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Abstract This chapter discusses the spline element method, which is the 
result obtained by the combination of the spline function and the finite 
element method. Firstly, the characteristics of the spline functions and spline 
elements are given. Then, the beam and membrane element models 
constructed by the spline functions are presented. Finally, some applications 
of these spline elements in the analysis of the shear wall and tube structures 
are illustrated. 
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18.1 Introduction 

In the finite element method, a structure will be divided by the elements with 
piecewise interpolation functions.  

The most commonly used piecewise polynomials are Lagrangian interpolations, 
Hermitian interpolations, spline functions, and so on. Compared with other 
piecewise polynomials, the spline functions have many advantages. For example, 
they contain fewer undetermined coefficients; possess high-order continuity; and 
exhibit high approximate performance. Therefore, the spline function method is 
increasingly important for various numerical analyses[1– 4].

n-order spline function is a piecewise n-order polynomial with Cn–1-continuity. 
The configurations and corresponding mechanics models of linear, quadratic and 
cubic spline functions are given in Table 18.1. 

There are two application patterns of the spline functions in structure analyses. 
One is the global interpolation scheme, such as the spline variation method and 
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the spline weighted residual method. The other is the piecewise interpolation 
scheme, which is called the spline finite element method[5–9]. The common 
advantage of these two patterns is that more accurate and smoother solutions can 
be obtained with fewer degrees of freedom. But, the former is only suitable for 
domains with regular shapes, while the latter can be conveniently used for 
structures with complicated geometry. 

The spline finite element method is the topic discussed in this and the next 
chapters.

Table 18.1 Configurations of spline functions and their mechanics models 

 Configurations Mechanics models 

Linear spline 
C0-continuity piecewise fold line Displacement curve of a suspended-cable 

subjected to concentrated loads 

Quadratic spline 
C1-continuity piecewise parabolic curve Displacement curve of a beam subjected to 

concentrated couples 

Cubic spline 
C2-continuity piecewise cubic parabolic 

curve 

Displacement curve of a beam subjected to 
concentrated forces 

18.2 Spline Beam Elements 

Two low-order spline beam elements are introduced in this section. And, the spline 
thick beam elements considering shear deformation will be given in Sect. 19.2. 

18.2.1 Quadratic Spline Beam Element (4 Degrees of Freedom) 

A quadratic spline beam element is shown in Fig. 18.1. Its element nodal 
displacement vector contains 4 degrees of freedom: 

T
1 1 2 2[ ]e w wq
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The element is divided into two segments 13 and 32. Assume that the deflection 
w(x) is quadratic polynomial within each segment: 

2
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 (18-1) 

Figure 18.1 Quadratic spline beam element 

in which 6 unknown coefficients c1, , c6 can be determined by the following 6 
conditions
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Therefore, w(x) can be expressed in terms of 4 shape functions as follows 
(0) (1) (0) (1)
1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( )w x N x w N x N x w N x  (18-3) 

where the shape functions are all quadratic spline functions 
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Finally, the element stiffness matrix can be obtained 
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18.2.2 Cubic Spline Beam Element (6 Degrees of Freedom) 

A cubic spline beam element is shown in Fig. 18.2. Its element nodal displacement 
vector contains 6 degrees of freedom: 

T
1 1 1 2 2 2[ ]e w w w w w wq

Figure 18.2 Cubic spline beam element 

The element is divided into three segments 13, 34 and 42. Assume that the 
deflection w(x) is cubic polynomial within each segment. It contains 12 unknown 
coefficients, which can be determined by the boundary conditions at end nodes 1 
and 2, and continuous conditions at virtual nodes 3 and 4 of deflection and its 
first and second order derivatives. Hence, w(x) can be expressed in terms of the 6 
shape functions as follows: 

(0) (1) (2) (0) (1) (2)
1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )w x N x w N x w N x w N x w N x w N x w

(18-6)

in which the shape functions are all cubic spline functions 
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Finally, the element stiffness matrix can be obtained 

2 2
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18.2.3 Numerical Examples 

Example 18.1 A simply-supported beam (span length is L) is subjected to 
uniformly distributed load q. The flexural rigidity of the beam is EI. The results 
and errors of the central deflection and moment by the quadratic and cubic spline 
elements are listed in Tables 18.2 and 18.3.  

