
BorderFlow: A Local Graph Clustering

Algorithm for Natural Language Processing

Axel-Cyrille Ngonga Ngomo and Frank Schumacher

Department of Business Information Systems University of Leipzig
Johannisgasse 26, Leipzig D-04103, Germany

{ngonga,schumacher}@informatik.uni-leipzig.de
http://bis.uni-leipzig.de/

Abstract. In this paper, we introduce BorderFlow, a novel local graph
clustering algorithm, and its application to natural language processing
problems. For this purpose, we first present a formal description of the al-
gorithm. Then, we use BorderFlow to cluster large graphs and to extract
concepts from word similarity graphs. The clustering of large graphs is
carried out on graphs extracted from the Wikipedia Category Graph.
The subsequent low-bias extraction of concepts is carried out on two
data sets consisting of noisy and clean data. We show that BorderFlow
efficiently computes clusters of high quality and purity. Therefore, Bor-
derFlow can be integrated in several other natural language processing
applications.

1 Introduction

Graph-theoretical models and algorithms have been successfully applied to na-
tural language processing (NLP) tasks over the past years. Especially, graph
clustering has been applied to areas as different as language separation [3], lexical
acquisition [9] and word sense disambiguation [12]. The graphs generated in NLP
are usually large. Therefore, most global graph clustering approaches fail when
applied to NLP problems. Furthermore, certain applications (such as concept
extraction) require algorithms able to generate a soft clustering. In this paper,
we present a novel local graph clustering algorithm called BorderFlow, which
is designed especially to compute a soft clustering of large graphs. We apply
BorderFlow to two NLP-relevant tasks, i.e., clustering large graphs and concept
extraction. We show that our algorithm can be effectively used to tackle these
two tasks by providing quantitative and qualitative evaluations of our results.

This paper is structured as follows: in the next section, we describe Border-
Flow formally. Thereafter, we present our experiments and results. First, we
present the results obtained using BorderFlow on three large similarity graphs
extracted from the Wikipedia Category Graph (WCG). By these means, we show
that BorderFlow can efficiently handle large graphs. Second, we use BorderFlow
to extract domain-specific concepts from two different corpora and show that
it computes concepts of high purity. Subsequently, we conclude by discussing
possible extensions and applications of BorderFlow.

A. Gelbukh (Ed.): CICLing 2009, LNCS 5449, pp. 547–558, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

548 A.-C. Ngonga Ngomo and F. Schumacher

2 BorderFlow

BorderFlow is a general-purpose graph clustering algorithm. It uses solely local
information for clustering and achieves a soft clustering of the input graph. The
definition of cluster underlying BorderFlow was proposed by Flake et al. [5],
who state that a cluster is a collection of nodes that have more links between
them than links to the outside. When considering a graph as the description of
a flow system, Flake et al.’s definition of a cluster implies that a cluster X can
be understood as a set of nodes such that the flow within X is maximal while
the flow from X to the outside is minimal. The idea behind BorderFlow is to
maximize the flow from the border of each cluster to its inner nodes (i.e., the
nodes within the cluster) while minimizing the flow from the cluster to the nodes
outside of the cluster. In the following, we will specify BorderFlow for weighted
directed graphs, as they encompass all other forms of non-complex graphs.

2.1 Formal Specification

Let G = (V, E, ω) be a weighted directed graph with a set of vertices V, a set
of edges E and a weighing function ω, which assigns a positive weight to each
edge e ∈ E. In the following, we will assume that non-existing edges are edges e
such that ω(e) = 0. Before we describe BorderFlow, we need to define functions
on sets of nodes. Let X ⊆ V be a set of nodes. We define the set i(X) of inner
nodes of X as:

i(X) = {x ∈ X |∀y ∈ V : ω(xy) > 0 → y ∈ X}. (1)

The set b(X) of border nodes of X is then

b(X) = {x ∈ X |∃y ∈ V \X : ω(xy) > 0}. (2)

The set n(X) of direct neighbors of X is defined as

n(X) = {y ∈ V \X |∃x ∈ X : ω(xy) > 0}. (3)

In the example of a cluster depicted in Figure 2.1, X = {3, 4, 5, 6}, the set of
border nodes of X is {3, 5} , {6, 4} its set of inner nodes and {1, 2} its set of
direct neighbors.

