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Preface

The main purpose of this book is to describe some developments in finite element 
method and related variational principles. Since this book only deals with the 
areas the authors are familiar with, it is impossible to cover every aspect of these 
subjects. This book is composed of 20 chapters. Except for Introduction (Chap. 1) 
and Concluding Remarks (Chap. 20), in the other 18 chapters, seven theoretical 
achievements (two achievements in variational principles and five achievements in 
finite element methods are introduced, which are subdivided into three Parts. 

Part  focuses on advances in the variational principles. Two innovations in 
this subject are discussed here. 

(1) Sub-region variational principles (Chap. 2). The concept of sub-region is 
introduced for establishing new variational principles suitable for the developments 
of the finite element method. 

(2) Variational principles with several adjustable parameters (Chap. 3). Several 
adjustable parameters are included in the variational principles so that a broader 
optimization space is available. 

Part  focuses on the main advances in the finite element method—generalized 
conforming elements (the third innovation). Eight chapters are employed to 
illustrate this innovation.  

(3) Generalized conforming elements (Chaps. 4 11). Firstly, from the viewpoint 
of theory, the generalized conforming element opens a new way between conforming 
and non-conforming elements, so that the puzzle of the convergence problem for 
non-conforming elements can be rationally solved. Meanwhile, various new 
conforming schemes, including point conforming, line conforming, perimeter 
conforming, SemiLoof conforming, least square conforming and their combination 
forms, have been successfully proposed. Secondly, from the viewpoint of 
applications, the successful application of the generalized conforming element 
method was first realized for thin plate bending problem, in which a series of 
high performance thin plate element models were presented. Subsequently, the 
novel technique was successfully generalized to other fields, and a large number 
of new models, including membrane elements, membrane elements with drilling 
DOFs, thin-thick plate elements, laminated composite plate elements, flat-shell 
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elements, curved shell elements, etc., were also successfully constructed.  
Part  focuses on the other advances in the finite element method. Eight 

chapters are employed to discuss four additional subject innovations. 
(4) Sub-region mixed element method (Chaps. 12 13). It provides a novel 

solution strategy for fracture problem by complementarity and coupling of 
displacement-based element and stress-based element.  

(5) Analytical trial function method (Chaps. 14 15). This method exhibits 
rewarding cooperation between analytical and discrete methods, and provides 
effective solution strategy for shear locking, trapezoidal locking, and singular 
stress problems. 

(6) Quadrilateral area coordinate method (Chaps. 16 17). This method indicates 
that the area coordinate method is generalized from the traditional triangular 
element field to new fields. 

(7) Spline element method (Chaps. 18 19). This method indicates that the 
advantages of the spline functions have been adopted by the finite element method. 

While introducing above seven theoretical innovations, five new element series 
with 108 new element models, which were directly derived from the five 
achievements in FEM, are also discussed in detail or briefly (see Table 20.2). 
Furthermore, based on these developments, effective solution strategies for five 
challenging problems (shear-locking problem in thick plate elements, sensitivity 
problem to mesh distortion, non-convergence problem of non-conforming elements, 
accuracy loss problem of stress solutions by displacement-based elements, and 
singular stress problem) have also been found.  

To sum up, in the contents of this book, three aspects should be emphasized: 
(1) Seven new achievements in the field of variational principle and FEM; 
(2) five new element series with 108 new element models; 
(3) five sets of novel solution strategies for five challenging problems. 
The authors are very grateful to all the colleagues and students who made 

significant contributions to the contents included in this book. We also thank China 
Academy of Building Research for compiling our algorithms and finite element 
models into their FEM software product, SATWE, for designs of high-rise building 
structures.
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Chapter 1 Introduction—The Evolutive Finite  
Element Method 

Yu-Qiu Long 
Department of Civil Engineering, School of Civil Engineering,  

Tsinghua University, Beijing, 100084, China 

Song Cen 
Department of Engineering Mechanics, School of Aerospace,  

Tsinghua University, Beijing, 100084, China 

Zhi-Fei Long 
School of Mechanics & Civil Engineering, China University of  

Mining & Technology, Beijing, 100083, China 

Abstract This chapter is an opening introduction to the entire book, and 
also an introduction to the evolutive Finite Element Method (FEM). Firstly, 
a brief review on the features of FEM is given. Then, a close relationship 
between FEM and variational principle is discussed according to the 
development history and categories of FEM. Thirdly, some research areas of 
FEM of significant interest are listed. Finally, the topics of the book are 
presented. The purpose of the above arrangement is to explain the background 
and main idea of this book. 

Keywords finite element method, variational principle, research area, 
advance, outline. 

1.1 Brief Review of the Features of Finite Element Method 

Computational mechanics is a flourishing subject for science and engineering, in 
which the physical mechanics problems are solved by cooperation of mechanics, 
computers and various numerical methods. It has already entered every branch of 
mechanics, and is being generalized continuously for broader research and 
application ranges. At the same time, new theories and methods of computational 
mechanics itself are also being developed gradually. 

Finite element method is an important branch of computational mechanics. It 
is a kind of numerical methods in which various mechanics problems are solved 
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by discretizing related continuums. In 1960, R. W. Clough firstly used the name 
of Finite Element Method. Up to date, it has already been one of the most powerful 
techniques for dealing with problems in mechanics, physics and engineering 
computations. 

1.1.1 Features of FEM from the Viewpoints of Methodology 

(1) FEM is an application of both methods of analysis and synthesis: during the 
procedure, one structure will be firstly decomposed into elements, and then, these 
elements are synthesized to be the structure again. Solutions for the structure 
problem can be obtained from such decomposition and synthesis.  

Decomposition — breaks up the whole into parts, so that difficulties can be transformed 
into simplicity 

Synthesis — integrates all parts into a whole, so that the prototype can be recovered 

(2) From the viewpoint of evolution of mechanics, it can be seen that FEM 
evolves from the matrix displacement method for frame analysis. Along with the 
transplantation from frame analysis to elasticity, the matrix displacement method 
becomes FEM.  

(3) From the viewpoint of mathematics, it can be seen that FEM is a discrete 
approximation for continuum problems. Thus, the original problems with infinite 
degrees of freedom (DOFs) can be approximately treated as those with finite DOFs. 
Corresponding differential equations can also be simplified into algebraic ones. 

1.1.2 Features of FEM from the Viewpoint of Solution Method 
Classification

The solution methods for problems in mechanics can be classified into following 
three categories: 

(1) Analytical methods; 
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(2) Numerical methods; 
(3) Semi-analytical methods. 
The usual numerical methods are as follows (FEM is one of them—it is not 

the oldest one but exerts the greatest influence): 
(1) Finite difference method—the differential equations are transformed into 

difference forms so that approximate solutions can be obtained. 
(2) Weighted residual method—the differential equations are transformed into 

weighted integration forms so that approximate solutions can be obtained. In 
such method, there are five usual schemes: collocation method, sub-domain 
method, least square method, Galerkin method, and method of moment.  

(3) Finite element method—problems related to the differential equations are 
transformed into those related to stationary values of energy, and sub-region 
interpolation technique [interpolation is performed in each sub-region (element)] 
is used, so that approximate solutions can be obtained. 

(4) Boundary element method—discretization is performed only at boundaries. 
(5) Mesh-free method—its approximate functions are mainly established at 

discrete points; thus, no mesh is needed. 
The usual semi-analytical methods are as follows: 
(1) Kantorovich method; 
(2) Finite strip method; 
(3) Finite element method of line. 

1.2 Finite Element Method and Variational Principles 

Finite element method has a close relationship with variational principles. Here, 
this relationship is discussed according to its development history and categories.  

1.2.1 Creation of FEM and Variational Principles 

It is well recognized in academia that the variational energy principle is the basis 
of FEM. However, the path to this recognition was not smooth. 

Firstly, in the field of applied mathematics, the first paper published on FEM 
was the report, Variational methods for the solution of problems of equilibrium 
and vibration[1], delivered by Courant in 1941 and published in 1943. He used 
the variational principle and sub-region interpolation technique to look for the 
approximate solutions of torsion problem. In the title of his paper, he named his 
method, which is called finite element method afterwards, as variational method.
Since computers have not been available at that time, this paper did not attracted 
due attention.  
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Secondly, in the field of engineering techniques, Turner, Clough, Martin and 
Toop published the first paper about FEM, entitled stiffness and deflection analysis 
of complex structures[2], in 1956. They generalized the matrix displacement 
method of rigid frame to the plane problem in elasticity. In the title of the paper, 
they named such solution scheme as the stiffness method for complex structures
(or direct stiffness method), and subsequently, clough denominated it as Finite 
Element Method[3]. Like all engineers at that time, these authors did not pay 
much attention to Courant’s paper which had been ignored, and did not pay 
attention either to the relation between the direct stiffness method and Courant’s 
variational method.  

Finally, some related papers began to appear in 1963, including the paper, Basis 
for derivation for the Direct Stiffness Method, by Melosh[4]. These papers drew 
an important conclusion that, the basis of the direct stiffness method (i.e. finite 
element method) is just the variational principle, or, the direct stiffness method is 
a new Ritz method which is based on the variational principle (new Ritz method 
using sub-region interpolation technique). In this way, a bridge was successfully 
built that linked mathematics and engineering. Consequently, FEM is recognized 
as a numerical method with rigorous theoretical basis and universal application 
value. Systematical presentation of FEM is given in books and monographs [5 14].

1.2.2 Element Categories and Variational Principles 

Different elements are derived from different variational principles. Several element 
categories and their corresponding variational principles are as follows. 

(1) Conforming displacement-based element (its displacement trial functions 
exactly conform between two adjacent elements)—the minimum potential energy 
principle.

(2) Non-conforming displacement-based element (its displacement trial functions 
do not conform exactly between two adjacent elements)—the sub-region potential 
energy principle. 

(3) Generalized conforming displacement-based element (its displacement trial 
functions are generalized conforming between two adjacent elements)—the
degenerated form of sub-region potential energy principle.  

(4) Hybrid stress-based element (the stress trial functions satisfying the 
equilibrium differential equation are used)—the minimum complementary energy 
principle.

(5) Mixed element (mixed trial functions containing displacements, stresses 
and strains are used)—generalized variational principle. 

(6) Sub-region mixed element (some elements utilize the displacement trial 
functions, and the other use the stress trial functions)—the sub-region mixed 
energy principle.  
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1.3 Research Areas of FEM 

During the research history of theories and applications of FEM, the following 
problems have attracted main attention. 

(1) Variational principle and numerical method 
In the development of variational principle and FEM, two classical papers 

should be mentioned: the generalized variational principle proposed by Hu in 
1955[15] which provided a theoretical basis for development of FEM; and the 
difference formulations based on variational principle proposed by Feng[16],
which is virtually the modern FEM. 

New forms of variational principles were proposed in order to satisfy the 
requirements caused by the development of FEM, such as sub-region potential, 
complementary and mixed energy principles, the degenerated forms of sub-region 
variational principles and their applications, variational principles with adjustable 
parameters and their applications, variational principles for piezoelectric composite 
structures, variational principles for micromechanics based on the strain gradient 
theory, and so on. The attention was frequently focused on error estimation, 
convergence, reliability, self-adaptation and optimization of related numerical 
methods. 

(2) Construction techniques for new elements 
The existing construction modes, such as hybrid element, mixed element, quasi- 

conforming element, strain-based element, spline element, and so on, were extended. 
The new construction modes, such as generalized conforming element based 

on generalized conforming theory, sub-region mixed element based on sub-region 
mixed variational principle, rational element, new quadrilateral element based on 
quadrilateral area coordinates, element based on analytical trial functions, were 
successfully developed. 

(3) Challenging problems and their solution strategies 
The development of FEM still left some difficult and challenging problems. 

Some of them have remained unsolved for a long time. Naturally, these unsolved 
challenging problems became the focus of attention, such as various locking 
phenomena (shear locking, membrane locking, bulk locking), sensitive problem 
to mesh distortion, non-convergence problem of some non-conforming elements, 
spurious zero energy mode, solution oscillation phenomena, accuracy loss problem 
(stress solutions of displacement-based elements, transverse shear stresses of 
laminated composite plate), singular stress problem, ill-conditioned phenomena 
in numerical computations, and so on.  

(4) Complicated problems 
Complicated problems include finite element analysis of problems with material 

and geometric nonlinearity, buckling analysis of shell structures, finite element 
analysis of plastic forming, numerical simulation of impact problem, finite element 
method based on the strain gradient theory, and so on. 
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(5) Coupling and interdisciplinary problems 
Coupling problems involve fluid-solid coupling, gas-liquid-solid coupling, soil- 

structure-fluid coupling, force-electricity coupling, etc. 
Interdisciplinary problems include numerical simulations and optimization 

designs in biomechanics, microelectronics, material, and other subjects. 
(6) Cooperation with other methods 
Cooperation with other methods means the cooperation between FEM and 

boundary element method, between FEM and line method, between FEM and 
finite difference method, between FEM and mesh-free method, between numerical 
and analytical methods, and so on. 

(7) Software developments and CAD/CAE techniques 
Finite element software was born simultaneously with the birth of finite element 

theory. The influences brought by them are usually greater than those brought by 
publications.

Computational mechanics should continuously absorb the state of the art from 
computer science techniques, and progress together with computer graphics and 
CAD/CAE techniques.  

1.4 Advances in FEM and Outline of This Book 

Seven important research areas of FEM are listed in Sect. 1.3. In each area, 
numerous achievements have been obtained. Here, some examples of advances only 
in the first two areas, which are also outlined in this book, are given as follows. 

1.4.1 Advances in Variational Principles (Two Examples) 

In order to satisfy the development requirements of FEM, traditional variational 
principles need to be reformed. Thus, new variational principles emerge continuously. 
The following are two examples. 

(1) Sub-region variational principles—the variational principles using sub-region 
interpolation and relaxing continuity conditions at sub-region interfaces[10,17,18].

One feature of FEM is that the traditional global interpolation is replaced by 
the sub-region interpolation. The sub-region variational principles are the new 
variational principles which reflect such feature. 

The sub-region variational principles include sub-region potential energy 
principle, sub-region complementary energy principle, and sub-region mixed 
energy principle. The generalized conforming element and the sub-region mixed 
element are the two new element models derived from the sub-region potential 
energy principle and the sub-region mixed energy principle, respectively.  

Detailed discussions will be given in Chap. 2. 
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(2) Variational principles with adjustable parameters—new variational principles 
in which energy functionals contain adjustable parameters, first proposed in 
1986[19,20].

For example, the functional  in the following equation is a new functional 
with one parameter 1

1 HW 1 HR(1 )

in which HW  and HR  are the functionals of Hu-Washizu variational principle 
and Hellinger-Reissner variational principle, respectively. 

It can be seen that, the functionals HW  and HR  of traditional variational 
principles are the special cases of . Different functionals can be obtained by 
assigning different values to parameter 1 . And by starting from the new functional 

, new elements with different performance will be derived. Detailed discussions 
will be given in Chap. 3.  

1.4.2 Advances in Constructions of New Elements (Five Examples) 

Among numerous element types, the displacement-based element always occupies 
the mainstream position. And the numerous displacement-based element models 
usually can be divided into two types, conforming and non-conforming elements. 
The main disadvantage of the conforming elements is that they exclude many 
excellent models, while the main disadvantage of the non-conforming elements 
is that some of them are not convergent modes. In 1987, the generalized 
conforming element method was proposed. Based on the generalized conforming 
theory, it overcomes shortcomings from both conforming and non-conforming 
elements, and has already been successfully applied in various structure problems. 
As a result, a large number of new elements with excellent performance have 
been constructed, which promotes the development of the FEM. Here, five new 
achievements are given as practical examples to introduce the new advances in 
the FEM, in which the generalized conforming method is the dominant technique. 

(1) Generalized conforming element—non-conforming element which can 
ensure the convergence 

The generalized conforming element opens a new way, limit conforming mode, 
between conforming and non-conforming elements. From the viewpoint of 
conforming, it can be seen that, the exact conforming is not required while the 
necessary fundamental generalized conforming conditions must be satisfied, so 
that the convergence can be guaranteed in the limit status when the mesh is 
refined by infinite elements. Since the conforming requirement is appropriate, 
both convergence and convenience can be achieved. 

The first paper on the generalized conforming element was published in 
1987[21], in which the basic concepts and construction method were described by 
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thin plate bending problem. Subsequently, the generalized conforming theory 
was successfully generalized to other fields[22 28], and a large number of new 
elements, including membrane elements, membrane elements with drilling DOFs, 
thin-thick plate elements, laminated composite plate elements, flat-shell elements, 
curved shell elements, etc., were constructed.  

Generalized conforming element method is a combination of energy method 
and weighted residual method. Various new conforming forms, such as line 
conforming, perimeter conforming, point-line-perimeter conforming and SemiLoof 
conforming, have been proposed, which reflects the great flexibility of the 
generalized conforming element method.  

Detailed discussions will be given in Chap. 4 to Chap. 11. 
(2) Sub-region mixed element method—mixed method convenient for dealing 

with singular stress problems 
The sub-region mixed element method was first proposed in 1982[29].
The sub-region mixed element method is based on the sub-region mixed 

energy principle. In such method, a mesh containing two different element types 
(the conventional displacement-based element and singular stress element) will 
be used. For singular stress problems (such as crack and notch problems), the 
singular stress elements (their trial functions contain singular analytical solutions) 
are collocated in the sub-regions including singular stress points; and the 
conventional displacement-based elements are collocated in other sub-regions. 
Since both the singular stress element and the conventional displacement-based 
element can exhibit each advantage simultaneously in one computation, it 
provides a novel solution scheme for singular stress problem and is better than 
the traditional one in which only the displacement-based model is used. Now, it 
has already been successfully applied in crack problem, notch problem and pipe 
joint problem of oil platform. 

Detailed discussions will be given in Chap. 12 and Chap. 13. 
(3) Analytical trial function method—new finite element method in which the 

analytical solutions are taken as trial functions 
A systematic review of the analytical trial function method and its applications was 

given in the plenary invited paper[30] at the 11th Nation-wide (China) Conference 
on Structural Engineering. 

In the analytical trial function method, since the analytical solutions are taken 
as the trial functions of finite elements, analytical and discrete methods can 
complement each other. As a result, it has been successfully applied in solving 
some challenging existing problems in FEM. First, for the fracture and notch 
problems where singular stress point exists, if the analytical solutions containing 
singular stresses are taken as the trial functions, the computational accuracy of 
stress intensity factor will be improved dramatically. Thereby, the analytical trial 
function method has a close relation with the sub-region mixed element method. 
Secondly, when a mesh is distorted, the precision of many elements will drop 
rapidly. If the analytical trial function method is employed and cooperates with 
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the quadrilateral area coordinate method in constructions of new elements, the 
resulting models will be more insensitive to mesh distortion. Thirdly, in 
constructions of new thick plate elements, if the analytical solutions of thick 
plate theory are taken as the trial functions, shear locking phenomenon will be 
eliminated from the outset. Besides above three points, the analytical trial 
function method can still be generalized to other fields. 

Detailed discussions will be given in Chap. 14 and Chap. 15. 
(4) Quadrilateral area coordinate method and its applications—area coordinate 

method is generalized from the traditional field to new fields 
The systematic theory of quadrilateral area coordinate was first established in 

1997[31].
By generalizing the traditional triangular area coordinate method to the 

quadrilateral or polygonal area coordinate method, the concept and the application 
scope of the area coordinates are extended. For the past years, the isoparametric 
coordinate method was almost the unique tool for constructing arbitrary quadrilateral 
elements. Therefore, the establishment of quadrilateral area coordinate theory 
provides a new way and a new tool for related jobs. Element models formulated 
by this new tool are quite insensitive to various mesh distortions, which are much 
better than those provided by traditional isoparametric coordinate method. At 
present, some excellent quadrilateral models have been successfully developed by 
using the new area coordinates, including membrane elements, thin plate elements, 
thick plate elements, laminated composite plate elements, and shell elements.  

Detailed discussions will be given in Chap. 16 and Chap. 17. 
(5) Spline elements and their applications—new finite element mode in which 

the spline functions are taken as the local interpolation functions 
The constructions and applications of spline elements have been systematically 

introduced in two doctoral dissertations[32,33].
The spline element method combines the high smoothing of spline functions 

with the high flexibility of finite element method, which overcomes the limitation 
that the global spline interpolation can only be used in regular domains. 
Subsequently, 18 spline elements have been developed and successfully applied 
in various fields, such as plane stress, thin plate, thick plate, thin shell, thick shell, 
high-rise building structure.  

Detailed discussions will be given in Chap. 18 and Chap. 19. 
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Abstract This chapter focuses on the developments of the variational 
principles which are usually considered as the theoretical basis for the finite 
element method. In this chapter, we will discuss the sub-region variational 
principles which are the results by the combination of the variational principles 
and the concept of sub-region interpolation. Following the introduction, the 
sub-region variational principles for various structural forms, i.e., 3D elastic 
body, thin plate, thick plate and shallow shell, are presented respectively. 
Finally, a sub-region mixed energy partial derivative theorem is also given. 

Keywords variational principle, sub-region variational principle, sub-region 
mixed energy partial derivative theorem. 

2.1 Introduction 

Variational principles are usually considered as the theoretical basis for the finite 
element method. References [1-3] present systematical discussions on some of 
these variational principles. And, some advances and reviews on this field can be 
found in the references [4-8]. 

The sub-region variational principles for elasticity and structural mechanics have 
been proposed in the references [2, 9]. In the third edition of the reference [1] 
(1982), the contents of modified variational principles were supplemented. Though 
the expressions are different, they indeed have a close relationship with the 
sub-region variational principles. 
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The studies on the sub-region variational principles were promoted by the 
advances in the finite element method, and especially by the development of the 
incompatible element, the generalized conforming element, the hybrid element 
and the sub-region mixed element approaches. The sub-region generalized 
variational principles for 3D elasticity was proposed and extended to multi-region 
mixed energy principle in [2] and [9]. And, the sub-layer variational principle 
was also discussed in [10]. A review of the sub-region variational principles and 
their applications in the finite element method was given in [11]. For the elastic 
thin plate, its sub-region potential principle and sub-region complementary 
principle were presented in [2], and its sub-region mixed energy principle was 
given in [12]. For the thick plate and the shallow shell, their sub-region variational 
principles were proposed in [13] and [14], respectively. And, the reference [15] 
provided the sub-region mixed energy partial derivative theorem, a generalization 
of the famous Castigliano first and second energy partial derivative theorems.

From the viewpoint of structure forms, it can be seen that there are four types, 
3D elasticity, thin plate, thick plate and shallow shell, as listed above. The sub-region 
variational principles of these structures and their energy functional expressions 
will be introduced in the following four sections, respectively. 

From the viewpoint of independent field variables assumed in each sub-region, 
it can be found that three cases of regions are existing here:  three-field-region 
(displacement field, strain field and stress field),  two-field-region (displacement 
field and stress field), and  single-field-region (displacement field or stress field). 

From the viewpoint of energy types, it can be seen that each sub-region can be 
assumed as either potential or complementary energy region. If all the regions are 
assumed as potential (or complementary) energy regions, the sub-region potential 
(or complementary) energy principle will be obtained. If some regions are assumed 
as potential energy regions, and the others are assumed as complementary energy 
regions, the sub-region mixed energy variational principle will be obtained. 

The sub-region variational principle provides the theoretical basis for developing 
new finite element methods. For example, the generalized conforming element 
method described in Part  of this book is based on the sub-region potential 
energy principle; and the sub-region mixed element method given in Part  is 
based on the sub-region mixed energy principle. 

2.2 The Sub-Region Variational Principle for Elasticity 

This section will discuss the various forms[9,10] of the sub-region generalized 
variational principle used in elasticity problems. Firstly, let an elastic body be 
divided into two sub-regions, a and b, then the sub-region three-field generalized 
mixed, potential and complementary energy variational principles are discussed, 
respectively. Secondly, two special cases, the sub-region two-field and single-field 
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generalized variational principles, are discussed. Finally, a general form of the 
multi-region variational principle is established. 

2.2.1 The Sub-Region Three-Field Generalized Mixed Variational  
Principle for Elasticity 

Let an elastic body be divided into two sub-regions a and b; Va and Vb be the 
volumes of the regions a and b, respectively; Sa and Sb be the surfaces of a and b,
respectively. Thus, both the surfaces Sa and Sb are composed of three parts: 

a a ua ab

b b ub ab

S S S S
S S S S

Where Sab is the interface between a and b; S a and S b are the boundaries with 
given tractions ( 1,2,3)iT i ; Sua and Sub are the boundaries with given displace- 
ments ( 1,2,3)iu i . (see Fig. 2.1) 

Figure 2.1 An elastic body divided into two sub-regions 

In the sub-region three-field generalized mixed variational principle, the displace- 
ments, strains and stresses 

( ) ( ) ( ) ( ) ( ) ( ), , ; , , ( , 1,2,3)a a a b b b
i ij ij i ij iju u i j

in the regions a and b are all field variables. Then the corresponding functional 
3  can be defined by 

( ) ( )
3 3p 3c pc

a b H  (2-1) 

where ( )
3p

a  is named as the three-field generalized potential energy of the 
sub-region a (excluding the interface Sab):

( )
3p , ,

1 1( ) d d d
2 2

a a ua

a
ij ij ij i j j i i i i i i i i

V S S

U u u Fu V T u S T u u S

  (2-2) 



Advanced Finite Element Method in Structural Engineering 

18

in which ( )ijU  denotes the strain energy density; iF  denotes the given body 
force; ,i ju  denotes the partial derivative of iu  with respect to jx . ( )

3c
b  is 

named as the three-field generalized complementary energy of the sub-region b
( also excluding the interface Sab):  

( )
3c ,( ) d d d

b b ub

b
ij ij ij ij j i i i i i i i

V S S

U F u V T T u S T u S     

 (2-3) 

Hpc is the mixed energy at the interface Sab, and given by 

( ) ( )
pc d

ab

b a
i i

S

H T u S  (2-4) 

in which ( )b
iT  denotes the traction of the complementary energy region (sub- 

region b) at the interface Sab:
( ) ( ) ( )b b b

i ij jT n
( )b
jn  is the direction cosine of the outer normal of the region b at the interface Sab;
( )a
iu  denotes the displacement of the potential energy region (sub-region a) at the 

interface Sab.
The sub-region three-field generalized mixed variational principle can be 

described as follows. 
The functional stationary condition 

( ) ( )
3 3p 3c pc 0a b H  (2-5) 

is equivalent to the whole system of equations of the elastic body with sub- 
regions, including equilibrium differential equation: 

, 0ij j iF   (in V) (2-6) 

strain-displacement relations (geometrical equation) 

, ,
1 ( )
2ij i j j iu u   (in V) (2-7) 

stress-strain relations (constitutive equation) 

ij
ij

U   (in V) (2-8) 

boundary conditions of tractions 

i ij j iT n T   (on S ) (2-9) 
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boundary conditions of displacements 

i iu u   (on Su) (2-10) 

and continuous conditions at the interface 
( ) ( )a b

i iT T   (on Sab) (2-11) 

( ) ( )a b
i iu u   (on Sab) (2-12) 

In order to demonstrate the equivalency between the functional stationary 
condition (2-5) and the Eqs. (2-6) (2-12), the variation ( )

3p
a  of Eq. (2-2) is 

firstly developed: 

( )
3p , , ,

1 1 d
2 2

d [ ( ) ]d
a

a ua

a
ij ij ij i j j i ij ij i j i i

ijV

i i i i i i i
S S

U u u u F u V

T u S T u u u T S

Since

, ,d d d
a a a ua ab a

ij i j i i ij j i
V S S S S V

u V T u S u V

we have 

( )
3p , , ,

( ) ( )

1 1 ( ) d
2 2

( ) d ( ) d d
a

a ua ab

a
ij ij ij i j j i ij ij j i i

ijV

a a
i i i i i i i i

S S S

U u u F u V

T T u S u u T S T u S
    

(2-13)

Secondly, the variation ( )
3c

b  of Eq. (2-3) can be written as: 

( )
3c , ,( ) d

[( ) ]d d
b

b ub

b
ij ij ij j i i ij ij i ij j

ijV

i i i i i i i
S S

U F u u V

T T u u T S u T S

Since

, , ,
1d d ( ) d
2

b b b ub ab b

i ij j i i i j j i ij
V S S S S V

u V u T S u u V

we have 
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( )
3c , , ,

( ) ( )

1 1( ) d
2 2

( ) d ( ) d d
b

b ub ab

b
ij ij ij j i i ij i j j i ij

ijV

b b
i i i i i i i i

S S S

U F u u u V

T T u S u u T S u T S
    

(2-14)

Thirdly, the variation pcH  of Eq. (2-4) is 

( ) ( ) ( ) ( )
pc ( )d

ab

b a a b
i i i i

S

H T u u T S  (2-15) 

Finally, the substitution of Eqs. (2-13), (2-14) and (2-15) into (2-5) yields 

3 , , ,

( ) ( ) ( )

( ) ( ) ( )

1 1 ( ) d
2 2

( ) d ( ) d [( )

( ) ]d 0
u ab

ij ij ij i j j i ij ij j i i
ijV

a b a
i i i i i i i i i

S S S

a b b
i i i

U u u F u V

T T u S u u T S T T u

u u T S (2-16)

Equations (2-6) (2-12) can be derived from the functional stationary condition 
(2-16), and vice versa. Thus, the equivalency is proved. 

It should be pointed out that, in the expression (2-4) for the mixed energy Hpc
at the interface Sab, Ti is indicated as belonging to the sub-region b (complementary 
energy region), and ui as belonging to the sub-region a (potential energy region). 
If Hpc is defined as 

( ) ( )d
ab

a b
i i

S

T u S   or  ( ) ( )d
ab

a a
i i

S

T u S   or  ( ) ( )d
ab

b b
i i

S

T u S ,

incorrect results will appear. The reason is that the field variables of the sub- 
regions a and b are all independent variables, they do not previously satisfy the 
continuous conditions (2-11) and (2-12) at the interface. 

The variational principle discussed above is a kind of unconditioned variational 
principle. “Unconditioned” has two meanings:  Firstly, the three variables ui,

ij, and ij within each sub-region are all independent and have no relation with 
each other;  Secondly, at the interface Sab, the variables from the two regions 
are also independent, they are not required in advance to satisfy the continuous 
conditions (2-11) and (2-12). 

2.2.2 The Transformation Between a( )
3p  and a( )

3c

In Fig. 2.1, the three-field generalized potential energy ( )
3p

a  and the three-field 
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generalized complementary energy ( )
3c

a of the sub-region a (excluding the 
interface Sab) have the following transformation relationship: 

( ) ( ) ( ) ( )
3p 3c d

ab

a a a a
i i

S

T u S  (2-17) 

The sub-region three-field generalized variational principle has three forms: 
sub-region mixed energy, sub-region potential energy and sub-region complementary 
energy. One form can be easily transformed to the other two by using the relation 
(2-17).

Following is the demonstration of Eq. (2-17). Firstly, the expression of ( )
3c

a  can 
be written as:  

( )
3c ,( ) d ( ) d d

a a ua

a
ij ij ij ij j i i i i i i i

V S S

U F u V T T u S T u S     

 (2-18) 

Then, the sum of Eqs. (2-2) and (2-18) can be obtained:  

( ) ( )
3p 3c , , ,

1 ( ) d d
2

a a ua

a a
ij i j j i ij j i i i

V S S

u u u V T u S

Since

, , , ,
1 ( ) d ( ) d d
2

a a a a ua ab

ij i j j i ij j i ij i j i i
V V S S S S

u u u V u V T u S

The substitution of this equation into the previous one will yield Eq. (2-17). 
Two special cases can be derived from Eq. (2-17): 
Special case 1: when there are no sub-regions in the whole body, 0abS . Then 

we have 

3p 3c 0  (2-19a) 

Special case 2: when the sub-region a is surrounded by other regions, 0aS ,
0uaS , a abS S . Then we have 

( ) ( ) ( ) ( )
3p 3c d

a

a a a a
i i

S

T u S  (2-19b) 

2.2.3 The Sub-Region Three-Field Generalized Potential and  
Complementary Energy Principles for Elasticity 

Now, by using Eq. (2-17), the functional of the sub-region three-field generalized 
potential and complementary principles can be derived from the functional of the 
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sub-region three-field generalized mixed variational principle. 

1. The sub-region three-field generalized potential energy principle 

In the expression (2-1) of the sub-region three-field generalized mixed variational 
principle, the sub-region a is represented by the generalized potential energy 
while the sub-region b is represented by the generalized complementary energy. 
Here, we require the sub-region b given by the generalized potential energy, too. 
Then, from Eq. (2-17), we have 

( ) ( ) ( ) ( )
3c 3p d

ab

b b b b
i i

S

T u S

Substitution of this equation into (2-1) yields 

( ) ( )
3 3p 3p pp

a b H  (2-20) 

where Hpp is the additional term of the potential energy at the interface Sab:

( ) ( ) ( )
pp ( )d

ab

b a b
i i i

S

H T u u S  (2-21a) 

Equations (2-20) and (2-21a) are the functional expressions of the sub-region 
three-field generalized potential energy principle. It can be shown that the 
stationary condition 3 0  of this functional is equivalent to all equations, 
boundary conditions and interface continuous conditions of the elastic body with 
sub-regions. Another expression of Hpp can also be obtained by interchanging a
and b in Eq. (2-21a): 

( ) ( ) ( )
pp ( )d

ab

a b a
i i i

S

H T u u S  (2-21b) 

If the continuous condition (2-12) at the interface Sab is satisfied in advance, 
pp 0H .

2. The sub-region three-field generalized complementary energy principle 

In Eq. (2-1), if we require that the sub-region a is given by the generalized 
complementary energy, the substitution of (2-17) into (2-1) will yield 

( ) ( )
3 3c 3c cc

a b H  (2-22) 

where Hcc is the additional term of the complementary energy at the interface Sab:

( ) ( ) ( )
cc ( ) d

ab

a b a
i i i

S

H T T u S  (2-23a) 

Equations (2-22) and (2-23a) are the functional expressions of the sub-region 
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three-field generalized complementary energy principle. Another expression of 
Hcc can also be obtained by interchanging a and b in Eq. (2-23a): 

( ) ( ) ( )
cc ( ) d

ab

a b b
i i i

S

H T T u S  (2-23b) 

If the continuous condition (2-11) at the interface Sab is satisfied in advance, 
cc 0H .

2.2.4 The Sub-Region Two-Field and Single-Field Variational  
Principle for Elasticity 

The functional expression for the three forms of the sub-region three-field 
generalized variational principle have been given by Eqs. (2-1), (2-20) and (2-22), 
respectively. Now, we discuss two special cases. 

1. The sub-region two-field generalized variational principle 

By employing the relationship 

 ( ) ( )ij ij ij ijV U  (2-24) 

between the strain energy density ( )ijU  and the strain complementary energy 
density ( )ijV , the variable ij in the three-field generalized potential energy ( )

3p
a

and the three-field generalized complementary energy ( )
3c

a  of the sub-region a
(excluding the interface Sab) can be eliminated. Thus, the two-field (displacement 
ui, stress ij) generalized potential energy ( )

2p
a  and the two-field generalized 

complementary energy ( )
2c

a  can be obtained: 

( )
2p , ,

1 ( ) ( ) d d ( )d
2

a a ua

a
i j j i ij ij i i i i i i i

V S S

u u V Fu V T u S T u u S     

 (2-25) 

( )
2c ,( ) ( ) d ( ) d d

a a ua

a
ij ij j i i i i i i i

V S S

V F u V T T u S T u S   (2-26) 

From Eqs. (2-1), (2-20) and (2-22), the functional expressions of the sub-region 
two-field generalized mixed energy, potential energy and complementary energy 
principle can be written as follows: 

( ) ( )
2 2p 2c pc

a b H  (2-27) 

( ) ( )
2 2p 2p pp

a b H  (2-28) 

( ) ( )
2 2c 2c cc

a b H  (2-29) 
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where Hpc, Hpp and Hcc are still given by Eqs. (2-4), (2-21) and (2-23), respectively. 

2. The sub-region single-field generalized variational principle 

Now, we discuss the case where each sub-region has only a single independent 
variable. If the sub-region a is a potential energy region, only the displacement 

( )a
iu  will be taken as the independent variable. Thus, the ( )

3p
a  in Eq. (2-2) and 

the ( )
2p

a  in Eq. (2-25) will transform to the single-field potential energy ( )
1p

a  of 
the region a:

( )
1p [ ( ) ]d d ( )d

a a ua

a
i i i i i i i i

V S S

U u Fu V T u S T u u S     (2-30a) 

If ( )a
iu  satisfies the displacement boundary condition (2-10) on Sua in advance, 

then we have 

( )
1p [ ( ) ]d d

a a

a
i i i i i

V S

U u Fu V T u S    (2-30b) 

If the sub-region a is a complementary energy region, only the stress ( )a
ij  will 

be taken as the independent variable, and ( )a
ij  should satisfy the equilibrium 

differential Eq. (2-6) in advance. Thus, the ( )
3c

a  in Eq. (2-18) and the ( )
2c

a  in 
Eq. (2-26) will transform to the single-field complementary energy ( )

1c
a  of the 

region a:

( )
1c ( )d d ( ) d

a ua a

a
ij i i i i i

V S S

V V T u S T T u S     (2-31a) 

If ( )a
ij  satisfies the boundary condition (2-9) on S a in advance, then we have 

( )
1c ( )d d

a ua

a
ij i i

V S

V V T u S     (2-31b) 

From Eqs. (2-1), (2-20) and (2-22), or (2-27), (2-28) and (2-29), the functional 
expressions of the sub-region single-field generalized mixed energy, potential 
energy and complementary energy principle can be written as follows:  

( ) ( )
1 1p 1c pc

a b H  (2-32) 

( ) ( )
1 1p 1p pp

a b H  (2-33) 

( ) ( )
1 1c 1c cc

a b H  (2-34) 

where Hpc, Hpp and Hcc are still given by Eqs. (2-4), (2-21) and (2-23), respectively. 
( )a

iT  or ( )b
iT  in Eq. (2-21), and ( )a

iu  or ( )b
iu  in Eq. (2-23), can be treated as 

Lagrange multipliers.  
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2.2.5 The General Form of the Multi-Region Variational  
Principle for Elasticity 

From the above discussions, a general form of the multi-region variational principle 
can be obtained.  

Let an elastic body be divided into several sub-regions (see Fig. 2.2). Each sub- 
region can be arbitrarily appointed as potential energy region or complementary 
energy region, and each region can be three-field region, or two-field region or 
single-field region. The interfaces between two adjacent regions are of three types, 
Spc, Spp and Scc:  one side of Spc is the potential energy region, while the other 
side is the complementary one;  both sides of Spp are potential energy regions; 
and  both sides of Scc are complementary energy regions. 

Figure 2.2 An elastic body divided into multi-regions 

The general form of the functional for multi-region variational principle can be 
written as 

p c pc pp cc

p c pc pp cc
V V S S S

H H H  (2-35) 

The meanings of the terms on the right-side of this equation are as follows: 
The first term denotes the sum of the potential (or generalized potential) energy 

p of each potential energy region Vp, where p can be 1p or 2p or 3p, which 
is given by Eqs. (2-30), (2-25) and (2-2), respectively. 

The second term denotes the sum of the complementary (or generalized com- 
plementary) energy c of each complementary energy region Vc, where c can 
be 1c or 2c or 3c, which is given by Eqs. (2-31), (2-26) and (2-3), respectively. 

The third term denotes the sum of the additional term Hpc on the interface Spc,
in which Hpc is given by Eq. (2-4). The fourth term denotes the sum of the 
additional term Hpp on the interface Spp, in which Hpp is given by Eq. (2-21). The 
fifth term denotes the sum of the additional term Hcc on the interface Scc, in 
which Hcc is given by Eq. (2-23). 

It can be shown that the stationary condition 

0
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of the functional   in Eq. (2-35) is equivalent to all equations, boundary conditions 
and interface continuous conditions of the elastic body with multi-regions. 

If all regions are potential energy regions, the functional of the sub-region 
potential (or generalized potential) energy principle can be obtained from Eq. (2-35): 

p pp

p pp
V S

H  (2-36) 

It can be seen that Eqs. (2-20), (2-28) and (2-33) are all special cases of (2-36).  
If all regions are complementary energy regions, the functional of the sub- 

region complementary (or generalized complementary) energy principle can be 
obtained from Eq. (2-35): 

c cc

c cc
V S

H  (2-37) 

It can be seen that Eqs. (2-22), (2-29) and (2-34) are all special cases of (2-37). 
Incidentally, the interface Sab can vest in Va (or Vb), and then, the additional 

terms Hpc, Hpp and Hcc on Sab will vest in the energy terms ( )
p

a  and ( )
c

a  of Va

(or the energy terms ( )
p

b  and ( )
c

b  of Vb) as new additional terms. Several 
cases are discussed as follows: 

Firstly, if we assume Va as potential energy region, when Sab is not included, 
the potential or generalized potential energy of Va can be written as 

( )
p pd d ( )d

a a ua

a
i i i i i

V S S

I V T u S T u u S

where Ip denotes the integrand in volume terms of Eqs. (2-30) or (2-25) or (2-2). 
Now, if Sab vests in Va, the new additional terms of ( )

p
a  can be derived as follows:  

(1) If the adjacent region Vb is a potential region, Sab can be dealt with in the 
same manner as Sua. Let ( )b

i iu u , so the new additional term in ( )
p

a  is 

( ) ( ) ( )( )d
ab

a a b
i i i

S

T u u S

From Eq. (2-21b), it can be seen that this new additional term is just Hpp.
(2) If the adjacent region Vb is a complementary region, Sab can be dealt with 

in the same manner as S a. Let ( )b
i iT T , so the new additional term in ( )

p
a  is 

( ) ( )( ) d
ab

b a
i i

S

T u S

From Eq. (2-4), it can be seen that this new additional term is just Hpc.
Secondly, if we assume Vb as complementary energy region, when Sab is not 

included, the complementary or generalized complementary energy of Vb can be 
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written as  

( )
c cd ( ) d d

b b ub

b
i i i i i

V S S

I V T T u S T u S

where Ic denotes the integrand in volume terms of Eqs. (2-31) or (2-26) or (2-3). 
Now, if Sab vests in Vb, the new additional terms of ( )

c
b  can be derived as follows: 

(3) If the adjacent region Va is a potential region, the new additional term will 
be ( ) ( )d

ab

b a
i i

S

T u S , i.e. Hpc.

(4) If the adjacent region Va is a complementary region, the new additional 
term will be ( ) ( ) ( )( ) d

ab

b a b
i i i

S

T T u S , i.e. Hcc in Eq. (2-23b). 

2.2.6 Some Remarks 

The general form of the sub-region generalized variational principle for small 
displacement elasticity problems is presented in this section, and Eq. (2-35) is its 
functional expression. Its universality is due to the following reasons: 

(1) Each sub-region can be independently specified as potential and com- 
plementary energy regions, and the sub-region potential energy, complementary 
energy and mixed variational principle are three special forms of the general 
form. 

(2) The field variables in each region can be specified independently. The sub- 
region single-field, two-field, three-field and their mixed forms are all special 
cases of the general form. 

(3) The displacement and traction conditions on each interface can be relaxed 
partly or completely. It is not necessary to satisfy them in advance. 

Various finite element models can all be regarded as the special applications of 
this principle. For example, the sub-region potential energy principle and its 
functional (2-36) are the theoretical basis of the generalized conforming elements 
and the hybrid-displacement elements; the sub-region complementary energy 
principle and its functional (2-37) are the theoretical basis of the hybrid-stress 
elements; the sub-region mixed energy principle and its functional (2-1) are the 
theoretical basis of the sub-region mixed elements. 

Besides, there are still some other points worthy of being paid attention to: 
(1) By using the relation (2-17), the transformation between the different 

forms of the variational principle can be performed conveniently. 
(2) The general form (2-35) of the functional for the multi-region variational 

principle establishes a bridge linking the various forms of the variational principle. 
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2.3 The Sub-Region Variational Principle for Elastic  
Thin Plate 

This section will discuss the sub-region variational principle for elastic thin 
plate[2,12,16]. The thin plate variational principle with relaxed continuity requirements 
has been discussed in [16]. And, the multi-region potential and complementary 
energy generalized variational principles were given by [2]. Reference [12] proposed 
the multi-region mixed energy generalized variational principle of thin plate, 
considered the thin plate multi-region potential and complementary energy 
generalized variational principles as its special cases, and gave out the transformation 
relations between generalized potential energy and generalized complementary 
energy in the sub-regions. By using these relations, transformation between different 
functionals of the variational principle can be performed conveniently.  

The sequence of presentation used in the previous section is adopted again 
here: firstly, the case with two sub-regions is discussed; secondly, from the 
three-field principle, the two-field and single-field principles are obtained; finally, 
the general form of the multi-region variational principle is given. 

2.3.1 The Sub-Region Three-Field Generalized Mixed Variational  
Principle for Thin Plate 

1. The description of the sub-regions and the boundaries for thin plate 

Let an elastic thin plate be divided into two sub-regions a and b (Fig. 2.3), and 
a and b represent the domains of the regions a and b, respectively. The outer  

Figure 2.3 A thin plate divided into two sub-regions 

boundaries Ca and Cb of the regions a and b are both composed of three parts: 

1 2 3

1 2 3

a a a a

b b b b

C C C C
C C C C

where C1a and C1b are the fixed boundaries (the deflection w  and the normal 
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rotation n  on the boundaries are specified); C2a and C2b are the simply-supported 
boundaries (the deflection w  and the normal moment nM  on the boundaries are 
specified); and C3a and C3b are the free boundaries (the normal moment nM  and 
the equivalent shear force nV  on the boundaries are specified). 

The corner points Aa and Ab on the outer boundaries of the regions a and b are 
composed of two corner point types:  

1 2 1 2,a a a b b bA A A A A A

where A1a and A1b are the corner points where the deflection w  is specified; A2a
and A2b are the corner points where the concentrated force R  is specified. 

The interface of the two regions is Cab, on which the node J is also composed of 
two node types: 

1 2J J J

where J1 is the node where the deflection w  is specified; J2 is the node where the 
concentrated force R  is specified. 

(x, y) are the Cartesian co-ordinates within the mid-surface of the thin plate; n
is the outer normal of the boundary; s is the tangent of the boundary, and its 
positive direction is shown in Fig. 2.3. 

2. The key points of the sub-region three-field generalized variational principle 

(1) The field variables 
Both regions a and b possess three field variables: 

Deflections:

 ( )w a , ( )w b

Bending and twisting moments: 

( ) T( )

( ) T( )

[ ]

[ ]

a a
x y xy

b b
x y xy

M M M

M M M

M

M
Curvatures:

( ) T( )

( ) T( )

[ 2 ]

[ 2 ]

a a
x y xy

b b
x y xy

These field variables are not required to satisfy any conditions in advance 
within the domain and on the boundaries and interfaces. 

(2) Definition of the functional 
Let the region a be the potential energy region, and the region b the 

complementary energy region. Then, the definition of the functional is 

( ) ( )
3 3p 3c pc 1pc 2pc

a b H G G  (2-38) 
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where ( )
3p

a  is the three-field generalized potential energy of the region a (excluding 
the interface Cab and the node J):

1 2 3 1

2 3
1 2

2 2 2
( )

3p 2 2( ) 2 d d

( )d d d

d ( ) (2-39)

a

a a a a

a a
a a

a
x x y y xy xy

ns
n n n nC C C C

n nsC C
A A

w w wU qw M M M x y
x y x y

M wQ w w s V w s M s
s n

wM s M w w Rw
n

Here, q is the density of the normal load; ( )U  is the density of the strain energy: 

2 2( ) [( ) 2(1 )( )]
2 x y xy x y
DU  (2-40) 

where
3

212(1 )
EhD  is the bending stiffness of the plate; E is the Young’s 

modulus; h is the thickness;  is the Poisson’s ratio; Mn, Mns,and Qn are the 
normal bending moment, twisting moment and transverse shear force on the 
boundary, respectively; Mns is the increment of the twisting moment at two 
sides of the corner node on the boundary. 

( )
3c

b  is the three-field generalized complementary energy of the region b
(excluding the interface Cab and the node J):

1 2 3 1

2 3
1 2

2 22
( )

3c 2 22 ( ) 2 d d

d d d

( ) d ( ) (2-41)

b

b b b b

b b
b b

y xyb x
x x y y xy xy

ns ns
n n n n nC C C C

n n ns nsC C
A A

M MM
M M M U q w x y

x y x y

M MQ w s Q V w s M s
s s

wM M s M w M R w
n

Hpc, G1pc, G2pc are the additional energy terms on the interface Cab and the nodes 
J1 and J2:

( )( )
( ) ( )

pc d
ab

ba
b ans

n nC

MwH M Q w s
n s

 (2-42) 

1

( ) ( ) ( )
1pc [ ( ) ( ) ( ) ]a a b

ns ns
J

G M w w M w  (2-43) 

2

( ) ( )
2pc [( ) ]b a

ns
J

G M R w  (2-44) 
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(3) Stationary condition 
The stationary condition of the functional is 

( ) ( )
3 3p 3c pc 1pc 2pc 0a b H G G  (2-45) 

which is equivalent to all field equations, boundary conditions, interface conditions, 
and conditions at the corner points and nodes, including: 

The field equations within a and b:

2 2 2

2 2

2 22

2 2

( ), ( )
(1 )

, ,

2 0

x x y y y x

xy xy

x y xy

y xyx

M D M D
M D

w w w
x y x y

M MM
q

x y x y

 (2-46) 

The boundary conditions on Ca and Cb:

3 3

1 2 1 2

2 3 2 3

1 1

(on )

(on )
(on )

(on )

ns
n n a b

a a b b

n n a a b b

n a b

MQ V C C
s

w w C C C C
M M C C C C

w C C
n

 (2-47) 

The interface conditions on Cab:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

a b
n n

a b
ns ns

n n

a b

a b

M M

M MQ Q
s s

w w
n n

w w

 (2-48) 

The conditions at the corner points: 

1 1

2 2

(at )
(at )

a b

ns a b

w w A A
M R A A

 (2-49) 

The conditions at the nodes on the interface: 
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( )
1

( )
1

( ) ( )
2

( ) ( )
2

(at )
(at )
(at )

( ) ( ) (at )

a

b

a b

a b
ns ns

w w J
w w J
w w J

M M R J

 (2-50) 

The proof of the above equivalent equations is given in Appendix A. 

2.3.2 The Sub-Region Three-Field Generalized Potential and  
Complementary Energy Principles for Thin Plate 

1. The transformation relation between ( )
3p
a  and ( )

3c
a

The three-field generalized potential energy ( )
3p

a  and the three-field generalized 
complementary energy ( )

3c
a  of the region a (excluding the interface Cab and the 

node J) have the following transformation relation: 

1 2

( )( )
( )( ) ( ) ( ) ( ) ( )

3p 3c d ( )
ab

aa
aa a a a ans

n n nsC
J J

MwM Q w s w M
n s

   (2-51) 

Proof From Eqs. (2-39) and (2-41), replacing b by a in Eq. (2-41), we have 

1 2 3
1 2

2 2 2
( ) ( )

3p 3c 2 2

2 22

2 2

2

2 d d

d ( )

a

a a a
a a

a a
x y xy

y xyx

ns
n n nsC C C

A A

w w wM M M
x y x y

M MM w x y
x y x y

M wQ w M s M w
s n

(2-52)

By using integration by parts, the following relation can be obtained: 

1 2 3
1 2 1 2

2 22 2 2 2

2 2 2 22 d d 2 d d

d

a a

a a a ab
a a

y xyx
x y xy

ns
n n nsC C C C

A A J J

M MM w w ww x y M M M x y
x y x y x y x y

MwM Q w s w M
n s

 (2-53) 

Substitution of Eq. (2-53) into Eq. (2-52) yields Eq. (2-51). 
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If the whole domain is not divided into sub-regions, Cab, J1 and J2 will no longer 
exist, so we have 

( ) ( )
3p 3c 0a a  (2-54) 

2. The sub-region three-field generalized potential energy principle 

In the functional expression (2-38) of the sub-region three-field generalized mixed 
variational principle, the region a represents the generalized potential energy 
region, and the region b represents the generalized complementary energy region. 
Now, if the region b is changed to represent the generalized potential energy 
region, then from Eq. (2-51), we have 

1 2

( )( )
( ) ( ) ( ) ( ) ( ) ( )

3c 3p d ( )
ab

bb
b b b b b bns

n nsC
J J

MwM Q w s w M
n s

Substitution of this equation into (2-38) yields 
( ) ( )

3 3p 3p pp 1pp 2pp
a b H G G  (2-55) 

where Hpp, G1pp and G2pp are the additional potential energy terms on the interface 
Cab and the nodes J1 and J2:

( )( ) ( )
( ) ( ) ( )

pp ( ) d
ab

ba b
b a bns

n nC

Mw wH M Q w w s
n n s

(2-56a)

1

( ) ( ) ( ) ( )
1pp [( ) ( ) ( ) ( )]a a b b

ns ns
J

G M w w M w w  (2-57) 

2

( ) ( ) ( ) ( )
2pp [( ) ( ) ]b a b a

ns
J

G M w w Rw  (2-58a) 

Equations (2-55), (2-56a), (2-57) and (2-58a) are the functional expressions of 
the sub-region three-field generalized potential energy principle. It can be shown 
that the stationary conditions of this functional is equivalent to all field equations, 
boundary conditions, interface conditions, corner point and node conditions of 
the thin plate with sub-regions.  

Other expressions of Hpp and G2pp can also be obtained by interchanging a and 
b in Eqs. (2-56a) and (2-58a): 

( )( ) ( )
( ) ( ) ( )

pp ( ) d
ab

aa b
a b ans

n nC

Mw wH M Q w w s
n n s

(2-56b)
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2

( ) ( ) ( ) ( )
2pp [( ) ( ) ]a b a b

ns
J

G M w w Rw  (2-58b) 

If the displacement continuous conditions on the interface Cab and the nodes J1
and J2 are satisfied in advance, then from Eqs. (2-56), (2-57) and (2-58), we can 
obtain

2 2

pp

1pp

( ) ( )
2pp 2pp

0
0

ora b

J J

H
G

G Rw G Rw

3. The sub-region three-field generalized complementary energy principle 

In Eq. (2-38), if we require that the sub-region a is given by the generalized 
complementary energy, the substitution of (2-51) into (2-38) will yield 

( ) ( )
3 3c 3c cc 1cc 2cc

a b H G G  (2-59) 

where Hcc, G1cc and G2cc are the additional complementary energy terms on the 
interface Cab and the nodes J1 and J2:

( ) ( )( )
( ) ( ) ( )

cc ( ) d
ab

b aa
b a ans ns

n n n nC

M MwH M M Q Q w s
n s s

 (2-60a) 

1

( ) ( )
1cc [( ) ( ) ]b a

ns ns
J

G M M w  (2-61) 

2

( ) ( ) ( )
2cc {[( ) ( ) ] }b a a

ns ns
J

G M M R w  (2-62a) 

Equations (2-59), (2-60a), (2-61) and (2-62a) are the functional expressions of 
the sub-region three-field generalized complementary energy principle. Other 
expressions of Hcc and G2cc can also be obtained by interchanging a and b in 
Eqs. (2-60a) and (2-62a):  

( ) ( )( )
( ) ( ) ( )

cc ( ) d
ab

a bb
a b bns ns

n n n nC

M MwH M M Q Q w s
n s s

 (2-60b) 

2

( ) ( ) ( )
2cc {[( ) ( ) ] }b a b

ns ns
J

G M M R w  (2-62b) 

If the traction conditions on the interface Cab and the node J2 are satisfied in 
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advance, then from Eqs. (2-60) and (2-62), we can obtain: 

cc 2cc0, 0H G

2.3.3 The Sub-Region Two-Field and Single-Field Variational  
Principle for Thin Plate 

1. The sub-region two-field generalized variational principle 

By using the relation between the strain energy density ( )U  and the strain 
complementary energy density ( )V M :

 ( ) 2 ( )x x y y xy xyV M M M UM  (2-63) 

the variable  in the three-field generalized potential energy ( )
3p

a  and generalized 
complementary energy ( )

3c
a  of the region a (excluding the interface Cab and the 

nodes J1 and J2) can be eliminated. Thereby, the two-field (displacement field w
and internal moment field M) generalized potential energy ( )

2p
a  and generalized 

complementary energy ( )
2c

a  can be written as follows: 

1 2 3 1

2 3
1 2

2 2 2
( )
2p 2 2 2 ( ) d d

( )d d d

d ( ) (2-64)

a

a a a a

a a
a a

a
x y xy

ns
n n n nC C C C

n nsC C
A A

w w wM M M V qw x y
x y x y

M wQ w w s V w s M s
s n

wM s M w w Rw
n

M

1 2 3 1

2 3
1 2

2 22
( )
2c 2 2( ) 2 d d

d d d

( ) d ( ) (2-65)

a

a a a a

a a
a a

y xya x

ns ns
n n n n nC C C C

n n ns nsC C
A A

M MMV q w x y
x y x y

M MQ w s Q V w s M s
s s

wM M s M w M R w
n

M

From Eqs. (2-38), (2-55) and (2-59), the functional expressions of the sub-region 
two-field generalized mixed energy, potential energy and complementary energy 
principle can be obtained: 

( ) ( )
2 2p 2c pc 1pc 2pc

a b H G G  (2-66) 
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( ) ( )
2 2p 2p pp 1pp 2pp

a b H G G  (2-67) 

( ) ( )
2 2c 2c cc 1cc 2cc

a b H G G  (2-68) 

where Hpc, Hpp and Hcc are still given by Eqs. (2-42), (2-56) and (2-60), respectively; 
G1pc, G2pc, G1pp, G2pp, G1cc and G2cc are still given by Eqs. (2-43), (2-44), (2-57), 
(2-58), (2-61) and (2-62), respectively. 

2. The sub-region single-field variational principle 

Now we consider the case where each sub-region is a single-field region. If the 
region a is a potential energy region, only the displacement w will be taken as the 
field variable. Thus, the ( )

3p
a  in Eq. (2-39) or the ( )

2p
a  in Eq. (2-64) will transform 

to the single-field potential energy ( )
1p

a  of the region a:

1 2

3 1 2 3

1 2

( )
1p [ ( ) ]d d ( )d

d d d

( )

a a
a

a a a a

a a

a ns
nC C

n n n nC C C C

ns
A A

MU w qw x y Q w w s
s

w wV w s M s M s
n n

M w w Rw (2-69a)

where ns
n

MQ
s

, nM  and nsM  can be expressed as the functions of the 

displacement w, or looked upon as the Lagrange multipliers on the boundaries and 
their corner points; ( )U w  is the strain energy density in terms of the displacement w:

2 22 2 2 2 2

2 2 2 2( ) 2(1 )
2
D w w w w wU w

x y x y x y

If the displacement w satisfies the geometrical boundary and corner point 
conditions in advance, then 

3 2 3
2

( )
1p [ ( ) ]d d d d

a a a
aa

a
n nC C C

A

wU w qw x y V w s M s Rw
n

(2-69b)

If the sub-region a is a complementary energy region, only the internal 
moment M will be taken as the field variable, and M should satisfy the equilibrium 
differential equation in advance. 

2 22

2 2 2 0y xyx M MM q
x y x y
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Thus, the ( )
3c

a  in Eq. (2-41) or the ( )
2c

a  in Eq. (2-65) will transform to the 
single-field complementary energy ( )

1c
a :

1 2 3

1 2 3
1 2

( )
1c ( )d d d d

d ( ) d ( )

a a a
a

a a a
a a

a ns ns
n n nC C C

n n n n ns nsC C C
A A

M M
V x y Q w s Q V w s

s s
wM s M M s M w M R w
n

M

 (2-70a) 

where w and w
n

 can be looked upon as the Lagrange multipliers on the boundaries 

and their corner points. 
If M satisfies the traction boundary and corner point conditions in advance, then 

1 2 1
1

( )
1c ( )d d d d

a a a
aa

a ns
n n n nsC C C

A

M
V x y Q w s M s M w

s
M

 (2-70b) 

From Eqs. (2-38), (2-55), (2-59), or (2-66), (2-67), (2-68), the functional 
expressions of the sub-region single-field mixed energy principle, potential energy 
principle and complementary energy principle can be obtained: 

( ) ( )
1 1p 1c pc 1pc 2pc

a b H G G  (2-71) 

( ) ( )
1 1p 1p pp 1pp 2pp

a b H G G   (2-72) 

( ) ( )
1 1c 1c cc 1cc 2cc

a b H G G  (2-73) 

where Hpc, G1pc, G2pc, Hpp, G1pp, G2pp, Hcc, G1cc and G2cc are the same as those in 
Eqs. (2-66) to (2-68). 

2.3.4 The General Form of the Sub-Region Generalized Variational  
Principle for Thin Plate 

From the above discussions, a general form of the sub-region generalized variational 
principle can be obtained.  

Let an elastic thin plate be divided into several sub-regions. Each sub-region 
can be arbitrarily appointed as single-field, two-field and three-field potential 
energy regions (such as the regions p1, p2, p3 in Fig. 2.4) or complementary 
energy regions (such as the regions c1, c2, c3 in Fig. 2.4). 

The interfaces between two adjacent sub-regions are of three types, Cpc, Cpp and 
Ccc:  one side of Cpc is the potential energy region, while the other side is the 
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complementary one;  both sides of Cpp are potential energy regions; and 
 both sides of Ccc are complementary energy regions. 

Figure 2.4 A thin plate divided into multi-regions 

The node J of the adjacent sub-regions are of two types, J1 and J2: J1 is the 
node where the displacement w  is specified; J2 is the node where the concentrated 
force R  is specified. There are rp potential energy elements ep and rc complementary 
energy element ec around the node J.

The general form for the functional of the sub-region variational principle can 
be written as 

p c pc pp cc 1 2

p c pc pp cc 1 2
C C C J J

H H H G G  (2-74) 

The meanings of the terms on the right-side of this equation are as follows: 
The first term denotes the sum of the potential (or generalized potential) energy 

p of each potential energy region p, where p can be 1p or 2p or 3p, which 
is given by Eqs. (2-69), (2-64) and (2-39), respectively; 

The second term denotes the sum of the complementary (or generalized 
complementary) energy c of each complementary energy region c, where c
can be 1c or 2c or 3c, which is given by Eqs. (2-70), (2-65) and (2-41), 
respectively;

The third term denotes the sum of the additional mixed energy term Hpc on the 
interface Cpc, in which Hpc is given by Eq. (2-42); 

The fourth term denotes the sum of the additional potential energy term Hpp on 
the interface Cpp, in which Hpp is given by Eq. (2-56); 

The fifth term denotes the sum of the additional complementary energy term 
Hcc on the interface Ccc, in which Hcc is given by Eq. (2-60). 

The sixth term denotes the sum of the additional energy term G1 at the node J1
(where the displacement is specified) of the adjacent sub-regions, in which 

p p c

p c

( ) ( ) ( )
1 ( ) ( ) ( )e e e

ns ns
e e

G M w w M w  (2-75) 
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The first term on the right side of the above equation means the sum of all the 
potential elements ep around the node; the second term means the sum of all the 
complementary energy elements ec around the node.  

The seventh term denotes the sum of the additional energy term G2 at the node 
J2 (where the concentrated force is specified) of the adjacent sub-regions, in which  

p p

p

( ) ( )( ) ( )
2 [ ( ) ] ( ) e ee a

ns ns
e e

G M R w M w  (2-76) 

The
e

in the first term on the right side of the above equation denotes the sum 

of all the elements e (including all ep and ec) around the node; ( )aw  is the 
displacement of any element a around the node; The 

pe
in the second term on 

the right side of the above equation denotes the sum of all the potential elements 
pe  around the node. 

G1pc in (2-43), G1pp in (2-57), and G1cc in (2-61) are all special cases of G1 in 
(2-75). G2pc in (2-44), G2pp in (2-58), and G2cc in (2-62) are all special cases of G2
in (2-76). 

It can be shown that the stationary condition 

 0  (2-77) 

of the functional  in Eq. (2-74) is equivalent to all field equations, boundary 
conditions, interface conditions, corner point and node conditions of the thin 
plate system with multi-regions. 

The procedure for deriving the node conditions of the node J from the stationary 
condition (2-77) is given in Appendix B. 

If all the sub-regions are potential energy regions, the functional of the sub-region 
potential (or generalized potential) energy principle can be obtained from Eq. (2-74): 

p pp 1 2

p pp 1pp 2pp
C J J

H G G  (2-78) 

where G1pp and G2pp can be obtained from Eqs. (2-75) and (2-76): 

p p

p

( ) ( )
1pp ( ) ( )e e

ns
e

G M w w  (2-79) 

p p p

p p

p p

p

( ) ( ) ( )( )
2pp

( ) ( ) ( ) ( )

[ ( ) ] ( )

( ) ( )

e e ea
ns ns

e e

e e a a
ns

e

G M R w M w

M w w Rw (2-80)

Equations (2-55), (2-67) and (2-72) are all the special cases of (2-78). One of the 
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special cases of the sub-region potential energy principle is that each sub-region 
is appointed as a single-field potential energy region. At this time, p in Eq. (2-78) 
will be replaced by 1p in Eq. (2-69a): 

p pp 1 2

1p pp 1pp 2pp
C J J

H G G  (2-81) 

If all the sub-regions are complementary energy regions, the functional of the 
sub-region complementary (or generalized complementary) energy principle can 
be obtained from Eq. (2-74): 

c cc 1 2

c cc 1cc 2cc
C J J

H G G  (2-82) 

where

c

c

( )
1cc ( ) e

ns
e

G M w  (2-83) 

c

c

( ) ( )
2cc [ ( ) ]e a

ns
e

G M R w  (2-84) 

Equations (2-59), (2-68) and (2-73) are all the special cases of (2-82). One of the 
special cases of sub-region complementary energy principle is that each sub-region 
is appointed as a two-field complementary energy region. At this time, c in
Eq. (2-82) will be replaced by 2c in Eq. (2-65): 

c cc 1 2

2c cc 1cc 2cc
C J J

H G G  (2-85) 

2.4 The Sub-Region Variational Principle for Elastic  
Thick Plate 

In the previous section, the sub-region variational principle for thin plate is 
discussed. This section will consider the thick plate case. 

Compared with the thin plate theory, the characteristics of the thick plate theory 
are as follows: the influences of the transverse shear strain x and y (abbreviations 
of xz and yz) are considered; the rotations x and y are not dependent on the 
deflection w , thereby, w, x and y are three independent displacements; Besides 
the normal load q , there still are couple loads xm  and ym ; the transverse shear 
forces Qx and Qy are not dependent on the bending and twisting moments Mx, My

and Mxy.
The sub-region variational principle for elastic thick plate was proposed in [13]. 
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For comparison, the arrangement of this section is the same as that of the 
previous one, which can make it easy to understand the similarities and differences 
of the two principles. 

2.4.1 The Sub-Region Three-Field Generalized Mixed Variational  
Principle for Thick Plate 

Here we consider an elastic plate with moderate thickness, i.e. an elastic thick 
plate. A Cartesian co-ordinate system is established on the mid-surface of the 
plate (see Fig. 2.5), and the positive direction of the z-axis is downward. n and s
denote the directions of the outer normal and the tangent along the boundary, 
respectively. And, the positive direction of s is shown in Fig. 2.5. 

Figure 2.5 A thick plate divided into two sub-regions 

Let a thick plate be divided into two sub-regions a and b, and a and b
represent the domains of the regions a and b, respectively. The outer boundaries 
Ca and Cb of the regions a and b are both composed of three parts: 

1 2 3 1 2 3,a a a a b b b bC C C C C C C C

where C1a and C1b are the fixed boundaries (the deflection w, the normal rotation 
n and the tangent rotation s of the mid-surface normal line are specified by w ,
n  and s , respectively); C2a and C2b are the simply-supported boundaries (the 

deflection w, the tangent rotation s of the mid-surface normal line and the 
normal bending moment Mn are specified by w , s  and nM , respectively); C3a
and C3b are the free boundaries (the normal bending moment Mn, the twisting 
moment Mns and the transverse shear force Qn are specified by nM , nsM  and 

nQ , respectively). The interface of the two regions is denoted by Cab. The positive 
deflection w is downward; the positive normal rotation n rotates from n to z; the 
positive tangent rotation s rotates from s to z; the normal bending moment Mn is 
positive when the bottom of the plate is under tension; the twisting moment Mns
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is positive when it produces positive shear stress ns along the positive direction 
of s at the bottom of the plate; and the positive transverse shear force Qn is also 
downward. 

The key points of the sub-region generalized mixed variational principle can be 
listed as follows. 

1. The field variables

Both regions a and b possess three field variables: 
Displacements ( ) T( )[ ]a a

x ywd , ( ) T( )[ ]b b
x ywd

Internal forces ( ) T( )[ ]a a
x y xy x yM M M Q QS

( ) T( )[ ]b b
x y xy x yM M M Q QS

Strain  ( ) T( )[ 2 ]a a
x y xy x yE , ( ) T( )[ 2 ]b b

x y xy x yE
The positive rotations x and y of the normal line rotate from x to z and from 

y to z, respectively; the bending moment Mx and My are positive when the bottom 
of the plate is under tension; the twisting moment Mxy is positive when it produces 
positive shear stress xy at the bottom of the plate; the positive shear forces Qx
and Qy on the positive surfaces are all downward. The positive curvatures x, y
and xy, shear strains x ( xz) and y ( yz) are all corresponding to the deformations 
caused by the positive Mx, My, Mxy, Qx and Qy, respectively. The above three-field 
variables are not required to satisfy any conditions in advance within the domain 
and on the boundaries and interfaces. 

2. Definition of the functional

Let the region a be the potential energy region, and the region b be the 
complementary energy region. Then, the definition of the functional is 

( ) ( )
3 3p 3c pc

a b H  (2-86) 

where ( )
3p

a  is the three-field generalized potential energy of the region a
(excluding the interface Cab):  

1 2

3

( )
3p b s[ ( ) ( )

2

]d d [ ( ) ( )]d

( )d ( )

a

a a

a

ya x
x x y y

yx
xy xy x x x y y y

x x y y ns s s nC C

ns s n n n nC

U U M M
x y

w wM Q Q
y x x y

m m qw x y M Q w w s

M Q w s M
1 2 3

d d
a a a

n nC C C
s M s

(2-87)

Here, q  is the load density, and its positive direction is downward. xm  and ym
are the couple load densities, and their positive directions are the same as those 
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of x and y, respectively. b ( )U  and s ( )U  are the densities of bending and shear 
strain energies, respectively: 

2 2 2
b ( ) [ 2 2(1 ) ]

2 x y x y xy
DU  (2-88) 

2 2
s ( ) ( )

2 x y
CU  (2-89) 

where
3

212(1 )
EhD  and 

2(1 )
EhC

k
 are the bending and shear stiffness, 

respectively;  is the Poisson’s ratio; and coefficient k 1.2.
( )
3c

b  is the three-field generalized complementary energy of the region b
(excluding the interface Cab):

1 2

3 1

( )
3c b s[ ( ) ( ) 2

]d d ( )]d

[( ) ( ) ]d d

(

b

b b

b b

b
x x y y xy xy x x y y

xy xy yx
x x x y y y

yx
s ns nC C

ns ns s n n n nC C

U U M M M Q Q

M M MM
Q m Q m

x y x y
QQ q w x y M wQ s

x y

M M Q Q w s M s

M
2 3

) d
b b

n n nC C
M s (2-90)

Hpc is the additional energy term on the interface Cab:

( ) ( ) ( ) ( ) ( ) ( )
pc ( )d

ab

b a b a b a
n n ns s nC

H M M Q w s  (2-91) 

3. Stationary condition

The stationary condition of the functional is 
( ) ( )

3 3p 3c pc 0a b H  (2-92) 

which is equivalent to all field equations, boundary conditions and interface 
conditions of the thick plate sub-region system , including:  

The constitutive, geometrical and equilibrium equations within a and b:

 ( ), ( ), (1 )x x y y y x xy xyM D M D M D  (2-93) 

, , 2y yx x
x y xyx y y x

 (2-94) 
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0

0

0

xyx
x x

xy y
y y

yx

MM
Q m

x y
M M

Q m
x y

QQ
q

x y

 (2-95) 

The geometrical and force boundary conditions: 

1 2 1 2

1 1

, (on )
(on )

s s a a b b

n n a b

w w C C C C
C C

 (2-96) 

3 3

2 3 2 3

, (on )
(on )

ns ns n n a b

n n a a b b

M M Q Q C C
M M C C C C

 (2-97) 

The interface conditions on Cab:
( ) ( ) ( ) ( ) ( ) ( ), ,a b a b a b
n n n n ns nsQ Q M M M M  (2-98) 

( ) ( ) ( ) ( ) ( ) ( ), ,a b a b a b
n n s sw w  (2-99) 

2.4.2 The Sub-Region Three-Field Generalized Potential and  
Complementary Energy Principles for Thick Plate 

1. The transformation relation between ( )
3p
a  and ( )

3c
a

The three-field generalized potential energy ( )
3p

a  and generalized complementary 
energy ( )

3c
a  of the region a (excluding the interface Cab) have the following 

transformation relation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3p 3c [ ]d

ab

a a a a a a a a
n n n ns sC

Q w M M s  (2-100) 

Proof From Eqs. (2-87) and (2-90) (replace b by a in Eq. (2-90)), we have 

1 2 3

( ) ( )
3p 3c

d d ( )d

a

a a a

y ya a x x
x y xy x x

xy xy yx
y y x x y y

yx
n n n ns sC C C

wM M M Q
x y y x x

M M MMwQ Q Q
y x y x y

QQ
w x y Q w M M s

x y
(2-101)



Chapter 2 The Sub-Region Variational Principles 

45

By using integration by parts, the following identical relation can be obtained: 

1 2 3

d d

d d

( )d

a

a

a a a ab

y yx x
x y xy x x y y

xy xy y yx x
x x y y

n n n ns sC C C C

w wM M M Q Q x y
x y y x x y

M M M QM Q
Q Q w x y

x y x y x y

Q w M M s

 (2-102) 
Substitution of Eq. (2-102) into Eq. (2-101) yields Eq. (2-100). 

