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Abstract Five groups of construction schemes for the generalized con- 
forming thin plate elements are proposed in Sect. 5.4. This chapter discusses 
the first three groups: (1) line conforming scheme (Sect. 6.1); (2) line-point 
conforming scheme (Sects. 6.2 and 6.3) and super-basis line-point conforming 
scheme (Sect. 6.4); and (3) super-basis point conforming scheme (Sect. 6.5) 
and SemiLoof conforming scheme (Sect. 6.6). Formulations of 13 triangular, 
rectangular and quadrilateral generalized conforming thin plate elements, 
which are constructed by the above schemes, are introduced in detail. The 
elements formulated in Sects. 6.1 to 6.3 belong to the equal-basis elements, 
in which the number m of the unknown coefficients or basis functions in an 
interpolation formula for the element deflection field equals to the number n
of DOFs. And, the elements formulated in Sects. 6.4 to 6.6 belong to the 
super-basis elements, in which m n. Numerical examples show that these 
models exhibit excellent performance in the analysis of thin plates. This denotes 
that the difficulty of C1 continuity problem can be solved completely. 

Keywords thin plate element, generalized conforming, line-point conforming, 
SemiLoof conforming. 

6.1 Line Conforming Scheme—Elements TGC-9 and  
TGC-9-1

In this section, the generalized conforming thin plate elements TGC-9 and TGC-9-1 
will be taken as examples for illustrating the procedure of the line conforming 
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scheme. The outlines of the procedure are as follows: all conforming conditions are 
line conforming ones, especially, the average line conforming conditions (5-22) 
are taken as the main conditions; for the element TGC-9, let m n; and for the 
element TGC-9-1, it is extended from the element TGC-9 by introducing an 
internal parameter , which will be eliminated by condensation. 

6.1.1 Element TGC-9 

A triangular thin plate element with 9 DOFs is shown in Fig. 6.1. Its nodal 
displacement vector eq  is 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq  (6-1) 

Along each element side, the deflection w  is assumed to be cubic and the normal 
slope n  linear. 

Figure 6.1 A triangular thin plate bending element 

According to the element BCIZ in reference [1], the element deflection field 
w(x, y) is described by an incomplete cubic polynomial and expressed in terms of 
the area coordinates L1, L2, L3:

w F  (6-2) 

where  is a vector containing 9 unknown coefficients: 
T

1 2 3 4 5 6 7 8 9[ ]

and F  is a row matrix containing 9 basis functions: 

1 2 3 4 5 6 7 8 9

4 1 2 1 3 5 2 3 2 1 6 3 1 3 2

7 1 3 1 2 8 2 1 2 3 9 3 2 3 1

[ ]
1 1 1( ), ( ), ( )
2 2 2

1 1 1( ), ( ), ( )
2 2 2

L L L F F F F F F

F L L L L F L L L L F L L L L

F L L L L F L L L L F L L L L

F

(6-3)
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In order to determine the 9 unknown coefficients of  in terms of eq , 9 
generalized conforming conditions are needed. Here, the line conforming scheme, 
especially the average line conforming conditions (5-22), are firstly considered. 
Each element has three sides, along which the average deflection, average normal 
slope and average tangential slope conforming conditions are used. So, to outward 
seeming, there are just 9 generalized conforming conditions here. But, if w w
is a continuous function along the boundary perimeter Ae, the following identity 
relation

( )d 0
eA

w w s
s

 (6-4) 

will come into existence, i.e., 
3

1
d 0

i
s

i

w s
s

 (6-5) 

Therefore, there are only two independent conditions actually active for the 
tangential slop s. That is to say, when Eq. (5-22) is used along each element 
side, there are only 8 independent generalized conforming conditions, which are 
the first eight equations of the following equation set: 

1 1

23 3 4 23 30 0

1 1

31 1 5 31 10 0

1 1

12 2 6 12 20 0

1 1

3 7 23 30 0
23

1 1

1 8 31 10 0
31

1 1

2 9 12 20 0
12

3 1 23
23

d d

d d

d d

d ( ) d

d ( ) d

d ( ) d

d ( )

n

n

n

s

w L d w L

w L d w L

w L d w L

w L d L
n
w L d L
n
w L d L
n
w L d
s

1 1

30 0

1 1

1 2 31 10 0
31

1 1 1

23 3 3 31 1 1 12 2 2 30 0 0

1 1 1

23 3 3 31 1 1 12 2 20 0 0

d

d ( ) d

1 1 1d d d
2 2 2

1 1 1d d d
2 2 2

s

L

w L d L
s

w L L w L L w L L d

w L L w L L w L L

(6-6)
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The ninth equation in Eq. (6-6) is the supplementary generalized conforming 
condition, which denotes the generalized conforming condition that the sum of 
the first moments of the deflections along three sides should satisfy. 

By using the symbol of Eq. (5-13) and arranging in the sequence of d1, d2, ,
d9, Eq. (6-6) can be rewritten in the following matrix form: 

ˆ ˆ eC Gq  (6-7) 

where

1 1 2 2 3 3

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 0 0
0 0 0 6 6

ˆ 6 0 0 0 6
6 6 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c b c b c b
c b c b

c b c b
c b c b

b c b c
b c b c
b c b c

G  (6-8) 

1 2 3

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1

ˆ 0 6 6 0 1 0 0 0 1
6 0 6 0 0 1 1 0 0
6 6 0 1 0 0 0 1 0

ˆ ˆ ˆ

C

C C C

 (6-9) 

and

2 3 3 2

3 3 1 1
1

2 1 1 2

ˆ

f f f f
A A A
f f f f
A A A
f f f f
A A A

C  (6-10) 
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2 3 2 3 2 3

3 1 3 1 3 1
2

1 2 1 2 1 2

3 5
12 12 12

ˆ 5 3
12 12 12

3 5
12 12 12

f f f f f f
A A A

f f f f f f
A A A

f f f f f f
A A A

C  (6-11) 

2 3 2 3 2 3

3 1 3 1 3 1
3

1 2 1 2 1 2

5 3
12 12 12

ˆ 3 5
12 12 12

5 3
12 12 12

f f f f f f
A A A

f f f f f f
A A A

f f f f f f
A A A

C  (6-12) 

in which A is the area of the triangle; and 

( )

i j k

i k j

i j k j k

b y y
c x x
f b b c c

  ( 1,2,3; 2,3,1; 3,1,2)i j k  (6-13) 

It can be verified that Ĝ  and Ĉ  are not singular. So, from Eqs. (6-7) and (6-2), 
we have 

1ˆ ˆ ew F C Gq

Then, the element stiffness matrix can be obtained following the standard procedure. 

6.1.2 Element TGC-9-1 

Assume that the element deflection field w is constituted of two parts 

qw w w  (6-14) 

where the first part is the deflection field expressed in Eq. (6-2) 

1ˆ ˆ( ) e
qw F F C G q  (6-15) 

The second part is a generalized bubble deflection field 

w F  (6-16) 

where  is an internal displacement parameter and F  is a generalized bubble 
function:
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1 2 2 3 3 1 1 2 31 6( ) 18F L L L L L L L L L  (6-17) 

It can be verified that all the 9 generalized displacements d1, , d9 corres- 
ponding to w  vanish. 

The deflection field (6-14) is a complete cubic polynomial with 10 DOFs.  is 
eliminated by a condensation process, only 9 external DOFs in eq  are retained. 

From the expression (6-14) of the deflection field, the curvature field  can be 
expressed as 

T2 2 2

2 2 2 ew w w
x y x y

Bq B  (6-18) 

and the element strain energy U is 

T T 21 1 1d
2 2 2e

e e e e
qq q

A

U A kD q K q K q  (6-19) 

where
T

T

T

d

d

d

e

e

e

qq
A

q
A

A

A

A

k A

K B DB

K B DB

B DB

 (6-20) 

Applying a condensation process, we can solve  from 0U :

1 e
qk K q

Substitution of the above equation into Eq. (6-19) yields 

T1
2

e e eU q K q

where eK  is the element stiffness matrix after condensation: 
T 1e

qq q qkK K K K  (6-21) 

6.1.3 Numerical Examples 

Example 6.1 Simply-supported and clamped square plates subjected to uniformly 
distributed load q or central concentrated load P—comparison of five triangular 
thin plate elements. L is the length of the plate side; and Poisson’s ratio 0.3.
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                Figure 6.2 Meshes for a quarter square plate 
(a) A quarter simply-supported square plate; (b) A quarter clamped square plate; (c) Mesh orientation 
A Mesh density N 4; (d) Mesh orientation B Mesh density N 4

Owing to symmetry, only one-quarter of the plate is modelled. As shown in 
Fig. 6.2, two mesh orientations (A and B) are considered. For comparison, the 
results by the five triangular element models with 9 DOFs, the generalized 
conforming element TGC-9-1, the discrete Kirchhoff theory element DKT[2, 3],
the hybrid-stress element HSM[2,4], the non-conforming element BCIZ[1] and the 
conforming element HCT[5], are given together. 

The results of the central deflection wC for the uniformly distributed load case 
are plotted in Figs. 6.3 and 6.4. And, the results for the concentrated load case are 
given in Figs. 6.5 and 6.6. Among the five elements used, the generalized 
conforming element TGC-9-1 gives the most accurate answers, and the elements 
HSM and DKT give the second best ones. 

Figure 6.3 The percentage error for central deflection of the simply-supported square 
plate subjected to uniform load 
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Figure 6.4 The percentage error for central deflection of the clamped square plate 
subjected to uniform load 

Figure 6.5 The percentage error for central deflection of the simply-supported 
square plate subjected to concentrated load 



Advanced Finite Element Method in Structural Engineering 

128

Figure 6.6 The percentage error for central deflection of the clamped square 
plate subjected to concentrated load 

The results of the central moment MC are given in Figs. 6.7 and 6.8. The 
accuracy of the generalized conforming element is still the best. And, the results  

Figure 6.7 The percentage error for central moment of the simply-supported square 
plate subjected to uniform load 
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Figure 6.8 The percentage error for central moment of the clamped square plate 
subjected to uniform load 

of the moment MD at the mid-side point of the plate are given in Figs. 6.9 and 
6.10. The elements TGC, HSM and DKT are at the same level of accuracy. 

Figure 6.9 The percentage error for moment at mid-side point of the clamped 
square plate subjected to uniform load 
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Figure 6.10 The percentage error for moment at mid-side point of the clamped 
square plate subjected to concentrated load 

Different mesh orientations lead to different results for these elements, and the 
smallest difference is obtained by the generalized conforming element.  

6.2 Line-Point Conforming Scheme—Rectangular Elements 

The mixed scheme of line and point conforming is one of the most popular 
schemes for constructing the generalized conforming thin plate elements. We will 
introduce it in two sections: rectangular elements in this section and triangular 
elements in the next. 

The no. 3, 4, 5 elements RGC-12, CGC-R12 and LGC-R12 in Table 5.1 are all 
rectangular elements constructed by the line-point conforming scheme, in which 
m n 12. Besides, some other contents, including the simplification by using 
the symmetry of rectangular elements, and the buckling analysis of thin plates, 
are also introduced. 