Let Ω be the function that assigns the total weight of the edges from a subset
of V to another one to these subsets (i.e., the flow between the first and the
second subset). Formally:

Ω : 2V × 2V → R

Ω(X, Y) =
∑

x∈X,y∈Y ω(xy). (4)

We define the border flow ratio F (X) of X ⊆ V as follows:

F (X) =
Ω

(
b(X), X

)

Ω
(
b(X), V \X) =

Ω
(
b(X), X

)

Ω
(
b(X), n(X)

) . (5)

BorderFlow: A Local Graph Clustering Algorithm 549

3

1 2
7

…

6 4

5

… …

Fig. 1. An exemplary cluster. The nodes with relief are inner nodes, the grey nodes
are border nodes and the white are outer nodes. The graph is undirected.

Based on the definition of a cluster by [5], we define a cluster X as a node-
maximal subset of V that maximizes the ratio F (X)1, i.e.:

∀X ′ ⊆ V, ∀v /∈ X : X ′ = X + v → F (X ′) < F (X). (6)

The idea behind BorderFlow is to select elements from the border n(X) of
a cluster X iteratively and insert them in X until the border flow ratio F (X)
is maximized, i.e., until Equation (6) is satisfied. The selection of the nodes to
insert in each iteration is carried out in two steps. In a first step, the set C(X)
of candidates u ∈ V \X which maximize F (X + u) is computed as follows:

C(X) := argmax
u∈n(X)

F (X + u). (7)

By carrying out this first selection step, we ensure that each candidate node
u which produces a maximal flow to the inside of the cluster X and a minimal
flow to the outside of X is selected. The flow from a node u ∈ C(X) can be
divided into three distinct flows:

– the flow Ω(u, X) to the inside of the cluster,
– the flow Ω(u, n(X)) to the neighbors of the cluster and
– the flow Ω(u, V \(X ∪ n(X))) to the rest of the graph.

Prospective cluster members are elements of n(X). To ensure that the inner flow
within the cluster is maximized in the future, a second selection step is necessary.
During this second selection step, BorderFlow picks the candidates u ∈ C(X)
which maximize the flow Ω(u, n(X)). The final set of candidates Cf (X) is then

Cf (X) := argmax
u∈C(X)

Ω(u, n(X)). (8)

All elements of Cf (X) are then inserted in X if the condition
1 For the sake of brevity, we shall utilize the notation X +c to denote the addition of a

single element c to a set X. Furthermore, singletons will be denoted by the element
they contain, i.e., {v} ≡ v.

550 A.-C. Ngonga Ngomo and F. Schumacher

F (X ∪ Cf (X)) ≥ F (X) (9)

is satisfied.

2.2 Heuristics

One drawback of the method proposed above is that it demands the simulation of
the inclusion of each node in n(X) in the cluster X before choosing the best ones.
Such an implementation can be time-consuming as nodes in terminology graphs
can have a high number of neighbors. The need is for a computationally less expen-
sive criterion for selecting a nearly optimal node to optimize F (X). Let us assume
that X is large enough. This assumption implies that the flow from the cluster
boundary to the rest of the graph is altered insignificantly when adding a node to
the cluster. Under this condition, the following two approximations hold:

Ω(b(X), n(X)) ≈ Ω(b(X + v), n(X + v)),
Ω(b(X), v) − Ω(d(X, v), X + v) ≈ Ω(b(X), v). (10)

Consequently, the following approximation holds:

ΔF (X, v) ≈ Ω(b(X), v)
Ω(b(X + v), n(X + v))

. (11)

Under this assumption, one can show that the nodes that maximize F (X)
maximize the following:

f(X, v) =
Ω(b(X), v)
Ω(v, V \X)

for symmetrical graphs. (12)

Now, BorderFlow can be implemented in a two-step greedy fashion by ordering
all nodes v ∈ n(X) according to 1/f(X, v) (to avoid dividing by 0) and choosing
the node v that minimizes 1/f(X, v). Using this heuristic, BorderFlow is easy
to implement and fast to run.

3 Experiments and Results

In this section, we present two series of experiments carried out using Border-Flow.

3.1 Clustering Large Graphs

Experimental Setup
The global aim of this series of experiments was to generate a soft clustering of
paradigmatically similar nodes from the WCG. The WCG2 is a directed cyclic
graph whose edges represent the is-a relation [15]. Therefore, we needed to define
a similarity metric for the categories ζ of the WCG. We chose to use the Jaccard
metric
2 We used the version of July 2007.

