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Abstract This chapter continues discussing the sub-region mixed element 
method. Here, the applications of the sub-region mixed element method in 
the analysis of the V-notches in plane problem, bi-material problem, Reissner 
plate problem, and 3D elastic body problem are focused on and discussed in 
turn. It is demonstrated again that the proposed sub-region mixed element 
method is efficient for such singular stress problems. 
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13.1 Introduction 

This chapter will discuss some topics about the stress analysis of structures with 
V-notches and the applications of the sub-region mixed element method.  

Stress concentration will happen around the notches in structures, i.e., the 
stress fields at the tip of the notches possess singularity. Angular corners of holes 
and welding structures are all examples of the V-notch problem. An ideal straight 
crack can also be regarded as a V-notch with zero opening angle. 

In this chapter, the sub-region mixed element analysis of the V-notches in 
plane problem[1], bi-material problem[2], Reissner plate problem[3] and 3D elastic 
body problem[4] will be discussed in turn.  

13.2 Plane V-Notch Problem 

Plane V-notch problems have always attracted much attention. In 1952, Williams[5]

first established the eigenequations for the V-notch problem. He pointed out that 
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the stress at the notch-tip possesses singularity, and concluded that such singularity 
depends on the opening angle of the notch. Gross et al.[6] extended the concept of 
the stress intensity factors from ideal cracks into V-notch cases and evaluated the 
notch-tip stress intensity factors using a boundary collocation method. The 
boundary integral method has also been applied in reference [7] for the beam 
bending problem with a V-notch. The reciprocal work contour integral method 
was extended by Carpenter[8 10] into the analysis of stress concentration at the 
notch. Lin and Tong[11] proposed a hybrid singular element for the analysis of the 
V-notch problem. Awaji et al.[12] investigated the V-notches using dense triangular 
elements. 

In this section, the sub-region mixed element method will be used for the 
analysis of the plane V-notch problem[1]. Firstly, by starting with the complex 
potentials of elasticity, the eigenproblem of the V-notch is discussed, and the 
variation regularity of the eigenvalue with the opening angle is given, in which 
the embranchment phenomenon of the high-order eigenvalue curve and the 
concept of the critical angle are also pointed out. Then, the expressions of the 
stress fields for modes  and  problems are given. Finally, the sub-region 
mixed element method is used to analyze the V-notch problem, which gives the 
results of the stress intensity factors K  and K  of the specimens containing 
V-notches with various angles. 

13.2.1 Eigenproblem of V-Notches 

The configuration of the elastic plane with a V-notch is shown in Fig. 13.1, the 
polar coordinate system is set. The stresses can be expressed in terms of two 
complex potentials (z) and (z) as follows: 

Figure 13.1 Stress analysis around a V-notch tip 

4Re ( )r z  (13-1) 

1i ( ) ( ) ( ) ( )r z z z z zz z  (13-2) 

The complex potentials can be expanded in series further 



Advanced Finite Element Method in Structural Engineering 

440

1

1

1( ) ( )
2
1( ) ( )
2

n n

n n

n n
n

n n
n

x A z B z

x C z D z
 (13-3) 

The stress boundary conditions for two unloaded surfaces of a V-notch are 

2
( i ) 0r  (13-4) 

Then, from the above equations, we obtain 

cos cos
cos cos

n n n n n

n n n n n
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 (13-5) 

sin sin 0
sin sin 0

n n n n

n n n n

A B
A B

 (13-6) 

Since stresses exist in the neighborhood of the notch-tip, the determinant of the 
coefficient matrix must be zero. Hence, two eigenequations can be obtained 

 sin sin 0n n   (mode - symmetry) (13-7) 

sin sin 0n n   (mode - antisymmetry) (13-8) 

From these eigenequations, two series of eigenvalues can be solved 

i , in n n n n n  (13-9) 

The eigenvalues n  and n  for  ranging from  to 2  are listed in Tables 13.1 
and 13.2, respectively. And, a series of real part curves n -  (or n - ) and 
imaginary part curves n -  (or n - ) are also given in Figs. 13.2 and 13.3. 

From these tables and figures, the following four points should be mentioned: 
(1) The 3 eigenvalues ( 0, * 0, * 1) are corresponding to the 3 states of 

rigid-body motion, so they should not be considered in practical analysis.  
(2) The first eigenvalue 1  (or 1 ) is identical to a real number. The imaginary 

part curves 1 -  and 1 - coincide with the abscissa axis. And, the real part 
curves 1 -  and 1 - are smooth curves when 2 . For the mode
problem, the relation 0.5 1 <1 is satisfied when the notch-tip angle  is in the 
range [ , 2 ], hence, the stress singularity always exists in the notch-tip. For the 
mode  problem, the relation 0.5 1 <1 will not be satisfied unless the 
notch-tip angle  is in the range [4.493 409, 2 ], thus, the stress singularity at the 
notch-tip does not always exist. In reference [11], the authors said that the mode 



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

441

Table 13.1 Eigenvalues in n n  for Mode  (symmetry) problem

2
(360 )

6.108 652 
(350 )

5.934 119
(340 )

5.855 023
(335.47 )

5.759 587 
(330 )

5.499 379
(315.07 )

5.235 988
(300 )

4.712 389
(270 )

1 0.5 0.500 053 0.500 427  0.501 453  0.512 222 0.544 484

2 1.0 1.058 843 1.125 407  1.202 157 

3 1.5 1.499 728 1.497 614  1.490 378 
1.404 750

1.471 028
0.141 853i

1.629 257
0.231 251i

4 2.0 2.118 822 2.267 187

5 2.5 2.497 980 2.476 770
2.402 415

2.440 492 
0.114 207i 

2.567 762
0.284 901i

2.971 844
0.373 931i

4.188 790 
(240 )

3.665 191 
(210 )

3.625 739
(207.74 )

3.490 659 
(200 )

3.383 923
(193.88 )

3.316 126
(190 ) (180 )

1 0.615 731 0.751 973  0.818 703  0.900 042 1.0 

2 2.018 265  2.001 797 2.0 

3

1.833 550 
0.252 260i 

2.106 29 
0.096 099i

2.130 670
2.420 588  2.695 23 3.0 

4 4.022 68 4.0 

5

3.343 717 
0.414 037i 

3.828 294 
0.347 177i

4.025 002 
0.243 015i 

4.156 771
4.468 954 5.0 

Table 13.2 Eigenvalues in n n  for Mode  (antisymmetry) problem 

2
(360 )

6.108 652 
(350 )

5.934 119
(340 )

5.932 123
(339.89 )

5.759 587 
(330 )

5.732 235
(328.43 )

5.235 988
(300 )

4.712 389
(270 )

1  0.5 0.529 355 0.562 007  0.598 192  0.730 901 0.908 529

2  1.5 1.588 609 1.692 250  1.838 934 

3  2.0 1.999 107 1.991 385  1.948 556 
1.902 246

2.074 826

0.229 426i

2.301 328

0.315 837i

4  2.5 2.649 696 2.883 887

5  3.0 2.996 141 2.920 168
2.902 967

2.987 005 
0.166 741i 

3.279 767
0.326 690i

3.641 420
0.418 787i

4.493 409 
(257.45 )

4.188 790 
(240 )

3.665 191
(210 )

3.490 659 
(200 )

3.463 416
(198.44 )

3.336 226
(191.15 )

3.316 126
(190 ) (180 )

1  1.0 1.148 913 1.485 81 1.630 47   1.798 929 2.0 

2   3.007 832 3.0 

3

2.589 479 
0.348 375i 

2.967 836
0.261 186i

3.122 551 
0.108 732i

3.148 372
 3.586 718 4.0 

4 5.060 484 5.0 

5

4.096 928 
0.464 641i 

4.688 039
0.409 575i

4.926 987 
0.319 811i

 5.161 747
5.327 916 6.0 

problem always possesses stress singularity when < 2 . This does not seem 
to be correct. 

(3) The higher-order eigenvalues n  and n  may be complex numbers. The 
features of the curves of the higher-order eigenvalues can be described in detail 
as follows: 

 When 2 , these curves, which are not smooth curves any more, 



Advanced Finite Element Method in Structural Engineering 

442

consist of 3-piecewise curves, in which the middle segment and the two end 
segments are corresponding to complex roots and real roots, respectively. The 
positions of two conjunction points of 3-piecewise curves are corresponding to 
critical angles, cr1 and cr2.

 The higher-order eigenvalues exist in pairs, for instance, 2 and 3 are a 
pair; 4 and 5 are a pair, etc. In addition, the curves of each pair of eigenvalues 
coincide in some ranges and then separate in other ranges. The real part curves 
-  and *-  (see Figs. 13.2(a) and 13.3(a)) are separate curves in the two end 

ranges, and then coincide in the middle range. For example, the curves for 2 and  

Figure 13.2 Real part and imaginary part curves of eigenvalues for Mode 
(symmetry) problem 
                      (a) n- curve; (b) n- curve
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3, which are two-branch curves in the two end ranges, will become a one-branch 
curve in the middle range after meeting at the critical angles cr1 and cr2.
Conversely, the imaginary part curves -  and *-  (see Figs. 13.2(b) and 13.3(b)) 
are separated curves in the middle range, but will coincide in the two end ranges. 
For example, 2 and 3 are two symmetric curves ( 2 and 3 are conjugate with 
each other) on the two sides of the abscissa axis in the middle range (complex 
root region), and will be merged into the abscissa axis in the two end ranges (real 
root regions).  

Figure 13.3 Real part and imaginary part curves of eigenvalues for Mode 
(antisymmetry) problem 
                      (a) *-n  curve; (b) *-n curve
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The above features of the curves of the higher-order eigenvalues, such as 
appearance in pairs and the phenomenon of embranchment, have not been 
recognized by some authors in the early time. For example, the -  curve in 
reference [8] does not reflect the characteristic of embranchment. 

(4) For a certain notch-angle , its eigenvalue series  and  are formed in 
the following manner: in the first place there are a few real roots in odd number, 
then followed by a sequence of conjugate complex roots in pairs. The number of 
real roots varies according to the notch-angle . For 207.74 < <315.07 , only 
one real root 1 exists among . For 198.44 < <328.43 , only one real root 1

exists among . The number of real roots will increase while tends to  or 2 .
When  or 2 , only real roots exist.  

13.2.2 Stress Fields of the Mode  (Symmetry) Problem 

1. For complex eigenvalue n

Substitution of Eq. (13-7) into Eqs. (13-6) and (13-5) yields 

, ( cos cos )n n n n n n nB A C D A  (13-10) 

The stresses pertaining to the complex eigenvalue n for mode  problem are 

,

,

,

Re Im
Re

Re Im
Im

Re Im

r n n n
n

n n n n
n

n nr n

J J
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G G
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H H
 (13-11) 

where

1

1

1

[(3 )cos( 1) ( cos cos )cos( 1) ]

[( 1)cos( 1) ( cos cos )cos( 1) ]

[( 1)sin( 1) ( cos cos )sin( 1) ]

n
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n

n n n n n n n

n n n n n n n

n n n n n n n

J r

G r

H r

(13-12)

The eigenroots are pairs of conjugate complex number. Let n and n+1 be a pair 
of conjugate complex roots, we have 

1 1 1, ,n n n n n nJ J G G H H  (13-13) 

Therefore, the stresses pertaining to this pair of conjugate complex roots can 
be written as 
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 (13-14) 

in which two undetermined stress parameters n  and 1n  are included.  

