following
manner.

7(81,82) = {m € M|(g1,82) € Ru},

where for m € M and binary relation I C G x M, g; belongs to attribute m at some
degree which means that (g;,m) € I. Since each m € M, m is a Boolean attribute,
hence (g1,m) € I implies that the degree of g; belonging to m is larger than or equal
to that of g, for any g, € G. Therefore

T(g1,82) ={m e M|(g1,82) €ERn} ={me M|(g1,m) €1}.

Now, we discuss the AFS formal concept analysis, in which M is a set of fuzzy
or Boolean attributes on X.

Definition 8.11. Let X, M be sets and (M, 7,X) be an AFS structure. A binary rela-
tion I; from X x X to M is defined as follows: for (x,y) € X x X,m € M,

((x,y),m) €l & me 1(x,y). (8.30)

It is clear that (X x X, M, ;) is a formal context defined by [10]. The formal con-
text (X x X,M,1;) is called the fuzzy context associating with the AFS structure
(M, 1,X).

Definition 8.12. Let X be a set and E* (X x X) be the E*I algebra on X x X. For any
a C X xX,anyx € X, we define

a®(x)={yeX|(xy) €a} CX. (8.31)

For any y = Y,c;a; € E*(X x X), the E*I algebra valued membership function ¥ :
X — E*X is defined as follows: for any x € X,

YR (x) =Y af(x) € E*X. (8.32)
icl
By the fuzzy norm (5.24) with .#, the measure shown as (3.16) for the function
p : X — [0,+ce), the membership function pi.x(x) of YR is defined as follows: for
any x € X,

e (x) = || (x)|]p = silé?{//{p(af(x))} €lo,1]. (8.33)

Thus every y € E*(X x X) can be regarded as a fuzzy set on X whose membership
functions are defined by (8.32) or (8.33).

Since E*X is a lattice, hence for each y € E¥(X x X), y® : X — E*X defined by the
formula (8:32) is a lattice valued fuzzy set. One can verify that for y,n € E*(X x X),
if y < n inlattice E*(X x X), then for any x € X, ¥*(x) < n®(x) in lattice E*X. Thus
in (X x X, M, 1), the fuzzy context associated with the AFS structure (M, 7,X), for
each attribute 1 € EM, o(n) is a fuzzy set on X with the membership functions
defined by (8.32) or (833), where “a” is the Galois connection defined by (§.13).
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Contrastively, for any y € E*(X x X) as a fuzzy set defined by 32 or §33),
B(y) is an attribute in EM, where “B” is the Galois connection defined by (8.14).
If (y,m) is an AFS formal concept defined by Definition[8.7] then the fuzzy set y is
the extent of (y,7) and the attribute 17, which is the AFS logic combination of the
simple attributes in M and has a definitely semantic interpretation, is the intent of

(v,m).

Theorem 8.10. Let X be a set and M be a set of simple attributes on X. Let (M, 7,X)
be an AFS structure in which for any x,y € X,t(x,y) = {m € M | (x,y) € Ry} (re-
fer to E26)) and (X x X, M, 1;) be the fuzzy context associating with (M, T,X).
Then for §,¢ € EM, if B(a(C)) = B(a(g)).i.e., both B(a(C)) and B(a(g)) are
the intent of an AFS formal concept, then ¥x € X, {(x) = ¢(x) and pg (x) = ue(x),
where “ot, B are the Galois connections defined by ([814) and (81J); for any fuzzy
attribute ¥ = ¥,cy(Ilnec, m) € EM,y(x) = ¥,cy CE(x) € E*X is the E*I valued
membership function of y defined by (5.13) and 1,(x) = || X,cv CL(x)||p € [0,1] is
the membership function of 'y defined by (5.23) for the fuzzy norm (5.24) with #),
the measure shown as (310) for the function p : X — [0, +o0).

Proof. According to the definitions of (X x X, M,1;) and the Galois connection ¢,
for any m € M, we have

o({m}) ={(xy) € X xX |m€ t(x,y)}.

By Proposition[81land (8.32), we can verify that for any A C M, any x € X,

R
a(A)(x) = <ﬂ a({m})> (x)

meA

R
= (ﬂ {(x,y) eXxX|me r(x,y)}> (x)

meA
= {(xy) X xX A C1(x,y) D)) (8.34)
By @27) and (8.31), we have
({(x,y) €X x X |A C 1(x,y))F(x) =A% (x). (8.35)

Furthermore for any ¥ = ¥,cy(ITnec, m) € EM and any x € X, from (8.33) and
([B32), one has

a(PRx) =Y a(C)R(x) =Y Cix) = y(x) (8.36)

uclU uclU

That is the E*I valued membership function of the fuzzy attribute y defined by

GI3). For {,¢ € EM, if B(ax(Z)) = B(ex(s)), then
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It follows from (8.36) that for any x € X,

Since ||.|| is a fuzzy norm on the lattice E*X, we have

He (%) = [1S@)lp = [Is()lp = ps (). 0

Assume that each attribute in M is a Boolean attribute on X. For any m € M, let
Ry, be the binary relation of m defined by Definition 4.2l Since m € M is Boolean
concept, hence for any x € X, either (x,y) € R, for any y € X or (x,y) ¢ R, for
any y € X. By (831), one has that for any m € M, any x € X, either {m}®(x) = X
or {m}®(x) = @. This implies that for any A C M, any x € X, either AR(x) = X
or AR(x) = @. Further, by and (833), for any { € E*(X x X), any x € X,
either £¥(x) = X or £¥(x) = @, and either wer(x) = 1 or per(x) =0, ie., per(x)
is the characteristic function of a Boolean set CC C X. Proposition has showed
that the AFS logic system (EM,V, /\,/) will degenerate into Boolean logic system
(2%, u, ﬂ,' ) if every attribute in M is a Boolean attribute. Therefore if each m € M
is a Boolean attribute, then the AFS formal concept lattice of an AFS structure
(M, 1,X) will degenerate into the formal concept lattice of context (X, M, ), where
forxeXandmeM, (x,m) €I < ((x,y),m) € ; forany y € X & (x,y) € Ry, for
any y € X < x has attribute m (refer to Definition[£.2). For each AFS formal concept
(v.m), the intent N = ¥,c;([T,nea, m) € EM corresponds to the disjunctive normal
form of a monotone Boolean formula V,c;A;, where each [],,c4, m is a Boolean
conjunctive expression A\ ¢4, @, and the extent y C X is

y=a(m =N a).

icl acA;

For instance, in Example [8.1] for instance, the attribute & = m| + mamy + mams €
EM read as “edible” or “poisonous and cap-shape” or “cap-shape and cap-surface:
fibrous”. According to Table[8.2] we know that {m; }, {mp,m4} and {m4,ms} are all
intents of some concepts of the context (G, M, ). From Lemma[8.4] one has that

(attm )+ (atmpNa(m)) + (a(mhNa{ms)). €)

is an AFS formal concept of the context (X,M,I). The following Example
demonstrates how to implement AFS fuzzy formal concept analysis for a data with
both fuzzy and Boolean attributes.

Example 8.5. Let X = {x,x2,...,x10} be a set of 10 people and their features (at-
tributes) which are described by real numbers (age, height, weight, salary, estate),
Boolean values (gender) and the ordered relations (hair black, hair white, hair yel-
low), see Table there the number i in the “hair color” columns which corre-
sponds to some x € X implies that the hair color of x has ordered ith following our
perception of the color by our intuitive perception. Let M = {my,my, ..., mjo} be
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Table 8.6 Descriptions of features

appearance wealth gender hair color
age height weigh salary estate male female black white yellow

x1 20 19 90 1 0 1 0 6 1 4
x 13 1.2 32 0 0 0 1 4 3 1
x3 50 1.7 67 140 34 0 1 6 1 4
x4 80 1.8 73 20 80 1 0 3 4 2
x5 34 14 54 15 2 1 0 5 2 2
xe 37 1.6 80 80 28 0 1 6 1 4
x7 45 1.7 78 268 90 1 0 1 6 4
xg 70 1.65 70 30 45 1 0 3 4 2
xg 60 1.82 83 25 98 0 1 4 3 1
x10 3 1.1 21 0 0 0 1 2 5 3

the set of fuzzy or Boolean concepts on X and each m € M associate to a single fea-
ture. Where m : “old people”, my : “tall people”, m3 : “heavy people”, my4 : “high
salary”, ms : “more estate”, mg : “male”, m7 : “female”, mg : “black hair people”,
mg : “white hair people”, mo : “yellow hair people”.

Let (M, 7,X) be the AFS structure of the data shown in Table[B.6l For simplicity,
let S=2% be the c-algebra over X and m, be the measure defined by (5.16) for the a
weight function p(x)=1, Vx € X. Let

§ = mimzmy +mymzmy, & = mymymzmy 4 mymymzmy

be two fuzzy attributes in EM. It is obvious that { > & and { # & in lattice EM.
One can verify that

Bl I m)= |}

me{my m3,my} me{my my,m3,my}
Bl I m= T m
me{my,mz,m7} me&{my ,ma,m3,m7}

Although { and & are different attributes in EM, i.e., { and & capture different
semantics, the fuzzy sets defined by (5.13) or the norm of the lattice E*X defined by
(B24)) are identical, i.e., their extents are equal as shown in Table 871

Table 8.7 Membership functions of { and & defined by (8.33)

X1 X2 X3 X4 X5 X6 X7 X3 X9 X10
pe()=pe() 03 02 04 04 03 04 04 04 07 0l

Let N = {my,my,m3,me,m7} C M. Here, we study the AFS fuzzy formal con-
cept lattice 2 (E*(X x X),EN, ;). According to Lemma[84] we know that for any
AFS formal concept (v,n) € Z(E*(X x X),EN,1;) there exist A; C N,i € I, A;
is the intent of a formal concept of context (X x X,N,I;) which is the fuzzy con-
text associating with the AFS structure (N, 7,X) (refer to Definition 81T} such that
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mim2m3mé (Q

mlm2m3mém7

Fig. 8.1 Concept lattice of context (X x X,N,I;)

Table 8.8 Membership functions of the extents of the formal concepts shown in Figure [8.1]

X1 X2 X3 X4 s X6 X7 X8 X9 X10
U, () 0.3 0.2 0.7 1 0.4 0.5 0.6 0.9 0.8 0.1
Momymy (+) 0.3 0.2 0.6 0.8 0.3 0.4 0.5 0.5 0.7 0.1
Monyms (+) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.5 0.7 0.1
Momymg (+) 0.3 0 0 1 0.4 0 0.6 0.9 0 0
Momymy (+) 0 0.2 0.7 0 0 0.5 0 0 0.8 0.1
Moy myms 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.4 0.7 0.1

0 02 06 0 0 04 0 0 07 0.1
JTI— 03 0 0 06 03 0 04 05 0 0
Umomsms () 030 0 06 03 0 04 04 0 0
Jr— ) B 02 04 0 0 04 0 0 07 0.1
Loy () 1 02 07 08 03 04 07 05 09 0.1
Himyms (+) 1 02 04 06 03 04 06 04 09 0.1
Hinyme () 1 0 0 08 03 0 07 05 0 0
0
1

2 (1)
Ly mame () 03 0 0 08 03 0 05 05 0 0

()

)

L, () 02 07 0 0 04 0 0 09 0.1
Lmymsme () 0 0 06 03 0 06 04 0 0

N = Yics(ITnea, m). So we show the concept lattice generated by the fuzzy context
(X x X,N,I;) in Figure 8] and the membership functions of the extents are shown
in Table[8.8l Notice that although both the extents and the intents of the formal con-
cepts in (X x X,N,I;) may be fuzzy sets and fuzzy attributes, (X x X,N,I;) is a
traditional context [10]]. This implies that its complexity is the same as a traditional
context with |X |? objects and |N| attributes.
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mlm2m3m6m7 -

Fig. 8.2 Concept lattice of context (X; x X;,N,I;)

Table 8.9 Membership functions of the extents of the formal concept shown in Figure §2]

:uml .umlmo :umlm7 :umlmzms numlm2m3m6 :umlm2m3m7 Hm2m3 ,Umgm3m6 .ums :um7

x1 06 0.6 0 0.6 0.6 0 1 1 1 0
x 04 0 0.4 0.4 0 0.4 0.4 0 0 1
x5 08 0.8 0 0.6 0.6 0 0.6 0.6 1 0
x6 1 0 1 0.8 0 0.8 0.8 0 0 1
x1o 02 0 0.2 0.2 0 0.2 0.2 0 0 1

Let X; = {x1,x2,xs5,%6,x10} C X. Figure shows the concept lattice gener-
ated by (X; x X1,N,I;) and the membership functions of the extents are shown in
Table Although the intent and extent of an AFS formal concept are a fuzzy
attribute in EM and a fuzzy set on X respectively, the context (X x X, M, ;) associ-
ating with an AFS structure (M, 7,X) is a traditional context which can be directly
established by the original data without the use of the fuzzy set I to describe the
uncertainty between the objects and the attributes. Thus the AFS formal concept
lattices preserve more information contained in original data than the other fuzzy
formal concept lattices. This observation stresses that the AFS formal concept anal-
ysis naturally extends the traditional formal concepts to the fuzzy formal concepts.

