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Abstract Besides the various plate problems discussed in the previous 
chapters, the idea of the generalized conforming element has already been 
successfully generalized to many other areas. As the final chapter of Part ,
this chapter mainly introduces some research achievements on the applications 
of the generalized conforming element method for isoparametric membrane 
element (Sect. 11.2), membrane element with drilling freedoms (Sects. 11.3 
and 11.4), flat-shell element (Sect. 11.5), curved shell element (Sects. 11.6 
and 11.7) and shell element for geometrically nonlinear analysis (Sects. 11.8 
and 11.9). Thus, the universal significance of the generalized conforming 
theory can be clearly illustrated. 

Keywords finite element, generalized conforming, membrane element, 
shell element. 

11.1 Introduction 

The generalized conforming element method was originally proposed for solving 
the difficulty of C1-continuity required by thin plate elements. It opens a new way 
between the conforming and non-conforming elements: on the one hand, the 
shortcomings that sometimes the conforming elements are over-stiff and even 
difficult to be constructed are overcome; on the other hand, the major weakness 
that the non-conforming elements may not be convergent is also eliminated. As 
described in Chap. 5 to Chap. 7, first it obtains success in the construction of thin 
plate elements, and various high-performance thin plate element models of 
different types are then successfully constructed. 
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At the same time, the idea of the generalized conforming element has also been 
successfully generalized to many other areas: besides the applications of thick 
plate in Chap. 8, laminated composite plate in Chap. 9 and piezoelectric laminated 
composite plate in Chap. 10, generalized conforming isoparametric membrane 
elements are proposed in reference [1], generalized conforming membrane elements 
with drilling freedoms are proposed in references [2,3], generalized conforming 
flat-shell elements are proposed in references [4–9], generalized conforming 
curved shallow shell elements are proposed in references [10,11], and generalized 
conforming plate and shell elements for geometrically nonlinear analysis are also 
proposed in [9–12].  

This chapter will mainly introduce some research achievements on the 
applications of the generalized conforming element method for isoparametric 
membrane element, membrane element with drilling freedoms, flat-shell element, 
curved shell element and shell element for geometrically nonlinear analysis. Thus, 
the universal significance of the generalized conforming theory can be exhibited. 

11.2 Generalized Conforming Isoparametric Membrane  
Element

This section will introduce the construction mode of the generalized conforming 
isoparametric element GC-Q6[1].

For the plane 4-node isoparametric element Q4 (Fig. 11.1), its nodal DOFs are 
defined as: 

T
1 1 2 2 3 3 4 4[ ]e u v u v u v u vq  (11-1) 

Figure 11.1 4-node quadrilateral plane isoparametric element 

The interpolation functions for displacements u and v are given by 

4 4

1 1
,i i i i

i i
u N u v N v  (11-2) 

where ui and vi (i 1,2,3,4) are the nodal displacements; Ni the shape functions 
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which are bilinear functions of the natural coordinates ,

1 (1 )(1 )
4i i iN   (i 1,2,3,4) (11-3) 

Element Q4 is very popular. However, for bending problems it gives results with 
low accuracy. 

In order to improve the bending behavior of the element Q4, Wilson et al.[13]

propose a non-conforming element in which the displacements are split into 
compatible and incompatible parts: 

qu u u  (11-4) 

where uq [u v]T are the compatible displacements and given by Eqs. (11-2) 
and (11-3); and u  are the incompatible displacements given by 

1
2 2

2
2 2

3

4

1 1 0 0
0 0 1 1

u
v

u  (11-5) 

where i (i 1,2,3,4) are 4 internal displacement parameters. This element is 
denoted as Q6. Some excellent numerical results are obtained by the element Q6, 
however, it cannot pass the patch test for irregular mesh. 

In this section, according to the basic idea of the generalized conforming 
element, the generalized conforming isoparametric element GC-Q6 is obtained 
based on the generalized conforming conditions under constant and linear stress 
fields. Here, the generalized conforming conditions under constant stresses are used 
to ensure convergence, and the generalized conforming conditions under linear 
stresses are used to improve computational accuracy. 

11.2.1 Generalized Conforming Conditions under Constant and  
Linear Stress Fields 

For the conforming element, the element displacement fields u must satisfy the 
conforming conditions along the element boundary Ae

u u 0   (on Ae) (11-6) 

where u  denote the boundary displacement of the element.  
For the generalized conforming element, the conforming condition (11-6) are 

relaxed and replaced by the following generalized conforming conditions in the 
limit of mesh refinement (the stresses and strains of each element tends to be 
constant):
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T
c ( )d 0

eA
sT u u  (11-7) 

where Tc denotes the boundary tractions of the constant stress field.  
In reference [14], during the derivation of the generalized conforming element, 

the following conforming conditions of the average displacement along each 
element side Si are used: 

( ) d
iS

su u 0  (11-8) 

Obviously, the condition (11-8) are the strong forms of the condition (11-7). 
In reference [1], a new kind of generalized conforming element is established 

by using another strong form of the condition (11-7), i.e., 

T ( )d 0
eA

sT u u  (11-9) 

where T denotes the boundary tractions under both the constant and linear stress 
fields. Substituting Eq. (11-4) into Eq. (11-9), and applying the following condition 
satisfied by the conforming displacement uq:

qu u 0   (on Ae) (11-10) 

we have 
T d 0

eA
sT u  (11-11) 

Considering the following linear stress state: 

1 4 2 5 3, ,x y xy  (11-12) 

we obtain 

1 3 4 2 3 5,x yT l m l T m l m  (11-13) 

where l and m are the directional cosines of the outward normal to the boundary. 
Substitution of Eq. (11-13) into Eq. (11-11) yields 

1 2 3 4 5[ ( ) ]d 0
eA

lu mv mu lv l u m v s  (11-14) 

Since the 5 parameters i are independent to each other, 5 conditions can be 
obtained as follows: 

 d 0 ,    d 0

 ( )d 0

d 0 ,    d 0

e e

e

e e

A A

A

A A

lu s mv s

mu lv s

l u s m v s

 (11-15) 
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The conditions given by Eq. (11-15) are the generalized conforming conditions 
under constant and linear stress fields.  

11.2.2 Determination of the Generalized Conforming  
Displacements u

Firstly, the generalized conforming displacements u  and v  are expressed in a 
complete quadratic polynomial form: 

2 2
1 2 3 4 5 6

2 2
1 2 3 4 5 6

u

v
 (11-16) 

From this equation, the displacements uC, vC and rotation C at the centroid C
( 0, 0) of the element can be obtained as follows: 

1 1 3 2 1 3 3 2 1 3
1 ,   ,  

2 | |C C C
C

u v a a b b
J

 (11-17) 

where the following notations are used: 

1 1 2 3 4 2 1 2 3 4

3 1 2 3 4

1 1 2 3 4 2 1 2 3 4

3 1 2 3 4

1 3 3 1

1 1 ,
4 4

1        
4

1 1 ,  
4 4

1        
4

| | 0C

a x x x x a x x x x

a x x x x

b y y y y b y y y y

b y y y y

a b a bJ

 (11-18) 

Secondly, substitution of Eq. (11-16) into the generalized conforming condition 
(11-15) yields 

3 2 1 3 2 4 6

3 2 1 3 2 4 6

3 2 1 3 2 4 6 3 2 1 3 2 4 6

1 1 2 3 1 4 3 5 1 6

3 1 2 2 3 4 1 5 3 6

3 3 2 ( ) 0
3 3 2 ( ) 0
[3 3 2 ( )] [3 3 2 ( )] 0
3 2 3 0
3 2 3 0

b b b
a a a
a a a b b b

b b b b b
a a a a a

 (11-19) 

From Eqs. (11-19) and (11-17), 8 parameters 1, 2, 3, 5, 1 , 2 , 3  and 
5  can be expressed in terms of another 4 independent parameters 4, 6, 4 , 6
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and three centroid displacements uC, vC, C.
Finally, if we let 

4 6 4 6, , 0C C Cu v  (11-20) 

then from Eq. (11-16) we obtain 

4
2 2

61 2 3 3
2 2

43 3 1 2

6

1 1
1 1

u F F F F
v F F F F

 (11-21) 

where

1 1 2 2 1 3 2 2 3

2 23 1
1 1 2 2 1 2

3 3

1 2 1 1 2 2 3 3 2

2 2 31
3 3 2 2 2 3

1 1

1
2 1

3

1 2 2
3 | |

        3 2 3 4 | |  

1 2 2
3 | |

        9 2 4 9 | |  

2

C

C

C

C

F a b a b a b a b

a ba b a b b b
b b

F a b a b a b a b
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J

J
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1
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3 1 2 2 3 2

2
3 1 2 2 3 2

2
 ,   

1 [ 2 ]
3 | |

1 [ 2 ]
3 | |

C

C

a
F F

a

F b b b b b

F a a a a a

J

J

 (11-22) 

Equation (11-21), involving 4 internal displacement parameters 4, 6, 4  and 
6 , represents the required generalized conforming displacement mode which 

satisfies the condition (11-15). If the element is a parallelogram, Eq. (11-21) 
degenerates to Eq. (11-5). 

11.2.3 Stiffness Matrix of the Element GC-Q6  

As soon as the generalized conforming displacement mode (11-21) is determined, 
the stiffness matrix may be derived by the conventional procedure.  
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Substituting Eqs. (11-2) and (11-21) into Eq. (11-4), the element displacement 
may be written as 

e
qu u u Nq N  (11-23) 

Element strain may be expressed as 

eBq B  (11-24) 

And, the element strain energy is 

T T T T1 1d
2 2 2e

e e e
qq q

A

hU AD q K q K K q  (11-25) 

in which h is the thickness of the element; 

1 1 T

1 1

1 1 T

1 1

1 1 T

1 1

 | |  d d

| |  d d

 | |  d d

qq

q

h

h

h

K B DB J

K B DB J

K B DB J

 (11-26) 

where | |J  is the determinant of the Jacobian matrix; D is the matrix of the 
elasticity coefficients, for the plane stress problem, we have 

2

1 0
1 0

1
10 0

2

ED (11-27)

in which E and  are the Young’s modulus and Poisson’s ratio, respectively. For 
the plane strain problem, the E and  in the above equation should be replaced by 
E / (1 2) and / (1 ), respectively. 

From U 0 , we obtain 
1 e

qK K q  (11-28) 

and finally the element stiffness matrix can be written as 
T 1e

qq q qK K K K K  (11-29) 

11.2.4 Numerical Examples 

Example 11.1 Analysis of a rectangular plate using irregular mesh (Fig. 11.2). 
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Two load cases are considered: Uniform tension under load 1 (an experiment 
problem for patch test) and pure bending under load 2. Owing to the symmetry of 
the plate, only 1 4  of the plate is modelled. Irregular mesh as shown in Fig. 11.2 is 
used. Computational results are given in Table 11.1. For comparison, the results by 
the other 6 element models and exact results are also given. From Table 11.1, it can 
be seen that, except the element Q6, the other models can all pass the patch test. 

Figure 11.2 A 1/4 rectangular plate subjected to uniform tension and pure bending loads 

Table 11.1 Comparison of results for Example 11.1 (7 elements)

Load 1 (uniform tension) Load 2 (bending) 
Element type 

uA Patch test vA

Q4 (isoparametric) 6.00 pass 17.00
Q6[13] 6.70 fail 19.66
QM6[15] 6.00 pass 17.61
QP6[16] 6.00 pass 17.61
NQ6[17] 6.00 pass 17.61
QC6[18] 6.00 pass 17.61
GC-Q6 (presented) 6.00 pass 17.62
Analytical solution 6.00  18.00

Example 11.2 Analysis of a cantilever beam using irregular mesh (Fig. 11.3). 

Figure 11.3 A cantilever beam subjected to pure bending and transverse bending loads 
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Two load cases are considered: pure bending under load 1 and transverse bending 
under load 2. 

From Table 11.2, it can be seen that the accuracy of the isoparametric element 
Q4 is the worst, but the other 4 elements can provide good accuracy, especially 
the element QC-Q6 which gives the best answers. 

Table 11.2 Comparison of results for Example 11.2 (5 elements)

Load 1 (pure bending) Load 2 (transverse bending) 
Element type 

Av xB Av xB

Q4 (isoparametric) 45.7 1761 50.7 2448

Q6[13] 98.4 2428 100.4 3354

QC6[18] 96.1 2439 98.1 3339

NQ6[17] 96.1 2439 98.0 3294

GC-Q6 (presented) 95.0 3036 96.1 4182

Analytical solution 100 3000 102.6 4050
 Stress at point B is computed by extrapolation from the stresses at the 2 2 Gauss quadrature points. 

