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Abstract This chapter introduces how to use the generalized conforming 
theory to develop the plate element models for the analysis of both thick and 
thin plates. In Sects. 8.1 and 8.2, a review of the Reissner-Mindlin (thick) 
plate theory is firstly given, and then, a comparison between this theory and 
the Kirchhoff (thin) plate theory is presented. In the subsequent sections, the 
construction methods for the thick/thin plate elements are firstly summarized; 
especially, the shear locking difficulty caused by the traditional scheme 
(assuming deflection and rotation fields) is analyzed. Then, three new 
schemes which are proposed by the authors and can eliminate shear locking 
from the outset are introduced in detail, including the schemes of assuming 
rotation and shear strain fields, assuming deflection and shear strain fields, 
and introducing the shear strain field into the thin plate elements. The 
formulations of four triangular and rectangular element models are also 
presented. Numerical examples show that the proposed models exhibit excellent 
performance for both thick and thin plates, and no shear locking happens. 

Keywords thick plate element, generalized conforming, Reissner-Mindlin 
(thick) plate theory, thick/thin beam element, shear locking. 

8.1 Summary of the Thick Plate Theory 

The thick plates discussed here is restricted to moderately-thick plates. Limitation 
will appear if classical thin plate theory is used to analyze such thick plates. 

The fundamental equations of the thick plate theory were firstly proposed by 
Reissner in the forties of the twentieth century[1].
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Compared with the thin plate theory, the main characteristic of the thick plate 
theory is that it considers the influences of the transverse shear strain xz and yz

(hereafter referred to as x and y). So, the thick plate theory is also called the shear 
deformation plate bending theory. Furthermore, in dynamics problems, the influences 
of rotatory inertia should also be considered[2].

In the thick plate theory, the shear strain can be expressed in terms of the 
deflection w and the normal slopes x and y as 

,x x y y
w w
x y

 (8-1) 

in which w, x, y are three independent generalized displacements. On the 
contrary, in the thin plate theory, since x and y are assumed to be zero, Eq. (8-1) 
will degenerate to be 

,x y
w w
x y

 (8-2) 

Only one independent displacement w exists, and both x and y depend on w.
Therefore, the thick plate theory is also called the plate bending theory with three 
generalized displacements[3].

Owing to constructional reason, the shear deformation of sandwich plates cannot 
be ignored. So, the thick plate theory can be used to calculate the sandwich plate 
problems. Furthermore, it is more reasonable to employ the thick plate theory to 
analyze the following problems: high-order vibration problem of plates, stress 
concentration problem, stress distribution problem near free edges, contact 
problem[3].

This section compendiously gives the fundamental equations of the thick plate 
theory, including equilibrium equations, geometrical equations, physical equations, 
coordinate transformations, boundary conditions, expressions of strain energy 
and strain complementary energy. For these fundamental equations of the thick 
plate theory, it is necessary to emphatically understand the difference from those 
in the thin plate theory and the influence of shear deformation. 

8.1.1 Equilibrium Equations 

A thick plate in Cartesian coordinates (x, y, z) is shown in Fig. 8.1. The x and y
co-ordinates are in the reference middle surface; z is the co-ordinate through the 
thickness h, and its positive direction is upward. 

The load density on the middle surface has three components q, mx and my, in 
which q is the load density along the z-axis, and its positive direction is also upward; 
mx is the couple load density in the xz-plane, and its positive direction is the same  
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Figure 8.1 The coordinates, internal forces and load density components used in 
thick plate bending problem 

as the rotation from x-axis to z-axis; my is the couple load density in the yz-plane,
and its positive direction is the same as the rotation from y-axis to z-axis.

In the Cartesian coordinate system, the moderately thick plate has 5 internal force 
components: bending moments Mx and My, twisting moment Mxy Myx, transverse 
shear forces Qx and Qy. And, their positive directions are shown in Fig. 8.1. 
These 5 components can form an internal force vector: 

T[ ]x y xy x yM M M Q QS

which is composed of two sub vectors: 
T T[ ] , [ ]x y xy x yM M M Q QM Q

Then, the differential equilibrium equations of the thick plate can be written as 

0

0

0

xyx
x x

xy y
y y

yx

MM
Q m

x y
M M

Q m
x y

QQ
q

x y

 (8-3) 

One characteristic of the thick plate theory which is different from the thin plate 
theory is that the number of load densities increases from 1 to 3. Therefore, the 
shear forces Qx and Qy are not only related to the internal moments Mx, My and 
Mxy, but also related to the loads mx and my.

8.1.2 Geometrical Equations 

The displacements of the thick plate have 3 independent parameters: 

T[ ]x ywd  (8-4) 
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in which w is the deflection, and its positive direction is upward; x is the normal 
rotation in the xz-plane, and its positive direction is from x-axis to z-axis; y is 
the normal rotation in the yz-plane, and its positive direction is from y-axis to 
z-axis.

The strains of the thick plate have 5 parameters: 

T[ 2 ]x y xy x yE  (8-5) 

where x, y and 2 xy are the curvatures, and their positive values are corresponding 
to the deformations caused by positive Mx, My and Mxy, respectively. They form a 
bending strain vector: 

T[ 2 ]x y xy  (8-6) 

x (or xz) and y (or yz) are shear strains, and their positive values are 
corresponding to the deformations caused by positive Qx and Qy, respectively. 
They form a shear strain vector: 

T[ ]x y  (8-7) 

The geometrical equations between strains and displacements are as follows: 

, , 2

,

y yx x
x y xy

x x y y

x y y x
w w
x y

 (8-8) 

After the elimination of w, x and y in Eq. (8-8), we obtain 

1
2

1
2

xy yx x

y xy yx

y x x y x

x y y y x

 (8-9) 

Then, by the elimination of x and y in Eq. (8-9), we have 

2 22

2 2 2 0y xyx

y x x y
 (8-10) 

Equations (8-9) and (8-10) are called the compatibility equations of strains. 
Another characteristic of the thick plate theory which is different from the thin 

plate theory is that the number of displacements increases from 1 to 3. In thin 
plate, since x 0 and y 0, from Eq. (8-8), we have 
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,x y
w w
x y

Here, x and y can be derived from w, so they are not independent displacement 
parameters.  

8.1.3 Physical Equations 

The physical equations between internal forces and strains in a thick plate are as 
follows:

( )
( )
(1 )

x x y

y y x

xy xy

x x

y y

M D
M D
M D
Q C
Q C

 (8-11) 

where D and C are the plate bending stiffness and shear stiffness, respectively;  is 
the Poisson’s ratio. For an isotropic homogenous thick plate, we have 

3

2 ,
12(1 ) 2(1 )

Eh Gh EhD C
k k

 (8-12) 

where h is the thickness of the plate; E is the Young’s modulus; coefficient 1.2k .
For a sandwich plate shown in Fig. 8.2, we have 

2

c2

( )
, ( )

2(1 )
f

f

E h t t
D C G h t  (8-13) 

where h is the thickness of the core layer; t  is the thickness of the surface layer; 
Ef and f are the Young’s modulus and Poisson’s ratio of the surface layer, 
respectively; Gc is the shear modulus of the core layer. 

Figure 8.2 A sandwich plate 
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The physical Eq. (8-11) can be expressed in matrix forms as follows 

M D  (8-14) 

Q C  (8-15) 

where

1 0
1 0

10 0
2

DD  (8-16) 

1 0
0 1

CC  (8-17) 

Another form of the physical equations is 

2

2

2

,
(1 )

,
(1 )

2(1 )
2

(1 )

x y x
x x

y x y
y y

xy
xy

M M Q
D C

M M Q
D C

M
D

 (8-18) 

i.e.,

1

1

D M
C Q

 (8-19) 

where

1
2

1 0
1 1 0

(1 )
0 0 2(1 )

D
D  (8-20) 

1 1 01
0 1C

C  (8-21) 

In a thick plate, the shear stiffness C is a finite value, while C  is assumed 
for the thin plate case. 
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8.1.4 Coordinate Transformation 

Assume that Oxy represents the original coordinate system, Ox y  represents the 
new coordinate system, and  is the rotation from x-axis to x -axis (see Fig. 8.3). 

Figure 8.3 Coordinate transformation 

Let cosl , sinm . Then, the transformation between these two coordinate 
systems is 

l mx x
y ym l

or written as  

x Lx  (8-22) 
where

l m
m l

L  (8-23) 

Since
1 TL L

the inverse transformation of Eq. (8-22) is 
Tx L x

The transformations of some quantities are the same as Eq. (8-22), for example, 

(1) L
x x

, i.e., 
l mx x
m l

y y

(2) L , i.e., x x

y y

l m
m l

(3) L , i.e., x x

y y

l m
m l
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(4) Q LQ , i.e., x x

y y

Q Ql m
Q Qm l

                    (8-24) 

The transformation of moments is similar to the transformation of curvatures: 

(1) TM LML , i.e., x x y x xy

y x y yx y

M M M Ml m l m
M M M Mm l m l

(2) TL L , i.e., x x y x xy

y x y yx y

l m l m
m l m l

  (8-25) 

8.1.5 Boundary Conditions 

Assume that n and s stand for the outer normal and tangent directions at an 
arbitrary point on the boundary, respectively. The angle between n and x-axis is 
(see Fig. 8.4). Let 

 cos , sinl m

from Eqs. (8-24) and (8-25), we obtain 

l mn x
m l

s y

 (8-26) 

xn

ys

l m
m l

 (8-27) 

2 2

2 2

2

( ) ( )

n x y

n x y xy

ns x y xy

Q lQ mQ

M l M m M lmM

M M M lm l m M

 (8-28) 

Figure 8.4 The normal and tangent on the boundary 
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Several typical boundary conditions are given as follows: 

1

2

2

3

, , (on fixed edge )
, , (on simply-supported (hard) edge )
, , (on simply-supported (soft) edge )

, , (on free edge )

n n s s

s s n n

ns ns n n

n n ns ns n n

w w C
w w M M C
w w M M M M C
M M M M Q Q C

(8-29)

8.1.6 Strain Energy 

Firstly, the definitions of the strain energy density U  and the strain energy U of
the thick plate are given.  

For a given strain vector E (including bending strain  and shear strain ):

T

T

T

[ 2 ]

[ 2 ]

[ ]

x y xy x y

x y xy

x y

E

the function ( )U E  can be defined as 

b s( ) ( ) ( )U U UE  (8-30) 

where
T 2 2 2

b
1( ) [ 2 2(1 ) ]
2 2 x y x y xy

DU D  (8-31) 

T 2 2
s

1( ) ( )
2 2 x y

CU C  (8-32) 

( )U E  is the strain energy density of the thick plate; b ( )U  is the bending strain 
energy density; s ( )U  is the shear strain energy density. 

The strain energy U of the thick plate is defined as the functional of the strain 
fields E:

T T

2 2 2 2 2

1 1( ) ( )d d d d
2 2

[ 2 2(1 ) ] ( ) d d
2 2x y x y xy x y

U U x y x y

D C x y

E E D C

(8-33)

Two points should be noted: 
(1) For arbitrary strain fields E, no matter whether these strain fields satisfy the 

strain compatibility Eq. (8-9), the strain energy corresponding to E can be defined. 
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If the strain fields E satisfy the strain compatibility Eq. (8-9), and are derived 
on the basis of the geometrical Eq. (8-8) from certain displacement fields: 

T[ ]x ywd

then, the strain energy can be expressed as the functional of the displacement fields, 

2 22

22

1( ) 2
2 2

d d
2

y y yx x x

x y

DU
x y x y y x

C w w x y
x y

d

(8-34)

(2) From Eqs. (8-31) and (8-32), it can be seen that b ( )U  and s ( )U  are the 
positive definite quadric homogeneous functions of ( x, y, xy) and ( x, y), 
respectively. According to the properties of the positive definite quadric homo- 
geneous function, the following equalities can be obtained: 

b b b
b

s s
s

2

2

2

x y xy
x y xy

x y
x y

x y xy x y
x y xy x y

U U U U

U U U

U U U U U U

 (8-35) 

Secondly, the physical equations between internal forces and strains can be 
expressed in terms of the strain energy density U . For this reason, the derivatives 
of U  are first obtained as follows: 

( ), ( ), (1 )
2

,

x y y x xy
x y xy

x y
x y

U U UD D D

U UC C
 (8-36) 

From the above equations, it can be seen that the physical Eq. (8-11) can be 
expressed in terms of the strain energy density U  as follows: 

, ,
2

,

x y xy
x y xy

x y
x y

U U UM M M

U UQ Q
  (8-37) 
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Finally, the variation of the strain energy is given as: 

 d dU U x y  (8-38) 

i.e.,

d d

[ 2 ]d d

x y xy x y
x y xy x y

x x y y xy xy x x y y

U U U U UU x y

M M M Q Q x y (8-39)

The above equation indicates that the variation of the strain energy equals to 
the work done by the corresponding internal forces on the variation of strains. 

