
Issues in Modeling Process Variants
with Provop

Alena Hallerbach1, Thomas Bauer1, and Manfred Reichert2

1 Group Research and Advanced Engineering, Daimler AG,
Wilhelm-Runge-Straße, Ulm, Germany

{alena.hallerbach,thomas.tb.bauer}@daimler.com
2 Database and Information Systems Group, University of Ulm, Germany

manfred.reichert@uni-ulm.de

Abstract. For a particular business process, typically, different variants exist.
Each of them constitutes an adjustment of a basic process (e.g. a reference pro-
cess) to specific requirements building the process context. Contemporary busi-
ness process management (BPM) tools, however, do not adequately support the
modeling and management of process variants. Either the variants have to be
specified by separate process models or they are expressed in terms of conditional
branches within the same process model. Both methods can lead to high model
redundancies, which make model adaptations a time consuming and error-prone
task. In this paper we discuss advanced modeling concepts of our Provop ap-
proach, which provides a flexible and powerful solution for modeling and manag-
ing process variants. With Provop, a particular process variant can be configured
at a high level of abstraction by applying a set of well-defined change operations
to a basic process model.

Keywords: Process variant management, process configuration, process refer-
ence models, process design methods and methodologies.

1 Introduction

Usually, a business process model captures the activities an organization has to perform
to achieve a particular goal. More precisely, it implements a process type (e.g., for han-
dling a credit request or for declaring travel costs) by describing process activities as
well as their execution constraints (i.e., control flow), resources required (e.g., humans
or IT systems), and information processed. For creating and maintaining such process
models, there exist tools like ARIS Business Architect [1], ADONIS [2], and IBM Web-
Sphere Business Modeler [3]. These tools, in turn, support different modeling methods
like UML Activity Diagrams, BPMN or Event-Process-Chains (EPCs). When model-
ing business processes several objectives exist. As example consider improved process
transparency. By its model-based documentation, process information is provided in a
more transparent and unified way to users. As another advantage, process models can
be analyzed and simulated resulting in further optimizations. However, modeling, ana-
lyzing, and optimizing processes constitute only one side of process management. The
other one is to implement and execute these processes, e.g., based on workflow man-
agement systems (WfMSs). For this purpose, executable workflow models have to be

D. Ardagna et al. (Eds.): BPM 2008 Workshops, LNBIP 17, pp. 56–67, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Issues in Modeling Process Variants with Provop 57

provided. Based on such models, a WfMS controls the execution of process activities
and assigns them to user worklists during runtime [4].

Process support is required in almost all business domains (e.g., healthcare [5], au-
tomotive engineering [6,7], or public administration). Characteristic process examples
from the automotive industry, for instance, include product creation, product change
management, and release management [6]. Typically, respective processes occur in a
multitude of variants, whereby each of these variants is valid in a particular context;
i.e., the selection of a concrete process variant depends on concrete requirements build-
ing the process context. When having a closer look at the product creation process, for
example, different process variants exist. Thereby, each variant is assigned to a partic-
ular product type (e.g., car, truck, or bus) with different organizational responsibilities
and strategic goals, or varying in some other aspects.

Similar considerations can be made for the process handling vehicle repair in a
garage as depicted in Fig. 1a: The process starts with the reception of a vehicle. Af-
ter a diagnosis is made, the vehicle is repaired if necessary. During its diagnosis and
repair the vehicle is maintained; e.g., oil and wiping water will be checked and refilled
if necessary. The process ends when handing over the repaired and maintained vehicle
to the customer. Depending on the process context, different variants of this process are
required. Fig. 1b-1d show examples of such process variants: Variant 1 as depicted in
Fig. 1b assumes that the cause of a vehicle defect can be detected very fast and repair
can be done quickly as well; e.g., a flat tire constitutes an obvious break down prob-
lem and does not need detailed studies of the flashed software. Therefore the activities
Diagnosis and Repair are shortened by modifying the attribute duration. Additionally,
the customer wants to omit maintenance of his vehicle, as this shortens the process and
reduces costs. At the model level this is indicated by skipping activity Maintenance. As
another example consider Variant 2 as depicted in Fig. 1c: Because of legal regulations
a specific security check is required before handing over the vehicle to the customer.
Regarding this variant, a new activity Final Check is inserted when compared to the
standardized process from Fig. 1a. Finally, Variant 3 will result if a Final Check is
required and the customer wants to omit Maintenance activities (cf. Fig. 1d).