BorderFlow: A Local Graph Clustering Algorithm 551

σr(ζ, ζ′) =
2|R(ζ, r) ∩ R(ζ′, r)|
|R(ζ, r) ∪ R(ζ′, r)| (13)

on the sets
R(x, r) = {y : r(x, y)}, (14)

where r was one of the following three relations:

– parent-of : parent-of (ζ, ζ′) ⇔ ζ′ is-a ζ.
– child-of : child-of (ζ, ζ′) ⇔ ζ is-a ζ′.
– shared-article: shared-article(ζ, ζ′) holds iff there exists a Wikipedia article

that was tagged using both ζ and ζ′.

To ensure that we did not generate polysemic clusters, we did not use hubs
as seeds. In the context of our experiments, we defined hubs as nodes which
displayed a connectivity above the average connectivity of the graph. In the
graphs at hand, the average connectivity for parent-of was 295, 8 for child-of
and 60 for shared-article. It is important to notice that nodes with a connectivity
above average could be included in clusters. The quantitative evaluation of our
clustering was carried out by using the silhouette index [11].

Results
We tried clustering the three resulting similarity graphs using the MCL algo-
rithm [14] but had to terminate the run after seven days without results. Table 1
sums up the results we obtained by using BorderFlow. There were 244,545 initial
categories. The clustering based on child-of covered solely 31.63% of the cate-
gories available because a high percentage of the categories of the WCG do not
have any descendant. The other two relations covered approximately the same
percentage of categories (82.21% for shared-article and 82.07% for parent-of).

Figure 2 shows the distribution of the silhouette over all the clusters computed
on the three graphs. The best clustering was achieved on the shared-article-
graph (see Figure 2(a)). We obtained the highest mean (0.92) with the smallest
standard deviation (0.09). An analysis of the silhouettes of the clusters computed
by using the parent-of -graph revealed that the mean of the silhouette lied around
0.74 with a standard deviation of 0.24 (see Figure 2(b)). The smaller average

Table 1. Results on the WCG

shared-article child-of parent-of

Categories 201,049 77,292 200,688
Coverage 82.21% 31.61% 82.07%
Clusters 93,331 28,568 90,418
Average number of nodes per clusters 3.59 2.29 8.63
Average number of clusters per node 7.74 6.20 19.15
Mean silhouette 0.92 0.20 0.74
Standard deviation 0.09 0.19 0.24

552 A.-C. Ngonga Ngomo and F. Schumacher

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

200

400

600

800

1000

1200

N
um

be
r

of
 c

lu
st

er
s

Silhouette values

(a) Using shared-article

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

200

400

600

800

1000

1200

N
um

be
r

of
 c

lu
st

er
s

Silhouette values

(b) Using child-of

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

500

1000

1500

2000

2500

N
um

be
r

of
 c

lu
st

er
s

Silhouette values

(c) Using parent-of

Fig. 2. Distribution of silhouette values

Fig. 3. An example of a cluster containing “Computational Linguistics”

silhouette value was mainly due to the high connectivity of the simila-rity graph
generated using this relation, resulting into large clusters and thus a higher flow
to the outside (see Table 1). Clustering the child-of -graph yielded the worst

BorderFlow: A Local Graph Clustering Algorithm 553

results, with a mean of 0.20 and a standard deviation of 0.19. Figure 3 shows an
example of a cluster containing “Computational Linguistics”.

The high average number of clusters per node (i.e., the number of cluster
to which a given node belongs) show how polysemic the categories contained
in the WCG are. By using the clustering resulting from our experiments with
the shared-article relation, one can subdivide the WCG into domain-specific
categories and use these to extract domain-specific corpora from Wikipedia.
Furthermore, BorderFlow allows the rapid identification of categories similar to
given seed categories. Thus, BorderFlow can be used for other NLP applications
such as query expansion [2], topic extraction [8] and terminology expansion [7].

3.2 Low-Bias Concept Extraction

In our second series of experiments, we used BorderFlow for the low-bias extrac-
tion of concepts (i.e., semantic classes) from word similarity graphs. We were
especially interested in providing a qualitative evaluation of the results of Bor-
derFlow. For this purpose, we measured the purity of the clusters computed by
BorderFlow against a reference data set.