6.2.1 Rectangular Element RGC-12 (Bending Problem) 

A 12-DOF rectangular thin plate element is shown in Fig. 6.11. The element nodal 
displacement vector eq  is 
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T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

where w denotes the deflection; x
w
x

 and y
w
y

 denote the rotations. 

Along each element side, the deflection w  is assumed to be cubic and the 
normal slope n  linearly distributed. 

Figure 6.11 Rectangular plate 

Let ,  be the dimensionless coordinates: x
a

, y
b

.

According to the element ACM[6], the element deflection field w is described by 
an incomplete quartic polynomial 

w F  (6-22) 

in which 

T
1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 2 2 3 3 3

[ ]
[1 ]F

(6-23)

In order to solve , it is necessary to choose 12 generalized conforming 
conditions and their corresponding generalized displacements d.

T
1 2 3 4 5 6 7 8 9 10 11 12[ ]d d d d d d d d d d d dd

First of all, we consider the average deflection, the average tangential slope 
and the average normal slope of each element side, thus 12 average displacements 
are involved. But, there are two identity relations for these quantities, so only 10 
of the average displacements are independent, which may be chosen as the first 
ten generalized displacements d1, d2, , d10. And, the rotations of node 1, x1
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and y1, could be chosen as the other two generalized displacements d11 and d12.
Thus, 12 generalized conforming conditions are established as follows: 

1 1

1 121 1
12

1 1

2 231 1
23

1 1

3 431 1
43

1 1

4 141 1
14

1 1

51 1
12 12

6
23 23

d d

d d

d d

d d

d d

d

y

x

y

x

w d
y

w d
x

w d
y

w d
x

w wd
x x

w wd
y y

1 1

1 1

1 1

71 1
43 43

1 1

12 8 121 1

1 1

23 9 231 1

1 1

43 10 431 1

11 1
1

12 1
1

d

d d

d d

d d

d d

x

y

w wd
x x

w d w

w d w

w d w

w d
x

w d
y

(6-24)

Equation (6-24) can be written as 

ˆ ˆ eC Gq  (6-25) 

where
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0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0

ˆ
1 0 1 0 0 0 0 0 0 0

3 3

0 0 0 1 0 1 0 0 0 0
3 3

0 0 0 0 0 0 1 0 1 0
3 3

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

a a

b b

a a

G  (6-26a) 

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

0 2 0 0 2 0 2 0 2 0 2 2
0 0 2 0 2 0 0 2 0 2 2 2

ˆ 0 2 0 0 2 0 2 0 2 0 2 2
2 22 0 2 0 2 0 0 2 0 0
3 3

2 22 2 0 2 0 2 0 0 0 0
3 3

2 22 0 2 0 2 0 0 2 0 0
3 3

1 2 1 3 2 1 3 10 0 0 0

1 1 2 10 0 0 0

b b b b

a a a a

b b b b

a a a a

a a a a a a a a

b b b

C

2 3 1 3
b b b b b

(6-26b)
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From Eqs. (6-25) and (6-22), we have 

1ˆ ew F C Gq  (6-27) 

And then, the element stiffness matrix can be obtained by the conventional 
procedure.  

Example 6.2 Simply-supported and clamped square plates subjected to 
uniformly distributed load q or central concentrated load P—comparison of 
different rectangular thin plate elements. L is the length of the plate side; and 
Poisson’s ratio 0.3.

The deflection coefficients at the plate center are given in Table 6.1. For the 
sake of comparison, not only the results by the generalized conforming element 
RGC-12 but also those by the element ACM[7] are given (the numbers in 
parentheses are relative errors). It can be seen from Table 6.1 that the precision of 
the element RGC-12 is better than that of the element ACM. The moment 
coefficients are given in Table 6.2, and also exhibit high precision. 

Table 6.1 The deflection coefficients at central point 

Simply-supported 
 (uniform)  (concentrated) Mesh (whole 

plate)
ACM[7] RGC-12 ACM[7] RGC-12 

2 2
4 4
8 8

16 16

0.3446( 15%)
0.3939( 3%)

0.4033( 0.7%)
0.4056( 0.15%)

0.4003( 1.5%)
0.4034( 0.7%)
0.4053( 0.2%)
0.4061( 0.02%)

1.378( 18.8%)
1.233( 6.3%)
1.183( 2%)

1.167( 0.6%)

1.116( 3.8%)
1.146( 1.2%)
1.155( 0.4%)
1.159( 0.1%)

Analytical 
solution

0.4062 1.160 

Clamped
 (uniform)  (concentrated) 

Mesh (whole 
plate)

ACM[7] RGC-12 ACM[7] RGC-12 
2 2
4 4
8 8

16 16

0.1480( 17.0%)
0.1403( 10.9%)
0.1304( 3.1%)
0.1275( 0.08%)

0.1479( 16.9%)
0.1228( 2.9%)
0.1253( 0.09%)
0.1262( 0.02%)

0.5919( 5.5%)
0.6134( 9.3%)
0.5803( 3.4%)
0.5672( 1.1%)

0.5918( 5.5%)
0.5433( 3.2%)
0.5550( 1.1%)
0.5596( 0.3%)

Analytical 
solution

0.1265 0.5612 

Note: 

4

max

2

max

1 (uniform)
100

1 (comcentrated)
100

qLw
D
PLw
D

,
3

2 ,
12(1 )

EhD E is the Young’s modulus,  is the 

Poissom’s ratio. 
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Table 6.2 Moment coefficients 

Central moment Moment at mid point of boundary
Simply-supported Clamped Clamped 

Mesh (whole 
plate)

1 (load q) 1(load q) 1 (load q) 1 (load P)
2 2
4 4
8 8

16 16

0.0521( 8.8%)
0.0484( 1.0%)

0.0479(0%)
0.0479(0%)

0.0462( 102%)
0.0239( 4.4%)
0.0230( 0.4%)
0.0230( 0.4%)

0.0355( 30.8%)
0.0438( 14.6%)
0.0489( 4.7%)
0.0506( 1.4%)

0.1420( 13.0%)
0.1156( 8.0%)
0.1221( 2.9%)
0.1245(1.0%)

Analytical 
solution

0.0479 0.0229 0.0513 0.1257

Note: 
2

1

1

(uniform)
(concentrated)

M qL
M P

6.2.2 Utilization of the Symmetry of Rectangular Elements 

We consider the case m n 12 for the rectangular thin plate elements, and take 
the element RGC-12 as an example. The main construction procedure is how to 
establish 12 generalized conforming conditions, i.e. Eq. (6-25), in which Ĉ  is a 
12 12 matrix. When solving , the inverse matrix 1Ĉ  is needed. It is not an 
easy work to obtain the inverse matrix of a 12 12 matrix. So, for simplification, 
the symmetry of the rectangular elements may be used. 

In a rectangular element, there are two symmetry axes, that is, x-axis and 
y-axis in Fig. 6.11. If the symmetry is fully used, the 12 generalized conforming 
conditions can be classified into four equation groups: 

Symmetry-Symmetry (SS) group—symmetry with respect to both x-axis
and y-axis;  
Symmetry-Antisymmetry (SA) group—symmetry with respect to the x-axis, 
antisymmetry with respect to the y-axis;
Antisymmetry-Symmetry (AS) group—antisymmetry with respect to the 
x-axis, symmetry with respect to the y-axis; 
Antisymmetry-Antisymmetry (AA) group—antisymmetry with respect to 
both x-axis and y-axis.

Thus, each conforming equation group is usually a set of equations with only 
three unknown variables, which is much simpler to be solved. 

Now, let us take the element RGC-12 as an example to illustrate the whole 
procedure.

Firstly, the element deflection field is expressed by Eqs. (6-22) and (6-23), in 
which 12 unknown coefficients and their basis functions have already been 
classified into four groups: 
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2 2
1 4 6

3 2
2 7 9

2 3
3 8 10

3 3
5 11 12

SS group , ,
SA group , ,
AS group , ,
AA group , ,

 (6-28) 

Secondly, the selected generalized conforming conditions should also possess 
symmetry or antisymmetry. In fact, all the average line conforming and point 
conforming conditions about w, x and y in Eq. (6-24) do not satisfy this 
requirement. Therefore, the conforming conditions should be recombined so that 
the new combination conditions should possess symmetry and antisymmetry, and 
then, can be vested in one of the above four groups. 

For instance, the average line conforming conditions of the rectangular 
elements can be treated as follows. 

In a rectangular element, there are 12 average line conforming conditions 
about w, n, s of each side (the number of independent conditions will be 
discussed later). According to symmetry or antisymmetry, these conditions can 
be re-combined to form 12 new combination conditions which are classified as: 

(1) Combination conditions belonging to SS group (4 conditions) 

1 1

43 12 43 121 1
( )d ( )dw w w w           (6-A1) 

1 1

23 14 23 141 1
( )d ( )dw w w w           (6-A2) 

1 1

23 141 1
23 14

d ( )dn n
w w
x x

 (6-A3) 

1 1

43 121 1
43 12

d ( )dn n
w w
y y

 (6-A4) 

(2) Combination conditions belonging to SA group (3 conditions) 

1 1

23 14 23 141 1
( )d ( )dw w w w            (6-B1) 

1 1

23 141 1
23 14

d ( )dn n
w w
x x

   (6-B2) 

1 1

43 121 1
43 12

d ( )ds s
w w
x x

 (6-B3) 
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(3) Combination conditions belonging to AS group (3 conditions) 

1 1

43 12 43 121 1
( )d ( )dw w w w           (6-C1) 

1 1

43 121 1
43 12

d ( )dn n
w w
y y

 (6-C2) 

1 1

23 141 1
23 14

d ( )ds s
w w
y y

 (6-C3) 

(4) Combination conditions belonging to AA group (2 conditions) 

1 1

43 121 1
43 12

d ( )ds s
w w
x x

 (6-D1) 

1 1

23 141 1
23 14

d ( )ds s
w w
y y

 (6-D2) 

The combination conforming conditions are derived by selecting the combination 
boundary forces as weighting functions. The above conforming condition groups 
are just classified by the symmetry or antisymmetry of the selected combination 
boundary forces.  

Substitution of the element deflection field (6-22) and the interpolation formulae 
for boundary displacements into the above 12 conditions yields 

(1) SS group 

4 4

1 4 6
1 1

1 1
3 4 12i xi i

i i

aw  (6-A1)

4 4

1 4 6
1 1

1 1
3 4 12i yi i

i i

bw  (6-A2)

4

4
18 xi i

i

a                   (6-A3)

4

6
18 yi i

i

b                  (6-A4)
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(2) SA group 

4 4

2 7 9
1 1

1 1
3 4 12i i yi i i

i i

bw  (6-B1)

4

2 7 9
1

13
3 4 xi

i

a              (6-B2)

4

2 7 9
1

1
4 i i

i
w               (6-B3)

(3) AS group 

4 4

3 8 10
1 1

1 1
3 4 12i i xi i i

i i

aw  (6-C1)

4

3 8 10
1

1 3
3 4 yi

i

b              (6-C2)

4

3 8 10
1

1
4 i i

i
w               (6-C3)

(4) AA group 

4

5 11 12
1

1
4 i i i

i
w  (6-D1)

4

5 11 12
1

1
4 i i i

i
w  (6-D2)

There are total 12 equations above, in which only 10 are independent, that is, 2 
equations are not independent.  

