
3Recent Advances in InSAR Image Processing
and Analysis

3.1 Introduction and Background

InSAR is a spaceborne mapping tool capable of remotely
sensing small changes in land surface elevation at unprece-
dented spatial resolution. As discussed in previous chapters,
InSAR utilizes two or more coherent phase signals acquired
at different times from the same area to map ground defor-
mation that may have occurred during the intervening period.
In theory, InSAR measures phase differences between two
SAR images that result from the difference in round-trip path
length from a radar to the same ground point. The phase
difference can be processed to map line-of-sight ground
displacement at a horizontal resolution of tens of meters over
large areas with sub-centimeter accuracy.

The advent of InSAR has led to significant improvement
in documentation and understanding of Earth surface
motions. Nonetheless, several error sources in conventional
InSAR measurements limit the technique’s effectiveness in
some cases (see Chap. 1). If the goal is to map ground
deformation, these include phase residuals due to inaccu-
racies in the DEM used to produce a differential interfero-
gram, atmospheric path-delay anomalies, phase ramp
caused by orbital errors, phase noise, and phase unwrapping
errors. To reduce the effects of such errors, a new technique
called multi-temporal InSAR (MTInSAR)—in which a set
of InSAR images of the same area acquired on different
dates are jointly analyzed together—was proposed in the
late 1990s. MTInSAR methods have ushered in a new era of
advanced radar remote sensing by reducing or even elimi-
nating error sources that plague conventional InSAR anal-
ysis. Current MTInSAR techniques can be divided into
three categories. The first involves the generation of a stack
of interferograms with respect to a single master image.
Examples include persistent scatterer InSAR (PSInSAR)
(Ferretti et al. 2000, 2001), Stanford method for PS
(StaMPS) (Hooper et al. 2004; Hooper 2008) and spatio-
temporal unwrapping network (STUN) (Kampes 2006). In
the second category are techniques that make use of multi-
master interferograms; examples include the stacking

analysis method (Sandwell and Price 1998), the Small
BAseline Subset (SBAS) approach (Berardino et al. 2002;
Lanari et al. 2004), the coherent pixel technique (CPT)
(Blanco et al. 2008; Mora et al. 2003), and temporally
coherent point InSAR (TCPInSAR) (Zhang et al. 2011b,
2012). A third (hybrid) category includes techniques that
combine single- and multi-master interferogram analysis
methods (Hooper et al. 2012).

During the past decade, several algorithms have been
developed under the general framework of MTInSAR.
Significant advances have been made in four areas: (1)
phase-coherent point identification; (2) atmospheric artifact
reduction; (3) removal of orbital errors; and (4) handling of
phase ambiguity. In this chapter we discuss the essential
features of each approach and provide an example of their
application to the 2008 eruption at Mount Okmok, Alaska.

3.2 Phase-Coherent Point Identification

As discussed in previous chapters, phase coherence must be
maintained in order for useful information to be derived
from an interferogram using conventional InSAR tech-
niques. Practically speaking, only image pairs with tempo-
ral separations of less than a few years can be used for
deformation mapping under ideal conditions (flat, rocky
terrain). In sloped or vegetated terrain, the time constraint is
even more severe. This generally limits the application of
conventional InSAR techniques to rapid-motion phenomena
such as volcanic eruptions and earthquakes. Deformation
that occurs at lower rates over longer timescales is not
amenable to this approach, because coherence is lost before
the signal exceeds the detection threshold. In such cases, an
alternate strategy is required.

It was recognized in the late 1990s that useful informa-
tion could be retrieved from isolated radar scatterers that
maintain high coherence for long periods of time, such as
boulders, tree trunks, and buildings (Hooper et al. 2007).
Such persistently coherent scatterers, which might occupy
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only a few percent of the pixels in an otherwise non-
coherent image, are the key to all MTInSAR techniques.
Analogous to the role of benchmarks in conventional
ground-based surveys, these scatterers that do not change
their radar backscattering signatures over time can be used
as monuments to track surface displacements at millimeter
accuracy (Ferretti et al. 2000, 2001). Such persistent scat-
terers are pre-existing targets of opportunity that can be
used as temporally and spatially coherent reference points;
hereafter, this type of feature will be referred to as a
‘‘persistent scatterer’’ (PS). Because PSs have large scat-
tering cross sections relative to their physical size and their
physical size is small compared to a SAR resolution ele-
ment, PSs can be treated as point targets. The SAR back-
scattering signal of a PS has a broadband spectrum, which
means that the phase of a PS pixel correlates over much
longer time intervals and over much larger baseline sepa-
rations than other types of pixels. Therefore, the problem
posed by decorrelation in conventional InSAR can be
overcome for pixels that contain one or more PSs. Targets
that do not possess the characteristics of PSs are called
distributed scatterers (DSs). Unlike point-wise PSs whose
coherence is insensitive to spatial or temporal baselines,
DSs can maintain high phase quality only in interferograms
with limited spatial and temporal baselines. Nonetheless,
they are useful for multi-master MTInSAR processing. In
the following sections we review several approaches used to
identify phase-coherent points, both for single-master
MTInSAR (Sects. 3.2.1–3.2.6) and for multi-master
MTInSAR (Sects. 3.2.7–3.2.8).