If the whole domain is not divided into sub-regions, Cab will no longer exist, 
so we have 

( ) ( )
3p 3c 0a a  (2-103) 

2. The sub-region three-field generalized potential energy principle 

In the functional expression (2-86) of the sub-region three-field generalized mixed 
variational principle, the region a represents the generalized potential energy 
region, and the region b represents the generalized complementary region. Now, 
if the region b is changed to represent the generalized potential region, then from 
Eq. (2-100), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3c 3p [ ]d

ab

b b b b b b b b
n n n ns sC

Q w M M s

Substitution of this equation into (2-86) yields 
( ) ( )

3 3p 3p pp
a b H  (2-104) 

where Hpp is the additional potential energy term on the interface Cab:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
pp [ ( ) ( ) ( )]d

ab

b a b b a b b a b
n n n n ns s sC

H Q w w M M s

(2-105a)

Equations (2-104) and (2-105a) are the functional expressions of the sub-region 
three-field generalized potential energy principle. It can be shown that the stationary 
conditions of this functional is equivalent to all field equations, boundary conditions 
and interface conditions of the thick plate with sub-regions.  

Another expression of Hpp can also be obtained by interchanging a and b in 
Eq. (2-105a): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
pp [ ( ) ( ) ( )]d

ab

a b a a a b a a b
n n n n ns s sC

H Q w w M M s

(2-105b)
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If the displacement continuous conditions (2-99) on the interface Cab are satisfied 
in advance, then from Eqs. (2-105a) and (2-105b), we can obtain 

pp 0H  (2-106) 

3. The sub-region three-field generalized complementary energy principle 

In Eq. (2-86), if the sub-region a is changed to represent the generalized 
complementary energy region, substitution of (2-100) into (2-86) will yield 

( ) ( )
3 3c 3c cc

a b H  (2-107) 

where Hcc is the additional complementary energy term on the interface Cab:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
cc [( ) ( ) ( ) ]d

ab

a b a b a a b a a
n n n n n ns ns sC

H Q Q w M M M M s

(2-108a)

Equations (2-107) and (2-108a) are the functional expressions of the sub-region 
three-field generalized complementary energy principle. Another expression of 
Hcc can also be obtained by interchanging a and b in equation (2-108a):  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
cc [( ) ( ) ( ) ]d

ab

a b b a b b a b b
n n n n n ns ns sC

H Q Q w M M M M s

(2-108b)

If the traction conditions (2-98) on the interface Cab are satisfied in advance, 
then from Eqs. (2-108), we can obtain: 

cc 0H  (2-109) 

2.4.3 The Sub-Region Two-Field and Single-Field Variational  
Principle for Thick Plate 

1. The sub-region two-field generalized variational principle 

By using the following relations between the strain energy density, b ( )U  and 
s ( )U , and the strain complementary energy density, b ( )V M  and s ( )V Q :

b b

s s

( ) 2 ( )

( ) ( )
x x y y xy xy

x x y y

V M M M U

V Q Q U

M

Q
 (2-110) 

the strain E in the three-field generalized potential energy ( )
3p

a  and the three-field 
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generalized complementary energy ( )
3c

a  of the region a (excluding the interface 
Cab) can be eliminated. Thereby, the two-field (displacement d and internal force 
S) generalized potential energy ( )

2p
a  and the two-field generalized complementary 

energy ( )
2c

a  can be written as follows:  

3 1 2

1 2 3

( )
2p

b s( ) ( ) d d

( )d [( ) ( ) ]d

( ) d d

a

a a a

a a a

y ya x x
x y xy x x

y y x x y y

ns s n s s ns nC C C

n n n n nC C C

wM M M Q
x y y x x

wQ V V m m qw x y
y

M Q w s M w w Q s

M s M s

M Q

(2-111)

1 2 3

1 2 3

( )
2c b s( ) ( )

d d

( )d [( ) ( ) ]d

d ( ) d

a

a a a

a a a

xya x
x x x

xy y yx
y y y

s ns n ns ns s n nC C C

n n n n nC C C

MMV V Q m
x y

M M QQ
Q m q w x y

x y x y

M wQ s M M Q Q w s

M s M M s

M Q

(2-112)

From equations (2-86), (2-104) and (2-107), the functional expressions of the 
sub-region two-field generalized mixed energy, potential energy and complementary 
energy principles can be obtained: 

( ) ( )
2 2p 2c pc

a b H  (2-113) 

( ) ( )
2 2p 2p pp

a b H  (2-114) 

( ) ( )
2 2c 2c cc

a b H  (2-115) 

where Hpc, Hpp and Hcc are still given by Eqs. (2-91), (2-105) and (2-108), 
respectively. 

2. The sub-region single-field variational principle 

Now we consider the case where each sub-region is a single-field region.  
If the region a is a potential energy region, only the displacement d will be 

taken as the field variable. Thus, the ( )
3p

a  in Eq. (2-87) or the ( )
2p

a  in Eq. (2-111) 
will transform to the single-field potential energy ( )

1p
a  of the region a:
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1 2 3

1 2 3

( )
1p b s[ ( ) ( ) ]d d

ˆˆ[( ) ( ) ]d ( )d

ˆ( ) d d

a

a a a

a a a

a
x x y y

s s ns n ns s nC C C

n n n n nC C C

U U m m qw x y

M w w Q s M Q w s

M s M s

d d

(2-116a)

where ˆ
nQ , ˆ

nM  and ˆ
nsM  are the boundary force variables, and can also be 

expressed by the functions of the displacement d; b ( )U d  and s ( )U d  are the strain 
energy densities expressed by the displacement d:

2 22

b
1( ) 2

2 2
y y yx x xDU

x y x y y x
d  (2-117) 

22

s ( )
2 x y
C w wU

x y
d  (2-118) 

If the displacement d satisfies the geometrical boundary conditions in advance, 
then

3 2 3

( )
1p b s[ ( ) ( ) ]d d

( )d d
a

a a a

a
x x y y

ns s n n nC C C

U U m m qw x y

M Q w s M s

d d

(2-116b)

If the sub-region a is a complementary energy region, only the internal force S
will be taken as the field variable, and S should satisfy the equilibrium differential 
Eq. (2-95) in advance. Thus, the ( )

3c
a  in Eq. (2-90) or the ( )

2c
a  in Eq. (2-112) 

will transform to the single-field complementary energy ( )
1c

a :

1 2

3 1

2 3

( )
1c b s[ ( ) ( )] d d [( )]d

ˆ ˆ[( ) ( ) )]d d

ˆ( ) d

a a
a

a a

a a

a
s ns nC C

ns ns s n n n nC C

n n nC C

V V x y M wQ s

M M Q Q w s M s

M M s

M Q

(2-119a)

where ŵ , ˆn  and ˆ s  are the boundary displacement variables. 
If S satisfies the force boundary conditions in advance, then 

1 2 1

( )
1c b s[ ( ) ( )]d d [( )]d d

a a a
a

a
s ns n n nC C C

V V x y M wQ s M sM Q

(2-119b)
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From Eqs. (2-86), (2-104), (2-107), or (2-113), (2-114), (2-115), the functional 
expressions of the sub-region single-field mixed energy principle, potential 
energy principle and complementary energy principle can be obtained: 

( ) ( )
1 1p 1c pc

a b H  (2-120) 

( ) ( )
1 1p 1p pp

a b H  (2-121) 

( ) ( )
1 1c 1c cc

a b H  (2-122) 

where Hpc, Hpp and Hcc are the same as those in Eq. (2-113) to Eq. (2-115). 

2.4.4 The General Form of the Sub-Region Generalized Variational  
Principle for Thick Plate 

From the above discussions, a general form of the sub-region generalized 
variational principle for elastic thick plate can be obtained. Let an elastic thick 
plate be divided into several sub-regions. Each sub-region can be arbitrarily 
appointed as single-field, two-field and three-field potential energy regions (such 
as the regions p1, p2, p3 in Fig. 2.6) or complementary energy regions (such 
as the regions c1, c2, c3 in Fig. 2.6). The interfaces between two adjacent 
sub-regions are of three types, Cpc, Cpp and Ccc:  one side of Cpc is the potential 
energy region, while the other side is the complementary one;  both sides of Cpp
are potential energy regions; and  both sides of Ccc are complementary energy 
regions.

Figure 2.6 A thick plate divided into multi-regions 

The general form for the functional of the sub-region variational principle can 
be written as 

p c pc pp cc

p c pc pp cc
C C C

H H H  (2-123) 
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The meanings of the terms on the right-side of this equation are as follows: 
The first term denotes the sum of the potential (or generalized potential) energy 

p of each potential energy region p, where p can be 1p or 2p or 3p, which 
is given by Eqs. (2-116), (2-111) and (2-87), respectively; 

The second term denotes the sum of the complementary (or generalized 
complementary) energy c of each complementary energy region c, where c
can be 1c or 2c or 3c, which is given by Eqs. (2-119), (2-112) and (2-90), 
respectively;

The third term denotes the sum of the additional mixed energy term Hpc on the 
interface Cpc, in which Hpc is given by Eq. (2-91); 

The fourth term denotes the sum of the additional potential energy term Hpp on 
the interface Cpp, in which Hpp is given by Eq. (2-105); 

The fifth term denotes the sum of the additional complementary energy term 
Hcc on the interface Ccc, in which Hcc is given by Eq. (2-108). 

It can be shown that the stationary condition 

 0  (2-124) 

of the functional   in Eq. (2-123) is equivalent to all field equations, boundary 
conditions and interface conditions of the thick plate system with multi-regions. 

If all the sub-regions are potential energy regions, the functional of the 
sub-region potential (or generalized potential) energy principle can be obtained 
from Eq. (2-123): 

p pp

p pp
C

H  (2-125) 

Equations (2-104), (2-114) and (2-121) are all the special cases of (2-125). 
If all the sub-regions are complementary energy regions, the functional of the 

sub-region complementary (or generalized complementary) energy principle can be 
obtained from Eq. (2-123): 

c cc

c cc
C

H  (2-126) 

Equations (2-107), (2-115) and (2-122) are all the special cases of (2-126). 
The functional expression (2-123) of the sub-region generalized variational 

principle for elastic thick plate is the most general functional form of the 
variational principle for thick plate, and builds a bridge linking various special 
functional forms of the variational principle. 

By using the relation (2-100), the direct transformation between the different 
functional forms of the variational principle for thick plate can be performed 
conveniently. 

The sub-region mixed variational principle for thick plate and its functional 
expression (2-86) provide the fundamentals for the applications of the sub-region 
mixed finite element method in thick plate problems. 
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2.5 The Sub-Region Variational Principle for Elastic  
Shallow Shell 

This section will discuss the sub-region variational principle for elastic shallow 
shell[14]. The fundamental equations and the variational principles for shallow 
shell were systematically introduced in [3]. 

Figure 2.7 The shallow shell 

Let the bottom plane of the shallow shell be the xOy plane, and the z-axis be 
normal to the bottom plane (Fig. 2.7). Then, the mid-surface equation of the 
shallow shell is 

 ( , )z z x y

The initial curvatures of the mid-surface are 
2 2 2

2 2, ,x y xy
z z z

x y x y

And, another movable co-ordinate system ( , , ) is also adopted where -axis
is the normal of the mid-surface, and -axis and -axis are the tangents of the 
mid-surface within xz-plane and yz-plane, respectively. 

The load components along ,  and  directions of an arbitrary point within 
the mid-surface are px, py and pz; and the displacement components are u, v and w.
There are three membrane internal force components Nx, Ny and Nxy in shallow 
shell structures, and their corresponding strains are x, y and xy. There are also 
three independent internal moment components Mx, My and Mxy, and their 
corresponding generalized strains are the curvature variety values x, y and xy.
Furthermore, the transverse shear forces Qx and Qy are dependent internal force 
components, and can be determined by Mx, My and Mxy. In thin shells, the 
transverse shear strain xz and yz are both zero. 

On the boundary line C of the shallow shell, let n and s be the outer normal 
and the tangent directions. The displacement components along n, s and 
directions of an arbitrary point on the boundary line are un, vs and w and the 
corresponding boundary forces are normal tension Nn, tangent shear force Nns,

and equivalent transverse shear force ns
n n

MV Q
s

 which is synthesized by 
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the transverse shear force Qn and the twisting moment Mns. The rotation on the 

boundary within n  plane is n
w
n

, and the corresponding boundary moment 

is the normal bending moment Mn.
The boundary line C of the shallow shell contains different line segments: 

n n s ns n n nu N v N w V MC C C C C C C C C

where , , , , , ,
n n s ns n nu N v N w VC C C C C C C  and 

nMC  denote the boundary segments 
on which un, Nn, vs, Nns, w, Vn, n and Mn are specified, respectively. 

A denotes the corner point on the boundary line, and is generally composed of 
two types: 

w RA A A

where Aw and AR are the corner points where the deflection w  and transverse 
concentrated force R  are specified, respectively. The twisting moment increment 
of the two sides of corner point A is ( )ns AM .

In the sub-region generalized variational principle for shallow shell, the mid 
and the bottom surfaces of the shallow shell are divided into several sub-regions. 
Each sub-region can be arbitrarily appointed as single-field, two-field and 
three-field potential energy regions (such as p1, p2 and p3 in Fig. 2.8), or the 
complementary energy regions (such as c1, c2 and c3 in Fig. 2.8). The 
interfaces between two adjacent sub-regions are of three types, Cpc, Cpp and Ccc
(Fig. 2.8):  one side of Cpc is the potential energy region, while the other side 
is the complementary one;  both sides of Cpp are potential energy regions; and 

 both sides of Ccc are complementary energy regions. The node J of the 
adjacent sub-regions generally is also classified into two types, Jw and JR: Jw and 
JR are the nodes where the displacement w  and the transverse concentrated 
force R  are specified, respectively. rp and rc denote the numbers of the elements 
ep in the potential energy regions and the elements ec in the complementary 
energy regions around the node J, respectively. 

Figure 2.8 A shallow shell divided into multi-regions 
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The functional of the sub-region generalized variational principle for elastic 
shallow shell can be written as: 

p c pc pp cc

p c pc pp cc
w R

w R
C C C J J

H H H G G  (2-127) 

There are seven terms on the right side of the above equation, where the first two 
terms are the energy of all the sub-regions; the middle three terms are the energy 
on the interfaces; and the last two terms are the energy at the nodes. Now, the 
expressions and their meanings of all the terms are given as follows. 

The first term on the right side of Eq. (2-127) denotes the sum of the potential 
(or generalized potential) energy p of each potential energy region p; the 
second term denotes the sum of the complementary (or generalized complementary) 
energy c of each complementary energy region c. If the sub-region e is a 
three-field region, then, p and c are the following 3p and 3c, respectively. 

( ) ( ) ( ) ( )
3p 3p 3p

e e e eI  (2-128) 

( ) ( ) ( ) ( )
3c 3c 3c

e e e eI  (2-129) 

where

( )
3p ( )

d d

d d ( ) d

( ) d

e

e e eN N un ns n

evs

e
x y x x y y

xy xy

n n ns s n n nC C C

s s nsC

u vU p u p v N N
x y

u v N x y
y x

N u s N v s u u N s

v v N s

   

(2-130)

2 2
( )

3p 2 2

2

( )

2 d d

d d ( ) d

d ( )

e

e e eV M wn n eR

e
n ew

e
z x x y y

xy xy

n n nC C C
A

n n nsC
A

w wU p w M M
x y

w M x y
x y

wV w s M s Rw w w V s
n

w M s w w M
n

(2-131)

 ( 2 ) d d
e

e
x x y y xy xyI N N N w x y  (2-132) 
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( )
3c ( )

d d ( ) d

( ) d d d

e

eNn

e e eN u vns n s

xye x
x x y y xy xy x

xy y
y n n nC

ns ns s n n s nsC C C

NNU N N N p u
x y

N N
p v x y N N u s

x y

N N v s u N s v N s (2-133)

( )
3c

2 22

2 2

( ) 2

2 d d

( ) d ( ) d ( )

d d

e

e eV Mn n eR

e ew n ew

e
x x y y xy xy

y xyx
z

n n n n nsC C
A

n n n nsC C
A

U M M M

M MM
p w x y

x y x y

wV V w s M M s M R w
n

wV s M s w M (2-134)

where ( )U  and ( )U  are the strain energy density of the in-plane action and 
the thin plate bending, respectively: 

2 2 2
2

1( ) 2
2(1 ) 2x y x y xy

EhU  (2-135) 

3
2 2 2

2( ) ( 2 2(1 ) )
24(1 ) x y x y xy

EhU  (2-136) 

E and  are the Young’s modulus and Poisson’s ratio, respectively; h is the 
thickness of the thin shell. 

If the sub-region e is a two-field region, then, p and c are the following 2p
and 2c, respectively: 

( ) ( ) ( ) ( )
2p 2p 2p

e e e eI  (2-137) 

( ) ( ) ( ) ( )
2c 2c 2c

e e e eI  (2-138) 

where

( )
2p ( ) d d

d d ( ) d ( ) d
e

e e e eN N u vn ns n s

e
x y x y xy

n n ns s n n n s s nsC C C C

u v u vV p u p v N N N x y
x y y x

N u s N v s u u N s v v N s

N

(2-139)
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2 2 2
( )

2p 2 2( ) 2 d d

d d ( ) d

d ( )

e

e e eV M wn n eR

e
n ew

e
z x y xy

n n NC C C
A

n n nsC
A

w w wV p w M M M x y
x y x y

wV w s M s Rw w w V s
n

w M s w w M
n

M

(2-140)

( )
2c ( ) d d

( ) d ( ) d d d
e

e e e eN N u vn ns n s

xy xy ye x
x y

n n n ns ns s n n s nsC C C C

N N NNV p u p v x y
x y x y

N N u s N N v s u N s v N s

N

(2-141)

      

2 22
( )

2c 2 2( ) 2 d d

( ) d ( ) d ( )

d d

e

e eV Mn n eR

e ew n ew

y xye x
z

n n n n nsC C
A

n n n nsC C
A

M MM
V p w x y

x y x y

wV V w s M M s M R w
n

wV s M s w M

M

(2-142)

( )eI  is still given by Eq. (2-132); ( )V N  and ( )V M  are the strain complementary 
energy density of the in-plane action and the thin plate bending, respectively:  

2 2 21 1( ) [ 2 2(1 ) ]
2 x y x y xyV N N N N N

Eh
N  (2-143) 

2 2 2
3

1 12( ) [ 2 2(1 ) ]
2 x y x y xyV M M M M M

Eh
M  (2-144) 

If the sub-region e is a single-field region, then, p and c are the following 
1p and 1c, respectively: 

( ) ( ) ( )
1p 1p 1p

e e e  (2-145) 

where

( )
1p [ ( , , ) ]d d d d

( ) d ( ) d

e eN Nn nse

e eu vn s

e
x y n n ns sC C

n n n s s nsC C

U u v w p u p v x y N u s N v s

u u N s v v N s (2-146)



Advanced Finite Element Method in Structural Engineering 

56

( )
1p [ ( ) ]d d d d

( ) d d ( )

e eV Mn n ee R

e ew n ew

e
z n nC C

A

n n n nsC C
A

wU w p w x y V w s M s Rw
n

ww w V s M s w w M
n

(2-147)

in which only a single field, i.e. displacement field (u, v, w), exists within the 
sub-region e; and Nn, Nns, Vn, Mn and Mns are only the boundary variables or 
corner point variables defined on the element boundaries and corner points. 

( , , )U u v w  and ( )U w  are the strain energy densities, expressed by the displace- 
ment, of the in-plane strain and thin plate bending, respectively. 

1c 1c 1c
e e e  (2-148) 

where

( )
1c ( )d d ( ) d ( ) d

d d

e e eN Nn ns

e eu vn s

e
n n n ns ns sC C

n n s nsC C

V x y N N u s N N v s

u N s v N s

N

(2-149)

( )
1c ( )d d ( ) d ( ) d

( ) d d

e eV Mn ne

e ew ne eR w

e
n n n nC C

ns n n n nsC C
A A

wV x y V V w s M M s
n

M R w wV s M s w M

M

(2-150)

Here, only a single-field, i.e. internal force field (Nx, Ny, Nxy, Mx, My, Mxy), exists 
within the sub-region e, and these internal forces in advance satisfy the equilibrium 
differential equation of the shallow shell: 

2 22

2 2

0

0

2 2 0

xyx
x

xy y
y

y xyx
x x y y xy xy z

NN p
x y

N N
p

x y
M MM

k N k N k N p
x y x y

 (2-151) 

un, vs, w and w
n

 are only the boundary or corner point variables defined on the 

element boundaries or corner points. 
The third, fourth and fifth terms on the right side of Eq. (2-127) are the sum of 

the additional energy Hpc, Hpp and Hcc on the interfaces Cpc, Cpp and Ccc between 
the adjacent sub-regions e and e , respectively, where 
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pc d
ee

e
e e e e e e e
n n ns s n nC

wH N u N v M V w s
n

 (2-152) 

(e is the potential energy region; e  is the complementary energy region) 

pp ( ) ( ) ( ) d

( ) ( ) ( ) d

ee

ee

e e
e e e e e e e e e e
n n n ns s s n nC

e e
e e e e e e e e e e
n n n ns s s n nC

w wH N u u N v v M V w w s
n n

w wN u u N v v M V w w s
n n

(2-153)

cc ( ) ( ) ( ) ( ) d

( ) ( ) ( ) ( ) d

ee

ee

e
e e e e e e e e e e e
n n n ns ns s n n n nC

e
e e e e e e e e e e e
n n n ns ns s n n n nC

wH N N u N N v M M V V w s
n

wN N u N N v M M V V w s
n

(2-154)

The last two terms on the right side of Eq. (2-127) are the sum of additional 
energy Gw and GR at the nodes Jw and JR, respectively, where 

p p c

p c

( ) ( ) ( )( ) ( ) ( )e e e
w ns ns

e e
G M w w M w  (2-155) 

p p

p

( ) ( )( ) ( )( ) ( ) e ee a
R ns ns

e e
G M R w M w  (2-156) 

where
pe

,
ce

 and 
e

denote the sum of all the potential energy elements ep,

all the complementary energy elements ec and all the elements e around the nodes, 
respectively; ( )aw  is the displacement of any element a around the nodes. 

It can be shown that the stationary condition  

 0  (2-157) 

of the functional  in Eq. (2-127) is equivalent to all field equations, boundary 
conditions, interface conditions, corner point and node conditions of the shallow 
shell system with multi-regions. 

As a special case, if each sub-region is appointed as a potential energy region 
(or complementary energy region), then, the functional of the sub-region generalized 
potential (or complementary) energy principle can be obtained from Eq. (2-127). 
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2.6 The Sub-Region Mixed Energy Partial Derivative  
Theorem

This section will discuss the sub-region mixed energy partial derivative theorem 
and its extensions[15].

Castigliano first and second theorems are two famous energy partial derivative 
theorems in history, and both of them are the special cases of the sub-region 
mixed energy partial derivative theorem. 

2.6.1 The Sub-Region Mixed Energy Partial Derivative Theorem  
and Its Proof 

1. The definition of the sub-region mixed energy 

Let a structure be divided into two regions: complementary energy region (region a)
and potential energy region (region b). The complementary energy region has n1

independent force variables X1, X2, ,
1nX , and its complementary energy c( )a

is expressed as a function of these force variables. The potential energy region has 
n2 displacements at the supports (or constrained displacements) 

1 11 2, , ,n n

1 2n n as independent displacement variables, and its potential energy p( )b  is 
expressed as a function of these displacement variables. Furthermore, the additional 
energy J  at the interface J between the regions a and b equals to the work 
done by the constrained force ˆ( )J aF  of the region a along the displacement ˆ( )J bD
of the region b:

ˆ ˆ( ) ( )J J a J b
J

F D

The sub-region mixed energy m  is defined as: 

p c p c
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )m b a J b a J a J b

J
F D  (2-158) 

As an example, consider a frame shown in Fig. 2.9(a). The left side of the 
interface J is the complementary energy region (region a), and the right side is 
the potential energy region (region b). There is force variable X1 operating in  
the region a. Let ( )aM  be the bending moment of the region a, then the 
complementary energy c( )a  of the region a is 

2
c

1( ) ( ) d
2a a

a
M s

EI
 (2-159) 

There is a displacement variable 2 (the nodal rotation) in the region b.
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Furthermore, the structure is also under a constant load P. Let ( )bM  be the 
bending moment of the region b, D be the corresponding displacement of load P,
then the potential energy p( )b  of the region b is 

2
p

1( ) ( ) ds ( )
2b b b

b b
M PD

EI
 (2-160) 

At the interface J, the displacement ˆ( )J bD  of the region b is the nodal rotation 2,
the constrained force ˆ( )J aF  of the region a is the bending moment ( )J aM  of 
cross section J. The additional energy J on the interface is  

2
ˆ ˆ( ) ( ) ( )J J a J b J aF D M  (2-161) 

Substitution of Eqs. (2-159), (2-160) and (2-161) into (2-158) yields 

2 2
m 2

1 1( ) d ( ) ( ) ds ( )
2 2b b a J a

b b a
M s PD M M

EI EI
 (2-162) 

2. The description of the sub-region mixed energy partial derivative theorem 

If the sub-region mixed energy m of the structure is defined by Eq. (2-158), the 
partial derivative of m with respect to force variable Xi of the complementary 
energy region will be equal to a minus value of the displacement Di which 
corresponds to Xi, and the partial derivative of m with respect to displacement 
variable j of the potential energy region will be equal to the constrained force Fj
which corresponds to j, i.e., 

m
1

m
1 1 1 2

( 1,2, , )

( 1, 2, , )

i
i

j
j

D i n
X

F j n n n n
 (2-163) 

3. The proof for the sub-region mixed energy partial derivative theorem 

Consider the frame shown in Fig. 2.9(a), the partial derivative formulae (2-163) 
can be rewritten as 

m m
1 2

1 2

,D F
X

 (2-164) 

These two expressions can be derived by the virtual force equation and the virtual 
displacement equation, respectively. 

Firstly, we will deduce the first expression of Eq. (2-164). As shown in 
Fig. 2.9(b), in order to solve the displacement D1, a virtual force system is 
established: a virtual force increment X1 is assumed at point A, then the bending 
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moment increment of the region a is ( )aM 1
1

( )aM X
X

, and the constrained 

moment increment at interface J is ( )J aM 1
1

( )J aM X
X

. Let the virtual force 

system of the region a in Fig. 2.9(b) do virtual work on the deformation state in 
Fig. 2.9(a), the virtual force equation is 

1 1 2
( )

( ) ( ) ( ) dsa
J a a

a

MX D M M
EI

 (2-165) 

Then we have 

1 2
1 1

( ) ( )1 ( ) da J a
a

a

M MD M s
EI X X

 (2-166) 

By using Eq. (2-162), the above equation can be rewritten as  

m
1

1

D
X

Thereby, the first expression of Eq. (2-164) has been derived. 

Figure 2.9 A frame divided into two regions 

Secondly, we will deduce the second expression of Eq. (2-164). As shown in 
Fig. 2.9(c), in order to solve the constrained moment F2, a virtual displacement 
system is established: a virtual displacement increment 2 is assumed at point J,
then the displacement increment at the point B where the load P acts is 

2
2

DD , the moment increment of the region b is ( )bM 2
2

( )bM . Let 
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the force system of the region b (including the interface J) in Fig. 2.9(a) do the 
virtual work on the virtual displacements of the region b in Fig. 2.9(c), the virtual 
displacement equation is 

2 2
( )[ ( ) ] ( ) ( ) db

J a b b
b b

MF M P D M s
EI

 (2-167) 

Then we have 

2
2 2

( ) ( )1 ( ) d ( )b b
b J a

b b

M DF M s P M
EI

 (2-168) 

By using Eq. (2-162), the above equation can be rewritten as  

m
2

2

F

Thereby, the second expression of Eq. (2-164) has also been derived. 

2.6.2 Three Deductions of the Sub-Region Mixed Energy Partial  
Derivative Theorem 

1. The sub-region mixed energy stationary principle  

Let us analyze the frame plotted in Fig. 2.10 by using the sub-region mixed energy 
method. Node J is the interface, and the region on the left side of the node J is the 
complementary energy region. Then, according to the force method, the reaction 
force X1 along the horizontal bar at point A is taken as the fundamental unknown 
variable. The region on the right side of the node J is the potential energy region. 
Then, according to the displacement method, the angular displacement 2 at the 
node J is taken as the fundamental unknown variable. 

Figure 2.10 A frame 

The fundamental system is shown in Fig. 2.9(a): in region a, the horizontal bar 
at point A is eliminated and replaced by the force variable X1; and in region b, an 
additional constraint is added at the node J, and the node rotation is made as the 
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displacement variable 2. The sub-region mixed energy m of the fundamental 
system is given by Eq. (2-162), and the displacement D1 corresponding to X1 and 
the constrained moment F2 corresponding to 2 are given by Eq. (2-164). 

The original structure in Fig. 2.10 should satisfy the following fundamental 
equation

1 20, 0D F  (2-169) 

Substitution of the above equation into Eq. (2-164) yields 

m m

1 2

0, 0
X

 (2-170) 

The above equation is the stationary conditions of the sub-region mixed energy 
m. Thereby, the sub-region mixed energy stationary principle can be derived 

from the sub-region mixed energy partial derivative theorem. Furthermore, the 
sub-region potential energy principle and the sub-region complementary energy 
principle are the special cases of the sub-region mixed energy principle. 

2. The potential energy partial derivative theorem and related approach,  
principle and theorem 

If the whole structure is looked upon as the potential energy region and no 
complementary energy region existing, the sub-region mixed energy m will 
degenerate to the potential energy p of the whole region, and the sub-region 
mixed energy partial derivative formulae (2-163) will degenerate to the potential 
energy partial derivative formulae: 

p ( 1,2, , )i
i

F i n  (2-171) 

This is the mathematical expression of the potential energy partial derivative 
theorem. And, the theorem can be stated as follows: A structure has n support 
displacements ( 1,2, , )i i n  treated as the independent displacement variables, 
other support displacements and loads are all specified by the given values, and 
the potential energy p of the structure is expressed as a function of 1 2, , , n ,
then the partial derivative of the potential energy p with respect to the 
displacement variable i will be equal to the constrained force Fi corresponding 
to i.

There are some other deductions which can also be obtained from the potential 
energy partial derivative theorem. 

(1) Both the potential energy partial derivative theorem and the unit support 
displacement method are the approaches for solving the support reaction force Fi,
and they have a close relation. Their differences are as follows: the unit support 
displacement method possesses a broader application range, and does not involve 
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physical conditions; the application range of the potential energy partial derivative 
theorem is relatively narrow, only suitable for elastic structures, but its formulae 
are quite simple and convenient.  

(2) If the constrained force iF  corresponding to the displacement variable i
does not exist, equation (2-171) will degenerate to: 

p 0 ( 1,2, , )
i

i n  (2-172) 

This is the potential energy stationary condition. So, the potential energy stationary 
principle can also be derived from the potential energy partial derivative theorem. 

(3) If there is no other load in the structure except for the displacement variable 
i and its constrained force ( 1,2, , )iF i n , the potential energy p will be 

equal to the strain energy U, and Eq. (2-171) will be simplified as: 

i
i

UF  (2-173) 

This is the Castigliano first theorem. 

3. The complementary energy partial derivative theorem and related approach, 
principle and theorem 

If the whole structure is looked upon as the complementary energy region and no 
potential energy region existing, the sub-region mixed energy m will degenerate 
to the minus value of the complementary energy of the whole region, i.e. c( ).
Eq. (2-163) will degenerate to: 

c ( 1,2, , )i
i

D i n
X

 (2-174) 

This is the mathematical expression of the complementary energy partial derivative 
theorem. And, the theorem can be stated as follows: A structure has n independent 
variable loads or independent force variables Xi ( 1,2, , )i n , other loads and 
support displacements are all specified by the given values, and the complementary 
energy c of the structure is expressed as a function of 1 2, , , nX X X , then the 
partial derivative of the complementary energy c with respect to the displacement 
variable Xi will be equal to the displacement Di corresponding to Xi.

There are some other deductions which can also be obtained from the 
complementary energy partial derivative theorem. 

(1) Both the complementary energy partial derivative theorem and the unit load 
method are the approaches for solving the displacement Di, and they have a close 
relation. Their differences are as follows: the unit load method possesses a broader 
application range, and does not involve physical conditions; the application range 
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of the complementary energy partial derivative theorem is relatively narrow, only 
suitable for elastic structures, but its formulae are quite simple and convenient.  

(2) If the force variables 1 2, , , nX X X  are all redundant constrained forces of 
the statically indeterminate structure, and their corresponding displacements 

1 2, , , nD D D  are all zero, then Eq. (2-174) will degenerate to: 

c 0 ( 1,2, , )
i

i n
X

 (2-175) 

This is the complementary energy stationary conditions. So, the complementary 
energy stationary principle can also be derived from the complementary energy 
partial derivative theorem. 

(3) If the support displacements of the structure are zero, then, the complementary 
energy c will be equal to the strain complementary energy V, and Eq. (2-174) 
will be simplified as 

( 1,2, , )i
i

VD i n
X

 (2-176) 

This is the Crotti-Engesser theorem. 
(4) If the structure is linear elastic, and has no initial strain, then the strain 

complementary energy V and the strain energy U are equal to each other, and 
Eq. (2-176) can be written as 

( 1,2, , )i
i

UD i n
X

 (2-177) 

This is the Castigliano second theorem. 
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Abstract This chapter also focuses on the development of the variational 
principles. Firstly, it introduces three patterns of functional transformation, 
i.e., pattern , pattern  and pattern . Then, on the basis of pattern ,
some variational principles with several adjustable parameters are formulated. 
Finally, a variable-substitution-multiplier method is also proposed based on 
pattern and pattern [1,2].

Keywords variational principle, functional transformation, adjustable 
parmeters, variable-substitution-multiplier method. 

3.1 Introduction

There are various forms of the variational principles in elasticity, such as the 
potential energy principle, the complementary energy principle, the Hellinger- 
Reissner principle, the Hu-Washizu principle, the sub-region variational principle 
or the modified variational principle, etc. In order to clarify the transformation 
relations among these variational principles and their energy functionals, the 
functional transformations of the variational principles are classified as three 
patterns in reference [1]: 

Pattern  (relaxation pattern) is a generalized equivalent pattern in which the 
constraint conditions are transformed into natural conditions. 
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Pattern  (augmented pattern) is a generalized equivalent pattern in which the 
augmented conditions are transformed into natural conditions. 

Pattern  (equivalent pattern) is a pattern in which a non-conditional 
functional is transformed into an equivalent functional with several adjustable 
parameters. 

In the above patterns, pattern  is the well-known pattern of the Lagrange 
multiplier method; pattern  and pattern  are new patterns proposed in [1]. 

Hu-Washizu principle contains three types of functional variables (displacement, 
strain and stress); Hellinger-Reissner principle contains two types of functional 
variables (displacement and stress); potential energy principle and complementary 
energy principle contain a single type of functional variables (displacement or 
stress), but all of them do not contain adjustable parameters. On the basis of 
pattern , references [1, 2] proposed the generalized variational principles with 
several adjustable parameters and the general and simple forms of their functionals. 
Many existing variational principles are their special cases. 

The Lagrange multiplier method is often used in variational principles. Based on 
the analysis of the phenomenon of losing effectiveness for the Lagrange multiplier 
method, reference [3] proposed a high-order Lagrange multiplier method. 
Reference [2] pointed out the prerequisite for the application of the Lagrange 
multiplier method, discussed the root leading to the failure phenomenon, and 
proposed a new transformation pattern: the variable-substitution-multiplier method. 

After being proposed in reference [1] in 1986, the variational principles with 
several adjustable parameters were also introduced in details by special Chapters 
in monograph [4], encyclopedia [5] and textbook [6]. These variational principles 
can also be applied to formulate the penalty function method[7, 8] and other new 
functionals[9, 10].

3.2 Several Patterns of Functional Transformation 

3.2.1 Preparatory Knowledge 

1. Classification of variables and conditions 

Here, all the variables in elasticity are classified as functional variables and 
augmented variables; and all the conditions are classified as forced conditions 
which should be satisfied in advance by the functional variables, natural 
conditions (Euler equations and natural boundary conditions) and augmented 
conditions (the conditions or relations between the augmented and the functional 
variables, as well as that between various augmented variables). For instance, in 
the minimum potential energy principle, the functional is the potential energy, the 
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displacement u is the functional variable and both strain  and stress  are 
regarded as the augmented variables. The displacement boundary conditions at 
the fixed boundary are the forced conditions which must be satisfied in advance 
by the functional variable u. The differential equilibrium equations and the stress 
boundary conditions at free boundary, both expressed in terms of displacement, 
are the natural conditions derived from the stationary condition of potential energy, 
while the geometrical relations between the functional variable u and the 
augmented variable , as well as the stress-strain relations between the augmented 
variables  and , are considered as augmented conditions. 

When a statement of a variational principle is to be made, three aspects have to 
be mentioned:  which variables are chosen to be the functional variables; 

 which of the conditions are used as the forced conditions and which of them 
are the augmented conditions;  how to define the energy functional—the 
natural conditions can be derived from the stationary conditions of the functional. 

2. The equivalent relation between two variational principles 

The equivalent relation between two variational principles has been discussed 
frequently in literatures, but sometimes the meaning of the word equivalent is not 
exactly the same in different contexts. In order to have a clear and definite concept, 
in this Chapter three different cases of the equivalent relations are defined as follows:  

(1) Two variational principles are said to be generalized equivalent if both the 
principles have the same set of variables and the same set of conditions, but their 
subsets of functional or augmented variables are not the same; their subsets of 
forced, augmented or natural conditions are not the same. 

(2) Two generalized equivalent variational principles are said to be equivalent 
if their subsets of functional and augmented variables are the same separately: 
their subsets of forced, augmented and natural conditions are the same separately. 

(3) Two equivalent variational principles are said to be identical if their 
functionals are identical or will be identical if a proportional factor is considered. 

3. The fundamental equations and boundary conditions in elasticity 

For later convenience of quoting, all the conditions of small displacement theory 
in elasticity (including basic differential equations and boundary conditions) are 
listed as follows, where three types of variables, displacement u, strain  and 
stress , are involved. 

(1) Differential equilibrium equations 

F 0   (in volume V) (3-1) 

(2) Strain and displacement relations 

T 0u   (in V) (3-2) 
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(3) Stress and strain relations 

0E   or  0G   (in V) (3-3) 

in which 

1E G

(4) Boundary conditions of the given displacements 

u u 0   (on the fixed boundary uS ) (3-4) 

(5) Boundary conditions of the given external forces 

L T 0   (on the free boundary S ) (3-5) 

in which 

T

T

T

[ ]
[ ]

[ ]
x y z yz zx xy

x y z yz zx xy

u v wu

0 0 0

0 0 0

0 0 0

x z y

y z x

z y x

 (3-6) 

1 0 0 0
1 0 0 0

1 0 0 0
1

0 0 0 2(1 ) 0 0
0 0 0 0 2(1 ) 0
0 0 0 0 0 2(1 )

E
G  (3-7) 

0 0 0
0 0 0
0 0 0

l n m
m n l

n m l
L  (3-8) 

where l, m and n are the directional cosines of the outward normal of the boundary. 
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4. Several energy functionals in elasticity 

In elasticity, various variational principles and their functionals have been proposed. 
Among these functionals, the most important ones may be listed as follows: 

(1) Potential energy functional p ( )u  and non-conditional potential energy 
functional 1p ( )u

T T T T T
p

1( ) ( ) ( ) d d
2V S

V Su u E u F u T u  (3-9a) 

T T T T T
1p

T T

1( ) ( ) ( ) d d
2

( ) ( )d
u

V S

S

V S

S

u u E u F u T u

u u LE u (3-9b)

(2) Complementary energy functional c ( )

T T
c

1( ) d d
2

uV S

V SG u L  (3-10) 

(3) Hellinger-Reissner functionals HR ( , )u  and HR ( , )u

T T T T T T
HR

1( , ) ( ) d d ( ) d
2

uV S S

V S Su u G F u T u u u L

(3-11a)

T T T T
HR

1( , ) ( ) d ( )d d
2

uV S S

V S Su G u F u L T u L

(3-11b)

(4) Hu-Washizu functionals HW ( , , )u  and HW ( , , )u

T T T T T T
HW

1( , , ) ( ) d d ( ) d
2

uV S S

V S Su E u F u T u u u L

  (3-12a) 

T T T T T
HW

1( , , ) ( ) d ( )d d
2

uV S S

V S Su E u F u L T u L

 (3-12b) 

where p ( )u , 1p ( )u  and c ( )  are functionals with a single variable; 
HR ( , )u  and HR ( , )u  are functionals with two variables; HW ( , , )u  and 
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HW ( , , )u  are functionals with three variables. It should be noted that in all 
these functionals there is no adjustable parameter involved. 

In later discussions, the following formula of integration by parts will be used: 

T T T T( ) d ( )d ( ) d
V V S

V V Su u L u  (3-13) 

From the above equation, we have 

HR HR , HW HW

3.2.2 Transformation Pattern  of the Functional  
(Relaxation Pattern) 

The original functional (c)  is a conditional one; the forced conditions are 

0i   (in i ) (3-14) 

and the new functional (u)  obtained after transformation is a non-conditional 
one:

(u) (c) d
i

T
i i i

i
 ( )

where i is the multiplier, which can be identified by the use of natural conditions 
of (u) . The functional variables of (u)  consist of the functional variables 
of (c)  and the identified multiplier variables. 

The feature of pattern  is to transform the conditional functional (c)  into a 
non-conditional functional (u) . (c)  is generalized equivalent but not equivalent 
to (u) . The forced conditions (3-14) of (c)  is transferred into the natural 
conditions of (u) .

3.2.3 Transformation Pattern  of the Functional  
(Augmented Pattern) 

The feature of pattern  is that the non-conditional functional ( )  which has 
fewer variables is transformed into a non-conditional functional ( )  which has 
more variables. ( )  is generalized equivalent (but not equivalent) to ( ) . The 
augmented conditions of ( )  are transferred into the natural conditions of ( ) .

Here we will explain in detail. Assume that the functional ( ) ( )y  is the 
non-conditional functional before the transformation which has fewer variables; 
y is the functional variable. And, assume that z is the augmented variable. Thus, 
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the corresponding augmented conditions are 

 ( )fz y 0   (in V) (3-15) 

Then, after the transformation, the new functional ( ) ( , )y z  is a non-conditional 
functional with more variables; y and z are the functional variables. It will be 
determined by the following expression: 

( ) ( )( , ) ( ) ( , )Qy z y y z  ( )

in which Q is a positive definite quadratic integral for the augmented condition 
expression on the left side of Eq. (3-15): 

T1 [ ( )] [ ( )]d
2V

Q f f Vz y S z y  (3-16) 

where S  is a positive definite symmetric matrix, and  is an arbitrary non-zero 
parameter. It can be proved that the original and the new functionals ( ) ( )y
and ( ) ( , )y z  are generalized equivalent to each other. For this reason, we 
present the relevant theorem of pattern  and its proof as follows. 

Theorem The new functional ( ) ( , )y z  defined by Eq. ( ) and the original 
functional ( ) ( )y  are generalized equivalent to each other. In other words, the 
stationary conditions of ( ) ( , ) :y z

( ) ( , ) 0y z  (3-17) 

may be derived from the stationary conditions and augmented conditions of 
( ) ( )y :

( ) ( ) 0y  (3-18a) 

 ( )fz y 0  (3-18b) 

Conversely, Eqs. (3-18a) and (3-18b) can also be derived from Eq. (3-17). 
Proof Firstly, we will prove that Eq. (3-17) can be derived from Eqs. (3-18a) 

and (3-18b). 
The variation of Eq. ( ) is 

( ) ( ) T( , ) ( ) [ ( )] [ ( )]d
V

f f Vy z y z y S z y  (3-19) 

We have assumed that Eqs. (3-18a) and (3-18b) are satisfied. Then, substituting 
Eqs. (3-18a) and (3-18b) into (3-19), Eq. (3-17) can be obtained. 

Secondly, it will be proved that (3-18a) and (3-18b) can be derived from 
Eq. (3-17). 

Because both y  and z  are independent variations, both y  and [ ( )]fz y
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are also independent variations. Since Eq. (3-17) is assured, from Eq. (3-19) we 
obtain

( ) ( ) 0y  (3-20) 

[ ( )]fS z y 0  (3-21) 

Because S  is a positive definite matrix, then from Eq. (3-21) we obtain 

 ( )fz y 0  (3-22) 

According to Eqs. (3-20) and (3-22), Eqs. (3-18a) and (3-18b) can be proved. 
Example 3.1 Derive the augmented functional of Hellinger-Reissner functional 
HR ( , )u  according to pattern .
Solution The original non-conditional functional with fewer variables is 

T T T T
HR

1( , ) ( ) d ( )d d
2

uV S S

V S Su G u F u T T u T

(3-23)

And, the augmented condition of which is 

G 0   (in V) (3-24) 

According to the transformation pattern , the positive definite quadratic integral 
for the augmented condition expression on the left side of Eq. (3-24) should be 
written in the same manner as Eq. (3-16): 

T1 ( ) ( )d
2V

Q VG E G  (3-25) 

Substituting this equation into Eq. ( ), the general form of the new non-conditional 
functional with more variables can be obtained as follows: 

( ) T
HR

1( , , ) ( , ) ( ) ( )d
2V

Vu u G E G  (3-26) 

In fact, this functional ( ) ( , , )u  is the functional G  which was firstly 
proposed in [3]. 

If the parameter  in Eq. (3-26) equals to 1, special form of the augmented 
functional can be obtained: 

( ) T
HR1

1( , , ) ( , ) ( ) ( )d
2V

Vu u G E G  (3-27) 
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In fact, this functional is the same as the functional HW ( , , )u  in Hu-Washizu 
principle.

3.2.4 Transformation Pattern  of the Functional  
(Equivalent Pattern) 

The feature of pattern  is to transform the non-conditional functional   into a 
non-conditional functional L involving several adjustable parameters: 

L i i
i

Q  ( )

in which i are adjustable parameters; and Qi are the quadratic integrals constituted 
by the natural condition expressions of  in the corresponding domains. In general, 
the new functional L is the general form of the equivalent functional of the 
original . In the case of degeneration (when i equals to a critical value 

ci), L i ci
 degenerates into the non-conditional functional with fewer variables. 

Some of the functional variables in the original functional are transferred into the 
augmented variables in the new functional; some of the natural conditions of the 
original functional are transferred into the augmented conditions of the new 
functional. Thus, the new functional and the original one are generalized equivalent 
but not equivalent to each other. 

Example 3.2 Derive the equivalent functional L ( , , )u  of Hu-Washizu 
functional HW ( , , )u , according to pattern .

Solution The Hu-Washizu functional is given by Eq. (3-12), it is a functional 
with three variables ( , , )u . Its natural conditions are the equations which define 
the problems in small displacement theory of elasticity, i.e. Equations (3-1) to 
(3-5). Now, we take the natural condition (3-3) as an example, and perform the 
transformation according to pattern . We obtain 

T
1

1 ( ) ( )d
2V

Q VE G E  (3-28) 

1

T
L HW 1

1( , , ) ( ) ( )d
2V

Vu E G E  (3-29) 

This functional 
1L  is the functional GN  in [3]. When 1 is an arbitrary 

constant except 1,
1L ( , , )u  is the non-conditional functional with three 

variables ( , , )u , and one parameter 1 is involved in the functional. 
When 1 1,

1 1
L HR1

( , )u  (3-30) 
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thus the new functional degenerates into the non-conditional functional with two 
variables ( , )u ,  degenerates into the augmented variable, and condition (3-3) 
degenerates into the augmented condition. 

3.3 Generalized Variational Principle Involving Several  
Adjustable Parameters 

According to pattern  of the functional transformation, generalized variational 
principles involving several adjustable parameters with one, two and three functional 
variables will be discussed separately in this section. 

3.3.1 Generalized Variational Principle Involving Several Adjus- 
table Parameters with Single Functional Variable u

If displacement u is taken as the functional variable, the fundamental equations 
in elasticity are as follows: 

T

T

( ) (in volume )
(on fixed boundary )

( ) (on free boundary )
u

V
S

S

E u F
u u
LE u T

0
0

0
 (3-31) 

where F  is the given body force vector; u  and T  are the given displacement 
and surface force vectors on the boundaries Su and S , respectively. 

The corresponding non-conditional functional with single functional variable u
of Eq. (3-31) may be expressed in the following form: 

T T T T T T T
1p

1( ) ( ) ( ) d ( ) ( )d d
2

uV S S

V S Su u E u F u u u LE u T u

(3-32)

in which 1p ( )u  is the energy functional of the potential energy principle with 
geometrical boundary condition relaxed. The natural condition of this functional 
is Eq. (3-31). 

Let 1p ( )u  be the original functional, according to pattern  and by making 
use of its three natural conditions (3-31), the more general form of its equivalent 
functional may be obtained as follows:  

5

1L 1p
1

( ) ( ) i i
i

Ru u  (3-33) 

in which iR  are the quadratic integrals constituted by three natural condition 
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expressions on the left side of Eq. (3-31): 

TT T
1

T
2

T T
3

T T T
4

T T T
5

1 ( ) ( ) d
2

1 ( ) ( )d
2

( ) ( )d

1 ( ) ( )d
2

( ) ( )d

u

u

V

S

S

S

S

R V

R S

R S

R S

R S

E u F E u F

u u u u

u u E u F

LE u T LE u T

LE u T E u F

 (3-34) 

If the highest order of derivatives of u in the integrand is restricted to first 
order (in V) and zero order (on S) , then the simple form of the functional may be 
obtained as follows: 

1L 1p 2 2( ) ( ) Ru u  (3-35) 

3.3.2 Generalized Variational Principle Involving Several Adjus- 
table Parameters with Two Functional Variables u  and 

If displacement u and stress  are taken as functional variables, the fundamental 
equations in elasticity are as follows: 

T

(in )
(in )
(on )
(on )

u

V
V
S
S

F
u G

u u
L T

0
0

0
0

 (3-36) 

The corresponding non-conditional functional with two functional variables u
and  may be expressed in the following form: 

T T T T T T
HR

T T T T
HR

1( , ) ( ) d ( ) d d
2

or
1( , ) ( ) d d ( ) d
2

u

u

V S S

V S S

V S S

V S S

u u G F u u u L T u

u u F G u L L T u

(3-37)



Chapter 3 Variational Principles with Several Adjustable Parameters 

77

HR ( , )u  and HR ( , )u  are two expressions of Hellinger-Reissner functional, 
and are identical to each other.  

According to pattern , the more general form of its equivalent functional may 
be obtained: 

9 9

2L HR HR
1 1

( , ) ( , ) ( , )i i i i
i i

P Pu u u  (3-38) 

in which 

T T T
1

T
2

T T
3

T
4

T
5

T T
6

T
7

T T
8

9

1 ( ) ( )d
2
1 ( ) ( )d
2

( ) ( )d

1 ( ) ( )d
2

( ) ( )d

( ) ( )d

1 ( ) ( )d
2

( ) ( )d

(

u

u

u

V

V

V

S

S

S

S

S

P V

P V

P V

P S

P S

P S

P S

P S

P

u G E u G

F F

F b E u

u u u u

u u F

u u L E u

L T L T

L T L E u

L T) ( )d
S

ST F

 (3-39) 

in which 

1 3 2

2 3 1

3 2 1

0 0 0
0 0 0
0 0 0

b b b
b b b

b b b
b  (3-40) 

b1, b2, b3 are arbitrary given constants. Since 

HR 1p 1 6( , ) ( ) P Pu u  (3-41) 

Equation (3-38) may be rewritten as 
9

2L 1p 1 6
1

( , ) ( ) i i
i

P P Pu u  (3-42) 
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If 1 6 1 , 2 3 5 7 8 9 0 , then from Eq. (3-42), 2L ( , )u  will 
degenerate into the following functional with single functional variable u:

1L 1p 4 4 1p 4 2( ) ( ) ( )P Ru u u

Actually, this functional is the same as functional (3-35). 
If the highest order of derivatives in the integrand is restricted, then two simple 

forms of the functional with two functional variables u and  may be obtained 
as follows: 

2L HR 1 1 4 4 7 7( , ) ( , ) P P Pu u  (3-43) 

2L HR 2 2 4 4 7 7( , ) ( , ) P P Pu u  (3-44) 

In Eq. (3-43), u is restricted to first order (in V) and zero order (on S ),  is 
restricted to zero order. In Eq. (3-44),  is restricted to first order (in V) and zero 
order (on S ), u is restricted to zero order. 

3.3.3 Generalized Variational Principle Involving Several Adjus-  
table Parameters with Two Functional Variables u  and 

If displacement u and strain  are taken as functional variables, the fundamental 
equations in elasticity are as follows: 

T

(in )

(in )

(on )

(on )
u

V

V

S

S

E F

u

u u

LE T

0

0

0

0

 (3-45) 

The corresponding non-conditional functional with two functional variables u
and  may be expressed in the following form: 

T T T T T T
2

T T T T
2

1( , ) ( ) d ( ) d d
2

or
1( , ) ( ( ) ) d d ( ) d
2

u

u

V S S

V S S

V S S

V S S

u u E E F u u u LE T u

u E F u E u LE LE T u

(3-46)

in which 2 ( , )u  and 2 ( , )u  are identical. 
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According to pattern , the more general form of its equivalent functional 
may be obtained as follows: 

9 9

2L 2 2
1 1

( , ) ( , ) ( , )i i i i
i i

S Su u u  (3-47) 

in which 

T T T
1

T
2

T T
3

T
4

T T
5

T
6

T
7

T T
8

1 ( ) ( )d
2

1 ( ) ( )d
2

( ) ( )d

1 ( ) ( )d
2

( ) ( )d

( ) ( )d

1 ( ) ( )d
2

( ) ( )d

u

u

u

V

V

V

S

S

S

S

S

S V

S V

S V

S S

S S

S S

S S

S S

S

u E u

E F E F

E F bE u

u u u u

u u LE u

u u E F

LE T LE T

LE T LE u

T
9 ( ) ( )d

S

SLE T E F
 (3-48) 

Since

2 1p 1 5( , ) ( ) S Su u  (3-49) 

Equation (3-47) may be rewritten as 

9

2L 1p 1 5
1

( , ) ( ) i i
i

S S Su u  (3-50) 

If 1 5 1 , 2 3 6 7 8 9 0 , then from Eq. (3-50), 2L ( , )u
will degenerate into the following functional with single functional variable u:

1L 1p 4 4 1p 4 2( ) ( ) S Ru u
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Actually, this functional is the same as the functional (3-35). 
If the highest order derivatives in the integrand are restricted, then two simple 

forms of the functional with two variables u  and  may be obtained as follows: 

2L 2 1 1 4 4 7 7( , ) ( , ) S S Su u  (3-51) 

2L 2 2 2 4 4 7 7( , ) ( , ) S S Su u  (3-52) 

In Eq. (3-51), u is restricted to first order (in V) and zero order (on S ),  to zero 
order. In Eq. (3-52),  is restricted to first order (in V) and zero order (on S ), u
to zero order. 

3.3.4 Generalized Variational Principle Involving Several Adjus-  
table Parameters with Three Functional Variables u ,
and

If displacement u, strain  and stress  are taken as functional variables, the 
fundamental equations in elasticity are as follows 

T

(in )

(in )

(in )

(on )

(on )
u

V

V

V

S

S

F

u

E

u u

L T

0

0

0

0

0

 (3-53) 

The corresponding non-conditional functional with three functional variables 
u,  and  is usually expressed in the form of Hu-Washizu functional: 

T T T T T T
HW

T T T T T
HW

1( , , ) ( ) d ( ) d d
2

1( , , ) ( ) d d ( ) d
2

u

u

V S S

V S S

V S S

V S S

u E u F u u u L T u

u E F u u L L T u

  (3-54) 

According to pattern , the more general form of its equivalent functional may 
be obtained as follows: 

14 14

3L HW HW
1 1

( , , ) ( , , ) ( , , )i i i i
i i

Q Qu u u  (3-55) 
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in which 

T
1

T T T
2

T
3

T T
4

T
5

T T
6

T
7

T
8

9

1 ( ) ( )d
2
1 ( ) ( )d
2
1 ( ) ( )d
2

( ) ( )d

( ) ( )d

( ) ( )d

1 ( ) ( )d
2
1 ( ) ( )d
2

(

u

u

V

V

V

V

V

V

S

S

Q V

Q V

Q V

Q V

Q V

Q V

Q S

Q S

Q

E G E

u E u

F F

E u

F b E

F bE u

u u u u

u u L E

u u T T

T
10

T
11

T
12

T T
13

T
14

) ( )d

( ) ( )d

1 ( ) ( )d
2

( ) ( )d

( ) ( )d

( ) ( )d

u

u

S

S

S

S

S

S

S

Q S

Q S

Q S

Q S

Q S

LE u

u u F

L T L T

L T L E

L T LE u

L T F
 (3-56) 

Functional (3-55) is the general form of functional involving adjustable 
parameters with three functional variables u,  and  except the three degenerate 
cases listed below. 

(1) The degenerate case in which  is excluded. 
If we assume 

2 1 4 1 5 6 8 9 12 131 , 1 , , ,
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then the functional (3-55) degenerates into the following functional with two 
functional variables u and :

2L HW 1 1 1 2 4 3 3 5 5 6

7 7 10 10 8 8 9 11 11 12 12 13 14 14

( , ) ( ) (1 )( ) ( )
( ) ( )

Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q

u

HR 1 1 3 2 5 3 7 4 10 5

8 6 11 7 12 8 14 9

( , ) (1 )P P P P P
P P P P
u

    
(3-57)

This functional is the same as the functional (3-38). 
(2) The degenerate case in which  is excluded. 
If we assume 

4 8 1 3 5 6 10 11 12 13 141, 1, 0

then the functional (3-55) degenerates into the following functional with two 
functional variables u and :

2L HW 4 8 2 2 7 7 9 9

2 2 1 7 4 9 5

( , ) ( )
( , )

Q Q Q Q Q
S S S

u
u (3-58)

This functional is a special case of the functional (3-47). If additional term 
2 2 3 3S S 6 6 7 7 8 8 9 9S S S S  is added in the functional (3-55), then this 

functional may degenerate into the functional (3-47). 
(3) The degenerate case in which  and  are excluded. 
If we assume 

2 8 9 4 1 3 5 6 10 11 12 13 141, 1, 0

then the functional (3-55) degenerates into the following functional with single 
functional variable u:

1L HW 2 4 8 9 7 7 1p 7 2( ) ( ) ( )Q Q Q Q Q Ru u  (3-59) 

This functional is the same as the functional (3-35). 
If the highest order of derivatives in the integrand is restricted, then two simple 

forms of the functional with three functional variables u,  and  may be 
obtained as follows: 

3L HW 1 1 2 2 4 4 7 7 8 8 11 11 12 12( , , ) Q Q Q Q Q Q Qu
(3-60)

3L HW 1 1 3 3 5 5 7 7 8 8 11 11 12 12( , , ) Q Q Q Q Q Q Qu
(3-61)

In Eq. (3-60), u is restricted to first order (in V) and zero order (on S),  and  to 
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zero order. In Eq. (3.61),  is restricted to first order (in V) and zero order (on S),
 and u to zero order. 

3.4 Variable-Substitution-Multiplier Method 

3.4.1 Analysis of the Phenomenon of Losing Effectiveness for the  
Lagrange Multiplier Method 

On the basis of the analysis of the phenomenon of losing effectiveness for the 
Lagrange multiplier method, the method of high-order Lagrange multiplier was 
proposed in reference [3]. 

The objective of the Lagrange multiplier method is to transfer the forced 
conditions of the original functional into the natural conditions of a new functional. 
The new functional can be established by absorbing the forced condition expressions 
of the original functional by means of the multiplier into the original functional. 
Hence, an essential prerequisite for the application of the Lagrange multiplier 
method is that the original functional must be a conditional functional, and the 
forced conditions must exist between the functional variables of the original 
functional. If this prerequisite is not satisfied, the Lagrange multiplier method 
will cease to be effective. In other words, the Lagrange multiplier method can only 
be used to transfer the forced conditions of the original functional into the natural 
conditions of the new functional, and cannot be used to transfer augmented or 
natural conditions of the original functional into the natural conditions of the new 
functional. In the three patterns of the functional transformation, the Lagrange 
multiplier method can be used only in pattern  but cannot be used in pattern 
and pattern .

Consequently, the question about the reason of losing effectiveness for the 
Lagrange multiplier method can be answered easily. 

For example, by means of the Lagrange multiplier, it is impossible to absorb the 
stress-strain relation into the Hellinger-Reissner functional HR  to establish a 
new functional, since the prerequisite for the application of the Lagrange multiplier 
method is not satisfied in this case. In fact, strain  is an augmented variable 
and not a functional variable of the original functional HR ( , )u ; the stress-strain 
relation between  and  is an augmented condition and not a forced condition. 
An attempt to relax the augmented condition of the original functional by means 
of the Lagrange multiplier method is doomed to fail. 

For another example, it is also impossible to absorb the stress-strain relation 
into the Hu-Washizu functional HW  by means of the Lagrange multiplier to 
establish a new functional, since this relation is a natural condition and not a 
forced condition of the original functional. 
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3.4.2 Variable-Substitution-Multiplier Method 

It was pointed out in [3] that there are two limitations of the Lagrange multiplier 
method:  it is impossible to derive the Hellinger-Reissner principle directly 
from the potential energy principle;  it is impossible to derive the Hu-Washizu 
principle directly from the complementary energy principle. 

In order to overcome these limitations of the Lagrange multiplier method, the 
variable-substitution-multiplier method was proposed in [1, 2]. One limitation of 
the Lagrange multiplier method is that it is impossible to relax the augmented 
condition of the original functional and to absorb it to establish the new functional. 
To surmount the difficulty, the variable-substitution-multiplier method, which 
consists of two steps, may be used. The first step is the substitution of 
variables—by means of the augmented condition, the functional variable of the 
original functional is substituted by the augmented variable, and then a transitional 
functional is obtained. Now, the augmented condition of the original functional is 
transferred into the forced condition of this transitional functional. The second step 
is to apply the Lagrange multiplier method—by means of the multiplier the 
forced condition is transferred into the natural condition of the new functional. 
After these two steps, the augmented condition of the original functional is 
absorbed to establish the new functional. 

Example 3.3 Derive the Hellinger-Reissner functional HR ( , )u  from the 
functional p ( )u  of the potential energy principle by means of the 
variable-substitution-multiplier method. 

Solution The functional of the potential energy principle is 

T T T T T
p

1( ) ( ) ( ) d d
2V S

V Su u E u F u T u  (3-62) 

The forced condition is 

u u 0   (on Su) (3-63) 

The augmented condition is 

Tu G 0   (in V) (3-64) 

Firstly, substituting the augmented condition (3-64) into the original functional 
(3-62), we have the following transitional functional: 

T T T1( , ) ( ) d d
2V S

V Su G F u T u  (3-65) 

Here, Eqs. (3-63) and (3-64) are forced conditions. 
Secondly, by means of multiplier  and multiplier T L , Eqs. (3-64) 

and (3-63) are absorbed to establish the new functional. This new functional 
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is HR ( , )u :

T T T
HR

T T T

1( , ) d d
2

( )d ( )d
u

V S

V S

V S

V S

u G F u T u

u G T u u (3-66)

Similarly, by means of the variable-substitution-multiplier method, the Hu- 
Washizu functional can also be derived from the functional of complementary 
energy principle. 
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Abstract As the beginning of Part , this chapter discusses the fundamental 
theory and existing construction modes of generalized conforming finite 
element method. First, by discussion on the different characters of conforming 
and nonconforming elements, the background and need for the development 
of the generalized conforming element are described. Second, as an example, 
the earliest pattern of the generalized conforming element and its excellent 
performance are exhibited. Third, some theoretical features of the generalized 
conforming element, including duality of its variational principle basis, 
flexibility, multiformity and convergence, are discussed in detail. 

Keywords finite element, generalized conforming element, conforming, 
nonconforming, convergence. 

4.1 Introduction

This chapter discusses the fundamental theory and construction modes of generalized 
conforming finite element method[1 3]. The applications of generalized conforming 
element method for thin plate, thick plate, laminated composite plate, piezoelectric 
laminated composite plate, membrane and thin shell will be introduced in Chap. 5 
to Chap. 11, respectively. 

Generalized conforming element method is a new technique which was 
developed from the basis of comparison and analysis of conforming and 
nonconforming element methods. The core problem, which is also the main 
difference between these three types of displacement-based elements, is the 
requirement for the displacement compatibility between two adjacent elements. 

Generalized conforming element is a kind of limit conforming element which 
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can ensure convergence: for a coarse mesh, it belongs to nonconforming elements; 
and for a refined mesh divided by infinite elements, it approaches conforming 
models. 

Variational principle corresponding to the generalized conforming element 
possesses duality: it starts from the sub-region potential energy principle, and 
ends with the minimum potential energy principle. 

The feature of the generalized conforming method is that it is a combination of 
energy method and weighted residual method: if the essential generalized 
conforming conditions are satisfied, the point conforming conditions, line 
conforming conditions, perimeter conforming conditions can be flexibly applied. 
Therefore, the generalized conforming method has both flexibility and multiformity. 

4.2 Conforming and Nonconforming Elements—Some  
Consideration about “Conforming” 

We have known that the earliest finite element model is displacement-based model, 
and the earliest displacement-based element is conforming (compatible) element. 
The theoretical basis of these conforming elements is the minimum potential 
energy principle, in which displacement is taken as the field variable of energy 
functional. And the displacement fields of two adjacent elements are required to 
be conforming exactly at the interface. The name conforming element reflects 
this main feature. 

Though the conforming element possesses the longest history, and has an 
important advantage of ensuring convergence, there are still some embarrassing 
problems left to solve. For examples, the requirement of exactly conforming is 
not easy to be satisfied; the performance of the element may be over-stiff in some 
occasions, and so on. When the conforming element method is used to deal with 
thin plate/shell problem, which is a kind of C1-continuity problem (i.e., the 
displacement and its first derivative are both required to be compatible between 
two adjacent elements), the above shortcomings will be especially noticeable. 
Thereupon, the nonconforming element method was proposed[4] for overcoming 
these disadvantages. In this method, only the nodal conforming conditions are 
required while the exact compatibility between the displacement fields of adjacent 
elements is not required. And the minimum potential energy principle is still 
taken as its theoretical start point. Elements constructed by this strategy can 
exhibit some merits: the relaxed conforming conditions are easier to satisfy; and 
the accuracy of some nonconforming elements is much better than that of 
conforming ones. However, some nonconforming models can not converge to 
correct solutions, which is a fatal defect. 
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Table 4.1 The contradistinction between conforming and nonconforming elements 

 Conforming element Nonconforming element 
Compatibility requirement Exact compatibility Inexact compatibility 

Variational principle Minimum potential energy principle: total potential energy p
stationary 
Simple functional p  (contains only single variable: displacement)

Advantages
Convergence ensured Easily assumed displacement field; 

and better accuracy in some occasions

Disadvantages
Exact compatibility is not easy to 
satisfy; element performance is 
often over-stiff 

Convergence can not be ensured 

Generalized conforming element is developed on the basis of conforming and 
nonconforming elements. To understand its background, a comparison should be 
performed first between conforming and nonconforming elements (Table 4.1). 
Then, the “puzzle of compatibility” is analyzed and taken into account. 

Puzzle of “conforming conditions” 
Puzzles: two questions “why”? 

    Why the accuracy of conforming elements is not as good as that of some nonconforming 
elements? 

    Why some nonconforming elements are not convergent? 

Solutions: The requirement of conformity should be moderate and appropriate. 

    The requirement of conforming element is too severe—It is difficult to be satisfied and 
leads to over-stiff performance. 

    Since the threshold level is too high, it excludes many excellent element models as 
unacceptable ones. 

    The requirement of nonconforming element is over-relaxed—it can not ensure the 
convergence.  

    Example: The nonconforming thin plate element BCIZ[4] can not ensure the convergence. 
    Source: The minimum potential energy principle is not a proper principle to formulate the 

nonconforming element. 
A moderate and rational requirement of conformity is needed—This is the background 
for creation of the generalized conforming element. 

4.3 The First Pattern of Generalized Conforming Element 
—Replacing Nodal Conforming by Line Conforming  
Conditions

The first pattern of generalized conforming element was proposed in 1987[1], in 
which the new concepts of generalized conforming element and generalized 
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conforming conditions were established by replacing nodal conforming conditions 
at element nodes by line conforming conditions of average displacement along 
each element side. As an example, the triangular generalized conforming thin 
plate bending element TGC in references [1, 2] utilized the following generalized 
conforming conditions of average displacements (average deflection, tangent and 
normal average rotations) along each element side: 

( )d 0

d 0

d 0

k

k

k

S

nS

sS

w w s

w s
n

w s
s

  (along each element side Sk) (4-1) 

where w is the deflection function of the element; w , n  and s  are the 
deflection, tangent and normal rotations along each element side, respectively. 

In a traditional pattern, the following nodal conforming conditions 

( ) 0

0

0

j

x
j

y
j

w w
w
x

w
y

  (at node j) (4-2) 

at element nodes are usually used. 
The main difference between the generalized conforming element method and 

the traditional pattern of nonconforming element method is that the former uses 
Eq. (4-1) instead of Eq. (4-2). In other words, the traditional method emphasizes 
nodal conforming conditions at nodes, so it is hard to simultaneously satisfy line 
conforming conditions along each side. On the contrary, the generalized 
conforming element method pays attention to average displacement conforming 
conditions of each element side, so it can ensure a kind of limit conforming 
conditions along each side when the mesh is refined gradually. This is the reason 
why the generalized conforming element method can ensure the convergence, but 
traditional nonconforming element scheme can not. 

In reference [1], the performance of the generalized conforming element TGC 
was compared with those of other famous element models, i.e., DKT[5, 6],
HSM[5, 7], BCIZ[4] and HCT[8]. The variations of computation errors with mesh 
number N for central deflection wC and central bending moment MyC of a 
clamped square plate subjected to uniform load are plotted in Fig. 4.1 and 
Fig. 4.2. It can be seen that the precision of element TGC is the best. 
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Figure 4.1 Errors for central deflection of a clamped square plate subjected to 
uniform load 

Figure 4.2 Errors for central moment of a clamped square plate subjected to 
uniform load 
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4.4 The Variational Basis of Generalized Conforming  
Element—Duality

Variational principle is the starting point for deriving finite element method. The 
variational principles corresponding to conforming element, nonconforming element 
and generalized conforming element as an example for a thin plate bending 
problem are listed as follows. A clearer understanding for the characters and 
advantages of generalized conforming element may be obtained by contrasting 
these three types of elements. 

4.4.1 The Variational Principle Corresponding to Conforming  
Element

Compatibility requirement: In thin plate conforming element, the defection field 
w(x, y) must be exactly compatible with deflection w , normal rotation n  and 
tangent rotation s  along each element side, i.e., at each point of element 
boundary eA  the following conforming conditions 

, ,n s
w ww w
n s

  (at each point of eA ) (4-3) 

must be satisfied precisely. 
Variational principle used: The minimum potential energy is the starting point 

of the conforming element, and its functional p  can be written as 

2 22 2 2 2 2

p p 2 2 2 22(1 ) d
2e

e

e e A

D w w w w w A
x y x y x y

(4-4)

where
e

 denotes the sum of each element e; D is the bending stiffness of thin 

plate;  is the Poisson’s ratio. Since in the potential energy p  displacement w

is the only field variable, p  is called a single-field functional. Compared with 
multi-field functionals, single-field functional is particularly simple. 