8.1.7 Strain Complementary Energy 

Firstly, the definitions of the strain complementary energy density V  and strain 
complementary energy V of the thick plate are given. 

For a given internal force vector S (including internal moments M and shear 
forces Q):

T

T

T

[ ]

[ ]

[ ]

x y xy x y

x y xy

x y

M M M Q Q

M M M

Q Q

S

M

Q

 (8-40) 

the function ( )V S  can be defined as: 

b s( ) ( ) ( )V V VS M Q  (8-41) 

T 1 2 2 2
b 2

1 1( ) [ 2 2(1 ) ]
2 2(1 ) x y x y xyV M M M M M

D
M M D M

(8-42)

T 1 2 2
s

1 1( ) ( )
2 2 x yV Q Q

C
Q Q C Q  (8-43) 

( )V S  is the strain complementary energy density of the thick plate; b ( )V M  is 
the bending strain complementary energy density; s ( )V Q  is the shear strain 
complementary energy density. 

The strain complementary energy V of the thick plate is defined as the functional 
of the internal force fields S:
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T 1 T 1

2 2 2 2 2
2

1 1( ) ( )d d d d
2 2

1 1[ 2 2(1 ) ] ( ) d d
2(1 ) 2x y x y xy x y

V V x y x y

M M M M M Q Q x y
D C

S S M D M Q C Q

(8-44)
Two points should be noted: 

(1) For arbitrary internal force fields S, no matter whether these internal force 
fields satisfy the equilibrium differential Eq. (8-3) and boundary conditions under 
given loads, the strain complementary energy corresponding to S can be defined.  

(2) From Eqs. (8-42) and (8-43), it can be seen that b ( )V M  and s ( )V Q  are the 
positive definite quadric homogeneous functions of (Mx, My, Mxy) and (Qx, Qy),
respectively. According to the properties of the positive definite quadric homo- 
geneous function, the following equalities can be obtained: 

b b b
b

s s
s

2

2

2

x y xy
x y xy

x y
x y

x y xy x y
x y xy x y

V V VM M M V
M M M
V V

Q Q V
Q Q
V V V V VM M M Q Q V
M M M Q Q

 (8-45) 

The derivatives of the strain complementary energy density are given as follows: 

2

2

2

,
(1 )

,
(1 )

2(1 )
(1 )

x y x

x x

y x y

y y

xy
xy

M M QV V
M D Q C

M M QV V
M D Q C

V M
M D

 (8-46) 

By using the above derivative formulae, the physical Eq. (8-18) between internal 
forces and strains can be expressed in terms of the strain complementary energy 
density V  as follows: 

,

,

2

x x
x x

y y
y y

xy
xy

V V
M Q
V V

M Q
V

M

 (8-47) 
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Finally, the variation of the strain complementary energy is given as: 

d d

d dx y xy x y
x y xy x y

V V x y

V V V V VM M M Q Q x y
M M M Q Q

  (8-48) 

Substitution of Eq. (8-47) into the above equation yields 

 [ 2 ]d dx x y y xy xy x x y yV M M M Q Q x y

The above equation indicates that the variation of the strain complementary 
energy equals to the work done by the variation of internal forces on the 
corresponding strains. 

8.2 Comparison of the Theories for Thick Plates and  
Thin Plates 

According to the contents in the previous section, this section will introduce the 
differences between the theories for thick plates and thin plates. Comparisons are 
made in fundamental equations and typical numerical examples. 

8.2.1 Comparison of Fundamental Equations 

1. Notes on the basic assumptions of deformation 

In the thin plate theory, the Kirchhoff normal assumption is adopted—The normal 
of the mid-surface before deformation will still be the normal of the mid-surface 
after deformation. 

In the thick plate theory, the Reissner-Mindlin straight-line assumption is 
adopted—The normal of the mid-surface before deformation will still be a straight 
line after deformation, but generally not the normal of the mid-surface anymore. 

One uses the normal assumption while the other uses the straight-line assumption, 
this exhibits the essential difference of the two theories. 

2. Notes on the shear deformation problem 

Since the Kirchhoff normal assumption is adopted in the thin plate theory, the 
transverse shear strains x and y will keep zero during the deformations of the 
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thin plates, and then, the normal rotations x and y will keep being equal to the 

mid-surface slopes w
x

 and w
y

, as shown in Eq. (8-2). 

The Reissner-Mindlin straight-line assumption is adopted in the thick plate 
theory, hence, in general, the normal rotations x and y of the thick plates will 

not keep being equal to the mid-surface slopes w
x

 and w
y

. Their differences 

are the transverse shear strains x and y, as shown in Eq. (8-1). 
The essential differences between these two plate theories are: 
(1) Whether the influences of the transverse shear strains are considered or not. 
(2) Whether the normal rotations are equal to the mid-surface slopes or not. 
From above, we can also conclude that: 
(1) For shear stiffness: C  is assumed in the thin plate theory while C is a 

finite value in the thick plate theory. 
(2) For strain energy: in the thick plate theory, strain energy U is the sum of 

the bending strain energy Ub and the shear strain energy Us; while in the thin 
plate theory, U Ub because of Us 0.

That the shear stiffness C is looked upon as infinite, and the shear strain 
energy Us is neglected, are the inevitable results of ignoring the influences of 
shear deformations in the thin plate theory. 

3. Notes on the independent displacements in w, x and y

In the thin plate theory, x and y are equal to the derivatives of w, so they are not 
independent displacements. Thus, in the 3 displacements w, x and y, only w is 
independent.

In the thick plate theory, since two new fields x and y appear, w, x and y are 3 
independent displacement fields. 

Independence or dependence between the displacement fields w and ( x, y) is 
another essential difference between these two plate theories. 

When constructing a universal displacement-based element for both thick and 
thin plates, one main difficulty encountered is how to deal with the dual 
requirements of independence and dependence. 

Only one independent displacement w is considered for constructing the thin 
plate element, while 3 independent displacements w, x and y must be taken 
into account for constructing the thick plate element. From this viewpoint, it 
seems that the development of a thick plate element is more complicated than 
that of a thin plate element. But, if we observe the expressions of strain energy, it 
can be seen that the integrands in the strain energy  expression (8-34) of the 
thick plate element contain only first-order derivatives of w, x and y, so it 
belongs to C0-continuity problem. On the other hand, the integrands in the strain 
energy expression of the thin plate element contain second-order derivatives of w,
thus, it belongs to C1-continuity problem. Therefore, the construction of the thick 
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plate elements is indeed easier than that of the thin plate element. Anyway, it is 
easier to construct elements special for the thick plates, but more difficult to 
construct elements special for the thin plates, and much more difficult to develop 
universal elements for both thick and thin plates. 

4. Notes on the boundary conditions 

In the thick plate theory, several typical boundary conditions have been given by 
Eq. (8-29), in which each boundary has 3 boundary conditions, i.e., 

On fixed edge C1

, ,s s n nw w  (8-49a,b,c) 

On simply-supported (hard) edge C2

, ,s s n nw w M M  (8-50a,b,c) 

On simply-supported (soft) edge 2C

, ,ns ns n nw w M M M M  (8-51a,b,c) 

On free edge C3

, ,n n ns ns n nM M M M Q Q  (8-52a,b,c) 

Here, the conditions on the fixed edge are all displacement conditions; conditions 
on the free edge are all force conditions; and conditions on the simply-supported 
edge are mixed conditions of displacement and force. 

In the thin plate theory, since the transverse shear strains are assumed to be zero, 
the following assumption  

s
w
s

 (8-53) 

is imposed on the boundary. Thus, the boundary tangent rotation s is a non- 
independent displacement relied on boundary deflection w, thereupon, the number 
of DOFs at each point of the boundary will decrease from 3 (w, s, n) to 2 (w,

n), and the number of the boundary conditions will also decrease from 3 to 2. 
Firstly, let us consider the fixed edge case. According to the assumption given 

in Eq. (8-53), the second boundary condition in Eq. (8-49) can be derived from 
the first boundary condition. So, after the elimination of this non-independent 
condition, only 2 independent boundary conditions (8-49a,c) remain. 

Secondly, let us consider the simply-supported edge case. In the thin plate 
theory, there are 2 boundary conditions on the simply-supported edge: 

, n nw w M M
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These are Eqs. (8-50a,c), and also Eqs. (8-51a,c). In the thick plate theory, there 
are 3 boundary conditions on the simply-supported edge, that is to say, one 
condition of tangent rotation along the boundary should be supplemented. If the 
displacement condition (8-50b) s s  is supplemented, then the boundary is 
called as hard simply-supported edge; if the force condition (8-51b) ns nsM M
is supplemented, then the boundary is called as soft simply-supported edge. 
Therefore, in the thick plate theory, there are two types of simply-supported edge: 
hard and soft; but in the thin plate theory, only one type exists. 

Finally, let us consider the free edge case. In the thin plate theory, the boundary 
conditions (8-52) will be replaced by the following two conditions: 

On free edge C3

, ns
n n n n

M
M M Q V

s
 (8-54a,b) 

i.e., two conditions (b) and (c) in Eq. (8-52) are replaced by one condition (b) in 
Eq. (8-54). Indeed, this is also the inevitable result by introducing the assumption 
(8-53). Here, nV  is the density of the distributed transverse load along the free 
edge of the thin plate. 

Now, from the viewpoint of virtual work, the boundary conditions on the free 
edge in thick and thin plate theories are explained as follows. 

In the thick plate theory, there are 3 independent displacements w, n and s

on the free boundary edge. Assume that the virtual displacements on the free edge 
are w, n and s, the virtual work done by the boundary forces is 

3
[ ]dn n ns s nC

W M M Q w s  (8-55) 

On the other hand, the virtual work done by the given loads on the free edge is 

3
[ ]dn n ns s nC

W M M Q w s  (8-56) 

Let W W , and since the virtual displacements w, n and s are 3 
independent arbitrary functions, the 3 boundary conditions in Eqs. (8-52a,b,c) can 
be obtained. 

In the thin plate theory, since the assumption in Eq. (8-53) is introduced, there 

are only 2 independent virtual displacements w and n, and s
w
s

. The 

work done by the boundary force is 

3

dn n ns nC

wW M M Q w s
s

 (8-57) 
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By using the formula of integration by parts, we obtain 

3

33

d Cns
n n n ns CC

MW M Q w s M w
s

 (8-58) 

in which 3C  and 3C  are two ends of the free edge. Since the two ends of the 
free edge link with the fixed edge or the simply-supported edge, at 3C  and 3C ,

0w , and then the above equation can be written as 

3

dns
n n nC

M
W M Q w s

s
 (8-59) 

On the other hand, the work done by the given loads on the free edge is 

3
[ ]dn n nC

W M V w s  (8-60) 

Let W W , and since n and w are 2 arbitrary functions, the 2 boundary 
conditions on the free edge of the thin plate can be obtained, as shown in 
Eq. (8-54a,b). 

The above discussions about the boundary conditions are expounded from the 
viewpoint of virtual work. This expatiation method is very natural and evident.  

In the thick plate theory, the expression of the boundary virtual work is Eq. (8-55), 
where n, s and w are 3 independent generalized displacements; and ( )nM ,
( )nsM  and Qn are 3 conjugate (or corresponding) independent generalized forces, 
respectively. Thereby, in the thick plate theory, there are 3 independent boundary 
conditions, which are generally expressed by 

n n or n nM M    (8-61a) 

s s or ns nsM M  (8-61b) 

w w or n nQ Q      (8-61c) 

In the thin plate theory, the expression of boundary virtual work is Eq. (8-59), 
where n and w are 2 independent generalized displacements; and ( )nM  and 

ns
n

M Q
s

 are 2 conjugate (or corresponding) independent generalized forces, 

respectively. Thereby, in the thin plate theory, there are 2 independent boundary 
conditions, which are generally expressed by 

n n or n nM M      (8-62a) 
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w w or ns
n n

M Q V
s

 (8-62b) 

where nsM
s

 is called as the equivalent transverse shear force of the twisting 

moment nsM ; and ns
n n

M Q V
s

 is called as the resultant transverse shear 

force.
In the above discussions, the concept that the generalized force P and the 

generalized displacement  are conjugate with each other is mentioned. Its 
definition can be given as follows. 