Example 11.3 Cook’s skew beam problem: analysis of a tapered and swept 
panel with unit load uniformly distributed along the right edge (Fig. 11.4, mesh 
by real line). 

This example has been discussed in reference [30]. From Table 11.3, it can be 
seen that the presented element GC-Q6 gives more accurate results than the 
element HL for coarser meshes.  

Figure 11.4 Cook’s skew beam problem, mesh 4 4
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Table 11.3 Comparison of results for Cook’s skew beam problem (5 elements)

vC (the vertical 
displacement at point C )

Amax (the maximum 
stress at point A)

Bmin (the minimum stress at 
point B)Element 

2 2 4 4 8 8 2 2 4 4 8 8 2 2 4 4 8 8
Q4 11.80 18.29 22.08 0.1217 0.1873 0.2242 0.0960 0.1524 0.1869
Q6[13] 22.94 23.48  0.2029 0.2258  0.1734 0.1915  
QM6[15] 21.05 23.02  0.1928 0.2243  0.1580 0.1856  
HL[19] 18.17 22.03 23.39 0.1582 0.1980 0.2205 0.1335 0.1770 0.1931
GC-Q6  27.61 24.31 23.99 0.2538 0.2349 0.2318 0.1688 0.1930 0.1965
Reference 23.96 0.2362 0.2023

 Nodal stresses are computed by extrapolation from the stresses at 2 2 Gauss quadrature points and nodal 
stresses of neighboring element are averaged. 
 Results by the element GT9M8[3] using 64 64 mesh.

11.3 Membrane Elements with Drilling Freedoms—
Definition of the Drilling Freedom and the Corres- 
ponding Rectangular and Quadrilateral Elements 

The introduction of drilling freedom at each node in a plane stress element can 
improve the order of the element displacement fields, so it can enhance the 
element performance without increasing the number of the element nodes. And, 
such drilling freedoms in membrane elements possess special significance for the 
finite element analysis of shells. The membrane elements with drilling freedoms 
can be combined with plate bending elements to form flat-shell elements, which 
contain 3 translational freedoms and 3 rotational freedoms at each node. Thus, 
when a flat-shell element is used for the analysis of shell structures, the problem 
that the global stiffness matrix may be singular can be naturally solved. And, the 
troubles caused by some other treatments[20,21] for this problem can also be avoided.  

11.3.1 Notes on the Definition of Nodal Drilling Freedom z in a  
Membrane Element 

Following are 3 definitions of the drilling freedom z at the node in a membrane 
element, and comparisons of their advantages and disadvantages are also given.  

(1) Definition in the early time—the nodal drilling freedom z in a membrane 
element is defined as the nodal rigid rotation 

In the early definition of the nodal drilling freedom in a membrane element, the 
rotation of two adjacent sides of the element is assumed to be equal. So, during 
the whole deformation process of the element under this definition, the angle 
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between two adjacent sides which meet at the same corner node will indeed keep 
invariant. The introduction of this improper constraint will make the deformation 
state of the element quite different from the real situation. And, the triangular 
membrane element established by this method in [22] cannot be convergent to 
correct solutions.  

(2) The second definition—the nodal drilling freedom z in a membrane element 
is defined as the nodal rotation  according to the concept of continuum mechanics 

From the displacements u and v of the membrane element, its rotation can be 
derived by the concept of continuum mechanics as follows: 

1
2

v u
x y

 (11-30) 

In many recent literatures, this concept of rotation  was adopted to define the 
nodal drilling freedom z of the membrane element as  

1
2z

v u
x y

 (11-31) 

Now, the properties of the rotation  are listed as follows.  
Property 1 When the axes of the Cartesian coordinate system rotate,  is an 

invariant.  
Assume that the Cartesian coordinate system xOy will change to another 

Cartesian coordinate system x Oy  after it rotates an arbitrary angle. Then, the 
corresponding rotations of these two coordinate systems are  

1 1,
2 2xy x y

v u v u
x y x y

 (11-32) 

By using the coordinate transformation (8-22), it can be proved that 

xy x y  (11-33) 

i.e.,  is an invariant. 
That  is an invariant is just one of the important reasons why it has been 

selected as the definition of the nodal drilling freedom z.

Property 2 The rotation of the x-axis is x
v
x

, and the rotation of the 

y-axis is y
u
y

. Then, the shear strain xy and rotation  can be expressed in 

terms of x and y as 

1, ( )
2xy x y x y  (11-34) 
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i.e., the shear strain xy is the difference value of x and y, and the rotation  is 
the average value of x and y.

Property 3 x and y can be expressed in terms of  and xy as follows: 

1 1,
2 2x xy y xy  (11-35) 

Similarly, we have 

1 1,
2 2x x y y x y  (11-36) 

Property 4 Under the general strain state in which the strain circle does not 
degenerate to be a point, when the coordinate axes x Oy  rotate, x y  is a variant, 
so x  and y  are also variants. 

Since x  and y  are variants, it is impossible that they are identically equal to 
the invariant . Only for the special case in which the x -axis and the y -axis are 
the strain principal axes, and then x y 0,  will be equal to x and y. Thus, we 
can obtain: 

principal axis non principal axis( ) , ( )  (11-37) 

Property 5 Under the special strain state in which the strain circle degenerates 
to be a point (isotropic spherical stress-strain state), axes along arbitrary directions 
are all strain principal axes. Therefore, the rotation  of a line segment in the 
arbitrary direction will be identically equal to , it is an invariant, i.e.,  

      line segment in arbitrary direction( )  (Under isotropic spherical stress state) (11-38) 

From the above properties of rotation , it can be seen that the second 
definition described in this section is inappropriate, either. Its main shortcoming 
is: in general cases, the nodal rotation  and the rotation  of the element side are 
two different geometric quantities, and there is no definitive relation between 
them. For instance, from Property 2, it can be seen that  is the average value of 
the rotation x  of the element side and the rotation y  of the side normal, and has 
no definitive relation with the rotation x  of the element side; and from property 
4, it can be seen that, if the element side is not the strain principal axis, the 
rotation  of the element side will not be equal to .

In order to explain the reason why the second definition is inappropriate, three 
other examples are given as follows:  

Example 1 At common nodes, the values of in adjacent elements are 
generally not equal to each other, thereby,  is not suitable for being taken as the 
nodal freedom. 

In Fig. 11.5, e and e  represent two adjacent elements, and point 1 is the common 
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node. Let the common side 12 be the x -axis, then the rotation at the common node 
1 of elements e and e  are 

1 1,
2 2

e e e e e e
x x y x x y  (11-39) 

where e
x  and e

x  are the rotations along the common side of the two elements at 
node 1, and should be equal; and e

x y  and e
x y  are the shear strains of the two 

elements at node 1, but they are generally not equal. Hence, at common node 1, 
e and e  are generally not equal, either. So,  is not suitable for being taken as 

the nodal freedom. 

Figure 11.5 Two adjacent elements 

Example 2 Assume that the two elements e and e  in Fig. 11.6 are both 
triangular element CST (Constant Strain Triangle), their strains are constants, and 
displacements are linear, so the rotations e and e  are also both constants 
(expressed by constants C1 and C2, respectively), i.e., 

1 2 3 1 1 2 4 2,e e e e e eC C  (11-40) 

Figure 11.6 Two adjacent CST elements 

Since constants C1 and C2 are generally not equal, it can also be concluded that 
e and e  at the common nodes 1 and 2 are generally not equal. So,  is not 

suitable for being taken as the nodal freedom. 
By the way, for the CST elements, stress , strain  and rotation  within each 

element are all constants, but generally different in adjacent elements, and 
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discontinuity phenomena will happen at two sides of the common side. Thereby, 
the quantities related to the derivatives of the displacements, such as ,  , , and 
so on, are not suitable for being selected as the nodal freedoms.  

Example 3 Along a fixed edge where the displacements are specified as zero, 
the boundary conditions of the translational displacements u and v can be 
expressed as follows: 

 0, 0u v   (at the nodes on the fixed edge) (11-41) 

But, the rotation  on the fixed edge generally cannot be expressed by 

0   (at the nodes on the fixed edge) (11-42) 

Therefore,  is not suitable for being selected as the nodal freedom. 

Figure 11.7 The boundary conditions on fixed edge 

In Fig. 11.7, side 12  is a fixed edge. The boundary conditions of the element e
at nodes 1 and 2 are 

1 2 1 20, 0u u v v  (11-43) 

And, the following conditions can also be obtained: 

1 2

0u u
y y

 (11-44) 

Then, the rotation at node 1 can be derived from the above conditions: 

1
11

1 1
2 2

v u v
x y x

 (11-45) 

Since the term 
1

v
x

 at the right side of the above equation is generally nonzero, 

so the following boundary condition  

 0  (11-46) 
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generally cannot come into existence. Therefore,  is not suitable for being selected 
as the nodal freedom. 

While the second definition possesses the above disadvantages, references [2, 3] 
proposed the third definition for the nodal drilling freedom z of the membrane 
element.  

(3) The third definition—the nodal drilling freedom z in the membrane element 
is defined as the additional rigid rotation at the element node. 

In this definition, the displacement fields within the domain of an element are 
assumed to include two parts: 

0u u u  (11-47) 

where u0 [u0 v0]T are the displacement fields determined by the nodal 
translational displacements; u [u v  ]T are the additional displacement fields 
only determined by the vertex rigid rotations. According to Eq. (11-47), the 
deformation process of the element under external load can be expressed by 
Fig. 11.8. The element deformation caused by the nodal translational displacements 
is shown in Fig. 11.8(a), and the element deformation caused by the vertex rigid 
rotations is shown in Fig. 11.8(b). It should be emphatically pointed out that the 
above two deformation states are independent of each other.  

Figure 11.8 The deformation process of a plane membrane element 

The characteristics of the nodal drilling freedom defined in Fig. 11.8 are as 
follows:

(1) The change of the angle between two adjacent sides along with the element 
deformation is allowed (see Fig. 11.8(a)), which overcomes the shortcomings 
caused by the improper constraint introduced by the early definition. 

(2) The rotation  of the element side has definite relation with the nodal 
drilling freedom z. In fact, the rotation  of element side is composed of two 
parts  and , in which  is given by Fig. 11.8(a), and  is just z.

Just because of these two characteristics, the irrationalities in the former two 
definitions are avoided. 
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11.3.2 The Rectangular Membrane Element with Drilling  
Freedoms GR12 

A rectangular membrane element with 12 DOFs is shown in Fig. 11.9, and the 
freedoms at each node are: 

T
i i i iu vq   (i 1, 2, 3, 4) (11-48) 

where ui and vi are the translational freedoms; and i is just the additional in-plane 
rigid rotational freedom which is defined previously.  

Figure 11.9 Rectangular membrane element 

Assume that the element displacement mode is given by Eq. (11-47), which 
includes two parts u0 and u . u0 are the bilinear compatible displacement fields 
expressed by the translational freedoms as 

0 4
0 0

0
1

i
i

i i

uu
N

vv
u  (11-49) 

where

0 1 1 1
4i i iN   (11-50) 

And, u [u v  ]T in Eq. (11-47) are only the additional displacement fields 
caused by the additional vertex rigid rotations i  (i 1, 2, 3, 4), as shown in 
Fig. 11.10. Here, i  is only related to the additional displacement fields u  and 
independent of u0. The rotational freedom defined as above can describe the 
deformation behavior of the element boundary more clearly.  
The additional displacement fields u  can be assumed as 

2 2
1 2 3 4

2 2
1 2 3 4

(1 )( ) (1 )( )

(1 )( ) (1 )( )

u

v
 (11-51) 

The values of the displacement fields expressed by the above equation at the 
element corner nodes are all zero. 
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Figure 11.10 Additional displacement field 

The element boundary displacements u  caused by the additional vertex rigid 
rotations can be written as: 

12 2
12 1 2

12

43 2
43 4 3

43

23 2
23 2 3

23

14 2
14 1 4

14

0
(1 ) 1 1

14

0
(1 ) 1 1

14

1
(1 ) 1 1

04

1
(1 ) 1 1

04

u a
v

u a
v

u b
v

u b
v

u

u

u

u

 (11-52) 

From the generalized conforming condition (11-8), which can be written as 

( )d
kS

su u 0   (k 1, 2, 3, 4) (11-53) 

the unknown coefficients i and i (i 1, 2, 3, 4) in Eq. (11-51) can be solved. 
Then, substituting them back into Eq. (11-51), we have 

4

1

u i
i

i v i

u N
v N

u  (11-54) 

where

2

2

(1 )(1 )
8

(1 )(1 )
8

u i i i

v i i i

bN

aN
 (11-55) 

