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Preface 

In many imaging systems, under-sampling and aliasing occurs frequently leading 
to degradation of image quality. Due to the limited number of sensors available on 
the digital cameras, the quality of images captured is also limited. Factors such as 
optical or atmospheric blur and sensor noise can also contribute further to the deg-
radation of image quality. Super-Resolution is an image reconstruction technique 
that enhances a sequence of low-resolution images or video frames by increasing 
the spatial resolution of the images. Each of these low-resolution images contain 
only incomplete scene information and are geometrically warped, aliased, and un-
der-sampled. Super-resolution technique intelligently fuses the incomplete scene 
information from several consecutive low-resolution frames to reconstruct a high-
resolution representation of the original scene.  

In the last decade, with the advent of new technologies in both civil and mili-
tary domain, more computer vision applications are being developed with a  
demand for high-quality high-resolution images. In fact, the demand for higher-
resolution images is exponentially increasing and the camera manufacturing tech-
nology is unable to cope up due to cost efficiency and other practical reasons. 
Therefore, for an imaging system, super-resolution overcomes the limitation in 
terms of image quality by enhancing the spatial resolution to generate high-
resolution images of the original scene, without the need of any hardware en-
hancements. This is why most of the research into image resolution enhancement 
(or super-resolution) has been majorly directed towards developing techniques 
that deliver the highest possible fidelity of the reconstruction process. The compu-
tational efficiency issues and the feasibility of developing realistic applications 
based on super-resolution algorithms have attracted much less attention. 

In the field of image processing, it is a widely known fact that, super-resolution 
is an inverse problem which is also ill-conditioned, making the estimation process 
highly computationally expensive.  Also, the number of unknown variables to be 
estimated is equal to the number of pixels in the reconstructed high-resolution im-
age, which is of the order of hundreds of thousands. Clearly, the fidelity of the re-
construction has to be traded-off by performance. It is, thus, desirable to develop 
algorithms that maintain the proper balance between computational performance 
and the fidelity of the reconstruction. 

In this research, a novel and innovative, hybrid reconstruction scheme has been 
proposed for super-resolution reconstruction which addresses the issue of maintaining 
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an optimum balance between improving spatial resolution and keeping the computa-
tional time low. The proposed fast reconstruction scheme is referred to as Iterative-
Interpolation Super-Resolution (IISR). It is based on interpolation and subsequent 
iterative improvements of the reconstructed image to generate a high-resolution 
image from a sequence of geometrically warped, aliased and under-sampled, low-
resolution frames. A mathematical basis for the proposed scheme is also provided. 
The IISR technique utilizes a relatively small number of low-resolution images, 
as low as 10, to generate the high-resolution image and is relatively inexpensive 
computationally.  

The common feature of inverse problems is their sensitivity to even small 
perturbations of the data that may introduce significant errors in the reconstruc-
tion process. Due to this many existing super-resolution techniques are based on 
the optimization approach where a regularization term is added so as to stabilize 
the inverse problem and generate a unique solution. In this research, the optimi-
zation approach to super-resolution is re-visited. The estimation problem of su-
per-resolution is reformulated in terms of Tikhonov regularized optimization 
procedure and the conjugate gradient method is adopted for finding the mini-
mum of the resulting objective function. Also, the significance and influence of 
the regularization term on the accuracy of super-resolution image reconstruction 
is reinvestigated. An added benefit of this reinvestigation helps in comparing the 
performance, in terms of effectiveness and accuracy, of the IISR method with 
the best possible regularized optimization technique.   

It is also shown that by combining the IISR technique with the regularized  
optimization approach, the convergence rate of the reconstruction process in the 
optimization approach can be significantly improved. It is also validated that the 
proposed IISR reconstruction technique is accurate and the further improvement 
by the optimization procedure is relatively small, computationally expensive and 
therefore impractical. 

Image registration forms a significant intermediate process in achieving accu-
rate super- resolution from a sequence of aliased and under-sampled low-
resolution frames. Even though image registration is not the primary subject of 
this research, the significance and advantages of implementing a computation-
ally efficient and accurate hierarchical-based image registration technique is 
also discussed. 

Two major software frameworks have been developed based on the research 
presented in this research. Both softwares serve the purpose of comparative ex-
perimental tools but can also be used as standalone super-resolution image recon-
struction systems.   

The research is accompanied by experimental simulations and numerical results 
generated on synthetic and real imagery.  

Thanks to Dr. Noel Martin for his support during the course of research. We 
would like to thank University of South Australia and Australian Defence Sci-
ence and Technology Organisation for funding and supporting this project. 
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Chapter 1 
Introduction to Super-Resolution 

1   Intro ductio n to Super-Resolutio n 

1.1   Introduction 

In the last decade the world has seen an immense global advancement in 
technology, both in hardware and software. The industries took advantage of the 
advanced technology to produce electronic gadgets such as computers, mobile 
phones, PDAs and many more at affordable prices. The camera sensor 
manufacturing units also advanced in their manufacturing techniques to produce 
good quality high-resolution (HR) digital cameras. Although, HR digital cameras 
are available, many computer vision applications such as satellite imaging, target 
detection, medical imaging and many more still had a strong requisition for higher 
resolution imagery which very often exceeded the capabilities of these HR digital 
cameras. To cope up with the strong demand for higher-resolution imagery, these 
applications approached image-processing techniques for a solution to generate 
good quality HR imagery.  

Super-Resolution image reconstruction is a promising technique of digital 
imaging which attempts to reconstruct HR imagery by fusing the partial 
information contained within a number of under-sampled low-resolution (LR) 
images of that scene during the image reconstruction process. Super-resolution 
image reconstruction involves up-sampling of under-sampled images thereby 
filtering out distortions such as noise and blur. In comparison to various image 
enhancement techniques, super-resolution image reconstruction technique not only 
improves the quality of under-sampled, low-resolution images by increasing their 
spatial resolution but also attempts to filter out distortions. 

1.2   What Is Image Resolution? 

As per [1] optical resolution is a measure of the ability of a camera system, or a 
component of a camera system, to depict picture detail. On the other hand, image 
resolution is defined as the fineness of detail that can be clearly distinguished in an 
image. Both the definitions apply to digital and analogue camera systems and 
images. However, in this research, the term resolution will only relate to digital 
camera systems and digital images. There are two most common classifications of 
digital image resolution, namely – spatial and bit-depth.  

• Spatial resolution refers to the level of detail discernable in an image. 
• Bit-depth refers to the number of bits or 0's and 1's that can be used to 

specify the colour at each pixel of an image. 
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Spatial resolution essentially describes the total number of pixels in an image, 
horizontally and vertically. For example, a digital image 300 pixel (wide) x 300 
pixel (high) consists of a total of 90,000 pixels or is a 0.1 megapixel (MP) image. 
If this image is tripled, the dimensions will be 900 pixels (wide) x 900 pixels 
(high) with a total of 810,000 pixels or 0.8 MP. Clearly, the detail carrying 
capacity of an image is directly proportional to the number of pixels in an image. 
Higher the number of pixels, higher is the detail representation of the image. On 
the other hand, bit-depth describes the number of possible colours at each pixel. 
Bit-depth is also known as colour-depth. More the bits per pixel, greater are the 
colours at each pixel thereby increasing the colour details in the digital image. For 
example, a grayscale image carries 8-bits per pixel, which in turn means that a 
grayscale image can have 28 or 256 shades of gray. For colour images, if 8-bits per 
pixel per channel are used, then the colour digital image can have 28* 3 or 
16,777,216 different colours. This is also known as 24-bits per pixel. 

In this research, the word resolution refers to spatial resolution unless otherwise 
mentioned.  

1.3   Image Degradation Factors 

The acquired image usually represents the scene in an unsatisfactory manner. 
Since real imaging systems as well as imaging conditions are imperfect, an 
observed image represents only a degraded version of the original scene. These 
degradations in the images are caused due to various factors such as blur, noise 
and aliasing. Figure 1.1 shows an example of a corrupted image (left-panel) and 
the original scene (right-panel). Such distortions may get introduced into an 
imaging system due to the following reasons: 

• Motion between the camera sensor and the scene or subject. 
• Camera optics and lenses. 
• Atmosphere. 
• Insufficient sampling.  

Blur can be introduced into the image during the imaging process by factors 
such as motion of the scene, wrong focus, atmospheric turbulence and optical 
point spread function. To remove the effect of blurring on an image is known as 
de-blurring which is a well known image enhancement technique. If the imaging 
conditions at the time of acquiring an image are known, it is much easier to de-
blur the image accurately. Figure 1.2 shows an example of a blurred image (left-
panel) and the original scene (right-panel). 

Noise is a random background event and is certainly not a part of the ideal 
scene/signal and may be caused by a wide range of sources such as variations in 
the detector sensitivity, optical imperfections and environmental changes. 
Although many noise models exist in literature, we only consider the additive 
Gaussian white noise since it provides a good model for noise in most of the 
imaging systems. The noise is also assumed to be spatially uncorrelated with 
respect to the image, that is, there is no correlation between the image pixel values  
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Fig. 1.1 An example of noisy, blurred and under-sampled image (left-panel) of the original 
scene (right-panel) 

 

Fig. 1.2 An example of the blurred image (left-panel) of an original scene (right-panel) 

and the noise components. Figure 1.3 shows an example of a noise-corrupted 
image (left-panel) and the original scene (right-panel). 

Another factor affecting image resolution is due to the insufficient spatial 
sampling of the images. As per the Shannon-Nyquist Sampling theorem [2-4], the 
sampling frequency should be greater than twice the highest frequency of the input 
signal. If the sampling frequency is less than twice the highest frequency, then all 
frequency components higher than half the sampling frequency are reflected as 
lower frequencies in the reconstructed signal. This is referred to as under-sampling 
of images which occurs in many imaging sensors. Due to under-sampling, the 
high-frequency components overlap with the low-frequency components and get 
introduced into the reconstructed image/signal causing degradation of the image.  
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Fig. 1.3 An example of the noise-corrupted image (left-panel) of an original scene (right-
panel) 

 

Fig. 1.4 An example of an aliased, under-sampled image (left-panel) of an original scene 
(right-panel) 

Such degradation is known as aliasing which consequently causes partial loss of 
scene information. The aliasing effect may also give rise to artifacts thereby 
corrupting the reconstructed image. To reduce these artifacts, anti-aliasing 
techniques are implemented. Figure 1.4 shows an example of an aliased, under-
sampled image (left-panel) and the original scene (right-panel). The moiré patterns 
are easily visible in fig. 1.4. 

1.4   Significance of Super-Resolution 

As defined earlier, spatial resolution refers to the spacing of pixels in a digital 
image. Therefore, more the number of pixels, more detailed is the information 
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contained within the image. Considering this fact, with the help of advanced sensor 
technology, industries started manufacturing sensors with an increased number of 
pixels per unit area by decreasing the pixel size. But there is a limitation over the 
reduction of pixel size due to the shot-noise effect on the sensor. The optimum limit 
on the pixel size is 40 µm2 which the current technology has already reached. In 
certain defence computer vision applications, unmanned aerial vehicles (UAVs) are 
used for acquiring images. All UAVs have a payload carrying capacity and is 
usually half the UAVs take-off or launch weight. It is therefore not feasible to 
mount heavy HR cameras with image stabilization equipment to counteract the 
vibrations of UAVs. The ever demanding need for high-resolution imagery 
stimulated research and development of super-resolution techniques.  

The process of taking a sequence of under-sampled LR images of a particular 
scene and generating its high quality HR image is known as Super-Resolution 
image reconstruction. Due to the relative motion between the camera sensor and 
scene, each LR frame acquired, contains slightly different information about the 
scene. Super-resolution takes advantage of this distinct information contained in 
each under-sampled LR image and fuses the information from all the LR frames 
during the reconstruction process to generate a high quality HR image of the true 
scene.  

Figure 1.5 shows a simple illustration to explain the concept of super-resolution. 
As per the Nyquist theorem, a signal can be perfectly reconstructed if it is sampled 
at a frequency twice the highest frequency of the input signal. Figure 1.5(a) 
represents a scene captured by a camera with the coloured dots representing the 
sampled points. By shifting the camera, we acquire three more frames shown by 
fig. 1.5(b)-to-(d). Each of the four frames contains slightly different information. 
These frames when fused together generate an image with higher-resolution 
containing information from all the four frames. This is super-resolution in its 
simplest form. The images are assumed to be band-limited. Super-resolution is a 
well-known inverse problem, the solution of which is highly unstable; the process 
is ill-conditioned and highly computationally expensive. 

To extract complete information from multiple LR frames, it is very crucial to 
detect the shifts (in a global sense) between the LR frames to align them 
appropriately and accurately. This pre-processing step is known as Image 
Registration. It is the process of matching two or more images taken at different 
times, from different viewpoints and/or by different sensors. A mis-registration of 
frames can cause loss of important information which is why registration is very 
crucial for generating SR images. Registration is a huge research domain and has 
its use in many applications such as medical imaging, remote sensing, automatic 
target detection and many more. 

1.5   Applications of Super-Resolution 

The field of super-resolution has a vast area of application. Although the concept 
of super-resolution remains the same, the techniques of achieving HR imagery 
may or may not be the same for each and every application. This is because in 
certain applications such as real time video surveillance or target detection,  
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Fig. 1.5 A very simple illustration to explain the concept of super-resolution.  (a)-to-(d) – 
Images acquired by shifting the camera. The coloured dots represent sample points. (e) By 
fusing the information contained within (a), (b), (c) and (d), we achieve a perfectly 
reconstructed high-resolution image. 
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computational time is of great importance and hence requires a super-resolution 
technique with high accuracy and low computational cost. On the other hand, for 
certain applications such as astronomical imaging or text recognition, computational 
time is not a constraint and therefore such applications can implement super-
resolution techniques with high accuracy and a higher computational cost. 

To name a few applications of super-resolution both in civilian and military 
domain: 

• Medical Imaging. 
• Remote Sensing. 
• Target Detection and Recognition. 
• Radar Imaging. 
• Forensic Science. 
• Surveillance Systems.  

1.6   Research Outline 

In this research, a novel approach to super-resolution image reconstruction is 
proposed. The problem of super-resolution is treated as an inverse problem, where 
we assume that LR frames are degraded versions of a HR image. In chapter 2, a 
review on various super-resolution techniques proposed in literature is presented 
and the research problem is defined.  

In chapter 3, we present the theory for the proposed novel and hybrid recon-
struction scheme, Iterative-Interpolation Super-Resolution, for the restoration of 
high-resolution images from a sequence of geometrically warped, aliased and 
under-sampled LR frames. Interpolation techniques are used to produce an initial 
estimate of the high-resolution image and then utilizing an iterative approach, the 
final approximation of the high-resolution image is produced. The reconstruction 
technique successfully handles the under-determined problem where only a 
relatively small number, as low as 10, of LR frames are available for accurate 
reconstruction for magnification factors as large as 20. Extensive analysis and 
high-resolution image results are presented to illustrate the success and accuracy 
of the proposed super-resolution image reconstruction scheme. Since simple 
matrix-vector operations are involved, the IISR system is highly computationally 
efficient making it suitable in programmable hardware for real-world applications. 

In chapter 4, the problem of super-resolution is reformulated in terms of 
Tikhonov regularization optimization problem. The objective function is then 
minimized using an iterative conjugate gradient technique to produce the high-
resolution imagery. Several forms of the regularization terms along with their 
effects on the reconstructed high-resolution imagery studied. Also, the full-
solution of the proposed reconstruction scheme, described in chapter 3, is 
compared with the one produced using Tikhonov regularization to measure and 
evaluate the robustness and accuracy of reconstruction of the IISR scheme. Since 
optimization forms the basis for a majority of the super-resolution techniques, the  
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comparison gives a general indication of performance of the IISR scheme over the 
optimization-based ones. Computer experiments and analytical data are presented. 

In chapter 5, the problem of image registration is addressed which is a signifi-
cantly critical pre-processing step in any super-resolution image reconstruction 
technique. Based on [5], affine motion model is considered and the motion 
parameters are estimated between the rotated and translationally shifted, aliased, 
under-sampled low-resolution frames. The registration technique is highly 
efficient due to its hierarchical architecture and the coarse-to-fine strategy. 
Computer experiments and analytical data are presented to illustrate the effective-
ness and accuracy of the registration technique. 

In chapter 6, based on the materials presented in this research, two professional 
softwares have been developed. The softwares were built using MATLAB, Image 
Processing Toolbox and TOMLAB (for optimization). The softwares were made 
completely modular to make them highly flexible. For a better explanation of the 
softwares, block diagrams and brief description of each module are also provided.  

Finally, chapter 7 concludes this research and some ideas for future research are 
provided. 
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Chapter 2 
Overview of Super-Resolution Techniques 

2   Overview of Super-Resolution Techniques 

2.1   Introduction  

In the last two decades, extensive literature [6-10] has been produced on the 
research of super-resolution image reconstruction. The research has witnessed the 
introduction of many techniques in order to achieve high-resolution images from a 
sequence of geometrically warped, blurred, noisy, and under-sampled low-
resolution images. Each of these techniques is either an extension of some 
previous methodologies or differs from the other techniques in their assumptions 
of the observation model or the type of reconstruction method applied for 
achieving the high-resolution images. On a broader aspect, we divide the various 
super-resolution techniques depending upon the domain (spatial or frequency) 
they are based on.  

2.2   Frequency Domain – Based Approach to SR  

Tsai and Huang [11] proposed the frequency domain approach for solving the 
problem of super-resolution image reconstruction in 1984. The frequency domain 
approach is based on an assumption that the original high-resolution image is 
band-limited and exploits the translational property of the Fourier Transform. It 
makes use of the aliasing relationship between the Continuous Fourier Transform 
(CFT) of the original real scene and the Discrete Fourier Transform (DFT) of the 
observed low-resolution images. In their paper, the sequence of low-resolution 
frames is assumed to be free from distortions such as blur or noise.  

