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Abstract This chapter focuses on the developments of the variational 
principles which are usually considered as the theoretical basis for the finite 
element method. In this chapter, we will discuss the sub-region variational 
principles which are the results by the combination of the variational principles 
and the concept of sub-region interpolation. Following the introduction, the 
sub-region variational principles for various structural forms, i.e., 3D elastic 
body, thin plate, thick plate and shallow shell, are presented respectively. 
Finally, a sub-region mixed energy partial derivative theorem is also given. 

Keywords variational principle, sub-region variational principle, sub-region 
mixed energy partial derivative theorem. 

2.1 Introduction 

Variational principles are usually considered as the theoretical basis for the finite 
element method. References [1-3] present systematical discussions on some of 
these variational principles. And, some advances and reviews on this field can be 
found in the references [4-8]. 

The sub-region variational principles for elasticity and structural mechanics have 
been proposed in the references [2, 9]. In the third edition of the reference [1] 
(1982), the contents of modified variational principles were supplemented. Though 
the expressions are different, they indeed have a close relationship with the 
sub-region variational principles. 
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The studies on the sub-region variational principles were promoted by the 
advances in the finite element method, and especially by the development of the 
incompatible element, the generalized conforming element, the hybrid element 
and the sub-region mixed element approaches. The sub-region generalized 
variational principles for 3D elasticity was proposed and extended to multi-region 
mixed energy principle in [2] and [9]. And, the sub-layer variational principle 
was also discussed in [10]. A review of the sub-region variational principles and 
their applications in the finite element method was given in [11]. For the elastic 
thin plate, its sub-region potential principle and sub-region complementary 
principle were presented in [2], and its sub-region mixed energy principle was 
given in [12]. For the thick plate and the shallow shell, their sub-region variational 
principles were proposed in [13] and [14], respectively. And, the reference [15] 
provided the sub-region mixed energy partial derivative theorem, a generalization 
of the famous Castigliano first and second energy partial derivative theorems.

From the viewpoint of structure forms, it can be seen that there are four types, 
3D elasticity, thin plate, thick plate and shallow shell, as listed above. The sub-region 
variational principles of these structures and their energy functional expressions 
will be introduced in the following four sections, respectively. 

From the viewpoint of independent field variables assumed in each sub-region, 
it can be found that three cases of regions are existing here:  three-field-region 
(displacement field, strain field and stress field),  two-field-region (displacement 
field and stress field), and  single-field-region (displacement field or stress field). 

From the viewpoint of energy types, it can be seen that each sub-region can be 
assumed as either potential or complementary energy region. If all the regions are 
assumed as potential (or complementary) energy regions, the sub-region potential 
(or complementary) energy principle will be obtained. If some regions are assumed 
as potential energy regions, and the others are assumed as complementary energy 
regions, the sub-region mixed energy variational principle will be obtained. 

The sub-region variational principle provides the theoretical basis for developing 
new finite element methods. For example, the generalized conforming element 
method described in Part  of this book is based on the sub-region potential 
energy principle; and the sub-region mixed element method given in Part  is 
based on the sub-region mixed energy principle. 

2.2 The Sub-Region Variational Principle for Elasticity 

This section will discuss the various forms[9,10] of the sub-region generalized 
variational principle used in elasticity problems. Firstly, let an elastic body be 
divided into two sub-regions, a and b, then the sub-region three-field generalized 
mixed, potential and complementary energy variational principles are discussed, 
respectively. Secondly, two special cases, the sub-region two-field and single-field 
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generalized variational principles, are discussed. Finally, a general form of the 
multi-region variational principle is established. 

2.2.1 The Sub-Region Three-Field Generalized Mixed Variational  
Principle for Elasticity 

Let an elastic body be divided into two sub-regions a and b; Va and Vb be the 
volumes of the regions a and b, respectively; Sa and Sb be the surfaces of a and b,
respectively. Thus, both the surfaces Sa and Sb are composed of three parts: 

a a ua ab

b b ub ab

S S S S
S S S S

Where Sab is the interface between a and b; S a and S b are the boundaries with 
given tractions ( 1,2,3)iT i ; Sua and Sub are the boundaries with given displace- 
ments ( 1,2,3)iu i . (see Fig. 2.1) 

Figure 2.1 An elastic body divided into two sub-regions 

In the sub-region three-field generalized mixed variational principle, the displace- 
ments, strains and stresses 

( ) ( ) ( ) ( ) ( ) ( ), , ; , , ( , 1,2,3)a a a b b b
i ij ij i ij iju u i j

in the regions a and b are all field variables. Then the corresponding functional 
3  can be defined by 

( ) ( )
3 3p 3c pc

a b H  (2-1) 

where ( )
3p

a  is named as the three-field generalized potential energy of the 
sub-region a (excluding the interface Sab):

( )
3p , ,

1 1( ) d d d
2 2

a a ua

a
ij ij ij i j j i i i i i i i i

V S S

U u u Fu V T u S T u u S

  (2-2) 
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in which ( )ijU  denotes the strain energy density; iF  denotes the given body 
force; ,i ju  denotes the partial derivative of iu  with respect to jx . ( )

3c
b  is 

named as the three-field generalized complementary energy of the sub-region b
( also excluding the interface Sab):  

( )
3c ,( ) d d d

b b ub

b
ij ij ij ij j i i i i i i i

V S S

U F u V T T u S T u S     

 (2-3) 

Hpc is the mixed energy at the interface Sab, and given by 

( ) ( )
pc d

ab

b a
i i

S

H T u S  (2-4) 

in which ( )b
iT  denotes the traction of the complementary energy region (sub- 

region b) at the interface Sab:
( ) ( ) ( )b b b

i ij jT n
( )b
jn  is the direction cosine of the outer normal of the region b at the interface Sab;
( )a
iu  denotes the displacement of the potential energy region (sub-region a) at the 

interface Sab.
The sub-region three-field generalized mixed variational principle can be 

described as follows. 
The functional stationary condition 

( ) ( )
3 3p 3c pc 0a b H  (2-5) 

is equivalent to the whole system of equations of the elastic body with sub- 
regions, including equilibrium differential equation: 

, 0ij j iF   (in V) (2-6) 

strain-displacement relations (geometrical equation) 

, ,
1 ( )
2ij i j j iu u   (in V) (2-7) 

stress-strain relations (constitutive equation) 

ij
ij

U   (in V) (2-8) 

boundary conditions of tractions 

i ij j iT n T   (on S ) (2-9) 
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boundary conditions of displacements 

i iu u   (on Su) (2-10) 

and continuous conditions at the interface 
( ) ( )a b

i iT T   (on Sab) (2-11) 

( ) ( )a b
i iu u   (on Sab) (2-12) 

In order to demonstrate the equivalency between the functional stationary 
condition (2-5) and the Eqs. (2-6) (2-12), the variation ( )

3p
a  of Eq. (2-2) is 

firstly developed: 

( )
3p , , ,

1 1 d
2 2

d [ ( ) ]d
a

a ua

a
ij ij ij i j j i ij ij i j i i

ijV

i i i i i i i
S S

U u u u F u V

T u S T u u u T S

Since

, ,d d d
a a a ua ab a

ij i j i i ij j i
V S S S S V

u V T u S u V

we have 

( )
3p , , ,

( ) ( )

1 1 ( ) d
2 2

( ) d ( ) d d
a

a ua ab

a
ij ij ij i j j i ij ij j i i

ijV

a a
i i i i i i i i

S S S

U u u F u V

T T u S u u T S T u S
    

(2-13)

Secondly, the variation ( )
3c

b  of Eq. (2-3) can be written as: 

( )
3c , ,( ) d

[( ) ]d d
b

b ub

b
ij ij ij j i i ij ij i ij j

ijV

i i i i i i i
S S

U F u u V

T T u u T S u T S

Since

, , ,
1d d ( ) d
2

b b b ub ab b

i ij j i i i j j i ij
V S S S S V

u V u T S u u V

we have 
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( )
3c , , ,

( ) ( )

1 1( ) d
2 2

( ) d ( ) d d
b

b ub ab

b
ij ij ij j i i ij i j j i ij

ijV

b b
i i i i i i i i

S S S

U F u u u V

T T u S u u T S u T S
    

(2-14)

Thirdly, the variation pcH  of Eq. (2-4) is 

( ) ( ) ( ) ( )
pc ( )d

ab

b a a b
i i i i

S

H T u u T S  (2-15) 

Finally, the substitution of Eqs. (2-13), (2-14) and (2-15) into (2-5) yields 

3 , , ,

( ) ( ) ( )

( ) ( ) ( )

1 1 ( ) d
2 2

( ) d ( ) d [( )

( ) ]d 0
u ab

ij ij ij i j j i ij ij j i i
ijV

a b a
i i i i i i i i i

S S S

a b b
i i i

U u u F u V

T T u S u u T S T T u

u u T S (2-16)

Equations (2-6) (2-12) can be derived from the functional stationary condition 
(2-16), and vice versa. Thus, the equivalency is proved. 

It should be pointed out that, in the expression (2-4) for the mixed energy Hpc
at the interface Sab, Ti is indicated as belonging to the sub-region b (complementary 
energy region), and ui as belonging to the sub-region a (potential energy region). 
If Hpc is defined as 

( ) ( )d
ab

a b
i i

S

T u S   or  ( ) ( )d
ab

a a
i i

S

T u S   or  ( ) ( )d
ab

b b
i i

S

T u S ,

incorrect results will appear. The reason is that the field variables of the sub- 
regions a and b are all independent variables, they do not previously satisfy the 
continuous conditions (2-11) and (2-12) at the interface. 

The variational principle discussed above is a kind of unconditioned variational 
principle. “Unconditioned” has two meanings:  Firstly, the three variables ui,

ij, and ij within each sub-region are all independent and have no relation with 
each other;  Secondly, at the interface Sab, the variables from the two regions 
are also independent, they are not required in advance to satisfy the continuous 
conditions (2-11) and (2-12). 

2.2.2 The Transformation Between a( )
3p  and a( )

3c

In Fig. 2.1, the three-field generalized potential energy ( )
3p

a  and the three-field 
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generalized complementary energy ( )
3c

a of the sub-region a (excluding the 
interface Sab) have the following transformation relationship: 

( ) ( ) ( ) ( )
3p 3c d

ab

a a a a
i i

S

T u S  (2-17) 

The sub-region three-field generalized variational principle has three forms: 
sub-region mixed energy, sub-region potential energy and sub-region complementary 
energy. One form can be easily transformed to the other two by using the relation 
(2-17).

