
D. Ardagna et al. (Eds.): BPM 2008 Workshops, LNBIP 17, pp. 164–170, 2009.
© Springer-Verlag Berlin Heidelberg 2009

New Quality Metrics for Evaluating Process Models

Zan Huang and Akhil Kumar

Smeal College of Business, Penn State University, University Park, PA 16802, USA
{zanhuang,akhilkumar}@psu.edu

Abstract. In the context of business process intelligence, along with the need to
extract a process model from a log, there is also the need to measure the quality
of the extracted process model. Hence, process model quality notions and
metrics are required. We present a systematic approach for developing quality
metrics for block structured process models, which offer less expressive power
than Petri-nets but have easier semantics. The metrics are based on tagging an
initial block structured process model with self-loop and optional markings in
order to explain all the instances in the given log. Then we transform the
marked model to an equivalent maximal model by rewriting the self-loop and
optional markings for consistency, and determine a badness score for it, which
determines quality. Our approach is compared with related work, and a plan for
testing and validation on noise-free and noisy data is discussed.

Keywords: Process mining, process logs, Petri-nets, block structured models,
badness score, quality-metric, equivalent models, self-loops, optional tasks,
noisy log.

1 Introduction

Recently, there has been increasing interest in extracting process models from logs
[1-4]. It has also been noted that in general many different process models can be
extracted from the same log. This has given rise to the issue of process model quality
with a need for being able to distinguish good models from bad models [7]. Ideally, a
good model is one that produces high fidelity or fitness [6], i.e. explains all the log
instances in a given log, along with specificity, or behavioral appropriateness [6], i.e.
it only explains the given log and no other log. It should also be minimal [8]. In this
paper, we consider logs generated from block structured process models. These
models are composed by combining four basic control structures, sequence, parallel,
choice and loop, and two additional structures proposed in this paper, the optional and
self-loop structures. We develop three quality metrics for evaluating block structured
process models and show how they can be applied to determine process model
quality. We also discuss the issue of noise in a log in the context of these metrics.

2 Preliminaries

A block structured process is created by using four basic structures as building
blocks: sequence, parallel, choice and loop. These are shown in Figures 1(a)-(d). In a

 New Quality Metrics for Evaluating Process Models 165

block structured model atomic tasks are combined into sub-blocks, which are further
combined into larger sub-blocks, using one of these four basic structures, until the full
model is created. If a log corresponds exactly to such a block structured model, then
one can limit oneself to just these four structures and discover a model from a log.
However, in real logs that we observed, we found that it is seldom the case that a log
follows this basic model perfectly. For example, an entry like AABCBC cannot be
described using the four basic primitives of the block structured model. In order to
capture these two scenarios two additional constructs – optional and self loop
(respectively) structures are introduced. An optional structure (see Figure 1(e)) is a
choice with one empty branch. A self loop (Figure 1(f)) is a loop of a single
task/block. These can create severe complications in the discovery process. In the
remaining discussion we use the terms task for atomic, lowest level tasks, and the
term sub-block or block for either an individual task or an aggregate of two or more
tasks created by using one of the structures of Figure 1.

Fig. 1. Basic Types (or Patterns) of Block Structured Workflows

An important implication of introducing the optional and self-loop structures is that
models can be constructed to describe every possible log. We refer to these models as
universal models. Any given model can be converted into a universal model by
adding self-loop and optional tags. However, there is a major problem with the
universal model. The quality of this model is bad since it can simulate every log.
Thus, there is no way to distinguish between a process model for a given log versus
the process model for another log. Hence, this model lacks specificity.

Here we develop some axioms to capture the properties of a quality metric.

Axiom 1: Quality measures both fidelity and specificity of a process model to a log.

Axiom 2: A universal model that can describe every log has the worst quality.

Axiom 3: All universal models should have equal quality score, i.e. the worst.

Axiom 4: Between two models with the same number of tasks, the one that allows
more traces should have a lower quality value than the other one.

These axioms will apply to our quality metric developed in Section 4, but first we
review our algorithm for generating a model from a log.