Disadvantage & advantage: Since the conforming requirement is too severe, 
it leads to over-stiff performance and the displacement field is difficult to assume. 
However, the functional is quite simple, and convergence can be guaranteed. 
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4.4.2 The Variational Principle Corresponding to Nonconforming  
Element

Compatibility requirement: In nonconforming element, the element deflection 
field w(x, y) is not required to be exactly compatible, so the conforming 
conditions (4-3) between elements are relaxed or partially relaxed. 

Variational principle used: In order to ensure convergence, the sub-region 
potential energy principle[9, 10] (refer to Chap. 2) or modified potential energy 
principle[11] must be employed. 

Its functional is the sub-region potential energy mp

mp p( )e

e
H  (4-5) 

where H is the additional energy corresponding to incompatible displacement 
along element boundary 

( ) d
e n n ns s nA

w wH M M Q w w s
n s

 (4-6) 

in which Mn, Mns and Qn are the Lagrange multipliers, denoting boundary forces. 
It is worthy of note that, the functional mp contains two field variables, 
displacement and boundary force, which is much more complicated than p with 
single-field variable. For simplicity, some authors still use potential energy 
functional p instead of sub-region potential energy functional mp when they 
are constructing nonconforming elements, thereby convergence can not be 
ensured.  

Advantage & disadvantage: The deflection field is easy to assume; however, 
the functional mp is more complicated. If the simplified functional p is 
improperly employed, convergence will not be guaranteed. 

4.4.3 The Variational Principle Corresponding to Generalized  
Conforming Element 

Duality is the feature of generalized conforming element and its variational 
principle.

Generalized conforming element possesses duality. It is a kind of limit 
conforming element: 

  For a coarse mesh—It belongs to nonconforming element 
  For a refined mesh divided by infinite elements—It tends to be conforming 

element 
The variational principle corresponding to generalized conforming element 

also possesses duality. It is a kind of degenerated potential energy principle: 
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  Start point—sub-region potential energy principle: mp p H stationary 
  End-result—degenerated potential energy principle: p stationary 
The degenerate condition introduced—generalized conforming condition: 

mp p0( )H

The duality of generalized conforming element and its variational principle 
can also be described in details as follows:  

Compatibility requirement: Since the conforming conditions (4-3) are relaxed, 
the defection field is easy to assume. 

The initial variational principle: In order to ensure convergence, the sub-region 
potential energy principle is taken as the starting point. However, its functional 

mp is more complicated because it is a two-field -functional. 
The degenerate conditions introduced: For simplicity, the two-field-functional 

mp is replaced by its degenerate form—the single-field-functional p. Therefore, 
following generalized conforming conditions are introduced:  

0H   (for any refined mesh divided by infinite elements) (4-7) 
or
 0H   (for any constant strain or rigid-body displacement state) (4-8) 

When the curvatures of the displacement field tend to be constants, the 
generalized conforming conditions (4-8) can be written as 

( ) d 0
e n n ns s nA

w wM M Q w w s
n s

 (4-9) 

 (Mn, Mns and Qn are corresponding to the constant stress state) 

The ending variational principle: Since the generalized conforming conditions 
(4-8) are introduced, the two-field-functional mp will degenerate to the single- 
field-functional p. Then the final variational principle used in practice is the 
degenerate potential energy principle 

p stationary (4-10) 

Advantages: The deflection field is easy to assume, and the variational principle 
used in practice is still the single-field-functional p, which is very simple; since 
the sub-region potential energy principle is taken as the starting point, convergence 
can be guaranteed. Hereby, both advantages of convenience and convergence are 
available because of generalized conforming conditions (4-7) or (4-8).  

4.4.4 Some Discussions 

The key problems for constructing displacement-based elements are how to 
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rationally deal with compatibility problem between elements and how to rationally 
select a corresponding variational principle.  

Conforming element starts from the minimum potential principle. Thereby, the 
displacement between elements must be exactly compatible. For conforming 
models, the functional p is simple (since p is a single-field-functional) while 
the displacement field is difficult to assume. 

Nonconforming element does not require exact compatibility. Thereby, it must 
start from the sub-region potential energy principle. For nonconforming models, 
the displacement field is easy to assume, but functional mp is complicated (since 

mp is a multi-field-functional). Some workers still take the minimum potential 
principle as the starting point. This strategy is illegal and leads to non-convergence. 

Generalized conforming element does not require exact compatibility either. 
Thereby, in theory, it also must start from the multi-field-functional mp. On the 
other hand, since the generalized conforming conditions (4-8) are introduced, 
functional mp will return to its degenerate form—single-field-functional p in 
practice. Thus, for generalized conforming models, the displacement field is easy 
to assume while the functional p is very simple in operation. It represents the 
best of both worlds and is never illegal. Thus, it can be concluded that generalized 
conforming method is the first successful attempt for applying the degenerate 
functional.

4.5 The Synthesis of Energy Method and Weighted  
Residual Method—Flexibility

Generalized conforming element method can be looked upon as a combination of 
energy method and weighted residual method[12]. In fact, generalized conforming 
condition (4-9) can be looked upon as a weighted residual equation, in which 
boundary forces nM , nsM  and nQ  are weighting functions, i.e., 

( ) d 0
e n n ns s nA

w wM M Q w w s
n s

 (4-11) 

 (Mn, Mns and Qn are weighting functions) 

If weighting functions Mn, Mns and Qn are assumed to be arbitrary functions, 
the weighted residual Eq. (4-11) will be equivalent to the boundary conforming 
conditions (4-3), which corresponds to the exactly compatible case. 

If weighting functions Mn, Mns and Qn are assumed to contain only n arbitrary 
parameters, the weighted residual Eq. (4-11) will be equivalent to n conforming 
conditions in integral form. Generally, this corresponds to the approximate 
conforming case. If different weighting functions are selected, the corresponding 
weighted residual equation will represent conforming conditions with different 



Advanced Finite Element Method in Structural Engineering 

98

physical meanings. Table 4.2 lists physical meanings of several commonly used 
weighting functions and their corresponding weighted residual equations. 

Table 4.2 The physical meanings of weighting functions and their weighted residual 
equations in common use 

Weighting functions in common use Physical meanings of the weighted  
residual equations 

   Concentrated force 
                     at a point 
   Concentrated couple  

                       deflection 
      Point conforming 
                       rotation 

        Uniform load 
                     along a side 
      High order load 

                       average 
      Line conforming 
                       high order 

       Constant stress 
                     along perimeter 
     High order stress 

                       constant stress 
  Perimeter conforming 
                       high order stress 

It can be seen from Table 4.2 and Eq. (4-11) that, unlike the traditional method 
in which only the nodal conforming conditions are used, generalized conforming 
element method possesses great flexibility. It allows to choose various conditions, 
including point conforming, line conforming, perimeter conforming conditions 
and their combination forms. For convergence, the conditions employed in the 
generalized conforming element method should at least contain the fundamental 
generalized conforming conditions. i.e., the generalized conforming conditions or 
their equivalent conditions for constant strain and rigid-body displacement states 
of an element. 

Since generalized conforming conditions can be explained as the weighted 
residual Eq. (4-11) along element boundary perimeter eA , then when establishing 
generalized conforming conditions, one can flexibly employ five conventional 
classical methods in a weighted residual method: 

Collocation method, Sub-domain method, Least square method, Galerkin 
method, Method of moment 

In fact, the usual methods for constructing generalized conforming elements in 
literature are the applications and generalizations of the above classical weighted 
residual methods, for example,  

Line conforming method—Application of Sub-domain method 
Perimeter conforming method—Applied on the boundary perimeter, which is 

similar to the method of moments 
Least square conforming method—Application of Least square method 
Point conforming method—In the conventional point conforming method, the 

element nodes are taken as collocation points; besides, there is still SemiLoof 
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point conforming method in which the Gauss points at element boundary are taken 
as collocation points. All these belong to applications of Collocation method.  

The combination forms of the above methods can also be used. 

4.6 The Convergence of Generalized Conforming Element 

From the viewpoint of mechanics, if the fundamental generalized conforming 
conditions, i.e. the generalized conforming conditions for constant strain and 
rigid-body displacement states of an element, have been already satisfied when 
constructing generalized conforming elements, the convergence can be guaranteed. 
Numerous numerical examples have demonstrated this. 

For convergence of the generalized conforming element TGC[1], Shi Zhongci et 
al. presented a strict mathematical proof[13]. Moreover, Shi Zhongci also discussed 
the accuracy of the generalized conforming element TGC[14], and pointed out that 
the accuracy of element TGC is higher than those of elements BCIZ[4] and 
Specht[15].

In reference [16], Shi Zhongci proposed the FEM test and its test conditions for 
testing the convergence of nonconforming elements. By applying the test conditions, 
the convergence and uniqueness for the solutions of the line conforming and 
perimeter conforming modes were demonstrated[17].
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Abstract This chapter presents a brief summary of the construction methods 
of the generalized conforming thin plate elements. Following the Introduction 
in Sect. 5.1, the generalized conforming conditions and their equivalent forms 
for the thin plate elements are derived in Sect. 5.2. Then, Sect. 5.3 presents 
the general formulations of the generalized conforming thin plate element. 
And subsequently, five construction scheme groups of the generalized 
conforming thin plate elements are proposed in Sect. 5.4. Finally, a collection 
of the recent generalized conforming thin plate elements is provided in 
Sect. 5.5. 

Keywords thin plate element, generalized conforming, construction scheme. 

5.1 Introduction

This chapter firstly gives a review of the construction methods of the generalized 
conforming thin plate elements. Then, several construction schemes will be 
discussed in details in Chaps. 6 and 7.  

The classical Kirchhoff thin plate theory is generally taken as the theoretical 
basis for the construction of the thin plate bending elements. It introduces a straight 
normal assumption, and neglects the effects due to transverse shear deformation. 
In displacement-based conforming thin plate elements, since they require C1
continuity between two adjacent elements, their construction procedures are more 
complicated than those in C0 problems. In addition, there still are other types of 
thin plate element models, such as non-conforming elements, quasi-conforming 
elements, and hybrid mixed elements, and so on. 
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Universal element models for the analysis of both thick and thin plates can 
also be developed, in which the thin plate element is only a special case of them. 
Here, the theoretical basis will be changed to the Reissner-Mindlin plate theory, 
which considers the effects due to transverse shear deformation, and assumes that 
the original normal of the plate mid-surface will still keep straight but not be 
normal to the plate mid-surface anymore after deformation. Some elements based 
on the Reissner-Mindlin theory actually are not universal element models for 
both thick and thin plates, because they have good accuracy only for thick plate 
cases but exhibit an over-stiff performance for thin plate cases. This is the shear 
locking phenomenon which leads to far small defection results in the thin plate 
analysis.

There are numerous thin plate bending elements proposed in literatures, detailed 
reviews on this topic can be found in[1 3].

A good thin plate bending element should possess the following properties: 
(1) It can converge to exact solution, and pass the patch test.  
(2) It has no spurious zero-energy modes except for rigid-body displacement 

modes. 
(3) It has high precision and is insensitive to mesh distortion. 
(4) The shear locking phenomenon will not happen when analyzing thin plates by 

the elements based on the Reissner-Mindlin plate theory. 
(5) The formulations and degrees of freedom (DOFs) are relatively simple; only 

engineering DOFs (nodal deflection w, and nodal rotations x and y) are used. 
The generalized conforming element method provides a new effective way for 

constructing excellent thin plate bending elements.  

5.2 The Generalized Conforming Conditions and Their  
Equivalent Forms for Thin Plate Elements 

For the thin plate bending elements, the exact forms of conforming conditions 
between the elements are given by Eq. (4-3), i.e., 

w w , n
w
n

, s
w
s

  (at each point on Ae ) (5-1) 

in which w(x, y) is the deflection field; w , n  and s  are the deflection, normal 
and tangent slopes along element boundary Ae, respectively. 

In integration form, the generalized conforming conditions given by Eq. (4-11) 
can be written as: 

( ) d 0
e n n ns s nA

w wM M Q w w s
n s

 (5-2a) 
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where weighting functions Mn, Mns and Qn denote boundary forces, i.e., the bending 
moment, twisting moment and transverse shear force along the element boundary. 

Two equivalent forms can also be derived from Eq. (5-2a): 

( ) d ( )( ) 0
e

ns
n n n nsA

J

MwM Q w w s M w w
n s

 (5-2b) 
2 2 2

2 2 2 d ( )d 0
e

e
x y xy n n ns s nA

A

w w wM M M A M M Q w s
x y x y

(5-2c)

In Eq. (5-2c), the internal moments Mx, My and Mxy satisfy the following formula 
for homogeneous equilibrium equation: 

2 22

2 2 2 0y xyx M MM
x y x y

 (5-3) 

Firstly, in order to derive Eq. (5-2b), the following formula for integration by 
parts is needed: 

( )d ( ) d ( ) ( )
e e

ns
ns J ns JA A

J

MM w w s w w s w w M
s s

 (5-4) 

where J denotes the corner node on boundary Ae; ( )ns JM  denotes the increment 
of the twisting moment Mns crossing the corner node J:

 ( ) ( ) ( )ns J ns J ns JM M M  (5-5) 

Substitution of Eq. (5-4) into Eq. (5-2a) yields Eq. (5-2b). 
Secondly, in order to derive Eq. (5-2c), the following formula for integration 

by parts is needed: 

2 2 2

2 2

2 22

2 2

2 d d

2 d d d

e

e
e

x y xy
A

y xyx
n ns nA

A

w w wM M M x y
x y x y

M MM w ww x y M M Q w s
x y x y n s

(5-6)
Substitution of Eq. (5-3) into Eq. (5-6) yields 

2 2 2

2 2 2 d d d
e

e
x y xy n ns nA

A

w w w w wM M M x y M M Q w s
x y x y n s

(5-7)
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Then, substitution of Eq. (5-7) into Eq. (5-2a) yields Eq. (5-2c). 
The proof of the formula for integration by parts (5-6) is given as follows: 
Proof Let l and m be the direction cosines of the outer normal along the 

boundary. Then, the boundary forces Qn, Mn and Mns can be expressed in terms of 
internal moments Mx, My and Mxy:

xy xy yx
n

M M MM
Q l m

x y x y
 (5-8a) 

2 2 2n x y xyM l M m M lmM             (5-8b) 

2 2( ) ( )ns x y xyM lm M M l m M      (5-8c) 

And, the derivatives w
n

 and w
s

 with respect to normal and tangent directions of 

the boundary can be expressed in terms of w
x

 and w
y

:

w w wl m
n x y
w w wm l
s x y

 (5-9) 

From the above two equations, we can obtain 

n ns x y xy
w w w w w wM M lM mM M m l
n s x y x y

 (5-10) 

Now, by using integration by parts two times, the left side of Eq. (5-6) can be 
expressed as follows: 

Left side of Eq. (5-6) d d
e

xy xy yx

A

M M MM w w x y
x y x x y y

d
e x y xyA

w w w wM l M m M m l s
x y x y

2 22

2 2 2 d d
e

y xyx

A

M MM w x y
x y x y



Chapter 5 Generalized Conforming Thin Plate Element Introduction

105

d

d

e

e

xy xy yx
A

x y xyA

M M MMw l m s
x y x y

w w w wM l M m M m l s
x y x y

Then by using Eqs. (5-8a) and (5-10), we have 
Left side of Eq. (5-6) Right side of Eq. (5-6) 

5.3 General Formulations of the Generalized Conforming  
Thin Plate Elements 

5.3.1 Element DOFs and Basis Functions of the Deflection Field 

Here, an element is assumed to have n DOFs. For the thin plate bending problem, 
the element DOF vector eq  usually contains only deflections and rotations wi, xi,

yi (i 1, 2, , p) at corner nodes, i.e., n 3p, in which p is the number of 
corner nodes or element sides. Thereby, eq  is defined as  

T
1 1 1[ ]e

x y p xp ypw wq  (5-11) 

The element deflection field w(x, y) is assumed to be a polynomial with m
unknown coefficients: 

 ( , )w x yF  (5-12) 

where  is the unknown coefficient vector; F is the row matrix of basis (or trial) 
functions:

T
1 2

1 2

[ ]
[ ]

m

mF F FF

in which m n . In usual schemes, let m n, i.e., the number of the unknown 
coefficients in the deflection field is assumed to be equal to the number of 
element DOFs. If m n, the element can be called super-basis generalized 
conforming element. 

5.3.2 Generalized Conforming Conditions 

In order to obtain the expression of  in terms of eq , it needs selecting m
generalized conforming conditions, in which the fundamental generalized 
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conforming conditions or their equivalent conditions must be included. m equations 
between  and eq  are established by these m generalized conforming conditions, 
and can be written as the following matrix forms: 

ˆ ˆ e
m m m nC G q  (5-13) 

This matrix equation should satisfy the following two conditions: 
(1) Ĉ  is a nonsingular square matrix; 
(2) The rank of Ĝ  is n, i.e., 

 Rank of ˆ nG  (5-14) 

According to condition (1),  can be derived from Eq. (5-13): 

ˆ e
m nA q  (5-15) 

in which 
1ˆ ˆ ˆ

m n m mA C G  (5-16) 

According to Eqs. (5-14) and (5-16), we have 

 Rank of ˆ nA  (5-17) 

Meanwhile, the following homogeneous equation set 

ˆ eAq 0

has no nonzero solutions. That is to say, when 0 , w will also be zero, the 
corresponding eq  must be a zero vector, i.e., there are no spurious zero-energy 
modes existing. 

For the case m n, Ĝ  and Â  are both n n  square matrices. Then, conditions 
(1) and (2) can be summarized as: Ĝ  and Â  are nonsingular square matrices. 

5.3.3 Shape Functions 

Substitution of Eq. (5-15) into Eq. (5-12) yields 

ew Nq  (5-18) 

where N is the shape function matrix: 

1ˆ ˆ ˆN FA FC G  (5-19) 

After the determination of the shape functions, the element stiffness matrix can 
be obtained by following standard procedure. 
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5.4 Several Construction Schemes of the Generalized  
Conforming Thin Plate Elements 

The construction methods of the generalized conforming elements have great 
flexibility. The following two points are worthy of being discussed: 

(1) Under the premise that the fundamental generalized conforming conditions 
are satisfied, various conforming conditions, including point conforming, line 
conforming, perimeter conforming and their combination forms, can be selected 
flexibly, which is different from the common practice that only nodal conforming 
form is used. 

(2) The number m of the basis functions (or unknown coefficients) in the 
interpolation formulae of element deflection field can be equal to or larger than 
the number of element DOFs n, which is different from the common practice of 
m n. An element with m n can be called a super-basis element. 

Respectable construction schemes of the generalized conforming thin plate 
elements have been proposed in many literatures, and they can be classified into 
five types: 

(1) Line conforming scheme; 
(2) Line-point conforming scheme (equal-basis or super-basis); 
(3) Super-basis point conforming scheme and SemiLoof conforming scheme; 
(4) Perimeter-point conforming scheme (equal-basis or super-basis); 
(5) Least square conforming scheme. 
In addition, the thick/thin plate elements introduced in Chap. 8 can also be 

used for the analysis of the thin plate structures. 
The conforming conditions used by the various schemes are briefly described 

as follows. 

5.4.1 Line Conforming Scheme m n( )

Now, we start from the first expression of the generalized conforming conditions 
(5-2a). The whole boundary Ae is looked upon as a sub-domain, and the conforming 
conditions will be selected according to the sub-domain method. Firstly, the 
weighting functions Mn, Mns and Qn are selected independently along each element 
side; secondly, they are expanded into power series of the tangent coordinate s
along the side: 

0

k
n k

k
M a s ,

0

k
ns k

k
M b s ,

0

k
n k

k
Q c s  (5-20) 

thirdly, substitute the above equation into Eq. (5-2a). Since parameters ak, bk and 
ck of each side can be looked upon as independent parameters, the zero-order and 
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high-order line conforming conditions can be obtained: 

d 0

1,2, ,
d 0

0,1, ,

( )d 0
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s w w s

 (5-21) 

where p denotes the number of element sides expressed by 1, 2, , p. The 
zero-order line conforming conditions 

d 0

d 0

( )d 0

i

i

i

n

s

w s
n
w s
s

w w s

 (5-22) 

are the average displacement conforming conditions of each element side.  
In order to determine m unknown coefficients in the element deflection field, m

independent generalized conforming conditions are needed. In the line conforming 
scheme, the average line conforming conditions (5-22) of w, n and s along each 
side should be selected firstly; then, other conforming condition form can also be 
supplemented, such as one-order line conforming conditions, point and perimeter 
conforming conditions, and so on. It can be seen that, if the average displacement 
conforming conditions of each element side have already been satisfied, the six 
fundamental generalized conforming conditions for rigid body displacement and 
constant strain states are also satisfied naturally. Thereby, the convergence can be 
guaranteed. The feature of this construction scheme is: starting from Eq. (5-2a), 
all or main conforming conditions are line conforming modes, especially, the 
average line conforming conditions (5-22). 

By the way, the selected m generalized conforming conditions should be 
independent, i.e., they are linearly independent. 

5.4.2 Line-Point Conforming Scheme m n( )

Now, we start from the second expression of the generalized conforming conditions 
(5-2b). Here, the line conforming condition related to tangent rotation s  in 
Eq. (5-2a) has been replaced by the point conforming condition related to 
deflection w at the corner node in Eq. (5-2b), and the pure line conforming 
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conditions (5-21) have also correspondingly been replaced by the following 
combination form: 

0 (at each corner node)

d 0 (along each side)

( )d 0 (along each side)

i

i

k
n

k

w w
ws s
n

s w w s

 (5-23) 

The feature of this construction scheme is: starting from Eq. (5-2b), the point 
conforming conditions and the line conforming conditions are used jointly. So, 
this scheme is called the line-point conforming mixed scheme. 

5.4.3 Super-Basis Point Conforming and SemiLoof Conforming  
Schemes m n( )  

These are the improved schemes of the conventional non-conforming element 
method. In the conventional non-conforming element method, m n, all the 
conforming conditions used are point conforming conditions at the corner nodes. 
Sometimes this method cannot ensure convergence. Therefore, one of its improved 
schemes is proposed as follows: let m n (i.e., increase the number of the unknown 
coefficients and the basis functions in the element deflection interpolation 
formulae so that the number m of the basis functions is larger than the number n
of element DOFs); besides the n conventional point conforming conditions at the 
corner nodes, m n  additional point conforming conditions must be supplemented 
for ensuring element convergence. The feature of this construction scheme is: all 
the conforming conditions used are point conforming modes, and m n so that 
convergence can be guaranteed. So, this scheme is called the super-basis point 
conforming scheme. 

SemiLoof conforming scheme also belongs to the super-basis point conforming 
scheme, it is a mixed scheme of the generalized conforming element and the 
SemiLoof element. 

5.4.4 Perimeter-Point Conforming Scheme m n( )

The line conforming scheme mentioned above is a kind of sub-domain method 
(takes each element side as a sub-domain), while the scheme in this section is a 
whole-domain method in which the generalized conforming conditions (5-2a) are 
used on the whole element boundary line Ae. That is to say, the perimeter 
conforming conditions are adopted.  
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Instead, the equivalent condition (5-2c) can also be used. Here, the boundary 
integration of the element deflection field w in Eq. (5-2a) has been changed to 
area integration, which is more convenient in applications. 

In Eq. (5-2c), the weighting functions Mx, My and Mxy are the arbitrary internal 
force fields which satisfy homogeneous equilibrium Eq. (5-3). Corresponding to 
these internal force fields, Eq. (5-2c) represents a series of generalized conforming 
conditions, in which the most important generalized conditions are those 
corresponding to the constant internal force fields. Let the constant internal force 
fields be: 

1xM , 2yM , 3xyM  (5-24) 

where 1, 2 and 3 are three arbitrary constants. Let l and m be the direction 
cosines of the outer normal on the element boundary, then the boundary forces 
can be written as: 

2 2
1 2 3

2 2
1 2 3

2
( )

0

n

ns

n

M l m lm
M lm lm l m
Q

 (5-25) 

After substituting the above equation into Eq. (5-2c), three independent perimeter 
conforming conditions can be obtained:  

2
2

2

2
2

2

2
2 2

d ( )d 0

d ( )d 0

2 d [2 ( ) ]d 0

e
e

e
e

e
e

n sA
A

n sA
A

n sA
A

w A l lm s
x

w A m lm s
y

w A lm l m s
x y

 (5-26) 

The expressions in Eq. (5-26) are perimeter conforming conditions corresponding 
to the constant internal force fields. The perimeter conforming conditions 
corresponding to first-order and high-order internal force fields are also derived 
by similar methods. 

In this scheme, the perimeter conforming conditions (5-26) are selected firstly, 
then the point conforming or the high-order perimeter conforming conditions can 
be supplemented according to the requirements. The feature of this construction 
scheme is: starting from Eq. (5-2c), the perimeter conforming conditions and the 
point conforming conditions are used jointly. So, this scheme is called the 
perimeter-point conforming mixed scheme. 
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5.4.5 Least Square Scheme m n( )

The feature of this construction scheme is that the generalized conforming 
conditions are established by least square methods. The interpolation formulae of 
the element deflection field is assumed as 

w F

where  denotes the unknown coefficient vector; F  denotes the row matrix of 
the basis functions. By applying the least square method, the generalized conforming 
conditions can be obtained: 

2
2( ) d

e nA

ww w s
n

0  (5-27) 

This least square method can also be used jointly with other methods. 

5.5 A Collection of the Recent Generalized Conforming  
Thin Plate Elements 

Some recent generalized conforming thin plate elements proposed by authors’ 
group, including 28 new elements, are listed in Table 5.1. 

Table 5.1 Some generalized conforming thin plate elements 

Symbol of 
elements 

DOFs
No. of 
basis 

functions

The interpolation 
formula for deflection 
and its basis functions

Conforming conditions used
Referen-

ces 

1. TGC-9  
Triangular 
element  

9 9 

1 1 2 2 3 3

4 1 2 1 3

5 2 3 2 1

6 3 1 3 2

7 1 2 2 3

8 2 3 3 1

9 3 1 1 2

1
2
1
2
1
2
1
2
1
2
1
2

w L L L

L L L L

L L L L

L L L L

L L L L

L L L L

L L L L

Average conforming con-
ditions of w, n, s along each
side (8 independent con-
ditions); in addition, a first 
moment line conforming con-
dition of w is supplemented:

1

23 3 30

1

31 1 10

1

12 2 20

1( ) d
2
1( ) d
2
1( ) d 0
2

w w L L

w w L L

w w L L

[4], [5]

(1) Line conforming scheme 
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(Continued)     

2. TGC-9-1 
Triangular 
element 

9 9 1

w w(TGC-9) F
where internal parameter

1 2 2 3 3 1

1 2 3

1 6( )
18

F L L L L L L
L L L

generalized bubble function

1, 2, , 9 are solved 
by the conforming con-
ditions of element TGC-9;
Eliminate  by conden-
sation

[4], [5]

3. RGC-12 
Rectangular
element 

12 12 

2
1 2 3 4

2 3
5 6 7

2 2 3
8 9 10

3 3
11 12

w
Average line conforming 
conditions of w, n and s
along each side (10 inde-
pendent conditions); 
Point conforming conditions
of x and y at a corner 
node (2 conditions) 

[4], [5]

4. CGC-R12 
Rectangular
element 

12 12 

1 2 3 4
2

5 7 9
2

6 8 10
4 4

11 12

( 1)( )
( 1)( )

( 1) ( 1)

w Average line conforming 
conditions of w and n al-
ong each side (8 conditions);
Point conforming conditions
of w at each corner node 
(4 conditions) 

[6] 

5. LGC-R12 
Rectangular
element 

12 12 

1 2 3 4
2

5 7 9
2

11 6

8 10 12

( 1)(
) ( 1)(

)

w

Point conforming con-
ditions of w at each corner 
node (4 conditions); 
Average line conforming 
conditions of w along each 
side; average and first mo-
ment line conforming con-
ditions of n along each 
side (select 8 independent 
conditions)

[7] 

6. LZ1 
Triangular 
element 

9 9 

1 1 2 2 3 3

4 1 2 5 2 3
2

6 3 1 7 1 2
2 2

8 2 3 9 3 1

w L L L
L L L L
L L L L
L L L L

Average line conforming 
conditions of w and n along
each side (6 conditions); 
Point conforming conditions
of w at each corner node 
(3 conditions) 

[8] 

7. LZ2 
Triangular 
element 

9 9+1 

(LZ1)w w F
where internal parameter
F generalized bubble fun- 
ction

1 2 2 3 3 1
2 2 2
1 2 2 3 3 1

1 2 3

( )
2( )
3

L L L L L L
L L L L L L

L L L

1, 2, , 9 are solved 
by the conforming con-
ditions of element LZ1;  
Eliminate  by conden-
sation

[8] 
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8. GPL-T9 
Triangular 
element 

9 9 

1 1 2 2 3 3

4 1 2 5 2 3 6 3 1

7 1 1 1

8 2 2 2

9 3 3 3

1 ( 1)
2
1 ( 1)
2
1 ( 1)
2

w L L L
L L L L L L

L L L

L L L

L L L

Average line conforming 
conditions of w and n
along each side (6 con-
ditions);
Point conforming con-
ditions of w at each cor-
ner node (3 conditions)

[9] 

9. GC -T9
Triangular 
element 

9 9 

1 1 2 2 3 3

4 1 2 5 2 3 6 3 1
2

7 1 2 3
2

8 2 3 1
2

9 3 1 2

( )
( )
( )

w L L L
L L L L L L
L L L
L L L
L L L

Average line conforming 
conditions of w and n
along each side (6 con-
ditions);
Point conforming con-
ditions of w at each cor-
ner node (3 conditions)

[10]

10.LGC-Q12 
Quadrilatera
l element 

12 12 

1 2 3 4
2

5 7 9
2

11 6

8 10 12

( 1)(
) ( 1)(

)

w

Point conforming con-
ditions of w at each cor-
ner node (4 conditions);
Average line conforming 
conditions of w along 
each side; average and 
first moment line con-
forming conditions of n
along each side (select 8
independent conditions)

[11]

11. GC-S12 
Sector 
element 

12 12 

4

1

2
5 7

9 11

6 8 10

12

1 (1 ) 1 sin
4 2

( 1) sin
2

sin
2

cos ( sin
2 2

sin )
2

i i i
i

w R R

R

R R

R

R

Point conforming con-
ditions of w at each cor-
ner node (4 conditions);
Average line conforming 
conditions of w along 
each side; average and 
first moment line con-
forming conditions of n
along each side (select 8
inde pendent conditions)

[12]

(2a) Line-point conforming scheme 

12. GC -
R12
Rectangular 
element 

12 14 

2
1 2 3 4

2 3
5 6 7

2 2 3
8 9 10

3 3
11 12

2 2
13 14( 1)( 1)( )

w
Point conforming con-
ditions of w, x and y
at each corner node 
(12 conditions); 
Average line confor-
ming conditions of n
along each side (2 in-
dependent conditions)

[13] 
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13. GPL- 
R12
Rectangular 
element 

12 16 

1 2 3 4
2

5 7 9
2

11 6 8

10 12

2 2
13 15

2 2
14 16

( 1)(
) ( 1)(

)
1( 1) ( )
5
1( 1) ( )
5

w Point conforming con-
ditions of w at each cor-
ner node (4 conditions);
Average line confor-
ming conditions of w
along each side; average
and first moment line 
conforming conditions 
of n along each side 
(12 conditions)  

[9] 

14. GC -
T9
Triangular 
element 

9 12 

1 1 2 2 3 3

4 2 3 5 3 1 6 1 2

7 2 3 3 2 8 3 1 1

3 9 1 2 2 1
2 2

10 1 2 3 11 2 3 1
2

12 3 1 2

( ) (
) ( )

w L L L
L L L L L L
L L L L L L L

L L L L L
L L L L L L
L L L

Point conforming con-
ditions of w, x and y
at each corner node (9 
conditions);
Average line conforming
conditions of n along
each side (3 conditions)

[13] 

15. LZ3 
Triangular 
element 

9 10 

1 1 2 2 3 3

4 1 2 5 2 3 6 3 1
2 2 2

7 1 2 8 2 3 9 3 1

10 1 2 3

w L L L
L L L L L L
L L L L L L
L L L

Point conforming con-
ditions of w at each cor-
ner node (3 conditions);
Average line confor-
ming conditions of w
and n along each side 
(6 conditions);  
Line conforming con-
dition of the sum of first
moments of w along
three sides (1 condition)

[8] 

(2b) Super-basis Line-Point conforming scheme 

16. MB1-T9 
Triangular 
element 

9 12 

1 1 2 2 3 3

4 1 2 5 2 3 6 3 1
2 2 2

7 1 2 8 2 3 9 3 1
2 2 2 2 2 2

10 2 3 11 3 1 12 1 2

w L L L
L L L L L L
L L L L L L
L L L L L L

Point conforming con-
ditions of w, x and y

at each corner node (9 
conditions);  
Point conforming con-
ditions of n at mid-
point of each side (3 
conditions)

[14] 

17. MB2-T9 
Triangular 
element 

9 12 

1 1 2 2 3 3

4 1 2 5 2 3 6 3 1
2 2 2

7 1 2 8 2 3 9 3 1
2 2

10 1 2 3 11 2 3 1
2

12 3 1 2

w L L L
L L L L L L
L L L L L L
L L L L L L
L L L

Same as element MB1-
T9

[14] 
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18. LQ12 
Quadrilateral
element 

12 16 

2
1 2 3 4

2 3
5 6 7

2 2 3
8 9 10

3 3 2 2
11 12

13 14 15
2 2

16

( 1)(
1)[

( )]

w Point conforming con-
ditions of w, x and y
at each corner node (12 
conditions);
Point conforming con-
ditions of n at mid-
side point of each side 
(4 conditions) 

[15] 

19. LSL-T9 
Triangular 
element 

9 12 

1 1 2 2 3 3

4 2 3 5 3 1 6 1 2

7 2 3 2 3 8 3 1 3

1 9 1 2 1 2
2 2

10 1 2 3 11 2 3 1
2

12 3 1 2

( ) (
) ( )

w L L L
L L L L L L
L L L L L L L

L L L L L
L L L L L L
L L L

Point conforming con-
ditions of w at each cor-
ner node and mid-side 
point of each side (6
conditions);
Point conforming con-
ditions of n at two 
Gauss points of each 
side (6 conditions) 

[16] 

20. LSL- 
R12
Rectangular 
element 

12 16 

1 2 3 4
2

5 6 7
2

8 9 10
2 2

11 12

13 14 15
2 2

16

( 1)(
) ( 1)(

) ( 1)(
1)[

( )]

w Point conforming con-
ditions of w at each cor-
ner node and mid-side 
point of each side (8 
conditions);  
Point conforming con-
ditions of n at two 
Gauss points of each 
side (8 conditions) 

[16] 

21. LSL- 
Q12
Quadrilateral 
element 

12 16 

1 2 3 4
2

5 6 7
2

8 9 10
2 2

11 12

13 14 15
2 2 2 2

16

( 1)(
) ( 1)(

) ( 1)(
1)( )

[ ( 1) ( 1)]

w Point conforming con-
ditions of w at each cor-
ner node and mid-side 
point of each side (8 
conditions);  
Point conforming con-
ditions of n at two 
Gauss points of each 
side (8 conditions) 

[17] 

(3) Super-basis point conforming and SemiLoof conforming scheme 

22. LR12-1 
Rectangular 
element 

12 12 

2
1 2 3 4

2 3
5 6 7

2 2 3
8 9 10

3 3
11 12

w

Point conforming con-
ditions of w at each cor-
ner node (select 3 con-
ditions);  
9 perimeter conforming 
conditions, and the cor-
responding internal mo-
ment fields are: 

1 2 3

4

5 6 7

8

9

x

y

xy

M

M

M

[18]
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23. LR12-2 
Rectangular 
element 

12 12 Same as element LR12-1

Similar to element 
LR12-1, but the internal
moment fields are 
changed to 

1 2 3

4 5 6

2 2
7 8 9

x

y

xy

M
M

M

[18]

24. Coons 
method
Rectangular 
element 

12 12 

2 3
1

2 3

2 3 2 3
2

2 3 2
3

2 3 2
4

2
, 1

2
, 2

2
, 3

2
, 4

2
, 1

2
, 2

2
, 3

,

(1 3 2 )
(1 3 2 )

(3 2 )(1 3 2 )
(1 3 2 )(1 )
(3 2 )(1 )

(1 ) (1 )

( 1)(1 )

(1 )

( 1)

(1 ) (1 )

(1 )

(1 ) ( 1)

w w

w
w
w
w

w

w

w

w

w

w

w 2
4 ( 1)

w of each side is exactly 
compatible; n of each 
side satisfies the peri-
meter conforming con-
ditions under constant 
moment fields 

[19]

(4a) Perimeter-point conforming scheme 

25. GC -
T9
Triangular 
element 

9 12 

1 1 2 2 3 3

3
4 1 2 1

1
5 2 3 2

2
6 3 1 3

2
7 1 3 1

3
8 2 1 2

1
9 3 2 3

2 2 2 2
10 1 2 11 2 3

2 2
12 3 1

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

w L L L
LL L L

LL L L

LL L L

LL L L

LL L L

LL L L

L L L L
L L

Point conforming con-
ditions of w, x and y

at each corner node (9 
conditions);
Perimeter conforming 
conditions under constant
moment fields (3 con-
ditions)

[20]
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26. LT9 
Triangular 
element 

9 12 

1 1 2 2 3 3

4 1 2 5 2 3 6 3 1
2 2 2

7 1 2 8 2 3 9 3 1
2 2

10 1 2 3 11 2 3 1
2

12 3 1 2

w L L L
L L L L L L
L L L L L L
L L L L L L
L L L

Point conforming con-
ditions of w at each cor-
ner node (3 conditions);
Perimeter conforming 
conditions under linear 
moment fields (9 con-
ditions)

[18]

(4b) Super-basis perimeter-point conforming scheme 

27. LSGC- 
R12
Rectangular 
element 

12 14 

2
1 2 3 4

2 3 2
5 6 7 8

2 3 3
9 10 11

3 2 2
12 13

2 2
14

( 1)( 1)
( 1)( 1)

w

Point conforming con-
ditions of w, x and y

at each corner node (12 
conditions);
The extreme conditions 
by least square method 
are (2 conditions): 

2

d 0

( 13,14)

n
i

w s
n

i

[21]

28. LSGC- 
T9
Triangular 
element 

9 12 

1 1 2 2 3 3

2 2
4 1 2 1 2 3 5 2 3

2
1 2 3 6 3 1 1 2 3

2 2
7 1 3 1 2 3 8 2 1

2
1 2 3 9 3 2 1 2 3

2 2 2 2 2 2
10 1 2 3 11 2 3 1 12 3 1 2

1( ) (
2

1 1) ( )
2 2

1( ) (
2

1 1) ( )
2 2

w L L L

L L L L L L L

L L L L L L L L

L L L L L L L

L L L L L L L L

L L L L L L L L L

Point conforming con-
ditions of w, x and y

at each corner node (9 
conditions);
The extreme conditions 
by least square method 
are (3 conditions): 

2

d 0

( 10,11,12)

n
i

w s
n

i

[21]

(5) Least square scheme 

The generalized conforming thin plate elements for geometrically nonlinear 
analysis, including 8 elements, are listed in Table 5.2. All of them use the 
corresponding displacement field modes given by Table 5.1, and their Total 
Lagrangian formulations of the tangent stiffness matrices for the geometrically 
nonlinear analysis are derived. 

In these Tables, brief introductions on the construction features of each 
element are given, including the assumed element deflection interpolation formula 
and the conforming conditions used, and the original literatures of these elements 
are also given for reference. 
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Table 5.2 Some generalized conforming thin plate elements for geometrically 
nonlinear analysis 

Generalized conforming thin plate 
elements for geometrically 

nonlinear analysis 
The displacement field mode References

29. NLT-1: nonlinear triangular 
element 

Same as triangular element TGC-9 (No. 1) 

30. NLT-2: nonlinear triangular 
element 

Same as triangular element GC -T9 (No. 14)

31. NLT-3: nonlinear triangular 
element 

Same as triangular element GC -T9 (No. 25)

32. NLR-1 nonlinear rectangular 
element 

Same as rectangular element RGC-12 (No.3)

33. NLR-2 nonlinear rectangular 
element  

Same as rectangular element LGC-R12 (No.5)

34. NLR-3 nonlinear rectangular 
element 

Same as rectangular element GC -R12
(No.12)

35. NLQ-1 nonlinear quadrilateral 
element 

Same as quadrilateral element LGC-Q12
(No.10)

36. NLQ-2 nonlinear quadrilateral 
element 

Same as quadrilateral element LSL-Q12
(No.21)

[22 24]

In Chaps. 6 and 7, several typical elements by different construction schemes will 
be discussed in detail. 
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Abstract Five groups of construction schemes for the generalized con- 
forming thin plate elements are proposed in Sect. 5.4. This chapter discusses 
the first three groups: (1) line conforming scheme (Sect. 6.1); (2) line-point 
conforming scheme (Sects. 6.2 and 6.3) and super-basis line-point conforming 
scheme (Sect. 6.4); and (3) super-basis point conforming scheme (Sect. 6.5) 
and SemiLoof conforming scheme (Sect. 6.6). Formulations of 13 triangular, 
rectangular and quadrilateral generalized conforming thin plate elements, 
which are constructed by the above schemes, are introduced in detail. The 
elements formulated in Sects. 6.1 to 6.3 belong to the equal-basis elements, 
in which the number m of the unknown coefficients or basis functions in an 
interpolation formula for the element deflection field equals to the number n
of DOFs. And, the elements formulated in Sects. 6.4 to 6.6 belong to the 
super-basis elements, in which m n. Numerical examples show that these 
models exhibit excellent performance in the analysis of thin plates. This denotes 
that the difficulty of C1 continuity problem can be solved completely. 

Keywords thin plate element, generalized conforming, line-point conforming, 
SemiLoof conforming. 

6.1 Line Conforming Scheme—Elements TGC-9 and  
TGC-9-1

In this section, the generalized conforming thin plate elements TGC-9 and TGC-9-1 
will be taken as examples for illustrating the procedure of the line conforming 
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scheme. The outlines of the procedure are as follows: all conforming conditions are 
line conforming ones, especially, the average line conforming conditions (5-22) 
are taken as the main conditions; for the element TGC-9, let m n; and for the 
element TGC-9-1, it is extended from the element TGC-9 by introducing an 
internal parameter , which will be eliminated by condensation. 

6.1.1 Element TGC-9 

A triangular thin plate element with 9 DOFs is shown in Fig. 6.1. Its nodal 
displacement vector eq  is 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq  (6-1) 

Along each element side, the deflection w  is assumed to be cubic and the normal 
slope n  linear. 

Figure 6.1 A triangular thin plate bending element 

According to the element BCIZ in reference [1], the element deflection field 
w(x, y) is described by an incomplete cubic polynomial and expressed in terms of 
the area coordinates L1, L2, L3:

w F  (6-2) 

where  is a vector containing 9 unknown coefficients: 
T

1 2 3 4 5 6 7 8 9[ ]

and F  is a row matrix containing 9 basis functions: 

1 2 3 4 5 6 7 8 9

4 1 2 1 3 5 2 3 2 1 6 3 1 3 2

7 1 3 1 2 8 2 1 2 3 9 3 2 3 1

[ ]
1 1 1( ), ( ), ( )
2 2 2

1 1 1( ), ( ), ( )
2 2 2

L L L F F F F F F

F L L L L F L L L L F L L L L

F L L L L F L L L L F L L L L

F

(6-3)
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In order to determine the 9 unknown coefficients of  in terms of eq , 9 
generalized conforming conditions are needed. Here, the line conforming scheme, 
especially the average line conforming conditions (5-22), are firstly considered. 
Each element has three sides, along which the average deflection, average normal 
slope and average tangential slope conforming conditions are used. So, to outward 
seeming, there are just 9 generalized conforming conditions here. But, if w w
is a continuous function along the boundary perimeter Ae, the following identity 
relation

( )d 0
eA

w w s
s

 (6-4) 

will come into existence, i.e., 
3

1
d 0

i
s

i

w s
s

 (6-5) 

Therefore, there are only two independent conditions actually active for the 
tangential slop s. That is to say, when Eq. (5-22) is used along each element 
side, there are only 8 independent generalized conforming conditions, which are 
the first eight equations of the following equation set: 

1 1

23 3 4 23 30 0

1 1

31 1 5 31 10 0

1 1

12 2 6 12 20 0

1 1

3 7 23 30 0
23

1 1

1 8 31 10 0
31

1 1

2 9 12 20 0
12

3 1 23
23

d d

d d

d d

d ( ) d

d ( ) d

d ( ) d

d ( )

n

n

n

s

w L d w L

w L d w L

w L d w L

w L d L
n
w L d L
n
w L d L
n
w L d
s

1 1

30 0

1 1

1 2 31 10 0
31

1 1 1

23 3 3 31 1 1 12 2 2 30 0 0

1 1 1

23 3 3 31 1 1 12 2 20 0 0

d

d ( ) d

1 1 1d d d
2 2 2

1 1 1d d d
2 2 2

s

L

w L d L
s

w L L w L L w L L d

w L L w L L w L L

(6-6)
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The ninth equation in Eq. (6-6) is the supplementary generalized conforming 
condition, which denotes the generalized conforming condition that the sum of 
the first moments of the deflections along three sides should satisfy. 

By using the symbol of Eq. (5-13) and arranging in the sequence of d1, d2, ,
d9, Eq. (6-6) can be rewritten in the following matrix form: 

ˆ ˆ eC Gq  (6-7) 

where

1 1 2 2 3 3

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 0 0
0 0 0 6 6

ˆ 6 0 0 0 6
6 6 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c b c b c b
c b c b

c b c b
c b c b

b c b c
b c b c
b c b c

G  (6-8) 

1 2 3

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1

ˆ 0 6 6 0 1 0 0 0 1
6 0 6 0 0 1 1 0 0
6 6 0 1 0 0 0 1 0

ˆ ˆ ˆ

C

C C C

 (6-9) 

and

2 3 3 2

3 3 1 1
1

2 1 1 2

ˆ

f f f f
A A A
f f f f
A A A
f f f f
A A A

C  (6-10) 
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2 3 2 3 2 3

3 1 3 1 3 1
2

1 2 1 2 1 2

3 5
12 12 12

ˆ 5 3
12 12 12

3 5
12 12 12

f f f f f f
A A A

f f f f f f
A A A

f f f f f f
A A A

C  (6-11) 

2 3 2 3 2 3

3 1 3 1 3 1
3

1 2 1 2 1 2

5 3
12 12 12

ˆ 3 5
12 12 12

5 3
12 12 12

f f f f f f
A A A

f f f f f f
A A A

f f f f f f
A A A

C  (6-12) 

in which A is the area of the triangle; and 

( )

i j k

i k j

i j k j k

b y y
c x x
f b b c c

  ( 1,2,3; 2,3,1; 3,1,2)i j k  (6-13) 

It can be verified that Ĝ  and Ĉ  are not singular. So, from Eqs. (6-7) and (6-2), 
we have 

1ˆ ˆ ew F C Gq

Then, the element stiffness matrix can be obtained following the standard procedure. 

6.1.2 Element TGC-9-1 

Assume that the element deflection field w is constituted of two parts 

qw w w  (6-14) 

where the first part is the deflection field expressed in Eq. (6-2) 

1ˆ ˆ( ) e
qw F F C G q  (6-15) 

The second part is a generalized bubble deflection field 

w F  (6-16) 

where  is an internal displacement parameter and F  is a generalized bubble 
function:
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1 2 2 3 3 1 1 2 31 6( ) 18F L L L L L L L L L  (6-17) 

It can be verified that all the 9 generalized displacements d1, , d9 corres- 
ponding to w  vanish. 

The deflection field (6-14) is a complete cubic polynomial with 10 DOFs.  is 
eliminated by a condensation process, only 9 external DOFs in eq  are retained. 

From the expression (6-14) of the deflection field, the curvature field  can be 
expressed as 

T2 2 2

2 2 2 ew w w
x y x y

Bq B  (6-18) 

and the element strain energy U is 

T T 21 1 1d
2 2 2e

e e e e
qq q

A

U A kD q K q K q  (6-19) 

where
T

T

T

d

d

d

e

e

e

qq
A

q
A

A

A

A

k A

K B DB

K B DB

B DB

 (6-20) 

Applying a condensation process, we can solve  from 0U :

1 e
qk K q

Substitution of the above equation into Eq. (6-19) yields 

T1
2

e e eU q K q

where eK  is the element stiffness matrix after condensation: 
T 1e

qq q qkK K K K  (6-21) 

6.1.3 Numerical Examples 

Example 6.1 Simply-supported and clamped square plates subjected to uniformly 
distributed load q or central concentrated load P—comparison of five triangular 
thin plate elements. L is the length of the plate side; and Poisson’s ratio 0.3.
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                Figure 6.2 Meshes for a quarter square plate 
(a) A quarter simply-supported square plate; (b) A quarter clamped square plate; (c) Mesh orientation 
A Mesh density N 4; (d) Mesh orientation B Mesh density N 4

Owing to symmetry, only one-quarter of the plate is modelled. As shown in 
Fig. 6.2, two mesh orientations (A and B) are considered. For comparison, the 
results by the five triangular element models with 9 DOFs, the generalized 
conforming element TGC-9-1, the discrete Kirchhoff theory element DKT[2, 3],
the hybrid-stress element HSM[2,4], the non-conforming element BCIZ[1] and the 
conforming element HCT[5], are given together. 

The results of the central deflection wC for the uniformly distributed load case 
are plotted in Figs. 6.3 and 6.4. And, the results for the concentrated load case are 
given in Figs. 6.5 and 6.6. Among the five elements used, the generalized 
conforming element TGC-9-1 gives the most accurate answers, and the elements 
HSM and DKT give the second best ones. 

Figure 6.3 The percentage error for central deflection of the simply-supported square 
plate subjected to uniform load 
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Figure 6.4 The percentage error for central deflection of the clamped square plate 
subjected to uniform load 

Figure 6.5 The percentage error for central deflection of the simply-supported 
square plate subjected to concentrated load 
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Figure 6.6 The percentage error for central deflection of the clamped square 
plate subjected to concentrated load 

The results of the central moment MC are given in Figs. 6.7 and 6.8. The 
accuracy of the generalized conforming element is still the best. And, the results  

Figure 6.7 The percentage error for central moment of the simply-supported square 
plate subjected to uniform load 
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Figure 6.8 The percentage error for central moment of the clamped square plate 
subjected to uniform load 

of the moment MD at the mid-side point of the plate are given in Figs. 6.9 and 
6.10. The elements TGC, HSM and DKT are at the same level of accuracy. 

Figure 6.9 The percentage error for moment at mid-side point of the clamped 
square plate subjected to uniform load 
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Figure 6.10 The percentage error for moment at mid-side point of the clamped 
square plate subjected to concentrated load 

Different mesh orientations lead to different results for these elements, and the 
smallest difference is obtained by the generalized conforming element.  

6.2 Line-Point Conforming Scheme—Rectangular Elements 

The mixed scheme of line and point conforming is one of the most popular 
schemes for constructing the generalized conforming thin plate elements. We will 
introduce it in two sections: rectangular elements in this section and triangular 
elements in the next. 

The no. 3, 4, 5 elements RGC-12, CGC-R12 and LGC-R12 in Table 5.1 are all 
rectangular elements constructed by the line-point conforming scheme, in which 
m n 12. Besides, some other contents, including the simplification by using 
the symmetry of rectangular elements, and the buckling analysis of thin plates, 
are also introduced. 

6.2.1 Rectangular Element RGC-12 (Bending Problem) 

A 12-DOF rectangular thin plate element is shown in Fig. 6.11. The element nodal 
displacement vector eq  is 
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T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

where w denotes the deflection; x
w
x

 and y
w
y

 denote the rotations. 

Along each element side, the deflection w  is assumed to be cubic and the 
normal slope n  linearly distributed. 

Figure 6.11 Rectangular plate 

Let ,  be the dimensionless coordinates: x
a

, y
b

.

According to the element ACM[6], the element deflection field w is described by 
an incomplete quartic polynomial 

w F  (6-22) 

in which 

T
1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 2 2 3 3 3

[ ]
[1 ]F

(6-23)

In order to solve , it is necessary to choose 12 generalized conforming 
conditions and their corresponding generalized displacements d.

T
1 2 3 4 5 6 7 8 9 10 11 12[ ]d d d d d d d d d d d dd

First of all, we consider the average deflection, the average tangential slope 
and the average normal slope of each element side, thus 12 average displacements 
are involved. But, there are two identity relations for these quantities, so only 10 
of the average displacements are independent, which may be chosen as the first 
ten generalized displacements d1, d2, , d10. And, the rotations of node 1, x1
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and y1, could be chosen as the other two generalized displacements d11 and d12.
Thus, 12 generalized conforming conditions are established as follows: 

1 1

1 121 1
12

1 1

2 231 1
23

1 1

3 431 1
43

1 1

4 141 1
14

1 1

51 1
12 12

6
23 23

d d

d d

d d

d d

d d

d

y

x

y

x

w d
y

w d
x

w d
y

w d
x

w wd
x x

w wd
y y

1 1

1 1

1 1

71 1
43 43

1 1

12 8 121 1

1 1

23 9 231 1

1 1

43 10 431 1

11 1
1

12 1
1

d

d d

d d

d d

d d

x

y

w wd
x x

w d w

w d w

w d w

w d
x

w d
y

(6-24)

Equation (6-24) can be written as 

ˆ ˆ eC Gq  (6-25) 

where



Chapter 6 Generalized Conforming Thin Plate Element Line-Point and ... 

133

0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0

ˆ
1 0 1 0 0 0 0 0 0 0

3 3

0 0 0 1 0 1 0 0 0 0
3 3

0 0 0 0 0 0 1 0 1 0
3 3

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

a a

b b

a a

G  (6-26a) 

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

0 2 0 0 2 0 2 0 2 0 2 2
0 0 2 0 2 0 0 2 0 2 2 2

ˆ 0 2 0 0 2 0 2 0 2 0 2 2
2 22 0 2 0 2 0 0 2 0 0
3 3

2 22 2 0 2 0 2 0 0 0 0
3 3

2 22 0 2 0 2 0 0 2 0 0
3 3

1 2 1 3 2 1 3 10 0 0 0

1 1 2 10 0 0 0

b b b b

a a a a

b b b b

a a a a

a a a a a a a a

b b b

C

2 3 1 3
b b b b b

(6-26b)
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From Eqs. (6-25) and (6-22), we have 

1ˆ ew F C Gq  (6-27) 

And then, the element stiffness matrix can be obtained by the conventional 
procedure.  

Example 6.2 Simply-supported and clamped square plates subjected to 
uniformly distributed load q or central concentrated load P—comparison of 
different rectangular thin plate elements. L is the length of the plate side; and 
Poisson’s ratio 0.3.

The deflection coefficients at the plate center are given in Table 6.1. For the 
sake of comparison, not only the results by the generalized conforming element 
RGC-12 but also those by the element ACM[7] are given (the numbers in 
parentheses are relative errors). It can be seen from Table 6.1 that the precision of 
the element RGC-12 is better than that of the element ACM. The moment 
coefficients are given in Table 6.2, and also exhibit high precision. 

Table 6.1 The deflection coefficients at central point 

Simply-supported 
 (uniform)  (concentrated) Mesh (whole 

plate)
ACM[7] RGC-12 ACM[7] RGC-12 

2 2
4 4
8 8

16 16

0.3446( 15%)
0.3939( 3%)

0.4033( 0.7%)
0.4056( 0.15%)

0.4003( 1.5%)
0.4034( 0.7%)
0.4053( 0.2%)
0.4061( 0.02%)

1.378( 18.8%)
1.233( 6.3%)
1.183( 2%)

1.167( 0.6%)

1.116( 3.8%)
1.146( 1.2%)
1.155( 0.4%)
1.159( 0.1%)

Analytical 
solution

0.4062 1.160 

Clamped
 (uniform)  (concentrated) 

Mesh (whole 
plate)

ACM[7] RGC-12 ACM[7] RGC-12 
2 2
4 4
8 8

16 16

0.1480( 17.0%)
0.1403( 10.9%)
0.1304( 3.1%)
0.1275( 0.08%)

0.1479( 16.9%)
0.1228( 2.9%)
0.1253( 0.09%)
0.1262( 0.02%)

0.5919( 5.5%)
0.6134( 9.3%)
0.5803( 3.4%)
0.5672( 1.1%)

0.5918( 5.5%)
0.5433( 3.2%)
0.5550( 1.1%)
0.5596( 0.3%)

Analytical 
solution

0.1265 0.5612 

Note: 

4

max

2

max

1 (uniform)
100

1 (comcentrated)
100

qLw
D
PLw
D

,
3

2 ,
12(1 )

EhD E is the Young’s modulus,  is the 

Poissom’s ratio. 
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Table 6.2 Moment coefficients 

Central moment Moment at mid point of boundary
Simply-supported Clamped Clamped 

Mesh (whole 
plate)

1 (load q) 1(load q) 1 (load q) 1 (load P)
2 2
4 4
8 8

16 16

0.0521( 8.8%)
0.0484( 1.0%)

0.0479(0%)
0.0479(0%)

0.0462( 102%)
0.0239( 4.4%)
0.0230( 0.4%)
0.0230( 0.4%)

0.0355( 30.8%)
0.0438( 14.6%)
0.0489( 4.7%)
0.0506( 1.4%)

0.1420( 13.0%)
0.1156( 8.0%)
0.1221( 2.9%)
0.1245(1.0%)

Analytical 
solution

0.0479 0.0229 0.0513 0.1257

Note: 
2

1

1

(uniform)
(concentrated)

M qL
M P

6.2.2 Utilization of the Symmetry of Rectangular Elements 

We consider the case m n 12 for the rectangular thin plate elements, and take 
the element RGC-12 as an example. The main construction procedure is how to 
establish 12 generalized conforming conditions, i.e. Eq. (6-25), in which Ĉ  is a 
12 12 matrix. When solving , the inverse matrix 1Ĉ  is needed. It is not an 
easy work to obtain the inverse matrix of a 12 12 matrix. So, for simplification, 
the symmetry of the rectangular elements may be used. 

In a rectangular element, there are two symmetry axes, that is, x-axis and 
y-axis in Fig. 6.11. If the symmetry is fully used, the 12 generalized conforming 
conditions can be classified into four equation groups: 

Symmetry-Symmetry (SS) group—symmetry with respect to both x-axis
and y-axis;  
Symmetry-Antisymmetry (SA) group—symmetry with respect to the x-axis, 
antisymmetry with respect to the y-axis;
Antisymmetry-Symmetry (AS) group—antisymmetry with respect to the 
x-axis, symmetry with respect to the y-axis; 
Antisymmetry-Antisymmetry (AA) group—antisymmetry with respect to 
both x-axis and y-axis.

Thus, each conforming equation group is usually a set of equations with only 
three unknown variables, which is much simpler to be solved. 

Now, let us take the element RGC-12 as an example to illustrate the whole 
procedure.

Firstly, the element deflection field is expressed by Eqs. (6-22) and (6-23), in 
which 12 unknown coefficients and their basis functions have already been 
classified into four groups: 
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2 2
1 4 6

3 2
2 7 9

2 3
3 8 10

3 3
5 11 12

SS group , ,
SA group , ,
AS group , ,
AA group , ,

 (6-28) 

Secondly, the selected generalized conforming conditions should also possess 
symmetry or antisymmetry. In fact, all the average line conforming and point 
conforming conditions about w, x and y in Eq. (6-24) do not satisfy this 
requirement. Therefore, the conforming conditions should be recombined so that 
the new combination conditions should possess symmetry and antisymmetry, and 
then, can be vested in one of the above four groups. 

For instance, the average line conforming conditions of the rectangular 
elements can be treated as follows. 

In a rectangular element, there are 12 average line conforming conditions 
about w, n, s of each side (the number of independent conditions will be 
discussed later). According to symmetry or antisymmetry, these conditions can 
be re-combined to form 12 new combination conditions which are classified as: 

(1) Combination conditions belonging to SS group (4 conditions) 

1 1

43 12 43 121 1
( )d ( )dw w w w           (6-A1) 

1 1

23 14 23 141 1
( )d ( )dw w w w           (6-A2) 

1 1

23 141 1
23 14

d ( )dn n
w w
x x

 (6-A3) 

1 1

43 121 1
43 12

d ( )dn n
w w
y y

 (6-A4) 

(2) Combination conditions belonging to SA group (3 conditions) 

1 1

23 14 23 141 1
( )d ( )dw w w w            (6-B1) 

1 1

23 141 1
23 14

d ( )dn n
w w
x x

   (6-B2) 

1 1

43 121 1
43 12

d ( )ds s
w w
x x

 (6-B3) 
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(3) Combination conditions belonging to AS group (3 conditions) 

1 1

43 12 43 121 1
( )d ( )dw w w w           (6-C1) 

1 1

43 121 1
43 12

d ( )dn n
w w
y y

 (6-C2) 

1 1

23 141 1
23 14

d ( )ds s
w w
y y

 (6-C3) 

(4) Combination conditions belonging to AA group (2 conditions) 

1 1

43 121 1
43 12

d ( )ds s
w w
x x

 (6-D1) 

1 1

23 141 1
23 14

d ( )ds s
w w
y y

 (6-D2) 

The combination conforming conditions are derived by selecting the combination 
boundary forces as weighting functions. The above conforming condition groups 
are just classified by the symmetry or antisymmetry of the selected combination 
boundary forces.  

Substitution of the element deflection field (6-22) and the interpolation formulae 
for boundary displacements into the above 12 conditions yields 

(1) SS group 

4 4

1 4 6
1 1

1 1
3 4 12i xi i

i i

aw  (6-A1)

4 4

1 4 6
1 1

1 1
3 4 12i yi i

i i

bw  (6-A2)

4

4
18 xi i

i

a                   (6-A3)

4

6
18 yi i

i

b                  (6-A4)
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(2) SA group 

4 4

2 7 9
1 1

1 1
3 4 12i i yi i i

i i

bw  (6-B1)

4

2 7 9
1

13
3 4 xi

i

a              (6-B2)

4

2 7 9
1

1
4 i i

i
w               (6-B3)

(3) AS group 

4 4

3 8 10
1 1

1 1
3 4 12i i xi i i

i i

aw  (6-C1)

4

3 8 10
1

1 3
3 4 yi

i

b              (6-C2)

4

3 8 10
1

1
4 i i

i
w               (6-C3)

(4) AA group 

4

5 11 12
1

1
4 i i i

i
w  (6-D1)

4

5 11 12
1

1
4 i i i

i
w  (6-D2)

There are total 12 equations above, in which only 10 are independent, that is, 2 
equations are not independent.  

Firstly, the two Eqs. (6-D1)  and (6-D2)  in the AA group are actually the same, 
so one of these two conditions is not independent. This is an inevitable result 
produced by the identical Eq. (6-4), which shows that four average line conforming 
conditions about s along four element sides should contain an independent one. 

Secondly, there is an independent equation among the four Eqs. (6-A1) ,
(6-A2) , (6-A3)  and (6-A4)  in the SS group. For example, Eq. (6-A2)  can be 
derived from the other three equations. This is because only three unknown 
coefficients ( 1, 2, 3) are involved in the four equations of the SS group. If it is 
not a contradictory equation set, it must contain an independent equation.  

Anyway, we have only 10 independent conditions here. The first three groups 
separately have three independent equations, from which three unknown coefficients 
of each group can be solved. 
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SS group 

4 4 4

1
1 1 1
4

4
1

4

6
1

1
4 8 8

8

8

i xi i yi i
i i i

xi i
i

yi i
i

a bw

a

b

 (6-29) 

SA group 

4 4 4

2
1 1 1

4 4 4

7
1 1 1

4

9
1

3
8 8 6

1
8 8 24

8

i i xi yi i i
i i i

i i xi yi i i
i i i

yi i i
i

a bw

a bw

b

 (6-30) 

AS group 

4 4 4

3
1 1 1

4

8
1

4 4 4

10
1 1 1

3
8 6 8

8
1
8 24 8

i i xi i i yi
i i i

xi i i
i

i i xi i i yi
i i i

a bw

a

a bw

 (6-31) 

As for the AA group, there is only one independent condition (6-D1) . So, two 
conforming conditions should be supplemented for solving the three unknown 
coefficients 5, 11, 12.

In the element RGC-12, the two supplementary conditions are the last two point 
conforming conditions,  

1 1
1 1

,x y
w w
x y

that is 

4 2 7 9 8 5 11 12 1

6 9 3 8 10 5 11 12 1

2 ( 3 ) 2 ( 3 )
2 2 ( 3 ) ( 3 )

x

y

a
b

Solving the simultaneous equations of the above two equations and Eq. (6-D1) , the 
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remaining three unknown coefficients can be obtained: 

4 4 4

5
1 1 1

4 4 4

11
1 1 1

4 4 4

12
1 1 1

1 1 11 1
2 8 3 8 3

1
8 8 24
1
8 24 8

i i i xi i i yi i i
i i i

i i i xi i yi i i
i i i

i i i xi i i yi i
i i i

a bw

a bw

a bw

 (6-32) 

Though the above two supplementary conditions are simple and feasible, they are 
related to the numbering of the element nodes. So, the following two combination 
point conforming conditions are more reasonable (belong to the AA group): 

4 4

1 1

4 4

1 1

i xi i
i ii

i yi i
i ii

w
x
w
y

 (6-33) 

that is 

4

5 11 12
1

4

5 11 12
1

3
4

3
4

xi i
i

yi i
i

a

b
 (6-34) 

Solving Eqs. (6-34) and (6-D1)  simultaneously, we obtain 

4 4 4

5
1 1 1

4 4

11
1 1

4 4

12
1 1

1
2 8 8

1
8 8
1
8 8

i i i xi i yi i
i i i

i i i xi i
i i

i i i yi i
i i

a bw

aw

bw

 (6-35) 

The element obtained by this scheme is the same as no. 23 element LR12-2 in 
Table 5.1, only the derivation procedures are different. 

6.2.3 Rectangular Element RGC-12 (Buckling Problem) 

Now, consider the buckling problem for thin plates. The in-plane stress resultants 
Nx, Ny and Nxy of the mid-plane are assumed to be linearly distributed (as shown 
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in Fig. 6.12): 

( )
( )
( )

x x x x

y y y y

xy xy xy xy

N P Q R
N P Q R
N P Q R

 (6-36) 

where Px, Py, Pxy, Qx, Qy, Qxy, Rx, Ry, Rxy are all constants.  

Figure 6.12 Stability problem for thin plates 

The geometric stiffness matrix of the generalized conforming element is given by 

1 T 1ˆ ˆ ˆ ˆ( ) ( )e eg C G g C G  (6-37) 

where

1 1 T T
, , , ,1 1

T T
, , , ,

( ) ( )

( )( ) d d

e
x x x y y y

xy xy xy

b aP Q R P Q R
a b

P Q R

g F F F F

F F F F (6-38)

in which ,F  and ,F  denote the derivatives of F  with respect to and ,
respectively. 

Then the critical load of the thin plate can be calculated by the above stiffness 
matrix eK  and geometric stiffness matrix eg  of the generalized conforming 
element. 

Example 6.3 The buckling critical load Pxcr for the simply-supported and 
clamped square plates subjected to uniform compression in one direction. The 
length of the plate side is L.
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The results of the buckling critical load Pxcr calculated from the element 
RGC-12 are given in Table 6.3. Compared with the results given by reference [8], 
this generalized conforming element gives more accurate results. The numbers in 
parentheses are relative errors. 

Table 6.3 Coefficient k for square plate under compression in one direction 

Simply-supported Clamped Mesh 
(whole plate) Kapur [8] RGC-12 Kapur [8] RGC-12 

4 4
6 6
8 8

10 10

3.770( 5.8%)
3.887( 2.8%)
3.933( 1.7%)
3.960( 1.0%)

4.128( 3.2%)
4.028( 0.7%)
4.009( 0.2%)
4.002( 0.05%)

9.28( 7.8%)
9.61( 4.6%)
9.78( 2.9%)
9.89( 1.8%)

9.70( 3.7%)
10.12( 0.5%)
10.12( 0.5%)
10.12( 0.5%)

Analytical 
solution 4.000 10.07 

Note: 
2

cr 2x
DP k

l

Example 6.4 The buckling critical load Pxycr for a simply-supported rectangular 

plate 1

2

1.25L
L

 under shear load. 

The results are given in Table 6.4. Compared with those given in reference [8], 
the generalized conforming element gives more accurate results. 

Table 6.4 Coefficient k for a simply-supported rectangular plate 1

2

5
4

L
L

 under 

shear load  

Mesh (whole plate) Kapur[8] RGC-12 
4 4
6 6
8 8

10 10

6.95( 9.9%)
7.25( 6.0%)
7.45( 3.4%)

7.84( 1.7%)
7.74( 0.4%)
7.74( 0.4%)
7.72( 0.1%)

Analytical solution 7.71 

Note: 
2

cr 2
2

xy
DP k

l

6.2.4 Rectangular Element CGC-R12[9]

The element CGC-R12 is also a rectangular thin plate element with 12 DOFs, which 
are still the deflection wi, rotations xi and yi (i 1, 2, 3, 4) at each corner node.  
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The element deflection field is assumed to be an incomplete quartic polynomial 
containing 12 unknown coefficients, and expressed in terms of the dimensionless 
rectangular coordinates  and  as follows: 

2
1 2 3 4 5 7 9

2 4 4
6 8 10 11 12

( 1)( )
( 1)( ) ( 1) ( 1)

w

(6-39)

According to the line-point conforming scheme, 12 conforming conditions are 
selected as follows: 

(1) point conforming conditions of w at the corner nodes (4 conditions) 

 0i iw w   (i 1,2,3,4) (6-40) 

(2) average line conforming conditions of w and n along the element sides (8 
conditions)

 ( )d 0
ijd

w w s   (ij 12,23,34,41) (6-41) 

d 0
ij

nd

w s
n

  (ij 12,23,34,41) (6-42) 

From the four point conforming conditions in Eq. (6-40), the first four unknown 
coefficients can be obtained: 

4

1
1

1
4 i

i
w ,

4

2
1

1
4 i i

i
w ,

4

3
1

1
4 i i

i
w ,

4

4
1

1
4 i i i

i
w  (6-43) 

Substitution of the above equation into Eq. (6-39) yields 

4
2

5 7 9
1
2 4 4

6 8 10 11 12

1 (1 )(1 ) ( 1)( )
4
( 1)( ) ( 1) ( 1)

i i i
i

w w

(6-44)

And, the residual eight unknown coefficients can be determined by the line 
conforming conditions (6-41) and (6-42). For simplification, the combination 
conforming conditions with symmetry or antisymmetry can be used again.  

Firstly, in Eq. (6-44), four unknown coefficients 5, 6, 11 and 12 belong to 
the SS group; two unknown coefficients 8 and 9 belong to the SA group; and 
two unknown coefficients 7 and 10 belong to the AS group.  

Secondly, eight combination conditions can be formed from Eqs. (6-41) and 
(6-42), in which four conditions (6-A1), (6-A2), (6-A3) and (6-A4) of the SS 
group can just be used to solve 5, 6, 11 and 12; two conditions (6-B1) and 
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(6-B2) of the SA group can just be used to solve 8 and 9; and two conditions 
(6-C1) and (6-C2) of the AS group can just be used to solve 7 and 10. After 
substituting the deflection field (6-44) and the interpolation formulae for 
boundary, equations of these three groups can be written as: 

SS group 

4 4 4

5 11
1 1 1

4 4 4

6 12
1 1 1

4

5 11
1

4

6 12
1

8 16
3 5 3
8 16
3 5 3

8 ( 2 )

8 ( 2 )

i i xi i
i i i

i i yi i
i i i

xi i
i

yi i
i

aw w

bw w

a

b

 (6-45) 

SA group 

4 4 4

8
1 1 1

4 4

9 8
1 1

8
3 3

1 8 8
3

i i i i yi i i
i i i

i i xi
i i

bw w

w
a a a

 (6-46) 

AS group 
4 4 4

7
1 1 1

4 4

7 10
1 1

8
3 3

1 8 8
3

i i i i xi i i
i i i

i i yi
i i

aw w

w
b b b

 (6-47) 

Thus, we can obtain 
4 4

5 6 11 12
1 1

4 4 4 4

8 9
1 1 1 1

4 4 4 4

7 10
1 1 1 1

, , 0, 0
8 8

1,
8 8 8 24

1,
8 8 24 8

xi i yi i
i i

yi i i i i xi yi i i
i i i i

xi i i i i xi i i yi
i i i i

a b

b a bw

a a bw

 (6-48) 

Substitution of Eqs. (6-48) into (6-44) yields 

4

1
( )i i xi xi yi yi

i
w N w N N  (6-49) 
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where Ni, Nxi and Nyi are shape functions 

2 2

2 2

2 2

1[2(1 )(1 ) ( 1) ( 1)]
8

[3(1 )( 1) ( 1)]
24

[3(1 )( 1) ( 1)]
24

i i i i i

i
xi i i i

i
yi i i i

N

a
N

b
N

 (6-50) 

Then, the element stiffness matrix can be obtained by the conventional procedure. 
Example 6.5 The central deflection and moment of the simply-supported 

and clamped square plates subjected to vertical uniformly distributed load q and 
concentrated load P.