Following is the demonstration of Eq. (2-17). Firstly, the expression of ( )
3c

a  can 
be written as:  

( )
3c ,( ) d ( ) d d

a a ua

a
ij ij ij ij j i i i i i i i

V S S

U F u V T T u S T u S     

 (2-18) 

Then, the sum of Eqs. (2-2) and (2-18) can be obtained:  

( ) ( )
3p 3c , , ,

1 ( ) d d
2

a a ua

a a
ij i j j i ij j i i i

V S S

u u u V T u S

Since

, , , ,
1 ( ) d ( ) d d
2

a a a a ua ab

ij i j j i ij j i ij i j i i
V V S S S S

u u u V u V T u S

The substitution of this equation into the previous one will yield Eq. (2-17). 
Two special cases can be derived from Eq. (2-17): 
Special case 1: when there are no sub-regions in the whole body, 0abS . Then 

we have 

3p 3c 0  (2-19a) 

Special case 2: when the sub-region a is surrounded by other regions, 0aS ,
0uaS , a abS S . Then we have 

( ) ( ) ( ) ( )
3p 3c d

a

a a a a
i i

S

T u S  (2-19b) 

2.2.3 The Sub-Region Three-Field Generalized Potential and  
Complementary Energy Principles for Elasticity 

Now, by using Eq. (2-17), the functional of the sub-region three-field generalized 
potential and complementary principles can be derived from the functional of the 



Advanced Finite Element Method in Structural Engineering 

22

sub-region three-field generalized mixed variational principle. 

1. The sub-region three-field generalized potential energy principle 

In the expression (2-1) of the sub-region three-field generalized mixed variational 
principle, the sub-region a is represented by the generalized potential energy 
while the sub-region b is represented by the generalized complementary energy. 
Here, we require the sub-region b given by the generalized potential energy, too. 
Then, from Eq. (2-17), we have 

( ) ( ) ( ) ( )
3c 3p d

ab

b b b b
i i

S

T u S

Substitution of this equation into (2-1) yields 

( ) ( )
3 3p 3p pp

a b H  (2-20) 

where Hpp is the additional term of the potential energy at the interface Sab:

( ) ( ) ( )
pp ( )d

ab

b a b
i i i

S

H T u u S  (2-21a) 

Equations (2-20) and (2-21a) are the functional expressions of the sub-region 
three-field generalized potential energy principle. It can be shown that the 
stationary condition 3 0  of this functional is equivalent to all equations, 
boundary conditions and interface continuous conditions of the elastic body with 
sub-regions. Another expression of Hpp can also be obtained by interchanging a
and b in Eq. (2-21a): 

( ) ( ) ( )
pp ( )d

ab

a b a
i i i

S

H T u u S  (2-21b) 

If the continuous condition (2-12) at the interface Sab is satisfied in advance, 
pp 0H .

2. The sub-region three-field generalized complementary energy principle 

In Eq. (2-1), if we require that the sub-region a is given by the generalized 
complementary energy, the substitution of (2-17) into (2-1) will yield 

( ) ( )
3 3c 3c cc

a b H  (2-22) 

where Hcc is the additional term of the complementary energy at the interface Sab:

( ) ( ) ( )
cc ( ) d

ab

a b a
i i i

S

H T T u S  (2-23a) 

Equations (2-22) and (2-23a) are the functional expressions of the sub-region 
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three-field generalized complementary energy principle. Another expression of 
Hcc can also be obtained by interchanging a and b in Eq. (2-23a): 

( ) ( ) ( )
cc ( ) d

ab

a b b
i i i

S

H T T u S  (2-23b) 

If the continuous condition (2-11) at the interface Sab is satisfied in advance, 
cc 0H .

2.2.4 The Sub-Region Two-Field and Single-Field Variational  
Principle for Elasticity 

The functional expression for the three forms of the sub-region three-field 
generalized variational principle have been given by Eqs. (2-1), (2-20) and (2-22), 
respectively. Now, we discuss two special cases. 

1. The sub-region two-field generalized variational principle 

By employing the relationship 

 ( ) ( )ij ij ij ijV U  (2-24) 

between the strain energy density ( )ijU  and the strain complementary energy 
density ( )ijV , the variable ij in the three-field generalized potential energy ( )

3p
a

and the three-field generalized complementary energy ( )
3c

a  of the sub-region a
(excluding the interface Sab) can be eliminated. Thus, the two-field (displacement 
ui, stress ij) generalized potential energy ( )

2p
a  and the two-field generalized 

complementary energy ( )
2c

a  can be obtained: 

( )
2p , ,

1 ( ) ( ) d d ( )d
2

a a ua

a
i j j i ij ij i i i i i i i

V S S

u u V Fu V T u S T u u S     

 (2-25) 

( )
2c ,( ) ( ) d ( ) d d

a a ua

a
ij ij j i i i i i i i

V S S

V F u V T T u S T u S   (2-26) 

From Eqs. (2-1), (2-20) and (2-22), the functional expressions of the sub-region 
two-field generalized mixed energy, potential energy and complementary energy 
principle can be written as follows: 

( ) ( )
2 2p 2c pc

a b H  (2-27) 

( ) ( )
2 2p 2p pp

a b H  (2-28) 

( ) ( )
2 2c 2c cc

a b H  (2-29) 
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where Hpc, Hpp and Hcc are still given by Eqs. (2-4), (2-21) and (2-23), respectively. 

2. The sub-region single-field generalized variational principle 

Now, we discuss the case where each sub-region has only a single independent 
variable. If the sub-region a is a potential energy region, only the displacement 

( )a
iu  will be taken as the independent variable. Thus, the ( )

3p
a  in Eq. (2-2) and 

the ( )
2p

a  in Eq. (2-25) will transform to the single-field potential energy ( )
1p

a  of 
the region a:

( )
1p [ ( ) ]d d ( )d

a a ua

a
i i i i i i i i

V S S

U u Fu V T u S T u u S     (2-30a) 

If ( )a
iu  satisfies the displacement boundary condition (2-10) on Sua in advance, 

then we have 

( )
1p [ ( ) ]d d

a a

a
i i i i i

V S

U u Fu V T u S    (2-30b) 

If the sub-region a is a complementary energy region, only the stress ( )a
ij  will 

be taken as the independent variable, and ( )a
ij  should satisfy the equilibrium 

differential Eq. (2-6) in advance. Thus, the ( )
3c

a  in Eq. (2-18) and the ( )
2c

a  in 
Eq. (2-26) will transform to the single-field complementary energy ( )

1c
a  of the 

region a:

( )
1c ( )d d ( ) d

a ua a

a
ij i i i i i

V S S

V V T u S T T u S     (2-31a) 

If ( )a
ij  satisfies the boundary condition (2-9) on S a in advance, then we have 

( )
1c ( )d d

a ua

a
ij i i

V S

V V T u S     (2-31b) 

From Eqs. (2-1), (2-20) and (2-22), or (2-27), (2-28) and (2-29), the functional 
expressions of the sub-region single-field generalized mixed energy, potential 
energy and complementary energy principle can be written as follows:  

( ) ( )
1 1p 1c pc

a b H  (2-32) 

( ) ( )
1 1p 1p pp

a b H  (2-33) 

( ) ( )
1 1c 1c cc

a b H  (2-34) 

where Hpc, Hpp and Hcc are still given by Eqs. (2-4), (2-21) and (2-23), respectively. 
( )a

iT  or ( )b
iT  in Eq. (2-21), and ( )a

iu  or ( )b
iu  in Eq. (2-23), can be treated as 

Lagrange multipliers.  
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2.2.5 The General Form of the Multi-Region Variational  
Principle for Elasticity 

From the above discussions, a general form of the multi-region variational principle 
can be obtained.  

Let an elastic body be divided into several sub-regions (see Fig. 2.2). Each sub- 
region can be arbitrarily appointed as potential energy region or complementary 
energy region, and each region can be three-field region, or two-field region or 
single-field region. The interfaces between two adjacent regions are of three types, 
Spc, Spp and Scc:  one side of Spc is the potential energy region, while the other 
side is the complementary one;  both sides of Spp are potential energy regions; 
and  both sides of Scc are complementary energy regions. 

Figure 2.2 An elastic body divided into multi-regions 

The general form of the functional for multi-region variational principle can be 
written as 

p c pc pp cc

p c pc pp cc
V V S S S

H H H  (2-35) 

The meanings of the terms on the right-side of this equation are as follows: 
The first term denotes the sum of the potential (or generalized potential) energy 

p of each potential energy region Vp, where p can be 1p or 2p or 3p, which 
is given by Eqs. (2-30), (2-25) and (2-2), respectively. 

The second term denotes the sum of the complementary (or generalized com- 
plementary) energy c of each complementary energy region Vc, where c can 
be 1c or 2c or 3c, which is given by Eqs. (2-31), (2-26) and (2-3), respectively. 

The third term denotes the sum of the additional term Hpc on the interface Spc,
in which Hpc is given by Eq. (2-4). The fourth term denotes the sum of the 
additional term Hpp on the interface Spp, in which Hpp is given by Eq. (2-21). The 
fifth term denotes the sum of the additional term Hcc on the interface Scc, in 
which Hcc is given by Eq. (2-23). 

It can be shown that the stationary condition 

0
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of the functional   in Eq. (2-35) is equivalent to all equations, boundary conditions 
and interface continuous conditions of the elastic body with multi-regions. 

If all regions are potential energy regions, the functional of the sub-region 
potential (or generalized potential) energy principle can be obtained from Eq. (2-35): 

p pp

p pp
V S

H  (2-36) 

It can be seen that Eqs. (2-20), (2-28) and (2-33) are all special cases of (2-36).  
If all regions are complementary energy regions, the functional of the sub- 

region complementary (or generalized complementary) energy principle can be 
obtained from Eq. (2-35): 

c cc

c cc
V S

H  (2-37) 

It can be seen that Eqs. (2-22), (2-29) and (2-34) are all special cases of (2-37). 
Incidentally, the interface Sab can vest in Va (or Vb), and then, the additional 

terms Hpc, Hpp and Hcc on Sab will vest in the energy terms ( )
p

a  and ( )
c

a  of Va

(or the energy terms ( )
p

b  and ( )
c

b  of Vb) as new additional terms. Several 
cases are discussed as follows: 

Firstly, if we assume Va as potential energy region, when Sab is not included, 
the potential or generalized potential energy of Va can be written as 

( )
p pd d ( )d

a a ua

a
i i i i i

V S S

I V T u S T u u S

where Ip denotes the integrand in volume terms of Eqs. (2-30) or (2-25) or (2-2). 
Now, if Sab vests in Va, the new additional terms of ( )

p
a  can be derived as follows:  

(1) If the adjacent region Vb is a potential region, Sab can be dealt with in the 
same manner as Sua. Let ( )b

i iu u , so the new additional term in ( )
p

a  is 

( ) ( ) ( )( )d
ab

a a b
i i i

S

T u u S

From Eq. (2-21b), it can be seen that this new additional term is just Hpp.
(2) If the adjacent region Vb is a complementary region, Sab can be dealt with 

in the same manner as S a. Let ( )b
i iT T , so the new additional term in ( )

p
a  is 

( ) ( )( ) d
ab

b a
i i

S

T u S

From Eq. (2-4), it can be seen that this new additional term is just Hpc.
Secondly, if we assume Vb as complementary energy region, when Sab is not 

included, the complementary or generalized complementary energy of Vb can be 
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written as  

( )
c cd ( ) d d

b b ub

b
i i i i i

V S S

I V T T u S T u S

where Ic denotes the integrand in volume terms of Eqs. (2-31) or (2-26) or (2-3). 
Now, if Sab vests in Vb, the new additional terms of ( )

c
b  can be derived as follows: 

(3) If the adjacent region Va is a potential region, the new additional term will 
be ( ) ( )d

ab

b a
i i

S

T u S , i.e. Hpc.

