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Abstract A simple displacement-based, quadrilateral 20 DOF (5 DOF per 
node) bending element based on the first-order shear deformation theory (FSDT) 
for the analysis of the arbitrary laminated composite plates is presented in this 
chapter. This element is constructed by the following procedure: (1) the 
variation functions of the rotation and the shear strain along each side of the 
element are determined using the Timoshenko’s beam theory; and (2) the 
shear strain, rotation and in-plane displacement fields in the domain of the 
element are then determined using the technique of improved interpolation. 
In fact, this is the scheme of assuming rotation and shear strain fields which 
has been introduced in the previous chapter. Furthermore, a simple hybrid 
procedure is also proposed to improve the stress solutions. The proposed 
element, denoted as CTMQ20, possesses the advantages of both the 
displacement-based and hybrid elements. Thus, excellent results for both 
displacements and stresses, especially for the transverse shear stresses, can 
be obtained. 

Keywords finite element, laminated composite plate, generalized conforming, 
first-order shear deformation theory (FSDT), hybrid-enhanced post-processing 
procedure.

9.1 Introduction 

During the past 40 years, high performance composite materials have been 
playing very important roles in the design of modern industrial products and 
structures for their high strength-to-weight and stiffness-to-weight ratios, and have 
been broadly used in many high-tech areas, such as aerospace, building, transport, 
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medicine, and so on. Laminated composite plate is one of the most popular 
structural components. Due to its particularities and complexity in construction, 
studies on appropriate computational theories and methods for these structures 
attract many researchers all the while. The finite element method provides an 
effective way of solution for such laminated composite plates. Various methods 
have been proposed based on the following theories[1]:

The classical lamination theory based on Kirchhoff hypothesis (CLT);
First-order shear deformation theory (FSDT);
Higher-order shear deformation theory (HSDT);
Layer-wise lamination theory (LLT);
Three-dimensional (3D) elasticity. 

The classical lamination theory (CLT)[2,3], which is an extension of the classical 
thin plate theory to laminated plates, neglects the effects due to transverse shear 
strains and requires C1 continuity in displacement fields. The errors in such a 
theory naturally increase as the thickness-span ratio of the plate increases. The 
first-order shear deformation theory (FSDT) is based on the Reissner-Mindlin 
plate theory[4,5]. With the consideration of the transverse shear deformation effect 
on the plates, FSDT only requires C0 continuity and can be used from thin to 
moderately thick plates. But, in FSDT, the transverse shearing strains/stresses are 
assumed constant through the plate thickness, which is contradictory to the zero 
shear stress conditions on the bounding planes of the plate. Furthermore, several 
fictitious shear correction coefficients must be introduced. For overcoming the 
limitations of FSDT, higher-order shear deformation theories (HSDT) have been 
proposed by some researchers. Two different approaches have been commonly 
employed: single-layer and multi-layer formulations. The former increases the 
order considered for the displacement representation in the thickness coordinates[6–10].
The latter assumes a representation formula for the displacement field in each 
layer, similar to that of layer-wise lamination theory[11,12]. The solutions of these 
higher order theories are closer to the 3D elasticity theory than those of the two 
former plate theories. This is especially so for very thick cases. However, the 
computational cost will be increased significantly. 

FSDT is usually considered the best compromise between the capability for 
prediction and computational cost for a wide class of applications. Some methods 
have been proposed to solve the above-mentioned problems of the FSDT. For 
example, the distribution of transverse shear stresses can be evaluated by the 3D 
elasticity equilibrium equation[13]; Vlachoutsis[14] presented a simple procedure to 
calculate the shear correction factors for laminated plates and shells under 
cylindrical bending; Auricchio et al.[15] proposed a numerical method for solving 
the shear correction coefficients of arbitrary laminated composite plates; Rolfes 
et al.[16] presented a simple post-processing approach to obtain improved transverse 
shear stresses in finite element analysis based on FDST; and Rolfes et al.[17] even 
presented a simple and accurate post-processing method for the FSDT to calculate 
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the transverse normal stress, which was initially assumed to be zero. These efforts 
make it more convenient and reasonable to use the FSDT in practical applications.  

New finite elements based on the FSDT are still proposed by many 
researchers[15, 18, 20]. Since many simple displacement-based elements adopt simple 
interpolation functions, they are unable to provide a satisfactory recovery of the 
transverse shear stresses. Therefore, the hybrid or mixed-hybrid elements have 
been playing a leading role in the analysis of the composite plates[21]. However, the 
formulations of the hybrid elements are more complicated than that of the 
displacement-based elements. Besides, shear locking may also be a problem in the 
construction of the laminated composite plate elements. How to develop a simple 
but effective model has been a problem for a long time. 

In the first section of this chapter, the first-order shear deformation theory 
(FSDT) is introduced briefly, and a set of formulae of the Timoshenko’s laminated 
composite beam element are also given for developing the plate element; the 
subsequent sections will introduce new generalized conforming laminate composite 
plate elements and a new hybrid-enhanced post-processing procedure for transverse 
stress solutions which are proposed in [22,23]. 

9.2 Fundamental Theory 

9.2.1 First-Order Shear Deformation Theory for Laminated  
Composite Plates (FSDT) 

With reference to Fig. 9.1, for a linear elastic arbitrary composite plate with n
layers, the kinematics is governed by the mid-plane displacements u0, v0, the 
transverse displacement (deflection) w and rotations x and y:

Figure 9.1 Forces and displacements at the mid-plane of a laminated composite plate 
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Therefore, the total in-plane strain  is: 

0 z  (9-2) 

where 0  and  are the in-plane strain of the mid-plane and the curvature vector 
of the plate, respectively, which are given below:  

T[ ]x y xy  (9-3) 
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 (9-4) 

T
T[ 2 ] y yx x

x y xy x y y x
 (9-5) 

The transverse shear strain vector is: 
T

T[ ]x y x y
w w
x y

 (9-6) 

The stress-strain relationship with respect to the principal material axes, 1-axis 
and 2-axis, for the kth (k 1,2, , n) layer is:  
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where 1k, 2k, 12k, 23k and 13k are the two principal direct stresses, the in-plane 
shear stresses and the transverse shear stresses of the kth layer, respectively; 1k,

2k, 12k, 23k and 13k are the corresponding strains; E1k and E2k are the Young’s 
modulus in the direction of the fibres (1-axis) and transverse to the fibres (2-axis), 
respectively; G12k is the in-plane shear modulus, G23k and G13k are the transverse 

shear modulus, 12k is the major Poisson’s ratio, and 2
21 12

1

k
k k

k

E
E

.

