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Abstract This chapter discusses the last two groups of the construction 
schemes for the generalized conforming thin plate element: perimeter-point 
conforming scheme and least-square conforming scheme. Five triangular and 
rectangular element models formulated by these schemes are presented in 
detail. Numerical examples show that these generalized conforming models 
also exhibit excellent performance in the analysis of thin plates. Furthermore, 
the generalized conforming element theory is applied to verify or improve 
the convergence of two famous non-conforming element models, ACM and 
BCIZ, and some valuable conclusions are obtained. 

Keywords thin plate element, generalized conforming, perimeter-point 
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7.1 Perimeter-Point Conforming Scheme—Elements  
LR12-1 and LR12-2 

This chapter will take the rectangular generalized conforming elements LR12-1 
and LR12-2[1] as the examples to illustrate the procedure for the combination 
scheme of perimeter and point conforming conditions. These two elements are 
both elements with m n 12: the number of the element DOFs n 12, and the 
number of the unknown coefficients in the deflection field m 12. The selected 
12 conforming conditions include 3 point conforming conditions and 9 perimeter 
conforming conditions. 
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7.1.1 Element LR12-1 

This rectangular thin plate element is also shown in Fig. 6.11. The element nodal 
displacement vector eq  is still composed of wi, xi, yi (i 1,2,3,4) at four corner 
nodes. And, the element deflection field w is assumed to be an incomplete quartic 
polynomial with 12 unknown coefficients, as shown in Eqs. (6-22) and (6-23), i.e., 

w F  (7-1) 
where
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In order to solve , 12 conforming conditions are needed. 
Firstly, 3 conforming conditions for the corner nodal deflections can be established: 
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Secondly, the perimeter conforming condition (5-2c) is used, i.e., 
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where the weighting functions Mn, Mns and Qn are the boundary forces (bending 
moment, twisting moment and transverse shear force); Mx, My and Mxy are the 
internal moments within the element domain, which are assumed to satisfy the 
homogeneous equilibrium Eq. (5-3), i.e., 
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For the rectangular elements, Eq. (7-4) can be written as 
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The following equilibrium internal force fields 
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are adopted, where 1, 2, , 9 are 9 arbitrary parameters. 
Since i is an arbitrary parameter, substituting Eq. (7-7) into Eq. (7-6), the 9 

conforming conditions can be obtained as follows 
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Then, 4, 5, , 12 can be solved in turn from Eq. (7-8) as follows 
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Substituting the above equation into Eq. (7-3), 1, 2 and 3 can be obtained 
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Thus, all the coefficients in  have been obtained. Then, the shape functions and 
the element stiffness matrix can be derived from them. 

7.1.2 Element LR12-2 

The construction procedure of this element is basically similar to that of the 
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element LR12-1. Only the selected equilibrium internal force fields are different 
from Eq. (7-7), and replaced by 
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Following a similar procedure, all the coefficients in  can be obtained, in 
which 1, 2, 3, 4, 6, 7, 8, 9, 10 are the same, and still given by Eqs. (7-9) 
and (7-10); the other three unknown coefficients are as follows 
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Example 7.1 Central deflection and central moment of the simply-supported 
and the clamped square plates (the side length is L) subjected to uniform load. 

The results by the elements LR12-1 and LR12-2 are listed in Tables 7.1 and 
7.2. For comparison, the results by the element ACM[2] are also given. The 
Poisson’s ratio is 0.3. 

Table 7.1 The central deflection of square plates subjected to uniform load 

Simply-supported Clamped Mesh 
(1/4 plate) LR12-1 LR12-2 ACM LR12-1 LR12-2 ACM 

2 2
0.4051

( 0.3%)
0.4052

( 0.3%)
0.3939

( 3.0%)
0.1238

( 2.0%)
0.1243

( 1.7%)
0.1403
(11.0%) 

4 4
0.406 16 
( 0.02%)

0.406 17
( 0.02%)

0.4033
( 0.7%)

0.1260
( 0.4%)

0.1261
( 0.4%)

0.1304
(4.0%)

8 8
0.406 23 

( 0.001%)
0.406 23

( 0.001%)
0.4056

( 0.2%)
0.126 45
( 0.06%)

0.126 46
( 0.05%)

0.1275
(0.8%)

Analytical 0.406 235(qL4/100D) 0.126 53(qL4/100D)
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Table 7.2 The central moment of square plates subjected to uniform load 

Simply-supported Clamped Mesh 
(1/4 plate) LR12-1 LR12-2 ACM LR12-1 LR12-2 ACM 

2 2 0.512 45 
(7.0%)