Table 18.2 Central deflection 
4

16C
qLw

EI

Number of elements (1/2 beam) 1 2 3 4 
Quadratic spline element 0.1979 (5%) 0.2057 (1%) 0.2077 (0.3%) 0.2080 (0.1%)
Cubic spline element 0.2083 (0%)    
Analytical solution 0.2083 
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Table 18.3 Central moment 
2

8C
qLM

Number of elements (1/2 beam) 1 2 
Cubic spline element 1.0186 (2%) 1.0046 (0.5%) 
Analytical solution 1.0000 

18.3 Spline Plane Membrane Elements 

The spline plane membrane element is introduced as follows. Assume that the 
shape of the element is rectangle, and bi-quadratic spline functions are used for 
interpolation[10].

As shown in Fig. 18.3, a rectangular element is equally divided into 4 sub-regions. 
And, the coordinates of node ij (i, j 1,2) are ( , ).i jx y

Figure 18.3 Rectangular element (4 sub-regions) 

There are 8 degrees of freedom at each node ij

(00) (10) (01) (11) (00) (10) (01) (11) T[ ]ij ij ij ij ij ij ij ij iju u u u v v v vq  (18-9) 
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 (18-10) 

Thus, each element has 32 degrees of freedom 

T T T T T
11 21 22 12[ ]eq q q q q  (18-11) 
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The element displacement fields u and v can be expressed in terms of the nodal 
displacements as follows: 

2 2

1 1
ij ij

i j

u
v

N q  (18-12) 

in which the shape functions are all bi-quadratic spline functions 
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( ) ( )( , ) ( ) ( ) ( , 1,2; , 0,1)kl k l
ij i jN x y N x N y i j k l  (18-14) 

( ) ( )k
iN x  are the shape functions of the quadratic spline beam element defined in 

Eq. (18-4), and ( ) ( )l
jN y  can be defined similarly.  

After the determination of the shape functions, the element stiffness matrix can 
then be obtained by the conventional procedure. This element is denoted as R-OQQ. 

Example 18.2 A simply-supported beam subjected to uniformly distributed 
load is divided by 6 R-OQQ elements (as shown in Fig. 18.4). The results and 
comparison of stress x(0, y) by the present element and analytical solution are 
listed in Table 18.4. 

Figure 18.4 A simply-supported beam and mesh division 

Table 18.4 Results of stress x(0, y)

y(m) 1.5 1.0 0.5 0 0.5 1.0 1.5

Present element 273.4 180.4 89.8 0.6 89.6 181.0 273.1 

Analytical 272.0 179.5 89.2 0.0 89.2 179.5 272.0 

Details about the spline sectorial and triangular elements can be referred to 
reference [10]. 
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18.4 Analysis of Shear Wall Structures by Spline  
Elements

Shear wall is one of the important structures popularly used in high-rise buildings.  
Ever since finite strip method was proposed by Cheung[11] for structure 

analysis, it has been broadly used in computations of high-rise building structures. 
And, the longitudinal interpolation functions of strip elements also obtain 
continuous improvements. However, the common characteristic of this kind of 
method is that the interpolation procedure must be carried out in the whole strip 
domain, which is only suitable for the structures with regular shapes. Troubles and 
difficulties often happen when irregular opening hole and boundary shape exist 
(Fig. 18.5).  

Figure 18.5 Shear wall with opening 

Girijavallaham[12] used conventional triangular and rectangular elements to 
analyze the coupled shear wall structures, but the density of the mesh is quite high. 
Recently, the continuity assumption of structure has been wildly accepted. So, in 
the analysis of structures, the discrete connecting beams can be replaced by the 
equivalent orthotropic plate, which greatly reduces the number of elements. Chan 
and Cheung[13] proposed a high-order rectangular element, in which the 
interpolation polynomials of the element transverse and longitudinal displacements 
are linear and quintic, respectively. Only a few of such elements are enough for 
the analysis of the whole structure. However, in general, the numerical instability 
may occur for high-order polynomial approximation.  

In this section, a spline element TB-mn which can be broadly used for the 
analysis of high-rise building structures will be introduced. The displacement 
components of this spline element are interpolated locally within an element by 
using the spline function. Then, according to the characteristics of the high-rise 
building structures, the orders of spline functions for transverse and longitudinal 
interpolations are selected properly, so that more accurate results can be obtained 
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by low-order spline functions and fewer degrees of freedom. Since such spline 
interpolation is performed only within a local element, just as the conventional 
displacement-based element, this spline element can easily deal with various 
structure forms with irregular opening holes and boundary shapes.  