If the virtual work W done by the generalized force P along the generalized 
displacement  is equal to the product P , i.e., 

W P  (8-63) 

then, we say that the generalized displacement  and the generalized force P are 
conjugate with each other (or corresponding to each other). 

5. Notes on the independent load components and internal force components 

Firstly, let us discuss the load components. 
In the thick plate theory, since there are 3 independent displacement components 

w, x and y, there should be 3 independent load components q, mx and my

corresponding to them. So, the expression of virtual work is 

 [ ]dx x y y
A

W q w m m A  (8-64) 

From this virtual work expression, it can be seen that 3 load components and 3 
displacement components are corresponding to or conjugate with each other. 

In the thin plate theory, since there is only one independent transverse 
displacement component w, and the rotation components x and y are both 
relied on w, there should be only one independent transverse load component q
corresponding to it, and the couple load components mx and my should be 
converted to equivalent transverse load components on dA with line distributed 
transverse load on the boundary ds. So, the expression of virtual work is 

d

d ( ) d

x y
A

yx
x yA

A

w wW q w m m A
x y
mmq w A m l m m w s

x y

  (8-65) 
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Therefore, after conversion, the surface load q  and boundary load nV  are  

yx mm
q q

x y
 (8-66a) 

n x yV m l m m      (8-66b) 

Secondly, let us discuss the internal force components. 
In the thick plate theory, there are 5 independent internal force components. 

That is to say, besides the bending moments Mx, My and twisting moment Mxy, the 
transverse shear forces Qx and Qy are also independent internal force components. 
It can be seen from the equilibrium differential Eq. (8-3) that, since there are 
independent couple load components mx and my existing, Qx and Qy in the thick 
plate theory do not completely rely on Mx, My and Mxy, they are independent internal 
force components. On the contrary, in the thin plate theory, since mx my 0 is 
assumed, Qx and Qy completely rely on Mx, My and Mxy, Qx and Qy will not be 
looked upon as independent internal force components. That is to say, there are 
only 3 independent internal force components in the thin plate theory. 

8.2.2 Comparison of Typical Examples 

1. The special case in which the same internal force solution is obtained by both 
thin beam theory and thick beam theory in beam and frame analysis 

The beam theories can be classified as thin beam theory and thick beam theory. 
Their difference is whether the influence of the shear strain is ignored or not. 

When these two theories are employed in beam and frame analysis, except the 
special case of pure bending state in which the shear strain is zero, the displacement 
solutions of the two theories are generally different, but the internal force solutions 
may be either same or different. Now, we discuss the case in which the internal 
force solutions are the same as each other. 

Firstly, if beam and frame are statically determinate structures, the internal force 
solutions by the two theories will be the same as each other, but for displacement 
solutions, there will be a discrepancy of an additional displacement purely caused 
by shear strain, i.e.,  

0 0,M M Q Q  (8-67) 

0 ( )      (8-68) 

where M, Q and  are the bending moment, shear force and displacement of the 
thick beam theory, respectively; M0, Q0 and 0 are the bending moment, shear 
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force and displacement of the thin beam theory, respectively; ( )  is the additional 
displacement caused by shear strain. 

Secondly, consider the case of the statically indeterminate structures. If the 
following examples are considered: 

(1) the shear force is statically determinate (Fig. 8.5(a)); 
(2) the shear force is statically determinate under symmetrical load (Fig. 8.6(a)); 
(3) the shear force of the non-rigid bar is statically determinate (Fig. 8.7(a), 

there is still a rigid bar in the frame, but its shear strain is identically equal to zero, 
so it is not necessary to consider whether its shear forces are statically determinate). 

Figure 8.5 Statically indeterminate beams 
(a) A slipping support at the right end; (b) A vertical support at the right end 

Figure 8.6 Statically indeterminate symmetrical beams 
(a) Symmetrical load; (b) Unsymmetrical load 

It follows that the internal force solutions by the two theories will be the same 
as each other.  

For comparison, examples which do not belong to the above cases are given in 
Figs. 8.5(b), 8.6(b) and 8.7(b). 

Figure 8.7 Statically indeterminate frames 
(a) Horizontal beam is a rigid bar; (b) Horizontal beam is not a rigid bar 

The above conclusion can be proved as follows. 
Assume that the degree of statical indeterminacy for the structure is n. The 

structure is analyzed using the force method, and the corresponding statically 
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determinate structure is taken as the basic structure. In the n redundant unknown 
forces, assume that m forces are nonzero ( m n ), then the bending moment M
and shear force Q can be expressed as 

1

m

P i i
i

M M M X  (8-69a) 

1

m

P i i
i

Q Q Q X    (8-69b) 

where MP and QP are the internal forces caused by loads in the basic structure; 
iM  and iQ  are the internal forces caused by unit redundant force 1iX  in the 

basic structure; X1, X2, , Xm are m nonzero redundant unknown forces. MP, iM ,
QP, iQ  are all determined by the equilibrium conditions. 

Since the shear forces of each non-rigid bar are assumed to be statically 
determinate, for each non-rigid bar, we can set 

0iQ   (i 1, 2, , m) (8-70) 

The redundant unknown forces X1, X2, , Xm can be solved by the fundamental 
equations of force method. 

For the thick beam theory, we have 

1
0

m

ij i iP
j

X   (i 1, 2, , m)

where

d d

d d

i j i j
ij

i P i P
iP

M M Q Q
s s

D C
M M Q Q

s s
D C

   

in which D and C are the section bending and shearing stiffness, respectively. 
For the thin beam theory, we have 

0 0

1
0

m

ij i iP
j

X   (i 1, 2, , m)

where

0

0

d

d

i j
ij

i P
iP

M M
s

D
M M

s
D
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By using Eq. (8-70), we have 

0 0,ij ij iP iP  (8-71) 

Therefore, the redundant unknown forces X1, X2, , Xm solved by the two 
theories are the same as each other. Substituting these solutions into Eq. (8-69), it 
can be seen that the internal force solutions obtained by the two theories are the 
same as each other. 

2. The special case in which the same internal force solution is obtained by  
both thin plate theory and thick plate theory 

The following problems belong to this special case: 
(1) Simply-supported polygonal plate; 
(2) Circular plate with axisymmetric deformation; 
(3) The plate problems in which the shear forces Qx and Qy are statically 

determinate. 
The proofs about the above conclusions can be referred to reference [3]. 

3. The concentrated load problem 

Consider a clamped circular plate (the radius is a) subjected to a concentrated 
load P at the center point C.

The displacement solution and the deflection at point C of the thin plate theory 
are

2
0 2 2ln ( )

8 16
Pr r Pw a r

D a D
 (8-72a) 

2
0

16C
Paw

D
                 (8-72b) 

The displacement solutions and the deflection at point C of the thick plate 
theory are 

0 ln
2

P rw w
C a

 (8-73a) 

0d
dr
w
r

        (8-73b) 

Cw           (8-73c) 

From the above results, it can be seen that, the deflection at the load point C of 
the concentrated load is a finite value by the thin plate theory, but an infinite value 
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by the thick plate theory. This distinction is completely caused by the influence 
of the shear strain. In fact, the second term at the right side of Eq. (8-73a) is the 
additional deflection ( )w r  purely caused by shear strain. 

( ) ln
2

P rw r
C a

 (8-74) 

The above equation can be derived as follows. 
Firstly, the shear force Qr is statically determinate, i.e.,  

2r
PQ

r
 (8-75) 

The shear strain r  is 

2
r

r
Q P
C rC

 (8-76) 

Secondly, 0r  should be assumed when the additional deflection w  caused 
by the shear strain is being solved, so we obtain 

d
d 2r
w P
r rC

After integration, we have 

1ln
2

Pw r C
C

where constant C1 can be solved by the boundary condition 0
r a

w  at r a .

Finally, Eq. (8-74) can be obtained.  
From Eqs. (8-75) and (8-76), it can be seen that the values of Qr and r at point 

C are both infinite, which are corresponding to the result Cw .

4. High-order vibration problem 

In the vibration analysis of plate, there are two different points between the thick 
and thin plate theories: one is whether the influence of shear deformation is 
considered; the other is whether the influence of rotary inertia is considered. 

In order to explain the distinction of the second point, the kinetic equations for 
the natural vibration problem of the thick plate are given as follows: 

2 0xyx
x x

MM
Q J

x y
 (8-77a) 
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2 0xy y
y y

M M
Q J

x y
 (8-77b) 

2 0yx QQ
hw

x y
       (8-77c) 

where  is the natural frequency;  is the density of material; h is the mass of 
the unit area on the mid-surface of the plate; J is the rotary inertia. In the thin 
plate theory, the influence of rotary inertia is ignored.  

In high-order vibrations, the effective length and width of the high-order modes 
become smaller, so the influence of rotary inertia and shear deformation will 
increase. Thereby, although a plate may belong to the thin plate type, for the 
analysis of the high-order vibration of this thin plate, it is more reasonable to 
employ the thick plate theory. 

5. Stress concentration problem near a circular hole 

Consider an infinite plate with a circular hole (the radius is a). At its infinite edge, 
the plate is under pure bending state along x-axis, i.e., 0xM M , and other internal 
force components are all zero. Now, let us solve the stress concentration coefficient 
kB near the circular hole, which is defined as 

max

0
B

Mk
M

 (8-78) 

where M max denotes the maximum value of the bending moment M  at the 
circular hole boundary. 

According to the thin plate theory, we have 

0 5 3
3Bk  (8-79) 

When the Poisson’s ratio 1
3

, 0 1.8.Bk

According to the Reissner thick plate theory, we have 

2 0

2 0

3 (1 ) 10 10
3 1 2

12 2 (1 ) 10 10
2

B

a aK K
h hk
a aK K
h h

 (8-80) 

where K0 and K2 are the modified Bessel functions. When 1
3

, the variations 
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of kB and 0
Bk  are plotted in Fig. 8.8 and listed in Table 8.1. 

Figure 8.8 The stress concentration coefficient ( 1/3)

Table 8.1 The comparison between stress concentration coefficients Bk  and 0
Bk

a/h 0 1 3 

Solution of thick plate theory Bk 3.00 2.25 1.98 

Solution of thin plate theory 0
Bk 1.80 1.80 1.80 

Error
0

B B

B

k k
k 40% 20% 9% 

It can be seen that, in the stress concentration problems of plate bending, the 
influence of the transverse shear strain should not be ignored. The solution of the 
thin plate theory 0

Bk  is always less than the solution of the thick plate theory kB.
Therefore, the solution of the thin plate theory is more unsafe. Errors will increase 
with the decrease of a/h, and the maximum error is up to 40%. 

6. Stress distribution near free edge 

As pointed out in the previous sections, for the boundary conditions of the free 
edge, the expressions from the two theories are different: the thick plate theory 
requires 3 boundary conditions (8-52a,b,c) to be satisfied, but thin plate theory 
cannot satisfy them and requires only 2 boundary conditions (8-54a,b) to be 
satisfied. Therefore, the solutions on or near the free edge of the two theories are 
always discrepant. 

In order to understand the discrepancy in the solutions near the free edge of the 
two theories, the stress concentration problem near a circular hole mentioned 
above is still used to illustrate the problem of this section. 

Firstly, according to thin plate theory, solutions of 0
rQ , 0

rM  and Vr are 
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2
0

0 3

2 4
0

0 2 4

2 4

0 2 4

4 cos 2
3

1 32 (1 ) 1 (1 ) 1 sin 2
3 2

1 1 2(3 ) 1 3(1 ) 1 cos 2
3

r

r

r

aQ M
r

a aM M
r r

a aV M
r r r

 (8-81) 

It can be seen that at the boundary r a  of the circular hole, only the boundary 
condition 0rV  is satisfied, while 0

rQ  and 0
rM  are both nonzero at the boundary. 

Secondly, according to the thick plate theory, the solutions of Qr and Mr   are 

0

0
r r r

r r r

Q Q Q
M M M

 (8-82) 

where, when 1a
h

, we have 

10

0

10

0

4 1 e cos 2
3

2 e sin 2
3

r a
h

r

r a
h

r

aQ M
r r

aM M
r

 (8-83) 

It can be seen that at the boundary r a  of the circular hole, both the boundary 
conditions 0rQ  and 0rM  are satisfied indeed. 

