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Abstract. In the context of business process intelligence, along with the need to 
extract a process model from a log, there is also the need to measure the quality 
of the extracted process model.  Hence, process model quality notions and 
metrics are required.  We present a systematic approach for developing quality 
metrics for block structured process models, which offer less expressive power 
than Petri-nets but have easier semantics. The metrics are based on tagging an 
initial block structured process model with self-loop and optional markings in 
order to explain all the instances in the given log. Then we transform the 
marked model to an equivalent maximal model by rewriting the self-loop and 
optional markings for consistency, and determine a badness score for it, which 
determines quality. Our approach is compared with related work, and a plan for 
testing and validation on noise-free and noisy data is discussed.   
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1   Introduction 

Recently, there has been increasing interest in extracting process models from logs  
[1-4].  It has also been noted that in general many different process models can be 
extracted from the same log.  This has given rise to the issue of process model quality 
with a need for being able to distinguish good models from bad models [7]. Ideally, a 
good model is one that produces high fidelity or fitness [6], i.e. explains all the log 
instances in a given log, along with specificity, or behavioral appropriateness [6], i.e. 
it only explains the given log and no other log.  It should also be minimal [8]. In this 
paper, we consider logs generated from block structured process models. These 
models are composed by combining four basic control structures, sequence, parallel, 
choice and loop, and two additional structures proposed in this paper, the optional and 
self-loop structures.  We develop three quality metrics for evaluating block structured 
process models and show how they can be applied to determine process model 
quality. We also discuss the issue of noise in a log in the context of these metrics.  

2   Preliminaries 

A block structured process is created by using four basic structures as building 
blocks: sequence, parallel, choice and loop.  These are shown in Figures 1(a)-(d). In a 
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block structured model atomic tasks are combined into sub-blocks, which are further 
combined into larger sub-blocks, using one of these four basic structures, until the full 
model is created.  If a log corresponds exactly to such a block structured model, then 
one can limit oneself to just these four structures and discover a model from a log. 
However, in real logs that we observed, we found that it is seldom the case that a log 
follows this basic model perfectly. For example, an entry like AABCBC cannot be 
described using the four basic primitives of the block structured model. In order to 
capture these two scenarios two additional constructs – optional and self loop 
(respectively) structures are introduced. An optional structure (see Figure 1(e)) is a 
choice with one empty branch. A self loop (Figure 1(f)) is a loop of a single 
task/block. These can create severe complications in the discovery process.  In the 
remaining discussion we use the terms task for atomic, lowest level tasks, and the 
term sub-block or block for either an individual task or an aggregate of two or more 
tasks created by using one of the structures of Figure 1.   
 

 

Fig. 1. Basic Types (or Patterns) of Block Structured Workflows 

An important implication of introducing the optional and self-loop structures is that 
models can be constructed to describe every possible log. We refer to these models as 
universal models. Any given model can be converted into a universal model by 
adding self-loop and optional tags. However, there is a major problem with the 
universal model. The quality of this model is bad since it can simulate every log. 
Thus, there is no way to distinguish between a process model for a given log versus 
the process model for another log.  Hence, this model lacks specificity.  

Here we develop some axioms to capture the properties of a quality metric.  

Axiom 1: Quality measures both fidelity and specificity of a process model to a log.  

Axiom 2: A universal model that can describe every log has the worst quality.  

Axiom 3: All universal models should have equal quality score, i.e. the worst. 

Axiom 4: Between two models with the same number of tasks, the one that allows 
more traces should have a lower quality value than the other one.  

These axioms will apply to our quality metric developed in Section 4, but first we 
review our algorithm for generating a model from a log.  
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3   An Approach for Process Model Quality Metrics 