0.512 23
(7.0%)

0.521 69
(8.9%)

0.255 23
(11.4%) 

0.253 23
(10.5%)

0.277 83
(11.3%) 

4 4 0.487 30 
(1.8%)

0.487 32
(1.8%)

0.489 20
(2.2%)

0.236 89
(3.4%)

0.236 96
(3.4%)

0.240 50
(5.0%)

8 8 0.480 98 
(0.4%)

0.480 98
(0.4%)

0.481 66
(0.6%)

0.231 09
(0.8%)

0.231 10
(0.8%)

0.231 91
(1.2%)

Analytical 0.478 86(qL2/10) 0.229 05(qL2/10)

7.2 The Application of Perimeter Conforming Conditions 
—Verification for the Convergence of the Element ACM 

This section will use the perimeter conforming conditions under the constant stress 
state to verify the convergence of the non-conforming elements. And, as a typical 
example, the convergence of the well-known element ACM[2] will be verified. 

The element ACM is a non-conforming rectangular thin plate element, which 
is constructed by the conventional point conforming scheme, i.e., 12 unknown 
coefficients are determined by 12 point conforming conditions about w, x, y at 
the corner nodes. It can be seen from the deflection field finally determined that 
the deflection w along the element boundary is exactly compatible, while the normal 

slope w
n

 is not. Though the element ACM belongs to the non-conforming 

elements, it still exhibits good convergence in applications and has been proved 
in theory that it can pass the patch test. 

By starting from the generalized conforming theory, this section will verify the 
convergence of the element ACM from another point of view. At the same time, 
this example can also be used to illustrate one of the applications of the generalized 
conforming theory, that is, the generalized conforming theory can be used to 
verify or improve the convergence of other non-conforming elements.  

7.2.1 Derivation of Element ACM from Symmetry 

The rectangular thin plate element ACM, proposed by Adini, Clough and Melosh[2],
is a non-conforming element with 12 DOFs. Its element deflection field is assumed 
to be an incomplete quartic polynomial, as shown in Eqs. (7-1) and (7-2) (i.e. 
Eqs. (6-22) and (6-23)), which involves 12 unknown coefficients that will be 
determined by 12 point conforming conditions about w, x and y at the corner 



Advanced Finite Element Method in Structural Engineering 

182

nodes. Since the solution procedure for the 12 unknown coefficients is quite 
complicated, here we will simplify it by using the symmetry (refer to Sect. 6.2). 

Firstly, the 12 unknown coefficients and their basis functions in Eq. (7-1) have 
already been classified as 4 groups. And, each group contains 3 unknown 
coefficients, in turn; they are ( 1, 4, 6); ( 2, 7, 9); ( 3, 8, 10); ( 5, 11, 12), 
as shown in Eq. (6-28). 

Secondly, the 12 point conforming conditions at the corner nodes can be 
recombined. They are classified as 4 independent groups, and each group contains 
3 equations and 3 unknown coefficients. Thereupon, the original simultaneous 
equations with 12 unknowns decompose to be four independent equation groups 
each with 3 unknowns, which greatly simplifies the problem. The 4 equation groups 
are listed as follows. 
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Substitution of Eq. (7-1) into the above equations yields 
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(2) Combination conditions belonging to the SA group (3 conditions) 
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We can obtain 
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(3) Combination conditions belonging to the AS group (3 conditions) 
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We can obtain 
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(4) Combination conditions belonging to the AA group (3 conditions) 
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We can obtain 
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From the above four groups of simultaneous equations with 3 unknowns, the 
solutions can be easily obtained: 
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Finally, substitution of the above solutions into Eq. (7-1) yields the element 
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deflection field and its shape functions: 
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where the shape functions are 
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Once the shape functions are obtained, the element stiffness matrix can be 
derived following the conventional procedure. 

7.2.2 The Fundamental Conforming Conditions for Verifying  
Convergence

According to the generalized conforming theory, the fundamental conditions that 
ensure convergence are Eq. (4-7) or Eq. (4-8), i.e., 

0H   (corresponding to constant strain and rigid body displacement states)
 (7-20) 

The above equation is called the fundamental generalized conforming conditions. 
Under the limit state that a mesh is refined by the infinite elements, the element 

strain will tend to be constant. For the thin plate bending problem, the element 
displacement field in the limit state involves only 6 DOFs, i.e., 3 corresponding 
to rigid body displacement modes and 3 corresponding to constant strain states. 
Thereby, the fundamental generalized conforming condition (7-20) should be 
composed of 6 conforming conditions. 