Firstly, the two Eqs. (6-D1)  and (6-D2)  in the AA group are actually the same, 
so one of these two conditions is not independent. This is an inevitable result 
produced by the identical Eq. (6-4), which shows that four average line conforming 
conditions about s along four element sides should contain an independent one. 

Secondly, there is an independent equation among the four Eqs. (6-A1) ,
(6-A2) , (6-A3)  and (6-A4)  in the SS group. For example, Eq. (6-A2)  can be 
derived from the other three equations. This is because only three unknown 
coefficients ( 1, 2, 3) are involved in the four equations of the SS group. If it is 
not a contradictory equation set, it must contain an independent equation.  

Anyway, we have only 10 independent conditions here. The first three groups 
separately have three independent equations, from which three unknown coefficients 
of each group can be solved. 
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SS group 

4 4 4

1
1 1 1
4

4
1

4

6
1

1
4 8 8

8

8

i xi i yi i
i i i

xi i
i

yi i
i

a bw

a

b

 (6-29) 

SA group 

4 4 4

2
1 1 1

4 4 4

7
1 1 1

4

9
1

3
8 8 6

1
8 8 24

8

i i xi yi i i
i i i

i i xi yi i i
i i i

yi i i
i

a bw

a bw

b

 (6-30) 

AS group 

4 4 4

3
1 1 1

4

8
1

4 4 4

10
1 1 1

3
8 6 8

8
1
8 24 8

i i xi i i yi
i i i

xi i i
i

i i xi i i yi
i i i

a bw

a

a bw

 (6-31) 

As for the AA group, there is only one independent condition (6-D1) . So, two 
conforming conditions should be supplemented for solving the three unknown 
coefficients 5, 11, 12.

In the element RGC-12, the two supplementary conditions are the last two point 
conforming conditions,  

1 1
1 1

,x y
w w
x y

that is 

4 2 7 9 8 5 11 12 1

6 9 3 8 10 5 11 12 1

2 ( 3 ) 2 ( 3 )
2 2 ( 3 ) ( 3 )

x

y

a
b

Solving the simultaneous equations of the above two equations and Eq. (6-D1) , the 
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remaining three unknown coefficients can be obtained: 

4 4 4

5
1 1 1

4 4 4

11
1 1 1

4 4 4

12
1 1 1

1 1 11 1
2 8 3 8 3

1
8 8 24
1
8 24 8

i i i xi i i yi i i
i i i

i i i xi i yi i i
i i i

i i i xi i i yi i
i i i

a bw

a bw

a bw

 (6-32) 

Though the above two supplementary conditions are simple and feasible, they are 
related to the numbering of the element nodes. So, the following two combination 
point conforming conditions are more reasonable (belong to the AA group): 

4 4

1 1

4 4

1 1

i xi i
i ii

i yi i
i ii

w
x
w
y

 (6-33) 

that is 

4

5 11 12
1

4

5 11 12
1

3
4

3
4

xi i
i

yi i
i

a

b
 (6-34) 

Solving Eqs. (6-34) and (6-D1)  simultaneously, we obtain 

4 4 4

5
1 1 1

4 4

11
1 1

4 4

12
1 1

1
2 8 8

1
8 8
1
8 8

i i i xi i yi i
i i i

i i i xi i
i i

i i i yi i
i i

a bw

aw

bw

 (6-35) 

The element obtained by this scheme is the same as no. 23 element LR12-2 in 
Table 5.1, only the derivation procedures are different. 

6.2.3 Rectangular Element RGC-12 (Buckling Problem) 

Now, consider the buckling problem for thin plates. The in-plane stress resultants 
Nx, Ny and Nxy of the mid-plane are assumed to be linearly distributed (as shown 
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in Fig. 6.12): 

( )
( )
( )

x x x x

y y y y

xy xy xy xy

N P Q R
N P Q R
N P Q R

 (6-36) 

where Px, Py, Pxy, Qx, Qy, Qxy, Rx, Ry, Rxy are all constants.  

Figure 6.12 Stability problem for thin plates 

The geometric stiffness matrix of the generalized conforming element is given by 

1 T 1ˆ ˆ ˆ ˆ( ) ( )e eg C G g C G  (6-37) 

where

1 1 T T
, , , ,1 1

T T
, , , ,

( ) ( )

( )( ) d d

e
x x x y y y

xy xy xy

b aP Q R P Q R
a b

P Q R

g F F F F

F F F F (6-38)

in which ,F  and ,F  denote the derivatives of F  with respect to and ,
respectively. 

Then the critical load of the thin plate can be calculated by the above stiffness 
matrix eK  and geometric stiffness matrix eg  of the generalized conforming 
element. 

Example 6.3 The buckling critical load Pxcr for the simply-supported and 
clamped square plates subjected to uniform compression in one direction. The 
length of the plate side is L.
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The results of the buckling critical load Pxcr calculated from the element 
RGC-12 are given in Table 6.3. Compared with the results given by reference [8], 
this generalized conforming element gives more accurate results. The numbers in 
parentheses are relative errors. 

Table 6.3 Coefficient k for square plate under compression in one direction 

Simply-supported Clamped Mesh 
(whole plate) Kapur [8] RGC-12 Kapur [8] RGC-12 

4 4
6 6
8 8

10 10

3.770( 5.8%)
3.887( 2.8%)
3.933( 1.7%)
3.960( 1.0%)

4.128( 3.2%)
4.028( 0.7%)
4.009( 0.2%)
4.002( 0.05%)

9.28( 7.8%)
9.61( 4.6%)
9.78( 2.9%)
9.89( 1.8%)

9.70( 3.7%)
10.12( 0.5%)
10.12( 0.5%)
10.12( 0.5%)

Analytical 
solution 4.000 10.07 

Note: 
2

cr 2x
DP k

l

Example 6.4 The buckling critical load Pxycr for a simply-supported rectangular 

plate 1

2

1.25L
L

 under shear load. 

The results are given in Table 6.4. Compared with those given in reference [8], 
the generalized conforming element gives more accurate results. 

Table 6.4 Coefficient k for a simply-supported rectangular plate 1

2

5
4

L
L

 under 

shear load  

Mesh (whole plate) Kapur[8] RGC-12 
4 4
6 6
8 8

10 10

6.95( 9.9%)
7.25( 6.0%)
7.45( 3.4%)

7.84( 1.7%)
7.74( 0.4%)
7.74( 0.4%)
7.72( 0.1%)

Analytical solution 7.71 

Note: 
2

cr 2
2

xy
DP k

l

6.2.4 Rectangular Element CGC-R12[9]

The element CGC-R12 is also a rectangular thin plate element with 12 DOFs, which 
are still the deflection wi, rotations xi and yi (i 1, 2, 3, 4) at each corner node.  
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The element deflection field is assumed to be an incomplete quartic polynomial 
containing 12 unknown coefficients, and expressed in terms of the dimensionless 
rectangular coordinates  and  as follows: 

2
1 2 3 4 5 7 9

2 4 4
6 8 10 11 12

( 1)( )
( 1)( ) ( 1) ( 1)

w

(6-39)

According to the line-point conforming scheme, 12 conforming conditions are 
selected as follows: 

(1) point conforming conditions of w at the corner nodes (4 conditions) 

 0i iw w   (i 1,2,3,4) (6-40) 

(2) average line conforming conditions of w and n along the element sides (8 
conditions)

 ( )d 0
ijd

w w s   (ij 12,23,34,41) (6-41) 

d 0
ij

nd

w s
n

  (ij 12,23,34,41) (6-42) 

From the four point conforming conditions in Eq. (6-40), the first four unknown 
coefficients can be obtained: 

4

1
1

1
4 i

i
w ,

4

2
1

1
4 i i

i
w ,

4

3
1

1
4 i i

i
w ,

4

4
1

1
4 i i i

i
w  (6-43) 

Substitution of the above equation into Eq. (6-39) yields 

4
2

5 7 9
1
2 4 4

6 8 10 11 12

1 (1 )(1 ) ( 1)( )
4
( 1)( ) ( 1) ( 1)

i i i
i

w w

(6-44)

And, the residual eight unknown coefficients can be determined by the line 
conforming conditions (6-41) and (6-42). For simplification, the combination 
conforming conditions with symmetry or antisymmetry can be used again.  

Firstly, in Eq. (6-44), four unknown coefficients 5, 6, 11 and 12 belong to 
the SS group; two unknown coefficients 8 and 9 belong to the SA group; and 
two unknown coefficients 7 and 10 belong to the AS group.  

Secondly, eight combination conditions can be formed from Eqs. (6-41) and 
(6-42), in which four conditions (6-A1), (6-A2), (6-A3) and (6-A4) of the SS 
group can just be used to solve 5, 6, 11 and 12; two conditions (6-B1) and 
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(6-B2) of the SA group can just be used to solve 8 and 9; and two conditions 
(6-C1) and (6-C2) of the AS group can just be used to solve 7 and 10. After 
substituting the deflection field (6-44) and the interpolation formulae for 
boundary, equations of these three groups can be written as: 

SS group 

4 4 4

5 11
1 1 1

4 4 4

6 12
1 1 1

4

5 11
1

4

6 12
1

8 16
3 5 3
8 16
3 5 3

8 ( 2 )

8 ( 2 )

i i xi i
i i i

i i yi i
i i i

xi i
i

yi i
i

aw w

bw w

a

b

 (6-45) 

SA group 

4 4 4

8
1 1 1

4 4

9 8
1 1

8
3 3

1 8 8
3

i i i i yi i i
i i i

i i xi
i i

bw w

w
a a a

 (6-46) 

AS group 
4 4 4

7
1 1 1

4 4

7 10
1 1

8
3 3

1 8 8
3

i i i i xi i i
i i i

i i yi
i i

aw w

w
b b b

 (6-47) 

Thus, we can obtain 
4 4

5 6 11 12
1 1

4 4 4 4

8 9
1 1 1 1

4 4 4 4

7 10
1 1 1 1

, , 0, 0
8 8

1,
8 8 8 24

1,
8 8 24 8

xi i yi i
i i

yi i i i i xi yi i i
i i i i

xi i i i i xi i i yi
i i i i

a b

b a bw

a a bw

 (6-48) 

Substitution of Eqs. (6-48) into (6-44) yields 

4

1
( )i i xi xi yi yi

i
w N w N N  (6-49) 
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where Ni, Nxi and Nyi are shape functions 

2 2

2 2

2 2

1[2(1 )(1 ) ( 1) ( 1)]
8

[3(1 )( 1) ( 1)]
24

[3(1 )( 1) ( 1)]
24

i i i i i

i
xi i i i

i
yi i i i

N

a
N

b
N

 (6-50) 

Then, the element stiffness matrix can be obtained by the conventional procedure. 
Example 6.5 The central deflection and moment of the simply-supported 

and clamped square plates subjected to vertical uniformly distributed load q and 
concentrated load P.

