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Abstract This chapter introduces a novel finite element method, namely, 
the analytical trial function method. A detailed discussion on the features of 
the analytical trial function method is firstly given in Sect. 14.1. Then, in the 
next five sections, the basic analytical solutions of plane problem, thick plate 
problem and thin plate problem are derived and taken as the trial functions 
for the corresponding finite element models. It can be seen that those resulting 
models exhibit excellent performance. Some challenging problems, such as 
the trapezoidal locking and shear locking, can be avoided naturally. 
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14.1 Recognition of the Analytical Trial Function Method 

14.1.1 Trial Function 

When constructing a displacement-based element, the first step is usually to 
assume its displacement mode. For example, the displacement mode of the constant 
strain triangular element CST is assumed to be 
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and the displacement mode of the rectangular thin plate element ACM is assumed 
to be 

1
2 2 3 2 2 3 3 3

12

[1 ]w x y x xy y x x y xy y x y xy F

(14-2)

where  is the undetermined parameter vector; F  is composed of trial functions 
(or basis functions). 

Element performance relies deeply on the selected trial functions. As a result 
of the irrationally selected trial functions for displacements, trapezoidal locking 
and shear locking phenomena may exist in some membrane and thick plate 
elements, respectively. 

14.1.2 Analytical Trial Function 

In structural matrix analysis, the exact (or analytical) solutions for the displacement 
of the thin beam theory are used by the thin beam element. That is to say, the 
selected trial functions are analytical solutions; therefore, they are called as 
analytical trial functions.

Timoshenko thick beam element also uses the exact solutions for the 
displacements of the thick beam theory. So, it will not suffer from shear locking 
phenomenon because the analytical trial functions are employed. 

2D and 3D elasticity problems, thin and thick plate problems are all problems 
with infinite DOFs. For their homogeneous problems, the analytical solutions are 
composed of infinite terms. Finite element method is an approximate method in 
which such infinite DOF problems are treated as problems with only finite DOFs. 
And, the corresponding element model also contains finite (n) DOFs, which 
means that its displacement mode contains only n basic analytical trial functions. 
These n analytical solutions can be selected in turn from low to high orders.  

14.1.3 Analytical Trial Function Method 

The construction procedure of the finite element model in which the basic 
analytical solutions are taken as the trial functions is called the finite element 
method based on analytical trial functions, or the analytical trial function 
method.

The feature of the analytical trial function method is: the finite element method 
is a discrete approximate method, while the advantages of the analytical method 
are preserved in it. It exhibits the close relation between the trial function and the 
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basic analytical solution and the complementarity between discrete and analytical 
methods. 

14.1.4 Recognition of the Analytical Trial Function Method 

At the beginning of the finite element method, all people thought of taking the 
most basic analytical solutions as the trial functions. For instance, in the 
displacement mode (14-1) of the first membrane element CST, the selected 6 trial 
functions are just the most basic analytical solutions of the 2D homogenous 
problem in elasticity (3 rigid body displacements and 3 constant strain states). 
And, in the displacement mode (14-2) of the first rectangular thin plate element 
ACM, the selected 12 trial functions are just the most basic analytical solutions 
of the thin plate homogenous problem, i.e., they are all the analytical solutions of 
the following homogenous differential equation 

2 2 0w  (14-3) 

and are the 12 analytical solutions of the lowest orders which contain 3 rigid body 
displacement states, 3 constant strain states, 4 linear strain states and 2 quadratic 
strain states. It can be seen that, for these earliest elements, whether by conscious 
efforts or not, their construction procedures are in keeping with the requirement 
of the analytical trial function method. That is to say, the analytical trial function 
method is the earliest scheme used in the finite element method.  

With the flourishing development of the finite element method, various schemes 
have been proposed one after the other. Especially, after the isoparametric elements 
were broadly used, the analytical trial function method was almost overlooked.  

Owing to the inherent advantages of the analytical trial function method, its new 
applications are continuously suggested in some references. For example, in 1982, 
reference [1] used the analytical solutions containing singular stress point as the 
trial functions for developing the singular element with crack, which provides an 
effective solution scheme for the crack problem; in 1996, reference [2] proposed a 
rational finite element method, and constructed a set of high quality elements by 
using the basic analytical solutions for plane elasticity; reference [3] takes the 
basic analytical solutions of the thick plate theory as the trial functions to 
develop the thick plate elements, which rationally resolves the matching problem 
of the trial functions for deflection and rotations so that shear locking phenomenon 
can be eliminated from the outset; reference [4] uses the analytical solutions to 
construct two membrane elements which can keep high precision in distorted 
mesh, and the trapezoidal locking problem given in reference [5] is thus solved. 
In 2002, reference [6] gave a systematical review of the analytical trial function 
method. It points out the advantages and potentialities of the analytical trial 
function method in dealing with mesh distortion, shear locking and singular 
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stress point problems, which will induce further studies and developments on the 
analytical trial function method.  