This paper presents selected concepts of the Provop (PROcess Variants by OPtions)
approach for managing large collections of such process variants in a single process
model. In particular, we deal with specific modeling issues which complement our pre-
vious work [7,8]. Section 2 presents problems which will arise if we do not treat vari-
ants as first class objects or only model them conventionally. Section 3 describes basic
Provop concepts. In Section 4 and 5 we address advanced concepts for variant modeling
in Provop. Section 6 discusses related work. The paper concludes with a summary and
an outlook in Section 7.

2 Challenges and Requirements

We first discuss issues that emerge when modeling process variants based on conven-
tional BPM tools. Afterwards, we introduce major requirements for modeling process
variants, which we identified during case studies we had performed in the automotive
domain.

58 A. Hallerbach, T. Bauer, and M. Reichert

Fig. 1. Variants of a Standardized Vehicle Repair Process (Simplified View)

Conventional Variant Management: In existing BPM tools, process variants usually
have to be defined and kept in separate process models as shown in Fig. 1. This typi-
cally results in highly redundant model data as the variant models are identical or similar
for most parts. Furthermore, the variants cannot be strongly related to each other; i.e.,
their models are only loosely coupled (e.g., based on naming conventions) and there
is no support for (semi-) automatically combining existing variants to a new one. Con-
sidering the large number of variants occurring in practice, these drawbacks increase
modeling and maintenance efforts significantly. Particularly, the efforts for maintaining
and changing process variants become high since more fundamental process changes
have to be accomplished for each individual variant (e.g., due to new or changed legal
regulations). This is both time-consuming and error-prone. As a consequence, variant
models degenerate over time as optimizations are only applied to single variants without
considering relations to others. This, in turn, makes it a hard job for process designers
to analyze, compare, and unify business processes. Additionally, IT systems providing
support for multiple process variants are difficult to realize. As a conclusion, model-
ing all process variants in separate models does not constitute an adequate solution for
variant management.

Another straightforward approach frequently applied in practice is to capture multi-
ple variants in one single process model based on conditional branching. As example
consider Fig. 2 which shows the repair process together with its different variants (cf.
Fig. 1a-d). Each execution path in the model represents a particular variant with branch-
ing conditions being correlated to the variant context. Generally, specifying all variants
in one process model can result in large models, which are difficult to comprehend and
expensive to maintain.1 As another drawback, to a large degree, variants are then mixed
with “normal” process logic; i.e., regular branching conditions cannot be distinguished

1 Note that in realistic cases there might be dozens to hundreds of variants of one base process.

Issues in Modeling Process Variants with Provop 59

Fig. 2. Process Variants realized by Conditional Branches

from the ones representing a variant selection. Therefore, neither variants are transpar-
ent nor they are explicitly defined. As a consequence the underlying system is not aware
of process variants.

In summary, neither the use of separate models for capturing process variants nor
their realization based on conditional branches within a single process model (as de-
scribed above) constitute adequate methods.

Requirements. We conducted several case studies in the automotive industry as well
as in other domains (e.g. healthcare) to elaborate key requirements for the definition,
adaptation, and management of process variants. This strong linkage to practice is re-
quired to realize a complete and solid approach for process variant management. The
requirements we identified are related to different aspects including the modeling of
process variants, their linkage to process context, their execution in a WfMS, and their
continuous optimization to deal with evolving needs; i.e., we have to respect require-
ments related to the whole process life cycle.2

Modeling process variants should be intuitive and come with minimal efforts for
process designers (Req. 1). Therefore, reuse of both process fragments and process
models (of the different process variants) has to be supported (Req. 2). In particular, it
should be possible to create new variants by inheriting properties from existing ones,
but without creating redundant or inconsistent model data (Req. 3). The hierarchical
structure of such “variants of variants” has to be adequately represented and should
be easy to adapt (Req. 4). To reduce both maintenance efforts and costs of change,
fundamental process changes affecting multiple process variants should be performed
only once. Consequently all variants concerned by such a change should be adapted
automatically (Req. 5).