Thus, the stress-strain relationship with respect to x-axis and y-axis for the kth
(k 1,2, , n) layer is  
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in which 2
1k , 1 2k k  and 2

2k  are the shear correction coefficients; 
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cos , sink k k kl m  (9-13) 

k is the angle between the x-axis and the fiber direction 1-axis of the kth layer. 
The constitutive relationship of the laminated composite plate can be expressed as: 

0

p p p

N A B
C

M B D
 (9-14) 

sQ C  (9-15) 

where N is the membrane force vector of the mid-plane; M is the bending 
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moment vector; Q is the transverse shear force vector; A is the extensional 
stiffness; B is the bending-extension stiffness; D is the bending stiffness; Cs is the 
shear stiffness. These matrices can be expressed in the following forms:  

T[ ]x y xyN N NN , T[ ]x y xyM M MM  (9-16) 

T[ ]x yQ QQ  (9-17) 
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(9-18)

2 0 0
55 45 1 55 1 2 45

s 0 2 0
45 44 1 2 45 2 44

C C k C k k C
C C k k C k C

C  (9-19) 

2

12
1

2 2 2
12

1

2 2 3 3
12

1

d ( )

1d ( ) ( , 1,2,6)
2
1d ( )
3

nh

ij ij ijk k kh
k

nh

ij ij ijk k kh
k

nh

ij ij ijk k kh
k

A Q z Q h h

B Q z z Q h h i j

D Q z z Q h h

 (9-20) 

20
12

1
d ( ) ( , 4,5)

nh

ij ij ijk k kh
k

C Q z Q h h i j  (9-21) 

where hk is the z-coordinate of the upper surface for the kth layer, 0 / 2h h
and / 2nh h , h is the thickness of the plate. 

The inverse relations of Eqs. (9-14) and (9-15) are as follows: 

p p pS  (9-22) 

sS Q  (9-23) 
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1

3 61
p p

3 6

e

b

SA B
S C

SB D
 (9-24) 

1
s sS C  (9-25) 



Advanced Finite Element Method in Structural Engineering 

274

Substitution of Eq. (9-2) into Eq. (9-10) yields: 

0( )k k zQ  (9-26) 

Then, substitution of Eqs. (9-14) and (9-24) into the above equation yields: 

p( )k k e bzQ S S  (9-27) 

9.2.2 Locking-free Timoshenko Laminated Composite Beam  
Element

As shown in Fig. 9.2, for a Timoshenko laminated composite beam element, the 
formulas of deflection w, rotation  and shear strain  for the element are still 
given by Eqs. (8-99) and (8-100), in which D and C should be replaced by the 
following Dd and Cd :
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cos( ), sin( )k kk ij ij k ij ijl m  (9-30) 

where ij  is the angle between the x-axis and the beam (see Fig. 9.2). k ij  is 
the angle between the beam ij  and the 1-axis of the kth layer.  

2 2 2 2
1 2 55 1

1
( ) ( ) ( )

n

d k k kij ij ij
k

C k l k m Q h h  (9-31) 

Figure 9.2 The orientation of a Timoshenko beam element ij  in the coordinate 
system xOy and the material principal coordinate system O12 of the kth layer 
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with

2 2
55 55 44( )k k kij ij ijQ Q l Q m  (9-32) 

cos , sinij ij ij ijl m  (9-33) 

9.3 New Element CTMQ20 for the Analysis of Laminated  
Composite Plates 

To construct the new laminated composite plate elements by using the generalized 
conforming thick-thin plate elements is a new scheme proposed recently. In 
references [22] and [23], two new models based on FSDT, TMQ20 and CTMQ20, 
have been successfully developed. They are constructed by adding the bilinear 
in-plane displacement field to the formulations of the quadrilateral thick-thin 
elements TMQ[24] and ARS-Q12[25], respectively. This section will introduce the 
construction procedure of the element CTMQ20 proposed in [23]. 

Consider the quadrilateral arbitrary laminated composite plate element shown 
in Fig. 9.3. The element nodal displacement vector is: 

T
1 2 3 4

T

[ ]
[ ] ( 1,2,3,4)

e

i i i i xi yiu v w i
q q q q q
q

 (9-34) 

Figure 9.3 A 4-node quadrilateral laminated composite plate element 

9.3.1 Interpolation Formulas for the Shear Strain Fields 

1. Shear strain along the element sides 

According to Eq. (8-99c), the transverse shear strain along the tangential direction 
(s-direction) of each side can be written as: 
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where s1 s2 s3 s4, , and  are the shear strains along sides 23 , 34 , 41  and 12 , 
respectively; d1, d2, d3 and d4 are the lengths of sides 23 , 34 , 41  and 12 , 
respectively (refer to Fig. 9.4).  

Figure 9.4 The shear strain si  along each element side and the side length 
( 1,2,3,4)id i

1 2 3 2 3 4 3 4 1 4 1 2

1 3 2 2 4 3 3 1 4 4 2 1

b y y b y y b y y b y y
c x x c x x c x x c x x

 (9-36) 
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6
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1 12
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  (i 1,2,3,4) (9-37) 

where Ddi and Cdi are given by Eqs. (9-28) and (9-31), respectively. Note that when 
h approaches zero, i will approach zero. Hence, the transverse shear strains given 
by Eq. (9-35) will also approach zero. 