14.2 4-Node Membrane Elements Based on the Analytical  
Trial Function Method 

14.2.1 The Basic Analytical Solutions in Plane Elasticity 

In plane elasticity, the analytical solutions of different order which satisfy the 
basic governing equations, including equilibrium equations, geometrical equations 
and constitutive law, can be derived. The 12 low-order analytical solutions are 
listed in Table 14.1 (in which  is the Poisson’s ratio). 

Table 14.1 The basic analytical solutions in plane elasticity 

No.of 
terms 

1 2 3 4 5 6 7 8 9 10 11 12 

u
v

x

y

xy

1
0
0
0
0
0

0
1
0
0
0
0

y
– x
1
0
0
0

y
x
0
0
0
2

– x
y
0

–
1
0

x
– y

0
1

–
0

– x2 y2

2xy
– 2y

– 2 x
2x
0

2xy
– y2 x2

2x
2y

– 2 y
0

– 2 xy
y2 (2 )x2

2x
– 2 y

2y
– 4(1 )x

x2 (2 )y2

– 2 xy
– 2y
2x

– 2 x
– 4(1 )y

– 3 x2y y3

3xy2 (2 )x3

3x2 3y2

– 6 xy
6xy

– 6(1 )x2

3yx2 (2 )y3

– 3 y2x x3

3x2 3y2

6xy
– 6 xy

– 6(1 )y2

14.2.2 3 Membrane Elements Based on the Analytical Trial  
Functions

A 4-node, 8-DOF membrane element shown in Fig. 14.1 is considered. The 
element nodal displacement vector is 

T
1 1 2 2 3 3 4 4[ ]e u v u v u v u vq  (14-4) 

By using the first eight terms of the analytical solutions given in Table 14.1 as 
the trial functions, the element displacements u and v are assumed to be 
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 (14-5) 



Chapter 14 Analytical Trial Function Method  Membrane and Plate Bending Element 

499

where 1, 2, , 8 are 8 unknown parameters. 

Figure 14.1 A 4-node quadrilateral membrane element 

By employing 8 nodal conforming conditions  

( ) 0
( ) 0

i

i

u u
v v

   (i 1,2,3,4)  (14-6) 

the 8 unknown parameters can be solved and expressed in terms of qe. This 
element is denoted as ATF-Q4a. 

If the 8 nodal conforming conditions are replaced by the following nodal and 
perimeter conforming conditions  
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 (14-7) 

in which l and m are the direction cosines of the normal on the element boundary; 
i and i are the isoparametric coordinates of node i; u  and v  are the 

displacements of the element boundary. This element is denoted as ATF-Q4b. 
For the 4-node membrane element shown in Fig. 14.1, if the rotation i of 

node i is also taken as the DOF, the element will have 12 DOFs. Thus, the 
element nodal displacement vector is  

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e u v u v u v u vq  (14-8) 

The 12 analytical solutions given in Table 14.1 are taken as the trial functions, 
and the following 12 nodal conforming conditions 
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v v    (i 1,2,3,4) (14-9) 

are also used, in which 

1
2

u v
y x

 (14-10) 

This element is denoted as ATF-Q4 .

14.3 Avoiding Trapezoidal Locking Phenomenon by  
ATF Elements 

As to the trapezoidal locking problem (or sensitivity problem to mesh distortion), 
the analytical trial function method provides an effective solution countermeasure.  

Example 14.1 Sensitivity test  to mesh distortion—A pure bending beam 
divided by two distorted elements. 

A cantilever beam subjected to pure bending load is shown in Fig. 14.2, and it 
is divided into two elements.  is a distortion parameter. When  increases, the 
distortion will become more serious. The length of the beam is 10; height is 2; 
thickness is 1. And, E 1500, 0.25. Results of the deflection vA at tip A are 
plotted in Fig. 14.3. Besides the present elements ATF-Q4a, ATF-Q4b and ATF-Q4 ,
results obtained by the 4-node isoparametric element Q4, the isoparametric element 
with internal parameters QM6[7] and the hybrid stress element P-S[8] are also 
given for comparison. 

Figure 14.2 A beam divided by two distorted elements 

From Fig. 14.3, it can be seen that, the precision of the 4-node isoparametric 
element Q4 is the lowest: when 0, since the length-height ratio of the 

rectangular element is high 5
2

L
h

, the precision of vA has already dropped to 

28%. And, with the increase of , its precision will continually drop, even below 
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10%. Though the precisions of the hybrid stress element P-S, the isoparametric 
element with internal parameters QM6 and element ATF-Q4b are all 100% for the 
rectangular element case ( 0), if >1, they will be below 60%. The precisions 
of the other two present elements ATF-Q4a and ATF-Q4  are the best: with the 
increase of the distortion parameter , the precision can always keep 100% which 
means that both the elements are very insensitive to mesh distortion. From these 
results, it can be concluded that, if appropriate conforming conditions are selected, 
ATF elements can exhibit excellent performance for avoiding trapezoidal locking. 