(4) If the adjacent region Va is a complementary region, the new additional 
term will be ( ) ( ) ( )( ) d

ab

b a b
i i i

S

T T u S , i.e. Hcc in Eq. (2-23b). 

2.2.6 Some Remarks 

The general form of the sub-region generalized variational principle for small 
displacement elasticity problems is presented in this section, and Eq. (2-35) is its 
functional expression. Its universality is due to the following reasons: 

(1) Each sub-region can be independently specified as potential and com- 
plementary energy regions, and the sub-region potential energy, complementary 
energy and mixed variational principle are three special forms of the general 
form. 

(2) The field variables in each region can be specified independently. The sub- 
region single-field, two-field, three-field and their mixed forms are all special 
cases of the general form. 

(3) The displacement and traction conditions on each interface can be relaxed 
partly or completely. It is not necessary to satisfy them in advance. 

Various finite element models can all be regarded as the special applications of 
this principle. For example, the sub-region potential energy principle and its 
functional (2-36) are the theoretical basis of the generalized conforming elements 
and the hybrid-displacement elements; the sub-region complementary energy 
principle and its functional (2-37) are the theoretical basis of the hybrid-stress 
elements; the sub-region mixed energy principle and its functional (2-1) are the 
theoretical basis of the sub-region mixed elements. 

Besides, there are still some other points worthy of being paid attention to: 
(1) By using the relation (2-17), the transformation between the different 

forms of the variational principle can be performed conveniently. 
(2) The general form (2-35) of the functional for the multi-region variational 

principle establishes a bridge linking the various forms of the variational principle. 
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2.3 The Sub-Region Variational Principle for Elastic  
Thin Plate 

This section will discuss the sub-region variational principle for elastic thin 
plate[2,12,16]. The thin plate variational principle with relaxed continuity requirements 
has been discussed in [16]. And, the multi-region potential and complementary 
energy generalized variational principles were given by [2]. Reference [12] proposed 
the multi-region mixed energy generalized variational principle of thin plate, 
considered the thin plate multi-region potential and complementary energy 
generalized variational principles as its special cases, and gave out the transformation 
relations between generalized potential energy and generalized complementary 
energy in the sub-regions. By using these relations, transformation between different 
functionals of the variational principle can be performed conveniently.  

The sequence of presentation used in the previous section is adopted again 
here: firstly, the case with two sub-regions is discussed; secondly, from the 
three-field principle, the two-field and single-field principles are obtained; finally, 
the general form of the multi-region variational principle is given. 

2.3.1 The Sub-Region Three-Field Generalized Mixed Variational  
Principle for Thin Plate 

1. The description of the sub-regions and the boundaries for thin plate 

Let an elastic thin plate be divided into two sub-regions a and b (Fig. 2.3), and 
a and b represent the domains of the regions a and b, respectively. The outer  

Figure 2.3 A thin plate divided into two sub-regions 

boundaries Ca and Cb of the regions a and b are both composed of three parts: 

1 2 3

1 2 3

a a a a

b b b b

C C C C
C C C C

where C1a and C1b are the fixed boundaries (the deflection w  and the normal 
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rotation n  on the boundaries are specified); C2a and C2b are the simply-supported 
boundaries (the deflection w  and the normal moment nM  on the boundaries are 
specified); and C3a and C3b are the free boundaries (the normal moment nM  and 
the equivalent shear force nV  on the boundaries are specified). 

The corner points Aa and Ab on the outer boundaries of the regions a and b are 
composed of two corner point types:  

1 2 1 2,a a a b b bA A A A A A

where A1a and A1b are the corner points where the deflection w  is specified; A2a
and A2b are the corner points where the concentrated force R  is specified. 

The interface of the two regions is Cab, on which the node J is also composed of 
two node types: 

1 2J J J

where J1 is the node where the deflection w  is specified; J2 is the node where the 
concentrated force R  is specified. 

(x, y) are the Cartesian co-ordinates within the mid-surface of the thin plate; n
is the outer normal of the boundary; s is the tangent of the boundary, and its 
positive direction is shown in Fig. 2.3. 

2. The key points of the sub-region three-field generalized variational principle 

(1) The field variables 
Both regions a and b possess three field variables: 

Deflections:

 ( )w a , ( )w b

Bending and twisting moments: 

( ) T( )

( ) T( )

[ ]

[ ]

a a
x y xy

b b
x y xy

M M M

M M M

M

M
Curvatures:

( ) T( )

( ) T( )

[ 2 ]

[ 2 ]

a a
x y xy

b b
x y xy

These field variables are not required to satisfy any conditions in advance 
within the domain and on the boundaries and interfaces. 

(2) Definition of the functional 
Let the region a be the potential energy region, and the region b the 

complementary energy region. Then, the definition of the functional is 

( ) ( )
3 3p 3c pc 1pc 2pc

a b H G G  (2-38) 
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where ( )
3p

a  is the three-field generalized potential energy of the region a (excluding 
the interface Cab and the node J):

1 2 3 1

2 3
1 2

2 2 2
( )

3p 2 2( ) 2 d d

( )d d d

d ( ) (2-39)

a

a a a a

a a
a a

a
x x y y xy xy

ns
n n n nC C C C

n nsC C
A A

w w wU qw M M M x y
x y x y

M wQ w w s V w s M s
s n

wM s M w w Rw
n

Here, q is the density of the normal load; ( )U  is the density of the strain energy: 

2 2( ) [( ) 2(1 )( )]
2 x y xy x y
DU  (2-40) 

where
3

212(1 )
EhD  is the bending stiffness of the plate; E is the Young’s 

modulus; h is the thickness;  is the Poisson’s ratio; Mn, Mns,and Qn are the 
normal bending moment, twisting moment and transverse shear force on the 
boundary, respectively; Mns is the increment of the twisting moment at two 
sides of the corner node on the boundary. 

( )
3c

b  is the three-field generalized complementary energy of the region b
(excluding the interface Cab and the node J):

1 2 3 1

2 3
1 2

2 22
( )

3c 2 22 ( ) 2 d d

d d d

( ) d ( ) (2-41)

b

b b b b

b b
b b

y xyb x
x x y y xy xy

ns ns
n n n n nC C C C

n n ns nsC C
A A

M MM
M M M U q w x y

x y x y

M MQ w s Q V w s M s
s s

wM M s M w M R w
n

Hpc, G1pc, G2pc are the additional energy terms on the interface Cab and the nodes 
J1 and J2:

( )( )
( ) ( )

pc d
ab

ba
b ans

n nC

MwH M Q w s
n s

 (2-42) 

1

( ) ( ) ( )
1pc [ ( ) ( ) ( ) ]a a b

ns ns
J

G M w w M w  (2-43) 

2

( ) ( )
2pc [( ) ]b a

ns
J

G M R w  (2-44) 
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(3) Stationary condition 
The stationary condition of the functional is 

( ) ( )
3 3p 3c pc 1pc 2pc 0a b H G G  (2-45) 

which is equivalent to all field equations, boundary conditions, interface conditions, 
and conditions at the corner points and nodes, including: 

The field equations within a and b:

2 2 2

2 2

2 22

2 2

( ), ( )
(1 )

, ,

2 0

x x y y y x

xy xy

x y xy

y xyx

M D M D
M D

w w w
x y x y

M MM
q

x y x y

 (2-46) 

The boundary conditions on Ca and Cb:

3 3

1 2 1 2

2 3 2 3

1 1

(on )

(on )
(on )

(on )

ns
n n a b

a a b b

n n a a b b

n a b

MQ V C C
s

w w C C C C
M M C C C C

w C C
n

 (2-47) 

The interface conditions on Cab:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

a b
n n

a b
ns ns

n n

a b

a b

M M

M MQ Q
s s

w w
n n

w w

 (2-48) 

The conditions at the corner points: 

1 1

2 2

(at )
(at )

a b

ns a b

w w A A
M R A A

 (2-49) 

The conditions at the nodes on the interface: 
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( )
1

( )
1

( ) ( )
2

( ) ( )
2

(at )
(at )
(at )

( ) ( ) (at )

a

b

a b

a b
ns ns

w w J
w w J
w w J

M M R J

 (2-50) 

The proof of the above equivalent equations is given in Appendix A. 

2.3.2 The Sub-Region Three-Field Generalized Potential and  
Complementary Energy Principles for Thin Plate 

1. The transformation relation between ( )
3p
a  and ( )

3c
a

The three-field generalized potential energy ( )
3p

a  and the three-field generalized 
complementary energy ( )

3c
a  of the region a (excluding the interface Cab and the 

node J) have the following transformation relation: 

1 2

( )( )
( )( ) ( ) ( ) ( ) ( )

3p 3c d ( )
ab

aa
aa a a a ans

n n nsC
J J

MwM Q w s w M
n s

   (2-51) 

Proof From Eqs. (2-39) and (2-41), replacing b by a in Eq. (2-41), we have 

1 2 3
1 2

2 2 2
( ) ( )

3p 3c 2 2

2 22

2 2

2

2 d d

d ( )

a

a a a
a a

a a
x y xy

y xyx

ns
n n nsC C C

A A

w w wM M M
x y x y

M MM w x y
x y x y

M wQ w M s M w
s n

(2-52)

By using integration by parts, the following relation can be obtained: 

1 2 3
1 2 1 2

2 22 2 2 2

2 2 2 22 d d 2 d d

d

a a

a a a ab
a a

y xyx
x y xy

ns
n n nsC C C C

A A J J

M MM w w ww x y M M M x y
x y x y x y x y

MwM Q w s w M
n s

 (2-53) 

Substitution of Eq. (2-53) into Eq. (2-52) yields Eq. (2-51). 
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If the whole domain is not divided into sub-regions, Cab, J1 and J2 will no longer 
exist, so we have 

( ) ( )
3p 3c 0a a  (2-54) 

2. The sub-region three-field generalized potential energy principle 

In the functional expression (2-38) of the sub-region three-field generalized mixed 
variational principle, the region a represents the generalized potential energy 
region, and the region b represents the generalized complementary energy region. 
Now, if the region b is changed to represent the generalized potential energy 
region, then from Eq. (2-51), we have 

1 2

( )( )
( ) ( ) ( ) ( ) ( ) ( )

3c 3p d ( )
ab

bb
b b b b b bns

n nsC
J J

MwM Q w s w M
n s

Substitution of this equation into (2-38) yields 
( ) ( )

3 3p 3p pp 1pp 2pp
a b H G G  (2-55) 

where Hpp, G1pp and G2pp are the additional potential energy terms on the interface 
Cab and the nodes J1 and J2:

( )( ) ( )
( ) ( ) ( )

pp ( ) d
ab

ba b
b a bns

n nC

Mw wH M Q w w s
n n s

(2-56a)

1

( ) ( ) ( ) ( )
1pp [( ) ( ) ( ) ( )]a a b b

ns ns
J

G M w w M w w  (2-57) 

2

( ) ( ) ( ) ( )
2pp [( ) ( ) ]b a b a

ns
J

G M w w Rw  (2-58a) 

Equations (2-55), (2-56a), (2-57) and (2-58a) are the functional expressions of 
the sub-region three-field generalized potential energy principle. It can be shown 
that the stationary conditions of this functional is equivalent to all field equations, 
boundary conditions, interface conditions, corner point and node conditions of 
the thin plate with sub-regions.  

