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Abstract. A given business process may face a large number of regulatory obli-
gations the process may or comply with. Providing tools and techniques to eval-
uate the compliance degree of a given process is a key objective in emerging
business process platforms. We propose a diagnostic framework to assess the
compliance gaps present in a given process. Checking whether a process is com-
pliant with the rules involves enumerating all reachable states and is hence, in
general, a hard search problem. The approach taken here allows to provide useful
diagnostic information in polynomial time based on two underlying techniques. A
conceptually faithful representation for regulatory obligations is firstly provided
by a formal rule language based on a non-monotonic deontic logic of violations.
Secondly, processes are formalized through semantic annotations that allow a
logical state space to be created. The intersection of the two allows us to devise
an efficient method to detect compliance gaps.

Keywords: Regulatory Compliance, Business Process Models, Semantic
Annotations.

1 Background and Motivation

Compliance management is an area of increasing importance in several industry sectors
where there is a high incidence of regulatory control e.g. financial services, gaming,
and healthcare. Ensuring that business practices reflected in business process models
are compliant to required regulations (existing and new) is a highly challenging task
due to the following reasons. Firstly, the lifecycles of the two (regulatory obligations
vs. business strategy) are not aligned in terms of time, governance, or stakeholders [1].
Often, the source of objectives for the two will be distinct both from an ownership and
governance perspective, as well as from a timeline perspective. Whereas businesses
will base their process design on business objectives, (regulatory) control objectives
will be dictated by mostly external sources and at different times. Hence compliance
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requirements cannot simply be incorporated into the initial design of process models.
Secondly, conceptually faithful specifications for compliance rules and process mod-
els respectively are fundamentally different from a representational point of view thus
making it difficult to provide comparison methods. Furthermore, there is likelihood of
conflicts, inconsistencies and redundancies within the two and hence the intersection of
the two needs to be carefully studied.

We aim at providing computationally effective methods for studying the intersec-
tion of the two specifications: regulatory controls and business processes. The proposed
framework assesses whether a given business process complies with a set of regulatory
control objectives. In general, deciding whether a non-compliant state exists involves
enumerating all the, exponentially many, reachable states. However, as we show herein,
useful diagnostic information can be obtained in polynomial time. We draw on recent
methods for semantically annotated business processes, which generate a kind of sum-
mary of the states that may be reached by a process. We devise new algorithms that
exploit such summaries to detect compliance gaps. The algorithms guarantee to detect
all obligations that will necessarily arise during execution, but that will not necessarily
be fulfilled. Upon completion, our procedure provides a status report on the activities in
a business process. The report labels problematic cases with the control objective that
may be violated, and provides information as to whether a subset of the possible execu-
tions – or even all executions – will violate that objective at this point in the process.
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Fig. 1. An Overview of Compliance Checking Framework

Fig 1 provides an overview of our diagnostic framework. On the right hand side of
the figure, we see the business process model, whose individual activities have been
annotated in terms of the effects they produce thereby providing a logical state repre-
sentation. On the left hand side of the figure, we see the compliance checker, which
consists of an interaction between the compliance rule base and the logical state repre-
sentation. The output of the compliance checker is a status report, as explained above.
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2 Preliminaries

To facilitate discussion and illustration, we introduce an account opening process as
depicted in Fig 2.
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Fig. 2. Example account opening process in private banking

The control objectives for this example are motivated by the following scenario: A
new legislative framework has recently been put in place in Australia for anti-money
laundering. The first phase of reforms for the Anti-Money Laundering and Counter-
Terrorism Financing Act 2006 (AML/CTF), covers the financial sector and imposes a
number of obligations, which include: customer due diligence (identification, verifica-
tion of identity and ongoing monitoring of transactions); reporting (suspicious matters,
threshold transactions and international funds transfer instructions); and record keep-
ing. AML/CTF is a principles or risk based regulation and hence businesses need to
determine the exact manner in which they will fulfil the obligations, which comprises
the design of internal controls specific to the organization. Table 1a contains a natural
language description of the control objectives and corresponding internal controls for
this process; Table 1b shows the semantic effect annotations of the process activities.

Table 1. Control objectives (left) and annotations (right) for the process in Fig 2

Control Objective Internal Control
Customer due dili-
gence

All new customers must be
scanned against provided
databases for identity checks.
Accounts must maintain a posi-
tive balance, unless approved by
bank manager, or for VIP cus-
tomers.