Experimental Setup
The input to our approach to concept extraction consisted exclusively of domain-
specific corpora. Our approach was subdivided into two main steps. First, we
extracted the domain-specific terminology from the input without using any a-
priori knowledge on the structure of the language to process or the domain to
process. Then, we clustered this terminology to domain-specific concepts. The
low-bias terminology extraction was carried out by using the approach described
in [9] on graphs of the size 20,000. Our experiments were conducted on two data
sets: the TREC corpus for filtering [10] and a subset of the articles published by
BioMed Central (BMC3). Henceforth, we will call the second corpus BMC. The
TREC corpus is a test collection composed of 233,445 abstracts of publications
from the bio-medical domain. It contained 38,790,593 running word forms. The
BMC corpus consists of full text publications extracted from the BMC Open
Access library. The original documents were in XML. We extracted the text
entries from the XML data using a SAX4 Parser. Therefore, it contained a large
amount of impurities that were not captured by the XML-parser. The main idea
behind the use of this corpus was to test our method on real life data. The 13,943
full text documents contained 70,464,269 running word forms.

For the extraction of concepts, we represented each of the domain-specific
terms included in the terminology extracted priorly by its most significant co-
occurrences [6]. These were computed in two steps. In a first step, we extracted
function words by retrieving the f terms with the lowest information content
according to Shannon’s law [13]. Function words were not considered as being
significant co-occurrences. Then, the s best scoring co-occurrences of each term
3 http://www.biomedcentral.com
4 SAX stands for Simple Application Programming Interface for XML.

554 A.-C. Ngonga Ngomo and F. Schumacher

that were not function words were extracted and stored as its feature vector.
The similarity values of the features vectors were computed by using the cosine
metric. The resulting similarity values were used to compute a term similarity
graph, which was utilized as input for BorderFlow. We evaluated our results
quantitavely and qualitatively. In the quantitative evaluation, we compared the
clustering generated by BorderFlow with that computed using kNN, which is
the local algorithm commonly used for clustering tasks. In the qualitative eval-
uation, we computed the quality of the clusters extracted by using BorderFlow
by comparing them with the controlled MEdical Subject Headings (MESH5)
vocabulary.

Quantitative Evaluation
In this section of the evaluation, we compared the average silhouettes [11] of the
clusters computed by BorderFlow with those computed by kNN on the same
graphs. To ensure that all clusters had the same maximal size k, we used the
following greedy approach for each seed: first, we initiated the cluster X with
the seed. Then, we sorted all v ∈ n(X) according to their flow to the inside of
the cluster Ω(v, X) in the descending order. Thereafter, we sequentially added
all v until the size of the cluster reached k. If it did not reached k after adding
all neighbors, the procedure was iterated with X = X ∪ n(X) until the size k
was reached or no more neighbors were found.

One of the drawbacks of kNN lies in the need for specifying the right value for
k. In our experiments, we used the average size of the clusters computed using
BorderFlow as value for k. This value was 7 when clustering the TREC data.
On the BMC corpus, the experiments with f = 100 led to k = 7, whilst the
experiments with f = 250 led to k = 9. We used exactly the same set of seeds
for both algorithms.

The results of the evaluation are shown in Table 2. On both data sets, Border-
Flow significantly outperformed kNN in all settings. On the TREC corpus, both
algorithms generated clusters with high silhouette values. BorderFlow outper-
formed kNN by 0.23 in the best case (f = 100, s = 100). The greatest difference
between the standard deviations, 0.11, was observed when f = 100 and s = 200.
In average, BorderFlow outperformed kNN by 0.17 with respect to the mean
silhouette value and by 0.08 with respect to the standard deviation. In the worst
case, kNN generated 73 erroneous clusters, while BorderFlow generated 10. The
distribution of the silhouette values across the clusters on the TREC corpus for
f = 100 and s = 100 are shown in Figure 4(a) for BorderFlow and Figure 4(b)
for kNN.

The superiority of BorderFlow over kNN was better demonstrated on the
noisy BMC corpus. Both algorithms generated a clustering with lower silhouette
values than on TREC. In the best case, BorderFlow outperformed kNN by 0.57
with respect to the mean silhouette value (f = 250, s = 200 and s = 400). The
greatest difference between the standard deviations, 0.18, was observed when
f = 250 and s = 400. In average, BorderFlow outperformed kNN by 0.5 with
5 http://www.nlm.nih.gov/mesh/

http://www.nlm.nih.gov/mesh/

BorderFlow: A Local Graph Clustering Algorithm 555

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

25

50

75

100

125

150

175

200

225

N
um

be
r

of
 c

lu
st

er
s

Silhouette

(a) BorderFlow on TREC

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

20

40

60

80

N
um

be
r

of
 c

lu
st

er
s

Silhouette

(b) kNN on TREC

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

10

20

30

40

50

N
um

be
r

of
 c

lu
st

er
s

Silhouette

(c) BorderFlow on BMC

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

5

10

15

20

25

N
um

be
r

of
 c

lu
st

er
s

Silhouette

(d) kNN on BMC

Fig. 4. Distribution of the average silhouette values obtained by using BorderFlow and
kNN on the TREC and BMC data set with f=100 and s=100