The 3 conditions which the element should satisfy in the rigid body displacement 
mode can be selected as 

1 1 1
( ) 0, ( ) 0, ( ) 0

p p p

i i i i i
i i i

w w w w x w w y  (7-21) 

They denote the 3 combination conditions of the point conforming conditions 
about deflections at the corner nodes, where p is the number of the corner nodes. 
Besides, they can also be selected as 
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1 1 1
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They denote the combination point conforming conditions about w, x and y at 
the corner nodes. For the rigid body displacement modes, the above two sets of 
equations are equivalent to each other; but for non-rigid body displacement 
modes, they are not equivalent anymore. 

When an element is under constant strain states, the perimeter conforming 
condition (5-2c) should also be satisfied, in which the weighting functions can be 
selected according to the constant internal force states. If internal moments are 
constants and transverse shear forces are zero, Eq. (5-2c) will be simplified as: 
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If the constant internal force fields are assumed to be those in Eq. (5-24), the 
perimeter conforming conditions given in Eq. (5-26) are obtained, i.e., 
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The 6 conditions given in Eq. (7-23) or Eq. (7-24) and Eq. (7-21) or Eq. (7-22) 
are the fundamental conforming conditions for verifying the convergence of the 
non-conforming thin plate elements. 

7.2.3 Verification for the Convergence of Element ACM 

Now, we use the 6 fundamental conforming conditions to verify the convergence 
of the element ACM. 

Firstly, the element ACM has already satisfied the 12 point conforming 
conditions about w, x and y at the corner nodes, thereby, Eq. (7-21) or 
Eq. (7-22) are satisfied naturally. In fact, the 3 conditions (7-A1), (7-B1) and 
(7-C1) selected previously are the same as those expressions in Eq. (7-21); and 
another 3 conditions (7-A1), (7-B2) and (7-C3) are the same as those expressions 
in Eq. (7-22). 
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Secondly, verification for the perimeter conforming conditions (7-24) is performed. 
For the rectangular elements, Eq. (7-24) can be written as 
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Substituting Eqs. (7-1) and (7-2) into w at the left side of the above equations, and 
substituting the corresponding interpolation formulae into the boundary rotations 
at the right sides, we obtain 
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The above 3 equations are the previous Eqs. (7-13b,c) and (7-16a), respectively, 
and thereby, have been satisfied. 

Since the element ACM has already satisfied the 6 fundamental conforming 
conditions, so, the element ACM is convergent. Actually, it is also a generalized 
conforming element.  

7.3 Super-Basis Perimeter-Point Conforming Scheme —  
Verification and Improvement of the Element BCIZ

This section will introduce the construction procedure of the super-basis thin 
plate element formulated by the combination scheme of the perimeter and point 
conforming conditions. The no. 25 and 26 elements GC -T9 and LT9 in Table 
5.1 belong to this element group. They are both triangular thin plate elements, in 
which n 9 and m 12, but the 12 conforming conditions used by them are 
different: the element GC -T9 adopts 9 point conforming conditions and 3 
perimeter conforming conditions, while the element LT9 adopts 3 point conforming 
conditions and 9 perimeter conforming conditions. 
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The conventional scheme that the non-conforming elements usually adopt is: 
let m n, and only the point conforming conditions at the corner nodes are used. 
Such non-conforming elements sometimes are convergent (such as the rectangular 
thin plate element ACM), sometimes are not convergent (such as the triangular 
thin plate element BCIZ). The super-basis generalized conforming element 
scheme is an improved strategy for the non-conforming elements. For example, 
the super-basis element GC -R12 in Sect. 6.4 is an improvement on the element 
ACM (though the element ACM possesses convergence, its accuracy can be 
improved further), and the super-basis element GC -T9 in this section is an 
improvement on the element BCIZ (the number of the basis functions in the 
element GC -T9 is more than the number of the element DOFs, thereby, the 
shortcoming that the element BCIZ cannot ensure convergence will be eliminated). 
In this section, we firstly apply the fundamental conforming conditions of the 
generalized conforming element, especially, the 3 perimeter conforming conditions 
in Eq. (5-26) under constant stress state, to verify the convergence of the element 
BCIZ; then, by employing the concept of the super-basis elements, we make the 
perimeter conforming condition (5-26) satisfied, consequently, a new element GC

-T9 is constructed. 

7.3.1 Formulations of Element BCIZ 

The triangular thin plate element BCIZ is a famous non-conforming model 
proposed in the past[3]. And, reference [3] is one of the earliest literatures which 
pointed out the limitation of the conforming elements and the rationality of the 
non-conforming elements. 