18.4.1 Element TB-mn for the Analysis of High-Rise Building  
Structures[8 –14]

For a plane stress rectangular element for the analysis of high-rise building 
structures (Fig. 18.6), piecewise spline Hermitian interpolation is used for the 
transverse displacement u and longitudinal displacement v of the element 

2 2 1 1

1 1 0 0
( ) ( , )

m n
ij

mn ij
i j ij

uu
N x y

v v
 (18-15) 

Figure 18.6 Rectangular element 

in which m and n are the orders of spline functions; iju  and ijv  are the values of 
displacements or their derivatives at element nodes ij (i, j 1,2)

,

( , )
( , )

i j

ij

ij x x y y
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v x yx yv

 (18-16) 

The element shape function ( ) ( , )mn ijN x y  is composed of two piecewise spline 
interpolation functions 

 ( ) ( ) ( ) ( ) ( )mn ij m i n jN N x N y  (18-17) 
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where ( ) ( )m iN x  and ( ) ( )n jN y  are m and n order spline Hermitian interpolation 
function, respectively; the expressions of ( ) ( )m iN x  or ( ) ( )n jN y  are as follows: 

(1) Linear spline interpolation functions (m 1)
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In the above expressions, we have 
2
ah
m

. And, the interpolation procedure is 

performed within the range ,
2 2
a a  (Fig. 18.6). 

Similar to the conventional displacement-based element, the displacement 
interpolation mode of the spline element can also be written in matrix forms 

mn

u
v

N q  (18-18) 

In the analysis of the high-rise building structures, the longitudinal dimensions 
of the elements are usually much larger than their transverse dimensions. So 
m n is taken when the piecewise interpolation in an element is considered. The 
spline element constructed by such interpolation mode is called as TB-mn 
element. When m 1, n 1, the element TB-mn will degenerate to be the ordinary 
bi-linear plane stress rectangular element. 

18.4.2 Analysis of Shear Wall Structures by the Element TB-mn 

Here, the static and dynamic analyses of the shear wall structures are performed 
by using the element TB-mn, and several typical examples are given.  

For a shear wall with only small opening, the element TB-mn can be used like 
the usual rectangular element; for a coupled shear wall structure, the wall limbs 
can be analyzed directly by the element TB-mn; and the connecting beams are 
equivalently looked upon as orthotropic continuous grids according to the continuity 
assumption of the structure. The equivalent elastic and shear modulus of the 
continuous grids are 
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in which l and d are the span of the connecting beam and height of beam section, 
respectively; h is the storey height of the structure.  

Example 18.3 Tip displacement of a vertical cantilever beam subjected to 
horizontal load. 

In order to test the performance of the element TB-mn, the tip displacement of 
a vertical cantilever beam subjected to horizontal force is calculated in this 
example. Geometries and material properties are given in Fig. 18.7(a). The 
variations of results of tip displacement with total degrees of freedom are plotted 
in Fig. 18.7(b). Obviously, the convergence speed of the spline element is much 
faster than that of the usual rectangular element (TB-11). The results obtained 
from the element TB-mn by the same mesh are listed in Table 18.5. It can be seen 
that, when only one element is used, the elements TB-22 and TB-23 already 
reach good accuracy; even the element TB-12, which has only a few nodal 
degrees of freedom, can improve the precision greatly.  

Figure 18.7 Analysis of shear wall structure by element TB-mn 

Table 18.5 The tip displacement u of a cantilever beam subjected to horizontal force 

Element type TB-11 TB-12 TB-13 TB-22 TB-23 
Nodal degrees of freedom 2 4 6 8 12 

1 1 102 3452 3649 3724 4024 Mesh 
division 1 4 1149 3861 3699 4050 4035 

Analytical solution 4031 
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Example 18.4 Vibration analysis of a cantilever beam. 
Dimensions of the cantilever beam are: h b 1.0cm 0.5cm, l 10cm. Material 

properties: E 2.1 105MPa, 0.3, and mass density 7.8g/cm3. The results 
of the natural frequency of the cantilever are listed in Table 18.6. 

