
Workflow Enactment in a Social Software

Environment

Davide Rossi and Fabio Vitali

Dipartimento di Scienze dell’Informazione
Università di Bologna, Italy
{rossi,fabio}@cs.unibo.it

Abstract. Originally conceived with different goals in mind, both Busi-
ness Process Management (BPM) tools and social software applications
help organizations in enacting multi-actor processes. The paradigms they
are inspired to are, however, very different and this is mostly true if we
focus on how coordination among actors is carried on. In a BPM con-
text, usually, the process that has to be enacted is well defined: a model
of the process exists and the interactions among actors are enforced by
this model. We refer to this approach as structured coordination. Social
software, on the other side, fosters the enactment of processes by putting
collaboration tools into the hands of the users. In this case we witness
to a significant example of what we call emerging coordination. While
a synthesis of the two paradigms is arguably impossible, it is however
interesting to study how BPM and social software can benefit from each
other. In this paper we show how principles of structured coordination
can be injected in a social software environment in order to enact simple
workflows. To this end we introduce Social X-Folders, and extension of
X-Folders designed to interact with social software tools.

1 Introduction

In the last few years an increasing number of companies are adopting social soft-
ware tools to support their business processes, a trend called Enterprise 2.0 [7].
BPM tools have been the only viable solution in this context for a long time,
but now they have to face a strong competition. Social software tools are eas-
ier to set up and maintain and do not require any modeling effort, they allow
to address dynamic changes and reconfigurations, exception handling, flexibility
and, most importantly, knowledge workers can reclaim full control on the busi-
ness processes. Human factors and cultural resistance are well known limiting
factors for BPM tools [3] that have a much smaller impact on a social software
environment. Of course there is a price to pay in terms of guarantee of progress,
monitorability, traceability, that makes the social software solutions reasonable
only for non-critical processes. But in many cases the advantages of the social
software approach are enough to push managers to demote processes (or, at
least, sub-processes) to the non-critical rank. Not all limitations, however, can
be worked around by relaxing the constraints of the stakeholders, and this is the

D. Ardagna et al. (Eds.): BPM 2008 Workshops, LNBIP 17, pp. 716–722, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Workflow Enactment in a Social Software Environment 717

case for the lack of mechanisms to automate part of the activities (even in most
human-centered workflows same tasks can be carried out automatically). While
some of the existing social software tools can enact small workflows including
some kind of automatization, this applies only within the tool itself. One of the
main strengths of the social software approach, however, is that of providing
users with a wide array of different tools (blogs, wikis, forums, shared calen-
dars and so on) that can be used synergically, and no existing tool or service
allows the enactment of workflows spanning across multiple applications. The
reason behind this limitation is mainly related to a paradigm shift: the adoption
of social software also entails a switch from structured to emerging coordina-
tion. Structured coordination is process-first: the process is well-defined; usually
a model that describes it exists and interactions among actors are predefined.
Emerging coordination is tools-first: the actors have a set of tools and they use
them to interact; the workflow is not well-defined (if defined at all) so IT support
becomes difficult. But having no predefined process model does not mean the
chaos, what usually happens is that, after the first few iterations, the process
“takes shape”, becoming more and more structured. In this paper we introduce
Social X-Folders, an extension of X-Folders [8] designed to model and enact
workflows in a social software environment. X-Folders is a rule-based workflow
system that can be used to enact multi-actors, distributed workflows, by using a
peer-to-peer approach, a paradigm that fits well in the social software context.
Social X-Folders can also assist in the gradual automatization of processes dur-
ing their refinement, supporting the natural evolution of coordination patterns
typical of social software.

2 X-Folders

X-Folders is a software environment for multi-party document-based processes
that aims at supporting the implementation of workflows involving multiple
users that interact by means of documents stored in special, reactive, folders:
the X-Folders. A reaction in X-Folders is a program whose control flow depends
on the status of the folder and whose actions are invocations of local services
(that can be used to interact with the documents in the folders) or of services
exposed by external components. The actions performed by the actors and the
reactions fired by the system flow in a sequence that drives to the accomplishment
of the workflow process coordinating humans and software components using
documents. X-Folders in not meant for implementing mission-critical processes,
but rather to ease the implementation of light workflow processes between peers,
with the advantages of a real distributed architecture and a relatively small run
time system.