Record keeping Retain history of identity checks
performed.

Task Semantic Annotation
A newCustomer(x)
B checkIdentity(x)
C checkIdentity(x), recordIdentity(x)
E owner(x,y), account(y)
F accountType(y,type)
G positiveBalance(y)
H ¬positiveBalance(y)
I accountActive(y)
J notify(x,y)
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2.1 Modeling Control Objectives

Compliance can be understood in terms of the normative positions (i.e., obligations,
prohibitions, etc.) a business process has to comply with. This means that to tackle this
issue one has to adopt a formalism capable to model and reason with such notions.

Many formalisms have been proposed to represent normative notions such as obliga-
tions, prohibitions and permissions. In this paper we adopt FCL (Formal Contract Lan-
guage) [2] as formalism to model the control objective (aka ‘normative’ specifications).
FCL is a combination of an efficient non-monotonic formalism (defeasible logic [3])
and a deontic logic of violations [4]. This particular combination allows us to represent
exceptions as well as the the ability to capture violations and the obligations result-
ing from the violations, and the reparations; in addition FCL has good computational
properties: the extension of a theory (i.e., the set of conclusions/normative positions
following from a set of facts can be computed in time linear to the size of the theory).

We illustrate how to use FCL to represent and reason about “normative” specifica-
tions relative to a business process. See [2,5] for detailed presentations.

A rule in FCL is an expression of the form r : A1, . . . ,An ⇒ B, where r is the (unique)
name of the rule, A1, . . . ,An are the premises (propositions in the logic), and B is the
conclusion (also a proposition of the logic). The propositions of the logic are built from
a finite set of atomic propositions, and the following operators: ¬(negation), O (obliga-
tion), P (permission), and ⊗ (violation/reparation).

If p is an atomic proposition, then ¬p is a proposition. If p is a proposition, then Op
is an obligation proposition and Pp is a permission proposition; both are called deontic
propositions.1 If p1, . . . , pn are obligation propositions and q is a deontic proposition,
then p1 ⊗·· ·⊗ pn ⊗q is a reparation chain. A simple proposition corresponds to a fac-
tual statement. A reparation chain captures obligations and normative positions arising
in response to violations of obligations. For example, B1 ⊗B2 means that the process is
obliged to perform B1; and in case B1 is not fulfilled (i.e., the obligation is violated), the
“secondary” obligation B2 must be fulfilled. While single obligations and permissions
(and their negations) can appear in the premises of a rule, reparation chains can be used
only in rule conclusions.

FCL is equipped with a superiority relation (a binary relation) over the rule set. The
superiority relation (≺) determines the relative strength of two rules, and it is used when
rules have potentially conflicting conclusions. For example given the rule r1 : A⇒B⊗C
and r2 : D ⇒¬C. r1 ≺ r2 means that rule r1 prevails over rule r2 in situation where both
fire and they are in conflict (i.e., rule r2 fires for the secondary obligation C).

In the context of business process it is important to distinguish different types of
obligations and when they are fulfilled or violated. Here we follow the classification
proposed by [6], where obligations are classified in the following classes:

Persistent maintenance obligations indicated as Op,m. Whenever such an obligation
arises in an execution state s, it persists for all states that come after s. Any state, starting
from s, that does not satisfy the obligation, is non-compliant.

1 We assume the standard relationships between the deontic operators: Op ≡ ¬P¬p and Pp ≡
¬O¬P. A prohibition is represented by O¬.
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Persistent achievement obligations denoted by Op,a. Such obligations also persist.
However, it is sufficient if they are achieved at some point later than s; they may there-
after be falsified again without violating compliance. A violation of an achievement
obligation can be detected when the obligation expires (i.e., when we reach the dead-
line to fulfil it, see [6]). Here we do not consider temporal constraints, and we set the
deadlines of all achievement obligations at the end of the process where they occur.

Non-persistent obligations indicated as On. Such obligations are evaluated on a state-
by-state basis: whenever they arise, they must immediately be satisfied; but they have
no consequence on any of the states yet to come.

Our aim is to identify whether a given process complies with a set of rules. Thus we
must be able to determine all and only obligations generated by a set of facts. We use
the normalisation procedure of FCL (see [5]) to generate the set of rules with all unique
maximal reparation chains. The compliance checkers use the maximal chains to deter-
mine whether a task in a process and then a process itself complies with the rules.