166 Z. Huang and A. Kumar

3 An Approach for Process Model Quality Metrics

3.1 Assigning Optional and Self-loop Structures

Given an initial block-structured model of four basic structures from a given log,
which can be generated using algorithms such as the backtracking algorithm [5], Petri
Net algorithm in the ProM framework [1], and genetic algorithms [2], we fine-tune
the model using a replay function. The replay function takes a proposed model as an
input and walks through each log instance to assign self-loop and optional labels as
needed in order to ensure that the log instance agrees with the model. For each log
instance, the algorithm creates an initial set of next_tasks, at the start of the process,
and recomputes this set after any task corresponding to an entry in the log is
completed. Moreover, we also keep track of tasks that have been done in a set called
done_tasks. As each successive entry e in a log instance is scanned there are three
cases: If e is found in the set of next_tasks, then the set of next_tasks is recomputed
for the next entry e in the log instance; If it is not found in the set of next_tasks, but it
is in the set of done_tasks, then it or its parent is part of a self-loop block since it is
already done and is repeating unexpectedly; If it is in neither set, this means that
several expected next_tasks have been skipped and should be marked 'optional'. This
is done by finding all possible paths in the process between the tasks in the set of
next_tasks and e, and adding all tasks on these paths to the set of skipped_tasks. Thus
the scan of each log instance results in two 0-1 bit-vectors of size 2n-1 each to track
whether a task or block is a self-loop or optional. The union of these bit-vectors gives
a model that agrees with all the log instances. A full listing of replay appears in [5].

3.2 Model Equivalence

Since any process model can be made to conform 100% to any given log, to evaluate
and compare process models, we need quality metrics. The quality metric must be the
same for equivalent models hence we first discuss the notion of model equivalence.
We generate all possible log instances of a model of a single block consisting of two
tasks from all 256 combinations of values for structure (4 types) and SL and OP bit-
vector values (64 combinations). The models that generated identical set of log
instances (with maximum log length limited to 6 to allow for sufficient variation of
log instances for different structures) were marked as equivalent and stored in a
lookup table. Among each set of equivalent combinations we also identified minimal
(maximal) combinations as ones with the smallest (largest) number of 1 bits. For
example, the loop structure in Figure 1(d) with A as optional and the same structure
with A and the block as optional and B as self-loop are the minimum and maximum
models of a set of equivalent models. With the equivalence lookup table for the two-
task models, we can then rewrite a given process model (with more than 2 tasks) into
its equivalent maximum model, which then is used to determine the badness score and
quality metric. Because the rewriting can cause the child tags to affect the parent tags
and vice-versa, we iterate until convergence is achieved, i.e. there is no change in
successive iterations.

 New Quality Metrics for Evaluating Process Models 167

3.3 Badness Score

Our quality metric relies on a badness score. This score measures the badness of a
model where, intuitively, a model with more self-loops and optional tasks and blocks
is "more bad" than one with fewer of them. We use a recursive formula as follows:

⎩
⎨
⎧

++
+++

=
 taska is),(.2)(.11

block a is)),2()1()).((.2)(.11(
)(

nnslWnopW

nnBnBnslWnopW
nB

where n1, n2 are child nodes of n, op() and sl() are 0-1 functions to indicate whether a
given block is of optional and self-loop structure. If we think of a process as a tree the
B value of the root will give the badness of the process. W1 and W2 are weighting
factors to vary the influence of self-loops and optional tasks/blocks. For now they are
set to 1 for illustration, while empirical tests are done to find optimal values for them.

3.4 Examples Models and Badness Scores

Our example is based on the simple log of Figure 2(a) with 7 tasks. Using a backtracking
algorithm we generated three models for this log, as shown in Figures 2(b)-(d). In these
models the structures are generated first, and then the self-loop (*) and optional (O) tags
are added in the task box by scanning each log instance and trying to make the model
consistent by replaying the log. A marking of *O after a task means that the task is both
in a self-loop and is optional. For a block a self loop is shown by a directed link from the

t1 t3 t9 t5 t3 t9 t5 t0
t1 t3 t9 t5 t0 t2
t0 t2 t2 t8
t1 t0 t1
t3 t8 t5 t9 t0 t9 t5 t3

(a) An example log with five
instances of execution traces

(b) Model PM1, badness score = 23

(c) Model PM2, badness score = 567

(d) Model PM1, badness score = 10

Fig. 2. Process model PM1 and PM2 generated by our algorithm

168 Z. Huang and A. Kumar

join node to the split node of the block. It is possible to verify that after adding the self-
loop and optional markings, all models are consistent with the given log. We first
performed rewriting for the entire model as explained in Section 3.2 to obtain the
equivalent maximal model, and then determined a badness score. The self-loop and
optional markings after rewriting are shown above tasks and blocks, together with the
badness scores associated with the blocks/task. An atomic task contributes 1 to the score.
However, if it has a self-loop or optional tag, then each tag adds 1 to the score. The initial
score of a parent node is equal to the sum of the child node scores. Moreover, if a parent
has a self-loop or optional tag on it, then each tag will result in the initial score being
added yet again.