2. For real eigenvalue n

When n is real, Jn, Gn and Hn in Eq. (13-12) are all real numbers. So, Eq. (13-11) 
will degenerate into 

n

n n n

n

J
G
H

 (13-15) 

in which only one undetermined stress parameter n is involved. 

3. Mode  stress intensity factor K

11
,1 1 1 1 1 100

2 lim 2 ( 1 cos cos )
r

K r  (13-16) 

13.2.3 Stress Fields of the Mode  (Antisymmetry) Problem 

1. For complex eigenvalue n

Substitution of Eq. (13-8) into Eqs. (13-6) and (13-5) yields 

, ( cos cos )n n n n n n nB A C D A  (13-17) 

The stresses pertaining to the complex eigenvalue n  for mode  problem are 

Re Im
Im

Re Im
ReRe Im

n n
n

n n n
n

n n

J J
A

G G
AH H

 (13-18) 

where

1

1

1

[(3 )sin( 1) ( cos cos )sin( 1) ]

[( 1)sin( 1) ( cos cos )sin( 1) ]

[(1 )cos( 1) ( cos cos )cos( 1) ]

n

n

n

n n n n n n n

n n n n n n n

n n n n n n n

J r

G r

H r

(13-19)
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The stresses pertaining to the conjugate complex roots n  and 1n  can be written as 

1
1

Re Im
Re Im
Re Im

n n
n

n n n n
n

n n

J J
G G
H H

  (13-20) 

2. For real eigenvalue n

n

n n n

n

J

G

H

 (13-21) 

3. Mode  stress intensity factor K

11
,1 1 1 1 1 100

2 lim 2 ( )(1 cos cos )rr
K r

(13-22)

13.2.4 The Sub-Region Mixed Element Method 

Now, the plane V-notch problem is considered using the sub-region mixed element 
method. The sectorial region of radius R, centered on the notch-tip is regarded as 
the complementary energy region (C-region), and the outside domain as the 
potential energy region (P-region). And, the P-region is modelled by the 8-node 
displacement-based isoparametric elements (see Fig. 13.4). 

Figure 13.4 Stress-based element and outside 8-node isoparametric elements 
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The energy functional of the sub-region mixed variational principle is still given 
by Eq. (12-13), in which the matrices F and H can be derived as follows. 

(1) The flexibility matrix F of the C-region 
The stress fields of the C-region for modes  and  have already been derived, 

respectively. Here, the stress fields can be expressed in terms of the stress 
parameters  as 

T[ ]r r S  (13-23) 

Then, the complementary energy c  of the C-region and its flexibility matrix F
can be written as 

c

T
c

T 1

1
2

d
A

h A

F

F S D S (13-24)

where D is the elastic coefficient matrix; 1D  is given by Eq. (12-32). h is the 
thickness; and Ac is the area of the sectorial region in the C-region.  

(2) The mixed matrix H on the interface 
The mixed matrix H on the interface is still given by Eq. (12-45), i.e.,  

pc

T T d
S

h sH S L N  (13-25) 

where S is defined by Eq. (13-23); L is the direction cosine matrix, and given by 
Eq. (12-41); N  is the shape function matrix of the 8-node isoparametric element. 
In Fig. 13.4, there are M isoparametric elements along the interface Spc, then the 
components in matrix N  are 

     

1 1 1

2
2

2 1

1 1

2 1

1 (1 )
2 (1 )

1
1 (1 ) (element )
2 (1 1)

1 (1 ) (element 1)
2

1 (1 )
2

k k

k k

k

k k

M M M

N
k M

N

k
k MN

k

N

(13-26)

h is the thickness (in Eq. (12-45), h 1 is assumed). 
(3) The stress intensity factors 
Substitution of F and H obtained into Eq. (12-13) yields the expression of the 

energy functional . The basic unknowns  and  are still solved from the 



Advanced Finite Element Method in Structural Engineering 

448

stationary conditions (12-19) and (12-16). Finally, the stress intensity factors K
and K  can be obtained from Eqs. (13-16) and (13-22).  

The sub-region mixed element method for the plane V-notch problem is denoted 
as SRM-V1. 

Example 13.1 Evaluate the stress intensity factor K  of a V-notched specimen 
subjected to uniform tension. 

The geometry of the specimen is shown in Fig. 13.5(a), in which 1.0H
w

;

the Poisson’s ratio 0.3. Due to the symmetry, only half of the specimen is 
considered. Two meshes used here are shown in Figs. 13.5(b) and (c), which 
contain 11 and 22 elements, respectively.  

The numerical results of the dimensionless stress intensity factor 11/( )K w

for the various angles  are listed in Table 13.3 assume 0.4a
w

. It can be seen 

that, in comparison with the results given by reference [6], the relative errors are 
all less than 0.6% for mesh .

Figure 13.5 A V-notched specimen subjected to uniform tension 
(a) Geometry; (b) Mesh ; (c) Mesh 

The results for various a/w are listed in Table 13.4 (assume 300 ). In 
comparison with the results given by reference [6], the relative errors are no 
larger than 0.6% for mesh .

Example 13.2 Evaluate the stress intensity factor K  of a V-notched specimen 
subjected to antisymmetric load. 

A single edge notched specimen is shown in Fig. 13.6(a): a/w 0.333, H/a 1.0, 
0.3. And, the mesh used for this example is shown in Fig. 13.6(b). 
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Table 13.3 11/( )K w  for various 0.4a
w

1 Reference [6] Mesh Error (%) Mesh Error (%)

360
350
330
300
270
240

0.500 000 
0.500 053 
0.501 453 
0.512 221 
0.544 484 
0.615 731 

2.369
2.369
2.389
2.520
2.888
3.766

2.314
2.314
2.313
2.437
2.795
3.662

2.3
2.3
3.0
3.3
3.2
2.8

2.357
2.357
2.378
2.514
2.876
3.754

0.5
0.5
0.5
0.2
0.4
0.3

Table 13.4 11/( )K w  for various a/w ( 300 )

a/w Reference [6] Mesh  Error (%) Mesh  Error (%)

0.3
0.4
0.5
0.6

1.724
2.520
3.756
5.859

1.671
2.436
3.569
5.576

3.1
3.3
5.0
4.8

1.713
2.511 
3.736
5.761

0.6
0.5
0.5
0.6

Figure 13.6 Single edge notched specimen subjected to antisymmetric load 
(a) Geometry; (b) Mesh

For investigating the effect of the number of the eigenvalues considered on the 
stress intensity factors, the numerical results with which 1, 2, 3 and 4 eigenvalues 
are considered are given respectively in Table 13.5. It can be seen that satisfactory 
results can be obtained when the first 3 eigenvalues are used. 

Table 13.5 11( / )K H Pa  for various numbers of the first eigenvalues 

Number of eigenvalues considered 
1 1 2 3 4 

Reference [6]

360o

350o

340o

0.500 000 
0.529 355 
0.562 007 

0.521
0.425
0.308

0.484
0.388
0.269

0.503
0.405
0.283

0.502
0.404
0.282

0.500
0.401
0.278
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13.3 Plane V-Notch Problem in a Bi-Material 

The plane V-notch problem in a bi-material not only keeps the main features of 
the plane V-notch problem for homogeneous material, but also reflects the 
characteristic of the interface crack. The singularities of stresses and strains at the 
notch-tip depend both on the opening angle of the notch and the ratio of the 
bi-material properties. 

The plane V-notch problems in a bi-material have been discussed in references [2] 
and [13, 14]. In this section, the sub-region mixed element method will be used 
to analyze the V-notches in a bi-material[2]. Firstly, by starting with the potential 
function theory, the eigenequations for the plane V-notch problem in a bi-material 
are derived. Then, the eigenvalues are solved by Muller iteration method, and the 
displacement and stress fields around the notch-tip can be obtained. Finally, the 
stress intensity factors for the various opening angles and ratios of bi-material 
properties are solved by the sub-region mixed element method.  

13.3.1 The Stress Fields Around the Notch-Tip 

As shown in Fig. 13.7, the V-notch is composed of two kinds of materials. Their shear 
elastic moduli are G1 and G2, respectively; and the Poisson’s ratios are 1 and 2.

Figure 13.7 A V-notch in a bi-material 

Let the notch-tip be the origin of the coordinate system, and the interface line 
be the x-axis. Then, the two sides of the notch are given by 

1 2,

Let i 1, 2 denote material 1 and material 2, respectively. Then, the stress 
fields of this bi-material can be derived as follows.  

(1) The stress functions 1 and 2

1 and 2 denote the stress functions of material 1 and 2, respectively. In polar 
coordinates r and , they can be expressed in the following form of separated 
variables:

1 ( , ) ( 1,2)i ir f i  (13-27) 
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where  is the eigenvalue.  
Since both the stress functions 1 and 2 should satisfy the bi-harmonic equation, 

fi in the above equation should be 

 sin( 1) cos( 1) sin( 1) cos( 1) ( 1,2)i i i i if a b c d i
(13-28)

Thus, the stresses and displacements of the bi-material can be expressed in terms 
of fi as follows 

1

1

1

1 2

1 2

[ ( 1) ]
[ ( 1) ]
[ ]

{ ( 1) ( ) [ ( 1) ]}
2

{ ( ( 1) ) [ ( 1) ]}
2

irr i i

i i

ir i

ir i i i i
i

i i i i i
i

r f f
r f
r f
ru f f f
G

ru f f f
G

  ( 1,2)i  (13-29) 

where if  is the first-order derivative of fi with respect to , the rest may be 
inferred by analogy; Gi is the shear modulus; i can be expressed as 

1 plane stress state
1 plane strain state

1

i

i

i

in which i  is the Poisson’s ratio of material i.
(2) The boundary and continuity conditions 
From Eq. (13-28), it can be seen that f1 and f2 each contain 4 unknown parameters. 