The control objectives in Table 1a can be expressed by the following FCL rules:

1. All new customers must be scanned against provided databases for identity checks.

r1 : newCustomer(x) ⇒ OncheckIdentity(x)

The predicate newCustomer(x) means that the input data with Id = x is a new cus-
tomer, for which we have the (non-persistent) obligation to check the provided data
against provided databases checkIdentity(x). This means that as soon as a check has
been performed, the obligation is no longer in force.
2. Retain history of identity checks performed.

r2 : checkIdentity(x) ⇒ Op,mrecordIdentity(x)

This rule establishes that there is a permanent obligation to keep record of the identity
for to the (new) customer identified by x. In addition this obligation is not fulfilled by
the achievement of the activity (for example, by storing it in a database). We have a
violation of the condition, if for example, the record x is deleted from the database.
3. Accounts must maintain a positive balance, unless approved by a bank manager, or
for VIP customers.

r3 : account(x) ⇒ Op,mpositiveBalance(x)⊗Op,aapproveManager(x)

The primary obligation (a persistent maintenance obligation) is that each account has
to maintain a positive balance positiveBalance; if this condition is violated (for any
reason the account is not positive), then we still are in an acceptable situation if a bank
manager approve the account not to be positive. In this case the obligation (a persistent
achievement obligation) of approving it persists until a manager approves the situation;
after the approval the obligation is no longer in force.

r4 : account(x),owner(x,y),accountType(x,VIP) ⇒ Pn¬positiveBalance(x)

This rule creates an exception to rule r3. Accounts of type VIP are allowed to have a non
positive a balance and no approval is required for this type of accounts (this is achieved
by imposing that rule r4 is stronger than rule r3, r4 ≺ r3). Notice that the normative
position associated to r4 is a permission.
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2.2 Annotated Process Model

The basic execution semantics of the control flow aspect of a business process model
is defined using token-passing mechanisms, as in Petri Nets. The definitions used here
extend [7] with semantic annotations in the form of effects and their meaning [8].

A process model is seen as a graph with nodes of various types – a single start
and end node, task nodes, XOR split/join nodes, and parallel split/join nodes – and
directed edges (expressing sequentiality in execution). The number of incoming (out-
going) edges are restricted as follows: start node 0 (1), end node 1 (0), task node 1 (1),
split node 1 (>1), and join node >1 (1). The location of all tokens, referred to as a
marking, manifests the state of a process execution. An execution of the process starts
with a token on the outgoing edge of the start node and no other tokens in the process,
and ends with one token on the incoming edge of the end node and no tokens elsewhere
(cf. soundness, e.g., [9]). Task nodes are executed when a token on the incoming link
is consumed and a token on the outgoing link is produced. The execution of a XOR
(Parallel) split node consumes the token on its incoming edge and produces a token on
one (all) of its outgoing edges, whereas a XOR (Parallel) join node consumes a token
on one (all) of its incoming edges and produces a token on its outgoing edge.

As for the semantic annotations, the vocabulary is presented as a set of predicates P.
There is a set of process variables (x and y in Table 1b), over which logical statements
can be made, in the form of literals involving these variables. The task nodes can be
annotated using effects (eff, also referred to as postconditions), which are conjunctions
of literals using the process variables. The meaning is that, if executed, a task changes
the state of the world according to its effect: every literal mentioned by the effect is true
in the resulting world; if a literal l was true before, and is not contradicted by the effect,
then it is still true (i.e., the world does not change of its own accord).

2.3 Logical State Representation

To check compliance we have to figure out (a) the obligations that will definitely appear
when executing the process, and (b) which of those obligations may not be fulfilled. To
this end we use as input the information provided by an algorithm called I-propagation,
a restricted special case of a semantic validation framework for business processes [8].
This algorithm determines, at every edge e in the process graph, the set

⋂
e of literals

that is true in every reachable state where e is activated. Here we focus on how to make
use of the sets

⋂
e, through additional algorithms, to provide answers to (a) and (b).