3 X-Folders in a Social Software Environment

X-Folders has been designed for a context in which all the knowledge the user
has access to is contained in documents, intended as bodies of information that

718 D. Rossi and F. Vitali

can be physically encoded into files. This is not what usually happens to a user
in a social software context. Pieces and bits of knowledge can be spread among
different sources: forums, blogs, wikis, podcasts; the focus shifts from the space
of the documents to the space of knowledge. The problem of dealing with mul-
tiple information sources is well known in the social software community and is
addressed mainly by using feeds and aggregators. By using feed technologies like
RSS and Atom, web syndication can help in monitoring different information
sources; web aggregators help building a personal information space out of sev-
eral feed sources. In this environment it makes sense for X-Forders to be based
not only on reactive document folders but also on reactive knowledge spaces,
populated using syndication techniques. Mapping this concepts to X-Folders is
quite straightforward: a knowledge space can easily be represented by using a
smart (or virtual) folder in which feeds are sub-folders and entries (or items)
in it are documents. This solution allows X-Folders to address the specificities
of the social software ecosystem by using its own tools and technologies. Just
like reactive document folders monitor the state of the contained documents and
reacts when they reach a certain state, smart X-Folders monitor different infor-
mation sources. Feed aggregation thus address the “firing part” of X-Folders, i.e.
the rule activation logic. What is still missing is the “active part”: what kind of
actions can be fired? We extended the local X-Folders web services with simple
ones that allow to perform usual social software-related activities, like writing
an entry in a blog or posting a message in a forum. This solution fits nicely into
the X-Folders framework providing an extension that maintains the advantages
of the original system and allows its integration in a social software environment.
With respect to the social software tools, in fact, the workflow engine is just an
actor operating on the behalf of the user. This means that no specific aware-
ness is required from the tools, limiting the intrusiveness of the solution. The
resulting architecture can be seen as an instance of PageSpace [4], a reference
architecture for multiuser, interactive applications that we conceived more than
ten years ago.

3.1 Architecture and Technological Solutions

In order to implement the features outlined in the previous section, the X-Folders
architecture has been enriched with a feed aggregator that extends the storage
manager in order to support smart X-Folders. In the existing prototype imple-
mentation, the access to smart X-Folders can only be performed by using the
SOAP interface but it is possible to extend the WebDAV interface in order to
allow read only access. Since web syndication technologies are pull-based (mean-
ing that updates have to be fetched from the client and no server-notification
function is available), polling techniques are used to update the feeds period-
ically. Reaction rules associated to a smart X-Folder are evaluated after each
update. Since subsequent activations of already fired rules for the same entry
in the feed turned out to be a recurring problem when defining the rules, the
standard behavior of X-Folders has been slightly modified when checking the

Workflow Enactment in a Social Software Environment 719

firing of rules associated to smart X-Folders: the rule is activated only when the
firing predicate toggles from false to true.

New web services are also made available by the local web service provider in
order to interact with social software tools. Since most existing social software
tools do not provide a programmer’s API, most of the functions supported by
the new web services are implemented by connecting to the web site of the tool
and using HTTP “pretending” to be a human user interacting with a regular
web browser. This solution is largely sub-optimal: changes in the sequence of
web pages dispatched by the tool, or even simple changes in the names of the
forms elements, easily lead to a malfunctioning of the system. This has long
been a problem with the web: gathering information has been much easier than
publishing it. Some of the social software tools (like the wikis) have been de-
veloped to overcome this limitation but, ironically, the very same problem arise
now with wikis in a semantic web context. We can only hope that in the future
a standardized approach to programmatically interact with social software tools
will emerge, complementing existing syndication techniques; we are quite confi-
dent this is going to happen quite soon because of the need of the enterprises
adopting these tools to integrate them with their existing ones.