In order to cope with the data with various data types such as real numbers, Boolean
value and even the human intuition description with sub-preferences, the AFS fuzzy
formal concept analysis, which intuitively augments the traditional formal concepts
to fuzzy formal concepts and overcomes the difficulties of other fuzzy formal con-
cepts to define the fuzzy binary relation by human interpretations, is proposed and
developed. The examples demonstrate that the AFS fuzzy formal concept analysis
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can be directly applied to the original data with both fuzzy and Boolean attributes
and preserve more information contained in the original data than other fuzzy for-
mal concepts. In the framework of AFS fuzzy formal concept analysis, the original
data is only required to generate AFSFFCA lattices, human interpretation is not re-
quired to define the fuzzy binary relations and the fuzzy sets corresponding to all
attributes in EM are automatically determined by a consistent algorithm according
to the AFS structure and the AFS algebra. So AFSFFCA lattices are more objective
and comprehensive representations of the knowledge contained in the original data
than traditional and other fuzzy formal concepts. The theorems prove that AFS fuzzy
formal concept lattices are more general mathematization of the traditional formal
concept lattices. Many already existing mathematical tools such as topology, mea-
sure theory, combinatorics and algebras can be applied to the research of the AFS
theory. These facts encourage us to derive mathematical properties of AFSFFCA
and apply them to future research and development of knowledge representation
schemes.

Exercises

Exercise 8.1. Let (G,M,I) be a context. Show that the following assertions hold:

(1) forA;,A; CG,A; CA;implies B(A;) 2 B(Az) and
for By,B; C M, By C B, implies a/(B;) 2 0/(B>);

(2) ACa(B(A)) and B(A) =B(a(B(A))) forall A C G, and
B C B(a(B)) and ax(B) = ot(B(0c(B))) forall BC M.

Exercise 8.2. (Wille’s Lemma) Let (G,M,I) be a context and .Z(G,M,I) denote
the set of all formal concepts of the context (G,M,I). Show that

Z(G,M,I) = {(a(B),B(a(B))) | BC M}.

Exercise 8.3. (Fundamental Theorem of FCA) Let (G, M,I) be a context. Prove that
(Z(G,M,I),V,N) is a complete lattice in which suprema and infima are given as
follows: for any formal concepts (A;,B;) € £ (G,M,I), j € J,

Vit = (1s(Un). (o).

jeJ jed jeJ
N(A;,B)) = (ﬂAj? ™ (UBJ))?
jeJ jel jeJ

where g =0 B, =8 .

Exercise 8.4. Let X and M be sets, (G,M,I) be a context and E/XM be defined as
Definition[83] For ¥,y avAy € E'XM, if ag C ay, Ag C Ay, w,q € U, w # g, prove
that
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ZauAu: z a,Ay.

uel uel u#q

Exercise 8.5. Let X and M be sets, (G,M,I) be a context and E/’XM be the set
defined as Definition [83] Prove that the binary relation < is a partial order relation
if Yycu aulu, Yoey byBy € EIXM, Yy ayAy < 3 ey byBy < Ya,A, (u € U) 3bi By
(k € V) such that a,, C by, A, C By.

Exercise 8.6. Let (G,M,I) be a context and E/GM be defined as Definition [83] If
for any Y,cy auAu, Yoy byBy € E'GM, we define

<2auAu>*<2bva>: Y aunbA,UB,,

uclU veV uclveV
Z aAy | + z b,B, | = z cuCu,
uclU veV ucUL\v

where u € U UV (the disjoint union of indexing sets U, V), ¢, = a,, C, = A,,if
ueU;c,=by,, C,=B,,if u e U. Prove that “4” and “x” are binary compositions
on E'GM.

Exercise 8.7. Let G and M be finite sets, (G, M, I) be a contextand (E/GM, x,+,<)
be the ECII algebra of context (G,M,I). Show that the following assertions hold.
Forany v, ¥, v, n € E'GM,

D) y+0=0+y, yxd=0=xy;

@ (y+0)+y=y+(0+7), (Yx0)xy=yx(0x7);

B) (W+0)xy=(y*7)+(O*7y), wx(OM)= (M), y*(X) =y,
@ fy<d,y<n,theny+y<9+y, wxy<vdx*y,

Exercise 8.8. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Show the validity of the following assertions hold.

(1) forany y1,yn,y € EM,

y<y<vy,
(yiVyn)=(y1)V(y2
(yiAya) < (v1) A (w2

(2) forany 6;,6,,0 € E*X,

H< V<D,
(01V60)=(01)V(6) , (61V6)=(61)V(6),
(91 A 92) < (91)/\ (92) R (91 /\92) = (91) A (92)
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Exercise 8.9. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Let (X,M,I) be a context, B; C M, ¥ = ¥,c;(ITuep, m) € EM be a complex
attribute. Prove that for any y € EM, the lower and upper AFS formal concept
approximations of the fuzzy concept y satisfy the relationships

= (8)).Y, I  m=(a(y)Bla(w)

iel i€l meB-a(A*(B;))
V)= aA(B),Y, [I m=(a(y)Bla(y))
iel i€l meB-o(Av(By))

where o and 3 are defined by (8.14) and (813D, respectively. y and y are defined
by (8.24).

Exercise 8.10. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. For any 8 = ¥,.;a; € E*X, show the following assertions hold for the lower
and upper AFS formal concept approximations of 6:

L(y) = <Za~ﬂ(A*(ai)), > H( ))M> = (- B(6), B(6)),

icl icl meB(Ay(a;

(Za B(A™(a)), Y H ))m> = (- B(6), B(8)).

icl i€lmef(A

where o and 8 are defined by (8:14) and (8.13), respectively. 6 and 0 are defined
by (823).

Exercise 8.11. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the
set X. Show the following assertions hold:

(1) Forany 0 € E*X, L(0) < («-B(0), B(6)) <U(O), where 3 defined by
(8.14) and (B.I5);
(2) For 6,6, € EM, 0, <6, = L(6,) <L(6,), U(6)) <U(6),

where L(.) and U(.) are defined by (828) and (8.29), respectively.

Open problems

Problem 8.1. Let X and M be sets, (G,M,I) be a context and (E'XM,<) be the
partially ordered set defined as Definition[8.3] Show whether (E’XM, <) is a lattice.
What are the lattice operations V and A?

Problem 8.2. Demonstrate whether the upper and lower approximations defined by
(824) and (8.23) have the same properties as the upper and lower approximation
defined by (6.1).
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Problem 8.3. Discuss whether the upper and lower AFS formal concept approxi-
mations defined by (8.26) and (8.27)) (or (8.28) and (8.29)) have the same properties
as the upper and lower approximation defined by (6.1).

Problem 8.4. Let X be a set and M be a set of attributes on X. Let (X,M,I) be
a context, EM be the EI algebra over the set X and E*X be the E*I algebra
over the set X. For any y € EM, whether L(y) is the maximal formal concept
smaller than (o (y), B(a(y))) and U(y) is the minimal formal concept larger than

(a(y),B(a(y)))? Here o, B are defined by (814) and (BI3), L(.) and U(.) are
defined by (8.26) and (8:27), respectively.

Problem 8.5. Let X be a set and M be a set of attributes on X. Let (X,M,I) be a
context, EM be the EI algebra over the set X and E*X be the E*I algebra over the set
X. For any w € EM and 6 € E*X, what are the relationships between the following
pairs?

L(y) and L(a(y)), U(y) and U(a(y),
L(6) and L(B(6)), U(8) and U(B(9)).

Here L(.) is defined by (8.26) or (8.28), and U(.) is defined by (8.27) or (8.29),
respectively.
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Chapter 9
AFS Fuzzy Clustering Analysis

In this chapter, we apply the AFS theory to propose an elementary algorithm of
fuzzy clustering. In the proposed approach, each cluster is interpreted by taking ad-
vantage of the semantics captured by the AFS logic. Within the framework of AFS
theory, we develop new techniques of feature selection, concept categorization and
characteristic description (i.e.,the characteristic description of an object or a group
of objects using the fuzzy concepts) which are often encountered in tasks of ma-
chine learning and pattern recognition. The elementary fuzzy clustering algorithm
is evolved to three more elaborate fuzzy clustering techniques by incorporating new
techniques of feature selection, concept categorization and characteristic descrip-
tion. We show that they are simpler and produce more interpretable results when
contrasted with some existing techniques. Several benchmark data and the evalua-
tion data of 30 companies are considered to evaluate the effectiveness of the pro-
posed AFS fuzzy clustering algorithms. We provide a detailed comparative analysis
in which we compare the obtained results with those produced by some “conven-
tional” methods such as FCM, k-means, and some newer algorithms including a
two-level SOM-based clustering algorithm. The proposed algorithms can be applied
to the data sets with mixed features such as sub-preference relations and even those
including descriptions of human intuitive judgment. We show that the flexibility of
the approach comes from the fact that the distance function and the class number
need not be given beforehand. These two facets offers a far more higher flexible and
contribute to a powerful framework for representing human knowledge and studying
intelligent systems encountered in real world applications.

Clustering algorithms are mainly based on partitioning a set of objects into “nat-
ural” clusters. Numerous mathematical tools, investigated for clustering, have been
considered to detect similarities between objects within a cluster. The two-valued
clustering is described by characteristic functions. This function assigns each object
to one and only one of the clusters with a degree of membership equal to one. How-
ever, the boundaries between the clusters might not be well-defined and this Boolean
description may not fully reflect the reality. The fuzzy clustering, founded upon
fuzzy set theory [81]], is intended to deal with ill-defined boundaries between clus-
ters. Membership degrees captured by membership functions indicates how much

X. Liu and W. Pedrycz: Axiomatic Fuzzy Set Theory and Its Applications, STUDFUZZ 244, pp. 351
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the object is assigned to (belongs to) a certain cluster. This quantification can be ad-
vantageous in case of the the boundary region which may not be precisely defined.

Many fuzzy clustering algorithms have been developed, but the most widely used
technique is the Fuzzy C-Means (FCM). Proposed by Dunn and generalized by
Bezdek [T, this family of algorithms is based on an iterative optimization of a cer-
tain objective function. The objective function produces a local minima or partial
optimal points [2]]. The algorithms of this family depend on initial guesses (clus-
ter number, clusters centers,...). These prior arrangements are necessary but they
do not guarantee that the method may reach the global minimum. In general, the
objective function-based optimization is concerned with the following problem cf.
(1L 2]: minimize J,,(U,V) = ¥, 3 uhd? (xx, Vi) with respect to U = [uy] € R°", a
fuzzy c-partition of n unlabeled data set X = {xy,...,x,} € RP*" and to V, a set of ¢
fuzzy cluster centers V = (V1,...,V..) € RP*¢. The parameter m > 1 is referred to as a
fuzziness index (fuzziness factor). d(x,V;) is a distance from x; to the center (pro-
totype) of ith cluster V;. The performance of the FCM is significantly affected by the
choice of distance d(.,.). In general, the distance is expressed in some metric space
2 [74], if data set X itself is a subset of this metric space. Another fuzzy clus-
tering algorithm—the fuzzy k-nearest neighbor algorithm, k-NN algorithm [29]], pro-
duces the membership degree for each sample j belonging to class i. More specifi-
cally, in proposed was the following class assignment: p1;; = 0.514-0.49(n;; /k),
when the class label of sample j is i; and p;; = 0.49(n;;/k), otherwise, where n;; is
the number of the neighbors of sample j belonging to the ith class.

FCM and k-NN fuzzy clustering algorithms are efficient if for the data set X C
RP*™ there exists a distance function, and the number of classes has been properly
specified beforehand. For the FCM, we should notice that the objective function
optimization problem is very difficult to solve for any ordinary data X g RP*"_ For
k-NN, it is too strict to solve real world problem that the class label of each sample
has to be given in advance. The partition matrix U = (u;;)cx, obtained by FCM and
U=( ui_,-)cx,, obtained by k-NN do not show how the fuzzy concepts or attributes
formed for each feature influence the clustering results. In contrast, humans can
cluster the objects in ordinary data set X g RP*" according to the fuzzy concepts or
attributes on the features and give some linguistic descriptions to each class by the
fuzzy concepts on some feature without using distance function.