I-propagation assumes that there are no loops in the process and that there are no
“effect conflicts”, i.e., parallel nodes with conflicting effects (which is clearly undesir-
able anyway since such effects may occur at the same time). Parallel nodes are detected
by a pre-process to the I-propagation, and any effect conflicts can be pointed out to the
process modeller. Once this is completed, the I-propagation itself starts. It maintains a
set I(e) for every edge e. Initially, all these sets are undefined except for the start node
n0 where I(n0) is set to be equal to eff(n0). The algorithm then performs propagation
steps until I(e) is defined for all edges in the graph. Each propagation step “fires” a
graph node. A node can only be fired if I(e) is defined for all its incoming edges, and
I(e) is undefined for all its outgoing edges. What a propagation step does, depends on
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the kind of node fired. Parallel and XOR splits simply copy the I(e) from their incoming
edge to all their outgoing edges. XOR joins with incoming edges E and outgoing edge
e′ assign I(e′) :=

⋂
e∈E I(e) since only what’s made true on all paths is guaranteed to

be true beyond the join. Parallel joins assign I(e′) :=
⋃

e∈E I(e). The rationale for this
is that all the paths will be executed; and without effect conflicts no contradictions will
appear. Task nodes n, finally, assign I(e′) := I(e) where e is the incoming edge and e′
is the outgoing edge of n; they then subtract the negation of their effect from I(e′), and
insert the effect itself. The intuition behind this should be clear. A more subtle required
operation is to subtract the negation of the effect from the edges of any node n′ that is
parallel to n. This is required since n′ might have inherited (though not established it-
self, due to the postulated absence of effect conflicts) such literals; they may be negated
by n and are hence not always true at the outgoing edges of n′. The final sets are denoted
with I∗(e); we have I∗(e) =

⋂
e.

Consider tasks A, B, and C in Fig 2. At the incoming edges of A and C, I∗ is empty.
At the outgoing edge of A we have I∗ = {newCustomer(x)}; at the outgoing edge of B
we have I∗ = {newCustomer(x),checkIdentity(x)}; at the outgoing edge of C we have
I∗ = {checkIdentity(x), recordIdentity(x)}. Taking the intersection at the subsequent
XOR join, we get I∗ = {checkIdentity(x)} at the join’s outgoing edge.

3 Compliance Checking

In this section, we will demonstrate how the rule base created through FCL and the
sets I∗(e) are used to perform compliance checking on business process models. The
proposed method produces a status marker for each obligation arising at each edge e.
A status marker can represent different values such as fulfilled, violated etc. The com-
pliance checking method basically determines: (1) which obligations necessarily arise
at any time a particular edge e is activated. This is done by calling FCL rule evaluation
on the set of literals I∗(e). The outcome of FCL evaluation is a set of reparation chains
rc, each taking the form rc = 〈Orc

1 , . . . ,Orc
k 〉. Each reparation chain rc has an identifier

corresponding to the name of the rule where the chain appears. We take rc to be that
identifier. (2) which of the obligations may remain unfulfilled. This depends on the kind
of obligation as given in Section 2.1. Since persistent and non-persistent obligations can
not be mixed within a reparation chain, we need to devise two methods: one for repa-
ration chains containing only non-persistent obligations, and one for reparation chains
containing persistent maintenance or achievement obligations.

Non-Persistent Obligations must be satisfied immediately whenever they arise; if the
state changes, the obligation becomes inactive again. We can hence check any possible
non-compliance, at the various points in the process, by a simple loop over all edges e.
We first set Chainsnp(e) as the subset of reparation chains consisting of non-persistent
obligations. Based on I∗(e), we can assign each Orc

i a particular status marker:

Fulfilled: Orc
i ∈ I∗(e). Then we know that this obligation is definitely fulfilled, i.e., it

is satisfied in all possible execution paths whenever e carries a token. We replace Orc
i

with �rc
i to indicate this status; we will sometimes simply say Orc

i is �.
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Violated: ¬Orc
i ∈ I∗(e). Then we know that this obligation is definitely not fulfilled,

whenever e carries a token. We replace Orc
i with ⊥rc

i to indicate this status; we will
sometimes say Orc

i is ⊥.

Possibly violated: Neither of the above. Then there exists at least one execution path
where this obligation is not fulfilled, in a state where e is activated; there also exists
such a path where the obligation is fulfilled. In this case we leave Orc

i as it is (do not
replace it with any other symbol); we sometimes say that Orc

i is unknown.