Table 6.5 The central deflection and moment of plates subjected to uniform load 

Central deflection w Central moment M

Simply-supported Clamped Simply-supported Clamped 

Elements ACM CGC-R12 ACM CGC-R12 ACM CGC-R12 ACM CGC-R12

2 2

4 4

6 6

8 8

0.432 82 

0.412 94 

0.409 21 

0.408 09 

0.405 23

0.406 16

0.406 22

0.406 23

0.140 33

0.133 23

0.128 28

0.127 54

0.124 47

0.126 26

0.126 47

0.126 51

0.521 69

0.489 20

0.483 42

0.481 66

0.510 60

0.487 72

0.482 72

0.481 01

0.277 83

0.240 50

0.234 09

0.231 91

0.271 16

0.240 69

0.234 43

0.232 13

Analytical 0.406 24qL4/(100D) 0.126 53qL4/(100D) 0.478 86qL2/10 0.229 05qL2/10

Table 6.6 The central deflection of plates subjected to concentrated load 

 Simply-supported Clamped 

Elements ACM CGC-R12 ACM CGC-R12 

2 2

4 4

6 6

8 8

0.123 27 

0.118 29 

0.117 14 

0.116 74 

0.118 71 

0.116 89 

0.116 42 

0.116 24 

0.613 45 

0.580 26 

0.570 99 

0.567 30 

0.580 62 

0.568 89 

0.565 03 

0.563 44 

Analytical 0.1160PL2/(10D) 0.5612PL2/(100D)

The length of the plate side is L, and Poisson’s ratio is 0.3. 
Due to symmetry, only one quarter of the plate is meshed. Results by the elements 

CGC-R12 and ACM are listed in Tables 6.5 and 6.6. 
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6.3 Line-Point Conforming Scheme—Triangular Elements 

This section will introduce the triangular thin plate elements (m n 9) constructed 
by the combination scheme of line conforming and point conforming. The no. 6, 
7, 8 and 9 elements LZ1, LZ2, GPL-T9 and GCIV-T9 in Table 5.1 all belong to 
this element group. 

6.3.1 Triangular Element LZ1[10]

A triangular thin plate bending element with 9 DOFs is shown in Fig. 6.1. The nodal 
displacement vector eq  is 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq

The displacements along each element side are interpolated by eq , i.e., along 
each element side, the deflection w  is assumed to be cubic and the normal 
slope n  linearly distributed. 

The element deflection field is assumed to be an incomplete cubic polynomial 
with 9 unknown coefficients, and expressible in terms of the area coordinates L1,
L2, L3 as 

w F  (6-51) 

where  contains 9 unknown coefficients 

T
1 2 9[ ]

F  contains 9 basis functions 

2 2 2
1 2 3 1 2 2 3 3 1 1 2 2 3 3 1[ ]L L L L L L L L L L L L L L LF  (6-52) 

In order to solve the 9 unknown coefficients in terms of eq , according to the 
line-point conforming combination scheme, 9 conforming conditions can be selected 
as follows: 

 ( ) 0jw w   (j=1, 2, 3) (6-53) 

( )d 0, d 0
k k

nS S

ww w s s
n

  (k 1,2,3) (6-54) 



Chapter 6 Generalized Conforming Thin Plate Element Line-Point and ... 

147

Equation (6-53) denotes the point conforming conditions at three corner nodes; 
Eq. (6-54) denotes the average line conforming conditions of deflections and 
rotations along three sides. 

From Eq. (6-53), the first three unknown coefficients can be obtained 

1 1 2 2 3 3, ,w w w  (6-55) 

From Eq. (6-54), the following six equations can be obtained 

4 7 3 1 2 3 1 2

5 8 1 2 3 1 2 3

6 9 2 3 1 2 3 1

2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

x x y y

x x y y

x x y y

c b
c b
c b

 (6-56) 

4 5 6 7 8 3 1 3 2 3

3 1 2 3 1 22
3

4 5 6 8 9 1 1 2 1 3

1 2 3 1 2 32
1

4 5 6 7 9 2 1 2 2 3

2 32
2

2 2 (1 ) (1 ) 2
3 3

2 [ ( ) ( )]

2 2 2 (1 ) (1 )
3 3

2 [ ( ) ( )]

2 2 (1 ) 2 (1 )
3 3

2 [ (

x x y y

x x y y

x

r w r w w

A b c
d

w r w r w

A b c
d

r w w r w

A b
d 1 2 3 1) ( )]x y yc

 (6-57) 

where

2 2

2, , j k
i j k i k j i

i

d d
b y y c x x r

d
 ( 1,2,3; 2,3,1; 3,1,2)i j k

(6-58)

d1, d2, and d3 denote the side lengths of the element; A is the area of the triangle. 
The last six unknown coefficients can be determined from Eqs. (6-56) and (6-57). 
Combining the above results, we have 

ˆ eAq  (6-59) 

where
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1 2 3
ˆ ˆ ˆ ˆ[ ]A A A A  (6-60) 

with

2 3 2 2 3 3 2 2 2 3 3 2

2 3 2 2 3 3 1 2 2 3 3 1

1

2 3 2 2 3 3 2 3 2 2 3 3 2 3

2 3

1 0 0
0 0 0
0 0 0

1 1 1(9 2 ) ( 2 3 ) ( 2 3 )
6 12 12

1 1 1(5 ) ( 5 3 ) ( 5 3 )
6 12 12

ˆ
1 1 1( 9 2 5 ) ( 2 5 12 3 ) ( 2 5 12 3 )
6 12 12
1 1(9 2 ) (
3 6

r r r c r c c r b r b b

r r r c r c c r b r b b

r r r c r c c c r b r b b b

r r

A

2 2 3 3 2 3 2 2 3 3 2 3

2 3 2 2 3 3 1 2 2 3 3 1

2 3 2 2 3 3 2 3 2 2 3 3 2 3

12 3 6 ) ( 2 3 6 )
6

1 1 1(5 ) ( 5 3 ) ( 5 3 )
3 6 6

1 1 1( 9 2 5 ) ( 2 5 6 3 ) ( 2 5 6 3 )
3 6 6

r c r c c c r b r b b b

r r r c r c c r b r b b

r r r c r c c c r b r b b b

  (6-61) 

3 1 3 3 1 1 3 1 3 3 1 1 3 1

3 1 3 3 1 1 3 3 3 1 1 3

2

3 1 3 3 1 1 2 3 3 1 1 2

3 1

0 0 0
1 0 0
0 0 0

1 1 1( 9 2 5 ) ( 2 5 12 3 ) ( 2 5 12 3 )
6 12 12

1 1 1(9 2 ) ( 2 3 ) ( 2 3 )
6 12 12

ˆ
1 1 1(5 ) ( 5 3 ) ( 5 3 )
6 12 12

1 1( 9 2 5 )
3

r r r c rc c c r b rb b b

r r r c rc c r b rb b

r r r c rc c r b rb b

r r

A

3 3 1 1 3 1 3 3 1 1 3 1

3 1 3 3 1 1 3 1 3 3 1 1 3 1

3 1 3 3 1 1 2 3 3 1 1 2

1( 2 5 6 3 ) ( 2 5 6 3 )
6 6

1 1 1(9 2 ) ( 2 3 6 ) ( 2 3 6 )
3 6 6

1 1 1(5 ) ( 5 3 ) ( 5 3 )
3 6 6

r c rc c c r b rb b b

r r r c rc c c r b rb b b

r r r c rc c r b rb b

  (6-62) 
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1 2 1 1 2 2 3 1 1 2 2 3

1 2 1 1 2 2 1 2 1 1 2 2 1 2

3
1 2 1 1 2 2 1 1 1 2 2 1

1 2

0 0 0
0 0 0
1 0 0

1 1 1(5 ) ( 5 3 ) ( 5 3 )
6 12 12

1 1 1( 9 2 5 ) ( 2 5 12 3 ) ( 2 5 12 3 )
6 12 12

ˆ 1 1 1(9 2 ) ( 2 3 ) ( 2 3 )
6 12 12
1 1(5 ) ( 5
3 6

r r rc r c c rb r b b

r r rc r c c c rb r b b b

r r rc r c c rb r b b

r r

A

1 1 2 2 3 1 1 2 2 3

1 2 1 1 2 2 1 2 1 1 2 2 1 2

1 2 1 1 2 2 1 2 1 1 2 2 1 2

13 ) ( 5 3 )
6

1 1 1( 9 2 5 ) ( 2 5 6 3 ) ( 2 5 6 3 )
3 6 6

1 1 1(9 2 ) ( 2 3 6 ) ( 2 3 6 )
3 6 6

rc r c c rb r b b

r r rc r c c c rb r b b b

r r rc r c c c rb r b b b

  (6-63) 

Substituting Eq. (6-59) into Eq. (6-51), we obtain 

ˆ ew F Aq  (6-64) 

The element shape function matrix is  

ˆN F A  (6-65) 

Then, the element stiffness matrix eK  can be derived by the conventional procedure. 

6.3.2 Triangular Element LZ2[10]

Assume that the element deflection field w consists of two parts, 

qw w w  (6-66) 

where the first part is the deflection field expressed in Eq. (6-64) 

ˆ e
qw F Aq

and the second part is a generalized bubble deflection field 

w F  (6-67) 

in which  is an internal displacement parameter and F  is a generalized bubble 
function

2 2 2
1 2 2 3 3 1 1 2 2 3 3 1 1 2 3( ) 2( ) 3F L L L L L L L L L L L L L L L  (6-68) 
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It can be verified that all the nine generalized displacements (3 nodal deflections, 
average deflections and average normal slopes along three sides) corresponding 
to w  vanish. 

The deflection field (6-66) is a complete cubic polynomial with 10 DOFs. When 
the internal DOF is eliminated by a condensation process, only 9 external DOFs 
in eq  are retained. 

From the deflection expression (6-66), the element curvature field  can be 
expressed as 

e
qB q B  (6-69) 

The element stiffness matrix after condensation is  

T 1e
qq q qkK K K K  (6-70) 

with

T

T

T

d

d

d

e

e

e

qq q q
A

q q
A

A

A

A

k A

K B DB

K B DB

B DB

D is the elastic matrix.  
Example 6.6 The central deflection wC (in Table 6.7) and central moment MC

(in Table 6.8) of a simply-supported square plate subjected to uniform load q. The 
length of the square plate side is L; the Poisson’s ratio is 0.3. Two mesh orientations 
A and B (see Fig. 6.2) are considered. And, the numbers in parentheses are 
relative errors. 

Table 6.7 The central deflection of a simply-supported square plate 

LZ1 LZ2 CT E-1 Mesh 
1/4 plate Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.3817
( 6.0%)

0.3947
( 2.8%)

0.4005
( 1.4%)

0.4023
( 1.0%)

0.399 30
( 1.7%)

0.351 18
( 13.6%)

0.399 19
( 1.7%)

0.356 20
( 12.3%)

4 4 0.4009
( 1.3%)

0.4038
( 0.6%)

0.4047
( 0.4%)

0.4058
( 0.1%)

0.404 39
( 0.5%)

0.392 80
( 3.3%)

0.404 71
( 0.4%)

0.394 17
( 3.0%)

6 6 0.4040
( 0.6%)

0.4053
( 0.2%)

0.4056
( 0.2%)

0.4061
(0.0%)

0.405 40
( 0.2%)

0.400 28
( 1.5%)

0.405 61
( 0.2%)

0.400 92
( 1.3%)

8 8 0.4050
( 0.3%)

0.4057
( 0.1%)

0.4059
( 0.1%)

0.4062
(0.0%)

Analytical 0.406 235qL4/(100D)



Chapter 6 Generalized Conforming Thin Plate Element Line-Point and ... 

151

Table 6.8 The central moment of a simply-supported square plate 

LZ1 LZ2 CT E-1 Mesh 
1/4 plate Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.4931
(3.0%)

0.5004
(4.5%)

0.5046
(5.4%)

0.5151
(7.6%)

0.499 88
(4.4%)

0.439 58
( 8.2%)

0.513 01
(7.1%)

0.468 71
( 2.1%)

4 4 0.4873
(1.8%)

0.4874
(1.8%)

0.4792
(0.1%)

0.4919
(2.7%)

0.483 47
(1.0%)

0.470 05
( 1.8%)

0.487 31
(1.8%)

0.477 97
( 0.2%)

6 6 0.4762
( 0.6%)

0.4839
(1.0%)

0.4778
( 0.2%)

0.4857
(1.4%)

0.480 90
(0.4%)

0.474 93
( 0.8%)

0.482 44
(0.7%)

0.478 71
(0.0%)

8 8 0.4768
( 0.4%)

0.4822
(0.7%)

0.4777
( 0.2%)

0.4832
(0.9%)

Analytical 0.478 86qL2/10

Since the elements CT[11], E-1 and E-2[12] have ever been identified as the most 
accurate nine-DOF triangular thin plate elements, the accuracy of the present two 
elements LZ1 and LZ2 is compared with those models. 

From Tables 6.7 and 6.8, it can be seen that both elements LZ1 and LZ2 have high 
precision, their accuracy is at the same level as that of the elements CT and E-1. 

6.3.3 Triangular Element GPL-T9[13]

The element nodal displacement vector eq  is the same as that of the elements 
LZ1 and LZ2. The element deflection field w is still assumed to be an incomplete 
cubic polynomial with nine unknown coefficients, i.e., Eq. (6-51). But, the nine 
basis functions are different and selected as follows 

1 2 3 1 2 2 3 3 1 7 8 9[ ]L L L L L L L L L F F FF  (6-71) 

where

7 1 1 1

8 2 2 2

9 3 3 3

1 ( 1)
2
1 ( 1)
2
1 ( 1)
2

F L L L

F L L L

F L L L

 (6-72) 

In order to solve the nine unknown coefficients in , we still select 9 conforming 
conditions according to the line-point conforming combination scheme, as shown 
in Eqs. (6-53) and (6-54). 

Firstly, from the point condition (6-53), we obtain 

1 1w , 2 2w , 3 3w  (6-73) 
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Secondly, from the first three average line conforming conditions about w in 
Eq. (6-54), 4, 5 and 6 can be obtained as 

3 3
4 1 2 1 2

1 1
5 2 3 2 3

2 2
6 3 1 3 1

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

x x y y

x x y y

x x y y

c b

c b

c b

 (6-74) 

Finally, from the last three average line conforming conditions about n in 
Eq. (6-54), 7, 8 and 9 can be obtained as 

7 1 1 2 1 3 2 3 1 1 1 3 2

1 1 2 3 2 3 1 1 1 3 2 1 1 2 3

8 2 1 2 2 3 2 2 3 1 3 1 2

2 2 1 3 2 2 3 1 3

1 12 (1 ) (1 ) ( ) ( )
2 2

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

1 1(1 ) 2 (1 ) ( ) ( )
2 2

1 1 1( ) ( ) (
2 2 2

x x

x y y y

x x

x y

w r w r w c c r c c

r c c b b rb b rb b

r w w r w r c c c c

r c c r b b b 1 2 2 2 1 3

9 3 1 3 2 3 3 3 2 1 3 3 1 2

1 2 3 3 3 2 1 3 3 1 2 1 2 3

1) ( )
2

1 1(1 ) (1 ) 2 ( ) ( )
2 2

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

y y

x x

x y y y

b r b b

r w r w w r c c r c c

c c r b b r b b b b

(6-75)

After  is solved, the deflection field w can be expressed in terms of the shape 
functions

3

1
( )i i xi xi yi yi

i
w N w N N  (6-76) 

where

1 1 7 2 8 3 9

3 2
1 1 2 3 1 2 3 7 2 2 3 8 3 3 2 9

3 2
1 1 2 3 1 2 3 7 2 2 3 8 3 3 2 9

2 (1 ) (1 )
1 1 1( ) ( ) ( )

2 2 2 2 2
1 1 1( ) ( ) ( )

2 2 2 2 2

x

y

N L F r F r F
c cN L L L L c c F r c c F r c c F

b bN L L L L b b F r b b F r b b F

(6-77)

The expressions for the other six shape functions can be obtained by permutation. 
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And, bi, ci and ri are given by Eq. (6-58). Based on these shape functions, the 
element stiffness matrix can be derived by the conventional procedure. 

Example 6.7 The central deflection and central moment for the simply- 
supported and clamped square plates subjected to uniform load q and central 
concentrated load P. The meshes A and B in Fig. 6.2, and mesh C in Fig. 6.13 are 
used. Results by the element GPL-T9 are listed in Tables 6.9 to 6.11. 

Example 6.8 The central deflection of a simply-supported circular plate 
subjected to uniform load. 

Due to symmetry, only one quarter of the plate is modelled. Two meshes shown 
in Fig. 6.14 are used. The computational errors of the central deflection obtained 
by the element GPL-T9 are given in Table 6.12. And, the results of reference [14] 
are also listed for comparison. 

Figure 6.13 Mesh C 4 4 for a quarter square plate 

Table 6.9 The central deflection of simply-supported and clamped square plates 
subjected to uniform load q

Clamped Simply-supported Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.1170 0.0995 0.0985 0.3804 0.3948 0.3829 
4 4 0.1241 0.1192 0.1210 0.4007 0.4038 0.4008 
6 6 0.1256 0.1233 0.1240 0.4040 0.4054 0.4039 
8 8 0.1261 0.1246 0.1251 0.4046 0.4049 0.4044 

Analytical 0.126 53qL4/(100D) 0.406 24qL4/(100D)

Table 6.10 The central moment of simply-supported and clamped square plates 
subjected to uniform load q

Clamped Simply-supported Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.3054 0.2185 0.2216 0.4958 0.4986 0.5296 
4 4 0.2395 0.2274 0.2405 0.4775 0.4869 0.4967 
6 6 0.2329 0.2286 0.2342 0.4770 0.4838 0.4871 
8 8 0.2309 0.2288 0.2319 0.4777 0.4811 0.4829 

Analytical 0.2291qL2/10 0.4789qL2/10
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Table 6.11 The central deflection of simply-supported and clamped square plates 
subjected to central concentrated load P

Clamped Simply-supported Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.4655 0.4466 0.4235 1.0183 1.0912 1.0501 
4 4 0.5311 0.5269 0.5257 1.1211 1.1382 1.1253 
6 6 0.5470 0.5448 0.5434 1.1422 1.1498 1.1430 
8 8 0.5527 0.5513 0.5503 1.1484 1.1518 1.1485 

Analytical 0.5612PL2/(100D) 1.160PL2/(100D)

       Figure 6.14 The typical mesh for 1/4 circular plate 
(a) 24 triangular elements or 12 quadrilateral elements; (b) 96 triangular elements or  
48 quadrilateral elements 

Table 6.12 The computational errors of the central deflection of a simply-supported 
circular plate subjected to uniform load 

Mesh (1/4 plate ) GPL-T9 Reference [14] 
Mesh A 0.63% 2.87% 
Mesh B 0.10% 0.70% 

Example 6.9 The central deflection w and central moment My of a rhombus 
plate (Fig. 6.15) subjected to uniform load (Razzaque’s skew plate problem). 

Figure 6.15 Razzaque’s skew plate: typical mesh 4 4
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The mesh used is shown in Fig. 6.15 and the results by the element GPL-T9 
and other models are listed in Table 6.13. It can be seen that the performance of 
the element GPL-T9 is better than those of the other elements in references [15] 
and [16]. 

Table 6.13 The central deflection and central moment of a rhombus plate subjected 
to uniform load 

Central deflection w Central moment My

DOFs Mesh GPL-T9 Reference 
[15] 

Reference
[16] 

GPL-T9 Reference 
[15] 

Reference
[16] 

27 2 2 0.7318 0.7230  1.0140 0.7602  
75 4 4 0.7783 0.7718 0.8414 0.9925 0.9172 0.9761 

105 4 6 0.7941 0.7850  0.9904 0.9473  
243 8 8 0.7890  0.8111 0.9565  0.9739 
507 12 12 0.7913  0.8057 0.9596  0.9688 

Difference method[15] 0.7945qL4/(100D) 0.9589qL2/10

6.4 Super-Basis Line-Point Conforming Scheme—Elements
GC -R12 and GC -T9

This section will introduce the construction procedure for the super-basis thin 
plate elements formulated by the combination scheme of the line conforming and 
point conforming conditions. The no. 12, 13, 14 and 15 elements GC -R12,
GPL-R1, GC -T9 and LZ3 in Table 5.1 all belong to this element group. Two 
elements GC -R12 and GC -T9 will be discussed in detail. 

6.4.1 Rectangular Element GC -R12—Improvement on the  
Element ACM 

The rectangular thin plate element GC -R12 is a model developed by improving 
the element ACM[6]. Element ACM employed a conventional scheme: let m n 12, 
the 12 conforming conditions are all point conforming conditions. Though the 
deflection along the element boundary is compatible, the normal slope along the 
element boundary is incompatible, and does not satisfy the average line conforming 
conditions. Therefore, an improvement scheme is proposed: let m n 12, then, 
besides the 12 point conforming conditions, the average line conforming conditions 
of the normal slope along the element sides are supplemented. Thereupon, the 
element compatibility is improved, and the new element GC -R12 is obtained.  
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The detailed construction procedure for the element GC -R12 is as follows. 
Assume that the element deflection field w consists of two parts 

ˆ(ACM)w w w  (6-78) 

where w (ACM) is the interpolation formula with 12 unknown coefficients used by 
the element ACM 

2 2 3
1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

w
(6-79)

ŵ  is the additional deflection field with two new unknown coefficients 

2 2 2 2
13 14ˆ ( 1)( 1) ( 1)( 1)w  (6-80) 

ŵ  possesses the following characteristics: 

(1) At the four corner nodes, ŵ , ŵ
x

 and ŵ
y

 are all zero; 

(2) Along four element boundary lines, ŵ  identically equals to zero (thus 
ŵ
s

 also identically equals to zero), but ŵ
n

 does not identically equal to zero. 

The deflection field expressed by Eq. (6-78) is an incomplete bi-cubic polynomial 
with 14 unknown coefficients. Owing to m n, this is a super-basis element.  

In order to solve 14 unknown coefficients, 14 conforming conditions are needed.  
Firstly, the 12 point conforming conditions about w, x and y at the 4 corner 

nodes are applied. Due to the characteristic (1) of the additional deflection ŵ , we 
know that 13 and 14 will not appear in these 12 point conforming conditions. So, 
the 12 unknown coefficients 1, 2, , 12 can just be solved by the 12 conditions. 
That is to say, the solutions of these unknown coefficients are identical with 
those of the element ACM. 

Secondly, we apply the average line conforming conditions about normal slopes: 

1 1
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23

1 1

141 1
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1 1
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43

1 1
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12

d d

d d

d d

d d
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y

w
x
w
x
w
y

w
y

 (6-81) 

In Eq. (6-81), there seemingly are four conditions, in which only two conditions 
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are independent. Then 13 and 14 can be derived as follows: 

4

13
1

4

14
1

16

16

yi i i
i

xi i i
i

b

a
 (6-82) 

After the determination of the 14 unknown coefficients, the element deflection 
field and its shape functions can be obtained: 

4

1
( )i i xi xi yi yi

i
w N w N N  (6-83) 

where the shape functions are all constituted of two parts: 

ˆ
ˆ
ˆ

i i i

xi xi xi

yi yi yi

N N N
N N N
N N N

  (i 1,2,3,4) (6-84) 

iN , xiN  and yiN  belong to the part related to w  (refer to Eq. (7-19)); ˆ
iN , ˆ

xiN
and ˆ

yiN  belong to the part related to ŵ :

2 2

2 2

ˆ 0

ˆ (1 )(1 )
16

ˆ (1 )(1 )
16

i

xi i i

yi i i

N
aN

bN

  (i 1,2,3,4) (6-85) 

Since the shape functions have been obtained, the element stiffness matrix can then 
be established. 

Note that, actually, only one of the first two conditions in Eq. (6-81) is independent, 
this is because of the following relation 

1 1

23 141 1
23 14

d ( )dx x
w w
x x

 (6-86) 

Here, the proof of Eq. (6-86) is given as follows. 
Firstly, from Eq. (6-80), we obtain 

1

1
23 14

ˆ ˆ
d 0w w

x x
 (6-87) 

Secondly, it can be verified that the deflection field w  of the element ACM 
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satisfies the perimeter conforming condition under constant internal force state 
(refer to Sect. 7.2). Now, consider the following constant internal force state: 

1, 0, 0x y xyM M M

Then, the boundary forces of the rectangular element can be obtained from Eq. (5-8): 

12 34

23 14 1

0, 0
( ) ( ) 0
( ) ( )

n ns

n n

n n

Q M
M M
M M

Substitution of the above equation into the perimeter conforming condition (5-2a) 
yields 

1

1
23 14

d 0n n
w w
n n

i.e.,

1

1
23 14

d 0x x
w w
x x

 (6-88) 

Since ˆw w w , by the superposition of Eqs. (6-88) and (6-87), Eq. (6-86) can 
be obtained. 

The above procedure proves that there is only one independent condition existing 
in the first two conditions of Eq. (6-81). Similarly, it can be verified that there is also 
only one independent condition existing in the last two conditions of Eq. (6-81). 

Example 6.10 The central deflection Cw  and central moment CM  of the 
simply-supported and clamped square plates subjected to uniform load q and 
central concentrated load P.

For comparison, results by the elements GC -R12 and ACM are given in Tables 
6.14 and 6.15. The length of the square plate side is L, the Poisson’s ratio is 0.3. 

Table 6.14 The central deflection and moment of square plates subjected to 
uniform load q

Central deflection wC Central moment MC

Simply-supported Clamped Simply-supported Clamped 
Mesh 

(1/4 plate) 
ACM GC -R12 ACM GC -R12 ACM GC -R12 ACM GC -R12

2 2 0.433 0.395 0.140 0.120 0.522 0.434 0.278 0.203 
4 4 0.413 0.403 0.133 0.123 0.489 0.466 0.241 0.221 
6 6 0.409 0.405 0.128 0.126 0.483 0.473 0.234 0.225 
8 8 0.408 0.406 0.128 0.126 0.482 0.476 0.232 0.227 

Analytical 0.406 24qL4/(100D) 0.126 53qL4/(100D) 0.478 86qL2/10 0.2291qL2/10
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Table 6.15 The central deflection of square plates subjected to central concentrated 
load P

Simply-supported Clamped Mesh 
(1/4 plate) ACM GC -R12 ACM GC -R12

2 2 0.123 0.111 0.613 0.523 

4 4 0.118 0.115 0.580 0.549 

6 6 0.117 0.115 0.571 0.555 

8 8 0.117 0.116 0.567 0.558 

Analytical 0.1160PL2/(10D) 0.5612PL2/(100D)

From Tables 6.14 and 6.15, it can be seen that the accuracy of the element GC
-R12 is better than that of the element ACM. 

6.4.2 Triangular Element GC -T9

The construction procedure for the element GC -T9 is: the assumed element 
deflection field contains 12 unknown coefficients (m 12, n 9, it is a super-basis 
element); the 12 conforming conditions used include 9 point conforming conditions 
and 3 average line conforming conditions. Following is the detailed derivation 
procedure of the element. 

The element deflection field is assumed as 

1 1 2 2 3 3 4 2 3 5 3 1 6 1 2

7 3 2 2 3 8 1 3 3 1 9 2 1 1 2

2 2 2
10 1 2 3 11 2 3 1 12 3 1 2

( ) ( ) ( )
w L L L L L L L L L

L L L L L L L L L L L L

L L L L L L L L L (6-89)

The element rotation fields are as follows: 

1 2 3
1 2 3

1 2 3
1 2 3

1
2

1
2

x

y

w w w wb b b
x A L L L

w w w wc c c
y A L L L

 (6-90) 

In order to solve 12 unknown coefficients, 12 conforming conditions are needed. 
Firstly, 9 point conforming conditions at the corner nodes are selected as 
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1 1
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 (6-91) 

These 9 conditions do not contain 10, 11 and 12, so the first 9 unknown 
coefficients can be solved as follows: 
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 (6-92) 

From Eq. (6-89), it can be seen that the deflection along each element side is a 
cubic polynomial (note: three terms corresponding to 10, 11, 12 are all zero 
along the boundary line), and can be determined uniquely according to the values 
of deflections and tangential rotations at the two ends of the side. Thereby, when 
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the 9 point conforming conditions at the corner nodes are satisfied, the deflection 

along each element side is compatible exactly. But, the normal slope n
w
n

along each element side is still incompatible. 
Secondly, in order to require the normal slope along each side to satisfy the 

necessary conforming conditions, 3 average line conforming conditions are imposed 
on the normal slopes along the element sides: 

3

3

0
0

d 0
d

n
L

w s
n

 (6-93a) 

1

1

0
0

d 0
d

n
L

w s
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 (6-93b) 

2

2

0
0

d 0
d

n
L

w s
n

 (6-93c) 

where d1, d2 and d3 denote the length of each element side, respectively (Fig. 6.1). 
Substitution of Eq. (6-90) into the above equation will yield three equations 
containing 10, 11, 12. Now, we take Eq. (6-93a) as an example, the derivation 
procedure is listed as follows: 

The normal derivative of the deflection field (6-89) along side 12  ( 3 0L ) is: 

3 3

3
3 3

0 1 2 3 0

3
3 1 6 2 9 2 2 1 3 2 6 1 9 1 2 1

2 2 2 2
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(6-94)

where
2 2 2 22 2
2 3 3 11 2

3 1 22 2 2
3 1 2

, ,
d d d dd dr r r

d d d
 (6-95) 

The integration of Eq. (6-94) along side 12  is 
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  (6-96) 
And, the integration of the normal slope n  along side 12  is 

3
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Substitution of Eq. (6-91) into the above equation yields 

3

3

2
3

3 1 3 2 3 4 5 6 7 8 3 900
d [(1 ) (1 ) 2 ]

4
d

n L

ds r r r
A

(6-98)
Substitution of Eqs. (6-96) and (6-98) into Eq. (6-93a) yields the first equation of 
(6-99)

11 12 7 8 3 9
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r
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r

 (6-99) 

Similarly, the second and third equations in the above equations can also be 
derived. Then, 10, 11 and 12 can be solved from Eq. (6-99): 

10 1 7 2 8 3 9

11 1 7 2 8 3 9

12 1 7 2 8 3 9

(2 3 ) (2 3 ) 3
3 (2 3 ) (2 3 )

(2 3 ) 3 (2 3 )

r r r
r r r

r r r
 (6-100) 

Now, all the 12 unknown coefficients have been obtained, as shown in Eqs. (6-92) 
and (6-100). Substituting them into Eq. (6-89), the element deflection field and its 
shape functions can be derived as follows: 

3

1
( )i i xi xi yi yi

i
w N w N N  (6-101) 

The three shape functions of the node 1 are 
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(6-102)
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The shape functions of the nodes 2 and 3 can be obtained by permutation. By 
these shape functions, it is easy to derive the element stiffness matrix, which has 
been given in reference [17]. 

Note that Eq. (6-99) can also be derived from the point conforming conditions 
about n at the mid-points of the element sides. This can be explained as follows: 
according to the deflection field assumed in Eq. (6-89), the normal slope 

n
w
n

 along each side is cubically distributed. On conditions that n is cubically 

distributed along the element side and has already satisfied the point conforming 
conditions at the two ends, the average line conforming condition of n is equivalent 
to the point conforming condition of n at mid-side point. 

Example 6.11 The central deflection wC and central moment MC of the simply- 
supported and clamped square plates subjected to uniform load q and central 
concentrated load P.

The length of the square plate side is L, the Poisson’s ratio is 0.3. Two mesh types 
are used: mesh B in Fig. 6.2 and Mesh C in Fig. 6.13. The results by the element 
GC -T9 are given in Tables 6.16 and 6.17. 

Table 6.16 The central deflection and moment of square plates subjected to uniform 
load (GC -T9)

Central deflection wC Central moment MC

Simply-supported Clamped Simply-supported Clamped Mesh 
(1/4 plate) 

Mesh B Mesh C Mesh B Mesh C Mesh B Mesh C Mesh B Mesh C
2 2 0.394 0.386 0.101 0.100 0.472 0.547 0.198 0.230
4 4 0.403 0.402 0.120 0.120 0.479 0.502 0.222 0.244
6 6 0.405 0.404 0.123 0.124 0.480 0.489 0.226 0.236
8 8 0.404 0.405 0.125 0.125 0.478 0.485 0.227 0.233

Analytical 0.406 24 qL4/(100D) 0.126 53 qL4/(100D) 0.478 86 qL2/10 0.2291 qL2/10

Table 6.17 The central deflection of square plates subjected to central concentrated 
load (GC -T9)

Simply-supported ClampedMesh 
(1/4 plate) Mesh B Mesh C Mesh B Mesh C

2 2 0.107 0.106 0.438 0.433 
4 4 0.113 0.113 0.523 0.527 
6 6 0.115 0.114 0.542 0.544 
8 8 0.115 0.115 0.550 0.551 

Analytical 0.1160 PL2/(10D) 0.5612 PL2/(100D)
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6.5 Super-Basis Point Conforming Scheme—Elements  
MB1-T9 and MB2-T9 

This and the next sections will introduce two construction schemes for the super- 
basis thin plate elements formulated only by the point conforming conditions, which 
are also the improvement schemes for the conventional non-conforming elements. 
Firstly, according to the conventional method of non-conforming elements, the 
point conforming conditions about w, x, y at the corner nodes are selected. Here, 
the normal slope n along each side is generally still incompatible. Secondly, for 
overcoming this shortcoming, the point conforming conditions of n at the mid- 
side points are supplemented for improving the compatibility of n along each side. 
The no. 16, 17 and 18 elements in Table 5.1 belong to this element group, in which 
two triangular elements MB1-T9 and MB2-T9 will be introduced in detail[18].

6.5.1 Triangular Element MB1-T9 

Triangular element MB1-T9 has 9 DOFs. Its assumed deflection field contains 
12 unknown coefficients, and can be written as the sum of two parts: 

ˆw w w  (6-103) 
where w  and ŵ  contain 9 and 3 unknown coefficients, respectively. 

2 2 2
1 1 2 2 3 3 4 1 2 5 2 3 6 3 1 7 1 2 8 2 3 9 3 1w L L L L L L L L L L L L L L L  (6-104) 

2 2 2 2 2 2
10 2 3 11 3 1 12 1 2ŵ L L L L L L  (6-105) 

The selected 12 conforming conditions are also classified into two groups. The 
first group involves 9 point conforming conditions about w, x and y at three 

corner nodes. Since ŵ , ŵ
x

 and ŵ
y

 at the corner nodes are identically equal zero, 

only the first 9 unknown coefficients 1, 2, , 9 appear in these 9 equations. 
Their solutions are 

1 1

2 2

3 3

4 1 2 3 2 3 2

5 2 3 1 3 1 3

6 3 1 2 1 2 1

7 1 2 3 1 2 3 1 2

8 2 3 1 2 3 1 2 3

9 3 1 2 3 1 2 3 1

2 2 ( ) ( )
2 2 ( ) ( )
2 2 ( ) ( )

x y

x y

x y

x x y y

x x y y

x x y y

w
w
w

w w c b
w w c b
w w c b
w w c b
w w c b
w w c b

 (6-106) 
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In the assumed deflection field w  of Eq. (6-104), deflection w  along each side 

is a cubic polynomial, and normal slope w
n

 is a quadric polynomial. Thereby, 

along each boundary line, w  and w  conform to each other, but w
n

 and n

are not compatible. In fact, the non-conforming values of the normal slopes at the 
mid-side points 4, 5 and 6 can be solved as follows: 

41
1 7

2 8
52

3 9

63

1

0 1 3 2
1 1 2 0 1 3

16
1 3 2 0

1

n

n

n

w
d n r

w r
d n A

r
w

d n

 (6-107) 

where d1 and point 4 are the length and mid-side point of the opposite side of the 
node 1, respectively; r1 is given by Eq. (6-58). The rest can be analogized. 

The second group involves the point conforming conditions about n at the 
mid-side points. Since  

41
10

11
52

12

63

ˆ1

ˆ1 1
8

ˆ1

w
d n

w
d n A

w
d n

 (6-108) 

from Eqs. (6-107) and (6-108), and according to the conforming conditions of n,
we obtain 

10 1 7

11 2 8

12 3 9

0 1 3 2
1 2 0 1 3
2

1 3 2 0

r
r

r
 (6-109) 

Thus, all the unknown coefficients have been solved out, and the shape functions 
and element stiffness matrix can be obtained by the conventional procedure. 

Here, we also give the following two points. 
(1) If we substitute Eq. (6-109) into Eq. (6-105), then w in Eq. (6-103) can be 

written in terms of the first 9 unknown coefficients: 

2 2 23
1 1 2 2 3 3 4 1 2 5 2 3 6 3 1 7 1 2 2 3

1 3
2

rw L L L L L L L L L L L L L
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2 2 2 2 2 21 2
8 2 3 3 1 9 3 1 1 2

1 3 1 3 (6-110)
2 2

r rL L L L L L L L

where the 9 basis functions can be called as the modified basis functions. 

(2) The normal derivative w
n

 along each side is a cubic polynomial. If the point 

conforming conditions are satisfied at the mid-side points and two ends of the 

side, w
n

 must satisfy the average line conforming conditions, so this element is 

a convergent model. 
Example 6.12 The deflection and moment of the simply-supported and clamped 

square plates subjected to uniform load q and central concentrated load P.
Two mesh types are used: mesh A and B in Fig. 6.2. The results by the element 

MB1-T9 are given in Tables 6.18 and 6.19. It can be seen that this element exhibits 
good performance. 

Table 6.18 The results of the central deflection (MB1-T9) 

Uniform load q Central concentrated load P

Simply-supported Clamped Simply-supported Clamped 
Mesh 

(1/4 plate) 
Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.3969
( 2.3%)

0.4066
(0.1%)

0.1324
(4.7%)

0.1128
( 10.9%)

1.093
( 5.8%)

1.166
(0.5%)

0.5300
( 5.6%)

0.5279
( 5.9%)

4 4 0.4041
( 0.5%)

0.4068
(0.1%)

0.1277
(0.9%)

0.1234
( 2.5%)

1.143
( 1.8%)

1.160
(0.0%)

0.5514
( 1.8%)

0.5526
( 1.5%)

6 6 0.4053
( 0.2%)

0.4066
(0.1%)

0.1270
(0.4%)

0.1251
( 1.1%)

1.152
( 0.8%)

1.160
(0.0%)

0.5564
( 0.9%)

0.5571
( 0.7%)

8 8 0.4057
( 0.1%)

0.4064
(0.0%)

0.1268
(0.2%)

0.1258
( 0.6%)

1.155
( 0.4%)

1.160
(0.0%)

0.5584
( 0.5%)

0.5588
( 0.4%)

Analytical 0.4062(qL4/100D) 0.1265(qL4/100D) 1.160(PL2/100D) 0.5612(PL2/100D)

6.5.2 Triangular Element MB2-T9 

Another triangular element MB2-T9 can be derived by a similar scheme. The 
difference with the element MB1-T9 is that ŵ  is re-assumed as follows: 

2 2 2
10 1 2 3 11 2 3 1 12 3 1 2ŵ L L L L L L L L L  (6-111) 

From the point conforming conditions of the normal slope n at the mid-side points, 
we obtain 
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10 3 1 2 7

11 3 1 2 8

12 3 1 2 9

3(1 ) 1 3 (1 3 )
1 (1 3 ) 3(1 ) 1 3
2

1 3 (1 3 ) 3(1 )

r r r
r r r

r r r
 (6-112) 

The total deflection w can be expressed in terms of 1, 2, , 9 and their 
modified basis functions, and its expression is the same as that of the element 
proposed by Specht[19], but the derivation procedure here is much simpler. 

Table 6.19 The results of the central and mid-side moments (MB1-T9) 

Central moment (q) Mid-side moment (clamped plate) 
Simply-supported Clamped (P) (q)

Mesh 
(1/4 plate) 

Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.5468
(14.2%)

0.5477
(14.4%)

0.3077
(34.3%)

0.2720
(18.7%)

0.1706
(35.7%)

0.1001
( 20.3%)

0.0707
(37.8%)

0.0333
( 35.2%)

4 4 0.5001
(4.4%)

0.4971
(3.8%)

0.2524
(10.2%)

0.2408
(5.1%)

0.1509
(20.0%)

0.1162
( 7.6%)

0.0648
(26.4%)

0.0429
( 16.4%)

6 6 0.4882
(2.0%)

0.4873
(1.8%)

0.2395
(4.5%)

0.2343
(2.3%)

0.1439
(14.5%)

0.1181
( 6.1%)

0.0613
(19.4%)

0.0454
( 11.6%)

8 8 0.4828
(0.8%)

0.4837
(1.0%)

0.2350
(2.6%)

0.2319
(1.2%)

0.1399
(11.3%)

0.1193
( 5.1%)

0.0592
(15.4%)

0.0467
( 9.0%)

Analytical 0.4789(qL2/10) 0.2291(qL2/10) 0.1257(P) 0.0513(qL2)

6.6 SemiLoof Conforming Scheme 

This section will introduce the second construction scheme for the super-basis thin 
plate elements formulated only by the point conforming conditions, i.e. SemiLoof 
conforming scheme. This scheme is a novel scheme by the combination of the 
generalized conforming element and the SemiLoof element[20], and possesses the 
following characteristics: 

(1) Unlike the SemiLoof element with DOFs at the corner and mid-side nodes, 
the elements here only contain DOFs at the corner nodes, which is much simpler 
and more suitable for applications. 

(2) It is not necessary that a one-to-one correspondence exists between the 
element DOFs and the selected conforming conditions (and a super-basis scheme 
m n is used). But, the limit compatibility should be ensured when the mesh is 
refined by infinite elements, so that the advantages (reliability and convergence) 
of the generalized conforming elements can be guaranteed. 

(3) The integral form conforming conditions (such as line conforming and 
perimeter conforming conditions), which are usually employed by the generalized 
conforming elements, are not adopted here. All the conforming conditions used 
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are discrete point conforming conditions: the point conforming conditions about 
deflection w at the corner nodes and mid-side points, and the point conforming 
conditions about the normal slope n at two Gauss points of each side (the Semi- 
Loof constraint conditions). So the derivation procedure becomes more convenient. 

The no. 19, 20 and 21 elements LSL-T9, LSL-R12 and LSL-Q12 in Table 5.1 
belong to this element group, in which two elements LSL-T9[21] and LSL-Q12[22]

will be introduced in detail. 

6.6.1 Triangular Element LSL-T9 

A triangular thin plate element is shown in Fig. 6.16. The nodal displacement 
vector (element DOFs) eq  is the same as Eq. (6-1). 

Figure 6.16 A triangular thin plate element with SemiLoof constraint conditions 
4,5,6 are mid-side points; and Ai and Bi are two Gauss points along each side 

The element deflection field w is assumed to be a polynomial with 12 unknown 
coefficients, expressible in terms of the area coordinates L1, L2 and L3 as follows 

1 1 2 2 3 3 4 2 3 5 3 1 6 1 2

7 2 3 2 3 8 3 1 3 1 9 1 2 1 2
2 2 2

10 1 2 3 11 2 3 1 12 3 1 2

[ ] [ ]
[ ( ) ( ) ( )]
[ ]

w L L L L L L L L L
L L L L L L L L L L L L
L L L L L L L L L (6-113)

The following 12 point conforming conditions are selected: 

 ( ) 0iw w   (i 1,2,3) (6-114) 

 ( ) 0jw w   ( j 4,5,6) (6-115) 

0n
k

w
n

  (k A1, B1, A2, B2, A3, B3) (6-116) 

Equations (6-114) and (6-115) are the point conforming conditions about deflection 
at the corner nodes (nodes 1, 2, 3) and mid-side points (points 4, 5, 6); Eq. (6-116) 
is the point conforming conditions about the normal slope at Gauss points (points 
A1, B1, A2, B2, A3, B3) along the element sides. 
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Firstly, from Eq. (6-114), we obtain 

1 1 2 2 3 3, ,w w w  (6-117) 

Secondly, 4, 5 and 6 can be obtained from Eq. (6-115), for example, for the 
mid-side point 4 of side 23 , we have 

4 2 3 4

1 1
4 2 3 2 3 2 3

1 1 1
2 2 4
1 ( ) ( ) ( )
2 8 8x x y y

w

c bw w w

Then, as shown in the first equation below, 4 can be solved: 

1 1
4 2 3 2 3

2 2
5 3 1 3 1

3 3
6 1 2 1 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

x x y y

x x y y

x x y y

c b

c b

c b

 (6-118) 

Finally, the rest of the unknown coefficients can be obtained from Eq. (6-116): 

7 2 3 1 3 2 2 3 1 2 2 3 3 1

3 3 3 1 2 2 2 2 1 3 1 2 2

3 3 1 3 3 3 1 2 2 2 2 1 3

8 3 1 3 1 2 1 3

1 1[( ) (3 ) ( 3) ] [( 3 3 )
2 12

1(3 8 ) (3 8 ) ] [( 3
12

3 ) (3 8 ) (3 8 ) ]
1 1[ ( 3) ( ) (3 ) ] [ (3
2 12

x

x x

y y y

r r w r w r w c r c r c

r c c c r c c c b r b

r b r b b b r b b b

r w r r w r w r3 3 3 2 1

2 3 3 1 1 2 1 1 1 2 3 3 3 3

2 1 2 3 3 1 1 2 1 1 1 2 3

9 2 1 1 2 1 2 3 2 2 2 3 1

1 1 1 3 2 3 1 1

8 )

1( 3 3 ) (3 8 ) ] [ (3
12

8 ) ( 3 3 ) (3 8 ) ]
1 1[(3 ) ( 3) ( ) ] [(3 8 )
2 12

(3 8 ) ( 3

x

x x

y y y

x

x

c c c

c r c r c r c c c r b b

b b r b rb rb b b

r w r w r r w r c c c

r c c c c r c 2 2 3 2 2 2

3 1 1 1 1 3 2 3 1 1 2 2 3

10 11 12 3 2 1 1 3 2 2 1 3

2 2 3 3 1 3 3 1 1 2 1 1 2 2 3

2 2 3 3 1 3 3 1 1 2 1 1

13 ) ] [(3
12

8 ) (3 8 ) ( 3 3 ) ]
( ) ( ) ( )

1 [( ) ( ) ( ) ]
2
1 [( ) ( ) (
2

x

y y y

x x x

y y

r c r b b

b rb b b b rb r b
r r w r r w r r w

r c r c r c r c r c r c

r b r b r b rb rb 2 2 3) ]yr b

 (6-119) 

where bi, ci and ri are given in Eq. (6-58). 
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Once  is solved and expressed in terms of eq , the element stiffness matrix 
can be derived following the conventional procedure. Note that the element LT in 
reference [23] derived with the integral conforming conditions is equivalent to the 
present element. However, the construction procedure in this section based on the 
point conforming conditions appears to be simpler, and is easy to be extended to 
formulate quadrilateral element. 

Example 6.13 The central deflection and central moment of the simply- 
supported and the clamped square plates subjected to uniform load. 

Results by the elements LSL-T9 and CT proposed by Fricker[11] are given in 
Table 6.20 for comparison. It can be seen that the accuracy of the present element 
is better than that of the element CT (Meshes A and B in Fig. 6.2 are used). 

Table 6.20 The central deflection and moment of square plates subjected to uniform 
load (LSL-T9) 

Simply-supported Clamped 
LST-T9 CT LST-T9 CT 

Mesh 
(1/4

plate) Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B

2 2 0.4014
( 1.2%)

0.4024
( 0.9%)

0.399 30
( 1.7%)

0.351 18 
( 13.6%)

0.122 88
( 2.9%)

0.107 68
( 14.9%)

0.147 50
(16.6%)

0.107 32
( 15.2%)

4 4 0.4051
( 0.3%)

0.4058
( 0.1%)

0.404 39
( 0.5%)

0.392 80 
( 3.3%)

0.125 44
( 0.8%)

0.122 03
( 3.6%)

0.132 21
(4.5%)

0.122 32
( 3.3%)

6 6 0.405 74
( 0.1%)

0.406 09
( 0.03%)

0.405 40
( 0.2%)

0.400 28 
( 1.5%)

0.126 11
( 0.3%)

0.124 52
( 1.6%)

0.129 12
(2.0%)

0.124 68
( 1.5%)

Central
deflection

Analy- 
tical 0.406 235qL4/(100D) 0.126 53qL4/(100D)

2 2 0.5022
(4.9%)

0.5161
(7.8%)

0.499 88
(4.4%)

0.439 58 
( 8.2%)

0.2909
(27%)

0.2380
(3.9%)

0.295 10
(28.8%)

0.205 27
( 10.4%)

4 4 0.4798
(0.2%)

0.4917
(2.7%)

0.483 47
(1.0%)

0.470 05 
( 1.8%)

0.2386
(4.2%)

0.2343
(2.3%)

0.246 71
(7.7%)

0.223 89
( 2.3%)

6 6 0.478 21
( 0.1%)

0.485 51
(1.4%)

0.480 90
(0.4%)

0.474 93 
( 0.8%)

0.232 77
(1.6%)

0.231 55
(1.1%)

0.237 51
(3.7%)

0.226 05
( 1.3%)

Central
moment 

Analy- 
tical 0.478 86(qL2/10) 0.229 05(qL2/10)

6.6.2 Quadrilateral Element LSL-Q12 

A quadrilateral thin plate element with 12 conventional DOFs is shown in 
Fig. 6.17. Its nodal displacement vector eq  is 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

(6-120)
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Figure 6.17 A quadrilateral thin plate element 

The element deflection w is assumed to be a polynomial with 16 unknown 
coefficients, and expressed in terms of  and  as 

2 2
1 2 3 4 5 6 7 8

2 2 2 2
1 3 2 4 5 6 7

2 2 2 2
8

( 1)( ) ( 1)( )
( 1)( ) ( 1)( ) ( 1)( 1)( )
[ ( 1) ( 1)] (6-121)

w

Apply the following 16 conforming conditions 

 ( ) 0iw w   (i 1,2, ,8) (6-122) 

0n
j

w
n

  (j A1, B1, A2, B2, A3, B3, A4, B4) (6-123) 

where Eq. (6-122) denotes the point conforming conditions about deflections at 
the corner nodes (nodes 1, 2, 3 and 4) and the mid-side points (points 5, 6, 7 and 
8); Eq. (6-123) denotes the point conforming conditions about the normal slopes 

at eight Gauss points 1,
3j j jA  and 1 ,

3j j jB  ( j 1, 2, 3, 4) along the 

four element sides. These 16 point conforming conditions are the SemiLoof 
constraint conditions[20], as shown in Fig. 6.18. 

Figure 6.18 SemiLoof constraint conditions 
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Firstly, by applying the condition (6-122), 1, 2, , 8 can be solved as follows: 

4 4

1 2
1 1

4 4

3 4
1 1

4

5 1 3 1 3
1

4

6 1 3 1 3
1

4

7 2 3 2 3
1

8 2 3

1 1,
4 4
1 1,
4 4
1 [ ( ) ( )]
8
1 [ ( ) ( )]
8
1 [ ( ) ( )]
8
1 [ (
8

i i i
i i

i i i i i
i i

xi i i yi i i
i

xi i i yi i i
i

xi i i yi i i
i

xi i i

w w

w w

a a b b

a a b b

a a b b

a a
4

2 3
1

) ( )]yi i i
i

b b

 (6-124) 

where
4 4 4

1 2 3
1 1 1

4 4 4

1 2 3
1 1 1

1 1 1, ,
4 4 4
1 1 1, ,
4 4 4

i i i i i i i
i i i

i i i i i i i
i i i

a x a x a x

b y b y b y
 (6-125) 

Secondly, 1, 2, , 8 can be solved from the condition (6-123). And, their 
expressions are given in reference [22]. 

Now, all the unknown coefficients are solved, the element stiffness matrix can 
be derived following the conventional procedure. 

Example 6.14 The central deflection of a simply-supported circular plate 
subjected to uniform load. For comparison, results by the triangular element 
proposed by Felippa and Bergan[14] are also given together with those of the 
present element LSL-Q12. The Poisson’s ratio 0.3 .

Owing to symmetry, only one quarter plate is calculated. The two meshes in 
Fig. 6.14 are used again, in which mesh A contains 12 quadrilateral or 24 triangular 
elements, and mesh B contains 48 quadrilateral or 96 triangular elements. 

The computational errors are given in Table 6.21. It can be seen that the 
precision of the element LSL-Q12 is better than that of the triangular element in 
reference [14]. 

Table 6.21 The computational errors for central deflection of a simply-supported 
circular plate (uniform load) 

Mesh for 1/4 circular plate LSL-Q12 Triangular element[14]

Mesh A
Mesh B

0.66%
0.17%

2.87%
0.70%
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Example 6.15 The central deflection and moment of the simply-supported and 
the clamped square plates (the length of side is L) subjected to uniform load. The 
Poisson’s ratio is 0.3. 

Three Meshes A, B and C in Fig. 6.19 are used for one quarter plate. And, the 
results are given in Table 6.22. It can be seen that the element LSL-Q12 possesses 
high precision for both regular and irregular meshes. 

Figure 6.19 Meshes for 1/4 plate 
(a) Mesh A 4 4; (b) Mesh B 4 4; (c) Mesh C 4 4

Table 6.22 Results by element LSL-Q12 for square plates subjected to uniform load 

Simply-supported Clamped Mesh 
(1/4 plate) Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

2 2 0.405 13
( 0.27%)

0.404 42
( 0.45%)

0.403 10 
( 0.77%)

0.122 65
( 3.07%)

0.122 34
( 3.31%)

0.121 18
( 4.23%)

4 4 0.406 16
( 0.02%)

0.406 11
( 0.03%)

0.405 96 
( 0.07%)

0.125 86
( 0.53%)

0.125 75
( 0.62%)

0.125 72
( 0.64%)

8 8 0.406 23
(0.00%)

0.406 14
( 0.02%)

0.405 74 
( 0.12%)

0.126 44
( 0.07%)

0.126 41
( 0.09%)

0.126 39
( 0.11%)

Central
deflection

Analytical 0.406 235qL4/(100D) 0.126 53qL4/(100D)

2 2 0.512 43
(7.01%)

0.518 02
(8.18%)

0.526 91 
(10.03%)

0.257 28
(12.32%)

0.254 25
(11.00%)

0.258 85
(13.01%)

4 4 0.487 30
(1.76%)

0.486 69
(1.64%)

0.486 56 
(1.61%)

0.236 80
(3.38%)

0.235 27
(2.72%)

0.234 63
(2.44%)

8 8 0.480 98
(0.44%)

0.480 38
(0.32%)

0.479 60 
(0.15%)

0.231 07
(0.88%)

0.230 47
(0.62%)

0.230 14
(0.48%)

Central
moment 

Analytical 0.478 86qL2/10 0.229 05qL2/10

Example 6.16 The central deflection w and central moment My of a rhombus 
plate (Fig. 6.15) subjected to uniform load. 

The results of central deflection and moment by the element LSL-Q12 and 
other models are listed in Table 6.23. Compared with the elements in references 
[15, 16], LSL-Q12 has better precision. 
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Table 6.23 The central deflection and central moment of a rhombus plate subjected 
to uniform load 

Central deflection w Central moment My
DOF Mesh 

LSL-Q12 [15] [16] LSL-Q12 [15] [16] 

27 2 2 0.7637 0.7230  1.0006 0.7602  
75 4 4 0.7872 0.7718 0.8414 1.0372 0.9172 0.9761
105 4 6 0.7904 0.7850  0.9478 0.9473  
243 8 8 0.7918  0.8111 0.9777  0.9739
507 12 12 0.7927  0.8057 0.9680  0.9688

Difference method[15] 0.7945qL4/(100D) 0.9589qL2/10
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Chapter 7 Generalized Conforming Thin Plate  
Element — Perimeter-Point and  
Least-Square Conforming Schemes 

Song Cen 
Department of Engineering Mechanics, School of Aerospace,  

Tsinghua University, Beijing, 100084, China 

Zhi-Fei Long 
School of Mechanics & Civil Engineering, China University of  

Mining & Technology, Beijing, 100083, China 

Abstract This chapter discusses the last two groups of the construction 
schemes for the generalized conforming thin plate element: perimeter-point 
conforming scheme and least-square conforming scheme. Five triangular and 
rectangular element models formulated by these schemes are presented in 
detail. Numerical examples show that these generalized conforming models 
also exhibit excellent performance in the analysis of thin plates. Furthermore, 
the generalized conforming element theory is applied to verify or improve 
the convergence of two famous non-conforming element models, ACM and 
BCIZ, and some valuable conclusions are obtained. 

Keywords thin plate element, generalized conforming, perimeter-point 
conforming, least-square conforming. 

7.1 Perimeter-Point Conforming Scheme—Elements  
LR12-1 and LR12-2 

This chapter will take the rectangular generalized conforming elements LR12-1 
and LR12-2[1] as the examples to illustrate the procedure for the combination 
scheme of perimeter and point conforming conditions. These two elements are 
both elements with m n 12: the number of the element DOFs n 12, and the 
number of the unknown coefficients in the deflection field m 12. The selected 
12 conforming conditions include 3 point conforming conditions and 9 perimeter 
conforming conditions. 
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7.1.1 Element LR12-1 

This rectangular thin plate element is also shown in Fig. 6.11. The element nodal 
displacement vector eq  is still composed of wi, xi, yi (i 1,2,3,4) at four corner 
nodes. And, the element deflection field w is assumed to be an incomplete quartic 
polynomial with 12 unknown coefficients, as shown in Eqs. (6-22) and (6-23), i.e., 

w F  (7-1) 
where

T
1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 2 2 3 3 3

[ ]
[1 ]F

 (7-2) 

In order to solve , 12 conforming conditions are needed. 
Firstly, 3 conforming conditions for the corner nodal deflections can be established: 

4
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 (7-3) 

Secondly, the perimeter conforming condition (5-2c) is used, i.e., 

2 2 2

2 2 2 d ( )d
e

e
x y xy n n ns s nA

A

w w wM M M A M M Q w s
x y x y

 (7-4) 

where the weighting functions Mn, Mns and Qn are the boundary forces (bending 
moment, twisting moment and transverse shear force); Mx, My and Mxy are the 
internal moments within the element domain, which are assumed to satisfy the 
homogeneous equilibrium Eq. (5-3), i.e., 

2 22

2 2 2 0y xyx

xyx
x

xy y
y

M MM
x y x y

MM
Q

x y
M M

Q
x y

 (7-5) 

For the rectangular elements, Eq. (7-4) can be written as 
2 2 2

2 2 2 d
e

x y xy
A

w w wM M M A
x y x y
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1

43 121

1
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[( ) ( ) ]d

[( ) ( ) ]d

y y xy x y y y xy x y

x x xy y x x x xy y x

a M M Q w M M Q w

b M M Q w M M Q w (7-6)

The following equilibrium internal force fields 
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2
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b b

 (7-7) 

are adopted, where 1, 2, , 9 are 9 arbitrary parameters. 
Since i is an arbitrary parameter, substituting Eq. (7-7) into Eq. (7-6), the 9 

conforming conditions can be obtained as follows 
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Then, 4, 5, , 12 can be solved in turn from Eq. (7-8) as follows 
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Substituting the above equation into Eq. (7-3), 1, 2 and 3 can be obtained 
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  (7-10) 

Thus, all the coefficients in  have been obtained. Then, the shape functions and 
the element stiffness matrix can be derived from them. 

7.1.2 Element LR12-2 

The construction procedure of this element is basically similar to that of the 
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element LR12-1. Only the selected equilibrium internal force fields are different 
from Eq. (7-7), and replaced by 

12 2

2

9

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
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Q a b
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b a

 (7-11) 

Following a similar procedure, all the coefficients in  can be obtained, in 
which 1, 2, 3, 4, 6, 7, 8, 9, 10 are the same, and still given by Eqs. (7-9) 
and (7-10); the other three unknown coefficients are as follows 
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 (7-12) 

Example 7.1 Central deflection and central moment of the simply-supported 
and the clamped square plates (the side length is L) subjected to uniform load. 

The results by the elements LR12-1 and LR12-2 are listed in Tables 7.1 and 
7.2. For comparison, the results by the element ACM[2] are also given. The 
Poisson’s ratio is 0.3. 

Table 7.1 The central deflection of square plates subjected to uniform load 

Simply-supported Clamped Mesh 
(1/4 plate) LR12-1 LR12-2 ACM LR12-1 LR12-2 ACM 

2 2
0.4051

( 0.3%)
0.4052

( 0.3%)
0.3939

( 3.0%)
0.1238

( 2.0%)
0.1243

( 1.7%)
0.1403
(11.0%) 

4 4
0.406 16 
( 0.02%)

0.406 17
( 0.02%)

0.4033
( 0.7%)

0.1260
( 0.4%)

0.1261
( 0.4%)

0.1304
(4.0%)

8 8
0.406 23 

( 0.001%)
0.406 23

( 0.001%)
0.4056

( 0.2%)
0.126 45
( 0.06%)

0.126 46
( 0.05%)

0.1275
(0.8%)

Analytical 0.406 235(qL4/100D) 0.126 53(qL4/100D)
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Table 7.2 The central moment of square plates subjected to uniform load 

Simply-supported Clamped Mesh 
(1/4 plate) LR12-1 LR12-2 ACM LR12-1 LR12-2 ACM 

2 2 0.512 45 
(7.0%)

0.512 23
(7.0%)

0.521 69
(8.9%)

0.255 23
(11.4%) 

0.253 23
(10.5%)

0.277 83
(11.3%) 

4 4 0.487 30 
(1.8%)

0.487 32
(1.8%)

0.489 20
(2.2%)

0.236 89
(3.4%)

0.236 96
(3.4%)

0.240 50
(5.0%)

8 8 0.480 98 
(0.4%)

0.480 98
(0.4%)

0.481 66
(0.6%)

0.231 09
(0.8%)

0.231 10
(0.8%)

0.231 91
(1.2%)

Analytical 0.478 86(qL2/10) 0.229 05(qL2/10)

7.2 The Application of Perimeter Conforming Conditions 
—Verification for the Convergence of the Element ACM 

This section will use the perimeter conforming conditions under the constant stress 
state to verify the convergence of the non-conforming elements. And, as a typical 
example, the convergence of the well-known element ACM[2] will be verified. 

The element ACM is a non-conforming rectangular thin plate element, which 
is constructed by the conventional point conforming scheme, i.e., 12 unknown 
coefficients are determined by 12 point conforming conditions about w, x, y at 
the corner nodes. It can be seen from the deflection field finally determined that 
the deflection w along the element boundary is exactly compatible, while the normal 

slope w
n

 is not. Though the element ACM belongs to the non-conforming 

elements, it still exhibits good convergence in applications and has been proved 
in theory that it can pass the patch test. 

By starting from the generalized conforming theory, this section will verify the 
convergence of the element ACM from another point of view. At the same time, 
this example can also be used to illustrate one of the applications of the generalized 
conforming theory, that is, the generalized conforming theory can be used to 
verify or improve the convergence of other non-conforming elements.  

7.2.1 Derivation of Element ACM from Symmetry 

The rectangular thin plate element ACM, proposed by Adini, Clough and Melosh[2],
is a non-conforming element with 12 DOFs. Its element deflection field is assumed 
to be an incomplete quartic polynomial, as shown in Eqs. (7-1) and (7-2) (i.e. 
Eqs. (6-22) and (6-23)), which involves 12 unknown coefficients that will be 
determined by 12 point conforming conditions about w, x and y at the corner 
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nodes. Since the solution procedure for the 12 unknown coefficients is quite 
complicated, here we will simplify it by using the symmetry (refer to Sect. 6.2). 

Firstly, the 12 unknown coefficients and their basis functions in Eq. (7-1) have 
already been classified as 4 groups. And, each group contains 3 unknown 
coefficients, in turn; they are ( 1, 4, 6); ( 2, 7, 9); ( 3, 8, 10); ( 5, 11, 12), 
as shown in Eq. (6-28). 

Secondly, the 12 point conforming conditions at the corner nodes can be 
recombined. They are classified as 4 independent groups, and each group contains 
3 equations and 3 unknown coefficients. Thereupon, the original simultaneous 
equations with 12 unknowns decompose to be four independent equation groups 
each with 3 unknowns, which greatly simplifies the problem. The 4 equation groups 
are listed as follows. 

(1) Combination conditions belonging to the SS group (3 conditions) 
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Substitution of Eq. (7-1) into the above equations yields 
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i
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(2) Combination conditions belonging to the SA group (3 conditions) 

4

1
( ) 0i i

i
w w       (7-B1) 
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     (7-B2) 
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We can obtain 
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(3) Combination conditions belonging to the AS group (3 conditions) 
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We can obtain 
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(4) Combination conditions belonging to the AA group (3 conditions) 
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We can obtain 
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From the above four groups of simultaneous equations with 3 unknowns, the 
solutions can be easily obtained: 
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(7-17)

Finally, substitution of the above solutions into Eq. (7-1) yields the element 
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deflection field and its shape functions: 

4

1
( )i i xi xi yi yi

i
w N w N N  (7-18) 

where the shape functions are 
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  (i 1,2,3,4) (7-19) 

Once the shape functions are obtained, the element stiffness matrix can be 
derived following the conventional procedure. 

7.2.2 The Fundamental Conforming Conditions for Verifying  
Convergence

According to the generalized conforming theory, the fundamental conditions that 
ensure convergence are Eq. (4-7) or Eq. (4-8), i.e., 

0H   (corresponding to constant strain and rigid body displacement states)
 (7-20) 

The above equation is called the fundamental generalized conforming conditions. 
Under the limit state that a mesh is refined by the infinite elements, the element 

strain will tend to be constant. For the thin plate bending problem, the element 
displacement field in the limit state involves only 6 DOFs, i.e., 3 corresponding 
to rigid body displacement modes and 3 corresponding to constant strain states. 
Thereby, the fundamental generalized conforming condition (7-20) should be 
composed of 6 conforming conditions. 

The 3 conditions which the element should satisfy in the rigid body displacement 
mode can be selected as 

1 1 1
( ) 0, ( ) 0, ( ) 0

p p p

i i i i i
i i i

w w w w x w w y  (7-21) 

They denote the 3 combination conditions of the point conforming conditions 
about deflections at the corner nodes, where p is the number of the corner nodes. 
Besides, they can also be selected as 
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1 1 1
( ) 0, 0, 0

p p p

i x y
i i ii i

w ww w
x y

 (7-22) 

They denote the combination point conforming conditions about w, x and y at 
the corner nodes. For the rigid body displacement modes, the above two sets of 
equations are equivalent to each other; but for non-rigid body displacement 
modes, they are not equivalent anymore. 

When an element is under constant strain states, the perimeter conforming 
condition (5-2c) should also be satisfied, in which the weighting functions can be 
selected according to the constant internal force states. If internal moments are 
constants and transverse shear forces are zero, Eq. (5-2c) will be simplified as: 

2 2 2
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  (7-23) 

If the constant internal force fields are assumed to be those in Eq. (5-24), the 
perimeter conforming conditions given in Eq. (5-26) are obtained, i.e., 
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 (7-24) 

The 6 conditions given in Eq. (7-23) or Eq. (7-24) and Eq. (7-21) or Eq. (7-22) 
are the fundamental conforming conditions for verifying the convergence of the 
non-conforming thin plate elements. 

7.2.3 Verification for the Convergence of Element ACM 

Now, we use the 6 fundamental conforming conditions to verify the convergence 
of the element ACM. 

Firstly, the element ACM has already satisfied the 12 point conforming 
conditions about w, x and y at the corner nodes, thereby, Eq. (7-21) or 
Eq. (7-22) are satisfied naturally. In fact, the 3 conditions (7-A1), (7-B1) and 
(7-C1) selected previously are the same as those expressions in Eq. (7-21); and 
another 3 conditions (7-A1), (7-B2) and (7-C3) are the same as those expressions 
in Eq. (7-22). 
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Secondly, verification for the perimeter conforming conditions (7-24) is performed. 
For the rectangular elements, Eq. (7-24) can be written as 
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x y

 (7-25) 

Substituting Eqs. (7-1) and (7-2) into w at the left side of the above equations, and 
substituting the corresponding interpolation formulae into the boundary rotations 
at the right sides, we obtain 
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 (7-26) 

The above 3 equations are the previous Eqs. (7-13b,c) and (7-16a), respectively, 
and thereby, have been satisfied. 

Since the element ACM has already satisfied the 6 fundamental conforming 
conditions, so, the element ACM is convergent. Actually, it is also a generalized 
conforming element.  

7.3 Super-Basis Perimeter-Point Conforming Scheme —  
Verification and Improvement of the Element BCIZ

This section will introduce the construction procedure of the super-basis thin 
plate element formulated by the combination scheme of the perimeter and point 
conforming conditions. The no. 25 and 26 elements GC -T9 and LT9 in Table 
5.1 belong to this element group. They are both triangular thin plate elements, in 
which n 9 and m 12, but the 12 conforming conditions used by them are 
different: the element GC -T9 adopts 9 point conforming conditions and 3 
perimeter conforming conditions, while the element LT9 adopts 3 point conforming 
conditions and 9 perimeter conforming conditions. 
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The conventional scheme that the non-conforming elements usually adopt is: 
let m n, and only the point conforming conditions at the corner nodes are used. 
Such non-conforming elements sometimes are convergent (such as the rectangular 
thin plate element ACM), sometimes are not convergent (such as the triangular 
thin plate element BCIZ). The super-basis generalized conforming element 
scheme is an improved strategy for the non-conforming elements. For example, 
the super-basis element GC -R12 in Sect. 6.4 is an improvement on the element 
ACM (though the element ACM possesses convergence, its accuracy can be 
improved further), and the super-basis element GC -T9 in this section is an 
improvement on the element BCIZ (the number of the basis functions in the 
element GC -T9 is more than the number of the element DOFs, thereby, the 
shortcoming that the element BCIZ cannot ensure convergence will be eliminated). 
In this section, we firstly apply the fundamental conforming conditions of the 
generalized conforming element, especially, the 3 perimeter conforming conditions 
in Eq. (5-26) under constant stress state, to verify the convergence of the element 
BCIZ; then, by employing the concept of the super-basis elements, we make the 
perimeter conforming condition (5-26) satisfied, consequently, a new element GC

-T9 is constructed. 

7.3.1 Formulations of Element BCIZ 

The triangular thin plate element BCIZ is a famous non-conforming model 
proposed in the past[3]. And, reference [3] is one of the earliest literatures which 
pointed out the limitation of the conforming elements and the rationality of the 
non-conforming elements. 

Before verifying the convergence of the element BCIZ, its formulations are 
introduced briefly as follows. 

The element BCIZ has 9 DOFs (Fig. 6.1), and the element nodal displacement 
vector eq  is given by Eq. (6-1). The assumed element deflection field w is given 
by Eqs. (6-2) and (6-3), i.e., 

1 1 2 2 3 3 4 1 2 1 3 5 2 3 2 1

6 3 1 3 2 7 1 3 1 2

8 2 1 2 3 9 3 2 3 1

1 1
2 2

1 1
2 2
1 1
2 2

w L L L L L L L L L L L

L L L L L L L L

L L L L L L L L (7-27)

By applying the 9 point conforming conditions about w, x and y at the corner 
nodes, we obtain 
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Then  can be solved 
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3 3

4 1 2 3 1 3 1

5 2 3 1 2 1 2

6 3 1 2 3 2 3

7 1 3 2 1 2 1

8 2 1 3 2 3 2

9 3 2 1 3 1 3

x y

x y

x y

x y

x y

x y

w
w
w
w w c b
w w c b
w w c b
w w c b
w w c b
w w c b

 (7-29) 

The above equation can be rewritten as 

ˆ eAq

Substitution of Eq. (7-29) into (7-27) yields 

3

1
( )e

i i xi xi yi yi
i

w N w N NNq  (7-30) 

in which the 3 shape functions related to the node 1 are 
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2 2 2 2
1 1 1 2 1 3 2 1 3 1

2 2
1 3 1 2 1 2 3 2 1 3 1 2 3

2 2
1 3 1 2 1 2 3 2 1 3 1 2 3

1 1
2 2

1 1
2 2

x

y

N L L L L L L L L L

N c L L L L L c L L L L L

N b L L L L L b L L L L L

 (7-31) 

By the permutation of 1, 2 and 3, the other 6 shape functions can be obtained. 
The element curvature field is 

2

2

2

2

2
2

2

x

y

xy

x

w
y

x y

 (7-32) 

By using the transformation of second-order derivatives between the Cartesian 
coordinate system and the area coordinate system: 

2

2

2

22

2

1

2

x

y A

x y

ts  (7-33) 

where

2 2 2
1 2 3
2 2 2
1 2 3

1 1 2 2 3 3

1
4

2 2 2

b b b
c c c

A
b c b c b c

t  (7-34) 

1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1

s  (7-35) 

T2 2 2 2 2 2

2 2 2 2
1 2 3 1 2 2 3 3 1L L L L L L L L L

 (7-36) 
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Thus, the expressions of the curvatures can be obtained as follows 

1
A
tsH  (7-37) 

where

2 3

3 1

1 2

1 3 3 3 3 2 3 3

1 2 1 1 1 1 3 1

2 2 3 2 1 2 2 2

0 0 0 2 0 0 2 0 0
0 0 0 0 2 0 0 2 0
0 0 0 0 0 2 0 0 2

1 1 1 1 1 10 0 0 2 2
2 2 2 2 2 2

1 1 1 1 1 10 0 0 2 2
2 2 2 2 2 2
1 1 1 1 1 10 0 0 2 2
2 2 2 2 2 2

L L
L L

L L

L L L L L L L L

L L L L L L L L

L L L L L L L L

H

  (7-38) 

And, the curvature field can also be rewritten as 

eBq  (7-39) 

where

1 ˆ
A

B tsHA  (7-40) 

Finally, the element stiffness matrix can be obtained 

T d
e

e

A

AK B DB  (7-41) 

in which D is the elastic matrix of thin plate. 