Substitution of Eqs. (11-49) and (11-54) into Eq. (11-47) yields the displacement 
fields expressed in terms of the shape functions: 
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4
0

1

e
i i

i
u u u Nq N q  (11-56) 

where

T T T T T
1 2 3 4[ ]eq q q q q  (11-57) 

1 2 3 4N N N N N  (11-58) 

0

0

0
0

i u i
i

i v i

N N
N N

N  (11-59) 

and 0 ,iN u iN  and v iN  are given by Eqs. (11-50) and (11-55), respectively. 
Though the displacement fields expressed by Eq. (11-56) are not exactly 

compatible on the element boundary, they have already satisfied the generalized 
conforming conditions in Eq. (11-53). Therefore, the finite element formulations 
can be established by the potential energy principle. This element is denoted as 
GR12. According to the conventional procedure, the element stiffness matrix K e

can be obtained: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

e

K K K K
K K K K

K
K K K K
K K K K

 (11-60) 

where

11 12 13

21 22 232

31 32 33

24(1 )ij

k k k
habE k k k

k k k

K  (11-61) 

with

11 2 2

12

13 2

21

2 13 3

3 16

2 1 2 1

3 16

i j i j i j i j

i j i j

i j j i j j i

i j i j

k
a b

k
ab ab
bk

a b

k
ab ab
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22 2 2

23 2

31 2

32 2

2 2

33 2 2

2 13 3

2 1 2 1

2 1 2 1

2 1 2 1

4 5 1
5 3

i j i j i j i j

i j j i j j i

i i j i j i j

i i j i j i j

i j i j i j i j

k
b a

ak
b a

bk
a b

ak
b a

a bk
b a

11.3.3 The Rectangular Membrane Element with Drilling  
Freedoms GR12M—with Internal Freedoms 

Consider the following bubble displacement fields: 

1

2

0
0

u N
v N

u N  (11-62) 

where

2 2(1 )(1 )N  (11-63) 

1 and 2 are arbitrary parameters.  
By the superposition of Eqs. (11-62) and (11-47), the displacement fields with 

three parts can be obtained  

0u u u u  (11-64)

This is the displacement mode of the element GR12M. Substitution of Eqs. (11-56) 
and (11-62) into the above equation yields 

eu Nq N  (11-65) 

The corresponding strain fields can be expressed as 

eBq B  (11-66) 

in which B and B  are the strain matrices corresponding to Eqs. (11-56) and (11-62), 
respectively.  

According to Eq. (11-66), the strain energy of element GR12M can be written as 
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T T T T1 1d
2 2 2e

e e e
qq q

A

hU AD q K q K q K  (11-67) 

in which 
1 1 T

1 1
d dqq abhK B DB     (11-68a) 

1 1 T

1 1
d dq abhK B DB    (11-68b) 

1 1 T

1 1
d dabhK B DB  (11-68c) 

From the stationary condition  

U 0  (11-69) 

the arbitrary parameters  can be expressed in terms of the external DOFs as 

1 e
qK K q  (11-70) 

Substitution of the above equation into Eq. (11-65) yields 

* eu N q  (11-71) 

where
* 1

qN N N K K  (11-72) 

The above equation includes the shape functions of the element GR12M, in which 
K q and 1K  are evaluated from Eqs. (11-68b) and (11-68c), respectively,  

1 2 3 4[ ]qK K K K K  (11-73) 

where

2

0 1 12
1 0 19(1 )

i i i
i

i i i

aEh
b

K   (i 1, 2, 3, 4)  

(11-74)

2 2
2

1

2 2

1 01
45(1 ) 2

1128 0 1
2

b aab
E

a b

K  (11-75) 
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According to the element shape function (11-72), the element stiffness matrix 
can be written as 

T 1e
qq q qK K K K K  (11-76) 

here Kqq is the same as the element stiffness matrix of the element GR12.  
The stress vector of the element GR12 is ,eSq  in which the stress matrix 

S is

1 2 3 4[ ]S S S S S  (11-77) 

in which 

11 12 13

21 22 232

31 32 33

8 (1 )i

s s s
E s s s

ab
s s s

S   (i 1,2,3,4) (11-78) 

with

11 12

2 2 2 2
13

21 22

2 2 2 2
23

31

32

33

2 (1 ), 2 (1 )

[ (1 ) (1 )]
2 (1 ), 2 (1 )

[ (1 ) (1 )]
(1 ) (1 )
(1 ) (1 )

(1 )( )

i i i i

i i

i i i i

i i

i i

i i

i i

s b s a

s b a
s b s a

s b a
s a
s b
s ab

And the stress vector of the element GR12M can be written as 
4

1

( ) ( ) ( )e
i i i

i
D S S q S S q  (11-79) 

in which Si is given by Eq. (11-78), and iS  is 

1 1
i i iS DB K K S K K   (i 1,2,3,4) (11-80) 

where

2 2

2 2
2

2 2

(1 ) (1 )
2 (1 ) (1 )

(1 )
(1 ) (1 )(1 ) (1 )

2 2

b a
E b a

ab
a b

S  (11-81) 

iK  and 1K  are given by Eqs. (11-74) and (11-75), respectively.  
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11.3.4 Quadrilateral Membrane Elements with Drilling Freedoms  
GQ12 and GQ12M 

The rectangular elements GR12 and GR12M can be generalized to quadrilateral 
elements, the details can be found in reference [2]. 

11.4 Membrane Elements with Drilling Freedoms 
—Triangular Elements 

On the basis of the constant strain triangular element, if we use the additional 
rigid rotational freedom proposed previously, the additional displacement fields 
caused only by the vertex rigid rotations can be introduced into the constant-strain 
displacement fields, and then, the triangular membrane element with drilling 
freedoms, GT9, can be derived. On the basis of the element GT9, by adding the 
generalized bubble displacement field, the new triangular membrane elements 
with higher accuracy, GT9M and GT9M8, can be obtained. These three elements 
can pass the patch test with arbitrary shape, so they are convergent models.  

11.4.1 Triangular Membrane Element with Drilling Freedoms  
GT9

A triangular membrane element is shown in Fig. 11.11. At each node, there are 
two translational freedoms and one in-plane rotational freedom. The element 
nodal displacement vector is 

T T T T
1 2 3[ ]eq q q q  (11-82) 

where
T[ ] ( 1,2,3)i i i iu v iq  (11-83) 

Figure 11.11 A triangular membrane element and its additional displacement field 
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in which ui and vi are the translational displacements at the corner node; i is the 
additional rigid rotation at the corner node. As described in Sect. 11.3.1, i used 
here is different from the rotation defined in continuum mechanics.  

The basic displacement fields are assumed to be composed of two parts: 

0
bu u u  (11-84) 

where u0 [u0 v0]T are the linear displacement fields, which are determined by 
the translational freedoms at the corner nodes uniquely. These are compatible 
displacement fields, and can be expressed in terms of the triangular area 
coordinates as 

0 3
0

0
1

0
0

i i

i i i

L uu
L vv

u  (11-85) 

And, u [u v  ]T are the additional displacement fields only caused by the 
in-plane vertex rigid rotational freedoms. It can be assumed to be the pure 
quadric polynomial in terms of the area coordinates 

31 2
2 3 3 1 1 2

31 2

u
L L L L L L

v
u  (11-86) 

The value of u in the above equation at the corner node i  is zero. 
Along the sides of triangular element, the normal displacements due to the 

vertex rigid rotations can be written as the cubic interpolation formulas 

23 1 2 3 2 2 3 3

31 2 3 1 3 3 1 1

12 3 1 2 1 1 2 2

n

n

n

u d L L L L

u d L L L L

u d L L L L

 (11-87) 

in which di (i 1, 2, 3) are the lengths of the triangular element sides. And, the 
vertex rotations will not produce the tangent displacements along the element 
sides, i.e.,  

23 12 31 0s s su u u  (11-88) 

The direction cosines of the normal on the element side (Li=0) are 

i
xi

i

b
n

d
, i

yi
i

c
n

d
  (i 1, 2, 3) (11-89) 

where bi and ci are given by Eq. (6-13). The projections of the normal 
displacements in Eq. (11-87) on x-axes and y-axes are 
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1
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3

1
2 3 2 2 3 3
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3 1 3 3 1 1
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3
1 2 1 1 2 2
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L

L

L

u b
L L L L

v c

u b
L L L L

v c

u b
L L L L

v c

 (11-90) 

Between the element boundary displacements (11-90) and the element additional 
displacement fields (11-86), we introduce the following generalized conforming 
conditions

0
d 0 

iL

u u
s

v v
  (i 1,2,3) (11-91) 

from which 6 unknown coefficients i and i (i 1,2,3) in Eq. (11-86) can be 
solved. So, the additional displacement fields expressed only by i can be obtained 

3

1

u i
i

i v i

u N
v N

u  (11-92) 

where

1
2
1
2

u i i m j j m

v i i m j j m

N L b L b L

N L c L c L
  ( , , 1,2,3)i j m  (11-93) 

The displacement mode of the triangular membrane element GT9 is given by 
Eq. (11-84). From Eqs. (11-85) and (11-92), it can be expressed in terms of the 
shape functions 

3
0

b
1

e
i i

i
u u u Nq N q  (11-94) 

in which 

1 2 3[ ]N N N N  (11-95) 

0
0

i u i
i

i v i

L N
L N

N   (i 1,2,3) (11-96) 

where Nu i  and Nv i  are given by Eq. (11-93). 
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Since the displacement fields (11-94) satisfy the generalized conforming 
conditions (11-8), therefore, the element stiffness matrix eK  can be derived by 
the conventional procedure: 

11 12 13

21 22 23

31 32 33

e

K K K
K K K K

K K K
 (11-97) 

where the sub-matrices are 

T
d

e
ij i j

A

h AK B DB   (i, j 1,2,3) (11-98) 

in which 

2 0
1 0 2

4
2 2

i i m j j m

i i i m j j m

i i i m i m j i j i j m

b b b L b L

c c c L c L
A

c b c b b c L c b b c L

B ( , , 1,2,3)i j m  (11-99) 

11.4.2 Triangular Membrane Element with Drilling Freedoms  
GT9M—with an Internal Freedom 

The displacement functions with one arbitrary internal parameter  can be 
assumed as 

u

v

u N
v N

u N  (11-100) 

where
T[ ]u vN NN  (11-101) 

3 3

1 1

 ,      u i i v i i
i i

N b F N c F  (11-102) 

and

i j m j mF L L L L  (11-103) 

It can be easily verified that Eq. (11-100) satisfies the following equation: 

0
d

iL
su 0   (i 1,2,3) (11-104) 
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and is equal to zero at 3 corner nodes. Hence, the displacement functions given by 
Eq. (11-100) are the generalized bubble displacements whose average values 
along the element sides are zero. 

The displacement fields of the element GT9M are composed of 3 parts: 

0u u u u  (11-105) 

From Eqs. (11-94) and (11-100), the above equation can be expressed as 

eu Nq N  (11-106) 

in which N and N  are given by Eqs. (11-95) and (11-101), respectively. The 
strain fields corresponding to Eq. (11-106) are 

eBq B  (11-107) 

where B is the strain matrix corresponding to Eq. (11-94); B is the strain vector 
corresponding to Eq. (11-100). From Eq. (11-107), the strain energy of the element 
GT9M can be written as 

T T 21 1d
2 2 2e

e e e
qq q

A

hU A kD q K q K q  (11-108) 

where

T d
e

qq
A

h AK B DB  (11-109a) 

T d
e

q
A

h AK B DB  (11-109b) 

T d
eA

k h AB DB  (11-109c) 

with

1 2 3[ ]B B B B  (11-110) 

in which Bi (i 1,2 ,3) are given by Eq. (11-99); and  

2 2
3

2 2

1

1

2

m j

m j m j
i

m m j j

b b
c c L L

A
b c b c

B   ( , , 1,2,3)i j m  (11-111) 
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From the stationary condition 

0U  (11-112) 

the arbitrary parameter  in Eq. (11-106) can be expressed in terms of qe

1 e
qk

K q  (11-113) 

Substituting the above equation into Eq. (11-106), the displacement fields of the 
element GT9M expressed only in terms of external freedoms qe can be obtained 

* eu N q  (11-114) 

where
* 1

qk
N N N K  (11-115) 

The stiffness matrix of the element GT9M is 

T1e
qq q qk

K K K K  (11-116) 

in which Kqq is the same as K e in Eq. (11-97). 

11.4.3 Triangular Membrane Element with Drilling Freedoms  
GT9M8—with 8 Internal Freedoms 

The element GT9M derived above contains one internal freedom, and the 
corresponding generalized bubble displacement is cubic. Now, we will develop a 
new element GT9M8 with 8 internal freedoms, and the corresponding generalized 
bubble displacement is still cubic.  