In this chapter, we propose a new methodology of fuzzy clustering. Compared
with the current state of development the art in the area, the fuzzy clustering to be
discussed exhibits several essential advantages:

e The attributes of objects can involve various data types or sub-preference rela-
tions, even descriptors that are reflective of a human intuition.

e The distance function and the objective function are not required, and the cluster
number or the class label need not to be given beforehand.

e Each class is described by a fuzzy set in EM, which is the AFS fuzzy logic
compound of the simple attributes formed on some features with well-structured
semantics which determines the degree of each pattern belongs to this class.
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Given massive data available, knowledge acquisition and representation consti-
tute a major bottleneck. There are various approaches aimed at alleviating this prob-
lem. The incorporation of fuzzy sets into the representation of fuzzy concepts makes
it possible to combine the capabilities of uncertainty handling and approximate rea-
soning with comprehensibility of description of the phenomenon.

In many pattern recognition and decision making tasks, there is often a very lim-
ited prior information available about the data. Thus data preprocessing becomes an
indispensable step. It is a genuine prerequisite in data mining and machine learning,
which aims to turn data into business intelligence or knowledge. Feature selection
is a preprocessing technique commonly used for high dimensional data. Feature se-
lection focuses on how to select a subset of features that are to be effectively used to
construct models describing data. The purpose of feature selection is to reduce di-
mensionality by removing irrelevant and redundant features, reducing the amount of
data needed for learning, and enhance the comprehensibility of the constructed mod-
els. Feature selection has been widely studied in the context of supervised learning
(see and references therein). However, feature selection has received
comparatively little attention in unsupervised learning. In the theory of fuzzy sets
we see a limited number of studies focused on this subject. One important reason
is that it is not at all clear at all on how to assess the relevance of a subset of fea-
tures without resorting to class labels. The problem becomes even more challenging
when the number of clusters is unknown, since the optimal number of clusters and
the optimal feature subset are interrelated. In this chapter, we propose a new method
to deal with the fuzzy feature selection problem, which is expressed in terms of un-
supervised learning within the framework of the AFS theory. Actually, the feature
selection is carried out by making use of the idea of the fuzzy similarities occurring
among features determined by the AFS fuzzy logic.

In general, the concepts exhibiting a significant level of correlation are often
placed in the same category when carrying out data analysis. For instance, height
and weight seem to be highly correlated, i.e., in general, the higher the person is, the
heavier the person is. So in practice, height and weight are placed in the same cate-
gory which describes human appearance. Usually, a group of the highly correlated
concepts is always related to a particular characteristic of the objects in the clusters.
The concepts height and weight are related to the appearance of human and they are
salient concepts if we cluster the set of people according to their appearance. The
aim of studying the concept categorization problem is to find different categories
(i.e., the clusters of fuzzy concepts) so as to properly describe different character-
istics of objects. In other words, a particular characteristic will be described by a
corresponding category of concepts. Based on the AFS theory, an algorithm of clus-
tering concepts into categories is proposed which could exhibit significant relevance
to ideas of pattern recognition and decision-making.

Let us briefly analyze the human recognition process. For a sample, human al-
ways apply the selected collection of simple concepts to form complex fuzzy con-
cepts which serve as the description of this sample. Other people can find the sample
from all the samples according to the given description. Take clustering as an exam-
ple: the samples with the same or similar descriptions form the same cluster. In this
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chapter, we study how to describe a sample in the framework of the AFS fuzzy logic,
and argue that the fuzzy descriptions could be similar to the descriptions generated
by humans.

In order to illustrate the feasibility, applicability and effectiveness of the fea-
ture selection, the concept categorization and the characteristic description, these
techniques are applied to fuzzy clustering. Thus, based on the feature selection, the
concept categorization and the characteristic description, some new fuzzy cluster-
ing algorithms in the framework of AFS theory are to be developed. Compared with
other fuzzy clustering algorithms such as the conventional algorithms FCM [4] and
k-means [[73]], SOM-based clustering algorithm [[79], the proposed algorithms come
with the main advantage except the aforementioned ones: they do not require train-
ing which are typically needed when dealing with other clustering techniques.

9.1 Elementary Fuzzy Clustering Method via AFS Fuzzy Logic

In this section, we apply the AFS theory to study the essence of fuzzy clustering.
Clustering realized by humans is a procedure whose results are determined by the
objectivity of the original data and the subjectivity of individual point of view,
i.e., from the total attributes of original data and facts, an individual subjectively
chooses some attributes he regards to be important within the setting of the cluster-
ing problem. The individual clusters (set of objects) follow the procedure shown in
Figure For each object, we always find a description (in general, a fuzzy de-
scription) of the object using some chosen attributes. Next given the description of
the object, we can find similar objects in the entire collection of objects. Thus the
similar objects will be viewed as a cluster. Second, one evaluates the similarity be-
tween the objects according to the descriptions of the objects. Third the clusters are
formed by looking at the similarity degrees which are determined by the similarity
between the objects. Finally, we select the most visible clustering result from all
feasible clustering outcomes coming with the similarity degrees. The descriptions
always involve some fuzzy or Boolean concepts.

In what follows, we study how to describe an object for the clustering in the
framework of AFS fuzzy logic. The level of correlations between the two objects
is determined by their fuzzy descriptions. We can state the problem more formally
as follows: Let X be a set of objects and F be the set of all attributes or concepts
(including attributes which are independent or unrelated to the clustering problem)
involved the objects in X. For each attribute m € f, m is a Boolean or fuzzy at-
tribute on X. A C F, A is the set of attributes ( features ), which are some rel-
atively important attributes subjectively chosen from an individual point of view.
For instance, suppose that each o € A, « is simply a Boolean set, i.e., & C X. For
x,y € X, x,y belong to the same cluster if and only if there does not exist & € A such
that x € o,y ¢ o or x ¢ o,y € a. In other words, x,y cannot be distinguished by
any attributes in A. It is obvious that for a different choice of A, different clustering
results may be produced. Therefore human clustering comes as a procedure whose
results are determined by the objectivity of the original data and the subjectivity of
an individual opinions, i.e., A, which is a set of the fuzzy attributes subjectively
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- Find the Description Evalate the Similarity
Original Data of each Object Between the Objects

Based on the Description

A4

Select the Clear Cluster According to
Cluster Result |< the Similarity Degree

Fig. 9.1 Clustering procedure realized by human beings

chosen from F by an individual. Using the following simple example, we first ex-
plain the idea in the situation when all attributes in A are Boolean. Then we expand
the idea to situations in which we are faced with fuzzy attributes.

Example 9.1. Let X = {x1,x2,...,x10} be a set of 10 persons, F = {male, engineer,
lawyer, female, male, weight, age, salary high, ..., etc}. For each attribute m € F,
m is a fuzzy or Boolean attribute which is objectively dependent on the original data
and facts. We study the clustering under A = {male, engineer, lawyer, female,
no-engineer,no-lawyer} C f and suppose we are provided with Table for the
attributes in A. Where Aj,A,,A3 are attributes such as male, engineer and lawyer,
respectively. Let A be the set generated by sets A1, Ay, A3, A}, A5, A}, using logic
operators N. Oy, € A, &y, is the smallest set which contains x;. Given Table[0.1] one
has:

8y, = A1 NA3NAY;
81 = 8 = B0 = A1 NALNAS;
83 = Bis = AxNA| NAS;
S = A NASNAL;
0w = Oy7 = A3 ﬂAlzﬂAll.
In this way we obtain a mapping ¥ : X — A, for any x € X, ¥(x) = Oy, which is a

description of x using attributes in A such that x can be distinguished among other
elements in X to the maximum extent. Since ¥ is a mapping, hence ¥ determines a

Table 9.1 Boolean description of attributes

X x2 X3 X4 X5 X6 X7 X8 X9 X10
Ay 1 1 0 1 0 0 0 1 0 1
A 0 1 1 0 1 0 0 1 0 1
Az 1 0 0 0 0 1 1 0 0 0
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classification in X (i.e., x,y € X, x,y in the same cluster if and only if ¥'(x) = ¥(y)
or 6, = 0y). Since &, 6, form the smallest set containing x,y, hence 8, = §, <
x,y € 6N 6y. Ten persons are then clustered into six classes (the finest classification
obtained when using attributes A1, A, A3,A],A%,AL):

Classl: {x;} = A; NA} NAj3, describing as “male, not-engineer, lawyer”.
Class2: {x,x8,x10} = A1 NA, NA%, describing as “male, not-lawyer, engineer”.
Class3: {x3,x5} = A| NA, NAY%, describing as “female, not-lawyer, engineer”.
Class4: {x4} = A} NA, NAY}, describing as “not-lawyer, not-engineer, male”.
Class5: {x¢,x7} = A} NA, N A3, describing as “female, lawyer, not-engineer”.
Class6: {xo} = A} NA} NA%,describing as “female, not-lawyer, not-engineer”.

Next, we summarize the clustering algorithm by introducing the Boolean attributes
Aq1,Az,...,A; on X as follows.

e Step 1: Generate the Boolean algebra A by Boolean attributes in A, using logic
operator M.

e Step 2: For each x € S, find &, which is the smallest set §; € A such that x € §,.

e Step 3: For x,y € S, x,y are in the same cluster if and only if x,y € 8, N §,.

Now, we expand the above algorithm to the case of fuzzy attributes by using the
AFS fuzzy logic. This will give rise to the elementary fuzzy clustering method via
AFS fuzzy logic. Let X be the universe of discourse, M be a set of simple attributes
on X, (M,7,X) be an AFS structure of the original data and facts. Let {pe (x) | § €
EM?} be a set of coherence membership functions of the AFS fuzzy logic system
(EM,V,\,) and the AFS structure (M, 7,X). (refer to Definition[d.7). Assume that
A CEM, A is a family of fuzzy sets which are selected to cluster the objects in
X. The elementary fuzzy clustering method via AFS fuzzy logic can be outlined as
follows.

The elementary fuzzy clustering method realized via AFS fuzzy logic

e Step 1: Find fuzzy set ¥ = \/;cp b, x € X, py,_, »(x) is the highest degree of
x belonging to any cluster, due to ¥ being the maximum element in (A)g;. In
order to produce a well-defined clustering result, each x should belong to ¥ to
the highest extent. Proposition[9.1] outlines the properties of the fuzzy set .

e Step 2: Find the fuzzy description of each object: for each x € X, find the fuzzy
description §, of x, which is 8, for the Boolean case. For fuzzy set {, € (A)gy,
where (A)g; is the sub ET algebra generated by A, notonly is u x (x) approaching
My, 5(x), butalso i1, () is as small as possible for y € X, y # x. In other words,
x can be distinguished by {, from other objects in X at the highest extent.

e Step 3: Evaluating the similarity between objects based on the fuzzy descrip-
tions: apply &, the fuzzy description of each x € X to establish the fuzzy matrix
M = (mjj) on X = {x1,x2,...,X, }, where m;; the similarity degree between x; and
x; which is defined as follows: for any x;,x; € X,

mjj = min{fe ae. (%), Mg ng, (X)) .1
i J i J
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Theorem demonstrates that there exists an integer r such that (M’)2 =M,
i.e., fuzzy matrix Q = M" can yield a partition tree with equivalence classes.

e Step 4: Cluster according to the determined similarity degrees: let Q = M”
= (gij) and the Boolean matrix Qq = (¢f;), where g = 1 < ¢;; > a, the thresh-
old o € [0,1]. For o € [0, 1], xi,x; € X,x;,x; are in the same cluster for given
threshold o if and only if q?‘j = 1. For some x; € X, if ¢f = 0, then the clustering
label of x; cannot be determined for fuzzy attributes in A under the threshold c.

e Step 5: Select the well-delineated clustering results: for each cluster C C X under
the threshold o, the fuzzy description of C, ¢ is defined as follows.

&=V &, (9.2)

xeC

the fuzzy description {¢ of class C whose membership degree cc (x) is not only
the most approachable i, _, 5(x), for each x € C, but also 1, (y) is as small

as possible for y € X, y ¢ C. In other words, the objects in cluster C can be
distinguished from other objects in X to the highest possible extent. Theorem[0.1]
shows how to obtain {, for each x € X while Proposition[0.3]shows that the fuzzy
descriptions of two different clusters do not have common molecular elements of
the lattice EM (i.e., fuzzy point). The fuzzy description of the boundary among
the clusters Cy,Cs,...,C; is a fuzzy set §p,,, € EM,

Chou = \/ (Cc,— A ng)a (93)

1<i j<lLi#]

where {c,,i = 1,2,...,1 is the fuzzy description for the ith cluster C;. The clarity
of the fuzzy clustering for some the threshold o can be evaluated by I a fuzzy
cluster validity index defined as follows. For any threshold a € [0, 1],

B ZXEUlgiglCi Hepn (x)

Ip = )
2x€U1gigCi M (x)

9.4)

where {roar = \V1<i<;Cc; € EM, 1 > 2. The ith cluster is described by a fuzzy
set §c, € EM which determines the degree each object belong to the ith cluster.
Fuzzy set {p,,, which describes the boundary between the clusters implies the
maximal degree of each object belonging to two different clusters. It is clear that
the lower I, is, the clearer and the better the clustering result under threshold
is. Thus the best clustering outcome can be selected from all clustering results
under threshold o € [0, 1].