3.5 Quality Metrics

In this section we introduce three quality metrics. A simple metric Q0 is based on
counting the number of self-loops and optional structures in a maximally equivalent
process model of a given model as follows (where T is the number of tasks):

2) T*(4markings)/ optional ofnumber + loops self of(Number 1 =Q0 −−

However, the Q0 metric does not reflect the level at which a marking appears.
Clearly a self-loop or optional marking at a higher level can create a lot more paths in
the process, and hence hurt the quality more than such a marking at a lower level.
Therefore we consider a new metric based on the badness score (B-score):

model) actual of (BscoreLog(T)/Log Q1=

The numerator represents the badness score for the best model which is T since it
does not have any markings. A third metric Q2 is as follows:

1)Tmodel universal of ore1)/Log(BscTmodel actual of Log(Bscore 1 Q2 +−+−−=

The badness score of the universal model is calculated assuming that each task and
block has both self-loop and optional markings. This score has the property that it is
the same for all universal models. Thus, for T = 7, B-score-universal (7) = 5463.

All three metrics are based on the self-loop and optional markings of the initial
block-structured model. The more such markings we have to add to a given initial
model, the more log instances are inconsistent with the initial model (reflecting
fidelity of the model) and the more general the tagged model becomes (reflecting
specificity of the model). Thus, these metrics do reflect both fidelity and specificity of
a given model. For models with the same number of tasks, the universal models all
have the worst (and equal) values for all three metrics. Q0 and Q2 are always zero for
universal models, while with a larger number of tasks (say, more than 10) Q1 is also a
small number for universal models and it gets close to zero as the number of tasks
increases.

To do a preliminary validation for Axiom 4, we compared the number of log
instances of models consisting of only 2 tasks (with the maximum length of an
instance set to 6) and the quality metrics of these models. The Spearman rank order
correlation coefficients for Q0, Q1, and Q2 are –0.7659, –0.75, and –0.75,
respectively, all with p-values smaller than 0.001, indicating statistical significance of

 New Quality Metrics for Evaluating Process Models 169

the association between all three quality metrics and number of possible log instances.
The correlation coefficient for Q1 and Q2 are identical as both are monotonic
transformations of the badness score. The correlation coefficient is high but not
perfect for two reasons. First, the metrics are approximate. Secondly, they do not
consider the effect of the four basic structures on the number of path sequences (e.g.,
a parallel structure creates more paths than a sequence). Finally, our experiments also
show that fine tuning the weights W1 and W2 can increase correlation even more.
We are conducting experiments to optimize W1 and W2.

The three models PM1, PM2, and PM3 are ranked in the same order by the three
metrics which is consistent with the axioms, but the ranges are different (see Table 1).
The range for Q0 is the largest and for Q2 it is smallest. Q0 is somewhat simplistic
because it is based on a count of self-loops and optional structures. Q1 and Q2 are
more accurate because they rely on the B-score. Nevertheless, the drawback with Q1
is that it gives a value of 0.22 for the universal model, so the range of quality is from
0.22 to 1. Of course, as the number of tasks increases, the minimum value of Q1 also
drops, yet Q2 is a better metric since it covers the full range from the best to the worst
model. On the other hand, Q1 offers a relative comparison with the best model.

Table 1. Calculations of the three metrics for various models

PM1 PM2 PM3 Universal Best
Q0 0.846 0.154 0.885 0 1
Q1 0.621 0.307 0.842 0.22 1
Q2 0.678 0.280 0.739 0 1

4 Conclusions and Future Work

Block structured process models have lesser expressive power compared to Petri-net
based workflow models, but they offer a simpler semantics from an end-user point of
view. Therefore, it is useful to study process quality issues in the context of such
models as well. We presented a systematic approach for developing quality metrics
for block structured process models and demonstrated the calculation of these metrics.
The metrics are based on creating an initial model and then tagging it with self-loop
and optional markings in order to explain all the instances in the log. We transformed
the marked model to an equivalent maximal model by rewriting, and determined a
badness score, which is used to calculate quality. The use of the metrics was
illustrated with an example. The results from testing and validation on simulated and
real data are provided in [5]. We also plan to explore ways to increase the
expressiveness of our models by allowing additional structures.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de Medeiros,
A.K., Rozinat, A., Rubin, V., Song, M., Weijters, A.J.M.M., Verbeek, H.M.W.: ProM 4.0:
Comprehensive support for real process analysis. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

170 Z. Huang and A. Kumar

2. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process mining:
an experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)

3. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 47(2), 237–267 (2003)

4. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

5. Huang, Z., Kumar, A.: A study of process mining: Quality and accuracy trade-offs. Smeal
Working Paper, Pennsylvania State University (September 2008)

6. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

7. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst,
W.M.P.: The need for a process mining evaluation framework in research and practice. In:
Proceedings of the 3rd Workshop on Business Process Intelligence, pp. 84–89 (2007)

8. Schimm, G.: Mining most specific workflow models from event-based data. In: van der
Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp.
25–40. Springer, Heidelberg (2003)

	New Quality Metrics for Evaluating Process Models
	Introduction
	Preliminaries
	An Approach for Process Model Quality Metrics
	Assigning Optional and Self-loop Structures
	Model Equivalence
	Badness Score
	Examples Models and Badness Scores
	Quality Metrics

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