3.1   Assigning Optional and Self-loop Structures 

Given an initial block-structured model of four basic structures from a given log, 
which can be generated using algorithms such as the backtracking algorithm [5], Petri 
Net algorithm in the ProM framework [1], and genetic algorithms [2], we fine-tune 
the model using a replay function. The replay function takes a proposed model as an 
input and walks through each log instance to assign self-loop and optional labels as 
needed in order to ensure that the log instance agrees with the model. For each log 
instance, the algorithm creates an initial set of next_tasks, at the start of the process, 
and recomputes this set after any task corresponding to an entry in the log is 
completed.  Moreover, we also keep track of tasks that have been done in a set called 
done_tasks.  As each successive entry e in a log instance is scanned there are three 
cases: If e is found in the set of next_tasks, then the set of next_tasks is recomputed 
for the next entry e in the log instance; If it is not found in the set of next_tasks, but it 
is in the set of done_tasks, then it or its parent is part of a self-loop block since it is 
already done and is repeating unexpectedly; If it is in neither set, this means that 
several expected next_tasks have been skipped and should be marked 'optional'. This 
is done by finding all possible paths in the process between the tasks in the set of 
next_tasks and e, and adding all tasks on these paths to the set of skipped_tasks.  Thus 
the scan of each log instance results in two 0-1 bit-vectors of size 2n-1 each to track 
whether a task or block is a self-loop or optional.  The union of these bit-vectors gives 
a model that agrees with all the log instances. A full listing of replay appears in [5]. 

3.2   Model Equivalence 

Since any process model can be made to conform 100% to any given log, to evaluate 
and compare process models, we need quality metrics. The quality metric must be the 
same for equivalent models hence we first discuss the notion of model equivalence. 
We generate all possible log instances of a model of a single block consisting of two 
tasks from all 256 combinations of values for structure (4 types) and SL and OP bit-
vector values (64 combinations). The models that generated identical set of log 
instances (with maximum log length limited to 6 to allow for sufficient variation of 
log instances for different structures) were marked as equivalent and stored in a 
lookup table.  Among each set of equivalent combinations we also identified minimal 
(maximal) combinations as ones with the smallest (largest) number of 1 bits. For 
example, the loop structure in Figure 1(d) with A as optional and the same structure 
with A and the block as optional and B as self-loop are the minimum and maximum 
models of a set of equivalent models. With the equivalence lookup table for the two-
task models, we can then rewrite a given process model (with more than 2 tasks) into 
its equivalent maximum model, which then is used to determine the badness score and 
quality metric. Because the rewriting can cause the child tags to affect the parent tags 
and vice-versa, we iterate until convergence is achieved, i.e. there is no change in 
successive iterations.  
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3.3   Badness Score 

Our quality metric relies on a badness score. This score measures the badness of a 
model where, intuitively, a model with more self-loops and optional tasks and blocks 
is "more bad" than one with fewer of them. We use a recursive formula as follows: 
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where n1, n2 are child nodes of n, op() and sl() are 0-1 functions to indicate whether a 
given block is of optional and self-loop structure. If we think of a process as a tree the 
B value of the root will give the badness of the process. W1 and W2 are weighting 
factors to vary the influence of self-loops and optional tasks/blocks.  For now they are 
set to 1 for illustration, while empirical tests are done to find optimal values for them.  

3.4   Examples Models and Badness Scores 

Our example is based on the simple log of Figure 2(a) with 7 tasks. Using a backtracking 
algorithm we generated three models for this log, as shown in Figures 2(b)-(d). In these 
models the structures are generated first, and then the self-loop (*) and optional (O) tags 
are added in the task box by scanning each log instance and trying to make the model 
consistent by replaying the log. A marking of *O after a task means that the task is both 
in a self-loop and is optional. For a block a self loop is shown by a directed link from the  
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t1 t3 t9 t5 t0 t2  
t0 t2 t2 t8  
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(a) An example log with five 
instances of execution traces 

 

(b) Model PM1, badness score = 23 

 
(c) Model PM2, badness score = 567

 

(d) Model PM1, badness score = 10 

Fig. 2. Process model PM1 and PM2 generated by our algorithm 
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join node to the split node of the block. It is possible to verify that after adding the self-
loop and optional markings, all models are consistent with the given log. We first 
performed rewriting for the entire model as explained in Section 3.2 to obtain the 
equivalent maximal model, and then determined a badness score. The self-loop and 
optional markings after rewriting are shown above tasks and blocks, together with the 
badness scores associated with the blocks/task. An atomic task contributes 1 to the score. 
However, if it has a self-loop or optional tag, then each tag adds 1 to the score. The initial 
score of a parent node is equal to the sum of the child node scores. Moreover, if a parent 
has a self-loop or optional tag on it, then each tag will result in the initial score being 
added yet again.  