Before verifying the convergence of the element BCIZ, its formulations are 
introduced briefly as follows. 

The element BCIZ has 9 DOFs (Fig. 6.1), and the element nodal displacement 
vector eq  is given by Eq. (6-1). The assumed element deflection field w is given 
by Eqs. (6-2) and (6-3), i.e., 

1 1 2 2 3 3 4 1 2 1 3 5 2 3 2 1

6 3 1 3 2 7 1 3 1 2

8 2 1 2 3 9 3 2 3 1

1 1
2 2
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2 2
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2 2

w L L L L L L L L L L L

L L L L L L L L

L L L L L L L L (7-27)

By applying the 9 point conforming conditions about w, x and y at the corner 
nodes, we obtain 
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Then  can be solved 
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The above equation can be rewritten as 

ˆ eAq

Substitution of Eq. (7-29) into (7-27) yields 
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in which the 3 shape functions related to the node 1 are 
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By the permutation of 1, 2 and 3, the other 6 shape functions can be obtained. 
The element curvature field is 
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By using the transformation of second-order derivatives between the Cartesian 
coordinate system and the area coordinate system: 
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2

2

22

2

1

2

x

y A

x y

ts  (7-33) 

where

2 2 2
1 2 3
2 2 2
1 2 3

1 1 2 2 3 3

1
4

2 2 2

b b b
c c c

A
b c b c b c

t  (7-34) 

1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1

s  (7-35) 

T2 2 2 2 2 2

2 2 2 2
1 2 3 1 2 2 3 3 1L L L L L L L L L

 (7-36) 
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Thus, the expressions of the curvatures can be obtained as follows 

1
A
tsH  (7-37) 

where

2 3

3 1

1 2

1 3 3 3 3 2 3 3

1 2 1 1 1 1 3 1

2 2 3 2 1 2 2 2

0 0 0 2 0 0 2 0 0
0 0 0 0 2 0 0 2 0
0 0 0 0 0 2 0 0 2

1 1 1 1 1 10 0 0 2 2
2 2 2 2 2 2

1 1 1 1 1 10 0 0 2 2
2 2 2 2 2 2
1 1 1 1 1 10 0 0 2 2
2 2 2 2 2 2

L L
L L

L L

L L L L L L L L

L L L L L L L L

L L L L L L L L

H

  (7-38) 

And, the curvature field can also be rewritten as 

eBq  (7-39) 

where

1 ˆ
A

B tsHA  (7-40) 

Finally, the element stiffness matrix can be obtained 

T d
e

e

A

AK B DB  (7-41) 

in which D is the elastic matrix of thin plate. 

7.3.2 Verification for the Convergence of the Element BCIZ 

According to the generalized conforming element theory, the fundamental 
conditions which ensure the convergence of the non-conforming elements are 
given by Eq. (7-20). They involve 6 conforming conditions, such as Eqs. (7-22) 
and (7-23), which should be satisfied when the element is under the rigid body 
displacement and constant strain states. Now, we apply these 6 fundamental 
conforming conditions to verify the convergence of the element BCIZ. 

Firstly, the element BCIZ has already satisfied the 9 point conforming conditions 
about w, x and y at the corner nodes, thereby, the point conforming conditions 
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in Eq. (7-22), which should be satisfied when the element is under rigid body 
displacement states, are satisfied naturally. 

Secondly, we check the perimeter conforming conditions given in Eq. (7-23) 
which should be satisfied when the element is under constant strain states, i.e., 

3
T

0 0
1

d d di i

e

d d

ni ni nsi si
iA

A M s M sM  (7-42) 

where the 3 constant internal force states are usually assumed to be those in 
Eq. (5-24). But, for the triangular element, they would better be assumed as 
follows

1 12
1

2 22
2

3 32
3

4

4

4

n

n

n

AM
d

AM
d
AM

d

 (7-43) 

where the arbitrary parameters i (i 1,2,3) are corresponding to the constant 
internal force states in which the normal moment of ith side is not zero while the 
normal moments of the other two sides are zero. The twisting moment Mnsi along 
each element side and the internal moments Mx, My, Mxy corresponding to this 
constant internal force state are as follows 

1 1 1 2 3

2 1 2 2 3

3 1 2 3 3

ns

ns

ns

M r
M r
M r

 (7-44) 

2 3 3 1 1 2

1

2 3 3 1 1 2 2

3

2 3 3 2 3 1 1 3 1 2 2 1

1

1 1 1( ) ( ) ( )
2 2 2

x

y

xy

c c c c c c
M
M b b b b b b

A
M

b c b c b c b c b c b c

 (7-45) 

in which r1, r2 and r3 are given by Eq. (6-58). Equation (7-45) can be written as 