Let rQ  and rM  be the differences 0
r rQ Q  and 0

r rM M  of the solutions 
from the two theories, respectively. Both rQ  and rM  contain the exponential 

term 
10

e
r a

h , which is a rapid attenuation function (refer to Table 8.2). For 

example, when r a
h

 increases from 0 to 1, the function value will decrease 

from 1 to 4%. Therefore, the solutions of the two theories are discrepant only 
within a very small neighborhood near the free edge. The scale of this neighborhood 
belongs to the same magnitude of the thickness h of the plate. Outside the neigh- 
borhood, the internal force solutions of the thin plate theory are still suitable. 

The solutions of the thick plate theory contain exponential function which will 
rapidly decay when they are away from the boundary, and this phenomenon is 
called as edge effect. The solutions (8-81) of the thin plate theory do not contain 
this type of exponential function, so there is no edge effect phenomenon. 
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Table 8.2 Exponential function 
10

e
r a

h

r a
h 0 1/4 1/2 3/4 1 2 

10
e

r a
h 1.0000 0.4538 0.2058 0.0933 0.0424 0.0018 

7. Contact problem 

Consider the beam contact problem shown in Fig. 8.9[3]. The left end of the beam 
is fixed, and the right free end is subjected to a concentrated load P. Below the 
beam, there is a circular rigid foundation (the radius is r1). Under the action of load 
P, the left segment of the beam ( 10 x x ) will contact with the rigid foundation, 
and the contact length x1 will increase with P. This is a contact problem. 

Figure 8.9 Contact problem of beam 
(a) Solutions of thin beam theory; (b) Solutions of thick beam theory 

Firstly, we solve this problem according to the thin beam theory.  
In the contact segment 10 x x , the deflection is 

2

12
xw
r

 (8-84) 

From this equation, we obtain 

1

1

dRotation
d

Bending moment

dShear force 0
d
dDistributed reaction 0
d

w x
x r
DM
r

MQ
x
Qq
x

 (8-85) 

Therefore, it can be concluded that the distributed reaction of the contact segment 
is zero. 
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In the non-contact segment 1x x d , the bending moment and shear force 
can be solved by the equilibrium condition: 

 ( ),M P d x Q P  (8-86) 

The length x1 of the contact segment and the concentrated reaction R can be 
solved by the static continuity conditions at the interface point B:

1 1
1 1

( ) ,D DP d x x d
r Pr

 (8-87) 

R P  (8-88) 

Here, another conclusion that there is a concentrated reaction R P at the interface 
point B is obtained. 

There is no distributed reaction along the whole contact segment, and only a 
concentrated reaction exists at its end, this strange conclusion is formed completely 
by ignoring the shear deformation. If this problem is solved according to the 
thick beam theory, more reasonable results will be obtained. 

Secondly, we solve this problem according to the thick beam theory. 
The deflection of the contact segment is still expressed by Eq. (8-84). Since the 

influence of the shear strain   is considered in the thick beam theory, the , M, Q,
q in the contact segment are different from those results by the thin beam theory: 

1

1

d
d

d d
d d

d d
d d

w x
x r

DM D D
x r x

Q C
Qq C
x x

 (8-89) 

So, it can be concluded that, there is distributed reaction existing in the contact 
segment, and it can be derived from the shear strain. 

In order to determine the shear strain , the equilibrium differential equation 
d
d
M Q
x

 is applied firstly. Substitution of Eq. (8-89) into this equation yields 

2
2

2

d 0
dx

 (8-90) 

where

C
D

 (8-91) 
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The solution of Eq. (8-90) is 

 ch shx x  (8-92) 

From the boundary condition 
0

0
x

 at the left end, we obtain 
0

0
x

, 0,

therefore, we have 

 sh x  (8-93) 

Then, the bending moment and shear force of the contact segment can be obtained 
as

1

ch

sh

DM D x
r

Q C x
 (8-94) 

And, the bending moment and shear force of the non-contact segment are still 
expressed by Eq. (8-86). 

By applying the static continuity conditions at point B:

1 1
1

1

ch ( )

sh

D D x P d x
r

C x P
 (8-95) 

1x  and  can be solved as follows: 

1sh
P

C x
 (8-96) 

1
1

1

( )cth C d xCx
Pr D

 (8-97) 

When 1x  is being solved from Eq. (8-97), the trial method can be used. 
Finally, the distributed reaction of the contact segment can be obtained as 

1

ch ch
sh

Pq C x x
x

 (8-98) 

in which the positive direction of q is downward. 
So, according to the thick beam theory, there is distributed reaction existing in 

the contact segment, but no concentrated reaction. This conclusion is more 
reasonable. In contact problem, the influence of the shear strain should not be 
ignored.
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8.3 Thick/Thin Beam Element 

8.3.1 The Fundamental Formulae of Thick/Thin Beam Element 

A Timoshenko thick beam element is shown in Fig. 8.10. The formulae of deflection 
w, rotation  and shear strain  are as follows[4]:

2 3(1 ) ( ) (1 2 )
2 2i j i j
d dw w t w t F F  (8-99a) 

2(1 ) 3(1 2 )i jt t F               (8-99b) 

                                    (8-99c) 

Figure 8.10 Timoshenko thick beam element 

where

2

2

2 3

2 2 2

2

3

2 ( )

6
1 12 5 (1 ) 2

6
5 5, ,

5(1 ) 12(1 ) 6 12(1 )
(1 )
(1 )(1 2 )

i j i jw w
d

h
d

h
d

D h Eh EhD C Gh
Cd d

F t t
F t t t

 (8-100) 

8.3.2 Derivation of the Fundamental Formulae 

Assume that the shear strain , rotation  and deflection w are constant, quadratic 
function and cubic function in the beam element, respectively. According to the 
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end conditions, let 

0

0

0 1

(1 ) (1 )
(1 ) (1 ) (1 )(1 2 )

i j

i j

t t t t
w w t w t dt t dt t t

 (8-101) 

, , w should satisfy the following equation: 

d
d
w

d t
 (8-102) 

Substitution of Eq. (8-101) into Eq. (8-102) yields 

0 1 2 1 0 0 0
1 1 1( ), , 6
2 2 2

 (8-103) 

Substitution of Eq. (8-103) into Eq. (8-101) yields 

0

0

0

1(1 ) 6 (1 )
2

1(1 ) ( ) (1 ) (1 )(1 2 )
2 2

i j

i j i j

t t t t

dw w t w t t t d t t t

 (8-104) 

in which 0 is an internal parameter which can be determined from the condition 
of minimum strain energy.  

Curvature:

0 0
0

0

6d 1 1[ 6 (1 2 )] (1 2 )
d 2

1 [ 3 (1 2 )]

i j

i j

t t
d t d d

t
d

Bending strain energy: 

21 12 0 2 0 20 0
b 20 0

0 2
b 0 0

12 36
d [( ) (1 2 ) (1 2 ) ]d

2 2
6 ( )

Dd DdU t t t t
d d

DU
d

in which 

10 0 2
b 0

( ) d
2

DdU t
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Shear strain energy: 

2
s 02

CdU

The strain energy: 

0 20
b s b 0

6 112
2

D DU U U U
d d

 (8-105) 

From 
0

0U , we have: 

0
6

1 12
 (8-106) 

Substitution of Eq. (8-106) into Eq. (8-104) yields Eq. (8-99). 

8.3.3 The Stiffness Matrix of Thick/Thin Beam Element 

The stiffness matrix eK  of the thick/thin beam element can be derived from the 
element strain energy U:

T1
2

e e eU q K q  (8-107) 

Substitution of Eq. (8-106) into Eq. (8-105) yields the expression of the strain 
energy as follows: 

0
bU U U  (8-108) 

where 0
bU  is the strain energy of the thin beam element, and the strain energy 

increment U  is 

23DU
d

 (8-109) 

The stiffness matrix eK  of the thick/thin beam element can be written as the 
sum of two terms: 

0e eK K K  (8-110) 

where 0eK  is the stiffness of the thin beam element, and by 
0 T 0
b

1
2

e e eU q K q
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we have 

2 2
0

3

2 2

6 3 6 3
3 2 32

6 3 6 3
3 3 2

e

d d
d d d dD

d dd
d d d d

K  (8-111) 

And, the incremental matrix K  can be determined by  

T1
2

e eU q Kq

i.e.,

2 2

3

2 2

4 2 4 2
2 26

4 2 4 2
2 2

d d
d d d dD

d dd
d d d d

K  (8-112) 

When the thickness-span ratio h
d

 decreases gradually, the following limitation 

relation can be obtained: 

00, , e e0K K K

Here, the stiffness matrix eK  of the thick/thin beam element automatically 
degenerates to be the stiffness matrix 0eK  of the thin beam element. Therefore, 
no shear locking will happen. 

8.4 Review of Displacement-based Thick/Thin Plate  
Elements

This section will present a brief review of the construction methods of the 
displacement-based thick/thin plate elements. 

The construction methods of the displacement-based thick/thin plate elements 
are mainly classified into two types: One starts with the thick plate theory, and 
uses the procedure of transition from the thick plate element to the thick/thin plate 
element, which is simply denoted as thick-to-thin scheme here; the other starts 
with the thin plate theory, and uses the procedure of transition from the thin plate 
element to the thin/thick plate element, which is simply denoted as thin-to-thick 
scheme here. 

Further explanations are given as follows. 
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8.4.1 Thick-to-Thin Scheme 

The element suitable for the thick plates is firstly constructed based on the thick 
plate theory; and then, some special treatments are adopted so that the element 
will satisfy the requirements of the thin plate theory in the thin plate cases. 

When constructing the thick plate element, it can be started with assuming the 
displacement and shear strain fields. In the three variable fields, i.e., the deflection 
field w, rotation field  and shear strain field , two of them can be selected to 
be interpolated rationally, and then the third one can be derived from Eq. (8-1). 
Since there are three combination forms (w, ), ( , ) and (w, ) available, 
accordingly, the corresponding three different schemes are presented. Among 
these three schemes, the first one which starts with assuming (w, ) is the 
traditional scheme of assuming displacements and is often used in literatures, and 
the other two are the approaches proposed recently—mixed interpolation schemes 
partly of displacement and partly of strain. 

(1) Scheme starting with assuming (w, )
For the thick plate case, w and  should be independent variables; when the 

plate degenerates to be a thin plate,  should be the derivatives of w and not be 
independent variables anymore. Therefore, the rational assumptions of w and 
should fulfill the twofold requirements: independence in the thick plate case and 
non-independence in the thin plate case. This is the main difficulty encountered 
by this scheme. 

In fact, some elements constructed by this scheme possess good precision for 
the analysis of the thick plates, but an over-stiff performance is obviously exhibited 
when analyzing the thin plates, i.e., the computational results of deflections are 
much smaller than correct solutions. This is the shear locking phenomenon. The 
reason leading to shear locking is that the dual requirements mentioned above are 
not satisfied when assuming w and ,  consequently, false shear strain will appear 
in the thin plate limit state. How to avoid shear locking phenomenon was one of 
the problems that attracted continuous attention from academia, and many 
modifications and numerical techniques have been proposed by numerous 
researchers, such as the reduced integration method[5], the selective reduced 
integration method[6], the substitute shear strain method[7], and so on. 

(2) Scheme starting with assuming ( , )
In order to avoid the difficulty mentioned above caused by assuming (w, ),

the scheme of assuming ( , ) can be used to replace it. For a rational assumption 
of the shear strain , the dual requirements, that  should be generally nonzero 
in the thick plate case and tend to be zero in the thin plate case, should be still 
paid attention to. But then, these dual requirements are much easier to be satisfied, 
which provides a new way for eliminating shear locking. Some related research 
achievements[4,8,9] will be introduced in Sect. 8.5. 

By the way, the discrete Kirchhoff theory (DKT) elements for the thin plates 
indeed belong to a special application of the above scheme. 
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(3) Scheme starting with assuming (w, )
This is another new scheme[10,11] which can eliminate shear locking, and will 

be introduced in Sect. 8.6. 

8.4.2 Thin-to-Thick Scheme 

The element suitable for the thin plates is firstly constructed based on the thin 
plate theory; and then, some special treatments are adopted so that the influences 
of shear strain are introduced, thus, the thin plate element is generalized to an 
element suitable for both thin and thick plates. The shear strain introduced here 
should automatically degenerate to be zero in the thin plate limit state. Hence, 
naturally, the elements according to this scheme will not suffer from shear locking 
phenomenon.  