Other expressions of Hpp and G2pp can also be obtained by interchanging a and 
b in Eqs. (2-56a) and (2-58a): 

( )( ) ( )
( ) ( ) ( )

pp ( ) d
ab

aa b
a b ans

n nC

Mw wH M Q w w s
n n s

(2-56b)
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2

( ) ( ) ( ) ( )
2pp [( ) ( ) ]a b a b

ns
J

G M w w Rw  (2-58b) 

If the displacement continuous conditions on the interface Cab and the nodes J1
and J2 are satisfied in advance, then from Eqs. (2-56), (2-57) and (2-58), we can 
obtain

2 2

pp

1pp

( ) ( )
2pp 2pp

0
0

ora b

J J

H
G

G Rw G Rw

3. The sub-region three-field generalized complementary energy principle 

In Eq. (2-38), if we require that the sub-region a is given by the generalized 
complementary energy, the substitution of (2-51) into (2-38) will yield 

( ) ( )
3 3c 3c cc 1cc 2cc

a b H G G  (2-59) 

where Hcc, G1cc and G2cc are the additional complementary energy terms on the 
interface Cab and the nodes J1 and J2:

( ) ( )( )
( ) ( ) ( )

cc ( ) d
ab

b aa
b a ans ns

n n n nC

M MwH M M Q Q w s
n s s

 (2-60a) 

1

( ) ( )
1cc [( ) ( ) ]b a

ns ns
J

G M M w  (2-61) 

2

( ) ( ) ( )
2cc {[( ) ( ) ] }b a a

ns ns
J

G M M R w  (2-62a) 

Equations (2-59), (2-60a), (2-61) and (2-62a) are the functional expressions of 
the sub-region three-field generalized complementary energy principle. Other 
expressions of Hcc and G2cc can also be obtained by interchanging a and b in 
Eqs. (2-60a) and (2-62a):  

( ) ( )( )
( ) ( ) ( )

cc ( ) d
ab

a bb
a b bns ns

n n n nC

M MwH M M Q Q w s
n s s

 (2-60b) 

2

( ) ( ) ( )
2cc {[( ) ( ) ] }b a b

ns ns
J

G M M R w  (2-62b) 

If the traction conditions on the interface Cab and the node J2 are satisfied in 



Chapter 2 The Sub-Region Variational Principles 

35

advance, then from Eqs. (2-60) and (2-62), we can obtain: 

cc 2cc0, 0H G

2.3.3 The Sub-Region Two-Field and Single-Field Variational  
Principle for Thin Plate 

1. The sub-region two-field generalized variational principle 

By using the relation between the strain energy density ( )U  and the strain 
complementary energy density ( )V M :

 ( ) 2 ( )x x y y xy xyV M M M UM  (2-63) 

the variable  in the three-field generalized potential energy ( )
3p

a  and generalized 
complementary energy ( )

3c
a  of the region a (excluding the interface Cab and the 

nodes J1 and J2) can be eliminated. Thereby, the two-field (displacement field w
and internal moment field M) generalized potential energy ( )

2p
a  and generalized 

complementary energy ( )
2c

a  can be written as follows: 

1 2 3 1

2 3
1 2

2 2 2
( )
2p 2 2 2 ( ) d d

( )d d d

d ( ) (2-64)

a

a a a a

a a
a a

a
x y xy

ns
n n n nC C C C

n nsC C
A A

w w wM M M V qw x y
x y x y

M wQ w w s V w s M s
s n

wM s M w w Rw
n

M

1 2 3 1

2 3
1 2

2 22
( )
2c 2 2( ) 2 d d

d d d

( ) d ( ) (2-65)

a

a a a a

a a
a a

y xya x

ns ns
n n n n nC C C C

n n ns nsC C
A A

M MMV q w x y
x y x y

M MQ w s Q V w s M s
s s

wM M s M w M R w
n

M

From Eqs. (2-38), (2-55) and (2-59), the functional expressions of the sub-region 
two-field generalized mixed energy, potential energy and complementary energy 
principle can be obtained: 

( ) ( )
2 2p 2c pc 1pc 2pc

a b H G G  (2-66) 
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( ) ( )
2 2p 2p pp 1pp 2pp

a b H G G  (2-67) 

( ) ( )
2 2c 2c cc 1cc 2cc

a b H G G  (2-68) 

where Hpc, Hpp and Hcc are still given by Eqs. (2-42), (2-56) and (2-60), respectively; 
G1pc, G2pc, G1pp, G2pp, G1cc and G2cc are still given by Eqs. (2-43), (2-44), (2-57), 
(2-58), (2-61) and (2-62), respectively. 

2. The sub-region single-field variational principle 

Now we consider the case where each sub-region is a single-field region. If the 
region a is a potential energy region, only the displacement w will be taken as the 
field variable. Thus, the ( )

3p
a  in Eq. (2-39) or the ( )

2p
a  in Eq. (2-64) will transform 

to the single-field potential energy ( )
1p

a  of the region a:

1 2

3 1 2 3

1 2

( )
1p [ ( ) ]d d ( )d

d d d

( )

a a
a

a a a a

a a

a ns
nC C

n n n nC C C C

ns
A A

MU w qw x y Q w w s
s

w wV w s M s M s
n n

M w w Rw (2-69a)

where ns
n

MQ
s

, nM  and nsM  can be expressed as the functions of the 

displacement w, or looked upon as the Lagrange multipliers on the boundaries and 
their corner points; ( )U w  is the strain energy density in terms of the displacement w:

2 22 2 2 2 2

2 2 2 2( ) 2(1 )
2
D w w w w wU w

x y x y x y

If the displacement w satisfies the geometrical boundary and corner point 
conditions in advance, then 

3 2 3
2

( )
1p [ ( ) ]d d d d

a a a
aa

a
n nC C C

A

wU w qw x y V w s M s Rw
n

(2-69b)

If the sub-region a is a complementary energy region, only the internal 
moment M will be taken as the field variable, and M should satisfy the equilibrium 
differential equation in advance. 

2 22

2 2 2 0y xyx M MM q
x y x y
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Thus, the ( )
3c

a  in Eq. (2-41) or the ( )
2c

a  in Eq. (2-65) will transform to the 
single-field complementary energy ( )

1c
a :

1 2 3

1 2 3
1 2

( )
1c ( )d d d d

d ( ) d ( )

a a a
a

a a a
a a

a ns ns
n n nC C C

n n n n ns nsC C C
A A

M M
V x y Q w s Q V w s

s s
wM s M M s M w M R w
n

M

 (2-70a) 

where w and w
n

 can be looked upon as the Lagrange multipliers on the boundaries 

and their corner points. 
If M satisfies the traction boundary and corner point conditions in advance, then 

1 2 1
1

( )
1c ( )d d d d

a a a
aa

a ns
n n n nsC C C

A

M
V x y Q w s M s M w

s
M

 (2-70b) 

From Eqs. (2-38), (2-55), (2-59), or (2-66), (2-67), (2-68), the functional 
expressions of the sub-region single-field mixed energy principle, potential energy 
principle and complementary energy principle can be obtained: 

( ) ( )
1 1p 1c pc 1pc 2pc

a b H G G  (2-71) 

( ) ( )
1 1p 1p pp 1pp 2pp

a b H G G   (2-72) 

( ) ( )
1 1c 1c cc 1cc 2cc

a b H G G  (2-73) 

where Hpc, G1pc, G2pc, Hpp, G1pp, G2pp, Hcc, G1cc and G2cc are the same as those in 
Eqs. (2-66) to (2-68). 

2.3.4 The General Form of the Sub-Region Generalized Variational  
Principle for Thin Plate 

From the above discussions, a general form of the sub-region generalized variational 
principle can be obtained.  

Let an elastic thin plate be divided into several sub-regions. Each sub-region 
can be arbitrarily appointed as single-field, two-field and three-field potential 
energy regions (such as the regions p1, p2, p3 in Fig. 2.4) or complementary 
energy regions (such as the regions c1, c2, c3 in Fig. 2.4). 

The interfaces between two adjacent sub-regions are of three types, Cpc, Cpp and 
Ccc:  one side of Cpc is the potential energy region, while the other side is the 
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complementary one;  both sides of Cpp are potential energy regions; and 
 both sides of Ccc are complementary energy regions. 

Figure 2.4 A thin plate divided into multi-regions 

The node J of the adjacent sub-regions are of two types, J1 and J2: J1 is the 
node where the displacement w  is specified; J2 is the node where the concentrated 
force R  is specified. There are rp potential energy elements ep and rc complementary 
energy element ec around the node J.

The general form for the functional of the sub-region variational principle can 
be written as 

p c pc pp cc 1 2

p c pc pp cc 1 2
C C C J J

H H H G G  (2-74) 

The meanings of the terms on the right-side of this equation are as follows: 
The first term denotes the sum of the potential (or generalized potential) energy 

p of each potential energy region p, where p can be 1p or 2p or 3p, which 
is given by Eqs. (2-69), (2-64) and (2-39), respectively; 

The second term denotes the sum of the complementary (or generalized 
complementary) energy c of each complementary energy region c, where c
can be 1c or 2c or 3c, which is given by Eqs. (2-70), (2-65) and (2-41), 
respectively;

The third term denotes the sum of the additional mixed energy term Hpc on the 
interface Cpc, in which Hpc is given by Eq. (2-42); 

The fourth term denotes the sum of the additional potential energy term Hpp on 
the interface Cpp, in which Hpp is given by Eq. (2-56); 

The fifth term denotes the sum of the additional complementary energy term 
Hcc on the interface Ccc, in which Hcc is given by Eq. (2-60). 

The sixth term denotes the sum of the additional energy term G1 at the node J1
(where the displacement is specified) of the adjacent sub-regions, in which 

p p c

p c

( ) ( ) ( )
1 ( ) ( ) ( )e e e

ns ns
e e

G M w w M w  (2-75) 
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The first term on the right side of the above equation means the sum of all the 
potential elements ep around the node; the second term means the sum of all the 
complementary energy elements ec around the node.  