Table 6.5 The central deflection and moment of plates subjected to uniform load 

Central deflection w Central moment M

Simply-supported Clamped Simply-supported Clamped 

Elements ACM CGC-R12 ACM CGC-R12 ACM CGC-R12 ACM CGC-R12

2 2

4 4

6 6

8 8

0.432 82 

0.412 94 

0.409 21 

0.408 09 

0.405 23

0.406 16

0.406 22

0.406 23

0.140 33

0.133 23

0.128 28

0.127 54

0.124 47

0.126 26

0.126 47

0.126 51

0.521 69

0.489 20

0.483 42

0.481 66

0.510 60

0.487 72

0.482 72

0.481 01

0.277 83

0.240 50

0.234 09

0.231 91

0.271 16

0.240 69

0.234 43

0.232 13

Analytical 0.406 24qL4/(100D) 0.126 53qL4/(100D) 0.478 86qL2/10 0.229 05qL2/10

Table 6.6 The central deflection of plates subjected to concentrated load 

 Simply-supported Clamped 

Elements ACM CGC-R12 ACM CGC-R12 

2 2

4 4

6 6

8 8

0.123 27 

0.118 29 

0.117 14 

0.116 74 

0.118 71 

0.116 89 

0.116 42 

0.116 24 

0.613 45 

0.580 26 

0.570 99 

0.567 30 

0.580 62 

0.568 89 

0.565 03 

0.563 44 

Analytical 0.1160PL2/(10D) 0.5612PL2/(100D)

The length of the plate side is L, and Poisson’s ratio is 0.3. 
Due to symmetry, only one quarter of the plate is meshed. Results by the elements 

CGC-R12 and ACM are listed in Tables 6.5 and 6.6. 
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6.3 Line-Point Conforming Scheme—Triangular Elements 

This section will introduce the triangular thin plate elements (m n 9) constructed 
by the combination scheme of line conforming and point conforming. The no. 6, 
7, 8 and 9 elements LZ1, LZ2, GPL-T9 and GCIV-T9 in Table 5.1 all belong to 
this element group. 

6.3.1 Triangular Element LZ1[10]

A triangular thin plate bending element with 9 DOFs is shown in Fig. 6.1. The nodal 
displacement vector eq  is 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq

The displacements along each element side are interpolated by eq , i.e., along 
each element side, the deflection w  is assumed to be cubic and the normal 
slope n  linearly distributed. 

The element deflection field is assumed to be an incomplete cubic polynomial 
with 9 unknown coefficients, and expressible in terms of the area coordinates L1,
L2, L3 as 

w F  (6-51) 

where  contains 9 unknown coefficients 

T
1 2 9[ ]

F  contains 9 basis functions 

2 2 2
1 2 3 1 2 2 3 3 1 1 2 2 3 3 1[ ]L L L L L L L L L L L L L L LF  (6-52) 

In order to solve the 9 unknown coefficients in terms of eq , according to the 
line-point conforming combination scheme, 9 conforming conditions can be selected 
as follows: 

 ( ) 0jw w   (j=1, 2, 3) (6-53) 

( )d 0, d 0
k k

nS S

ww w s s
n

  (k 1,2,3) (6-54) 
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Equation (6-53) denotes the point conforming conditions at three corner nodes; 
Eq. (6-54) denotes the average line conforming conditions of deflections and 
rotations along three sides. 

From Eq. (6-53), the first three unknown coefficients can be obtained 

1 1 2 2 3 3, ,w w w  (6-55) 

From Eq. (6-54), the following six equations can be obtained 

4 7 3 1 2 3 1 2

5 8 1 2 3 1 2 3

6 9 2 3 1 2 3 1

2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

x x y y

x x y y

x x y y

c b
c b
c b

 (6-56) 

4 5 6 7 8 3 1 3 2 3

3 1 2 3 1 22
3

4 5 6 8 9 1 1 2 1 3

1 2 3 1 2 32
1

4 5 6 7 9 2 1 2 2 3

2 32
2

2 2 (1 ) (1 ) 2
3 3

2 [ ( ) ( )]

2 2 2 (1 ) (1 )
3 3

2 [ ( ) ( )]

2 2 (1 ) 2 (1 )
3 3

2 [ (

x x y y

x x y y

x

r w r w w

A b c
d

w r w r w

A b c
d

r w w r w

A b
d 1 2 3 1) ( )]x y yc

 (6-57) 

where

2 2

2, , j k
i j k i k j i

i

d d
b y y c x x r

d
 ( 1,2,3; 2,3,1; 3,1,2)i j k

(6-58)

d1, d2, and d3 denote the side lengths of the element; A is the area of the triangle. 
The last six unknown coefficients can be determined from Eqs. (6-56) and (6-57). 
Combining the above results, we have 

ˆ eAq  (6-59) 

where
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1 2 3
ˆ ˆ ˆ ˆ[ ]A A A A  (6-60) 

with

2 3 2 2 3 3 2 2 2 3 3 2

2 3 2 2 3 3 1 2 2 3 3 1

1

2 3 2 2 3 3 2 3 2 2 3 3 2 3

2 3

1 0 0
0 0 0
0 0 0

1 1 1(9 2 ) ( 2 3 ) ( 2 3 )
6 12 12

1 1 1(5 ) ( 5 3 ) ( 5 3 )
6 12 12

ˆ
1 1 1( 9 2 5 ) ( 2 5 12 3 ) ( 2 5 12 3 )
6 12 12
1 1(9 2 ) (
3 6

r r r c r c c r b r b b

r r r c r c c r b r b b

r r r c r c c c r b r b b b

r r

A

2 2 3 3 2 3 2 2 3 3 2 3

2 3 2 2 3 3 1 2 2 3 3 1

2 3 2 2 3 3 2 3 2 2 3 3 2 3

12 3 6 ) ( 2 3 6 )
6

1 1 1(5 ) ( 5 3 ) ( 5 3 )
3 6 6

1 1 1( 9 2 5 ) ( 2 5 6 3 ) ( 2 5 6 3 )
3 6 6

r c r c c c r b r b b b

r r r c r c c r b r b b

r r r c r c c c r b r b b b

  (6-61) 

3 1 3 3 1 1 3 1 3 3 1 1 3 1

3 1 3 3 1 1 3 3 3 1 1 3

2

3 1 3 3 1 1 2 3 3 1 1 2

3 1

0 0 0
1 0 0
0 0 0

1 1 1( 9 2 5 ) ( 2 5 12 3 ) ( 2 5 12 3 )
6 12 12

1 1 1(9 2 ) ( 2 3 ) ( 2 3 )
6 12 12

ˆ
1 1 1(5 ) ( 5 3 ) ( 5 3 )
6 12 12

1 1( 9 2 5 )
3

r r r c rc c c r b rb b b

r r r c rc c r b rb b

r r r c rc c r b rb b

r r

A

3 3 1 1 3 1 3 3 1 1 3 1

3 1 3 3 1 1 3 1 3 3 1 1 3 1

3 1 3 3 1 1 2 3 3 1 1 2

1( 2 5 6 3 ) ( 2 5 6 3 )
6 6

1 1 1(9 2 ) ( 2 3 6 ) ( 2 3 6 )
3 6 6

1 1 1(5 ) ( 5 3 ) ( 5 3 )
3 6 6

r c rc c c r b rb b b

r r r c rc c c r b rb b b

r r r c rc c r b rb b

  (6-62) 
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1 2 1 1 2 2 3 1 1 2 2 3

1 2 1 1 2 2 1 2 1 1 2 2 1 2

3
1 2 1 1 2 2 1 1 1 2 2 1

1 2

0 0 0
0 0 0
1 0 0

1 1 1(5 ) ( 5 3 ) ( 5 3 )
6 12 12

1 1 1( 9 2 5 ) ( 2 5 12 3 ) ( 2 5 12 3 )
6 12 12

ˆ 1 1 1(9 2 ) ( 2 3 ) ( 2 3 )
6 12 12
1 1(5 ) ( 5
3 6

r r rc r c c rb r b b

r r rc r c c c rb r b b b

r r rc r c c rb r b b

r r

A

1 1 2 2 3 1 1 2 2 3

1 2 1 1 2 2 1 2 1 1 2 2 1 2

1 2 1 1 2 2 1 2 1 1 2 2 1 2

13 ) ( 5 3 )
6

1 1 1( 9 2 5 ) ( 2 5 6 3 ) ( 2 5 6 3 )
3 6 6

1 1 1(9 2 ) ( 2 3 6 ) ( 2 3 6 )
3 6 6

rc r c c rb r b b

r r rc r c c c rb r b b b

r r rc r c c c rb r b b b

  (6-63) 

Substituting Eq. (6-59) into Eq. (6-51), we obtain 

ˆ ew F Aq  (6-64) 

The element shape function matrix is  

ˆN F A  (6-65) 

Then, the element stiffness matrix eK  can be derived by the conventional procedure. 

6.3.2 Triangular Element LZ2[10]

Assume that the element deflection field w consists of two parts, 

qw w w  (6-66) 

where the first part is the deflection field expressed in Eq. (6-64) 

ˆ e
qw F Aq

and the second part is a generalized bubble deflection field 

w F  (6-67) 

in which  is an internal displacement parameter and F  is a generalized bubble 
function

2 2 2
1 2 2 3 3 1 1 2 2 3 3 1 1 2 3( ) 2( ) 3F L L L L L L L L L L L L L L L  (6-68) 
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It can be verified that all the nine generalized displacements (3 nodal deflections, 
average deflections and average normal slopes along three sides) corresponding 
to w  vanish. 

The deflection field (6-66) is a complete cubic polynomial with 10 DOFs. When 
the internal DOF is eliminated by a condensation process, only 9 external DOFs 
in eq  are retained. 

From the deflection expression (6-66), the element curvature field  can be 
expressed as 

e
qB q B  (6-69) 

The element stiffness matrix after condensation is  

T 1e
qq q qkK K K K  (6-70) 

with

T

T

T

d

d

d

e

e

e

qq q q
A

q q
A

A

A

A

k A

K B DB

K B DB

B DB

D is the elastic matrix.  
Example 6.6 The central deflection wC (in Table 6.7) and central moment MC

(in Table 6.8) of a simply-supported square plate subjected to uniform load q. The 
length of the square plate side is L; the Poisson’s ratio is 0.3. Two mesh orientations 
A and B (see Fig. 6.2) are considered. And, the numbers in parentheses are 
relative errors. 