Some high-quality thin plate elements have already been proposed in literatures. 
Starting with these elements, the corresponding thin/thick plate elements can be 
constructed by this scheme.  

Some related research achievements will be introduced in Sect. 8.7. 
By the way, there is another effective method, namely, the Analytical Trial 

Function (ATF) method, for constructing the universal elements for both thick 
and thin plates[12]. This will be introduced in Chap. 14.  

8.5 Generalized Conforming Thick/Thin Plate Elements (1) 
—Starting with Assuming ( , )

This section will introduce the construction procedure of the thick/thin plate 
elements starting with assuming ( , )[4,8,9]. The derivation of the triangular 
element in reference [4] is quite simple and straightforward, and possesses clear 
physical meaning. So, the procedure in [4] will be introduced here. And, the 
method of deriving quadrilateral element can be referred to [9]. 

Main procedure: The functions of rotation and shear strain along each side of 
the element are firstly determined using the Timoshenko beam theory; Secondly, 
the rotation and shear strain fields in the domain of the element are then determined 
using the technique of improved interpolation, and the curvature fields are then 
determined from the rotation fields; Finally, the element stiffness matrix is 
determined by the curvature and shear strain fields. This new element is denoted 
by TMT (Timoshenko-Mindlin Triangular element). 

When the thickness becomes small, the thick beam theory will automatically 
degenerate to be the thin beam theory, and then the shear strain along each 
element side and the interpolation formulas for shear strain in the domain of the 
element will all automatically degenerate to be zero. So, the element TMT will 
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automatically degenerate to be the thin plate element, no shear locking will 
happen.

8.5.1 Interpolation Formulas for the Rotation Fields of the Thick  
Plate Element 

Consider the triangular thick plate element shown in Fig. 8.11. The element has 3 
nodes and 3 engineering DOFs per node. The element nodal displacement vector is: 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq

Figure 8.11 A triangular thick plate element 

The interpolation formulas for the element rotation fields can be obtained by the 
rotation formulas along each element side.  

1. Formulas of normal rotation n and tangential rotation s along each side 

The variation of the normal rotation n along each side is assumed to be linear. 
For the three sides ( 23,31,12 ), we have 

23 23 2 2 23 3 3

31 31 3 3 31 1 1

12 12 1 1 12 2 2

( ) ( )
( ) ( )
( ) ( )

n n n

n n n

n n n

L L
L L
L L

 (8-113a) 

The variation of the tangential rotation s along each side can be determined by 
Eq. (8-99b). Thus, 

23 23 2 2 23 3 3 1 1 2 3

31 31 3 3 31 1 1 2 2 3 1

12 12 1 1 12 2 2 3 3 1 2

( ) ( ) 3(1 2 )
( ) ( ) 3(1 2 )
( ) ( ) 3(1 2 )

s s s

s s s

s s s

L L L L
L L L L
L L L L

 (8-113b) 

where
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2

2 ( 1,2,3)
52 (1 )
6

1 [2( ) ( ) ( )]

( , , 1,2,3)

i
i

i

i j k i xj xk i yj yk
i

i j k

i k j

h
d

i
h
d

w w c b
d

b y y i j k
c x x

 (8-114) 

2. Expressions of rotations x and y along each side 

By using the relation between ( n, s) and ( x, y), the expression of rotations x

and y can be obtained as follows: 

       

1
23 1 23 1 23 2 2 3 3 1 1 2 3

1 1

2
31 3 3 1 1 2 2 3 1

2

3
12 1 1 2 2 3 3 1 2

3

31 ( ) (1 2 )

3 (1 2 )

3
(1 2 )

x n s x x

x x x

x x x

cb c L L L L
d d

cL L L L
d
c

L L L L
d

 (8-115a) 

      

1
23 1 23 1 23 2 2 3 3 1 1 2 3

1 1

2
31 3 3 1 1 2 2 3 1

2

3
12 1 1 2 2 3 3 1 2

3

31 ( ) (1 2 )

3 (1 2 )

3
(1 2 )

y n s y y

y y y

y y y

bc b L L L L
d d

bL L L L
d
b

L L L L
d

 (8-115b) 

3. Interpolation formulas for element rotation fields x and y

The rotation fields x and y within the element can then be obtained by the 
interpolation of the expressions (8-115a,b) of x and y on each side, i.e. 

1
1 1 2 2 3 3 1 1 2 3

1

32
2 2 3 1 3 3 1 2

2 3

1
1 1 2 2 3 3 1 1 2 3

1

32
2 2 3 1 3 3 1 2

2 3

3 (1 2 )

33 (1 2 ) (1 2 )

3 (1 2 )

33 (1 2 ) (1 2 )

x x x x

y y y y

cL L L L L
d
cc L L L L

d d
bL L L L L

d
bb L L L L

d d

 (8-116) 
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It can be seen that, if Li 0, the expressions of element rotations x and y
obtained from the above equation are the same as those expressions of rotations 
along each side given in (8-115a,b). That is to say, The interpolation formulas 
(8-116) for element rotations are exactly compatible with the formulas (8-115a,b) 
for rotations along each side.  

8.5.2 The Curvature Fields of the Thick Plate Element 

The element curvature fields are  
T

T[ 2 ] y yx x
x y xy x y y x

 (8-117) 

By using the differential formulae: 

1 2 3
1 2 3

1 2 3
1 2 3

1
2

1
2

b b b
x A L L L

c c c
y A L L L

 (8-118) 

and substituting Eq. (8-116) into Eq. (8-117), we obtain  

1 1
1 1 2 2 3 3 1 2 3 3 2

1

3 32 2
2 3 1 1 3 3 1 2 2 1

2 3

1 1
1 1 2 2 3 3 1 2 3 3 2

1

3 32 2
2 3 1 1 3 3 1

2 3

3(1 2 )1 [ ( )
2

3(1 2 )3(1 2 ) ( ) ( )]

3(1 2 )1 [ ( )
2

3(1 2 )3(1 2 ) ( ) (

x x x x

y y y y

b b b c b L b L
A d

c b L b L c b L b L
d d

c c c b c L c L
A d

b c L c L b c L
d d 2 2 1

1 1 2 2 3 3 1 1 2 2 3 3 1 2 3

)]

12 ( )
2xy x x x y y y

c L

c c c b b b E E E
A

 (8-119) 

where

1 1
1 1 2 1 2 3 3 1 3 1 2

1

2 2
2 2 3 2 3 1 1 2 1 2 3

2

3 3
3 3 1 3 1 2 2 3 2 3 1

3

3(1 2 ) [( ) ( ) ]

3(1 2 ) [( ) ( ) ]

3(1 2 )
[( ) ( ) ]

E c c b b L c c b b L
d

E c c b b L c c b b L
d

E c c b b L c c b b L
d

 (8-120) 
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Equation (8-119) can be written as 

b
eB q  (8-121) 

where
0

b bB B F G  (8-122) 

1 2 3
0
b 1 2 3

1 1 2 2 3 3

0 0 0 0 0 0
1 0 0 0 0 0 0

2
0 0 0

b b b
c c c

A
c b c b c b

B  (8-123) 

31 2
2 3 3 2 3 1 1 3 1 2 2 12 2 2

1 2 3

31 2
2 3 3 2 3 1 1 3 1 2 2 12 2 2

1 2 3

1 2 3

( ) ( ) ( )

3 ( ) ( ) ( )
2

cc cb L b L b L b L b L b L
d d d

bb bc L c L c L c L c L c L
A d d d

M M M

F  (8-124) 

1 1 2 1 2 3 3 1 3 1 22
1

2 2 3 2 3 1 1 2 1 2 32
2

3 3 1 3 1 2 2 3 2 3 12
3

1 [( ) ( ) ]

1 [( ) ( ) ]

1 [( ) ( ) ]

M c c b b L c c b b L
d

M c c b b L c c b b L
d

M c c b b L c c b b L
d

 (8-125) 

1

2

3

1 2 0 0
0 1 2 0
0 0 1 2

 (8-126) 

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 2 2
2 0 0 0 2
2 2 0 0 0

c b c b
c b c b
c b c b

G  (8-127) 

8.5.3 Interpolation Formulas for Shear Strain Fields of the Thick  
Plate Element 

1. Shear strain along each element side 

The transverse shear strain s  along the tangential direction (s-direction) of each 
side is constant. From Eq. (8-99c), we obtain 
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23 1 1 31 2 2 12 3 3, ,s s s  (8-128) 

in which i and i are given by Eq. (8-114).  
On the boundary line Li 0, the transformation relations between shear strain 

components ( n , s ) and ( x , y ) are  

0 0

1

i i

xi in

ys i iiL L

b c
c bd

 (8-129) 

Then, s along each side can be expressed in terms of x and y as follows 

1 23 1 23 1 23

2 31 2 31 2 31

3 12 3 12 3 12

s x y

s x y

s x y

d c b
d c b
d c b

 (8-130) 

2. Determination of nodal shear strains xi and yi

Firstly, consider node 1. 
There are two sides, 31 and 12 , meeting at node 1. According to Eq. (8-130), 

the tangential shear strains 31s  and 12s  along these two sides can be expressed 
by the shear strains 1x  and 1y  at node 1, i.e.,  

12 22 31

13 12 3 3

xs

ys

c bd
d c b

Then, we obtain 

1 3 2 3 22 31 2 2 2

1 3 3 33 123 2 3 2

1 1
2 2

x s

y s

b b b bd d
ddc c c cA A

 (8-131) 

Similarly, for nodes 2 and 3, we have 

2 1 3 3 3 3

2 1 1 11 3

3 2 1 1 1 1

3 2 2 22 1

1
2

1
2

x

y

x

y

b b d
dc cA

b b d
dc cA

 (8-132) 

Thus, from Eqs. (8-131) and (8-132), we obtain 

3 21 1 1 1

2 3 1 2 2 2

3 3 33 2 1

0
1 0

2
0

x

x

x

b b d
b b d

A db b
 (8-133) 
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1 3 2 1 1 1

2 3 1 2 2 2

3 3 32 13

0
1 0

2
0

y

y

y

c c d
c c d

A dc c
 (8-134) 

3. Interpolation formulas for element shear strain fields 

The shear strain fields within the element can be obtained in terms of the nodal 
shear strains in the following manner 

1 1 2 2 3 3

1 1 2 2 3 3

x x x x

y y y y

L L L
L L L  (8-135) 

in which the nodal shear strains are given by Eqs.(8-133) and (8-134). After 
substituting these into the above equation, we obtain 

1 1 1

2 2 2

3 3 3

x

y

d
d
d

H  (8-136) 

where

3 2 2 3 1 3 3 1 2 1 1 2

3 2 2 3 1 3 3 1 2 1 1 2

1
2

b L b L b L b L b L b L
c L c L c L c L c L c LA

H  (8-137) 

Equation (8-136) can also be written as 

s
eB q  (8-138) 

where

sB H G  (8-139) 

1

2

3

0 0
0 0
0 0

G  is given by Eq. (8-127). 

4. Expression in Cartesian coordinates for shear strains of the triangular  
element

For the triangular element, the shear strains x and y are determined by 3 constant 
shear strains 12 23 31( ) , ( ) , ( )s s s  along 3 sides, therefore, the general expressions 
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of x and y  can be written as 

1 3

2 3

x

y

y
x  (8-140) 

in which 3 parameters 1 , 2  and 3  are involved. This equation can be proved 
as follows. 