Let f(x, y) be a continuous high-resolution image and fk(x, y), where k = 1,  
2, …, p, be a set of p translational shifted versions of f(x, y). Thus, considering 
arbitrary shifts δxk and δyk of f(x, y) along the x and y coordinates respectively [12],  

( , ) ( , )k xk ykf x y f x yδ δ= + +   for k = 1,2…p.   (2.1) 

The shifted image fk(x, y) was uniformly sampled using sampling periods T1 
and T2 to generate the observed low resolution images,  

1 2( , ) ( , )k xk ykf i j f iT jTδ δ= + + . 
 (2.2) 
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Using the shifting property of CFT, the CFT for fk(x, y), is given as: 

2 ( )( , ) ( , )xk ykj u v

kF u v e F u vπ δ δ+= . 
(2.3)

Using the aliasing relationship and bandlimited constraint, 

| ( , ) | 0, | | ,| |x x y yF u v for u L w v L w= ≥ ≥ , (2.4)

the relationship between the CFT of the high-resolution image and the DFT of the 
kth observed low-resolution image can be expressed as, 

11

1 2 1 2

1 2 2
( , ) ,

yx

x y

LL

k k x y
i L l L

m n
F m n F iw lw

TT MT NT

π π−−

=− =−

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑  for k = 1,2…p, (2.5)

where 12 /xw Tπ=  and 22 /yw Tπ= . By using lexicographic ordering of (2.5), 

we get, 

b AX= , (2.6)

where, b is a column vector with the kth element of  the DFT coefficients of Fk(m,n), 
X is a column vector with the samples of the unknown CFT of  f(x, y) and A is a 
matrix which relates the DFT of observed low-resolution images to the samples of 
the continuous high-resolution image. Thus, the reconstruction of the high-resolution 
image X requires calculating the DFT’s of the observed low-resolution images, 
estimate the matrix A and solve eq. (2.6) which is an inverse problem.  

An extension of [11] was proposed by Kim et al. [12] in which they introduced 
a weighted recursive least square algorithm based on the aliasing relationship 
between the low-resolution images and high-resolution image, for reconstructing 
Super-Resolution image from available noisy under-sampled images. The 
algorithm combines filtering and reconstruction. The algorithm considered only 
noise and not blur. The idea was further developed by Kim and Su [13] where they 
considered blur and noise together as distortions in the observed low-resolution 
images. Also, to stabilize the ill-conditioned nature of the inverse problem of 
super-resolution, the recursive algorithm of [12] was refined to include iterative 
update of the regularization term. 

Frequency – based techniques for estimating high-resolution images are simple 
to implement and directly addresses removal of aliasing artifacts. They have very 
low computational complexity, thereby making them highly capable of parallel 
implementation. Although the technique has the applicability to real-time 
applications, it is confined to only global translational motion and has limited 
ability to apply spatial domain a priori knowledge in the regularization term. 

2.3   Spatial Domain – Based Approach to SR  

Spatial domain techniques are the most popular ones developed for super-
resolution. The popularity is due to the fact that the motion is not limited to 
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translational shifts only and thus a more general, global or non-global motion can 
also be incorporated and dealt with.  

2.3.1   The Model 

The classic model of super-resolution in the spatial domain assumes that a 
sequence of N low-resolution images represent different snapshots of the same 
scene. The real scene to be estimated is represented by a single high-resolution 
reference image X of size (P by P). Each LR frame, b1, b2,….bN, is a noisy, down-
sampled version of the reference image that is subjected to various imaging 
conditions such as optical, sensor and atmospheric blur, motion effects, and 
geometric warping. The size of each LR frame is (M by M) and M < P. It is 
convenient to represent the observation model in matrix notation:  

1 1 1 1 1 1 1

N N N N N N N

b D B W e A e

X X

b D B W e A e

⋅ ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (2.7)

where, D represents the down-sampling matrix of size (M2 by P2), B is the blur 
matrix of size (P2 by P2) and W is the matrix representing geometric warping of 
size (P2 by P2). By grouping and rewriting eq. (2.7), the model is given as: 

[ ] 1,2
, k k k k for k N

b AX e A D B W
=

= + = ⋅ ⋅
… . (2.8)

In eq. (2.8), linear operator A (size - M2 by P2), represents sub-sampling, motion 
compensation and all the other imaging factors, the LR frames are given by b 
(size - M2 by 1) and the additive Gaussian noise is represented by e (size - M2 by 
1). The images are represented in eq. (2.8) as vectors, shown by an underscore, 
and are ordered column-wise lexicographically.  

2.3.2   Iterative Back-Projection Techniques 

Super-resolution of monochrome and colour low resolution image sequences was 
considered by Irani and Peleg [14]. They derived an iterative back-projection 
algorithm based on computer aided tomography. The algorithm starts with an 
initial guess ( X0 ) for the output high-resolution image and the imaging process 
(A) is simulated to generate low-resolution images (bsim) based on the initial guess. 
These simulated low-resolution images are then compared with the observed ones 
(b) and the error generated between them is back-projected onto the initial guess 
via back-projection operator (Abp), thereby minimizing the error iteratively.  

1 0 ( )bp simX X A b b= + − . (2.9)

The algorithm considers translational and rotational motion but the authors 
claim that the same concept can be applied to other motions also. They considered 
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multiple motion analysis in [15] including occlusion and transparency. The 
algorithm successfully solves the issue of blur and noise, however due to the ill-
posed nature of super-resolution, the technique is unable to generate a unique 
solution.  

2.3.3   Optimization Techniques 

The problem of estimating a high-resolution image from a sequence of low-
resolution images is an inverse problem which is highly ill-conditioned. To 
stabilize this ill-posed nature, Regularization term is included. The problem of 
super-resolution, shown in eq. (2.8), is then solved, in the least-squares sense, by 
minimization of the error τ along with the addition of the regularization term. The 
modified equation of (2.8) is given as: 

[ ] [ ]2 2

1

N

k k
k

b A X Q Xτ λ
=

= − +∑ . (2.10)

In the above equation, Q is the regularization or stabilization matrix and λ > 0 is 
the regularization parameter. Although there is no unique procedure for 
constructing the regularization term, it is usually chosen to incorporate a priori 
knowledge of the real high-resolution scene, such as the degree of smoothness. 

In the case of Forward Looking Infrared (FLIR), images are spatially under-
sampled and are degraded due to aliasing effect. Alam et al. [6] used weighted-
nearest-neighbor and Weiner filter for estimating high-resolution images from 
FLIR images. An extension of this algorithm was proposed in [16] which 
considered a more general motion, translational and rotational. To refine it further, 
they introduced a simple regularization term into their cost function that enforced 
the smoothness of the final solution. They used steepest descent and conjugate-
gradient techniques for minimization of the error between the simulated low-
resolution images and the observed ones. Alam et al. [17] proposed a more efficient 
real time applicable registration and high-resolution reconstruction technique using 
multiple random translational shifted frames. They used weighted-nearest-neighbor 
and Weiner filter for estimating the high-resolution images.  

2.3.4   Bayesian Techniques 

The Bayesian techniques are based on the Bayes’ Theorem and treat the problem 
of estimating the high-resolution image as a statistical estimation problem. These 
techniques provide a convenient way to include a priori knowledge as constraints 
to stabilize the ill-posed nature of super-resolution image reconstruction.  

The classic model of super-resolution defined in eq. (2.8) can be rewritten as: 

b AX e= + .               (2.11) 

The Maximum A-Posteriori (MAP) estimator for the high-resolution image 
maximizes the a-posteriori probability P{X | b},  
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ˆ arg max { | }MAP XX P X b= .                   (2.12) 

Now, applying the Bayes’ theorem to eq. (2.12),  

{ | } { }ˆ arg max
{ }MAP X

P b X P X
X

P b

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.             (2.13) 

Taking the logarithmic function,  

[ ]ˆ arg max log { | } log { }MAP XX P b X P X= + . (2.14)

In eq. (2.14), on the right-hand side of the equation, the term log P{X | b}, is 
known as the log likelihood function and the term log P{X} is referred to as the 
log of the a priori image model. The MAP estimation model provides the ability 
to include a priori knowledge and thus, effectively regularizes the ill-conditioned 
nature of super-resolution reconstruction. 

A MAP framework for estimating the high-resolution scene was proposed in 
[18, 19]. In [18], the regularization parameter was fixed and gradient descent was 
the method chosen for minimization purpose. However, in [19], an iterative update 
of the regularization parameter was proposed which does not depend upon any a 
priori information but updates itself with the enhanced image generated from their 
iterative gradient reconstruction process.  

Another Bayesian technique used in super-resolution reconstruction is the 
Maximum-Likelihood (ML) technique. ML is a special extension of the MAP 
framework without the priori term. In [20, 21], ML technique was proposed for 
the estimation of high-resolution images solved by Expectation-Maximization 
(EM) algorithm. In [20], they combined the process of estimating the sub-pixel 
shifts between the low-resolution images and restoring the images from 
degradations such as noise and blur. Later, in [21], the above two processes were 
combined with the reconstruction of the high-resolution image. The Bayesian 
techniques offer a robust environment for modelling noise and also provide the 
ability to include a priori knowledge thereby stabilizing the ill-conditioned nature 
of super-resolution. Due to the advantage of inclusion of prior information, MAP 
framework is usually preferred over ML. 

2.3.5   Projection onto Convex Set (POCS) Technique 

The method of Projection onto Convex Sets, popularly known as POCS was 
introduced by [22, 23] in 1982. In [24, 25], Stark explains the general technique 
for applying POCS in the field of image restoration. The concept of POCS 
applied to the problem of super-resolution was first introduced in [26]. According 
to the method of POCS for super-resolution reconstruction, the space of 
estimated high-resolution solutions is restricted by a set of constraints (closed 
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convex sets) which characterize desirable properties, such as fidelity to data, 
smoothness, sharpness etc., to be consistent in the final solution. For each set of 
convex constraints Ci, a projection operator Ti is defined. The problem is then 
reduced to iteratively locate, given a point in the high-resolution image space, the 
closest solution which intersects with all the given convex constraints, Ci. The 
convergence can be given as:  

1

1
1 2 1 0,1,2.........

n n
i

n n
m m for n

X T X

X T T T T X

+

+
− =

=

⇒ =   .          
(2.15) 

Recently POCS has been used in improving resolution from multi-camera 
surveillance imaging [27]. The method of POCS is simple and allows convenient 
inclusion of a priori information but has a very high computational cost and a 
slow convergence rate which limits its practical applicability. Also, the final 
solution is not unique and highly depends upon the initial guess.  

2.3.6   Preconditioned Techniques in Optimization 

The problem of super-resolution is an inverse problem and the matrix A (eq. 2.8) 
contains very small singular values which are either zero (due to round off error) or 
approaching zero. This characteristic of matrix A makes it singular in nature and 
highly ill-conditioned. Due to this, the solution is very sensitive and can vary 
tremendously in an arbitrary manner with very small changes in the data. Thus, to 
make the solution unique and stable, another term is added to eq. (2.8) known as the 
Regularization term as shown in eq. (2.10). Most of the inverse problems (such as 
super-resolution) are ill-posed and the solution is tremendously sensitive to the data. 
This also leads to the problem of slow convergence and high computational load. 

In general, preconditioners are approximate inverses which convert the ill-
conditioned matrices, such as matrix A, to a well-behaved one. Introducing 
preconditioners in an ill-posed problem removes the need for employing 
regularization techniques for stabilizing the solution. Essentially, by multiplying a 
preconditioner, say M with matrix A, the condition number of this product, M-1A 
is smaller than that of matrix A alone. Such preconditioner not only makes an ill-
conditioned system of equations to a well-behaved one but also increases the rate 
of convergence and decreases the computational load.   

In [28, 29], preconditioning of conjugate gradient using efficient block-
circulant preconditioners was proposed. As per the authors, preconditioning is a 
technique used to transform the original system into one with the same solution, 
which can be solved by the iterative solver more efficiently and quickly. The 
unconditioned system starting from ground zero, takes a longer time to converge 
(due to the high computational cost involved) as compared to a preconditioned 
system. FFT is employed for computing the preconditioners which thereby 
reduces the overall computational time of the system. Preconditioning certainly 
provides a promising approach for the use of super-resolution in real-time 
environment.  
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2.3.7   Other SR Techniques 

2.3.7.1   Hybrid (ML + POCS) Technique 

In [7], a hybrid algorithm using ML and POCS was proposed for estimating a 
high-resolution image from multiple blurred, noisy, under-sampled low-resolution 
images. The hybrid technique combined the benefits of the Bayesian and the set 
theoretic technique. With the help of POCS, all the a priori knowledge could be 
utilized beneficially and a single optimal solution could be reached. 

2.3.7.2   Adaptive Filtering Technique 

Adaptive filtering approach applied to the time axis for super-resolution 
reconstruction was introduced in [30]. The authors proposed a few algorithms 
based on least squares - recursive least squares (RLS) and pseudo-RLS. For 
estimating the high-resolution image both steepest descent (SD) and normalized 
steepest descent (NSD) were applied. According to the authors, their approach 
allows treating linear time and space variant blurring and general motion. In their 
further research, the authors used Kalman filtering approach [31, 32] for solving 
the problem of super-resolution. In [32] they re-derived R-SD and R-LMS as 
approximations of the Kalman filter. The algorithms were built with the 
assumption that the information regarding the motion between the images and the 
blur operators is known which otherwise in reality would need to be estimated to 
use these algorithms. This assumption is very critical for the performance of the 
algorithms and significantly depends on it. The Kalman filter approach is 
promising but is still in an experimental state as its computational cost is 
extremely high. 

2.3.7.3   Learning-Based Techniques 

Even though a major class of super-resolution techniques is reconstruction-based, 
in recent years, a lot of interest has grown towards learning-based techniques. This 
class of super-resolution technique was initially introduced in [33-35]. This 
technique generates high-resolution images from one or more low-resolution 
frames by learning from a collection of training images or strong image priors 
learned from data before. These training images are scenes of either the same or 
different types. Freeman et al. proposed a learning-based super-resolution 
technique, known as Vision by Image/Scene TrAining (VISTA), in [33] for low-
level vision problems. The learning scheme is based on the Markov network. In 
[35], Freeman et al. proposed an example-based learning technique which used the 
Markov network to model the relationships between the high- and low- resolution 
images, and between neighbouring high-resolution patches. In [34], the authors 
proposed a learning-based super-resolution technique for human faces or text and 
termed it as face hallucination or recogstruction. Using a face database, the 
technique learns the corresponding relationship between the low-resolution frames 
of human faces and their known high-resolution frames. It is this learned 
information which is later utilized for the reconstruction of high-resolution images 
from low-resolution images of human faces.  
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Inspired by the recent manifold learning methods, Chang et al. proposed a 
single-frame super-resolution technique in [36], based on Locally Linear 
Embedding (LLE). The technique assumes that the image patches in both the low- 
and high- resolution frames form manifolds with similar geometry in two distinct 
spaces. The technique allows the usage of multiple training samples to contribute 
simultaneously for the generation of each image patch in the high-resolution 
image. Due to this unique quality, the technique proposed in [36] requires fewer 
training samples as compared to other learning-based techniques. In [37], Qiao et 
al. proposed a blind single-frame super-resolution technique which is combined 
with shadow removal in a single operation. To eliminate the lighting effects of the 
image, the authors utilize logarithmic-wavelet transform for constructing a 
manifold structure. The technique is claimed to be robust to quantization errors 
and less sensitive to the training sets. The performance of learning-based super-
resolution techniques depends on the accuracy of matching between the input low-
resolution frame and the training samples. Despite this fact, the popularity of 
learning-based techniques is bound to increase since they can successfully achieve 
super-resolution utilizing as low as one low-resolution frame. 

2.4   Research Problem  

An imaging system is only able to capture a true or natural scene with only finite 
levels of resolution as compared to the true or natural scene which has infinite 
levels of resolution. There are two solutions that can be implemented to increase 
the resolution of an imaging system - hardware or software. The best solution is 
the hardware improvement of the imaging system to achieve higher resolution. 
However, it is not always feasible to achieve higher resolution by hardware 
enhancement due to practical reasons. Therefore, in such a scenario, it is feasible 
to employ an intelligent software solution to generate higher resolution than what 
is captured by the imaging system. One such software solution is super-resolution 
image reconstruction. 

Super-resolution image reconstruction refers to image processing techniques 
that attempts to reconstruct high quality, high-resolution images by utilising 
incomplete scene information contained in a sequence of geometrically warped, 
aliased, and under-sampled low-resolution images. This estimation of high-
resolution image is also referred to as an inverse problem.  

A common feature of such inverse problems is their sensitivity to even small 
perturbations of the data that may introduce significant errors in the reconstruction 
process. This makes the process ill-conditioned and intrinsically unstable. Because 
of this feature, most of the research on super-resolution has been directed towards 
increasing the robustness and the fidelity of the reconstruction process. Much less 
attention has been devoted to more practical issues of computational efficiency 
and real-time applicability of super-resolution. Yet, super-resolution reconstruc-
tion is a very computationally intensive process that has to deal with big data sets 
and inherent instabilities. As a result of this, many of the developed techniques are 
not suitable for practical applications that require real-time or even reasonably fast 
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processing. It is, thus, desirable to develop algorithms that maintain a proper 
balance between computational performance and the fidelity of the reconstruction. 

Therefore in this study, the motivation for research is to explore possible new 
approaches for a computationally efficient yet fairly accurate super-resolution 
image reconstruction process to generate a high-resolution image. Also, super-
resolution being an inverse and ill-conditioned problem, the optimization based 
technique for super-resolution is reinvestigated and the significant influence of the 
regularization term over the fidelity of reconstruction is studied.  

Image registration is a critical pre-processing step in image super-resolution. 
Even though, it is not the primary aim of this research, we address the issue for 
estimating the relative motion parameters between rotated and translationally 
shifted low-resolution images. 
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Chapter 3 
Iterative-Interpolation Super-Resolution (IISR) 

 

3.1   Image Interpolation 

In the Oxford dictionary, the word interpolation has the meaning - "to insert (an 
intermediate term) into a series by estimating or calculating it from surrounding 
known values". In the digital age, image interpolation refers to the technique of 
recovering a continuous signal by estimating image data from a set of discrete 
image data samples. It links the continuous and the discrete domains. Image 
interpolation forms a fundamental base in image processing and is the heart of 
many computer vision applications such as medical imaging, target detection and 
recognition, and astronomical imaging. Almost every image processing software 
implements some interpolation technique for transformations, rotations and many 
other manipulations performed on an image. It is very important that the 
interpolation techniques have a very low computational cost in terms of both, time 
and memory utilization since they are usually implemented at some intermediate 
step in a system. At the same time, it is necessary for the technique to yield good 
and accurate results, or else it could jeopardize the final solution. For example, in 
the field of medical imaging, computed tomography (CT) or computed axial 
tomography (CAT) and magnetic resonance imaging (MRI) scan employ 
interpolation techniques during the registration process, a slight error in the 
interpolated data could cause mis-registration thereby significantly affecting the 
accuracy of reconstruction of the final image which may lead to wrong diagnosis 
of a patient. It is therefore very important to choose a correct type of interpolation 
technique, depending upon the nature of its application, which provides the best 
trade-off between accuracy and computational cost. 