These 8 unknown parameters can be written as 
T

1 1 1 1 2 2 2 2[ ]a b c d a b c dg  (13-30) 

In order to solve these unknown parameters, the following 8 conditions 

1
1

1

2
2

2

1 2

1 2

1 2

1 2

0
( )

0
0

( )
0

( 0)

r

r

r r

r ru u
u u

  (13-31) 
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can be introduced.  
Substitution of Eq. (13-29) into the above equation yields 8 homogeneous 

conditions about the unknown parameters g as follows: 

1 1 1 1 1 1 1 1sin( 1) cos( 1) sin( 1) cos( 1) 0a b c d
(13-32a)

1 1 1 1

1 1 1 1

( 1)cos( 1) ( 1)sin( 1)
( 1)cos( 1) ( 1)sin( 1) 0

a b
c d

 (13-32b) 

2 2 2 2 2 2 2 2sin( 1) cos( 1) sin( 1) cos( 1) 0a b c d
(13-32c)

2 2 2 2

2 2 2 2

( 1)cos( 1) ( 1)sin( 1)
( 1)cos( 1) ( 1)sin( 1) 0

a b
c d

 (13-32d) 

1 1 2 2b d b d   (13-32e) 

1 1 2 2( 1) ( 1) ( 1) ( 1)a c a c  (13-32f) 

1 2 2
1 1 1 1 1 1 1

1 2 2
2 2 2 2 2 2 2

( 1)( ) ( ) [ ( 1) ( 1) ( 1)( )]

( 1)( ) ( ) [ ( 1) ( 1) ( 1)( )]

b d b d b d
b d b d b d

(13-32g)

1 3
1 1 1 1

3 2
1 1 1

1 3
2 2 2 2

3 2
2 2 2

( 1) ( 1) ( ( 1) ) { ( 1)

( 1) ( 1) [( 1) ( 1) ]}

( 1) ( 1) ( ( 1) ) { ( 1)

( 1) ( 1) [( 1) ( 1) ]}

a c a
c a c

a c a
c a c

 (13-32h) 

The above 8 homogeneous equations can be rewritten in the following matrix form: 

Gg 0  (13-33) 

where the unknown parameters in g are defined by Eq. (13-30); and G is the 
coefficient matrix of the equation set (13-32).  

(3) Eigenequaiton and the first n eigenvalues 
In order to obtain the nonzero solutions of the homogeneous Eq. (13-33), let the 

determinant of the coefficient matrix G be zero: 

 | | 0G  (13-34) 

This is the eigenequaiton of the plane V-notch problem in a bi-material.  
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By using the Muller iteration method, a series of eigenvalues of the eigenequaiton 
(13-34) can be solved. The first n eigenvalues are written by 

T
1 2[ ]n  (13-35) 

(4) Stress expansion around the notch-tip 
Substituting any eigenvalue k in  into Eq. (13-33), a set of nonzero solutions 

g(k) of g can be obtained. We can only determine the ratio of each component to 
the first component a1k in g(k), but a1k is still an unknown value. That is to say, 
each component in g(k) can be expressed as a known multiple of a1k. Substitution 
of g(k) into Eq. (13-29) yields the stress terms corresponding to the eigenvalue k:

( ) ( ) 1

( )

( 1,2)
irr

i k i i k k

ir k

a iJ  (13-36) 

By superposition of the stress terms corresponding to the first n eigenvalues, 
the stress expansion can be obtained as follows: 

 ( 1,2)
irr

i i i

ir

iS  (13-37) 

where

T
11 12 1

(1) (2) ( )

[ ]
[ ]

n

i i i i n

a a a
S J J J

 (13-38) 

The unknown coefficients in  will be determined by the sub-region mixed 
element method.  

13.3.2 The Sub-Region Mixed Element Method 

Now, the sub-region mixed element method is used to analyze the plane V-notch 
problem in a bi-material. The sectorial region centered at the notch-tip is taken as 
the complementary energy region Ac, which is composed of two kinds of materials 
and denoted as Ac1 and Ac2, respectively (Fig. 13.8). The outside of the C-region 
is the potential energy region Ap, which is composed of Ap1 and Ap2 and modelled 
by 8-node displacement-based isoparametric elements. And, the interface Spc is 
composed of Spc1 and Spc2.

The energy functional of the sub-region mixed variational principle is still given 
by Eq. (12-13), in which the matrices F and H can be derived as follows. 
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Figure 13.8 Division of the C-region and P-region 
(V-notch in a bi-material) 

(1) The flexibility matrix F of the C-region 
The complementary energy c of the C-region is 

c1 c 2

T 1 T 1
c 1 1 1 2 2 2

1 1d d
2 2A A

h A h AD D  (13-39) 

in which stresses i  are expressed by Eq. (13-37), so we have 

T
c

1
2

F  (13-40) 

Then, the flexibility matrix F can be written as 

c1 c 2

T 1 T 1
1 1 1 2 2 2d d

A A

h A h AF S D S S D S   (13-41) 

where D1 and D2 are the elastic matrices of the materials 1 and 2, respectively.  
(2) The mixed matrix H on the interface 
The additional energy pcH  on the interface is composed of two parts. According 

to Eq. (12-8), pcH  can be expressed as 

pc1 pc 2

T T
pc 1 1 2 2d d

S S
H h s h sT u T u  (13-42) 

Ti is the boundary force of the C-region on the interface Spci; iu  is the boundary 
displacement of the P-region on the interface Spci:

i i i i i

i i

T L L S

u N
 (13-43) 

where L1 and L2 are the direction cosine matrix of the interface; 1N  and 2N  are 
formed by the shape functions of the displacement-based elements;  is the nodal 
displacement vector of the nodes on the interface. Substitution of Eq. (13-43) 
into Eq. (13-42) yields  
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T
pcH H  (13-44) 

And, the mixed matrix H on the interface can be derived: 

pc1 pc 2

T T
1 1 1 2 2 2d d

S S
h s h sH S L N S L N  (13-45) 

(3) The stress intensity factors 
Substituting F and H, which have been obtained, into Eq. (12-13), the 

expression of the energy functional  can be obtained. The basic unknowns 
and  are still solved by the stationary conditions (12-19) and (12-16).  

From , the stresses  and r  can be determined. And, the stress intensity 
factor of the notch-tip can be determined from the following definition:  

1

2

1
I 00

1
II 00

2 lim

2 lim
r

rr

K r

K r
 (13-46) 

The sub-region mixed element method for the plane V-notch problem in a 
bi-material is denoted as SRM-V2. 

Example 13.3 Evaluate the stress intensity factors K  and K  of a plate in 
extension with a V-notch at a bi-material interface by the sub-region mixed 
element method SRM-V2 (Fig. 13.9). The notch-tip is also at the bi-material 
interface.

Figure 13.9 A plate in extension with a V-notch at a bi-material interface 

Let 1 2 0.3; H / w 1.0; and 1 2.
In order to check the effects on the stress intensity factors with the variations 

of different factors (ratios of material properties, opening angle of the notch and 
ratio of the notch length to plate width), the following two cases are considered: 

(1) a/w ratio keeps invariant, but opening angles 1 2 of the notch and G2
/G1 ratio vary—Numerical results are listed in Table 13.6. 
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(2) Opening angles 1 2 keep invariant, but ratios of a / w and G2 / G1
vary—Numerical results are listed in Table 13.7. 

From the above results, it can be concluded that 
(1) For a symmetric notch subjected to symmetric load, the shear mode stress 

concentration phenomenon ( 0)K  will happen due to the difference of materials; 
when 

2 1/ 1,G G 0.K

Table 13.6 The stress intensity factors under various ratios of material properties 
and opening angles of the notch (a / w 0.4)

1
1 2

       G2 /G1

SRM-V2 Reference[6] Error (%) 3 5 7 10 

11/K w 3.801 3.766 0.93 3.944 4.187 4.336 4.515
240

21/K w 0.0 0.0  0.234 0.397 0.494 0.631
11/K w 2.913 2.888 0.87 3.340 3.904 4.480 5.397

270
21/K w 0.0 0.0  1.018 1.564 1.990 2.576

Table 13.7 Variations of the stress intensity factors with various ratios G2 / G1 and 
notch lengths ( 1 2 150 )

G2 / G1
           a / w

0.3 0.4 0.5 0.6 

11/K w 1.750 2.574 3.779 5.757 
1

21/K w 0.0 0.0 0.0 0.0 
11/K w 2.400 3.428 4.988 7.554 

3
21/K w 1.278 1.717 2.398 3.541 

(2) The singularity at the notch-tip will increase with the increase of the 
difference of materials.  

(3) The singularity at the notch-tip will increase with the decrease of the 
opening angle of notch.  

(4) The singularity at the notch-tip will increase with the increase of the notch 
length.  

The first 4 eigenvalues are taken during the computations. If the radius of the 
singular element varies within the range 0.1a – 0.08a, the results are relatively 
stable.

Example 13.4 Evaluate the stress intensity factors of a central crack at a 
bi-material interface in an infinite plate.  

An infinite plate subjected to a uniform tension load 1kPay  along y-direction 
is shown in Fig. 13.10. There is an interface crack with length 2a 2m located at 
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the center of the bi-material interface. And, the Young’s modulus 1 1kPa;E  the 
Poisson’s ratios 1 2 0.3.

Figure 13.10 An infinite plate in extension with a crack at a bi-material interface 

The stress intensity factors of the interface crack are defined as follows: 

1 1Im
20

i 2 2e lim ( )
z

K K z z

where 2(z) denotes the complex potential function of elasticity, and can be 
expressed in terms of the stress coefficients .

Numerical results are listed in Table 13.8. In comparison with classical 
solutions[15], all relative errors are within 1%. 

In practical computations, the infinite plate is replaced by a 20m 20m plate. 
The radius of the singular element is taken as 0.08a, and the first 4 terms of  are 
used. It can be seen that the results are basically stable. The accuracy of K  is 
lower than that of .K  So, for improving the precision of ,K  more terms of the 
eigenvalues are needed.

Table 13.8 Stress intensity factors of a central interface crack in an infinite plate 
under uniform tension 

G2 / G1 1 3 10 100 1000 
SRM-V2 1.009 0.999 0.981 0.968 0.957 

K
Reference [15] 1.000 0.988 0.968 0.953 0.952 

SRM-V2 0.0 0.0822 0.1289 0.1401 0.1535 
K

Reference [15] 0.0 0.0724 0.1171 0.1391 0.1415 

13.4 Anti-Plane V-Notch Problem in a Bi-Material 

This section will discuss the anti-plane V-notch problem (Mode ) in a 
bi-material[16]. Firstly, the stress fields around the notch-tip are derived by the 
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eigenfunction method; then, the stress intensity factor K  is solved by the 
sub-region mixed element method. Besides, the anti-plane V-notch problem has 
already been analyzed by the weight function theory in references [17, 18], and the 
anti-plane crack problem in a non-homogenous elastic material has also been 
studied in [19].  

13.4.1 The Displacement and Stress Fields around the Notch-Tip 

An anti-plane V-notch in a bi-material shown in Fig. 13.11 is considered. Let the 
interface line of the two materials be the x-axis, then equations of two notch sides 
are 1 and 2, respectively.  