The high-level architecture of a Social X-Folders site is depicted in fig.1.

Fig. 1. The high-level architecture of an X-Folders site

4 Proof of Concept

As a very simple proof-of-concept we implemented a “personal workflow” by
using Social X-Folders. The idea is to automate as much as possible the tasks
required to manage a photographic contest using a forum. When a new contest

720 D. Rossi and F. Vitali

starts, a new thread is created in the contests forum. Participants can submit
their photos by adding posts in this thread. The thread remains accessible for
a specified amount of time (e.g. a week), after that the thread is locked and a
new poll thread is created. This latter thread is used to collect the votes from
other participants. After another specified amount of time, the poll thread is
also locked and the poster that received most votes is the winner. A workflow
like the one we just outlined can be implemented in very different ways by
using Social X-Folders, the solution we propose here has the merit of showing
how several social software tools can be orchestrated. In this solution we use a
shared calendar tool (Google calendar) to set up the events that let the workflow
progress (like begin new contest, lock submission thread, create poll thread and
so on). A feed associated to these calendar events is represented by a specific
smart X-Folder. Reaction rules associated to this folder fire when the events in
the calendar are scheduled and, by using the local web services, they interact
with the forum application in order to implement the required actions.

As an example, the reaction rule used to start a new contest thread is as
follows (“...” are used to replace example-specific parameters that have been
removed for clarity):

<when trigger=’/feed/entry[title
[starts-with(text(), "New photo contest:")]]
[content[ends-with(text, "Status: confirmed")]]’>

<call name="phpBBCreateThread">
<param name="forumURL">...</param>
<param name="forumId">...</param>
<param name="threadTitle">xpath($this/title/text())</param>
<param name="message">../protoFolder/contestMessage</param>

</call>
</when>

In the existing prototype these rules have to written by hand (and require
a skilled user to be set up correctly); in the future wizard-based web interfaces
could be used to ease this task.

The very simple workflow example introduced in this section is meant to show
the main characteristics of the system but we would like to point out that by
using several X-Folders systems it is possible to set up more complex distributed
multi-actor workflows by using a peer-to-peer approach.

5 Discussion and Related Works

X-Folders has been designed in order to provide end-users with a simple yet
powerful tool that, using standard web-related technologies, can assist them in
enacting simple workflows that can scale using a peer-to-peer approach. Social
X-Folders is a reasonable extension that introduces concepts related to struc-
tured coordination in the social software experience. In its design we followed

Workflow Enactment in a Social Software Environment 721

an exogenous approach, meaning that we operated by layering an automatic en-
actment service on top of existing social software tools and not by modifying
them. We choose this solution for several reasons. First of all injecting process-
awareness into the code of several social software tools can turn out to be a very
complex task. Moreover in a Software as A Service (SaaS) context [2], which
is often the case with Web 2.0, the option of modifying the software tools is
simply not available. The obvious price to pay is that we cannot enforce actors
not to perform specific interactions with the tools (such as moving a document,
deleting a post, ...) also when the current state of the process would suggest
otherwise, but this falls outside the scope of the current papers which is about
supporting automatic enactment.

The value of this experiment with Social X-Folders is twofold. First, it shows
that elements of structured coordination can bring interesting advantages to an
emerging coordination environment; unsurprisingly this has been accomplished
by using a rule-based coordination approach [6] (which is closer to the principles
of social software with respect to the approach based on a (graphical) modeling
language). Second, it shows that it is possible to create artifact-based workflows
in a context in which artifacts are complex entities obtained by aggregating
multiple sources. This last consideration finds its relevance in the idea that
processes mixing BPM tools and social software tools are probably bound to find
interaction points around artifacts, and artifacts in a social software environment
are often bits and pieces of scattered information. For example a large business
process, enacted by BPM tools, could include sub-processes meant for being
enacted with social software tools. A problem that arise in this context is to
determine when a “social” sub-processes has terminated its execution. Given the
fact that no process status is directly modeled in a social software environment,
this kind of decision has to be taken by analyzing the artifacts of the process
and aggregators can turn out to be very useful to this end.