As per the Shannon-Nyquist sampling theorem [2-4, 38, 39], a continuous 
signal (band-limited) can be completely recovered from its samples, if the 
sampling frequency is twice the highest frequency (Nyquist frequency) in the 
original signal. For a 1D case, let f(x) be the continuous signal to be reconstructed 
from its samples fk(m), where k = 1, 2, …, p. The interpolation process in terms of 
convolution in the spatial domain can then be given as, 

( ) ( )* ( )kf x f m h x=   for k = 1,2…p.  (3.1) 

where h(x) is the interpolation or reconstruction kernel.  
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In order for the interpolation technique to reconstruct the continuous signal 
from its discrete data samples, the kernel should be, 

• Symmetric  

( ) ( )h x h x= − . (3.2)

• Zero for all non-zero integers and one if its argument is zero. This rule 
ensures that the interpolation coefficients become the sampled data points. 

1, 0
( )

0, 0

if x
h x

if x

=⎧
= ⎨ ≠⎩

. (3.3)

• Separable in order to reduce computational cost. For example, a 2D 
interpolation kernel is given by h(x,y), then they are separable as: 

( , ) ( ) ( )h x y h x h y= i . (3.4) 

Therefore, using eq. (3.4) for 2D, eq. (3.1) can be rewritten as: 

( , ) ( , )* ( , ) 1,2....

( ( ( , )* ( ) )* ( ) )
k

k x y

f x y f m n h x y k p

f m n h x h y

= → =
= , 

 
(3.5) 

where * *x yand denotes convolution in x and y direction respectively.  

It is a fact that the type, size and shape of the kernel chosen for interpolation are 
major factors contributing to the reconstruction quality of the final image or 
signal. Generally, the size of the interpolation kernel is very crucial since it 
determines the computational cost of the system.  

3.2   Interpolation Convolution Kernels 

In this section we describe some of the most well-known interpolation techniques 
that can be utilized as convolution kernels. 

3.2.1   Linear Interpolation 

This is one of the most popular interpolation techniques. Due to the low-level 
complexity of this technique it has gained a lot of popularity. The general 
expression is given as: 

1 0 1
( )

0

x x
f x

elsewhere

⎧ − → ≤ <
= ⎨ →⎩

 . 

 
(3.6) 
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In 2D, this interpolation technique is known as Bilinear. This technique cuts-off 
all the high-frequencies. The frequency response for linear interpolation kernel is 
shown in fig. 3.1(e). 

3.2.2   Nearest - Neighbor Interpolation 

Nearest-neighbor technique simply uses the value from the nearest pixel. In terms 
of a convolution kernel this is a rectangular function, with width of one pixel. The 
general expression is given as 

1 0.5 0.5
( )

0

x
f x

elsewhere

⎧ → − ≤ <
= ⎨ →⎩

 . 

 
(3.7) 

This technique causes aliasing and blurring effects in the interpolated image. 
The technique is very simple and easy to implement but at the cost of severe loss 
of quality. The frequency response for nearest-neighbor interpolation kernel is 
shown in fig. 3.1(f). 

3.2.3   Sinc Interpolation 

This technique uses the Sinc function. The name Sinc comes from “Sine Cardinal”. 
The normalized Sinc function is written as: 

( )
1 0

( )
/( ) 0

x
Sinc x

Sin x x xπ π
→ =⎧

= ⎨ → ≠⎩
 . 

 
(3.8) 

The Sinc function is also known as the ideal reconstruction filter. The function is 
symmetric, Sinc(x) = Sinc (-x). Also, the Sinc function is zero for all integer 
values of its argument except for zero. Since the Sinc filter is spatially unlimited 
and has an infinite impulse response, the function is impracticable. To solve this 
problem, the Sinc function can be multiplied by a function which is non-zero in a 
finite range. This function is referred to as the Window Function and the Sinc is 
then known as Windowed Sinc Function.  

In this research, Lanczos window of degree 2 and 3 are utilized. Lanczos is the 
central lobe of the scaled Sinc function. It is given by: 

( / ) /( / ) | |
( )

0

Sin x d x d x d
f x

else

π π → <⎧
= ⎨ →⎩

 , 

  
(3.9) 

where, d is the degree of Lanczos window. The frequency responses for Lanczos 
window interpolation kernel (degree 2 and 3) are shown in fig. 3.1(a-b), 
respectively. 
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3.2.4   Cubic-Spline Interpolation 

The cubic interpolation technique is composed of the piecewise cubic polynomi-
als defined on (-2,-1), (-1, 0), (0, 1) and (1, 2). Beyond (-2, 2), the output of the 
cubic interpolation kernel is zero. The cubic interpolation is sometimes also 
referred to as the Keys function. The general expression for this interpolation 
technique is, 

3 2

3 2

( 2) ( 3) 1 0 1

( ) ( ) 5 8 4 1 2

0

a x a x x

f x a x a x a x a x

elsewhere

⎧ + − + + → < <
⎪⎪= − + − → < <⎨
⎪ →⎪⎩

 . (3.10)

The above expression depends upon the choice of “a”. The best choice for ‘a’ 
is “-0.5”, which forms the third-degree cubic kernel [40]. The kernel is zero for all 
integer values of its argument and is one at zero. The kernel has finite support and 
is symmetric. This cubic kernel also attracts more attention because of its strictly 
positive nature [41]. In various applications such as image processing, the pixels 
carry the image intensities which should always be non-negative. The cubic kernel 
always being strictly positive ensures that the interpolated image is positive. The 
frequency responses for cubic-spline interpolation kernel (order 4 and 6) are 
shown in fig. 3.1(c-d), respectively. 

3.2.5   Gaussian Interpolation 

In 1996, a new approach was developed for the generation of interpolation kernels 
[42]. It exploited the Gaussian function in both the signal and the Fourier space. 
As per the author, the interpolation kernel has to satisfy 3 main goals: 

• Locally compact in signal space. 
• Locally compact in Fourier space. 
• Easy mathematical manipulation. 

A unit area Gaussian Kernel with zero mean and variance β  is given by (3.11), 

2 2
0

1
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2
xG x e ββ

πβ
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The successive derivatives are:  
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(3.12) 
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Fig. 3.1 Frequency response of interpolation kernels - (a) Sinc Lanczos: degree 2, (b) Sinc 
Lanczos: degree 3, (c) Cubic Polynomial: order 4, (d) Cubic Polynomial: order 6, (e) Linear, 
(f) Nearest Neighbor, (g) Gaussian: order 2, (h) Gaussian: order 6 and (i) Gaussian: order 10.  
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The expressions for the 2nd, 6th and 10th order Gaussian kernel are given by: 
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(3.13) 

where 2 6 100.464, 0.866 & 1.269γ γ γ≈ ≈ ≈ . The frequency responses for 

the Gaussian interpolation kernel (order 2, 6, and 10) are shown in fig. 3.1(g-h-i), 
respectively. 

3.3   The Imaging Model 

The observation model for super-resolution reconstruction simulates the physical 
process of image acquisition. It is assumed that a sequence of N low-resolution 
images is captured by a camera moving over a scene of interest. The objective is 
to reconstruct a high-resolution representation of the original scene from degraded 
and incomplete data represented by the LR frames. The original scene is 
represented by a HR reference image X of size (P by P) that we want to 
reconstruct. Each LR image, b1, b2,….bN, is the result of sampling (decimation) of 
the HR reference image and is subjected to various degrading factors such as 
optical, sensor and atmospheric blur, motion effects, and geometric warping. The 
size of each LR frame is (M by M) and M < P.  It is convenient to represent the 
observation model in matrix notation:  

1 1 1 1 1 1 1

N N N N N N N

b D B W e A e

X X

b D B W e A e

⋅ ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (3.14) 

where, D represents the down-sampling matrix of size (M2 by P2),  B is the blur 
matrix of size (P2 by P2) and W is the matrix representing geometric warping of 
size (P2 by P2). If the resulting set of N low-resolution images is abbreviated by b 
= [b1, b2, …. bN]T (size - M2 by 1), and that the imaging process (sub-sampling, 
motion compensation and all the other imaging factors) is represented by a linear 
operator, A of size (M2 by P2), then the mathematical representation of the super-
resolution model can be rewritten as, 
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[ ] 1,2
, k k k k for k N

b AX e A D B W
=

= + = ⋅ ⋅
…  , (3.15) 

where, e (size - M2 by 1) represents the additive Gaussian noise. In eq. (3.15), 
images are represented as vectors by an underscore and are ordered column-wise 
lexicographically. 

3.4   Interpolation-Based Super-Resolution 

Super-resolution image reconstruction process consists of several stages. At the 
initial stage, the camera motion between the scene and the camera sensor has to be 
taken into account. 

HR Image, X LR Images,  b
Noise, e

warping blur
down

sampling

Imaging Process, A

Forward Model

SR - Inverse Model
 

Fig. 3.2 Super-resolution (SR) Imaging Model 

To accomplish this, the sequence of geometrically warped, under-sampled, low-
resolution frames is registered precisely in reference to a low-resolution frame. Once 
registered, each pixel from each of the low-resolution frames is then placed onto a 
high-resolution composite grid using the registration information estimated by the 
registration routines. This step is illustrated in fig. 3.3, where for simplicity it is 
assumed that the relative shifts between LR frames are smaller than the up-sampling 
factor. It is important to mention here, that, accurate and precise registration affects 
the quality of high-resolution image reconstruction significantly, since a mis-
registration will cause the pixels to be placed incorrectly in the composite grid which 
will not only cause loss of information but will also introduce errors during the 
reconstruction process leading to an inaccurate solution. Image registration is 
discussed in detail in chapter 5. 

The randomness of sampling due to camera movements is the core of super-
resolution. In order to address the randomness, the research aims at the 
underdetermined problem of super-resolution where the number of LR frames is 
insufficient to fill up all HR pixels. If the total number of LR pixels (in all LR 
frames) were sufficient to fill up all the high-resolution pixels, in the presence of  
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Fig. 3.3 Translation and up-sampling of low-resolution frames into the high-resolution grid 
for the up-sampling ratio =12 

blur and noise, the reconstruction would be trivial and the problem of super-
resolution would then be reduced to the classical restoration of images by 
debluring and noise reduction. It is therefore assumed that the number of LR 
frames is limited and are insufficient to fill up the entire HR composite grid. The 
first approximation, X1, of the high-resolution image is then estimated by 
interpolating the sparse composite grid (convolution between the composite grid 
image and the interpolation kernel) to populate the empty pixels. This is an 
important step that has considerable effect on the accuracy of the reconstruction. 
The quality of the high-resolution image is directly proportional to the number of 
LR frames used in the reconstruction process; higher the number of LR frames, 
better is the reconstruction quality.  

It is worth mentioning at this point that the resolution enhancement of the LR 
images achieved in the multiframe reconstruction is usually smaller than the up-
sampling ratio and is limited by a number of the LR frames (which we assume to 
be not too large). As a rule of thumb, the linear resolution enhancement is 
proportional to √N. The size of the interpolating kernel has to be congruent with N 
to recover spatial frequencies up to the expected Nyquist frequency of the 
reconstructed image (which is smaller than the Nyquist frequency of the HR grid) 
and suppress higher frequencies. For practical reasons, however, it is important to 
keep the number of low-resolution images as low as possible because with large  
 

 



3.4   Interpolation-Based Super-Resolution 27 
 

number of LR frames, the accumulation of errors would impede the reconstruction 
accuracy. 

In order to quantify the accuracy of the reconstruction, a synthetic set of 
low-resolution images was generated for each high-resolution image by 
applying random translations. The reconstruction procedure was then applied to 
the low-resolution images and the reconstructed high-resolution image was 
compared with the original. The interpolation techniques described in sub-
section 3.2 were implemented. Figure 3.4 shows one of the low-resolution 
image frames used for reconstruction of a high-resolution image. In this 
particular example 10 LR frames were used for the reconstruction of the high-
resolution image and the decimation ratio was 12. Figure 3.5 shows the HR  
 

 

Fig. 3.4 One of the 10 low-resolution frames generated with sampling ratio, 12 
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composite grid image created by mapping all the pixels from all the LR frames 
using the accurate registration information.  

The initial reconstructed HR image, X1, for fig. 3.4 panels is shown in fig. 3.6. 
By inspecting the reconstructed images one can clearly notice the deficiency of the 
reconstruction process. The periodic artifacts that are visible in the interpolated 
images are due to the high number of empty blocks in the composite high-
resolution grid (see fig. 3.5). These artifacts repeat after a period of 12 pixels 
(decimation or down-sampling ratio) and are the result of the irregular sampling of 
the scene due to the simulated random movements of the camera. The 
interpolation process, in this case, is unable to efficiently cope up with the 
randomness and the sparsity of data in the predominantly empty HR composite 
grid. Therefore, we adopt an iterative approach to image super-resolution. 

 

Fig. 3.5 High-resolution composite grid image 
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Fig. 3.6 First approximation interpolated image 

3.5   Iterative-Interpolation Super-Resolution 

A solution of the least-square problem can be sought out by solving the equivalent 
normal equation, which involves the inversion of a linear operator. Consider that 
only an approximate inverse is known, the solution can then be improved by an 
iterative approach described in [43]. In the context of super-resolution 
reconstruction, the approximate inverse operation is given by our interpolation-
based reconstruction, as described in the previous section. The iterative approach 
technique also tackles the problem of visible artifacts and improves the quality of 
the high-resolution image.  

Ignoring the noise term, e of eq. (3.15) and let X be the exact solution, 

A X b⋅ =  , (3.16)

where, A is a matrix and X’ is an estimated inaccurate solution of X, such that X = 
X ’+ δX. Substituting the value of X in eq. (3.16), we get 
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( )A X X b

A X b A X
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′⋅ + =
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(3.17) 

Eq. (3.17) can now be solved for δX, as an iterative approach, 
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(3.18) 

Assuming R0 to be an approximate inverse of matrix A, we get 

01 0 0 1,2,3.....( )k k k x and kX X R b A X+ = == + − ⋅ , (3.19) 

where, A is the linear imaging operator, b is the set of observed low-resolution 
images and Xk

  is the kth approximation of the true scene. It can be easily 
confirmed by inspection of eq. (3.19) that when R0 is the inverse of A the first 
iteration gives the exact solution. More interestingly, when A is not invertible but 
R0 satisfies equality AR0A = A, then again an exact solution is given by the first 
iteration in eq. (3.19) (assuming that a solution does exist). In that case R0 is 
known to be a generalized inverse of A. In many inverse problems a suitable 
choice for R0 is the operator adjoint to A multiplied by a small constant λ, that is 
R0 = λ A*. For such a choice of the operator R0, eq. (3.19) is identical to an 
iterative minimization of the objective function Φ(X) = ||b – A X||2 by the method 
of steepest descent. 

The operator A* also plays an important role in the proposed reconstruction 
scheme. If all the image degrading factors that contribute to the definition of the 
operator A, such as blur, geometrical warping etc. are neglected, keeping only 
translation and down-sampling (decimation) of the original HR image, then the 
operator A* partially reverses the imaging process by putting LR image pixels 
back into the right places in the HR image from where they originated, leaving all 
other HR pixels equal to zero (depicted in fig. 3.3). 

The operator R0 in eq. (3.19) is defined as the superposition of the three consecutive 
operations, that is, translation and up-sampling of the LR frames, followed by 
interpolation of the HR image. More general warping of LR images is used when the 
simple translation motion model is not adequate. The interpolated high-resolution 
image is fed into the iteration scheme as the first approximation image, X1. This image 
is then exposed to the same imaging conditions as the original (unknown) scene and is 
represented by the imaging operator A in eq. (3.15). As a result, a set of low-resolution 
images b(1) is generated. Since the image X1 is only an approximation of the real scene, 
these new low-resolution images are different from the original low-resolution images 
b. The difference between the two sets forms the error vector that should eventually 
vanish when the reconstructed image converges to the real scene. The error vector is 
now reconstructed into high-resolution error image, using one of the interpolation 
techniques discussed in the previous sections, and added to X1. The resultant image 
forms the second approximation X2 of the real scene. The image, X2 is now an input 
for the next iteration cycle. A new set of low-resolution images is generated and 
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subtracted from the original set to form the new error vector, which is reconstructed 
and added to X2. The resultant image is the third approximation, X3. The process is 
repeated until convergence is achieved. This proposed technique is known as the 
Iterative-Interpolation Super-Resolution (IISR) [44, 45] reconstruction scheme. In 
this technique, each iteration only requires simple operations of frame shifting, up-
sampling and convolution. As a result, the method is computationally efficient and 
highly suitable for parallel programming. The IISR technique can also be implemented 
on programmable hardware for real-world applications. 

Figure 3.7 shows an example of IISR-reconstructed high-resolution image from 
fig. 3.4, 3.5 and 3.6. It is evident from fig. 3.7 that our technique successfully 
removed the artifacts that were visible in the interpolated images shown in fig. 3.6. 
It is worth mentioning that although the main purpose of the iteration procedure is  
 

to minimize artifacts appearing in the interpolated images, the process also 
contains implicit regularization features. The fundamental part of the reconstruc-
tion operator is the image interpolation technique. Both, the size and type of the  
 

 

Fig. 3.7 IISR-generated high-resolution image 
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interpolation kernel as well as the number of iterations strongly affect the 
smoothness of the reconstructed image and control the stability of the process.  

The quality of the reconstruction procedure scaled with the number of low-
resolution images used in the reconstruction process. Greater the number of low-
resolution images used, denser is the high-resolution composite grid, and better is 
the accuracy of interpolation and reconstruction. Note that for larger magnification 
factors, increasing the number of low-resolution images is necessary to maintain 
the same level of performance.  

3.6   Similarity Measure 

In order to quantify the fidelity of reconstruction, each reconstructed high-resolution 
image needs to be compared with the original scene; this is similarity measure. It also 
helps to monitor and evaluate the performance of the iterative reconstruction process. 
There are many similarity measures available in literature but none have been 
accepted universally as a standard when comparing two images. Some of the most 
popular are Normalized Cross-Correlation Ratio (NCCR), Direct Difference Error 
(DDE), Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE). 

If an image is multiplied or added with a constant, the intensity level of the 
image changes but the spatial resolution of the image remains unchanged. In this 
research, the emphasis is on the spatial improvement of the reconstructed high-
resolution image and therefore a modified version of RMSE has been utilized as a 
similarity measure. The modification was to ensure that the local spatial contents 
of images were compared and not their global brightness. Suppose X is the 
original high-resolution image and X’ is the estimated high-resolution image, then 
the root mean square error, Ermse is given as:  
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PSNR is also calculated for each reconstructed high-resolution image and is given as: 
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3.7   Simulation Results 

For the purpose of evaluating the performance of the proposed reconstruction 
scheme, several different test images (real and synthetic) were used. An example  
of successful super-resolution reconstruction using the proposed reconstruction 
scheme is presented in this section. The actual high-resolution test image (real 
imagery) is blurred with a Gaussian kernel of standard deviation 2 pixels. The LR 
images were artificially generated by randomly sub-sampling the blurred test image 
with the desired decimation ratio. The interpolation kernel used in the process of 
generating the high-resolution image is cubic-spline polynomial of order 6. 