This fuzzy clustering algorithm can apply to the data sets with mixed features taking
on values for integers, real numbers, Boolean values, and sub-preference relations.
Likewise the distance function and the number of cluster number are not required
to be supplied in advance. Since each cluster is described by &Ec a fuzzy set in EM
with well-formed semantics, hence the clustering results are more interpretable than
those produced by some conventional fuzzy clustering.
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In what follows, we give some proofs and include pertinent analysis to ensure
that the proposed clustering algorithm is feasible. Let X be a finite set and M be a
set of simple concepts on X. Assume A C EM. Then (A)g; the sub algebra of EM
generated by the fuzzy concepts in A is shown as follows.

(A)El—{\/(/\ aij) | ajj € Ajiel, jeJ;,Iand J; are any indexing sets}. 9.5)
iel jeJ;

Its proof remains as an exercise. It is the smallest sub E/ algebra of EM which
contains A.

Proposition 9.1. Let X be a universe of discourse and M be a finite set of simple
concepts. Let {lig(x) | & € EM} be a set of coherence membership functions of
the AFS fuzzy logic system (EM,V,\,) and the AFS structure (M, T,X). (seeing
Definition 7). Let A C EM. Then for any B € (A)g1, for any x € X, ug(x) <

Hy/pen b (x).

Proposition implies that for each x € X, the degree of x belonging to fuzzy
set \/pea b is the largest of other fuzzy sets in (A)g;. But \/cy b is not the fuzzy
description of x, because \/ 4 b is the maximum fuzzy set in lattice (A)g; and for
eachy € X, y # x the degree of y belonging to fuzzy set \/,c, b is also the largest of
other fuzzy sets in (A)g;. Therefore for a given x € X, we should find the fuzzy set
Crin (A)gy such that not only is i, (x) approaches fty, _, »(x), butalso u, (y) is as
small as possible for each y € X and y # x. In what follows, we find the fuzzy set ¢,
in (A)g; for each given x. For € > 0 (in general, € is very small), we define

B = {Ak | Ha () =y, b (1) — & k€L a= 3 Ai € A} 08
icl
Bi =1 N\ BIHCB, tp, () >ty nx)—¢€ . 9.7
BeH
Af = {}/\ Y is a minimal element in Bﬁ} 9.8)

Since

% (x) = sup pg(x) = sup sup i 5 (x),
Vbe B BeA p BeAkely

where B = ZkelﬁAf € A, hence for any € > 0, B # @, Af # & and Af D AZf
€ > &. Next, we analyze the composition of the set BE. For each fuzzy set Y, A;,
each A;,i € I, is a molecular element which play a role similar to a *“ point” of the
fuzzy set. BE is the set of molecular elements (in other words, “fuzzy point”) of
the fuzzy sets in A,VA € BY, pa(x) > ty,_, »(x) — €. In some cases, there may be
A,B € B}, A # B, such that pynp(x) > by, , »(x) — €. We know that the molecule
A A B produces a more accurate description of x than A or B. Af is the set of the
minimal molecules gy B,H C BY, such that “/\Beyﬁ(x) > Ly, b(X) — €.
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Theorem 9.1. Let X be a universe of discourse and M be a finite set of simple con-
cepts, (M,7,X) be an AFS structure. Let {U¢ (x) | & € EM} be a set of coherence
membership functions of the AFS fuzzy logic system (EM,V/, A\, ) and the AFS struc-
ture (M, T,X). (seeing Definitiond7). Let A C EM. For a given x € X and a given
e>0, ac AL let 05 ={B € (A)er| B > a}. Where Af is defined by (9.8). Then
the following observations hold:

(1) O is a sub-EI algebra of (A)g;.
(2) g o) = Halx) = iy, 5(05) — .
(3) Form € (A)gr if tn(x) > Wy, _, »(x) — € then Joe € AL, for anyy € X, y # x,

M (3) 2 Bpy g (V) = Hor()-

(4) Cx = VaeAf (/\heﬂg b) > &= VaeAf o.

Proof. (1) and (2) can be proved directly by taking into account the corresponding
definitions. .

(3) For given € > 0,x € X, suppose N1 = Ve A\ jey, @ij € (A)Er aij = Yiek; Al €
A, jedi i€l Ky, and lp(x) > py,_, »(x) — €. Since (A)g; is a molecular lattice,
hence

n=VAai=\ N\ VA
icl jeJ; i€l jeJ; kekK;
= \/ \/ ( /\ A.?(j))'

i€l felljes; K J€)i

Since
My (X) = Hy, 0 p(x) — €
hence 3/ € 1, 3g € [] ¢, K; such that

ij > —&.
Hnjenaily () 2 theppl) —

Therefore for any j € Jj,

ii > ii > —E&.
Hals 02 Hhjenal ()2 Hyeyplx) =8

J

j i
g(j

This implies thatV; € Jl,A;m € BY and Ja € Af such that A ;c; A ) = ocand

i
n= Ay, = o
=y
Since ¥, is an upper set of (A)gy, hence 1 € ¥y and pun (y) > pp, oo 5(¥) > Ha(y)

foranyy € X,y # x.
(4) They can be proved by (1). O
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Remark 9.1. Since ¥, is a sub-EI algebra of (A)g; for each a € Af, hence {, =
Vaeas (Apeoy) € (A)gr If €, and &, are applied to describe x, then §, is a fuzzy
description of x by the fuzzy sets in (A)g; and ¢, is a fuzzy description of x by
the molecular elements of the fuzzy sets in (A)gs. &, is a rougher description of x
than {,. But we should notice that in some case, §; ¢ (A)g;. By 3 of Theorem[.11
one knows that for o € A, fuzzy set Npeog b ensures that any y # x,y belongs to
Npeog b at low degree while x belongs /\,cyx b at high degree. It could be easily
proved that §, = {,, if any selected attribute y € A, v is a molecular element, i.e.,
Y=A,ACM.

Therefore both § . and {, shown below can serve as the fuzzy description of x € X.

&=V (A b), (9.9)
aEAE bevy

L=\ o (9.10)
aeAf

In this section, we employ {, as the fuzzy description of x. {{; | x € X} is called a
fuzzy description of X under A and €. Now we get the fuzzy description §, for each
x € X (step 2). Next, we study step 3 and step 4 of the elementary fuzzy clustering
method via the AFS fuzzy logic.

Definition 9.1. Let M be a set. Let A = (a;;)mxk, B = (bij)ixn be the matrices over
the ET algebra EM (called EI matrices ), where a;;,b;j,c € EM. Then the matrix
operations are defined as follows

(1) A+B= (aij\/b,-j),ifm:l,kzn.
(2) AB = (VX_ (@i Nby))), ifk=1.
(3) cA=Ac=(cAajj).

Proposition 9.2. Let M be a set and EM be the EI algebra over M. Let A,B,C be
any EI matrices with appropriate dimensions. Then the following assertions hold.

(1) A(B+C)=AB+AC;
(2) A(BC) = (AB)C.

Let X = {x{, x2,..., X, } and M be a set of simple concepts on X. Let (M, 7,X) be an
AFS structure and {g(x) | & € EM} be a set of coherence membership functions
of the AFS fuzzy logic system (EM,V,A,) and the AFS structure (M, 7,X). Let
{&: | x € X} be the fuzzy description of X under A and €. The EI matrix B = ({, A
ij) nxn 18 the EI algebra relation matrix which determines a fuzzy relation matrix
M = (m;;) on X ,, i.e., the degree of x;, x; satisfying the fuzzy relation is

mij = min{.ugxi/\ng (xi)mugxiAng (xj)}'
Theorem 9.2. Let X = {x|, x2,..., X, } and M be a set of simple concepts on X. Let

(M, 7,X) be an AFS structure and {ig (x) | & € EM} be a set of coherence mem-
bership functions of the AFS fuzzy logic system (EM,V,A\,') and the AFS structure
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(M,1,X). Let { & | x € X } be the fuzzy description of X under A and €. Let B= (A

ij)nxn be the EI algebra relation matrix and M = (m;;)nxn be the fuzzy relation

matrix, where mij = min{Ug_nc (i), Ue ag,. (X))} Then the following assertions
i J i J

hold.

(1) B> =

(2) M> = M;

(3) There exists an integer r such that (M")> = M".

Here for fuzzy relation matrices A = (aij)nxn,B = (bij)nxn, AB = (Cij)nxn Cij =

max; <<, {min{a,by;}}.

Proof. (1) By Definition[0.1} we have

S
:(CX,‘/\CX,')HX": :sz (gxl cxz CXn)a
&,

hence

&
B? = ( \/ (Cx,-/\Cx,-)> (gxl an)
Ix1

Cx 1<i<n
n

Cu
| (\/@) (G0 &)
1x1

CX 1<k<n
n

< V& QMQ,))

1<k<n

= (Cxi A cxj')nxn =

(2) Since the EI matrix B = (CX,'/\ ij)nxyl = (bij)nxm bii = CX,' > Cxi/\ ij = bij
in EM, hence

nxn

M2 = ( \/ ('qu,-Aka (Xi) A 'qu,-/\ka (Xk)) A ('quk/\ij- (Xk) A ‘quk/\Cx_,' (X,))))

1<k<n

%

/_\/_\

By, ) b, (N g (O, (5

nxn

mm{ug o (), g, <x,->})

nxn
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(3) Since m;; =min{p, , (x,‘),,ugv/\grj (xj)} =mji, 1 <i, j<n,hence MT =M.
i J i

Because the fuzzy matrix M has a finite numbers of different elements and M*>M,
there exists an integer r such that M" = M+ = ... = M*". a

We should notice that Theorem ensures that EI algebra relation matrix B and
fuzzy relation matrix Q = M" can yield a partition tree with equivalence classes.
This implies that for any a € [0, 1], Q¢ = (ql”;) is an equivalence relation (Boolean
matrix) and it can yield a partition on X. Next, we study the step 5.

Proposition 9.3. Let Cy,C,,...,C; be the clusters determined by equivalence rela-
tion Boolean matrix Qo = (q;}) obtained in step 4 for the threshold o. € [0,1]. For
eachi=1,2,....1, let

A= J{AeA] () > a}.

xeCj
Where A is defined by (9.8). Then Ac, N Ac, = @,i# j, foranyi,j=1,2,...,1.

Proof. Suppose that for some i,j = 1,2,...,1,i # j,A € Ac, N Ac; # ©. By the
definition of Af given in (9.8), we know there exist x € C; and y € C; such that
A€ AL a(x) > aand A € Af, pa(y) > o This implies that

&= \/ B>A4,
BeAE
&=\ B=A.
BeAyE

Therefore §, A {, > A and the degree of relationship between x and y comes as

min{{g ¢, (), Ugng, (V) = min{pa (x), ua (v)} = .

By Q0 = (gij) > M = (mj;), we know that ¢¢; = 1 and x and y are in the same class.
It contradicts thatx € C; and y € Cj,i # j. O

Example 9.2. Let X = {x1,x2,...,x10} be a set of 10 persons. M = {my,my,...,mo},
where m : “old”, my : “height high”, m3 : “weigh, my : “salary high, ms : “larger
fortune”, mg : “male”, my : “female, mg : “black hair ”, mg : “white hair ”, my :
“yvellow hair”. About the universe of discourse X and the attribute set M, the original
data and facts are shown as Table[0.2]and sub-preference relations expressed by the
chains. x = y in the chain means the degrees of x and y belonging to the attribute are
equal, instead of x and y being the same element in X.

mg X7 > Xj0 > X4 =Xg > X2 = X9 > X5 > Xg = X3 = X[,
mg : Xg = X3 = X|] > X5 > X3 = X9 > X4 = X8 > X10 > X7,
mip i Xy = X9 > X4 = Xg = X5 > X]0 > Xg — X3 = X| = X7.
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Table 9.2 Description of Attributes

my my m3 my ms mg my
X1 20 1.9 90 1 0 1 0
X2 13 1.2 32 0 0 0 1
X3 50 1.7 67 140 34 0 1
X4 80 1.8 73 20 80 1 0
X5 34 1.4 54 15 2 1 0
X6 37 1.6 80 80 28 0 1
X7 45 1.7 78 268 90 1 0
X3 70 1.65 70 30 45 1 0
X9 60 1.82 83 25 98 0 1
X10 3 1.1 21 0 0 0 1

First, we determine the weight function p,,(x) for each simple attribute m € M ac-
cording to available data and facts: p,, (x), for i = 1,2,...,7, is the value of x; for
attribute m; in Table 0.2 for example, p, (x1) = 1.9, P, (x2) = 0, ppg(x2) = 0,
Py (x2) = 1; pm; (x;) = 1, for i = 8,9, 10, if x; belongs to simple concept m;, oth-
erwise Py, (x;) = 0, for example, g (x7) = 1, Py (x7) = 0, according to the order
relations mg, mg given above. For each m € M, let

Pt (x) = max{pn(y)} = pm(x), x€X,
ye

where m' is the negation of the simple concept m. By Definition 4.8 we can verify
that each p,, is the weight function of concept m. 7 is defined according to Table
[02]and the meaning of the simple concepts in M quantified by formula (.26). Thus
the set of coherence membership functions {u¢ (x) | § € EM} can be obtained by
formula in Proposition[5.6l

In what follows, we apply the elementary fuzzy clustering method via AFS fuzzy
logic to study the fuzzy clustering problems involving the data and facts shown
in Example Let the fuzzy concept “high credit’ be expressed by the fuzzy
set mgmamy + mgmsm; + mymyg + myms € EM with the semantic interpretation:
“high salary old male” or “more fortune old male” or “high salary female” or
“more fortune female” (refer to Table 0.2). In the following examples, we apply
the AFS structure (M, 7,X) and the weight functions given in Example[@-2lto estab-
lish the set of coherence membership functions {ue (x) | & € EM} and the study
the clustering problems of the 10 persons by the different selected attribute set
A CEM.