7.3.2 Verification for the Convergence of the Element BCIZ 

According to the generalized conforming element theory, the fundamental 
conditions which ensure the convergence of the non-conforming elements are 
given by Eq. (7-20). They involve 6 conforming conditions, such as Eqs. (7-22) 
and (7-23), which should be satisfied when the element is under the rigid body 
displacement and constant strain states. Now, we apply these 6 fundamental 
conforming conditions to verify the convergence of the element BCIZ. 

Firstly, the element BCIZ has already satisfied the 9 point conforming conditions 
about w, x and y at the corner nodes, thereby, the point conforming conditions 
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in Eq. (7-22), which should be satisfied when the element is under rigid body 
displacement states, are satisfied naturally. 

Secondly, we check the perimeter conforming conditions given in Eq. (7-23) 
which should be satisfied when the element is under constant strain states, i.e., 

3
T

0 0
1

d d di i

e

d d

ni ni nsi si
iA

A M s M sM  (7-42) 

where the 3 constant internal force states are usually assumed to be those in 
Eq. (5-24). But, for the triangular element, they would better be assumed as 
follows

1 12
1

2 22
2

3 32
3

4

4

4

n

n

n

AM
d

AM
d
AM

d

 (7-43) 

where the arbitrary parameters i (i 1,2,3) are corresponding to the constant 
internal force states in which the normal moment of ith side is not zero while the 
normal moments of the other two sides are zero. The twisting moment Mnsi along 
each element side and the internal moments Mx, My, Mxy corresponding to this 
constant internal force state are as follows 

1 1 1 2 3

2 1 2 2 3

3 1 2 3 3

ns

ns

ns

M r
M r
M r

 (7-44) 

2 3 3 1 1 2

1

2 3 3 1 1 2 2

3

2 3 3 2 3 1 1 3 1 2 2 1

1

1 1 1( ) ( ) ( )
2 2 2

x

y

xy

c c c c c c
M
M b b b b b b

A
M

b c b c b c b c b c b c

 (7-45) 

in which r1, r2 and r3 are given by Eq. (6-58). Equation (7-45) can be written as 

1 T( )M t  (7-46) 

Now, we substitute the above constant internal force state into Eq. (7-42). 
Firstly, the substitution of Eqs. (7-46) and (7-37) into the left side of Eq. (7-42) 

yields 
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T T

T

4 7
T

5 8

6 9

1d d

0 0 0 1 3 5 1 5 3
1 0 0 0 5 1 3 3 1 5
6

0 0 0 3 5 1 5 3 1

1 3 5 1 5 3
1 15 1 3 3 1 5
6 6

3 5 1 5 3 1

e eA A

A A
A

M s H

(7-47)

Secondly, consider the right side of Eq. (7-42). The integrations of rotations along 
the boundary line are as follows 

1

2

3

1 1
1 2 3 2 30

2 2
2 3 1 3 10

3 3
3 1 2 1 20

d ( ) ( )
2 2

d ( ) ( )
2 2

d ( ) ( )
2 2

d

n x x y y

d

n x x y y

d

n x x y y

b cs

b cs

b c
s

 (7-48) 

1

2

3

1 2 30

2 3 10

3 1 20

d

d

d

d

s

d

s

d

s

s w w

s w w

s w w

                    (7-49) 

Substitution of Eqs. (7-43), (7-44), (7-48) and (7-49) into the right side of Eq. (7-42) 
yields 

3

0 0
1

1 1
1 1 1 2 1 3 2 3 2 32 2

1 1

2 2
2 2 1 2 2 3 3 1 3 12 2

2 2

3
3 3 1 3 2 3 1 22

3

( d d )

2 2[ 2 (1 ) (1 ) ( ) ( )]

2 2[(1 ) 2 (1 ) ( ) ( )]

2[(1 ) (1 ) 2 ( )

i id d

ni ni nsi si
i

x x y y

x x y y

x x

M s M s

Ab Acw r w r w
d d

Ab Acr w w r w
d d
Abr w r w w
d

3
1 22

3

2 ( )]y y
Ac
d

(7-50)

By employing Eq. (7-28), eq  on the right side of the above equation can be 
expressed in terms of 
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3

0 0
1

1

4
T

2 5

6

3

1

7

2 8

9

3

( d d )

10 (1 ) 1
2

11 0 (1 )
2

1 (1 ) 1 0
2

10 1 (1 )
2

1 (1 ) 0 1
2

11 (1 ) 0
2

i id d

ni ni nsi si
i

M s M s

r

r

r

r

r

r

(7-51)

Substituting Eqs. (7-47) and (7-51) into the two sides of Eq. (7-42), and 
eliminating the arbitrary parameters T , we obtain 

4 7

5 8

6 9

1 4 1 7

2 5 2 8

3 6 3 9

1 3 5 1 5 3
5 1 3 3 1 5
3 5 1 5 3 1

0 3(1 ) 6 0 6 3(1 )
6 0 3(1 ) 3(1 ) 0 6

3(1 ) 6 0 6 3(1 ) 0

r r
r r

r r

i.e.,

1 4 8

2 5 9

3 6 7

1 3 1 0
1 1 3 0

3 1 1 0

r
r

r
 (7-52) 

If  is expressed in terms of eq , we obtain 

1 1 2 3 1 2 3 1 2

2 2 3 1 2 3 1 2 3

3 3 1 2 3 1 2 3 1

1 3 1 2 2 ( ) ( ) 0
1 1 3 2 2 ( ) ( ) 0

3 1 1 2 2 ( ) ( ) 0

x x y y

x x y y

x x y y

r w w c b
r w w c b

r w w c b
 (7-53) 

Equations (7-52) and (7-53) are the 3 perimeter conforming conditions for verifying 
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the convergence of the element BCIZ. When the components in the element 
DOFs eq  are 9 arbitrary parameters, Eq. (7-53) is not satisfied. Thereby, the 
convergence of the element BCIZ cannot be guaranteed. 

7.3.3 Element GC -T9—an Improvement on the Element BCIZ 

The triangular thin plate element GC -T9[4] is an improved model of the element 
BCIZ.

As described above, the reason why the element BCIZ cannot ensure convergence 
is that the perimeter conforming condition (7-42) is not satisfied. Therefore, an 
improvement scheme is proposed as follows: on the basis of the assumed element 
deflection field given by Eq. (7-27), 3 new unknown coefficients and basis functions 
are supplemented; and on the basis of the 9 point conforming conditions used, 3 
perimeter conforming conditions given in Eq. (7-42) are also supplemented. Since 
the condition (7-42) has already been satisfied, the convergence can be ensured. 
This element obtained is called GC -T9.

The construction procedure of the element GC -T9 is as follows. 
The element deflection field is assumed to be composed of two parts: 

ˆ(BCIZ)w w w  (7-54) 

where (BCIZ)w  is the assumed deflection field (7-27) of the element BCIZ with 
9 unknown coefficients; ŵ  is the additional deflection field with 3 new unknown 
coefficients: 

2 2 2 2 2 2
10 1 2 11 2 3 12 3 1ŵ L L L L L L  (7-55) 

ŵ  has the following characteristic: at three corner nodes, ŵ , ŵ
x

 and ŵ
y

 are all 

zero.
The assumed deflection field in Eq. (7-54) contains 12 unknown coefficients, 

while the number of the element DOFs is still 9, so the new element is a 
super-basis element. 

In order to solve the 12 unknown coefficients, 12 conforming conditions are 
needed.

Firstly, 9 point conforming conditions about w, x and y at three corner nodes 
are used. Because of the characteristic of the additional deflection ŵ  mentioned 
above, we know that 10, 11 and 12 will not appear in these conditions. So, the 
first 9 unknown coefficients 1, 2, , 9 can be solved just by these 9 
conditions, as shown in Eq. (7-29), and are the same as those in the element BCIZ. 

Secondly, the 3 new unknown coefficients 10, 11 and 12 will be solved by 
applying 3 perimeter conforming conditions given in Eq. (7-42). And, the weighting 
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functions given in Eq. (7-42) are still the 3 constant internal force states shown in 
Eqs. (7-43) (7-46).

For the items at the right side of Eq. (7-42), the derivation results are still given 
by Eqs. (7-50) and (7-51). 

For the items at the left side of Eq. (7-42), the items related to the new unknown 
coefficients 10, 11, 12 should be supplemented on the basis of Eq. (7-47), i.e., 

4 7
T T

5 8

6 9

10

11

12

1 3 5 1 5 3
1 1d 5 1 3 3 1 5
6 6

3 5 1 5 3 1

0 2 0
1 0 0 2
6

2 0 0

AM

(7-56)

Substitution of Eqs. (7-56) and (7-51) into the two sides of Eq. (7-42) yields 

10 1 4 8

11 2 5 9

12 3 6 7

0 2 0 1 3 1
0 0 2 1 1 3
2 0 0 3 1 1

r
r

r

From this relation, we obtain 

10 3 4 8

11 1 5 9

12 2 6 7

3 1 1
1 1 3 1
2

1 1 3

r
r

r
 (7-57) 

Equation (7-57) can also be expressed in terms of eq ,

3 2 3 3 2 3 3

10 1

11 3 2 3 2 1

12 1

2 3 2 2 3 2 2

3 1 3 3 1 3 3

1 3 1 1

1 1(1 3 ) ( 3 ) ( 3 )
2 2

1 12 ( ) ( )
2 2
1 1(1 3 ) ( 3 ) ( 3 )
2 2

1 1(1 3 ) ( 3 ) ( 3 )
2 2

1 1(1 3 ) ( 3 ) (
2 2

x

y

r c r c b r b
w

c c b b

r c r c b r b

r c r c b r b

r c r c
2

3 1 1 2

2

1 3 1 3

3 )

1 12 ( ) ( )
2 2

x

y

w
b rb

c c b b
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2 1 2 1

3

1 2 1 1 2 1 1 3

3

2 1 2 2 1 2 2

1 12 ( ) ( )
2 2
1 1(1 3 ) ( 3 ) ( 3 )
2 2

1 1(1 3 ) ( 3 ) ( 3 )
2 2

x

y

c c b b
w

r c r c b rb

r c r c b r b

 (7-58) 

After the 12 unknown coefficients are determined, the element deflection field 
and its shape functions can then be obtained. All the shape functions are 
composed of two parts, for examples, for the node 1, we have 

1 1 1 1 1 1 1 1 1
ˆ ˆ ˆ, ,x x x y y yN N N N N N N N N  (7-59) 

where 1N , 1xN , 1yN  are the parts related to (BCIZ)w , and are the same as those 
given in Eq. (7-31). 1N̂ , 1

ˆ
xN  and 1

ˆ
yN  are the parts related to ŵ :

2 2 2 2 2 2
1 3 1 2 2 3 2 3 1

2 2 2 2 2 2
1 2 3 3 1 2 3 2 2 3 3 2 2 3 1

2 2 2 2 2 2
1 2 3 3 1 2 3 2 2 3 3 2 2 3 1

ˆ (1 3 ) 2 (1 3 )

1 1 1ˆ ( 3 ) ( ) ( 3 )
2 2 2

1 1 1ˆ ( 3 ) ( ) ( 3 )
2 2 2

x

y

N r L L L L r L L

N c r c L L c c L L c r c L L

N b r b L L b b L L b r b L L

 (7-60) 

The other 6 shape functions can be obtained by permutation. 
After the shape functions are determined, the element stiffness matrix can then 

be obtained. 
Example 7.2 The central deflection wC and central moment MC of a square 

plate (the side length is L) subjected to uniform load q and central concentrated 
load P. The Poisson’s ratio is 0.3. Meshes A and B in Fig. 6.2 and mesh C in 
Fig. 6.13 are used. The results by the element GC -T9 are given in Tables 7.3 
and 7.4. 

In the tables, wC /(qL4/100D), wC /(PL2/10D) and 1 MxC /(qL2). And, 
the numbers in parentheses are the relative errors. From Tables 7.3 and 7.4, two 
points can be concluded: 

(1) The precision of the element GC -T9 is very high, is better than the 
Discrete Kirchhoff Theory element DKT and the stress hybrid element HSM. 

(2) For mesh C, the element BCIZ cannot pass the patch test, and cannot 
converge to correct solutions, either; but the computational results of the element 
GC -T9 are convergent under this mesh, even better than those obtained by the 
meshes A and B.
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Table 7.3 The central deflection and central moment coefficients of a simply- 
supported plate (GC -T9, Mesh A)

Mesh (1/4 plate) Deflection coefficient 
(uniform load)

Deflection coefficient 
(concentrated load)

Moment coefficient 
(uniform load) 1

2 2
4 4
8 8

0.4119(1.41%) 
0.4085(0.57%)
0.4068(0.15%)

0.1174(1.18%) 
0.1167(0.58%) 
0.1162(0.14%) 

0.0499(4.35%)
0.0488(1.88%)
0.0480(0.21%)

Analytical 0.4062 0.1160 0.0479 

Table 7.4 The central deflection coefficients of simply-supported and clamped 
plates by using meshes A, B and C (GC -T9, Mesh 8 8

(uniform load) (concentrated load) mesh 
support Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C

Simply-supported 0.4068
(0.15%)

0.4068
(0.15%)

0.4056
( 0.15%)

0.1162 
(0.14%)

0.1182 
(1.9%)

0.1163 
(0.28%)

Clamped 0.1291
(2.5%)

0.1274
(1.1%)

0.1277
(1.4%)

0.5666
(1.2%)

0.5812
(3.8%)

0.5666
(1.2%)

7.4 Least-Square Scheme—Elements LSGC-R12 and  
LSGC-T9

This section will introduce the construction procedure of the thin plate element 
formulated by the least-square scheme. The no. 27 and 28 elements LSGC-R12 
and LSGC-T9 in Table 5.1 belong to this element group. 

7.4.1 Rectangular Element LSGC-R12[5] — an Improvement on  
the Element ACM 

Rectangular thin plate element LSGC-R12 is a super-basis element by improving 
the element ACM[2] using the least-square scheme. The element DOFs are still 
the 12 conventional DOFs at the corner nodes. And, the element deflection field 
is assumed to be composed of two parts: 

ˆ(ACM)w w w  (7-61) 

where (ACM)w  is the deflection field (7-1) of the element ACM, and contains 
12 unknown coefficients 1, 2, , 12; ŵ  is the additional deflection field with 2 
new unknown coefficients 
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2 2 2 2 2 2
13 14ˆ ( 1)( 1) ( 1)( 1)w  (7-62) 

ŵ  possesses the following characteristics: 

(1) At 4 corner nodes, ŵ , ŵ
x

 and ŵ
y

 are all zero; 

(2) Along 4 element sides, ŵ  identically equals to zero, but ŵ
n

 does not 

equal to zero. 
In order to solve the 14 unknown coefficients, 14 conforming conditions are 

needed.
Firstly, the 12 point conforming conditions about w, x and y at the corner 

nodes are applied. According to the characteristic (1) of ŵ , these 12 conditions 
do not contain 13 and 14, thus the 12 unknown coefficients 1, 2, , 12 can 
just be solved, and are the same as those of the element ACM. 

Since the displacement field w  of the element ACM is exactly compatible with 
the deflection w  along the element boundary (but incompatible with the normal 
slope n  along the element boundary), and the value of ŵ  along the boundary 
identically equals to zero, so the total displacement ˆw w w  is also compatible 
with the boundary deflection w .

Secondly, the conforming conditions about the normal slope along the element 
boundary also need to be considered, and then, they are used to determine the 
other residual 2 unknown coefficients 13 and 14.

According to the least-square method, the following 2 conditions can be obtained: 

2

13
2

14

ˆ
d 0

ˆ
d 0

e

e

nA

nA

w w s
n n

w w s
n n

 (7-63) 

From this equation, we obtain 

4

13
1

4

14
1

9
128

9
128

i i xi
i

i i yi
i

a

b
 (7-64) 

After the 14 unknown coefficients are determined, the element deflection field 
and its shape functions can be obtained 

4

1

( )i i xi xi yi yi
i

w N w N N   (7-65) 
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where the shape functions are composed of two parts 

ˆ
ˆ
ˆ

i i i

xi xi xi

yi yi yi

N N N
N N N
N N N

  (i 1,2,3,4) (7-66) 

in which iN , xiN  and yiN  are the parts related to w , and the same as those given 
in Eq. (7-19). ˆ

iN , ˆ
xiN  and ˆ

yiN  are the parts related to ŵ :

2 2 2

2 2 2

ˆ 0
9ˆ ( 1)( 1)

128
9ˆ ( 1)( 1)

128

i

xi i i

yi i i

N

N a

N b

  (i 1,2,3,4) (7-67) 

Once the shape functions are obtained, the element stiffness matrix can be derived. 

7.4.2 Triangular Element LSGC-T9[5] — an Improvement on the  
Element BCIZ 

Triangular thin plate element LSGC-T9 is a super-basis element by improving 
the element BCIZ[3] using the least-square scheme. The element DOFs are still 
the 9 conventional DOFs at the corner nodes. And, the element deflection field is 
assumed to be composed of two parts: 

ˆ(BCIZ)w w w  (7-68) 

where w (BCIZ) is the deflection field (7-27) of the element BCIZ, and contains 
9 unknown coefficients 1, 2, , 9; ŵ  is the additional deflection field with 3 
new unknown coefficients: 

2 2 2 2 2 2
10 1 2 3 11 2 3 1 12 3 1 2ŵ L L L L L L L L L  (7-69) 

The first 9 unknown coefficients can be solved by the point conforming 
conditions about w, x, y at the corner nodes, as shown in Eq. (7-29). And, the 
residual 3 unknown coefficients 10, 11 and 12 can be solved by the following 
least-square conditions: 

2ˆ
d 0

e nA
i

w w s
n n

  (i 10,11,12) (7-70) 



Chapter 7 Generalized Conforming Thin Plate Element Perimeter-Point ... 

201

After the determination of all the unknown coefficients, the shape functions 
and element stiffness matrix can then be derived. 

Example 7.3 The central deflection and central moment of square plates (the 
side length is L) subjected to uniform load q and central concentrated load P. The 
Poisson’s ratio 0.3.

The results by the elements LSGC-R12 and LSGC-T9 are given in Tables 7.5 
and 7.6. And, mesh B in Fig. 6.2 and mesh C in Fig. 6.13 are used for triangular 
element. 

Table 7.5 The central deflection and moment of square plate subjected to uniform load 

Clamped Simply-supported 

Rectangular
elements 

Triangular element 
LSGC-T9 

Rectangular
elements 

Triangular element 
LSGC-T9 

Mesh 
(1/4plate)

ACM
LSGC-

R12
Mesh B Mesh C ACM

LSGC-
R12

Mesh B Mesh C

2 2 0.1403 0.1222 0.1025 0.1028 0.4328 0.3976 0.3949 0.3918

4 4 0.1332 0.1241 0.1203 0.1212 0.4129 0.4042 0.4036 0.4032

8 8 0.1275 0.1262 0.1250 0.1252 0.4081 0.4056 0.4063 0.4055
w

Analytical 0.1265(qL4/100D) 0.4062(qL4/100D)

2 2 0.2778 0.2132 0.2030 0.1624 0.5217 0.4442 0.4734 0.4456

4 4 0.2405 0.2233 0.2240 0.2241 0.4892 0.4689 0.4810 0.4733

8 8 0.2319 0.2275 0.2287 0.2267 0.4817 0.4762 0.4829 0.4754
M

Analytical 0.2291(qL2/10) 0.4789(qL2/10)

Table 7.6 The central deflection of square plate subjected to central concentrated load 

Clamped Simply-supported 

Rectangular
elements 

Triangular element 
LSGC-T9 

Rectangular
elements 

Triangular element 
LSGC-T9 

Mesh 
(1/4 plate) 

ACM
LSGC-

R12
Mesh B Mesh C ACM

LSGC-
R12

Mesh B Mesh C

2 2 0.6135 0.5324 0.4327 0.4482 1.2327 1.1243 1.0622 1.0803

4 4 0.5803 0.5516 0.5207 0.5296 1.1829 1.1501 1.1278 1.1326

8 8 0.5673 0.5585 0.5494 0.5514 1.1674 1.1570 1.1520 1.1515

Analytical 0.5612(PL2/100D) 1.160(PL2/100D)



Advanced Finite Element Method in Structural Engineering 

202

References

[1]  Long ZF (1992) Triangular and rectangular plate elements based on generalized compatibility 
conditions. Computational Mechanics 10(3/4): 281 288

[2]  Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA 
Journal 1(7): 1631 1637

[3]  Bazeley GP, Cheung YK, Irons BM, Zienkiewicz OC (1965) Triangular elements in 
bending—conforming and nonconforming solution. In: Proceedings of the Conference on 
Matrix Methods in Structural Mechanics. Air Force Institute of Technology, Ohio: Wright- 
Patterson A. F. Base, pp 547 576

[4]  Long YQ, Zhao JQ (1988) A new generalized conforming triangular element for thin plates. 
Communications in Applied Numerical Methods 4: 781 792

[5]  Bu XM, Long YQ (1991) A generalized conforming technique using the least squares 
method. Gong Cheng Li Xue/Engineering Mechanics 8(2): 20 24 (in Chinese) 



Chapter 8 Generalized Conforming Thick Plate  
Element

Song Cen 
Department of Engineering Mechanics, School of Aerospace,  

Tsinghua University, Beijing, 100084, China 

Zhi-Fei Long 
School of Mechanics & Civil Engineering, China University of  

Mining & Technology, Beijing, 100083, China 

Abstract This chapter introduces how to use the generalized conforming 
theory to develop the plate element models for the analysis of both thick and 
thin plates. In Sects. 8.1 and 8.2, a review of the Reissner-Mindlin (thick) 
plate theory is firstly given, and then, a comparison between this theory and 
the Kirchhoff (thin) plate theory is presented. In the subsequent sections, the 
construction methods for the thick/thin plate elements are firstly summarized; 
especially, the shear locking difficulty caused by the traditional scheme 
(assuming deflection and rotation fields) is analyzed. Then, three new 
schemes which are proposed by the authors and can eliminate shear locking 
from the outset are introduced in detail, including the schemes of assuming 
rotation and shear strain fields, assuming deflection and shear strain fields, 
and introducing the shear strain field into the thin plate elements. The 
formulations of four triangular and rectangular element models are also 
presented. Numerical examples show that the proposed models exhibit excellent 
performance for both thick and thin plates, and no shear locking happens. 

Keywords thick plate element, generalized conforming, Reissner-Mindlin 
(thick) plate theory, thick/thin beam element, shear locking. 

8.1 Summary of the Thick Plate Theory 

The thick plates discussed here is restricted to moderately-thick plates. Limitation 
will appear if classical thin plate theory is used to analyze such thick plates. 

The fundamental equations of the thick plate theory were firstly proposed by 
Reissner in the forties of the twentieth century[1].
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Compared with the thin plate theory, the main characteristic of the thick plate 
theory is that it considers the influences of the transverse shear strain xz and yz

(hereafter referred to as x and y). So, the thick plate theory is also called the shear 
deformation plate bending theory. Furthermore, in dynamics problems, the influences 
of rotatory inertia should also be considered[2].

In the thick plate theory, the shear strain can be expressed in terms of the 
deflection w and the normal slopes x and y as 

,x x y y
w w
x y

 (8-1) 

in which w, x, y are three independent generalized displacements. On the 
contrary, in the thin plate theory, since x and y are assumed to be zero, Eq. (8-1) 
will degenerate to be 

,x y
w w
x y

 (8-2) 

Only one independent displacement w exists, and both x and y depend on w.
Therefore, the thick plate theory is also called the plate bending theory with three 
generalized displacements[3].

Owing to constructional reason, the shear deformation of sandwich plates cannot 
be ignored. So, the thick plate theory can be used to calculate the sandwich plate 
problems. Furthermore, it is more reasonable to employ the thick plate theory to 
analyze the following problems: high-order vibration problem of plates, stress 
concentration problem, stress distribution problem near free edges, contact 
problem[3].

This section compendiously gives the fundamental equations of the thick plate 
theory, including equilibrium equations, geometrical equations, physical equations, 
coordinate transformations, boundary conditions, expressions of strain energy 
and strain complementary energy. For these fundamental equations of the thick 
plate theory, it is necessary to emphatically understand the difference from those 
in the thin plate theory and the influence of shear deformation. 

8.1.1 Equilibrium Equations 

A thick plate in Cartesian coordinates (x, y, z) is shown in Fig. 8.1. The x and y
co-ordinates are in the reference middle surface; z is the co-ordinate through the 
thickness h, and its positive direction is upward. 

The load density on the middle surface has three components q, mx and my, in 
which q is the load density along the z-axis, and its positive direction is also upward; 
mx is the couple load density in the xz-plane, and its positive direction is the same  
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Figure 8.1 The coordinates, internal forces and load density components used in 
thick plate bending problem 

as the rotation from x-axis to z-axis; my is the couple load density in the yz-plane,
and its positive direction is the same as the rotation from y-axis to z-axis.

In the Cartesian coordinate system, the moderately thick plate has 5 internal force 
components: bending moments Mx and My, twisting moment Mxy Myx, transverse 
shear forces Qx and Qy. And, their positive directions are shown in Fig. 8.1. 
These 5 components can form an internal force vector: 

T[ ]x y xy x yM M M Q QS

which is composed of two sub vectors: 
T T[ ] , [ ]x y xy x yM M M Q QM Q

Then, the differential equilibrium equations of the thick plate can be written as 

0

0

0

xyx
x x

xy y
y y

yx

MM
Q m

x y
M M

Q m
x y

QQ
q

x y

 (8-3) 

One characteristic of the thick plate theory which is different from the thin plate 
theory is that the number of load densities increases from 1 to 3. Therefore, the 
shear forces Qx and Qy are not only related to the internal moments Mx, My and 
Mxy, but also related to the loads mx and my.

8.1.2 Geometrical Equations 

The displacements of the thick plate have 3 independent parameters: 

T[ ]x ywd  (8-4) 
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in which w is the deflection, and its positive direction is upward; x is the normal 
rotation in the xz-plane, and its positive direction is from x-axis to z-axis; y is 
the normal rotation in the yz-plane, and its positive direction is from y-axis to 
z-axis.

The strains of the thick plate have 5 parameters: 

T[ 2 ]x y xy x yE  (8-5) 

where x, y and 2 xy are the curvatures, and their positive values are corresponding 
to the deformations caused by positive Mx, My and Mxy, respectively. They form a 
bending strain vector: 

T[ 2 ]x y xy  (8-6) 

x (or xz) and y (or yz) are shear strains, and their positive values are 
corresponding to the deformations caused by positive Qx and Qy, respectively. 
They form a shear strain vector: 

T[ ]x y  (8-7) 

The geometrical equations between strains and displacements are as follows: 

, , 2

,

y yx x
x y xy

x x y y

x y y x
w w
x y

 (8-8) 

After the elimination of w, x and y in Eq. (8-8), we obtain 

1
2

1
2

xy yx x

y xy yx

y x x y x

x y y y x

 (8-9) 

Then, by the elimination of x and y in Eq. (8-9), we have 

2 22

2 2 2 0y xyx

y x x y
 (8-10) 

Equations (8-9) and (8-10) are called the compatibility equations of strains. 
Another characteristic of the thick plate theory which is different from the thin 

plate theory is that the number of displacements increases from 1 to 3. In thin 
plate, since x 0 and y 0, from Eq. (8-8), we have 
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,x y
w w
x y

Here, x and y can be derived from w, so they are not independent displacement 
parameters.  

8.1.3 Physical Equations 

The physical equations between internal forces and strains in a thick plate are as 
follows:

( )
( )
(1 )

x x y

y y x

xy xy

x x

y y

M D
M D
M D
Q C
Q C

 (8-11) 

where D and C are the plate bending stiffness and shear stiffness, respectively;  is 
the Poisson’s ratio. For an isotropic homogenous thick plate, we have 

3

2 ,
12(1 ) 2(1 )

Eh Gh EhD C
k k

 (8-12) 

where h is the thickness of the plate; E is the Young’s modulus; coefficient 1.2k .
For a sandwich plate shown in Fig. 8.2, we have 

2

c2

( )
, ( )

2(1 )
f

f

E h t t
D C G h t  (8-13) 

where h is the thickness of the core layer; t  is the thickness of the surface layer; 
Ef and f are the Young’s modulus and Poisson’s ratio of the surface layer, 
respectively; Gc is the shear modulus of the core layer. 

Figure 8.2 A sandwich plate 
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The physical Eq. (8-11) can be expressed in matrix forms as follows 

M D  (8-14) 

Q C  (8-15) 

where

1 0
1 0

10 0
2

DD  (8-16) 

1 0
0 1

CC  (8-17) 

Another form of the physical equations is 

2

2

2

,
(1 )

,
(1 )

2(1 )
2

(1 )

x y x
x x

y x y
y y

xy
xy

M M Q
D C

M M Q
D C

M
D

 (8-18) 

i.e.,

1

1

D M
C Q

 (8-19) 

where

1
2

1 0
1 1 0

(1 )
0 0 2(1 )

D
D  (8-20) 

1 1 01
0 1C

C  (8-21) 

In a thick plate, the shear stiffness C is a finite value, while C  is assumed 
for the thin plate case. 
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8.1.4 Coordinate Transformation 

Assume that Oxy represents the original coordinate system, Ox y  represents the 
new coordinate system, and  is the rotation from x-axis to x -axis (see Fig. 8.3). 

Figure 8.3 Coordinate transformation 

Let cosl , sinm . Then, the transformation between these two coordinate 
systems is 

l mx x
y ym l

or written as  

x Lx  (8-22) 
where

l m
m l

L  (8-23) 

Since
1 TL L

the inverse transformation of Eq. (8-22) is 
Tx L x

The transformations of some quantities are the same as Eq. (8-22), for example, 

(1) L
x x

, i.e., 
l mx x
m l

y y

(2) L , i.e., x x

y y

l m
m l

(3) L , i.e., x x

y y

l m
m l
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(4) Q LQ , i.e., x x

y y

Q Ql m
Q Qm l

                    (8-24) 

The transformation of moments is similar to the transformation of curvatures: 

(1) TM LML , i.e., x x y x xy

y x y yx y

M M M Ml m l m
M M M Mm l m l

(2) TL L , i.e., x x y x xy

y x y yx y

l m l m
m l m l

  (8-25) 

8.1.5 Boundary Conditions 

Assume that n and s stand for the outer normal and tangent directions at an 
arbitrary point on the boundary, respectively. The angle between n and x-axis is 
(see Fig. 8.4). Let 

 cos , sinl m

from Eqs. (8-24) and (8-25), we obtain 

l mn x
m l

s y

 (8-26) 

xn

ys

l m
m l

 (8-27) 

2 2

2 2

2

( ) ( )

n x y

n x y xy

ns x y xy

Q lQ mQ

M l M m M lmM

M M M lm l m M

 (8-28) 

Figure 8.4 The normal and tangent on the boundary 
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Several typical boundary conditions are given as follows: 

1

2

2

3

, , (on fixed edge )
, , (on simply-supported (hard) edge )
, , (on simply-supported (soft) edge )

, , (on free edge )

n n s s

s s n n

ns ns n n

n n ns ns n n

w w C
w w M M C
w w M M M M C
M M M M Q Q C

(8-29)

8.1.6 Strain Energy 

Firstly, the definitions of the strain energy density U  and the strain energy U of
the thick plate are given.  

For a given strain vector E (including bending strain  and shear strain ):

T

T

T

[ 2 ]

[ 2 ]

[ ]

x y xy x y

x y xy

x y

E

the function ( )U E  can be defined as 

b s( ) ( ) ( )U U UE  (8-30) 

where
T 2 2 2

b
1( ) [ 2 2(1 ) ]
2 2 x y x y xy

DU D  (8-31) 

T 2 2
s

1( ) ( )
2 2 x y

CU C  (8-32) 

( )U E  is the strain energy density of the thick plate; b ( )U  is the bending strain 
energy density; s ( )U  is the shear strain energy density. 

The strain energy U of the thick plate is defined as the functional of the strain 
fields E:

T T

2 2 2 2 2

1 1( ) ( )d d d d
2 2

[ 2 2(1 ) ] ( ) d d
2 2x y x y xy x y

U U x y x y

D C x y

E E D C

(8-33)

Two points should be noted: 
(1) For arbitrary strain fields E, no matter whether these strain fields satisfy the 

strain compatibility Eq. (8-9), the strain energy corresponding to E can be defined. 
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If the strain fields E satisfy the strain compatibility Eq. (8-9), and are derived 
on the basis of the geometrical Eq. (8-8) from certain displacement fields: 

T[ ]x ywd

then, the strain energy can be expressed as the functional of the displacement fields, 

2 22

22

1( ) 2
2 2

d d
2

y y yx x x

x y

DU
x y x y y x

C w w x y
x y

d

(8-34)

(2) From Eqs. (8-31) and (8-32), it can be seen that b ( )U  and s ( )U  are the 
positive definite quadric homogeneous functions of ( x, y, xy) and ( x, y), 
respectively. According to the properties of the positive definite quadric homo- 
geneous function, the following equalities can be obtained: 

b b b
b

s s
s

2

2

2

x y xy
x y xy

x y
x y

x y xy x y
x y xy x y

U U U U

U U U

U U U U U U

 (8-35) 

Secondly, the physical equations between internal forces and strains can be 
expressed in terms of the strain energy density U . For this reason, the derivatives 
of U  are first obtained as follows: 

( ), ( ), (1 )
2

,

x y y x xy
x y xy

x y
x y

U U UD D D

U UC C
 (8-36) 

From the above equations, it can be seen that the physical Eq. (8-11) can be 
expressed in terms of the strain energy density U  as follows: 

, ,
2

,

x y xy
x y xy

x y
x y

U U UM M M

U UQ Q
  (8-37) 
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Finally, the variation of the strain energy is given as: 

 d dU U x y  (8-38) 

i.e.,

d d

[ 2 ]d d

x y xy x y
x y xy x y

x x y y xy xy x x y y

U U U U UU x y

M M M Q Q x y (8-39)

The above equation indicates that the variation of the strain energy equals to 
the work done by the corresponding internal forces on the variation of strains. 

8.1.7 Strain Complementary Energy 

Firstly, the definitions of the strain complementary energy density V  and strain 
complementary energy V of the thick plate are given. 

For a given internal force vector S (including internal moments M and shear 
forces Q):

T

T

T

[ ]

[ ]

[ ]

x y xy x y

x y xy

x y

M M M Q Q

M M M

Q Q

S

M

Q

 (8-40) 

the function ( )V S  can be defined as: 

b s( ) ( ) ( )V V VS M Q  (8-41) 

T 1 2 2 2
b 2

1 1( ) [ 2 2(1 ) ]
2 2(1 ) x y x y xyV M M M M M

D
M M D M

(8-42)

T 1 2 2
s

1 1( ) ( )
2 2 x yV Q Q

C
Q Q C Q  (8-43) 

( )V S  is the strain complementary energy density of the thick plate; b ( )V M  is 
the bending strain complementary energy density; s ( )V Q  is the shear strain 
complementary energy density. 

The strain complementary energy V of the thick plate is defined as the functional 
of the internal force fields S:
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T 1 T 1

2 2 2 2 2
2

1 1( ) ( )d d d d
2 2

1 1[ 2 2(1 ) ] ( ) d d
2(1 ) 2x y x y xy x y

V V x y x y

M M M M M Q Q x y
D C

S S M D M Q C Q

(8-44)
Two points should be noted: 

(1) For arbitrary internal force fields S, no matter whether these internal force 
fields satisfy the equilibrium differential Eq. (8-3) and boundary conditions under 
given loads, the strain complementary energy corresponding to S can be defined.  

(2) From Eqs. (8-42) and (8-43), it can be seen that b ( )V M  and s ( )V Q  are the 
positive definite quadric homogeneous functions of (Mx, My, Mxy) and (Qx, Qy),
respectively. According to the properties of the positive definite quadric homo- 
geneous function, the following equalities can be obtained: 

b b b
b

s s
s

2

2

2

x y xy
x y xy

x y
x y

x y xy x y
x y xy x y

V V VM M M V
M M M
V V

Q Q V
Q Q
V V V V VM M M Q Q V
M M M Q Q

 (8-45) 

The derivatives of the strain complementary energy density are given as follows: 

2

2

2

,
(1 )

,
(1 )

2(1 )
(1 )

x y x

x x

y x y

y y

xy
xy

M M QV V
M D Q C

M M QV V
M D Q C

V M
M D

 (8-46) 

By using the above derivative formulae, the physical Eq. (8-18) between internal 
forces and strains can be expressed in terms of the strain complementary energy 
density V  as follows: 

,

,

2

x x
x x

y y
y y

xy
xy

V V
M Q
V V

M Q
V

M

 (8-47) 



Chapter 8 Generalized Conforming Thick Plate Element 

215

Finally, the variation of the strain complementary energy is given as: 

d d

d dx y xy x y
x y xy x y

V V x y

V V V V VM M M Q Q x y
M M M Q Q

  (8-48) 

Substitution of Eq. (8-47) into the above equation yields 

 [ 2 ]d dx x y y xy xy x x y yV M M M Q Q x y

The above equation indicates that the variation of the strain complementary 
energy equals to the work done by the variation of internal forces on the 
corresponding strains. 

8.2 Comparison of the Theories for Thick Plates and  
Thin Plates 

According to the contents in the previous section, this section will introduce the 
differences between the theories for thick plates and thin plates. Comparisons are 
made in fundamental equations and typical numerical examples. 

8.2.1 Comparison of Fundamental Equations 

1. Notes on the basic assumptions of deformation 

In the thin plate theory, the Kirchhoff normal assumption is adopted—The normal 
of the mid-surface before deformation will still be the normal of the mid-surface 
after deformation. 

In the thick plate theory, the Reissner-Mindlin straight-line assumption is 
adopted—The normal of the mid-surface before deformation will still be a straight 
line after deformation, but generally not the normal of the mid-surface anymore. 

One uses the normal assumption while the other uses the straight-line assumption, 
this exhibits the essential difference of the two theories. 

2. Notes on the shear deformation problem 

Since the Kirchhoff normal assumption is adopted in the thin plate theory, the 
transverse shear strains x and y will keep zero during the deformations of the 
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thin plates, and then, the normal rotations x and y will keep being equal to the 

mid-surface slopes w
x

 and w
y

, as shown in Eq. (8-2). 

The Reissner-Mindlin straight-line assumption is adopted in the thick plate 
theory, hence, in general, the normal rotations x and y of the thick plates will 

not keep being equal to the mid-surface slopes w
x

 and w
y

. Their differences 

are the transverse shear strains x and y, as shown in Eq. (8-1). 
The essential differences between these two plate theories are: 
(1) Whether the influences of the transverse shear strains are considered or not. 
(2) Whether the normal rotations are equal to the mid-surface slopes or not. 
From above, we can also conclude that: 
(1) For shear stiffness: C  is assumed in the thin plate theory while C is a 

finite value in the thick plate theory. 
(2) For strain energy: in the thick plate theory, strain energy U is the sum of 

the bending strain energy Ub and the shear strain energy Us; while in the thin 
plate theory, U Ub because of Us 0.

That the shear stiffness C is looked upon as infinite, and the shear strain 
energy Us is neglected, are the inevitable results of ignoring the influences of 
shear deformations in the thin plate theory. 

3. Notes on the independent displacements in w, x and y

In the thin plate theory, x and y are equal to the derivatives of w, so they are not 
independent displacements. Thus, in the 3 displacements w, x and y, only w is 
independent.

In the thick plate theory, since two new fields x and y appear, w, x and y are 3 
independent displacement fields. 

Independence or dependence between the displacement fields w and ( x, y) is 
another essential difference between these two plate theories. 

When constructing a universal displacement-based element for both thick and 
thin plates, one main difficulty encountered is how to deal with the dual 
requirements of independence and dependence. 

Only one independent displacement w is considered for constructing the thin 
plate element, while 3 independent displacements w, x and y must be taken 
into account for constructing the thick plate element. From this viewpoint, it 
seems that the development of a thick plate element is more complicated than 
that of a thin plate element. But, if we observe the expressions of strain energy, it 
can be seen that the integrands in the strain energy  expression (8-34) of the 
thick plate element contain only first-order derivatives of w, x and y, so it 
belongs to C0-continuity problem. On the other hand, the integrands in the strain 
energy expression of the thin plate element contain second-order derivatives of w,
thus, it belongs to C1-continuity problem. Therefore, the construction of the thick 



Chapter 8 Generalized Conforming Thick Plate Element 

217

plate elements is indeed easier than that of the thin plate element. Anyway, it is 
easier to construct elements special for the thick plates, but more difficult to 
construct elements special for the thin plates, and much more difficult to develop 
universal elements for both thick and thin plates. 

4. Notes on the boundary conditions 

In the thick plate theory, several typical boundary conditions have been given by 
Eq. (8-29), in which each boundary has 3 boundary conditions, i.e., 

On fixed edge C1

, ,s s n nw w  (8-49a,b,c) 

On simply-supported (hard) edge C2

, ,s s n nw w M M  (8-50a,b,c) 

On simply-supported (soft) edge 2C

, ,ns ns n nw w M M M M  (8-51a,b,c) 

On free edge C3

, ,n n ns ns n nM M M M Q Q  (8-52a,b,c) 

Here, the conditions on the fixed edge are all displacement conditions; conditions 
on the free edge are all force conditions; and conditions on the simply-supported 
edge are mixed conditions of displacement and force. 

In the thin plate theory, since the transverse shear strains are assumed to be zero, 
the following assumption  

s
w
s

 (8-53) 

is imposed on the boundary. Thus, the boundary tangent rotation s is a non- 
independent displacement relied on boundary deflection w, thereupon, the number 
of DOFs at each point of the boundary will decrease from 3 (w, s, n) to 2 (w,

n), and the number of the boundary conditions will also decrease from 3 to 2. 
Firstly, let us consider the fixed edge case. According to the assumption given 

in Eq. (8-53), the second boundary condition in Eq. (8-49) can be derived from 
the first boundary condition. So, after the elimination of this non-independent 
condition, only 2 independent boundary conditions (8-49a,c) remain. 

Secondly, let us consider the simply-supported edge case. In the thin plate 
theory, there are 2 boundary conditions on the simply-supported edge: 

, n nw w M M
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These are Eqs. (8-50a,c), and also Eqs. (8-51a,c). In the thick plate theory, there 
are 3 boundary conditions on the simply-supported edge, that is to say, one 
condition of tangent rotation along the boundary should be supplemented. If the 
displacement condition (8-50b) s s  is supplemented, then the boundary is 
called as hard simply-supported edge; if the force condition (8-51b) ns nsM M
is supplemented, then the boundary is called as soft simply-supported edge. 
Therefore, in the thick plate theory, there are two types of simply-supported edge: 
hard and soft; but in the thin plate theory, only one type exists. 

Finally, let us consider the free edge case. In the thin plate theory, the boundary 
conditions (8-52) will be replaced by the following two conditions: 

On free edge C3

, ns
n n n n

M
M M Q V

s
 (8-54a,b) 

i.e., two conditions (b) and (c) in Eq. (8-52) are replaced by one condition (b) in 
Eq. (8-54). Indeed, this is also the inevitable result by introducing the assumption 
(8-53). Here, nV  is the density of the distributed transverse load along the free 
edge of the thin plate. 

Now, from the viewpoint of virtual work, the boundary conditions on the free 
edge in thick and thin plate theories are explained as follows. 

In the thick plate theory, there are 3 independent displacements w, n and s

on the free boundary edge. Assume that the virtual displacements on the free edge 
are w, n and s, the virtual work done by the boundary forces is 

3
[ ]dn n ns s nC

W M M Q w s  (8-55) 

On the other hand, the virtual work done by the given loads on the free edge is 

3
[ ]dn n ns s nC

W M M Q w s  (8-56) 

Let W W , and since the virtual displacements w, n and s are 3 
independent arbitrary functions, the 3 boundary conditions in Eqs. (8-52a,b,c) can 
be obtained. 

In the thin plate theory, since the assumption in Eq. (8-53) is introduced, there 

are only 2 independent virtual displacements w and n, and s
w
s

. The 

work done by the boundary force is 

3

dn n ns nC

wW M M Q w s
s

 (8-57) 
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By using the formula of integration by parts, we obtain 

3

33

d Cns
n n n ns CC

MW M Q w s M w
s

 (8-58) 

in which 3C  and 3C  are two ends of the free edge. Since the two ends of the 
free edge link with the fixed edge or the simply-supported edge, at 3C  and 3C ,

0w , and then the above equation can be written as 

3

dns
n n nC

M
W M Q w s

s
 (8-59) 

On the other hand, the work done by the given loads on the free edge is 

3
[ ]dn n nC

W M V w s  (8-60) 

Let W W , and since n and w are 2 arbitrary functions, the 2 boundary 
conditions on the free edge of the thin plate can be obtained, as shown in 
Eq. (8-54a,b). 

The above discussions about the boundary conditions are expounded from the 
viewpoint of virtual work. This expatiation method is very natural and evident.  

In the thick plate theory, the expression of the boundary virtual work is Eq. (8-55), 
where n, s and w are 3 independent generalized displacements; and ( )nM ,
( )nsM  and Qn are 3 conjugate (or corresponding) independent generalized forces, 
respectively. Thereby, in the thick plate theory, there are 3 independent boundary 
conditions, which are generally expressed by 

n n or n nM M    (8-61a) 

s s or ns nsM M  (8-61b) 

w w or n nQ Q      (8-61c) 

In the thin plate theory, the expression of boundary virtual work is Eq. (8-59), 
where n and w are 2 independent generalized displacements; and ( )nM  and 

ns
n

M Q
s

 are 2 conjugate (or corresponding) independent generalized forces, 

respectively. Thereby, in the thin plate theory, there are 2 independent boundary 
conditions, which are generally expressed by 

n n or n nM M      (8-62a) 
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w w or ns
n n

M Q V
s

 (8-62b) 

where nsM
s

 is called as the equivalent transverse shear force of the twisting 

moment nsM ; and ns
n n

M Q V
s

 is called as the resultant transverse shear 

force.
In the above discussions, the concept that the generalized force P and the 

generalized displacement  are conjugate with each other is mentioned. Its 
definition can be given as follows. 

If the virtual work W done by the generalized force P along the generalized 
displacement  is equal to the product P , i.e., 

W P  (8-63) 

then, we say that the generalized displacement  and the generalized force P are 
conjugate with each other (or corresponding to each other). 

5. Notes on the independent load components and internal force components 

Firstly, let us discuss the load components. 
In the thick plate theory, since there are 3 independent displacement components 

w, x and y, there should be 3 independent load components q, mx and my

corresponding to them. So, the expression of virtual work is 

 [ ]dx x y y
A

W q w m m A  (8-64) 

From this virtual work expression, it can be seen that 3 load components and 3 
displacement components are corresponding to or conjugate with each other. 

In the thin plate theory, since there is only one independent transverse 
displacement component w, and the rotation components x and y are both 
relied on w, there should be only one independent transverse load component q
corresponding to it, and the couple load components mx and my should be 
converted to equivalent transverse load components on dA with line distributed 
transverse load on the boundary ds. So, the expression of virtual work is 

d

d ( ) d

x y
A

yx
x yA

A

w wW q w m m A
x y
mmq w A m l m m w s

x y

  (8-65) 
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Therefore, after conversion, the surface load q  and boundary load nV  are  

yx mm
q q

x y
 (8-66a) 

n x yV m l m m      (8-66b) 

Secondly, let us discuss the internal force components. 
In the thick plate theory, there are 5 independent internal force components. 

That is to say, besides the bending moments Mx, My and twisting moment Mxy, the 
transverse shear forces Qx and Qy are also independent internal force components. 
It can be seen from the equilibrium differential Eq. (8-3) that, since there are 
independent couple load components mx and my existing, Qx and Qy in the thick 
plate theory do not completely rely on Mx, My and Mxy, they are independent internal 
force components. On the contrary, in the thin plate theory, since mx my 0 is 
assumed, Qx and Qy completely rely on Mx, My and Mxy, Qx and Qy will not be 
looked upon as independent internal force components. That is to say, there are 
only 3 independent internal force components in the thin plate theory. 

8.2.2 Comparison of Typical Examples 

1. The special case in which the same internal force solution is obtained by both 
thin beam theory and thick beam theory in beam and frame analysis 

The beam theories can be classified as thin beam theory and thick beam theory. 
Their difference is whether the influence of the shear strain is ignored or not. 

When these two theories are employed in beam and frame analysis, except the 
special case of pure bending state in which the shear strain is zero, the displacement 
solutions of the two theories are generally different, but the internal force solutions 
may be either same or different. Now, we discuss the case in which the internal 
force solutions are the same as each other. 

Firstly, if beam and frame are statically determinate structures, the internal force 
solutions by the two theories will be the same as each other, but for displacement 
solutions, there will be a discrepancy of an additional displacement purely caused 
by shear strain, i.e.,  

0 0,M M Q Q  (8-67) 

0 ( )      (8-68) 

where M, Q and  are the bending moment, shear force and displacement of the 
thick beam theory, respectively; M0, Q0 and 0 are the bending moment, shear 



Advanced Finite Element Method in Structural Engineering 

222

force and displacement of the thin beam theory, respectively; ( )  is the additional 
displacement caused by shear strain. 

Secondly, consider the case of the statically indeterminate structures. If the 
following examples are considered: 

(1) the shear force is statically determinate (Fig. 8.5(a)); 
(2) the shear force is statically determinate under symmetrical load (Fig. 8.6(a)); 
(3) the shear force of the non-rigid bar is statically determinate (Fig. 8.7(a), 

there is still a rigid bar in the frame, but its shear strain is identically equal to zero, 
so it is not necessary to consider whether its shear forces are statically determinate). 

Figure 8.5 Statically indeterminate beams 
(a) A slipping support at the right end; (b) A vertical support at the right end 

Figure 8.6 Statically indeterminate symmetrical beams 
(a) Symmetrical load; (b) Unsymmetrical load 

It follows that the internal force solutions by the two theories will be the same 
as each other.  

For comparison, examples which do not belong to the above cases are given in 
Figs. 8.5(b), 8.6(b) and 8.7(b). 

Figure 8.7 Statically indeterminate frames 
(a) Horizontal beam is a rigid bar; (b) Horizontal beam is not a rigid bar 

The above conclusion can be proved as follows. 
Assume that the degree of statical indeterminacy for the structure is n. The 

structure is analyzed using the force method, and the corresponding statically 
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determinate structure is taken as the basic structure. In the n redundant unknown 
forces, assume that m forces are nonzero ( m n ), then the bending moment M
and shear force Q can be expressed as 

1

m

P i i
i

M M M X  (8-69a) 

1

m

P i i
i

Q Q Q X    (8-69b) 

where MP and QP are the internal forces caused by loads in the basic structure; 
iM  and iQ  are the internal forces caused by unit redundant force 1iX  in the 

basic structure; X1, X2, , Xm are m nonzero redundant unknown forces. MP, iM ,
QP, iQ  are all determined by the equilibrium conditions. 

Since the shear forces of each non-rigid bar are assumed to be statically 
determinate, for each non-rigid bar, we can set 

0iQ   (i 1, 2, , m) (8-70) 

The redundant unknown forces X1, X2, , Xm can be solved by the fundamental 
equations of force method. 

For the thick beam theory, we have 

1
0

m

ij i iP
j

X   (i 1, 2, , m)

where

d d

d d

i j i j
ij

i P i P
iP

M M Q Q
s s

D C
M M Q Q

s s
D C

   

in which D and C are the section bending and shearing stiffness, respectively. 
For the thin beam theory, we have 

0 0

1
0

m

ij i iP
j

X   (i 1, 2, , m)

where

0

0

d

d

i j
ij

i P
iP

M M
s

D
M M

s
D
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By using Eq. (8-70), we have 

0 0,ij ij iP iP  (8-71) 

Therefore, the redundant unknown forces X1, X2, , Xm solved by the two 
theories are the same as each other. Substituting these solutions into Eq. (8-69), it 
can be seen that the internal force solutions obtained by the two theories are the 
same as each other. 

2. The special case in which the same internal force solution is obtained by  
both thin plate theory and thick plate theory 

The following problems belong to this special case: 
(1) Simply-supported polygonal plate; 
(2) Circular plate with axisymmetric deformation; 
(3) The plate problems in which the shear forces Qx and Qy are statically 

determinate. 
The proofs about the above conclusions can be referred to reference [3]. 

3. The concentrated load problem 

Consider a clamped circular plate (the radius is a) subjected to a concentrated 
load P at the center point C.

The displacement solution and the deflection at point C of the thin plate theory 
are

2
0 2 2ln ( )

8 16
Pr r Pw a r

D a D
 (8-72a) 

2
0

16C
Paw

D
                 (8-72b) 

The displacement solutions and the deflection at point C of the thick plate 
theory are 

0 ln
2

P rw w
C a

 (8-73a) 

0d
dr
w
r

        (8-73b) 

Cw           (8-73c) 

From the above results, it can be seen that, the deflection at the load point C of 
the concentrated load is a finite value by the thin plate theory, but an infinite value 
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by the thick plate theory. This distinction is completely caused by the influence 
of the shear strain. In fact, the second term at the right side of Eq. (8-73a) is the 
additional deflection ( )w r  purely caused by shear strain. 

( ) ln
2

P rw r
C a

 (8-74) 

The above equation can be derived as follows. 
Firstly, the shear force Qr is statically determinate, i.e.,  

2r
PQ

r
 (8-75) 

The shear strain r  is 

2
r

r
Q P
C rC

 (8-76) 

Secondly, 0r  should be assumed when the additional deflection w  caused 
by the shear strain is being solved, so we obtain 

d
d 2r
w P
r rC

After integration, we have 

1ln
2

Pw r C
C

where constant C1 can be solved by the boundary condition 0
r a

w  at r a .

Finally, Eq. (8-74) can be obtained.  
From Eqs. (8-75) and (8-76), it can be seen that the values of Qr and r at point 

C are both infinite, which are corresponding to the result Cw .

4. High-order vibration problem 

In the vibration analysis of plate, there are two different points between the thick 
and thin plate theories: one is whether the influence of shear deformation is 
considered; the other is whether the influence of rotary inertia is considered. 

In order to explain the distinction of the second point, the kinetic equations for 
the natural vibration problem of the thick plate are given as follows: 

2 0xyx
x x

MM
Q J

x y
 (8-77a) 



Advanced Finite Element Method in Structural Engineering 

226

2 0xy y
y y

M M
Q J

x y
 (8-77b) 

2 0yx QQ
hw

x y
       (8-77c) 

where  is the natural frequency;  is the density of material; h is the mass of 
the unit area on the mid-surface of the plate; J is the rotary inertia. In the thin 
plate theory, the influence of rotary inertia is ignored.  

In high-order vibrations, the effective length and width of the high-order modes 
become smaller, so the influence of rotary inertia and shear deformation will 
increase. Thereby, although a plate may belong to the thin plate type, for the 
analysis of the high-order vibration of this thin plate, it is more reasonable to 
employ the thick plate theory. 

5. Stress concentration problem near a circular hole 

Consider an infinite plate with a circular hole (the radius is a). At its infinite edge, 
the plate is under pure bending state along x-axis, i.e., 0xM M , and other internal 
force components are all zero. Now, let us solve the stress concentration coefficient 
kB near the circular hole, which is defined as 

max

0
B

Mk
M

 (8-78) 

where M max denotes the maximum value of the bending moment M  at the 
circular hole boundary. 

According to the thin plate theory, we have 

0 5 3
3Bk  (8-79) 

When the Poisson’s ratio 1
3

, 0 1.8.Bk

According to the Reissner thick plate theory, we have 

2 0

2 0

3 (1 ) 10 10
3 1 2

12 2 (1 ) 10 10
2

B

a aK K
h hk
a aK K
h h

 (8-80) 

where K0 and K2 are the modified Bessel functions. When 1
3

, the variations 
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of kB and 0
Bk  are plotted in Fig. 8.8 and listed in Table 8.1. 

Figure 8.8 The stress concentration coefficient ( 1/3)

Table 8.1 The comparison between stress concentration coefficients Bk  and 0
Bk

a/h 0 1 3 

Solution of thick plate theory Bk 3.00 2.25 1.98 

Solution of thin plate theory 0
Bk 1.80 1.80 1.80 

Error
0

B B

B

k k
k 40% 20% 9% 

It can be seen that, in the stress concentration problems of plate bending, the 
influence of the transverse shear strain should not be ignored. The solution of the 
thin plate theory 0

Bk  is always less than the solution of the thick plate theory kB.
Therefore, the solution of the thin plate theory is more unsafe. Errors will increase 
with the decrease of a/h, and the maximum error is up to 40%. 

6. Stress distribution near free edge 

As pointed out in the previous sections, for the boundary conditions of the free 
edge, the expressions from the two theories are different: the thick plate theory 
requires 3 boundary conditions (8-52a,b,c) to be satisfied, but thin plate theory 
cannot satisfy them and requires only 2 boundary conditions (8-54a,b) to be 
satisfied. Therefore, the solutions on or near the free edge of the two theories are 
always discrepant. 

In order to understand the discrepancy in the solutions near the free edge of the 
two theories, the stress concentration problem near a circular hole mentioned 
above is still used to illustrate the problem of this section. 

Firstly, according to thin plate theory, solutions of 0
rQ , 0

rM  and Vr are 
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2
0

0 3

2 4
0

0 2 4

2 4

0 2 4

4 cos 2
3

1 32 (1 ) 1 (1 ) 1 sin 2
3 2

1 1 2(3 ) 1 3(1 ) 1 cos 2
3

r

r

r

aQ M
r

a aM M
r r

a aV M
r r r

 (8-81) 

It can be seen that at the boundary r a  of the circular hole, only the boundary 
condition 0rV  is satisfied, while 0

rQ  and 0
rM  are both nonzero at the boundary. 

Secondly, according to the thick plate theory, the solutions of Qr and Mr   are 

0

0
r r r

r r r

Q Q Q
M M M

 (8-82) 

where, when 1a
h

, we have 

10

0

10

0

4 1 e cos 2
3

2 e sin 2
3

r a
h

r

r a
h

r

aQ M
r r

aM M
r

 (8-83) 

It can be seen that at the boundary r a  of the circular hole, both the boundary 
conditions 0rQ  and 0rM  are satisfied indeed. 

Let rQ  and rM  be the differences 0
r rQ Q  and 0

r rM M  of the solutions 
from the two theories, respectively. Both rQ  and rM  contain the exponential 

term 
10

e
r a

h , which is a rapid attenuation function (refer to Table 8.2). For 

example, when r a
h

 increases from 0 to 1, the function value will decrease 

from 1 to 4%. Therefore, the solutions of the two theories are discrepant only 
within a very small neighborhood near the free edge. The scale of this neighborhood 
belongs to the same magnitude of the thickness h of the plate. Outside the neigh- 
borhood, the internal force solutions of the thin plate theory are still suitable. 

The solutions of the thick plate theory contain exponential function which will 
rapidly decay when they are away from the boundary, and this phenomenon is 
called as edge effect. The solutions (8-81) of the thin plate theory do not contain 
this type of exponential function, so there is no edge effect phenomenon. 
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Table 8.2 Exponential function 
10

e
r a

h

r a
h 0 1/4 1/2 3/4 1 2 

10
e

r a
h 1.0000 0.4538 0.2058 0.0933 0.0424 0.0018 

7. Contact problem 

Consider the beam contact problem shown in Fig. 8.9[3]. The left end of the beam 
is fixed, and the right free end is subjected to a concentrated load P. Below the 
beam, there is a circular rigid foundation (the radius is r1). Under the action of load 
P, the left segment of the beam ( 10 x x ) will contact with the rigid foundation, 
and the contact length x1 will increase with P. This is a contact problem. 

Figure 8.9 Contact problem of beam 
(a) Solutions of thin beam theory; (b) Solutions of thick beam theory 

Firstly, we solve this problem according to the thin beam theory.  
In the contact segment 10 x x , the deflection is 

2

12
xw
r

 (8-84) 

From this equation, we obtain 

1

1

dRotation
d

Bending moment

dShear force 0
d
dDistributed reaction 0
d

w x
x r
DM
r

MQ
x
Qq
x

 (8-85) 

Therefore, it can be concluded that the distributed reaction of the contact segment 
is zero. 
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In the non-contact segment 1x x d , the bending moment and shear force 
can be solved by the equilibrium condition: 

 ( ),M P d x Q P  (8-86) 

The length x1 of the contact segment and the concentrated reaction R can be 
solved by the static continuity conditions at the interface point B:

1 1
1 1

( ) ,D DP d x x d
r Pr

 (8-87) 

R P  (8-88) 

Here, another conclusion that there is a concentrated reaction R P at the interface 
point B is obtained. 

There is no distributed reaction along the whole contact segment, and only a 
concentrated reaction exists at its end, this strange conclusion is formed completely 
by ignoring the shear deformation. If this problem is solved according to the 
thick beam theory, more reasonable results will be obtained. 

Secondly, we solve this problem according to the thick beam theory. 
The deflection of the contact segment is still expressed by Eq. (8-84). Since the 

influence of the shear strain   is considered in the thick beam theory, the , M, Q,
q in the contact segment are different from those results by the thin beam theory: 

1

1

d
d

d d
d d

d d
d d

w x
x r

DM D D
x r x

Q C
Qq C
x x

 (8-89) 

So, it can be concluded that, there is distributed reaction existing in the contact 
segment, and it can be derived from the shear strain. 

In order to determine the shear strain , the equilibrium differential equation 
d
d
M Q
x

 is applied firstly. Substitution of Eq. (8-89) into this equation yields 

2
2

2

d 0
dx

 (8-90) 

where

C
D

 (8-91) 
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The solution of Eq. (8-90) is 

 ch shx x  (8-92) 

From the boundary condition 
0

0
x

 at the left end, we obtain 
0

0
x

, 0,

therefore, we have 

 sh x  (8-93) 

Then, the bending moment and shear force of the contact segment can be obtained 
as

1

ch

sh

DM D x
r

Q C x
 (8-94) 

And, the bending moment and shear force of the non-contact segment are still 
expressed by Eq. (8-86). 

By applying the static continuity conditions at point B:

1 1
1

1

ch ( )

sh

D D x P d x
r

C x P
 (8-95) 

1x  and  can be solved as follows: 

1sh
P

C x
 (8-96) 

1
1

1

( )cth C d xCx
Pr D

 (8-97) 

When 1x  is being solved from Eq. (8-97), the trial method can be used. 
Finally, the distributed reaction of the contact segment can be obtained as 

1

ch ch
sh

Pq C x x
x

 (8-98) 

in which the positive direction of q is downward. 
So, according to the thick beam theory, there is distributed reaction existing in 

the contact segment, but no concentrated reaction. This conclusion is more 
reasonable. In contact problem, the influence of the shear strain should not be 
ignored.
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8.3 Thick/Thin Beam Element 

8.3.1 The Fundamental Formulae of Thick/Thin Beam Element 

A Timoshenko thick beam element is shown in Fig. 8.10. The formulae of deflection 
w, rotation  and shear strain  are as follows[4]:

2 3(1 ) ( ) (1 2 )
2 2i j i j
d dw w t w t F F  (8-99a) 

2(1 ) 3(1 2 )i jt t F               (8-99b) 

                                    (8-99c) 

Figure 8.10 Timoshenko thick beam element 

where

2

2

2 3

2 2 2

2

3

2 ( )

6
1 12 5 (1 ) 2

6
5 5, ,

5(1 ) 12(1 ) 6 12(1 )
(1 )
(1 )(1 2 )

i j i jw w
d

h
d

h
d

D h Eh EhD C Gh
Cd d

F t t
F t t t

 (8-100) 

8.3.2 Derivation of the Fundamental Formulae 

Assume that the shear strain , rotation  and deflection w are constant, quadratic 
function and cubic function in the beam element, respectively. According to the 
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end conditions, let 

0

0

0 1

(1 ) (1 )
(1 ) (1 ) (1 )(1 2 )

i j

i j

t t t t
w w t w t dt t dt t t

 (8-101) 

, , w should satisfy the following equation: 

d
d
w

d t
 (8-102) 

Substitution of Eq. (8-101) into Eq. (8-102) yields 

0 1 2 1 0 0 0
1 1 1( ), , 6
2 2 2

 (8-103) 

Substitution of Eq. (8-103) into Eq. (8-101) yields 

0

0

0

1(1 ) 6 (1 )
2

1(1 ) ( ) (1 ) (1 )(1 2 )
2 2

i j

i j i j

t t t t

dw w t w t t t d t t t

 (8-104) 

in which 0 is an internal parameter which can be determined from the condition 
of minimum strain energy.  

Curvature:

0 0
0

0

6d 1 1[ 6 (1 2 )] (1 2 )
d 2

1 [ 3 (1 2 )]

i j

i j

t t
d t d d

t
d

Bending strain energy: 

21 12 0 2 0 20 0
b 20 0

0 2
b 0 0

12 36
d [( ) (1 2 ) (1 2 ) ]d

2 2
6 ( )

Dd DdU t t t t
d d

DU
d

in which 

10 0 2
b 0

( ) d
2

DdU t
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Shear strain energy: 

2
s 02

CdU

The strain energy: 

0 20
b s b 0

6 112
2

D DU U U U
d d

 (8-105) 

From 
0

0U , we have: 

0
6

1 12
 (8-106) 

Substitution of Eq. (8-106) into Eq. (8-104) yields Eq. (8-99). 

8.3.3 The Stiffness Matrix of Thick/Thin Beam Element 

The stiffness matrix eK  of the thick/thin beam element can be derived from the 
element strain energy U:

T1
2

e e eU q K q  (8-107) 

Substitution of Eq. (8-106) into Eq. (8-105) yields the expression of the strain 
energy as follows: 

0
bU U U  (8-108) 

where 0
bU  is the strain energy of the thin beam element, and the strain energy 

increment U  is 

23DU
d

 (8-109) 

The stiffness matrix eK  of the thick/thin beam element can be written as the 
sum of two terms: 

0e eK K K  (8-110) 

where 0eK  is the stiffness of the thin beam element, and by 
0 T 0
b

1
2

e e eU q K q
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we have 

2 2
0

3

2 2

6 3 6 3
3 2 32

6 3 6 3
3 3 2

e

d d
d d d dD

d dd
d d d d

K  (8-111) 

And, the incremental matrix K  can be determined by  

T1
2

e eU q Kq

i.e.,

2 2

3

2 2

4 2 4 2
2 26

4 2 4 2
2 2

d d
d d d dD

d dd
d d d d

K  (8-112) 

When the thickness-span ratio h
d

 decreases gradually, the following limitation 

relation can be obtained: 

00, , e e0K K K

Here, the stiffness matrix eK  of the thick/thin beam element automatically 
degenerates to be the stiffness matrix 0eK  of the thin beam element. Therefore, 
no shear locking will happen. 

8.4 Review of Displacement-based Thick/Thin Plate  
Elements

This section will present a brief review of the construction methods of the 
displacement-based thick/thin plate elements. 

The construction methods of the displacement-based thick/thin plate elements 
are mainly classified into two types: One starts with the thick plate theory, and 
uses the procedure of transition from the thick plate element to the thick/thin plate 
element, which is simply denoted as thick-to-thin scheme here; the other starts 
with the thin plate theory, and uses the procedure of transition from the thin plate 
element to the thin/thick plate element, which is simply denoted as thin-to-thick 
scheme here. 

Further explanations are given as follows. 
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8.4.1 Thick-to-Thin Scheme 

The element suitable for the thick plates is firstly constructed based on the thick 
plate theory; and then, some special treatments are adopted so that the element 
will satisfy the requirements of the thin plate theory in the thin plate cases. 

When constructing the thick plate element, it can be started with assuming the 
displacement and shear strain fields. In the three variable fields, i.e., the deflection 
field w, rotation field  and shear strain field , two of them can be selected to 
be interpolated rationally, and then the third one can be derived from Eq. (8-1). 
Since there are three combination forms (w, ), ( , ) and (w, ) available, 
accordingly, the corresponding three different schemes are presented. Among 
these three schemes, the first one which starts with assuming (w, ) is the 
traditional scheme of assuming displacements and is often used in literatures, and 
the other two are the approaches proposed recently—mixed interpolation schemes 
partly of displacement and partly of strain. 

(1) Scheme starting with assuming (w, )
For the thick plate case, w and  should be independent variables; when the 

plate degenerates to be a thin plate,  should be the derivatives of w and not be 
independent variables anymore. Therefore, the rational assumptions of w and 
should fulfill the twofold requirements: independence in the thick plate case and 
non-independence in the thin plate case. This is the main difficulty encountered 
by this scheme. 

In fact, some elements constructed by this scheme possess good precision for 
the analysis of the thick plates, but an over-stiff performance is obviously exhibited 
when analyzing the thin plates, i.e., the computational results of deflections are 
much smaller than correct solutions. This is the shear locking phenomenon. The 
reason leading to shear locking is that the dual requirements mentioned above are 
not satisfied when assuming w and ,  consequently, false shear strain will appear 
in the thin plate limit state. How to avoid shear locking phenomenon was one of 
the problems that attracted continuous attention from academia, and many 
modifications and numerical techniques have been proposed by numerous 
researchers, such as the reduced integration method[5], the selective reduced 
integration method[6], the substitute shear strain method[7], and so on. 

(2) Scheme starting with assuming ( , )
In order to avoid the difficulty mentioned above caused by assuming (w, ),

the scheme of assuming ( , ) can be used to replace it. For a rational assumption 
of the shear strain , the dual requirements, that  should be generally nonzero 
in the thick plate case and tend to be zero in the thin plate case, should be still 
paid attention to. But then, these dual requirements are much easier to be satisfied, 
which provides a new way for eliminating shear locking. Some related research 
achievements[4,8,9] will be introduced in Sect. 8.5. 

By the way, the discrete Kirchhoff theory (DKT) elements for the thin plates 
indeed belong to a special application of the above scheme. 
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(3) Scheme starting with assuming (w, )
This is another new scheme[10,11] which can eliminate shear locking, and will 

be introduced in Sect. 8.6. 

8.4.2 Thin-to-Thick Scheme 

The element suitable for the thin plates is firstly constructed based on the thin 
plate theory; and then, some special treatments are adopted so that the influences 
of shear strain are introduced, thus, the thin plate element is generalized to an 
element suitable for both thin and thick plates. The shear strain introduced here 
should automatically degenerate to be zero in the thin plate limit state. Hence, 
naturally, the elements according to this scheme will not suffer from shear locking 
phenomenon.  

Some high-quality thin plate elements have already been proposed in literatures. 
Starting with these elements, the corresponding thin/thick plate elements can be 
constructed by this scheme.  

Some related research achievements will be introduced in Sect. 8.7. 
By the way, there is another effective method, namely, the Analytical Trial 

Function (ATF) method, for constructing the universal elements for both thick 
and thin plates[12]. This will be introduced in Chap. 14.  

8.5 Generalized Conforming Thick/Thin Plate Elements (1) 
—Starting with Assuming ( , )

This section will introduce the construction procedure of the thick/thin plate 
elements starting with assuming ( , )[4,8,9]. The derivation of the triangular 
element in reference [4] is quite simple and straightforward, and possesses clear 
physical meaning. So, the procedure in [4] will be introduced here. And, the 
method of deriving quadrilateral element can be referred to [9]. 

Main procedure: The functions of rotation and shear strain along each side of 
the element are firstly determined using the Timoshenko beam theory; Secondly, 
the rotation and shear strain fields in the domain of the element are then determined 
using the technique of improved interpolation, and the curvature fields are then 
determined from the rotation fields; Finally, the element stiffness matrix is 
determined by the curvature and shear strain fields. This new element is denoted 
by TMT (Timoshenko-Mindlin Triangular element). 