Let

*
s si i id   (i 1,2,3,4) (9-38) 

* * * * * T
s s1 s2 s3 s4[ ]  (9-39) 

Then we have 

* *
s

eq  (9-40) 
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where
* * * * * T
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2. Nodal shear strains xi and yi

The direction cosines of each element side are defined as follows (refer to Fig. 9.5): 

4 4
12 1 12 1

4 4

1 1
23 23

1 1

2 2
34 34

2 2

3 3
41 2 41 2

3 3

cos( , ) cos , cos( , ) sin

cos( , ) , cos( , )

cos( , ) ,cos( , )

cos( , ) cos ,cos( , ) sin

c bs x s y
d d

c bs x s y
d d
c bs x s y
d d

c b
s x s y

d d

 (9-42) 

With reference to Fig. 9.5, there are two sides, 41  and 12 , meeting at the node 1. 
The shear strain along 41 and 12 , s3  and s4 , respectively, which are constants, 
can be expressed in terms of the nodal shear strain ( 1x , 1y ) according to the 
geometric relation as follows:  

Figure 9.5 The normal and tangential direction along element sides 
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Note 

3 4 4 3
2 1 2 1 2 1
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therefore, Eqs. (9-43), (9-42) and (9-38) yield 
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Similarly, for node 2 , node 3 and node 4, we obtain 

*
2 4 1 s1

*
2 4 14 1 1 4 s4

1x

y

b b
c cb c b c

 (9-45b) 

*
3 1 2 s2

*
3 1 21 2 2 1 s1

1x

y

b b
c cb c b c

 (9-45c) 

*
4 2 3 s3

*
4 2 32 3 3 2 s2

1x

y

b b
c cb c b c

 (9-45d) 
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3. Interpolation formula for the shear strain fields within the element 

The element shear strain fields are assumed as: 

0 0 0 0
1 1 2 2 3 3 4 4

0 0 0 0
1 1 2 2 3 3 4 4
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 (9-49) 

where 0
iN  is the bilinear shape function, i.e.,  
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 (9-50) 

Substitution of Eqs. (9-40) and (9-46) into Eq. (9-49) yields 
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where Bs is the shear strain matrix of the element, 
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9.3.2 Interpolation Formulas for the Rotation Fields 

1. The mid-side normal and tangential rotations of each element side 

Let node 5, 6, 7 and 8 be the mid-side nodes of the sides 23 , 34 , 41  and 12 , 
respectively (refer to Fig. 9.6). 

Figure 9.6 The mid-side node of each element side 

The normal rotation n  and the tangential rotation s  along side 23  can be 
expressed as 

1 1

1 1123 23

1 xn

ys

b c
c bd

 (9-54) 

Then, for the node 2 and 3 of the side 23 , we obtain  

22 1 1
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b c
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b c
c bd

 (9-55) 

The variation of the normal rotation n  along each side is assumed to be linear. 
Therefore, for node 5, we obtain 

5 2 3 1 2 3 1 2 323 23
1

1 1[( ) ( ) ] [ ( ) ( )]
2 2n n n x x y yb c

d
 (9-56a) 

Similarly, for node 6, 7 and 8, we obtain 

6 2 3 4 2 3 4
2

1 [ ( ) ( )]
2n x x y yb c

d
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7 3 4 1 3 4 1
3
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d
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The tangential rotation s  on the nodes 5,6,7 and 8 can be determined by 
Eq. (8-99b): 

5 1 3 2 1 1 2 3 1 2 3
1 1

6 2 4 3 2 2 3 4 2 3 4
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3 3

8 4 2 1
4

3 1(1 2 )( ) (1 6 )[ ( ) ( )]
2 4

3 1(1 2 )( ) (1 6 )[ ( ) ( )]
2 4
3 1(1 2 )( ) (1 6 )[ ( ) ( )]

2 4
3 (1 2 )( )

2

s x x y y

s x x y y

s x x y y

s

w w c b
d d

w w c b
d d

w w c b
d d

w w
d 4 4 1 2 4 1 2

4

1 (1 6 )[ ( ) ( )]
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2. The rotations x  and y  of the mid-side nodes 

For node 5, which is the mid-side node of side 23 , ( 5x, 5y) can be obtained 
from Eq. (9-54) as follows:  
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y s
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Similarly, ( 6x, 6y), ( 7x, 7y) and ( 8x, 8y) can be obtained. By coupling these 
expressions with Eqs. (9-56) and (9-57), we obtain 
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2 4 2 2

y

b b c b
c

d d d

b b c bc
d d d

F  (9-64a) 

2
21 1 1 1

1 1 1 12 2 2
1 1 1

2

2
24 4 4 4

4 4 4 42 2 2
4 4 4

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

0 0 0 0 0
0 0 0 0 0

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

y

b b c bc
d d d

b b c bc
d d d

F  (9-64b) 
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2
21 1 1 1

1 1 1 12 2 2
1 1 1

2
22 2 2 2

3 2 2 2 22 2 2
2 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

0 0 0 0 0
0 0 0 0 0

y

b b c bc
d d d

b b c bc
d d d

F  (9-64c) 

2
22 2 2 2

2 2 2 22 2 2
2 2 2

4 2
23 3 3 3

3 3 3 32 2 2
3 3 3

0 0 0 0 0

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

0 0 0 0 0

y

b b c bc
d d d

b b c bc
d d d

F  (9-64d) 

3. Interpolation formulas for the rotation fields x  and y  within the element 

The rotation fields x and y within the element can be expressed in terms of the 
node rotations xi and yi (i 1, 2, , 8):

8

1

8

1

x i xi
i

y i yi
i

N

N
 (9-65) 

where

1

2

3

4

1 (1 )(1 )(1 )
4
1 (1 )(1 )(1 )
4
1 (1 )(1 )(1 )
4
1 (1 )(1 )(1 )
4

N

N

N

N

2
5

2
6

2
7

2
8

1 (1 )(1 )
2
1 (1 )(1 )
2
1 (1 )(1 )
2
1 (1 )(1 )
2

N

N

N

N

 (9-66) 

Substituting Eq. (9-59) into Eq. (9-65), the element rotation fields x and y can 
be expressed by the element nodal displacement vector qe.
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9.3.3 Interpolation Formulas for the In-Plane Displacement Fields  
of the Mid-Plane 

The in-plane displacement fields u0 and v0 of the mid-plane can be expressed as:  

4
0 0

1

4
0 0

1

i i
i

i i
i

u N u

v N v
 (9-67) 

where 0
iN  is given by Eq. (9-50). 