Figure 13.11 An anti-plane V-notch in a bi-material 

Under the anti-plane state, only the displacement w in the z-direction exists, so 
the stresses can be expressed in terms of displacement as follows: 

1,i i
rzi i zi i

w wG G
r r

 (13-47) 

in which Gi denotes the shear modulus of the material i, i 1 and 2. 
Ignoring the influences of body forces, the equilibrium equation can be expressed 

in terms of stresses as follows: 

( ) ( ) 0rzi zir
r

 (13-48) 

Substitution of Eq. (13-47) into Eq. (13-48) yields the equilibrium equation 
expressed in terms of displacement: 

2 2

2 2 2

1 1 0i i iw w w
r r r r

 (13-49) 

wi can be rewritten as the following form of separated variables 

1 ( , )i iw r F
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Then, from Eq. (13-49), we obtain 

1( , ) [ cos( 1) sin( 1) ]i i iw r r A B  (13-50) 

Assume that there is no external load around the notch-tip, so the boundary 
conditions of the notch can be expressed as follows: 

1 2
1 20, 0z z

And, the continuity conditions of displacements and stresses between the two 
materials are 

1 2 1 20 0 0 0
, z zw w

By Eqs. (13-47) and (13-50), we can obtain 

1 1 1 1

2 2 2 2

1 2 1 1 2 2

sin( 1) cos( 1) 0
sin( 1) cos( 1) 0

,

A B
A B

A A G B G B
 (13-51) 

In order to obtain nonzero solutions from the original problem, the coefficient 
determinant of Eq. (13-51) must be zero, then we have 

1 1 2 2 2 1sin( 1) cos( 1) sin( 1) cos( 1) 0G G  (13-52) 

Equation (13-52) is the eigenequaiton of the anti-plane V-notch in a bi-material. 
In general, a series of solutions for  can be solved by the Muller iteration 
method. For the following special cases: 

If G1 G2, 1 21 /( ) ( 1,2, )n n n

If 1 2, 11 /(2 ) ( 1,2, )n n n    

The singularities of stresses and strains will increase with the decrease of the 
corresponding . Hence, the influence of the minimum eigenvalue 1 is dominant 
for the singularity of notch-tip. If only 1 is considered, the displacement and 
stress fields around the notch-tip can be derived from Eq. (13-51): 

1 1

1

1

1
1

1 1

1

1

1

1

cos[( 1)( )](2 )
( 1) sin[( 1) ]

cos[( 1)( )]
(2 ) ( 1,2)

sin[( 1) ]
sin[( 1)( )]

(2 )
sin[( 1) ]

i
i

i i

i
zri

i

i
zi

i

rw K
G

K r i

K r

 (13-53) 
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in which K  is the stress intensity factor of the anti-plane V-notch in a 
bi-material, and is defined as: 

1 00

1lim
(2 ) zir

K
r

 (13-54) 

If let G1 G2 and 1 2  in Eq. (13-53), the displacement and stress fields 
of the mode  crack in homogenous material can then be obtained, and they 
are in agreement with those given in reference [20]. 

Equation (13-53) gives the dominant term of the displacement and stress fields 
around the notch-tip, in which an undetermined parameter K  is included. And, 
Eq. (13-53) can be rewritten as: 

 , ,i i zri zri zi ziw K w K K  (13-55) 

13.4.2 The Sub-Region Mixed Element Method 

The energy functional of the sub-region mixed variational principle is still given 
by Eq. (12-5), i.e.,  

p c pcH  (13-56) 

in which the stress parameter K  of the complementary energy region and the 
nodal displacements  of the potential energy region are the basic unknowns.  

(1) The total potential energy p of the potential energy region 

T T
p

1 1 1

1 1
2 2

n n n

kj k j j j
k j j

K w w P wK P  (13-57) 

where n is the total number of the nodes of the displacement-based elements in 
the potential energy region; K is the stiffness matrix; P is the equivalent nodal 
load vector;  is the nodal displacement vector: 

T
1 2[ ]nw w w

(2) The total complementary energy c of the complementary energy region 
The complementary energy region Ac is composed of two materials, which are 

denoted as Ac1 and Ac2, respectively. Thus, the complementary energy c of the 
complementary energy region is 

c1 c 2

2 2 2 2
c 1 1 2 2

1 2

1 1( )d ( )d
2 2rz z rz z

A A

A A
G G

Substitution of Eq. (13-53) into the above equation yields 



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

461

1 1

c1 c 2

2 2
2 2

c 2 2
1 1 1 2 1 2

(2 ) d (2 ) d
2 sin ( 1) 2 sin ( 1)A A

K Kr A r A
G G

If the complementary energy region is assumed as a sectorial region with radius 
rc, then we have 

2
c

1
2

K V  (13-58) 

where

1 12 2 2
c 1 2

2 2
1 1 1 1 2 1 2

(2 )
2( 1) sin ( 1) sin ( 1)

r
V

G G
 (13-59) 

(3) The additional energy Hpc on the interface 
The interface line Spc is composed of two segments Spc1 and Spc2. The total 

number of the nodes on the interface is n1, and the nodal displacement vector on 
the interface is 

1

T
1 2[ ]nw w w

Then, the additional energy Hpc on the interface is 

pc1 pc 2
pc 1 2d drz rzS S

H w s w s   (13-60) 

And, the displacement w  on the interface can be expressed in terms of the nodal 
displacement vector  and shape functions  as 

1

1

n

j j
j

w N w  (13-61) 

Substituting the above equation into Eq. (13-60), Hpc can be expressed in terms 
of K  and  as 

1

pc
1

n

j j
j

H K h w  (13-62) 

where

pc1 pc 2
1 2d dj rz j rz jS S

h N s N s  (13-63) 

(4) The energy stationary condition 
Substituting Eqs. (13-57), (13-58) and (13-62) into Eq. (13-56), the energy 

can be expressed in terms of the basic unknowns K  and  as 
1

2

1 1 1 1

1 1
2 2

nn n n

kj k j j j j j
k j j j

k w w P w K V K h w  (13-64) 
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From the stationary condition 0
jw

, we obtain 

1
1

1
1

( 1,2, , )

( 1, , )

n

kj k j j
k

n

kj k j
k

K w K h P j n

K w P j n n
 (13-65) 

From 0
K

, we obtain 

1

1
0

n

j j
j

K V h w  (13-66) 

By substituting Eq. (13-66) into the first expression in Eq. (13-65), K  can be 
eliminated, and T

1 2[ ]nw w w  can first be solved. Then, K  can be 
solved from Eq. (13-66). 

The sub-region mixed element method for the anti-plane V-notch problem in a 
bi-material is denoted as SRM-V3. 

Example 13.5 Evaluate the stress intensity factor K  of an infinite V-notch in 
a bi-material. Let the interface of the two materials be the sectrix line for the 
opening angle of the V-notch, and a pair of concentrated forces P with reverse 
directions act on the notch boundary (Fig. 13.12). 

Figure 13.12 An infinite V-notch in a bi-material 

The computational formula of K  obtained by weight function method in [17] 
is

0

0

1
2

1
2

0

(2 ) PK
b

 (13-67) 

where b is the distance from load P to the notch-tip. 
The results of the stress intensity factor K  calculated by the sub-region 
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mixed element method are listed in Table 13.9. And for comparison, the results 

of [17] are also given. Here, 0
3
4

 and b 10m. 

Table 13.9 Results of K  with different radius rc of the complementary energy region

rc/b 0.2 0.1 0.075 0.05 0.01 Reference [17] 

K / P 0.740 0.761 0.794 0.812 0.832 0.783 

Error (%) 5.25 2.82 1.39 3.68 6.23  

It can be seen from Table 13.9 that, when c 0.075
r
b

, the accuracy of the 

present method (SRM-V3) is the best. And, when c0.01 0.2
r
b

, the numerical 

results are relatively stable. By increasing the number of the displacement-based 
elements outside the interface Spc, the stress continuity on the interface can be 
improved, then the computational accuracy of K  can also be improved.  

13.5 V-Notch Problem in Reissner Plate 

This section will discuss the V-notch problem in a thick plate[3]. Since limitations 
may happen for the crack and V-notch problems in plate bending if the Kirchhoff 
thin plate theory is used, the Reissner plate theory which considers the influence 
of shear deformation is adopted here. Firstly, the eigenequations and their solutions 
for the V-notch problem in the Reissner plate are derived; then, the expressions 
of stress and displacement fields around the notch-tip in the Reissner plate are 
derived; finally, the stress intensity factor is solved by the sub-region mixed 
element method. 

13.5.1 The Eigenequations and Eigenvalues of V-Notch Problem  
in Reissner Plate 

1. Fundamental equations 

As shown in Fig. 13.13, a bending plate with a notch is considered, and the 
notch-tip is taken as the origin of the coordinate system. By using the Reissner 
theory and polar coordinates, the fundamental equations of the thick plate can be 
expressed in terms of 3 generalized displacements r,  and w as 
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r
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2

2 2

1 0r rw p
r r r

  (13-68)  

where r  and are rotating angles of straight lines which are perpendicular to 
the middle plane before deformation. r  is the rotating angle in the rz-plane, and 
is positive if rotates from r-axis to z-axis;  is the rotating angle in the z-plane,
and is positive if rotates from -direction to z-axis; w is the deflection. D and C
are bending and shearing stiffness, respectively,  

3

2

5,
12(1 ) 6

EhD C Gh

in which E is the Young’s modulus; G is the shear modulus;  is the Poisson’s 
ratio; h is the thickness of the plate; p is the density of the external load.  

Figure 13.13 V-notch problem in plate bending 

The relations between internal forces and displacements are as follows: 
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1

1

1 1
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r r
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r
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r r

M D
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M D
r r r

M D
r r r

wQ C
r

wQ C
r

 (13-69) 

The boundary conditions of the notch are  

 0 ( / 2)rM M Q  (13-70) 

2. Eigenexpansions and eigenequations 

r ,  and w can be expanded as follows: 

( , )

( , )

( , )

j

j

j

n
r nj j

j n

n
nj j

j n

n
nj j

j n

r a

r b

w r c

  (13-71) 

Substitution of Eq. (13-71) into Eq. (13-68) yields 

22

1

22

1

1 1 3(( ) 1) ( )
2 2 2

( ) 0

1 3 1( ) (( ) 1)
2 2 2

j

j j

j

j j

n
j nj nj j nj

j n

n n
j nj nj

n
j nj j nj nj

n n
nj nj

D n a a n b r

C n c Ca r

D n a n b b r

Cc r Cb r

22

0

{[( ) ] [( 1) ] } 0j jn n
j nj nj j nj njn c c r n a b r

in which nj
nj

a
a , and others can be obtained by analogy. In the above equation 
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set, if we let the sum of the coefficients of r with the same power order be zero, 
equation sets with various orders can be obtained. For instance, the lowest order 
equation set (called zero-order equation set) is formed by letting the sum of the 
coefficients of 2jr  terms be zero, i.e., 

2
0 0 0

2
0 0 0

2
0 0

1 1 3( 1) 0
2 2 2

1 3 1 ( 1) 0
2 2 2

0

j j j j j

j j j j j

j j j

a a b

a b b

c c

 (13-72) 

This is a homogenous ordinary differential equation set about a0j, b0j and c0j. And, 
if we let the sum of the coefficients of 1jr  terms be zero, the first-order 
equation set, which is a homogenous ordinary differential equation set about (a1j,
b1j, c1j) and (a0j, b0j, c0j), can be established. Then from this set, a1j, b1j and c1j can 
be solved. According to this step, equation set of any order can be obtained, and 
the corresponding coefficients anj, bnj and cnj can be solved. 