Table 2. Comparison of the distribution of the silhouette index over clusters extracted
from the TREC and BMC corpora. BF stands for BorderFlow. μ the mean of silhouette
values over the clusters and σ the standard deviation of the distribution of silhouette
values. Erroneous clusters are cluster with negative silhouettes. Bold fonts mark the
best results in each experimental setting.

μ ± σ Erroneous clusters

f s TREC BMC TREC BMC

kNN BF kNN BF kNN BF kNN BF

100 100 0.68±0.22 0.91±0.13 0.37±0.28 0.83±0.13 73 10 214 1
100 200 0.69±0.22 0.91±0.11 0.38±0.27 0.82±0.12 68 1 184 1
100 400 0.70±0.20 0.92±0.11 0.41±0.26 0.83±0.12 49 1 142 1
250 100 0.81±0.17 0.93±0.09 0.23±0.31 0.80±0.14 10 2 553 0
250 200 0.84±0.13 0.94±0.08 0.23±0.31 0.80±0.14 5 2 575 0
250 400 0.84±0.12 0.94±0.08 0.24±0.32 0.80±0.14 2 1 583 0

556 A.-C. Ngonga Ngomo and F. Schumacher

respect to the mean silhouette value and by 0.16 with respect to the standard
deviation. Whilst BorderFlow was able to compute a correct clustering of the
data set, generating maximally 1 erroneous cluster, using kNN led to large sets
of up to 583 erroneous clusters (f = 100, s = 400). Figures 4(c) and 4(d) show
the distribution of the silhouette values across the clusters on the BMC corpus
for f = 100 and s = 100.

3.3 Qualitative Evaluation

The goal of the qualitative evaluation was to determine the quality of the content
of our clusters. We focused on elucidating whether the elements of the clusters
were labels of semantically related categories. To achieve this goal, we compared
the content of the clusters computed by BorderFlow with the MESH taxonomy
[1]. It possesses manually designed levels of granularity. Therefore, it allows to
evaluate cluster purity at different levels. The purity ϕ(X) of a cluster X was
computed as follows:

ϕ(X) = max
C

(|X ∩ M |
|X ∩ C∗|

)

, (15)

where M is the set of all MESH category labels, C is a MESH category and
C∗ is the set of labels of C and all its sub-categories. For our evaluation, we
considered only clusters that contained at least one term that could be found in
MESH.

The results of the qualitative evaluation are shown in Table 3. The best cluster
purity, 89.23%, was obtained when clustering the vocabulary extracted from the
TREC data with f = 250 and s = 100. In average, we obtained a lower cluster
purity when clustering the BMC data. The best cluster purity using BMC was
78.88% (f = 100, s = 200). On both data sets, the difference in cluster quality
at the different levels was low, showing that BorderFlow was able to detect
fine-grained cluster with respect to the MESH taxonomy. Example of clusters
computed with f = 250 and s = 400 using the TREC corpus are shown in
Table 4.

Table 3. Cluster purity obtained using BorderFlow on TREC and BMC data. The
upper section of the table displays the results obtained using the TREC corpus. The
lower section of the table displays the same results on the BMC corpus. All results are
in %.

f=100 f=100 f=100 f=250 f=250 f=250
Level s=100 s=200 s=400 s=100 s=200 s=400

1 86.81 81.84 81.45 89.23 87.62 87.13
2 85.61 79.88 79.66 87.67 85.82 86.83
3 83.70 78.55 78.29 86.72 84.81 84.63

1 78.58 78.88 78.40 72.44 73.85 73.03
2 76.79 77.28 76.54 71.91 73.27 72.39
3 75.46 76.13 74.74 69.84 71.58 70.41