When the thickness becomes small, the thick beam theory will automatically 
degenerate to be the thin beam theory, and then the shear strain along each 
element side and the interpolation formulas for shear strain in the domain of the 
element will all automatically degenerate to be zero. So, the element TMT will 
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automatically degenerate to be the thin plate element, no shear locking will 
happen.

8.5.1 Interpolation Formulas for the Rotation Fields of the Thick  
Plate Element 

Consider the triangular thick plate element shown in Fig. 8.11. The element has 3 
nodes and 3 engineering DOFs per node. The element nodal displacement vector is: 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq

Figure 8.11 A triangular thick plate element 

The interpolation formulas for the element rotation fields can be obtained by the 
rotation formulas along each element side.  

1. Formulas of normal rotation n and tangential rotation s along each side 

The variation of the normal rotation n along each side is assumed to be linear. 
For the three sides ( 23,31,12 ), we have 

23 23 2 2 23 3 3

31 31 3 3 31 1 1

12 12 1 1 12 2 2

( ) ( )
( ) ( )
( ) ( )

n n n

n n n

n n n

L L
L L
L L

 (8-113a) 

The variation of the tangential rotation s along each side can be determined by 
Eq. (8-99b). Thus, 

23 23 2 2 23 3 3 1 1 2 3

31 31 3 3 31 1 1 2 2 3 1

12 12 1 1 12 2 2 3 3 1 2

( ) ( ) 3(1 2 )
( ) ( ) 3(1 2 )
( ) ( ) 3(1 2 )

s s s

s s s

s s s

L L L L
L L L L
L L L L

 (8-113b) 

where
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2

2 ( 1,2,3)
52 (1 )
6

1 [2( ) ( ) ( )]

( , , 1,2,3)

i
i

i

i j k i xj xk i yj yk
i

i j k

i k j

h
d

i
h
d

w w c b
d

b y y i j k
c x x

 (8-114) 

2. Expressions of rotations x and y along each side 

By using the relation between ( n, s) and ( x, y), the expression of rotations x

and y can be obtained as follows: 

       

1
23 1 23 1 23 2 2 3 3 1 1 2 3

1 1

2
31 3 3 1 1 2 2 3 1

2

3
12 1 1 2 2 3 3 1 2

3

31 ( ) (1 2 )

3 (1 2 )

3
(1 2 )

x n s x x

x x x

x x x

cb c L L L L
d d

cL L L L
d
c

L L L L
d

 (8-115a) 

      

1
23 1 23 1 23 2 2 3 3 1 1 2 3

1 1

2
31 3 3 1 1 2 2 3 1

2

3
12 1 1 2 2 3 3 1 2

3

31 ( ) (1 2 )

3 (1 2 )

3
(1 2 )

y n s y y

y y y

y y y

bc b L L L L
d d

bL L L L
d
b

L L L L
d

 (8-115b) 

3. Interpolation formulas for element rotation fields x and y

The rotation fields x and y within the element can then be obtained by the 
interpolation of the expressions (8-115a,b) of x and y on each side, i.e. 

1
1 1 2 2 3 3 1 1 2 3

1

32
2 2 3 1 3 3 1 2

2 3

1
1 1 2 2 3 3 1 1 2 3

1

32
2 2 3 1 3 3 1 2

2 3

3 (1 2 )

33 (1 2 ) (1 2 )

3 (1 2 )

33 (1 2 ) (1 2 )

x x x x

y y y y

cL L L L L
d
cc L L L L

d d
bL L L L L

d
bb L L L L

d d

 (8-116) 
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It can be seen that, if Li 0, the expressions of element rotations x and y
obtained from the above equation are the same as those expressions of rotations 
along each side given in (8-115a,b). That is to say, The interpolation formulas 
(8-116) for element rotations are exactly compatible with the formulas (8-115a,b) 
for rotations along each side.  

8.5.2 The Curvature Fields of the Thick Plate Element 

The element curvature fields are  
T

T[ 2 ] y yx x
x y xy x y y x

 (8-117) 

By using the differential formulae: 

1 2 3
1 2 3

1 2 3
1 2 3

1
2

1
2

b b b
x A L L L

c c c
y A L L L

 (8-118) 

and substituting Eq. (8-116) into Eq. (8-117), we obtain  

1 1
1 1 2 2 3 3 1 2 3 3 2

1

3 32 2
2 3 1 1 3 3 1 2 2 1

2 3

1 1
1 1 2 2 3 3 1 2 3 3 2

1

3 32 2
2 3 1 1 3 3 1

2 3

3(1 2 )1 [ ( )
2

3(1 2 )3(1 2 ) ( ) ( )]

3(1 2 )1 [ ( )
2

3(1 2 )3(1 2 ) ( ) (

x x x x

y y y y

b b b c b L b L
A d

c b L b L c b L b L
d d

c c c b c L c L
A d

b c L c L b c L
d d 2 2 1

1 1 2 2 3 3 1 1 2 2 3 3 1 2 3

)]

12 ( )
2xy x x x y y y

c L

c c c b b b E E E
A

 (8-119) 

where

1 1
1 1 2 1 2 3 3 1 3 1 2

1

2 2
2 2 3 2 3 1 1 2 1 2 3

2

3 3
3 3 1 3 1 2 2 3 2 3 1

3

3(1 2 ) [( ) ( ) ]

3(1 2 ) [( ) ( ) ]

3(1 2 )
[( ) ( ) ]

E c c b b L c c b b L
d

E c c b b L c c b b L
d

E c c b b L c c b b L
d

 (8-120) 



Chapter 8 Generalized Conforming Thick Plate Element 

241

Equation (8-119) can be written as 

b
eB q  (8-121) 

where
0

b bB B F G  (8-122) 

1 2 3
0
b 1 2 3

1 1 2 2 3 3

0 0 0 0 0 0
1 0 0 0 0 0 0

2
0 0 0

b b b
c c c

A
c b c b c b

B  (8-123) 

31 2
2 3 3 2 3 1 1 3 1 2 2 12 2 2

1 2 3

31 2
2 3 3 2 3 1 1 3 1 2 2 12 2 2

1 2 3

1 2 3

( ) ( ) ( )

3 ( ) ( ) ( )
2

cc cb L b L b L b L b L b L
d d d

bb bc L c L c L c L c L c L
A d d d

M M M

F  (8-124) 

1 1 2 1 2 3 3 1 3 1 22
1

2 2 3 2 3 1 1 2 1 2 32
2

3 3 1 3 1 2 2 3 2 3 12
3

1 [( ) ( ) ]

1 [( ) ( ) ]

1 [( ) ( ) ]

M c c b b L c c b b L
d

M c c b b L c c b b L
d

M c c b b L c c b b L
d

 (8-125) 

1

2

3

1 2 0 0
0 1 2 0
0 0 1 2

 (8-126) 

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 2 2
2 0 0 0 2
2 2 0 0 0

c b c b
c b c b
c b c b

G  (8-127) 

8.5.3 Interpolation Formulas for Shear Strain Fields of the Thick  
Plate Element 

1. Shear strain along each element side 

The transverse shear strain s  along the tangential direction (s-direction) of each 
side is constant. From Eq. (8-99c), we obtain 
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23 1 1 31 2 2 12 3 3, ,s s s  (8-128) 

in which i and i are given by Eq. (8-114).  
On the boundary line Li 0, the transformation relations between shear strain 

components ( n , s ) and ( x , y ) are  

0 0

1

i i

xi in

ys i iiL L

b c
c bd

 (8-129) 

Then, s along each side can be expressed in terms of x and y as follows 

1 23 1 23 1 23

2 31 2 31 2 31

3 12 3 12 3 12

s x y

s x y

s x y

d c b
d c b
d c b

 (8-130) 

2. Determination of nodal shear strains xi and yi

Firstly, consider node 1. 
There are two sides, 31 and 12 , meeting at node 1. According to Eq. (8-130), 

the tangential shear strains 31s  and 12s  along these two sides can be expressed 
by the shear strains 1x  and 1y  at node 1, i.e.,  

12 22 31

13 12 3 3

xs

ys

c bd
d c b

Then, we obtain 

1 3 2 3 22 31 2 2 2

1 3 3 33 123 2 3 2

1 1
2 2

x s

y s

b b b bd d
ddc c c cA A

 (8-131) 

Similarly, for nodes 2 and 3, we have 

2 1 3 3 3 3

2 1 1 11 3

3 2 1 1 1 1

3 2 2 22 1

1
2

1
2

x

y

x

y

b b d
dc cA

b b d
dc cA

 (8-132) 

Thus, from Eqs. (8-131) and (8-132), we obtain 

3 21 1 1 1

2 3 1 2 2 2

3 3 33 2 1

0
1 0

2
0

x

x

x

b b d
b b d

A db b
 (8-133) 
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1 3 2 1 1 1

2 3 1 2 2 2

3 3 32 13

0
1 0

2
0

y

y

y

c c d
c c d

A dc c
 (8-134) 

3. Interpolation formulas for element shear strain fields 

The shear strain fields within the element can be obtained in terms of the nodal 
shear strains in the following manner 

1 1 2 2 3 3

1 1 2 2 3 3

x x x x

y y y y

L L L
L L L  (8-135) 

in which the nodal shear strains are given by Eqs.(8-133) and (8-134). After 
substituting these into the above equation, we obtain 

1 1 1

2 2 2

3 3 3

x

y

d
d
d

H  (8-136) 

where

3 2 2 3 1 3 3 1 2 1 1 2

3 2 2 3 1 3 3 1 2 1 1 2

1
2

b L b L b L b L b L b L
c L c L c L c L c L c LA

H  (8-137) 

Equation (8-136) can also be written as 

s
eB q  (8-138) 

where

sB H G  (8-139) 

1

2

3

0 0
0 0
0 0

G  is given by Eq. (8-127). 

4. Expression in Cartesian coordinates for shear strains of the triangular  
element

For the triangular element, the shear strains x and y are determined by 3 constant 
shear strains 12 23 31( ) , ( ) , ( )s s s  along 3 sides, therefore, the general expressions 
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of x and y  can be written as 

1 3

2 3

x

y

y
x  (8-140) 

in which 3 parameters 1 , 2  and 3  are involved. This equation can be proved 
as follows. 

For side 12 , the shear strain 12( )s  along the side can be expressed by the shear 
strains at the end point ( 1x , 1y ) or ( 2x , 2y ), as shown in the following Eq. (a) 

3 12 3 1 3 1 3 2 3 2s x y x yd c b c b  (a) 

1 23 1 2 1 2 1 3 1 3s x y x yd c b c b  (b) 

2 31 2 3 2 3 2 1 2 1s x y x yd c b c b  (c) 

Equations (b) and (c) can be obtained similarly.  
Temporarily assume that x and y  are the complete linear polynomials: 

0 1 2

0 1 2

x

y

x y
x y   (d) 

in which 6 unknown coefficients are contained. Substitution of Eq. (d) into 
Eqs. (a), (b), (c) yields 

2 2
3 3 3 3 1
2 2
1 1 1 1 2
2 2
2 2 2 2 2 1

0
0
0

c b b c
c b b c
c b b c

 (e) 

Since the determinant of the coefficient matrix at the left side is (2A)3, not zero, 
so, we obtain 

1 0 , 2 0 , 2 1  (f) 

From Eq. (d), we have 

0 2

0 2

x

y

y
x  (g) 

Equation (g) is just the form of Eq. (8-140). QED. 
By the way, if H in Eq. (8-137) is expressed in the Cartesian coordinates, the 

shear strain formulas (8-136) can be expressed by the form of Eq. (8-140).  
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8.5.4 Stiffness Matrix of the Thick Plate 

The element stiffness matrix eK  is composed of two parts 

b s
e e eK K K  (8-141) 

where b
eK  is the bending stiffness matrix: 

T
b b b bd

e

e

A

AK B D B  (8-142) 

bB  is given by Eq. (8-122), bD  is the bending elastic matrix: 

3

b 2

1 0

1 0 ,
12(1 )

10 0
2

EhD DD  (8-143) 

s
eK  is the shear stiffness matrix: 

T
s s s sd

e

e

A

AK B D B  (8-144) 

sB  is given by Eq. (8-139), sD  is the shear elastic matrix: 

s

1 0 5,
0 1 6

C C GhD  (8-145) 

8.5.5 Numerical Examples 

Example 8.1 The central deflection and moment of simply-supported (hard) 
square plates with different thickness-span ratios (h/L) subjected to uniform load.  

Assume that the side length of the plate is L, 0.3 . Meshes A and B in 
Fig. 8.12 are used. The results by the element TMT are given in Tables 8.3 to 8.5. 

Figure 8.12 Meshes for 1/4 square plate (O is the center of the plate) 
(a) Mesh A 2 2; (b) Mesh B 2 2
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Table 8.3 The central deflection of simply-supported square plates subjected to 

uniform load 
4

100
qLq

D

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.4056
0.3676

0.4065
0.3973

0.4064
0.4041

0.4063
0.4057 0.4062

0.001
A
B

0.4056
0.3676

0.4065
0.3973

0.4064
0.4041

0.4063
0.4057 0.4062

0.01
A
B

0.4058
0.3677

0.4066
0.3974

0.4065
0.4042

0.4064
0.4059 0.4064

0.1
A
B

0.4255
0.3845

0.4264
0.4164

0.4270
0.4244

0.4272
0.4266 0.4273

0.15
A
B

0.4520
0.4063

0.4529
0.4414

0.4534
0.4504

0.4536
0.4528 0.4536

0.20
A
B

0.4902
0.4370

0.4905
0.4764

0.4906
0.4867

0.4905
0.4895 0.4906

0.25
A
B

0.5398
0.4769

0.5388
0.5215

0.5383
0.5334

0.5380
0.5366 0.5379

0.30
A
B

0.6009
0.5257

0.5979
0.5767

0.5966
0.5905

0.5960
0.5943 0.5956

0.35
A
B

0.6732
0.5835

0.6679
0.6418

0.6655
0.6580

0.6646
0.6624 0.6641

Table 8.4 The central deflection of clamped square plates subjected to uniform 

load
4

100
qLq

D

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.1547
0.1214

0.1347
0.1258

0.1287
0.1264

0.1271
0.1265 0.1265

0.001 A
B

0.1547
0.1214

0.1347
0.1258

0.1287
0.1264

0.1271
0.1265 0.1265

0.01 A
B

0.1550
0.1216

0.1350
0.1260

0.1289
0.1266

0.1273
0.1267 0.1265

0.1 A
B

0.1766
0.1392

0.1575
0.1473

0.1521
0.1495

0.1509
0.1502 0.1499

0.15 A
B

0.2039
0.1617

0.1856
0.1738

0.1805
0.1773

0.1792
0.1784 0.1798
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(Continued)        

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

0.20 A
B

0.2423
0.1931

0.2243
0.2101

0.2191
0.2152

0.2177
0.2167 0.2167

0.25 A
B

0.2918
0.2335

0.2735
0.2561

0.2680
0.2630

0.2664
0.2650 0.2675

0.30 A
B

0.3526
0.2827

0.3333
0.3119 

0.3271
0.3210

0.3253
0.3236 0.3227

0.35 A
B

0.4246
0.3409

0.4037
0.3776

0.3967
0.3890

0.3945
0.3924 0.3951

Table 8.5 The central moment of simply-supported square plates subjected to 

uniform load
2

10
qLq

Mesh number 

h/L        Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.5156
0.4837

0.4885
0.4819

0.4811 
0.4799

0.4794
0.4792

0.001
A
B

0.5156
0.4837

0.4885
0.4819

0.4811 
0.4799

0.4794
0.4792

0.01
A
B

0.5158
0.4836

0.4887
0.4817

0.4813
0.4797

0.4796
0.4790

0.1
A
B

0.5296
0.4765

0.4977
0.4775

0.4849
0.4781

0.4806
0.4786

0.15
A
B

0.5402
0.4722

0.5007
0.4766

0.4854
0.4781

0.4806
0.4786

0.20
A
B

0.5487
0.4689

0.5023
0.4760

0.4855
0.4780

0.4807
0.4786

0.25
A
B

0.5548
0.4664

0.5032
0.4757

0.4856
0.4780

0.4807
0.4786

0.30
A
B

0.5590
0.4646

0.5038
0.4754

0.4857
0.4780

0.4807
0.4786

0.35
A
B

0.5620
0.4632

0.5041
0.4753

0.4857
0.4780

0.4807
0.4786

0.4789

Example 8.2 The central deflection and moment of simply-supported (soft) 
and clamped circular plates with different thickness-radius ratios (h/R) subjected 
to uniform load. 
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Assume that the radius of the circular plate is R, the Young’s modulus E 10.92, 
the Poisson’s ratio 0.3. Meshes A and B in Fig. 6.14 are used. The results by 
the element TMT are listed in Tables 8.6 to 8.8. 

Table 8.6 The central deflection of simply-supported circular plates subjected to 

uniform load 
4qRq

D

          Mesh 
h/R

A  24 elements B  96 elements Analytical solution

10–30 0.063 033 ( 1.05%) 0.063 543 ( 0.25%) 0.063 702 

0.001 0.063 033 ( 1.05%) 0.063 543 ( 0.25%) 0.063 702 

0.01 0.063 039 ( 1.05%) 0.063 549 ( 0.25%) 0.063 709 

0.1 0.063 689 ( 1.13%) 0.064 226 ( 0.29%) 0.064 416 

0.15 0.064 540 ( 1.18%) 0.065 109 ( 0.31%) 0.065 309 

0.20 0.065 754 ( 1.21%) 0.066 353 ( 0.31%) 0.066 559 

0.25 0.067 330 ( 1.23%) 0.067 956 ( 0.31%) 0.068 166 

0.30 0.069 265 ( 1.23%) 0.069 917 ( 0.30%) 0.070 130 

0.35 0.071 557 ( 1.24%) 0.072 235 ( 0.30%) 0.072 452 

Table 8.7 The central deflection of clamped circular plates subjected to uniform 

load
4qRq

D

Mesh  
h/R

A  24 elements B  96 elements Analytical solution

10–30 0.015 954 (2.11%) 0.015 722 (0.62%) 0.015 625 

0.001 0.015 954 (2.11%) 0.015 723 (0.63%) 0.015 625 

0.01 0.015 960 (2.10%) 0.157 29 (0.62%) 0.015 632 

0.1 0.016 618 (1.71%) 0.016 408 (0.42%) 0.016 339 

0.15 0.017 476 (1.42%) 0.017 292 (0.35%) 0.017 232 

0.20 0.018 697 (1.16%) 0.018 537 (0.30%) 0.018 482 

0.25 0.020 278 (0.94%) 0.020 141 (0.26%) 0.020 089 

0.30 0.022 217 (0.74%) 0.022 102 (0.22%) 0.022 054 

0.35 0.024 513 (0.57%) 0.024 420 (0.18%) 0.024 375 
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Table 8.8 The central moment of simply-supported circular plates subjected to 
uniform load 2q qR

Mesh  
h/R

A  24 elements B  96 elements Analytical solution

10–30 0.209 51 (1.58%) 0.207 54 (0.63%) 

0.001 0.209 51 (1.58%) 0.207 54 (0.63%) 

0.01 0.209 52 (1.59%) 0.207 55 (0.63%) 

0.1 0.210 11 (1.87%) 0.207 84 (0.77%) 

0.15 0.210 52 (2.07%) 0.207 93 (0.81%) 

0.20 0.210 82 (2.22%) 0.207 97 (0.83%) 

0.25 0.211 04 (2.32%) 0.207 99 (0.84%) 

0.30 0.211 19 (2.40%) 0.208 01 (0.85%) 

0.35 0.211 30 (2.45%) 0.208 02 (0.86%) 

0.206 25 

The above numerical examples show that the element TMT possesses good 
performance. It has high precision for both deflection and moment, and for both 
thick and thin plates. And, no shear locking happens. 

The scheme starting with assuming ( , ) proposed in this section is a 
universal method, it can be generalized to construct similar quadrilateral elements[9].
Furthermore, Element DKT, which is formulated by the discrete Kirchhoff theory, is 
a special case of the present element TMT. 

8.6 Generalized Conforming Thick/Thin Plate Elements (2) 
—Starting with Assuming (w, )

Schemes starting with assuming (w, ) for the construction of triangular and 
quadrilateral thick/thin plate elements have been proposed in references [10] and 
[11], respectively. This section will introduce the construction procedure of the 
triangular element TCGC-T9 in [10]. (By the way, another triangular thick/thin 
element TSL-T9[13] based on the SemiLoof scheme will also be introduced in 
Sect. 11.5.3). 

Main procedure: The variation functions of deflection w  and shear strain s

long each side of the element are firstly determined using the Timoshenko beam 
theory. Secondly, the nodal shear strains xi and yi  and the interpolation formulas 
of the shear strain fields x  and y in the domain of the element are then determined 
according to the shear strain s  along each side. Thirdly, assume that the element 
deflection w is a polynomial containing 9 unknown coefficients . In order to 
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determine , 9 generalized conforming conditions (3 point conforming conditions 
for deflections at the corner nodes, average line conforming conditions for 
deflections and normal slopes along 3 element sides) are applied. Finally, the 
rotation and curvature fields are determined from the deflection and shear strain 
fields; and the element stiffness matrix is then determined by the curvature and 
shear strain fields. This new element is denoted by TCGC-T9.  

When the thickness becomes small, the element TCGC-T9 will automatically 
degenerate to be the thin plate element GPL-T9 in reference [14]. So, no shear 
locking will happen. 

Consider the triangular thick plate element shown in Fig. 8.11. The element 
nodal displacement vector is formed by 9 engineering DOFs: 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq

8.6.1 Boundary Displacements of the Element 

On the element boundary, the deflection w  is assumed according to the thick 
beam theory, and the normal slope n  is assumed to be a linear function. For 
example, along the element side 12 , we have 

12 1 3 1 2 1 2 1 1 2 3 1 2 3 1 3 1

2 3 1 2 1 2 2 1 2 3 1 2 3 2 3 2

1 2
3 1 3 1 3 2 3 2

3 3

1[ ( )] [1 ( )]( )
2

1[ ( )] [ 1 ( )]( )
2

( ) ( )

e e x y

e e x y

n x y x y

w L L L L L w L L L L c b

L L L L L w L L L L c b

L Lb c b c
d d

(8-146)

where

1 2 ( 1,2,3)ei i i

i is given by Eq. (8-114).  

8.6.2 Shear Strain Fields of the Element 

Firstly, the shear strain s  along each side is determined from the thick beam theory; 
Then, the shear strains xi and yi  at the corner node i are determined; finally, the 
interpolation formulas for shear strains x  and y in the domain of the element 
can be obtained. The above derivation procedure has been given in Sect. 8.5. 
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Formulas in Eq. (8-138) are the interpolation formulas of element shear strains. 

8.6.3 Deflection Field of the Element 

1. Displacements in the domain of the element 

The element deflection field is assumed as 

w F  (8-147) 

where

T
1 2 3 4 5 6 7 8 9[ ]                          

1 2 3 1 2 2 3 3 1

1 1 1 2 2 2 3 3 3

[

1 1 1( 1) ( 1) ( 1)]
2 2 2

L L L L L L L L L

L L L L L L L L L

F

(8-148)

Then, the element rotation fields can be obtained as 

x
x

y
y

w
x
w
y

 (8-149) 

2. Introducing generalized conforming conditions 

The same line-point conforming scheme as that of the thin plate element GPL-T9 
is used: 

0

( )d 0

( )d 0
i

i

i i

d

n nd

w w

w w s

s

  (i 1,2,3) (8-150) 

Substitution of Eqs. (8-146) and (8-147) into the above equation yields 

ˆ eAq  (8-151) 
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where

3 3 3 3

1 1 1 1

2 2 2 2

1 2 3

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

1 1 1 10 0 0 0 0
2 2 2 2ˆ

1 1 1 10 0 0 0 0
2 2 2 2

1 1 1 10 0 0 0 0
2 2 2 2
ˆ ˆ ˆ

c b c b

c b c b

c b c b

A

A A A

    (8-152) 

2 3 2 2 3 3 2 2 3 3

1 3 2 2 2 2 2 3 3 2 2 2 3 3

2 3 3 3 3 3 2 2 3 3 3 2 2

1 1( ) ( ) ( )
2 2

1 1ˆ ( ) ( )
2 2
1 1( ) ( )
2 2

e e e e e e

e e e e e e

e e e e e e

c c b b

r r c c r b b

r r c c r b b

A     (8-153a) 

3 1 1 1 1 1 3 3 1 1 1 3 3

2 3 1 3 3 1 1 3 3 1 1

1 3 3 3 3 3 1 1 3 3 3 1 1

1 1( ) ( )
2 2
1 1ˆ ( ) ( ) ( )
2 2

1 1( ) ( )
2 2

e e e e e e

e e e e e e

e e e e e e

r r c c rb b

c c b b

r r c c r b b

A     (8-153b) 

2 1 1 1 1 1 2 2 1 1 1 2 2

3 1 2 2 2 2 2 1 1 2 2 2 1 1

1 2 1 1 2 2 1 1 2 2

1 1( ) ( )
2 2
1 1ˆ ( ) ( )
2 2
1 1( ) ( ) ( )
2 2

e e e e e e

e e e e e e

e e e e e e

r r c c rb b

r r c c r b b

c c b b

A      (8-153c) 

2 2 2 2 2 2
2 3 3 1 1 2

1 2 32 2 2
1 2 3

, ,
d d d d d dr r r

d d d
 (8-154) 

Substitution of Eq. (8-151) into Eq. (8-147) yields 
ew Nq
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where

1 1 1 2 2 2 3 3 3[ ]w x y w x y w x yN N N N N N N N NN  (8-155) 

1 1( ) ( 1) ( ) ( 1)
2 2
1( ) ( 1)
2

1 1( ) ( ) ( 1)
2 2

1( ) ( 1)
2

(

wi i ej em i i i em j ej j j j

ej m em m m m

xi i m j j m j ej m em i i i

j j ej m em j j j

m m em j

N L L L L r L L L

r L L L

N L c L c L c c L L L

r c c L L L

r c c 1) ( 1)
2

1 1( ) ( ) ( 1)
2 2

1( ) ( 1)
2
1( ) ( 1) ( , , 1,2,3)
2

ej m m m

yi i m j j m j ej m em i i i

j j ej m em j j j

m m em j ej m m m

L L L

N L b L b L b b L L L

r b b L L L

r b b L L L i j m

(8-156)

8.6.4 Stiffness Matrix of the Element 

1. The element bending strain matrix 

The element curvature fields are 
T

T[ 2 ] ( )y yx x
x y xy x y y x

 (8-157) 

Substitution of Eq. (8-149) into the above equation yields 

T2 2 2

2 2 2y yx xw w w
x x y y x y y x

From Eq. (8-140), we have 

0, 0, 0y yx x

x y y x
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So, we obtain 
T2 2 2

b2 2 2 ew w w
x y x y

B q  (8-158) 

where bB  is the element bending strain matrix 

b b1 b2 b3B B B B  (8-159) 

b 11 b 12 b 13

b b 21 b 22 b 23

b 31 b 32 b 33

i i i

i i i i

i i i

B B B
B B B
B B B

B   (i 1,2,3) (8-160) 

2 2
b 11 2

2

2 2
b 21 2

2

b 31 2
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4
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B c L c r L
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c r L

B b c L b c r
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b 33 2

3 [ ( )(2 1) ( )(2 1)
4

1( )(2 1) ( )] ( , , 1,2,3)
3

i i i m em j ej i j j j j ej m em j

m m m m em j ej m i j m m j

B b c b b L b c r b b L
A

b c r b b L b b c b c i j m

2. The element shear strain matrix 

The element shear strain matrix is given by Eq. (8-139) 

s s1 s2 s3B B B B  (8-161) 

where

s

2 ( ) 2 ( ) ( ) ( )1
2 ( ) 2 ( ) ( ) ( )2

( ) ( )
( ,

( ) ( )

j i m m i m j i i j j j i m m i m m j i i j
i

j i m m i m j i i j j j i m m i m m j i i j

j j i m m i m m j i i j

j j i m m i m m j i i j

b L b L b L b L c b L b L c b L b L
c L c L c L c L c c L c L c c L c LA

b b L b L b b L b L
i

b c L c L b c L c L

B

, 1,2,3)j m

(8-162)

3. The element stiffness matrix 

The element stiffness matrix is  

11 12 13

21 22 23

31 32 33

e

K K K
K K K K

K K K
 (8-163) 

where T T
b b b s s sd d

e e
ij i j i j

A A

A AK B D B B D B   (i, j 1,2,3) (8-164) 

b s

1 0
1 0

1 0 ,
0 1

10 0
2

D CD D

3

2 2

5 5 (1 ),
12(1 ) 6

Eh DD C Gh
h

E is the Young’s modulus; G is the shear modulus. 
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8.6.5 Numerical Examples 

Example 8.3 The central deflection and moment of simply-supported (hard) 
square plates (the side length is L) subjected to uniform load.  

Meshes A and B in Fig. 8.12 are still adopted, 0.3 . The results by the 
element TCGC-T9 are given in Tables 8.9 to 8.11.  

Table 8.9 The central deflection of simply-supported square plates subjected to 

uniform load 
4

100
qLq

D

Mesh number 

h/L       Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.3803
0.3948

0.4007
0.4038

0.4050
0.4057

0.4059
0.4061

0.4062

0.001
A
B

0.3803
0.3948

0.4007
0.4038

0.4050
0.4057

0.4059
0.4061

0.4062

0.01
A
B

0.3804
0.3950

0.4008
0.4039

0.4051
0.4058

0.4061
0.4062

0.4064

0.1
A
B

0.3978
0.4079

0.4183
0.4194

0.4244
0.4243

0.4265
0.4264

0.4273

0.15
A
B

0.4214
0.4254

0.4434
0.4424

0.4506
0.4500

0.4528
0.4526

0.4536

0.20
A
B

0.4562
0.4519

0.4799
0.4763

0.4876
0.4862

0.4897
0.4893

0.4906

0.25
A
B

0.5025
0.4880

0.5276
0.5207

0.5352
0.5328

0.5372
0.5364

0.5379

0.30
A
B

0.5606
0.5338

0.5863
0.5754

0.5935
0.5899

0.5952
0.5941

0.5956

0.35
A
B

0.6304
0.5892

0.6559
0.6402

0.6624
0.6573

0.6638
0.6622

0.6641

Table 8.10 The central deflection of clamped square plates subjected to uniform 

load
4

100
qLq

D

Mesh number 

h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.1167 
0.0997

0.1241
0.1192 

0.1261
0.1247

0.1265
0.1260

0.1265
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(Continued)        

Mesh number 

h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

0.001
A
B

0.1167 
0.0997

0.1241
0.1192 

0.1261
0.1247

0.1265
0.1260

0.1265

0.01
A
B

0.1169 
0.0998

0.1242
0.1194 

0.1263
0.1249

0.1266
0.1262

0.1265

0.1
A
B

0.1363
0.1131 

0.1440
0.1376

0.1477
0.1462

0.1496
0.1492

0.1499

0.15
A
B

0.1604
0.1310

0.1704
0.1623

0.1758
0.1737

0.1779
0.1774

0.1798

0.20
A
B

0.1948
0.1579

0.2080
0.1975

0.2144
0.2115 

0.2165
0.2157

0.2167

0.25
A
B

0.2403
0.1942

0.2565
0.2427

0.2632
0.2593

0.2652
0.2641

0.2675

0.30
A
B

0.2974
0.2401

0.3158
0.2980

0.3224
0.3172

0.3241
0.3226

0.3227

0.35
A
B

0.3662
0.2956

0.3858
0.3634

0.3919
0.3852

0.3933
0.3914

0.3951

Table 8.11 The central moment of simply-supported square plates subjected to 

uniform load 
2

10
qLq

    Mesh number 

  h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

10–30 A
B

0.4928
0.5024

0.4768
0.4878

0.4771
0.4823

0.4781
0.4800

0.001
A
B

0.4928
0.5024

0.4768
0.4878

0.4771
0.4823

0.4781
0.4800

0.01
A
B

0.4932
0.5026

0.4776
0.4880

0.4780
0.4824

0.4789
0.4800

0.1
A
B

0.5238
0.5193

0.4986
0.4987

0.4858
0.4867

0.4809
0.4814

0.15
A
B

0.5435
0.5329

0.5048
0.5039

0.4870
0.4877

0.4810
0.4815

0.20
A
B

0.5600
0.5453

0.5090
0.5073

0.4876
0.4882

0.4811 
0.4815

0.4789
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(Continued)        

    Mesh number 

  h/L      Mesh type 
2 2 4 4 8 8 16 16 Analytical

0.25
A
B

0.5736
0.5557

0.5118 
0.5094

0.4880
0.4884

0.4811 
0.4815

0.30
A
B

0.5849
0.5639

0.5138
0.5107

0.4881
0.4885

0.4811 
0.4816

0.35
A
B

0.5941
0.5704

0.5152
0.5116 

0.4883
0.4886

0.4811 
0.4816

0.4789

Example 8.4 The central deflection and moment of simply-supported (soft) 
and clamped circular plates subjected to uniform load.  

The two meshes (A and B) shown in Fig. 6.14 are still adopted. Assume that 
E 10.92, 0.3. The results by the element TCGC-T9 are given in Tables 8.12 
to 8.14. 

The above numerical examples show that the element TCGC-T9 also possesses 
good performance. It has high precision for both deflection and moment, and for 
both thick and thin plates. And, no shear locking happens. 

By the comparison of the elements TCGC-T9 and TMT, we can conclude that, 
(1) The precisions of these two elements belong to the same magnitude.  
(2) For relatively thin plates, the element TCGC-T9 is a little better than the 

element TMT. This is because for the very thin plate cases, the elements TCGC-T9 
and TMT will degenerate to be the thin plate elements GPL-T9 and DKT, 
respectively. Note that the element GPL-T9 is a little better than the element DKT. 

Table 8.12 The central deflection of simply-supported circular plates subjected to 

uniform load
4qRq

D

Mesh  
h/R

A  24 elements B  96 elements Analytical 

10–30 0.063 818 (0.18%) 0.063 728 (0.04%) 0.063 702 
0.001 0.063 818 (0.18%) 0.063 728 (0.04%) 0.063 702 
0.01 0.063 821 (0.18%) 0.063 731 (0.03%) 0.063 709 
0.1 0.064 242 ( 0.27%) 0.064 247 ( 0.26%) 0.064 416 
0.15 0.064 901 ( 0.62%) 0.065 043 ( 0.41%) 0.065 309 
0.20 0.065 921 ( 0.96%) 0.066 222 ( 0.51%) 0.066 559 
0.25 0.067 315 ( 1.25%) 0.067 777 ( 0.57%) 0.068 166 
0.30 0.069 088 ( 1.49%) 0.069 704 ( 0.61%) 0.070 130 
0.35 0.071 241 ( 1.67%) 0.071 998 ( 0.63%) 0.072 452 
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Table 8.13 The central deflection of clamped circular plates subjected to uniform 

load
4qRq

D

Mesh  
h/R

A  24 elements B  96 elements Analytical 

10–30 0.014 515 ( 7.10%) 0.015 342 ( 1.81%) 0.015 625 
0.001 0.014 515 ( 7.10%) 0.015 342 ( 1.81%) 0.015 625 
0.01 0.014 518 ( 7.13%) 0.015 345 ( 1.84%) 0.015 632 
0.1 0.014 938 ( 8.57%) 0.015 861 ( 2.93%) 0.016 339 

0.15 0.015 595 ( 9.50%) 0.016 657 ( 3.34%) 0.017 232 
0.20 0.016 613 ( 10.11%) 0.017 836 ( 3.50%) 0.018 482 
0.25 0.018 007 ( 10.36%) 0.019 392 ( 3.47%) 0.020 089 
0.30 0.019 782 ( 10.30%) 0.021 319 ( 3.33%) 0.022 054 
0.35 0.021 936 ( 10.01%) 0.023 613 ( 3.13%) 0.024 375 

Table 8.14 The central moment of simply-supported circular plates subjected to 
uniform load 2q qR

           Mesh 
h/R

A  24 elements B  96 elements Analytical 

10–11 0.210 28 (1.95%) 0.207 36 (0.54%) 
0.001 0.210 28 (1.95%) 0.207 36 (0.54%) 
0.01 0.210 29 (1.96%) 0.207 37 (0.54%) 
0.1 0.211 40 (2.50%) 0.208 15 (0.92%) 

0.15 0.212 42 (2.99%) 0.208 49 (1.09%) 
0.20 0.213 35 (3.44%) 0.208 69 (1.18%) 
0.25 0.214 11 (3.81%) 0.208 82 (1.25%) 
0.30 0.214 70 (4.10%) 0.208 91 (1.29%) 
0.35 0.215 16 (4.32%) 0.208 96 (1.31%) 

0.206 25 

(3) For relatively thick plates, the element TMT is a little better than the 
element TCGC-T9. This is because the shear strain fields of these two elements 
are the same, only curvature fields are different; the rotation fields of the element 
TMT are assumed directly, only first-order differential operation is needed when 
we determine the curvature fields by such rotation fields, so the accuracy loss is 
relatively less; but in the element TCGC-T9, the deflection field is assumed 
directly, second-order differential operation must be performed when we determine 
the curvature fields by such deflection field, so the accuracy loss is relatively more. 

(4) When we determine the element equivalent nodal load vector due to 
transverse distributed load, the element TCGC-T9 is more convenient. This is 
because the shape functions for the deflection of the element TCGC-T9 have 
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already been given, so the equivalent nodal load vector can be determined from 
these shape functions directly; but the deflection field of the element TMT is 
undetermined, so, before deriving the element equivalent nodal load vector, 
supplementary work, assumption of rational interpolation formula for deflection 
field, is needed.  

8.7 Generalized Conforming Thin/Thick Plate Elements 
—From Thin to Thick Plate Elements 

By starting with a thin plate element and introducing shear deformation, the thin 
plate element can be generalized to a new thin/thick plate element. Such transition 
schemes have been studied in references [15–19].  

In 1986, Fricker[15] proposed a simple method for including shear deformation 
in the thin plate elements, but the thick plate element he suggested cannot strictly 
pass the thick plate patch test. 

Based on the displacement field of the rectangular thin plate element ACM, 
reference [16] developed a rectangular thick plate element with 12 DOFs by 
introducing additional displacement field and linear shear strain fields. The key 
point is that two generalized conforming conditions are adopted: (1) the conforming 
conditions for displacements between two adjacent elements; (2) the generalized 
conforming conditions between shear strains and displacements. The element 
obtained can pass pure bending, pure twisting and constant shear force patch 
tests, which provides the first successful experience for the schemes of transition 
from thin plate elements to thin / thick plate elements.  

In reference [17], the displacement fields of the thick plate element were 
decomposed into two parts: displacement fields for the thin plate element and 
supplementary displacement fields for the thick plate element. Then, based on the 
two thin plate elements LR12-2[20] and ACM[21], two new thin/thick plate 
elements LFR1 and LFR2 were constructed. Now, their construction procedure 
will be introduced as follows.  

8.7.1 Decomposition of the Displacement Fields of the Rectangular  
Thick Plate Element 

Consider a rectangular thick plate element shown in Fig. 8.13. Its nodal 
displacement vector is composed of 12 DOFs 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq
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Figure 8.13 Rectangular thick plate element 

The displacement fields in the domain of the element are assumed as 

0

0
0

0
0

x x x x

y y y y

w w w
w
x

w
y

 (8-165) 

where w, x, y denote the displacements of the thick plate element; 0w , 0
x ,

0
y  denote the displacements of a thin plate element that can be used; and w ,
x , y  denote the supplementary displacements of the thick plate element.  
The boundary displacements of the thick plate element are assumed as 

0

0

0
s s s

n n n

w w w
 (8-166) 

in which n and s denote the normal and tangential directions of the boundary, 
respectively.  

8.7.2 Determination of the Supplementary Displacements of the  
Thick Plate Element 

In order to determine the supplementary displacement fields of the thick plate 
element, the transverse shear strain s and the supplementary displacements w ,

s  and n  along each element side are firstly determined from the formulas of 
thick/thin beam; then the supplementary displacements w , x  and y  in the 
domain of the element are determined. 

Firstly, from Eq. (8-99c), the transverse shear strains along each element side 
are as follows: 
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1
12 1 2 1 2

1
43 4 3 4 3

2
23 2 3 2 3

2
14 1 4 1 4

[ ( )]

[ ( )]

[ ( )]

[ ( )]

x x x

x x x

y y y

y y y

w w a
a

w w a
a

w w b
b

w w b
b

 (8-167) 

From Eq. (8-100), we obtain 

2 2

1 22 2,
10 10(1 ) 2 (1 ) 2
3 3

h h
a b

h h
a b

 (8-168) 

h is the thickness of the plate;  is the Poisson’s ratio.  
Secondly, the supplementary displacements w , s  and n  along each element 

side are determined. From the fundamental formulas of the thick beam element 
(8-99a,b), w  and s  can be written as 

(1 )(1 2 )
6 (1 )s

w dt t t
t t

 (8-169) 

Furthermore, n  can be assumed to be zero. Therefore, the supplementary 
displacements along 4 boundary lines can be obtained as 

       

2 2
12 12

2 2
23 23

2 2
43 43

2 2
14 14

1 3side12 (1 ), (1 ), 0
2 2
1 3side 23 (1 ), (1 ), 0
2 2
1 3side 43 (1 ), (1 ), 0
2 2
1 3side14 (1 ), (1 ),
2 2

x x x y

y y y x

x x x y

y y y

w a

w b

w a

w b 0x

 (8-170) 

where x
a

, y
b

.

Finally, the supplementary displacements in the domain of the element are 
determined. According to Eq. (8-170), the interpolation formulas for the 
supplementary displacement field in the domain of the element can be written as 
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2
12 43

2
14 23

2
12 43

2
14 23

1 1 (1 )
2 2 2

1 1 (1 )
2 2 2
3 1 1 (1 )
2 2 2
3 1 1 (1 )
2 2 2

x x
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It can be seen that, the supplementary displacements in the domain of the element 
given in Eq. (8-171) are exactly compatible with the boundary supplementary 
displacements given in Eq. (8-170).  

Substituting Eq. (8-167) into Eq. (8-171), the supplementary displacements in 
the domain of the element can be obtained as: 

4 4
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1 1

4 4
22

1 1

4 4
21

1 1

4 4
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1 1

(1 ) (1 ) (1 )
4
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i i i yi i
i i

x i i i xi i
i i

y i i i yi i
i i

w w a

w b

w a
a

w b
b

2(1 )

 (8-172) 

8.7.3 Two Thin/Thick Plate Elements 

Two new universal elements LFR1 and LFR2 for both thick and thin plates are 
constructed based on two high quality thin plate elements (elements LR12-2 and 
ACM), respectively. The displacement field 0w  of the thin plate element can be 
expressed by 

4
0 0

1
i i

i
w N q  (8-173) 

where

0 0 0 0

T

[ ]

[ ]
i i xi yi

i i xi yi

N N N

w

N

q
 (8-174) 
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For element LFR2 

0 2 2
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8

(1 )(1 )(1 )
8

i i i i i

xi i i i
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By the superposition of the displacement fields of the thin plate element given 
in Eq. (8-173) and the supplementary displacement fields of the thick plate 
element given in Eq. (8-172), the displacement fields of the thick plate element 
can be obtained. Then, the element stiffness matrices for two thin/thick plate 
elements can be derived according to the conventional procedure.  

The above schemes have been further applied in references [18,19]. Since the 
generalized bubble displacement fields are introduced, the accuracy of the 
elements is improved, and the elements are insensitive to mesh distortion.  

8.7.4 Numerical Examples 

Example 8.5 The central deflection of simply-supported and clamped square 
plates (the side length is L) subjected to uniform load q. The Poisson’s 0.3 .
The results by the elements LFR1 and LFR2 are given in Table 8.15. 

It can be seen from Table 8.15 that, from thin plates to thick plates, elements 
LFR1 and LFR2 both provide results with high precision, but their derivation 
procedures are much simpler than that of the element in [16].  

Example 8.6 Examine the convergence of elements LFR1 and LFR2 by 
refining the mesh. Tables 8.16 and 8.17 give the results for a thin square plate 
( 3/ 10h L ) and a thick square plate ( / 0.3h L ) by using different meshes.  

From Tables 8.16 and 8.17, it can be seen that, the elements LFR1 and LFR2 
both have good convergence; when / 0.001h L , the elements LFR1 and LFR2 
will degenerate to be the thin plate elements LR12-2 and ACM, respectively.  
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Table 8.15 The central deflection coefficient of square plates subjected to uniform 

load
4

100
qL

D

Simply-supported Clamped 
h/L

Analytical LFR1 LFR2 [16] Analytical LFR1 LFR2 [16] 
10–11 0.4062 0.4062 0.4105 0.4044 0.1265 0.1263 0.1290 0.1290
10–3 0.4062 0.4062 0.4105 0.4044 0.1265 0.1263 0.1290 0.1293
10–2 0.4062 0.4062 0.4106 0.4045 0.1265 0.1264 0.1293 0.1293
0.1 0.4273 0.4224 0.4304 0.4242 0.1499 0.1482 0.1522 0.1521
0.15 0.4536 0.4480 0.4566 0.4502 0.1798 0.1762 0.1802 0.1801
0.20 0.4906 0.4845 0.4933 0.4869 0.2167 0.2144 0.2183 0.2181
0.25 0.5379 0.5312 0.5401 0.5336 0.2675 0.2623 0.2661 0.2658
0.30 0.5956 0.5879 0.5968 0.5902 0.3227 0.3198 0.3235 0.3229
0.35 0.6641 0.6542 0.6631 0.6564 0.3951 0.3866 0.3902 0.3896

Note: a 10 10 mesh is used for the whole plate. 

Table 8.16 Results for a thin plate ( 3/ 10h L ) by different meshes (uniform load) 

Central deflection 
4

100
qL

D
 Moment

2

10
qL

Simply-supported Clamped Simply-supported 
(central)

Clamped
(mid-side) 

Mesh for 
whole
plate

LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 
2 2 0.3906 0.5063 0.1480 0.1480 0.6094 0.6602 0.3551 0.3551
4 4 0.4052 0.4328 0.1243 0.1403 0.5123 0.5217 0.4706 0.4761
8 8 0.4062 0.4129 0.1261 0.1304 0.4873 0.4892 0.5000 0.5028

16 16 0.4062 0.4079 0.1265 0.1275 0.4810 0.4814 0.5096 0.5104
Analytical 0.4062 0.1265 0.4789 0.5133

Table 8.17 Results for a thick plate ( / 0.3h L ) by different meshes (uniform load) 

Central deflection
4

100
qL

D
 Moment

2

10
qL

Simply-supported Clamped Simply-supported 
(central)

Clamped
(mid-side) 

Mesh for 
whole
plate

LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 LFR1 LFR2 
2 2 0.5648 0.7081 0.3806 0.3806 0.8422 0.8395 0.4089 0.4089
4 4 0.5706 0.6201 0.3207 0.3377 0.5907 0.5739 0.4927 0.4604
8 8 0.5855 0.5992 0.3194 0.3250 0.5092 0.5031 0.4912 0.4604

16 16 0.5906 0.5942 0.3204 0.3219 0.4867 0.4850 0.4748 0.4546
Analytical 0.5956 0.3227 0.4789 0.4260
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Abstract A simple displacement-based, quadrilateral 20 DOF (5 DOF per 
node) bending element based on the first-order shear deformation theory (FSDT) 
for the analysis of the arbitrary laminated composite plates is presented in this 
chapter. This element is constructed by the following procedure: (1) the 
variation functions of the rotation and the shear strain along each side of the 
element are determined using the Timoshenko’s beam theory; and (2) the 
shear strain, rotation and in-plane displacement fields in the domain of the 
element are then determined using the technique of improved interpolation. 
In fact, this is the scheme of assuming rotation and shear strain fields which 
has been introduced in the previous chapter. Furthermore, a simple hybrid 
procedure is also proposed to improve the stress solutions. The proposed 
element, denoted as CTMQ20, possesses the advantages of both the 
displacement-based and hybrid elements. Thus, excellent results for both 
displacements and stresses, especially for the transverse shear stresses, can 
be obtained. 

Keywords finite element, laminated composite plate, generalized conforming, 
first-order shear deformation theory (FSDT), hybrid-enhanced post-processing 
procedure.

9.1 Introduction 

During the past 40 years, high performance composite materials have been 
playing very important roles in the design of modern industrial products and 
structures for their high strength-to-weight and stiffness-to-weight ratios, and have 
been broadly used in many high-tech areas, such as aerospace, building, transport, 
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medicine, and so on. Laminated composite plate is one of the most popular 
structural components. Due to its particularities and complexity in construction, 
studies on appropriate computational theories and methods for these structures 
attract many researchers all the while. The finite element method provides an 
effective way of solution for such laminated composite plates. Various methods 
have been proposed based on the following theories[1]:

The classical lamination theory based on Kirchhoff hypothesis (CLT);
First-order shear deformation theory (FSDT);
Higher-order shear deformation theory (HSDT);
Layer-wise lamination theory (LLT);
Three-dimensional (3D) elasticity. 

The classical lamination theory (CLT)[2,3], which is an extension of the classical 
thin plate theory to laminated plates, neglects the effects due to transverse shear 
strains and requires C1 continuity in displacement fields. The errors in such a 
theory naturally increase as the thickness-span ratio of the plate increases. The 
first-order shear deformation theory (FSDT) is based on the Reissner-Mindlin 
plate theory[4,5]. With the consideration of the transverse shear deformation effect 
on the plates, FSDT only requires C0 continuity and can be used from thin to 
moderately thick plates. But, in FSDT, the transverse shearing strains/stresses are 
assumed constant through the plate thickness, which is contradictory to the zero 
shear stress conditions on the bounding planes of the plate. Furthermore, several 
fictitious shear correction coefficients must be introduced. For overcoming the 
limitations of FSDT, higher-order shear deformation theories (HSDT) have been 
proposed by some researchers. Two different approaches have been commonly 
employed: single-layer and multi-layer formulations. The former increases the 
order considered for the displacement representation in the thickness coordinates[6–10].
The latter assumes a representation formula for the displacement field in each 
layer, similar to that of layer-wise lamination theory[11,12]. The solutions of these 
higher order theories are closer to the 3D elasticity theory than those of the two 
former plate theories. This is especially so for very thick cases. However, the 
computational cost will be increased significantly. 

FSDT is usually considered the best compromise between the capability for 
prediction and computational cost for a wide class of applications. Some methods 
have been proposed to solve the above-mentioned problems of the FSDT. For 
example, the distribution of transverse shear stresses can be evaluated by the 3D 
elasticity equilibrium equation[13]; Vlachoutsis[14] presented a simple procedure to 
calculate the shear correction factors for laminated plates and shells under 
cylindrical bending; Auricchio et al.[15] proposed a numerical method for solving 
the shear correction coefficients of arbitrary laminated composite plates; Rolfes 
et al.[16] presented a simple post-processing approach to obtain improved transverse 
shear stresses in finite element analysis based on FDST; and Rolfes et al.[17] even 
presented a simple and accurate post-processing method for the FSDT to calculate 
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the transverse normal stress, which was initially assumed to be zero. These efforts 
make it more convenient and reasonable to use the FSDT in practical applications.  

New finite elements based on the FSDT are still proposed by many 
researchers[15, 18, 20]. Since many simple displacement-based elements adopt simple 
interpolation functions, they are unable to provide a satisfactory recovery of the 
transverse shear stresses. Therefore, the hybrid or mixed-hybrid elements have 
been playing a leading role in the analysis of the composite plates[21]. However, the 
formulations of the hybrid elements are more complicated than that of the 
displacement-based elements. Besides, shear locking may also be a problem in the 
construction of the laminated composite plate elements. How to develop a simple 
but effective model has been a problem for a long time. 

In the first section of this chapter, the first-order shear deformation theory 
(FSDT) is introduced briefly, and a set of formulae of the Timoshenko’s laminated 
composite beam element are also given for developing the plate element; the 
subsequent sections will introduce new generalized conforming laminate composite 
plate elements and a new hybrid-enhanced post-processing procedure for transverse 
stress solutions which are proposed in [22,23]. 

9.2 Fundamental Theory 

9.2.1 First-Order Shear Deformation Theory for Laminated  
Composite Plates (FSDT) 

With reference to Fig. 9.1, for a linear elastic arbitrary composite plate with n
layers, the kinematics is governed by the mid-plane displacements u0, v0, the 
transverse displacement (deflection) w and rotations x and y:

Figure 9.1 Forces and displacements at the mid-plane of a laminated composite plate 
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 (9-1) 

Therefore, the total in-plane strain  is: 

0 z  (9-2) 

where 0  and  are the in-plane strain of the mid-plane and the curvature vector 
of the plate, respectively, which are given below:  

T[ ]x y xy  (9-3) 

T0 0 0 0
0 0 0 0 T[ ]x y xy

u v u v
x y y x

 (9-4) 

T
T[ 2 ] y yx x

x y xy x y y x
 (9-5) 

The transverse shear strain vector is: 
T

T[ ]x y x y
w w
x y

 (9-6) 

The stress-strain relationship with respect to the principal material axes, 1-axis 
and 2-axis, for the kth (k 1,2, , n) layer is:  
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where 1k, 2k, 12k, 23k and 13k are the two principal direct stresses, the in-plane 
shear stresses and the transverse shear stresses of the kth layer, respectively; 1k,

2k, 12k, 23k and 13k are the corresponding strains; E1k and E2k are the Young’s 
modulus in the direction of the fibres (1-axis) and transverse to the fibres (2-axis), 
respectively; G12k is the in-plane shear modulus, G23k and G13k are the transverse 

shear modulus, 12k is the major Poisson’s ratio, and 2
21 12

1

k
k k

k

E
E

.

Thus, the stress-strain relationship with respect to x-axis and y-axis for the kth
(k 1,2, , n) layer is  
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in which 2
1k , 1 2k k  and 2

2k  are the shear correction coefficients; 
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cos , sink k k kl m  (9-13) 

k is the angle between the x-axis and the fiber direction 1-axis of the kth layer. 
The constitutive relationship of the laminated composite plate can be expressed as: 

0

p p p

N A B
C

M B D
 (9-14) 

sQ C  (9-15) 

where N is the membrane force vector of the mid-plane; M is the bending 
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moment vector; Q is the transverse shear force vector; A is the extensional 
stiffness; B is the bending-extension stiffness; D is the bending stiffness; Cs is the 
shear stiffness. These matrices can be expressed in the following forms:  

T[ ]x y xyN N NN , T[ ]x y xyM M MM  (9-16) 

T[ ]x yQ QQ  (9-17) 

11 12 16
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16 26 66

D D D
D D D
D D D

D

(9-18)

2 0 0
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20
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ij ij ijk k kh
k

C Q z Q h h i j  (9-21) 

where hk is the z-coordinate of the upper surface for the kth layer, 0 / 2h h
and / 2nh h , h is the thickness of the plate. 

The inverse relations of Eqs. (9-14) and (9-15) are as follows: 

p p pS  (9-22) 

sS Q  (9-23) 

where
1

3 61
p p

3 6

e

b

SA B
S C
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 (9-24) 

1
s sS C  (9-25) 
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Substitution of Eq. (9-2) into Eq. (9-10) yields: 

0( )k k zQ  (9-26) 

Then, substitution of Eqs. (9-14) and (9-24) into the above equation yields: 

p( )k k e bzQ S S  (9-27) 

9.2.2 Locking-free Timoshenko Laminated Composite Beam  
Element

As shown in Fig. 9.2, for a Timoshenko laminated composite beam element, the 
formulas of deflection w, rotation  and shear strain  for the element are still 
given by Eqs. (8-99) and (8-100), in which D and C should be replaced by the 
following Dd and Cd :

3 3
11 1

1

1 ( ) ( )
3

n

d k k kij
k

D Q h h  (9-28) 

with

4 2 2 4
11 11 12 66 22( ) 2( 2 )k k k k kij k ij k ij k ij k ijQ Q l Q Q l m Q m  (9-29) 

cos( ), sin( )k kk ij ij k ij ijl m  (9-30) 

where ij  is the angle between the x-axis and the beam (see Fig. 9.2). k ij  is 
the angle between the beam ij  and the 1-axis of the kth layer.  

2 2 2 2
1 2 55 1

1
( ) ( ) ( )

n

d k k kij ij ij
k

C k l k m Q h h  (9-31) 

Figure 9.2 The orientation of a Timoshenko beam element ij  in the coordinate 
system xOy and the material principal coordinate system O12 of the kth layer 
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with

2 2
55 55 44( )k k kij ij ijQ Q l Q m  (9-32) 

cos , sinij ij ij ijl m  (9-33) 

9.3 New Element CTMQ20 for the Analysis of Laminated  
Composite Plates 

To construct the new laminated composite plate elements by using the generalized 
conforming thick-thin plate elements is a new scheme proposed recently. In 
references [22] and [23], two new models based on FSDT, TMQ20 and CTMQ20, 
have been successfully developed. They are constructed by adding the bilinear 
in-plane displacement field to the formulations of the quadrilateral thick-thin 
elements TMQ[24] and ARS-Q12[25], respectively. This section will introduce the 
construction procedure of the element CTMQ20 proposed in [23]. 

Consider the quadrilateral arbitrary laminated composite plate element shown 
in Fig. 9.3. The element nodal displacement vector is: 

T
1 2 3 4

T

[ ]
[ ] ( 1,2,3,4)

e

i i i i xi yiu v w i
q q q q q
q

 (9-34) 

Figure 9.3 A 4-node quadrilateral laminated composite plate element 

9.3.1 Interpolation Formulas for the Shear Strain Fields 

1. Shear strain along the element sides 

According to Eq. (8-99c), the transverse shear strain along the tangential direction 
(s-direction) of each side can be written as: 
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where s1 s2 s3 s4, , and  are the shear strains along sides 23 , 34 , 41  and 12 , 
respectively; d1, d2, d3 and d4 are the lengths of sides 23 , 34 , 41  and 12 , 
respectively (refer to Fig. 9.4).  

Figure 9.4 The shear strain si  along each element side and the side length 
( 1,2,3,4)id i

1 2 3 2 3 4 3 4 1 4 1 2

1 3 2 2 4 3 3 1 4 4 2 1

b y y b y y b y y b y y
c x x c x x c x x c x x

 (9-36) 

2

6
,

1 12
i di

i i
i di i

D
C d

  (i 1,2,3,4) (9-37) 

where Ddi and Cdi are given by Eqs. (9-28) and (9-31), respectively. Note that when 
h approaches zero, i will approach zero. Hence, the transverse shear strains given 
by Eq. (9-35) will also approach zero. 

Let

*
s si i id   (i 1,2,3,4) (9-38) 

* * * * * T
s s1 s2 s3 s4[ ]  (9-39) 

Then we have 

* *
s

eq  (9-40) 
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where
* * * * * T

1 2 3 4[ ]                                       

1 1 1 1 1

* *
1 2

3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

1 1 1 1 1

2 2 2 2 2 2 2 2 2 2* *
3 4

3 3 3

0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 2 0 0 2

0 0 2 0 0 0 0 0
0 0 2 0 0 2
0 0 0 0 0 0 0 2
0 0 0 0 0

c b

c b
c b c b

c b
c b c b

c b3 3

0 0 0 0 0
(9-41)

2. Nodal shear strains xi and yi

The direction cosines of each element side are defined as follows (refer to Fig. 9.5): 

4 4
12 1 12 1

4 4

1 1
23 23

1 1

2 2
34 34

2 2

3 3
41 2 41 2

3 3

cos( , ) cos , cos( , ) sin

cos( , ) , cos( , )

cos( , ) ,cos( , )

cos( , ) cos ,cos( , ) sin

c bs x s y
d d

c bs x s y
d d
c bs x s y
d d

c b
s x s y

d d

 (9-42) 

With reference to Fig. 9.5, there are two sides, 41  and 12 , meeting at the node 1. 
The shear strain along 41 and 12 , s3  and s4 , respectively, which are constants, 
can be expressed in terms of the nodal shear strain ( 1x , 1y ) according to the 
geometric relation as follows:  

Figure 9.5 The normal and tangential direction along element sides 
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1 1s4 12 12 1 1

1 1s3 41 41 2 2

cos( , ) cos( , ) cos sin
cos( , ) cos( , ) cos sin

x x

y y

s x s y
s x s y

 (9-43) 

Note 

3 4 4 3
2 1 2 1 2 1

3 4

sin( ) sin cos cos sin
b c b c

d d
 (9-44) 

therefore, Eqs. (9-43), (9-42) and (9-38) yield 

*
1 3 4 s4

*
1 3 43 4 4 3 s3

1x

y

b b
c cb c b c

 (9-45a) 

Similarly, for node 2 , node 3 and node 4, we obtain 

*
2 4 1 s1

*
2 4 14 1 1 4 s4

1x

y

b b
c cb c b c

 (9-45b) 

*
3 1 2 s2

*
3 1 21 2 2 1 s1

1x

y

b b
c cb c b c

 (9-45c) 

*
4 2 3 s3

*
4 2 32 3 3 2 s2

1x

y

b b
c cb c b c

 (9-45d) 

Then we have 
*

s s
*

s s

xi

yi

X
Y

 (9-46) 

where
T

1 2 3 4[ ]xi x x x x , T
1 2 3 4[ ]yi y y y y  (9-47) 

34

3 4 4 3 3 4 4 3

4 1

4 1 1 4 4 1 1 4
s

2 1

1 2 2 1 1 2 2 1

3 2

2 3 3 2 2 3 3 2

0 0

0 0

0 0

0 0

bb
b c b c b c b c

b b
b c b c b c b c

b b
b c b c b c b c

b b
b c b c b c b c

X  (9-48a) 
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34

3 4 4 3 3 4 4 3

4 1

4 1 1 4 4 1 1 4
s

2 1

1 2 2 1 1 2 2 1

3 2

2 3 3 2 2 3 3 2

0 0

0 0

0 0

0 0

cc
b c b c b c b c

c c
b c b c b c b c

c c
b c b c b c b c

c c
b c b c b c b c

Y  (9-48b) 

3. Interpolation formula for the shear strain fields within the element 

The element shear strain fields are assumed as: 

0 0 0 0
1 1 2 2 3 3 4 4

0 0 0 0
1 1 2 2 3 3 4 4

x x x x x

y y y y y

N N N N
N N N N

 (9-49) 

where 0
iN  is the bilinear shape function, i.e.,  

0
1

0
2

0
3

0
4

1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4

N

N

N

N

 (9-50) 

Substitution of Eqs. (9-40) and (9-46) into Eq. (9-49) yields 

0 *
s s

s0 *
s s

x e e

y

N X
q B q

N Y
 (9-51) 

where Bs is the shear strain matrix of the element, 

0 *
s s

s 0 *
s s

N X
B

N Y
 (9-52) 

0 0 0 0 0
s 1 2 3 4[ ]N N N NN  (9-53) 
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9.3.2 Interpolation Formulas for the Rotation Fields 

1. The mid-side normal and tangential rotations of each element side 

Let node 5, 6, 7 and 8 be the mid-side nodes of the sides 23 , 34 , 41  and 12 , 
respectively (refer to Fig. 9.6). 

Figure 9.6 The mid-side node of each element side 

The normal rotation n  and the tangential rotation s  along side 23  can be 
expressed as 

1 1

1 1123 23

1 xn

ys

b c
c bd

 (9-54) 

Then, for the node 2 and 3 of the side 23 , we obtain  

22 1 1

22 1 1123

1 xn

ys

b c
c bd

, 33 1 1

33 1 1123

1 xn

ys

b c
c bd

 (9-55) 

The variation of the normal rotation n  along each side is assumed to be linear. 
Therefore, for node 5, we obtain 

5 2 3 1 2 3 1 2 323 23
1

1 1[( ) ( ) ] [ ( ) ( )]
2 2n n n x x y yb c

d
 (9-56a) 

Similarly, for node 6, 7 and 8, we obtain 

6 2 3 4 2 3 4
2

1 [ ( ) ( )]
2n x x y yb c

d
 (9-56b) 

7 3 4 1 3 4 1
3

1 [ ( ) ( )]
2n x x y yb c

d
 (9-56c) 

8 4 1 2 4 1 2
4

1 [ ( ) ( )]
2n x x y yb c

d
 (9-56d) 
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The tangential rotation s  on the nodes 5,6,7 and 8 can be determined by 
Eq. (8-99b): 

5 1 3 2 1 1 2 3 1 2 3
1 1

6 2 4 3 2 2 3 4 2 3 4
2 2

7 3 1 4 3 3 4 1 3 4 1
3 3

8 4 2 1
4

3 1(1 2 )( ) (1 6 )[ ( ) ( )]
2 4

3 1(1 2 )( ) (1 6 )[ ( ) ( )]
2 4
3 1(1 2 )( ) (1 6 )[ ( ) ( )]

2 4
3 (1 2 )( )

2

s x x y y

s x x y y

s x x y y

s

w w c b
d d

w w c b
d d

w w c b
d d

w w
d 4 4 1 2 4 1 2

4

1 (1 6 )[ ( ) ( )]
4 x x y yc b

d
(9-57)

2. The rotations x  and y  of the mid-side nodes 

For node 5, which is the mid-side node of side 23 , ( 5x, 5y) can be obtained 
from Eq. (9-54) as follows:  

5 51 1

5 51 11

1x n

y s

b c
c bd

 (9-58) 

Similarly, ( 6x, 6y), ( 7x, 7y) and ( 8x, 8y) can be obtained. By coupling these 
expressions with Eqs. (9-56) and (9-57), we obtain 

e
x x

e
y y

F q
F q

 (9-59) 

where
T

5 6 7 8
T

5 6 7 8

[ ]

[ ]
x x x x x

y y y y y

 (9-60) 

1 2 3 4[ ]x x x x xF F F F F  (9-61) 

1 2 3 4[ ]y y y y yF F F F F  (9-62) 

2
23 3 3 3

3 3 3 32 2 21
3 3 3

2
24 4 4 4

4 4 4 42 2 2
4 4 4

0 0 0 0 0
0 0 0 0 0

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

x

c c b c
b

d d d

c c b cb
d d d

F  (9-63a) 
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2
21 1 1 1

1 1 1 12 2 2
1 1 1

2

2
24 4 4 4

4 4 4 42 2 2
4 4 4

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

0 0 0 0 0
0 0 0 0 0

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

x

c c b cb
d d d

c c b cb
d d d

F  (9-63b) 

2
21 1 1 1

1 1 1 12 2 2
1 1 1

2
22 2 2 2

3 2 2 2 22 2 2
2 2 2

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

0 0 0 0 0
0 0 0 0 0

x

c c b cb
d d d

c c b cb
d d d

F  (9-63c) 

2
22 2 2 2

2 2 2 22 2 2
2 2 2

4 2
23 3 3 3

3 3 3 32 2 2
3 3 3

0 0 0 0 0

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

3 310 0 (1 2 ) (1 6 ) (1 2 )
2 2 2 4

0 0 0 0 0

x

c c b cb
d d d

c c b cb
d d d

F  (9-63d) 

2
23 3 3 3

3 3 3 32 2 21
3 3 3

2
24 4 4 4

4 4 4 42 2 2
4 4 4

0 0 0 0 0
0 0 0 0 0

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

y

b b c b
c

d d d

b b c bc
d d d

F  (9-64a) 

2
21 1 1 1

1 1 1 12 2 2
1 1 1

2

2
24 4 4 4

4 4 4 42 2 2
4 4 4

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

0 0 0 0 0
0 0 0 0 0

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

y

b b c bc
d d d

b b c bc
d d d

F  (9-64b) 
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2
21 1 1 1

1 1 1 12 2 2
1 1 1

2
22 2 2 2

3 2 2 2 22 2 2
2 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

0 0 0 0 0
0 0 0 0 0

y

b b c bc
d d d

b b c bc
d d d

F  (9-64c) 

2
22 2 2 2

2 2 2 22 2 2
2 2 2

4 2
23 3 3 3

3 3 3 32 2 2
3 3 3

0 0 0 0 0

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

3 3 10 0 (1 2 ) (1 2 ) (1 6 )
2 4 2 2

0 0 0 0 0

y

b b c bc
d d d

b b c bc
d d d

F  (9-64d) 

3. Interpolation formulas for the rotation fields x  and y  within the element 

The rotation fields x and y within the element can be expressed in terms of the 
node rotations xi and yi (i 1, 2, , 8):

8

1

8

1

x i xi
i

y i yi
i

N

N
 (9-65) 

where

1

2

3

4

1 (1 )(1 )(1 )
4
1 (1 )(1 )(1 )
4
1 (1 )(1 )(1 )
4
1 (1 )(1 )(1 )
4

N

N

N

N

2
5

2
6

2
7

2
8

1 (1 )(1 )
2
1 (1 )(1 )
2
1 (1 )(1 )
2
1 (1 )(1 )
2

N

N

N

N

 (9-66) 

Substituting Eq. (9-59) into Eq. (9-65), the element rotation fields x and y can 
be expressed by the element nodal displacement vector qe.
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9.3.3 Interpolation Formulas for the In-Plane Displacement Fields  
of the Mid-Plane 

The in-plane displacement fields u0 and v0 of the mid-plane can be expressed as:  

4
0 0

1

4
0 0

1

i i
i

i i
i

u N u

v N v
 (9-67) 

where 0
iN  is given by Eq. (9-50). 

9.3.4 The In-Plane Strain and Curvature Fields 

The in-plane strain (9-4) of the mid-plane can be rewritten as:  

0 0 eB q  (9-68) 

where

0 0 0 0 0
1 2 3 4[ ]B B B B B  (9-69) 

0

0
0

0 0

0 0 0 0

0 0 0 0

0 0 0

i

i
i

i i

N
x

N
y

N N
y x

B   (i 1,2,3,4) (9-70) 

1x

y

J  (9-71) 

J –1 is the Jacobian inverse, and it is the same as that of the bilinear isoparametric 
quadrilateral element Q4.  

From Eqs. (9-5), (9-65) and (9-59), the curvature fields can be rewritten as:  

0 1 2 b( ) e e
x yH H F H F q B q  (9-72) 
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where Bb is the bending strain matrix:  

b b1 b2 b3 b4[ ]B B B B B  (9-73) 

0 01 02 03 04[ ]H H H H H  (9-74) 

0

0 0 0 0

0 0 0 0

0 0 0

i

i
i

i i

N
x

N
y

N N
y x

H   (i 1,2,3,4) (9-75) 

5 6 7 8

1

5 6 7 8

0 0 0 0

N N N N
x x x x

N N N N
y y y y

H ,
5 6 7 8

2

5 6 7 8

0 0 0 0

N N N N
y y y y

N N N N
x x x x

H  (9-76a,b) 

where Ni(i 1,2, ,8) is given by Eq. (9-66). 
Then, the p  in Eq. (9-14) can be expressed as: 

00

p p
b

e eB
q B q

B
 (9-77) 

9.3.5 The Stiffness Matrix of the Element 

The element strain energy is: 

T T T T
p p p s s s

1 1d d
2 2e e

e e e e e

A A

U A Aq B C B q q B C B q  (9-78) 

where Ae is the area of the element; Cp and Cs are given by Eqs. (9-14) and (9-19), 
respectively. The element stiffness matrix is 

T T
p p p s s s

1 1 1 1T T
p p p s s s1 1 1 1

d d

d d d d

e e

e

A A

A AK B C B B C B

B C B J B C B J (9-79)
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where J  is the Jacobian determinant. 
A standard 2 2 Gauss integration scheme is found to be sufficient for the 

calculation of Eq. (9-79), even though 3 3 integration is theoretically necessary. 
No spurious mode is presented in the element. Note that this 2 2 scheme should 
not be confused with the standard reduced integration scheme because both 2 2
and 3 3 integration schemes can avoid the shear locking problem and give 
proper solutions. 

This element is denoted as CTMQ20. 

9.3.6 Element Load Vector 

The deflection field w is not used during the course of calculating the element 
stiffness matrix. But, for calculating the effective load vector, w can be assumed 
as follows: 

e
ww N q  (9-80) 

with

0 0 0 0
1 2 3 4[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]w N N N NN

 (9-81) 

where 0
iN  is given in Eq. (9-50). Then, the element equivalent nodal forces due 

to a pressure ( , )q x y can be given by 

T
1 2 3 4[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]e

z z z zf f f ff
(9-82)

with 
1 10 0

1 1
( , ) d * ( , ) d d

ezi i iA
f q x y N A q N J   (i 1,2,3,4) (9-83) 

9.4 The Hybrid-Enhanced Post-Processing Procedure for 
Element Stresses 

According to the standard procedure of displacement-based elements, the stress 
solutions of the plate element can be solved from the stress-strain relations (9-10) 
and (9-11). But, the transverse shear stress solutions obtained from Eq. (9-11) are 
all constants at each layer of the plate, which neither reflect the actual nonlinear 
continuous distributions of the transverse shear stresses, nor satisfy the zero shear 
stress conditions on the bounding planes of the plate. When the 3D elasticity 
differential equilibrium equations are used to compute the transverse shear stresses, 
the procedure for the displacement-based elements is quite complicated, and hard 



Chapter 9 Generalized Conforming Element for the Analysis of the ... 