Example 9.3. Let us consider the clustering based on the following attributes “gen-
der, age”, “gender; credit”, “gender, hair white” , i.e., A = {ay,00,B1,B2, %1, %}
where Q) = mymg, 0p = mymy, Yy = momeg, Y = momy, credit = memam; +

memsmy + mymy + myms,
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B1 = credit N\mg = mgmam| + mgmsmy + mymame + mymsme,
ﬁz = credit \ m7 = mgmamimy + memsmny + mymy + nyms = mymq + mons.

Step 1: Find the fuzzy set ©¥. Owing to (@.19), we form ¥’ which is the negation of
the fuzzy concept ¥.

0= \/b=ouVaVBVBVHVp
beA
= myme + mmsy + mymy + m7ms + moMe + Mym;

/ S Y /o / /o
Y = momsmymy + monizml’ 4+ mamg.

Table 9.3 Membership degrees of belongingness to the fuzzy concepts ¥ and 9’

X X2 X3 X4 X5 X6 X7 X3 X9 X10
1y (.) 1 56 1 1 67 1 37 80 1 11
te() 0 430 0 14 0 2403 0 86

The resulting membership functions are shown in Table[0.3] We notice that accord-
ing to A and the original data and facts in Example[0.2] the highest degree of each
x; belonging to any cluster is Ly (x;).

Step 2: Using (4) of Theorem[.1] for each x € X, find the fuzzy description & of x:

Cxl = CXS = meMmoy, CXz = ng, = CXG = C)q() = m7mgy,

Gy = Gy =memy, &y = mymame +mymsmg, Cyy = msmy.

Step 3: Apply &, the fuzzy description of each x € X to establish the fuzzy relation
matrix m;; = min{,ugxi/\ng (xi), Heng., (xj)}s

[10 0 .09.670 0 .090 0
56560 0 560 0 0O .11
1 0 01 0 0 .17.11

1 120 37.800 O

670 0 120 O

M = (mij) = 1 0 0 .08.11
37290 0

800 0

10

11 ]

One can check that for each x; € X, occurring in relation matrix M, the similarity
degree of x; with other persons are less than iy (x;) (refer to Table @3). Q> = Q, if
Q = M?,Q can yield a partition tree with equivalence classes.
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10 0 .12.670 .12.120 0
56.560 0 560 0 .17.11
1 0 01 0 0 .17.11

I 120 .37.800 O

670 .12.120 O

0= 10 0 .17.11
37.370 0

800 0

111

A1

Step 4: When threshold o = 1, then I, = 0.2451.
Ci = {x1}, §c, = mgmg states “person who is a white hair male”;
Cy = {x3,x6 }, §c, = mymyq states “person who is a white hair female”;
C3 = {x4}, §c, = memy states “person who is an age male”;
Cy = {x9}, {c, = msmy states “person who is a credit female”.

Similarly, when threshold or = 0.8, I, = .2496.

Cr={x1}, G = {x3,x6}, C3 = {x4,x8}, C4 = {x0}:
CCI = memy, CCz = nm7mg, CC3 = memyi, CC4 = msmsj.
Choun = memamo + mymemog + msmymo + mimsmemy.

The membership functions are shown in Table Compared with Table for
each x;, the degree of belonginess (membership) of x; to any cluster is less than
Wy (x;), where ¥ is the sum of all selected attributes. This implies that the selected at-
tribute set A not only determines the cluster results, but also implies the degree each
object belongs to every cluster. When we consider the threshold value o = 0.5, then
Iy = 0.2235,C) = {x1,x5}, Cy = {x2,%3,%6 },C3 = {x4,x3},Cs = {x0}; ¢, = mgmo,
G, = mymg, ey = memy, Cc, = msmy. Cpoun = meymg + mymemo + msmame +
mipmsmehty.

In the above example, since we have considered the Boolean attribute “gender” in
the clustering process, hence the persons in each class are characterized by the same
gender. Compared with the above example, in the next example, we consider the

99 ¢

attributes “age”, “credit”, “hair white” without the attribute of “gender”.

Table 9.4 Membership degrees to each cluster and the boundary

X X2 X3 X4 X5 X6 X7 X8 X9 X10
Hee, 1 0 0 .33 .67 0 0 .33 0 0
Hee, 0 .56 1 0 0 1 0 0 .56 11
Hee, .09 0 0 1 17 0 37 .80 0 0
Hee, 0 0 17 0 0 .08 0 0 1 0

Soun 09 0 17 33 12 08 0 2 5 0
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Example 9.4. Let us now consider the clustering realized according to attributes
“age”, “credit”, “hair white”, i.e., A = {o,B,y},where o = my, y=mg, B =
credit = mgmgm| + mgmsmy + mymy + m7ms. By repeating steps 1-3, we obtain

fuzzy descriptions for each x € X,

gxl = CX2 = CX3 = cxs = CXG = Cxl() = My,

CX4 = ng =my, CX7 = mymyme + mmsme, C9 = msmy7j.
The fuzzy equivalence matrix Q yields a partition tree with equivalence classes.

[1.561 33.671 .33.33.17.11]
.56 .56 .33 .56 .56 .33 .33 .17 .11
1 33.671 .33.33.17.11

1 .33.33.37 .81.17 .11

.67 .67 .33 .33 .17 .11

1 .37.33.17 .11

37 .37 .17 11

81.17 .11

1 .11

11 |

Considering the threshold @ = 1,1, = 0.3613 one has

Ci = {x1,x3,%x6 }, §c, = mg reads “person who is white hair”;
Cy = {x4}, §c, = m reads “person who is age”;

C3 = {xo}, {c, = msmy reads “person who is credir”.

Chou = mymg +msmamo + mymsmy.

Similarly, when threshold oc = 0.8,/ = .3495, we obtain

Ci = {x1,x3,x6 }, C2 = {x4,x8}, C3 = {xo};
Ce, = mo, ey, = my, §o, = msmy.
Chou = mimog + msmymg + mymsms.

The membership functions are shown in Table[0.3] When the value of the threshold
o =0.5,C; = {x1, X2, X3, X4, X5, X6, X3, X0 }, §c; = my + mog + maymy + msmy.

Table 9.5 Membership degrees pertaining to each cluster and the boundary

X1 X2 X3 X4 X5 X6 X7 Xg X9 X10
/chl 1 .56 1 .33 .67 1 0 .33 .56 11
He. .09 .04 .50 1 17 .26 .37 .81 .64 .01
“Cc3 .00 0 54 .50 .03 .30 37 .29 1 0

Me,, 09 04 49 33 12 26 0 22 64 01
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Since in this example we did not choose attribute of male and female, hence the
males and females can be located in a same cluster. In the above examples, we
note that X # |J;<;<; C;. This implies that since the membership degrees of x (x €
X — Uj<i<; Ci) belonging to the fuzzy set ¥ the sum of all selected attributes is too
small, hence there is not enough information to determine its cluster. In the real-
world problem we cannot ignore the existence of the elements in X — J;<;<;Ci,
we should consider the clustering under the fuzzy attribute set A = {o/|oc € A}U
A, or let X — J;<;<; G be single one cluster where its fuzzy description becomes

(Vi<i<ibe)'-

Example 9.5. In this example, let us consider the clustering problem with the at-
tributes “old”, “credit”, “hair white” and “not old”, “not credit”, “not hair white”
ie, A ={a,B,y,a,B",Y}, where a = my, y = mg, B = credit = mgmam; +
memsmy +mymy +mms, o =m\, Y =mq , B’ = mgml, +mlyms + m,m' . By run-
ning steps 1-3, we form the fuzzy descriptions for each x € X,

Gy = Gy = Gus = Gog = mos &y = msm,
CX4 = my, Cx7 :m/97 ng =m —|—I’l’l/97

/ ! !
ng = msmsy, Cxlo = my + mshiy,

The fuzzy equivalence matrix Q gives rise to the partition tree with the following
equivalence classes.

[1.461 .33.671 .33.33.17 .46
1 .46 .33 .46 .46 .33 .33 .17 1
1 33.671 .33.33.17 .46
1 .33.33.71.81.17 .17
.67 .67 .33 .33 .17 .46
1 .33.33.17 46
1 .71.17 .33
.81 .17 .33
1 .17
1

When threshold o« = 1, then I, = 0.5692.

Cy = {x1,x3,%6}, §c, = mg whose interpretation comes as “person who has white
hair”;

C> = {x2,x10}, Cc, = mml, +m'| with the meaning “person who is not aged, or
not high salary-not more fortune’;

C3 = {x4}, §c, = m; with sematic interpretation “person who is aged”;

Cy={x7}, Cc4 = m’g with sematic interpretation “person who does not have white
hair”;

Cs = {xo}, {c, = msmy with sematic interpretation “person who has credit”.

Chou = mom) +momismly +mymo + momy +msmymo +mym +mymsm} +mom} +
mymimly, + msmym’ + msmymsm}y + mymg + mymsmy + msmym.
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Table 9.6 Membership degrees of the concepts, see the details above

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

u 1 .56 1 .33 .67 1 0 .33 .56 11
ey

“Ccz .68 1 15 .04 Sl .36 .24 .10 .08 1

u .09 43 49 1 17 .26 1 .81 .64 .86
Cey

“Cc4 0 0 17 0 0 .08 0 0 1 0

He, .68 46 49 .33 29 .36 24 22 .64 .86

Similarly, when threshold o = 0.6, I, = .4815.

Ci = {x1,x3,x5,%6}, C2 = {x2,x10}, C3 = {x4,x7,x8}, C4 = {x0}, {c;, = mo,
Ce, = m)y +mm)y, Eoy = my +my, &, = msmy.

Chou = mom)y +momismly +mymg + mome + msmymo +mym’ +mom’ +mymsm} +
mymismly, + msmym', + msmymlsmly + mymsmy 4+ msmomy.

Compared with the two previous examples, since in this example we consider the
negation of each selected attributes, hence any person belongs to at least one cluster
at a high degree of membership. The fuzzy set {p,, indicates that a certain person
may belong to more than one cluster at high degree; for example this happens in case
of x19. Making use of these examples, we can conclude that the clustering results
are appealing from an intuitive point of view.