3 The Provop Approach

Basically, a process variant can be created by “cloning” a given process model and
by adjusting it. Consequently the process model of a variant is similar to the one it
is derived from. For example, the process variants depicted in Fig. 1b- 1d constitute
adjustments of the process model shown in Fig. 1a to particular process contexts and
are therefore similar. Provop utilizes this similarity and allows to configure the variants

2 In this paper we focus on major requirements to be met when modeling process variants. There
exist further requirements addressed by Provop, which we cannot mention here.

60 A. Hallerbach, T. Bauer, and M. Reichert

out of a common model - the base process; i.e., a process variant results when applying
a set of high-level change operations to such base processes.

A base process can be adjusted in different ways to configure a specific process
variant. Provop supports the following change operations: INSERT, DELETE, and MOVE
process fragments and MODIFY process element attributes. To refer to fragments and
elements of the base process within such change operations we use adjustment points,
which correspond to the entry or exit of an activity or connector node (e.g., split and
join nodes) of the base process. Adjustment points are labeled with unique names; e.g.,
“Start Maintenance” at the entry of activity Maintenance (cf. Fig.3). If only single el-
ements are affected by a particular change operation their process element IDs may
be used alternatively. Furthermore, to deal with more complex process adjustments,
Provop allows to group change operations into reusable sets. We denote these sets as
options. A particular process variant can then be configured by applying one or more
options to a base process, i.e., by performing all change operations defined by these
options. At this point, we assume that the combined application of a set of options to
a sound base process results in a sound process model again. Generally, we have to
restrict possible combinations of options to ensure this (cf. Section 5).

Fig. 3 presents the basic elements of the Provop modeling approach. Fig. 3a presents
a base process, whereas Fig. 3b depicts three predefined options that can be applied to
this base process in order to derive a particular process variant. Furthermore, to labeled
adjustment points (i.e., black filled diamonds) of a base process, the change operations
may refer. The modeled options specify what kinds of adjustments have to be made
(INSERT, DELETE, MOVE, and MODIFY). Application of Options 1 and 2, for example,
results in Variant 1 as depicted in Fig. 1b. The model of Variant 2 (cf. Fig. 1c) can be
created by applying Options 3. Finally, Variant 3 results when applying Options 2 and 3
to the base process.

Fig. 3. The Provop Constructs Base Process (a) and Options (b)

Provop aims at the support of the whole process life cycle [7]. In previous work, we
have shown how to model and visualize a base process and its options [9]. Furthermore,
we have given insights into the context-based configuration of variants by applying a
context-dependent set of options to the base process [8]. In the following we focus on
additional issues emerging in the context of variants modeling.

Issues in Modeling Process Variants with Provop 61

4 Designing a Base Process

Basic to the configuration of process variants of a particular type is a respective base
process, which serves as reference. Several aspects become relevant when designing
such base processes, including its nature and the definition of adequate adjustment
points.

Policies for Defining a Base Process. When considering typical use cases as well as
the overall process landscape different policies for defining a base process exist (cf.
Req. 1). Basically, one of the following policies can be chosen in the context of Provop:

– Policy 1 (Standard Process): The base process represents a domain-specific stan-
dard or reference process. In the automotive domain in which we conducted our
case studies, for example, such a reference process exists for Engineering Change
Management [10]. Usually, such a standard process has to be adjusted to meet spe-
cific requirements; i.e., it should be possible to derive different variants from a
standard process.