9.3.4 The In-Plane Strain and Curvature Fields 

The in-plane strain (9-4) of the mid-plane can be rewritten as:  

0 0 eB q  (9-68) 

where

0 0 0 0 0
1 2 3 4[ ]B B B B B  (9-69) 

0

0
0

0 0

0 0 0 0

0 0 0 0

0 0 0

i

i
i

i i

N
x

N
y

N N
y x

B   (i 1,2,3,4) (9-70) 

1x

y

J  (9-71) 

J –1 is the Jacobian inverse, and it is the same as that of the bilinear isoparametric 
quadrilateral element Q4.  

From Eqs. (9-5), (9-65) and (9-59), the curvature fields can be rewritten as:  

0 1 2 b( ) e e
x yH H F H F q B q  (9-72) 
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where Bb is the bending strain matrix:  

b b1 b2 b3 b4[ ]B B B B B  (9-73) 

0 01 02 03 04[ ]H H H H H  (9-74) 

0

0 0 0 0

0 0 0 0

0 0 0

i

i
i

i i

N
x

N
y

N N
y x

H   (i 1,2,3,4) (9-75) 

5 6 7 8

1

5 6 7 8

0 0 0 0

N N N N
x x x x

N N N N
y y y y

H ,
5 6 7 8

2

5 6 7 8

0 0 0 0

N N N N
y y y y

N N N N
x x x x

H  (9-76a,b) 

where Ni(i 1,2, ,8) is given by Eq. (9-66). 
Then, the p  in Eq. (9-14) can be expressed as: 

00

p p
b

e eB
q B q

B
 (9-77) 

9.3.5 The Stiffness Matrix of the Element 

The element strain energy is: 

T T T T
p p p s s s

1 1d d
2 2e e

e e e e e

A A

U A Aq B C B q q B C B q  (9-78) 

where Ae is the area of the element; Cp and Cs are given by Eqs. (9-14) and (9-19), 
respectively. The element stiffness matrix is 

T T
p p p s s s

1 1 1 1T T
p p p s s s1 1 1 1

d d

d d d d

e e

e

A A

A AK B C B B C B

B C B J B C B J (9-79)
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where J  is the Jacobian determinant. 
A standard 2 2 Gauss integration scheme is found to be sufficient for the 

calculation of Eq. (9-79), even though 3 3 integration is theoretically necessary. 
No spurious mode is presented in the element. Note that this 2 2 scheme should 
not be confused with the standard reduced integration scheme because both 2 2
and 3 3 integration schemes can avoid the shear locking problem and give 
proper solutions. 

This element is denoted as CTMQ20. 

9.3.6 Element Load Vector 

The deflection field w is not used during the course of calculating the element 
stiffness matrix. But, for calculating the effective load vector, w can be assumed 
as follows: 

e
ww N q  (9-80) 

with

0 0 0 0
1 2 3 4[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]w N N N NN

 (9-81) 

where 0
iN  is given in Eq. (9-50). Then, the element equivalent nodal forces due 

to a pressure ( , )q x y can be given by 

T
1 2 3 4[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]e

z z z zf f f ff
(9-82)

with 
1 10 0

1 1
( , ) d * ( , ) d d

ezi i iA
f q x y N A q N J   (i 1,2,3,4) (9-83) 

9.4 The Hybrid-Enhanced Post-Processing Procedure for 
Element Stresses 

According to the standard procedure of displacement-based elements, the stress 
solutions of the plate element can be solved from the stress-strain relations (9-10) 
and (9-11). But, the transverse shear stress solutions obtained from Eq. (9-11) are 
all constants at each layer of the plate, which neither reflect the actual nonlinear 
continuous distributions of the transverse shear stresses, nor satisfy the zero shear 
stress conditions on the bounding planes of the plate. When the 3D elasticity 
differential equilibrium equations are used to compute the transverse shear stresses, 
the procedure for the displacement-based elements is quite complicated, and hard 
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to obtain satisfactory results. Reference [26] proposed a simple hybrid-enhanced 
post-processing procedure to improve the internal force solutions of the 
displacement-based plate elements, and references [22,23] employed this procedure 
to evaluate the internal forces and stresses of the laminated composite plate 
elements. More accurate results for stresses, especially for the transverse shear 
stresses, can be obtained. So the element CTMQ20, which uses this treatment, 
possesses the advantages of both the displacement-based and hybrid elements. 

9.4.1 The Bending Moment and Shear Force Fields 

The bending moment field M can be assumed as follows[26,27]:

M MM P  (9-84) 

in which 
T[ ]x y xyM M MM  (9-85) 

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

MP  (9-86) 

T
1 2 3 4 5 6 7 8 9 10 11 12[ ]M  (9-87) 

where ( ,  ) are the isoparametric coordinates of the quadrilateral element; i
(i 1, 2, , 12) are 12 unknown parameters. 

And, the shear field is assumed to satisfy the homogeneous equilibrium equation,  

, ,

, ,

x x x xy y
Q M

y xy x y y

Q M M
Q M M

Q P  (9-88) 

in which 

11 12 11 12 21 22 21 22

21 22 21 22 11 12 11 12

0 0 0 0 0 0
0 0 0 0 0 0Q

j j j j j j j j
j j j j j j j j

P

(9-89)
j11, j12, j21 and j22 are the components of the Jacobian inverse. 