Example 9.6. The data set used for this problem is shown in Table It
consists of data of fats and oils having four quantitative features of interval type and
one qualitative feature. First, for the attributes in Table represented by interval
[a,b], the interval [a, D] is normalized ( represented ) as two numbers (a+b)/2,b—a.
For example, the original data for sample Linseed oil are normalized as 0.9325,
0.0050, -17.5000, 19.0000, 187.0000, 34.0000, 157.0000, 78.0000. Let sample No.
i be normalized as S; = (51,572, ---,8i8),i = 0,1,...,7. Let my be the simple concept:
“the average Gravity of the sample is high”, m;, be the negation of simple concept
my, 1.€., mp = m/l; m3 be the simple concept: “the difference between highest and
lowest values of the Gravity of sample is high”, m4 be the negation of simple con-
cept m3; ms be the simple concept: “the average Freezing point of the sample is

Table 9.7 Fat-Oil data

No. Sample name Gravity(g/cm®) Freezing point io.value sa.value m.f.acids
0 Linseed oil 0.930-0.935 -27 to -8 170-204 118-196 L.Ln,0,PM
1 Perilla oil 0.930-0.937 -5to-4 192-208 188-197  L.Ln,O,P,S
2 Cotton-seed 0.916-0.918 -6 to -1 99-113 189-198  L,0,PM,S
3 Seaame oil 0.920-0.926 -6 to -4 104-116 187-193  L,O,PS,A
4 Camellia 0.916-0.917 -21to-15 80-82  189-193 L,O
5 Olive-oil 0.914-0.919 0to6 79-90  187-196 L,O,P,S
6 beef-tallow 0.860-0.870 30to 38 40-48  190-199 O,PM,S,C
7 Lard 0.858-0.864 22t0 32 53-77  190-202 L,O,PM,S,Lu
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high”, mg be the negation of simple concept ms; m7 be the simple concept: “the
difference between highest and lowest values of the Freezing point of sample is
high”, mg be the negation of simple concept m7; mg be the simple concept: “the
average io.value of the sample is high”, my( be the negation of simple concept myg;
my; be the simple concept: “the difference between highest and lowest values of
io.value of sample is high”, m, be the negation of simple concept mjj; m3 be
the simple concept: “the average sa.value of the sample is high”, m4 be the nega-
tion of simple concept m13; m5 be the simple concept: “the difference between
highest and lowest values of sa.value of sample is high”, m¢ be the negation of
simple concept ms; m7 be the simple concept: “symbol likes ‘L,Ln,O,P.M’ ", mig
is the negation of simple concept m7; mj9 be the simple concept: “symbol likes
‘L.Ln,O,P,S””, myo be the negation of simple concept m9; my; be the simple con-
cept: “symbol likes ‘L,O,PM,S’, mp; be the negation of simple concept my1; my3
be the simple concept: “symbol likes ‘L,O,P,S,A””’, my4 be the negation of simple
concept mp3; mys be the simple concept: “symbol likes ‘L,O’ ”, myg be the negation
of simple concept mys; my7 be the simple concept: “symbol likes ‘L,O,P.S’”, myg
be the negation of simple concept my7; my9 be the simple concept “symbol likes
‘O,PM,S,C””, m3o be the negation of simple concept myg; m3; be the simple con-
cept: “symbol likes ‘L,O,P.M,S,Lu’’, m3; be the negation of simple concept m3;. We
obtain the weight function p,,, for the simple concept m; in the following way: For
qg=2k+1,0<k<7,letL; = IIlil’l{S()k,Slk, ...7S7k}, H, = max{s()k,slk, ...7S7k}.

Zi:l,:i Hy, when L < sy < Hy,
Pmy (Sl) = 0, when s;;, < Ly,
1 when H, < sy,

Py (Si) = 1= P, (Si)-
For the fuzzy concept on words, g = 2k+ 1,8 < k < 15, we have

il 4 |wil = 2|wi—g Nwi

)

pmy(81) = 1 [Wi—s Uwi|
where w; is the set of words representing attribute m.f.acids, for sample, S;. For
example k = 8, m 7 be the simple concept “symbol likes ‘L,Ln,0,P.M", py,;(So) =
1, Pmy; (Sl) =0.8, Pmy; (SZ) =0.8, Pmy; (S3) = 0.6, pm17(S4) = 0.57, Pmy5 (SS) =
0.67, Py, (S6) = 0.6, P, (S7) = 0.73. In what follows, we set up the AFS structure
(M, t,X) according to the data and facts in Table@.7] where X = {So, Si,...,57} and
M= {ml, mz,...,m32}.

T(8:,8i) = {my | puy(Si) >0}, ©(S:,8;) = {my | pu,(Si) = pm; (S})}, fori# j.

One can verify that (M, 7,X) is an AFS structure. Thus the set of coherence mem-
bership functions {u¢(x) | & € EM} can be obtained by formula given in
Proposition In this example, let us A = M. Through step 2, we get the fuzzy
description s, for each sample S; as follows:
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Csy =mymymomyymigmismyy, §s, = mymgmomyg, s, = mamyzmay + mamigiay,
s, = mgmigmas, {5, = mamemiomignas, Gss = miama7 + mighay,
s, = mamsmiomag, Gs, = mymyzms;.

By carrying out steps 3-4, we obtain

10 0 0 0 0 0 O

01 .28.28.15.28.14.14
0.28 .66 .34 .15 .34 .14 .14
~10.28.34.67.15.35.14 .14
0= 0.15.15.151 .15.14 .14
0.28 .34 .35.15.70 .14 .14
0.14.14 .14 .14 .14 1 .48
10.14 .14 .14 .14 .14 48 1

If the threshold o is set to 0.15, then C; = {So},C2 = {51,52,53,54,55},C3 =
{S6,S7} which are the same as the result in [23]. The fuzzy descriptions of the
classes are shown as follows.

8o, = mymymomyymigmismyz, Coy = mamsmigmag + momi3msy,
Ce, = mymgmomyg -+ mamizmay + mamigmyy + mgnieo3

+mymemiamiemas + mipma7 + miehay,

Their membership functions are included in Table 0.8 If more detailed clustering is
required, then a higher value of the threshold o can be selected.

Table 9.8 Membership degrees belonging to each cluster and the boundary

So S S $3 S4 Ss Se S7
,IJCCl 1 0 .04 .02 0 .05 0 0
'“Ccz 0 1 .66 71 1 .70 17 .29
e 0 0 13 08 08 22 1 1
He,, 0 0 13 08 08 14 17 29

9.2 Applications of the Elementary Fuzzy Clustering for
Management Strategic Analysis

Cluster analysis has been used frequently in product position, strategy formulation,
market segmentation studies and business system planning. In addition, we could
discriminate one or more strategies from airfreight industry and to comprehend the
competitive situation in more detail.

In this section, first the elementary fuzzy clustering method via AFS fuzzy logic
is investigated further by amending the algorithm to be more applicable to manage-
ment strategic analysis. Next it will be used to analyze the evaluation results of 30
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companies which have been studied and analyzed by G.-S. Liang et al. [56]. Com-
pared with the Liang’s algorithm, the elementary fuzzy clustering method is more
transparent, understandable and the results are easy to interpret. The method can be
applied to the management strategic analysis based on the data sets described by
mixed features such as real numbers, Boolean logical values, and linguistic descrip-
tions. The illustrative examples show that the interpretations of the clustering results
of the 30 companies are highly consistent with the expert’s intuition.

In [56], the authors defined the linguistic values by the trapezoidal fuzzy numbers
which are represented as four-dimension vectors. For example, they defined “Very
Low”as (0,0,0,0.2). They proposed a clustering which is based on the following
idea.

First, the distance function between two trapezoidal fuzzy numbers is used to
aggregate the linguistic values about attribute ratings to obtain the compatibility
relation. Then a fuzzy equivalence relation based on the fuzzy compatibility relation
is constructed. Finally, they determined the best number of clusters using a cluster
validity index which also depends on the distances computed for the trapezoidal
fuzzy numbers.

In this section, instead of subjectively defining the linguistic values as done in
[36], the membership functions are determined by the AFS algorithm according to
the ordered relations formed for the attributes and the semantics of the fuzzy con-
cepts. Compared with the Liang’s method, the clustering algorithm has the following
advantages:

e The features of the data sets can be mixed.

e The trapezoidal fuzzy numbers and their distance function are not required. This
can help avoid inconsistent results of Liang’s algorithm due to different choices
of the fuzzy numbers and the distance functions. (This shortcoming will be
shown in Section 9.2.2 by running some experiments).

e The clustering results are easy to interpret.

The experimental study on the evaluation results of 30 companies shows that
some aspects of the elementary fuzzy clustering method via AFS fuzzy logic need
to be improved. Thus, the algorithm has been enhanced in the following manner:

1. The description of each object is optimized by a selecting method.
2. The fuzzy cluster validity index is improved by adding the rate of the number of
clusters and the threshold .

The applications of the improved clustering algorithm to the evaluation results of
the data sets in [56] show that the interpretation of each cluster is consistent with
experts’ intuitions, and the algorithm can be applied to the management strategic
analysis for the data sets with mixed features.

Example serves as an introductory illustration to show how to undertake
strategic analysis using the elementary fuzzy clustering method.

Example 9.7. Let {cy,c2,...,cs} be the set of five companies. Factorl,..., Factor7
are seven factors (attributes or features) obtained from experts, where Factorl:
“Core ability”, Factor2: “Organization management”’, Factor3: “Pricing”, Factor4:
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Table 9.9 Evaluation Results of the Five Companies

Factorl  Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
cgt M H H B.H&VH VH L B.M &H
¢ H BL&M M BM&H H BM&H VL
c3 H H B.M &H H H VH BM&H
c4 VL M H BVL&L H B.L &M M
¢cs L M BH&VH H BH&VH B.VL&L BM&H

“Competitive forces”, Factor5: “Finance”, Factor6: “Different advantage”, Factor7:
“Information technology”. The evaluation results of the five companies are shown
in Table[9.9] which is taken from [56]. Where VL = Very Low, B.VL&L = Between
Very Low and Low, L = Low, B.L&M = Between Low and Medium, M = Medium,
B.M&H = Between Medium and High, H = High, B.H&V H = Beween High and
Very High, VH = Very High.

Let X = {cy,¢2,...,c5} be a set of the five companies, M = {mj,my,...,m7} be a set
of fuzzy attributes on X. Where my: “Factorl is strong”, my: “Factor2 is strong”,...,
my: “Factor7 is strong”. Each fuzzy concept in EM represents a definitely sematic
interpretation. For instance, we may have y: moms + mpm4 which translates as “Or-
ganization management and Pricing are strong ”or “Organization management and
Competitive force are strong ”.

Next, we demonstrate how to establish an AFS structure according to the origi-
nal data in Example0.7) Let X = {c1,c2,...,c5}, M = {my,m},mp,mb,...,m7,m,},
where m/l: “Factorl is not strong”, m’2: “Factor2 is not strong”; ..., m/7: “Factor7 is
not strong”. For the semantic meanings of the linguistic values, we have the follow-
ing order relation:

“VH”> “B.H&VH”> “H”> “B.M&H”> “M”> “B.L&M”> “L”> “B.VL&L”>
“VL”.

Using Table and taking into account the semantics the attributes in M, we have
the following order relations of the simple concepts in M:

my:cq <py €5 <y €1 <my €3 =m; €2, m’l: C4 >m'1 Cs >m/1 C1l >m'1 Cc3 = c).
My €2 <my C4 =my €5 <y €3 =m, C1, N2 C2 >ty €4 =y €5 >y €3 = €1
M3: 2 <py €3 <y C4 =my €1 <y Cs, My C2 >, €3 >, C4 =t C1 >, C5.
my: €4 <py €2 <y €5 =my €3 <my C1, me: C4 <ma 2 <mg Cs =ni, Cc3 <ma Cl.
mMs: €2 =ms C3 =ms C4 <ms €5 <ms C1, mg-: c) Zml5 c3 ng C4 >m15 Cs >m15 Cl
Me: 5 < C1 <mg C4 <mg €2 <mg C3, Mg: Cs > €Ly €4 >l €2 > €3
my: €3 <my €4 <y €5 =my; €3 =my C1, m/7: Cc >m/7 Cy4 >m’7 Cs :m/7 Cc3 :m/7 Ccl.
Thus by @.26), the AFS structure (M,7,X) of Table is well-defined. For the
weight function p : X — [0, 1], p(x) = 1 for any x € X. Then the set of coherence

membership functions {ug(x) | & € EM} can be obtained by (5.24) in Proposi-
tion[3. 71
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AT ()
X) =su ,
Hn(x) =sup =)

©.11)
The esxpression A (x) is calculated by @27). If o = 2%, for W € 2X, .7 (W) = [W|
(|W] is the cardinal number of the set W, i.e., the number of elements in W) in
Proposition[3.71 In Example0.7] let ny = my, Ny = mo, N3 =mymy, Ng =m; +my €
EM. By the formula (9.11), we get:

For 1, A = {m}, A%(c1) = {c1,ca,e5}, iy, (1) = ) =3/5=046.

For 2, A = {my}, A%(c1) = {c1,¢2,¢3,¢4,¢5} Un,(c1) = ‘AT‘;((T)' =5/5=1.0.

For 13, A = {m1,my}, A™(c1) = {c1,ca,¢5}, Uny(c1) = ‘AT‘;‘” =3/5=0.6.
For 4, A1 = {m}. A2 = {m2}. ttn, (e1) = supi_y(“1"") = sup(3/5.5/5} = L.0.

Remark 9.2. Compared with the Liang’s method, the membership function defined
by depends on the ordered relations on the attributes and the AFS structure
of the data without relying on the subjectively defined membership functions of the
trapezoidal fuzzy numbers.