Based on these status markers for every element of the reparation chain rc, we can easily
provide a status report for the overall chain rc. We consider the entries Orc

i from front
to back. If Orc

i is �, then we can stop since we know that the obligations Orc
j , j > i,

need not be considered; in particular if Orc
1 is � then no status report is needed at all.

If Orc
i is ⊥, then we report that the obligations Orc

j , j > i, must be considered. If Orc
i is

unknown, then we report that it may be violated.
Consider this rule on the process from Fig 2: newCustomer(x)⇒ OncheckIdentity(x).

According to the annotations of the process, c.f. Table 1b, newCustomer(x) is set after
activity A, and checkIdentity(x) is set after activities B and C. The literal newCustomer(x)
is contained in I∗(e) of the outgoing edges of B and C – these are the points in the pro-
cess where this rule will definitely fire. After B, checkIdentity(x) is not set and hence
the obligation is violated. After C, the obligation is fulfilled.

Persistent Obligations require additional propagation mechanisms, because we need to
remember which obligations we will inherit from earlier on. For achievement obliga-
tions, we additionally need to remember whether or not the obligation is certain to have
been fulfilled yet (and, conversely, whether or not the obligation is certain to always be
violated so far). We first consider the propagation of obligations.

The algorithm maintains a set Chainsp(e) of reparation chains, for every edge e.
Initially, Chainsp(e) is undefined for all edges e. As with the I-propagation, the algo-
rithm then performs propagation steps until Chainsp(e) is defined for all edges in the
graph; each propagation step “fires” a graph node whose incoming edges are defined
and whose outgoing edges are undefined.

Any node n first calls FCL rule evaluation on all its outgoing edges e′, based on
the sets I∗(e′); i.e., we set Chainsp(e′) is the set of reparation chains rc consisting
of persistent obligations returned by FCL rule evaluation. Thereafter, any n except
join nodes takes Chainsp,m(e) from its incoming edge e, and sets Chainsp,m(e′) :=
Chainsp,m(e′) ∪Chainsp,m(e). For XOR joins with incoming edges E and outgoing
edge e′, instead Chainsp,m(e′) :=Chainsp,m(e′)∪⋂

e∈E Chainsp,m(e) is taken. For paral-
lel joins, instead Chainsp,m(e′) := Chainsp,m(e′)∪⋃

e∈E Chainsp,m(e) is taken. Once no
more propagations are possible, Chainsp(e) contains exactly the persistent reparation
chains that are certain to be active whenever e is active. The operations here are over
chain identifiers, i.e., over the names of the respective responsible FCL rules. Thus in
our status report we can refer every unfulfilled obligation back to the rule that caused it.

After the propagation of rules is finished, a second pass over the process is necessary
in order to assign the correct status markers to all the obligations. This is done in three
phases. Phase (I) assigns local status markers. This is done exactly as explained for non-
persistent obligations above. Phase (II) performs an additional propagation algorithm
necessary to keep track of how the status of achievement obligations develops across
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node executions. Finally, phase (III) performs a propagation keeping track of the overall
status of each reparation chain.

For illustration of the Chainsp(e) propagation and phase (I), consider this rule on the
process from Fig 2: checkIdentity(x)⇒Op,mrecordIdentity(x). According to the annota-
tions of the process, checkIdentity(x) is set after B and C; the obligation recordIdentity(x)
arises at both; so it is contained in the intersection of the Chainsp,m(e) sets, taken at the
following XOR join. Thereafter, the obligation arises at every edge in the graph. Regard-
ing local status markers, the obligation is accomplished only by the effect annotation of
C. Hence it is fulfilled (is marked �) at the outgoing edge of C, but it is violated (marked
⊥) at the outgoing edge of B, and it is possibly violated (marked unknown) at every edge
later on in the graph. This adequately reflects the status of this obligation, which arises
in every execution path but is violated if x is a new customer.

We now explain phase (II), propagating status markers for achievement obligations.
The propagation works on the status markers in the chains rc∈Chainsp(e). For the sake
of readability, we act in the following as if rc contained only achievement obligations;
the algorithm for mixed chains simply ignores the maintenance obligations in the chain.
The status markers are propagated in a way so that Orc

i is � iff, in every execution of the
process, Orc

i has been true sometime between activation of rc and activation of e. Orc
i is

⊥ iff, in every execution of the process, Orc
i has always been false between activation

of rc and activation of e. The propagation steps are as follows:

Splits: If n is a parallel split or an XOR split, then the � and ⊥ markers are simply
copied from n’s (single) incoming edge to all of n’s outgoing edges.