Figure 14.3 Relation between Percentage (%) precision of vA and distortion 
parameter

Example 14.2 Sensitivity test  to mesh distortion—MacNeal thin beam 
problem with distorted mesh. 

The MacNeal thin beam problem[5] is shown in Fig. 14.4, in which rectangular, 
parallelogram and trapezoidal mesh are used. This is a famous benchmark for 
testing the sensitivity to mesh distortion. The precisions of many 4-node membrane  

Figure 14.4 MacNeal thin beam with distorted meshes 
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elements drop dramatically for the trapezoidal mesh case, which is the so-called 
trapezoidal locking phenomenon. The length of the cantilever beam is 6, the 
height is 0.2; the elastic constants E 107 and 0.3. Two tip load cases are 
considered: pure bending and transverse shear. 

The results of the deflection vA at tip A are listed in Table 14.2. Besides the 
present three elements, the results obtained by the 4-node isoparametric element 
Q4, hybrid stress element P-S[8], 4-node element QUAD4[5] with one integration 
point, assumed strain element PEAS7[9] and its modification versions, the 
elements M1PEAS7 and M2PEAS7[10] are also given for comparison.

Table 14.2 The percentage (%) precision of the tip deflection vA of MacNeal beam 

Load case Transverse shear Pure bending 
Mesh Rectangle Parallelogram Trapezoid Rectangle Parallelogram Trapezoid
Q4

QUAD4
P-S

PEAS7 
M1PEAS7
M2PEAS7
ATF-Q4b 
ATF-Q4a 
ATF-Q4

9.3
90.4
99.3
98.2
99.3
99.3
99.4
99.4
100

3.5
8.0
79.8
79.5
94.8
94.3
61.3
99.4
100

0.3
7.1
22.1
21.7
36.7
36.8
4.5
99.4
100

9.3

100

100
100
100

3.1

85.2

70.7
100
100

2.2

16.7

4.1
100
100

From Table 14.2, it can be seen that, because the length-height ratio of the 
element is 1/0.2 5, the precision of the element Q4 drops obviously. The element 
QUAD 4 using a single integration point is seriously locking in parallelogram 
and trapezoidal meshes. The precisions of the hybrid stress element P-S, element 
ATF-Q4b, assumed strain elements PEAS7, M1PEAS7 and M2PEAS7 are similar: 
for the mesh divided by rectangular elements, the precision is the best; for the 
mesh divided by parallelogram elements, the precision will drop; and for the 
mesh divided by trapezoidal elements, locking phenomenon will happen. Only 
two elements ATF-Q4a and ATF-Q4 , which are proposed in this section, possess 
high accuracy for all mesh divisions, i.e., they are insensitive to mesh distortion. 
And, element ATF-Q4  can even provide exact solutions for the two load cases 
and three meshes. The trapezoidal locking problem of MacNeal beam is a serious 
challenge to the 4-node, 8-DOF membrane elements. The victory of the element 
ATF-Q4a in this challenge exhibits its advantage again.  

Example 14.3 Weak patch test for the element ATF-Q4a. 
Patch test is often used for testing the convergence of the non-conforming 

elements. It has two forms: 
Strict form—The boundary conditions are specified according to the constant 

strain state. Then, by using an arbitrary mesh divided by the elements with finite 
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dimensions, the finite element solutions will be tested to see whether they are the 
exact solutions.  

Weak form—The boundary conditions are also specified according to the 
constant strain state. Then, by using meshes refined by more and more elements, 
the finite element solutions will be tested to see whether they are convergent to 
the exact ones. 

The merit of the strict form is that it can be conveniently performed; and the 
merit of the weak form is that it possesses the right description and is more 
coincident with the original idea of the convergence. 

The MacNeal beam subjected to a horizontal load (resultant force is 1) is 
considered. This structure is under a constant strain state. By using the two 
refined meshes shown in Fig. 14.5, the convergence of the element ATF-Q4a is 
analyzed. The results of the tip displacement are listed in Table 14.3 (the 
analytical solution is 0.6). 

In Fig. 14.5, the refined mesh A firstly contains n n rectangular elements; 
then, each rectangular element is divided into two trapezoidal elements, thus, 2n2

elements are totally obtained. And, the refined mesh B firstly contains two 
trapezoidal elements; then, each trapezoidal element is bisected through the 
midpoints of the element sides so that it is divided into four trapezoidal elements; 
finally, 2n2 elements are totally obtained. 