3.2.1 Amplitude Dispersion Index

The amplitude dispersion index (ADI) was first introduced
by Ferretti et al. (2000, 2001) in their PSInSAR technique,
which employs a stack of single-master interferograms
without considering baseline limitations. Because interfer-
ograms can be greatly affected by spatial decorrelation, it is
difficult to use a spatially estimated coherence criterion to
select pixels with high phase quality in interferograms with
extremely long baselines. Distributed targets in SAR images
exhibit typical SAR speckle behavior, i.e., the backscatter-
ing intensity of a single-look image has a large variability
around the ensemble average. Speckle is a source of spatial
and temporal variability in backscatter intensity. PSs by
definition do not exhibit this speckle behavior. Conse-
quently, if a large number of SAR images with different
temporal and spatial baselines are considered, low temporal
variability in backscattering intensity is an indicator of the
presence of point targets (PSs). Ferretti et al. (2000, 2001)
coined the term amplitude dispersion index (DA) for this
indicator, i.e., the ratio between the standard deviation (rA)

and the mean value of multi-temporal backscattering
intensity (mA):

DA ¼
rA

mA
ð3:1Þ

Simulation tests indicate that the amplitude dispersion
index is a satisfactory approximation for phase dispersion of
pixels with high signal-to-noise ratio (SNR) (Ferretti et al.
2001). For this approach to work, radiometric calibration
and image co-registration with adequate interpolation are
important.

3.2.2 Signal-to-Clutter Ratio

The signal-to-clutter ratio (SCR) approach was first sug-
gested by Adam et al. (2004) to identify coherent points for
their PSInSAR processor. Assuming that a PS pixel returns
a deterministic signal that is contaminated by random cir-
cular Gaussian distributed clutter, the SCR can be estimated
by computing the ratio of the power of a PS candidate pixel
to that of its neighbors. The relationship between the SCR
and the phase standard variance (r/) can be defined as:

r/ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � SCR
p ; SCR ¼ s2

c2
ð3:2Þ

where s represents the amplitude of the dominant scatterer
and c the clutter in the surroundings (i.e., distributed tar-
gets). A pixel with a high SCR at each acquisition is often
selected as a PS candidate. Equation 3.2 can be used to
determine a reasonable threshold of SCR. For example, if a
phase standard variance of 0.5 rad2 is desired, the minimum
acceptable SCR value is 2. Adam et al. (2004) showed that
SCR and DA are based on the same signal model for a
dominant point scatterer surrounded by incoherent back-
ground clutter, and the two quantities are related by the
expression:

DA ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � SCR
p ð3:3Þ

SCR estimation can be performed with a single SAR
image, whereas DA estimation requires multiple interfero-
grams. Therefore the SCR approach is less demanding on
the number of SAR images required.

3.2.3 Spectral Diversity

When processing a single scene of SAR data into an image
with different looks and different fractional range and/or
azimuth bandwidths, only point targets maintain nearly the
same backscattering intensity. Pixels with low variability in
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backscattering intensity are identified as PS candidates.
Including more scenes excludes non-stationary PSs (Werner
et al. 2003).

3.2.4 Phase Stability

In order to identify a sufficient number of coherent points in
non-urban areas, where scatterers usually have low SNR,
Hooper et al. (2004) proposed a PS selection method based
on the phase stability of targets. Phase stability is analyzed
under the assumption that deformation is spatially corre-
lated. The phase values of neighboring PS candidates are
averaged, and those with lowest residual noise (variability)
are selected. Given a set of topographically corrected
interferograms, a measure of phase stability can be defined
as

cx ¼
1
N

X

expfjðUint; x; i � �Uint; x; i � DÛe; x; iÞg
�

�

�

�

�

�

�

�

�

�

ð3:4Þ

where N is the number of interferograms, Uint; x; i is the
differential phase of the xth interferogram, �Uint; x; i is the
mean phase of all PS candidates within a circular patch

centered on pixel x with radius L, and DÛe; x; i is the esti-
mated phase component contributed by DEM errors. To
calculate the mean phase of patches efficiently, PS candi-
dates selected using the ADI method with a high threshold
value (Ferretti et al. 2000, 2001) are taken as initial selec-
tions. The threshold value of cx is selected in a probabilistic
fashion assuming that coherence values less than 0.3 cor-
respond to noisy non-PS pixels.

3.2.5 Maximum Likelihood Estimation

Shanker and Zebker (2007) proposed an alternative PS
selection method based on the maximum likelihood esti-
mation algorithm. In this case the noise term, /n, is related
to the signal-to-noise ratio, c, by the following function:

P /nð Þ ¼
1� qj j2

2p
� 1

1� ð qj j cos /nÞ2

� 1þ qj j cos /n � arccosð� qj j cos /nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð3:5Þ

and qj j ¼ 1
1þc�1.

Given a series of N interferograms, the value of c can be
estimated by maximizing P c /n1

; . . .;/nN

�

�

� �

, which is the
conditional probability of c for /n1

; . . .;/nN
. According to

Bayes’ rule,

P c /n1
; . . .;/nN

�

�

� �

¼
P /n1

; . . .;/nN
cj

� �

� P cð Þ
P /n1

; . . .;/nN

� � ð3:6Þ

Since P /n1
; . . .;/nN

� �

is independent of c and assuming
P cð Þ is constant for all c, Eq. 3.6 can be restated as maxi-
mizing the product:

P /n1
cj

� �

� P /n2
cj

� �

� � � � � P /nN
cj

� �

; 8c ð3:7Þ

The derived maximum likelihood estimation c is com-
pared to a pre-determined threshold, cthreshold, which is set
by experience. In this way, candidate PS pixels with max-
imum likelihood estimations that exceed the threshold are
accepted as valid .