Assume that the element displacement fields are composed of two parts: 

bu u u  (11-117) 

where ub are the basic displacement functions given by Eq. (11-94); u  are the 
additional displacement fields expressed by internal freedoms, here they are assumed 
to be complete cubic polynomials in the area coordinates  

3 51 2 4
1 2 3 2 3 3 1

3 51 2 4

6 5 71 32 2 2
1 2 2 3 3 1 1 2 1 2 3

6 6 82 4

        

u
L L L L L L L

v

L L L L L L L L L L L

u

(11-118)
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where i and i (i 1, 2, , 6), i (i 1, 2, , 8) are the arbitrary parameters. 
Substitution of Eq. (11-118) into the generalized conforming conditions corres- 
ponding to zero average side displacements and zero vertex displacement conditions: 

10
d ,  

ii
LL

su u0 0   (i 1, 2, 3) (11-119) 

yields the additional displacement functions expressed by 8 arbitrary parameters 

i (i 1, 2, , 8): 

3
2 1 7

1 2 3
1 2 8

1
2

i
j m j

i i

u
L L L L L L

v
u  (11-120) 

The above formulas are the generalized bubble functions which satisfy the 
generalized conforming conditions. And 1, 2, , 8 are 8 internal freedoms. 

By the way, the internal displacement field that is exactly compatible with zero 
boundary displacement is called bubble displacement, and that is generalized 
conforming to zero boundary displacement is called generalized bubble 
displacement. Equation (11-120) contains 8 internal freedoms, in which 7 and 8

are corresponding to the bubble displacements, while 1, 2, , 6 are 
corresponding to the generalized bubble displacements.  

The additional displacements (11-120) expressed by internal freedoms can be 
written as the following matrix form: 

u N  (11-121) 

in which 

1 2 3 4

1 2 3 4

0 0 0 0
0 0 0 0
F F F F

F F F F
N  (11-122) 

where

4 1 2 3
1 ( 1,2,3),
2i j m jF L L L i F L L L  (11-123) 

And,  in Eq. (11-121) is the internal freedom vector: 

T
1 2 3 4 5 6 7 8[ ]  (11-124) 

From Eqs. (11-117), (11-94) and (11-121), the displacement fields of the element 
GT9M8 can be expressed in terms of the shape functions 

eu Nq N  (11-125) 

where N and N  are given by Eqs. (11-95) and (11-122), respectively.  
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From the element displacement given by Eq. (11-125), and according to the 
procedure similar to those in Sects. 11.3.2 and 11.3.3, the internal freedoms 
can be expressed in terms of qe by condensation 

1 e
qK K q  (11-126) 

where
T d

e
q

A

h AK B DB  (11-127a) 

T d
eA

h AK B DB  (11-127b) 

in which B in Eq. (11-127a) is given by Eq. (11-110); and B  in Eq. (11-127) is 

1 2 3 4

1 2 3 4

1 1 2 2 3 3 4 4

0 0 0 0
0 0 0 0

x x x x

y y y y

y x y x y x y x

F F F F
F F F F

F F F F F F F F
B  (11-128) 
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ix j m j m j j

iy j m j m j j
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y

F b L L b L L
A

F c L L c L L
A

F b L L b L L b L L
A

F c L L c L L c L L
A

  ( , , 1,2,3)i j m  (11-129) 

Thus, Eq. (11-125) can be expressed in terms of external freedoms as 

* eu N q  (11-130) 

where
* 1

qN N N K K  (11-131) 

According to the displacement field (11-130) expressed by the shape functions, 
the element stiffness matrix can be obtained 

T 1e
qq q qK K K K K  (11-132) 

where Kqq is evaluated by Eq. (11-97).  
Example 11.4 Pure in-plane bending of a square plate. 
A square plate of side length L is shown in Fig. 11.12. It is subjected to a linear 
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varying normal stress on the left and right sides: 

( 2) 02x x L
y
L

In view of the symmetry of the problem, only 1/4 of the plate is considered and 
meshed. Numerical results of the displacement and stress at corner point C are 
listed in Table 11.4. For comparison, the other results obtained by Allman[23] and 
the bilinear rectangular element R4 are also given. 

Figure 11.12 Pure in-plane bending of a square plate (Mesh 4 4)

From Table 11.4, it can be seen that the presented two rectangular elements 
GR12 and GR12M can provide more accurate results for displacement and stress. 

Table 11.4 The displacement and stress at point C of a square plate under pure 
in-plane bending

Mesh (1/4 plate) (1 1) (2 2)

Element 
0

CEu
L 0

CEv
L 0

xC

0

CEu
L 0

CEv
L 0

xC

R4 0.4461 0.2900 0.9363 0.4797 0.3120 0.9770 
Allman[23] 0.4738 0.3070 0.9784 0.4910 0.3191 0.9912 

GR12 0.4823 0.3108 1.0220 0.4941 0.3206 1.0129 
GR12M 0.4961 0.3218 1.0055 0.4987 0.3241 1.0029 

Mesh (1/4 plate) (4 4) (8 8)

Element 
0

CEu
L 0

CEv
L 0

xC

0

CEu
L 0

CEv
L 0

xC

R4 0.4931 0.3206 0.9894 0.4978 0.3236 0.9947 
Allman[23] 0.4971 0.3231 0.9956 0.4991 0.3244 0.9978 

GR12 0.4982 0.3237 1.0066 0.4994 0.3246 1.0033 
GR12M 0.4996 0.3247 1.0015 0.4999 0.3249 1.0007 

Note: Exact solutions are given by [23] 
0

0.5000CEu
L

,
0

0.3250CEv
L

,
0

1.0000xC .
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Example 11.5 Cantilever beam under a tip shear load. 
As shown in Fig. 11.13, a cantilever beam is subjected to a tip parabolic shear 

load

23 1 4
2xy x L

W y
Hh H

where L, H and h are the length, height and thickness of the beam, respectively. 3 
finite element meshes plotted in the figure are used. Numerical results for the 
deflection at the mid-side point C of the beam tip and stress of point A are listed 
in Table 11.5, where the coordinates of the point A is (12, 6). 

Figure 11.13 A cantilever beam under tip shear load 

It can be seen from the results that, the performance of the bilinear element R4 
is obviously lower than those of the other elements. And, the precisions of the 
presented two elements GR12 and GR12M are both better than that of similar 
element proposed by Allman. 

Table 11.5 Deflection and stress at selected points of a cantilever

(4 1) mesh (8 2) mesh (16 4) mesh 
Element 

vC xA vC xA vC xA

R4 0.2424 43.64 0.3162 55.70 0.3447 59.28

Allman[23] 0.3026 52.70 0.3394 58.40 0.3512 59.70

GR12 0.3283 60.00 0.3475 61.31 0.3535 60.76

GR12M 0.3446 60.00 0.3527 60.65 0.3550 60.20

Comparison
solutions[23] vC 0.3558 xA 60.0 (x 12, y 6)
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Example 11.6 Cantilever beam under a tip shear load (3-node triangular 
element). 

This problem is the same as the Example 11.5. Numerical results for deflection 
at the mid-side point at the beam tip by using different meshes are listed in 
Table 11.6. Two different meshes are shown in Fig. 11.14(a) and (b), respectively. 
Mesh  is for the three presented elements GT9, GT9M and GT9M8. And 
mesh , in which each rectangle is divided into four half-thickness overlaid 
triangles, is for the elements in reference [24], so the computing work will be 
twice as much as that for mesh .

Figure 11.14 Meshes for Example 11.6 
(a) Mesh  8 2; (b) Mesh  8 2

Table 11.6 The tip deflection of cantilever beam under tip shear load 

100vC /0.356 01 
Element 

8 2 16 4 32 8 64 16
 Mesh 

T3(CST) 46.73 81.14 94.69 99.01  
GT9 94.41 98.74 99.76 99.98  

GT9M 95.60 99.10 99.86 99.85  
GT9M8 103.15 100.59 100.10 100.02  

 Mesh 
EFFAND[24] 101.68 100.30 100.03 100.00  

FF[24] 99.15 99.71 99.87 99.96  
 2 2 4 4 8 8 16 16 32 32
 Mesh 

T3(CST) 18.39 45.06 76.02 92.53 98.18 
GT9 60.47 85.64 95.72 98.79 98.87 

GT9M 61.65 86.24 95.91 98.84 99.88 
GT9M8 92.13 97.37 99.08 99.67 99.89 

 Mesh 
EFFAND[24] 92.24 96.99 98.70 99.48 98.81 

FF[24] 89.26 96.37 98.66 99.50 99.83 
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Numerical results in Table 11.6 show that, the computational precision by the 
three presented elements GT9, GT9M and GT9M8 using mesh  is close to that 
of the elements in reference [24] using mesh . And, in the 2 2 and 4 4 slim 
triangular meshes, the element GT9M8 exhibits much higher precision.  

Example 11.7 Cook’s skew beam problem (3-node triangular element). 
This problem is the same as Example 11.3. The mesh division can be referred to 

Fig. 11.4, and the results are listed in Table 11.7. It can be seen that the generalized 
conforming elements proposed in this chapter possess better performance than 
those of the other elements.  

Table 11.7 Comparison of results for Cook’s skew beam problem (triangular elements)

vC (the vertical 
displacement at point C)

Amax (the maximum 
stress at point A)

Bmin (the minimum stress at 
point B)Element 

2 2 4 4 8 8 2 2 4 4 8 8 2 2 4 4 8 8
T3(CST) 11.99 18.28 22.02 0.0760 0.1498 0.1999 0.0360 0.1002 0.1567

EFFAND[24] 20.56 22.45 23.43       
FF [25] 20.36 22.42 23.41 0.1700 0.2129 0.2309 0.1804 0.1706 0.1902
GT9 20.08 22.71 23.61 0.1610 0.2073 0.2266 0.1467 0.1721 0.1900

GT9M 20.36 22.80 23.63 0.1650 0.2093 0.2274 0.1519 0.1734 0.1905
GT9M8 21.75 23.21 23.74 0.1827 0.2171 0.2304 0.1981 0.1777 0.1924

reference 23.96 0.2362 0.2023
 Results by the element GT9M8 using 64 64 mesh. 

11.5 Flat-Shell Elements—Triangular Thick/Thin Shell  
Element GMST18 

The flat-shell element, which is composed of plate bending element and plane 
membrane element[20], is the simplest shell element model, and widely used in 
the linear and nonlinear problems. Reviews on the general formulations and 
characteristics of the flat-shell element can be found in reference [26]. The 
appearance of the new generalized conforming membrane element with drilling 
freedoms and the new generalized conforming thin plate element makes it 
possible to construct high performance flat-shell elements.  

Sects. 11.3 and 11.4 have introduced the concept of drilling freedom (the 
additional in-plane rigid vertex rotational freedom), and given the formulations 
of the new generalized conforming rectangular membrane element GR12 and 
triangular membrane elements GT9 and GT9M8 with drilling freedoms. Furthermore, 
in reference [27], the generalized conforming rectangular thin plate element 
GPL-R12 and triangular thin plate element GPL-T9 (this element has been 



Advanced Finite Element Method in Structural Engineering 

358

introduced in Sect. 6.3 of this book) are constructed. Then, in references [4–8], 
by starting with the generalized conforming theory and the degenerated potential 
energy principle, the above plane membrane and plate bending elements are used 
to formulate several generalized conforming flat-shell elements for the analysis of 
cylindrical and arbitrary shells: 

(1) Generalized conforming rectangular flat-shell element GCR24[5]: developed 
by the combination of the generalized conforming rectangular membrane element 
GR12 and the rectangular thin plate element GPL-R12; 

(2) Generalized conforming triangular flat-shell element GST18[4]: developed 
by the combination of the generalized conforming triangular membrane element GT9 
and the triangular thin plate element GPL-T9, and one-point reduced integration 
scheme is used for GT9; 

(3) Generalized conforming triangular flat-shell element GST18M[8]: developed 
by the combination of the generalized conforming triangular membrane element 
GT9M8 and the triangular thin plate element GPL-T9. 

Furthermore, reference [9] developed a generalized conforming triangular 
thick/thin flat-shell element GMST18. Firstly, the formulation of the generalized 
conforming triangular membrane element GT9 is employed as the membrane 
component of the shell element. Both one-point reduced integration scheme and 
a corresponding stabilization matrix proposed by Fish et al.[27] are adopted for 
avoiding membrane locking and hourglass phenomenon. Secondly, the bending 
component of the element comes from a new generalized conforming thick/thin 
plate element TSL-T9, which is derived based on the rational shear interpolation 
proposed in Chap. 8 and the SemiLoof conforming scheme in Sect. 6.6. In this 
section, as an example, the element GMST18 will be used to describe the 
construction procedure of the generalized conforming flat-shell element. 