From Table 14.3, it can be seen that the element ATF-Q4a cannot pass the 
strict patch test because it does not produce the exact solutions of the constant 
strain state by mesh with finite dimensions. But, with the refinement of the mesh, 
the finite element solutions can rapidly converge to the exact solutions. So, the 
element ATF-Q4a can pass the weak patch test.  

Figure 14.5 Two refined patterns of the meshes for MacNeal beam 

Let us make a comparison between the elements ATF-Q4a and ATF-Q4b. 
From the numerical results of Examples 14.1 and 14.2, it can be seen that the 
precision of the element ATF-Q4a is obviously higher than that of the element 
ATF-Q4b. But, the element ATF-Q4b can pass the strict patch test (thereby it can 
also pass the weak one), and the element ATF-Q4a can only pass the weak patch 
test. By this token, the ultimate rule for testing the convergence should be the 
weak patch test, not the strict one. It is not appropriate to deny the element 
ATF-Q4a, which possesses high accuracy, only according to the results of the 
strict patch test. 
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Table 14.3 The tip displacements of the MacNeal beam under tension (ATF-Q4a) 

Refined mesh A Refined mesh BNum. of 
elements Result Relative Precision Result Relative Precision

0.6923 1.1538 0.6923 1.1538
2

0.6923 1.1538 0.6923 1.1538
0.5935 0.9892 0.6067 1.0112
0.6318 1.0530 0.5998 0.99978
0.5935 0.9892 0.6065 1.0108
0.6008 1.0013 0.6014 1.0023
0.6010 1.0017 0.6003 1.0005
0.6010 1.0017 0.5997 0.9995
0.6010 1.0017 0.5988 0.9980

32

0.6008 1.0013 0.6029 1.0048

14.4 The Basic Analytical Solutions of the Thick Plate  
Theory and ATF Elements Free of Shear Locking 

14.4.1 Shear Locking Phenomenon in the Thick Plate Element 

During the construction procedure of the thick plate element based on the 
Mindlin-Reissner thick plate theory, the three displacement components w, x
and y should be independent variables. When the thick plate degenerates to be a 
thin plate, then, according to the Kirchhoff thin plate theory, the rotations x and 

y will be the derivatives of w, which are not independent anymore. Many 
displacement-based elements produce false shear strains x and y in thin plate 
cases, consequently, shear locking phenomenon will happen. Reference [11] 
claimed that, “The root of this difficulty lies on the contradiction of the double 
requirements of dependence and independence among the displacements”. In 
order to overcome such shear locking, many countermeasures have already been 
proposed in numerous literatures. The most popular countermeasures are reduced 
integration[12] and selected reduced integration schemes[13]. However, though 
they can provide us temporary solutions, the shear locking is still not eliminated 
from the outset, and even some new troubles, such as spurious zero energy mode, 
may be aroused. In some recent references [14 – 18], the double requirements of 
dependence and independence among the displacements have been translated 
into other double requirements of nonzero and zero shear strains, and a rational 
interpolation scheme for shear strains which satisfies the double requirements is 
proposed. As a result, a series of thick plate elements which can completely 
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avoid shear locking are developed successfully. This section will present another 
way to eliminate shear locking: The basic analytical solutions of the Mindlin- 
Reissner theory are used in the trial functions of the thick plate displacements w,

x and y ; when the plate degenerates to be a thin plate, these basic analytical 
solutions will automatically degenerate to be those of the Kirchhoff theory, and 
consequently, the shear locking will also be avoided from the outset.  

14.4.2 The Basic Analytical Solutions of the Thick Plate Theory 

In the equilibrium differential equations of the thick plate, if the internal forces 
are expressed in terms of the displacements, the basic differential equations of the 
displacement method for the thick plate can be obtained. For the homogeneous 
problem when all loads are zero, we have 

22 2

2 2

2 22

2 2

2 2

2 2

1 1 0
2 2

1 1 0
2 2

0

yx x
x

y yx
y

yx

wD C
x y x y x

wD C
x y x y y

w wC
x y x y

 (14-11) 

Let F(x, y) be a bi-harmonic function which satisfies the following bi-harmonic 
equation

2 2 0F  (14-12) 
where

2 2
2

2 2x y

Then, the following expressions  

2 , ,x y
D F Fw F F
C x y

 (14-13) 

are the solutions of Eq. (14-11). Let d be a characteristic length. By introducing 
the dimensionless coordinates  and 

x
d

, y
d

 (14-14) 

and the dimensionless parameter 
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2

2 25(1 )
D h

Cd d
 (14-15) 

the first expression in Eq. (14-13) can be written as 

2 2

2 2w F F  (14-16) 

If 0h
d

,  0, then, the analytical solutions (14-13) of the thick plate 

theory will degenerate to be the following analytical solutions of the thin plate 
theory 

, ,

0, 0

x y

xz x yz y

F Fw F
x y

w w
x y

 (14-17) 

From above, it can be concluded that, if the basic analytical solutions (14-13) of 
the thick plate theory are taken as the trial functions for the thick plate element, 

once 0h
d

, these trial functions will automatically degenerate to be the analytical 

solutions of the thin plate theory, thereby, the shear locking phenomenon can be 
eliminated from the outset.  