Table 6.7 The central deflection of a simply-supported square plate 

LZ1 LZ2 CT E-1 Mesh 
1/4 plate Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.3817
( 6.0%)

0.3947
( 2.8%)

0.4005
( 1.4%)

0.4023
( 1.0%)

0.399 30
( 1.7%)

0.351 18
( 13.6%)

0.399 19
( 1.7%)

0.356 20
( 12.3%)

4 4 0.4009
( 1.3%)

0.4038
( 0.6%)

0.4047
( 0.4%)

0.4058
( 0.1%)

0.404 39
( 0.5%)

0.392 80
( 3.3%)

0.404 71
( 0.4%)

0.394 17
( 3.0%)

6 6 0.4040
( 0.6%)

0.4053
( 0.2%)

0.4056
( 0.2%)

0.4061
(0.0%)

0.405 40
( 0.2%)

0.400 28
( 1.5%)

0.405 61
( 0.2%)

0.400 92
( 1.3%)

8 8 0.4050
( 0.3%)

0.4057
( 0.1%)

0.4059
( 0.1%)

0.4062
(0.0%)

Analytical 0.406 235qL4/(100D)
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Table 6.8 The central moment of a simply-supported square plate 

LZ1 LZ2 CT E-1 Mesh 
1/4 plate Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.4931
(3.0%)

0.5004
(4.5%)

0.5046
(5.4%)

0.5151
(7.6%)

0.499 88
(4.4%)

0.439 58
( 8.2%)

0.513 01
(7.1%)

0.468 71
( 2.1%)

4 4 0.4873
(1.8%)

0.4874
(1.8%)

0.4792
(0.1%)

0.4919
(2.7%)

0.483 47
(1.0%)

0.470 05
( 1.8%)

0.487 31
(1.8%)

0.477 97
( 0.2%)

6 6 0.4762
( 0.6%)

0.4839
(1.0%)

0.4778
( 0.2%)

0.4857
(1.4%)

0.480 90
(0.4%)

0.474 93
( 0.8%)

0.482 44
(0.7%)

0.478 71
(0.0%)

8 8 0.4768
( 0.4%)

0.4822
(0.7%)

0.4777
( 0.2%)

0.4832
(0.9%)

Analytical 0.478 86qL2/10

Since the elements CT[11], E-1 and E-2[12] have ever been identified as the most 
accurate nine-DOF triangular thin plate elements, the accuracy of the present two 
elements LZ1 and LZ2 is compared with those models. 

From Tables 6.7 and 6.8, it can be seen that both elements LZ1 and LZ2 have high 
precision, their accuracy is at the same level as that of the elements CT and E-1. 

6.3.3 Triangular Element GPL-T9[13]

The element nodal displacement vector eq  is the same as that of the elements 
LZ1 and LZ2. The element deflection field w is still assumed to be an incomplete 
cubic polynomial with nine unknown coefficients, i.e., Eq. (6-51). But, the nine 
basis functions are different and selected as follows 

1 2 3 1 2 2 3 3 1 7 8 9[ ]L L L L L L L L L F F FF  (6-71) 

where

7 1 1 1

8 2 2 2

9 3 3 3

1 ( 1)
2
1 ( 1)
2
1 ( 1)
2

F L L L

F L L L

F L L L

 (6-72) 

In order to solve the nine unknown coefficients in , we still select 9 conforming 
conditions according to the line-point conforming combination scheme, as shown 
in Eqs. (6-53) and (6-54). 

Firstly, from the point condition (6-53), we obtain 

1 1w , 2 2w , 3 3w  (6-73) 
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Secondly, from the first three average line conforming conditions about w in 
Eq. (6-54), 4, 5 and 6 can be obtained as 

3 3
4 1 2 1 2

1 1
5 2 3 2 3

2 2
6 3 1 3 1

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

x x y y

x x y y

x x y y

c b

c b

c b

 (6-74) 

Finally, from the last three average line conforming conditions about n in 
Eq. (6-54), 7, 8 and 9 can be obtained as 

7 1 1 2 1 3 2 3 1 1 1 3 2

1 1 2 3 2 3 1 1 1 3 2 1 1 2 3

8 2 1 2 2 3 2 2 3 1 3 1 2

2 2 1 3 2 2 3 1 3

1 12 (1 ) (1 ) ( ) ( )
2 2

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

1 1(1 ) 2 (1 ) ( ) ( )
2 2

1 1 1( ) ( ) (
2 2 2

x x

x y y y

x x

x y

w r w r w c c r c c

r c c b b rb b rb b

r w w r w r c c c c

r c c r b b b 1 2 2 2 1 3

9 3 1 3 2 3 3 3 2 1 3 3 1 2

1 2 3 3 3 2 1 3 3 1 2 1 2 3

1) ( )
2

1 1(1 ) (1 ) 2 ( ) ( )
2 2

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

y y

x x

x y y y

b r b b

r w r w w r c c r c c

c c r b b r b b b b

(6-75)

After  is solved, the deflection field w can be expressed in terms of the shape 
functions

3

1
( )i i xi xi yi yi

i
w N w N N  (6-76) 

where

1 1 7 2 8 3 9

3 2
1 1 2 3 1 2 3 7 2 2 3 8 3 3 2 9

3 2
1 1 2 3 1 2 3 7 2 2 3 8 3 3 2 9

2 (1 ) (1 )
1 1 1( ) ( ) ( )

2 2 2 2 2
1 1 1( ) ( ) ( )

2 2 2 2 2

x

y

N L F r F r F
c cN L L L L c c F r c c F r c c F

b bN L L L L b b F r b b F r b b F

(6-77)

The expressions for the other six shape functions can be obtained by permutation. 
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And, bi, ci and ri are given by Eq. (6-58). Based on these shape functions, the 
element stiffness matrix can be derived by the conventional procedure. 

Example 6.7 The central deflection and central moment for the simply- 
supported and clamped square plates subjected to uniform load q and central 
concentrated load P. The meshes A and B in Fig. 6.2, and mesh C in Fig. 6.13 are 
used. Results by the element GPL-T9 are listed in Tables 6.9 to 6.11. 

Example 6.8 The central deflection of a simply-supported circular plate 
subjected to uniform load. 

Due to symmetry, only one quarter of the plate is modelled. Two meshes shown 
in Fig. 6.14 are used. The computational errors of the central deflection obtained 
by the element GPL-T9 are given in Table 6.12. And, the results of reference [14] 
are also listed for comparison. 

Figure 6.13 Mesh C 4 4 for a quarter square plate 

Table 6.9 The central deflection of simply-supported and clamped square plates 
subjected to uniform load q

Clamped Simply-supported Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.1170 0.0995 0.0985 0.3804 0.3948 0.3829 
4 4 0.1241 0.1192 0.1210 0.4007 0.4038 0.4008 
6 6 0.1256 0.1233 0.1240 0.4040 0.4054 0.4039 
8 8 0.1261 0.1246 0.1251 0.4046 0.4049 0.4044 

Analytical 0.126 53qL4/(100D) 0.406 24qL4/(100D)

Table 6.10 The central moment of simply-supported and clamped square plates 
subjected to uniform load q

Clamped Simply-supported Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.3054 0.2185 0.2216 0.4958 0.4986 0.5296 
4 4 0.2395 0.2274 0.2405 0.4775 0.4869 0.4967 
6 6 0.2329 0.2286 0.2342 0.4770 0.4838 0.4871 
8 8 0.2309 0.2288 0.2319 0.4777 0.4811 0.4829 

Analytical 0.2291qL2/10 0.4789qL2/10
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Table 6.11 The central deflection of simply-supported and clamped square plates 
subjected to central concentrated load P

Clamped Simply-supported Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.4655 0.4466 0.4235 1.0183 1.0912 1.0501 
4 4 0.5311 0.5269 0.5257 1.1211 1.1382 1.1253 
6 6 0.5470 0.5448 0.5434 1.1422 1.1498 1.1430 
8 8 0.5527 0.5513 0.5503 1.1484 1.1518 1.1485 

Analytical 0.5612PL2/(100D) 1.160PL2/(100D)

       Figure 6.14 The typical mesh for 1/4 circular plate 
(a) 24 triangular elements or 12 quadrilateral elements; (b) 96 triangular elements or  
48 quadrilateral elements 

Table 6.12 The computational errors of the central deflection of a simply-supported 
circular plate subjected to uniform load 

Mesh (1/4 plate ) GPL-T9 Reference [14] 
Mesh A 0.63% 2.87% 
Mesh B 0.10% 0.70% 

Example 6.9 The central deflection w and central moment My of a rhombus 
plate (Fig. 6.15) subjected to uniform load (Razzaque’s skew plate problem). 

Figure 6.15 Razzaque’s skew plate: typical mesh 4 4



Chapter 6 Generalized Conforming Thin Plate Element Line-Point and ... 

155

The mesh used is shown in Fig. 6.15 and the results by the element GPL-T9 
and other models are listed in Table 6.13. It can be seen that the performance of 
the element GPL-T9 is better than those of the other elements in references [15] 
and [16]. 

Table 6.13 The central deflection and central moment of a rhombus plate subjected 
to uniform load 

Central deflection w Central moment My

DOFs Mesh GPL-T9 Reference 
[15] 

Reference
[16] 

GPL-T9 Reference 
[15] 

Reference
[16] 

27 2 2 0.7318 0.7230  1.0140 0.7602  
75 4 4 0.7783 0.7718 0.8414 0.9925 0.9172 0.9761 

105 4 6 0.7941 0.7850  0.9904 0.9473  
243 8 8 0.7890  0.8111 0.9565  0.9739 
507 12 12 0.7913  0.8057 0.9596  0.9688 

Difference method[15] 0.7945qL4/(100D) 0.9589qL2/10

6.4 Super-Basis Line-Point Conforming Scheme—Elements
GC -R12 and GC -T9

This section will introduce the construction procedure for the super-basis thin 
plate elements formulated by the combination scheme of the line conforming and 
point conforming conditions. The no. 12, 13, 14 and 15 elements GC -R12,
GPL-R1, GC -T9 and LZ3 in Table 5.1 all belong to this element group. Two 
elements GC -R12 and GC -T9 will be discussed in detail. 

6.4.1 Rectangular Element GC -R12—Improvement on the  
Element ACM 

The rectangular thin plate element GC -R12 is a model developed by improving 
the element ACM[6]. Element ACM employed a conventional scheme: let m n 12, 
the 12 conforming conditions are all point conforming conditions. Though the 
deflection along the element boundary is compatible, the normal slope along the 
element boundary is incompatible, and does not satisfy the average line conforming 
conditions. Therefore, an improvement scheme is proposed: let m n 12, then, 
besides the 12 point conforming conditions, the average line conforming conditions 
of the normal slope along the element sides are supplemented. Thereupon, the 
element compatibility is improved, and the new element GC -R12 is obtained.  
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The detailed construction procedure for the element GC -R12 is as follows. 
Assume that the element deflection field w consists of two parts 

ˆ(ACM)w w w  (6-78) 

where w (ACM) is the interpolation formula with 12 unknown coefficients used by 
the element ACM 

2 2 3
1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

w
(6-79)

ŵ  is the additional deflection field with two new unknown coefficients 

2 2 2 2
13 14ˆ ( 1)( 1) ( 1)( 1)w  (6-80) 

ŵ  possesses the following characteristics: 

(1) At the four corner nodes, ŵ , ŵ
x

 and ŵ
y

 are all zero; 

(2) Along four element boundary lines, ŵ  identically equals to zero (thus 
ŵ
s

 also identically equals to zero), but ŵ
n

 does not identically equal to zero. 

The deflection field expressed by Eq. (6-78) is an incomplete bi-cubic polynomial 
with 14 unknown coefficients. Owing to m n, this is a super-basis element.  

In order to solve 14 unknown coefficients, 14 conforming conditions are needed.  
Firstly, the 12 point conforming conditions about w, x and y at the 4 corner 

nodes are applied. Due to the characteristic (1) of the additional deflection ŵ , we 
know that 13 and 14 will not appear in these 12 point conforming conditions. So, 
the 12 unknown coefficients 1, 2, , 12 can just be solved by the 12 conditions. 
That is to say, the solutions of these unknown coefficients are identical with 
those of the element ACM. 