3.7.1   Noiseless LR Frames 

In this particular example 10 LR images were used for the reconstruction and the 
sub-sampling ratio was 16. Figure 3.8 shows one of the ten LR images of the 
‘man’ sequence. Please note that these LR frames were assumed to be noiseless.  

 

Fig. 3.8 One of the 10 noiseless LR frames of the ‘man’ sequence [64 x 64] 
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The sequence of LR images is registered precisely relative to the reference LR 
frame. Once this is achieved, a high-resolution image grid is populated with pixels 
from low-resolution images by placing them at the appropriate grid-points 
according to the registration information. Figure 3.9 shows the high-resolution 
image grid for the 'man' sequence.  

The first approximation of the high-resolution image, shown in fig. 3.10, is 
then estimated by interpolating the sparse grid shown in fig. 3.9. This first 
approximation image is now fed into the iterative reconstruction scheme to 
generate the final high-resolution image shown in fig. 3.11. The IISR technique 
converges and generates the final high-resolution image after 20 iterations only. 
By inspecting the final high-resolution image, fig. 3.11, one can clearly note that 
the deficiency of the reconstruction process seen in the form of periodic artifacts 
in the first approximation interpolated image is successfully removed.  

 

Fig. 3.9 High-resolution composite grid image of the ‘man’ sequence [1024 x 1024] 
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Fig. 3.10 First approximation interpolated image of the ‘man’ sequence [1024 x 1024] 
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Fig. 3.11 IISR-generated high-resolution image from only 10 noiseless LR frames of the 
‘man’ sequence [1024 x 1024] with an Ermse = 0.14993 and Epsnr = 64.6131 dB 

3.7.2   Noise Corrupted LR Frames 

To check for the robustness of our reconstruction scheme, all the parameters used 
in the previous simulation are kept same, except in this case we introduce a noise 
level of 20dB into the LR frames. The various stages of reconstructing the high-
resolution frame remain the same. Figure 3.12 shows one of the ten noise 
corrupted LR images of the ‘man’ sequence.   

The first approximation of the high-resolution image is shown in fig. 3.13 and 
after 20 iterations; the final high-resolution image is estimated and is shown in 
fig. 3.14.  
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Fig. 3.12 One of the 10 noise corrupted LR frames of the ‘man’ sequence [64 x 64] 
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Fig. 3.13 Noise corrupted first approximation interpolated image of the ‘man’ sequence 
[1024 x 1024] 
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Fig. 3.14 IISR-generated high-resolution image from only 10 noise corrupted LR frames of 
the ‘man’ sequence [1024 x 1024] with an Ermse = 0.17301 and  Epsnr = 63.3696 dB 

3.8   Quantitative Analysis 

In order to compare and analyse the performance of all the interpolation techniques 
in reconstructing high-resolution images using the IISR scheme, a number of   
different high-resolution test images have been used in the simulation. For all 
images the RMSE tendencies were similar but the numbers differed in each one of 
them. In this section, quantitative analysis is presented for the super-resolution 
reconstruction of the ‘man’ sequence shown in previous section. 

In Tables 3.1 and 3.2, we compare the image quality of the various interpolation 
techniques as a function of number of LR frames. In table 3.1, the LR frames (fig. 3.8) 
are assumed to be noiseless whereas in table 3.2 they are corrupted with a noise level 
of 20 dB (fig. 3.12). It clearly indicates that the improvement in the reconstruction 
quality or decrease of the RMSE value for each of the interpolation techniques is 
inversely proportional to the number of LR frames used.  
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Table 3.1 Comparison of reconstruction quality of interpolation techniques based on 
varying noiseless LR frames of the ‘Man’ sequence 

Number of LR Frames 
Interpolation Techniques 

5 10 15 20 

Nearest Neighbor 3.11457 10.2478 14.3594 18.1408 

Linear 0.458858 0.210764 0.177949 0.155656 

Cubic Polynomial: order 4 1.59841 0.153519 0.148448 0.140961 

Cubic Polynomial: order 6 6.69829 0.149928 0.146297 0.139614 

Gaussian: order 2 3.03074 0.169404 0.153711 0.147115 

Gaussian: order 6 6.26985 0.149164 0.145088 0.138104 

Gaussian: order 10 12.1345 0.147738 0.144277 0.137635 

Truncated Sinc 47.7366 0.37388 0.275926 0.241462 

Sinc Lanczos: degree 2 2.32884 0.153882 0.148138 0.140416 

Sinc Lanczos: degree 3 9.72433 0.150709 0.147266 0.140588 
 

Table 3.2 Comparison of reconstruction quality of interpolation techniques based on 
varying the number of noise corrupted LR frames of the ‘Man’ sequence 

Number of LR Frames 
Interpolation Techniques 

5 10 15 20 

Nearest Neighbor 2.8643 10.4806 15.0078 18.9061 

Linear 0.465298 0.22478 0.191729 0.169404 

Cubic Polynomial: order 4 1.3532 0.179433 0.167601 0.157011 

Cubic Polynomial: order 6 6.16309 0.171794 0.162103 0.152532 

Gaussian: order 2 3.08324 0.196791 0.177697 0.166279 

Gaussian: order 6 6.05093 0.173366 0.161341 0.151416 

Gaussian: order 10 11.733 0.170006 0.160193 0.149752 

Truncated Sinc 44.3527 0.45666 0.319326 0.271369 

Sinc Lanczos: degree 2 2.05446 0.178843 0.166752 0.155322 

Sinc Lanczos: degree 3 10.3659 0.173986 0.162772 0.153341 

 
Theoretically, if sufficient number of LR frames is available, each frame will give 

distinct information of the true scene or region of interest. A high-resolution image 
can then be reconstructed by mapping all the low-resolution pixels into the high-
resolution frame. However, in practice, very often this ideal situation does not exist 
and it might not be possible to get a large number of low-resolution frames. The 
reason being, not all frames would have the subject or region of interest and also the 
subject may not be rigid in all the frames. With a large number of frames, imaging 
errors or atmospheric errors could also amplify causing erroneous reconstruction of 
the high-resolution image. In both, table 3.1 and 3.2, nearest-neighbor fails to  
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perform even as the number of LR frames is increased. On the other hand, taking 
fewer frames will result in insufficient information to generate an approximate high-
resolution image. This tendency can be seen in tables, 3.1 and 3.2, for all the 
interpolation kernels except nearest-neighbor at LR frames equal to 5. Therefore 
depending upon the nature of application an optimal number of LR frames should be 
used in order to generate a high-resolution image.   

It is also evident from tables 3.1 and 3.2; a higher degree interpolation 
polynomial proves to be better than a polynomial of a lower degree. As expected,  
the nearest-neighbor, truncated Sinc, and linear interpolation kernels do not 
perform well as compared to the cubic spline, gaussian and lanczos window for 
Sinc. The data represented in tables 3.1 and 3.2, are generated from the ‘man’ 
sequence using sampling ratio of 16 with 20 iterations cycle. 

Tables 3.3 - 3.4 show RMSE with varying number of iterations for both 
noiseless (fig. 3.8) and noise corrupted (20dB; fig. 3.12) LR frames respectively. 
The data represented in these tables, are generated from the ‘man’ sequence with a  
sampling ratio of 16 using only 10 LR frames. The table distinctly shows that 
gaussian interpolation kernel of order 10 generates the lowest RMSE results. The 
performance of the truncated Sinc, linear and nearest-neighbor is poor as 
compared to the other interpolation kernels. As mentioned earlier, tables 3.3 - 3.4 
also prove that higher degree interpolation polynomials are better than their lower 
degree counterparts. The performance trend of all the interpolation kernels is 
almost similar in all the tables. 

Tables 3.5-3.6 represent the data generated by taking RMSE as a function of 
varying sampling ratio for the ‘man’ sequence using 20 iterative cycles and only 
10 LR frames. In table 3.5, the LR frames (fig. 3.8) are assumed to be noiseless  
 

whereas in table 3.6, they are corrupted with a noise level of 20 dB (fig. 3.12). It 
can be seen from the data that in some cases the value of RMSE increases as the 
sampling ratio is increased. This is due to the fact that as sampling ratio is 
increased, more information is lost during the initial process of simulating LR  
 

Table 3.3 Comparison of reconstruction quality of interpolation techniques based on 
varying iterations and noiseless LR frames of the ‘Man’ sequence 

Number of Iterations 
Interpolation Techniques 

0 5 10 15 20 

Nearest Neighbor 0.671756 1.42485 2.13838 4.35488 10.2478 

Linear 0.298197 0.220329 0.213569 0.211571 0.210764 

Cubic Polynomial: order 4 0.316769 0.171747 0.157746 0.154497 0.153519 

Cubic Polynomial: order 6 0.319034 0.172327 0.156652 0.151957 0.149928 

Gaussian: order 2 0.37388 0.166077 0.161354 0.164624 0.169404 

Gaussian: order 6 0.315094 0.170486 0.155179 0.150845 0.149164 

Gaussian: order 10 0.317821 0.170826 0.154991 0.149995 0.147738 

Truncated Sinc 0.339865 0.21187 0.211531 0.251259 0.37388 

Sinc Lanczos: degree 2 0.323435 0.169561 0.156368 0.154133 0.153882 

Sinc Lanczos: degree 3 0.322944 0.173038 0.157201 0.152601 0.150709 
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Table 3.4 Comparison of reconstruction quality of interpolation techniques based on 
varying iterations and noise corrupted LR frames of the ‘Man’ sequence 

Number of Iterations 
Interpolation Techniques 

0 5 10 15 20 

Nearest Neighbor 0.674621 1.43206 2.16567 4.41021 10.4354 

Linear 0.301279 0.230817 0.226703 0.225501 0.224968 

Cubic Polynomial: order 4 0.320731 0.188545 0.179451 0.178067 0.178999 

Cubic Polynomial: order 6 0.323626 0.187476 0.175793 0.173449 0.172176 

Gaussian: order 2 0.375842 0.18474 0.185059 0.191375 0.197618 

Gaussian: order 6 0.319857 0.186134 0.174974 0.173004 0.173035 

Gaussian: order 10 0.323094 0.18604 0.174183 0.171365 0.16856 

Truncated Sinc 0.346529 0.225485 0.232701 0.286627 0.455986 

Sinc Lanczos: degree 2 0.327417 0.186517 0.17821 0.178809 0.180125 

Sinc Lanczos: degree 3 0.327645 0.188467 0.17638 0.173245 0.173268 

 
Table 3.5 Comparison of reconstruction quality of interpolation techniques based on 
varying sampling ratio and noiseless LR frames of the ‘Man’ sequence 

Sampling Ratio 
Interpolation Techniques 

8 12 16 20 

Nearest Neighbor 7.99961 9.0566 10.2478 10.9996 

Linear 0.16474 0.167131 0.210764 0.179999 

Cubic Polynomial: order 4 0.0874763 0.0369791 0.153519 0.106596 

Cubic Polynomial: order 6 0.08256 0.0403187 0.149928 0.113179 

Gaussian: order 2 0.170384 0.0781008 0.169404 0.134025 

Gaussian: order 6 0.0807436 0.032459 0.149164 0.107406 

Gaussian: order 10 0.07958 0.0340558 0.147738 0.111083 

Truncated Sinc 0.166821 0.218574 0.37388 0.51656 

Sinc Lanczos: degree 2 0.0836392 0.0332509 0.153882 0.110628 

Sinc Lanczos: degree 3 0.0807327 0.0375689 0.150709 0.119075 

 
images and then at the reconstruction phase not all of this information is recovered 
in the high-resolution estimate causing a rise in relative error. 

Figures 3.15 - 3.16 show plots between RMSE and the number of iterations, used 
in the proposed IISR scheme, as a function of LR frames taken during the initial 
reconstruction process. The data represented in the plots are generated from the 
‘man’ sequence using 10 LR frames, sampling ratio of 16 with 20 iterations cycle.  

Although the tendency of the graph looks similar in both the plots, fig. 3.15 was 
generated considering noiseless LR frames whereas fig. 3.16 considered LR frames  
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Table 3.6 Comparison of reconstruction quality of interpolation techniques based on 
varying sampling ratio and noise corrupted LR frames of the ‘Man’ sequence 

Sampling Ratio 
Interpolation Techniques 

8 12 16 20 

Nearest Neighbor 8.15911 9.23234 10.395 11.0522 

Linear 0.184486 0.184644 0.224677 0.196194 

Cubic Polynomial: order 4 0.128865 0.0990529 0.179259 0.140744 

Cubic Polynomial: order 6 0.120211 0.0931465 0.172829 0.141838 

Gaussian: order 2 0.203512 0.129347 0.197686 0.169639 

Gaussian: order 6 0.120255 0.0920756 0.172967 0.13894 

Gaussian: order 10 0.117811 0.0899574 0.170626 0.139185 

Truncated Sinc 0.32715 0.345145 0.463106 0.577806 

Sinc Lanczos: degree 2 0.128037 0.0983905 0.179729 0.144 

Sinc Lanczos: degree 3 0.11918 0.0924772 0.172918 0.145989 

 
corrupted by a noise level of 20 dB. These plots provide a significant overview as to 
how each of the interpolation techniques fair in the race for achieving super-
resolution. As mentioned earlier and can also be seen in fig. 3.15 - 3.16 that a higher 
degree interpolation kernel proves to be better than a kernel of lower degree. 
Gaussian kernel of order 10 is found to be the best interpolation kernel since it 
achieves the lowest relative error and generates a high-resolution image very close to 
the original test image. In both plots (fig. 3.15 - 3.16), the graph drops steeply 
between 1-to-4 iterations indicating that most of the major improvement, i.e. 
removal of artifacts, occurs during the initial first few iterative cycles. The 
improvement is more gradual in the later cycles, indicated by the flattening of the 
graph. Gaussian interpolation kernel of order 2 shows a peculiar characteristic in the  
plots, instead of flattening out gradually the graph starts to rise again. This indicates 
that the image quality is deteriorating after about 8-to-10 iterations only. Therefore, 
for gaussian kernel of order 2, the optimum number of iteration cycles is 10 in this 
particular example of super-resolution of the ‘man’ sequence.  

Super-resolution image reconstruction plays a significant role in various fields 
of both, civil and military domains, such as text recognition, target recognition, 
medical imaging and many more. Although it is very important for super-
resolution to be highly accurate but depending upon its field of application, the 
computational time taken to generate such accurate results has to be low and 
acceptable in that field. For example, in real time video surveillance or target  
detection systems, computational time is of great importance and hence requires 
super-resolution technique with high accuracy and low computational cost as 
compared to astronomical imaging or text recognition where computational time is 
not a constraint. Therefore in order to evaluate our proposed IISR technique in  
terms of computational time taken by each of the interpolation kernels, three  
different high-resolution test images – Lena (size - 512 x 512), Man (size - 1024 x 
1024) and ISO (size - 2048 x 2048) were used for generating the data. A sampling  
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ratio of 16 was used to generate 10 randomly translational shifted LR frames from 
each high-resolution test image. IISR image reconstruction was performed using 
all interpolation kernels on each of the three sets of LR frames and the estimated 
high-resolution images were then generated after 20 iterations. Tables 3.7 - 3.8 
represents the computational time analysis data of the IISR system based on 
noiseless and noise corrupted (20 dB) LR frames respectively. The graphical  
representation of these tables is given by figs. 3.17 - 3.18 respectively. The time 
analysis data was generated on an Intel Pentium M processor (1.40 GHz) 
notebook with 1.00 GB of RAM. 

It is important to note that the data tabulated in tables 3.7 - 3.8 is the total 
computational time taken by the IISR system to generate the final high-resolution  
 

Table 3.7 Computational time analysis of IISR system based on noiseless LR frames 

Time (in secs) 
Interpolation Techniques 

Lena (512 x 512) Man (1024 x 1024) ISO (2048 x 2048) 

Nearest-Neighbor 2.1398 7.6378 69.2339 

Linear 2.0804 8.111 90.5327 

Cubic Polynomial: order 4 2.6241 10.0989 83.0398 

Cubic Polynomial: order 6 3.5235 13.8185 152.7094 

Gaussian: order 2 2.08 8.1219 70.41 

Gaussian: order 6 3.5801 13.8207 118.2392 

Gaussian: order 10 6.44 26.1593 159.9797 

Truncated Sinc 2.5872 10.0802 106.1028 

Sinc Lanczos: degree 2 2.5814 10.088 90.3638 

Sinc Lanczos: degree 3 3.5068 13.8181 105.9359 

 
Table 3.8 Computational time analysis of IISR system based on noise corrupted LR frames 

Time (in secs) 
Interpolation Techniques 

Lena (512 x 512) Man (1024 x 1024) ISO (2048 x 2048) 

Nearest-Neighbor 2.7031 12.4124 90.5229 

Linear 2.8961 14.1946 88.4304 

Cubic Polynomial: order 4 3.5388 19.8057 100.7633 

Cubic Polynomial: order 6 4.7323 30.632 120.0999 

Gaussian: order 2 2.8285 18.2192 142.9922 

Gaussian: order 6 4.7322 30.4941 116.8328 

Gaussian: order 10 9.006 56.7097 182.0827 

Truncated Sinc 3.4628 14.72 96.7034 

Sinc Lanczos: degree 2 3.4887 15.9169 103.4364 

Sinc Lanczos: degree 3 4.7591 18.6307 112.3867 
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image using the specified number of iterations and assuming that the LR frames 
and their registration information was already available. 

From fig. 3.15 - 3.16 it is very much evident that the higher degree interpola-
tion kernels are more accurate than the lower degree ones. On the other hand, the 
computational time analysis data shown in fig. 3.17 - 3.18 clearly changes this fact   
for applications of super-resolution where time constraints are significant. For 
generating high-resolution images of size 512 x 512, all the interpolation kernels 
are acceptable in terms of computational speed but after considering the accuracy 
of results, cubic-spline, gaussian and Sinc-lanczos kernels are the suitable ones. 
As the resultant final image size is increased to 1024 x 1024 or even 2048 x 2048, 
the list of acceptable interpolation kernel decreases depending upon the accuracy  
of results and computational speed. From the experimental data presented in this 
section, gaussian kernel of order 6 and cubic spline polynomial of order 4 
certainly qualify as the best tradeoff between accuracy and computational speed.  

3.9   Summary 

In this chapter, an innovative and hybrid reconstruction scheme has been proposed 
for achieving super-resolution from a sequence of geometrically warped, aliased, 
and under-sampled low-resolution images. The proposed reconstruction scheme 
uses interpolation techniques to produce the first approximation of high-resolution 
image and then employs an iterative approach to generate the final solution.  