Table 18.6 Natural frequencies of a cantilever beam (103rad/s)

Frequency First-order Second-order 
Element type TB-11 TB-12 TB-13 TB-11 TB-12 TB-13 

1 1  5.778 5.397  48.93 32.81 
1 2  5.450 5.336  34.21 32.58 
1 4 9.637 5.337  61.62 32.67  
1 8 6.750   41.21   

Mesh 
division

1 40 5.532   32.97   

Example 18.5 Displacement of a coupled shear wall subjected to horizontal 
load.

In this example, an 11-storey coupled shear wall structure (Fig. 18.8) is calculated 
by the element TB-mn (Fig. 18.8). The geometrical and physical parameters are 
as follows: 

H 132ft*, W 18ft,  l 7ft,  d 2ft          
h 12ft, E 0.4 105kip/f t2*, 0.2,  t 1.0ft 

For comparison, the usual rectangular element (TB-11) and spline element are 
both employed. In order to obtain enough precision, the mesh divided by the 
usual rectangular elements (contains 572 elements) is quite dense. When the 
computation is performed by the element TB-mn, a continuity treatment must be 
used for the connecting beams. The lateral displacement curves of the coupled 
shear wall are plotted in Fig. 18.8(b). It can be seen that satisfactory results can 
be obtained by quite sparse mesh when the element TB-mn is used. 

Example 18.6 Analysis of the shear wall with local stagger holes at the 
bottom.  

A 6-storey shear wall with local stagger holes at the bottom is shown in 
Fig. 18.9. Young’s modulus E 3.0 104MPa, Poisson’s ratio 1/ 3,  thickness 
of the wall is 25cm. The vertical load q 100kN/m, and horizontal load and other 
parameters are given in Table 18.7.  

For comparison, the results obtained by the usual element and spline element 
methods are both given. The mesh divided by the usual model, which contains 
2192 elements, is quite dense, while only 104 spline elements TB-13 are utilized.  

                                                       
* ft—feet; kip—kilopound. For comparison with results in related references, units of British Imperial system 

are used here.



Advanced Finite Element Method in Structural Engineering 

654

Figure 18.8 Coupled shear wall structure 
(a) Structural geometry; (b) Load-displacement curves

Figure 18.9 Shear wall with local stagger holes at bottom (unit: mm) 
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From Tables 18.7 and 18.8, it can be seen that, the results of the horizontal 
displacements of the wall obtained by these two schemes are in good agreement 
with each other; and, among the computational results of the internal forces at the 
bottom wall limb, the solutions for the axis forces obtained by the two schemes 
are in good agreement while the moment solutions have a few differences, however, 
obvious discrepancies exist in shear force solutions. 

Table 18.7 Parameters and horizontal displacements of a shear wall with stagger 
holes at the bottom 

Storey No. 1 2 3 4 5 6 
Storey height (m) 4.500 3.000 3.000 3.000 3.000 3.000
Height of connecting beam (m) 1.500 1.000 1.000 1.000 1.000 1.000
Horizontal force iP (kN) 36.7 61.2 85.7 110.1 134.6 191.0

Usual element 0.6446 1.015 1.454 1.890 2.227 2.667Horizontal  
displacement (mm) Spline element 0.6633 1.090 1.577 2.048 2.464 2.875

Table 18.8 Results of internal forces at bottom wall limb 

Wall limb No. A B C 
Usual element 45.0 499.0 617.5 

Moment M (kN m)
Spline element 60.0 396.8 688.4 
Usual element 1040 3161 3803 

Axial force N (kN)
Spline element 775 2946 4248 
Usual element 6.4 252.8 365.1 

Shear force (kN) 
Spline element 22.8 104.7 489.2 

18.5 Analysis of Frame-Tube Structures by Spline  
Elements

Frame-tube structure or tube structure, which possesses high spatial stiffness and 
can perform well in earthquake-resistance, is an ideal structural system for the 
high-rise and super high-rise buildings. To date, great developments have been 
achieved in the computational theories of the frame-tube structures. Coull and 
Subedi[15] proposed an equivalent plane frame method in which the frame-tube 
structure in a 3D space is simplified as a plane frame, so that the computation 
cost can be greatly reduced. According to the characteristic of “shear lag” in a 
rectangular frame-tube structure, Coull and Bose[16,17] established the corresponding 
differential equations based on the minimum complementary energy principle. 
This method is simple, and its accuracy can meet the requirements of design. By 
assuming that the distribution of the longitudinal stresses along tube section is 
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piecewise linear, Long et al.[18] also established the fundamental equations based 
on the complementary energy principle. This method can produce high precision 
solutions for internal forces, and can be used for the computation of the tube 
structures with arbitrary polygonal section.  