14.5 Development of Quadrilateral Thin-Thick Plate  
Element Based on the Analytical Trial Function  
Method

14.5.1 Thick Plate Element ATF-MQ Based on the Analytical  
Trial Function Method 

Consider a quadrilateral thick plate element with 12 DOFs, its nodal displacement 
vector is 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

According to the analytical solutions (14-13) of the thick plate theory, the first 12 
low-order terms of the analytical solutions are taken as the trial functions. The 
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element displacements w, x and y can be expressed by 

2 2 3 2

2

2

2 3 3 3

2 2 3

2 3 2

1 2 2 6 2

0 1 0 2 0 3 2
0 0 1 0 2 0

2 6 6 6

0 3
2 3 3

x

y

D D D Dx y x xy y x x x y yw C C C C
x y x xy

x y x

D D D Dxy x y y x y xy xy xy
C C C C

y x y y
xy y x xy

(14-18)

where D is the bending stiffness of the plate; C is the shear stiffness of the 
plate;  is a vector composed of 12 parameters.  

The corresponding curvature fields T[ 2 ]x y xy  are 

2 2

0 0 0 2 0 0 6 2 0 0 6 0
0 0 0 0 0 2 0 0 2 6 0 6
0 0 0 0 2 0 0 4 4 0 6 62

x

y

xy

x y xy
x y xy

x y x y

(14-19)

And, the corresponding shear strain fields T[ ]xz yz  are 

0 0 0 0 0 0 6 0 2 0 6 6

0 0 0 0 0 0 0 2 0 6 6 6

xz

yz

D D D Dy y
C C C C

D D D Dx x
C C C C

(14-20)

The following 12 nodal and line conforming conditions 

( ) 0 (for each node 1,2,3,4)
( ) 0 (for the end point  of each side : 1,2,3,4)

( )d 0 (for each side 12,23,34,41)
ij

i

s s i ij

n nd

w w i
i d i

s ij

(14-21)

are employed, in which n and s are the normal and tangential directions of each 
element side; w , s  and n  are the displacements along the element boundary. 
Thus, the 12 parameters in  can be obtained and expressed in terms of .eq  This 
element is denoted as ATF-MQ. 
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14.5.2 Numerical Examples 

Example 14.4 The central deflection of the simply-supported and clamped square 
plates under uniformly distributed load. 

Two thickness-span cases,  thick plate (h/L 0.3)and  thin plate (h/L
0.003), are considered. The central deflection wC is computed by the element 
ATF-MQ using different mesh density. Its relative precision is given in Table 14.4. 

Table 14.4 The relative precision for the central deflection wC of square plate (ATF-MQ) 

Thick plate (h/L 0.3) Thin plate (h/L 0.003)
Mesh 

Simply-supported Clamped Simply-supported Clamped 
2 2
4 4
8 8

16 16
32 32

1.009
1.002
1.0005
1.0002
1.0001

1.035
1.006

0.9998
0.9984
0.9980

1.011 
1.003
1.0007
1.0001
1.0001

1.009
1.006
1.003
1.002
1.002

From Table 14.4, it can be seen that the element ATF-MQ exhibits excellent 
performance for both thick and thin plates, and no shear locking happens. For the 
simply-supported and clamped square plates, high accuracy can be obtained. 
When a 8 8 mesh is used, all relative errors are below 0.3%.  

Example 14.5 The central deflection and bending moment of the simply- 
supported and clamped circular plates under uniformly distributed load. 

The element ATF-MQ is used for this computation by using two meshes given 
by Fig. 6.14 in which the numbers of the elements are 12 and 48, respectively. 
The thickness-radius ratios h/R of the circular plate vary from 10–30 to 0.35. And, 
the relative precisions for the central deflection and bending moment are listed in 
Table 14.5. 

From Table 14.5, it can be seen again that, the element ATF-MQ is universal 
for both thick and thin plates, and no shear locking happens. It provides high 
precision for both deflection and bending moment. When 48 elements are used, 
all errors are around or below 1%. 