The seventh term denotes the sum of the additional energy term G2 at the node 
J2 (where the concentrated force is specified) of the adjacent sub-regions, in which  

p p

p

( ) ( )( ) ( )
2 [ ( ) ] ( ) e ee a

ns ns
e e

G M R w M w  (2-76) 

The
e

in the first term on the right side of the above equation denotes the sum 

of all the elements e (including all ep and ec) around the node; ( )aw  is the 
displacement of any element a around the node; The 

pe
in the second term on 

the right side of the above equation denotes the sum of all the potential elements 
pe  around the node. 

G1pc in (2-43), G1pp in (2-57), and G1cc in (2-61) are all special cases of G1 in 
(2-75). G2pc in (2-44), G2pp in (2-58), and G2cc in (2-62) are all special cases of G2
in (2-76). 

It can be shown that the stationary condition 

 0  (2-77) 

of the functional  in Eq. (2-74) is equivalent to all field equations, boundary 
conditions, interface conditions, corner point and node conditions of the thin 
plate system with multi-regions. 

The procedure for deriving the node conditions of the node J from the stationary 
condition (2-77) is given in Appendix B. 

If all the sub-regions are potential energy regions, the functional of the sub-region 
potential (or generalized potential) energy principle can be obtained from Eq. (2-74): 

p pp 1 2

p pp 1pp 2pp
C J J

H G G  (2-78) 

where G1pp and G2pp can be obtained from Eqs. (2-75) and (2-76): 

p p

p

( ) ( )
1pp ( ) ( )e e

ns
e

G M w w  (2-79) 

p p p

p p

p p

p

( ) ( ) ( )( )
2pp

( ) ( ) ( ) ( )

[ ( ) ] ( )

( ) ( )

e e ea
ns ns

e e

e e a a
ns

e

G M R w M w

M w w Rw (2-80)

Equations (2-55), (2-67) and (2-72) are all the special cases of (2-78). One of the 
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special cases of the sub-region potential energy principle is that each sub-region 
is appointed as a single-field potential energy region. At this time, p in Eq. (2-78) 
will be replaced by 1p in Eq. (2-69a): 

p pp 1 2

1p pp 1pp 2pp
C J J

H G G  (2-81) 

If all the sub-regions are complementary energy regions, the functional of the 
sub-region complementary (or generalized complementary) energy principle can 
be obtained from Eq. (2-74): 

c cc 1 2

c cc 1cc 2cc
C J J

H G G  (2-82) 

where

c

c

( )
1cc ( ) e

ns
e

G M w  (2-83) 

c

c

( ) ( )
2cc [ ( ) ]e a

ns
e

G M R w  (2-84) 

Equations (2-59), (2-68) and (2-73) are all the special cases of (2-82). One of the 
special cases of sub-region complementary energy principle is that each sub-region 
is appointed as a two-field complementary energy region. At this time, c in
Eq. (2-82) will be replaced by 2c in Eq. (2-65): 

c cc 1 2

2c cc 1cc 2cc
C J J

H G G  (2-85) 

2.4 The Sub-Region Variational Principle for Elastic  
Thick Plate 

In the previous section, the sub-region variational principle for thin plate is 
discussed. This section will consider the thick plate case. 

Compared with the thin plate theory, the characteristics of the thick plate theory 
are as follows: the influences of the transverse shear strain x and y (abbreviations 
of xz and yz) are considered; the rotations x and y are not dependent on the 
deflection w , thereby, w, x and y are three independent displacements; Besides 
the normal load q , there still are couple loads xm  and ym ; the transverse shear 
forces Qx and Qy are not dependent on the bending and twisting moments Mx, My

and Mxy.
The sub-region variational principle for elastic thick plate was proposed in [13]. 
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For comparison, the arrangement of this section is the same as that of the 
previous one, which can make it easy to understand the similarities and differences 
of the two principles. 

2.4.1 The Sub-Region Three-Field Generalized Mixed Variational  
Principle for Thick Plate 

Here we consider an elastic plate with moderate thickness, i.e. an elastic thick 
plate. A Cartesian co-ordinate system is established on the mid-surface of the 
plate (see Fig. 2.5), and the positive direction of the z-axis is downward. n and s
denote the directions of the outer normal and the tangent along the boundary, 
respectively. And, the positive direction of s is shown in Fig. 2.5. 

Figure 2.5 A thick plate divided into two sub-regions 

Let a thick plate be divided into two sub-regions a and b, and a and b
represent the domains of the regions a and b, respectively. The outer boundaries 
Ca and Cb of the regions a and b are both composed of three parts: 

1 2 3 1 2 3,a a a a b b b bC C C C C C C C

where C1a and C1b are the fixed boundaries (the deflection w, the normal rotation 
n and the tangent rotation s of the mid-surface normal line are specified by w ,
n  and s , respectively); C2a and C2b are the simply-supported boundaries (the 

deflection w, the tangent rotation s of the mid-surface normal line and the 
normal bending moment Mn are specified by w , s  and nM , respectively); C3a
and C3b are the free boundaries (the normal bending moment Mn, the twisting 
moment Mns and the transverse shear force Qn are specified by nM , nsM  and 

nQ , respectively). The interface of the two regions is denoted by Cab. The positive 
deflection w is downward; the positive normal rotation n rotates from n to z; the 
positive tangent rotation s rotates from s to z; the normal bending moment Mn is 
positive when the bottom of the plate is under tension; the twisting moment Mns



Advanced Finite Element Method in Structural Engineering 

42

is positive when it produces positive shear stress ns along the positive direction 
of s at the bottom of the plate; and the positive transverse shear force Qn is also 
downward. 

The key points of the sub-region generalized mixed variational principle can be 
listed as follows. 

1. The field variables

Both regions a and b possess three field variables: 
Displacements ( ) T( )[ ]a a

x ywd , ( ) T( )[ ]b b
x ywd

Internal forces ( ) T( )[ ]a a
x y xy x yM M M Q QS

( ) T( )[ ]b b
x y xy x yM M M Q QS

Strain  ( ) T( )[ 2 ]a a
x y xy x yE , ( ) T( )[ 2 ]b b

x y xy x yE
The positive rotations x and y of the normal line rotate from x to z and from 

y to z, respectively; the bending moment Mx and My are positive when the bottom 
of the plate is under tension; the twisting moment Mxy is positive when it produces 
positive shear stress xy at the bottom of the plate; the positive shear forces Qx
and Qy on the positive surfaces are all downward. The positive curvatures x, y
and xy, shear strains x ( xz) and y ( yz) are all corresponding to the deformations 
caused by the positive Mx, My, Mxy, Qx and Qy, respectively. The above three-field 
variables are not required to satisfy any conditions in advance within the domain 
and on the boundaries and interfaces. 

2. Definition of the functional

Let the region a be the potential energy region, and the region b be the 
complementary energy region. Then, the definition of the functional is 

( ) ( )
3 3p 3c pc

a b H  (2-86) 

where ( )
3p

a  is the three-field generalized potential energy of the region a
(excluding the interface Cab):  

1 2

3

( )
3p b s[ ( ) ( )

2

]d d [ ( ) ( )]d

( )d ( )

a

a a

a

ya x
x x y y

yx
xy xy x x x y y y

x x y y ns s s nC C

ns s n n n nC

U U M M
x y

w wM Q Q
y x x y

m m qw x y M Q w w s

M Q w s M
1 2 3

d d
a a a

n nC C C
s M s

(2-87)

Here, q  is the load density, and its positive direction is downward. xm  and ym
are the couple load densities, and their positive directions are the same as those 
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of x and y, respectively. b ( )U  and s ( )U  are the densities of bending and shear 
strain energies, respectively: 

2 2 2
b ( ) [ 2 2(1 ) ]

2 x y x y xy
DU  (2-88) 

2 2
s ( ) ( )

2 x y
CU  (2-89) 

where
3

212(1 )
EhD  and 

2(1 )
EhC

k
 are the bending and shear stiffness, 

respectively;  is the Poisson’s ratio; and coefficient k 1.2.
( )
3c

b  is the three-field generalized complementary energy of the region b
(excluding the interface Cab):

1 2

3 1

( )
3c b s[ ( ) ( ) 2

]d d ( )]d

[( ) ( ) ]d d

(

b

b b

b b

b
x x y y xy xy x x y y

xy xy yx
x x x y y y

yx
s ns nC C

ns ns s n n n nC C

U U M M M Q Q

M M MM
Q m Q m

x y x y
QQ q w x y M wQ s

x y

M M Q Q w s M s

M
2 3

) d
b b

n n nC C
M s (2-90)

Hpc is the additional energy term on the interface Cab:

( ) ( ) ( ) ( ) ( ) ( )
pc ( )d

ab

b a b a b a
n n ns s nC

H M M Q w s  (2-91) 

3. Stationary condition

The stationary condition of the functional is 
( ) ( )

3 3p 3c pc 0a b H  (2-92) 

which is equivalent to all field equations, boundary conditions and interface 
conditions of the thick plate sub-region system , including:  

The constitutive, geometrical and equilibrium equations within a and b:

 ( ), ( ), (1 )x x y y y x xy xyM D M D M D  (2-93) 

, , 2y yx x
x y xyx y y x

 (2-94) 
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0

0

0

xyx
x x

xy y
y y

yx

MM
Q m

x y
M M

Q m
x y

QQ
q

x y

 (2-95) 

The geometrical and force boundary conditions: 

1 2 1 2

1 1

, (on )
(on )

s s a a b b

n n a b

w w C C C C
C C

 (2-96) 

3 3

2 3 2 3

, (on )
(on )

ns ns n n a b

n n a a b b

M M Q Q C C
M M C C C C

 (2-97) 

The interface conditions on Cab:
( ) ( ) ( ) ( ) ( ) ( ), ,a b a b a b
n n n n ns nsQ Q M M M M  (2-98) 

( ) ( ) ( ) ( ) ( ) ( ), ,a b a b a b
n n s sw w  (2-99) 

2.4.2 The Sub-Region Three-Field Generalized Potential and  
Complementary Energy Principles for Thick Plate 

1. The transformation relation between ( )
3p
a  and ( )

3c
a

The three-field generalized potential energy ( )
3p

a  and generalized complementary 
energy ( )

3c
a  of the region a (excluding the interface Cab) have the following 

transformation relation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3p 3c [ ]d

ab

a a a a a a a a
n n n ns sC

Q w M M s  (2-100) 

Proof From Eqs. (2-87) and (2-90) (replace b by a in Eq. (2-90)), we have 

1 2 3

( ) ( )
3p 3c

d d ( )d

a

a a a

y ya a x x
x y xy x x

xy xy yx
y y x x y y

yx
n n n ns sC C C

wM M M Q
x y y x x

M M MMwQ Q Q
y x y x y

QQ
w x y Q w M M s

x y
(2-101)
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By using integration by parts, the following identical relation can be obtained: 

1 2 3

d d

d d

( )d

a

a

a a a ab

y yx x
x y xy x x y y

xy xy y yx x
x x y y

n n n ns sC C C C

w wM M M Q Q x y
x y y x x y

M M M QM Q
Q Q w x y

x y x y x y

Q w M M s

 (2-102) 
Substitution of Eq. (2-102) into Eq. (2-101) yields Eq. (2-100). 