3.2.6 Integration of Distributed Scatterer
and Persistent Scatterer Techniques

To improve the spatial coverage of deformation estimates in
non-urban areas, Ferretti et al. (2011) proposed to jointly
analyze persistent scatterers (PS) and distributed scatterers
(DS). In contrast to PSs that are associated with manmade
structures, boulders, and outcrops, DSs correspond to debris
areas, non-cultivated land with short vegetation, or desert
areas. A spatially adaptive de-speckle filter is first applied to
identity DSs, which are defined as statistically homogenous
pixels. Because phase values of PSs are generally determin-
istic and the phases of DSs are stochastic, a phase triangu-
lation algorithm is applied to estimate optimum phase values
for DSs based on candidate pixels’ coherence properties and
statistical characteristics. Then DSs and PSs can be combined
and processed using standard PSInSAR techniques to produce
time-series deformation measurements (Ferretti et al. 2011).

3.2.7 Coherence Map

The aforementioned methods are designed to identify per-
sistent scatterers or distributed scatterers from single-master
interferogram stacks, for which there is no limitation on the
length of spatial or temporal baselines. For interferograms
with moderate-length spatial and temporal baselines, in
addition to PSs there often are many DSs that produce high
quality phase signals. Without a doubt, the spatial resolution
of an InSAR-derived deformation map can be improved
significantly by including both PSs and DSs with high phase
quality. The coherence map method has been used to select
coherent pixels from interferograms with relatively short
baselines. After eliminating the phase components related to
topography and flat Earth, the coherence value of each pixel
( ĉij j) in selected interferograms can be estimated. A mean
coherence map then can be generated using the relationship:
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cmean ¼
1
N

X

N�1

i¼0

ĉij j ð3:8Þ

where N is the number of interferograms. All pixels with a
mean coherence greater than some selection threshold are
accepted as coherent point candidates. Mora et al. (2003)
suggested a minimum value of mean coherence of 0.25 for
coherence maps estimated using a 4 9 16 or a 5 9 20 pixel
window (range x azimuth) with C-band ERS-1/2 and
Envisat/ASAR data.

3.2.8 Offset Deviation

One challenge faced by all of the current coherent point
selection methods is that the choices of threshold values and
patch sizes depend heavily on an individual’s experience. It
is difficult to know a priori the optimal values to balance the
phase quality and spatial density of points deemed to be
coherent. Zhang et al. (2011a) proposed an alternative
method for coherent point selection. The method is based
mainly on the standard deviation of the estimated coregis-
tration offsets derived by Bamler (2000), and it makes use
of the fact that the offsets estimated from strong scatterers
are less sensitive to the window size and oversampling
factor used than those from distributed scatterers. The
method can be applied when at least two SAR images are
available for a given target. For each image pair, after initial
coregistration an offset vector at each pixel (OTj) is gen-
erated by changing the window size (e.g., from 4 9 4 to
32 9 32 with a step of 4 or 8):

OTj ¼ otj1 otj2 � � � otjN½ � ð3:9Þ

where otji; i ¼ 1; 2; � � �N is the offset estimated with a given
window size at the jth pixel. Pixels whose offset standard
deviations are smaller than the expected coregistration
precision (e.g., 0.1 pixel) are selected as coherent points.

3.3 Atmospheric Artifact Reduction

Current satellite-based SAR systems orbit the Earth at alti-
tudes of 500–800 km. The electromagnetic waves transmit-
ted by these systems must propagate through the atmosphere
twice and are subject to small variations in the index of
refraction along the lines of propagation. Differences in
atmospheric temperature, pressure, and water vapor content
at two observation times cause changes in the atmospheric
path delay and consequent errors in interferograms

(e.g., Zebker et al. 1997). Such path-delay errors can reduce
the accuracy of interferometrically derived crustal defor-
mation measurements from several millimeters under ideal
(time-invariant) conditions to 2–3 cm under more typical
conditions. Atmospheric artifacts can be characterized as
spatially correlated and temporally random signals—a key
characteristic that provides a basis for developing methods to
mitigate their effects.

3.3.1 Differencing Operation Among
Neighboring Pixels

In topography-removed interferograms, pixel values
(phases) that are affected by atmospheric path delays are
spatially correlated at dimensions ranging from several
meters to several tens of kilometers (i.e., the typical scale of
atmospheric inhomogeneities). Therefore, differencing
neighboring pixels could in theory reduce the effect of path
delays by removing common-mode errors from interfero-
grams. Atmospheric variances as a result of path delays are
commonly less than 0.1 rad2 for points separated by less
than 1 km (Williams et al. 1998). However, the effective-
ness of spatial differencing depends on the density of
coherent points, the arc length (i.e., the length of point
pairs), and the correlation dimension of the atmosphere. In
current practice, phase differences at two neighboring pixels
serve as basic observations in most MTInSAR techniques
(e.g., PSI, STUN and StaMPS and TCPInSAR).