Secondly, we apply the average line conforming conditions about normal slopes: 

1 1

231 1
23

1 1

141 1
14

1 1

431 1
43

1 1
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12

d d

d d

d d

d d

x

x

y

y

w
x
w
x
w
y

w
y

 (6-81) 

In Eq. (6-81), there seemingly are four conditions, in which only two conditions 
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are independent. Then 13 and 14 can be derived as follows: 

4

13
1

4

14
1

16

16

yi i i
i

xi i i
i

b

a
 (6-82) 

After the determination of the 14 unknown coefficients, the element deflection 
field and its shape functions can be obtained: 

4

1
( )i i xi xi yi yi

i
w N w N N  (6-83) 

where the shape functions are all constituted of two parts: 

ˆ
ˆ
ˆ

i i i

xi xi xi

yi yi yi

N N N
N N N
N N N

  (i 1,2,3,4) (6-84) 

iN , xiN  and yiN  belong to the part related to w  (refer to Eq. (7-19)); ˆ
iN , ˆ

xiN
and ˆ

yiN  belong to the part related to ŵ :

2 2

2 2

ˆ 0

ˆ (1 )(1 )
16

ˆ (1 )(1 )
16

i

xi i i

yi i i

N
aN

bN

  (i 1,2,3,4) (6-85) 

Since the shape functions have been obtained, the element stiffness matrix can then 
be established. 

Note that, actually, only one of the first two conditions in Eq. (6-81) is independent, 
this is because of the following relation 

1 1

23 141 1
23 14

d ( )dx x
w w
x x

 (6-86) 

Here, the proof of Eq. (6-86) is given as follows. 
Firstly, from Eq. (6-80), we obtain 

1

1
23 14

ˆ ˆ
d 0w w

x x
 (6-87) 

Secondly, it can be verified that the deflection field w  of the element ACM 
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satisfies the perimeter conforming condition under constant internal force state 
(refer to Sect. 7.2). Now, consider the following constant internal force state: 

1, 0, 0x y xyM M M

Then, the boundary forces of the rectangular element can be obtained from Eq. (5-8): 

12 34

23 14 1

0, 0
( ) ( ) 0
( ) ( )

n ns

n n

n n

Q M
M M
M M

Substitution of the above equation into the perimeter conforming condition (5-2a) 
yields 

1

1
23 14

d 0n n
w w
n n

i.e.,

1

1
23 14

d 0x x
w w
x x

 (6-88) 

Since ˆw w w , by the superposition of Eqs. (6-88) and (6-87), Eq. (6-86) can 
be obtained. 

The above procedure proves that there is only one independent condition existing 
in the first two conditions of Eq. (6-81). Similarly, it can be verified that there is also 
only one independent condition existing in the last two conditions of Eq. (6-81). 

Example 6.10 The central deflection Cw  and central moment CM  of the 
simply-supported and clamped square plates subjected to uniform load q and 
central concentrated load P.

For comparison, results by the elements GC -R12 and ACM are given in Tables 
6.14 and 6.15. The length of the square plate side is L, the Poisson’s ratio is 0.3. 

Table 6.14 The central deflection and moment of square plates subjected to 
uniform load q

Central deflection wC Central moment MC

Simply-supported Clamped Simply-supported Clamped 
Mesh 

(1/4 plate) 
ACM GC -R12 ACM GC -R12 ACM GC -R12 ACM GC -R12

2 2 0.433 0.395 0.140 0.120 0.522 0.434 0.278 0.203 
4 4 0.413 0.403 0.133 0.123 0.489 0.466 0.241 0.221 
6 6 0.409 0.405 0.128 0.126 0.483 0.473 0.234 0.225 
8 8 0.408 0.406 0.128 0.126 0.482 0.476 0.232 0.227 

Analytical 0.406 24qL4/(100D) 0.126 53qL4/(100D) 0.478 86qL2/10 0.2291qL2/10
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Table 6.15 The central deflection of square plates subjected to central concentrated 
load P

Simply-supported Clamped Mesh 
(1/4 plate) ACM GC -R12 ACM GC -R12

2 2 0.123 0.111 0.613 0.523 

4 4 0.118 0.115 0.580 0.549 

6 6 0.117 0.115 0.571 0.555 

8 8 0.117 0.116 0.567 0.558 

Analytical 0.1160PL2/(10D) 0.5612PL2/(100D)

From Tables 6.14 and 6.15, it can be seen that the accuracy of the element GC
-R12 is better than that of the element ACM. 

6.4.2 Triangular Element GC -T9

The construction procedure for the element GC -T9 is: the assumed element 
deflection field contains 12 unknown coefficients (m 12, n 9, it is a super-basis 
element); the 12 conforming conditions used include 9 point conforming conditions 
and 3 average line conforming conditions. Following is the detailed derivation 
procedure of the element. 

The element deflection field is assumed as 

1 1 2 2 3 3 4 2 3 5 3 1 6 1 2

7 3 2 2 3 8 1 3 3 1 9 2 1 1 2

2 2 2
10 1 2 3 11 2 3 1 12 3 1 2

( ) ( ) ( )
w L L L L L L L L L

L L L L L L L L L L L L

L L L L L L L L L (6-89)

The element rotation fields are as follows: 

1 2 3
1 2 3

1 2 3
1 2 3

1
2

1
2

x

y

w w w wb b b
x A L L L

w w w wc c c
y A L L L

 (6-90) 

In order to solve 12 unknown coefficients, 12 conforming conditions are needed. 
Firstly, 9 point conforming conditions at the corner nodes are selected as 
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1 1
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 (6-91) 

These 9 conditions do not contain 10, 11 and 12, so the first 9 unknown 
coefficients can be solved as follows: 
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 (6-92) 

From Eq. (6-89), it can be seen that the deflection along each element side is a 
cubic polynomial (note: three terms corresponding to 10, 11, 12 are all zero 
along the boundary line), and can be determined uniquely according to the values 
of deflections and tangential rotations at the two ends of the side. Thereby, when 
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the 9 point conforming conditions at the corner nodes are satisfied, the deflection 

along each element side is compatible exactly. But, the normal slope n
w
n

along each element side is still incompatible. 
Secondly, in order to require the normal slope along each side to satisfy the 

necessary conforming conditions, 3 average line conforming conditions are imposed 
on the normal slopes along the element sides: 

3

3

0
0

d 0
d

n
L

w s
n

 (6-93a) 

1

1

0
0

d 0
d

n
L

w s
n

 (6-93b) 

2

2

0
0

d 0
d

n
L

w s
n

 (6-93c) 

where d1, d2 and d3 denote the length of each element side, respectively (Fig. 6.1). 
Substitution of Eq. (6-90) into the above equation will yield three equations 
containing 10, 11, 12. Now, we take Eq. (6-93a) as an example, the derivation 
procedure is listed as follows: 

The normal derivative of the deflection field (6-89) along side 12  ( 3 0L ) is: 

3 3

3
3 3

0 1 2 3 0

3
3 1 6 2 9 2 2 1 3 2 6 1 9 1 2 1

2 2 2 2
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dw w w wr r
n A L L L
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(6-94)

where
2 2 2 22 2
2 3 3 11 2

3 1 22 2 2
3 1 2

, ,
d d d dd dr r r

d d d
 (6-95) 

The integration of Eq. (6-94) along side 12  is 

3
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3 11 12
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0

2 2d (1 ) (1 ) 2
4 3 3 6 6

d

L

dw s r r
n A

  (6-96) 
And, the integration of the normal slope n  along side 12  is 

3
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1 2 1 200
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b cs  (6-97) 
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Substitution of Eq. (6-91) into the above equation yields 

3

3

2
3

3 1 3 2 3 4 5 6 7 8 3 900
d [(1 ) (1 ) 2 ]

4
d

n L

ds r r r
A

(6-98)
Substitution of Eqs. (6-96) and (6-98) into Eq. (6-93a) yields the first equation of 
(6-99)

11 12 7 8 3 9

12 10 8 9 1 7
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r
r
r

 (6-99) 

Similarly, the second and third equations in the above equations can also be 
derived. Then, 10, 11 and 12 can be solved from Eq. (6-99): 

10 1 7 2 8 3 9

11 1 7 2 8 3 9

12 1 7 2 8 3 9

(2 3 ) (2 3 ) 3
3 (2 3 ) (2 3 )

(2 3 ) 3 (2 3 )

r r r
r r r

r r r
 (6-100) 

Now, all the 12 unknown coefficients have been obtained, as shown in Eqs. (6-92) 
and (6-100). Substituting them into Eq. (6-89), the element deflection field and its 
shape functions can be derived as follows: 

3

1
( )i i xi xi yi yi

i
w N w N N  (6-101) 

The three shape functions of the node 1 are 
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(6-102)
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The shape functions of the nodes 2 and 3 can be obtained by permutation. By 
these shape functions, it is easy to derive the element stiffness matrix, which has 
been given in reference [17]. 

Note that Eq. (6-99) can also be derived from the point conforming conditions 
about n at the mid-points of the element sides. This can be explained as follows: 
according to the deflection field assumed in Eq. (6-89), the normal slope 

n
w
n

 along each side is cubically distributed. On conditions that n is cubically 

distributed along the element side and has already satisfied the point conforming 
conditions at the two ends, the average line conforming condition of n is equivalent 
to the point conforming condition of n at mid-side point. 

Example 6.11 The central deflection wC and central moment MC of the simply- 
supported and clamped square plates subjected to uniform load q and central 
concentrated load P.

The length of the square plate side is L, the Poisson’s ratio is 0.3. Two mesh types 
are used: mesh B in Fig. 6.2 and Mesh C in Fig. 6.13. The results by the element 
GC -T9 are given in Tables 6.16 and 6.17. 

Table 6.16 The central deflection and moment of square plates subjected to uniform 
load (GC -T9)

Central deflection wC Central moment MC

Simply-supported Clamped Simply-supported Clamped Mesh 
(1/4 plate) 

Mesh B Mesh C Mesh B Mesh C Mesh B Mesh C Mesh B Mesh C
2 2 0.394 0.386 0.101 0.100 0.472 0.547 0.198 0.230
4 4 0.403 0.402 0.120 0.120 0.479 0.502 0.222 0.244
6 6 0.405 0.404 0.123 0.124 0.480 0.489 0.226 0.236
8 8 0.404 0.405 0.125 0.125 0.478 0.485 0.227 0.233

Analytical 0.406 24 qL4/(100D) 0.126 53 qL4/(100D) 0.478 86 qL2/10 0.2291 qL2/10

Table 6.17 The central deflection of square plates subjected to central concentrated 
load (GC -T9)

Simply-supported ClampedMesh 
(1/4 plate) Mesh B Mesh C Mesh B Mesh C

2 2 0.107 0.106 0.438 0.433 
4 4 0.113 0.113 0.523 0.527 
6 6 0.115 0.114 0.542 0.544 
8 8 0.115 0.115 0.550 0.551 

Analytical 0.1160 PL2/(10D) 0.5612 PL2/(100D)
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6.5 Super-Basis Point Conforming Scheme—Elements  
MB1-T9 and MB2-T9 

This and the next sections will introduce two construction schemes for the super- 
basis thin plate elements formulated only by the point conforming conditions, which 
are also the improvement schemes for the conventional non-conforming elements. 
Firstly, according to the conventional method of non-conforming elements, the 
point conforming conditions about w, x, y at the corner nodes are selected. Here, 
the normal slope n along each side is generally still incompatible. Secondly, for 
overcoming this shortcoming, the point conforming conditions of n at the mid- 
side points are supplemented for improving the compatibility of n along each side. 
The no. 16, 17 and 18 elements in Table 5.1 belong to this element group, in which 
two triangular elements MB1-T9 and MB2-T9 will be introduced in detail[18].