Example 14.6 Sensitivity test for mesh distortion. 
The central deflections of the simply-supported and clamped square plates 

under uniformly distributed load are computed by using two distorted meshes 

shown in Fig. 14.6. Three distortion parameter cases: 
0.5L

0.05, 0.10 and 0.12 

(or 0.20), are considered. The relative precision is given in Table 14.6. 
From Table 14.6, it can be seen that, the element ATF-MQ is insensitive to 

mesh distortion. For various values of the distortion parameter
L

, high accuracy 

can all be obtained. 
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Table 14.5 The relative precisions for central deflection wC and bending moment 
MC of circular plate (ATF-MQ) 

Central deflection wC Central bending moment MC

Simply-supported Clamped Simply-supported Clamped /h R
12

elements 
48

elements
12

elements
48

elements
12

elements 
48

elements
12

elements
48

elements

10–30 

0.001
0.01
0.10
0.15
0.20
0.25
0.30
0.35

1.0103
1.0103
1.0103
1.0100
1.0099
1.0099
1.0098
1.0097
1.0096

1.0024
1.0024
1.0024
1.0025
1.0025
1.0026
1.0026
1.0026
1.0025

0.9625
0.9625
0.9625
0.9631
0.9648
0.9673
0.9703
0.9732
0.9762

0.9898
0.9898
0.9898
0.9905
0.9913
0.9922
0.9930
0.9938
0.9945

1.0208
1.0208
1.0207
1.0199
1.0194
1.0190
1.0188
1.0187
1.0186

1.0040
1.0040
1.0041
1.0046
1.0047
1.0047
1.0047
1.0046
1.0045

1.0137
1.0137
1.0136
1.0107
1.0086
1.0068
1.0053
1.0041
1.0031

1.0002
1.0002
1.0003
1.0014
1.0014
1.0011
1.0007
1.0002
0.9997

Figure 14.6 Two distorted meshes (for 1/4 square plate) 

Table 14.6 The relative precision for central deflection of square plate by using 
distorted meshes (ATF-MQ) 

Clamped Simply-supported 

Mesh 
Distortion
parameter

0.5L

Thickness-span 
ratio h/L 0.1

Thickness-
span ratio

h/L 0.001

Thickness-span 
ratio h/L 0.1

Thickness-
span ratio

h/L 0.001

Mesh 
A

0.05
0.10
0.12

1.0246
1.0500
1.0559

1.0152
1.0480
1.0573

1.0013
1.0074
1.0092

1.0093
1.0079
1.0071

Mesh 
B

0.05
0.10
0.20

1.0186
1.0348
1.0567

1.0091
1.0284
1.0481

1.0001
0.9958
1.0075

1.0096
1.0078
0.9942
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14.6 Analytical Trial Function Method for Developing  
a Triangular Thick Plate Element Based on a Thin  
Plate Element 

In this section, the analytical trial function (ATF) method is used to extend the 
existing Kirchhoff triangular thin plate element to the corresponding Mindlin 
triangular thick plate element. As an example, the triangular thin plate element 
GPL, proposed in reference [19], is generalized to a thick/thin plate element 
GPLM (M denotes the Mindlin plate). 

14.6.1 Brief Review of the Triangular Thin Plate Element GPL 

This element possesses only 9 DOFs. The element nodal displacement vector is  
T

1 1 1 2 2 2 3 3 3[ ]e
x y x y x yw w wq  (14-22) 

According to the ATF method, the element deflection and rotation fields are 
assumed to be 

x

y

w
w
x x
w
y y

F

F

F

 (14-23) 

in which  contains 9 unknown coefficients; and F is composed of 9 trial functions 

1 2 3 1 2 2 3 3 1 1 1 1

2 2 2 3 3 3

1 ( 1)
2

1 1( 1) ( 1)
2 2

L L L L L L L L L L L L

L L L L L L

F

(14-24)

Since the highest order of these trial functions F is cubic, thereby, they satisfy the 
bi-harmonic Eq. (14-12). For the thin plate theory, these trial functions are all the 
analytical trial functions. 

For solving the 9 unknown coefficients, 9 conforming conditions are selected 
as follows 

( ) 0iw w           (for each corner node i 1,2,3) (14-25a) 

( )d 0
jd

w w s       (for each side dj d1, d2, d3) (14-25b) 
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( )d 0
j

n nd
s     (for each side dj d1, d2, d3) (14-25c) 

Then,  can be derived from the above equations, and can be expressed in terms 
of eq

ePq  (14-26) 

Substituting the above equation back into Eq. (14-23), the element displacement 
fields and its shape functions can be determined. And then, the element stiffness 
matrix Ke can be derived following the conventional procedure.  