The following basic assumptions for the tube structures are employed: 
(1) For the floor slab, the in-plane stiffness is infinite rigid, and the out-of-plane 

stiffness is zero; 
(2) The bending stresses at the wall panel of the tube structure are ignored.  
For the tube structure with a polygonal section, the whole structure is composed 

of several wall panels. When we analyze each of these wall panels, local 
coordinates x , y  will be firstly employed. Under this local coordinate system, 
the element stiffness matrix eK  and equivalent nodal load vector ep  of the 
spline element TB-mn can be obtained. When we analyze the whole tube 
structure, global coordinates x, y, z will be used. By the coordinate transformation 
formulae, eK  and ,ep  which are established in the local coordinate system, can 
be transformed into and assembled in the global coordinate system. The procedure 
is as follows. The transformation between the local and global coordinate systems 
is shown in Fig. 18.10. 

18.5.1 Piecewise Spline Hermitian Interpolation 

According to the basic assumptions, the horizontal displacements at the same 
height of the tube should be the same. Therefore, the horizontal displacement u
is interpolated only along the longitudinal direction; but the vertical displacement 
v  is still interpolated by the spline functions along two directions. 

Figure 18.10 Local and global coordinates 
(a) Local coordinates; (b) Global coordinates; (c) Coordinate transformation 
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In the above equations, ju  and ijv  are the nodal values of displacements or 
their derivatives in the local coordinate system O xy  (Fig. 18.10(a)): 
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jj y y

u u y
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 (18-22) 

,
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i jij x x y y
v v x y

x y
 (18-23) 

18.5.2 Coordinate Transformation 

The spline interpolations in the local coordinate system have already been 
finished above. Here they will be transformed into the global coordinate system 
(Fig. 18.10(b)). The transformations of the displacement components u  and v
in the local coordinate system and u, v and w in the global coordinate system are 

cos 0
0 1

sin 0

u
u

v
v

w
 (18-24) 

From this equation, the element stiffness matrix eK  and load vector ep  can be 
transformed into the global coordinate system 

T ,e e e eK TK T p T p  (18-25) 

in which T is the coordinate transformation matrix 

1 1

1 1

1 1
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d d

d d
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I

T I

I

0

0

0

 (18-26) 

I is the identity matrix; d1 2n, d2 4mn.
Due to the constraint effect of the floor slab, on any section of the tube, the 

horizontal displacements (ui, wi) at node i ( i is the transverse node number of 
element e, i 1, 2 ) can be expressed in terms of the horizontal displacements and 
angular displacement (u0, w0, 0) at a reference point on the same section 
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(Fig. 18.10(c)): 
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Thus, at any height of the tube, there are only three horizontal displacements. 
Here, the global stiffness matrix and load vector of the tube structure can be 
written as 

T Te

e
K HTK T H  (18-27) 

e

e
P HT p  (18-28) 

In the above equations, H is the transverse constraint matrix 
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where A and B are the transformation matrices of the nodal displacements (ui, wi)
(i 1, 2) and rotation 0 at the reference point 
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Some numerical examples of the tube structures with rectangular and 
polygonal sections are given as follows.  

Example 18.7 Computation of internal forces and displacements of a tube 
structure with a rectangular section subjected to horizontal load (Fig. 18.11(a),(b)). 

The tube structure with a rectangular section is shown in Fig. 18.11(b).  
Geometric parameters: b/c 1, H/b 2,4,10, h constant; Physical parameters: 

E constant, 0.3.
In this example, the tube structure with a rectangular section is analyzed by the 

elements TB-12 and TB-13. Due to symmetry, only a quarter of the structure is 
computed. The results of the displacements and internal forces are listed in 
Tables 18.9 and 18.10. From Table 18.9, it can be seen that the convergence of 
displacements by the element TB-mn is very good. Since the spline interpolation 
orders of the element along two directions are selected rationally, the 
convergence speed of the displacements is faster with the increase of H/b. The  
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Figure 18.11 Rectangular and polygonal tube structures 