3.3.2 Spatial-Temporal Filtering

Spatial-temporal filtering is the most popular method for
reducing atmospheric artifacts. It is widely used in almost
all MTInSAR techniques. After the effects of the residual
elevation with respect to the reference DEM and the mean
deformation rate are removed (see Sect. 3.5.1), a spatial-
temporal analysis of the phase residuals is carried out to
estimate the atmospheric delay component (Ferretti et al.
2000, 2001; Berardino et al. 2001, 2002; Mora et al. 2003;
Blanco et al. 2008). For each PS, temporal smoothing based
on a triangular filter is performed and the low-pass com-
ponent is removed. The resulting phase residuals then are
spatially filtered using a moving average technique to
remove the high frequency component. The results repre-
sent the phase difference due to differences in atmospheric
conditions at different epochs. If all interferograms are
constructed with respect to a single master scene, averaging
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the phase component due to atmospheric contamination for
all interferograms then can be used to construct the atmo-
spheric contribution due to the master image and each of the
other images. However, selecting the optimal window
length for the filter (i.e., the triangular window length for
the temporal filter and/or the averaging window length for
the spatial filter) is not an easy task. Retrieval of the
atmospheric delay signal can be compromised, in particular,
if the spatial density of PSs and the temporal resolution of
SAR images are low.

3.3.3 Topography Correlated Atmosphere
Suppression

3.3.3.1 Multi-scale Method
Topography can play a role in producing atmospheric arti-
facts by inducing differences in temperature, humidity,
pressure, and water vapor content in the atmosphere
between the acquisition times of two SAR images. The
resulting phase structure is treated as a time-variable ver-
tically stratified component of the total atmospheric dis-
tortion (Hanssen 2001; Liu 2012). In most cases, a simple
linear model is applied to suppress vertically stratified
atmospheric delays in unwrapped interferograms:

D/ ¼ k � hþ b ð3:10Þ

where k and b are the linear and constant terms respectively
for the function that relates the phase change D/ in a
topography-removed interferogram and the topography h.
The effectiveness of this method is reduced in some cases
by the confounding effects of tectonic or other types of
ground motion, turbulent atmosphere, inaccurate satellite
orbit, etc.

An improved method, proposed by Lin et al. (2010), was
developed to overcome the aforementioned drawback by
using a multi-scale algorithm. This method explicitly rec-
ognizes that different confounding effects are likely to occur
at different length scales. In the multi-scale method, a series
of Gaussian filters with different spatial scales are used to
generate a series of band-passed images for both the
topography image and the unwrapped interferogram. A
robust linear relationship between the topography and the
interferogram phase is given by:

D/ðkiÞ ¼ kifm � hðkiÞ þ bifm ð3:11Þ

where D/ðkiÞ and hðkiÞ are the ith band-passed components
of the InSAR phase D/ and topography h, respectively, and

kifm and bifm are the linear and constant terms of the function
for each interferogram.

When multiple interferograms are available for a study
area, an internally consistent transfer function can be
estimated for a given time interval by defining a unique set
of component time intervals, Dt, for the group of
unwrapped interferograms. A linear system is constructed
as follows:
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ð3:12Þ

where D/mðknÞ and hmðknÞ represent the nth decomposed
band of the mth interferogram and the nth decomposed band
of the topography, respectively, and kDtp and bDtp represent
the linear and constant terms for the pth Dt. An L1-norm
regression is preferred to solve the linear system in order to
suppress outliers (e.g., the unwrapping errors). Note that the
entire series of kDt can be recombined to reduce vertically
stratified atmospheric delays in any interferometric pair.

3.3.3.2 Wavelet Based Method
Although the multi-scale method has proven in many cases
to be effective for removing vertically stratified atmospheric
delays, the assumed linear correlation between topography
and phase change is not well established in theory. Shirzaei
and Bürgmann (2012) proposed a novel method to correct
for vertically stratified atmospheric delays without the
assumption of a linear model. The basic principle behind
the method is multiresolution wavelet analysis, which
includes three crucial steps. First, the unwrapped interfer-
ogram Uðf; gÞ and topography Dðf; gÞ are decomposed into
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their building blocks on the basis of their frequency prop-
erties using the forward wavelet transform:

Uðf; gÞ ¼
X

p�1

ix

X

q�1

iy

uvixiyUJixiyðf; gÞ

þ
X

J�1

j0

X

p�1

ix

X

q�1

iy

X

3

e

uwe
j0ixiy

We
j0ixiy
ðf; gÞ
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X
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j0ixiy
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ð3:13Þ

where U and W are the smoothing and the mother wavelet
functions, respectively, with v and w being the associated
smoothing and wavelet coefficients. J is the number of
wavelet scales, and p, q are the dimensions of the images.

Next, a cross-correlation analysis is applied to determine
the correlated coefficients that represent the effects of path
delay differences in a vertically stratified atmosphere. This is
expected because the wavelet coefficients of two correlated
signals are similar over a range of spatial scales. A cross-
correlation matrix is calculated to evaluate the similarity
between the wavelet coefficients for the wavelet scale j0:

Ce
j0 ¼ uwe

j0 � dwe
j0 ð3:14Þ

where � represents the operator of the matrix correlation. By
applying the down-weighting approach, the down-weighted
wavelet coefficients of the unwrapped interferogram can be
determined by:

uw
_ e

j0 ¼ 1� Ce
j0

� �u
we

j0 ð3:15Þ

Finally, the unwrapped interferogram is corrected by
applying a wavelet backward transform with the down-
weighted correlated coefficients in the wavelet function.
Similar to the multi-scale method, the wavelet method is
relatively insensitive to confounding effects such as ground
motion or orbital ramp resulting from orbit errors. In
practice, the discrete wavelet transform is preferred for the
very efficient algorithm in the forward and backward
transforms. The number of scales used in the wavelet
decomposition can range from 1 to 10, which results in an
effective window size between 80 m and 80 km.