9.4.2 The Membrane Force Field of the Mid-Plane 

The membrane force field N can be assumed as follows[28]:
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N NN P  (9-90) 

in which 

2 2
1 3
2 2

1 3

1 1 3 3

1 0 0
0 1 0
0 0 1

N

a a
b b
a b a b

P  (9-91) 

1 1 2 3 4 1 1 2 3 4

3 1 2 3 4 3 1 2 3 4

1 1( ) ( )
4 4
1 1( ) ( )
4 4

a x x x x b y y y y

a x x x x b y y y y
 (9-92) 

T
13 14 15 16 17[ ]N  (9-93) 

i (i 13, 14, , 17) are 5 unknown parameters. 

9.4.3 The Condensation Procedure 

Equations (9-14) and (9-15) can be rewritten as: 

3 12
p

3 5

N N
NM NM

M M

0
0
PN

P
PM

 (9-94) 

2 5
N

Q NQ NM
M

Q P P0  (9-95) 

By employing the Hellinger-Reissner variational principle, the energy functional 
of the laminated composite plate element can be expressed as:  

      

T T T T
p p p s p p exp

T T T
p s

T T T
p s exp

1 1d d d d
2 2
1 ( )d
2

( )d

e e e e

e

e

e
R

A A A A

NM NM NM NQ NQ NM
A

e
NM NM NQ

A

A A A A W

A

A W

S Q S Q Q

P S P P S P

P B P B q (9-96)

where Wexp is the work done by external forces. 

From the stationary condition 
e

R

NM

0 , we obtain: 
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1 e
NM qK K q  (9-97) 

where

T T
p s

T T
p s

( )d

( )d

e

e

NM NM NQ NQ
A

q NM NQ
A

A

A

K P S P P S P

K P B P B (9-98)

Substituting Eq. (9-97) into Eqs. (9-94) and (9-95), N, M and Q can be obtained. 
And, the element stresses of each layer can be obtained by Eq. (9-27).

9.4.4 Recovery of the Transverse Shear Stresses 

Ignoring the effects of the body forces, the stresses of the laminated composite 
plate should satisfy the following homogeneous equations: 

0

0

xyx xz

xy y yz

x y z

x y z

 (9-99) 

For the kth layer of the plate, we obtain 

b p2 2

1 2b p, b p,2

d ( ) d

[ ( ) ( ) ]d

z z

zk k k eh h

z

k e x k e yh

z z z

z z z

Q S S

Bl Q S S Bl Q S S (9-100)

in which 

0

0

x y

y x

 (9-101) 

1
1 0 0
0 0 1

Bl , 2
0 0 1
0 1 0

Bl  (9-102a,b) 

1
p, ,

1
p, ,

e
x NM x q

e
y NM y q

P K K q

P K K q (9-103)
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(, x) and (, y) denote the derivatives with respect to x and y of all components in a 
matrix. 

Finally, we obtain 

2 2
1 1 1 b p,

2 2
2 1 1 b p,

1
2 2

1 1 1 b p,
1

1
2 2

2 1 1 b p,
1

1[( ) ( ) ]
2
1[( ) ( ) ]
2

1[( ) ( ) ]
2
1[( ) ( ) ]
2

zk k k e k x

k k e k y

k

k i i e i i x
i
k

k i i e i i y
i

z h z h

z h z h

h h h h

h h h h

Bl Q S S

Bl Q S S

Bl Q S S

Bl Q S S (9-104)

9.5 Vibration Analysis of Laminated Composite Plates 

The in-plane displacement field of the element CTMQ20 can be obtained from 
Eq. (9-67): 

0
0

0
eu

v
N q  (9-105) 

where
0 0 0 0 0

1 2 3 4[ ]N N N N N  (9-106) 

0
0

0

0 0 0 0
0 0 0 0

i
i

i

N
N

N   (i 1,2,3,4) (9-107) 

The rotation field of the element CTMQ20 can be obtained from Eqs. (9-59) 
and (9-65): 

x e

y
N q  (9-108) 

where

1 2N N N  (9-109) 

1 2 3 4
1

1 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N N N N
N N N N

N

(9-110)
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2
x

y

N F
N

N F
 (9-111) 

5 6 7 8N N N NN  (9-112) 

For the deflection field w, the expression (9-80) is not the real deflection field of 
the element CTMQ20, which must be derived from the relation (9-6). In order to 
avoid complicated derivation, the following element concentrated mass matrix 
corresponding to the deflection field w is suggested here:  

4
e
w

Ah
a

a
m

a
a

 (9-113) 

where  is mass density of the plate; A is the area of the element, and 

0
0

1
0

0

a

Then the expression of the element mass matrix me can be written as: 

0
e e e e

wm m m m  (9-114) 

where m0
e is the in-plane mass matrix: 

1 1 0 T 0
0 1 1

( ) d de hm N N J  (9-115) 

m e is the mass matrix caused by the moment of inertia: 

3 1 1 T

1 1
d d

12
e hm N N J  (9-116) 

When the stacking sequences of a laminated composite plate is symmetrical with 
respect to the mid-plane, there will be no coupling existing between the bending 
actions and in-plane actions. So, if only the transverse vibration is considered, m0

e

in Eq. (9-114) can be omitted. Thus, the element mass matrix can be rewritten as: 

e e e
wm m m  (9-117) 
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After the element stiffness matrix Ke and mass matrix me are obtained, the 
vibration analysis of the plate can be performed by the usual procedure, and the 
natural frequency i can be solved by the following generalized characteristic 
equation:

2( )K m q 0  (9-118) 

where K is the global stiffness matrix; m is the global mass matrix; q is the global 
nodal displacement vector.  