The merging of BPM tools with tools designed to help users in collaborative
processes has already been addressed in the past when the CSCW research com-
munity tried to find a synthesis of workflows and groupware software [1] [5]. The
context, however, is quite different. While social software and CSCW/groupware
tools share common traits in that they both address the interaction and the col-
laboration among users, they are not based on the same paradigms. CSCW em-
braces the top-down approach to coordination (by predefining the collaboration
rules among actors) while social software promotes the bottom-up one.

The idea of introducing workflow support in social software in not new and
most content management tools (like the most complex wikis and blogs) im-
plement some kind of document workflow. What make Social X-Folders apart
from the rest is that it is not meant to support a workflow within a specific
tool but, rather, to enable workflows spanning across different tools. In the last
few months we are witnessing an increasing number of applications and services
meant to assist people in their social software experience: passive aggregators
are developing into personal information management systems, the introduction
of processes and workflows seems a natural step in this direction and we should

722 D. Rossi and F. Vitali

not be surprised when major aggregators, like Google, will begin to provide this
kind of service in the future.

6 Conclusions and Future Work

BPM tools and social software tools are based on very different paradigms but
share common goals. While a synthesis between structured and emerging coor-
dination is arguably impossible, BPM tools and social software can complement
each other. It is also possible to introduce concepts related to BPM into a social
software environment and vice versa. In this paper we have shown an experi-
ment in this direction. In the future we plan to refine Social X-Folders in order
to provide social software users with a service to manage their processes space
just like web aggregators manage their information space. This means moving
X-Folders into a full web application with no software to be deployed into users’
machines. This solution would also better comply with SaaS philosophy. We are
also interested in analyzing case studies in which BPM and social software tools
can be deployed side by side in the context of the same overall process with
specific interest in (artifact-based) synchronization mechanisms among the two
environments.

References

1. Ben-Shaul, I., Kaiser, G.: Integrating groupware activities into workflow manage-
ment systems. In: Proceedings of the Seventh Israeli Conference on Computer Sys-
tems and Software Engineering, pp. 140–149 (June 1996)

2. Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.: Service-
based software: the future for flexible software. In: APSEC 2000: Proceedings of the
Seventh Asia-Pacific Software Engineering Conference, Washington, DC, USA, p.
214. IEEE Computer Society, Los Alamitos (2000)

3. Bernstein, A.: How can cooperative work tools support dynamic group process?
bridging the specificity frontier. In: CSCW 2000: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pp. 279–288. ACM, New York
(2000)

4. Ciancarini, P., Tolksdorf, R., Vitali, F., Rossi, D., Knoche, A.: Coordinating mul-
tiagent applications on the www: A reference architecture. IEEE Trans. Softw.
Eng. 24(5), 362–375 (1998)

5. Grundy, J.C., Hosking, J.G.: Serendipity: Integrated environment support for pro-
cess modelling, enactment and work coordination. Automated Software Engineer-
ing 5(1), 27–60 (1998)

6. Kappel, G., Rausch-Schott, S., Retschitzegger, W.: Coordination in workflow man-
agement systems - a rule-based approach. In: Coordination Technology for Collabo-
rative Applications - Organizations, Processes, and Agents [ASIAN 1996 Workshop],
London, UK, pp. 99–120. Springer, Heidelberg (1998)

7. McAfee, A.P.: Enterprise 2.0: The dawn of emergent collaboration. MIT Sloan Man-
agement Review 47(3), 21–28 (2006)

8. Rossi, D.: X-folders: documents on the move: Research articles. Concurr. Comput.:
Pract. Exper. 18(4), 409–425 (2006)

	Workflow Enactment in a Social Software Environment
	Introduction
	X-Folders
	X-Folders in a Social Software Environment
	Architecture and Technological Solutions

	Proof of Concept
	Discussion and Related Works
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