Task nodes: Say n is a task node, with incoming edge e and outgoing edge e′. For all
rc ∈ Chainsp(e′)∩Chainsp(e) and all Orc

i , we now compare the markers in e (which
are set by our previous propagation) and e′ (which were set in phase (I)). If Orc

i is � at
e, we set it to � at e′, regardless of its previous status – we have already achieved Orc

i
and hence the obligation is fulfilled. Afterwards, if Orc

i is ⊥ at e′ but is not ⊥ at e, then
we set it to be unknown at e′ – reflecting the fact this obligation may have already been
achieved.2 The chains in Chainsp(e′)\Chainsp(e′) are left unaffected, i.e., these chains
are new and their markers are as per phase (I).

Parallel joins: Say n is a parallel join with incoming edges E and outgoing edge e′. Then
the old markers (generated by phase (I)) are kept entirely intact for every chain rc that was
not present before, i.e., that is not contained in any Chainsp(e) set, for e ∈ E . Note that
such rc may be present since I∗(e′) may contain more literals than any of I∗(e), e ∈ E .
For the chains rc that were present before, the old markers are over-written as follows.

The � markers are combined from e ∈ E by point-wise OR. That is, if a chain with
the rule identifier rc appears in more than one of the Chainsp(e) sets, for e ∈ E , and Orc

i
is � in at least one of those, then Orc

i is set to � at e′. Since all the incoming paths will
be executed, Orc

i is certain to have been achieved already if that is the case on at least
one of the paths.

Conversely, ⊥ symbols are combined by point-wise AND, meaning they are ⊥ in e′
iff that is the case for all incoming edges e.

Any Orc
i not affected by the above is set to be unknown at e′.

2 Note here that, due to the previous update of � markers, Orc
i is unknown at e in this case.
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XOR joins: Say n is an XOR join with incoming edges E and outgoing edge e′. Then
all old (phase (I)) markers are over-written – note that no new chains can arise at the
outgoing edges of XOR joins, so all chains were present beforehand.

The � markers are combined by point-wise AND; that is, Orc
i is set to � at e′ iff

that has been done in every Chainsp(e), e ∈ E , which contains rc. This reflects the fact
that, since only one of the incoming paths will be executed, Orc

i is certain to have been
achieved only if that holds for all possible paths. Somewhat counter-intuitively at first
sight, the same is the case of ⊥ markers: Orc

i is certain to not have been achieved only
if that holds for all possible paths. Hence ⊥ markers are also combined by point-wise
AND. Any unaffected obligation is set unknown.

To illustrate the above, consider this rule on the process from Fig 2:

account(y) ⇒ Op,mpositiveBalance(y)⊗Op,aapproveManager(y).

According to the annotations of the process, account(y) is set by activity E. From
there on, Op,mpositiveBalance(y)⊗Op,aapproveManager(y) is active – is contained
in Chainsp(e) – at every edge e of the process. positiveBalance(y) is provided only
by activity G, and is hence not contained in any I∗(e) set other than at the outgoing
edge of G. approveManager(y) does not appear at all in the process, i.e., this step is
not modelled. Our formalism assumes that, hence, we do not know anything about this
fact and can treat it neither as being true nor as being false. Concretely, due to the al-
gorithms above neither approveManager(y) nor ¬approveManager(y) appear in any
I∗(e) set, and hence this obligation is neither marked with � not with ⊥ anywhere. We
rightly conclude that there exists at least one execution of the process that violates both
obligations in the chain.

Now, say we insert an activity H2 after H, providing approveManager(y). Then both
sides of the XOR split are handled correctly – the top path with G achieves the first
obligation of the rule, while the bottom path with H2 achieves the second obligation
– so one would expect things to be fine as well directly after the XOR join. However,
the markings of the rule are both unknown at the outgoing edge of the XOR join. Each
obligation is � on one of the incoming edges, but ⊥ (positiveBalance(y) on the bottom
path) respectively unknown (approveManager(y) on the top path) on the other incom-
ing edge. Hence the status report after the XOR join would wrongly report that the chain
of obligations may be violated. Put in formal terms, the problem is that we cannot accu-
rately deal with disjunctions of propositions: we know that neither positiveBalance(y)
nor approveManager(y) are always true, but we don’t know that at least one of them
is always true. We are currently investigating whether disjunctions can be dealt with
accurately, in our context, in polynomial time.