9.6 Numerical Examples 

When dealing with a single layer isotropic plate, the element CTMQ20 will 
degenerate into the Mindlin plate element ARS-Q12 presented in reference [25]. 
Good overall results were obtained for displacements, internal forces and stresses. 
The focus of this section is only on the composite plates. 

Example 9.1 Simply supported square symmetric cross-ply laminated plate 
with 3 (0/90/0) or 9 (0/90/0/90/0/90/0/90/0) layers subjected to a doubly sinusoidal 
load.

This example, proposed by Pagano and Hatfield[29], is presented in Fig. 9.7. 
Each layer is strongly orthotropic and two stacking sequences are studied: ST1 
corresponds to 3 layers (0/90/0) whereas ST2 corresponds to 9 layers 
(0/90/0/90/0/90/0/90/0). In both cases, the total thickness of all the 0  layers is the  

GEOMETRY
L=1000;  h=250, 100, 20, 10, 1, 0.1 
MATERIAL (orthotropic) 
Skins: E1=25.0; E2=1.0; G12=0.5; G13=0.5; G23=0.2; 12=0.25 
ST1:0/90/0 symmetric 
ST2:0/90/0/90/0/90/0/90/0 symmetric 
BOUNDARY CONDITIONS (simply-supported: hard support mode )
on AB: u=w= x=0; on BC: u= x=0 
on CD: v= y=0   ; on DA: v=w= y=0 
LOADING (doubly sinusoidal) 

0 sin sinx yq q
L L

Figure 9.7 Square plate with 3 and 9 layers subjected to doubly sinusoidal load 
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same as that of all the 90  layers; and those layers having the same orientation 
have the same thickness. Three different meshes, i.e., 4 4, 8 8 and 16 16, are 
used to model a quadrant of the plate, and five L/t aspect ratios are considered. 
The correction factors can be obtained from reference [14] or [15]: 2

1 0.5952k ,
2
2 0.7205k  for ST1 and 2

1 0.689k , 2
2 0.611k  for ST2. 

For comparing with analytical solutions and solutions in other references, 
deflection and stresses are given in the form: 

Deflection: 
4

4
0

ˆ

12
w Qw
S hq

 with LS
h

, 1 2 23
12

12 21

[ (1 2 )]ˆ 4
(1 )

E EQ G

(Note: 23 0.25 here. It is necessary for the 3D elastic solution, but it is not  
needed for FDST) 

In-plane stresses: 2
0

1( , , ) ( , , )x y xy x y xyq S

Transverse shear stresses: 
0

1( , ) ( , )xz yz xz yzq S

Some results of the element CTMQ20 obtained together with some other 
solutions are presented in Tables 9.1 and 9.2, and the distributions of selective 
normal and transverse shear stresses along the thickness obtained by 8 8 mesh 
are plotted in Figs. 9.8 to 9.15. 

Table 9.1 Maximum deflection and stresses in 3-ply (0/90/0) square laminate com- 
posite plate (hard simply-supported mode ) subjected to doubly sinusoidal load 

S L/h Mesh & models 
w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 4
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

4

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

FSDT

4.888
4.856
4.848
4.490
4.845

0.374
0.371
0.370
0.518
0.370

0.674
0.664
0.661
0.296
0.661

0.0330
0.0333
0.0334

0.0334

0.245
0.247
0.248
0.202
0.249

0.331
0.334
0.335
0.422
0.319

10

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

REC56-Z0 2 2[19]

REC72-Z0 2 2[19]

3D elasticity[29]

FSDT

1.735
1.729
1.728
1.727
1.445
1.663
1.709
1.727

0.488
0.484
0.483
0.549
0.529
0.583
0.559
0.483

0.407
0.401
0.399
0.253
0.363
0.408

0.401/– 0.403 
0.399

0.0250
0.0252
0.0253

0.0250
0.0290

–0.0275/0.0276
0.0253

0.304
0.307
0.308
0.213

0.301
0.310

0.204
0.207
0.208
0.409

0.196
0.198
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(Continued)        

S L/h Mesh & models 
w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 4
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

50

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

REC56-Z0 2 2[19]

REC72-Z0 2 2[19]

3D elasticity[29]

FSDT

1.031
1.031
1.031
1.067
0.993
1.006
1.031
1.031

0.543
0.538
0.536
0.494
0.535
0.537
0.539
0.536

0.280
0.277
0.276
0.331
0.261
0.265
0.276
0.276

0.0212
0.0214
0.0215

0.0226
0.0230
0.0216
0.0215

0.330
0.335
0.336
0.160

0.337
0.338

0.135
0.142
0.146
0.436

0.141
0.141

100

 4 4
CTMQ20 8 8

16 16
REC56-Z0 2 2[19]

REC72-Z0 2 2[19]

3D elasticity [29]

FSDT

1.007
1.008
1.008
0.956
0.962
1.008
1.008

0.545
0.540
0.538
0.506
0.509
0.539
0.538

0.274
0.272
0.271
0.248
0.249
0.271
0.271

0.0210
0.0213
0.0213
0.0223
0.0225
0.0214
0.0213

0.329
0.335
0.337

0.339
0.339

0.130
0.134
0.140

0.139
0.139

100 000 

 4 4
CTMQ20 8 8

16 16
FSDT  
CLT[31]

1.000
1.000
1.000
1.000
1.000

0.545
0.540
0.539
0.539
0.539

0.273
0.270
0.270
0.269
0.269

0.0210
0.0212
0.0213
0.0213
0.0213

0.326
0.330
0.331
0.339
0.339

0.128
0.129
0.130
0.138
0.138

Table 9.2 Maximum deflection and stresses in 9-ply (0/90/0/90/0/90/0/90/0) square 
laminate composite plate (hard simply-supported mode ) subjected to doubly 
sinusoidal load

S=L/h Mesh & models 

w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

2, ,
2 2 5
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

4

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

FSDT

4.283
4.252
4.244
4.242
4.242

0.498
0.493
0.492
0.547
0.491

0.494
0.489
0.487
0.419
0.487

0.0214
0.0217
0.0217

0.0217

0.234
0.237
0.237
0.225
0.238

0.243
0.245
0.246
0.231
0.245

10

4 4
CTMQ20 8 8

16 16
DST 10 10[30]