– Policy 2 (Most Frequently Used Process): If one particular process variant is used
more frequently than others, it can be chosen as base process. This will reduce
configuration efforts in terms of the number of processes for which adjustments
become necessary. Generally, this policy does not guarantee that the average num-
ber of change operations needed to configure the variants out of the base process
becomes minimal.

– Policy 3 (Minimal Average Distance): When applying techniques for structural
mining to a collection of process variants [11], we can derive a base model such
that the average distance between this model and its variants becomes minimal.
Thus, configuration efforts can be reduced.

– Policy 4 (Superset of all Process Variants): The base process is created by merg-
ing all variants into one process model by using alternative branches; i.e., the base
process realizes a “superset” of all relevant process variants. Consequently, every
element that is part of at least one process variant belongs to the base process as
well. When deriving process variants, therefore, only DELETE operations have to be
applied.

– Policy 5 (Intersection of all Process Variants): The base process comprises only
those elements that are part of all process variants given in any order; i.e., the base
process realizes a kind of “intersection” of relevant process variants. Therefore, the
base process covers the identical elements of the process variants. When deriving
process variants no DELETE operations have to be performed, but elements may
have to be moved, modified or inserted.

Policies 1-5 differ in one interesting aspect: When using Policy 1 or 2 the respective
base process is created to serve a specific use case; i.e., the base process represents one
possible process variant valid in a specific context. Policies 3-5, in turn, are especially
designed for configuring variants and thus do not necessarily represent a semantically
valid process model. Which policy to follow is mainly influenced by the modeling situ-
ation and the existing process landscape (e.g., if a standard process model already exists
Policy 1 will be recommended).

62 A. Hallerbach, T. Bauer, and M. Reichert

Fixing Adjustment Points. When a base process model is created another challenge
is to define its adjustment points; i.e. explicit positions within the base process to which
the high-end change operations may refer 3 In Provop, both the entry and the exit of ac-
tivities or connector nodes from the base process can serve as adjustment points. Defin-
ing too many adjustment points for a base process, however, would lead to complex
process models. Therefore, Provop asks for an explicit specification of valid adjustment
points. We recommend designers to use “business-relevant” positions within the base
process (e.g., the adjustment point Repair completed describing the end of activity
Repair as depicted in Fig. 3).

Evolving the Base Process. Another challenge concerns the evolution of base pro-
cesses for which corresponding options exist. For example, assume that the base process
depicted in Fig. 4a is adapted by removing Activity D and by swapping Activities A and
B (cf. Fig. 4b). Assume further that Options 1 and 2 (cf. Fig. 4c) had been defined for
the original base process before it was adapted: Option 1 modifies the duration of Ac-
tivity D. Obviously, this change operation cannot be applied to the adapted base process
from Fig. 4b as Activity D no longer exists. Consequently, the process variant cannot be
derived correctly. Option 2 inserts Activity F using adjustment points X and Y. As the
order of these adjustment points is changed in the adapted base process, insertion of F
would lead to a deadlock causing cycle: When inserting an activity a parallel branch
comprising the inserted activity is created and connected to the base process at given
adjustment points. When inserting Activity F the parallel branch leads to a backward
jump in the process model: After the execution of Activity A the control-edges m and
n are signaled as true. Therefore, the execution of the base process is continued (i.e.,
Activity C is activated), while the backward jump starts execution of Activities B and A
again. This leads to a serious execution error at runtime.

Fig. 4. Problems caused by Base Process Adaptations

3 Note that change operations are not restricted to adjustments points but may alternatively use
process element ids, that are not visualized explicitly in the base process.

Issues in Modeling Process Variants with Provop 63

To avoid references to missing objects, execution errors and other problems, possible
sources of errors have to be automatically detected by the system (e.g., by checking
whether existing options and base model adaptations are conflicting).