While we cannot accurately determine whether at least one part of a chain is always
made true at a particular point in the process, we can provide a useful approximation.
This is the role of phase (III) of our algorithm. That phase performs propagation steps
which keep track of status markers � associated with entire chains rc. If rc is set to �
at e then this means that we can prove that at least one of rc’s obligations will always
be true whenever e carries a token. If rc is not set to � (i.e., rc is set to be unknown),
then we were not able to prove anything. In other words, we are conservative and, if we
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do not report a possible error, then we have proved that such an error does not exist; we
may issue warnings that do not actually correspond to real errors.

For lack of space, we ommit the details of the propagation algorithm. One key trick
is that, at an XOR join, if rc is set to � on all incoming edges, then rc is set to � on the
outgoing edge. This reflects the fact that, if every possible path achieves at least one of
rc’s items, then the same is certain to be true after the join. To illustrate this, reconsider
the above example, where we inserted H2, after H, into the process. The relevant FCL
rule is: account(y) ⇒ Op,mpositiveBalance(y)⊗Op,aapproveManager(y). H2 provides
approveManager(y) and hence both paths (G respectively H,H2) of the XOR construct
fulfill one of the rule’s obligations. Hence the rule is marked � after the join.

Let us finally explain how the status reports are created, for every edge e and for
every rc ∈Chainsp(e). Four cases are possible:

Fulfilled: One of rc’s obligations is � at e, or rc itself is � at e. Then we proved that
every reachable state activating e fulfills at least one of the obligations in the chain.

Violated: All of rc’s obligations are ⊥ at e. Then we proved that no reachable state
activating e fulfills any of the obligations in the chain.

Possibly violated: None of the above, and only one of rc’s obligations is unknown.
Then we proved that at least one reachable state activating e does not fulfill any of the
obligations in the chain.

Warning: None of the above, i.e., rc is unknown, every Orc
i is either ⊥ or unknown,

and at least two Orc
i are unknown. Then it may or may not be the case that at least one

reachable state activating e does not fulfill any of the obligations in the chain. We can
hence issue a warning to the user.

4 Related Work and Conclusions

The main contribution of this paper is a framework to check the compliance of a busi-
ness process against a set of normative specifications representing obligations of the
business towards regulatory compliance, based on a rich and comprehensive classifica-
tions of obligations identified in [6], as far as we know this is the first work addressing
compliance based on a conceptually faithful representation of the obligations a process
is subject to. The proposed framework provides the ability to (a) identify the obligations
that will definitely arise in a given business process and (b) which of those obligations
are definitely fulfilled, violated or remain unfulfilled. This is achieved by combination
of two formal methods: a logic to support the reasoning with deontic concepts and a
formalism to model the execution semantics of a business process. For second part we
extend the technique of [8] to identify which obligations must be propagated from one
task to successive ones based on the classification of the obligations.

Current approaches to compliance management are heavily inclined towards retro-
spective checking. The approach we present follows a more proactive and preventative
thinking, which although recognized from organizational point of view [10], is lacking
in IT solutions. Notable exceptions include [11], that provides the ability to check busi-
ness processes against rules emerging from business contracts, although the method is
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limited to checking task sequences rather than detailed process states as provided in this
paper. The technique of [11] is then used to determine the degree of compliance of a
business process [12]. [13] takes a similar approach of checking process models against
compliance rules, although the visual rule language, namely BPSL is general purpose
and does not directly address the deontic notions prevalent in compliance requirements.
[14] presents a logical language PENELOPE with the ability to verify temporal con-
straints arising from compliance requirements on business processes.

[15] considers a similar approach where the tasks of a business process model, writ-
ten in BPMN, are annotated with the effects of the tasks, and a technique to propagate
and cumulate the effects from a task to a successive contiguous one is proposed. Con-
trary to what we do this approach does not determine at design time whether a business
process is both executable and compliant. [16] investigates compliance in the context
of agents and multi-agent systems based on a classification of paths of tasks.
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