If the whole domain is not divided into sub-regions, Cab will no longer exist, 
so we have 

( ) ( )
3p 3c 0a a  (2-103) 

2. The sub-region three-field generalized potential energy principle 

In the functional expression (2-86) of the sub-region three-field generalized mixed 
variational principle, the region a represents the generalized potential energy 
region, and the region b represents the generalized complementary region. Now, 
if the region b is changed to represent the generalized potential region, then from 
Eq. (2-100), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3c 3p [ ]d

ab

b b b b b b b b
n n n ns sC

Q w M M s

Substitution of this equation into (2-86) yields 
( ) ( )

3 3p 3p pp
a b H  (2-104) 

where Hpp is the additional potential energy term on the interface Cab:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
pp [ ( ) ( ) ( )]d

ab

b a b b a b b a b
n n n n ns s sC

H Q w w M M s

(2-105a)

Equations (2-104) and (2-105a) are the functional expressions of the sub-region 
three-field generalized potential energy principle. It can be shown that the stationary 
conditions of this functional is equivalent to all field equations, boundary conditions 
and interface conditions of the thick plate with sub-regions.  

Another expression of Hpp can also be obtained by interchanging a and b in 
Eq. (2-105a): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
pp [ ( ) ( ) ( )]d

ab

a b a a a b a a b
n n n n ns s sC

H Q w w M M s

(2-105b)
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If the displacement continuous conditions (2-99) on the interface Cab are satisfied 
in advance, then from Eqs. (2-105a) and (2-105b), we can obtain 

pp 0H  (2-106) 

3. The sub-region three-field generalized complementary energy principle 

In Eq. (2-86), if the sub-region a is changed to represent the generalized 
complementary energy region, substitution of (2-100) into (2-86) will yield 

( ) ( )
3 3c 3c cc

a b H  (2-107) 

where Hcc is the additional complementary energy term on the interface Cab:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
cc [( ) ( ) ( ) ]d

ab

a b a b a a b a a
n n n n n ns ns sC

H Q Q w M M M M s

(2-108a)

Equations (2-107) and (2-108a) are the functional expressions of the sub-region 
three-field generalized complementary energy principle. Another expression of 
Hcc can also be obtained by interchanging a and b in equation (2-108a):  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
cc [( ) ( ) ( ) ]d

ab

a b b a b b a b b
n n n n n ns ns sC

H Q Q w M M M M s

(2-108b)

If the traction conditions (2-98) on the interface Cab are satisfied in advance, 
then from Eqs. (2-108), we can obtain: 

cc 0H  (2-109) 

2.4.3 The Sub-Region Two-Field and Single-Field Variational  
Principle for Thick Plate 

1. The sub-region two-field generalized variational principle 

By using the following relations between the strain energy density, b ( )U  and 
s ( )U , and the strain complementary energy density, b ( )V M  and s ( )V Q :

b b

s s

( ) 2 ( )

( ) ( )
x x y y xy xy

x x y y

V M M M U

V Q Q U

M

Q
 (2-110) 

the strain E in the three-field generalized potential energy ( )
3p

a  and the three-field 
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generalized complementary energy ( )
3c

a  of the region a (excluding the interface 
Cab) can be eliminated. Thereby, the two-field (displacement d and internal force 
S) generalized potential energy ( )

2p
a  and the two-field generalized complementary 

energy ( )
2c

a  can be written as follows:  

3 1 2

1 2 3

( )
2p

b s( ) ( ) d d

( )d [( ) ( ) ]d

( ) d d

a

a a a

a a a

y ya x x
x y xy x x

y y x x y y

ns s n s s ns nC C C

n n n n nC C C

wM M M Q
x y y x x

wQ V V m m qw x y
y

M Q w s M w w Q s

M s M s

M Q

(2-111)

1 2 3

1 2 3

( )
2c b s( ) ( )

d d

( )d [( ) ( ) ]d

d ( ) d

a

a a a

a a a

xya x
x x x

xy y yx
y y y

s ns n ns ns s n nC C C

n n n n nC C C

MMV V Q m
x y

M M QQ
Q m q w x y

x y x y

M wQ s M M Q Q w s

M s M M s

M Q

(2-112)

From equations (2-86), (2-104) and (2-107), the functional expressions of the 
sub-region two-field generalized mixed energy, potential energy and complementary 
energy principles can be obtained: 

( ) ( )
2 2p 2c pc

a b H  (2-113) 

( ) ( )
2 2p 2p pp

a b H  (2-114) 

( ) ( )
2 2c 2c cc

a b H  (2-115) 

where Hpc, Hpp and Hcc are still given by Eqs. (2-91), (2-105) and (2-108), 
respectively. 

2. The sub-region single-field variational principle 

Now we consider the case where each sub-region is a single-field region.  
If the region a is a potential energy region, only the displacement d will be 

taken as the field variable. Thus, the ( )
3p

a  in Eq. (2-87) or the ( )
2p

a  in Eq. (2-111) 
will transform to the single-field potential energy ( )

1p
a  of the region a:
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1 2 3

1 2 3

( )
1p b s[ ( ) ( ) ]d d

ˆˆ[( ) ( ) ]d ( )d

ˆ( ) d d

a

a a a

a a a

a
x x y y

s s ns n ns s nC C C

n n n n nC C C

U U m m qw x y

M w w Q s M Q w s

M s M s

d d

(2-116a)

where ˆ
nQ , ˆ

nM  and ˆ
nsM  are the boundary force variables, and can also be 

expressed by the functions of the displacement d; b ( )U d  and s ( )U d  are the strain 
energy densities expressed by the displacement d:

2 22

b
1( ) 2

2 2
y y yx x xDU

x y x y y x
d  (2-117) 

22

s ( )
2 x y
C w wU

x y
d  (2-118) 

If the displacement d satisfies the geometrical boundary conditions in advance, 
then

3 2 3

( )
1p b s[ ( ) ( ) ]d d

( )d d
a

a a a

a
x x y y

ns s n n nC C C

U U m m qw x y

M Q w s M s

d d

(2-116b)

If the sub-region a is a complementary energy region, only the internal force S
will be taken as the field variable, and S should satisfy the equilibrium differential 
Eq. (2-95) in advance. Thus, the ( )

3c
a  in Eq. (2-90) or the ( )

2c
a  in Eq. (2-112) 

will transform to the single-field complementary energy ( )
1c

a :

1 2

3 1

2 3

( )
1c b s[ ( ) ( )] d d [( )]d

ˆ ˆ[( ) ( ) )]d d

ˆ( ) d

a a
a

a a

a a

a
s ns nC C

ns ns s n n n nC C

n n nC C

V V x y M wQ s

M M Q Q w s M s

M M s

M Q

(2-119a)

where ŵ , ˆn  and ˆ s  are the boundary displacement variables. 
If S satisfies the force boundary conditions in advance, then 

1 2 1

( )
1c b s[ ( ) ( )]d d [( )]d d

a a a
a

a
s ns n n nC C C

V V x y M wQ s M sM Q

(2-119b)
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From Eqs. (2-86), (2-104), (2-107), or (2-113), (2-114), (2-115), the functional 
expressions of the sub-region single-field mixed energy principle, potential 
energy principle and complementary energy principle can be obtained: 

( ) ( )
1 1p 1c pc

a b H  (2-120) 

( ) ( )
1 1p 1p pp

a b H  (2-121) 

( ) ( )
1 1c 1c cc

a b H  (2-122) 

where Hpc, Hpp and Hcc are the same as those in Eq. (2-113) to Eq. (2-115). 

2.4.4 The General Form of the Sub-Region Generalized Variational  
Principle for Thick Plate 

From the above discussions, a general form of the sub-region generalized 
variational principle for elastic thick plate can be obtained. Let an elastic thick 
plate be divided into several sub-regions. Each sub-region can be arbitrarily 
appointed as single-field, two-field and three-field potential energy regions (such 
as the regions p1, p2, p3 in Fig. 2.6) or complementary energy regions (such 
as the regions c1, c2, c3 in Fig. 2.6). The interfaces between two adjacent 
sub-regions are of three types, Cpc, Cpp and Ccc:  one side of Cpc is the potential 
energy region, while the other side is the complementary one;  both sides of Cpp
are potential energy regions; and  both sides of Ccc are complementary energy 
regions.

Figure 2.6 A thick plate divided into multi-regions 

The general form for the functional of the sub-region variational principle can 
be written as 

p c pc pp cc

p c pc pp cc
C C C

H H H  (2-123) 
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The meanings of the terms on the right-side of this equation are as follows: 
The first term denotes the sum of the potential (or generalized potential) energy 

p of each potential energy region p, where p can be 1p or 2p or 3p, which 
is given by Eqs. (2-116), (2-111) and (2-87), respectively; 

The second term denotes the sum of the complementary (or generalized 
complementary) energy c of each complementary energy region c, where c
can be 1c or 2c or 3c, which is given by Eqs. (2-119), (2-112) and (2-90), 
respectively;

The third term denotes the sum of the additional mixed energy term Hpc on the 
interface Cpc, in which Hpc is given by Eq. (2-91); 

The fourth term denotes the sum of the additional potential energy term Hpp on 
the interface Cpp, in which Hpp is given by Eq. (2-105); 

The fifth term denotes the sum of the additional complementary energy term 
Hcc on the interface Ccc, in which Hcc is given by Eq. (2-108). 

It can be shown that the stationary condition 

 0  (2-124) 

of the functional   in Eq. (2-123) is equivalent to all field equations, boundary 
conditions and interface conditions of the thick plate system with multi-regions. 

If all the sub-regions are potential energy regions, the functional of the 
sub-region potential (or generalized potential) energy principle can be obtained 
from Eq. (2-123): 

p pp

p pp
C

H  (2-125) 

Equations (2-104), (2-114) and (2-121) are all the special cases of (2-125). 
If all the sub-regions are complementary energy regions, the functional of the 

sub-region complementary (or generalized complementary) energy principle can be 
obtained from Eq. (2-123): 

c cc

c cc
C

H  (2-126) 

Equations (2-107), (2-115) and (2-122) are all the special cases of (2-126). 
The functional expression (2-123) of the sub-region generalized variational 

principle for elastic thick plate is the most general functional form of the 
variational principle for thick plate, and builds a bridge linking various special 
functional forms of the variational principle. 

By using the relation (2-100), the direct transformation between the different 
functional forms of the variational principle for thick plate can be performed 
conveniently. 

The sub-region mixed variational principle for thick plate and its functional 
expression (2-86) provide the fundamentals for the applications of the sub-region 
mixed finite element method in thick plate problems. 



Chapter 2 The Sub-Region Variational Principles 

51

2.5 The Sub-Region Variational Principle for Elastic  
Shallow Shell 

This section will discuss the sub-region variational principle for elastic shallow 
shell[14]. The fundamental equations and the variational principles for shallow 
shell were systematically introduced in [3]. 