Provop provides elaborated concepts to support the adaptation of base processes. For
example, a DELETE-operation either can be defined based on element IDs or by using
adjustment points. This, in turn, may lead to different effects when adapting a base
process: Fig. 5a shows a base process that evolves to the model depicted in Fig. 5b
by adding Activity F. Options 1 and 2 (cf. Fig. 5c) were defined before adapting this
base process. Option 1 performs a DELETE-operation whose definition refers to IDs of
single elements. When applying it to the adapted base process from Fig. 5b the resulting
process model would contain Activity F (cf. Fig. 5c). Option 2, in turn, is based on
adjustment points; i.e., it deletes every process element between adjustment points X
and Y. As Activity F is inserted between adjustment points X and Y it will be deleted
when applying Option 2 to the adapted base process. In fact, this leads to the same
process model as if Option 2 would have been applied to the original base process.
When modeling a DELETE-operation Provop allows users to choose between these two
behaviors.

Fig. 5. Deleting Elements using their IDs or Adjustment Points

By adapting the base process all process variants can be reconfigured automatically
(Req. 5). Thus, maintenance efforts are significantly reduced.

Using Multiple Base Processes for a Particular Process Type. In certain scenarios,
the variants of a particular process type may differ to a large degree. To deal with these
differences, the process variants can be configured out of different base processes; i.e.,
each of these base processes then covers a specific class of variants. This minimizes
the number of change operations required for configuring process variants and allows
to better structure the process landscape (cf. Req. 1). One disadvantage coming with
the use of multiple base processes for a particular process type are the higher modeling
and maintenance efforts. In particular, inconsistencies and errors will result if a change
affects all base processes. Hence, problems are similar to the ones which emerge when
modeling variants separately (cf. Sec. 2). Therefore, multiple base processes shall be
only used if classes of process variants can be identified that differ to a large degree, i.e.
they have no common parts or structures.

64 A. Hallerbach, T. Bauer, and M. Reichert

5 Designing and Modeling Options

So far, we have considered modeling issues related to base processes. When defining
options for a base process several additional issues occur. In particular, the process
designer has to decide whether to use first class objects (i.e. options) to describe a par-
ticular variant or whether this shall be accomplished using conditional branches within
the model of the base process. Options can be created using different modeling meth-
ods. Thereby, the granularity of options becomes an issue. In the following we cope
with these aspects in more detail.

Modeling Variants Based on Change Operations vs. Use of Conditional Branches.
When modeling processes and their variants in an approach like Provop one has to de-
cide which control flow alternatives are variant-specific and which ones are common
for all process variants. For example, the repair process from Fig. 1a includes one de-
cision point (i.e., conditional branching) to decide whether the vehicle can be repaired
at the agreed cost limit or whether the repair shall be omitted. If these two alternatives
are modeled as separate process variants, only one variant of the repair process will
comprise a repair activity. This is not meaningful as both alternatives are relevant for
all repair process variants. In particular, the decision to either omit the Activity Repair
or to perform it cannot be made before executing Activity Diagnosis. Therefore such
decisions should be modeled in a conditional branch.

Granularity of Options. Provop allows to combine several options to derive a specific
process variant (cf. Req. 2 and 3). When defining process variants the designer therefore
has to decide how to group change operations into options. Thereby aspects like reuse
of options as well as maintainability have to be considered.

As one extreme we can have fine-grained options with only one change operation.
Such options can be easily combined to derive specific process variants. The number of
options, however, then increases significantly. Coarse-grained options, in turn, group a
larger number of change operations. An extreme would be to group all change opera-
tions of a specific process variant into one option. Such partially redundant options are
difficult to reuse, but the configuration of a process variant becomes more transparent
and easy to track.

The difference between fine- and coarse-grained options can be demonstrated using
the process and its variants from Fig. 1. Fig. 6 shows how the different change opera-
tions can be grouped into options when either applying the fine- or coarse-granularity
approach.