11.5.1 Two Component Parts of the Flat-Shell Element 

As shown in Fig. 11.15, the flat-shell element in the local coordinate system Oxyz
is assembled by plane membrane and plate bending element. 

Figure 11.15 Flat-shell element in the local coordinate system Oxyz 
(a) Flat-shell element; (b) Plate bending element; (c) Membrane element
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The element nodal displacement vector qe in local coordinate system Oxyz is 
composed of the vertex freedoms: 

1

2

3

e

e e

e

q
q q

q
, T[ ]e

i i i i xi yi ziu v wq   (i 1, 2, 3) (11-133) 

Let m
eq  be the nodal displacement vector related to the membrane element, p

eq
be the nodal displacement vector related to the plate element, then we have 

m1

m m2

m3

e

e e

e

q
q q

q
, m

i
e

i i

zi

u
vq ,

p1

p p2

p3

e

e e

e

q
q q

q
, p

i
e
i xi

yi

w
q   (i 1, 2, 3) (11-134) 

11.5.2 Membrane Part—Triangular Membrane Element GT9 

The plane membrane element GT9 introduced in Sect. 11.4.1 is a triangular 
generalized conforming membrane element with additional rigid rotational 
freedoms, its element stiffness matrix m

eK  is given by Eq. (11-97) to Eq. (11-99). 
In order to avoid membrane locking in the calculation of shells, one-point 
reduced integration is often employed for computing m

eK . But unfortunately, 
extra zero energy modes of the element will appear, and for some special cases, 
such as the twisted cantilever beam problem, the hourglass phenomenon may 
occur. Reference [28] suggested a method of adding a stabilization matrix to 
overcome this shortcoming. According to their approach, the stabilization matrix 
of the element GT9 is given as follows: 

m stab

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 2 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 2 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 2

eK  (11-135) 
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in which 

1 1 1
m m m

1 (3, 3) (6, 6) (9, 9)
3

e e eK K K  (11-136) 

where 1
m

eK denotes the element stiffness matrix of GT9 using one-point integration; 
 is a perturbation factor. From numerical experiments, it is found that, when is 

not less than 10–6, the rank and eigenvalues of the new shell element are correct. 
So, 10–6 is adopted. Thus, the element stiffness matrix of GT9 in the local 
coordinate system can be modified as  

1
m m m stab
e e eK K K  (11-137) 

11.5.3 Plate Bending Part—Triangular Thick/Thin Plate  
Element TSL-T9 

The triangular plate bending element TSL-T9 in the local coordinate system Oxyz
is shown in Fig. 11.16. The element nodal displacement vector is composed of 
deflection w and normal slopes x and y of the mid-surface 

Figure 11.16 Triangular plate bending element TSL-T9 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq  (11-138) 

Note that, since the definitions of the rotations ( x, y and x, y) are different, 
there exists the following relation between eq  and p

eq  in Eq. (11-134): 

p
e eq Lq ,

I
L I

I

0 0
0 0
0 0

,
1 0 0
0 0 1
0 1 0

I ,
0 0 0
0 0 0
0 0 0

0  (11-139) 
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The construction procedure of the element shear strain fields is the same as 
that described in Sect. 8.5.3, then the final element shear strain field is  

s p p
e eB q H GLq  (11-140) 

where Bs is the element shear strain matrix; H ,  and G  are given by 
Eqs. (8-137), (8-139) and (8-127), respectively.  

The element deflection field is assumed to be the same as that of the thin plate 
element LSL-T9 introduced in Sect. 6.6, i.e.,  

w F  (11-141) 

where
T

1 2 3 4 5 6 7 8 9 10 11 12[ ]     (11-142) 

1 2 3 2 3 3 1 1 2 2 3 2 3 3 1 3 1

2 2 2
1 2 1 2 1 2 3 2 3 1 3 1 2

[ ( ) ( )

( ) ]

L L L L L L L L L L L L L L L L L

L L L L L L L L L L L L L

F
(11-143)

According to the Mindlin plate theory, the element rotation fields are 

,
s p

,

xz
x x e

y y
yz

w
x
w
y

F
B q

F
. (11-144) 

where ,xF  and , yF  denote the derivative matrices of F  with respect to x and y,
respectively. 

Along the element sides, deflection w  is interpolated according to the thick 
beam theory, and the normal slope n  is assumed to be linearly distributed, as 
shown in Eq. (8-146). 

The following 12 SemiLoof point conforming conditions (refer to Fig. 6.16) 

 ( ) 0iw w   (i 1,2,3) (11-145) 

 ( ) 0jw w   (j 4,5,6) (11-146) 

 ( ) 0n n k   (k A1, B1, A2, B2, A3, B3) (11-147) 

are introduced. Equations (11-145) and (11-146) are the point conforming conditions 
about deflections at the corner nodes (nodes 1, 2, 3) and mid-side points (points 4, 
5, 6), respectively; Eq. (11-147) denotes the point conforming conditions about the 
normal slopes at the Gauss points on the element side (points A1, B1, A2, B2, A3, B3).

Then, 1, 2, , 12 can be obtained, in which the last 3 coefficients are equal 
to each other, i.e., 10 11 12. Therefore, Eq. (11-141) can be rewritten as 

w F  (11-148) 



Advanced Finite Element Method in Structural Engineering 

362

where
T

1 2 3 4 5 6 7 8 9 10[ ]  (11-149) 

1 2 3 2 3 3 1 1 2 2 3 2 3 3 1 3 1 1 2 1 2 1 2 3[ ( ) ( ) ( ) ]L L L L L L L L L L L L L L L L L L L L L L L LF
(11-150)

 can be expressed in terms of the element nodal displacement vector 
eCq  (11-151) 

where
1 2 3[ ]C C C C  (11-152) 
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  (11-153c) 

in which bi, ci and ri (i 1,2,3) are given by Eq. (6-58); i (i 1,2,3) are given by 
the first equation in (8-114).  

Substitution of Eq. (11-151) into Eq. (11-148) yields 

e e e e
p pw F Cq F CLq N q , eN F CL  (11-154) 
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where Ne is the shape function matrix of the deflection w. It can be verified that, 
this deflection field and the rotation fields given by Eq. (11-144) determined by 
this deflection field satisfy the following generalized conforming condition 

[ ( ) ( ) ( )] 0
e n n n n ns s sA

Q w w M M  (11-155) 

where Qn, Mn and Mns denote the shear force, normal bending moment and tangent 
bending moment along the element boundary Ae. Hence, the element derived 
here is a generalized conforming element, and its convergence can be ensured.  

The rotation field  in Eq. (11-144) can be rewritten as 

,
s p

,

xz
x x e

y y
yz

w
x
w
y

F
C B Lq

F
 (11-156) 

Then, the curvature field  of the plate element is 

,

, p b p

,2 2

x

x xx
y e e

y yy

xy xy
yx

x

y

y x

F
F CL q B q
F

 (11-157) 

in which Bb is the bending strain matrix.  
Thus, the element stiffness matrix of the thick/thin bending element TSL-T9 can 

be obtained 

T T
p b b b s s sd d

e e

e

A A

A AK B D B B D B  (11-158) 

Numerical results show that the element TSL-T9 possesses excellent 
performance for both thin and thick plate bending problems. And, its stress 
solutions are also improved by the hybrid-enhanced post-processing procedure in 
reference [9]. Here we will not expand this in detail. Readers who are interested 
in it can refer to reference [9]. 

11.5.4 Stiffness Matrix of the Flat-Shell Element GMST18 

Assembling Eqs.(11-137) and (11-158) according to the DOF’s sequence given 
by Eq. (11-133), we obtain the element stiffness matrix Ke of the flat-shell element 
GMST18 in the local co-ordinates. And, after transforming K e to the global 
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coordinates by standard procedure, the element can be used to calculate shell 
structures.

11.5.5 Numerical Examples 

Here, the numerical results of the flat-shell element are given. For comparison, 
the results by other elements are also listed. All element models used are listed in 
Table 11.8. 

Table 11.8 Shell elements for comparison (17 elements) 

Element symbol Element types References
1. GMST18 

2. GST18 

3. GST18M 

4. RTS18 
5. PROVIDAS  
6. DKT-CST-15RB 
7. OLSON  
8. STRI3 
9. S3R 

10. GCR24 

11. QUAD4 
12. AQR8 
13. GUAN 

14. DKQ 

15. MITC4 

16. T15-R 

17. RDTS15 

3-node triangular generalized conforming thick/thin 
flat-shell element 

3-node triangular generalized conforming thin flat- 
shell element 

3-node triangular generalized conforming thin flat- 
shell element 

3-node triangular thin flat-shell element 
3-node triangular thin flat-shell element 
3-node triangular thin flat-shell element 
triangular thin flat-shell element 
3-node triangular thin flat-shell element in ABAQUS 
3-node triangular 3D degenerated shell element in 

ABAQUS
4-node rectangular generalized conforming thin flat- 

shell element 
4-node quadrilateral 3D degenerated shell element 
8-node quadrilateral hybrid stress shell element  
9-node quadrilateral quasi-conforming 3D degenerated 

shell element 
4-node quadrilateral plate element based on discrete 

Kirchhoff assumption 
4-node quadrilateral plate element based on the mixed 

interpolation technique 
Reduced or selected reduced integration triangular  

degenerated shell element 
Discrete refined 3-node triangular degenerated shell 

element 

[9] 

[4] 

[8] 

[29] 
[30] 
[31] 
[22] 
[32] 
[32] 

[5] 

[33] 
[34] 
[35] 

[36] 

[37] 

[38] 

[38] 

Example 11.8 Test of applicability for both thick and thin plates—a clamped 
square plate under uniform load.

A clamped square plate is subjected to a uniform load q. The side length 
L 100, the thickness-span ratio varies from 10–15 to 0.6, and the material 
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constants are: E 106 and 0.3. The whole plate is analyzed using the irregular 
mesh shown in Fig. 11.17. In Fig. 11.18, the deflection coefficients 4( / )Cw qL D
obtained by the several shell elements under different thickness-span ratios are 
given. It can be seen that, the element GMST18 can produce satisfactory results 
for both thin and thick plates, only the element RDTS15 is close to this element. 

Figure 11.17 Irregular mesh for a square plate 

Figure 11.18 The variation of deflection coefficient with thickness-span ratio 

Example 11.9 Scordelis-Lo Roof.
The cylindrical shell in Fig. 11.19 is supported by a rigid diaphragm at two 

ends and loaded vertically by its uniform dead weight. The theoretical solution 
from the deep shell theory for the vertical displacement at the midpoint of the 
free edge is 0.3008[39]. Because the shell is symmetric, only a quarter is taken for 
calculation.  

Nondimensional results by different shell elements are listed in Tables 11.9 
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and 11.10. It can be seen that all the generalized conforming elements have good 
accuracy.  

Example 11.10 Twisted Cantilever Beam.
A twisted cantilever beam is shown in Fig. 11.20. The free end is twisted 

90  from the clamped end. Two types of load are applied to the free end of the 
beam: P 1.0, Q 0.0 and P 0.0, Q 1.0. The displacements in the direction of 
the load are reported in Table 11.11. 

Figure 11.19 Scordelis-Lo roof 

Table 11.9 Vertical displacement at the midpoint of free edge for Scordelis-Lo roof 
(rectangular and quadrilateral elements) 

Mesh (1/4 shell) QUAD4 AQR8 GUAN GCR24 
2 2 0.4161 0.3683 0.3078 0.3533 
4 4 0.3175 0.3088 0.3033 0.3037 
6 6 0.3078 0.3042 0.3011 
8 8 0.3048 0.3033 0.3007

10 10 0.3036 0.3027 0.3006

Table 11.10 Vertical displacement at the midpoint of free edge for Scordelis-Lo 
roof (triangular elements) 

Mesh  
(1/4 shell) 

DKT-CST- 
15RB OLSON S3R STRI3 GST18 GST18M GMST18

2 2 0.2976 0.3809 0.2390 0.3310 0.3361 0.3525 0.3349
3 3  0.3024 0.2150 0.2221 0.2968 0.3027 0.2943
4 4 0.2144 0.2942   0.2921 0.2950  
5 5  0.2939   0.2931 0.2947  
6 6 0.2428  0.2438 0.2464 0.2947 0.2957 0.2946
8 8 0.2622  0.2627 0.2642 0.2969 0.2974 0.2965

10 10 0.2737 0.2970 0.2742 0.2751 0.2981 0.2984 0.2978
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Figure 11.20 Twisted beam divided into 2 12 mesh 

Table 11.11 Normalized deflection at the free edge of a cantilever twisted beam 

Mesh QUAD4 S3R STRI3 RTS18 GST18 GST18M GMST18
P 1.0, Q 0.0

2 4  0.513 0.046 0.658   0.676 
2 8  0.920 0.352 0.957   0.991 
2 12 0.985 0.970 0.709 0.989 0.994 0.994 0.999 
2 16  0.985 0.885 0.997   1.001 
Theory                               1294 

P 0.0, Q 1.0
2 4  0.472 0.035 0.709   0.688 
2 8  0.931 0.331 0.974   0.994 
2 12 0.993 0.969 0.700 0.997 0.993 1.000 1.002 
2 16  0.980 0.883 1.002   1.004 
Theory                                5256 

Example 11.11 Hemispherical shell.
As shown in Fig. 11.21, a hemispherical shell with a hole at the top is under 

two pairs of opposite radial concentrated loads at points A and B. Due to symmetry, 
only 1/4 of the hemispherical shell is analyzed. Results of the radial deflection at 
load points A and B are given in Table 11.12. 