1 T( )M t  (7-46) 

Now, we substitute the above constant internal force state into Eq. (7-42). 
Firstly, the substitution of Eqs. (7-46) and (7-37) into the left side of Eq. (7-42) 

yields 
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T T

T

4 7
T

5 8

6 9

1d d

0 0 0 1 3 5 1 5 3
1 0 0 0 5 1 3 3 1 5
6

0 0 0 3 5 1 5 3 1

1 3 5 1 5 3
1 15 1 3 3 1 5
6 6

3 5 1 5 3 1

e eA A

A A
A

M s H

(7-47)

Secondly, consider the right side of Eq. (7-42). The integrations of rotations along 
the boundary line are as follows 

1

2

3

1 1
1 2 3 2 30

2 2
2 3 1 3 10

3 3
3 1 2 1 20

d ( ) ( )
2 2

d ( ) ( )
2 2

d ( ) ( )
2 2

d

n x x y y

d

n x x y y

d

n x x y y

b cs

b cs

b c
s

 (7-48) 

1

2

3

1 2 30

2 3 10

3 1 20

d

d

d

d

s

d

s

d

s

s w w

s w w

s w w

                    (7-49) 

Substitution of Eqs. (7-43), (7-44), (7-48) and (7-49) into the right side of Eq. (7-42) 
yields 

3

0 0
1

1 1
1 1 1 2 1 3 2 3 2 32 2

1 1

2 2
2 2 1 2 2 3 3 1 3 12 2

2 2

3
3 3 1 3 2 3 1 22

3

( d d )

2 2[ 2 (1 ) (1 ) ( ) ( )]

2 2[(1 ) 2 (1 ) ( ) ( )]

2[(1 ) (1 ) 2 ( )

i id d

ni ni nsi si
i

x x y y

x x y y

x x

M s M s

Ab Acw r w r w
d d

Ab Acr w w r w
d d
Abr w r w w
d

3
1 22

3

2 ( )]y y
Ac
d

(7-50)

By employing Eq. (7-28), eq  on the right side of the above equation can be 
expressed in terms of 
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3

0 0
1

1

4
T

2 5

6

3

1

7

2 8

9

3

( d d )

10 (1 ) 1
2

11 0 (1 )
2

1 (1 ) 1 0
2

10 1 (1 )
2

1 (1 ) 0 1
2

11 (1 ) 0
2

i id d

ni ni nsi si
i

M s M s

r

r

r

r

r

r

(7-51)

Substituting Eqs. (7-47) and (7-51) into the two sides of Eq. (7-42), and 
eliminating the arbitrary parameters T , we obtain 

4 7

5 8

6 9

1 4 1 7

2 5 2 8

3 6 3 9

1 3 5 1 5 3
5 1 3 3 1 5
3 5 1 5 3 1

0 3(1 ) 6 0 6 3(1 )
6 0 3(1 ) 3(1 ) 0 6

3(1 ) 6 0 6 3(1 ) 0

r r
r r

r r

i.e.,

1 4 8

2 5 9

3 6 7

1 3 1 0
1 1 3 0

3 1 1 0

r
r

r
 (7-52) 

If  is expressed in terms of eq , we obtain 

1 1 2 3 1 2 3 1 2

2 2 3 1 2 3 1 2 3

3 3 1 2 3 1 2 3 1

1 3 1 2 2 ( ) ( ) 0
1 1 3 2 2 ( ) ( ) 0

3 1 1 2 2 ( ) ( ) 0

x x y y

x x y y

x x y y

r w w c b
r w w c b

r w w c b
 (7-53) 

Equations (7-52) and (7-53) are the 3 perimeter conforming conditions for verifying 
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the convergence of the element BCIZ. When the components in the element 
DOFs eq  are 9 arbitrary parameters, Eq. (7-53) is not satisfied. Thereby, the 
convergence of the element BCIZ cannot be guaranteed. 

7.3.3 Element GC -T9—an Improvement on the Element BCIZ 

The triangular thin plate element GC -T9[4] is an improved model of the element 
BCIZ.

As described above, the reason why the element BCIZ cannot ensure convergence 
is that the perimeter conforming condition (7-42) is not satisfied. Therefore, an 
improvement scheme is proposed as follows: on the basis of the assumed element 
deflection field given by Eq. (7-27), 3 new unknown coefficients and basis functions 
are supplemented; and on the basis of the 9 point conforming conditions used, 3 
perimeter conforming conditions given in Eq. (7-42) are also supplemented. Since 
the condition (7-42) has already been satisfied, the convergence can be ensured. 
This element obtained is called GC -T9.