Note that neither fine nor coarse granularities are optimal in the given example, as
fine granularity leads to four options and coarse granularity to high redundancy with re-
spect to the change operations. To support a meaningful grouping of change operations
into options Provop defines several guidelines. In particular, one is to avoid redundant
definitions of change operations within different options. Therefore, change operations
should be grouped into one option if they are always used together; e.g., due to se-
mantical interdependencies. Doing so, the number of options can be reduced without
affecting reuse. Considering this guideline the change operations of our example are
grouped into the options shown in the third column of Fig. 6 (and in Fig. 3b): The

Issues in Modeling Process Variants with Provop 65

Fig. 6. Granularity of Options

adjustment for Activity Diagnosis is always applied in conjunction with a modifica-
tion of the Repair activity. Therefore these two change operations can be grouped into
one option. The other change operations are modeled in separate options. As result we
obtain three options without any redundancy.

Relations Between Options. Our case studies have revealed that options are often
correlation. Provop considers three types of relations between options: dependency,
mutual exclusion, and hierarchy (cf. Req. 3 and 4).

– Dependency: If different options are applied conjointly to the base process (e.g.
because of semantical dependencies) the user can explicitly define a dependency
relation between those options. Dependency relations are directed; i.e., if the rela-
tion “Option 1 depends on Option 2” has been defined the reverse conclusion (i.e.,
Option 2 depends on Option 1) is not true.

– Mutual Exclusion: Mutual exclusion, in turn, is helpful to describe which options
must never be used in conjunction when configuring a specific process variant.

– Hierarchy: The definition of a hierarchy of options allows for the inheritance of
change operations. More precisely, if an option is selected to configure a particular
process variant and the option has an ancestor in the option hierarchy the change
operations defined in the ancestor options will be applied as well. This reduces the
amount of change operations defined in options and structures the options land-
scape.

Generally, when defining relations between options the designer does not only use one
type of relation, but may apply them in combination with each other as well. Thus,
Provop supports the combined use of several relations and ensures consistency of a
set of relations applied in the same context. For example, it is not allowed to define
contradicting relations (e.g., an mutual exclusion between an option and its parental
option).

The presented concepts for defining relations between options ease the use of mul-
tiple options. Additionally, semantical errors are avoided when configuring a process
variant. Therefore, whenever relations are known they should be defined explicitly.

66 A. Hallerbach, T. Bauer, and M. Reichert

6 Related Work

Though the support of process variants is highly relevant for practice, only few ap-
proaches for variant management exist. In particular, there is no comprehensive solution
for the adequate modeling of multiple variants within a single process model.

There exist approaches which provide support for the management and retrieval of
separately modeled process variants. As an example, [12] allows storing, managing,
and querying large collections of process variants within a process repository. Graph-
based search techniques are used in order to retrieve process variants that are similar to
a user-defined process fragment (i.e., the query is represented as graph). Obviously, this
approach requires profound knowledge about stored processes, an assumption which
does not always hold in practice. Variant search based on process metadata (e.g., the
process context) is not considered.

An important area related to variant management is reference process modeling. Usu-
ally, a reference process has recommending character, covers a family of processes, and
can be customized in different ways to meet specific needs. Configurable EPCs (C-
EPCs), for example, provide support for both the specification and the customization of
reference process models [13,14]. When modeling a reference process, EPC functions
(and decision nodes) can be textually annotated to indicate whether they are mandatory
or optional. Respective information is then considered when configuring the C-EPCs.
This approach is restricted to control flow and does only allow for the configuration
of single elements (i.e., it is not possible to mark a complete branch as mandatory or
optional in one step). It is also not possible to move or add model elements or to adapt
element attributes like in Provop. As compared to reference process models, the basic
process in Provop can be modeled without any restriction; i.e., it neither needs to be
defined with a specific use case in mind nor does it constitute a recommendation for all
processes of a given process type.

Variants are also important in software engineering and fundamental characteristics
of software variability have been described [15]. In particular, software variants exist
in software architectures and software product lines [16,17]. In many cases, feature
diagrams are used for modeling software systems with varying features. Another con-
tribution stems from the PESOA project [18,19], which provides basic concepts for
variant modeling based on UML. More precisely, different variability techniques like
inheritance, parameterization, and extension points are provided and can be used when
describing UML models. As opposed to PESOA, the operational approach followed by
Provop provides a more powerful instrument for describing variance in a uniform and
easy manner; i.e., no distinction between different variability mechanisms is required.