The solution strategy for the zero-order equation set (13-72) is discussed in 
detail as follows. Its solutions can be expressed by 

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

cos( 1) sin( 1) cos( 1) sin( 1)

cos( 1) sin( 1) cos( 1) sin( 1)

cos sin

j j j j j j j j j

j j j j j j j j j j j

j j j j j

a A B C D
b B A K D K C
c E F

(13-73)

in which the parameter K0j is  

0

(1 ) (3 )
(1 ) (3 )

j
j

j

K

A0j, B0j, C0j, D0j, E0j and F0j are 6 undetermined coefficients; j is the eigenvalue, 
and determined by the eigenequation.  

The zero-order boundary conditions which a0j, b0j and c0j should satisfy can be 
derived from the boundary condition Eq. (13-70). Therefore, substitution of 
Eq. (13-71) into Eq. (13-69) yields the series expressions of the internal forces. 
Substituting them into Eq. (13-70), the series expressions of the boundary 
conditions can also be obtained, in which the zero-order boundary conditions are 
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0 0

0 0

0

( 1) 0
( 1) 0

2
0

j j j

j j j

j

b a
a b
c

 (13-74) 

Substituting Eq. (13-73) into the above equation, the following 6 conditions can 
be obtained: 

0 0 02 ( 1) cos( 1) 2[ ( 1) (1 )] cos( 1) 0
2 2j j j j j j j jA K C

(13-75a)

0 0 02 sin( 1) ( 1)( 1) sin( 1) 0
2 2j j j j j j jA K C  (13-75b) 

0 0 02 ( 1) sin( 1) 2[ ( 1) (1 )] sin( 1) 0
2 2j j j j j j j jB K D

(13-75c)

0 0 02 cos( 1) ( 1)( 1) cos( 1) 0
2 2j j j j j j jB K D  (13-75d) 

0 cos 0
2j jF   (13-75e) 

0 sin 0
2j jE   (13-75f) 

This is a homogenous algebraic equation set about 6 undetermined coefficients 
A0j, B0j, C0j, D0j, E0j and F0j. If the homogenous equation set has nontrivial 
solutions, its coefficient determinant should be zero, i.e.,  

(sin sin )(sin sin )cos sin 0
2 2j j j j j j  (13-76) 

This is the eigenequation for the V-notch problem in the Reissner plate, from 
which a series of eigenvalues j can be determined. 

By the way, the eigenequation (13-76) can be decomposed into the following 4 
equations:

sin sin 0 (13-77a)
sin sin 0 (13-77b)

cos 0 (13-77c)
2

sin 0 (13-77d)
2

j j

j j

j

j
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They are corresponding to the following 4 conditions, respectively: 
A0j and C0j in Eqs. (13-75a,b) have nontrivial solutions;  
B0j and D0j in Eqs. (13-75c,d) have nontrivial solutions; 
F0j in Eq. (13-75e) has nontrivial solution; 
E0j in Eq. (13-75f) has nontrivial solution.  

3. The solution of eigenequation 

By comparing the eigenequation (13-76) for the V-notch problem in the Reissner 
plate with the eigenequations (13-7) and (13-8) for the plane V-notch problem, it 
can be seen that, besides the first two factors contained in the left side of 
Eq. (13-76) that are the same as those in Eqs. (13-7) and (13-8), there are still 

other two factors, cos
2j  and sin

2j , existing here. Hence, the singularities 

of the V-notches in the Reissner plate and plane problem have some relations, but 
are different.  

By Muller iteration method, all the real and complex roots of Eq. (13-76) can 
be solved. A series of eigenvalues with various opening angles of notch are listed 
in Table 13.10.  

Along with the decrease of the inner angle of the notch, the minimum 
eigenvalue 1 increases gradually, which means that the singularity at the tip of 
the notch decreases gradually. When the inner angle of the notch tends to be 
180 , the singularity at the tip of the notch will disappear. 

For convenience, let us divide the roots of the eigenequation (13-76) into two 
parts: one is composed of { 1, 4, 5, 8, }, which represents the symmetric 
part; the other is composed of { 2, 3, 6, 7, }, which represents the 
antisymmetric part. The coefficients of displacement corresponding to the 
symmetric part and antisymmetric part are derived in the following, respectively. 
Furthermore, the expressions of stresses at the tip of the notch can be obtained.  

13.5.2 The Internal Force Fields at Notch-Tip in Reissner Plate 
—the Symmetric Part 

The symmetric part is corresponding to the following eigenvalue series: 

1 4 5 8 9 12[ , , , , , , ]

which can be divided into two groups, a and b: 

group a: 1 5 9[ , , , ]

group b: 4 8 12[ , , , ]



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

469



Advanced Finite Element Method in Structural Engineering 

470

The results for the first two orders (n 0 and n 1) are given as follows. 
(1a) n 0, j 1,5,9,
In this case, j satisfies Eq. (13-77a). From Eqs. (13-75a) and (13-75b), we have 

0 0j j jC m

where

0

0

2 sin( 1)
2

( 1)(1 )sin( 1)
2

j j

j

j j j

m
K

and j represents A0j.
And, from Eqs. (13-75c), (13-75d), (13-75e) and (13-75f), we can obtain 

0 0 0 0 0j j j jB D E F

Therefore, Eq. (13-73) yields 

0 0

0 0 0

0

[cos( 1) cos( 1) ]

[sin( 1) sin( 1) ]

0

j j j j j

j j j j j j

j

a m
b K m
c

 (13-78) 

And, the corresponding internal force fields can be written as 

1
0 0

1
0 0

1
0 0

{(1 ) cos( 1) [( ) ( 1)]cos( 1) }

{( 1) cos( 1) [1 ( 1)]cos( 1) }

(1 ) [2 sin( 1) ( 1)(1 ) sin( 1) ]
2
[cos(

j

j

j

j

r j j j j j j j j

j j j j j j j j

r j j j j j j j

r

M Dr m K

M Dr m K
DM r K m

Q Cr 0

0 0

1) cos( 1) ]

[sin( 1) sin( 1) ]j

j j j j

j j j j j

m

Q Cr K m

  (13-79) 
(1b) n 0, j 4,8,12,
In this case, j only satisfies Eq. (13-77d). Then, from Eq. (13-75), we have 

0 0jE ,  and 0 0 0 0 0 0j j j j jA B C D F

From Eq. (13-73), we obtain 

0 0 00, 0, cosj j j j ja b c  (13-80) 

in which j represents E0j. And, the corresponding internal force fields are 
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1 1

0, 0, 0

( cos ) , ( sin )j j

r r

r j j j j j j

M M M

Q Cr Q Cr
 (13-81) 

(2a) n 1, j 1,5,9,
When n 1, from Eq. (13.71), we have 

1 1 1
1 1 1, ,j j j

r j j jr a r b w r c  (13-82) 

Substituting Eq. (13-82) into Eq. (13-68), and making use of Eq. (13-78), the 
following solutions can be obtained: 

1 1 1 1 1

1 1 1 1 1 1 1

0
1 1 1

cos( 2) sin( 2) cos sin

cos( 2) sin( 2) cos sin
1 ( 1)

cos( 1) sin( 1) cos( 1)
4

j j j j j j j j j

j j j j j j j j j j j

j j j
j j j j j j j

j

a A B C D

b B A K D K C
K

c E F

(13-83)
where

1

(1 )(1 ) (3 )
(1 )(1 ) (3 )

j
j

j

K

Substituting Eq. (13-82) into Eq. (13-70) and making use of Eq. (13-78), the 
corresponding boundary conditions can be derived as follows: 

1 1 1

1 1

1 0 0

( 1) 0

0
2

[sin( 1) sin( 1) ] 0

j j j j

j j j

j j j j j j

b a a
a b
c K m

 (13-84) 

Substitution of Eq. (13-83) into Eq. (13-84) yields: 

1 1 1 1 1 1 1 10,j j j j j j j jA B C D F E f

where

0
1

0 0

sin( 1)1 ( 1) 2( 1)
4 ( 1) sin( 1)

2

sin( 1) sin( 1)1 2 2
1 sin( 1)

2

j
j j j

j j
j j

j

j j j j

j
j

K
f

K m
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From Eq. (13-83), we can obtain 

1 1 1 1 10, 0, [ cos( 1) cos( 1) ]j j j j j j j ja b c f g  (13-85) 

where

1 0[ 1 ( 1)]/ 4j j j j jg K

And, the corresponding internal force fields are 

1 1

1 1

0, 0, 0

( 1)[ cos( 1) cos( 1) ]

[ ( 1) sin( 1) ( 1) sin( 1) ]

j

j

r r

r j j j j j j

j j j j j j j

M M M

Q Cr f g

Q Cr f g

 (13-86) 

(2b) n 1, j 4,8,12,
Substituting Eq. (13-82) into Eq. (13-68) and making use of Eq. (13-80), we 

can obtain: 

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

cos( 2) sin( 2) cos sin

cos
[ (1 ) / 2 2]

cos( 2) sin( 2) cos sin

cos( 1) sin( 1)

j j j j j j j j j

j j
j

j j j j j j j j j j j

j j j j j

a A B C D
C

D

b B A K D K C
c E F

(13-87)

Substituting Eq. (13-82) into Eq. (13-70) and making use of Eq. (13-80), the 
corresponding boundary conditions can be obtained: 

1 1 1

1 1 1

( 1) 0

0, 0 2
j j j j

j j j j

b a a
a b c

 (13-88) 

Substitution of Eq. (13-87) into Eq. (13-88) yields: 

1 1 1 1

1 22 2 12 2 11 1 21
1 1 1 1

11 22 12 21 11 22 12 21

0

,

j j j j

j j j j j j j j

B D F E
c a c a c a c aA l C v

a a a a a a a a

where
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11 12 1

21 22 1

1 2

2( 1)( 1)cos( 1) , 2[ 1 ( 1)]cos
2 2

2( 1)sin( 2) , (1 )sin
2 2

2 [1 ( 1)]
cos , sin

[(1 ) / 2 2] 2 [(1 ) / 2 2] 2

j j j j j j

j j j j j

j
j j j

j j

a a K

a a K

C Cc c
D D

Finally, from Eq. (13-87), we obtain 

1 1 1

1 1 1 1

1

[ cos cos( 2) ]

[ sin sin( 2) ]

0

j j j j j j

j j j j j j j

j

a l
b K v l
c

 (13-89) 

where

1 1 [ (1 ) / 2 2]j j
j

Cv
D

And, the corresponding internal force fields are 

1 1 1

1 1

1 1 1

1 1

1 1 1 1

{[ ( 1 ) ]cos

[ ( 1 ) ( 2)]cos( 2) }

{[ ( 1) ]cos

[ ( 1) ( 2)]cos( 2) }

(1 ) [ ( )sin 2( 1) si
2

j

j

j

r j j j j j j

j j j j j j

j j j j j j

j j j j j j

r j j j j j j j

M Dr K v
l l

M Dr K v
l l

DM r K v l

1
1 1

1
1 1 1

n( 2) ]