3.4 Orbit Error Correction

Orbit errors, characterized typically as long-wavelength
artifacts, commonly exist in InSAR images as a result of
inaccurate determination of the sensor state vector. In the

conventional InSAR approach, the orbital contribution is
usually removed from an unwrapped interferogram by fitting
a low-order polynomial to the long-wavelength signal. The
coefficients of the polynomial are determined either by
ground control points (GCPs) or under the assumption that no
deformation occurred in some part of the interferogram.
Obviously, the degree to which the polynomial can remove
the effect of orbit errors depends largely on the precision of
GCPs or the validity of the no-deformation assumption.
Moreover it is difficult (or impossible) to separate any real
long-wavelength deformation signal from the effect of orbit
errors by applying a best-fitting polynomial to individual
interferograms. Generally speaking the phase component due
to orbit errors appears in an interferogram as a smoothly
varying pattern. Long-wavelength orbital artifacts are obvi-
ous in some cases, but in other cases they can be obscured by
other phase components. An important difference between
orbital artifacts and long-wavelength deformation signals is
that the former are characterized by relatively weak temporal
correlation. Recent advances in orbit error removal take
advantage of this fact by making full use of the spatial-
temporal characteristics of orbit errors.

3.4.1 Network Approach

Instead of focusing on a single image pair, Biggs et al.
(2007) proposed a network method to identify and remove
orbital artifacts using constraints from a stack of interfero-
grams. The core idea behind the method is that the orbit
errors in each interferogram can be treated as a contribution
from each SAR acquisition. This is a reasonable assumption
because interferograms are a linear combination of SAR
images. Under the assumptions that: (1) unwrapped phases
in an interferogram are mainly contributed by orbit errors
that have a planar form, and (2) any other contribution can
be treated as noise, for pixel, p, at location (xp; yp), the
interferometric phase (/m; n; p) can be expressed as a linear
function of two parameters, u and v, for each of two image
acquisitions, m and n, and the noise term, wm; n:

/m; n; p ¼ umxp � unxp þ vmyp � vnyp þ wmn: ð3:16Þ

For each pixel in each interferogram, a similar equation
can be written. Thus a large sparse linear equation system is
generated, which shows the relationship between the
unwrapped phases and coefficients of polynomials associ-
ated with each SAR acquisition. Because the system is
intrinsically underdetermined, truncated singular value
decomposition is used to find the minimum norm solution
(Biggs et al. 2007). Once the orbital parameters are esti-
mated, they can be used to construct and remove the orbit-
error contribution for each interferogram.
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3.4.2 Joint Model

Following Biggs et al. (2007), Zhang (2013) proposed a
novel approach that can jointly estimate orbital errors
together with deformation parameters and DEM errors. In
this method, the assumption that an interferogram is dom-
inated by orbital errors is no longer necessary. Moreover,
the approach is capable of separating long-wavelength
deformation from the effect of orbit errors. The basic
observation of the joint model approach is the differential
phase at the arcs (coherent point pairs) which can reduce the
effects of spatially correlated atmospheric artifacts. Con-
sidering M differential interferograms generated from
N SAR images and G arcs constructed from P coherent
points, the observations for all the interferograms can be
denoted by:

DU
ðMÞ�1

¼ DU1DU2 � � �DUM� 	T

DUi ¼ D/i
1D/i

2 � � �D/i
G

� 	T
; i ¼ 1 � � �M

ð3:17Þ

where D/i
j; j ¼ 1 � � �G is the phase difference at a given arc.

To avoid an underdetermined system, a reference image is
chosen arbitrarily and assumed to be free of orbital error.
The following polynomial is used to represent the relative
orbital error of a pixel P in the jth acquisition at coordinate
(X, Y) with respect to the reference image:

/ j
orb; slc; p ¼ a jX þ b jY þ c jXY ; j ¼ 1 � � �N � 1 ð3:18Þ

where a j; b j and c j are the unknown coefficients to be
estimated. The phase components (DUorb) due to orbit
errors at all of the arcs in the interferograms can be obtained
as follows:

DUorb
ðM�GÞ�1

¼ Dorb Porb
ððN�1Þ�3Þ�1

ð3:19Þ

where Porb contains all the polynomial coefficients of rel-
ative orbital errors with respect to the reference image and
Dorb is the design matrix relating the observations and the
orbit error parameters. The phase differences at the arcs in
all the interferograms due to topographic errors and defor-
mation rates can be expressed as:

DUtopoþdefo
ðM�GÞ� 1

¼ Dpar
ðM�GÞ� ð2�ðP� 1ÞÞ

Ppar
ð2�ðP� 1Þ� 1Þ

ð3:20Þ

where Ppar contains the deformation rate and DEM error at
each coherent point except for one reference point. The final
observation equation reflecting the relationship between the
phase differences at the arcs and the unknowns (i.e., orbital
error polynomial coefficients, topographic errors, and
deformation rates) can be expressed as:

DU
ðM�GÞ�1

¼ DPþ W
ðM�GÞ� 1

ð3:21Þ

with

D ¼ Dorb Dpar½ �T

P ¼ Porb Ppar½ �T
ð3:22Þ

where W is a vector that contains all the unmodeled phase
at the arcs due to, e.g., spatially uncorrelated atmospheric
delays and decorrelation noise. The parameters can be
resolved by sparse least squares methods with a phase
ambiguity detector (Zhang et al. 2012, 2013).