7 Summary and Outlook

We have described a methodology using the Provop approach for managing process
variants. Provop considers the whole process life cycle by supporting variants in all
phases. This includes advanced techniques for modeling variants in a unified way and
within a single process model, but without resulting in too complex or large model rep-
resentations. Based on well-defined change operations, on the ability to group change

Issues in Modeling Process Variants with Provop 67

operations in reusable options, and on the possibility to combine options in a con-
strained way, necessary adjustments of the basic process can be easily and consistently
realized when creating or configuring a process variant.

In future research we will detail our concepts and apply them in industrial context.
One of the challenges we have to tackle concerns the flexible execution of variants; i.e.,
to allow for dynamic switches between variants during runtime. Finally, a detailed case
study based on a prototype that implements the Provop approach will be conducted.

References

1. IDS Scheer: ARIS Platform Method 7.0. (2006)
2. BOC: The Business Process Management Tool ADONIS (in German) (2007)
3. IBM: IBM WebSphere Business Modeller, Version 6.1. (2007)
4. Weske, M.: Business Process Management - Concepts, Languages, Architectures. Springer,

Heidelberg (2007)
5. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges, Perspec-

tives. Data and Knowledge Engineering 61(1), 39–58 (2007)
6. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Management

Processes in the Automotive Industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM
2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)

7. Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process Life Cycle.
In: Proc. 10th Int. Conf. on Enterprise Information Systems, pp. 154–161 (2008)

8. Hallerbach, A., Bauer, T., Reichert, M.: Context-based Configuration of Process Variants. In:
Proc. 3rd Int. Workshop on Context-Aware Business Process Management, pp. 31–40 (2008)

9. Hallerbach, A., Bauer, T., Reichert, M.: Modeling and Visualization of Process Variants in
Provop. In: Proc. of Modellierung, Berlin (in German) (2008)

10. VDA Recommendation 4965 T1: Engineering Change Management (ECM) - Part 1: Engi-
neering Change Request (ECR) Version 1.1 (2005)

11. Li, C., Reichert, M., Wombacher, A.: Mining Process Variants: Goals and Issues. In: IEEE
5th Int’l Conf. on Services Computing (SCC 2008). IEEE Computer Society Press, Los
Alamitos (2008)

12. Lu, R., Sadiq, S.: On Managing Process Variants as an Information Resource. Technical
Report No. 464, Uni of Queensland (2006)

13. Rosemann, M., van der Aalst, W.: A Configurable Reference Modeling Language. Informa-
tion Systems 32, 1–23 (2007)

14. Rosa, M.L., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.: Questionnaire-driven Configu-
ration of Reference Process Models. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 424–438. Springer, Heidelberg (2007)

15. Bachmann, F., Bass, L.: Managing Variability in Software Architectures. In: Proc. of 2001
Symp. on Software Reusability, pp. 126–132. ACM Press, New York (2001)

16. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to Cus-
tomers. Software and System Modeling 2(1), 15–36 (2003)

17. Becker, M., Geyer, L., Gilbert, A., Becker, K.: Comprehensive Variability Modeling to Fa-
cilitate Efficient Variability Treatment. In: Proc. 4th Int. Workshop of Product Family Engi-
neering (2001)

18. Bayer, J., Buhl, W., Giese, C., Lehner, T., Ocampo, A., Puhlmann, F., Richter, E., Schnieders,
A., Weiland, J., Weske, M.: PESOA - Process Family Engineering - Modeling Variant-rich
Processes. Technical Report 18/2005, Hasso-Plattner-Institut, Potsdam (2005)

19. Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: PESOA - Variability Mechanisms for
Process Models. Technical Report 17/2005, Hasso-Plattner-Institut, Potsdam (2005)

	Issues in Modeling Process Variants with Provop
	Introduction
	Challenges and Requirements
	The Provop Approach
	Designing a Base Process
	Designing and Modeling Options
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