Table 18.9 The tip displacement 
3

/
3b b
PHu u u

EI
 of a tube structure with 

rectangular section subjected to horizontal concentrated load  

Element type TB-12 TB-13 
H/b 2 4 10 2 4 10 

1 1 3.757 1.625 1.021 3.751 1.637 1.028 
2 2 3.856 1.663 1.032 3.856 1.663 1.032 
4 2    3.887 1.671 1.033 

Mesh 

4 4 3.887 1.671 1.033    
Coull method 3.981 1.741 1.118 3.981 1.741 1.118 
Beam theory 1.000 1.000 1.000 1.000 1.000 1.000 

Table 18.10 The bottom stress /y b b
PH b

I
 of a tube structure with 

rectangular section subjected to horizontal concentrated load

Position Mid-point A Corner point B
H/b 2 4 10 2 4 10 

1 1 0.4011 0.7638 0.9352 1.357 1.135 1.013 
2 2 0.5541 0.7813 0.9352 1.658 1.274 1.013 TB-12
4 4 0.5651 0.7835 0.9216 1.930 1.406 1.111 
1 1 0.3173 0.6724 0.9013 1.410 1.197 1.058 
2 1 0.5531 0.7681 0.9236 1.701 1.311 1.081 
2 2 0.5643 0.7747 0.9081 1.724 1.352 1.115 

TB-13

4 2 0.5630 0.7794 0.9145 1.976 1.445 1.130 
Energy method 0.576 0.787 0.915 1.874 1.438 1.175 
Coull method 0.5380 0.7680 0.9070 1.577 1.290 1.116 
Beam theory 1.0000 1.0000 1.0000 1.000 1.000 1.000 
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displacement values of Coull method[16] given in Table 18.9 are obtained from the 
force method, so they are larger than the practical displacement values of the 
structure. Furthermore, with the increase of H/b, the difference of the tip 
displacements between numerical result and beam theory will reduce gradually. 
Results of the vertical stress y at the bottom of the tube structure are listed in 
Table 18.10. It can be seen that, the stress at the mid-point A of the edge is 
smaller than the stress at the corner point B, which is the so-called “shear lag”. 
With the increase of H/b, the shear lag effect will weaken. The stress convergence 
of the spline element is also very good, and is similar to that of the energy 
method[18].

Example 18.8 The internal forces and displacements of a tube structure with 
a polygonal section subjected to horizontal load (Fig. 18.11(a),(c)). 

Geometric parameters: b/c 1, H/b 2,4,10, h constant; Physical parameters: 
E constant, 0.3. The tube structure with a polygonal section is analyzed by 
the element TB-13. Numerical solutions of the displacements and stresses are 
listed in Tables 18.11 and 18.12, respectively, in which the mesh is used for 1/4 
of the structure. Satisfactory solutions can be obtained only by a few elements. 
It can be seen that, the influence of the shear lag effect of the polygonal section 
tube structure is less than that of the rectangular section tube structure. 

Table 18.11 The tip displacement 
3

/
3b b
PHu u u

EI
 of a tube structure with 

polygonal section 

H/b 2 4 10 
3 1 3.142 1.469 1.000 
6 1 3.182 1.480 1.001 
6 2 3.182 1.480 1.001 

Mesh 

9 2 3.190 1.482 1.002 
Beam theory 1.000 1.000 1.000 

Table 18.12 The bottom stress /y b b
PH b

I
 of a tube structure with 

polygonal section 

Position Mid-point A Corner point B
H/b 2 4 10 2 4 10 

3 1 0.660 0.855 1.010 1.153 1.062 1.012 
6 1 0.761 0.892 0.974 1.313 1.114 1.022 
9 1 0.773 0.899 0.975 1.360 1.125 1.023 
6 2 0.768 0.880 0.961 1.354 1.156 1.039 

Mesh 

9 2 0.771 0.887 0.963 1.426 1.179 1.042 
Energy method 0.793 0.897 0.959 1.317 1.159 1.063 
Beam theory 1.000 1.000 1.000 1.000 1.000 1.000 
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(Continued)

Position Corner point C

H/b 2 4 10 

3 1 0.502 0.508 0.505 

6 1 0.624 0.544 0.510 

9 1 0.643 0.551 0.511 

6 2 0.646 0.562 0.515 

Mesh 

9 2 0.656 0.571 0.518 

Energy method 0.651 0.575 0.530 

Beam theory 0.500 0.500 0.500 
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