For side 12 , the shear strain 12( )s  along the side can be expressed by the shear 
strains at the end point ( 1x , 1y ) or ( 2x , 2y ), as shown in the following Eq. (a) 

3 12 3 1 3 1 3 2 3 2s x y x yd c b c b  (a) 

1 23 1 2 1 2 1 3 1 3s x y x yd c b c b  (b) 

2 31 2 3 2 3 2 1 2 1s x y x yd c b c b  (c) 

Equations (b) and (c) can be obtained similarly.  
Temporarily assume that x and y  are the complete linear polynomials: 

0 1 2

0 1 2

x

y

x y
x y   (d) 

in which 6 unknown coefficients are contained. Substitution of Eq. (d) into 
Eqs. (a), (b), (c) yields 

2 2
3 3 3 3 1
2 2
1 1 1 1 2
2 2
2 2 2 2 2 1

0
0
0

c b b c
c b b c
c b b c

 (e) 

Since the determinant of the coefficient matrix at the left side is (2A)3, not zero, 
so, we obtain 

1 0 , 2 0 , 2 1  (f) 

From Eq. (d), we have 

0 2

0 2

x

y

y
x  (g) 

Equation (g) is just the form of Eq. (8-140). QED. 
By the way, if H in Eq. (8-137) is expressed in the Cartesian coordinates, the 

shear strain formulas (8-136) can be expressed by the form of Eq. (8-140).  
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8.5.4 Stiffness Matrix of the Thick Plate 

The element stiffness matrix eK  is composed of two parts 

b s
e e eK K K  (8-141) 

where b
eK  is the bending stiffness matrix: 

T
b b b bd

e

e

A

AK B D B  (8-142) 

bB  is given by Eq. (8-122), bD  is the bending elastic matrix: 

3

b 2

1 0

1 0 ,
12(1 )

10 0
2

EhD DD  (8-143) 

s
eK  is the shear stiffness matrix: 

T
s s s sd

e

e

A

AK B D B  (8-144) 

sB  is given by Eq. (8-139), sD  is the shear elastic matrix: 

s

1 0 5,
0 1 6

C C GhD  (8-145) 

8.5.5 Numerical Examples 

Example 8.1 The central deflection and moment of simply-supported (hard) 
square plates with different thickness-span ratios (h/L) subjected to uniform load.  

Assume that the side length of the plate is L, 0.3 . Meshes A and B in 
Fig. 8.12 are used. The results by the element TMT are given in Tables 8.3 to 8.5. 

Figure 8.12 Meshes for 1/4 square plate (O is the center of the plate) 
(a) Mesh A 2 2; (b) Mesh B 2 2
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Table 8.3 The central deflection of simply-supported square plates subjected to 

uniform load 
4

100
qLq

D

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.4056
0.3676

0.4065
0.3973

0.4064
0.4041

0.4063
0.4057 0.4062

0.001
A
B

0.4056
0.3676

0.4065
0.3973

0.4064
0.4041

0.4063
0.4057 0.4062

0.01
A
B

0.4058
0.3677

0.4066
0.3974

0.4065
0.4042

0.4064
0.4059 0.4064

0.1
A
B

0.4255
0.3845

0.4264
0.4164

0.4270
0.4244

0.4272
0.4266 0.4273

0.15
A
B

0.4520
0.4063

0.4529
0.4414

0.4534
0.4504

0.4536
0.4528 0.4536

0.20
A
B

0.4902
0.4370

0.4905
0.4764

0.4906
0.4867

0.4905
0.4895 0.4906

0.25
A
B

0.5398
0.4769

0.5388
0.5215

0.5383
0.5334

0.5380
0.5366 0.5379

0.30
A
B

0.6009
0.5257

0.5979
0.5767

0.5966
0.5905

0.5960
0.5943 0.5956

0.35
A
B

0.6732
0.5835

0.6679
0.6418

0.6655
0.6580

0.6646
0.6624 0.6641

Table 8.4 The central deflection of clamped square plates subjected to uniform 

load
4

100
qLq

D

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.1547
0.1214

0.1347
0.1258

0.1287
0.1264

0.1271
0.1265 0.1265

0.001 A
B

0.1547
0.1214

0.1347
0.1258

0.1287
0.1264

0.1271
0.1265 0.1265

0.01 A
B

0.1550
0.1216

0.1350
0.1260

0.1289
0.1266

0.1273
0.1267 0.1265

0.1 A
B

0.1766
0.1392

0.1575
0.1473

0.1521
0.1495

0.1509
0.1502 0.1499

0.15 A
B

0.2039
0.1617

0.1856
0.1738

0.1805
0.1773

0.1792
0.1784 0.1798



Chapter 8 Generalized Conforming Thick Plate Element 

247

(Continued)        

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

0.20 A
B

0.2423
0.1931

0.2243
0.2101

0.2191
0.2152

0.2177
0.2167 0.2167

0.25 A
B

0.2918
0.2335

0.2735
0.2561

0.2680
0.2630

0.2664
0.2650 0.2675

0.30 A
B

0.3526
0.2827

0.3333
0.3119 

0.3271
0.3210

0.3253
0.3236 0.3227

0.35 A
B

0.4246
0.3409

0.4037
0.3776

0.3967
0.3890

0.3945
0.3924 0.3951

Table 8.5 The central moment of simply-supported square plates subjected to 

uniform load
2

10
qLq

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.5156
0.4837

0.4885
0.4819

0.4811 
0.4799

0.4794
0.4792

0.001
A
B

0.5156
0.4837

0.4885
0.4819

0.4811 
0.4799

0.4794
0.4792

0.01
A
B

0.5158
0.4836

0.4887
0.4817

0.4813
0.4797

0.4796
0.4790

0.1
A
B

0.5296
0.4765

0.4977
0.4775

0.4849
0.4781

0.4806
0.4786

0.15
A
B

0.5402
0.4722

0.5007
0.4766

0.4854
0.4781

0.4806
0.4786

0.20
A
B

0.5487
0.4689

0.5023
0.4760

0.4855
0.4780

0.4807
0.4786

0.25
A
B

0.5548
0.4664

0.5032
0.4757

0.4856
0.4780

0.4807
0.4786

0.30
A
B

0.5590
0.4646

0.5038
0.4754

0.4857
0.4780

0.4807
0.4786

0.35
A
B

0.5620
0.4632

0.5041
0.4753

0.4857
0.4780

0.4807
0.4786

0.4789

Example 8.2 The central deflection and moment of simply-supported (soft) 
and clamped circular plates with different thickness-radius ratios (h/R) subjected 
to uniform load. 
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Assume that the radius of the circular plate is R, the Young’s modulus E 10.92, 
the Poisson’s ratio 0.3. Meshes A and B in Fig. 6.14 are used. The results by 
the element TMT are listed in Tables 8.6 to 8.8. 

Table 8.6 The central deflection of simply-supported circular plates subjected to 

uniform load 
4qRq

D

          Mesh 
h/R

A  24 elements B  96 elements Analytical solution

10–30 0.063 033 ( 1.05%) 0.063 543 ( 0.25%) 0.063 702 

0.001 0.063 033 ( 1.05%) 0.063 543 ( 0.25%) 0.063 702 

0.01 0.063 039 ( 1.05%) 0.063 549 ( 0.25%) 0.063 709 

0.1 0.063 689 ( 1.13%) 0.064 226 ( 0.29%) 0.064 416 

0.15 0.064 540 ( 1.18%) 0.065 109 ( 0.31%) 0.065 309 

0.20 0.065 754 ( 1.21%) 0.066 353 ( 0.31%) 0.066 559 

0.25 0.067 330 ( 1.23%) 0.067 956 ( 0.31%) 0.068 166 

0.30 0.069 265 ( 1.23%) 0.069 917 ( 0.30%) 0.070 130 

0.35 0.071 557 ( 1.24%) 0.072 235 ( 0.30%) 0.072 452 

Table 8.7 The central deflection of clamped circular plates subjected to uniform 

load
4qRq

D

Mesh  
h/R

A  24 elements B  96 elements Analytical solution

10–30 0.015 954 (2.11%) 0.015 722 (0.62%) 0.015 625 

0.001 0.015 954 (2.11%) 0.015 723 (0.63%) 0.015 625 

0.01 0.015 960 (2.10%) 0.157 29 (0.62%) 0.015 632 

0.1 0.016 618 (1.71%) 0.016 408 (0.42%) 0.016 339 

0.15 0.017 476 (1.42%) 0.017 292 (0.35%) 0.017 232 

0.20 0.018 697 (1.16%) 0.018 537 (0.30%) 0.018 482 

0.25 0.020 278 (0.94%) 0.020 141 (0.26%) 0.020 089 

0.30 0.022 217 (0.74%) 0.022 102 (0.22%) 0.022 054 

0.35 0.024 513 (0.57%) 0.024 420 (0.18%) 0.024 375 
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Table 8.8 The central moment of simply-supported circular plates subjected to 
uniform load 2q qR

Mesh  
h/R

A  24 elements B  96 elements Analytical solution

10–30 0.209 51 (1.58%) 0.207 54 (0.63%) 

0.001 0.209 51 (1.58%) 0.207 54 (0.63%) 

0.01 0.209 52 (1.59%) 0.207 55 (0.63%) 

0.1 0.210 11 (1.87%) 0.207 84 (0.77%) 

0.15 0.210 52 (2.07%) 0.207 93 (0.81%) 

0.20 0.210 82 (2.22%) 0.207 97 (0.83%) 

0.25 0.211 04 (2.32%) 0.207 99 (0.84%) 

0.30 0.211 19 (2.40%) 0.208 01 (0.85%) 

0.35 0.211 30 (2.45%) 0.208 02 (0.86%) 

0.206 25 

The above numerical examples show that the element TMT possesses good 
performance. It has high precision for both deflection and moment, and for both 
thick and thin plates. And, no shear locking happens. 

The scheme starting with assuming ( , ) proposed in this section is a 
universal method, it can be generalized to construct similar quadrilateral elements[9].
Furthermore, Element DKT, which is formulated by the discrete Kirchhoff theory, is 
a special case of the present element TMT. 

8.6 Generalized Conforming Thick/Thin Plate Elements (2) 
—Starting with Assuming (w, )

Schemes starting with assuming (w, ) for the construction of triangular and 
quadrilateral thick/thin plate elements have been proposed in references [10] and 
[11], respectively. This section will introduce the construction procedure of the 
triangular element TCGC-T9 in [10]. (By the way, another triangular thick/thin 
element TSL-T9[13] based on the SemiLoof scheme will also be introduced in 
Sect. 11.5.3). 

Main procedure: The variation functions of deflection w  and shear strain s

long each side of the element are firstly determined using the Timoshenko beam 
theory. Secondly, the nodal shear strains xi and yi  and the interpolation formulas 
of the shear strain fields x  and y in the domain of the element are then determined 
according to the shear strain s  along each side. Thirdly, assume that the element 
deflection w is a polynomial containing 9 unknown coefficients . In order to 
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determine , 9 generalized conforming conditions (3 point conforming conditions 
for deflections at the corner nodes, average line conforming conditions for 
deflections and normal slopes along 3 element sides) are applied. Finally, the 
rotation and curvature fields are determined from the deflection and shear strain 
fields; and the element stiffness matrix is then determined by the curvature and 
shear strain fields. This new element is denoted by TCGC-T9.  

When the thickness becomes small, the element TCGC-T9 will automatically 
degenerate to be the thin plate element GPL-T9 in reference [14]. So, no shear 
locking will happen. 

Consider the triangular thick plate element shown in Fig. 8.11. The element 
nodal displacement vector is formed by 9 engineering DOFs: 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq

8.6.1 Boundary Displacements of the Element 

On the element boundary, the deflection w  is assumed according to the thick 
beam theory, and the normal slope n  is assumed to be a linear function. For 
example, along the element side 12 , we have 

12 1 3 1 2 1 2 1 1 2 3 1 2 3 1 3 1

2 3 1 2 1 2 2 1 2 3 1 2 3 2 3 2

1 2
3 1 3 1 3 2 3 2

3 3

1[ ( )] [1 ( )]( )
2

1[ ( )] [ 1 ( )]( )
2

( ) ( )

e e x y

e e x y

n x y x y

w L L L L L w L L L L c b

L L L L L w L L L L c b

L Lb c b c
d d

(8-146)

where

1 2 ( 1,2,3)ei i i

i is given by Eq. (8-114).  

8.6.2 Shear Strain Fields of the Element 

Firstly, the shear strain s  along each side is determined from the thick beam theory; 
Then, the shear strains xi and yi  at the corner node i are determined; finally, the 
interpolation formulas for shear strains x  and y in the domain of the element 
can be obtained. The above derivation procedure has been given in Sect. 8.5. 
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Formulas in Eq. (8-138) are the interpolation formulas of element shear strains. 