LPL-20  8 8[21]

3D elasticity[29]

FSDT

1.529
1.524
1.523
1.526

1.512
1.522

0.526
0.521
0.519
0.541
0.520
0.551
0.519

0.461
0.456
0.455
0.425
0.458
0.477
0.454

0.0212
0.0214
0.0214

0.0216
0.0233
0.0215

0.246
0.249
0.249
0.219
0.248
0.247
0.250

0.228
0.230
0.231
0.257
0.228
0.226
0.230
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(Continued)        

S=L/h Mesh & models 

w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

2, ,
2 2 5
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

50

4 4
CTMQ20 8 8

16 16
DST 10 10[30]

LPL-20  8 8[21]

3D elasticity[29]

FSDT

1.021
1.021
1.021
1.020

1.021
1.021

0.545
0.539
0.538
0.522
0.540
0.539
0.538

0.438
0.434
0.433
0.447
0.434
0.433
0.432

0.0210
0.0212
0.0213

0.0214
0.0214
0.0213

0.251
0.256
0.257
0.190
0.256
0.258
0.258

0.213
0.218
0.220
0.263
0.217
0.219
0.219

100

4 4
CTMQ20 8 8

16 16
LPL-20  8 8[21]

3D elasticity[29]

FSDT

1.005
1.005
1.005

1.005
1.005

0.545
0.540
0.539
0.541
0.539
0.538

0.437
0.433
0.432
0.433
0.431
0.431

0.0209
0.0212
0.0213
0.0214
0.0213
0.0213

0.249
0.254
0.257
0.257
0.259
0.259

0.210
0.215
0.218
0.217
0.219
0.219

100 000 

4 4
CTMQ20 8 8

16 16
FSDT  
CLT[31]

1.000
1.000
1.000
1.000
1.000

0.545
0.540
0.539
0.539
0.539

0.436
0.432
0.431
0.431
0.431

0.0210
0.0212
0.0213
0.0213
0.0213

0.247
0.250
0.250
0.259
0.259

0.207
0.210
0.210
0.219
0.219

 Reference [21] pointed out that the computational error of the deflection by the element LPL-20  is big, so the 
results were not given. 

Figure 9.8 The distribution of central stress x along thickness for a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 
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Figure 9.9 The distribution of central stress y along thickness for a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.10 The distribution of xz at (0, L/2) along thickness of a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.11 The distribution of yz at (L/2, 0) along thickness of a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 
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Figure 9.12 The distribution of central stress x along thickness for a square 
9-ply plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.13 The distribution of central stress y along thickness for a square 
9-ply plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.14 The distribution of xz at (0, L/2) along thickness of a square 9-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 
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Figure 9.15 The distribution of yz at (L/2, 0) along thickness of a square 9-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

With regards to the central deflection wC and maximum plane stresses x, y
and xy, the results obtained using the CTMQ20 element are in excellent agreement 
with those of the exact FSDT for all span-thickness ratio L/t. No shear locking 
happens in the thin plate limit. The results obtained using three different meshes 
show rapid convergence for the above-mentioned deflection and stresses. For 
transverse shear stresses, the element CTMQ20 can still produces good results, 
which the usual displacement-based element cannot do. 

It is obvious that the performance of the element CTMQ20 is much better than 
those obtained using the quadrilateral hybrid element LPL-20  by Wu et al.[21],
the element DST (a discrete shear triangular plate-bending element) by Lardeur et 
al.[30], REC56-Z0 (56 DOFs per element) and REC72-Z0 (72 DOFs per element) 
by Sadek[19].

Example 9.2 Simply supported (hard support mode ) anti-symmetric 
angle-ply square plate with 2 ( 45/45) or 8 [( 45/45)4]s layers subjected to 
doubly sinusoidal load. 

The geometry, the material constants and the loading are the same as those 
given in Example 9.1. All the layers have the same thickness. The boundary 
conditions (hard simply-supported mode ) are:  

 at x 0 and x L: u w y 0; at y 0 and y L, v w x 0.

Six different meshes, i.e., 4 4, 8 8, 16 16, 32 32, 64 64 and 80 80, are 
used to model the whole plate and three L/h aspect ratios are considered. For 
comparison with the analytical solution in reference [1], the shear correction 
factors are taken as: 2 2

1 2 5 / 6k k . The results are shown in Tables 9.3 and 9.4. 
It can be seen that excellent solutions for deflection and in-plane stresses can be 
obtained from the element CTMQ20. For the anti-symmetric or unsymmetric 
cases, most of the simple displacement-based elements cannot produce good 
results for the transverse shear stresses using the equilibrium equation[18]. Since 
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Table 9.3 Maximum deflection and stresses in 2-ply ( 45/45) square laminate 
composite plate (hard simply-supported mode ) subjected to doubly sinusoidal load

L/h Model & mesh w(L/2, L/2)
100E2h3/(L4q0)

x(L/2, L/2, h/2)
h2/(L2q0)

xy(0, 0, h/2)
h2/(L2q0)

xz(0, L/2, h/4)
h/(Lq0)

10

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.8042
0.8218
0.8267
0.8280
0.8283
0.8283
0.8284

0.2628
0.2543
0.2510
0.2501
0.2499
0.2498
0.2498

0.2291
0.2349
0.2341
0.2337
0.2336
0.2336
0.2336

0.1683
0.2005
0.2107
0.2134
0.2141
0.2142
0.2143

20

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.6733
0.6906
0.6961
0.6976
0.6980
0.6980
0.6981

0.2501
0.2523
0.2508
0.2501
0.2499
0.2498
0.2498

0.2211 
0.2333
0.2339
0.2337
0.2336
0.2336
0.2336

0.1324
0.1773
0.2027
0.2112 
0.2136
0.2138
0.2143

100

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.6399
0.6519
0.6550
0.6560
0.6563
0.6564
0.6564