The construction procedure of the element GC -T9 is as follows. 
The element deflection field is assumed to be composed of two parts: 

ˆ(BCIZ)w w w  (7-54) 

where (BCIZ)w  is the assumed deflection field (7-27) of the element BCIZ with 
9 unknown coefficients; ŵ  is the additional deflection field with 3 new unknown 
coefficients: 

2 2 2 2 2 2
10 1 2 11 2 3 12 3 1ŵ L L L L L L  (7-55) 

ŵ  has the following characteristic: at three corner nodes, ŵ , ŵ
x

 and ŵ
y

 are all 

zero.
The assumed deflection field in Eq. (7-54) contains 12 unknown coefficients, 

while the number of the element DOFs is still 9, so the new element is a 
super-basis element. 

In order to solve the 12 unknown coefficients, 12 conforming conditions are 
needed.

Firstly, 9 point conforming conditions about w, x and y at three corner nodes 
are used. Because of the characteristic of the additional deflection ŵ  mentioned 
above, we know that 10, 11 and 12 will not appear in these conditions. So, the 
first 9 unknown coefficients 1, 2, , 9 can be solved just by these 9 
conditions, as shown in Eq. (7-29), and are the same as those in the element BCIZ. 

Secondly, the 3 new unknown coefficients 10, 11 and 12 will be solved by 
applying 3 perimeter conforming conditions given in Eq. (7-42). And, the weighting 
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functions given in Eq. (7-42) are still the 3 constant internal force states shown in 
Eqs. (7-43) (7-46).

For the items at the right side of Eq. (7-42), the derivation results are still given 
by Eqs. (7-50) and (7-51). 

For the items at the left side of Eq. (7-42), the items related to the new unknown 
coefficients 10, 11, 12 should be supplemented on the basis of Eq. (7-47), i.e., 

4 7
T T

5 8

6 9

10

11

12

1 3 5 1 5 3
1 1d 5 1 3 3 1 5
6 6

3 5 1 5 3 1

0 2 0
1 0 0 2
6

2 0 0

AM

(7-56)

Substitution of Eqs. (7-56) and (7-51) into the two sides of Eq. (7-42) yields 

10 1 4 8

11 2 5 9

12 3 6 7

0 2 0 1 3 1
0 0 2 1 1 3
2 0 0 3 1 1

r
r

r

From this relation, we obtain 

10 3 4 8

11 1 5 9

12 2 6 7

3 1 1
1 1 3 1
2

1 1 3

r
r

r
 (7-57) 

Equation (7-57) can also be expressed in terms of eq ,

3 2 3 3 2 3 3
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11 3 2 3 2 1

12 1

2 3 2 2 3 2 2

3 1 3 3 1 3 3

1 3 1 1

1 1(1 3 ) ( 3 ) ( 3 )
2 2
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c c b b
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2 1 2 1

3

1 2 1 1 2 1 1 3

3

2 1 2 2 1 2 2

1 12 ( ) ( )
2 2
1 1(1 3 ) ( 3 ) ( 3 )
2 2

1 1(1 3 ) ( 3 ) ( 3 )
2 2

x

y

c c b b
w

r c r c b rb

r c r c b r b

 (7-58) 

After the 12 unknown coefficients are determined, the element deflection field 
and its shape functions can then be obtained. All the shape functions are 
composed of two parts, for examples, for the node 1, we have 

1 1 1 1 1 1 1 1 1
ˆ ˆ ˆ, ,x x x y y yN N N N N N N N N  (7-59) 

where 1N , 1xN , 1yN  are the parts related to (BCIZ)w , and are the same as those 
given in Eq. (7-31). 1N̂ , 1

ˆ
xN  and 1

ˆ
yN  are the parts related to ŵ :

2 2 2 2 2 2
1 3 1 2 2 3 2 3 1

2 2 2 2 2 2
1 2 3 3 1 2 3 2 2 3 3 2 2 3 1

2 2 2 2 2 2
1 2 3 3 1 2 3 2 2 3 3 2 2 3 1

ˆ (1 3 ) 2 (1 3 )

1 1 1ˆ ( 3 ) ( ) ( 3 )
2 2 2

1 1 1ˆ ( 3 ) ( ) ( 3 )
2 2 2

x

y

N r L L L L r L L

N c r c L L c c L L c r c L L

N b r b L L b b L L b r b L L

 (7-60) 

The other 6 shape functions can be obtained by permutation. 
After the shape functions are determined, the element stiffness matrix can then 

be obtained. 
Example 7.2 The central deflection wC and central moment MC of a square 

plate (the side length is L) subjected to uniform load q and central concentrated 
load P. The Poisson’s ratio is 0.3. Meshes A and B in Fig. 6.2 and mesh C in 
Fig. 6.13 are used. The results by the element GC -T9 are given in Tables 7.3 
and 7.4. 