8.6.3 Deflection Field of the Element 

1. Displacements in the domain of the element 

The element deflection field is assumed as 

w F  (8-147) 

where

T
1 2 3 4 5 6 7 8 9[ ]                          

1 2 3 1 2 2 3 3 1

1 1 1 2 2 2 3 3 3

[

1 1 1( 1) ( 1) ( 1)]
2 2 2

L L L L L L L L L

L L L L L L L L L

F

(8-148)

Then, the element rotation fields can be obtained as 

x
x

y
y

w
x
w
y

 (8-149) 

2. Introducing generalized conforming conditions 

The same line-point conforming scheme as that of the thin plate element GPL-T9 
is used: 

0

( )d 0

( )d 0
i

i

i i

d

n nd

w w

w w s

s

  (i 1,2,3) (8-150) 

Substitution of Eqs. (8-146) and (8-147) into the above equation yields 

ˆ eAq  (8-151) 
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where

3 3 3 3

1 1 1 1

2 2 2 2

1 2 3

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

1 1 1 10 0 0 0 0
2 2 2 2ˆ

1 1 1 10 0 0 0 0
2 2 2 2

1 1 1 10 0 0 0 0
2 2 2 2
ˆ ˆ ˆ

c b c b

c b c b

c b c b

A

A A A

    (8-152) 

2 3 2 2 3 3 2 2 3 3

1 3 2 2 2 2 2 3 3 2 2 2 3 3

2 3 3 3 3 3 2 2 3 3 3 2 2

1 1( ) ( ) ( )
2 2

1 1ˆ ( ) ( )
2 2
1 1( ) ( )
2 2

e e e e e e

e e e e e e

e e e e e e

c c b b

r r c c r b b

r r c c r b b

A     (8-153a) 

3 1 1 1 1 1 3 3 1 1 1 3 3

2 3 1 3 3 1 1 3 3 1 1

1 3 3 3 3 3 1 1 3 3 3 1 1

1 1( ) ( )
2 2
1 1ˆ ( ) ( ) ( )
2 2

1 1( ) ( )
2 2

e e e e e e

e e e e e e

e e e e e e

r r c c rb b

c c b b

r r c c r b b

A     (8-153b) 

2 1 1 1 1 1 2 2 1 1 1 2 2

3 1 2 2 2 2 2 1 1 2 2 2 1 1

1 2 1 1 2 2 1 1 2 2

1 1( ) ( )
2 2
1 1ˆ ( ) ( )
2 2
1 1( ) ( ) ( )
2 2

e e e e e e

e e e e e e

e e e e e e

r r c c rb b

r r c c r b b

c c b b

A      (8-153c) 

2 2 2 2 2 2
2 3 3 1 1 2

1 2 32 2 2
1 2 3

, ,
d d d d d dr r r

d d d
 (8-154) 

Substitution of Eq. (8-151) into Eq. (8-147) yields 
ew Nq
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where

1 1 1 2 2 2 3 3 3[ ]w x y w x y w x yN N N N N N N N NN  (8-155) 

1 1( ) ( 1) ( ) ( 1)
2 2
1( ) ( 1)
2

1 1( ) ( ) ( 1)
2 2

1( ) ( 1)
2

(

wi i ej em i i i em j ej j j j

ej m em m m m

xi i m j j m j ej m em i i i

j j ej m em j j j

m m em j

N L L L L r L L L

r L L L

N L c L c L c c L L L

r c c L L L

r c c 1) ( 1)
2

1 1( ) ( ) ( 1)
2 2

1( ) ( 1)
2
1( ) ( 1) ( , , 1,2,3)
2

ej m m m

yi i m j j m j ej m em i i i

j j ej m em j j j

m m em j ej m m m

L L L

N L b L b L b b L L L

r b b L L L

r b b L L L i j m

(8-156)

8.6.4 Stiffness Matrix of the Element 

1. The element bending strain matrix 

The element curvature fields are 
T

T[ 2 ] ( )y yx x
x y xy x y y x

 (8-157) 

Substitution of Eq. (8-149) into the above equation yields 

T2 2 2

2 2 2y yx xw w w
x x y y x y y x

From Eq. (8-140), we have 

0, 0, 0y yx x

x y y x
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So, we obtain 
T2 2 2

b2 2 2 ew w w
x y x y

B q  (8-158) 

where bB  is the element bending strain matrix 

b b1 b2 b3B B B B  (8-159) 

b 11 b 12 b 13

b b 21 b 22 b 23

b 31 b 32 b 33

i i i

i i i i

i i i

B B B
B B B
B B B

B   (i 1,2,3) (8-160) 
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b 33 2

3 [ ( )(2 1) ( )(2 1)
4

1( )(2 1) ( )] ( , , 1,2,3)
3

i i i m em j ej i j j j j ej m em j

m m m m em j ej m i j m m j

B b c b b L b c r b b L
A

b c r b b L b b c b c i j m

2. The element shear strain matrix 

The element shear strain matrix is given by Eq. (8-139) 

s s1 s2 s3B B B B  (8-161) 

where

s

2 ( ) 2 ( ) ( ) ( )1
2 ( ) 2 ( ) ( ) ( )2

( ) ( )
( ,

( ) ( )

j i m m i m j i i j j j i m m i m m j i i j
i

j i m m i m j i i j j j i m m i m m j i i j

j j i m m i m m j i i j

j j i m m i m m j i i j

b L b L b L b L c b L b L c b L b L
c L c L c L c L c c L c L c c L c LA

b b L b L b b L b L
i

b c L c L b c L c L

B

, 1,2,3)j m

(8-162)

3. The element stiffness matrix 

The element stiffness matrix is  

11 12 13

21 22 23

31 32 33

e

K K K
K K K K

K K K
 (8-163) 

where T T
b b b s s sd d

e e
ij i j i j

A A

A AK B D B B D B   (i, j 1,2,3) (8-164) 

b s

1 0
1 0

1 0 ,
0 1

10 0
2

D CD D

3

2 2

5 5 (1 ),
12(1 ) 6

Eh DD C Gh
h

E is the Young’s modulus; G is the shear modulus. 
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8.6.5 Numerical Examples 

Example 8.3 The central deflection and moment of simply-supported (hard) 
square plates (the side length is L) subjected to uniform load.  

Meshes A and B in Fig. 8.12 are still adopted, 0.3 . The results by the 
element TCGC-T9 are given in Tables 8.9 to 8.11.  

Table 8.9 The central deflection of simply-supported square plates subjected to 

uniform load 
4

100
qLq

D

Mesh number 

h/L       Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.3803
0.3948

0.4007
0.4038

0.4050
0.4057

0.4059
0.4061

0.4062

0.001
A
B

0.3803
0.3948

0.4007
0.4038

0.4050
0.4057

0.4059
0.4061

0.4062

0.01
A
B

0.3804
0.3950

0.4008
0.4039

0.4051
0.4058

0.4061
0.4062

0.4064

0.1
A
B

0.3978
0.4079

0.4183
0.4194

0.4244
0.4243

0.4265
0.4264

0.4273

0.15
A
B

0.4214
0.4254

0.4434
0.4424

0.4506
0.4500

0.4528
0.4526

0.4536

0.20
A
B

0.4562
0.4519

0.4799
0.4763

0.4876
0.4862

0.4897
0.4893

0.4906

0.25
A
B

0.5025
0.4880

0.5276
0.5207

0.5352
0.5328

0.5372
0.5364

0.5379

0.30
A
B

0.5606
0.5338

0.5863
0.5754

0.5935
0.5899

0.5952
0.5941

0.5956

0.35
A
B

0.6304
0.5892

0.6559
0.6402

0.6624
0.6573

0.6638
0.6622

0.6641

Table 8.10 The central deflection of clamped square plates subjected to uniform 

load
4

100
qLq

D

Mesh number 

h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.1167 
0.0997

0.1241
0.1192 

0.1261
0.1247

0.1265
0.1260

0.1265
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(Continued)        

Mesh number 

h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

0.001
A
B

0.1167 
0.0997

0.1241
0.1192 

0.1261
0.1247

0.1265
0.1260

0.1265

0.01
A
B

0.1169 
0.0998

0.1242
0.1194 

0.1263
0.1249

0.1266
0.1262

0.1265

0.1
A
B

0.1363
0.1131 

0.1440
0.1376

0.1477
0.1462

0.1496
0.1492

0.1499

0.15
A
B

0.1604
0.1310

0.1704
0.1623

0.1758
0.1737

0.1779
0.1774

0.1798

0.20
A
B

0.1948
0.1579

0.2080
0.1975

0.2144
0.2115 

0.2165
0.2157

0.2167

0.25
A
B

0.2403
0.1942

0.2565
0.2427

0.2632
0.2593

0.2652
0.2641

0.2675

0.30
A
B

0.2974
0.2401

0.3158
0.2980

0.3224
0.3172

0.3241
0.3226

0.3227

0.35
A
B

0.3662
0.2956

0.3858
0.3634

0.3919
0.3852

0.3933
0.3914

0.3951

Table 8.11 The central moment of simply-supported square plates subjected to 

uniform load 
2

10
qLq

    Mesh number 

  h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.4928
0.5024

0.4768
0.4878

0.4771
0.4823

0.4781
0.4800

0.001
A
B

0.4928
0.5024

0.4768
0.4878

0.4771
0.4823

0.4781
0.4800

0.01
A
B

0.4932
0.5026

0.4776
0.4880

0.4780
0.4824

0.4789
0.4800

0.1
A
B

0.5238
0.5193

0.4986
0.4987

0.4858
0.4867

0.4809
0.4814

0.15
A
B

0.5435
0.5329

0.5048
0.5039

0.4870
0.4877

0.4810
0.4815

0.20
A
B

0.5600
0.5453

0.5090
0.5073

0.4876
0.4882

0.4811 
0.4815

0.4789
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(Continued)        

    Mesh number 

  h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

0.25
A
B

0.5736
0.5557

0.5118 
0.5094

0.4880
0.4884

0.4811 
0.4815

0.30
A
B

0.5849
0.5639

0.5138
0.5107

0.4881
0.4885

0.4811 
0.4816

0.35
A
B

0.5941
0.5704

0.5152
0.5116 

0.4883
0.4886

0.4811 
0.4816

0.4789

Example 8.4 The central deflection and moment of simply-supported (soft) 
and clamped circular plates subjected to uniform load.  

The two meshes (A and B) shown in Fig. 6.14 are still adopted. Assume that 
E 10.92, 0.3. The results by the element TCGC-T9 are given in Tables 8.12 
to 8.14. 

The above numerical examples show that the element TCGC-T9 also possesses 
good performance. It has high precision for both deflection and moment, and for 
both thick and thin plates. And, no shear locking happens. 

By the comparison of the elements TCGC-T9 and TMT, we can conclude that, 
(1) The precisions of these two elements belong to the same magnitude.  
(2) For relatively thin plates, the element TCGC-T9 is a little better than the 

element TMT. This is because for the very thin plate cases, the elements TCGC-T9 
and TMT will degenerate to be the thin plate elements GPL-T9 and DKT, 
respectively. Note that the element GPL-T9 is a little better than the element DKT. 

Table 8.12 The central deflection of simply-supported circular plates subjected to 

uniform load
4qRq

D

Mesh  
h/R

A  24 elements B  96 elements Analytical 

10–30 0.063 818 (0.18%) 0.063 728 (0.04%) 0.063 702 
0.001 0.063 818 (0.18%) 0.063 728 (0.04%) 0.063 702 
0.01 0.063 821 (0.18%) 0.063 731 (0.03%) 0.063 709 
0.1 0.064 242 ( 0.27%) 0.064 247 ( 0.26%) 0.064 416 
0.15 0.064 901 ( 0.62%) 0.065 043 ( 0.41%) 0.065 309 
0.20 0.065 921 ( 0.96%) 0.066 222 ( 0.51%) 0.066 559 
0.25 0.067 315 ( 1.25%) 0.067 777 ( 0.57%) 0.068 166 
0.30 0.069 088 ( 1.49%) 0.069 704 ( 0.61%) 0.070 130 
0.35 0.071 241 ( 1.67%) 0.071 998 ( 0.63%) 0.072 452 
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Table 8.13 The central deflection of clamped circular plates subjected to uniform 

load
4qRq

D

Mesh  
h/R

A  24 elements B  96 elements Analytical 

10–30 0.014 515 ( 7.10%) 0.015 342 ( 1.81%) 0.015 625 
0.001 0.014 515 ( 7.10%) 0.015 342 ( 1.81%) 0.015 625 
0.01 0.014 518 ( 7.13%) 0.015 345 ( 1.84%) 0.015 632 
0.1 0.014 938 ( 8.57%) 0.015 861 ( 2.93%) 0.016 339 

0.15 0.015 595 ( 9.50%) 0.016 657 ( 3.34%) 0.017 232 
0.20 0.016 613 ( 10.11%) 0.017 836 ( 3.50%) 0.018 482 
0.25 0.018 007 ( 10.36%) 0.019 392 ( 3.47%) 0.020 089 
0.30 0.019 782 ( 10.30%) 0.021 319 ( 3.33%) 0.022 054 
0.35 0.021 936 ( 10.01%) 0.023 613 ( 3.13%) 0.024 375 

Table 8.14 The central moment of simply-supported circular plates subjected to 
uniform load 2q qR

           Mesh 
h/R

A  24 elements B  96 elements Analytical 

10–11 0.210 28 (1.95%) 0.207 36 (0.54%) 
0.001 0.210 28 (1.95%) 0.207 36 (0.54%) 
0.01 0.210 29 (1.96%) 0.207 37 (0.54%) 
0.1 0.211 40 (2.50%) 0.208 15 (0.92%) 

0.15 0.212 42 (2.99%) 0.208 49 (1.09%) 
0.20 0.213 35 (3.44%) 0.208 69 (1.18%) 
0.25 0.214 11 (3.81%) 0.208 82 (1.25%) 
0.30 0.214 70 (4.10%) 0.208 91 (1.29%) 
0.35 0.215 16 (4.32%) 0.208 96 (1.31%) 

0.206 25 

(3) For relatively thick plates, the element TMT is a little better than the 
element TCGC-T9. This is because the shear strain fields of these two elements 
are the same, only curvature fields are different; the rotation fields of the element 
TMT are assumed directly, only first-order differential operation is needed when 
we determine the curvature fields by such rotation fields, so the accuracy loss is 
relatively less; but in the element TCGC-T9, the deflection field is assumed 
directly, second-order differential operation must be performed when we determine 
the curvature fields by such deflection field, so the accuracy loss is relatively more. 