3.5 Parameter Estimation

3.5.1 Average Deformation Rate and DEM Error

After the topographic contribution from each interferogram

is removed using an existing DEM, the phase value /k
i for

the ith coherent point in the kth interferogram with a time
separation of tk can be expressed as:

/k
i ¼ cðvit

k þ lk
i Þ þ

cBk
?hi

Rk sin hk þ ak
i þ N � 2pþ nk

i ð3:23Þ

where c is a constant equal to (-4p/k) and k is the SAR
wavelength. The first term on the right side represents
ground surface deformation during the time period tk and
consists of two components: one due to constant velocity
(vi), and the other due to non-linear motion lk

i . The second
term on the right side of the equation represents the phase
component due to DEM error (hi) and is related to: (1) the
perpendicular baseline (Bk

?), which can be calculated using
precision restitute vectors for ERS sensors (Massmann
1995; Scharroo et al. 1998), (2) the distance from the master
sensor to the scene center (Rk), and (3) the SAR look angle

(hk) at the scene center. The last term on the right side of
Eq. 3.23, ak

i , is the phase contribution due to atmospheric
anomalies, and nk

i represents the phase noise. Considering a
set of differential interferograms, the observation model of
MTInSAR has the following generalized form:

U ¼ APþW ð3:24Þ

where U represents the input phases (which could be
wrapped phases at arcs or unwrapped phases at points), P is
an unknown vector whose elements could be h, v, and N, and
W represents the remaining terms (i.e., the phase contributed
by non-linear motion, atmospheric artifacts, and noise).

Differences among the various MTInSAR techniques
described above are shown in Table 3.1. Based on a
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generalized model, we now introduce four methods used for
parameter estimation.

3.5.1.1 Least Squares
When the observations are the unwrapped phases at the ith
coherent point and the parameters are the mean deformation
rate (v) and DEM error (h), Eq. 3.23 can be rewritten as

Uunwrapped
i

¼ Ai
h
v


 �

þWi ð3:25Þ

This is the basic model adopted by SBAS. The param-
eters can be retrieved by a least squares approach:

ĥ
v̂


 �

¼ ðATAÞ�1ATUunwrapped
i

ð3:26Þ

It should be noted that although there are two resolved
parameters, in SBAS only the DEM error term (h) is used
for subsequent image processing.

3.5.1.2 Two-Dimensional Solution Search
When the observations are the wrapped phase differences at
arcs constructed by point x and point y, and the parameters
are the velocity difference (Dvx; y) and height error differ-
ence (Dhx; y), Eq. 3.23 can be rewritten as

Uwrapped
x; y

¼ Ax; y
Dhx; y

Dvx; y


 �

þWx; y ð3:27Þ

Since Uwrapped
x; y

is ambiguous, the parameter estimation

from Eq. 3.27 is a non-linear inversion problem. A temporal
coherence index (cx; y) is commonly used for this inversion
(Ferretti et al. 2001; Mora et al. 2003; Zhang et al. 2009).
Given a total of M interferograms, cx; y is defined as:

cx; y ¼
1
M

X

M

k¼ 1

e�jWk
x; y

�

�

�

�

�

�

�

�

�

�

ð3:28Þ

where j ¼
ffiffiffiffiffiffiffi

�1
p

. By setting appropriate variation ranges for
the velocity difference (Dvx; y) and height error difference
(Dhx; y), one can search for the maximum coherence, cx; y,

within the specified two-dimensional ranges using small
sampling intervals. Then the values for Dvx; y and Dhx; y can
be found. When Dvx; y and Dhx; y for all neighboring pixel
sets are determined, the absolute values of DEM error and
linear deformation rate at each coherent pixel can be
derived through spatial integration with respect to an arbi-
trary reference point, where the DEM error and linear
deformation rate are known or assumed to be zero. Note
that the solution search can only be successfully performed

under the condition of xk
i; x; y

�

�

�

�

�

�
\p, which can be met in

most cases.

3.5.1.3 Integer Least Squares
When the observations are the wrapped phase differences at
arcs constructed by point x and point y, and the parameters
are velocity difference (Dvx; y), height error difference
(Dhx; y) and integer ambiguities (N) in a total of M interfer-
ograms, Eq. 3.23 can be rewritten as (Kampes 2006):

Uwrapped
x; y

¼

�2p
�2p

. .
.

�2p

2

6

6

4

3

7

7

5

N1

N2

..

.

NM

2

6

6

4

3

7

7

5

þ Ax; y
Dhx; y

Dvx; y


 �

þWx; y ð3:29Þ

For each arc, M integer ambiguities and 2 real-valued
parameters have to be estimated from M observed wrapped
phase differences. The solution to this system can only be
obtained by using a priori knowledge of the integer nature
of the ambiguities.

3.5.1.4 Least Squares with Phase Ambiguity
Detector

For the system of observation equations shown in Eq. 3.27,
the parameters cannot be estimated by linear inversion due
to the existence of integer ambiguities. Although temporal
coherence maximization has the ability to resolve average
deformation rates and DEM errors from wrapped phase
data, a parameter search by non-linear inversion might

Table 3.1 Comparison of MTInSAR techniques

MTInSAR techniques Observation (U) Parameter solved (P) Type of interf. Parameter solver