14.6.2 Generalization of the Element GPL to the Triangular  
Thick Plate Element GPLM 

In the thick plate element, eq  is still given by Eq. (14-22).  
Based on the analytical solutions (14-13) of the thick plate theory, the 

displacement fields (14-23) of the element GPL are generalized to the following 
forms 

2

x

y

Dw
C

x

y

F F

F

F

 (14-27) 

The expressions in the above equation are the displacement fields of the thick 
plate element assumed according to the ATF method. Thus, from the above equation, 
the shear strains of the thick plate element can be obtained as follows 

2

2

x x

y y

w D
x C x
w D
y C y

F

F
 (14-28) 

It can be seen that, when the plate becomes thinner, Eq. (14-27) will degenerate to 
be Eq. (14-23) of the thin plate element, and Eq. (14-28) will degenerate to be 

 0, 0x y  (14-29) 

In order to solve the unknown coefficients in , the conforming conditions 
(14-25a,b,c) for the thin plate element are still used, in which the original 
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displacement w  along the element boundary should be replaced by the boundary 
displacement *w  of the thick plate element  

1 2 3

1 2 3

( *) 0 (for each corner node 1,2,3)
( *)d 0 (for each side , , )

( )d 0 (for each side , , )
j

j

i

jd

n n jd

w w i
w w s d d d d

s d d d d

 (14-30) 

Then, we can obtain  

* eP q  (14-31) 

When the plate becomes thinner, Eqs. (14-30) and (14-31) will degenerate to be 
Eqs. (14-25) and (14-26) which are used for the thin plate element.  

The main procedure for the generalization of the element GPL to the element 
GPLM has been described above. This generalization can be performed 
conveniently.  

By the comparison of the new and old elements, it can be seen that their 
derivation procedures are the same, and formulae in each step are also similar. 
The key step in this procedure is the assumption of displacement fields according 
to the analytical trial function method, in which Eq. (14-23) of the original 
element is replaced by Eq. (14-27) of the new element. In these two equations,

except that there is a 2D
C

F  term in the deflection expression of Eq. (14-27), 

the other expressions are exactly the same. Only one term is different, so the new 
and old elements are quite similar in form. 

However, although only one term is different, the effects of this term 
2D

C
F  is very pivotal—By this term, the shear strains can be introduced 

into the new thick plate element; and also by this term, the shear locking 
phenomenon of the new thick plate element can be successfully eliminated.  

Though the method proposed in this section is described by taking the element 
GPL as an example, in fact, it can also be used to generalize other existing 
triangular and quadrilateral thin plate elements to the corresponding thick/thin 
elements, as long as the trial functions for the deflections of these existing thin 
plate elements are the analytical trial functions of thin plate theory, i.e., should be 
the bi-harmonic functions.  

There are several successful schemes that can generalize the thin plate element 
to thick/thin one. What is introduced here is only one of them, and can be called 
as the analytical trial function (ATF) method. Another scheme is the rational 
interpolation technique in which the shear strain fields are directly introduced 
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into a thin plate (refer to Sects. 8.5 and 8.6). The triangular thick/thin element 
TCGC given in Sect. 8.6 is just derived by the latter scheme. When the plate 
becomes thinner, the element TCGC will also degenerate to be the element GPL. 
(It can be seen that the elements GPLM and TCGC are the two thick/thin plate 
elements generalized from the element GPL by the above two approaches.) 

14.6.3 Numerical Examples 

Example 14.7 Simply-supported and clamped square plates subjected to uniform 
load q.

As shown in Fig. 14.7, due to the symmetry, only a quarter of the plate is 
considered. The results obtained by four 8 8 meshes are listed in Table 14.7. 
The side length of the square plate is L, The Poisson’s ratio 0.3.

From Table 14.7, it can be seen that 
(1) when the plate becomes thinner, the thin plate element GPL-T9 is the final 

limit, thus, no shear locking will happen; 
(2) the rational results can all be provided when the thickness-span ratio h/L

varies from 10–30 to 0.35; 
(3) the present element is insensitive to mesh distortion. For the four meshes ,
,  and IV, errors given in Table 14.7 are all very small. 

Figure 14.7 Simply-supported and clamped square plates 
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Table 14.7 The central deflection 
4

100C
qLw

D
 of square plate under uniform load 

(four 8 8 meshes , ,  and  are used) 

 Simply-supported square plate Clamped square plate 

h/L Mesh  Mesh  Mesh Mesh Analytical
solution

Mesh  Mesh Mesh Mesh Analytical
solution

10–30 0.4057 
(99.88%) 

0.4050 
(99.70%) 

0.4059
(99.93%)

0.4058
(99.90%)

0.4062 0.1247 
(98.58%) 

0.1261
(99.68%)

0.1252
(98.97%)

0.1254
(99.13%)

0.1265

0.01 0.4058 
(99.85%) 

0.4051 
(99.68%) 

0.4060
(99.90%)

0.4060
(99.90%)

0.4064 0.1249 
(98.74%) 

0.1263
(99.84%)

0.1255
(99.21%)

0.1256
(99.29%)

0.1265

0.10 0.4260 
(99.70%) 

0.4255 
(99.58%) 

0.4261
(99.72%)

0.4261
(99.72%)

0.4273 0.1480 
(98.73%) 

0.1502
(100.20%)

0.1494
(99.67%)

0.1492
(99.53%)

0.1499

0.15 0.4519 
(99.63%) 