Table 11.12 Radial deflection at point A of the spherical under concentrated loads 
at A and B

Mesh STRI3 S3R RTS18 Providas GST18 GST18M GMST18
4 4 0.094 0.055 0.091 0.095 0.072 0.082 0.082 
8 8 0.094 0.084 0.096 0.093 0.092 0.092 0.092 

16 16 0.093 0.092 0.094
(14 14)  0.093 0.093 0.093 

64 64 0.093 0.093     0.094 
Comparison solution[29]                            0.094    
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Figure 11.21 Hemispherical shell with hole at the top, mesh 8 8

11.6 Shallow Shell Element—Variational Principle and  
Membrane Locking Problem 

Shell elements mainly have four discrete forms in geometry. Besides the flat-shell 
elements described above, there still are curved shell elements, degenerated shell 
elements derived from three-dimensional elements, and axisymmetric shell 
elements for the analysis of the shells of revolution. This section will introduce 
the construction procedure of the generalized conforming curved shell elements 
for shallow shells.  

Reference [40] firstly takes the modified Hu-Washizu principle as the starting 
point, then, by introducing two types of the generalized conforming conditions 
and using the degenerated potential energy principle, it establishes a thick 
shallow shell element GC-S20 with 20 DOFs. For the bending part of the shell, 
the scheme proposed in reference [41] is adopted to eliminate the shear locking 
phenomenon; and for the membrane strain part of the shell, both displacement 
fields and membrane strain fields are assumed independently, and then by using 
the related generalized conforming conditions, membrane locking phenomenon 
can be eliminated. Reference [42] extends the generalized conforming rectangular 
thin plate elements RGC-12[14], LGC-R12[43] and triangular element TGC-9[14] to 
various shallow shell elements for the first time, but only the rectangular elements 
can pass the membrane locking test. Thereupon reference [42] continues the study 
on the membrane locking problem, and successfully constructs the generalized 
conforming rectangular and triangular shallow shell elements with mid-side 
nodes, which can completely avoid the membrane locking phenomenon. 

 Sym. is the abbreviation for symmetrical. 
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11.6.1 Variational Principle for Shallow Shells and Its  
Degenerate Form 

Let the base plane of the shallow shell be the xOy plane, and the z-axis be normal 
to the base plane. Then, the mid-surface equation of the shallow shell is  

 z z(x, y) (11-159) 

The initial curvatures of the mid-surface are 
2 2 2

0 0 0
2 2

1 1 1, ,x y xy
x y xy

z z z
x R y R x y R

 (11-160) 

where Rx, Ry and Rxy are the reciprocal values of the corresponding curvatures, 
respectively. 

In shallow shell elements, the following quantities need to be assumed: 

Displacements of mid-surface  u v w

Membrane strains  T[ ]x y xy

The curvatures derived from the displacements are 

T2 2 2
T

2 2[ 2 ] 2x y xy
w w w

x y x y
 (11-161) 

And, the membrane strains derived from the displacements are 

T

Tˆ ˆ ˆ ˆ[ ] 2x y xy
x y xy

u w v w v u w
x R y R x y R

 (11-162) 

For thin shallow shell, the modified Hu-Washizu functional can be written as 

1 2
e e e  (11-163) 

where 1
e  is the energy due to the bending deformation of the shallow shell 

element,  

T
1 b

1 d [ ( )]d
2 e

e

e
n ns nA

A

w w w wA M M Q w w s
n n s s

D

(11-164)

in which Ae is the projection area of the element; Ae is the element boundary ; 
Mn, Mns and Qn are the bending moment, twisting moment and transverse shear 

force on the element boundary; w, w
n

 and w
s

 are the displacements on the 
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element boundary determined by the element deflection field; w , w
n

 and w
s

 are 

the given displacements on the element boundary; Db is the elastic matrix for thin 
plate bending,  

3

b 2

1 0
1 0

12(1 )
10 0

2

EhD

where h is the thickness of the shell ; E is the Young’s modulus;  is the 
Poisson’s ratio. 

2
e  is the energy due to the membrane deformation of the shallow shell 

element,  

T T
2 m

1 ˆ( ) d
2e

e

A

AD N  (11-165) 

in which  is the assumed element membrane strain vector; N  is the element 
membrane stress vector; Dm is the elastic matrix for thin membrane deformation 
(i.e., the elastic matrix for plane stress problem), 

m 2

1 0
1 0

1
10 0

2

EhD

The displacement mode of the generalized conforming thin plate element is taken 
as the interpolation function for the normal displacement of the shallow shell 
element, when the mesh is refined by infinite elements, it satisfies 

( ) d 0
e n ns nA

w w w wM M Q w w s
n n s s

 (11-166) 

When the mesh is refined by infinite elements, i.e., the element is under the 
limit state of constant internal forces, the second term in Eq. (11-165) should satisfy 
the following generalized conforming conditions 

T ˆ( )d 0
eA

AN  (11-167) 

Here, the energy functional degenerates to the following simplified form 

T T
b m

1 1 d
2 2e

e

A

AD D  (11-168) 
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Then, according to Eq. (1-168), the stiffness matrix for the shallow shell element 
can be derived conveniently. 

11.6.2 Notes on the Membrane Locking Problem 

From Eq. (11-162), it can be seen that, the membrane strains are not only related 
to the tangential displacements u and v, but also related to the normal 
displacement w. The reason leading to membrane locking comes from the 
mismatching between the tangential displacements u, v and the normal 
displacement w in the assumed displacement mode for the shallow shell element, 
so that the displacement state of the rigid-body motion of the element cannot be 
presented. In order that the rigid-body motion of the element can be presented, 
the following zero strain state must come into existence 

2 2 2

2 20, 0, 2 0x y xy
w w w

x y x y
 (11-169) 

20, 0, 0x y xy
x y xy

u w v w v u w
x R y R x y R

 (11-170) 

From the first expression of Eq. (11-169), we obtain 

1 2( ) ( )w xf y f y  (11-171) 

Substitution of the above equation into the last two expressions of Eq. (11-169) 
yields 

1 1 2 2 3( ) , ( )f y C f y C y C  (11-172) 

where C1, C2 and C3 are constants. Thereby, the normal displacement should be 
the following linear function 

1 2 3w C x C y C  (11-173) 

Substituting Eq. (11-173) into the first two expressions of Eq. (11-170), and 
assume that Rx, Ry and Rxy are constants, we can obtain 

21
2 3 1

22
1 3 2

1 ( )
2

1 ( )
2

x

y

Cu x C xy C x g y
R

Cv C xy y C y g x
R

 (11-174) 
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Substitution of u and v into the third expression of Eq. (11-170) yields 

32 1 1 2
2 1

22 21 1( ) ( )
y x xy xy x y xy

CC C C Cg x x x g y y y
R R R R R R R

 (11-175) 

The above equation exists for arbitrary x and y, then we have 

2 2 1 3 4

1 1 2 4

2 2
( )

2( )

y y y
y

x xy xy

x x
x

y xy

R R R
g x C x C x C C R

R R R

R Rg y C y C y C R
R R

 (11-176) 

Thereupon, it can be easily obtained that 

2 2
2 2 1 3 4 5

2 2
1 1 2 4 6

2
( )

2

( )
2

y y y
y

x xy xy

x x
x

y xy

R R R
g x C x C x C x C R x C

R R R

R Rg y C y C y C R y C
R R

 (11-177) 

in which C4, C5 and C6 are all constants. Substitution of Eq. (11-177) into 
Eq. (11-174) yields 

2 2
1 2 1 2 3 4 6

2 2
2 1 1 2 3 4 3 5

1 1 1 1 1 1
2 2

1 1 1 1 2 1 1
2 2

x x y xy x x

x xy y y xy y y

u C x C xy C C y C x C y C
R R R R R R

v C C x C xy C y C C x C y C
R R R R R R R

(11-178)

Let

3 6 5
0 4 0 0, ,

xy x y

C C CC u v
R R R

 (11-179) 

Then, Eq. (11-178) can be rewritten as 

2 2
1 2 1 2 3 3 0 0

2 2
2 1 1 2 3 3 0 0

1 1 1 1 1 1
2 2

1 1 1 1 1 1
2 2

x x y xy x xy

x xy y y xy y

u C x C xy C C y C x C y y u
R R R R R R

v C C x C xy C y C x C y x v
R R R R R R

  (11-180) 
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Equations (11-173) and (11-180) can be written together in the following form 

      
12 2 2

2 0 0

3 0 02 2 2

1
0

2 2

2 2

x y x xy x xy

xy y x y xy y

x y
w C

x y xy y x yu C u y
R R R R R R

v C v x
x xy x y x y
R R R R R R

 (11-181) 

The second term on the right-side of the above equation denotes the displacement 
of the rigid-body motion when there is no normal displacement, and the first term 
denotes the displacement of the rigid-body motion when the normal displacement 
exists.

According to the above demonstration, the following deduction can be obtained. 
Deduction If the shallow shell element can embody the displacement state 

of the rigid-body motion, the interpolation formulas for tangential displacements 
u, v should at least include the complete quadric polynomial. 

From this conclusion, it follows that, the appearance of the membrane locking 
phenomena of some curved shell elements is just because the assumed tangential 
displacement trial functions cannot satisfy the above requirement. 

11.7 Shallow Shell Element—Triangular Element SST21  
with Mid-Side Nodes 

Triangular shallow shell elements often suffer from the membrane locking 
phenomenon. In order to overcome this difficulty, some successful displacement- 
based triangular shallow shell elements are almost the high-order elements using 
high-order interpolation functions for tangential displacements. For example, in 
reference [44], tangential and normal displacements all adopt the cubic 
interpolation functions, and the triangular shallow shell elements with 36 and 27 
DOFs are then constructed, respectively; in reference [45], the interpolation 
functions for the tangential and normal displacements are assumed to be complete 
cubic and incomplete quintic polynomials, respectively, and a triangular shallow 
shell element with 2 internal DOFs and 36 external DOFs is then constructed. In 
order to increase the order of the tangential displacement functions to quadric, 
the tangential freedoms at the mid-side nodes are considered. This is the scheme 
for the generalized conforming shallow shell element SST21. Here, we will 
introduce the construction procedure of this model. 
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11.7.1 The Local Coordinate System and the Geometric  
Description of the Element Surface 

A triangular shallow shell element is shown in Fig. 11.22. The base plane of the 
element is formed by linking three corner nodes; let node 1 be the origin of the 
local coordinate system Oxyz, the linking line of nodes 1 and 2 be the x-axis, and 
xy plane be within the base plane of the element. 

Assume that the element surface is a quadric surface in the local coordinate 
system, and can be expressed in terms of the area coordinates as 

1 1 2 2 3 3 4 1 2 5 2 3 6 3 1z h L h L h L h L L h L L h L L  (11-182) 

Substituting the coordinates of the three corner nodes and three mid-side nodes 
into the above equation in turn, the coefficients hi can be obtained: 

1 1

2 2

3 3

4 4

5 5

6 6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
2 2 0 4 0 0

0 2 2 0 4 0
2 0 2 0 0 4

h z
h z
h z
h z
h z
h z

h  (11-183) 

Substituting Eq. (11-183) into Eq. (11-182) (note that the local z-coordinates 
of the 3 corner nodes in Fig. 11.22 are all zero), we can obtain 

4 1 2 5 2 3 6 3 14( )z z L L z L L z L L  (11-184) 

From the above equation, the initial curvatures of the element, and the 
transformations between local and global coordinates can be derived.  