0.2399
0.2474
0.2495
0.2499
0.2499
0.2498
0.2498

0.2157
0.2295
0.2328
0.2335
0.2336
0.2336
0.2336

0.1049
0.1194 
0.1362
0.1691
0.1980
0.2033
0.2143

Table 9.4 Maximum deflection and stresses in 8-ply [( 45/45)4]s square laminate 
composite plate (hard simply-supported mode ) subjected to doubly sinusoidal load

L/h Model & mesh w(L/2, L/2)
100E2h3/(L4q0)

x(L/2, L/2, h/2)
h2/(L2q0)

xy(0, 0, h/2)
h2/(L2q0)

xz(0, L/2, 0)
h/(Lq0)

10

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.4063
0.4157
0.4188
0.4196
0.4198
0.4198
0.4198

0.1657
0.1507
0.1461
0.1449
0.1446
0.1446
0.1445

0.1268
0.1361
0.1379
0.1383
0.1384
0.1384
0.1384

0.2131
0.2384
0.2460
0.2480
0.2485
0.2486
0.2487

20

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.2764
0.2846
0.2881
0.2892
0.2895
0.2895
0.2896

0.1575
0.1496
0.1460
0.1449
0.1446
0.1446
0.1445

0.1223
0.1353
0.1378
0.1383
0.1384
0.1384
0.1384

0.1850
0.2225
0.2408
0.2466
0.2481
0.2483
0.2487

100

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.2440
0.2463
0.2471
0.2476
0.2478
0.2478
0.2479

0.1499
0.1459
0.1451
0.1448
0.1446
0.1446
0.1445

0.1283
0.1356
0.1374
0.1380
0.1383
0.1383
0.1384

0.1674
0.1791
0.1904
0.2172
0.2380
0.2416
0.2487
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the hybrid-enhanced post-processing procedure is used by the present element, it 
is obvious that good results of transverse shear stresses can be obtained.

Example 9.3 Free vibration analysis of a 3-ply (0/90/0) square plate (hard 
simply-supported mode ).

All the layers have the same thickness. Other geometry, the material constants, 
the load and the boundary conditions are the same as those given in Example 9.1. 
A 16 16 mesh is used for the whole plate and two span-thickness ratios are 
considered. For comparison with the analytical solution in reference [1], the 
shear correction factors are taken as: 2 2

1 2 1k k . The first seven dimensionless 
natural frequencies obtained are listed in Table 9.5. It can be seen that the 
element CTMQ20 can provide accurate results. 

Table 9.5 The free frequency coefficients 2
2( / ) /L h E for a 3-ply (0/90/0) 

square laminate composite plate (hard simply-supported mode )

L/h
Mode m in 
x-direction

Mode n in 
y-direction

CLT[1] FSDT[1] CTMQ20 16 16

10

1
1
1
2
2
1
2

1
2
3
1
2
4
3

15.104
22.421
38.738
55.751
59.001
62.526
67.980

12.527
19.203
31.921
32.931
36.362
44.720
47.854

12.464 ( 0.50%)
18.974 ( 1.19%)
31.377 ( 1.70%)
32.641 ( 0.88%)
35.641 ( 1.98%)
43.350 ( 3.06%)
46.722 ( 2.36%)

100

1
1
1
2
2
1
2

1
2
3
1
2
4
3

15.227
22.873
40.283
56.874
60.891
66.708
71.484

15.191
22.827
40.174
56.319
60.322
66.421
70.764

15.142 ( 0.32%)
22.659 ( 0.74%)
39.871 ( 0.75%)
56.123 ( 0.35%)
59.556 ( 1.27%)
65.939 ( 0.73%)
69.244 ( 2.14%)

 The numbers in parentheses are percentage errors. 

Example 9.4 Free vibration analysis of anti-symmetric angle-ply square plates 
(hard simply-supported mode ) with 2 ( 45/45) and 8 [( 45/45)4]s layers. 

All the layers have the same thickness. Boundary conditions are the same as 
those given in Example 9.2. There are two material cases: 

Material 1: E1 25.0; E2 1.0; G12 0.5; G13 0.5; G23 0.2; 12 0.25
Material 2: E1 40.0; E2 1.0; G12 0.6; G13 0.6; G23 0.5; 12 0.25

A 16 16 mesh is used for the whole plate, and four span-thickness ratios are 
considered. For comparison with the analytical solution in reference [1], the shear 
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correction factors are taken as: 2 2
1 2 5 / 6k k . The results of the first natural 

frequency are listed in Table 9.6. 

Table 9.6 The first natural frequency coefficients 2
2( / ) /L h E for anti- 

symmetric angle-ply square laminate composite plate (hard simply-supported mode )

Material 1 Material 2 
L/h 2-ply 

( 45/45)
8-ply 

[( 45/45)4]s

2-ply 
( 45/45)

8-ply 
[( 45/45)4]s

5

10

20

100

CTMQ20
16 16
FSDT[1]

CTMQ20
16 16
FSDT[1]

CTMQ20
16 16
FSDT[1]

CTMQ20
16 16
FSDT[1]

8.457
( 0.48%)

8.498
10.860

( 0.32%)
10.895
11.908 

( 0.21%)
11.933 
12.315

( 0.21%)
12.341

10.244
( 0.40%)

10.285
15.349

( 0.25%)
15.388
18.535

( 0.11%) 
18.555
20.049

( 0.17%)
20.084

10.285
( 4.76%)

10.799
13.002

( 4.60%)
13.629
14.149

( 4.50%)
14.815
14.581

( 4.54%)
15.274

12.842
( 0.40%)

12.893
19.242

( 0.24%)
19.289
23.237

( 0.09%)
23.259
25.134

( 0.17%)
25.176

Note: The numbers in parentheses are percentage errors. 
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