(4) When we determine the element equivalent nodal load vector due to 
transverse distributed load, the element TCGC-T9 is more convenient. This is 
because the shape functions for the deflection of the element TCGC-T9 have 
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already been given, so the equivalent nodal load vector can be determined from 
these shape functions directly; but the deflection field of the element TMT is 
undetermined, so, before deriving the element equivalent nodal load vector, 
supplementary work, assumption of rational interpolation formula for deflection 
field, is needed.  

8.7 Generalized Conforming Thin/Thick Plate Elements 
—From Thin to Thick Plate Elements 

By starting with a thin plate element and introducing shear deformation, the thin 
plate element can be generalized to a new thin/thick plate element. Such transition 
schemes have been studied in references [15–19].  

In 1986, Fricker[15] proposed a simple method for including shear deformation 
in the thin plate elements, but the thick plate element he suggested cannot strictly 
pass the thick plate patch test. 

Based on the displacement field of the rectangular thin plate element ACM, 
reference [16] developed a rectangular thick plate element with 12 DOFs by 
introducing additional displacement field and linear shear strain fields. The key 
point is that two generalized conforming conditions are adopted: (1) the conforming 
conditions for displacements between two adjacent elements; (2) the generalized 
conforming conditions between shear strains and displacements. The element 
obtained can pass pure bending, pure twisting and constant shear force patch 
tests, which provides the first successful experience for the schemes of transition 
from thin plate elements to thin / thick plate elements.  

In reference [17], the displacement fields of the thick plate element were 
decomposed into two parts: displacement fields for the thin plate element and 
supplementary displacement fields for the thick plate element. Then, based on the 
two thin plate elements LR12-2[20] and ACM[21], two new thin/thick plate 
elements LFR1 and LFR2 were constructed. Now, their construction procedure 
will be introduced as follows.  

8.7.1 Decomposition of the Displacement Fields of the Rectangular  
Thick Plate Element 

Consider a rectangular thick plate element shown in Fig. 8.13. Its nodal 
displacement vector is composed of 12 DOFs 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq
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Figure 8.13 Rectangular thick plate element 

The displacement fields in the domain of the element are assumed as 

0

0
0

0
0

x x x x

y y y y

w w w
w
x

w
y

 (8-165) 

where w, x, y denote the displacements of the thick plate element; 0w , 0
x ,

0
y  denote the displacements of a thin plate element that can be used; and w ,
x , y  denote the supplementary displacements of the thick plate element.  
The boundary displacements of the thick plate element are assumed as 

0

0

0
s s s

n n n

w w w
 (8-166) 

in which n and s denote the normal and tangential directions of the boundary, 
respectively.  

8.7.2 Determination of the Supplementary Displacements of the  
Thick Plate Element 

In order to determine the supplementary displacement fields of the thick plate 
element, the transverse shear strain s and the supplementary displacements w ,

s  and n  along each element side are firstly determined from the formulas of 
thick/thin beam; then the supplementary displacements w , x  and y  in the 
domain of the element are determined. 

Firstly, from Eq. (8-99c), the transverse shear strains along each element side 
are as follows: 
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1
12 1 2 1 2

1
43 4 3 4 3

2
23 2 3 2 3

2
14 1 4 1 4

[ ( )]

[ ( )]

[ ( )]

[ ( )]

x x x

x x x

y y y

y y y

w w a
a

w w a
a

w w b
b

w w b
b

 (8-167) 

From Eq. (8-100), we obtain 

2 2

1 22 2,
10 10(1 ) 2 (1 ) 2
3 3

h h
a b

h h
a b

 (8-168) 

h is the thickness of the plate;  is the Poisson’s ratio.  
Secondly, the supplementary displacements w , s  and n  along each element 

side are determined. From the fundamental formulas of the thick beam element 
(8-99a,b), w  and s  can be written as 

(1 )(1 2 )
6 (1 )s

w dt t t
t t

 (8-169) 

Furthermore, n  can be assumed to be zero. Therefore, the supplementary 
displacements along 4 boundary lines can be obtained as 

       

2 2
12 12

2 2
23 23

2 2
43 43

2 2
14 14

1 3side12 (1 ), (1 ), 0
2 2
1 3side 23 (1 ), (1 ), 0
2 2
1 3side 43 (1 ), (1 ), 0
2 2
1 3side14 (1 ), (1 ),
2 2

x x x y

y y y x

x x x y

y y y

w a

w b

w a

w b 0x

 (8-170) 

where x
a

, y
b

.

Finally, the supplementary displacements in the domain of the element are 
determined. According to Eq. (8-170), the interpolation formulas for the 
supplementary displacement field in the domain of the element can be written as 
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2
12 43

2
14 23

2
12 43

2
14 23

1 1 (1 )
2 2 2

1 1 (1 )
2 2 2
3 1 1 (1 )
2 2 2
3 1 1 (1 )
2 2 2

x x

y y

x x x

y y y

aw

b

 (8-171) 

It can be seen that, the supplementary displacements in the domain of the element 
given in Eq. (8-171) are exactly compatible with the boundary supplementary 
displacements given in Eq. (8-170).  

Substituting Eq. (8-167) into Eq. (8-171), the supplementary displacements in 
the domain of the element can be obtained as: 

4 4
21

1 1

4 4
22

1 1

4 4
21

1 1

4 4
2

1 1

(1 ) (1 ) (1 )
4

(1 ) (1 ) (1 )
4
3 (1 ) (1 ) (1 )
4
3 (1 ) (1 )
4

i i i xi i
i i

i i i yi i
i i

x i i i xi i
i i

y i i i yi i
i i

w w a

w b

w a
a

w b
b

2(1 )

 (8-172) 

8.7.3 Two Thin/Thick Plate Elements 

Two new universal elements LFR1 and LFR2 for both thick and thin plates are 
constructed based on two high quality thin plate elements (elements LR12-2 and 
ACM), respectively. The displacement field 0w  of the thin plate element can be 
expressed by 

4
0 0

1
i i

i
w N q  (8-173) 

where

0 0 0 0

T

[ ]

[ ]
i i xi yi

i i xi yi

N N N

w

N

q
 (8-174) 
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For element LFR1 

0 2 2

0 2 2

0 2 2

1 (1 )(1 )(2 )
8

(1 )(1 )(1 ) (1 )
8 24

(1 )(1 )(1 ) (1 )
8 24

i i i i i

xi i i i i i

yi i i i i i

N

a aN

b bN

 (8-175) 

For element LFR2 

0 2 2

0 2

0 2

1 (1 )(1 )(2 )
8

(1 )(1 )(1 )
8

(1 )(1 )(1 )
8

i i i i i

xi i i i

yi i i i

N

aN

bN

 (8-176) 

By the superposition of the displacement fields of the thin plate element given 
in Eq. (8-173) and the supplementary displacement fields of the thick plate 
element given in Eq. (8-172), the displacement fields of the thick plate element 
can be obtained. Then, the element stiffness matrices for two thin/thick plate 
elements can be derived according to the conventional procedure.  

The above schemes have been further applied in references [18,19]. Since the 
generalized bubble displacement fields are introduced, the accuracy of the 
elements is improved, and the elements are insensitive to mesh distortion.  

8.7.4 Numerical Examples 

Example 8.5 The central deflection of simply-supported and clamped square 
plates (the side length is L) subjected to uniform load q. The Poisson’s 0.3 .
The results by the elements LFR1 and LFR2 are given in Table 8.15. 

It can be seen from Table 8.15 that, from thin plates to thick plates, elements 
LFR1 and LFR2 both provide results with high precision, but their derivation 
procedures are much simpler than that of the element in [16].  

Example 8.6 Examine the convergence of elements LFR1 and LFR2 by 
refining the mesh. Tables 8.16 and 8.17 give the results for a thin square plate 
( 3/ 10h L ) and a thick square plate ( / 0.3h L ) by using different meshes.  

From Tables 8.16 and 8.17, it can be seen that, the elements LFR1 and LFR2 
both have good convergence; when / 0.001h L , the elements LFR1 and LFR2 
will degenerate to be the thin plate elements LR12-2 and ACM, respectively.  
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Table 8.15 The central deflection coefficient of square plates subjected to uniform 

load
4

100
qL

D

Simply-supported Clamped 
h/L

Analytical LFR1 LFR2 [16] Analytical LFR1 LFR2 [16] 
10–11 0.4062 0.4062 0.4105 0.4044 0.1265 0.1263 0.1290 0.1290
10–3 0.4062 0.4062 0.4105 0.4044 0.1265 0.1263 0.1290 0.1293
10–2 0.4062 0.4062 0.4106 0.4045 0.1265 0.1264 0.1293 0.1293
0.1 0.4273 0.4224 0.4304 0.4242 0.1499 0.1482 0.1522 0.1521
0.15 0.4536 0.4480 0.4566 0.4502 0.1798 0.1762 0.1802 0.1801
0.20 0.4906 0.4845 0.4933 0.4869 0.2167 0.2144 0.2183 0.2181
0.25 0.5379 0.5312 0.5401 0.5336 0.2675 0.2623 0.2661 0.2658
0.30 0.5956 0.5879 0.5968 0.5902 0.3227 0.3198 0.3235 0.3229
0.35 0.6641 0.6542 0.6631 0.6564 0.3951 0.3866 0.3902 0.3896

Note: a 10 10 mesh is used for the whole plate. 

Table 8.16 Results for a thin plate ( 3/ 10h L ) by different meshes (uniform load) 

Central deflection 
4

100
qL

D
 Moment

2

10
qL

Simply-supported Clamped Simply-supported 
(central)

Clamped
(mid-side) 

Mesh for 
whole
plate

LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 
2 2 0.3906 0.5063 0.1480 0.1480 0.6094 0.6602 0.3551 0.3551
4 4 0.4052 0.4328 0.1243 0.1403 0.5123 0.5217 0.4706 0.4761
8 8 0.4062 0.4129 0.1261 0.1304 0.4873 0.4892 0.5000 0.5028

16 16 0.4062 0.4079 0.1265 0.1275 0.4810 0.4814 0.5096 0.5104
Analytical 0.4062 0.1265 0.4789 0.5133

Table 8.17 Results for a thick plate ( / 0.3h L ) by different meshes (uniform load) 

Central deflection
4

100
qL

D
 Moment

2

10
qL

Simply-supported Clamped Simply-supported 
(central)

Clamped
(mid-side) 

Mesh for 
whole
plate

LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 
2 2 0.5648 0.7081 0.3806 0.3806 0.8422 0.8395 0.4089 0.4089
4 4 0.5706 0.6201 0.3207 0.3377 0.5907 0.5739 0.4927 0.4604
8 8 0.5855 0.5992 0.3194 0.3250 0.5092 0.5031 0.4912 0.4604

16 16 0.5906 0.5942 0.3204 0.3219 0.4867 0.4850 0.4748 0.4546
Analytical 0.5956 0.3227 0.4789 0.4260
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