Figure 11.22 Triangular shallow shell element 
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11.7.2 Selection of DOFs and Determination of Displacement  
Functions

A triangular shallow shell element with mid-side nodes is shown in Fig. 11.23(a), 
it is composed of the 3-node bending element in Fig. 11.23(b) and 6-node 
membrane element in Fig. 11.23(c). 

Figure 11.23 Triangular shallow shell element SST21 
(a) Triangular shallow shell element with mid-side nodes;     
(b) 3-node bending element; (c) 6-node membrane element 

The element nodal displacement vector in local coordinate system is  

T T T T T T T
1 1 2 2 3 3[ ]eq q q q q q q  (11-185) 

where

T[ ]i i i i xi yiu v wq , T[ ]i i iu vq , xi
i

w
y

, yi
i

w
x

(11-186)
For convenience, the bending displacements and membrane displacements are 
separated as 

m T
1 1 1 1 2 2 2 2 3 3 3 3[ ]e u v u v u v u v u v u vq  (11-187) 

b T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq  (11-188) 
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The tangential displacements of the shell element are assumed to be the 
displacement fields of the 6-node quadric triangular membrane element, which 
are the compatible displacement modes: 

3
m

1
i i

i

u
v

u N q  (11-189) 

in which 

(2 1) 0 4 0
0 (2 1) 0 4

i i j m
i

i i j m

L L L L
L L L L

N   (i, j, m 1,2,3)  

(11-190)

m T[ ]i i i i iu v u vq  (11-191) 

And, the normal displacements of the shell element are assumed to be 
displacement fields of the generalized conforming 3-node triangular plate element 
TGC-9 introduced in Sect. 6.1.1. 

11.7.3 Element Stiffness Matrix 

The element membrane strains are  

T

T m b
m m[ ] 2 e e

x y xy w
x y xy

u w v w v u w
x R y R x y R

B q B q

(11-192)

where

m m1 m2 m3[ ]B B B B  (11-193) 

m

(2 1) 0 4( ) 0
1 0 (2 1) 0 4( )

2
(2 1) (2 1) 4( ) 4( )

i i j m m j

i i i j m m j

i i i i j m m j j m m j

b L b L b L
c L c L c L

A
c L b L c L c L b L b L

B   (11-194) 

(i, j, m 1, 2, 3)                                

i j mb y y ,  ( )i j mc x x  (11-195) 

A is the area of the base plane of the element; and 
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1

1
m

1

1 ˆ ˆ

1 ˆ ˆ

2 ˆ ˆ

x

w
y

xy

R

R

R

F C G

B F C G

F C G

 (11-196) 

where F  is given by Eq. (6-3), Ĝ  and Ĉ  can be expressed as follows: 

1 1 2 2 3 3

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0 0

0 0 0

0 0 0 6 6
ˆ 6 0 0 0 6

6 6 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

b c b c b c
b c b c

b c b c
b c b c

c b c b
c b c b
c b c b

G  (11-197) 

2 3 3 2
2 2 2 2 2 2

3 3 1 1
3 3 3 3 3 3

2 1 1 2
1 1 1 1 1 1

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1
0 6 6 0 1 0 0 0 1
6 0 6 0 0 1 1 0 0
6 6 0 1 0 0 0 1 0ˆ

3 5 5 3

5 3 3 5

3 5 5 3

f f f f F F F F F F
A A A
f f f f F F F F F F

A A A
f f f f F F F F F F

A A A

C

(11-198)

( )

12

i j m j m

i j
i

f b b c c
f f

F
A

  (i, j, m 1, 2, 3) (11-199) 
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The element bending strain matrix Bb can be obtained by the conventional 
procedure. According to the sequence of DOFs given in Eq. (11-185), Bm, Bmw

and Bb can be expanded to 3 21 matrices, and then, can be assembled to form 
the total strain matrix B. Thus, the element stiffness matrix in the element local 
coordinate system can be written as 

T d
e

e

A

AK B DB  (11-200) 

with

m

b

0
0
D

D
D

 (11-201) 

Then, it can be transformed to the global coordinate system for the finite element 
solution.

11.7.4 Numerical Examples

Example 11.12 Scordelis-Lo roof problem. 
As shown in Fig. 11.24, this problem is the same as the Example 11.9. The 

analytical solution of the shallow shell is used for comparison. The results are 
listed in Tables 11.13 and 11.14, in which Table 11.13 gives the vertical 
displacements of the center point of the roof and the mid-side point of the free 
edge obtained by different meshes; Table 11.14 gives the displacement results of 
the different points using 8 12 mesh. It can be seen that the element SST21 can 
successfully pass the membrane locking test, and converge to the analytical 
solution of the shallow shell.  

Table 11.13 The vertical displacements of the center point of the cylindrical shell 
and the mid-side point of the free edge (membrane locking test) 

SST21 (21 DOFs) 
Reference [44] 

(27 DOFs) 
Reference [44]  

(36 DOFs) Mesh 
wB wC wB wC wB wC

2 3 0.171 0.0068 0.211  0.323 0.044

4 5 0.287 0.0416 0.297 0.0400 0.315 0.0448

8 12 0.307 0.0433 0.309 0.0436   

Analytical solution of 
shallow shell[46] 0.308 0.046 0.308 0.046 0.308 0.046
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Table 11.14 The displacements of different points on the cylindrical shell (8 12 mesh) 

Point A B 2 3 4 C

u
SST21 

Analytical[46] 
0.0126
0.0126

0
0

0
0

0
0

0
0

0
0

v
SST21 

Analytical[46] 
0
0

0.164
0.164

0.0836
0.082

0.0294
0.028

0.0046
0.004

0
0

w
SST21 

Analytical[46] 
0
0

0.307
0.308

0.192
0.190

0.0774
0.076

0.0104
0.012

0.0433
0.046

Figure 11.24 Scordelis-Lo roof. Mesh by shallow shell element 4 5

Example 11.13 Doubly curved shallow shell. 
A simply-supported doubly curved shallow shell subjected to uniform vertical 

load q is shown in Fig. 11.25. Equation of its mid-surface is z 0.5k(x2 y2). Due 
to symmetry, only 1/4 of the shell is analyzed. The results are listed in Table 11.15. 

Figure 11.25 A doubly curved shallow shell 

Table 11.15 The central vertical displacement of the doubly curved shallow shell 
w/(10-3qaD –1)

Mesh for 1/4 shell 1 1 2 2 4 4 6 6
SST21 4.29 4.01 3.99 3.99 

Analytical solution 3.99
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Example 11.14 Hyperbolic paraboloid shell. 
A clamped hyperbolic paraboloid shell subjected to uniformly distributed 

normal load q is shown in Fig. 11.26. The results are listed in Table 11.16. 

Figure 11.26 Hyperbolic paraboloid shell 

Table 11.16 The central vertical displacement of the hyperbolic paraboloid shell 

Mesh
Element 

2 2 4 4 8 8 12 12

SST21 (21 DOFs) 0.0326 0.0315 0.0250 0.0248

Reference [44] (27 DOFs)  0.0345 0.0283

Reference [44] (36 DOFs) 0.044 0.0275 0.0263

Finite difference solution 0.024 59 

11.8 Shell Element for Geometrically Nonlinear Analysis 
—Triangular Flat-Shell Element GMST18 

On the basis of the generalized conforming thick/thin triangular flat-shell element 
GMST18 (refer to Sect. 11.4), reference [9] derives the UL (Updated Lagrangian) 
formulations of the element for the analysis of geometrically nonlinear problems, 
which exhibit good performance for numerical examples.  

In the incremental method, all the physical components of a structure from 
time 0 to time t are assumed to have been obtained. What we are interested in is 
the increment that occurs from time t to time t t. The reference configuration 
is the configuration at time t. The principle of virtual displacement expressed by 
the UL method can be written as 

dt t t t t t
ij ij

V

V W  (11-202) 



Chapter 11 Generalized Conforming Membrane and Shell Elements 

383

where t t
ij  and t t

ij  are the modified Kirchhoff stress tensor and the modified 
Green strain tensor, respectively; t tW  is the virtual work done by external 
loadings at the time t t.

t t E
ij ij ij  (11-203) 

where E
ij  is the Cauchy stress tensor at the time t, and ij  is the Kirchhoff 

stress tensor increment from time t to time t t .

, , , ,
1 1( ),
2 2

t t
ij ij ij ij

ij i j j i ij k i k j

e

e u u u u
 (11-204) 

where ije  and ij  are the linear and non-linear Green strain tensor increment 
from time t to time t t , respectively. And, iu  is the displacement increment 
from time t to time t t .

If t is small enough, the following relationship can be established 

ij ijkl klD  (11-205) 

where ijklD  is the elastic tensor. 
Substitution of Eqs. (11-203), (11-204) and (11-205) into Eq. (11-202) yields 

(the higher-order terms have been neglected) 

1 2 3( )t tI I W I  (11-206) 

with

    1 2 3d , d , dE E
ijkl kl ij ij ij ij ijV V V

I D e e V I V I e V  (11-207) 

where I1 is the linear increment of virtual work; I2 is the incremental virtual work 
relevant to the initial stresses; I3 is the incremental virtual work done by the 
internal forces.  

For the flat-shell element in the local co-ordinates, I1, I2 and I3 in Eq. (11-207) can 
be rewritten in the following discrete form 

T T T
1 m m m b s

T
2

T T T
3 m m

( )d

d

( )d

e

e

e

A

E

A

E E E

A

I A

I A

I A

D D D

w N w

N Q

 (11-208) 

where  means the increment of relevant variables; m  is the linear increment 
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of the membrane strain and given by 

T

m m m
eu v u v

x y y x
B q  (11-209) 

 is the linear increment of the curvature vector given in Eq. (11-157);  is 
the increment of the transverse shear strain vector given in Eq. (11-140); 

,
p p

,

x e e
G

y

w
x
w
y

F
w CL q B q

F
, ,

,

x
G

y

F
B CL

F
 (11-210) 

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

d d

d d

h hE E E E
x xyh h x xyE

E Eh hE E xy y
xy yh h

z z N N
N Nz z

N  (11-211) 

m
EN , EM  and EQ  are the membrane force, bending moment and shear force 

vectors at the time t, respectively, 

T
m [ ]E E E E

x y xyN N NN , T[ ]E E E E
x y xyM M MM , T[ ]E E E

x yQ QQ

(11-212)

Substitution of the geometric relation Eqs. (11-140), (11-157) and (11-209) into 
Eq. (11-208) yields 

T T
1 m m m m m

T T T
p b b b s s s p

T T
2 p p

T T
3 m m m m

T T T
p b s p

d

( )d

d

d

( )d

e

e

e

e

e

e e

A

e e

A

e E e
G G

A

e E e

A

e E E e

A

I A

A

I A

I A

A

q B D B q

q B D B B D B q

q B N B q

q B N q

q B M B Q q

 (11-213) 

And, t tW  can be rewritten as 
T T

m m p p
t t e t t e e t t eW q R q R  (11-214) 
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where m
t t eR  and p

t t eR  are the equivalent nodal force vectors at the time 
t t  of the membrane element and plate bending element, respectively.  

Since m
eq  and p

eq  are arbitrary, thus, according to the variational principle 
and Eqs. (11-206), (11-213) and (11-214), we can obtain the element incremental 
equations in the local co-ordinates: 

m m m m

p p p p

e e t t e e

e e e t t e e

K q R
K K q R

0
0

 (11-215) 

where m
eK  is the linear stiffness matrix of the membrane element and given by 

Eq. (11-97); p
eK  is the linear stiffness matrix of the plate bending element and 

given by Eq. (11-158); eK  is the geometric stiffness matrix, 

T d
e

e E
G G

A

AK B N B  (11-216) 

m
e  is the equivalent nodal internal force vector of the membrane element; p

e  is 
the equivalent nodal internal force vector of the plate bending element,  

T
m m md

e

e E

A

AB N , T T
p b s( )d

e

e E E

A

AB M B Q  (11-217) 

Rewriting (11-215) according to the DOF’s sequence yields  

( )e e e t t e eK K q R  (11-218) 

After transforming (11-218) to the global co-ordinates by standard procedure, 
the element GMST18 can be used to analyze the geometrically nonlinear problem 
of shells.  

Example 11.15 Post-buckling analysis of a square plate. 
As shown in Fig. 11.27, a square plate is controlled by four clamps along each 

edge. Thus, the displacements in the controlled directions are uniform. This plate 
is subjected to a pair of concentrated loads on two opposite sides. Only a quarter 
of the plate using 4 4 mesh division is analyzed because of symmetry. 

Figure 11.27 Post-buckling problem for a square plate 
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According to the series method presented by Budiansky[47], the critical load and 
post-buckling path are given by

2

cr
4 DP

L
    and    

2
2 max

cr

31 (1 )
8

wP
P h

where wmax is the central deflection of the square plate. The post-buckling paths 
obtained by presented element GMST18 and element STRI3 in ABAQUS are 
plotted in Fig. 11.28. It can be seen that the results of GMST18 are more 
consistent with Budiansky’s solutions than those of STRI3. 