Performance of the IISR technique is significantly dependent on the type of 
interpolation kernel used in reconstruction process. Several different interpolation 
techniques have been implemented and tested. An extensive quantitative analysis 
was conducted and several different test high-resolution images were used to 
evaluate the fidelity of the IISR system. All computer simulations and data 
analysis were done using both noiseless and noise corrupted LR frames. The 
tendency of the reconstruction scheme remained same in both the cases thereby 
confirming the robustness of IISR system. As expected, the higher degree 
interpolation methods were more accurate, leading to better reconstruction. The 
price for better accuracy, however, was extended computational time. Considering  
this fact in terms of practicality, Gaussian kernel of order 6 and cubic spline 
polynomial of order 4 or 6 were the most promising in the tradeoff between the 
accuracy and the computational speed. 

The quality of the reconstruction procedure scaled with the number of LR 
images used in the process. As the number of LR frames is increased, more 
densely populated the composite high-resolution grid gets and greater is the 
accuracy of the reconstruction scheme. Note that for larger magnification factors, 
increasing the number of LR frames is necessary to maintain the same level of 
performance. In most cases, about 10 LR frames were sufficient for magnification 
factors as large as 20. 
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The proposed IISR system successfully handles the under-determined problem 
of super-resolution and requires a relatively small number of low-resolution 
images for accurate reconstruction. Good results were obtained with only 10 LR 
frames for magnification factors as large as 20. This is important for practical 
applications, because if a large number of LR images were required the 
accumulation of errors would impede the reconstruction accuracy.  Each iteration 
in the IISR scheme only requires simple operations of frame shifting, up-sampling 
and convolution. As a result, the method is computationally efficient and is 
promising to be applicable for real-time processing by using programmable 
hardware. 
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Chapter 4 
Optimization Approach to Super-Resolution 
Image Reconstruction 

4   Optimization Approach to Super-Resolution Image Reconstruction 

 

4.1   Introduction  

The process of super-resolution is an inverse problem of estimating a high-
resolution image from a sequence of observed, low-resolution images and it is 
now widely known to be intrinsically unstable or “ill-conditioned”. The common 
feature of such ill-conditioned problems is that the small variations in the observed 
images can cause (arbitrary) large changes in the reconstruction. This sensitivity 
of the reconstruction process on the input data errors may lead to the restoration 
errors that are practically unbounded. The important part of super-resolution 
process is thus to modify the original problem in such a way that the solution is 
meaningful and a close approximation of the true scene but, at the same time, it is 
less sensitive to errors in the observed images. The procedure of achieving this 
goal and to stabilize the reconstruction process is known as Regularization.  

Many super-resolution techniques [8, 10, 16] are based on the optimization 
approach. We re-examine the approach to super-resolution using optimization 
techniques by reformulating the problem in terms of a regularized optimization 
procedure and implement an iterative conjugate gradient method for finding the 
minimum of the resulting objective function. The role of regularization term on 
the accuracy of the super-resolution reconstruction is also investigated. For 
evaluating the performance of the IISR technique, the full-solution of IISR is 
compared with the one generated by the optimization technique [46]. 

4.2   Well-Posed vs Ill-Posed  

There are many ways of explaining well-posed and ill-posed problems. For 
example, 

AX b= ,   (4.1)

where A is known. Now, if b is determined by X, this is a well-posed problem 
whereas if X has to be determined from b, it’s an inverse or ill-posed problem. The 
latter relates to super-resolution as explained in the introduction.  
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A problem whose solution exists, is unique and depends on the data 
continuously is known as a well-posed problem as defined by Hadamard [47] in 
1902. On the contrary, ill-posed problem is the one which disobeys the rules 
defined by Hadamard. In addition, as the solution of the ill-posed problem 
depends in a discontinuous fashion on the data, small errors such as round-off and 
measurement errors, may lead to a highly erroneous solution. The solution for an 
ill-posed problem is unstable and extremely sensitive to fluctuations in the data 
and other parameters. The classical example of an inverse and ill-posed problem is 
the Fredholm integral equation of the first kind, where, k is the kernel and g is the 
right-hand side.   

( , ) ( ) ( )
b

a

k t s f s d x g t=∫  .    (4.2)

Both of these parameters, k and g are known, while f is the unknown function to 
be computed [48]. The theory on ill-posed problems is quite extensive and well 
developed. Engl [49] conducted a survey on a number of practical inverse 
problems in various applications such as computerised tomography, heat 
conduction, and inverse scattering problems. Inverse problems are also seen in 
various other fields, such as, medical imaging, astronomy, and many more. Ill-
conditioning of inverse problems has always attracted a great deal of interest in 
research. 

For many decades, it has been known that the best way to analyse a scientific 
problem is through its mathematical analysis. The most common analytical tool 
used in the case of ill-posed problems is Singular Value Decomposition (SVD). 
This tool helps in diagnosing whether or not the singular values of a matrix are 
zero or decaying slowly towards zero (a number is so numerically small that due 
to the round off error it is rounded to zero).  The SVD for a matrix A of dimension 
m by n where m ≥ n, is given by: 

1

z
T T

i i i
i

A U S V A u s v
=

= ⇒ = ∑  . 
(4.3) 

For the above decomposition, U (u1…..uz) is an m by m and VT is the transpose 
of matrix V (v1…..vz) which is n by n. The matrix S is a diagonal matrix containing 
the non-negative singular values of A arranged in descending order. The matrix U 
and V are orthogonal and their columns are orthonormal. The columns ui and vi of 
U and V are known as the left and right singular vectors. Also, for certain 
applications, as the dimension of matrix A increases, the numerical value of the 
singular values in S gradually decreases towards zero which causes more 
oscillations in the left and right singular vectors. Greater the number of singular 
values in S tending to zero, the more singular is matrix A making it more ill-
conditioned. Thus, SVD gives a good approximation on the ill-conditioning of the 
system.  
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Another easier way of testing a system for ill-conditioning is by computing the 
condition number of the matrix.  The condition number can be defined as a ratio of 
the maximum and minimum singular values of the matrix in consideration, for 
example, A from eq. (4.1). A high condition number points to an ill-posed 
problem, whereas a low condition number points to a well-posed problem. If A is 
an m by n matrix:  

m ax

m in

( )
( )

( )
euclidean norm

A
condition A

A

σ
σ

−

= ,  (4.4)

where, maxσ  and minσ  represent the maximum and minimum singular values of 

matrix A. With ill-posed problems, the challenge is not of computing a solution, 
but computing a unique and stabilized solution. Thus, an ill-conditioned system 
requires an intelligent method of mathematical computation to generate a 
meaningful solution, rather than the usual computational methods. 

Referring to spatial model of super-resolution, eq. (3.15) renamed to eq. (4.5), 
may have many solutions or, due to noise, may not have any solution whatsoever.  

b AX e= +  .   (4.5)

An approximate least square solution may be then obtained by minimization of 
the error between the actually observed and the predicted LR images. Thus, the 
objective function Φ is given by the following expression: 

2

2
( ) minX b AXΦ = − ,   (4.6)

where, ||  ||2 is the Euclidean or L2 norm. As mentioned before, solutions of inverse 
problems are very often unstable due to their sensitivity to small perturbations of 
the data. Mathematically, this sensitivity occurs due to the existence of very small 
singular values (as defined by the singular value decomposition) in the spectrum 
of the matrix A. The matrix A is therefore, singular in nature and highly ill-
conditioned. There is no uniqueness and stability in the solution for eq. (4.6). 
Therefore to make the above equation well-conditioned (as per Hadamard 
criteria), another term is added to eq. (4.6) known as the Regularization Term. 
Most of the inverse problems (such as super-resolution) are ill-posed and the 
solution is highly sensitive to the data. The solution can vary tremendously in an 
arbitrary manner with very small changes in the data. The solution to eq. (4.6) 
would be highly sensitive and noise contaminated. The regularization term takes 
control of the ill-conditioned nature of the problem. The aim of this term is to 
make the solution more stable and less noise contaminated. The term also attempts 
to converge the approximate solution as close as possible to the true solution. The 
modified version of eq. (4.6) is:  
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2 2

2 2
( ) minX b AX Q Xλ⎡ ⎤Φ = − +⎣ ⎦ . (4.7) 

In eq. (4.7), the parameter λ > 0, is known as the regularization parameter and Q is 
a regularization / stabilization matrix. In [Hanke-Hansen 1993], the stabilization 
matrix is referred to as the regularization operator. The regularization operator if 
given by an identity matrix (Q = I), the regularization term is of standard form 
whereas when Q ≠ I, the term is in the general form. When treating problems 
numerically, it is easier to use the standard form rather than the general form as 
only one matrix, Q, needs to be handled. In practical applications, however, it is 
recommended that the general form of the regularization term should be used.  

There is no unique procedure for constructing the regularization term. In the 
Bayesian type of approach, eq. (4.7) is an example of the MAP estimator where 
the regularization term incorporates a priori knowledge about the problem. The 
method, however, offers little practical guidance of how to construct the term. In 
the context of super-resolution, a popular choice for the matrix Q is a discrete 
approximation of the Laplacian operator that penalizes large variations in the 
estimated image and enforces its smoothness. For the purpose of comparison and 
experimentation, we have implemented four different forms of regularization 
matrix that are based on various discrete representations of Laplacian and 
Biharmonic operators. They are shown in fig. 4.1 as convolution kernels. 

The regularization term aims at filtering out the noise that contaminates the 
image and also makes it smoother. The regularization term can also include a 
priori information of the true solution which facilitates the minimization process 
to converge as close as possible. The regularization parameter controls the 
measure of smoothness in the final solution of eq. (4.7). It is critical to choose the 
regularization parameter best suited to the particular application in which it is 
involved. If the regularization parameter is too small, it brings back the risk for the 
solution being unstable and susceptible to noise amplification, causing the 
approximate solution to be far from converging with the true solution. On the 
other hand, if the parameter is too large, the regularization term will have a 
dominating effect on the solution making it too smooth and some information may 
be lost. Hence, there needs to be a proper balance of smoothness and preservation 
of information when regularization is implemented. 

4.3   Estimating λ, the Regularization Parameter 

Being the most critical part of regularization term, one has to carefully choose the   
appropriate technique based on their applications and expected results. Also, the 
choice of the optimal value of the regularization parameter may strongly influence 
the fidelity of the reconstruction process. The regularization parameter also 
depends on the properties of b, A, X and noise (eq. 4.7). The parameter should 
balance the regularization and perturbation error in the computed solution. Over 
the years, many techniques have been proposed and discussed in relation to  
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(d)  

Fig. 4.1 Regularization/Stabilization Matrix (Q): (a) 2D Laplacian Operator (Q = 4-
neighbor).  (b) 2D Laplacian Operator (Q = 8-neighbor). (c) 2D Biharmonic Operator (Q = 
12-neighbor).  (d) 2D Biharmonic Operator (Q = 24-neighbor). 

estimating the regularization parameter [50-53]. The techniques discussed fall into 
two categories – one which require knowledge of error and the ones which do not 
require knowledge of error.  

4.3.1   Methods Which Require Error Knowledge 

4.3.1.1   The Discrepancy Principle 

In practical scenarios, considering eq. (4.1) and (4.6), the right–hand side term, b, 
is never free from errors and contains various types of errors. Therefore, b can be 
written as b = btrue + e, where e is the errors and btrue is the actual unperturbed 
right-hand side. Now, as per the discrepancy principle [54], the regularization  
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parameter is chosen such that the residual norm of the regularized solution is equal 
to the norm of the errors.  

2 2

regb A X e− =  .      (4.8)

If there is a rough estimate of the error norm, the discrepancy principle can be 
used to estimate a good regularization parameter. Unfortunately, in the practical 
world the knowledge about the error norm is not available and can be erroneous. 
Such data can lead to wrong estimations of the regularization parameter, thereby 
generating an unstable final solution.  

4.3.1.2   λ -Curve 

In the context of super-resolution reconstruction of images, the ultimate measure of 
the fidelity of reconstruction is the difference between the original test image and 
its attempted high-resolution reconstruction. More precisely, the RMSE of the two 
images is a good choice for the quantitative description of the accuracy of 
reconstruction. When plotted as a function of λ, the resulting curve is expected to 
go through a minimum. The point of minimum RMSE value is then selected as  
the optimal value of the regularization parameter λ. This is illustrated in fig. 4.2.  
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Fig. 4.2 A Generic λ-curve graph 
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The proposed λ-curve method is adequate for experimentations with simulated 
imagery, however, in practice the original scene is unknown and hence error 
knowledge is not available, therefore other methods have to be considered. 

4.3.2   Methods Which Do Not Require Error Knowledge 

4.3.2.1   Generalized Cross-Validation (GCV) 

GCV is one of the most popular methods used for estimating the regularization       
parameter [55].  It is based on the statistical cross-validation technique. In GCV, if 
a random element, bk, is left out of b, then the estimated regularized solution 
should be able to predict the missing element, bk. The regularization parameter is 
chosen as the one which minimizes the prediction error and is independent of the 
orthogonal transformation of b, [56]. In this technique, no knowledge of the error 
norm is required. The GCV function is given as: 

2

2

regb AX
GCV

τ
−

=  . 
  (4.9)

In eq. (4.9), the numerator is the squared residual norm and the denominator is the 
square of effective number of degrees of freedom. Although computation of 
regularization parameter using GCV technique works for many applications, it 
should also be noted that GCV may have a very flat minimum [57], making it 
difficult to locate numerically thereby failing to compute the correct λ.  

4.3.2.2   L-Curve Criterion 

The L-curve criterion proposed in [50, 58] was inspired from the graphical 
analysis discussed in [59]. The L-curve method directly exploits the competition 
between the two terms in eq. (4.7): the residual fitting error ||b – AX||2 and the 
stabilization term ||QX||2. The values of these terms are calculated for X that 
minimizes the objective function Φ for a given value of the parameter λ. This 
curve, when plotted on a log-log scale for a range of λ values, takes the shape 
which resembles the alphabet ‘L’ and hence the name, L-Curve (see fig.4.3 for 
illustration). This is the most powerful graphical tool for analysis as it shows the 
relationship between both the terms of eq. (4.7). The flat part of the L-curve 
corresponds to a solution dominated by the regularization errors whereas the 
vertical part indicates that the solution is dominated by perturbation errors. It was 
then argued [50, 58] that the optimal value of the parameter λ is at the corner of 
the curve where the curvature is at its maximum since it marks the optimal balance 
between minimizing the regularization error and the residual fitting error in the 
solution. This is the L-curve criterion.  
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Fig. 4.3 A Generic L-curve graph 

The corner of the L-curve is the point of maximum curvature, κ (kappa) [50]:  

2 2 3/ 2

ˆ ˆ ˆ ˆ

ˆ ˆ[( ) ( ) ]λ
ρ η ρ ηκ

ρ η
′ ′′ ′′ ′−=

′ ′+  ,  (4.10)

where, ′ denotes differentiation and ρ and η are given as:  

2

2

log

log

AX b

QX

λλ

λλ

ρ

η

= −

=  . (4.11)

It is important to note that the trend of the L-curve and the point of optimum 
balance is not a generalization and can fluctuate depending upon (and is not limited 
to) the choice of regularization matrix, nature of data, field of application and even 
the type of norm used for minimization purposes. As mentioned earlier, although λ-
curves are not practically feasible, however in a controlled environment, relative 
error is known or can be calculated, and one could employ λ-curves to validate the 
regularization parameter estimated by the L-curve criterion. 

4.4   Regularization Techniques 

Regularization is an intelligent technique for computing a solution for an ill-posed 
problem. The main aim of this term is to make sure that the final solution is 
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smooth and regularized with respect to the input data. It also makes sure that the 
final solution is less contaminated with errors and noise components. In the 
process of achieving this, the regularization term filters out the high-frequency 
components, thereby giving a smooth final solution. In the field of image 
restoration or super-resolution, a smooth approximate solution might not solve the 
purpose of being an appropriate solution. The high-frequency components filtered 
out by the regularization technique relate to the edges and discontinuities in the 
image. These components hold significant value in the field of image restoration. 
As seen in section 4.2, the singular values of the matrix A, are of critical 
importance, as they relate to the high-frequency components. Thus, if there are too 
many small singular values (which can decay to zero), then the information 
relating to these is lost and only the information related to the large values is 
recoverable. There are various techniques for computing a regularized solution for 
ill-posed problems.  

4.4.1   Tikhonov Regularization 

Tikhonov regularization [60-62] was first introduced in 1963 and is defined as:  

2 2

. 2 2
minregX b AX QXλ⎡ ⎤= − +⎣ ⎦  . (4.12)

λ > 0, is known as the regularization parameter and Q is a regularization/stabilization 
matrix. The regularization matrix can be Q = I or Q ≠ I where I is an identity matrix. 
It is recommended to consider the regularization matrix as unequal to the identity 
matrix, [52].  It should be noted that since the regularization matrix can also contain a 
priori knowledge, greater care must be taken in its selection. The regularization 
parameter is also of great importance as it is a trade-off between the smoothness and 
the accuracy of the solution. Eq. (4.12) can be also written as:  

( )T T T
approxA A Q Q X A bλ+ =  . (4.13)

From eq. (4.13), it is evident how the regularization term manages to regularize 
the solution. It is also evident how the proper or improper selection of λ and Q can 
lead to a good or bad approximation. A high value of λ diverts the solution to be 
very smooth, suppressing the high-frequency components even though the system 
has been regularized. Although Tikhonov regularization seems to be a straight 
forward technique, it has a high-computational cost and requires a lot of storage 
space when used in large-scale problems. Thus, this technique is more suitable to 
small-scale problems as compared to large-scale problems. 

4.4.2   Maximum Entropy Method 

The Maximum Entropy technique [63] of regularization is often used in 
astronomical image reconstruction. This technique is also known to preserve point 
edges in the estimated image, which makes it promising in the field of 
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astronomical image restoration. The maximum entropy regularization term [64] is 
given as:  

2

1

( ) log( )
z

i i i
i

S X x w xλ
=

= ∑  , (4.14)

where, xi are the positive elements of vector X and wi are weights ( w1 ….. wz). The 
above given function is negative of the entropy function. Therefore, eq. (4.12) can 
now be written as:  

2

2
( )MEX b AX S X= − +  . 

(4.15)

The estimated solution from maximum entropy regularization is quite consistent 
as it is not related to the missing information of the right-hand side to a great 
extent. The major drawback of this technique is that it’s computationally intensive 
to allow for it to be applicable in real-time processes. 