Figure 2.7 The shallow shell 

Let the bottom plane of the shallow shell be the xOy plane, and the z-axis be 
normal to the bottom plane (Fig. 2.7). Then, the mid-surface equation of the 
shallow shell is 

 ( , )z z x y

The initial curvatures of the mid-surface are 
2 2 2

2 2, ,x y xy
z z z

x y x y

And, another movable co-ordinate system ( , , ) is also adopted where -axis
is the normal of the mid-surface, and -axis and -axis are the tangents of the 
mid-surface within xz-plane and yz-plane, respectively. 

The load components along ,  and  directions of an arbitrary point within 
the mid-surface are px, py and pz; and the displacement components are u, v and w.
There are three membrane internal force components Nx, Ny and Nxy in shallow 
shell structures, and their corresponding strains are x, y and xy. There are also 
three independent internal moment components Mx, My and Mxy, and their 
corresponding generalized strains are the curvature variety values x, y and xy.
Furthermore, the transverse shear forces Qx and Qy are dependent internal force 
components, and can be determined by Mx, My and Mxy. In thin shells, the 
transverse shear strain xz and yz are both zero. 

On the boundary line C of the shallow shell, let n and s be the outer normal 
and the tangent directions. The displacement components along n, s and 
directions of an arbitrary point on the boundary line are un, vs and w and the 
corresponding boundary forces are normal tension Nn, tangent shear force Nns,

and equivalent transverse shear force ns
n n

MV Q
s

 which is synthesized by 
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the transverse shear force Qn and the twisting moment Mns. The rotation on the 

boundary within n  plane is n
w
n

, and the corresponding boundary moment 

is the normal bending moment Mn.
The boundary line C of the shallow shell contains different line segments: 

n n s ns n n nu N v N w V MC C C C C C C C C

where , , , , , ,
n n s ns n nu N v N w VC C C C C C C  and 

nMC  denote the boundary segments 
on which un, Nn, vs, Nns, w, Vn, n and Mn are specified, respectively. 

A denotes the corner point on the boundary line, and is generally composed of 
two types: 

w RA A A

where Aw and AR are the corner points where the deflection w  and transverse 
concentrated force R  are specified, respectively. The twisting moment increment 
of the two sides of corner point A is ( )ns AM .

In the sub-region generalized variational principle for shallow shell, the mid 
and the bottom surfaces of the shallow shell are divided into several sub-regions. 
Each sub-region can be arbitrarily appointed as single-field, two-field and 
three-field potential energy regions (such as p1, p2 and p3 in Fig. 2.8), or the 
complementary energy regions (such as c1, c2 and c3 in Fig. 2.8). The 
interfaces between two adjacent sub-regions are of three types, Cpc, Cpp and Ccc
(Fig. 2.8):  one side of Cpc is the potential energy region, while the other side 
is the complementary one;  both sides of Cpp are potential energy regions; and 

 both sides of Ccc are complementary energy regions. The node J of the 
adjacent sub-regions generally is also classified into two types, Jw and JR: Jw and 
JR are the nodes where the displacement w  and the transverse concentrated 
force R  are specified, respectively. rp and rc denote the numbers of the elements 
ep in the potential energy regions and the elements ec in the complementary 
energy regions around the node J, respectively. 

Figure 2.8 A shallow shell divided into multi-regions 
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The functional of the sub-region generalized variational principle for elastic 
shallow shell can be written as: 

p c pc pp cc

p c pc pp cc
w R

w R
C C C J J

H H H G G  (2-127) 

There are seven terms on the right side of the above equation, where the first two 
terms are the energy of all the sub-regions; the middle three terms are the energy 
on the interfaces; and the last two terms are the energy at the nodes. Now, the 
expressions and their meanings of all the terms are given as follows. 

The first term on the right side of Eq. (2-127) denotes the sum of the potential 
(or generalized potential) energy p of each potential energy region p; the 
second term denotes the sum of the complementary (or generalized complementary) 
energy c of each complementary energy region c. If the sub-region e is a 
three-field region, then, p and c are the following 3p and 3c, respectively. 

( ) ( ) ( ) ( )
3p 3p 3p

e e e eI  (2-128) 

( ) ( ) ( ) ( )
3c 3c 3c

e e e eI  (2-129) 

where

( )
3p ( )

d d

d d ( ) d

( ) d

e

e e eN N un ns n

evs

e
x y x x y y

xy xy

n n ns s n n nC C C

s s nsC

u vU p u p v N N
x y

u v N x y
y x

N u s N v s u u N s

v v N s

   

(2-130)

2 2
( )

3p 2 2

2

( )

2 d d

d d ( ) d

d ( )

e

e e eV M wn n eR

e
n ew

e
z x x y y

xy xy

n n nC C C
A

n n nsC
A

w wU p w M M
x y

w M x y
x y

wV w s M s Rw w w V s
n

w M s w w M
n

(2-131)

 ( 2 ) d d
e

e
x x y y xy xyI N N N w x y  (2-132) 
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( )
3c ( )

d d ( ) d

( ) d d d

e

eNn

e e eN u vns n s

xye x
x x y y xy xy x

xy y
y n n nC

ns ns s n n s nsC C C

NNU N N N p u
x y

N N
p v x y N N u s

x y

N N v s u N s v N s (2-133)

( )
3c

2 22

2 2

( ) 2

2 d d

( ) d ( ) d ( )
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x x y y xy xy
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A

n n n nsC C
A

U M M M

M MM
p w x y

x y x y

wV V w s M M s M R w
n
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where ( )U  and ( )U  are the strain energy density of the in-plane action and 
the thin plate bending, respectively: 

2 2 2
2

1( ) 2
2(1 ) 2x y x y xy

EhU  (2-135) 

3
2 2 2

2( ) ( 2 2(1 ) )
24(1 ) x y x y xy

EhU  (2-136) 

E and  are the Young’s modulus and Poisson’s ratio, respectively; h is the 
thickness of the thin shell. 

If the sub-region e is a two-field region, then, p and c are the following 2p
and 2c, respectively: 

( ) ( ) ( ) ( )
2p 2p 2p

e e e eI  (2-137) 

( ) ( ) ( ) ( )
2c 2c 2c

e e e eI  (2-138) 

where

( )
2p ( ) d d

d d ( ) d ( ) d
e

e e e eN N u vn ns n s

e
x y x y xy

n n ns s n n n s s nsC C C C

u v u vV p u p v N N N x y
x y y x

N u s N v s u u N s v v N s

N

(2-139)
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( )
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e

e e e eN N u vn ns n s

xy xy ye x
x y

n n n ns ns s n n s nsC C C C
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2 22
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2c 2 2( ) 2 d d
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d d

e
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e ew n ew
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M MM
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n

wV s M s w M
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(2-142)

( )eI  is still given by Eq. (2-132); ( )V N  and ( )V M  are the strain complementary 
energy density of the in-plane action and the thin plate bending, respectively:  

2 2 21 1( ) [ 2 2(1 ) ]
2 x y x y xyV N N N N N

Eh
N  (2-143) 

2 2 2
3

1 12( ) [ 2 2(1 ) ]
2 x y x y xyV M M M M M

Eh
M  (2-144) 

If the sub-region e is a single-field region, then, p and c are the following 
1p and 1c, respectively: 

( ) ( ) ( )
1p 1p 1p

e e e  (2-145) 

where

( )
1p [ ( , , ) ]d d d d

( ) d ( ) d

e eN Nn nse

e eu vn s

e
x y n n ns sC C

n n n s s nsC C

U u v w p u p v x y N u s N v s

u u N s v v N s (2-146)
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( )
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e ew n ew

e
z n nC C

A

n n n nsC C
A

wU w p w x y V w s M s Rw
n

ww w V s M s w w M
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(2-147)

in which only a single field, i.e. displacement field (u, v, w), exists within the 
sub-region e; and Nn, Nns, Vn, Mn and Mns are only the boundary variables or 
corner point variables defined on the element boundaries and corner points. 

( , , )U u v w  and ( )U w  are the strain energy densities, expressed by the displace- 
ment, of the in-plane strain and thin plate bending, respectively. 

1c 1c 1c
e e e  (2-148) 

where

( )
1c ( )d d ( ) d ( ) d

d d

e e eN Nn ns

e eu vn s
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n n n ns ns sC C
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( )
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A A
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M R w wV s M s w M

M

(2-150)

Here, only a single-field, i.e. internal force field (Nx, Ny, Nxy, Mx, My, Mxy), exists 
within the sub-region e, and these internal forces in advance satisfy the equilibrium 
differential equation of the shallow shell: 

2 22

2 2

0

0

2 2 0

xyx
x

xy y
y

y xyx
x x y y xy xy z

NN p
x y

N N
p

x y
M MM

k N k N k N p
x y x y

 (2-151) 

un, vs, w and w
n

 are only the boundary or corner point variables defined on the 

element boundaries or corner points. 
The third, fourth and fifth terms on the right side of Eq. (2-127) are the sum of 

the additional energy Hpc, Hpp and Hcc on the interfaces Cpc, Cpp and Ccc between 
the adjacent sub-regions e and e , respectively, where 
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pc d
ee

e
e e e e e e e
n n ns s n nC

wH N u N v M V w s
n

 (2-152) 

(e is the potential energy region; e  is the complementary energy region) 

pp ( ) ( ) ( ) d

( ) ( ) ( ) d

ee

ee

e e
e e e e e e e e e e
n n n ns s s n nC

e e
e e e e e e e e e e
n n n ns s s n nC

w wH N u u N v v M V w w s
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w wN u u N v v M V w w s
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(2-153)

cc ( ) ( ) ( ) ( ) d

( ) ( ) ( ) ( ) d

ee

ee

e
e e e e e e e e e e e
n n n ns ns s n n n nC

e
e e e e e e e e e e e
n n n ns ns s n n n nC

wH N N u N N v M M V V w s
n

wN N u N N v M M V V w s
n

(2-154)

The last two terms on the right side of Eq. (2-127) are the sum of additional 
energy Gw and GR at the nodes Jw and JR, respectively, where 

p p c

p c

( ) ( ) ( )( ) ( ) ( )e e e
w ns ns

e e
G M w w M w  (2-155) 

p p

p

( ) ( )( ) ( )( ) ( ) e ee a
R ns ns

e e
G M R w M w  (2-156) 

where
pe

,
ce

 and 
e

denote the sum of all the potential energy elements ep,

all the complementary energy elements ec and all the elements e around the nodes, 
respectively; ( )aw  is the displacement of any element a around the nodes. 

It can be shown that the stationary condition  

 0  (2-157) 

of the functional  in Eq. (2-127) is equivalent to all field equations, boundary 
conditions, interface conditions, corner point and node conditions of the shallow 
shell system with multi-regions. 

As a special case, if each sub-region is appointed as a potential energy region 
(or complementary energy region), then, the functional of the sub-region generalized 
potential (or complementary) energy principle can be obtained from Eq. (2-127). 
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2.6 The Sub-Region Mixed Energy Partial Derivative  
Theorem

This section will discuss the sub-region mixed energy partial derivative theorem 
and its extensions[15].