[ cos cos( 2) ]

[ sin sin( 2) ]

j

j

j j

r j j j j j

j j j j j j

Q Cr l

Q Cr K v l

(13-90)

13.5.3 The Internal Force Fields at Notch-Tip in Reissner Plate 
—the Antisymmetric Part

The antisymmetric part is corresponding to the following eigenvalue series: 

2 3 6 7 10 11[ , , , , , , ]
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which can also be divided into two groups, a and b: 

group a: 2 6 10[ , , , ]

group b: 3 7 11[ , , , ]

The results for the first two orders (n 0 and n 1) are given as follows. 
(1a) n 0,  j 2,6,10,

0 0 00, 0, sinj j j j ja b c  (13-91) 

The corresponding internal force fields are  

1 1

0, 0, 0

sin , cosj j

r r

r j j j j j j

M M M

Q C r Q C r
 (13-92) 

(1b) n 0, j 3,7,11,

0 0

0 0 0

0

[sin( 1) sin( 1) ]

[cos( 1) cos( 1) ]

0

j j j j j

j j j j j j

j

a m
b K m
c

 (13-93) 

where

0

0

2 cos( 1)
2

( 1)(1 )cos( 1)
2

j j

j

j j j

m
K

The corresponding internal force fields are  

1
0 0

1
0 0

1
0 0

{(1 ) sin( 1) [( ) ( 1)]sin( 1) }

{( 1) sin( 1) [1 ( 1)]sin( 1) }

(1 ) {2 cos( 1) ( 1)(1 )cos( 1) }
2

[s

j

j

j

j

r j j j j j j j j

j j j j j j j j

r j j j j j j j

r

M Dr m K

M Dr m K
DM r m K

Q Cr 0

0 0

in( 1) sin( 1) ]

[cos( 1) cos( 1) ]j

j j j j

j j j j j

m

Q Cr m K

  (13-94) 

(2a) n 1, j 2,6,10,
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1 1 1

1 1 1 1

1

[ sin sin( 2) ]

[ cos( 2) cos ]

0

j j j j j j

j j j j j j j

j

a a l
b l K v
c

 (13-95) 

where

1 22 2 12 2 11 1 21
1 1

11 22 12 21 11 22 12 21

11

12 1

21 22 1

1

,

2( 1)( 1)sin( 2)
2

2[ 1 ( 1)]sin
2

2( 1)cos( 2) , (1 )cos
2 2

2[1 ( 1)]
1

j j

j j

j j j j

j j j j j

j

c a c a c a c al v
a a a a a a a a

a

a K

a a K

C
c

D
2sin , cos

12 22 2
2 2

j j j

j j

Cc
D

1 1 [ (1 ) / 2 2]j j
j

Cv
D

The corresponding internal force fields are  

1 1 1

1 1

1 1 1

1 1

1 1 1

{[ ( 1 ) ]sin

[ ( 1 ) ( 2)]sin( 2) }

{[ ( 1) ]sin

[ ( 1) ( 2)]sin( 2) }

(1 ) {[ ]cos
2

j

j

j

r j j j j j j

j j j j j j

j j j j j j

j j j j j j

r j j j j j j

M Dr K v

l l

M Dr K v

l l

DM r K v 1

1
1 1

1
1 1 1

2 ( 1)cos( 2) }

[ sin sin( 2) ]

[ cos( 2) cos ]

j

j

j j j j

r j j j j j

j j j j j j

l

Q Cr l

Q Cr l K v

(13-96)

(2b) n 1, j 3,7,11,

1 1 1 1 10, 0, [ sin( 1) sin( 1) ]j j j j j j j ja b c f g  (13-97) 

where
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0
1 0

0 0

1 1 0

cos( 1)1 ( 1) 2( 1)
4 ( 1) cos( 1)

2

cos( 1) cos( 1)
2

( 1)cos( 1)
2

[ 1 ( 1)]/ 4

j
j j j

j j j
j j

j

j j j j

j j

j j j j j j

K
f m

K m

g m K

The corresponding internal force fields are  

1 1

1 1

0, 0, 0

( 1) [ sin( 1) sin( 1) ]

[( 1) cos( 1) ( 1) cos( 1) ]

j

j

r r

r j j j j j j

j j j j j j j

M M M

Q C r f g

Q Cr f g

 (13-98) 

The expressions for the zero and first order internal force fields have been given 
above. According to the above process, some higher order solutions can be derived. 

When 2 , the V-notch problem will degenerate into the crack problem. The 
solution of the internal force fields around the crack-tip in the Reissner plate given 
in reference [21] can be treated as a special case of the solution in this section. 

From the above derived expressions of the internal force fields around the 
notch-tip, it is found that, around the notch-tip, the order of singularity of the 
transverse shear stresses rz and z is different from that of stresses r,  and r ,
the former is 2 1r  while the latter is 1 1r . Only when the opening angle 2
(crack problem), since 1 2 0.5, the order of singularity of rz and z will be 
the same as that of r,  and r , which is identical to that in reference [22]. 

13.5.4 The Sub-Region Mixed Element Method 

Now, the sub-region mixed element method is used to analyze the plane V-notch 
problem in thick plate. The sectorial region centered at the notch-tip is taken as 
the complementary energy region (C-region), and the outside of the C-region is 
the potential energy region (P-region). The P-region is divided by the 8-node 
isoparametric thick plate elements, and its nodal displacements  are the 
undetermined displacement parameters. The above solutions of the internal force 
fields around the notch-tip can be taken as the internal force fields of the 
C-region, which can be written as 

b

s

M S
Q S

 (13-99) 
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where T[ ]x y xyM M MM  are the bending and twisting moments; T[ ]x yQ QQ
are the transverse shear forces;  are the undetermined internal force parameters; 
Sb and Ss are formed by the combination of the internal forces around the 
notch-tip.

The undetermined parameters  and  can be determined by the stationary 
condition of the sub-region mixed variational principle.  

The energy functional of the sub-region mixed variational principle is still 
given by Eq. (12-5), i.e., 

p c pcH  (13-100) 

(1) The total potential energy p of the P-region (see Eq. (12-6)) 

T T
p

1
2

K P  (13-101) 

in which K and P are the stiffness matrix and the equivalent nodal load vector, 
respectively.  

(2) The total complementary energy c of the C-region 
The total complementary energy c of the C-region in the thick plate is 

composed of two parts, bending strain complementary energy and shearing strain 
complementary energy (see Eq. (12-55)): 

c

T 1 T 1
c b s

1 ( )d
2 A

AM D M Q D Q  (13-102) 

Substitution of Eq. (13-99) into the above equation yields 

T
c

1
2

F  (13-103) 

where F is the flexibility matrix (see Eq. (12-57)): 

c

T 1 T 1
b b b s s s( )d

A

AF S D S S D S   (13-104) 

in which Db and Ds are given by Eq. (12-49).  
(3) The additional energy Hpc on the interface 
The additional energy Hpc on the interface line Spc of the two regions is (see 

Eq. (12-58)): 

pc pc

T
pc ( )d dn n n ns sS S

H Q w M M s sT u  (13-105) 
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where Qn, Mn and Mns are the three components of the boundary forces T of the 
C-region on the interface; w , n  and s  are the three components of the 
boundary displacements u  of the P-region on the interface. 

The boundary forces T can be expressed in terms of the stress parameters ,
and the boundary displacements u  can be expressed in terms of the nodal 
displacements  on the interface. Since the C-region is a sectorial region, and 
the interface Spc is a circular arc, the polar coordinates are used. Let 

T

T T

[ ]

[ ] [ ]
r r r

r x y

Q M M

w w

T R

u L LN
 (13-106) 

where R can be derived from the internal force fields around the notch-tip; L is a 
transformation matrix: 

1 0 0
0 cos sin
0 sin cos

L   (13-107) 

N  is given by the shape functions of the 8-node isoparametric thick plate 
element 

1 2

1 2

1 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

m

m

m

N N N
N N N

N N N
N  (13-108) 

m is the number of the nodes on the interface.  is the nodal displacement vector 
on the interface.  

Substituting Eq. (13-106) into Eq. (13-105), the additional energy on the 
interface can be written in the form of Eq. (12-11): 

T
pcH H  (13-109) 

where 

pc

T d
S

sH R LN  (13-110) 

(4) Solutions of the stress intensity factors 
The energy functional  above has already been expressed in terms of 

and . From the stationary conditions, the fundamental Eqs. (12-19) and (12-16) 
can be derived. Then,  and  can be solved in turn, and the internal forces can 
also be obtained. Finally, we obtain 



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

479

1

3

2

1
1 01 1 01 1 100

1
3 03 3 03 300

1
2 200

2 lim 2 {( 1) [1 ( 1)]}

22 lim (1 )[2 ( 1)(1 )]
2

2 lim 2

r

rr

r

K r M D m K

K r M D m K

K r Q C

(13-111)

The sub-region mixed element method for the V-notch problem in thick plate 
is denoted as SRM-V4. 

Several numerical examples are given as follows. 
Example 13.6 Stress intensity factor of mode  for the V-notch problem in 

an infinite plate subjected to uniform bending moment.  
An infinite rectangular plate with a rhombic hole is shown in Fig. 13.14. Its 

periphery is subjected to uniform bending moment M. The inner angle of the 
rhombic hole is , and the length of diagonal line is 2a.

In order to simulate the infinite plate, the side lengths of the rectangular plate 
are assumed as 2L 2W 20a during computation. And, E 2 106, 0.3. 
Owing to symmetry, only 1/4 of the plate is used for computation. The division 
of the C-region and P-region is shown in Fig. 13.15. The C-region is a sector 
centered at the notch-tip, and its radius is rc.

The 8-node isoparametric thick plate element is used for the P-region, and the 
mesh divisions are shown in Fig. 13.16(a),(b). 

The results for the stress intensity factor K  (mode ) with various opening 
angles are listed in Table 13.11. Along with the decrease of the opening angle ,

Table 13.11 /K M a  of an infinite plate with various opening angles of the notch 

/2
h/a

0  15  30  45  60

1.0 0.7343 0.7899 0.8010 0.8515 0.9405 
1.5 0.7874 0.8423 0.8540 0.8969 0.9890 
2.0 0.8236 0.8917 0.8977 0.9305 1.0090 

Figure 13.14 An infinite plate with V-notch subjected to uniform bending moment 
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Figure 13.15 The division of the C-region and P-region (V-notch in thick plate) 

Figure 13.16 The mesh divisions of the P-region 

the results will tend to be the analytical solutions of the crack problem[23], and 
errors are within 1%. 