Figure 11.28 Post-buckling path for a square plate, mesh 4 4

11.9 Shell Element for Geometrically Nonlinear Analysis 
—Rectangular Shallow Shell Element SSR28 

11.9.1 Nonlinear Strains and TL (Total Lagrangian) Formulations

The simplified nonlinear strain components of the shallow shell element given by 
reference [48] have already been successfully applied in the nonlinear analysis of 
the shell structures. Here, these nonlinear strain components will be adopted to 
construct the generalized conforming rectangular shallow shell element for 
geometrically nonlinear analysis. The expressions of these strains are as follows: 

2 2

11 2
1 1 1

1 1
2

u w w u w uz
x R x R x R x

 (11-219a) 
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2 2

22 2
2 2 2

1 1
2

v w w v w vz
y R y R y R y

 (11-219b) 

2

12
1 2 1 2

1 12u v w u w v w u vz
y x x R y R x y R y R x

(11-219c)

where 11 x, 22 y, 12 xy, R1 Rx, R2 Ry.
The above strain components can be decomposed as follows: 

T
m T

11 22 12 21
1 2

[ ] u w v w u ve e e e
x R y R y x

 (11-220a) 

b T
11 22 12 21

T2 2 2

2 2
1 2 1 2

[ ]

1 1 1 12w u w v w u v
x R x y R y x y R y R x

(11-220b)

T
g T

13 23
1 2

[ ] w u w ve e
x R y R

 (11-220c) 

Compared with von Kármán nonlinear strain components, it can be seen that in 

the above expressions, w
x

 and w
y

 are replaced by 
1

w u
x R

 and 
2

,w v
y R

respectively;
2

2

w
x

 and 
2

2

w
y

 are replaced by 
2

2
1

1w u
x R x

 and 
2

2
2

1 ,w v
y R y

respectively; and 
2

2 w
x y

 is replaced by 
2

1 2

1 12 w u v
x y R y R x

. In total 

Lagrangian coordinates, the increments of strain components are 

2
11 11 13 13 13 11

1
2

e e e e z  (11-221a) 

2
22 22 23 23 23 22

1
2

e e e e z  (11-221b) 

     12 12 21 13 23 23 13 13 23 12 21( )e e e e e e e e z  (11-221c) 

where e11 and e22 are the strains caused by displacement increments; e13 and 
e23 are the strains caused by total displacements corresponding to original coordinate 
system. After the determination of the normal and tangential displacement functions, 
the linear strains in Eq. (11-221) can be written as 
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11 11 13 13
m

22 22 23 23

12 21 12 21 13 23 23 13

m m m m( )p e

e e e e
e e e e
e e e e e e e e

B B q (11-222)

where

11
m m

22

12 21

p e

e
e
e e

B q      (11-223) 

g
13 13 13 13

m g m
23 23 23 23

g g
13 23 23 13 13 23 23 13

e e

e e e
e e e
e e e e e e

B
B q B q
B B

    (11-224) 

From Eqs. (11-220b) and (11-220c), the following incremental strains can be 
obtained:

g
13g g13

g
23 23

e ee
e

B
q B q

B
 (11-225) 

11
b b

22

12 21

p eB q  (11-226) 

Then, the TL formulations for nonlinear tangential stiffness matrix of the shallow 
shell element can be written as 

m m b ge e e e e e
TK K K K K K  (11-227) 

where

m m T m
m d

e

e p p

A

AK B D B

m m m m T
1 2 2

e e e eK K K K

2 2
13 23 13 23

m gT g
1 2

2 2
13 23 23 13

1 1
2 2 d

1 11
2 2

e

e

A

e e e eEh A
e e e e

K B B
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13 13 23
m gT m
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b d

e
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where 11, 22 and 12 are the second Piola-Kirchhoff stresses.  

11.9.2 The Formulations of the Rectangular Shallow Shell  
Element SSR28

A generalized conforming rectangular shallow shell element with tangential 
DOFs at the mid-side points is shown in Fig. 11.29. It is composed of two parts: 
4-node bending element and 8-node membrane element. 

The element nodal displacement vector is 

T T T T T T T T T
1 1 2 2 3 3 4 4[ ]eq q q q q q q q q  (11-228) 

where the definition of qi and qi  are given by Eq. (11-186). 
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Figure 11.29 (a) (b) (c)
(a) nodes of rectangular shallow shell element; (b) nodes of bending element;  
(c) nodes of membrane element                                      

Similar to Eqs. (11-187) and (11-188), for convenience, the displacement vector 
(11-228) is decomposed into membrane displacement and bending displacement 
vectors:

m T
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4[ ]e u v u v u v u v u v u v u v u vq

(11-229)

b T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

(11-230)

Assume that the tangential displacement fields are cubic polynomials: 

4
m

1

e
i i

i

u
v

u N q  (11-231) 

where

0 0
0 0

i i
i

i i

N N
N N

N , m T[ ]i i i i iu v u vq   (i 1,2,3,4)  

(11-232)
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1 1 1 1,
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4i i i

N N

N N

N N N N N N N N

N N N N N N N N

N i

 (11-233) 

The above tangential displacement functions not only are complete quadric 
polynomials, but also include the cubic terms 2  and 2. The displacement 
functions of the generalized conforming rectangular plate element RGC-12[14] are 
adopted to form the normal displacement field of the shallow shell element:  

1 bˆ ˆ( ) ew F C G q  (11-234) 

where

      2 2 3 2 2 3 3 3 T[1 ]F  (11-235) 

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

0 2 0 0 2 0 2 0 2 0 2 2
0 0 2 0 2 0 0 2 0 2 2 2

ˆ 0 2 0 0 2 0 2 0 2 0 2 2
2 22 0 2 0 2 0 0 2 0 0
3 3

2 22 2 0 2 0 2 0 0 0 0
3 3

2 22 0 2 0 2 0 0 2 0 0
3 3

1 2 1 3 2 1 3 10 0 0 0

1 1 2 10 0 0 0

b b b b

a a a a

b b b b

a a a a

a a a a a a a a

b b b

C

2 3 1 3
b b b b b

(11-236)
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0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0

ˆ
1 0 1 0 0 0 0 0 0 0

3 3
30 0 0 1 0 1 0 0 0 0

3

0 0 0 0 0 0 1 0 1 0
3 3

0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

a a

b
b

a a

G  (11-237) 

The incremental displacement vector of the element is 

     T T T T T T T T T
1 1 2 2 3 3 4 4[ ]eq q q q q q q q q  (11-238) 

where
T[ ]i i i i xi yiu v wq , T[ ]i i iu vq  (11-239) 

The incremental displacements corresponding to Eqs. (11-229) and (11-230) are 

m
1 1 1 1 2 2 2 2 3 3 3 3

T
4 4 4 4

[

] (11-240)

e u v u v u v u v u v u v

u v u v

q

b T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq
(11-241)

According to Eqs. (11-220a) and (11-222), matrix Bmp can be written as 

T
m

1 2

m m m b

p e

e w e

u w v w u v
x R y R y x

B q

B q B q (11-242)

where
m m m m m m m m m

1 1 2 2 3 3 4 4[ ]B B B B B B B B B
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The element bending strain matrix is 
T2 2 2

b
2 2

1 2 1 2

b b b m

1 1 1 12

(11-240)

p e

e m e

w u w v w u v
x R x y R y x y R y R x

B q

B q B q
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Matrix Bg can be expressed by 

T
g

1 2

4
1b m

1

2

1 0

10

e

e e
i i

i

w u w v
x R y R

R

R

B q

G q N q (11-244)

where

2 2 2 3
1

2 2 3 2

0 0 2 0 3 2 0 31 ˆ ˆ( )
0 0 2 0 2 3 3

b b b b b b b b
ab a a a a a a a a a

G C G

m T[ ]e
i i i i iu v u vq

Then, from the above equations, the nonlinear tangential stiffness matrix of the 
shallow shell element can be obtained according to Eq. (11-227).  

11.9.3 Numerical Examples

In the following nonlinear numerical examples, the variable arc length iteration 
method[42], in which the current stiffness parameter is taken as the control variable, 
is used, and the materials are all assumed to be linear elastic.  

Example 11.16 The nonlinear analysis of a clamped square plate subjected to 
uniform load. 

A clamped square plate subjected to uniform load q is shown in Fig. 11.30, its 
Poisson’s ratio 0.316. Due to the symmetry, only 1/4 of the plate is analyzed 
by using two meshes 2 2 and 4 4. The results are listed in Table 11.17, in 
which /W w h  and 4 4/Q qa Eh . It can be seen that the element SSR28 can 
provide higher precision with less DOFs.  
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Figure 11.30 A clamped square plate

Table 11.17 The central deflection parameter W  in nonlinear analysis of a clamped 
square plate subjected to uniform load 

Load parameter Q  Analytical[49] QH[49] SSR28 2 2 SSR28 4 4
17.79
30.8
63.4
95

134.9
184
245
318
402

0.237
0.471
0.695
0.912
1.121
1.323
1.521
1.714
1.902

0.2361
0.4687
0.6902
0.9015
1.1050
1.2997
1.4916
1.6775
1.8545

0.2254
0.4509
0.6694
0.8804
1.0848
1.2807
1.4739
1.6607
1.8382

0.2333
0.4621
0.6815
0.8909
1.0936
1.2942
1.4900
1.6834
1.8643

DOFs  405 69 205 

Example 11.17 Post-buckling analysis of a thin cylindrical shell subjected to 
concentrated load. 

A cylindrical shell is shown in Fig. 11.31. Its longitudinal straight edges are 
hinged while curved edges are free. A concentrated load acts on the center of the  

Figure 11.31 Cylindrical shell 
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shell. Two different thickness cases are considered: h 12.7mm and h 6.35mm. 
The critical load of this structures obtained by computations are listed in 
Tables 11.18 and 11.19, and also plotted in Figs. 11.32 and 11.33. It can be seen 
that the results by the element SSR28 agree with those obtained by the 
cylindrical shell element[50], the flat-shell element[51] and the quasi-conforming 
rectangular shallow shell element[52].

Table 11.18 The critical load Pcr of a cylindrical shell (h 12.7mm) subjected to 
concentrated load 

2 2 4 4 16 16Mesh 

Model Up limit Low limit Up limit Low limit Up limit Low limit

SSR28 2.223 0.6066 2.200 0.5169   

Reference [52]     2.222 86 0.546 40

Reference [51]   2.27    

Reference [50]   2.22    

Table 11.19 The critical load Pcr of a cylindrical shell (h 6.35mm) subjected to 
concentrated load 

2 2 4 4 16 16Mesh 

Model Up limit Low limit Up limit Low limit Up limit Low limit

SSR28 0.5956 0.3324 0.5837 0.3739   

Reference [52]     0.5907 0.3794

Figure 11.32 Load-central deflection relation curve of a cylindrical shell 
(h 12.7mm)

Example 11.18 Post-buckling analysis of a thin cylindrical shell subjected to 
uniform load. 

The dimensions and material properties of a cylindrical shell structure are 
shown in Fig. 11.31. This cylindrical shell is clamped and subjected to vertical 
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Figure 11.33 Load-central deflection relation curve of a cylindrical shell (h 6.35mm)

uniformly distributed load q, and its thickness h 3.175mm. The results of the 
post-buckling analysis by 4 4 mesh are plotted in Fig. 11.34, in which w is the 
vertical deflection at central point. 

Figure 11.34 Post-buckling analysis of a clamped cylindrical shell (h 3.175mm)

Example 11.19 Post-buckling analysis of a shallow spheric shell. 
A simply-supported shallow spheric shell subjected to a central concentrated 

load P is shown in Fig. 11.35. Its stability problem has already been analyzed by  

Figure 11.35 A shallow spheric shell 
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many element models[51,52,54]. The results of the critical load obtained by the element 
SSR28 using 2 2 and 4 4 meshes are listed in Table 11.20. A comparison 
between the results by the element SSR28 using 4 4 mesh and those in 
reference [51] is given in Fig. 11.36. 

Table 11.20 The critical load Pcr (kN) of a shallow spheric shell subjected to 
concentrated load 

2 2 4 4 5 5 16 16Mesh 
Model Up Low limit Up limit Low limit Up limit Low limit Up limit Low limit

SSR28 48.991 37.360 49.874 36.562     

Reference       48.172 36.951

Reference   52.000      

Reference     51.400    

Figure 11.36 Post-buckling analysis of a shallow spheric shell 
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