6.5.1 Triangular Element MB1-T9 

Triangular element MB1-T9 has 9 DOFs. Its assumed deflection field contains 
12 unknown coefficients, and can be written as the sum of two parts: 

ˆw w w  (6-103) 
where w  and ŵ  contain 9 and 3 unknown coefficients, respectively. 

2 2 2
1 1 2 2 3 3 4 1 2 5 2 3 6 3 1 7 1 2 8 2 3 9 3 1w L L L L L L L L L L L L L L L  (6-104) 

2 2 2 2 2 2
10 2 3 11 3 1 12 1 2ŵ L L L L L L  (6-105) 

The selected 12 conforming conditions are also classified into two groups. The 
first group involves 9 point conforming conditions about w, x and y at three 

corner nodes. Since ŵ , ŵ
x

 and ŵ
y

 at the corner nodes are identically equal zero, 

only the first 9 unknown coefficients 1, 2, , 9 appear in these 9 equations. 
Their solutions are 
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 (6-106) 
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In the assumed deflection field w  of Eq. (6-104), deflection w  along each side 

is a cubic polynomial, and normal slope w
n

 is a quadric polynomial. Thereby, 

along each boundary line, w  and w  conform to each other, but w
n

 and n

are not compatible. In fact, the non-conforming values of the normal slopes at the 
mid-side points 4, 5 and 6 can be solved as follows: 

41
1 7

2 8
52

3 9

63

1

0 1 3 2
1 1 2 0 1 3

16
1 3 2 0

1

n

n

n

w
d n r

w r
d n A

r
w

d n

 (6-107) 

where d1 and point 4 are the length and mid-side point of the opposite side of the 
node 1, respectively; r1 is given by Eq. (6-58). The rest can be analogized. 

The second group involves the point conforming conditions about n at the 
mid-side points. Since  

41
10

11
52

12

63

ˆ1

ˆ1 1
8

ˆ1

w
d n

w
d n A

w
d n

 (6-108) 

from Eqs. (6-107) and (6-108), and according to the conforming conditions of n,
we obtain 

10 1 7

11 2 8

12 3 9

0 1 3 2
1 2 0 1 3
2

1 3 2 0

r
r

r
 (6-109) 

Thus, all the unknown coefficients have been solved out, and the shape functions 
and element stiffness matrix can be obtained by the conventional procedure. 

Here, we also give the following two points. 
(1) If we substitute Eq. (6-109) into Eq. (6-105), then w in Eq. (6-103) can be 

written in terms of the first 9 unknown coefficients: 

2 2 23
1 1 2 2 3 3 4 1 2 5 2 3 6 3 1 7 1 2 2 3

1 3
2

rw L L L L L L L L L L L L L
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2 2 2 2 2 21 2
8 2 3 3 1 9 3 1 1 2

1 3 1 3 (6-110)
2 2

r rL L L L L L L L

where the 9 basis functions can be called as the modified basis functions. 

(2) The normal derivative w
n

 along each side is a cubic polynomial. If the point 

conforming conditions are satisfied at the mid-side points and two ends of the 

side, w
n

 must satisfy the average line conforming conditions, so this element is 

a convergent model. 
Example 6.12 The deflection and moment of the simply-supported and clamped 

square plates subjected to uniform load q and central concentrated load P.
Two mesh types are used: mesh A and B in Fig. 6.2. The results by the element 

MB1-T9 are given in Tables 6.18 and 6.19. It can be seen that this element exhibits 
good performance. 

Table 6.18 The results of the central deflection (MB1-T9) 

Uniform load q Central concentrated load P

Simply-supported Clamped Simply-supported Clamped 
Mesh 

(1/4 plate) 
Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.3969
( 2.3%)

0.4066
(0.1%)

0.1324
(4.7%)

0.1128
( 10.9%)

1.093
( 5.8%)

1.166
(0.5%)

0.5300
( 5.6%)

0.5279
( 5.9%)

4 4 0.4041
( 0.5%)

0.4068
(0.1%)

0.1277
(0.9%)

0.1234
( 2.5%)

1.143
( 1.8%)

1.160
(0.0%)

0.5514
( 1.8%)

0.5526
( 1.5%)

6 6 0.4053
( 0.2%)

0.4066
(0.1%)

0.1270
(0.4%)

0.1251
( 1.1%)

1.152
( 0.8%)

1.160
(0.0%)

0.5564
( 0.9%)

0.5571
( 0.7%)

8 8 0.4057
( 0.1%)

0.4064
(0.0%)

0.1268
(0.2%)

0.1258
( 0.6%)

1.155
( 0.4%)

1.160
(0.0%)

0.5584
( 0.5%)

0.5588
( 0.4%)

Analytical 0.4062(qL4/100D) 0.1265(qL4/100D) 1.160(PL2/100D) 0.5612(PL2/100D)

6.5.2 Triangular Element MB2-T9 

Another triangular element MB2-T9 can be derived by a similar scheme. The 
difference with the element MB1-T9 is that ŵ  is re-assumed as follows: 

2 2 2
10 1 2 3 11 2 3 1 12 3 1 2ŵ L L L L L L L L L  (6-111) 

From the point conforming conditions of the normal slope n at the mid-side points, 
we obtain 
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10 3 1 2 7

11 3 1 2 8

12 3 1 2 9

3(1 ) 1 3 (1 3 )
1 (1 3 ) 3(1 ) 1 3
2

1 3 (1 3 ) 3(1 )

r r r
r r r

r r r
 (6-112) 

The total deflection w can be expressed in terms of 1, 2, , 9 and their 
modified basis functions, and its expression is the same as that of the element 
proposed by Specht[19], but the derivation procedure here is much simpler. 

Table 6.19 The results of the central and mid-side moments (MB1-T9) 

Central moment (q) Mid-side moment (clamped plate) 
Simply-supported Clamped (P) (q)

Mesh 
(1/4 plate) 

Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.5468
(14.2%)

0.5477
(14.4%)

0.3077
(34.3%)

0.2720
(18.7%)

0.1706
(35.7%)

0.1001
( 20.3%)

0.0707
(37.8%)

0.0333
( 35.2%)

4 4 0.5001
(4.4%)

0.4971
(3.8%)

0.2524
(10.2%)

0.2408
(5.1%)

0.1509
(20.0%)

0.1162
( 7.6%)

0.0648
(26.4%)

0.0429
( 16.4%)

6 6 0.4882
(2.0%)

0.4873
(1.8%)

0.2395
(4.5%)

0.2343
(2.3%)

0.1439
(14.5%)

0.1181
( 6.1%)

0.0613
(19.4%)

0.0454
( 11.6%)

8 8 0.4828
(0.8%)

0.4837
(1.0%)

0.2350
(2.6%)

0.2319
(1.2%)

0.1399
(11.3%)

0.1193
( 5.1%)

0.0592
(15.4%)

0.0467
( 9.0%)

Analytical 0.4789(qL2/10) 0.2291(qL2/10) 0.1257(P) 0.0513(qL2)

6.6 SemiLoof Conforming Scheme 

This section will introduce the second construction scheme for the super-basis thin 
plate elements formulated only by the point conforming conditions, i.e. SemiLoof 
conforming scheme. This scheme is a novel scheme by the combination of the 
generalized conforming element and the SemiLoof element[20], and possesses the 
following characteristics: 

(1) Unlike the SemiLoof element with DOFs at the corner and mid-side nodes, 
the elements here only contain DOFs at the corner nodes, which is much simpler 
and more suitable for applications. 

(2) It is not necessary that a one-to-one correspondence exists between the 
element DOFs and the selected conforming conditions (and a super-basis scheme 
m n is used). But, the limit compatibility should be ensured when the mesh is 
refined by infinite elements, so that the advantages (reliability and convergence) 
of the generalized conforming elements can be guaranteed. 

(3) The integral form conforming conditions (such as line conforming and 
perimeter conforming conditions), which are usually employed by the generalized 
conforming elements, are not adopted here. All the conforming conditions used 
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are discrete point conforming conditions: the point conforming conditions about 
deflection w at the corner nodes and mid-side points, and the point conforming 
conditions about the normal slope n at two Gauss points of each side (the Semi- 
Loof constraint conditions). So the derivation procedure becomes more convenient. 

The no. 19, 20 and 21 elements LSL-T9, LSL-R12 and LSL-Q12 in Table 5.1 
belong to this element group, in which two elements LSL-T9[21] and LSL-Q12[22]

will be introduced in detail. 

6.6.1 Triangular Element LSL-T9 

A triangular thin plate element is shown in Fig. 6.16. The nodal displacement 
vector (element DOFs) eq  is the same as Eq. (6-1). 

Figure 6.16 A triangular thin plate element with SemiLoof constraint conditions 
4,5,6 are mid-side points; and Ai and Bi are two Gauss points along each side 

The element deflection field w is assumed to be a polynomial with 12 unknown 
coefficients, expressible in terms of the area coordinates L1, L2 and L3 as follows 

1 1 2 2 3 3 4 2 3 5 3 1 6 1 2

7 2 3 2 3 8 3 1 3 1 9 1 2 1 2
2 2 2

10 1 2 3 11 2 3 1 12 3 1 2

[ ] [ ]
[ ( ) ( ) ( )]
[ ]

w L L L L L L L L L
L L L L L L L L L L L L
L L L L L L L L L (6-113)

The following 12 point conforming conditions are selected: 

 ( ) 0iw w   (i 1,2,3) (6-114) 

 ( ) 0jw w   ( j 4,5,6) (6-115) 

0n
k

w
n

  (k A1, B1, A2, B2, A3, B3) (6-116) 

Equations (6-114) and (6-115) are the point conforming conditions about deflection 
at the corner nodes (nodes 1, 2, 3) and mid-side points (points 4, 5, 6); Eq. (6-116) 
is the point conforming conditions about the normal slope at Gauss points (points 
A1, B1, A2, B2, A3, B3) along the element sides. 
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Firstly, from Eq. (6-114), we obtain 

1 1 2 2 3 3, ,w w w  (6-117) 

Secondly, 4, 5 and 6 can be obtained from Eq. (6-115), for example, for the 
mid-side point 4 of side 23 , we have 

4 2 3 4

1 1
4 2 3 2 3 2 3

1 1 1
2 2 4
1 ( ) ( ) ( )
2 8 8x x y y

w

c bw w w

Then, as shown in the first equation below, 4 can be solved: 

1 1
4 2 3 2 3

2 2
5 3 1 3 1

3 3
6 1 2 1 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

x x y y

x x y y

x x y y

c b

c b

c b

 (6-118) 

Finally, the rest of the unknown coefficients can be obtained from Eq. (6-116): 