287

to obtain satisfactory results. Reference [26] proposed a simple hybrid-enhanced 
post-processing procedure to improve the internal force solutions of the 
displacement-based plate elements, and references [22,23] employed this procedure 
to evaluate the internal forces and stresses of the laminated composite plate 
elements. More accurate results for stresses, especially for the transverse shear 
stresses, can be obtained. So the element CTMQ20, which uses this treatment, 
possesses the advantages of both the displacement-based and hybrid elements. 

9.4.1 The Bending Moment and Shear Force Fields 

The bending moment field M can be assumed as follows[26,27]:

M MM P  (9-84) 

in which 
T[ ]x y xyM M MM  (9-85) 

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

MP  (9-86) 

T
1 2 3 4 5 6 7 8 9 10 11 12[ ]M  (9-87) 

where ( ,  ) are the isoparametric coordinates of the quadrilateral element; i
(i 1, 2, , 12) are 12 unknown parameters. 

And, the shear field is assumed to satisfy the homogeneous equilibrium equation,  

, ,

, ,

x x x xy y
Q M

y xy x y y

Q M M
Q M M

Q P  (9-88) 

in which 

11 12 11 12 21 22 21 22

21 22 21 22 11 12 11 12

0 0 0 0 0 0
0 0 0 0 0 0Q

j j j j j j j j
j j j j j j j j

P

(9-89)
j11, j12, j21 and j22 are the components of the Jacobian inverse. 

9.4.2 The Membrane Force Field of the Mid-Plane 

The membrane force field N can be assumed as follows[28]:
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N NN P  (9-90) 

in which 

2 2
1 3
2 2

1 3

1 1 3 3

1 0 0
0 1 0
0 0 1

N

a a
b b
a b a b

P  (9-91) 

1 1 2 3 4 1 1 2 3 4

3 1 2 3 4 3 1 2 3 4

1 1( ) ( )
4 4
1 1( ) ( )
4 4

a x x x x b y y y y

a x x x x b y y y y
 (9-92) 

T
13 14 15 16 17[ ]N  (9-93) 

i (i 13, 14, , 17) are 5 unknown parameters. 

9.4.3 The Condensation Procedure 

Equations (9-14) and (9-15) can be rewritten as: 

3 12
p

3 5

N N
NM NM

M M

0
0
PN

P
PM

 (9-94) 

2 5
N

Q NQ NM
M

Q P P0  (9-95) 

By employing the Hellinger-Reissner variational principle, the energy functional 
of the laminated composite plate element can be expressed as:  

      

T T T T
p p p s p p exp

T T T
p s

T T T
p s exp

1 1d d d d
2 2
1 ( )d
2

( )d

e e e e

e

e

e
R

A A A A

NM NM NM NQ NQ NM
A

e
NM NM NQ

A

A A A A W

A

A W

S Q S Q Q

P S P P S P

P B P B q (9-96)

where Wexp is the work done by external forces. 

From the stationary condition 
e

R

NM

0 , we obtain: 



Chapter 9 Generalized Conforming Element for the Analysis of the ... 

289

1 e
NM qK K q  (9-97) 

where

T T
p s

T T
p s

( )d

( )d

e

e

NM NM NQ NQ
A

q NM NQ
A

A

A

K P S P P S P

K P B P B (9-98)

Substituting Eq. (9-97) into Eqs. (9-94) and (9-95), N, M and Q can be obtained. 
And, the element stresses of each layer can be obtained by Eq. (9-27).

9.4.4 Recovery of the Transverse Shear Stresses 

Ignoring the effects of the body forces, the stresses of the laminated composite 
plate should satisfy the following homogeneous equations: 

0

0

xyx xz

xy y yz

x y z

x y z

 (9-99) 

For the kth layer of the plate, we obtain 

b p2 2

1 2b p, b p,2

d ( ) d

[ ( ) ( ) ]d

z z

zk k k eh h

z

k e x k e yh

z z z

z z z

Q S S

Bl Q S S Bl Q S S (9-100)

in which 

0

0

x y

y x

 (9-101) 

1
1 0 0
0 0 1

Bl , 2
0 0 1
0 1 0

Bl  (9-102a,b) 

1
p, ,

1
p, ,

e
x NM x q

e
y NM y q

P K K q

P K K q (9-103)
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(, x) and (, y) denote the derivatives with respect to x and y of all components in a 
matrix. 

Finally, we obtain 

2 2
1 1 1 b p,

2 2
2 1 1 b p,

1
2 2

1 1 1 b p,
1

1
2 2

2 1 1 b p,
1

1[( ) ( ) ]
2
1[( ) ( ) ]
2

1[( ) ( ) ]
2
1[( ) ( ) ]
2

zk k k e k x

k k e k y

k

k i i e i i x
i
k

k i i e i i y
i

z h z h

z h z h

h h h h

h h h h

Bl Q S S

Bl Q S S

Bl Q S S

Bl Q S S (9-104)

9.5 Vibration Analysis of Laminated Composite Plates 

The in-plane displacement field of the element CTMQ20 can be obtained from 
Eq. (9-67): 

0
0

0
eu

v
N q  (9-105) 

where
0 0 0 0 0

1 2 3 4[ ]N N N N N  (9-106) 

0
0

0

0 0 0 0
0 0 0 0

i
i

i

N
N

N   (i 1,2,3,4) (9-107) 

The rotation field of the element CTMQ20 can be obtained from Eqs. (9-59) 
and (9-65): 

x e

y
N q  (9-108) 

where

1 2N N N  (9-109) 

1 2 3 4
1

1 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N N N N
N N N N

N

(9-110)
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2
x

y

N F
N

N F
 (9-111) 

5 6 7 8N N N NN  (9-112) 

For the deflection field w, the expression (9-80) is not the real deflection field of 
the element CTMQ20, which must be derived from the relation (9-6). In order to 
avoid complicated derivation, the following element concentrated mass matrix 
corresponding to the deflection field w is suggested here:  

4
e
w

Ah
a

a
m

a
a

 (9-113) 

where  is mass density of the plate; A is the area of the element, and 

0
0

1
0

0

a

Then the expression of the element mass matrix me can be written as: 

0
e e e e

wm m m m  (9-114) 

where m0
e is the in-plane mass matrix: 

1 1 0 T 0
0 1 1

( ) d de hm N N J  (9-115) 

m e is the mass matrix caused by the moment of inertia: 

3 1 1 T

1 1
d d

12
e hm N N J  (9-116) 

When the stacking sequences of a laminated composite plate is symmetrical with 
respect to the mid-plane, there will be no coupling existing between the bending 
actions and in-plane actions. So, if only the transverse vibration is considered, m0

e

in Eq. (9-114) can be omitted. Thus, the element mass matrix can be rewritten as: 

e e e
wm m m  (9-117) 
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After the element stiffness matrix Ke and mass matrix me are obtained, the 
vibration analysis of the plate can be performed by the usual procedure, and the 
natural frequency i can be solved by the following generalized characteristic 
equation:

2( )K m q 0  (9-118) 

where K is the global stiffness matrix; m is the global mass matrix; q is the global 
nodal displacement vector.  

9.6 Numerical Examples 

When dealing with a single layer isotropic plate, the element CTMQ20 will 
degenerate into the Mindlin plate element ARS-Q12 presented in reference [25]. 
Good overall results were obtained for displacements, internal forces and stresses. 
The focus of this section is only on the composite plates. 

Example 9.1 Simply supported square symmetric cross-ply laminated plate 
with 3 (0/90/0) or 9 (0/90/0/90/0/90/0/90/0) layers subjected to a doubly sinusoidal 
load.

This example, proposed by Pagano and Hatfield[29], is presented in Fig. 9.7. 
Each layer is strongly orthotropic and two stacking sequences are studied: ST1 
corresponds to 3 layers (0/90/0) whereas ST2 corresponds to 9 layers 
(0/90/0/90/0/90/0/90/0). In both cases, the total thickness of all the 0  layers is the  

GEOMETRY
L=1000;  h=250, 100, 20, 10, 1, 0.1 
MATERIAL (orthotropic) 
Skins: E1=25.0; E2=1.0; G12=0.5; G13=0.5; G23=0.2; 12=0.25 
ST1:0/90/0 symmetric 
ST2:0/90/0/90/0/90/0/90/0 symmetric 
BOUNDARY CONDITIONS (simply-supported: hard support mode )
on AB: u=w= x=0; on BC: u= x=0 
on CD: v= y=0   ; on DA: v=w= y=0 
LOADING (doubly sinusoidal) 

0 sin sinx yq q
L L

Figure 9.7 Square plate with 3 and 9 layers subjected to doubly sinusoidal load 
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same as that of all the 90  layers; and those layers having the same orientation 
have the same thickness. Three different meshes, i.e., 4 4, 8 8 and 16 16, are 
used to model a quadrant of the plate, and five L/t aspect ratios are considered. 
The correction factors can be obtained from reference [14] or [15]: 2

1 0.5952k ,
2
2 0.7205k  for ST1 and 2

1 0.689k , 2
2 0.611k  for ST2. 

For comparing with analytical solutions and solutions in other references, 
deflection and stresses are given in the form: 

Deflection: 
4

4
0

ˆ

12
w Qw
S hq

 with LS
h

, 1 2 23
12

12 21

[ (1 2 )]ˆ 4
(1 )

E EQ G

(Note: 23 0.25 here. It is necessary for the 3D elastic solution, but it is not  
needed for FDST) 

In-plane stresses: 2
0

1( , , ) ( , , )x y xy x y xyq S

Transverse shear stresses: 
0

1( , ) ( , )xz yz xz yzq S

Some results of the element CTMQ20 obtained together with some other 
solutions are presented in Tables 9.1 and 9.2, and the distributions of selective 
normal and transverse shear stresses along the thickness obtained by 8 8 mesh 
are plotted in Figs. 9.8 to 9.15. 

Table 9.1 Maximum deflection and stresses in 3-ply (0/90/0) square laminate com- 
posite plate (hard simply-supported mode ) subjected to doubly sinusoidal load 

S L/h Mesh & models 
w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 4
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

4

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

FSDT

4.888
4.856
4.848
4.490
4.845

0.374
0.371
0.370
0.518
0.370

0.674
0.664
0.661
0.296
0.661

0.0330
0.0333
0.0334

0.0334

0.245
0.247
0.248
0.202
0.249

0.331
0.334
0.335
0.422
0.319

10

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

REC56-Z0 2 2[19]

REC72-Z0 2 2[19]

3D elasticity[29]

FSDT

1.735
1.729
1.728
1.727
1.445
1.663
1.709
1.727

0.488
0.484
0.483
0.549
0.529
0.583
0.559
0.483

0.407
0.401
0.399
0.253
0.363
0.408

0.401/– 0.403 
0.399

0.0250
0.0252
0.0253

0.0250
0.0290

–0.0275/0.0276
0.0253

0.304
0.307
0.308
0.213

0.301
0.310

0.204
0.207
0.208
0.409

0.196
0.198
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(Continued)        

S L/h Mesh & models 
w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 4
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

50

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

REC56-Z0 2 2[19]

REC72-Z0 2 2[19]

3D elasticity[29]

FSDT

1.031
1.031
1.031
1.067
0.993
1.006
1.031
1.031

0.543
0.538
0.536
0.494
0.535
0.537
0.539
0.536

0.280
0.277
0.276
0.331
0.261
0.265
0.276
0.276

0.0212
0.0214
0.0215

0.0226
0.0230
0.0216
0.0215

0.330
0.335
0.336
0.160

0.337
0.338

0.135
0.142
0.146
0.436

0.141
0.141

100

 4 4
CTMQ20 8 8

16 16
REC56-Z0 2 2[19]

REC72-Z0 2 2[19]

3D elasticity [29]

FSDT

1.007
1.008
1.008
0.956
0.962
1.008
1.008

0.545
0.540
0.538
0.506
0.509
0.539
0.538

0.274
0.272
0.271
0.248
0.249
0.271
0.271

0.0210
0.0213
0.0213
0.0223
0.0225
0.0214
0.0213

0.329
0.335
0.337

0.339
0.339

0.130
0.134
0.140

0.139
0.139

100 000 

 4 4
CTMQ20 8 8

16 16
FSDT  
CLT[31]

1.000
1.000
1.000
1.000
1.000

0.545
0.540
0.539
0.539
0.539

0.273
0.270
0.270
0.269
0.269

0.0210
0.0212
0.0213
0.0213
0.0213

0.326
0.330
0.331
0.339
0.339

0.128
0.129
0.130
0.138
0.138

Table 9.2 Maximum deflection and stresses in 9-ply (0/90/0/90/0/90/0/90/0) square 
laminate composite plate (hard simply-supported mode ) subjected to doubly 
sinusoidal load

S=L/h Mesh & models 

w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

2, ,
2 2 5
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

4

 4 4
CTMQ20 8 8

16 16
DST 10 10[30]

FSDT

4.283
4.252
4.244
4.242
4.242

0.498
0.493
0.492
0.547
0.491

0.494
0.489
0.487
0.419
0.487

0.0214
0.0217
0.0217

0.0217

0.234
0.237
0.237
0.225
0.238

0.243
0.245
0.246
0.231
0.245

10

4 4
CTMQ20 8 8

16 16
DST 10 10[30]

LPL-20  8 8[21]

3D elasticity[29]

FSDT

1.529
1.524
1.523
1.526

1.512
1.522

0.526
0.521
0.519
0.541
0.520
0.551
0.519

0.461
0.456
0.455
0.425
0.458
0.477
0.454

0.0212
0.0214
0.0214

0.0216
0.0233
0.0215

0.246
0.249
0.249
0.219
0.248
0.247
0.250

0.228
0.230
0.231
0.257
0.228
0.226
0.230
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(Continued)        

S=L/h Mesh & models 

w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

2, ,
2 2 5
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

50

4 4
CTMQ20 8 8

16 16
DST 10 10[30]

LPL-20  8 8[21]

3D elasticity[29]

FSDT

1.021
1.021
1.021
1.020

1.021
1.021

0.545
0.539
0.538
0.522
0.540
0.539
0.538

0.438
0.434
0.433
0.447
0.434
0.433
0.432

0.0210
0.0212
0.0213

0.0214
0.0214
0.0213

0.251
0.256
0.257
0.190
0.256
0.258
0.258

0.213
0.218
0.220
0.263
0.217
0.219
0.219

100

4 4
CTMQ20 8 8

16 16
LPL-20  8 8[21]

3D elasticity[29]

FSDT

1.005
1.005
1.005

1.005
1.005

0.545
0.540
0.539
0.541
0.539
0.538

0.437
0.433
0.432
0.433
0.431
0.431

0.0209
0.0212
0.0213
0.0214
0.0213
0.0213

0.249
0.254
0.257
0.257
0.259
0.259

0.210
0.215
0.218
0.217
0.219
0.219

100 000 

4 4
CTMQ20 8 8

16 16
FSDT  
CLT[31]

1.000
1.000
1.000
1.000
1.000

0.545
0.540
0.539
0.539
0.539

0.436
0.432
0.431
0.431
0.431

0.0210
0.0212
0.0213
0.0213
0.0213

0.247
0.250
0.250
0.259
0.259

0.207
0.210
0.210
0.219
0.219

 Reference [21] pointed out that the computational error of the deflection by the element LPL-20  is big, so the 
results were not given. 

Figure 9.8 The distribution of central stress x along thickness for a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 
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Figure 9.9 The distribution of central stress y along thickness for a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.10 The distribution of xz at (0, L/2) along thickness of a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.11 The distribution of yz at (L/2, 0) along thickness of a square 3-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 
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Figure 9.12 The distribution of central stress x along thickness for a square 
9-ply plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.13 The distribution of central stress y along thickness for a square 
9-ply plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

Figure 9.14 The distribution of xz at (0, L/2) along thickness of a square 9-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 
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Figure 9.15 The distribution of yz at (L/2, 0) along thickness of a square 9-ply 
plate (doubly sinusoidal load, L/h 10, 8 8 mesh) 

With regards to the central deflection wC and maximum plane stresses x, y
and xy, the results obtained using the CTMQ20 element are in excellent agreement 
with those of the exact FSDT for all span-thickness ratio L/t. No shear locking 
happens in the thin plate limit. The results obtained using three different meshes 
show rapid convergence for the above-mentioned deflection and stresses. For 
transverse shear stresses, the element CTMQ20 can still produces good results, 
which the usual displacement-based element cannot do. 

It is obvious that the performance of the element CTMQ20 is much better than 
those obtained using the quadrilateral hybrid element LPL-20  by Wu et al.[21],
the element DST (a discrete shear triangular plate-bending element) by Lardeur et 
al.[30], REC56-Z0 (56 DOFs per element) and REC72-Z0 (72 DOFs per element) 
by Sadek[19].

Example 9.2 Simply supported (hard support mode ) anti-symmetric 
angle-ply square plate with 2 ( 45/45) or 8 [( 45/45)4]s layers subjected to 
doubly sinusoidal load. 

The geometry, the material constants and the loading are the same as those 
given in Example 9.1. All the layers have the same thickness. The boundary 
conditions (hard simply-supported mode ) are:  

 at x 0 and x L: u w y 0; at y 0 and y L, v w x 0.

Six different meshes, i.e., 4 4, 8 8, 16 16, 32 32, 64 64 and 80 80, are 
used to model the whole plate and three L/h aspect ratios are considered. For 
comparison with the analytical solution in reference [1], the shear correction 
factors are taken as: 2 2

1 2 5 / 6k k . The results are shown in Tables 9.3 and 9.4. 
It can be seen that excellent solutions for deflection and in-plane stresses can be 
obtained from the element CTMQ20. For the anti-symmetric or unsymmetric 
cases, most of the simple displacement-based elements cannot produce good 
results for the transverse shear stresses using the equilibrium equation[18]. Since 
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Table 9.3 Maximum deflection and stresses in 2-ply ( 45/45) square laminate 
composite plate (hard simply-supported mode ) subjected to doubly sinusoidal load

L/h Model & mesh w(L/2, L/2)
100E2h3/(L4q0)

x(L/2, L/2, h/2)
h2/(L2q0)

xy(0, 0, h/2)
h2/(L2q0)

xz(0, L/2, h/4)
h/(Lq0)

10

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.8042
0.8218
0.8267
0.8280
0.8283
0.8283
0.8284

0.2628
0.2543
0.2510
0.2501
0.2499
0.2498
0.2498

0.2291
0.2349
0.2341
0.2337
0.2336
0.2336
0.2336

0.1683
0.2005
0.2107
0.2134
0.2141
0.2142
0.2143

20

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.6733
0.6906
0.6961
0.6976
0.6980
0.6980
0.6981

0.2501
0.2523
0.2508
0.2501
0.2499
0.2498
0.2498

0.2211 
0.2333
0.2339
0.2337
0.2336
0.2336
0.2336

0.1324
0.1773
0.2027
0.2112 
0.2136
0.2138
0.2143

100

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.6399
0.6519
0.6550
0.6560
0.6563
0.6564
0.6564

0.2399
0.2474
0.2495
0.2499
0.2499
0.2498
0.2498

0.2157
0.2295
0.2328
0.2335
0.2336
0.2336
0.2336

0.1049
0.1194 
0.1362
0.1691
0.1980
0.2033
0.2143

Table 9.4 Maximum deflection and stresses in 8-ply [( 45/45)4]s square laminate 
composite plate (hard simply-supported mode ) subjected to doubly sinusoidal load

L/h Model & mesh w(L/2, L/2)
100E2h3/(L4q0)

x(L/2, L/2, h/2)
h2/(L2q0)

xy(0, 0, h/2)
h2/(L2q0)

xz(0, L/2, 0)
h/(Lq0)

10

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.4063
0.4157
0.4188
0.4196
0.4198
0.4198
0.4198

0.1657
0.1507
0.1461
0.1449
0.1446
0.1446
0.1445

0.1268
0.1361
0.1379
0.1383
0.1384
0.1384
0.1384

0.2131
0.2384
0.2460
0.2480
0.2485
0.2486
0.2487

20

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.2764
0.2846
0.2881
0.2892
0.2895
0.2895
0.2896

0.1575
0.1496
0.1460
0.1449
0.1446
0.1446
0.1445

0.1223
0.1353
0.1378
0.1383
0.1384
0.1384
0.1384

0.1850
0.2225
0.2408
0.2466
0.2481
0.2483
0.2487

100

4 4
8 8

CTMQ20  16 16
32 32
64 64
80 80

FSDT[1]

0.2440
0.2463
0.2471
0.2476
0.2478
0.2478
0.2479

0.1499
0.1459
0.1451
0.1448
0.1446
0.1446
0.1445

0.1283
0.1356
0.1374
0.1380
0.1383
0.1383
0.1384

0.1674
0.1791
0.1904
0.2172
0.2380
0.2416
0.2487
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the hybrid-enhanced post-processing procedure is used by the present element, it 
is obvious that good results of transverse shear stresses can be obtained.

Example 9.3 Free vibration analysis of a 3-ply (0/90/0) square plate (hard 
simply-supported mode ).

All the layers have the same thickness. Other geometry, the material constants, 
the load and the boundary conditions are the same as those given in Example 9.1. 
A 16 16 mesh is used for the whole plate and two span-thickness ratios are 
considered. For comparison with the analytical solution in reference [1], the 
shear correction factors are taken as: 2 2

1 2 1k k . The first seven dimensionless 
natural frequencies obtained are listed in Table 9.5. It can be seen that the 
element CTMQ20 can provide accurate results. 

Table 9.5 The free frequency coefficients 2
2( / ) /L h E for a 3-ply (0/90/0) 

square laminate composite plate (hard simply-supported mode )

L/h
Mode m in 
x-direction

Mode n in 
y-direction

CLT[1] FSDT[1] CTMQ20 16 16

10

1
1
1
2
2
1
2

1
2
3
1
2
4
3

15.104
22.421
38.738
55.751
59.001
62.526
67.980

12.527
19.203
31.921
32.931
36.362
44.720
47.854

12.464 ( 0.50%)
18.974 ( 1.19%)
31.377 ( 1.70%)
32.641 ( 0.88%)
35.641 ( 1.98%)
43.350 ( 3.06%)
46.722 ( 2.36%)

100

1
1
1
2
2
1
2

1
2
3
1
2
4
3

15.227
22.873
40.283
56.874
60.891
66.708
71.484

15.191
22.827
40.174
56.319
60.322
66.421
70.764

15.142 ( 0.32%)
22.659 ( 0.74%)
39.871 ( 0.75%)
56.123 ( 0.35%)
59.556 ( 1.27%)
65.939 ( 0.73%)
69.244 ( 2.14%)

 The numbers in parentheses are percentage errors. 

Example 9.4 Free vibration analysis of anti-symmetric angle-ply square plates 
(hard simply-supported mode ) with 2 ( 45/45) and 8 [( 45/45)4]s layers. 

All the layers have the same thickness. Boundary conditions are the same as 
those given in Example 9.2. There are two material cases: 

Material 1: E1 25.0; E2 1.0; G12 0.5; G13 0.5; G23 0.2; 12 0.25
Material 2: E1 40.0; E2 1.0; G12 0.6; G13 0.6; G23 0.5; 12 0.25

A 16 16 mesh is used for the whole plate, and four span-thickness ratios are 
considered. For comparison with the analytical solution in reference [1], the shear 
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correction factors are taken as: 2 2
1 2 5 / 6k k . The results of the first natural 

frequency are listed in Table 9.6. 

Table 9.6 The first natural frequency coefficients 2
2( / ) /L h E for anti- 

symmetric angle-ply square laminate composite plate (hard simply-supported mode )

Material 1 Material 2 
L/h 2-ply 

( 45/45)
8-ply 

[( 45/45)4]s

2-ply 
( 45/45)

8-ply 
[( 45/45)4]s

5

10

20

100

CTMQ20
16 16
FSDT[1]

CTMQ20
16 16
FSDT[1]

CTMQ20
16 16
FSDT[1]

CTMQ20
16 16
FSDT[1]

8.457
( 0.48%)

8.498
10.860

( 0.32%)
10.895
11.908 

( 0.21%)
11.933 
12.315

( 0.21%)
12.341

10.244
( 0.40%)

10.285
15.349

( 0.25%)
15.388
18.535

( 0.11%) 
18.555
20.049

( 0.17%)
20.084

10.285
( 4.76%)

10.799
13.002

( 4.60%)
13.629
14.149

( 4.50%)
14.815
14.581

( 4.54%)
15.274

12.842
( 0.40%)

12.893
19.242

( 0.24%)
19.289
23.237

( 0.09%)
23.259
25.134

( 0.17%)
25.176

Note: The numbers in parentheses are percentage errors. 
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Abstract A new 4-node quadrilateral finite element is developed for the 
analysis of the laminated composite plates containing distributed piezoelectric 
layers (surface bonded or embedded). The mechanical part of the element 
formulation is based on the first-order shear deformation theory (FSDT). 
The formulation is established by generalizing that of the generalized 
conforming laminated plate element CTMQ20 presented in the previous 
chapter. The layer-wise linear theory is applied to deal with electric potential. 
Therefore, the number of the electrical DOF is a variable depending on the 
number of the plate sub-layers. Thus, there is no need to make any special 
assumptions with regard to the through-thickness variation of the electric 
potential, which is the true situation. Furthermore, a new “partial hybrid”- 
enhanced procedure is presented to improve the stress solutions, especially for 
the calculation of the transverse shear stresses. The proposed element, denoted 
as CTMQE, is free of shear locking and it exhibits excellent capability in 
the analysis of thin to moderately thick piezoelectric laminated composite 
plates.

Keywords finite element, piezoelectric, laminated composite plate, 
generalized conforming, first-order shear deformation theory (FSDT), 
layerwise theory, patitial hybrid-enhanced post-processing procedure. 

10.1 Introduction 

The finite element method is a powerful tool in the analysis of the adaptive/smart 
structures. Since the early 1970s, many finite element models have been proposed 
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for analyzing such structures. Benjeddou[1] made a survey on the advances and 
trends in the aforementioned area and he found more than one hundred related 
literatures, which were mostly published in the 1990s. Many researchers are still 
actively involved in the development of new special elements, as can be seen 
from the recent publications[2 4].

The fibre-reinforced laminate composite plates play an important role in the 
modern industry due to its high strength-to-weight ratio. When the piezoelectric 
materials, which can be used for both sensors and actuators, are bonded on the 
top/bottom surface or embedded in the composite structures, their performance 
could be effectively enhanced. The design and analysis of these complicated coupled 
systems require the development of new finite elements. Most of the earlier 
models were devised using the solid 3D elements[5, 6]. Such models lead to high 
computational costs. Moreover, some numerical problems, such as shear locking, 
often take place when relatively thin structures are being analyzed. Therefore, 
many researchers prefer to develop new plate elements based on the 2D theory.  

Reddy[7] has presented theoretical formulations and finite element models based 
on the classical thin plate theory (CLT) and the third-order shear deformation 
theory (TSDT). Huang et al.[8] has also presented FSDT for studying the fully 
coupled system. To date, FSDT is usually considered the best compromise between 
the capability for prediction and computational cost for a wide class of applications. 
By simplifying the effects of the electrical potential, Jonnalagadda et al.[9] presented 
a 9-node Lagrangian element without electric DOF based on FSDT. Detwiler et 
al.[10] presented a 4-node element model generalized from the Mindlin-plate 
element, QUAD4, based on the assumption of linear variation through-thickness 
and constant in-plane electric potential. But, it may suffer from locking or spurious 
zero energy modes. Another model with one potential DOF per piezoelectric 
layer, and using uniform reduced numerical integration and hourglass stabilization 
was also proposed in [11]. Most piezoelectric plate finite element formulations 
assume the electric potential variation and poling direction along the piezoelectric 
patch thickness. Reference [4] presented a new 9-node mixed-theory element: 
The structural deformation was modelled using the FSDT whereas the layer-wise 
theory was adopted for the modeling of electrical potential. Thus, no specific 
pattern was imposed on the through-thickness variation of the electric potential.  

Reference [12] developed a 4-node quadrilateral generalized conforming element 
CTMQE for the analysis of the piezoelectric laminated composite plates. The 
mechanical part of the element formulation is based on the first-order shear 
deformation theory (FSDT) and comes from those of the element CTMQ20 
presented in the previous chapter. And, the layer-wise linear theory is applied to 
deal with electric potential. Therefore, the number of electrical DOF is a variable 
depending on the number of the plate sub-layers, and there is no need to make 
any special assumptions with regard to the through-thickness variation of the 
electric potential, which is the true situation. Furthermore, a new “partial 
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hybrid”-enhanced post-processing procedure is presented to improve the stress 
solutions, especially for the calculation of transverse shear stresses. This chapter 
will introduce the above formulations. 

10.2 The First-Order Shear Deformation Theory of  
Piezoelectric Laminated Composite Plate 

With reference to Fig. 10.1, for the n-layer linear elastic piezoelectric laminated 
composite plate considered, the kinematics is governed by the mid-plane 
displacements u0, v0, the transverse displacement w and rotations x and y. All 
the governing equations and the expressions of the strains , 0 ,  and  are 
the same as Eqs. (9-1) to (9-6). 

Figure 10.1 Internal forces and displacements at mid-plane of a piezoelectric 
laminated composite plate 

The electric field vector is: 

T
T[ ]e e e

e x y zE E E
x y z

 (10-1) 

where  is the electric field potential; e
xE , e

yE  and e
zE  are the electric-field 

intensities in x, y and z directions, respectively. 
The stress-strain relationship with respect to principal 1-axis and 2-axis for the 

kth (k 1, 2, , n) layer is: 
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2 12 22 2 32 2
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 (10-2) 
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where 1
eE , 2

eE  and 3
eE  are the electric-field intensities in 1-axis, 2-axis and 

3-axis (3-axis is an axis which is normal to the plane constructed by 1-axis and 
2-axis, and generally coincides with z-axis), respectively; eij are the piezoelectric 
constants defined in the 123 coordinate system; the other symbols are the same 
as those in Eq. (9-7) to Eq. (9-9). 

The electrical displacements of the kth layer is related to the components of 
strains and electrical field by 
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where 1
eD , 2

eD  and 3
eD  are the electric displacements in 1-axis, 2-axis and 3-axis, 

respectively; 11 , 22  and 33  are the dielectric constants.  

The stress-strain relationships in the xyz coordinate system for the kth 
(k 1, 2, , n) layer are: 
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in which ije  are the piezoelectric constants defined in the xyz coordinate system,  
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where the definitions of l and m are the same as Eq. (9-13). 
The relation of electric displacements, strains and electric-field intensities in the 

xyz coordinate system can be written as: 
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where ij  are the dielectric constants in the xyz coordinate system,  
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For convenience, Eq. (10-8) can be rewritten as 
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Then, the mechanical constitutive relationship of the plate can be expressed as: 

0

p p p
e

e
e

NN A B
C

MM B D
 (10-12a) 

s eQ C Q  (10-12b) 

in which eN , eM  and eQ  are the membrane force, bending moment and shear 
force vectors caused by the electrical field, respectively,  
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Other symbols are the same as those in Eq. (9-16) to Eq. (9-21). 

10.3 New Piezoelectric Laminated Composite Plate  
Element CTMQE 

Consider the quadrilateral plate element shown in Fig. 10.2. The generalized nodal 
displacement vector of the 4-node element is: 

T T T T T
1 2 3 4

0 1 T

[ ]

[ ]

e e e e e

e k n
i i i i xi yi i i i iu v w

q q q q q

q
  ( 1,2,3,4)i

(10-14)

where k
i (k 0,1,2, , n) are the nodal electrical potential at the interface 

between kth and (k 1)th layers. 

Figure 10.2 The quadrilateral piezoelectric laminated composite plate element 
CTMQE
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10.3.1 Interpolation Formulas for the Shear Strain Fields 

The interpolation procedure for the shear strain fields is the same as that in 
Sect. 9.3.1, and the shear strain fields are as follows: 

0 *
s s

s0 *
s s

xz e e

yz

N X
q B q

N Y
 (10-15) 

in which 
* * * * *
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where bi, ci and i are given in Eqs. (9-36) and (9-37); 0
sN  is given in Eq. (9-53); 

sX  and sY  are given in Eq. (9-48); 04 (n+1) denotes a zero matrix with 4 lines and 
n 1 columns. 

10.3.2 Interpolation Formulas for the Rotation Fields 

The interpolation procedure for the rotation fields is similar to that in Sect. 9.3.2, 
and the interpolation formulas are also the same as Eq. (9-65). Besides, the 
rotations at the mid-side node can still be expressed in terms of the DOFs at corner 
nodes. Then, Eq. (9-59) to Eq. (9-64) can be rewritten as: 

 ,e e
x x y yF q F q  (10-18) 

in which 
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where Fxi and Fyi(i 1,2,3,4) have been given in Eqs. (9-63) and (9-64). 
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10.3.3 Interpolation Formulas for In-Plane Displacement Fields  
of the Mid-Plane 

The interpolation formulas of the element in-plane displacements are the same as 
that of Eq. (9-67). 

10.3.4 The In-Plane Strain and Curvature Fields 

The in-plane strain field of the mid-plane is  

0 0 eB q  (10-20) 

in which 
0 0 0 0 0

1 3 ( 1) 2 3 ( 1) 3 3 ( 1) 4 3 ( 1)[ ]n n n nB B B B B0 0 0 0  (10-21) 

where 0
iB (i 1,2,3,4) are given in equation (9-70); 03 (n+1) denotes a zero matrix 

with 3 lines and n 1 columns.  
The curvature field can be written as 

0 1 2 b( ) e e
x yH H F H F q B q  (10-22) 

in which 

0 01 3 ( 1) 02 3 ( 1) 03 3 ( 1) 04 3 ( 1)[ ]n n n n0 0 0 0H H H H H  (10-23) 

H0i, H1 and H2 are given in Eqs. (9-75) and (9-76). 
Then we have 

00

p p
b

e eB
q B q

B
 (10-24) 

10.3.5 Interpolation Formulas for Electric Potential 

Following the layer-wise theory, the electric potential within the kth layer can be 
expressed as[3,4]:

1 1

1 1

( , , ) ( , ) ( , )k kk k
k

k k k k

z h z h
x y z x y x y

h h h h
  (hk–1 z hk)

(k 1,2, , n)       (10-25) 

where k(x,y) (k 1,2, , n) are the electric potential function at the interface 
between the (k 1)th and the kth layers. And, within the element, they are defined 
as follows: 
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So the k(x,y,z) in Eq. (10-25) can be rewritten as  

 ( , , ) e
k kx y z L N q  (10-27) 

with
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10.3.6 Electric Field 

From Eqs. (10-1) and (10-27), the element electric fields within the kth layer can 
be obtained: 
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where the subscripts (, x), (, y) and (, z) mean the derivatives with respect to x, y
and z, respectively. 

10.3.7 The Stiffness Matrix of the Element 

The element strain energy is 
1 ( )d
2 e

e
ij ij i iV

U D E V  (10-32) 



Chapter 10 Generalized Conforming Element for the Analysis of Piezoelectric ... 

313

in which ij, ij, Di and Ei are the stress tensor, strain tensor, electric-displacement 
tensor and the electric-field intensity tensor. The discrete form of Eq. (10-32) can 
be written as: 

T1 ( )
2

e e e e e e e
uu u uU q K K K K q  (10-33) 

where e
uuK is the mechanical stiffness matrix; eK is the electrical stiffness 

matrix; e
uK and e

uK  are the mechanical-electrical and electrical-mechanical 
coupling matrices, respectively. Since all the integrations along the z-direction 
can be obtained easily, the above matrices may be expressed as follows: 
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where J  is the Jacobian determinant; and 
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A 2 2 integration scheme can still be used to evaluate the element stiffness 
matrix. This element is denoted as CTMQE. 

10.4 The “Partial Hybrid”-Enhanced Post-Processing  
Procedure for Element Stresses 

This chapter still employs the hybrid-enhanced post-processing procedure to 
evaluate the element stresses. But, if a full hybrid procedure is used, we must 
assume not only the stress field, but also the electric displacement field. Since the 
stress solutions are more important, a “Partial Hybrid”-enhanced post-processing 
procedure is proposed in this section, in which only the stress field is assumed 
while the electric displacement field is still evaluated by the piezoelectric 
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constitutive equation. Thus, more accurate stress solutions can be obtained by a 
relatively simple procedure. 

10.4.1 The Bending Moment, Shear Force and In-Plane  
Membrane Force Fields 

The formulas of the element bending moment, shear force and in-plane membrane 
force fields are the same as Eq. (9-84) to Eq. (9-95). 

10.4.2 The Condensation Procedure of the “Partial Hybrid”-  
Enhanced Post-Processing Procedure 

By employing the Hellinger-Reissner variational principle, the full hybrid energy 
functional of the piezoelectric laminated composite plate element can be expressed 
as reference [13]: 
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where Sp and Ss are given in Eqs. (9-24) and (9-25). 
For simplicity, only the mechanical stresses ( p  and Q), mechanical strains 

( p  and ) and electrical fields (Exy and e
zE ) are taken as independent variables 

here. The electrical displacements (Dxyk and Dzk) are still obtained by the 
piezoelectric constitutive relationship, i.e. Eqs. (10-10) and (10-11). Thus, the 
modified “partial hybrid” energy functional can be established: 

T T T T
p p p s p p

T T T
p p s exp

T T T
p s

1 ( )d ( )d
2

1( )d
2

1 ( )d
2

e e

e

e

e
mR

A A

e e
e e

A

NM NM NM NQ NQ NM
A

A A

A W

A

S Q S Q Q

S Q S Q q K q

P S P P S P



Advanced Finite Element Method in Structural Engineering 

316

T T T T T
p s p s

T
exp

( )d

1
2

e

e
NM NM NQ NM NQ

A

e e

A

W

P B P B P P q

q K q (10-47)

From the stationary condition 
e

R

NM

0 , we have 
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Substituting Eq. (10-48) into Eqs. (9-94) and (9-95), N, M and Q can be obtained. 

10.4.3 The In-Plane Stresses for the kth Layer 

Substitution of Eq. (9-2) into Eq. (10-5) yields: 

0( )k k e k
z zz EQ e  (10-50) 

Moreover, from Eqs. (10-12a), (9-24) and (9-25), we have 
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where SN and SM are both 3 6 matrices. 
Substitution of Eq. (10-51) into Eq. (10-50) yields: 

p( )( )k k e k
N M e z zz EQ S S e  (10-52) 

10.4.4 Recovery of the Transverse Shear Stresses 

The transverse shear stresses are still evaluated by the homogeneous 3D 
differential equilibrium Eq. (9-99), then for the kth layer of the plate, we obtain 
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10.5 Numerical Examples 

The new element CTMQE will degenerate into the CTMQ20 element proposed 
in Chap. 9 for modeling ordinary composite plates.  

Example 10.1 Bimorph Pointer. 
This example was proposed by Tzou[5] to examine the validation of the 

piezoelectric finite element model. As shown in Fig. 10.3, a cantilever piezoelectric 
bimorph pointer is made of two piezoelectric layers laminated with opposite 
polarity. It will bend when a unit electric field is applied in the z-direction. The 
material constants are as follows:

(1) isotropic material, elastic modulus: E 2GPa, Poisson’s ratio 0.29;  
(2) e31 0.046C/m2; e32 0.046C/m2; 11 22 33 0.1062 10–9F/m. 
Only 5 elements for CTMQE are used (Refer to Fig. 10.3) to solve this problem. 

To assess the element accuracy by the beam theory solution, the Poisson’s ratio is 
also set to zero for mimicking the required plane stress condition. The results with 
some other solutions are reported in Table 10.1 and Fig. 10.4. It can be seen that 
the presented element CTMQE exhibits the best performance. Exact solutions for 
the beam theory by CTMQE can be obtained when the Poisson’s ratio equals zero.  

Figure 10.3 The cantilever bimorph pointer problem 

Table 10.1 Nodal deflections of the piezoelectric bimorph pointer, m

Nodes 1 2 3 4 5 
Beam theory[5] 0.0138 0.0552 0.124 0.221 0.345 
Solid FE[5] 0.0124 0.0508 0.116 0.210 0.330 
Shell FE[14] 0.0132 0.0528 0.119 0.211 0.330 
QUAD4[10] 0.014 0.055 0.210 0.221 0.345 
Experiment[5]     0.315 
CTMQE ( 0.29) 0.0131 0.0538 0.1220 0.2178 0.3412 
CTMQE ( 0.0) 0.0138 0.0552 0.1242 0.2208 0.3450 
 Reference [10] does not give the Poisson’s ratio used. 
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Figure 10.4 Deflections of the bimorph pointer solved by different models 

In order to examine the performance of the element CTMQE under distorted 
meshes, this example is recalculated using the 4 elements shown in Fig. 10.5, 
where  is the distortion parameter and varies from 0 to 25mm. The results with 
the solutions by the other two brick elements in ABAQUS[15], C3D8E (8-node 
linear piezoelectric brick element) and C3D20ER (20-node quadratic piezoelectric 
brick element with reduced integration), are plotted in Fig. 10.6. It is obvious that 
the element CTMQE is insensitive to mesh distortion. Exact solution of the tip 
deflection can also be obtained even when the distortion parameter 25mm. 

Figure 10.5 Sensitivity test of mesh distortion 

Example 10.2 Simply supported square symmetric cross-ply piezoelectric 
laminated plate with 5 (p/0/90/0/p) layers, p denotes the piezoelectric layer. 

Ray et al.[16] have presented the analytical solutions of the simply supported 
square composite laminate surface bonded with very thin piezoelectric layers 
under electrical and/or mechanical loading, which is based on the approach of 
Pagano[17].
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Figure 10.6 Tip deflections due to mesh distortion 

A cross-ply laminate (0/90/0) consisting of three identical laminate each of 
3mm thickness has been used as the core of the structure. The material properties 
of the core are as follows:  

1 2/ 25E E , 12 13 20.5 ,G G E 23 20.2G E ,

12 13 23 0.25, 2 6.9GPaE ,          

11 22 33
128.85 10 F / m              

The thickness of each piezoelectric layer bonded on the top and bottom surfaces 
of the laminate is 40 m, and they are made of isotropic material with the 
following material properties:  

2GPaE ,  0.29 , 11 22 33
90.1062 10 F / m

2
31 32 0.0046C / me e , 33 24 15 0.0e e e                

According to the method in reference [18], the shear correction factors for this 
5-layer plate should be: 2

1 0.581k , 2
2 0.802k . Both the mechanical load q and 

surface potential V acting at the top surface of the plate are doubly sinusoidal 
(similar to the load in Example 9.1). q0 and V0 are the peak values.  

The mechanical boundary conditions are the same as those of the Example 9.1 
in Chap. 9, and the electrical potential boundary conditions are:  

0 at x 0 and L, y 0 and L

0 at z h /2,               

0 sin sinx yV
L L

  at z h/2     

where h  and h are the thickness of the elastic core and the whole structure, 
respectively.  
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The results are nondimensionalized as: 

2
4

0

100Ew w
q S h

with  LS
h

; 2
0

1( , , ) ( , , )x y xy x y xyq S
;

0

1( , ) ( , )xz yz xz yzq S
                                    

Table 10.2 Deflection and stresses of ordinary 3-layer (0/90/0) laminated composite 
plates  

L/h Models 
w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 6
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

10

CTMQE 8 8

Manjunatha et al.[20]

Sheikh et al.[4]

3D elasticity[19]

0.764
0.670
0.669
0.669
0.753

 0.503
 0.515

0.521
0.517
0.590

0.291
0.255

0.288/ 0.285

0.0269
0.0251

0.0289

0.372
0.379

0.357

0.1376
0.1227

0.1228

100

CTMQE 8 8

Manjunatha et al.[20]

Sheikh et al.[4]

3D elasticity[19]

Ray et al.[16]

0.435
0.434
0.434
0.434
0.435
0.470 

0.540
0.540
0.544
0.542
0.539
0.539

0.181
0.181

0.181
0.181

0.0213
0.0212

0.0213
0.0214

0.391
0.390

0.395
0.395

0.0765
0.0763

0.0828
0.0828

 Solutions with shear correction factors 2
1k 0.581, 2

2k 0.802. 
 Solutions with shear correction factors 2

1k 2
2k 5/6. 

Before performing the actual investigation, Ray et al.[16] studied the performance 
of their method with the plate without the piezoelectric layer (Example 9.1 or 
reference[19]). Table 10.2 lists their results with other solutions by the finite 
element method. But, as the statement in [4], there is a mistake in the calculation 
of deflection values, which is shown in Table 10.2. So, their results for the 
piezoelectric composite plates are not guaranteed.  

Table 10.3 shows the results of the whole structure for two load cases: the first 
one is with q0 1.0 and V0 0.0 and the second one is with q0 1.0 and 
V0 100V. It can be seen that most stress solutions of the CTMQE (8 8 mesh 
for quarter plate) are in agreement with those of Ray et al.[16]. And, it is 
worthwhile to mention that the presented 4-node element CTMQE exhibits better 
performance than the 8-node element proposed by Sheikh et al.[4], which is based 
on the same theory and under the same mesh division. 

Example 10.3 The distribution of the electrical potential for a simply-supported 
thick piezoelectric laminated plate with 4 layers (p/0/90/p). 
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The behaviors of a simply-supported square laminated plate similar to that 
used in the previous example have been investigated by Heyliger[21]. But, the 
major difference is that the electrical potential across the core is not made zero 
unlike that by Ray et al.[16]. The plate has an overall thickness h of 1.0m where 
the core consists of two elastic layers (0/90) each of thickness 0.4h, and their 
material constants are as follows:  

 E1 132.39GPa, E2 E3 10.756GPa, G12 G13 5.654GPa, G23 3.606GPa 

12 13 0.24,  23 0.49

11 0/ 3.5 , 22 0 33 0/ / 3 , 12
0 8.85 10 F / m

Table 10.3 Deflection and stresses of smart laminated composite plates 

L/h Models 

w

, , 0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 6
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

q0 1.0, V0 0.0

10

CTMQE 8 8

Sheikh et al.[4]

Ray et al.[16]

0.764
0.669
0.668
0.774

0.502
0.514
0.520
0.589

0.290
0.255

0.284/ 0.288

0.0269
0.0250

0.0287/0.0288

0.371
0.378

0.357

0.137
0.122

0.123

20
CTMQE 8 8

Ray et al.[16]

0.517
0.492
0.549

0.529
0.533
0.552

0.211
0.201
0.209

0.0228
0.0222
0.023

0.386
0.388
0.384

0.100
0.097
0.094

100

CTMQE 8 8

Sheikh et al.[4]

Ray et al.[16]

0.434
0.433
0.433
0.471

0.539
0.540
0.545
0.538

0.181
0.181

0.181

0.0212
0.0212

0.021

0.390
0.390

0.394

0.076
0.076

0.083
q0 1.0,  V0 100.0V

10

CTMQE 8 8

Sheikh et al.[4]

Ray et al.[16]

2.00
1.91
1.91
2.35

2.73/1.35
2.75/1.37
2.78/1.39
3.12/1.48

2.45/ 0.146
2.40/ 0.194

2.34/ 0.261

0.149/ 0.072
0.146/ 0.069

0.181/ 0.058

0.710
0.720

0.683

0.450
0.470

0.336

20
CTMQE 8 8

Ray et al.[16]

0.068
0.080
0.095

0.312/ 0.032
0.311/ 0.034
0.321/ 0.039

0.377/ 0.273
0.381/ 0.269
0.372/ 0.277

0.016/0.003
0.016/0.003
0.017/0.005

0.097
0.098
0.096

0.207
0.204
0.145

100

CTMQE 8 8

Sheikh et al.[4]

Ray et al.[16]

0.412
0.411
0.411
0.447

0.505/ 0.519
0.505/ 0.519
0.510/ 0.514
0.504/ 0.518

0.159/ 0.185
0.159/ 0.185

0.158/ 0.184

0.0198/0.0206
0.0198/0.0205

0.019/0.021

0.378
0.378

0.382

0.080
0.080

0.086
 Solutions with shear correction factors 2

1k 0.581, 2
2k 0.802. 

 Solutions with shear correction factors 2
1k 2

2k 5/6. 
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The piezoelectric layers with thickness 0.1h each are bonded to the top and 
bottom surface of the core, and their material constants are as follows:  

E1 E2 81.3GPa,  E3 64.5GPa,  G12 30.6GPa,  G13 G23 25.6GPa 
12 0.329,  13 23 0.432

11 0 22 0/ / 1475 , 33 0/ 1300 , 12
0 8.85 10 F / m

 e31 e32 5.20C/m2, e33 15.08C/m2, e24 e15 12.72C/m2

However, it is too thick as the thickness ratio of the plate is 0.25. So, it is not 
expected that the proposed model, which is based on FSDT, perform well under 
mechanical loading. But, on the other hand, a very good agreement between the 
results from CTMQE and Heyliger[21] can be obtained for the through-thickness 
variation of the potential under the electrical loading. This validates the electrical 
component of the present formulation. 

From Table 10.4, it can be seen that both CTMQE and the 8-node element 
model proposed by Sheikh et al.[4] can all give the excellent solutions of the 
electrical potential in the thickness direction. But, the active DOFs of the 
CTMQE are much less than those of Sheikh et al.[4].

Table 10.4 The distribution of the electrical potential in thickness direction at the 
plate center 

z(m)
CTMQE
4 4 4

CTMQE
4 4 12

Sheikh et al. 
4 4 12 [4] Heyliger[21]

0.5 1.0000 1.0000 1.0000 1.0000 
0.45 0.9959 0.9939 0.9951 0.9950 
0.4 0.9918 0.9918 0.9935 0.9929 
0.2 0.7185 0.6997 0.7018 0.7014 
0.0 0.4452 0.4461 0.4477 0.4476 
0.2 0.2221 0.2167 0.2178 0.2179 
0.4 0.0009 0.0009 0.0005 0.0010
0.45 0.0005 0.0007 0.0005 0.0008
0.5 0.0000 0.0000 0.0000 0.0000 

 Each of the elastic layers and the piezoelectric layers are divided into four and two sub-layers, respectively. 
 Obtained by linear interpolation.
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Abstract Besides the various plate problems discussed in the previous 
chapters, the idea of the generalized conforming element has already been 
successfully generalized to many other areas. As the final chapter of Part ,
this chapter mainly introduces some research achievements on the applications 
of the generalized conforming element method for isoparametric membrane 
element (Sect. 11.2), membrane element with drilling freedoms (Sects. 11.3 
and 11.4), flat-shell element (Sect. 11.5), curved shell element (Sects. 11.6 
and 11.7) and shell element for geometrically nonlinear analysis (Sects. 11.8 
and 11.9). Thus, the universal significance of the generalized conforming 
theory can be clearly illustrated. 

Keywords finite element, generalized conforming, membrane element, 
shell element. 

11.1 Introduction 

The generalized conforming element method was originally proposed for solving 
the difficulty of C1-continuity required by thin plate elements. It opens a new way 
between the conforming and non-conforming elements: on the one hand, the 
shortcomings that sometimes the conforming elements are over-stiff and even 
difficult to be constructed are overcome; on the other hand, the major weakness 
that the non-conforming elements may not be convergent is also eliminated. As 
described in Chap. 5 to Chap. 7, first it obtains success in the construction of thin 
plate elements, and various high-performance thin plate element models of 
different types are then successfully constructed. 
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At the same time, the idea of the generalized conforming element has also been 
successfully generalized to many other areas: besides the applications of thick 
plate in Chap. 8, laminated composite plate in Chap. 9 and piezoelectric laminated 
composite plate in Chap. 10, generalized conforming isoparametric membrane 
elements are proposed in reference [1], generalized conforming membrane elements 
with drilling freedoms are proposed in references [2,3], generalized conforming 
flat-shell elements are proposed in references [4–9], generalized conforming 
curved shallow shell elements are proposed in references [10,11], and generalized 
conforming plate and shell elements for geometrically nonlinear analysis are also 
proposed in [9–12].  

This chapter will mainly introduce some research achievements on the 
applications of the generalized conforming element method for isoparametric 
membrane element, membrane element with drilling freedoms, flat-shell element, 
curved shell element and shell element for geometrically nonlinear analysis. Thus, 
the universal significance of the generalized conforming theory can be exhibited. 

11.2 Generalized Conforming Isoparametric Membrane  
Element

This section will introduce the construction mode of the generalized conforming 
isoparametric element GC-Q6[1].

For the plane 4-node isoparametric element Q4 (Fig. 11.1), its nodal DOFs are 
defined as: 

T
1 1 2 2 3 3 4 4[ ]e u v u v u v u vq  (11-1) 

Figure 11.1 4-node quadrilateral plane isoparametric element 

The interpolation functions for displacements u and v are given by 

4 4

1 1
,i i i i

i i
u N u v N v  (11-2) 

where ui and vi (i 1,2,3,4) are the nodal displacements; Ni the shape functions 
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which are bilinear functions of the natural coordinates ,

1 (1 )(1 )
4i i iN   (i 1,2,3,4) (11-3) 

Element Q4 is very popular. However, for bending problems it gives results with 
low accuracy. 

In order to improve the bending behavior of the element Q4, Wilson et al.[13]

propose a non-conforming element in which the displacements are split into 
compatible and incompatible parts: 

qu u u  (11-4) 

where uq [u v]T are the compatible displacements and given by Eqs. (11-2) 
and (11-3); and u  are the incompatible displacements given by 

1
2 2

2
2 2

3

4

1 1 0 0
0 0 1 1

u
v

u  (11-5) 

where i (i 1,2,3,4) are 4 internal displacement parameters. This element is 
denoted as Q6. Some excellent numerical results are obtained by the element Q6, 
however, it cannot pass the patch test for irregular mesh. 

In this section, according to the basic idea of the generalized conforming 
element, the generalized conforming isoparametric element GC-Q6 is obtained 
based on the generalized conforming conditions under constant and linear stress 
fields. Here, the generalized conforming conditions under constant stresses are used 
to ensure convergence, and the generalized conforming conditions under linear 
stresses are used to improve computational accuracy. 

11.2.1 Generalized Conforming Conditions under Constant and  
Linear Stress Fields 

For the conforming element, the element displacement fields u must satisfy the 
conforming conditions along the element boundary Ae

u u 0   (on Ae) (11-6) 

where u  denote the boundary displacement of the element.  
For the generalized conforming element, the conforming condition (11-6) are 

relaxed and replaced by the following generalized conforming conditions in the 
limit of mesh refinement (the stresses and strains of each element tends to be 
constant):
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T
c ( )d 0

eA
sT u u  (11-7) 

where Tc denotes the boundary tractions of the constant stress field.  
In reference [14], during the derivation of the generalized conforming element, 

the following conforming conditions of the average displacement along each 
element side Si are used: 

( ) d
iS

su u 0  (11-8) 

Obviously, the condition (11-8) are the strong forms of the condition (11-7). 
In reference [1], a new kind of generalized conforming element is established 

by using another strong form of the condition (11-7), i.e., 

T ( )d 0
eA

sT u u  (11-9) 

where T denotes the boundary tractions under both the constant and linear stress 
fields. Substituting Eq. (11-4) into Eq. (11-9), and applying the following condition 
satisfied by the conforming displacement uq:

qu u 0   (on Ae) (11-10) 

we have 
T d 0

eA
sT u  (11-11) 

Considering the following linear stress state: 

1 4 2 5 3, ,x y xy  (11-12) 

we obtain 

1 3 4 2 3 5,x yT l m l T m l m  (11-13) 

where l and m are the directional cosines of the outward normal to the boundary. 
Substitution of Eq. (11-13) into Eq. (11-11) yields 

1 2 3 4 5[ ( ) ]d 0
eA

lu mv mu lv l u m v s  (11-14) 

Since the 5 parameters i are independent to each other, 5 conditions can be 
obtained as follows: 

 d 0 ,    d 0

 ( )d 0

d 0 ,    d 0

e e

e

e e

A A

A

A A

lu s mv s

mu lv s

l u s m v s

 (11-15) 
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The conditions given by Eq. (11-15) are the generalized conforming conditions 
under constant and linear stress fields.  

11.2.2 Determination of the Generalized Conforming  
Displacements u

Firstly, the generalized conforming displacements u  and v  are expressed in a 
complete quadratic polynomial form: 

2 2
1 2 3 4 5 6

2 2
1 2 3 4 5 6

u

v
 (11-16) 

From this equation, the displacements uC, vC and rotation C at the centroid C
( 0, 0) of the element can be obtained as follows: 

1 1 3 2 1 3 3 2 1 3
1 ,   ,  

2 | |C C C
C

u v a a b b
J

 (11-17) 

where the following notations are used: 

1 1 2 3 4 2 1 2 3 4

3 1 2 3 4

1 1 2 3 4 2 1 2 3 4

3 1 2 3 4

1 3 3 1

1 1 ,
4 4

1        
4

1 1 ,  
4 4

1        
4

| | 0C

a x x x x a x x x x

a x x x x

b y y y y b y y y y

b y y y y

a b a bJ

 (11-18) 

Secondly, substitution of Eq. (11-16) into the generalized conforming condition 
(11-15) yields 

3 2 1 3 2 4 6

3 2 1 3 2 4 6

3 2 1 3 2 4 6 3 2 1 3 2 4 6

1 1 2 3 1 4 3 5 1 6

3 1 2 2 3 4 1 5 3 6

3 3 2 ( ) 0
3 3 2 ( ) 0
[3 3 2 ( )] [3 3 2 ( )] 0
3 2 3 0
3 2 3 0

b b b
a a a
a a a b b b

b b b b b
a a a a a

 (11-19) 

From Eqs. (11-19) and (11-17), 8 parameters 1, 2, 3, 5, 1 , 2 , 3  and 
5  can be expressed in terms of another 4 independent parameters 4, 6, 4 , 6
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and three centroid displacements uC, vC, C.
Finally, if we let 

4 6 4 6, , 0C C Cu v  (11-20) 

then from Eq. (11-16) we obtain 

4
2 2

61 2 3 3
2 2

43 3 1 2

6

1 1
1 1

u F F F F
v F F F F

 (11-21) 

where
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 (11-22) 

Equation (11-21), involving 4 internal displacement parameters 4, 6, 4  and 
6 , represents the required generalized conforming displacement mode which 

satisfies the condition (11-15). If the element is a parallelogram, Eq. (11-21) 
degenerates to Eq. (11-5). 

11.2.3 Stiffness Matrix of the Element GC-Q6  

As soon as the generalized conforming displacement mode (11-21) is determined, 
the stiffness matrix may be derived by the conventional procedure.  



Chapter 11 Generalized Conforming Membrane and Shell Elements 

331

Substituting Eqs. (11-2) and (11-21) into Eq. (11-4), the element displacement 
may be written as 

e
qu u u Nq N  (11-23) 

Element strain may be expressed as 

eBq B  (11-24) 

And, the element strain energy is 

T T T T1 1d
2 2 2e

e e e
qq q

A

hU AD q K q K K q  (11-25) 

in which h is the thickness of the element; 

1 1 T

1 1

1 1 T

1 1

1 1 T

1 1

 | |  d d

| |  d d

 | |  d d

qq

q

h

h

h

K B DB J

K B DB J

K B DB J

 (11-26) 

where | |J  is the determinant of the Jacobian matrix; D is the matrix of the 
elasticity coefficients, for the plane stress problem, we have 

2

1 0
1 0

1
10 0

2

ED (11-27)

in which E and  are the Young’s modulus and Poisson’s ratio, respectively. For 
the plane strain problem, the E and  in the above equation should be replaced by 
E / (1 2) and / (1 ), respectively. 

From U 0 , we obtain 
1 e

qK K q  (11-28) 

and finally the element stiffness matrix can be written as 
T 1e

qq q qK K K K K  (11-29) 

11.2.4 Numerical Examples 

Example 11.1 Analysis of a rectangular plate using irregular mesh (Fig. 11.2). 
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Two load cases are considered: Uniform tension under load 1 (an experiment 
problem for patch test) and pure bending under load 2. Owing to the symmetry of 
the plate, only 1 4  of the plate is modelled. Irregular mesh as shown in Fig. 11.2 is 
used. Computational results are given in Table 11.1. For comparison, the results by 
the other 6 element models and exact results are also given. From Table 11.1, it can 
be seen that, except the element Q6, the other models can all pass the patch test. 

Figure 11.2 A 1/4 rectangular plate subjected to uniform tension and pure bending loads 

Table 11.1 Comparison of results for Example 11.1 (7 elements)

Load 1 (uniform tension) Load 2 (bending) 
Element type 

uA Patch test vA

Q4 (isoparametric) 6.00 pass 17.00
Q6[13] 6.70 fail 19.66
QM6[15] 6.00 pass 17.61
QP6[16] 6.00 pass 17.61
NQ6[17] 6.00 pass 17.61
QC6[18] 6.00 pass 17.61
GC-Q6 (presented) 6.00 pass 17.62
Analytical solution 6.00  18.00

Example 11.2 Analysis of a cantilever beam using irregular mesh (Fig. 11.3). 

Figure 11.3 A cantilever beam subjected to pure bending and transverse bending loads 
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Two load cases are considered: pure bending under load 1 and transverse bending 
under load 2. 

From Table 11.2, it can be seen that the accuracy of the isoparametric element 
Q4 is the worst, but the other 4 elements can provide good accuracy, especially 
the element QC-Q6 which gives the best answers. 

Table 11.2 Comparison of results for Example 11.2 (5 elements)

Load 1 (pure bending) Load 2 (transverse bending) 
Element type 

Av xB Av xB

Q4 (isoparametric) 45.7 1761 50.7 2448

Q6[13] 98.4 2428 100.4 3354

QC6[18] 96.1 2439 98.1 3339

NQ6[17] 96.1 2439 98.0 3294

GC-Q6 (presented) 95.0 3036 96.1 4182

Analytical solution 100 3000 102.6 4050
 Stress at point B is computed by extrapolation from the stresses at the 2 2 Gauss quadrature points. 

Example 11.3 Cook’s skew beam problem: analysis of a tapered and swept 
panel with unit load uniformly distributed along the right edge (Fig. 11.4, mesh 
by real line). 

This example has been discussed in reference [30]. From Table 11.3, it can be 
seen that the presented element GC-Q6 gives more accurate results than the 
element HL for coarser meshes.  

Figure 11.4 Cook’s skew beam problem, mesh 4 4
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Table 11.3 Comparison of results for Cook’s skew beam problem (5 elements)

vC (the vertical 
displacement at point C )

Amax (the maximum 
stress at point A)

Bmin (the minimum stress at 
point B)Element 

2 2 4 4 8 8 2 2 4 4 8 8 2 2 4 4 8 8
Q4 11.80 18.29 22.08 0.1217 0.1873 0.2242 0.0960 0.1524 0.1869
Q6[13] 22.94 23.48  0.2029 0.2258  0.1734 0.1915  
QM6[15] 21.05 23.02  0.1928 0.2243  0.1580 0.1856  
HL[19] 18.17 22.03 23.39 0.1582 0.1980 0.2205 0.1335 0.1770 0.1931
GC-Q6  27.61 24.31 23.99 0.2538 0.2349 0.2318 0.1688 0.1930 0.1965
Reference 23.96 0.2362 0.2023

 Nodal stresses are computed by extrapolation from the stresses at 2 2 Gauss quadrature points and nodal 
stresses of neighboring element are averaged. 
 Results by the element GT9M8[3] using 64 64 mesh.

11.3 Membrane Elements with Drilling Freedoms—
Definition of the Drilling Freedom and the Corres- 
ponding Rectangular and Quadrilateral Elements 

The introduction of drilling freedom at each node in a plane stress element can 
improve the order of the element displacement fields, so it can enhance the 
element performance without increasing the number of the element nodes. And, 
such drilling freedoms in membrane elements possess special significance for the 
finite element analysis of shells. The membrane elements with drilling freedoms 
can be combined with plate bending elements to form flat-shell elements, which 
contain 3 translational freedoms and 3 rotational freedoms at each node. Thus, 
when a flat-shell element is used for the analysis of shell structures, the problem 
that the global stiffness matrix may be singular can be naturally solved. And, the 
troubles caused by some other treatments[20,21] for this problem can also be avoided.  

11.3.1 Notes on the Definition of Nodal Drilling Freedom z in a  
Membrane Element 

Following are 3 definitions of the drilling freedom z at the node in a membrane 
element, and comparisons of their advantages and disadvantages are also given.  

(1) Definition in the early time—the nodal drilling freedom z in a membrane 
element is defined as the nodal rigid rotation 

In the early definition of the nodal drilling freedom in a membrane element, the 
rotation of two adjacent sides of the element is assumed to be equal. So, during 
the whole deformation process of the element under this definition, the angle 
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between two adjacent sides which meet at the same corner node will indeed keep 
invariant. The introduction of this improper constraint will make the deformation 
state of the element quite different from the real situation. And, the triangular 
membrane element established by this method in [22] cannot be convergent to 
correct solutions.  

(2) The second definition—the nodal drilling freedom z in a membrane element 
is defined as the nodal rotation  according to the concept of continuum mechanics 

From the displacements u and v of the membrane element, its rotation can be 
derived by the concept of continuum mechanics as follows: 

1
2

v u
x y

 (11-30) 

In many recent literatures, this concept of rotation  was adopted to define the 
nodal drilling freedom z of the membrane element as  

1
2z

v u
x y

 (11-31) 

Now, the properties of the rotation  are listed as follows.  
Property 1 When the axes of the Cartesian coordinate system rotate,  is an 

invariant.  
Assume that the Cartesian coordinate system xOy will change to another 

Cartesian coordinate system x Oy  after it rotates an arbitrary angle. Then, the 
corresponding rotations of these two coordinate systems are  

1 1,
2 2xy x y

v u v u
x y x y

 (11-32) 

By using the coordinate transformation (8-22), it can be proved that 

xy x y  (11-33) 

i.e.,  is an invariant. 
That  is an invariant is just one of the important reasons why it has been 

selected as the definition of the nodal drilling freedom z.

Property 2 The rotation of the x-axis is x
v
x

, and the rotation of the 

y-axis is y
u
y

. Then, the shear strain xy and rotation  can be expressed in 

terms of x and y as 

1, ( )
2xy x y x y  (11-34) 



Advanced Finite Element Method in Structural Engineering 

336

i.e., the shear strain xy is the difference value of x and y, and the rotation  is 
the average value of x and y.

Property 3 x and y can be expressed in terms of  and xy as follows: 

1 1,
2 2x xy y xy  (11-35) 

Similarly, we have 

1 1,
2 2x x y y x y  (11-36) 

Property 4 Under the general strain state in which the strain circle does not 
degenerate to be a point, when the coordinate axes x Oy  rotate, x y  is a variant, 
so x  and y  are also variants. 

Since x  and y  are variants, it is impossible that they are identically equal to 
the invariant . Only for the special case in which the x -axis and the y -axis are 
the strain principal axes, and then x y 0,  will be equal to x and y. Thus, we 
can obtain: 

principal axis non principal axis( ) , ( )  (11-37) 

Property 5 Under the special strain state in which the strain circle degenerates 
to be a point (isotropic spherical stress-strain state), axes along arbitrary directions 
are all strain principal axes. Therefore, the rotation  of a line segment in the 
arbitrary direction will be identically equal to , it is an invariant, i.e.,  

      line segment in arbitrary direction( )  (Under isotropic spherical stress state) (11-38) 

From the above properties of rotation , it can be seen that the second 
definition described in this section is inappropriate, either. Its main shortcoming 
is: in general cases, the nodal rotation  and the rotation  of the element side are 
two different geometric quantities, and there is no definitive relation between 
them. For instance, from Property 2, it can be seen that  is the average value of 
the rotation x  of the element side and the rotation y  of the side normal, and has 
no definitive relation with the rotation x  of the element side; and from property 
4, it can be seen that, if the element side is not the strain principal axis, the 
rotation  of the element side will not be equal to .

In order to explain the reason why the second definition is inappropriate, three 
other examples are given as follows:  

Example 1 At common nodes, the values of in adjacent elements are 
generally not equal to each other, thereby,  is not suitable for being taken as the 
nodal freedom. 

In Fig. 11.5, e and e  represent two adjacent elements, and point 1 is the common 
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node. Let the common side 12 be the x -axis, then the rotation at the common node 
1 of elements e and e  are 

1 1,
2 2

e e e e e e
x x y x x y  (11-39) 

where e
x  and e

x  are the rotations along the common side of the two elements at 
node 1, and should be equal; and e

x y  and e
x y  are the shear strains of the two 

elements at node 1, but they are generally not equal. Hence, at common node 1, 
e and e  are generally not equal, either. So,  is not suitable for being taken as 

the nodal freedom. 

Figure 11.5 Two adjacent elements 

Example 2 Assume that the two elements e and e  in Fig. 11.6 are both 
triangular element CST (Constant Strain Triangle), their strains are constants, and 
displacements are linear, so the rotations e and e  are also both constants 
(expressed by constants C1 and C2, respectively), i.e., 

1 2 3 1 1 2 4 2,e e e e e eC C  (11-40) 

Figure 11.6 Two adjacent CST elements 

Since constants C1 and C2 are generally not equal, it can also be concluded that 
e and e  at the common nodes 1 and 2 are generally not equal. So,  is not 

suitable for being taken as the nodal freedom. 
By the way, for the CST elements, stress , strain  and rotation  within each 

element are all constants, but generally different in adjacent elements, and 
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discontinuity phenomena will happen at two sides of the common side. Thereby, 
the quantities related to the derivatives of the displacements, such as ,  , , and 
so on, are not suitable for being selected as the nodal freedoms.  

Example 3 Along a fixed edge where the displacements are specified as zero, 
the boundary conditions of the translational displacements u and v can be 
expressed as follows: 

 0, 0u v   (at the nodes on the fixed edge) (11-41) 

But, the rotation  on the fixed edge generally cannot be expressed by 

0   (at the nodes on the fixed edge) (11-42) 

Therefore,  is not suitable for being selected as the nodal freedom. 

Figure 11.7 The boundary conditions on fixed edge 

In Fig. 11.7, side 12  is a fixed edge. The boundary conditions of the element e
at nodes 1 and 2 are 

1 2 1 20, 0u u v v  (11-43) 

And, the following conditions can also be obtained: 

1 2

0u u
y y

 (11-44) 

Then, the rotation at node 1 can be derived from the above conditions: 

1
11

1 1
2 2

v u v
x y x

 (11-45) 

Since the term 
1

v
x

 at the right side of the above equation is generally nonzero, 

so the following boundary condition  

 0  (11-46) 
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generally cannot come into existence. Therefore,  is not suitable for being selected 
as the nodal freedom. 

While the second definition possesses the above disadvantages, references [2, 3] 
proposed the third definition for the nodal drilling freedom z of the membrane 
element.  

(3) The third definition—the nodal drilling freedom z in the membrane element 
is defined as the additional rigid rotation at the element node. 

In this definition, the displacement fields within the domain of an element are 
assumed to include two parts: 

0u u u  (11-47) 

where u0 [u0 v0]T are the displacement fields determined by the nodal 
translational displacements; u [u v  ]T are the additional displacement fields 
only determined by the vertex rigid rotations. According to Eq. (11-47), the 
deformation process of the element under external load can be expressed by 
Fig. 11.8. The element deformation caused by the nodal translational displacements 
is shown in Fig. 11.8(a), and the element deformation caused by the vertex rigid 
rotations is shown in Fig. 11.8(b). It should be emphatically pointed out that the 
above two deformation states are independent of each other.  

Figure 11.8 The deformation process of a plane membrane element 

The characteristics of the nodal drilling freedom defined in Fig. 11.8 are as 
follows:

(1) The change of the angle between two adjacent sides along with the element 
deformation is allowed (see Fig. 11.8(a)), which overcomes the shortcomings 
caused by the improper constraint introduced by the early definition. 

(2) The rotation  of the element side has definite relation with the nodal 
drilling freedom z. In fact, the rotation  of element side is composed of two 
parts  and , in which  is given by Fig. 11.8(a), and  is just z.

Just because of these two characteristics, the irrationalities in the former two 
definitions are avoided. 
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11.3.2 The Rectangular Membrane Element with Drilling  
Freedoms GR12 

A rectangular membrane element with 12 DOFs is shown in Fig. 11.9, and the 
freedoms at each node are: 

T
i i i iu vq   (i 1, 2, 3, 4) (11-48) 

where ui and vi are the translational freedoms; and i is just the additional in-plane 
rigid rotational freedom which is defined previously.  