Example 13.7 The stress intensity factor K  of the V-notch in a finite plate. 
The dimensions of the plate are 2L 2W 4a, and the other data are the same 

as those in Example 13.6. The results for the stress intensity factor K  with 
various opening angles are listed in Table 13.12. 

Table 13.12 K  of a finite plate with various opening angles of the notch 

/2
h/a

0  15  30  45  60

1.0 0.8962 0.9418 0.9565 1.008 1.146 

1.5 0.9901 1.045 1.058 1.115 1.250 

2.0 1.055 1.112 1.118 1.162 1.288 

In the above two examples, the radius of the C-region rc 0.08a. And, the 
highest order terms used here in the asymptotic solutions of the stresses at the 
notch-tip are 2r  (for M) and 2 1r  (for Q), respectively. It can be concluded that 
the computational results are basically stable. 
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13.6 3D V-Notch Problem  

This section will discuss the 3D V-notch problem[4]. Firstly, by the expansion of 
the double power series, the eigenequaiton of the 3D V-notch problem is derived. 
Then, the eigenvalue series for notches with various inner opening angles are 
solved by the Muller iteration method, in which the minimum positive 
eigenvalue can be used to reflect the singularity of the notch-tip and the relation 
between this singularity and the inner angle of the notch. If the inner angle of the 
notch is equal to , the problem will degenerate to be a semi-infinite space 
problem, in which no singularity exists; if the inner angle of the notch increases 
to be 2 , the problem will transfer to the 3D crack problem, in which the crack-tip 
possesses singularity with 1/2 order. For the general notch, the eigenvalue series 
can be decomposed into two parts, symmetric part and antisymmetric part. The 
corresponding displacement fields of the notch-tip are first derived; then the 
stress fields of the notch-tip are solved by the stress-displacement or strain- 
displacement relations.  

13.6.1 The Differential Equations and Boundary Conditions for  
the 3D V-Notch Problem 

As shown in Fig. 13.17, a 3D V-notch is considered. Its inner angle is , and 
< <2 . The line of the notch-tip coincides with the z-axis, and can be infinitely 
extended forward and backward. The equations of the two surfaces of the notch 

are
2

 and 
2

, respectively.  

Figure 13.17 3D V-notch problem 

By ignoring the influence of body forces and using the cylinder coordinate 
system, the equilibrium differential equations of this problem can be expressed in 
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terms of the stress components as follows: 

1 1 ( ) 0

1 2 0

1 1 0

rrr rz
rr

r z
r

zrz zz
rz

r r z r

r r z r

r r z r

 (13-112) 

The stress-displacement relations are 

1,
1 1 2 1 1 2

1,
1 1 2 2(1 )

1 ,
2(1 ) 2(1 )

r r
rr

z r
zz r

z r z
z rz

uu uE Ee e
r r r

u uu uE Ee
z r r r
uu u uE E

r z z r

(13-113)

where E and  are the Young’s modulus and the Poisson’s ratio of the material, 

respectively; and 1r r zuu u ue
r r r z

.

Substitution of Eq. (13-113) into Eq. (13-112) yields the equilibrium differential 
equations expressed by displacements: 

2
2 2

2
2 2

2

1( ) 2 0

1 2( ) 0

( ) 0

r
r

r

z

uueX G G u G G
r r r

ue G GX G G u u
r r r
eX G G u
z

 (13-114) 

where 

2 2 2
2

2 2 2 2

1 1, ,
(1 )(1 2 ) 2(1 )

E EX G
r r r r z

The boundary conditions of the notch (see Fig. 13.17) can be expressed by 

0
2r z  (13-115) 
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13.6.2 The Eigenequaiton and Eigenvalue of the 3D V-Notch  
Problem

The displacements ur, u  and uz can be expanded as the following double power 
series:

( , , )

( , , )

( , , )

j

j

j

n
r nj j

j n

n
nj j

j n

n
z nj j

j n

u r a z

u r b z

u r c z

 (13-116) 

where n 0,1,2, ; j 1,2, ; and 1, 2,  are the eigenvalue series. 
Substitution of Eq. (13-116) into Eq. (13-114) yields 

2 2

2 1

[{( )[(( ) 1) ( 1) ] [(( ) 1)

2 ]} ( )( ) ] 0 (13-117a)j j j

j nj j nj j nj
j n

n n n
nj nj j nj nj

X G n a n b G n a

a b r X G n c r Ga r

22

1

[{( )[( 1) ] [2 (( ) 1) ]}

( ) ] 0 (13-117b)

j

j j

n
j nj nj nj j nj nj

j n

n n
nj nj

X G n a b G a n b b r

X G c r Gb r

22

1

[ [( ) ]

( )[( 1) ] ( 2 ) ] 0

j

j j

n
j nj nj

j n

n n
j nj nj nj

G n c c r

X G n a b r X G c r (13-117c)

where a  and a
z

 are denoted by a  and ,a  respectively. In the above equation 

set, by letting the sum of the coefficients of r terms with the same power order to 
be zero, equation set for each order will be obtained. The lowest order equation 
set (called the zero-order equation set) can be established by letting the sum of 
the coefficients of 2jr  terms to be zero, i.e., 

2 2
0 0 0 0 0

2
0 0 0 0 0

2
0 0

( )[( 1) ( 1) ] [( 1) 2 ] 0

( )[( 1) ] [2 ( 1) ] 0

0

j j j j j j j j

j j j j j j j

j j j

X G a b G a a b

X G a b G a b b

c c

 (13-118) 

This is a homogenous ordinary differential equation set about a0j, b0j and c0j.
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Similarly, the first order equation set is obtained by letting the sum of the 
coefficients of 1jr  terms in Eq. (13-117) be zero. This is a homogenous ordinary 
differential equation set about (a1j, b1j, c1j) and (a0j, b0j, c0j), from which a1j, b1j

and c1j can be solved. 
According to the above procedure, equation set for each order can be derived 

in turn, and anj, bnj and cnj (n 2,3, ) of each order can also be solved in turn. 
The solution procedure for the zero-order equation set (13-118) (can be 

compared with that for Eq. (13-72)) will be discussed in detail as follows: 
Firstly, the solutions of Eq. (13-118) can be expressed by 

0 0 0 0 0

0 0 0 0 0 0

0 0 0

cos( 1) sin( 1) cos( 1) sin( 1)

cos( 1) sin( 1) [ cos( 1) sin( 1) ]

cos sin

j j j j j j j j j

j j j j j j j j j j

j j j j j

a A B D F
b B A K F D
c P Q

(13-119)

in which A0j, B0j, D0j, F0j, P0j and Q0j are the undetermined coefficients and functions 

of z; and 0

3 4
3 4

j
j

j

K .

Secondly, the corresponding boundary conditions are introduced. Substitution of 
Eq. (13-116) into the boundary conditions (13-115) yields the following zero-order 
boundary conditions 

0 0

0 0

0

1 0
1

2( 1) 0
0

j
j j

j j j

j

b a

a b
c

(13-120)

Substituting Eq. (13-119) into the above equation, the following 6 conditions can 
be obtained: 

0 0 0
2 1 cos( 1) ( 1) 1 cos( 1) 0
1 2 1 2

j
j j j j j j jA K D

(13-121a)

0 0 02 sin( 1) ( 1)(1 ) sin( 1) 0
2 2j j j j j j jA K D  (13-121b) 

0 0 0
2 1 sin( 1) ( 1) 1 sin( 1) 0
1 2 1 2

j
j j j j j j jB K F

(13-121c)
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0 0 02 cos( 1) ( 1)(1 ) cos( 1) 0
2 2j j j j j j jB K F  (13-121d) 

0 cos 0
2j j jQ   (13-121e) 

0 sin 0
2j j jP   (13-121f) 

This is a homogenous equation set about A0j, B0j, D0j, F0j, Q0j and P0j. If this 
homogenous equation set has nontrivial solutions, its determinant of coefficients 
should be equal to zero, i.e., 

(sin sin )(sin sin )sin cos 0
2 2
j j

j j j j  (13-122) 

This is the eigenequation for the 3D V-notch problem, which is completely the 
same as the eigenequation (13-76) for the V-notch problem in the Reissner plate. 
Therefore, the eigenvalues of the V-notch problem in the Reissner plate listed in 
Table 13.10 are still suitable for the 3D V-notch problem.  

It can be recalled that, the eigenequation (13-122) can be decomposed into the 
following four equations (i.e. Eq. (13-77)): 

 sin sin 0j j  (13-123a) 

 sin sin 0j j  (13-123b) 

cos 0
2j         (13-123c) 

sin 0
2j         (13-123d) 

which are corresponding to the following four cases: 
A0j and D0j in Eqs. (13-121a,b) have nontrivial solutions—symmetric state; 
B0j and F0j in Eqs. (13-121 c,d) have nontrivial solutions—antisymmetric state; 
Q0j in Eq. (13-121e) has nontrivial solution—antisymmetric state; 
P0j in Eq. (13-121f) has nontrivial solution—symmetric state. 
Load states in the 3D V-notch problem can be classified as symmetric state 

and antisymmetric state. And, the eigenvalue series  can also be classified as 
two sub series of symmetry and antisymmetry: 

Symmetric sub series 1 4 5 8{ , , , , }—the combination of the eigenvalues 
of Eqs. (13-123a,d). 

Antisymmetric sub series 2 3 6 7{ , , , , } —the combination of the eigenvalues 
of Eqs. (13-123b,c). 

The following discussions on the displacement and stress fields around notch-tip 
are also classified as two cases of symmetry and antisymmetry.  
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13.6.3 Stress Fields Around 3D Notch-Tip—the Symmetric State 

The symmetric sub series of eigenvalues can be divided into two groups 

Group a:    1 5 9[ , , , ]

Group b:    4 8 12[ , , , ]

Here, the results of the first two orders (n 0 and n 1) are given as follows. 
(1a) n 0, j 1,5,9,
Eigenvalue j of this group satisfies Eq. (13-123a). Substitution of it into 

Eq. (13-121b) or Eq. (13-121a) yields 

0 0 0j j jA m D
where 

0
0

1sin ( 1)( 1)(1 ) 2
12 sin ( 1)
2

j
j j

j
j

j

K
m

Then, from Eq. (13-121c) to Eq. (13-121f), we have 

0 0 0 0 0j j j jB F Q P

Substituting them into Eqs. (13-119) and (13-116), the corresponding displacement 
terms can be derived: 

0

0 0

[ cos( 1) cos( 1) ]

[ sin( 1) sin( 1) ]

0

j

j

r j j j j

j j j j j

z

u r m

u r m K
u

 (13-124) 

in which j is just D0j, it is a function of z (j 1,5,9, ). By the stress- 
displacement relation (13-113), the corresponding stress field can be obtained: 

1
0 0

1
0

0 0

1
0

1
0

{[ ( 1) ( 1) 2 ]cos( 1) 2 cos( 1) }

{[ ( 1) ( 1) 2

2 ( 1)]cos( 1) 2 cos( 1) }

{[ ( 1) ( 1)]cos( 1) }

[ 2

j

j

j

j

rr j j j j j j j j j

j j j

j j j j j j j

zz j j j j j

r j

r X XK G G m

r X XK G
GK G m

r X K

r G m 0

0 0

0

sin( 1) ( 1)(1 )sin( 1) ]