In the tables, wC /(qL4/100D), wC /(PL2/10D) and 1 MxC /(qL2). And, 
the numbers in parentheses are the relative errors. From Tables 7.3 and 7.4, two 
points can be concluded: 

(1) The precision of the element GC -T9 is very high, is better than the 
Discrete Kirchhoff Theory element DKT and the stress hybrid element HSM. 

(2) For mesh C, the element BCIZ cannot pass the patch test, and cannot 
converge to correct solutions, either; but the computational results of the element 
GC -T9 are convergent under this mesh, even better than those obtained by the 
meshes A and B.



Advanced Finite Element Method in Structural Engineering 

198

Table 7.3 The central deflection and central moment coefficients of a simply- 
supported plate (GC -T9, Mesh A)

Mesh (1/4 plate) Deflection coefficient 
(uniform load)

Deflection coefficient 
(concentrated load)

Moment coefficient 
(uniform load) 1

2 2
4 4
8 8

0.4119(1.41%) 
0.4085(0.57%)
0.4068(0.15%)

0.1174(1.18%) 
0.1167(0.58%) 
0.1162(0.14%) 

0.0499(4.35%)
0.0488(1.88%)
0.0480(0.21%)

Analytical 0.4062 0.1160 0.0479 

Table 7.4 The central deflection coefficients of simply-supported and clamped 
plates by using meshes A, B and C (GC -T9, Mesh 8 8

(uniform load) (concentrated load) mesh 
support Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

Simply-supported 0.4068
(0.15%)

0.4068
(0.15%)

0.4056
( 0.15%)

0.1162 
(0.14%)

0.1182 
(1.9%)

0.1163 
(0.28%)

Clamped 0.1291
(2.5%)

0.1274
(1.1%)

0.1277
(1.4%)

0.5666
(1.2%)

0.5812
(3.8%)

0.5666
(1.2%)

7.4 Least-Square Scheme—Elements LSGC-R12 and  
LSGC-T9

This section will introduce the construction procedure of the thin plate element 
formulated by the least-square scheme. The no. 27 and 28 elements LSGC-R12 
and LSGC-T9 in Table 5.1 belong to this element group. 

7.4.1 Rectangular Element LSGC-R12[5] — an Improvement on  
the Element ACM 

Rectangular thin plate element LSGC-R12 is a super-basis element by improving 
the element ACM[2] using the least-square scheme. The element DOFs are still 
the 12 conventional DOFs at the corner nodes. And, the element deflection field 
is assumed to be composed of two parts: 

ˆ(ACM)w w w  (7-61) 

where (ACM)w  is the deflection field (7-1) of the element ACM, and contains 
12 unknown coefficients 1, 2, , 12; ŵ  is the additional deflection field with 2 
new unknown coefficients 
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2 2 2 2 2 2
13 14ˆ ( 1)( 1) ( 1)( 1)w  (7-62) 

ŵ  possesses the following characteristics: 

(1) At 4 corner nodes, ŵ , ŵ
x

 and ŵ
y

 are all zero; 

(2) Along 4 element sides, ŵ  identically equals to zero, but ŵ
n

 does not 

equal to zero. 
In order to solve the 14 unknown coefficients, 14 conforming conditions are 

needed.
Firstly, the 12 point conforming conditions about w, x and y at the corner 

nodes are applied. According to the characteristic (1) of ŵ , these 12 conditions 
do not contain 13 and 14, thus the 12 unknown coefficients 1, 2, , 12 can 
just be solved, and are the same as those of the element ACM. 

Since the displacement field w  of the element ACM is exactly compatible with 
the deflection w  along the element boundary (but incompatible with the normal 
slope n  along the element boundary), and the value of ŵ  along the boundary 
identically equals to zero, so the total displacement ˆw w w  is also compatible 
with the boundary deflection w .

Secondly, the conforming conditions about the normal slope along the element 
boundary also need to be considered, and then, they are used to determine the 
other residual 2 unknown coefficients 13 and 14.