4.4.3   Conjugate Gradient (Iterative Regularization) 

Conjugate gradient is one of the most commonly used numerical algorithms for 
symmetric positive definite systems.  It is also known as the oldest and best 
known non-stationary method. Conjugate gradient can be computed as a direct 
method much such as Tikhonov and maximum entropy but it proves to be much 
more efficient if it is used as an iterative method. Direct methods fail to perform 
when it comes to large-scale problems or huge sparse matrices, where only 
iterative technique comes to the rescue. The iterative conjugate gradient method 
can successfully compute solutions for large scale problems. Since the iterative 
method utilizes the property of matrix-vector multiplications between huge sparse 
matrices and vectors, computational time decreases and storage requirements for 
such matrices and vectors decreases tremendously. These advantages make 
iterative conjugate gradient regularization technique more favourable when 
compared with others. The iterative method generates successive approximations 
of the solution and their residuals. The conjugate gradient for a set of 
unregularized normal equations, A X = b, is given as:  

T TA AX A b=  . 
(4.16)

It is seen that for eq. (4.16), the low-frequency components of the estimated 
solution converge faster than the high-frequency components [58]. The iterative 
conjugate gradient technique generates XK estimated solutions and calculates the 
residuals for each K, where K is the number of iterations assigned. In this iterative 
technique of generating the regularized solution, K acts as the regularization 
parameter. It is very important to generate iterations up to an optimal number 
because the iterative solution can sometimes converge faster and if K is greater 



4.5   Simulation Results 61 
 

than K-optimal, the estimated solution might diverge from the true solution. The 
equation for the Kth iterative CG approach is given by:  

( ) ( 1) ( ) ( )K K K KX X α ρ−= + , (4.17)

where, XK is the Kth iterative approximation of X which is updated in each iteration 
by a multiple, αK, of the search direction vector, ρK. The conjugate gradient least 
squares equation is given by: 

2

. 2
minregX b AX= −  . (4.18)

Eq. (4.18) is similar to (4.12) – Tikhonov regularization technique, only difference 
is in eq. (4.18), λ = 0, nullifying the regularization term. Hence, in this technique 
the number of iterations, K, acts as the regularization parameter.  

Computational cost and storage requirements are certainly the prime factors in 
choosing a particular regularization technique for a specific application. Iterative 
methods for estimating a regularized solution of an ill-posed problem are fast 
gaining popularity due to their low computational cost and low storage requirements 
even for large-scale problems as compared to direct methods of regularization. 

4.5   Simulation Results 

In order to compare the full-solution of the IISR scheme with a wide class of 
super-resolution techniques, the problem of super-resolution is reformulated to 
Tikhonov regularized optimization and the iterative conjugate gradient method is 
adopted for minimizing the objective function, Φ given in eq. (4.6). The conjugate 
gradient algorithm is an effective method of solving large-scale problems. The 
convergence rate for the method is quite rapid and, for most cases, the method is 
faster than the steepest descent, for example. For purely numerical and practical 
reasons it is convenient to remodel eq. (4.6) by absorbing the second term 
(regularization) into the first one, on the expense of increasing the size of matrixes 
involved in the calculations:  

2

( )
0

A b
X X

Qλ
⎡ ⎤ ⎡ ⎤

Φ = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦  . 

(4.19)

Several experiments of reconstructing high-resolution imagery using the 
optimization approach have been conducted. To have a uniform continuity and 
also to compare the reconstruction quality of both the IISR and optimization 
technique, super-resolution of the ‘man’ sequence [1024 x 1024] is considered 
again. Matrix A contains a Gaussian blur kernel [12 x 12] with a standard 
deviation of 2 pixels and a down-sampler to generate the artificial LR frames at a 
ratio of 16. It is assumed that the relative motion between the frames is well 
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approximated by a single shift vector for each frame. Unlike many other papers 
investigating super-resolution reconstruction, the down-sampling ratios used in the 
simulation are large (usually 12, 16 or 20), which brings the calculations closer to 
reality. Note that the physical enhancement of the resolution achieved during the 
reconstruction process is usually smaller than the reconstruction magnification 
ratio. A discrete representation of Laplacian, fig. 4.1(a) was used as the 
regularization matrix Q with optimal values of the regularization parameter, λ, 
calculated using the L-curve criterion.  

4.5.1   Noiseless LR Frames 

The optimization procedure was applied to the same sequence of noiseless LR 
frames that were used in the simulation results of chapter 3. Again, for practical 
reasons, the number of LR frames used is kept as low as 10 and the optimal 
regularization parameter, λ, in this case is 0.1. Figure 4.4 shows one of the ten 
 

 

Fig. 4.4 One of the 10 noiseless LR frames of the ‘man’ sequence 
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Fig. 4.5 High-resolution image reconstructed using the optimization procedure from only 
10 noiseless LR frames of the ‘man’ sequence  [1024 x 1024] with an Ermse = 0.14959 and 
Epsnr = 64.633 dB 

noiseless LR images of the ‘man’ sequence and fig. 4.5 shows the reconstructed 
high-resolution image. 

The optimization procedure successfully generates a high-resolution image 
using only 10 noiseless LR frames. The RMSE calculated between the actual 
‘man’ high-resolution image and the reconstructed one is 0.14959 and a PSNR 
value of 64.633 dB. Referring to fig. 3.11, the IISR-generated high-resolution 
image, the calculated RMSE was 0.14993 and PSNR = 64.6131 dB. By comparing 
the full solution of the optimization problem with the calculations based on the 
fast iterative-interpolation super-resolution (IISR) method (see fig. 4.6), one can 
notice the slight improvement over the IISR result as illustrated by the relatively 
small decline and rise in the RMSE and PSNR values respectively. 
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4.5.2   Noise Corrupted LR Frames 

All the parameters are kept same as in the previous example except in this case a 
noise level of 20dB is introduced into the LR frames. Also, the optimal 
regularization parameter, λ, in this case is 0.065. Figure 4.7 shows one of the ten 
noise corrupted LR images of the ‘man’ sequence and fig. 4.8 shows the stabilized 
high-resolution image reconstructed by the optimization scheme. 
 

 

Fig. 4.7 One of the 10 noise corrupted LR frames of the ‘man’ sequence 
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The RMSE calculated between the actual ‘man’ high-resolution image and the 
reconstructed one is 0.13837 and a PSNR value of 65.3097 dB. Referring to fig. 3.14, 
the IISR-generated high-resolution image, the calculated RMSE was 0.17301 and 
PSNR = 63.3696 dB. By comparing both these images (see fig. 4.9), it can be seen 
that the optimization scheme is able to achieve slightly better improvement over the 
IISR technique, as the regularization term is more powerful and suppresses a fair 
amount of noise in the final solution. It is easy to foresee that by using a larger 
number of LR frames, higher quality of reconstruction can be achieved. This can be 
seen in fig. 4.10. 

 

Fig. 4.8 High-resolution image reconstructed using the optimization procedure from only 
10 noise corrupted LR frames of the ‘man’ sequence [1024 x 1024] with an Ermse = 0.13837 
and Epsnr = 65.3097 dB 
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Fig. 4.10 High-resolution image reconstructed using the optimization procedure from only 
40 noise corrupted LR frames of the ‘man’ sequence  [1024 x 1024] with an Ermse = 
0.11914 and Epsnr = 66.6099 dB 

4.6   Quantitative Analysis 

To evaluate the reconstruction process of the optimization technique and also to 
compare it with IISR technique, quantitative analysis for the super-resolution of 
the ‘man’ sequence is presented in this section. 

In the optimization technique, the regularization term plays a very important 
role of stabilizing the final solution. The amount of strength of this term is 
controlled by the regularization parameter, λ. In order to locate the optimum 
regularization parameter for a particular sequence of LR frames and to investigate 
the role of λ for the optimization process, computer simulations were executed for 
the minimization algorithm for a wide range of λ values. During calculations, the 
values of RMSE between the reconstructed image and the original test image were  
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recorded, together with the values of the residual fitting error ||b – AX||2 and the 
stabilization term ||QX||2. These values were then used in construction of the L-
curves and λ-curves for that sequence.  

Examples of the resulting L-curve and λ-curve are shown in both, fig. 4.11 and 
4.12 for noiseless and noise corrupted super-resolution reconstruction. As mentioned 
in the simulation results, the regularization matrix was chosen to be a discrete  
 

 
(a) 

 

(b) 

Fig. 4.11 (a) L-curve and (b) λ-curve for super-resolution reconstruction using only 10 
noiseless LR frames of the ‘man’ sequence 
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(a) 

 
(b) 

Fig. 4.12 (a) L-curve and (b) λ-curve for super-resolution reconstruction using only 10 
noise corrupted LR frames of the ‘man’ sequence and the optimal  λ = 0.065 

representation of the Laplacian operator, as shown in fig. 4.1(a). Both curves have 
overall shapes that resemble the generic curves shown in, fig. 4.2 and 4.3.  

In both the figures, 4.11(b) and 4.12(b), there is a gradual increase of the 
reconstruction error for λ larger than the optimal value, whereas for values of λ 
smaller than the optimal one, the reconstruction error grows very rapidly, which 
can be seen by the steep vertical graph. This behaviour has important practical  
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implications: the super-resolution reconstruction is not very sensitive to the precise 
value of the regularization parameter when the parameter is larger than the true 
optimal value. This may explain why in many simulations good reconstructions 
were achieved with regularization parameter chosen in an ad hoc fashion. However, 
because the simulations were limited only to several examples of imagery, the 
observed insensitivity of super-resolution reconstruction to the exact value of λ may 
not be a universal property.  

In fig. 4.11, the optimal value for λ as calculated by L-curve technique is 
0.00023 whereas using the λ-curve technique, the lowest RMSE or best 
reconstruction quality is achieved at 0.1. Therefore, for the case of noiseless LR 
frames, the optimal value of λ is chosen to be 0.1 instead of 0.00023. On the other 
hand, in fig. 4.12, it is important to note that the optimal values for λ (0.065) as 
calculated from both methods are consistent with each other.  

The rate of convergence of minimization routines strongly depends on the 
initial point that the optimization process starts with. To improve the convergence 
rate of optimization, the full-solution of the fast IISR technique is used as the 
starting point in the minimization process. It was observed that the final result of 
optimization did not significantly depend upon the initialization method. This was 
reassuring since the whole purpose of the regularization is to stabilize the solution. 
It was however, observed, that the speed of convergence was significantly 
improved. This is illustrated in fig. 4.13 which shows a comparison of 
convergence rates for the optimization procedure initiated by a blank image and 
by the final IISR reconstructed image using both, noiseless and noise corrupted 
LR frames.  

The simulations illustrated in both curves of fig. 4.13 show that, for blank input 
image initialization, the optimization routine requires over 80 iterations to reduce 
the reconstruction error to the initial level of the final IISR reconstructed high-
resolution image error. The further improvement of the reconstructed image is, 
however, rather small, reconfirming good accuracy of the proposed IISR 
reconstruction algorithm. It is also evident from the graphs, that this additional 
improvement over IISR result is computationally expensive since the convergence 
rate becomes slow. 

Figure 4.14 summarizes the accuracy of super-resolution reconstruction as a 
function of number of LR frames utilized in the reconstruction process. It is 
clearly evident from the graphs that as the number of low-resolution frames 
utilized increases the efficiency of super-resolution reconstruction also improves. 
It is also clear from fig. 4.14(b) that even though the number of noise corrupted 
LR frames is increased, due to the robustness of the optimization routine, no noise 
amplification occurs (i.e.- noise is suppressed) causing further degradation of the 
reconstructed high-resolution image. This can also be seen by comparing the high-
resolution images generated using noise corrupted 10 and 40 LR frames in fig. 4.8 
and 4.10, respectively.  

Computer simulations have also been performed with different forms of the 
regularization term in eq. (4.17). Four different forms of regularization matrix, Q, 
have been implemented shown in fig. 4.1, which are based on various discrete 
representations of Laplacian and Biharmonic operators. Figures 4.15 and 4.16  
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(a) 

 
(b) 

Fig. 4.13 Convergence rate for optimization super-resolution reconstruction of the ‘man’ 
sequence using only 10 (a) noiseless and (b) noise corrupted LR frames 

illustrate the comparison of convergence rates of the optimization procedure for 
the 'man' sequence initiated by a blank image using both, noiseless (λ = 0.1) and 
noise (λ = 0.065) corrupted LR frames along with different regularization 
matrices, Q, shown in fig. 4.1. Due to the extremely large size of Q for 24-
neighbors, 2D-biharmonic operator, the computer simulations failed as MATLAB  
incurred an “out of memory” error message on a 1GB RAM, Intel Centrino (1.4 
GHz) notebook. Therefore, in fig. 4.15 and 4.16, the convergence rate for the  
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(a) 

 
(b) 

Fig. 4.14 Accuracy of super-resolution reconstruction of the ‘man’ sequence as a function 
of the number of (a) noiseless and (b) noise corrupted LR frames 

'man' sequence using Q as the 24-neighbor, 2D-biharmonic operator has been 
omitted but for smaller high-resolution image sizes, for example a 512 x 512 high-
resolution image, the data can be calculated. From the various computer 
simulations that have been performed for a smaller high-resolution image size, the  
tendency of the 24-neighbor regularization matrix is very similar to the 12-
neighbor, 2D-biharmonic operator. In fig. 4.15(a) and 4.16(a) the 12-neighbor,  
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(a) 

 
(b) 

Fig. 4.15 Convergence rate for optimization super-resolution reconstruction of the ‘man’ 
sequence as a function of (a) 10 and (b) 40 noiseless LR frames using different 
regularization matrices (see legend),  λ = 0.1 and a blank input HR image as the 
initialization 

 
2D-biharmonic operator was observed to be less efficient as compared to the 
Laplacian operators for a lower number of LR frames used in the reconstruction 
process. On the other hand, with the increase in the number of LR frames used for 
the reconstruction process (see fig. 4.15(b) and 4.16(b), the biharmonic operator 
performs satisfactorily and shows the characteristic of strong noise suppression.  
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(a) 

 
(b) 

Fig. 4.16 Convergence rate for optimization super-resolution reconstruction of the ‘man’ 
sequence as a function of (a) 10 and (b) 40 noise corrupted LR frames using different 
regularization matrices (see legend), λ = 0.065 and a blank input HR image as the 
initialization 

4.7   Summary 

In this chapter, the optimization approach to image super-resolution is reinvestigated. 
The estimation problem is reformulated in terms of a Tikhonov regularized 
optimization problem and an iterative conjugate gradient technique is adopted for 
solving it.  
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To study the significance and influence of the regularization term over the 
accuracy of the reconstruction scheme in optimization, several different forms of 
regularization term were considered. The analytical data produced shows that the 
2D Laplacian operators perform better than the 2D biharmonic operators 
especially when low numbers of LR frames are utilized for achieving super-
resolution image reconstruction. The L-curve criterion is adopted for estimating 
the optimal value of the regularization parameter. It is also important to note that 
depending upon the image and other parameters such as the regularization matrix, 
the optimal value of λ changes. Therefore, it is critical that the L-curve graph be 
calculated every time the parameters are changed, to check for the optimal value 
of λ. This extra step ensures that the value of λ is neither too small nor too large. 
For simulated imagery, a new graphical analysis tool, λ-curve, is proposed. This 
graph can be utilized to confirm the optimal value of λ as calculated by the 
L-curve criterion. Unfortunately, in practice since the original scene is unknown, 
no relative error can be calculated between the original image and its attempted 
HR reconstruction. In such a scenario, λ-curve ceases to be of any help and one 
would have to depend completely upon the L-curve for providing an accurate 
regularization parameter, λ. 

By comparing the full solution of the optimization problem with calculations 
based on the proposed fast iterative-interpolation super-resolution (IISR) method 
(see fig. 4.17), it is observed that the IISR reconstruction is reasonably accurate and 
that further improvement by the optimization procedure is relatively small and 
computationally expensive. The analysis also illustrate that the rate of convergence 
can certainly be accelerated by initializing the optimization procedure with the IISR 
solution instead of a blank input HR image. 

 

Fig. 4.17 Convergence plot for super-resolution image reconstruction of the ‘man’ 
sequence using the fast IISR and Tikhonov regularized optimization technique 
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Chapter 5 
Image Registration for Super-Resolution 

5   Image Registration for Super-Resolution 

5.1   Introduction  

Super-resolution reconstructs high-quality, high-resolution images by exploiting 
the fact that due to the relative motion between the camera sensor and the true 
scene, each aliased, under-sampled low-resolution frames acquired contains 
distinct incomplete and degraded scene information about the true scene. 
Therefore, in order for super-resolution to acquire this distinct scene information 
and successfully generate a high-resolution image, accurate knowledge of registra-
tion parameters is required for each of the input low-resolution frames. To 
formally define image registration, it is the process of geometrically aligning two 
or more images taken at different times, from different viewpoints and/or by 
different sensors. In various computer vision applications such as remote sensing, 
medical imaging, target detection, super-resolution imaging and many more, 
image registration is the most crucial intermediate process. To achieve accurate 
super-resolution image reconstruction, it is critical for image alignment to be 
precise. Mis-alignment of the under-sampled low-resolution frames will result in 
the reconstruction of an erroneous high-resolution image which may not be a true 
approximation of the original scene. 

5.2   Methodology  

As mentioned earlier image registration is an important prerequisite and is widely 
applied in many computer vision applications. A universal technique cannot be 
applied to solve all the tasks of registration in all the computer vision applications, 
due to the diverse nature of images involved, type of geometric warping, nature of 
transformation domain, and the required accuracy of registration. Even though 
numerous registration techniques have been proposed in the literature, the majority 
of them consist of the following steps for achieving image registration:  

• Control Point Detection and Matching: Distinctive features such as 
boundaries, edges or corners are identified, manually or automatically, in 
both the target and the reference frame. These features are represented as 
control points in the images. A correspondence or matching is then 
established between the control points of the same scene in the target and 
the reference frame. The most difficult step of image registration is the 
accurate establishment of correspondence between a set of control points as 
it decides the accuracy level of the registration process. 

• Mapping function: This task involves the computation of a geometric 
transformation model and its parameter estimation to accurately overlay the 
target frame over the reference frame. 
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• Image Resampling: Utilizing the mapping function computed in the previous 
step, the target frame is resampled and aligned with the reference frame.  

5.3   Image Registration Techniques  

In the last two decades, extensive research has been carried out to develop new 
image registration techniques for solving real-world problems. One of the main 
concerns with any registration technique is the complexity and the high 
computational cost involved in the estimation of motion parameters. 

An extensive survey of image registration techniques has been documented in 
[65]. The author not only describes merits and demerits of a broad range of 
registration techniques but also classified the techniques depending upon the 
variations in the images. The paper also extensively describes the theory of image 
registration. A more recent survey on the latest registration techniques deployed in 
various computer vision applications is documented in [66]. In this paper, the 
author has classified the techniques according to the four basic steps of image 
registration procedure: feature detection, feature matching, transform-model 
estimation, image re-sampling and transformation. 