Castigliano first and second theorems are two famous energy partial derivative 
theorems in history, and both of them are the special cases of the sub-region 
mixed energy partial derivative theorem. 

2.6.1 The Sub-Region Mixed Energy Partial Derivative Theorem  
and Its Proof 

1. The definition of the sub-region mixed energy 

Let a structure be divided into two regions: complementary energy region (region a)
and potential energy region (region b). The complementary energy region has n1

independent force variables X1, X2, ,
1nX , and its complementary energy c( )a

is expressed as a function of these force variables. The potential energy region has 
n2 displacements at the supports (or constrained displacements) 

1 11 2, , ,n n

1 2n n as independent displacement variables, and its potential energy p( )b  is 
expressed as a function of these displacement variables. Furthermore, the additional 
energy J  at the interface J between the regions a and b equals to the work 
done by the constrained force ˆ( )J aF  of the region a along the displacement ˆ( )J bD
of the region b:

ˆ ˆ( ) ( )J J a J b
J

F D

The sub-region mixed energy m  is defined as: 

p c p c
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )m b a J b a J a J b

J
F D  (2-158) 

As an example, consider a frame shown in Fig. 2.9(a). The left side of the 
interface J is the complementary energy region (region a), and the right side is 
the potential energy region (region b). There is force variable X1 operating in  
the region a. Let ( )aM  be the bending moment of the region a, then the 
complementary energy c( )a  of the region a is 

2
c

1( ) ( ) d
2a a

a
M s

EI
 (2-159) 

There is a displacement variable 2 (the nodal rotation) in the region b.



Chapter 2 The Sub-Region Variational Principles 

59

Furthermore, the structure is also under a constant load P. Let ( )bM  be the 
bending moment of the region b, D be the corresponding displacement of load P,
then the potential energy p( )b  of the region b is 

2
p

1( ) ( ) ds ( )
2b b b

b b
M PD

EI
 (2-160) 

At the interface J, the displacement ˆ( )J bD  of the region b is the nodal rotation 2,
the constrained force ˆ( )J aF  of the region a is the bending moment ( )J aM  of 
cross section J. The additional energy J on the interface is  

2
ˆ ˆ( ) ( ) ( )J J a J b J aF D M  (2-161) 

Substitution of Eqs. (2-159), (2-160) and (2-161) into (2-158) yields 

2 2
m 2

1 1( ) d ( ) ( ) ds ( )
2 2b b a J a

b b a
M s PD M M

EI EI
 (2-162) 

2. The description of the sub-region mixed energy partial derivative theorem 

If the sub-region mixed energy m of the structure is defined by Eq. (2-158), the 
partial derivative of m with respect to force variable Xi of the complementary 
energy region will be equal to a minus value of the displacement Di which 
corresponds to Xi, and the partial derivative of m with respect to displacement 
variable j of the potential energy region will be equal to the constrained force Fj
which corresponds to j, i.e., 

m
1

m
1 1 1 2

( 1,2, , )

( 1, 2, , )

i
i

j
j

D i n
X

F j n n n n
 (2-163) 

3. The proof for the sub-region mixed energy partial derivative theorem 

Consider the frame shown in Fig. 2.9(a), the partial derivative formulae (2-163) 
can be rewritten as 

m m
1 2

1 2

,D F
X

 (2-164) 

These two expressions can be derived by the virtual force equation and the virtual 
displacement equation, respectively. 

Firstly, we will deduce the first expression of Eq. (2-164). As shown in 
Fig. 2.9(b), in order to solve the displacement D1, a virtual force system is 
established: a virtual force increment X1 is assumed at point A, then the bending 
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moment increment of the region a is ( )aM 1
1

( )aM X
X

, and the constrained 

moment increment at interface J is ( )J aM 1
1

( )J aM X
X

. Let the virtual force 

system of the region a in Fig. 2.9(b) do virtual work on the deformation state in 
Fig. 2.9(a), the virtual force equation is 

1 1 2
( )

( ) ( ) ( ) dsa
J a a

a

MX D M M
EI

 (2-165) 

Then we have 

1 2
1 1

( ) ( )1 ( ) da J a
a

a

M MD M s
EI X X

 (2-166) 

By using Eq. (2-162), the above equation can be rewritten as  

m
1

1

D
X

Thereby, the first expression of Eq. (2-164) has been derived. 

Figure 2.9 A frame divided into two regions 

Secondly, we will deduce the second expression of Eq. (2-164). As shown in 
Fig. 2.9(c), in order to solve the constrained moment F2, a virtual displacement 
system is established: a virtual displacement increment 2 is assumed at point J,
then the displacement increment at the point B where the load P acts is 

2
2

DD , the moment increment of the region b is ( )bM 2
2

( )bM . Let 
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the force system of the region b (including the interface J) in Fig. 2.9(a) do the 
virtual work on the virtual displacements of the region b in Fig. 2.9(c), the virtual 
displacement equation is 

2 2
( )[ ( ) ] ( ) ( ) db

J a b b
b b

MF M P D M s
EI

 (2-167) 

Then we have 

2
2 2

( ) ( )1 ( ) d ( )b b
b J a

b b

M DF M s P M
EI

 (2-168) 

By using Eq. (2-162), the above equation can be rewritten as  

m
2

2

F

Thereby, the second expression of Eq. (2-164) has also been derived. 

2.6.2 Three Deductions of the Sub-Region Mixed Energy Partial  
Derivative Theorem 

1. The sub-region mixed energy stationary principle  

Let us analyze the frame plotted in Fig. 2.10 by using the sub-region mixed energy 
method. Node J is the interface, and the region on the left side of the node J is the 
complementary energy region. Then, according to the force method, the reaction 
force X1 along the horizontal bar at point A is taken as the fundamental unknown 
variable. The region on the right side of the node J is the potential energy region. 
Then, according to the displacement method, the angular displacement 2 at the 
node J is taken as the fundamental unknown variable. 

Figure 2.10 A frame 

The fundamental system is shown in Fig. 2.9(a): in region a, the horizontal bar 
at point A is eliminated and replaced by the force variable X1; and in region b, an 
additional constraint is added at the node J, and the node rotation is made as the 
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displacement variable 2. The sub-region mixed energy m of the fundamental 
system is given by Eq. (2-162), and the displacement D1 corresponding to X1 and 
the constrained moment F2 corresponding to 2 are given by Eq. (2-164). 

The original structure in Fig. 2.10 should satisfy the following fundamental 
equation

1 20, 0D F  (2-169) 

Substitution of the above equation into Eq. (2-164) yields 

m m

1 2

0, 0
X

 (2-170) 

The above equation is the stationary conditions of the sub-region mixed energy 
m. Thereby, the sub-region mixed energy stationary principle can be derived 

from the sub-region mixed energy partial derivative theorem. Furthermore, the 
sub-region potential energy principle and the sub-region complementary energy 
principle are the special cases of the sub-region mixed energy principle. 

2. The potential energy partial derivative theorem and related approach,  
principle and theorem 

If the whole structure is looked upon as the potential energy region and no 
complementary energy region existing, the sub-region mixed energy m will 
degenerate to the potential energy p of the whole region, and the sub-region 
mixed energy partial derivative formulae (2-163) will degenerate to the potential 
energy partial derivative formulae: 

p ( 1,2, , )i
i

F i n  (2-171) 

This is the mathematical expression of the potential energy partial derivative 
theorem. And, the theorem can be stated as follows: A structure has n support 
displacements ( 1,2, , )i i n  treated as the independent displacement variables, 
other support displacements and loads are all specified by the given values, and 
the potential energy p of the structure is expressed as a function of 1 2, , , n ,
then the partial derivative of the potential energy p with respect to the 
displacement variable i will be equal to the constrained force Fi corresponding 
to i.

There are some other deductions which can also be obtained from the potential 
energy partial derivative theorem. 

(1) Both the potential energy partial derivative theorem and the unit support 
displacement method are the approaches for solving the support reaction force Fi,
and they have a close relation. Their differences are as follows: the unit support 
displacement method possesses a broader application range, and does not involve 
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physical conditions; the application range of the potential energy partial derivative 
theorem is relatively narrow, only suitable for elastic structures, but its formulae 
are quite simple and convenient.  

(2) If the constrained force iF  corresponding to the displacement variable i
does not exist, equation (2-171) will degenerate to: 

p 0 ( 1,2, , )
i

i n  (2-172) 

This is the potential energy stationary condition. So, the potential energy stationary 
principle can also be derived from the potential energy partial derivative theorem. 

(3) If there is no other load in the structure except for the displacement variable 
i and its constrained force ( 1,2, , )iF i n , the potential energy p will be 

equal to the strain energy U, and Eq. (2-171) will be simplified as: 

i
i

UF  (2-173) 

This is the Castigliano first theorem. 

3. The complementary energy partial derivative theorem and related approach, 
principle and theorem 

If the whole structure is looked upon as the complementary energy region and no 
potential energy region existing, the sub-region mixed energy m will degenerate 
to the minus value of the complementary energy of the whole region, i.e. c( ).
Eq. (2-163) will degenerate to: 

c ( 1,2, , )i
i

D i n
X

 (2-174) 

This is the mathematical expression of the complementary energy partial derivative 
theorem. And, the theorem can be stated as follows: A structure has n independent 
variable loads or independent force variables Xi ( 1,2, , )i n , other loads and 
support displacements are all specified by the given values, and the complementary 
energy c of the structure is expressed as a function of 1 2, , , nX X X , then the 
partial derivative of the complementary energy c with respect to the displacement 
variable Xi will be equal to the displacement Di corresponding to Xi.

There are some other deductions which can also be obtained from the 
complementary energy partial derivative theorem. 

(1) Both the complementary energy partial derivative theorem and the unit load 
method are the approaches for solving the displacement Di, and they have a close 
relation. Their differences are as follows: the unit load method possesses a broader 
application range, and does not involve physical conditions; the application range 
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of the complementary energy partial derivative theorem is relatively narrow, only 
suitable for elastic structures, but its formulae are quite simple and convenient.  

(2) If the force variables 1 2, , , nX X X  are all redundant constrained forces of 
the statically indeterminate structure, and their corresponding displacements 

1 2, , , nD D D  are all zero, then Eq. (2-174) will degenerate to: 

c 0 ( 1,2, , )
i

i n
X

 (2-175) 

This is the complementary energy stationary conditions. So, the complementary 
energy stationary principle can also be derived from the complementary energy 
partial derivative theorem. 

(3) If the support displacements of the structure are zero, then, the complementary 
energy c will be equal to the strain complementary energy V, and Eq. (2-174) 
will be simplified as 

( 1,2, , )i
i

VD i n
X

 (2-176) 

This is the Crotti-Engesser theorem. 
(4) If the structure is linear elastic, and has no initial strain, then the strain 

complementary energy V and the strain energy U are equal to each other, and 
Eq. (2-176) can be written as 

( 1,2, , )i
i

UD i n
X

 (2-177) 

This is the Castigliano second theorem. 
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