Wrapped/Unwrapped Point/Arc

SBAS Unwrapped Point h, �v Multi-master 3.5.1.1

PSI Wrapped Arc Dh, D�v Single-master 3.5.1.2

CPT Wrapped Arc Dh, D�v Multi-master 3.5.1.2

STUN Wrapped Arc Dh, D�v, N Single-master 3.5.1.3

TCPInSAR Wrapped Arc Dh, D�v Multi-master 3.5.1.4
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identify several local maxima (as is the case for any non-
linear inversion problem). In this case, more than one
choice of Dvx; y and Dhx; y might satisfy the observation
equations, so a unique solution cannot be guaranteed.
However, for an MTInSAR system in which multi-master
interferograms with short baselines (spatial and temporal)
are involved, there are usually sufficient arcs constructed by
neighboring coherent pixels that do not have phase ambi-
guities. If these arcs can be reliably identified, parameter
estimation on these arcs can be greatly simplified. For any
arc regardless of phase ambiguities, the least squares solu-
tion of unknowns from Eq. 3.27 is as follows:

Dt̂

Dĥx; y


 �

¼ ðATPx; yAÞ�1ðATPx; yDUÞ

R ¼ DU� ðATPx; yAÞ�1ðATPx; yDUÞ
ð3:30Þ

where R is the least squares residual vector and Px; y is the
weight matrix, which can be obtained by taking the inverse
of a prior variance matrix of the double-difference phases
(Zhang et al. 2011b). Experience shows that the least
squares residuals for an arc with and without phase ambi-
guities are quite different, indicating that phase ambiguities
can bias the parameter estimation significantly (Zhang et al.
2011b, 2012). Therefore, an ambiguity detector can be

designed by taking account of the least squares residuals.
Details of this method can be found in Zhang et al. (2011b,
2012, 2013). After removing the arcs with phase ambigui-
ties, parameters for the remaining arcs are integrated to
obtain parameter estimates at all coherent points with
respect to a designated reference point.

3.5.2 Deformation Time Series

After the average deformation rate and DEM errors have
been resolved (Sect. 3.5.1) and the phase contributions due
to atmospheric path-delay anomalies have been removed
(Sect. 3.3), it is possible to retrieve the non-linear defor-
mation component and then build up a full resolution
deformation time series. The basic observation function for
non-linear rate estimation can be written as:

Ures¼ BVnonlinear þWres ð3:31Þ

where Ures is the phase residual vector, B is the design matrix
showing the relationship between non-linear deformation
rates and phase residuals, Vnonlinear is the non-linear rate
vector, and Wres is the noise vector in the phase residual. The
non-linear rates can be resolved by least squares, as explained

OKCDOKCE

OKSO

OKFG

Mount Okmok

5 km

Fig. 3.1 Linear deformation rate
at Mount Okmok based on
PSInSAR processing of 19
Envisat SAR images during June
10, 2003 and July 8, 2008. Red
triangle represents reference
point for PSInSAR processing.
Crosses represent CGPS stations
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above (Zhang et al. 2012, 2013). When the design matrix
B exhibits rank deficiency, its pseudoinverse is employed to
get the minimum norm least squares solution. The final full-
resolution deformation time series then can be obtained by
combining the linear deformation rates (v) and non-linear
deformation rates (Vnonlinear).

Figure 3.1 shows the distribution of PSs on Mount
Okmok, as identified from a stack of 19 Envisat SAR
images (see Chap. 6, Okmok section). Based on our expe-
rience, the image represents a typical coherence map for a

C-band InSAR image of Okmok. The average inflation rate
during 2003–2008 from PSInSAR processing is slightly less
than 50 mm/year. Subsidence of 1997 lava flows on parts of
the caldera floor also is discernible.

Figure 3.2 shows time-series deformation maps for the
period 2003–2008 at Okmok, and Fig. 3.3 compares dis-
placement time series derived from PSInSAR with mea-
surements at the same four sites from CGPS. The time series
are complementary and they match reasonably well where
they overlap in time (i.e., mostly within one standard
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200506142004101220040907

200310282003081920030715
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Fig. 3.2 Time-series PSInSAR deformation maps for Mount Okmok for 2003–2008. Image in lower right corner is for July 8, 2008, five days
before the July 12, 2008 eruption
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deviation in the CGPS measurements), which demonstrates
that MTInSAR can be useful either as a stand-alone tool or in
conjunction with other deformation monitoring techniques.

3.6 Summary of Current MTInSAR
Techniques

3.6.1 PSInSAR

PSInSAR has the following advantages compared to con-
ventional InSAR techniques:
• With the PSInSAR technique, all available SAR images

can be exploited without much concern for the baseline
separations. For conventional InSAR, only relatively
short baselines can be used for deformation analysis to
avoid coherence loss. This limitation generally results in
a substantial loss of temporal coverage.

• With PSInSAR, atmospheric artifacts can be mostly
removed, eliminating a serious limitation of conventional

InSAR in cases where real ground deformation is small
and smoothly varying across the scene.

• With PSInSAR, single coherent pixels can be identified. This
feature is essential in the case of large temporal and geometric
baselines, where only pointwise targets carry useful phase
information. No useful information can be extracted by
conventional InSAR techniques under these conditions.