In [67], Zhao et al. discusses the effects of alignment and warping errors on 
super-resolution. They also introduced a new concept of optical flow consistency 
and flow accuracy. The error analysis provided in the paper indicates that in the 
case of small noise, optical flow is feasible for super-resolution. In [68], the 
authors provide a review of techniques for the computation of motion and 
structure from a sequence of monocular images. The paper gives a comparative 
view of the two most distinct approaches for the computation of motion - feature 
based and optical flow based techniques. The concept of optical flow was first 
introduced by Horn and Schunck in [69]. Due to the relative motion between the 
camera sensor and the objects in the scene, distinct information can be obtained by 
analyzing the difference between the time varying sequences of images. Optical 
flow is the process of calculating the instantaneous velocity of brightness patterns 
in the image. Optical flow relies on the assumption that any changes in spatial-
temporal intensities in the image sequence are entirely due to the motion between 
the sensor and the scene (or object) [70]. With additional constraints, optical flow 
technique is used for motion estimation since it is possible to differentiate the 
pixels representing motion from the ones representing static environment. The 
technique also helps to analyse the direction of motion in the image.  

In [71], the authors are primarily interested in generating high-resolution version 
of the input low-resolution video sequence of faces. The existing super-resolution 
approaches are not applicable for achieving super-resolution of video sequence of 
faces because faces are neither rigid nor planar and cause self-occlusion. They 
propose a super-resolution optical flow algorithm which not only generates the 
optical flow of the entire input video but also simultaneously produces the high-
resolution version of the video. The idea of simultaneous estimation of registration 
parameters and high-resolution image is not new and was also proposed by Hardie et 
al. in [72]. They introduced a joint MAP framework for estimating the image motion 
parameters and generating the high-resolution image. The registration parameters 
are iteratively updated using the best existing high-resolution image estimate.  
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Pyramidal architectures are commonly employed in the registration process 
[5, 73-75]. Such architecture not only decreases the overall computational cost but 
also increases the accuracy of registration parameter estimation. Pyramid based 
registration techniques therefore are more desirable and accurate than the regular 
single-scaled based techniques. A number of ways have been documented in 
literature for constructing image pyramids but the most commonly utilized 
technique is the Gaussian and Laplacian pyramid structure proposed by Burt et al. 
in [76]. The image pyramid is a multi-resolution representation of an image 
constructed by successive levels of band-passed, sub-sampled images. A more 
general description of image pyramids in the field of image processing is given in 
[77]. Bergen et al. in [5] proposed a hierarchical framework for the computation of 
motion parameters. The authors have combined four motion models - affine flow, 
planar surface flow, rigid body flow and general optical flow into a single 
framework. A coarse-to-fine refinement strategy is implemented for computational 
efficiency. More iteration are performed on the coarsest level of the image 
resolution pyramid and once acceptable motion parameters are estimated on that 
level, they are then used as initial conditions on a more finer level of the resolution 
pyramid. This strategy enables the registration technique to converge rapidly and 
accurately. Ravi et al. in [74] used the Laplacian pyramid approach based on [5] 
for the registration of multisensor images such as infrared and radar. Thevenaz  
et al. in [75] proposed a full 3-D registration algorithm utilizing a cubic spline 
model for generating the multi-resolution image pyramid [78, 79]. Their algorithm 
is also applicable to a 2-D model, without any further modifications. The general 
affine transformation model in [75] can not only be restricted to a rigid body 
transformation but even to a simple translation model.  

The imaging model considered in this study is given by equation (3.14). The 
matrix A, is the imaging process consisting of 3 major processes, namely - 
warping, blur and down-sampling. So far in previous chapters it has been assumed 
that the motion parameters that constitute the warping matrix are known 
beforehand. It is important to note that among all the 3 processes of matrix A, 
precise estimation of the warping matrix (accurate estimation of the relative 
motion between the sequence of low-resolution frames), is of the highest 
significance since a mis-registration can cause the super-resolution reconstruction 
process to construct a high-resolution frame of extremely poor quality. Even 
though the aim of this research is fast super-resolution image reconstruction, the 
issue of accurate motion estimation is also addressed.     

5.4   Hierarchical Motion Estimation 

As mentioned in the previous section, registration techniques based on the 
pyramidal architecture certainly prove to be more advantageous in terms of 
accuracy and computational efficiency. The hierarchical framework described in 
this section, for the computation of motion parameters, is adopted and implemented 
based on the work described by Bergen et al. in [5]. The basic components of 
hierarchical motion estimation are,  

• Pyramid Construction. 
• Motion Estimation. 
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• Image Warping. 
• Coarse-to-fine Refinement. 

The multi-resolution image pyramid is constructed using the Gaussian pyramid 
scheme described in [76]. The basic idea of Gaussian pyramid scheme is 
illustrated in fig. 5.1. The original image with fine resolution forms the base of the 
Gaussian pyramid, level 0. The resolution and sample density of the image at level 
0 is reduced to half to form the level 1 image. In a similar way, the process 
continues to form the next higher level till the specified number of levels is 
reached forming the Gaussian pyramid structure with the tip of it being the 
coarsest resolution. 

At each level the motion parameters that define the correspondence between the 
images are estimated by minimizing the objective or error function using the 
Gauss-Newton method. The error function, E, is given as: 

2
1 2( , ) [ ( , ) ( ( , ), ( , ) ) ]l l

x y

E u v I x y I x u x y y v x y= − − −∑ ∑ , (5.1)

where, (x, y) denote the spatial coordinates at a particular position in images, I1 
and I2; (u, v) represent the motion flow field between the images, the parameters 
of which need to be estimated by minimizing the error function and l denotes the 
level of image pyramid. Assuming a global motion model, affine transformation is 
used to approximate the relative motion flow field between the images. An affine 
model describes motions such as rotations, scaling, shearing and translation. 

Thus, the affine model may be expressed as: 

x

y

au x
A

av y

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. (5.2)

In this research, the focus is on calculating parameters to describe only rotation, 
scale and translation,   
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21 22

,
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−⎡ ⎤
= = =⎢ ⎥
⎣ ⎦

. (5.3)

The motion of the entire region is then specified by vector a, 

11 12 21 22

T

x ya a a a a a a⎡ ⎤= ⎣ ⎦ .    (5.4)

The estimated motion parameters are then used to compute the motion flow 
field, given in eq. (5.5), which in turn is used for warping the target frame over the 
reference frame. 
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= + +  .    (5.5)
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Level 0: 512 x 512 pixels
(finest resolution)

Level 1: 256 x 256 pixels

Level 2: 128 x 128 pixels

Level 3: 64 x 64 pixels

Level 4: 32 x 32 pixels
(coarsest resolution)

Level 0: 512 x 512 pixels
(finest resolution)

Level 1: 256 x 256 pixels

Level 2: 128 x 128 pixels

Level 3: 64 x 64 pixels

Level 4: 32 x 32 pixels
(coarsest resolution)

Level 0: 512 x 512 pixels
(finest resolution)

Level 1: 256 x 256 pixels

Level 2: 128 x 128 pixels

Level 3: 64 x 64 pixels

Level 4: 32 x 32 pixels
(coarsest resolution)

 
(a) 

 

Level 0 Level 1 Level 2 Level 3 Level 4Level 0 Level 1 Level 2 Level 3 Level 4Level 0 Level 1 Level 2 Level 3 Level 4  
(b) 

Fig. 5.1 (a) Gaussian image pyramid structure. (b) Five level Gaussian pyramid of ‘Lena’ 
image following the resolution structure shown in (a).  

A coarse-to-fine refinement strategy is implemented for improving the overall 
performance of the registration technique. By adopting a hierarchical strategy, the 
search window can be limited because small displacements in finer resolutions 
represent large ones in coarser resolution and therefore the motion estimation 
becomes much more efficient. The motion parameters are estimated at each 
resolution starting from the top of the pyramid, which is the coarsest level. Once 



82 5   Image Registration for Super-Resolution 
 

 

convergence is achieved at that level, the estimated motion parameters are then 
used as initial estimates for computing the parameters at the next level, down the 
pyramid. Therefore, at each new level the convergence is faster, since the 
transmitted motion parameters act as the initial conditions and are closer to the 
true parameters. The strategy also improves the computational efficiency, because 
more iteration are performed at the coarsest level of the pyramid where the amount 
of data is so greatly reduced that the computational load is negligible. Another 
attractive feature of using the pyramidal architecture is that it makes the 
registration technique robust to noise since the effect of noise at the coarsest level 
is almost indiscernible. 

5.5   Simulation Results 

Until now in the previous chapters, only translationally shifted low-resolution 
frames were considered for super-resolution image reconstruction. In this section, 
using the hierarchical motion estimation technique, rotationally and translationally 
shifted low-resolution frames are considered for creating a high-resolution frame. 

Using hierarchical motion estimation technique discussed in the previous section, 
registration parameters are estimated from a sequence of low-resolution frames 
(Lena) shown in fig. 5.2. Since the low-resolution frames are artificially generated, 
the ground truth information about motion parameters is known. Therefore, in this 
case, it is convenient to calculate the accuracy of registration technique used, that is, 
comparing the motion parameters estimated to the ground truth. The registration 
technique was successfully able to estimate all the motion parameters accurately.  

Using the estimated motion parameters, the IISR system generates a high-
resolution frame from a sequence of aliased, under-sampled, rotationally and 
translationally shifted low-resolution frames. Figure 5.3 shows the final IISR 
generated high-resolution frame for the ‘Lena’ sequence of low-resolution frames. 

Figure 5.4 shows another sequence of aliased, under-sampled low-resolution 
frames. These frames too are artificially generated and hence ground truth 
information about motion parameters is known for evaluating the accuracy of the 
registration technique implemented. The motion parameters are estimated 
accurately and are exactly same as the ground truth information. Figure 5.5 shows 
the final IISR generated high-resolution frame for the ‘Concentric Circles’ 
sequence of low-resolution frames. 

Tables, 5.1(a) and 5.1(b), enumerate the accuracy of estimation of both, rotational 
and translation parameters, in a noiseless environment using the pyramidal 
registration technique. The statistical data presented in the tables was generated 
using all the 10 low-resolution frames of the ‘Concentric Circles’ sequence, shown 
in fig. 5.4. The ground truth data for both rotational and translational shifts has been 
provided for each of the low-resolution frames in the tables. Also, the total number 
of levels in the image pyramid, used for the motion estimation, are provided to 
illustrate the advantages of using a hierarchical architecture.  

To test the robustness of motion estimation technique, white Gaussian noise 
level of 20dB is added to the sequence of under-sampled images of the  
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Fig. 5.2 Rotationally and translationally shifted noiseless low-resolution frames [85 x 85], 
of the ‘Lena’ sequence 
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Fig. 5.3 IISR-generated high-resolution image, [1020 x 1020] with RMSE = 0.068778 and 
PSNR = 71.3818 dB 

‘Concentric Circles’ sequence shown in fig. 5.4 and are illustrated in fig. 5.6. 
Motion parameter estimation is then carried over these noise corrupted frames. 
The estimated parameters, both rotational and translational, for all the low-
resolution images, using different number of levels of the image pyramid are 
populated in tables, 5.2(a) and 5.2(b). An example of the 4 - level multi-resolution 
image pyramid for one of the 10 noise-corrupted low-resolution frames is shown 
in fig. 5.7. Although the resolution is different at each level, the size has been 
expanded to the size of the base level of that pyramid. 

Also, the effect of low-pass filtering is clearly evident from fig. 5.7. The effect 
of noise at the coarsest level, level 3 of fig. 5.7, is certainly indiscernible making it 
easier for the accurate estimation of motion parameters as the smallest displace-
ment at the finest level becomes a large displacement at the coarsest level. 
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Fig. 5.4 Rotationally and translationally shifted noiseless low-resolution frames [85 x 85], 
of the ‘Concentric Circles’ sequence 
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Fig. 5.5 IISR-generated high-resolution image, [1020 x 1020] with RMSE = 0.051681 and 
PSNR = 73.8641 dB 

Table 5.1(a) Estimation of rotational shifts in noiseless low-resolution frames of the 
‘Concentric Circles’ sequence 

Number of Levels in Image Pyramid Low-Resolution Frames      
(  in degrees) 1 2 3 4 

LR1 (  = 2) 1.9453 1.9672 1.9672 1.9672 
LR2 (  = 4) 4.0495 4.0542 4.0542 4.0542 
LR3 (  = 6) 5.9539 5.9913 5.9913 5.9913 
LR4 (  = 8) 7.9445 7.9439 7.9438 7.9438 
LR5 (  = 10) 9.8172 9.9451 9.9453 9.9453 
LR6 (  = 12) 11.8329 11.9256 11.9256 11.9255 
LR7 (  = 14) 13.8318 14.2057 14.2059 14.2058 
LR8 (  = 16) 16.0731 16.1356 16.1351 16.1313 
LR9 (  = 18) 16.9218 18.2192 18.2217 18.2111 
LR10 (  = 20) 18.4856 20.0581 20.0715 -  
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Table 5.1(b) Estimation of translational shifts in noiseless low-resolution frames of the 
‘Concentric Circles’ sequence 

Number of Levels in Image Pyramid Low-Resolution 
Frames (dx,dy) 1 2 3 4 

LR1 (9,5) (9.031 , 4.928) (9.131 , 4.724) (9.031 , 4.928) (9.131 , 4.724) 
LR2 (4,11) (4.001 , 10.867) (4.671 , 10.764) (4.001 , 10.867) (4.671 , 10.764) 
LR3 (8,9) (8.013 , 8.769) (8.736 , 8.165) (8.013 , 8.769) (8.736 , 8.165) 
LR4 (0,1) (0.0199 , 1.109) (0.0182 , 1.545) (0.019 , 1.109) (0.018 , 1.545) 
LR5 (5,2) (5.041 , 2.114) (5.139 , 1.766) (5.041 , 2.114) (5.139 , 1.766) 
LR6 (8,0) (8.016 , 0.0530) (7.644 , 1.116) (8.016 , 0.053) (7.644 , 1.116) 
LR7 (1,5) (0.992 , 4.963) (1.996 , 5.314) (0.992 , 4.963) (1.996 , 5.314) 
LR8 (0,10) (0.027 , 9.771) (2.610 , 10.223) (0.027 , 9.771) (2.610 , 10.223) 
LR9 (4,6) (4.054 , 5.844) (5.234 , 5.382) (4.054 , 5.844) (5.234 , 5.382) 
LR10 (3,3) (3.087 , 3.106) (3.584 , 3.068) (3.087 , 3.106) (3.584 , 3.068)  

Table 5.2(a) Estimation of rotational shifts in noise-corrupted low-resolution frames of the 
‘Concentric Circles’ sequence 

Number of Levels in Image Pyramid Low-Resolution Frames      
(  in degrees) 1 2 3 4 

LR1 (  = 2) 1.934 2.019 2.019 2.0191 

LR2 (  = 4) 3.9736 4.0131 4.0132 4.0132 

LR3 (  = 6) 5.7355 5.8825 5.8827 5.8829 

LR4 (  = 8) 8.007 8.0197 8.0197 8.0197 

LR5 (  = 10) 9.6605 10.0552 10.0554 10.0554 

LR6 (  = 12) 11.4308 11.8579 11.8579 11.8579 

LR7 (  = 14) 12.9267 14.1968 14.1974 14.1975 

LR8 (  = 16) 15.3704 16.1807 16.1801 16.1758 

LR9 (  = 18) 15.3854 18.325 18.3265 18.3193 

LR10 (  = 20) 15.9934 20.1116 20.1166 - 
 

Table 5.2(b) Estimation of translational shifts in noise-corrupted low-resolution frames of 
the ‘Concentric Circles’ sequence 

Number of Levels in Image Pyramid Low-Resolution 
Frames (dx,dy) 1 2 3 4 

LR1 (9,5) (9.045 , 4.877) (9.045 , 4.877) (9.045 , 4.877) (9.045 , 4.877) 
LR2 (4,11) (3.998 , 10.885) (3.998 , 10.885) (3.998 , 10.885) (3.998 , 10.885) 
LR3 (8,9) (8.019 , 8.760) (8.019 , 8.760) (8.019 , 8.760) (8.019 , 8.760) 
LR4 (0,1) (0.036 , 1.081) (0.036 , 1.081) (0.036 , 1.081) (0.036 , 1.081) 
LR5 (5,2) (4.965 , 2.042) (4.965 , 2.042) (4.965 , 2.042) (4.965 , 2.042) 
LR6 (8,0) (7.980 , 0.0428) (7.980 , 0.042) (7.980 , 0.042) (7.980 , 0.042) 
LR7 (1,5) (0.975 , 4.924) (0.975 , 4.924) (0.975 , 4.924) (0.975 , 4.924) 
LR8 (0,10) (0.056 , 9.779) (0.056 , 9.779) (0.056 , 9.779) (0.056 , 9.779) 
LR9 (4,6) (3.942 , 5.802) (3.942 , 5.802) (3.942 , 5.802) (3.942 , 5.802) 
LR10 (3,3) (2.974 , 3.067) (2.974 , 3.067) (2.974 , 3.067) (2.974 , 3.067)  
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Fig. 5.6 Rotationally and translationally shifted, noise-corrupted low-resolution frames 
[85 x 85], of the ‘Concentric Circles’ sequence 
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                  Level 0 [85 x 85]    Level 1 [43 x 43] 

      

                   Level 2 [22 x 22]              Level 3 [11 x 11] 

Fig. 5.7 Different levels of a 4 - level image pyramid with each level, expanded to the same 
size of image at level 0 

The high-resolution image reconstructed, using the noise-corrupted low-
resolution frames, is shown in fig. 5.8. One can clearly see from tables 5.1 and 5.2 
that the pyramidal architecture certainly proves to be efficient in generating 
accurate estimations of motion parameters. The technique is also able to 
successfully estimate the motion parameters in a noisy environment. As evident 
from the tables, the technique is also able to accurately estimate the angle of 
rotation, as large as 20˚. 

 



90 5   Image Registration for Super-Resolution 
 

 

 

Fig. 5.8 IISR-generated high-resolution image, [1020 x 1020] with RMSE = 0.092203 and 
PSNR = 68.8359 dB 

5.6   Summary 

To achieve accurate reconstruction of high-resolution images from a sequence of 
under-sampled low-resolution frames, it cannot be emphasized more, how critical 
it is to align all the frames accurately. Almost all computer vision applications 
employ some form of image registration to acquire detailed information from the 
registered images.  

Various image registration techniques have been introduced in the literature 
since last two decades. Among these, the hierarchical-based architecture for image 
registration proves to be an efficient and accurate technique for motion estimation. 
To simulate a realistic scenario for super-resolution, it is important to consider a 
general motion model for registering the low-resolution images. Therefore, based 
upon [5], the motion parameters are estimated from a sequence of rotated and 
translated, aliased, under-sampled, low-resolution frames.  
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The simulations provided in this chapter show that the multi-resolution image 
pyramidal architecture along with coarse-to-fine refinement strategy generates 
accurate estimation of motion parameters. In the case of noise contaminated low-
resolution frames, employing such motion estimation scheme ensures that even 
with high noise, angle of rotation and translational shifts can be accurately 
recovered for precise alignment for maximum recovery of scene information to 
generate a high-resolution approximation of the true scene. It is also evident from 
the statistical data shown in tables, 5.1 and 5.2 that the estimated motion parameters 
are in complete agreement with the true parameters. The scheme converges for 
angle of rotation as large as 20˚.  