According to the least-square method, the following 2 conditions can be obtained: 

2

13
2

14

ˆ
d 0

ˆ
d 0

e

e

nA

nA

w w s
n n

w w s
n n

 (7-63) 

From this equation, we obtain 

4

13
1

4

14
1

9
128

9
128

i i xi
i

i i yi
i

a

b
 (7-64) 

After the 14 unknown coefficients are determined, the element deflection field 
and its shape functions can be obtained 

4

1

( )i i xi xi yi yi
i

w N w N N   (7-65) 
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where the shape functions are composed of two parts 

ˆ
ˆ
ˆ

i i i

xi xi xi

yi yi yi

N N N
N N N
N N N

  (i 1,2,3,4) (7-66) 

in which iN , xiN  and yiN  are the parts related to w , and the same as those given 
in Eq. (7-19). ˆ

iN , ˆ
xiN  and ˆ

yiN  are the parts related to ŵ :

2 2 2

2 2 2

ˆ 0
9ˆ ( 1)( 1)

128
9ˆ ( 1)( 1)

128

i

xi i i

yi i i

N

N a

N b

  (i 1,2,3,4) (7-67) 

Once the shape functions are obtained, the element stiffness matrix can be derived. 

7.4.2 Triangular Element LSGC-T9[5] — an Improvement on the  
Element BCIZ 

Triangular thin plate element LSGC-T9 is a super-basis element by improving 
the element BCIZ[3] using the least-square scheme. The element DOFs are still 
the 9 conventional DOFs at the corner nodes. And, the element deflection field is 
assumed to be composed of two parts: 

ˆ(BCIZ)w w w  (7-68) 

where w (BCIZ) is the deflection field (7-27) of the element BCIZ, and contains 
9 unknown coefficients 1, 2, , 9; ŵ  is the additional deflection field with 3 
new unknown coefficients: 

2 2 2 2 2 2
10 1 2 3 11 2 3 1 12 3 1 2ŵ L L L L L L L L L  (7-69) 

The first 9 unknown coefficients can be solved by the point conforming 
conditions about w, x, y at the corner nodes, as shown in Eq. (7-29). And, the 
residual 3 unknown coefficients 10, 11 and 12 can be solved by the following 
least-square conditions: 

2ˆ
d 0

e nA
i

w w s
n n

  (i 10,11,12) (7-70) 
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After the determination of all the unknown coefficients, the shape functions 
and element stiffness matrix can then be derived. 

Example 7.3 The central deflection and central moment of square plates (the 
side length is L) subjected to uniform load q and central concentrated load P. The 
Poisson’s ratio 0.3.

The results by the elements LSGC-R12 and LSGC-T9 are given in Tables 7.5 
and 7.6. And, mesh B in Fig. 6.2 and mesh C in Fig. 6.13 are used for triangular 
element. 

Table 7.5 The central deflection and moment of square plate subjected to uniform load 

Clamped Simply-supported 

Rectangular
elements 

Triangular element 
LSGC-T9 

Rectangular
elements 

Triangular element 
LSGC-T9 

Mesh 
(1/4plate)

ACM
LSGC-

R12
Mesh B Mesh C ACM

LSGC-
R12

Mesh B Mesh C

2 2 0.1403 0.1222 0.1025 0.1028 0.4328 0.3976 0.3949 0.3918

4 4 0.1332 0.1241 0.1203 0.1212 0.4129 0.4042 0.4036 0.4032

8 8 0.1275 0.1262 0.1250 0.1252 0.4081 0.4056 0.4063 0.4055
w

Analytical 0.1265(qL4/100D) 0.4062(qL4/100D)

2 2 0.2778 0.2132 0.2030 0.1624 0.5217 0.4442 0.4734 0.4456

4 4 0.2405 0.2233 0.2240 0.2241 0.4892 0.4689 0.4810 0.4733

8 8 0.2319 0.2275 0.2287 0.2267 0.4817 0.4762 0.4829 0.4754
M

Analytical 0.2291(qL2/10) 0.4789(qL2/10)

Table 7.6 The central deflection of square plate subjected to central concentrated load 

Clamped Simply-supported 

Rectangular
elements 

Triangular element 
LSGC-T9 

Rectangular
elements 

Triangular element 
LSGC-T9 

Mesh 
(1/4 plate) 

ACM
LSGC-

R12
Mesh B Mesh C ACM

LSGC-
R12

Mesh B Mesh C

2 2 0.6135 0.5324 0.4327 0.4482 1.2327 1.1243 1.0622 1.0803

4 4 0.5803 0.5516 0.5207 0.5296 1.1829 1.1501 1.1278 1.1326

8 8 0.5673 0.5585 0.5494 0.5514 1.1674 1.1570 1.1520 1.1515

Analytical 0.5612(PL2/100D) 1.160(PL2/100D)
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