9.2.1 Improvements of the Elementary Fuzzy Clustering Method

By immediate applications of the elementary fuzzy clustering method to the data of
[36] shown as Table[Z.4]in the Appendix A in Chapter 7, it is sometimes difficult to
obtain satisfactory results. Through a careful analysis of the algorithm, we find that
the following two issues (i.e., step 2 and step 5 in the algorithm) contribute to the
lower performance:

a) The description of each object cannot characterize it well enough. In the al-
gorithm, §., = Ve AE O the final description of an object c¢; is the sum (i.e., the

EI algebra operation “V”, refer to (0.10)) of all fuzzy concepts in A defined by
(©8), where AZ is the set of all feasible fuzzy descriptions of the object. Because
A, often includes the descriptions of both essential and redundant characteristics
of the object, the final description of the object may be too “rough” so that it may
include the “improper” descriptions in Afi which describe the redundant nature of
the object. The improper description always lowers the clustering accuracy. In the
improved algorithm, we just choose the best description from all the feasible de-
scriptions in A? as the final description of the object through running a selection
method.

b) The fuzzy cluster validity index (9.4) which is used to select the best clus-
tering result considers only the clarity of the boundary among the clusters. How-
ever, the number of the clusters is also an important factor which influences
the quality of the clustering results. Thus, in the new fuzzy cluster validity in-
dex, both the clarity of the boundary and the number of the clusters have been
considered.
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Improvements of the elementary fuzzy clustering method via the AFS fuzzy
logic

Let X = {cy,c2,...,¢, } be the set of the objects, M = {m;,ma,...,m,} be a set of
attributes on X. In what follows, the AFS structure is constructed by and
the membership functions of the fuzzy concepts in EM are defined by (O.11)). Let
V= zm,-EM m;.
STEP 1: Find the fuzzy concept {,, € EM to describe the object ¢; € X, which
satisfies that not only the membership degree of ¢; belonging to &, (i.e., He, (ci))
is the most approach to the membership degree of ¢; belonging to ¥ (i.e., Wy (ci)),
but also He,. (c¢j) is as small as possible for ¢; € X,i # j. In other words, ¢; can
be distinguished by ¢, from other objects in X to a maximal extent.
The best fuzzy description , for each object ¢; is determined by running the
following procedure:

— Let € > 0 (in the examples in this section € = 0). Find the set Bﬁt_ defined as
follows:

= {mp € M| pim, (ci) > po(ci) — €} (9.12)

B is the set of the fuzzy attributes in M the degrees of ¢; belonging them are
larger than or equal to s (c;) — €.
— Find the set Bz_ defined as follows:

{Hml HrLeam(ci) > o (c )—e,ACBf,} 9.13)

meA

BZ_ is the set of the conjunctions of the attributes in Bf, such that the degrees
of ¢; belonging to the conjunctions are larger than or equal to iy (c;) — €.
— Select the best fuzzy description ., € Bfl, for the object ¢;:

e, = arg min Y e (c) (9.14)
CEB ceX c#ci

Thus ¢; can be distinguished by &, from other objects in X to the highest

degree.

Remark 9.3. For o, € Bi, if a < B in the lattice (EM, A, V), then for any ¢ €
X, po(c) < ug(c). By @.14), the description &, can be simply found just by
checking the membership degrees of ¢; belonging to the minimal elements in
BZ. In general, there may be many elements in Bi,-’ but there are often just a few
of the minimal elements.

STEP 2: Apply the fuzzy description {., of each ¢; € X to establish the fuzzy
relation matrix F = (fij)axn on X = {c1,¢2,...,cn }, where

fij = min {“Cc,-/\Cc_,- (ci), chl.Az;Cj (Cj)}_
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Remark 9.4. In [56]], the authors used the distance function d,(N;, Ni) between
two fuzzy numbers N;, Ny to define the fuzzy compatibility relation. Different
distance functions may lead to different fuzzy compatibility relations. Thus the
inconsistent clustering results may be obtained for the same data set. However, in
STEP 2, the fuzzy relation matrix F is uniquely determined by the AFS structure
(M, t,X) of the data. This implies that the results of the proposed clustering
algorithm are objectively determined by the original data.

STEP 3: Find the feasible clusters corresponding to the threshold o € [0,1].
Let Q = F" = (gij)nxn and the Boolean matrix Qy = (qf‘]-)nx,,, where ¢ff = 1 &
gij > o, o € [0,1]. For o € [0,1], ¢j,c;j € X, ¢;,¢; are in the same cluster under
threshold « if and only if qf‘]. = 1. For some ¢; € X, if ¢ff = 0 then the threshold
o cannot be determined which cluster the object ¢; belongs to. For each object
¢ eX,ifg? =1, q?‘j =0, for any j, i # j, i.e., the object ¢; itself is a cluster, then
this clustering result under the threshold o is considered to be invalid.

Remark 9.5. In practice, the values of the thresholds « in the range {g; j| 1<i,j<
n} are just considered.

STEP 4: Determine the best clustering result out of all the results under the
threshold o € {g;;|1 <i,j < n} using the fuzzy cluster validity index I, de-
fined by and compute the fuzzy description {¢, of the cluster Cy via the
AFS logic operation V. For each cluster C; C X, where Cy, is a cluster under the
threshold @, {c, = V¢, & is the fuzzy description of the cluster Cy. It is clear
that for each ¢ € Cy, not only the membership degree of ¢ belonging to the clus-
ter Cy, which is M, (¢), is as large as possible, but also M, (y) is as small as

possible for y € X,y ¢ Cy. In other words, the objects in the cluster Cy can be
distinguished by {¢, from the objects outside C to the maximal extent.

The fuzzy concept Cpou = Vi<t ky<tk; 4 (Sci, A Scy,) € EM describes the
boundary among the feasible clusters C = {Cy, Cy, ..., Ci}. Since pg, (c) pro-
duces the membership degree of each object in X belonging to the boundary {p,,,
hence it can be used to evaluate the clarity of the boundary among the clusters.
Thus the new fuzzy cluster validity index [, is defined as follows:

1 % ZCEUISkSICk“Cbou<C> IC]

I(X = .
o? ZCGUlgkgle Mo (c) X

(9.15)

Where Crora1 = Vi<k<; Ec, for I > 2. |C| is the number of the clusters, |X| is the
number of the objects. It is obvious that the lower the value of I, is, the clearer
and the better the clustering result under threshold o is. Thus the best clustering
result can be selected by looking at the value of 1.

9.2.2 Experimental Study of the Liang’s Algorithm

In [536], the authors proposed a cluster analysis method based on fuzzy equiva-
lence relation by the distance function between two trapezoidal fuzzy numbers. The
method comprises of 5 steps:
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e Express the original attributes in terms of predefined trapezoidal fuzzy numbers
and normalize the original attribute preference rating.

e Using the distance function between two trapezoidal fuzzy numbers to aggregate
the linguistic values to obtain the compatibility relation matrix.

e Find the fuzzy equivalence relation matrix based on the fuzzy compatibility rela-
tion matrix.

e Find all feasible clusters induced by the fuzzy equivalence relation matrix.

e Using a cluster validity index determine the best number of clusters.

By the application of Liang’s algorithm, we find that the different choices of the
trapezoidal fuzzy numbers and their distance functions can lead to different clus-
tering results. For example, two different selections of fuzzy numbers and distance
function are shown as follows:

Selection 1: “VL”: (0,0,0,0), “B.VL&L": (0,0,0.1,0.2), “L”: (0,0.2,0.2,0.2),
“B.L&M™: (0,0.2,0.4,0.5), “M™: (0,0.3,0.6,0.7), “B.M&H": (0.3,0.5,0.8,1),
“H”: (0.6,0.8,0.8,1), “B.H&VH": (0.6,0.8,0.9,1), “VH":(1,1,1,1), and p = 3
for the distance function d, (- , ).

Selection 2: “VL”: (0,0,0,0.2), “B.VL&L": (0,0,0.2,0.4), “L": (0,0.2,0.2,0.4
“B.L&M™:(0,0.2,0.5,0.7),“M™: (0.3,0.5,0.5,0.7), “B.M&H": (0.3,0.5,0.8, 1),
“H”: (0.6,0.8,0.8, 1), “B.H&VH": (0.6,0.8,1,1), “VH:(0.8,1,1,1), and p = 2
for the distance function d, (-, -). This selection is the same as Liang’s in [56].

)
)

Applying Liang’s algorithm to the same data as shown in Table[0.9] different results
from [36] are obtained by Selection 1. More details are shown in Table 0. 10|

Table 9.10 The clustering results for Selection 1

A interval Number of clusters L value clusters

(0.3788,0.3842) 2 0.3497 {c2,¢3},{c1,c4,¢5}
(0.3842,0.5308) 3 0.1925 {c2}, {e3}, {c1,ca,c5}
(0.5308,0.5543) 4* 0.0936 {c1}.{c2}, {3} {ca,c5}

Thus, the best fuzzy clustering result for Selection 1 is {c;}, {c2}, {c3}, {ca,c5}.
However, in [56] the best clustering result for Selection 2 is {c2}, {c3}, {c4} and
{61,6‘5}.

It is clear that the different selections of the fuzzy numbers and the distance
function for Liang’s algorithm may lead to inconsistent results. Furthermore the
method to select the suitable fuzzy numbers and distance function has not been
established yet. Thus it is very hard to objectively analyze management strategy
formed on a base of this data.

Applying the Liang’s algorithm with the same fuzzy numbers and the distance
function in [56] (i.e., Selection 2 ) to the evaluation results of 30 companies, we
obtain the following clustering result: C; = {cg}, Co = {c11}, C3 = {c2a}, C4 =
{c26}, Cs = {The rest of the objects} through the same cluster validity index L
given in [56]. However, it is difficult to explain and interpret the clustering result.
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9.2.3 Applications of the Improved Algorithm

In this section, we apply the improved algorithm to the example which has been
studied in [56]). The data set contains 30 objects and seven factors (attributes) shown
in Table[0.9]of Example[0.7] Table[0.9lists the data for 5 companies. For simplicity,
we first use the small data with 5 companies to illustrate the performance of the
proposed algorithm. Next we proceed with the entire data set.

9.2.3.1 Application of the Improved Algorithm to Data of 5 Companies

We continue to study the data shown in Example Let X = {c1,¢2,...,¢5},
M = {my,m\,...m7,ms}, & = my +m) + ...+ my +m. By (O.I1), we can get:
py(cr) = py(c2) = Uy (c3) = Up(ca) = Uy (cs) = 1.0.

STEP 1. Let £ = 0, for c1: lp, (¢1) = Mmy (1) = Hms(c1) = tm; (c1) = 1= gy (c1).
By ©.12), we have B, = {ma,mq,ms,m7}.

Since Wnymymsmy (€1) = 1 = Wy (c1), by and Remark 0.3] we know that
mpmgmsmy is the minimal element in ACOl = {my,mq,ms,m7,moyma, myms,moms,
m4m5,m4m7,m5m7,m2m4m5,m2m4m7,m4m5m7,m2m5m7,m2m4m5m7}. SO,

{e, = maymamsmy. In the same way we obtain the others:
0 _ / ! / / _ Lol ol ]
B., = {my,my,my,ms,my}, ¢, = mymymymsmy.
0 __ / _ /
B, = {mi,ma,m,mg,m7}, Coy = mymommems.
0 _ ! /A ol il )
B., = {my,my,ms}, G, = mymyms.
0 __ ! _ /
Be, = {m3,mg,m}, &es = mymgms.

STEP 2. The fuzzy relation matrix F and F2 are shown as follows.

1.00.20.20.2 0.6 1.00.20.20.4 0.6
1.00.20.202 1.00.2 0.2 0.2

F = 1.0020.2], F? = 1.0020.2 .
1.0 0.4 1.0 0.4
1 1.0

Since F2 = (F?)?, hence Q = (g;j) = F? can yield a partition tree with equiva-
lence classes. By Remark[9.3] the threshold o can be chosen as 0.2, 0.4, 0.6, 1.0.
STEP 3-4. When threshold o = 0.2, there is only one cluster:

C) ={ci1,¢2,¢3,¢4,¢5}, I =25.2000.
When threshold o = 0.4, we encounter the following three clusters:
Ci={c2}, o ={c3}, C3 ={c1,ca,05}, Ip.a = 2.6000.
When threshold oc = 0.6, there are four clusters shown as follows:

C] = {CQ}, C2 = {C3}, C3 = {C4}, C4 = {01,05}.
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The descriptions {¢,, i = 1,2,...5 of the clusters C; — Cs come in the form:

Ce, = &, = mmbmlmismly, §e, = &y = mymammemy,
Cey = Gy =mymymls, Ce, = Gy V Gy = mymamsmy + mymgmy,
Ios=1.9111.

When threshold oc = 1, there are five clusters:

C1 = {Cl}, C2 = {02}, C3 = {03}, C4 = {C4}, C5 = {Cs}.

This clustering result is invalid.