0.4520 
(99.65%) 

0.4522
(99.69%)

0.4523
(99.71%)

0.4536 0.1759 
(97.83%) 

0.1788
(99.44%)

0.1780
(99.00%)

0.1773
(98.61%)

0.1798

0.20 0.4882 
(99.51%) 

0.4891 
(99.69%) 

0.4887
(99.61%)

0.4889
(99.65%)

0.4906 0.2138 
(98.66%) 

0.2175
(100.37%)

0.2168
(100.05%)

0.2156
(99.49%)

0.2167

0.25 0.5350 
(99.46%) 

0.5368 
(99.80%) 

0.5357
(99.59%)

0.5360
(99.65%)

0.5379 0.2616 
(97.79%) 

0.2665
(99.63%)

0.2658
(99.36%)

0.2639
(98.65%)

0.2675

0.30 0.5921 
(99.41%) 

0.5951 
(99.92%) 

0.5931
(99.58%)

0.5936
(99.66%)

0.5956 0.3195 
(99.01%) 

0.3257
(100.93%)

0.3251
(100.74%)

0.3224
(99.91%)

0.3227

0.35 0.6595 
(99.31%) 

0.6640 
(99.98%) 

0.6610
(99.53%)

0.6616
(99.62%)

0.6641 0.3876 
(98.10%) 

0.3953
(100.05%)

0.3949
(99.95%)

0.3911
(98.99%)

0.3951

Note: Numbers in ( ) are percentage precisions. 

Example 14.8 Circular plate under uniform load. 
Two boundary conditions are considered: soft simply-supported and clamped. 

As shown in Fig. 14.8, due to the symmetry, only a quarter of the circular plate is 
computed. The radius of the circular plate R 5; and the Poisson’s ratio 0.3.

Numerical results obtained by the present element GPLM are listed in Tables 14.8 
and 14.9. For comparison, the results by the other elements T3BL, T3BL(R)[20],
DKMT[21], DST-BK[22] and DST-BL[23] are also given. 

Figure 14.8 Meshes for circular plate 
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From Table 14.8, it can be seen that, in comparison with the similar elements, 
the element GPLM can give the best results for the central bending moment of 
clamped square plate. And, from Table 14.9, it can also be seen that the element 
GPLM can produce the best answers for the central deflection and bending 
moment of the simply-supported plate. 

Table 14.8 The central deflection 
4

C
qRw
D

 and bending moment 2
CM qR  of 

clamped circular plate 

h/R 0.002 h/R 0.2 

GPLM T3BL 
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

GPLM T3BL
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

Central deflection 

6 elements 7.2283 6.0495 9.1192 10.3060 9.8430 10.3060 8.7991 8.0392 10.8377 11.921 11.342 11.951

24 elements 9.0867 8.7750 9.6403 9.9956 9.8551 9.9958 10.7473 10.6006 11.4059 11.703 11.548 11.806

96 elements 9.6038 9.5237 9.7382 9.8748 9.8025 9.8483 11.3344 11.3022 11.5066 11.594 11.554 11.731

Analytical 9.7835 11.5513 

Central bending moment 

6 elements 2.0315 1.2188 1.3304 2.40 2.56 2.40 2.0010 1.2885 1.3296 2.47 2.31 2.43

24 elements 2.0535 1.8187 1.8354 2.17 2.25 2.17 2.0498 1.8258 1.8316 2.22 2.16 2.19

96 elements 2.0383 1.9771 1.9789 2.07 2.09 2.07 2.0317 1.9780 1.9784 2.09 2.07 2.10

Analytical 2.0313 

Table 14.9 The central deflection 
4

C
qRw
D

 and bending moment 2
CM qR  of 

simply-supported circular plate 

h/R 0.002 h/R 0.2 

GPLM T3BL 
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

GPLM T3BL
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

Central deflection 

6 elements 40.2358 39.4319 42.2158 37.848 37.391 37.847 41.8163 41.1627 43.9038 39.462 38.888 39.494

24 elements 39.9018 39.6576 40.4609 39.398 39.249 39.397 41.5706 41.4296 42.2235 41.091 40.926 41.185

96 elements 39.8455 39.7848 39.9434 39.729 39.680 39.729 41.5771 41.5555 41.7594 41.473 41.432 41.705

Analytical 39.8315 41.5994 

Central bending moment 

6 elements 5.4548 4.7084 4.7486 5.26 5.43 5.26 5.4238 4.7237 4.7460 5.33 5.27 5.30

24 elements 5.2563 5.0310 5.0380 5.23 5.28 5.23 5.2345 5.0294 5.0342 5.27 5.22 5.25

96 elements 5.1835 5.1242 5.1217 5.18 5.20 5.18 5.1768 5.1239 5.1243 5.20 5.18 5.22

Analytical 5.1563 
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