BorderFlow: A Local Graph Clustering Algorithm 557

Table 4. Examples of clusters extracted from the TREC corpus

Cluster members Seeds Hypernym

b fragilis, c albicans, l pneumophila,
candida albicans,

c albicans Etiologic agents

mouse embryos, oocytes, embryo, em-
bryos

mouse embryos, em-
bryo, oocytes, em-
bryos

Egg cells

leukocytes, macrophages, neutrophils,
platelets, pmns

platelets Blood cells

bolus doses, intramuscular injections,
intravenous infusions, intravenous
injections, developmental stages

intravenous injections General anesthesia

albuterol, carbamazepine, deferoxam-
ine, diuretic, diuretics, fenoldopam,
hmg, inh, mpa, nedocromil sodium,
osa, phenytoin, pht

albuterol Drugs

atropine, atropine sulfate, cocaine,
epinephrine, morphine, nitroglycerin,
scopolamine, verapamil

atropine sulfate Alkaloids

leukocyte, monocyte, neutrophil, po-
lymorphonuclear leukocyte

polymorphonuclear
leukocyte

White blood cells

4 Conclusion

We presented the novel local graph clustering algorithm BorderFlow and showed
how it can be applied to two NLP-relevant tasks. We were able to show that our
algorithm can compute clusters with high silhouette indexes. The second series
of experiments also showed that BorderFlow is able to compute clusters of high
purity. Our algorithm can be extended to produce a hierarchical clustering.

The soft clustering generated by our algorithm can be used to generate a new
graph, the nodes of this graph being the clusters computed in the previous step.
The edge weights could be computed by making use of a cluster membership
function. Thus, BorderFlow can be used for general hierarchical clustering tasks
in general and taxonomy and ontology extraction [4] in particular. In addition
to these tasks, we will use BorderFlow for tasks including query expansion, topic
extraction and lexicon expansion in future work.

References

1. Ananiadou, S., Mcnaught, J.: Text Mining for Biology and Biomedecine, Norwood,
MA, USA (2005)

2. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press
/ Addison-Wesley (1999)

558 A.-C. Ngonga Ngomo and F. Schumacher

3. Biemann, C.: Chinese whispers - an efficient graph clustering algorithm and its
application to natural language processing problems. In: Proceedings of the HLT-
NAACL 2006 Workshop on Textgraphs, New York, USA (2006)

4. Fernández-López, M., Gómez-Pérez, A.: Overview and analysis of methodologies
for building ontologies. Knowledge Engineering Review 17(2), 129–156 (2002)

5. Flake, G., Lawrence, S., Giles, C.L.: Efficient identification of web communities.
In: Proceedings of the 6th ACM SIGKDD, Boston, MA, pp. 150–160 (2000)

6. Heyer, G., Luter, M., Quasthoff, U., Wittig, T., Wolff, C.: Learning relations using
collocations. In: Workshop on Ontology Learning. CEUR Workshop Proceedings,
vol. 38, CEUR-WS.org. (2001)

7. Jacquemin, C., Klavans, J., Tzoukermann, E.: Expansion of multi-word terms for
indexing and retrieval using morphology and syntax. In: Proceeding of ACL-35,
pp. 24–31 (1997)

8. Maguitman, A., Leake, D., Reichherzer, T., Menczer, F.: Dynamic extraction topic
descriptors and discriminators: towards automatic context-based topic search. In:
Proceedings of the Thirteenth ACM International Conference on Information and
Knowledge Management, pp. 463–472. ACM, New York (2004)

9. Ngonga Ngomo, A.-C.: SIGNUM: A graph algorithm for terminology extraction. In:
Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 85–95. Springer, Heidelberg
(2008)

10. Robertson, S.E., Hull, D.: The TREC 2001 filtering track report. In: Proceedings
of the Text REtrieval Conference (2001)

11. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics 20(1), 53–65
(1987)

12. Schütze, H.: Automatic word sense discrimination. Computational Linguis-
tics 24(1), 97–123 (1998)

13. Shannon, C.E.: A mathematic theory of communication. Bell System Technical
Journal 27, 379–423 (1948)

14. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht (2000)

15. Zesch, T., Gurevych, I.: Analysis of the Wikipedia Category Graph for NLP Appli-
cations. In: Proceedings of the NAACL-HLT 2007 Workshop on TextGraphs, pp.
1–8 (2007)

	BorderFlow: A Local Graph Clustering Algorithm for Natural Language Processing
	Introduction
	BorderFlow
	Formal Specification
	Heuristics

	Experiments and Results
	Clustering Large Graphs
	Low-Bias Concept Extraction
	Qualitative Evaluation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