• With PSInSAR, terrain heights at PS pixels can be
improved significantly to an accuracy which is unattain-
able by conventional InSAR techniques.
On the other hand, PSInSAR is a sophisticated multi-

spatial and multi-temporal InSAR processing method that
requires more than *30 InSAR images of the study area to
complete an analysis—a significant disadvantage for targets
with limited SAR coverage. Therefore, PSInSAR is not
intended to replace the conventional InSAR approach.
Rather, this novel technique has great potential to enhance
the capability for surface deformation monitoring in areas
for which adequate SAR coverage is available and where
the deformation rate is too small to be measured reliably
with conventional InSAR methods.
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Fig. 3.3 Comparison of time-
series PSInSAR measurements
(red triangles) with CGPS
observations (blue dots) at Mount
Okmok. PSInSAR time series are
with respect to the reference pixel
on the northern flank of Okmok
(red triangle in Fig. 3.1) and the
start time of June 10, 2003.
Locations of CGPS sites are
shown in Fig. 3.1. Data gaps
exist in CGPS measurements
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3.6.2 Small Baseline Subset (SBAS) InSAR

The SBAS InSAR algorithm was first demonstrated by
Berardino et al. (2002) as a means to mitigate atmospheric
artifacts and topographic errors in time-sequential interfer-
ograms, and thus to obtain time-series deformation infor-
mation. The algorithm uses only interferograms with small
baselines that overlap in time in order to reduce spatial
decorrelation. To extract deformation time-series informa-
tion from multiple-temporal interferograms, the SBAS
algorithm estimates the mean deformation rate and the
topographic error using unwrapped interferograms. Atmo-
spheric artifacts are mitigated through temporal high-pass
and spatial low-pass filtering of the interferograms after the
mean deformation rates have been removed. Because the
interferograms are not adjacent in time (i.e., there may be
temporal overlap or underlap between them), SBAS InSAR
uses the singular value decomposition (SVD) approach
based on a minimum-norm criterion of the deformation rate
to derive time-series deformation estimates.

Various enhancements of the original SBAS algorithm
have been developed in order to: (1) suppress errors caused
by temporal decorrelation and other noise effects, (2)
improve the linear deformation rate estimate by avoiding
phase unwrapping errors, (3) improve estimates of atmo-
spheric artifacts and topographic errors, and (4) address the
atmospheric artifact and orbital error at a specific reference
point (a pixel location used to reference interferogram phase
values at other pixels). For example, Lee et al. (2010)
implemented a refined SBAS InSAR algorithm that
improves estimates of time-series deformation in four
respects. First, phase unwrapping errors are corrected by
distinguishing between high-quality InSAR images in
which no unwrapping errors could be found and low-quality
ones where phase jumps due to unwrapping errors are
likely. The mean deformation rates at all coherent pixel
locations are estimated from the high-quality interfero-
grams. New, wrapped residual interferograms are formed by
subtracting the estimated linear deformation rate from each
interferogram on a pixel-by-pixel basis. The residual
interferograms are then unwrapped to create new unwrap-
ped interferograms. This step essentially removes phase
unwrapping errors from the low-quality interferograms,
because the fringe rates in the residual interferograms are
much lower than those in the original interferograms. Sec-
ond, the temporal noise is mitigated further by the finite
difference smoothing approach (Schmidt and Bürgmann
2003). Time-series deformation histories are estimated at
each coherent pixel using the SVD operation and are
removed from each of the interferograms. Atmospheric
artifacts in the residual interferograms are then removed by
temporal high-pass and spatial low-pass filtering operations

(recall that atmospheric artifacts generally are spatially
correlated and temporally random). After the atmospheric
contributions are removed in this way, the deformation time
series is recomputed by simultaneously applying the SVD
approach and the finite difference smoothing method
(Schmidt and Bürgmann 2003) in order to further suppress
the noise contribution. Third, procedures are implemented
to correct any possible phase bias at the reference point due
to orbital and atmospheric phase artifacts (e.g., Lee et al.
2010). Finally, estimates of atmospheric artifacts, topo-
graphic errors, and time-series deformation measurements
are refined through an iteration procedure. Examples of
SBAS processing for Augustine and Seguam volcanoes are
included in Chap. 6 of this report.

3.6.3 Combined PSInSAR and SBAS Processing

In the original PSInSAR method, a single image is desig-
nated as the master (reference) and the phase differences
between the master image and all associated slave images
are used as the basic observation to estimate the average
deformation rate and topography error. The SBAS InSAR
method differs in that SBAS InSAR uses all suitable small-
baseline interferograms (i.e., multiple masters) to minimize
the effects of coherence loss and topography error. Tradi-
tional PSInSAR identifies individual PSs based on the sta-
bility (and/or coherence) of the phase signal over time,
whereas SBAS InSAR locates coherent patches based on
the coherence of interferograms in the spatial domain. Pre-
filtering or multi-looking is not applied in PSInSAR pro-
cessing prior to interferogram generation in order to ensure
that PS signatures are undistorted. SBAS processing, on the
other hand, typically is applied to multi-looked (and fil-
tered) interferograms. A useful hybrid approach combines
PSInSAR and SBAS concepts by conducting time-series
InSAR analysis using interferograms based on multiple
masters (e.g., Mora et al. 2003; Hooper and Zebker 2007;
Hooper 2008; Zhang et al. 2011b, 2012). PS or temporally
coherent pixels are selected using one or more PS identifi-
cation procedures. Interferometric phases at PSs, either
wrapped (Zhang et al. 2011b, 2012) or unwrapped by way
of a 3-D phase unwrapping procedure (Hooper and Zebker
2007), are analyzed with SBAS processing at full resolution
using least-squares (Schmidt and Bürgmann 2003), singular
value decomposition (Berardino et al. 2002), or L1-norm
minimization (Lauknes et al. 2011; Zhang et al. 2013).
Atmospheric correction is done using procedures described
in Sect. 3.3. The final result is a deformation time series for
each PS, which can be combined to produce a series of
deformation maps as a function of time if the density of PSs
is sufficient.
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