[ sin( 1) sin( 1) ]

[ cos( 1) cos( 1) ]

j

j

j j j j j j

z j j j j j

rz j j j j

K

r G m K

r G m

(13-125)
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(1b) n 0, j 4,8,12,
The eigenvalue j of this group satisfies Eq. (13-123d). Substitution of it into 

Eq. (13-121f) yields 

0 0jP

And, from the other expressions in Eq. (13-121), we obtain 

0 0 0 0 0 0j j j j jA D B F Q

Substituting them into Eqs. (13-119) and (13-116), the corresponding displacement 
terms can be obtained  

0, 0, cosj
r z j ju u u r  (13-126) 

in which j is just P0j (j 4,8,12, ).
The corresponding stress terms can be solved from Eq. (13-113) as follows: 

1 1

cos , cos

(2 ) cos , 0

sin , cos

j j

j

j j

rr j j j j

zz j j r

z j j j rz j j j

r X r X

r G X

r G r G

 (13-127) 

(2a) n 1 j 1,5,9,
The case of n 1 is corresponding to the first-order equation set and the 

first-order displacement and stress terms. By letting the sum of the coefficients 
of 1jr  terms in Eq. (13-117) be zero, an ordinary differential equation set about 
(a1j, b1j, c1j) and (a0j, b0j, c0j) can be obtained as follows: 

2
1 1

2
1 1 1 0

2
1 1 1 1 1 0

2
1 1 0 0

( ){[( 1) 1] }

{[( 1) 1] 2 } ( ) 0

( )[( 2) ] {2 [( 1) 1] } ( ) 0

[( 1) ] ( )[( 1) ] 0

j j j j

j j j j j j

j j j j j j j j

j j j j j j

X G a b

G a a b X G c

X G a b G a b b X G c

G c c X G a b
(13-128)

When j 1,5,9, , (a0j, b0j, c0j) in the above equation can be obtained from 
Eq. (13-124): 

0 0

0 0 0

0

[ cos( 1) cos( 1) ]

[ sin( 1) sin( 1) ]

0

j j j j j

j j j j j j

j

a m
b m K
c

 (13-129) 
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Substituting the above equation into Eq. (13-128), (a1j, b1j, c1j) can be solved as 
follows:

1 1 1 1 1

1 1 1 1 1 1

1 1 1 0

cos( 2) sin( 2) cos sin

cos( 2) sin( 2) [ cos sin ]

cos( 1) sin( 1) [ 1 ( 1)] cos( 1)
4

j j j j j j j j j

j j j j j j j j j j

j j j j j j j j j j
j

a A B D F
b B A K F D

X Gc P Q K
G

(13-130)

where

1

1 3 4
1 3 4

j
j

j

K

From the boundary condition (13-115), the first-order boundary conditions can 
be written by 

1 1

1 1

1 0 0

1
0

1
20

[ sin( 1) sin( 1) ] 0

j
j j

j j j

j j j j j j

b a

a b
c m K

(13-131)

Substitution of Eq. (13-130) into the above equation, we have 

1 1 1 1 1

1 1

0j j j j j

j j j

A B D F Q

P f

where

1 0

0 0

1sin ( 1)1 2[( 1) ( 1)]
14 1 sin ( 1)
2

1 1sin ( 1) sin ( 1)
2 2

1( 1)sin ( 1)
2

j
j

j j j j
j j

j

j j j j

j j

X Gf K
G

m K

The corresponding displacement terms can be solved as follows 

1
1 1

0
0

[ cos( 1) cos( 1) ]j

r

z j j j j j

u
u

u r f g

 (13-132) 
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where

1 0[ 1 ( 1)]
4j j j j

j

X Gg K
G

And, the corresponding stress terms are 

1
1 1

1
1 1

1
1 1

1 1

[ cos( 1) cos( 1) ]

[ cos( 1) cos( 1) ]

( 2 )[ cos( 1) cos( 1) ]

0

[( 1) sin( 1) ( 1) sin( 1) ]

j

j

j

j

j

rr j j j j j

j j j j j

zz j j j j j

r

z j j j j j j j

rz

r X f g

r X f g

r X G f g

r G f g

r G 1 1[ cos( 1) cos( 1) ]j j j j j jf g

 (13-133) 

(2b) n 1, j 4,8,12,
Now, the cases of j 4,8,12,  are considered. Here, a0j, b0j and c0j can be 

obtained from Eq. (13-126): 

0 0 00, 0, cosj j j j ja b c  (13-134) 

Substituting the above equation back into Eq. (13-128), a1j, b1j and c1j can be 
solved as follows: 

1 1 1 1 1

1 1 1 1 1 1

1 1 1

cos( 2) sin( 2) cos sin

cos
( )( 2) 2

cos( 2) sin( 2) ( cos sin )

cos( 1) sin( 1)

j j j j j j j j j

j j
j

j j j j j j j j j j

j j j j j

a A B D F
X G

X G G

b B A K F D
c P Q

  (13-135) 

From the boundary condition (13-115), the corresponding first-order boundary 
condition can be written as: 

1 1

1 1

1

1
cos 0

1 1
0 2

0

j
j j j j

j j j

j

b a

a b
c

(13-136)

Substitution of Eq. (13-135) into the above equation yields 
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1 1 1 1

1 1 1 1

0

,
j j j j

j j j j j j

B F Q P

A l D
  (13-137) 

where l1j and 1j are given in Appendix C. The corresponding displacement terms 
are

1
1 1

1
1 1 1

[ cos( 2) cos ]

[ sin( 2) sin ]

0

j

j

r j j j j j

j j j j j j

z

u r l h

u r l K

u

 (13-138) 

where

1 1 ( )( 2) 2j j
j

X Gh
X G G

And, the corresponding stress terms are 

1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

1

{[ ( 2) 2 ]cos 2 cos( 2) }

{[ ( 2)

2 ( )]cos 2 ( 1)cos( 2) }

{ [ ( 2) ]cos }

[2

j

j

j

j

rr j j j j j j j j j j j j

j j j j j

j j j j j j j j j

zz j j j j j j j

r

r XK X g G g G l

r XK X g

G g K Gl

r X K g

r G l 1 1 1

1
1 1 1

1
1 1

( 1)sin( 2) ( ) sin ]

[ sin( 2) sin ]

[ cos( 2) cos ]

j

j

j j j j j j j j j

z j j j j j j

rz j j j j j

g K

r G l K

r G l g
(13-139)

13.6.4 Stress Fields Around 3D Notch-Tip—the Antisymmetric State 

The antisymmetric sub series of eigenvalues can be divided into two groups 

Group a:   2 6 10[ , , , ]

Group b:   3 7 11[ , , , ]

Here, the results of the first two orders (n 0 and n 1) are given as follows.  
(1a) n 0, j 2,6,10,
The displacement terms are 

0, 0, sinj
r z j ju u u r  (13-140) 
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And, the stress terms are: 

1

1

sin

sin

( 2 ) sin

0

cos

sin

j

j

j

j

j

rr j j

j j

zz j j

r

z j j j

rz j j j

r X

r X

r X G

r G

r G

 (13-141) 

(1b) n 0, j 3,7,11,
The displacement terms are 

0

0 0

[ sin( 1) sin( 1) ]

[ cos( 1) cos( 1) ]

0

j

j

r j j j j

j j j j j

z

u r n

u r n K

u

 (13-142) 

And, the stress terms are 

    

1
0

0

1
0

0 0

1
0

1
0

{[ ( 1) ( 1) 2 ]sin( 1)

2 sin( 1) }

{[ ( 1) ( 1) 2

2 ( 1)]sin( 1) 2 sin( 1) }

{[ 1 ( 1)]sin( 1) }

[2 c

j

j

j

j

rr j j j j j

j j j j

j j j

j j j j j j j

zz j j j j j

r j j

r X XK G

Gn

r X XK G
GK Gn

r X K

r G n 0

0 0

0

os( 1) ( 1)(1 )cos( 1) ]

[ cos( 1) cos( 1) ]

[ sin( 1) sin( 1) ]

j

j

j j j j j

z j j j j j

rz j j j j

K

r G n K

r G n

 (13-143) 

where

0

0

1( 1)(1 )cos ( 1)
2

12 cos ( 1)
2

j j j

j

j j

K
n

(2a) n 1, j 2,6,10,
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The displacement terms are 

1
1 1

1
1 1 1

[ sin( 2) sin ]

[ cos( 2) cos ]

0

j

j

r j j j j j

j j j j j j

z

u r s p

u r s K t

u

 (13-144) 

where s1j and t1j are given in Appendix D, 

1 1 ( )( 2) 2j j
j

X Gp t
X G G

And, the stress terms are 

1 1 1 1 1

1 1 1 1 1 1

1

1 1 1

{[ ( 2) 2 ]sin 2 sin( 2) }

{[ ( 2) 2 ( )]sin

2 ( 1) sin( 2) }

{[( 2) ]sin }

{2( 1)

j

j

j

j

rr j j j j j j j j j j j j

j j j j j j j j j j

j j j j

zz j j j j j j j

r j

r X XK G v G s

r X XK G v K t

G s

r X K t

r G 1 1 1 1

1
1 1 1

1
1 1

cos( 2) [ ]cos }

[ sin( 2) cos ]

[ sin( 2) cos ]

j

j

j j j j j j j j j

z j j j j j j

rz j j j j j

s v K t

r G s K t

r G s v

  (13-145) 

(2b) n 1, j 3,7,11,
The displacement terms are 

1 10, 0, [ sin( 1) sin( 1) ]j
r z j j j j ju u u r q v  (13-146) 

where

1 0

0 0

1cos ( 1)1 2[( 1) ( 1)]
14 1 cos ( 1)
2

1 1cos ( 1) cos ( 1)
2 2

1( 1)cos ( 1)
2

j
j

j j j j
j j

j

j j j j

j j

X Gq K
G

n K

1 0[ 1 ( 1)]
4j j j j

j

X Gv K
G



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

493

And, the stress terms are 

1
1 1

1
1 1

1
1 1

1 1

[ sin( 1) sin( 1) ]

[ sin( 1) sin( 1) ]

( 2 )[ sin( 1) sin( 1) ]

0

[( 1) cos( 1) ( 1) cos( 1) ]

j

j

j

j

j

rr j j j j j

j j j j j

zz j j j j j

r

z j j j j j j j

rz

r X q v

r X q v

r X G q v

r G q v

r G 1 1[ sin( 1) sin( 1) ]j j j j j jq v

 (13-147) 

When the inner angle tends to be 2 , the above solutions can be transferred to 
the displacement and stress fields of a crack in 3D space, which are identical 
with the results given by reference [24].  

The sub-region mixed element method for the 3D V-notch problem is denoted 
by SRM-V5. 
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