3.5   Quality Metrics 

In this section we introduce three quality metrics. A simple metric Q0 is based on 
counting the number of self-loops and optional structures in a maximally equivalent 
process model of a given model as follows (where T is the number of tasks): 

2)  T*(4markings)/ optional ofnumber  + loops self of(Number   1 =Q0 −−  

However, the Q0 metric does not reflect the level at which a marking appears.  
Clearly a self-loop or optional marking at a higher level can create a lot more paths in 
the process, and hence hurt the quality more than such a marking at a lower level. 
Therefore we consider a new metric based on the badness score (B-score): 

model) actual of (BscoreLog(T)/Log  Q1=  

The numerator represents the badness score for the best model which is T since it 
does not have any markings. A third metric Q2 is as follows:  

1)Tmodel universal of ore1)/Log(BscTmodel actual of Log(Bscore  1 Q2 +−+−−=  

The badness score of the universal model is calculated assuming that each task and 
block has both self-loop and optional markings.   This score has the property that it is 
the same for all universal models. Thus, for T = 7, B-score-universal (7) = 5463.    

All three metrics are based on the self-loop and optional markings of the initial 
block-structured model. The more such markings we have to add to a given initial 
model, the more log instances are inconsistent with the initial model (reflecting 
fidelity of the model) and the more general the tagged model becomes (reflecting 
specificity of the model). Thus, these metrics do reflect both fidelity and specificity of 
a given model. For models with the same number of tasks, the universal models all 
have the worst (and equal) values for all three metrics. Q0 and Q2 are always zero for 
universal models, while with a larger number of tasks (say, more than 10) Q1 is also a 
small number for universal models and it gets close to zero as the number of tasks 
increases. 

To do a preliminary validation for Axiom 4, we compared the number of log 
instances of models consisting of only 2 tasks (with the maximum length of an 
instance set to 6) and the quality metrics of these models. The Spearman rank order 
correlation coefficients for Q0, Q1, and Q2 are –0.7659, –0.75, and –0.75, 
respectively, all with p-values smaller than 0.001, indicating statistical significance of 
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the association between all three quality metrics and number of possible log instances. 
The correlation coefficient for Q1 and Q2 are identical as both are monotonic 
transformations of the badness score. The correlation coefficient is high but not 
perfect for two reasons. First, the metrics are approximate.  Secondly, they do not 
consider the effect of the four basic structures on the number of path sequences (e.g., 
a parallel structure creates more paths than a sequence).  Finally, our experiments also 
show that fine tuning the weights W1 and W2 can increase correlation even more.  
We are conducting experiments to optimize W1 and W2.  

The three models PM1, PM2, and PM3 are ranked in the same order by the three 
metrics which is consistent with the axioms, but the ranges are different (see Table 1). 
The range for Q0 is the largest and for Q2 it is smallest. Q0 is somewhat simplistic 
because it is based on a count of self-loops and optional structures.  Q1 and Q2 are 
more accurate because they rely on the B-score.  Nevertheless, the drawback with Q1 
is that it gives a value of 0.22 for the universal model, so the range of quality is from 
0.22 to 1.  Of course, as the number of tasks increases, the minimum value of Q1 also 
drops, yet Q2 is a better metric since it covers the full range from the best to the worst 
model. On the other hand, Q1 offers a relative comparison with the best model.   

Table 1. Calculations of the three metrics for various models 
 

PM1 PM2 PM3 Universal Best 
Q0 0.846 0.154 0.885 0 1
Q1 0.621 0.307 0.842 0.22 1
Q2 0.678 0.280 0.739 0 1

4   Conclusions and Future Work 

Block structured process models have lesser expressive power compared to Petri-net 
based workflow models, but they offer a simpler semantics from an end-user point of 
view.  Therefore, it is useful to study process quality issues in the context of such 
models as well.  We presented a systematic approach for developing quality metrics 
for block structured process models and demonstrated the calculation of these metrics.  
The metrics are based on creating an initial model and then tagging it with self-loop 
and optional markings in order to explain all the instances in the log.  We transformed 
the marked model to an equivalent maximal model by rewriting, and determined a 
badness score, which is used to calculate quality. The use of the metrics was 
illustrated with an example. The results from testing and validation on simulated and 
real data are provided in [5].  We also plan to explore ways to increase the 
expressiveness of our models by allowing additional structures.  
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