In virtue of the above facts, we know that I ¢ is the smallest of I, for all o €
{qij | 1<i,j<5}={0.2,0.4,0.6,1.0}. Thus the best clustering result is C; = {c2},
Cy ={c3},C3 ={ca}, C4 ={c1,cs}. The clustering results are the same as the result
given in [56]. Also, we can obtain the description of each cluster as follows:

The fuzzy description {¢, of Cluster Cy is mmymimism’; with the following in-
terpretation: “Core ability is strong but Organization management, Pricing, Finance
and Information technology are not strong .

The fuzzy description Ccz of Cluster C,, m; mzmgm6m7, states: “Core ability, Or-
ganization management, Different advantage and Information technology are strong
but Finance is not strong .

The fuzzy description ¢, of Cluster C3, mym/ym5, reads as follows: “Core ability,
Competitive forces and Finance are not strong ™.

The fuzzy description CC4 of Cluster Cy is mymgmsmy + mgmgm7 with the sematic
interpretation: “Organization management, Competitive force, Finance and Infor-
mation technology are strong “or “Pricing and Information technology are strong
but Different advantage is not strong”.

9.2.3.2 Evaluation Results of the 30 Companies via the Improved Algorithm

In what follows, we apply the proposed clustering algorithm to the data of the
30 companies [36] shown as Table [Z4] in the Appendix A in Chapter 7. Let
X ={c1,c2,...;c30t, M = {my,m),...,m7,mb }, O = my +my + ...+ m7+mb.

STEP 1. Let € = 0. We just show ¢y, c|3 as an example:

BBI = {my,ms}, Gy = myms.
BY . ={m\,m}, A2 = {m/,mj}. By considering method (9.14), we obtain

Y () =194333, Y, (c;)=18.600.
cj€X,j#13 ¢j€X,j#2

Therefore (., = my is selected as the best fuzzy description of the object 3.

STEP 2. The fuzzy relation matrix (F*)? = F* and Q = F*.
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STEP 3-4. When the value of the threshold o¢ = 0.5667, there are two clusters:
Ci = {c2,¢3,¢6,€8,€9,€10,C11,C13,C15,C17,C19, €20, C24,€27,€28,€29 }

C2 = {C],C47C57C77C12,C147C167C18,C2] 7C227C23,C257C267C30}.

The description ¢, of each cluster:

e, = mo+ m3 +mly + mlym§ + ms + me + my +my, §c, = my.
To.see7 = 2.1425.

When threshold oc = 0.6667, there are three clusters:

Ci={c7}, Gy ={c2,¢3,¢6,€8,€9,C10,C11,C13,C€15,C17,C19,€20, €24, €27, €28,€29 } 5
C3 = {c1,€4,C5,€12,C14,C16,C18,C21,€22,€23,€25, €26, C30 } -

The description {¢, of each cluster :

Ce, = mhmamis, §e, = my + m3 +m + mlyms +ms + me + mg +my,
CC3 = ni4. 10.6667 = 1.5999.

When threshold oo = 0.7333, there are five clusters:

C1 = {c7}, Gy = {c18}, C3 = {c9, 15,27},
Cy ={c2,¢3,¢6,€8,€10,C11,C13,C17,€19,€20,C24,C28,C29 },
Cs = {c1,¢4,¢5,C12,C14,C16,C21,€22,€23,€25,C26,C30 } -

The description {¢, of each cluster :

/ / / /
Ce, = mmamis, §o, = mymamy, Co, = m3 + me,
e, = my +mh+mlym +ms +mg +my, §og = my.
Io7333 = 1.6611.

When threshold oo = 0.7667, we obtain six clusters:

Ci ={c7}, Gy ={ci15}, C3 = {cig}, Cs = {co, 27},
Cs = {c2,¢3,¢6,€8,C10,C11,C13,C17,€19, €20, C24,C28,€29 },
Co = {c1,¢4,¢5,C12,C14,Cl16,C21,€22,€23,€25, €26, C30 }-

The description ¢, of each cluster is the following:

/ / / /
ccl = m3m4m5, CCZ = Mg, CC3 = m]m4m6’ CC4 = ms3,
/ !0 /
Gy = my + my + miyms 4 ms + mg +mq, Cc, = my.
Io.7667 = 1.5700.

Remark 9.6. For the above results, the clustering result obtained under o = 0.7667
is different from that under o« = 0.7333 by just one object c|5. From the original data
in [56]], we can observe that the data of c;5 is quite dissimilar to those of others. Thus
the difference of the clustering for ci5 may cause great differences in the values of
the invalidity index I.

All clustering results and associated values of [, for the threshold
o€ {qij | 1<ij <30} are shown in Table The smallest value of I,
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Table 9.11 The clustering results of the evaluation results of 30 companies

o 0.5667 0.6667 0.7333 0.7667 0.8 0.8333 0.8667 0.9 0.9333 0.9667
Num.of Cluster 2 3 5 6* 10 11 16 17 19 21
Iy 2.1425 1.5999 1.6611 1.5709 1.7994 1.7195 1.8078 1.7500 1.7337 1.7303

is 1.5709. Therefore, the “best” number of fuzzy clusters is six. Here each cluster
can be described as follows.

e The description of Cluster 1: The fuzzy description of cluster Cy, {¢, = mymam
states: “Competitive force is strong but Pricing and Finance are not strong”. It
is consistent with the experts’ intuitive description of Group 4 shown in [56] as
follows: “The character of this group is that there is not a particular strategy of
operation. The managers think that all of the strategic items are equally impor-
tant. The financial performance of this group is not successful in the airfreight
forwarder industry”.

e The description of Cluster 2: The fuzzy description of Cluster C», {¢, = mg
states: “Different advantage is strong ”. It is consistent with the experts’ intu-
itive description of Group 5 presented in [56] as follows: “Differential advantage
is the principal operating strategy for this group. The main differential strategy is
risk reduction for customers. Based on the research of Global Trade the safety of
cargo is the minimum requirement of customers. This group is focused on cargo
tracking and security of consignment. Using this strategy, a young company will
make the profit ny keep growing”.

e The description of Cluster 3: The fuzzy description of Cluster C3, {¢, = m|mamy
states: “Core ability and Different advantage are not strong but Competitive
forces is strong ™.

e The description of Cluster 4: The fuzzy description of Cluster C4, {c, = m3
states: “Pricing is strong ”. It is consistent with the experts’ intuitive descrip-
tion of Group 3 shown in [36]: “In this group, pricing is the main strategy. The
strategies of “Competitive weapon”and “Innovation/ development”are not im-
portant for them. Financial performance in this group is not perfect. Thus, we
can suggest that the strategy of price war is not a good policy in the Taiwan’s
airfreight market.”

o The description of Cluster 5: The fuzzy description of Cluster Cs, {c, = ma +
mly + mlymls + ms 4+ mg + my states: “Competitive forces and Finance are not
strong “or “Different advantage is not strong “or “Pricing is not strong “or
“Organization management is strong “or “Finance is strong "or “Information
technology is strong . It is consistent with the experts’ intuitive description of
Group 1 presented in [56]]: “Compared with other groups, the objects in group 1
pay more attention to each strategic item compared to the others. Especially, the
strategies of organization management and information technology are the most
important for them. Regarding the financial performance of group 1, we get the
trend of profit is on the downside. To judge the reason, we find that the main line
of the objects of group 1 is Japan and Korea. After Asia finance storm, the import



9.3 Feature Selection, Concept Categorization and Characteristic Description 381

cargo quantity of Japan and Korea area is withered. And it causes the financial
performance inferior to other groups”.

e The description of Cluster 6: The fuzzy description of Cluster Cs, {o, = my
states: “Competitive forces is strong”. It means that compared with other factors,
“Competitive forces “is the strongest. According to the companies of this clus-
ter in the original data, the factor “Core ability”, “Differential advantagement”are
also strong. This result does not conflict with the experts’ intuitive description
of Group 2 as shown in [56]]: “Many objects belong to group 2. We can judge
that the operation strategy of airfreight forwarders in Taiwan is learning mutu-
ally from the phenomenon. In this group, the main strategies are core ability and
differential advantage. Pricing and information technology are less important for
them”.

Remark 9.7. The expert’s intuition groups considered the respectable degree of air-
freight forwarder which could not be considered in our current study. This may be
the reason that the clustering result C3 does not fully coincide with experts’ intuition.

As the examples showed, the results of the improved algorithm are almost consistent
with the experts’ assessment. Compared with the Liang’s algorithm, our algorithm
is more transparent, understandable, and interpretable. It can be applied to the data
with the mixed features and linguistic descriptions. The results obtained so far indi-
cate that the proposed fuzzy clustering method are practical and useful.

9.3 Feature Selection, Concept Categorization and
Characteristic Description via AFS Theory

The AFS theory will be applied to study some new techniques of feature selection,
concept categorization and characteristic description; those problems are often en-
counter in machine learning, pattern recognition and data mining. These techniques
developed under the framework of AFS theory are simpler and more interpretable
than those supplied by the conventional methods. In order to evaluate the effective-
ness of the feature selection, the concept categorization and the characteristic de-
scription, these new techniques are applied to fuzzy clustering. Several benchmark
data sets are used for this purpose. Accuracy of clustering is comparable with or su-
perior to the results produced by the conventional algorithms such as FCM, k-means,
and some newer algorithms such as e.g., two-level SOM-based clustering etc.

In this section, for an AFS structure (M, 7,X) of some data, we always select the
weight function p : X — [0, 1], p(x) = 1 for any x € X. Then the set of coherence
membership functions {g(x) | & € EM} can be obtained by (3.24) presented in
Proposition[3.7] which is defined as follows.

pn () = sup !

) (9.16)
el |X|

Here AY(x) is calculated by @27). If 0 = 2%, for W € 2%, ./ (W) = |[W| (|W| is the
cardinal number of the set W, i.e., the number of elements in W) in Proposition[3.7]
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9.3.1 Feature Selection

In this section, we present a technique to select salient features by the similarities
among features and the entropy of the features in the framework of AFS theory.

9.3.1.1 Similarity and Entropy of Features

Let X = {xy,x2, -+, X, } be a set of samples and F = {1, f,-- , fs } be a set of the
features on X, x; = (Wi, Wi, -+ ,Wis) € R*, 1 <i<n, where w;; = f;(x;) is the value
of x; on the feature f; € F. (F,tr,X) is an AFS structure in which 7 is defined as
follows: for any x;,x; in X,

tr (xi,x)) = {f1f (i) = f(x)), f € F}. ©.17)

Definition 9.2. Let X = {x|,x2,...,x,} be a set of samples, F = {fi, f2,---, fs} be
a set of features. Let (F, 77, X) be an AFS structures defined as (9.17). For ¢, B € F,
the similarity between the features o, is defined as follows:

SI(OC,ﬂ) B ZXEX Hanp (x)

= 9.18
S ex Haryp (3) ©-18)

where the membership functions fiy,g(x) and teypg(x) are given by (©.16).

The similarity defined by (9.18) shows that the fuzzy similarity degree between the
features &, 8 € F, is determined by ti,,p(x) and Ueyp(x). The larger SI(a, B) is,
the higher similarity degree between the features ¢ and f3 is.

Definition 9.3. Let X = {x1,x2,...,x,} be a set of samples, F be a set of features.
The entropy E(f;) of a feature f; € F is defined as follows:

E(fj)=— ), pj(x)logapj(xi), (9.19)

»
i M=
L

where

Self)e ) Ji(x)
i1 fi ()
{fi} (i) = {x e X|fj(x) = f;(x)}-
Entropy characterizes the (im)purity of an arbitrary collection of examples. Here,

we just take into account entropy of a single feature. The selected features are the
ones coming with small values of entropies.

Pj(xi) = € [0’1]7

9.3.1.2 Selecting Features

The feature selection strategy we propose for selecting the salient ones involves two
stages: First, a fuzzy equivalence similarity matrix is established according to the
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similarity provided by Definition Next the features are clustered assuming a
certain value of threshold p. Second, the clusters in which the features have large
similarities will be maintained, and the cluster which has a single feature and the
feature exhibits large entropy will be discarded. The optimal clustering of the fea-
tures, i.e., the optimal threshold p, is determined by the feature selecting validation
index based on similarity and entropy of the features. The detailed scheme of
the feature selection is outlined as follows:

a. Establish a fuzzy equivalence similarity matrix G of features:

H = (yij)sxs,» Where y;j = SI(fi,f;), fi,fj € F. There exists an integer r

such that (H")?> = H" and G = H" is a fuzzy equivalence similarity matrix.
r

~
H =H-H-...-His the fuzzy matrix product of the r fuzzy matrix H (refer to
TheoremP.2), i.e., let H? = (0;}),0;; = max {min{yu,yi;}}-
<k<s

b. Determine the initial clusters U, Uy, ... ,UY:

The fuzzy equivalence matrix G = H” = (g;j) can yield a partition tree with
equivalence classes. If ¢g;; > o, then f;, f; are in the same cluster under the
threshold a € [0, 1]. The cluster which just has a single element will be dis-
carded, then we can obtain the cluster