7 2 3 1 3 2 2 3 1 2 2 3 3 1

3 3 3 1 2 2 2 2 1 3 1 2 2

3 3 1 3 3 3 1 2 2 2 2 1 3

8 3 1 3 1 2 1 3

1 1[( ) (3 ) ( 3) ] [( 3 3 )
2 12

1(3 8 ) (3 8 ) ] [( 3
12

3 ) (3 8 ) (3 8 ) ]
1 1[ ( 3) ( ) (3 ) ] [ (3
2 12

x

x x

y y y

r r w r w r w c r c r c

r c c c r c c c b r b

r b r b b b r b b b

r w r r w r w r3 3 3 2 1

2 3 3 1 1 2 1 1 1 2 3 3 3 3

2 1 2 3 3 1 1 2 1 1 1 2 3

9 2 1 1 2 1 2 3 2 2 2 3 1

1 1 1 3 2 3 1 1

8 )

1( 3 3 ) (3 8 ) ] [ (3
12

8 ) ( 3 3 ) (3 8 ) ]
1 1[(3 ) ( 3) ( ) ] [(3 8 )
2 12

(3 8 ) ( 3

x

x x

y y y

x

x

c c c

c r c r c r c c c r b b

b b r b rb rb b b

r w r w r r w r c c c

r c c c c r c 2 2 3 2 2 2

3 1 1 1 1 3 2 3 1 1 2 2 3

10 11 12 3 2 1 1 3 2 2 1 3

2 2 3 3 1 3 3 1 1 2 1 1 2 2 3

2 2 3 3 1 3 3 1 1 2 1 1

13 ) ] [(3
12

8 ) (3 8 ) ( 3 3 ) ]
( ) ( ) ( )

1 [( ) ( ) ( ) ]
2
1 [( ) ( ) (
2

x

y y y

x x x

y y

r c r b b

b rb b b b rb r b
r r w r r w r r w

r c r c r c r c r c r c

r b r b r b rb rb 2 2 3) ]yr b

 (6-119) 

where bi, ci and ri are given in Eq. (6-58). 



Advanced Finite Element Method in Structural Engineering 

170

Once  is solved and expressed in terms of eq , the element stiffness matrix 
can be derived following the conventional procedure. Note that the element LT in 
reference [23] derived with the integral conforming conditions is equivalent to the 
present element. However, the construction procedure in this section based on the 
point conforming conditions appears to be simpler, and is easy to be extended to 
formulate quadrilateral element. 

Example 6.13 The central deflection and central moment of the simply- 
supported and the clamped square plates subjected to uniform load. 

Results by the elements LSL-T9 and CT proposed by Fricker[11] are given in 
Table 6.20 for comparison. It can be seen that the accuracy of the present element 
is better than that of the element CT (Meshes A and B in Fig. 6.2 are used). 

Table 6.20 The central deflection and moment of square plates subjected to uniform 
load (LSL-T9) 

Simply-supported Clamped 
LST-T9 CT LST-T9 CT 

Mesh 
(1/4

plate) Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.4014
( 1.2%)

0.4024
( 0.9%)

0.399 30
( 1.7%)

0.351 18 
( 13.6%)

0.122 88
( 2.9%)

0.107 68
( 14.9%)

0.147 50
(16.6%)

0.107 32
( 15.2%)

4 4 0.4051
( 0.3%)

0.4058
( 0.1%)

0.404 39
( 0.5%)

0.392 80 
( 3.3%)

0.125 44
( 0.8%)

0.122 03
( 3.6%)

0.132 21
(4.5%)

0.122 32
( 3.3%)

6 6 0.405 74
( 0.1%)

0.406 09
( 0.03%)

0.405 40
( 0.2%)

0.400 28 
( 1.5%)

0.126 11
( 0.3%)

0.124 52
( 1.6%)

0.129 12
(2.0%)

0.124 68
( 1.5%)

Central
deflection

Analy- 
tical 0.406 235qL4/(100D) 0.126 53qL4/(100D)

2 2 0.5022
(4.9%)

0.5161
(7.8%)

0.499 88
(4.4%)

0.439 58 
( 8.2%)

0.2909
(27%)

0.2380
(3.9%)

0.295 10
(28.8%)

0.205 27
( 10.4%)

4 4 0.4798
(0.2%)

0.4917
(2.7%)

0.483 47
(1.0%)

0.470 05 
( 1.8%)

0.2386
(4.2%)

0.2343
(2.3%)

0.246 71
(7.7%)

0.223 89
( 2.3%)

6 6 0.478 21
( 0.1%)

0.485 51
(1.4%)

0.480 90
(0.4%)

0.474 93 
( 0.8%)

0.232 77
(1.6%)

0.231 55
(1.1%)

0.237 51
(3.7%)

0.226 05
( 1.3%)

Central
moment 

Analy- 
tical 0.478 86(qL2/10) 0.229 05(qL2/10)

6.6.2 Quadrilateral Element LSL-Q12 

A quadrilateral thin plate element with 12 conventional DOFs is shown in 
Fig. 6.17. Its nodal displacement vector eq  is 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

(6-120)
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Figure 6.17 A quadrilateral thin plate element 

The element deflection w is assumed to be a polynomial with 16 unknown 
coefficients, and expressed in terms of  and  as 

2 2
1 2 3 4 5 6 7 8

2 2 2 2
1 3 2 4 5 6 7

2 2 2 2
8

( 1)( ) ( 1)( )
( 1)( ) ( 1)( ) ( 1)( 1)( )
[ ( 1) ( 1)] (6-121)

w

Apply the following 16 conforming conditions 

 ( ) 0iw w   (i 1,2, ,8) (6-122) 

0n
j

w
n

  (j A1, B1, A2, B2, A3, B3, A4, B4) (6-123) 

where Eq. (6-122) denotes the point conforming conditions about deflections at 
the corner nodes (nodes 1, 2, 3 and 4) and the mid-side points (points 5, 6, 7 and 
8); Eq. (6-123) denotes the point conforming conditions about the normal slopes 

at eight Gauss points 1,
3j j jA  and 1 ,

3j j jB  ( j 1, 2, 3, 4) along the 

four element sides. These 16 point conforming conditions are the SemiLoof 
constraint conditions[20], as shown in Fig. 6.18. 

Figure 6.18 SemiLoof constraint conditions 
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Firstly, by applying the condition (6-122), 1, 2, , 8 can be solved as follows: 

4 4

1 2
1 1

4 4

3 4
1 1

4

5 1 3 1 3
1

4

6 1 3 1 3
1

4

7 2 3 2 3
1

8 2 3

1 1,
4 4
1 1,
4 4
1 [ ( ) ( )]
8
1 [ ( ) ( )]
8
1 [ ( ) ( )]
8
1 [ (
8

i i i
i i

i i i i i
i i

xi i i yi i i
i

xi i i yi i i
i

xi i i yi i i
i

xi i i

w w

w w

a a b b

a a b b

a a b b

a a
4

2 3
1

) ( )]yi i i
i

b b

 (6-124) 

where
4 4 4

1 2 3
1 1 1

4 4 4

1 2 3
1 1 1

1 1 1, ,
4 4 4
1 1 1, ,
4 4 4

i i i i i i i
i i i

i i i i i i i
i i i

a x a x a x

b y b y b y
 (6-125) 

Secondly, 1, 2, , 8 can be solved from the condition (6-123). And, their 
expressions are given in reference [22]. 

Now, all the unknown coefficients are solved, the element stiffness matrix can 
be derived following the conventional procedure. 

Example 6.14 The central deflection of a simply-supported circular plate 
subjected to uniform load. For comparison, results by the triangular element 
proposed by Felippa and Bergan[14] are also given together with those of the 
present element LSL-Q12. The Poisson’s ratio 0.3 .

Owing to symmetry, only one quarter plate is calculated. The two meshes in 
Fig. 6.14 are used again, in which mesh A contains 12 quadrilateral or 24 triangular 
elements, and mesh B contains 48 quadrilateral or 96 triangular elements. 

The computational errors are given in Table 6.21. It can be seen that the 
precision of the element LSL-Q12 is better than that of the triangular element in 
reference [14]. 

Table 6.21 The computational errors for central deflection of a simply-supported 
circular plate (uniform load) 

Mesh for 1/4 circular plate LSL-Q12 Triangular element[14]

Mesh A
Mesh B

0.66%
0.17%

2.87%
0.70%
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Example 6.15 The central deflection and moment of the simply-supported and 
the clamped square plates (the length of side is L) subjected to uniform load. The 
Poisson’s ratio is 0.3. 

Three Meshes A, B and C in Fig. 6.19 are used for one quarter plate. And, the 
results are given in Table 6.22. It can be seen that the element LSL-Q12 possesses 
high precision for both regular and irregular meshes. 

Figure 6.19 Meshes for 1/4 plate 
(a) Mesh A 4 4; (b) Mesh B 4 4; (c) Mesh C 4 4

Table 6.22 Results by element LSL-Q12 for square plates subjected to uniform load 

Simply-supported Clamped Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.405 13
( 0.27%)

0.404 42
( 0.45%)

0.403 10 
( 0.77%)

0.122 65
( 3.07%)

0.122 34
( 3.31%)

0.121 18
( 4.23%)

4 4 0.406 16
( 0.02%)

0.406 11
( 0.03%)

0.405 96 
( 0.07%)

0.125 86
( 0.53%)

0.125 75
( 0.62%)

0.125 72
( 0.64%)

8 8 0.406 23
(0.00%)

0.406 14
( 0.02%)

0.405 74 
( 0.12%)

0.126 44
( 0.07%)

0.126 41
( 0.09%)

0.126 39
( 0.11%)

Central
deflection

Analytical 0.406 235qL4/(100D) 0.126 53qL4/(100D)

2 2 0.512 43
(7.01%)

0.518 02
(8.18%)

0.526 91 
(10.03%)

0.257 28
(12.32%)

0.254 25
(11.00%)

0.258 85
(13.01%)

4 4 0.487 30
(1.76%)

0.486 69
(1.64%)

0.486 56 
(1.61%)

0.236 80
(3.38%)

0.235 27
(2.72%)

0.234 63
(2.44%)

8 8 0.480 98
(0.44%)

0.480 38
(0.32%)

0.479 60 
(0.15%)

0.231 07
(0.88%)

0.230 47
(0.62%)

0.230 14
(0.48%)

Central
moment 

Analytical 0.478 86qL2/10 0.229 05qL2/10

Example 6.16 The central deflection w and central moment My of a rhombus 
plate (Fig. 6.15) subjected to uniform load. 

The results of central deflection and moment by the element LSL-Q12 and 
other models are listed in Table 6.23. Compared with the elements in references 
[15, 16], LSL-Q12 has better precision. 
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Table 6.23 The central deflection and central moment of a rhombus plate subjected 
to uniform load 

Central deflection w Central moment My
DOF Mesh 

LSL-Q12 [15] [16] LSL-Q12 [15] [16] 

27 2 2 0.7637 0.7230  1.0006 0.7602  
75 4 4 0.7872 0.7718 0.8414 1.0372 0.9172 0.9761
105 4 6 0.7904 0.7850  0.9478 0.9473  
243 8 8 0.7918  0.8111 0.9777  0.9739
507 12 12 0.7927  0.8057 0.9680  0.9688

Difference method[15] 0.7945qL4/(100D) 0.9589qL2/10
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