Being a hierarchical-based image registration technique, the method has a low 
computational load and is certainly efficient. The technique proves to be well-
suited for incorporating it with the proposed fast IISR scheme, to provide a 
complete super-resolution image reconstruction package. 
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Chapter 6 
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6.1   Introduction  

In this chapter, the software frameworks that have been developed during the 
research are presented: 

• Iterative-Interpolation Super-Resolution (IISR). 
• Image Super-Resolution Optimization (ISRO). 

The techniques described in previous chapters have all been included in the 
above two mentioned softwares. For a better understanding, principle block 
diagrams for each of the above softwares will be presented. Each software 
package comprises of several routines which will be illustrated as modules in the 
principle block diagram of that software package and a description or functionality 
for each of these modules will be provided.  

6.2   Iterative-Interpolation Super-Resolution (IISR) 

This software package is based upon the novel approach presented in chapter 3 of 
this study. The aim of this software is to generate a high-quality, high-resolution 
image from a sequence of geometrically warped, aliased, and under-sampled low-
resolution frames.   

6.2.1   Block Diagram 

The principle block diagram for the IISR system is shown in fig. 6.1. The imaging 
process acquires a sequence of under-sampled, low-resolution frames of the true 
high-resolution scene. The low-resolution frames undergo registration so as to 
estimate the motion parameters. Using these motion parameters, each pixel from 
each of the low-resolution frames is mapped on to a composite high-resolution 
grid image. The reconstruction process, then acts over this grid image to generate 
the first approximation of the true scene.  
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Depending upon the number of iterations specified, the first approximation 
undergoes iterative improvement to generate the final high-resolution estimate of 
the true scene.  

6.2.2   Modules 

As mentioned earlier, there are several routines that build up the IISR system and as 
shown in fig. 6.1, the software is completely modular to achieve maximum flexibility. 
The functionality of each of these routines or modules is explained below. 

• Camera Simulation: This module is an approximate camera simulation 
routine. The imaging process introduces a desired amount of warping, 
blurring and down-sampling over the area of a high-resolution scene that is 
specified to be acquired, to generate an artificial low-resolution frame of 
that scene. The number of low-resolution frames to be generated can be 
specified in the imaging process. 

• Image Registration: The aim of this module is to calculate the relative 
motion between two or more images. Using hierarchical motion estimation 
technique over the low-resolution frames, motion parameters are calculated. 

• Mapping Process: Using the estimated motion parameters, this routine 
maps and up-samples each and every pixel from all the low-resolution 
frames onto a composite high-resolution grid. See fig. 6.2. 

• Reconstruction Process: The reconstruction process interpolates the 
composite high-resolution grid image to generate the first approximation of 
the true high-resolution scene. Several interpolation kernels have been 
incorporated in the reconstruction process. 

Composite High-Resolution 
Grid Image

Zoomed High-Resolution Area 

Ten Low-Resolution Images

SampR

S
am

pR

SampR (Sub-Sampling Ratio) = 12

Composite High-Resolution 
Grid Image

Zoomed High-Resolution Area 

Ten Low-Resolution Images

SampR

S
am

pR

SampR (Sub-Sampling Ratio) = 12  

Fig. 6.2 Mapping Process 
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• Iterative Improvement: In this module, all processes mentioned above, that is, 
the imaging process, mapping and reconstruction process are incorporated. This 
module iteratively improves the first approximation until the specified number 
of iterations is finished and a final high-resolution estimate of the true scene is 
generated.  

• Similarity Measure: To evaluate the reconstruction quality of the final IISR-
generated high-resolution image, one could measure the similarity between the 
actual true scene or ground truth and the reconstructed scene. This would 
include calculating RMSE and PSNR. This module is only applicable when the 
original true high-resolution scene is known and available for comparison.  

6.2.3   Software Tools 

The IISR system is a MATLAB-based software package, built on MATLAB 
7.1.0.246 (R14) Service Pack 3 using Image Processing Toolbox v5.1. MATLAB 
provides flexibility in designing and has a huge mathematical functionality for 
building various algorithms. The image processing toolbox provides an extensive 
suite of robust digital image processing and analytical functions. MATLAB’s own 
graphical user interface development environment, GUIDE, was used to create 
graphical user interfaces (GUIs) to ease the use of the IISR system.  

6.2.4   GUI Screenshot 
Following is the screenshot of the IISR-GUI system. 

 

Fig. 6.3 IISR Graphical User Interface 
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6.2.5   Salient Features 

Following are some of the most important features of the IISR software: 

• The software can be executed in either a demo mode or work mode. 
• In demo mode,  

- The user may choose a true high-resolution scene from which 
a sequence of artificially generated low-resolution images 
will be created and then using this sequence as the starting 
point, the IISR system will reconstruct the final estimate of 
the high-resolution frame.  

- The user can change the imaging process parameters, such as 
the decimation ratio, to obtain a different sequence of 
artificially generated low-resolution frames.  

- The user has the option of enabling or disabling the inbuilt 
registration routine. If disabled, the motion parameters used 
by the camera simulation module to generate the low-
resolution frames will be used for further processing. 

- Overall, in the demo mode, the user only has a partial control 
over the IISR system. 

• In work mode,  

- The user can provide a sequence of low-resolution frames in 
a desired format, for IISR to reconstruct the final estimate of 
the high-resolution frame.  

- The user also has the option of enabling or disabling the 
inbuilt registration routine. If disabled, the motion parameters 
need to be calculated independently of the system and 
provided to the IISR scheme for super-resolution image 
reconstruction to proceed.  

- Overall, in the work mode, the user has a full control over the 
IISR system. 

• The user has the full ability to save the low-resolution and high-resolution 
frames as *.MAT/*.AVI files.  

• The user can also opt to save the statistical data generated by the IISR 
system as a text file. 

6.3   Image Super-Resolution Optimization (ISRO) 

This software package was mainly developed in order to compare the full solution 
of the IISR-generated high-resolution image with the one generated by using the 
optimization approach. The software also helps in understanding the role of 
regularization in image super-resolution. The problem of estimating the high-
resolution image is reformulated in terms of a regularized optimization procedure 
and the minimum of the resulting objective function is sought:  
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2

min
0

A b
X

Qλ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 .    (6.1)

For more details, please refer to chapter 4. 

6.3.1   Block Diagram 

The principle block diagram for the ISRO system is shown in fig. 6.4. The 
imaging process acquires a sequence of geometrically warped, under-sampled, 
low-resolution frames of the true high-resolution scene. The low-resolution frames 
undergo registration so as to estimate the motion parameters. These parameters are 
then used to construct a large sparse sampling matrix. An initial estimate of the 
true scene along with regularization parameters, sampling matrix and the low-
resolution frames are provided as an input to the minimization routine, to generate 
the final high-resolution estimate of the original scene. 

6.3.2   Modules 

The software is completely modular to achieve maximum flexibility. Functionality 
of each of these routines or modules is explained below. 

• Camera Simulation: This module is an approximate camera simulation 
routine. The imaging process introduces a desired amount of warping, 
blurring and down-sampling over the area of a high-resolution scene that is 
specified to be acquired, to generate an artificial low-resolution frame of 
that scene. The number of low-resolution frames to be generated can be 
specified in the imaging process. 

• Image Registration: The aim of this module is to calculate the relative 
motion between two or more images. Using hierarchical motion estimation 
technique over the low-resolution frames, motion parameters are calculated.  

• Sampling Matrix: This process creates a sampling matrix which reverses 
the imaging process. The functionality of this matrix is similar to the 
mapping process of the IISR system. 

• Regularization Parameters: The parameters of the regularization term 
shown in eq. (4.7), λ, the regularization parameter and Q, the stabilization 
matrix are formed in this process. 

• Initialization: In order to increase the convergence rate, the minimization 
algorithm can be initialized with some approximate estimate of the scene 
which needs to be super-resolved. This estimate could be a blank image too. 

• Minimization Routine: An iterative conjugate gradient like method is 
implemented for finding the minimum of eq. (6.1). After completing a specified 
number of iterations, a final high-resolution estimate of the true scene is 
generated. The iterative techniques as compared to a direct method utilize matrix-
vector multiplications thereby comparatively decreasing the computational time 
and storage requirements for huge sparse matrices and vectors. 
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• Similarity Measure: To evaluate the reconstruction quality of the final 
ISRO-generated high-resolution image, one could measure the similarity 
between the actual true scene or ground truth and the reconstructed scene. 
This would include calculating RMSE and PSNR. This module is only 
applicable when the original true high-resolution scene is known and 
available for comparison.  

6.3.3   Software Tools 

The ISRO system is a MATLAB-based software package, built on MATLAB 
7.1.0.246 (R14) Service Pack 3 using Image Processing Toolbox v5.1. Due to the 
complexity and size of the problem, for the purpose of large-scale optimization, 
instead of using MATLAB’s Optimization Toolbox, we employ TOMLAB 
development environment in MATLAB. TOMLAB v4.8 provides state-of-the-art 
optimization software packages which are faster and more robust as compared to 
MATLAB’s optimization toolbox. The graphical user interface development 
environment of MATLAB, GUIDE, was used to create graphical user interfaces 
(GUIs) to ease the use of the ISRO system.  

6.3.4   GUI Screenshots 

Following are the screenshots of the ISRO-GUI system. 

 

Fig. 6.5 ISRO Graphical User Interface 

 



6.3   Image Super-Resolution Optimization (ISRO) 101 
 

 
(a) 

 
(b) 

Fig. 6.6 GUIs called from within the main ISRO GUI. (a) Basic Parameters GUI, and (b) 
Select Scenario GUI. 

6.3.5   Salient Features 

Following are some of the most important features of the ISRO software: 
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• The software can be executed in either a demo mode or work mode. 
• In demo mode,  

- The user may choose a true high-resolution scene from which 
a sequence of artificially generated low-resolution images 
will be created and will be used to reconstruct the final 
estimate of the high-resolution frame.  

- The user can change the imaging process parameters, such as 
the decimation ratio, to obtain a different sequence of 
artificially generated low-resolution frames.  

- The user also has the option of enabling or disabling the 
inbuilt registration routine. If disabled, the motion parameters 
used by the camera simulation module to generate the low-
resolution frames will be used for further processing. 

- Overall, in the demo mode, the user only has a partial control 
over the ISRO system. 

• In work mode,  

- The user can provide a sequence of low-resolution frames in 
a desired format, for the minimization routine to reconstruct 
the final estimate of the high-resolution frame.  

- The user also has the option of enabling or disabling the 
inbuilt registration routine. If disabled, the motion parameters 
need to be calculated independently of the system and 
provided to the minimization routine for super-resolution 
image reconstruction to proceed.  

- Overall, in the work mode, the user has a full control over the 
ISRO system. 

• The user can opt to save the statistical data generated by the system in a text 
file. 

• To speed up the convergence process, the user has the option of initiating 
the minimization routine with either a blank/zero approximation or the final 
IISR-generated high-resolution image. In the case of initiating the 
minimization routine with a final IISR-generated high-resolution image, it 
is important to note that the imaging conditions and the number of low-
resolution frames used should be exactly the same in both, IISR and ISRO. 
This makes sure that the solution generated by ISRO is consistent with the 
type of initialization.  

• For the purpose of understanding the key role of the regularization term in 
the reconstruction of a high-resolution image, the user has the option of 
experimenting with 4 different forms of the stabilization matrix, Q.  

• For the same purpose, the user also has the flexibility in selecting whether 
to execute the minimization routine for a specific value or over a range of 
values of the regularization parameter or damp factor, λ. 



6.4   Summary 103 
 

6.4   Summary 

During our research, MATLAB-based softwares were produced for solving the 
problem of super-resolution. The two major softwares that were produced are 
Iterative-Interpolation Super-Resolution (IISR) and Image Super-Resolution 
Optimization (ISRO). Both softwares can act as standalone super-resolution image 
reconstruction packages. They also serve the purpose of being experimental tools 
for understanding the effect on the fidelity of reconstruction by implementing 
different,  

• interpolation kernels in the IISR technique, or  
• regularization terms in ISRO package. 

For the ease of understanding the working of these softwares, skeleton diagrams 
have been provided along with brief descriptions of each and every process 
involved. To achieve maximum flexibility, the softwares have been developed to be 
as modular as possible. GUIs have also been created for both the softwares to 
provided maximum usability.  
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Chapter 7 
Conclusion and Future Directions 

In this chapter we conclude by emphasizing the contributions of this research in 
the field of image super-resolution reconstruction. Possible future research 
directions for image super-resolution are also provided.  

7.1   Contribution of This Research 

This research addresses the problem of super-resolution image enhancement in 
terms of maintaining highest fidelity of reconstruction and a low computational 
cost to achieve maximum applicability of super-resolution to the real-world 
applications [80].  

A novel and hybrid reconstruction scheme has been proposed for solving the 
problem of super-resolution restoration of high-resolution images from sequences 
of geometrically warped, aliased and under-sampled low-resolution images. This 
technique is known as the Iterative-Interpolation Super-Resolution (IISR). The 
proposed reconstruction scheme uses interpolation techniques to produce the first 
approximation of high-resolution image and then employs an iterative approach to 
generate the final solution. The extensive analytical data presented for the IISR 
system, illustrates the effectiveness and robustness of the proposed reconstruction 
scheme. As expected, the higher degree interpolation kernels were more accurate 
leading to better reconstruction but at a higher cost of computational time. The 
IISR scheme also contains implicit regularization features because both, the size 
of the interpolation kernel as well as the number of iterations, strongly affect the 
smoothness of the reconstructed HR image and controls the stability of the 
process. 

For reinvestigating the influence of regularization term on the accuracy of 
super-resolution image reconstruction, several different forms of regularization 
terms were studied in this research. Detailed analysis based on the experimental 
data generated by using the different forms of regularization terms is also 
presented.  In order to see the effect of the regularization parameter, λ, over the 
final solution, L-curve and λ-curve were considered. From our experiments, it was 
seen that super-resolution reconstruction was not very sensitive to the precise 
value of the regularization parameter when the parameter was larger than the true 
optimal value. This has practical implications and also explains why in many 
simulations good reconstructions were achieved with regularization parameter 
chosen in an ad hoc manner. However, because our simulations were limited only 
to several examples of imagery the observed insensitivity of the super-resolution 
reconstruction to the exact value of λ may not be a universal property.   
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Taking the advantage of the detailed analysis of the regularization term, the 
accuracy and efficiency of the IISR technique is evaluated by comparing it against 
the optimization technique using the best possible regularization term. After 
conducting several computer experiments, it was observed that the IISR 
reconstruction was reasonably accurate and that further improvement by the 
optimization procedure was relatively small and computationally expensive. The 
analysis also illustrate that for a faster convergence of the optimization procedure, 
the final IISR solution should be used as an initialization or starting point instead 
of a blank input HR image. 

To address the applicability of super-resolution techniques in a real world 
computer vision application, accurate alignment of all geometrically warped, 
aliased and under-sampled low-resolution frames is mandatory. A hierarchical 
architecture motion estimation technique based on [5] is adopted and implemented 
for accurate estimation of relative motion between the rotated and translationally 
shifted, aliased, under-sampled, low-resolution frames. Even in the case of noise 
contaminated low-resolution frames, hierarchical motion estimation scheme 
ensures accurate estimation of angle of rotation and translational shifts for precise 
alignment. Using a coarse-to-fine refinement strategy along with the pyramid 
architecture, the registration technique comparatively has a low computational 
cost. The technique therefore proves to be well-suited, to be incorporated with the 
proposed fast and efficient IISR scheme, to provide a complete super-resolution 
image reconstruction package. 

It cannot be emphasized more, that for the implementation of super-resolution 
reconstruction technique in a real environment, how important it is to maintain a 
proper balance between improving spatial resolution and keeping the 
computational time low. The proposed IISR system requires a relatively small 
number of low-resolution images for efficient reconstruction. Good results were 
obtained with only 10 LR frames for magnification factors as large as 20. This is 
important for practical applications, because if a large number of low-resolution 
images were required the accumulation of errors would impede the reconstruction 
accuracy. In order to evaluate the robustness of the proposed IISR system, all 
computer simulations and analytical data presented in this research were produced 
using noiseless and noise contaminated, aliased and under-sampled, low-
resolution frames. Also, since each iteration in the IISR scheme only requires 
simple operations the technique is fast and computationally efficient. With further 
development, the technique certainly is promisingly suitable for hardware 
implementation for real-time processing.   

Lastly, two major professional software frameworks, IISR and ISRO, have 
been presented in this work based on our research. To achieve maximum 
flexibility and usability, the softwares have been made modular and GUIs have 
been created using MATLAB’s GUIDE. Both softwares serve the purpose of 
being standalone super-resolution image reconstruction packages. They can also 
be utilized as experimental tools for comparing the accuracy of reconstruction by 
generating high-resolution images, using different interpolation kernels in the IISR 
package or different combinations of the regularization term, λ and Q, in the ISRO 
package. With further development, both the software packages, IISR and ISRO, 
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are commercially promising and valuable for further research and development of 
computationally efficient super-resolution image reconstruction techniques. 

7.2   Future Directions 

There are several areas of super-resolution in which future research may be 
performed. One such important area is, developing of a more sophisticated and 
elaborate motion model. Such a model could incorporate complex motions such as 
occlusion or non-linear motion. Estimating the motion parameters accurately in 
such a motion model is a challenging problem by itself. As the complexity of the 
problem along with the image data size increases, the computational speed of 
accurate motion estimation also increases. It is therefore important to develop 
registration techniques for complex motion models with comparatively low 
computation speed for applicability in real world computer vision applications. 

Another area of research would be to develop a fast object tracking algorithm. 
This would enable a user to select a ROI in the low-resolution frames and the 
tracking algorithm would have to intelligently track the object through all the 
frames. It would be advantageous to specify a threshold or minimum area of ROI 
to be tracked so that any unwanted erroneous pixels do not get selected into the 
ROI after tracking. An extension of this could be automating the selection of ROI 
and tracking it, that is selecting, identifying and tracking possible targets within a 
sequence of low-resolution frames. For example, selecting a car's rear license plate 
or intelligently marking the boundary of a human fig. or face in the center of the 
frame as the ROI. 

Acquired images are generally contaminated by noise due to the imperfect 
imaging systems. Noise can also be introduced due to compression or transmission 
errors. In the last two decades a number of denoising techniques have been 
proposed in the literature. Among these, techniques based on wavelets have gained 
more popularity as compared to the ones based on spatial and Fourier domains. 
Developing a fast and robust denoising technique based on wavelet transforms for 
large-scale problems is a promising future direction for research as well. 
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