Figure 11.9 Rectangular membrane element 

Assume that the element displacement mode is given by Eq. (11-47), which 
includes two parts u0 and u . u0 are the bilinear compatible displacement fields 
expressed by the translational freedoms as 

0 4
0 0

0
1

i
i

i i

uu
N

vv
u  (11-49) 

where

0 1 1 1
4i i iN   (11-50) 

And, u [u v  ]T in Eq. (11-47) are only the additional displacement fields 
caused by the additional vertex rigid rotations i  (i 1, 2, 3, 4), as shown in 
Fig. 11.10. Here, i  is only related to the additional displacement fields u  and 
independent of u0. The rotational freedom defined as above can describe the 
deformation behavior of the element boundary more clearly.  
The additional displacement fields u  can be assumed as 

2 2
1 2 3 4

2 2
1 2 3 4

(1 )( ) (1 )( )

(1 )( ) (1 )( )

u

v
 (11-51) 

The values of the displacement fields expressed by the above equation at the 
element corner nodes are all zero. 
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Figure 11.10 Additional displacement field 

The element boundary displacements u  caused by the additional vertex rigid 
rotations can be written as: 

12 2
12 1 2
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43 2
43 4 3

43

23 2
23 2 3

23

14 2
14 1 4

14

0
(1 ) 1 1
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v

u a
v

u b
v

u b
v

u

u

u

u

 (11-52) 

From the generalized conforming condition (11-8), which can be written as 

( )d
kS

su u 0   (k 1, 2, 3, 4) (11-53) 

the unknown coefficients i and i (i 1, 2, 3, 4) in Eq. (11-51) can be solved. 
Then, substituting them back into Eq. (11-51), we have 

4

1

u i
i

i v i

u N
v N

u  (11-54) 

where

2

2

(1 )(1 )
8

(1 )(1 )
8

u i i i

v i i i

bN

aN
 (11-55) 

Substitution of Eqs. (11-49) and (11-54) into Eq. (11-47) yields the displacement 
fields expressed in terms of the shape functions: 
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4
0

1

e
i i

i
u u u Nq N q  (11-56) 

where

T T T T T
1 2 3 4[ ]eq q q q q  (11-57) 

1 2 3 4N N N N N  (11-58) 

0

0

0
0

i u i
i

i v i

N N
N N

N  (11-59) 

and 0 ,iN u iN  and v iN  are given by Eqs. (11-50) and (11-55), respectively. 
Though the displacement fields expressed by Eq. (11-56) are not exactly 

compatible on the element boundary, they have already satisfied the generalized 
conforming conditions in Eq. (11-53). Therefore, the finite element formulations 
can be established by the potential energy principle. This element is denoted as 
GR12. According to the conventional procedure, the element stiffness matrix K e

can be obtained: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

e

K K K K
K K K K

K
K K K K
K K K K

 (11-60) 

where

11 12 13

21 22 232

31 32 33

24(1 )ij

k k k
habE k k k

k k k

K  (11-61) 
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22 2 2
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11.3.3 The Rectangular Membrane Element with Drilling  
Freedoms GR12M—with Internal Freedoms 

Consider the following bubble displacement fields: 

1

2

0
0

u N
v N

u N  (11-62) 

where

2 2(1 )(1 )N  (11-63) 

1 and 2 are arbitrary parameters.  
By the superposition of Eqs. (11-62) and (11-47), the displacement fields with 

three parts can be obtained  

0u u u u  (11-64)

This is the displacement mode of the element GR12M. Substitution of Eqs. (11-56) 
and (11-62) into the above equation yields 

eu Nq N  (11-65) 

The corresponding strain fields can be expressed as 

eBq B  (11-66) 

in which B and B  are the strain matrices corresponding to Eqs. (11-56) and (11-62), 
respectively.  

According to Eq. (11-66), the strain energy of element GR12M can be written as 
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T T T T1 1d
2 2 2e

e e e
qq q

A

hU AD q K q K q K  (11-67) 

in which 
1 1 T

1 1
d dqq abhK B DB     (11-68a) 

1 1 T

1 1
d dq abhK B DB    (11-68b) 

1 1 T

1 1
d dabhK B DB  (11-68c) 

From the stationary condition  

U 0  (11-69) 

the arbitrary parameters  can be expressed in terms of the external DOFs as 

1 e
qK K q  (11-70) 

Substitution of the above equation into Eq. (11-65) yields 

* eu N q  (11-71) 

where
* 1

qN N N K K  (11-72) 

The above equation includes the shape functions of the element GR12M, in which 
K q and 1K  are evaluated from Eqs. (11-68b) and (11-68c), respectively,  

1 2 3 4[ ]qK K K K K  (11-73) 

where

2

0 1 12
1 0 19(1 )

i i i
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i i i
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(11-74)
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K  (11-75) 
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According to the element shape function (11-72), the element stiffness matrix 
can be written as 

T 1e
qq q qK K K K K  (11-76) 

here Kqq is the same as the element stiffness matrix of the element GR12.  
The stress vector of the element GR12 is ,eSq  in which the stress matrix 

S is

1 2 3 4[ ]S S S S S  (11-77) 

in which 

11 12 13

21 22 232

31 32 33

8 (1 )i

s s s
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And the stress vector of the element GR12M can be written as 
4

1

( ) ( ) ( )e
i i i

i
D S S q S S q  (11-79) 

in which Si is given by Eq. (11-78), and iS  is 

1 1
i i iS DB K K S K K   (i 1,2,3,4) (11-80) 

where

2 2

2 2
2

2 2

(1 ) (1 )
2 (1 ) (1 )

(1 )
(1 ) (1 )(1 ) (1 )

2 2

b a
E b a

ab
a b

S  (11-81) 

iK  and 1K  are given by Eqs. (11-74) and (11-75), respectively.  
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11.3.4 Quadrilateral Membrane Elements with Drilling Freedoms  
GQ12 and GQ12M 

The rectangular elements GR12 and GR12M can be generalized to quadrilateral 
elements, the details can be found in reference [2]. 

11.4 Membrane Elements with Drilling Freedoms 
—Triangular Elements 

On the basis of the constant strain triangular element, if we use the additional 
rigid rotational freedom proposed previously, the additional displacement fields 
caused only by the vertex rigid rotations can be introduced into the constant-strain 
displacement fields, and then, the triangular membrane element with drilling 
freedoms, GT9, can be derived. On the basis of the element GT9, by adding the 
generalized bubble displacement field, the new triangular membrane elements 
with higher accuracy, GT9M and GT9M8, can be obtained. These three elements 
can pass the patch test with arbitrary shape, so they are convergent models.  

11.4.1 Triangular Membrane Element with Drilling Freedoms  
GT9

A triangular membrane element is shown in Fig. 11.11. At each node, there are 
two translational freedoms and one in-plane rotational freedom. The element 
nodal displacement vector is 

T T T T
1 2 3[ ]eq q q q  (11-82) 

where
T[ ] ( 1,2,3)i i i iu v iq  (11-83) 

Figure 11.11 A triangular membrane element and its additional displacement field 
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in which ui and vi are the translational displacements at the corner node; i is the 
additional rigid rotation at the corner node. As described in Sect. 11.3.1, i used 
here is different from the rotation defined in continuum mechanics.  

The basic displacement fields are assumed to be composed of two parts: 

0
bu u u  (11-84) 

where u0 [u0 v0]T are the linear displacement fields, which are determined by 
the translational freedoms at the corner nodes uniquely. These are compatible 
displacement fields, and can be expressed in terms of the triangular area 
coordinates as 

0 3
0

0
1

0
0

i i

i i i

L uu
L vv

u  (11-85) 

And, u [u v  ]T are the additional displacement fields only caused by the 
in-plane vertex rigid rotational freedoms. It can be assumed to be the pure 
quadric polynomial in terms of the area coordinates 

31 2
2 3 3 1 1 2

31 2

u
L L L L L L

v
u  (11-86) 

The value of u in the above equation at the corner node i  is zero. 
Along the sides of triangular element, the normal displacements due to the 

vertex rigid rotations can be written as the cubic interpolation formulas 

23 1 2 3 2 2 3 3

31 2 3 1 3 3 1 1

12 3 1 2 1 1 2 2

n

n

n

u d L L L L

u d L L L L

u d L L L L

 (11-87) 

in which di (i 1, 2, 3) are the lengths of the triangular element sides. And, the 
vertex rotations will not produce the tangent displacements along the element 
sides, i.e.,  

23 12 31 0s s su u u  (11-88) 

The direction cosines of the normal on the element side (Li=0) are 

i
xi

i

b
n

d
, i

yi
i

c
n

d
  (i 1, 2, 3) (11-89) 

where bi and ci are given by Eq. (6-13). The projections of the normal 
displacements in Eq. (11-87) on x-axes and y-axes are 
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L
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u b
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v c

u b
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v c

u b
L L L L

v c

 (11-90) 

Between the element boundary displacements (11-90) and the element additional 
displacement fields (11-86), we introduce the following generalized conforming 
conditions

0
d 0 

iL

u u
s

v v
  (i 1,2,3) (11-91) 

from which 6 unknown coefficients i and i (i 1,2,3) in Eq. (11-86) can be 
solved. So, the additional displacement fields expressed only by i can be obtained 

3

1

u i
i

i v i

u N
v N

u  (11-92) 

where

1
2
1
2

u i i m j j m

v i i m j j m

N L b L b L

N L c L c L
  ( , , 1,2,3)i j m  (11-93) 

The displacement mode of the triangular membrane element GT9 is given by 
Eq. (11-84). From Eqs. (11-85) and (11-92), it can be expressed in terms of the 
shape functions 

3
0

b
1

e
i i

i
u u u Nq N q  (11-94) 

in which 

1 2 3[ ]N N N N  (11-95) 

0
0

i u i
i

i v i

L N
L N

N   (i 1,2,3) (11-96) 

where Nu i  and Nv i  are given by Eq. (11-93). 
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Since the displacement fields (11-94) satisfy the generalized conforming 
conditions (11-8), therefore, the element stiffness matrix eK  can be derived by 
the conventional procedure: 

11 12 13

21 22 23

31 32 33

e

K K K
K K K K

K K K
 (11-97) 

where the sub-matrices are 

T
d

e
ij i j

A

h AK B DB   (i, j 1,2,3) (11-98) 

in which 

2 0
1 0 2

4
2 2

i i m j j m

i i i m j j m

i i i m i m j i j i j m

b b b L b L

c c c L c L
A

c b c b b c L c b b c L

B ( , , 1,2,3)i j m  (11-99) 

11.4.2 Triangular Membrane Element with Drilling Freedoms  
GT9M—with an Internal Freedom 

The displacement functions with one arbitrary internal parameter  can be 
assumed as 

u

v

u N
v N

u N  (11-100) 

where
T[ ]u vN NN  (11-101) 

3 3

1 1

 ,      u i i v i i
i i

N b F N c F  (11-102) 

and

i j m j mF L L L L  (11-103) 

It can be easily verified that Eq. (11-100) satisfies the following equation: 

0
d

iL
su 0   (i 1,2,3) (11-104) 
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and is equal to zero at 3 corner nodes. Hence, the displacement functions given by 
Eq. (11-100) are the generalized bubble displacements whose average values 
along the element sides are zero. 

The displacement fields of the element GT9M are composed of 3 parts: 

0u u u u  (11-105) 

From Eqs. (11-94) and (11-100), the above equation can be expressed as 

eu Nq N  (11-106) 

in which N and N  are given by Eqs. (11-95) and (11-101), respectively. The 
strain fields corresponding to Eq. (11-106) are 

eBq B  (11-107) 

where B is the strain matrix corresponding to Eq. (11-94); B is the strain vector 
corresponding to Eq. (11-100). From Eq. (11-107), the strain energy of the element 
GT9M can be written as 

T T 21 1d
2 2 2e

e e e
qq q

A

hU A kD q K q K q  (11-108) 

where

T d
e

qq
A

h AK B DB  (11-109a) 

T d
e

q
A

h AK B DB  (11-109b) 

T d
eA

k h AB DB  (11-109c) 

with

1 2 3[ ]B B B B  (11-110) 

in which Bi (i 1,2 ,3) are given by Eq. (11-99); and  

2 2
3

2 2

1

1

2

m j

m j m j
i

m m j j

b b
c c L L

A
b c b c

B   ( , , 1,2,3)i j m  (11-111) 
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From the stationary condition 

0U  (11-112) 

the arbitrary parameter  in Eq. (11-106) can be expressed in terms of qe

1 e
qk

K q  (11-113) 

Substituting the above equation into Eq. (11-106), the displacement fields of the 
element GT9M expressed only in terms of external freedoms qe can be obtained 

* eu N q  (11-114) 

where
* 1

qk
N N N K  (11-115) 

The stiffness matrix of the element GT9M is 

T1e
qq q qk

K K K K  (11-116) 

in which Kqq is the same as K e in Eq. (11-97). 

11.4.3 Triangular Membrane Element with Drilling Freedoms  
GT9M8—with 8 Internal Freedoms 

The element GT9M derived above contains one internal freedom, and the 
corresponding generalized bubble displacement is cubic. Now, we will develop a 
new element GT9M8 with 8 internal freedoms, and the corresponding generalized 
bubble displacement is still cubic.  

Assume that the element displacement fields are composed of two parts: 

bu u u  (11-117) 

where ub are the basic displacement functions given by Eq. (11-94); u  are the 
additional displacement fields expressed by internal freedoms, here they are assumed 
to be complete cubic polynomials in the area coordinates  

3 51 2 4
1 2 3 2 3 3 1

3 51 2 4

6 5 71 32 2 2
1 2 2 3 3 1 1 2 1 2 3

6 6 82 4

        

u
L L L L L L L

v

L L L L L L L L L L L

u

(11-118)
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where i and i (i 1, 2, , 6), i (i 1, 2, , 8) are the arbitrary parameters. 
Substitution of Eq. (11-118) into the generalized conforming conditions corres- 
ponding to zero average side displacements and zero vertex displacement conditions: 

10
d ,  

ii
LL

su u0 0   (i 1, 2, 3) (11-119) 

yields the additional displacement functions expressed by 8 arbitrary parameters 

i (i 1, 2, , 8): 

3
2 1 7

1 2 3
1 2 8

1
2

i
j m j

i i

u
L L L L L L

v
u  (11-120) 

The above formulas are the generalized bubble functions which satisfy the 
generalized conforming conditions. And 1, 2, , 8 are 8 internal freedoms. 

By the way, the internal displacement field that is exactly compatible with zero 
boundary displacement is called bubble displacement, and that is generalized 
conforming to zero boundary displacement is called generalized bubble 
displacement. Equation (11-120) contains 8 internal freedoms, in which 7 and 8

are corresponding to the bubble displacements, while 1, 2, , 6 are 
corresponding to the generalized bubble displacements.  

The additional displacements (11-120) expressed by internal freedoms can be 
written as the following matrix form: 

u N  (11-121) 

in which 

1 2 3 4

1 2 3 4

0 0 0 0
0 0 0 0
F F F F

F F F F
N  (11-122) 

where

4 1 2 3
1 ( 1,2,3),
2i j m jF L L L i F L L L  (11-123) 

And,  in Eq. (11-121) is the internal freedom vector: 

T
1 2 3 4 5 6 7 8[ ]  (11-124) 

From Eqs. (11-117), (11-94) and (11-121), the displacement fields of the element 
GT9M8 can be expressed in terms of the shape functions 

eu Nq N  (11-125) 

where N and N  are given by Eqs. (11-95) and (11-122), respectively.  
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From the element displacement given by Eq. (11-125), and according to the 
procedure similar to those in Sects. 11.3.2 and 11.3.3, the internal freedoms 
can be expressed in terms of qe by condensation 

1 e
qK K q  (11-126) 

where
T d

e
q

A

h AK B DB  (11-127a) 

T d
eA

h AK B DB  (11-127b) 

in which B in Eq. (11-127a) is given by Eq. (11-110); and B  in Eq. (11-127) is 

1 2 3 4

1 2 3 4

1 1 2 2 3 3 4 4

0 0 0 0
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x x x x

y y y y

y x y x y x y x

F F F F
F F F F
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B  (11-128) 
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F b L L b L L
A

F c L L c L L
A

F b L L b L L b L L
A

F c L L c L L c L L
A

  ( , , 1,2,3)i j m  (11-129) 

Thus, Eq. (11-125) can be expressed in terms of external freedoms as 

* eu N q  (11-130) 

where
* 1

qN N N K K  (11-131) 

According to the displacement field (11-130) expressed by the shape functions, 
the element stiffness matrix can be obtained 

T 1e
qq q qK K K K K  (11-132) 

where Kqq is evaluated by Eq. (11-97).  
Example 11.4 Pure in-plane bending of a square plate. 
A square plate of side length L is shown in Fig. 11.12. It is subjected to a linear 
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varying normal stress on the left and right sides: 

( 2) 02x x L
y
L

In view of the symmetry of the problem, only 1/4 of the plate is considered and 
meshed. Numerical results of the displacement and stress at corner point C are 
listed in Table 11.4. For comparison, the other results obtained by Allman[23] and 
the bilinear rectangular element R4 are also given. 

Figure 11.12 Pure in-plane bending of a square plate (Mesh 4 4)

From Table 11.4, it can be seen that the presented two rectangular elements 
GR12 and GR12M can provide more accurate results for displacement and stress. 

Table 11.4 The displacement and stress at point C of a square plate under pure 
in-plane bending

Mesh (1/4 plate) (1 1) (2 2)

Element 
0

CEu
L 0

CEv
L 0

xC

0

CEu
L 0

CEv
L 0

xC

R4 0.4461 0.2900 0.9363 0.4797 0.3120 0.9770 
Allman[23] 0.4738 0.3070 0.9784 0.4910 0.3191 0.9912 

GR12 0.4823 0.3108 1.0220 0.4941 0.3206 1.0129 
GR12M 0.4961 0.3218 1.0055 0.4987 0.3241 1.0029 

Mesh (1/4 plate) (4 4) (8 8)

Element 
0

CEu
L 0

CEv
L 0

xC

0

CEu
L 0

CEv
L 0

xC

R4 0.4931 0.3206 0.9894 0.4978 0.3236 0.9947 
Allman[23] 0.4971 0.3231 0.9956 0.4991 0.3244 0.9978 

GR12 0.4982 0.3237 1.0066 0.4994 0.3246 1.0033 
GR12M 0.4996 0.3247 1.0015 0.4999 0.3249 1.0007 

Note: Exact solutions are given by [23] 
0

0.5000CEu
L

,
0

0.3250CEv
L

,
0

1.0000xC .
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Example 11.5 Cantilever beam under a tip shear load. 
As shown in Fig. 11.13, a cantilever beam is subjected to a tip parabolic shear 

load

23 1 4
2xy x L

W y
Hh H

where L, H and h are the length, height and thickness of the beam, respectively. 3 
finite element meshes plotted in the figure are used. Numerical results for the 
deflection at the mid-side point C of the beam tip and stress of point A are listed 
in Table 11.5, where the coordinates of the point A is (12, 6). 

Figure 11.13 A cantilever beam under tip shear load 

It can be seen from the results that, the performance of the bilinear element R4 
is obviously lower than those of the other elements. And, the precisions of the 
presented two elements GR12 and GR12M are both better than that of similar 
element proposed by Allman. 

Table 11.5 Deflection and stress at selected points of a cantilever

(4 1) mesh (8 2) mesh (16 4) mesh 
Element 

vC xA vC xA vC xA

R4 0.2424 43.64 0.3162 55.70 0.3447 59.28

Allman[23] 0.3026 52.70 0.3394 58.40 0.3512 59.70

GR12 0.3283 60.00 0.3475 61.31 0.3535 60.76

GR12M 0.3446 60.00 0.3527 60.65 0.3550 60.20

Comparison
solutions[23] vC 0.3558 xA 60.0 (x 12, y 6)
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Example 11.6 Cantilever beam under a tip shear load (3-node triangular 
element). 

This problem is the same as the Example 11.5. Numerical results for deflection 
at the mid-side point at the beam tip by using different meshes are listed in 
Table 11.6. Two different meshes are shown in Fig. 11.14(a) and (b), respectively. 
Mesh  is for the three presented elements GT9, GT9M and GT9M8. And 
mesh , in which each rectangle is divided into four half-thickness overlaid 
triangles, is for the elements in reference [24], so the computing work will be 
twice as much as that for mesh .

Figure 11.14 Meshes for Example 11.6 
(a) Mesh  8 2; (b) Mesh  8 2

Table 11.6 The tip deflection of cantilever beam under tip shear load 

100vC /0.356 01 
Element 

8 2 16 4 32 8 64 16
 Mesh 

T3(CST) 46.73 81.14 94.69 99.01  
GT9 94.41 98.74 99.76 99.98  

GT9M 95.60 99.10 99.86 99.85  
GT9M8 103.15 100.59 100.10 100.02  

 Mesh 
EFFAND[24] 101.68 100.30 100.03 100.00  

FF[24] 99.15 99.71 99.87 99.96  
 2 2 4 4 8 8 16 16 32 32
 Mesh 

T3(CST) 18.39 45.06 76.02 92.53 98.18 
GT9 60.47 85.64 95.72 98.79 98.87 

GT9M 61.65 86.24 95.91 98.84 99.88 
GT9M8 92.13 97.37 99.08 99.67 99.89 

 Mesh 
EFFAND[24] 92.24 96.99 98.70 99.48 98.81 

FF[24] 89.26 96.37 98.66 99.50 99.83 
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Numerical results in Table 11.6 show that, the computational precision by the 
three presented elements GT9, GT9M and GT9M8 using mesh  is close to that 
of the elements in reference [24] using mesh . And, in the 2 2 and 4 4 slim 
triangular meshes, the element GT9M8 exhibits much higher precision.  

Example 11.7 Cook’s skew beam problem (3-node triangular element). 
This problem is the same as Example 11.3. The mesh division can be referred to 

Fig. 11.4, and the results are listed in Table 11.7. It can be seen that the generalized 
conforming elements proposed in this chapter possess better performance than 
those of the other elements.  

Table 11.7 Comparison of results for Cook’s skew beam problem (triangular elements)

vC (the vertical 
displacement at point C)

Amax (the maximum 
stress at point A)

Bmin (the minimum stress at 
point B)Element 

2 2 4 4 8 8 2 2 4 4 8 8 2 2 4 4 8 8
T3(CST) 11.99 18.28 22.02 0.0760 0.1498 0.1999 0.0360 0.1002 0.1567

EFFAND[24] 20.56 22.45 23.43       
FF [25] 20.36 22.42 23.41 0.1700 0.2129 0.2309 0.1804 0.1706 0.1902
GT9 20.08 22.71 23.61 0.1610 0.2073 0.2266 0.1467 0.1721 0.1900

GT9M 20.36 22.80 23.63 0.1650 0.2093 0.2274 0.1519 0.1734 0.1905
GT9M8 21.75 23.21 23.74 0.1827 0.2171 0.2304 0.1981 0.1777 0.1924

reference 23.96 0.2362 0.2023
 Results by the element GT9M8 using 64 64 mesh. 

11.5 Flat-Shell Elements—Triangular Thick/Thin Shell  
Element GMST18 

The flat-shell element, which is composed of plate bending element and plane 
membrane element[20], is the simplest shell element model, and widely used in 
the linear and nonlinear problems. Reviews on the general formulations and 
characteristics of the flat-shell element can be found in reference [26]. The 
appearance of the new generalized conforming membrane element with drilling 
freedoms and the new generalized conforming thin plate element makes it 
possible to construct high performance flat-shell elements.  

Sects. 11.3 and 11.4 have introduced the concept of drilling freedom (the 
additional in-plane rigid vertex rotational freedom), and given the formulations 
of the new generalized conforming rectangular membrane element GR12 and 
triangular membrane elements GT9 and GT9M8 with drilling freedoms. Furthermore, 
in reference [27], the generalized conforming rectangular thin plate element 
GPL-R12 and triangular thin plate element GPL-T9 (this element has been 
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introduced in Sect. 6.3 of this book) are constructed. Then, in references [4–8], 
by starting with the generalized conforming theory and the degenerated potential 
energy principle, the above plane membrane and plate bending elements are used 
to formulate several generalized conforming flat-shell elements for the analysis of 
cylindrical and arbitrary shells: 

(1) Generalized conforming rectangular flat-shell element GCR24[5]: developed 
by the combination of the generalized conforming rectangular membrane element 
GR12 and the rectangular thin plate element GPL-R12; 

(2) Generalized conforming triangular flat-shell element GST18[4]: developed 
by the combination of the generalized conforming triangular membrane element GT9 
and the triangular thin plate element GPL-T9, and one-point reduced integration 
scheme is used for GT9; 

(3) Generalized conforming triangular flat-shell element GST18M[8]: developed 
by the combination of the generalized conforming triangular membrane element 
GT9M8 and the triangular thin plate element GPL-T9. 

Furthermore, reference [9] developed a generalized conforming triangular 
thick/thin flat-shell element GMST18. Firstly, the formulation of the generalized 
conforming triangular membrane element GT9 is employed as the membrane 
component of the shell element. Both one-point reduced integration scheme and 
a corresponding stabilization matrix proposed by Fish et al.[27] are adopted for 
avoiding membrane locking and hourglass phenomenon. Secondly, the bending 
component of the element comes from a new generalized conforming thick/thin 
plate element TSL-T9, which is derived based on the rational shear interpolation 
proposed in Chap. 8 and the SemiLoof conforming scheme in Sect. 6.6. In this 
section, as an example, the element GMST18 will be used to describe the 
construction procedure of the generalized conforming flat-shell element. 

11.5.1 Two Component Parts of the Flat-Shell Element 

As shown in Fig. 11.15, the flat-shell element in the local coordinate system Oxyz
is assembled by plane membrane and plate bending element. 

Figure 11.15 Flat-shell element in the local coordinate system Oxyz 
(a) Flat-shell element; (b) Plate bending element; (c) Membrane element
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The element nodal displacement vector qe in local coordinate system Oxyz is 
composed of the vertex freedoms: 

1

2

3

e

e e

e

q
q q

q
, T[ ]e

i i i i xi yi ziu v wq   (i 1, 2, 3) (11-133) 

Let m
eq  be the nodal displacement vector related to the membrane element, p

eq
be the nodal displacement vector related to the plate element, then we have 

m1

m m2

m3

e

e e

e

q
q q

q
, m

i
e

i i

zi

u
vq ,
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p p2

p3

e

e e

e

q
q q

q
, p

i
e
i xi

yi

w
q   (i 1, 2, 3) (11-134) 

11.5.2 Membrane Part—Triangular Membrane Element GT9 

The plane membrane element GT9 introduced in Sect. 11.4.1 is a triangular 
generalized conforming membrane element with additional rigid rotational 
freedoms, its element stiffness matrix m

eK  is given by Eq. (11-97) to Eq. (11-99). 
In order to avoid membrane locking in the calculation of shells, one-point 
reduced integration is often employed for computing m

eK . But unfortunately, 
extra zero energy modes of the element will appear, and for some special cases, 
such as the twisted cantilever beam problem, the hourglass phenomenon may 
occur. Reference [28] suggested a method of adding a stabilization matrix to 
overcome this shortcoming. According to their approach, the stabilization matrix 
of the element GT9 is given as follows: 

m stab

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 2 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 2 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 2

eK  (11-135) 
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in which 

1 1 1
m m m

1 (3, 3) (6, 6) (9, 9)
3

e e eK K K  (11-136) 

where 1
m

eK denotes the element stiffness matrix of GT9 using one-point integration; 
 is a perturbation factor. From numerical experiments, it is found that, when is 

not less than 10–6, the rank and eigenvalues of the new shell element are correct. 
So, 10–6 is adopted. Thus, the element stiffness matrix of GT9 in the local 
coordinate system can be modified as  

1
m m m stab
e e eK K K  (11-137) 

11.5.3 Plate Bending Part—Triangular Thick/Thin Plate  
Element TSL-T9 

The triangular plate bending element TSL-T9 in the local coordinate system Oxyz
is shown in Fig. 11.16. The element nodal displacement vector is composed of 
deflection w and normal slopes x and y of the mid-surface 

Figure 11.16 Triangular plate bending element TSL-T9 

T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq  (11-138) 

Note that, since the definitions of the rotations ( x, y and x, y) are different, 
there exists the following relation between eq  and p

eq  in Eq. (11-134): 

p
e eq Lq ,

I
L I

I

0 0
0 0
0 0

,
1 0 0
0 0 1
0 1 0

I ,
0 0 0
0 0 0
0 0 0

0  (11-139) 
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The construction procedure of the element shear strain fields is the same as 
that described in Sect. 8.5.3, then the final element shear strain field is  

s p p
e eB q H GLq  (11-140) 

where Bs is the element shear strain matrix; H ,  and G  are given by 
Eqs. (8-137), (8-139) and (8-127), respectively.  

The element deflection field is assumed to be the same as that of the thin plate 
element LSL-T9 introduced in Sect. 6.6, i.e.,  

w F  (11-141) 

where
T

1 2 3 4 5 6 7 8 9 10 11 12[ ]     (11-142) 

1 2 3 2 3 3 1 1 2 2 3 2 3 3 1 3 1

2 2 2
1 2 1 2 1 2 3 2 3 1 3 1 2

[ ( ) ( )

( ) ]

L L L L L L L L L L L L L L L L L

L L L L L L L L L L L L L

F
(11-143)

According to the Mindlin plate theory, the element rotation fields are 

,
s p

,

xz
x x e

y y
yz

w
x
w
y

F
B q

F
. (11-144) 

where ,xF  and , yF  denote the derivative matrices of F  with respect to x and y,
respectively. 

Along the element sides, deflection w  is interpolated according to the thick 
beam theory, and the normal slope n  is assumed to be linearly distributed, as 
shown in Eq. (8-146). 

The following 12 SemiLoof point conforming conditions (refer to Fig. 6.16) 

 ( ) 0iw w   (i 1,2,3) (11-145) 

 ( ) 0jw w   (j 4,5,6) (11-146) 

 ( ) 0n n k   (k A1, B1, A2, B2, A3, B3) (11-147) 

are introduced. Equations (11-145) and (11-146) are the point conforming conditions 
about deflections at the corner nodes (nodes 1, 2, 3) and mid-side points (points 4, 
5, 6), respectively; Eq. (11-147) denotes the point conforming conditions about the 
normal slopes at the Gauss points on the element side (points A1, B1, A2, B2, A3, B3).

Then, 1, 2, , 12 can be obtained, in which the last 3 coefficients are equal 
to each other, i.e., 10 11 12. Therefore, Eq. (11-141) can be rewritten as 

w F  (11-148) 
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where
T

1 2 3 4 5 6 7 8 9 10[ ]  (11-149) 

1 2 3 2 3 3 1 1 2 2 3 2 3 3 1 3 1 1 2 1 2 1 2 3[ ( ) ( ) ( ) ]L L L L L L L L L L L L L L L L L L L L L L L LF
(11-150)

 can be expressed in terms of the element nodal displacement vector 
eCq  (11-151) 

where
1 2 3[ ]C C C C  (11-152) 
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in which bi, ci and ri (i 1,2,3) are given by Eq. (6-58); i (i 1,2,3) are given by 
the first equation in (8-114).  

Substitution of Eq. (11-151) into Eq. (11-148) yields 

e e e e
p pw F Cq F CLq N q , eN F CL  (11-154) 
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where Ne is the shape function matrix of the deflection w. It can be verified that, 
this deflection field and the rotation fields given by Eq. (11-144) determined by 
this deflection field satisfy the following generalized conforming condition 

[ ( ) ( ) ( )] 0
e n n n n ns s sA

Q w w M M  (11-155) 

where Qn, Mn and Mns denote the shear force, normal bending moment and tangent 
bending moment along the element boundary Ae. Hence, the element derived 
here is a generalized conforming element, and its convergence can be ensured.  

The rotation field  in Eq. (11-144) can be rewritten as 

,
s p

,

xz
x x e

y y
yz

w
x
w
y

F
C B Lq

F
 (11-156) 

Then, the curvature field  of the plate element is 

,

, p b p

,2 2

x

x xx
y e e

y yy

xy xy
yx

x

y

y x

F
F CL q B q
F

 (11-157) 

in which Bb is the bending strain matrix.  
Thus, the element stiffness matrix of the thick/thin bending element TSL-T9 can 

be obtained 

T T
p b b b s s sd d

e e

e

A A

A AK B D B B D B  (11-158) 

Numerical results show that the element TSL-T9 possesses excellent 
performance for both thin and thick plate bending problems. And, its stress 
solutions are also improved by the hybrid-enhanced post-processing procedure in 
reference [9]. Here we will not expand this in detail. Readers who are interested 
in it can refer to reference [9]. 

11.5.4 Stiffness Matrix of the Flat-Shell Element GMST18 

Assembling Eqs.(11-137) and (11-158) according to the DOF’s sequence given 
by Eq. (11-133), we obtain the element stiffness matrix Ke of the flat-shell element 
GMST18 in the local co-ordinates. And, after transforming K e to the global 
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coordinates by standard procedure, the element can be used to calculate shell 
structures.

11.5.5 Numerical Examples 

Here, the numerical results of the flat-shell element are given. For comparison, 
the results by other elements are also listed. All element models used are listed in 
Table 11.8. 

Table 11.8 Shell elements for comparison (17 elements) 

Element symbol Element types References
1. GMST18 

2. GST18 

3. GST18M 

4. RTS18 
5. PROVIDAS  
6. DKT-CST-15RB 
7. OLSON  
8. STRI3 
9. S3R 

10. GCR24 

11. QUAD4 
12. AQR8 
13. GUAN 

14. DKQ 

15. MITC4 

16. T15-R 

17. RDTS15 

3-node triangular generalized conforming thick/thin 
flat-shell element 

3-node triangular generalized conforming thin flat- 
shell element 

3-node triangular generalized conforming thin flat- 
shell element 

3-node triangular thin flat-shell element 
3-node triangular thin flat-shell element 
3-node triangular thin flat-shell element 
triangular thin flat-shell element 
3-node triangular thin flat-shell element in ABAQUS 
3-node triangular 3D degenerated shell element in 

ABAQUS
4-node rectangular generalized conforming thin flat- 

shell element 
4-node quadrilateral 3D degenerated shell element 
8-node quadrilateral hybrid stress shell element  
9-node quadrilateral quasi-conforming 3D degenerated 

shell element 
4-node quadrilateral plate element based on discrete 

Kirchhoff assumption 
4-node quadrilateral plate element based on the mixed 

interpolation technique 
Reduced or selected reduced integration triangular  

degenerated shell element 
Discrete refined 3-node triangular degenerated shell 

element 

[9] 

[4] 

[8] 

[29] 
[30] 
[31] 
[22] 
[32] 
[32] 

[5] 

[33] 
[34] 
[35] 

[36] 

[37] 

[38] 

[38] 

Example 11.8 Test of applicability for both thick and thin plates—a clamped 
square plate under uniform load.

A clamped square plate is subjected to a uniform load q. The side length 
L 100, the thickness-span ratio varies from 10–15 to 0.6, and the material 
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constants are: E 106 and 0.3. The whole plate is analyzed using the irregular 
mesh shown in Fig. 11.17. In Fig. 11.18, the deflection coefficients 4( / )Cw qL D
obtained by the several shell elements under different thickness-span ratios are 
given. It can be seen that, the element GMST18 can produce satisfactory results 
for both thin and thick plates, only the element RDTS15 is close to this element. 

Figure 11.17 Irregular mesh for a square plate 

Figure 11.18 The variation of deflection coefficient with thickness-span ratio 

Example 11.9 Scordelis-Lo Roof.
The cylindrical shell in Fig. 11.19 is supported by a rigid diaphragm at two 

ends and loaded vertically by its uniform dead weight. The theoretical solution 
from the deep shell theory for the vertical displacement at the midpoint of the 
free edge is 0.3008[39]. Because the shell is symmetric, only a quarter is taken for 
calculation.  

Nondimensional results by different shell elements are listed in Tables 11.9 
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and 11.10. It can be seen that all the generalized conforming elements have good 
accuracy.  

Example 11.10 Twisted Cantilever Beam.
A twisted cantilever beam is shown in Fig. 11.20. The free end is twisted 

90  from the clamped end. Two types of load are applied to the free end of the 
beam: P 1.0, Q 0.0 and P 0.0, Q 1.0. The displacements in the direction of 
the load are reported in Table 11.11. 

Figure 11.19 Scordelis-Lo roof 

Table 11.9 Vertical displacement at the midpoint of free edge for Scordelis-Lo roof 
(rectangular and quadrilateral elements) 

Mesh (1/4 shell) QUAD4 AQR8 GUAN GCR24 
2 2 0.4161 0.3683 0.3078 0.3533 
4 4 0.3175 0.3088 0.3033 0.3037 
6 6 0.3078 0.3042 0.3011 
8 8 0.3048 0.3033 0.3007

10 10 0.3036 0.3027 0.3006

Table 11.10 Vertical displacement at the midpoint of free edge for Scordelis-Lo 
roof (triangular elements) 

Mesh  
(1/4 shell) 

DKT-CST- 
15RB OLSON S3R STRI3 GST18 GST18M GMST18

2 2 0.2976 0.3809 0.2390 0.3310 0.3361 0.3525 0.3349
3 3  0.3024 0.2150 0.2221 0.2968 0.3027 0.2943
4 4 0.2144 0.2942   0.2921 0.2950  
5 5  0.2939   0.2931 0.2947  
6 6 0.2428  0.2438 0.2464 0.2947 0.2957 0.2946
8 8 0.2622  0.2627 0.2642 0.2969 0.2974 0.2965

10 10 0.2737 0.2970 0.2742 0.2751 0.2981 0.2984 0.2978



Chapter 11 Generalized Conforming Membrane and Shell Elements 

369

Figure 11.20 Twisted beam divided into 2 12 mesh 

Table 11.11 Normalized deflection at the free edge of a cantilever twisted beam 

Mesh QUAD4 S3R STRI3 RTS18 GST18 GST18M GMST18
P 1.0, Q 0.0

2 4  0.513 0.046 0.658   0.676 
2 8  0.920 0.352 0.957   0.991 
2 12 0.985 0.970 0.709 0.989 0.994 0.994 0.999 
2 16  0.985 0.885 0.997   1.001 
Theory                               1294 

P 0.0, Q 1.0
2 4  0.472 0.035 0.709   0.688 
2 8  0.931 0.331 0.974   0.994 
2 12 0.993 0.969 0.700 0.997 0.993 1.000 1.002 
2 16  0.980 0.883 1.002   1.004 
Theory                                5256 

Example 11.11 Hemispherical shell.
As shown in Fig. 11.21, a hemispherical shell with a hole at the top is under 

two pairs of opposite radial concentrated loads at points A and B. Due to symmetry, 
only 1/4 of the hemispherical shell is analyzed. Results of the radial deflection at 
load points A and B are given in Table 11.12. 

Table 11.12 Radial deflection at point A of the spherical under concentrated loads 
at A and B

Mesh STRI3 S3R RTS18 Providas GST18 GST18M GMST18
4 4 0.094 0.055 0.091 0.095 0.072 0.082 0.082 
8 8 0.094 0.084 0.096 0.093 0.092 0.092 0.092 

16 16 0.093 0.092 0.094
(14 14)  0.093 0.093 0.093 

64 64 0.093 0.093     0.094 
Comparison solution[29]                            0.094    
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Figure 11.21 Hemispherical shell with hole at the top, mesh 8 8

11.6 Shallow Shell Element—Variational Principle and  
Membrane Locking Problem 

Shell elements mainly have four discrete forms in geometry. Besides the flat-shell 
elements described above, there still are curved shell elements, degenerated shell 
elements derived from three-dimensional elements, and axisymmetric shell 
elements for the analysis of the shells of revolution. This section will introduce 
the construction procedure of the generalized conforming curved shell elements 
for shallow shells.  

Reference [40] firstly takes the modified Hu-Washizu principle as the starting 
point, then, by introducing two types of the generalized conforming conditions 
and using the degenerated potential energy principle, it establishes a thick 
shallow shell element GC-S20 with 20 DOFs. For the bending part of the shell, 
the scheme proposed in reference [41] is adopted to eliminate the shear locking 
phenomenon; and for the membrane strain part of the shell, both displacement 
fields and membrane strain fields are assumed independently, and then by using 
the related generalized conforming conditions, membrane locking phenomenon 
can be eliminated. Reference [42] extends the generalized conforming rectangular 
thin plate elements RGC-12[14], LGC-R12[43] and triangular element TGC-9[14] to 
various shallow shell elements for the first time, but only the rectangular elements 
can pass the membrane locking test. Thereupon reference [42] continues the study 
on the membrane locking problem, and successfully constructs the generalized 
conforming rectangular and triangular shallow shell elements with mid-side 
nodes, which can completely avoid the membrane locking phenomenon. 

 Sym. is the abbreviation for symmetrical. 
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11.6.1 Variational Principle for Shallow Shells and Its  
Degenerate Form 

Let the base plane of the shallow shell be the xOy plane, and the z-axis be normal 
to the base plane. Then, the mid-surface equation of the shallow shell is  

 z z(x, y) (11-159) 

The initial curvatures of the mid-surface are 
2 2 2

0 0 0
2 2

1 1 1, ,x y xy
x y xy

z z z
x R y R x y R

 (11-160) 

where Rx, Ry and Rxy are the reciprocal values of the corresponding curvatures, 
respectively. 

In shallow shell elements, the following quantities need to be assumed: 

Displacements of mid-surface  u v w

Membrane strains  T[ ]x y xy

The curvatures derived from the displacements are 

T2 2 2
T

2 2[ 2 ] 2x y xy
w w w

x y x y
 (11-161) 

And, the membrane strains derived from the displacements are 

T

Tˆ ˆ ˆ ˆ[ ] 2x y xy
x y xy

u w v w v u w
x R y R x y R

 (11-162) 

For thin shallow shell, the modified Hu-Washizu functional can be written as 

1 2
e e e  (11-163) 

where 1
e  is the energy due to the bending deformation of the shallow shell 

element,  

T
1 b

1 d [ ( )]d
2 e

e

e
n ns nA

A

w w w wA M M Q w w s
n n s s

D

(11-164)

in which Ae is the projection area of the element; Ae is the element boundary ; 
Mn, Mns and Qn are the bending moment, twisting moment and transverse shear 

force on the element boundary; w, w
n

 and w
s

 are the displacements on the 
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element boundary determined by the element deflection field; w , w
n

 and w
s

 are 

the given displacements on the element boundary; Db is the elastic matrix for thin 
plate bending,  

3

b 2

1 0
1 0

12(1 )
10 0

2

EhD

where h is the thickness of the shell ; E is the Young’s modulus;  is the 
Poisson’s ratio. 

2
e  is the energy due to the membrane deformation of the shallow shell 

element,  

T T
2 m

1 ˆ( ) d
2e

e

A

AD N  (11-165) 

in which  is the assumed element membrane strain vector; N  is the element 
membrane stress vector; Dm is the elastic matrix for thin membrane deformation 
(i.e., the elastic matrix for plane stress problem), 

m 2

1 0
1 0

1
10 0

2

EhD

The displacement mode of the generalized conforming thin plate element is taken 
as the interpolation function for the normal displacement of the shallow shell 
element, when the mesh is refined by infinite elements, it satisfies 

( ) d 0
e n ns nA

w w w wM M Q w w s
n n s s

 (11-166) 

When the mesh is refined by infinite elements, i.e., the element is under the 
limit state of constant internal forces, the second term in Eq. (11-165) should satisfy 
the following generalized conforming conditions 

T ˆ( )d 0
eA

AN  (11-167) 

Here, the energy functional degenerates to the following simplified form 

T T
b m

1 1 d
2 2e

e

A

AD D  (11-168) 
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Then, according to Eq. (1-168), the stiffness matrix for the shallow shell element 
can be derived conveniently. 

11.6.2 Notes on the Membrane Locking Problem 

From Eq. (11-162), it can be seen that, the membrane strains are not only related 
to the tangential displacements u and v, but also related to the normal 
displacement w. The reason leading to membrane locking comes from the 
mismatching between the tangential displacements u, v and the normal 
displacement w in the assumed displacement mode for the shallow shell element, 
so that the displacement state of the rigid-body motion of the element cannot be 
presented. In order that the rigid-body motion of the element can be presented, 
the following zero strain state must come into existence 

2 2 2

2 20, 0, 2 0x y xy
w w w

x y x y
 (11-169) 

20, 0, 0x y xy
x y xy

u w v w v u w
x R y R x y R

 (11-170) 

From the first expression of Eq. (11-169), we obtain 

1 2( ) ( )w xf y f y  (11-171) 

Substitution of the above equation into the last two expressions of Eq. (11-169) 
yields 

1 1 2 2 3( ) , ( )f y C f y C y C  (11-172) 

where C1, C2 and C3 are constants. Thereby, the normal displacement should be 
the following linear function 

1 2 3w C x C y C  (11-173) 

Substituting Eq. (11-173) into the first two expressions of Eq. (11-170), and 
assume that Rx, Ry and Rxy are constants, we can obtain 

21
2 3 1

22
1 3 2

1 ( )
2

1 ( )
2

x

y

Cu x C xy C x g y
R

Cv C xy y C y g x
R

 (11-174) 
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Substitution of u and v into the third expression of Eq. (11-170) yields 

32 1 1 2
2 1

22 21 1( ) ( )
y x xy xy x y xy

CC C C Cg x x x g y y y
R R R R R R R

 (11-175) 

The above equation exists for arbitrary x and y, then we have 

2 2 1 3 4

1 1 2 4

2 2
( )

2( )

y y y
y

x xy xy

x x
x

y xy

R R R
g x C x C x C C R

R R R

R Rg y C y C y C R
R R

 (11-176) 

Thereupon, it can be easily obtained that 

2 2
2 2 1 3 4 5

2 2
1 1 2 4 6

2
( )

2

( )
2

y y y
y

x xy xy

x x
x

y xy

R R R
g x C x C x C x C R x C

R R R

R Rg y C y C y C R y C
R R

 (11-177) 

in which C4, C5 and C6 are all constants. Substitution of Eq. (11-177) into 
Eq. (11-174) yields 

2 2
1 2 1 2 3 4 6

2 2
2 1 1 2 3 4 3 5

1 1 1 1 1 1
2 2

1 1 1 1 2 1 1
2 2

x x y xy x x

x xy y y xy y y

u C x C xy C C y C x C y C
R R R R R R

v C C x C xy C y C C x C y C
R R R R R R R

(11-178)

Let

3 6 5
0 4 0 0, ,

xy x y

C C CC u v
R R R

 (11-179) 

Then, Eq. (11-178) can be rewritten as 

2 2
1 2 1 2 3 3 0 0

2 2
2 1 1 2 3 3 0 0

1 1 1 1 1 1
2 2

1 1 1 1 1 1
2 2

x x y xy x xy

x xy y y xy y

u C x C xy C C y C x C y y u
R R R R R R

v C C x C xy C y C x C y x v
R R R R R R

  (11-180) 
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Equations (11-173) and (11-180) can be written together in the following form 

      
12 2 2

2 0 0

3 0 02 2 2

1
0

2 2

2 2

x y x xy x xy

xy y x y xy y

x y
w C

x y xy y x yu C u y
R R R R R R

v C v x
x xy x y x y
R R R R R R

 (11-181) 

The second term on the right-side of the above equation denotes the displacement 
of the rigid-body motion when there is no normal displacement, and the first term 
denotes the displacement of the rigid-body motion when the normal displacement 
exists.

According to the above demonstration, the following deduction can be obtained. 
Deduction If the shallow shell element can embody the displacement state 

of the rigid-body motion, the interpolation formulas for tangential displacements 
u, v should at least include the complete quadric polynomial. 

From this conclusion, it follows that, the appearance of the membrane locking 
phenomena of some curved shell elements is just because the assumed tangential 
displacement trial functions cannot satisfy the above requirement. 

11.7 Shallow Shell Element—Triangular Element SST21  
with Mid-Side Nodes 

Triangular shallow shell elements often suffer from the membrane locking 
phenomenon. In order to overcome this difficulty, some successful displacement- 
based triangular shallow shell elements are almost the high-order elements using 
high-order interpolation functions for tangential displacements. For example, in 
reference [44], tangential and normal displacements all adopt the cubic 
interpolation functions, and the triangular shallow shell elements with 36 and 27 
DOFs are then constructed, respectively; in reference [45], the interpolation 
functions for the tangential and normal displacements are assumed to be complete 
cubic and incomplete quintic polynomials, respectively, and a triangular shallow 
shell element with 2 internal DOFs and 36 external DOFs is then constructed. In 
order to increase the order of the tangential displacement functions to quadric, 
the tangential freedoms at the mid-side nodes are considered. This is the scheme 
for the generalized conforming shallow shell element SST21. Here, we will 
introduce the construction procedure of this model. 
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11.7.1 The Local Coordinate System and the Geometric  
Description of the Element Surface 

A triangular shallow shell element is shown in Fig. 11.22. The base plane of the 
element is formed by linking three corner nodes; let node 1 be the origin of the 
local coordinate system Oxyz, the linking line of nodes 1 and 2 be the x-axis, and 
xy plane be within the base plane of the element. 

Assume that the element surface is a quadric surface in the local coordinate 
system, and can be expressed in terms of the area coordinates as 

1 1 2 2 3 3 4 1 2 5 2 3 6 3 1z h L h L h L h L L h L L h L L  (11-182) 

Substituting the coordinates of the three corner nodes and three mid-side nodes 
into the above equation in turn, the coefficients hi can be obtained: 

1 1

2 2

3 3

4 4

5 5

6 6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
2 2 0 4 0 0

0 2 2 0 4 0
2 0 2 0 0 4

h z
h z
h z
h z
h z
h z

h  (11-183) 

Substituting Eq. (11-183) into Eq. (11-182) (note that the local z-coordinates 
of the 3 corner nodes in Fig. 11.22 are all zero), we can obtain 

4 1 2 5 2 3 6 3 14( )z z L L z L L z L L  (11-184) 

From the above equation, the initial curvatures of the element, and the 
transformations between local and global coordinates can be derived.  

Figure 11.22 Triangular shallow shell element 
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11.7.2 Selection of DOFs and Determination of Displacement  
Functions

A triangular shallow shell element with mid-side nodes is shown in Fig. 11.23(a), 
it is composed of the 3-node bending element in Fig. 11.23(b) and 6-node 
membrane element in Fig. 11.23(c). 

Figure 11.23 Triangular shallow shell element SST21 
(a) Triangular shallow shell element with mid-side nodes;     
(b) 3-node bending element; (c) 6-node membrane element 

The element nodal displacement vector in local coordinate system is  

T T T T T T T
1 1 2 2 3 3[ ]eq q q q q q q  (11-185) 

where

T[ ]i i i i xi yiu v wq , T[ ]i i iu vq , xi
i

w
y

, yi
i

w
x

(11-186)
For convenience, the bending displacements and membrane displacements are 
separated as 

m T
1 1 1 1 2 2 2 2 3 3 3 3[ ]e u v u v u v u v u v u vq  (11-187) 

b T
1 1 1 2 2 2 3 3 3[ ]e

x y x y x yw w wq  (11-188) 
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The tangential displacements of the shell element are assumed to be the 
displacement fields of the 6-node quadric triangular membrane element, which 
are the compatible displacement modes: 

3
m

1
i i

i

u
v

u N q  (11-189) 

in which 

(2 1) 0 4 0
0 (2 1) 0 4

i i j m
i

i i j m

L L L L
L L L L

N   (i, j, m 1,2,3)  

(11-190)

m T[ ]i i i i iu v u vq  (11-191) 

And, the normal displacements of the shell element are assumed to be 
displacement fields of the generalized conforming 3-node triangular plate element 
TGC-9 introduced in Sect. 6.1.1. 

11.7.3 Element Stiffness Matrix 

The element membrane strains are  

T

T m b
m m[ ] 2 e e

x y xy w
x y xy

u w v w v u w
x R y R x y R

B q B q

(11-192)

where

m m1 m2 m3[ ]B B B B  (11-193) 

m

(2 1) 0 4( ) 0
1 0 (2 1) 0 4( )

2
(2 1) (2 1) 4( ) 4( )

i i j m m j

i i i j m m j

i i i i j m m j j m m j

b L b L b L
c L c L c L

A
c L b L c L c L b L b L

B   (11-194) 

(i, j, m 1, 2, 3)                                

i j mb y y ,  ( )i j mc x x  (11-195) 

A is the area of the base plane of the element; and 
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1

1
m

1

1 ˆ ˆ

1 ˆ ˆ

2 ˆ ˆ

x

w
y

xy

R

R

R

F C G

B F C G

F C G

 (11-196) 

where F  is given by Eq. (6-3), Ĝ  and Ĉ  can be expressed as follows: 

1 1 2 2 3 3

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0 0

0 0 0

0 0 0 6 6
ˆ 6 0 0 0 6

6 6 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

b c b c b c
b c b c

b c b c
b c b c

c b c b
c b c b
c b c b

G  (11-197) 

2 3 3 2
2 2 2 2 2 2

3 3 1 1
3 3 3 3 3 3

2 1 1 2
1 1 1 1 1 1

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1
0 6 6 0 1 0 0 0 1
6 0 6 0 0 1 1 0 0
6 6 0 1 0 0 0 1 0ˆ

3 5 5 3

5 3 3 5

3 5 5 3

f f f f F F F F F F
A A A
f f f f F F F F F F

A A A
f f f f F F F F F F

A A A

C

(11-198)

( )

12

i j m j m

i j
i

f b b c c
f f

F
A

  (i, j, m 1, 2, 3) (11-199) 
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The element bending strain matrix Bb can be obtained by the conventional 
procedure. According to the sequence of DOFs given in Eq. (11-185), Bm, Bmw

and Bb can be expanded to 3 21 matrices, and then, can be assembled to form 
the total strain matrix B. Thus, the element stiffness matrix in the element local 
coordinate system can be written as 

T d
e

e

A

AK B DB  (11-200) 

with

m

b

0
0
D

D
D

 (11-201) 

Then, it can be transformed to the global coordinate system for the finite element 
solution.

11.7.4 Numerical Examples

Example 11.12 Scordelis-Lo roof problem. 
As shown in Fig. 11.24, this problem is the same as the Example 11.9. The 

analytical solution of the shallow shell is used for comparison. The results are 
listed in Tables 11.13 and 11.14, in which Table 11.13 gives the vertical 
displacements of the center point of the roof and the mid-side point of the free 
edge obtained by different meshes; Table 11.14 gives the displacement results of 
the different points using 8 12 mesh. It can be seen that the element SST21 can 
successfully pass the membrane locking test, and converge to the analytical 
solution of the shallow shell.  

Table 11.13 The vertical displacements of the center point of the cylindrical shell 
and the mid-side point of the free edge (membrane locking test) 

SST21 (21 DOFs) 
Reference [44] 

(27 DOFs) 
Reference [44]  

(36 DOFs) Mesh 
wB wC wB wC wB wC

2 3 0.171 0.0068 0.211  0.323 0.044

4 5 0.287 0.0416 0.297 0.0400 0.315 0.0448

8 12 0.307 0.0433 0.309 0.0436   

Analytical solution of 
shallow shell[46] 0.308 0.046 0.308 0.046 0.308 0.046
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Table 11.14 The displacements of different points on the cylindrical shell (8 12 mesh) 

Point A B 2 3 4 C

u
SST21 

Analytical[46] 
0.0126
0.0126

0
0

0
0

0
0

0
0

0
0

v
SST21 

Analytical[46] 
0
0

0.164
0.164

0.0836
0.082

0.0294
0.028

0.0046
0.004

0
0

w
SST21 

Analytical[46] 
0
0

0.307
0.308

0.192
0.190

0.0774
0.076

0.0104
0.012

0.0433
0.046

Figure 11.24 Scordelis-Lo roof. Mesh by shallow shell element 4 5

Example 11.13 Doubly curved shallow shell. 
A simply-supported doubly curved shallow shell subjected to uniform vertical 

load q is shown in Fig. 11.25. Equation of its mid-surface is z 0.5k(x2 y2). Due 
to symmetry, only 1/4 of the shell is analyzed. The results are listed in Table 11.15. 

Figure 11.25 A doubly curved shallow shell 

Table 11.15 The central vertical displacement of the doubly curved shallow shell 
w/(10-3qaD –1)

Mesh for 1/4 shell 1 1 2 2 4 4 6 6
SST21 4.29 4.01 3.99 3.99 

Analytical solution 3.99
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Example 11.14 Hyperbolic paraboloid shell. 
A clamped hyperbolic paraboloid shell subjected to uniformly distributed 

normal load q is shown in Fig. 11.26. The results are listed in Table 11.16. 

Figure 11.26 Hyperbolic paraboloid shell 

Table 11.16 The central vertical displacement of the hyperbolic paraboloid shell 

Mesh
Element 

2 2 4 4 8 8 12 12

SST21 (21 DOFs) 0.0326 0.0315 0.0250 0.0248

Reference [44] (27 DOFs)  0.0345 0.0283

Reference [44] (36 DOFs) 0.044 0.0275 0.0263

Finite difference solution 0.024 59 

11.8 Shell Element for Geometrically Nonlinear Analysis 
—Triangular Flat-Shell Element GMST18 

On the basis of the generalized conforming thick/thin triangular flat-shell element 
GMST18 (refer to Sect. 11.4), reference [9] derives the UL (Updated Lagrangian) 
formulations of the element for the analysis of geometrically nonlinear problems, 
which exhibit good performance for numerical examples.  

In the incremental method, all the physical components of a structure from 
time 0 to time t are assumed to have been obtained. What we are interested in is 
the increment that occurs from time t to time t t. The reference configuration 
is the configuration at time t. The principle of virtual displacement expressed by 
the UL method can be written as 

dt t t t t t
ij ij

V

V W  (11-202) 
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where t t
ij  and t t

ij  are the modified Kirchhoff stress tensor and the modified 
Green strain tensor, respectively; t tW  is the virtual work done by external 
loadings at the time t t.

t t E
ij ij ij  (11-203) 

where E
ij  is the Cauchy stress tensor at the time t, and ij  is the Kirchhoff 

stress tensor increment from time t to time t t .

, , , ,
1 1( ),
2 2

t t
ij ij ij ij

ij i j j i ij k i k j

e

e u u u u
 (11-204) 

where ije  and ij  are the linear and non-linear Green strain tensor increment 
from time t to time t t , respectively. And, iu  is the displacement increment 
from time t to time t t .

If t is small enough, the following relationship can be established 

ij ijkl klD  (11-205) 

where ijklD  is the elastic tensor. 
Substitution of Eqs. (11-203), (11-204) and (11-205) into Eq. (11-202) yields 

(the higher-order terms have been neglected) 

1 2 3( )t tI I W I  (11-206) 

with

    1 2 3d , d , dE E
ijkl kl ij ij ij ij ijV V V

I D e e V I V I e V  (11-207) 

where I1 is the linear increment of virtual work; I2 is the incremental virtual work 
relevant to the initial stresses; I3 is the incremental virtual work done by the 
internal forces.  

For the flat-shell element in the local co-ordinates, I1, I2 and I3 in Eq. (11-207) can 
be rewritten in the following discrete form 

T T T
1 m m m b s

T
2

T T T
3 m m

( )d

d

( )d

e

e

e

A

E

A

E E E

A

I A

I A

I A

D D D

w N w

N Q

 (11-208) 

where  means the increment of relevant variables; m  is the linear increment 
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of the membrane strain and given by 

T

m m m
eu v u v

x y y x
B q  (11-209) 

 is the linear increment of the curvature vector given in Eq. (11-157);  is 
the increment of the transverse shear strain vector given in Eq. (11-140); 

,
p p

,

x e e
G

y

w
x
w
y

F
w CL q B q

F
, ,

,

x
G

y

F
B CL

F
 (11-210) 

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

d d

d d

h hE E E E
x xyh h x xyE

E Eh hE E xy y
xy yh h

z z N N
N Nz z

N  (11-211) 

m
EN , EM  and EQ  are the membrane force, bending moment and shear force 

vectors at the time t, respectively, 

T
m [ ]E E E E

x y xyN N NN , T[ ]E E E E
x y xyM M MM , T[ ]E E E

x yQ QQ

(11-212)

Substitution of the geometric relation Eqs. (11-140), (11-157) and (11-209) into 
Eq. (11-208) yields 

T T
1 m m m m m

T T T
p b b b s s s p

T T
2 p p

T T
3 m m m m

T T T
p b s p

d

( )d

d

d

( )d

e

e

e

e

e

e e

A

e e

A

e E e
G G

A

e E e

A

e E E e

A

I A

A

I A

I A

A

q B D B q

q B D B B D B q

q B N B q

q B N q

q B M B Q q

 (11-213) 

And, t tW  can be rewritten as 
T T

m m p p
t t e t t e e t t eW q R q R  (11-214) 
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where m
t t eR  and p

t t eR  are the equivalent nodal force vectors at the time 
t t  of the membrane element and plate bending element, respectively.  

Since m
eq  and p

eq  are arbitrary, thus, according to the variational principle 
and Eqs. (11-206), (11-213) and (11-214), we can obtain the element incremental 
equations in the local co-ordinates: 

m m m m

p p p p

e e t t e e

e e e t t e e

K q R
K K q R

0
0

 (11-215) 

where m
eK  is the linear stiffness matrix of the membrane element and given by 

Eq. (11-97); p
eK  is the linear stiffness matrix of the plate bending element and 

given by Eq. (11-158); eK  is the geometric stiffness matrix, 

T d
e

e E
G G

A

AK B N B  (11-216) 

m
e  is the equivalent nodal internal force vector of the membrane element; p

e  is 
the equivalent nodal internal force vector of the plate bending element,  

T
m m md

e

e E

A

AB N , T T
p b s( )d

e

e E E

A

AB M B Q  (11-217) 

Rewriting (11-215) according to the DOF’s sequence yields  

( )e e e t t e eK K q R  (11-218) 

After transforming (11-218) to the global co-ordinates by standard procedure, 
the element GMST18 can be used to analyze the geometrically nonlinear problem 
of shells.  

Example 11.15 Post-buckling analysis of a square plate. 
As shown in Fig. 11.27, a square plate is controlled by four clamps along each 

edge. Thus, the displacements in the controlled directions are uniform. This plate 
is subjected to a pair of concentrated loads on two opposite sides. Only a quarter 
of the plate using 4 4 mesh division is analyzed because of symmetry. 

Figure 11.27 Post-buckling problem for a square plate 
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According to the series method presented by Budiansky[47], the critical load and 
post-buckling path are given by

2

cr
4 DP

L
    and    

2
2 max

cr

31 (1 )
8

wP
P h

where wmax is the central deflection of the square plate. The post-buckling paths 
obtained by presented element GMST18 and element STRI3 in ABAQUS are 
plotted in Fig. 11.28. It can be seen that the results of GMST18 are more 
consistent with Budiansky’s solutions than those of STRI3. 

Figure 11.28 Post-buckling path for a square plate, mesh 4 4

11.9 Shell Element for Geometrically Nonlinear Analysis 
—Rectangular Shallow Shell Element SSR28 

11.9.1 Nonlinear Strains and TL (Total Lagrangian) Formulations

The simplified nonlinear strain components of the shallow shell element given by 
reference [48] have already been successfully applied in the nonlinear analysis of 
the shell structures. Here, these nonlinear strain components will be adopted to 
construct the generalized conforming rectangular shallow shell element for 
geometrically nonlinear analysis. The expressions of these strains are as follows: 

2 2

11 2
1 1 1

1 1
2

u w w u w uz
x R x R x R x

 (11-219a) 
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2 2

22 2
2 2 2

1 1
2

v w w v w vz
y R y R y R y

 (11-219b) 

2

12
1 2 1 2

1 12u v w u w v w u vz
y x x R y R x y R y R x

(11-219c)

where 11 x, 22 y, 12 xy, R1 Rx, R2 Ry.
The above strain components can be decomposed as follows: 

T
m T

11 22 12 21
1 2

[ ] u w v w u ve e e e
x R y R y x

 (11-220a) 

b T
11 22 12 21

T2 2 2

2 2
1 2 1 2

[ ]

1 1 1 12w u w v w u v
x R x y R y x y R y R x

(11-220b)

T
g T

13 23
1 2

[ ] w u w ve e
x R y R

 (11-220c) 

Compared with von Kármán nonlinear strain components, it can be seen that in 

the above expressions, w
x

 and w
y

 are replaced by 
1

w u
x R

 and 
2

,w v
y R

respectively;
2

2

w
x

 and 
2

2

w
y

 are replaced by 
2

2
1

1w u
x R x

 and 
2

2
2

1 ,w v
y R y

respectively; and 
2

2 w
x y

 is replaced by 
2

1 2

1 12 w u v
x y R y R x

. In total 

Lagrangian coordinates, the increments of strain components are 

2
11 11 13 13 13 11

1
2

e e e e z  (11-221a) 

2
22 22 23 23 23 22

1
2

e e e e z  (11-221b) 

     12 12 21 13 23 23 13 13 23 12 21( )e e e e e e e e z  (11-221c) 

where e11 and e22 are the strains caused by displacement increments; e13 and 
e23 are the strains caused by total displacements corresponding to original coordinate 
system. After the determination of the normal and tangential displacement functions, 
the linear strains in Eq. (11-221) can be written as 
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11 11 13 13
m

22 22 23 23

12 21 12 21 13 23 23 13

m m m m( )p e

e e e e
e e e e
e e e e e e e e

B B q (11-222)

where

11
m m

22

12 21

p e

e
e
e e

B q      (11-223) 

g
13 13 13 13

m g m
23 23 23 23

g g
13 23 23 13 13 23 23 13

e e

e e e
e e e
e e e e e e

B
B q B q
B B

    (11-224) 

From Eqs. (11-220b) and (11-220c), the following incremental strains can be 
obtained:

g
13g g13

g
23 23

e ee
e

B
q B q

B
 (11-225) 

11
b b

22

12 21

p eB q  (11-226) 

Then, the TL formulations for nonlinear tangential stiffness matrix of the shallow 
shell element can be written as 

m m b ge e e e e e
TK K K K K K  (11-227) 

where

m m T m
m d

e

e p p

A

AK B D B

m m m m T
1 2 2

e e e eK K K K

2 2
13 23 13 23

m gT g
1 2

2 2
13 23 23 13

1 1
2 2 d

1 11
2 2

e

e

A

e e e eEh A
e e e e

K B B
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13 13 23
m gT m
2 2

23 23 13

1
2 d

11
2

e

e p

A

e e eEh A
e e e

K B B

b b T b
b d

e

e p p

A

AK B D B

11 12g gT g
m

12 22

d
e

e

A

h AK B D B

T
1 2 2 3

e e e e eK K K K K

2 2
13 23 13 23

gT g
1 2

2 2
13 23 23 13

1 (3 )
2 d

11 (3 )
2

e

e

A

e e e eEh A
e e e e

K B B

13 13 23
gT m m

2 2

23 23 13

1 (1 )
2 ( )d
11 (1 )
2

e

e p

A

e e eEh A
e e e

K B B B

11 22 12 21
gT g

3 2

12 21 22 11

1 (1 )( )
2 d

11 (1 )( )
2

e

e

A

e e e eEh A
e e e e

K B B

where 11, 22 and 12 are the second Piola-Kirchhoff stresses.  

11.9.2 The Formulations of the Rectangular Shallow Shell  
Element SSR28

A generalized conforming rectangular shallow shell element with tangential 
DOFs at the mid-side points is shown in Fig. 11.29. It is composed of two parts: 
4-node bending element and 8-node membrane element. 

The element nodal displacement vector is 

T T T T T T T T T
1 1 2 2 3 3 4 4[ ]eq q q q q q q q q  (11-228) 

where the definition of qi and qi  are given by Eq. (11-186). 
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Figure 11.29 (a) (b) (c)
(a) nodes of rectangular shallow shell element; (b) nodes of bending element;  
(c) nodes of membrane element                                      

Similar to Eqs. (11-187) and (11-188), for convenience, the displacement vector 
(11-228) is decomposed into membrane displacement and bending displacement 
vectors:

m T
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4[ ]e u v u v u v u v u v u v u v u vq

(11-229)

b T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

(11-230)

Assume that the tangential displacement fields are cubic polynomials: 

4
m

1

e
i i

i

u
v

u N q  (11-231) 

where

0 0
0 0

i i
i

i i

N N
N N

N , m T[ ]i i i i iu v u vq   (i 1,2,3,4)  

(11-232)
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2 2
1 2

2 2
3 4

0 0
1 1 1 4 2 2 1 2

0 0
3 3 2 3 4 4 3 4

0

1 1(1 )(1 ), (1 )(1 )
2 2
1 1(1 )(1 ), (1 )(1 )
2 2

1 1 1 1,
2 2 2 2
1 1 1 1,
2 2 2 2

1 (1 )(1 ) ( 1,2,3,4)
4i i i

N N

N N

N N N N N N N N

N N N N N N N N

N i

 (11-233) 

The above tangential displacement functions not only are complete quadric 
polynomials, but also include the cubic terms 2  and 2. The displacement 
functions of the generalized conforming rectangular plate element RGC-12[14] are 
adopted to form the normal displacement field of the shallow shell element:  

1 bˆ ˆ( ) ew F C G q  (11-234) 

where

      2 2 3 2 2 3 3 3 T[1 ]F  (11-235) 

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

2 4 2 60 0 0 0 0 0 0 0
3

2 4 6 20 0 0 0 0 0 0 0
3

0 2 0 0 2 0 2 0 2 0 2 2
0 0 2 0 2 0 0 2 0 2 2 2

ˆ 0 2 0 0 2 0 2 0 2 0 2 2
2 22 0 2 0 2 0 0 2 0 0
3 3

2 22 2 0 2 0 2 0 0 0 0
3 3

2 22 0 2 0 2 0 0 2 0 0
3 3

1 2 1 3 2 1 3 10 0 0 0

1 1 2 10 0 0 0

b b b b

a a a a

b b b b

a a a a

a a a a a a a a

b b b

C

2 3 1 3
b b b b b

(11-236)
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0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0

ˆ
1 0 1 0 0 0 0 0 0 0

3 3
30 0 0 1 0 1 0 0 0 0

3

0 0 0 0 0 0 1 0 1 0
3 3

0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

a a

b
b

a a

G  (11-237) 

The incremental displacement vector of the element is 

     T T T T T T T T T
1 1 2 2 3 3 4 4[ ]eq q q q q q q q q  (11-238) 

where
T[ ]i i i i xi yiu v wq , T[ ]i i iu vq  (11-239) 

The incremental displacements corresponding to Eqs. (11-229) and (11-230) are 

m
1 1 1 1 2 2 2 2 3 3 3 3

T
4 4 4 4

[

] (11-240)

e u v u v u v u v u v u v

u v u v

q

b T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq
(11-241)

According to Eqs. (11-220a) and (11-222), matrix Bmp can be written as 

T
m

1 2

m m m b

p e

e w e

u w v w u v
x R y R y x

B q

B q B q (11-242)

where
m m m m m m m m m

1 1 2 2 3 3 4 4[ ]B B B B B B B B B
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The element bending strain matrix is 
T2 2 2

b
2 2

1 2 1 2

b b b m

1 1 1 12

(11-240)
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0 0
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Matrix Bg can be expressed by 

T
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4
1b m

1

2

1 0
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e

e e
i i

i

w u w v
x R y R

R

R

B q

G q N q (11-244)

where

2 2 2 3
1

2 2 3 2

0 0 2 0 3 2 0 31 ˆ ˆ( )
0 0 2 0 2 3 3
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ab a a a a a a a a a

G C G
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i i i i iu v u vq

Then, from the above equations, the nonlinear tangential stiffness matrix of the 
shallow shell element can be obtained according to Eq. (11-227).  

11.9.3 Numerical Examples

In the following nonlinear numerical examples, the variable arc length iteration 
method[42], in which the current stiffness parameter is taken as the control variable, 
is used, and the materials are all assumed to be linear elastic.  

Example 11.16 The nonlinear analysis of a clamped square plate subjected to 
uniform load. 

A clamped square plate subjected to uniform load q is shown in Fig. 11.30, its 
Poisson’s ratio 0.316. Due to the symmetry, only 1/4 of the plate is analyzed 
by using two meshes 2 2 and 4 4. The results are listed in Table 11.17, in 
which /W w h  and 4 4/Q qa Eh . It can be seen that the element SSR28 can 
provide higher precision with less DOFs.  
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Figure 11.30 A clamped square plate

Table 11.17 The central deflection parameter W  in nonlinear analysis of a clamped 
square plate subjected to uniform load 

Load parameter Q  Analytical[49] QH[49] SSR28 2 2 SSR28 4 4
17.79
30.8
63.4
95

134.9
184
245
318
402

0.237
0.471
0.695
0.912
1.121
1.323
1.521
1.714
1.902

0.2361
0.4687
0.6902
0.9015
1.1050
1.2997
1.4916
1.6775
1.8545

0.2254
0.4509
0.6694
0.8804
1.0848
1.2807
1.4739
1.6607
1.8382

0.2333
0.4621
0.6815
0.8909
1.0936
1.2942
1.4900
1.6834
1.8643

DOFs  405 69 205 

Example 11.17 Post-buckling analysis of a thin cylindrical shell subjected to 
concentrated load. 

A cylindrical shell is shown in Fig. 11.31. Its longitudinal straight edges are 
hinged while curved edges are free. A concentrated load acts on the center of the  

Figure 11.31 Cylindrical shell 
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shell. Two different thickness cases are considered: h 12.7mm and h 6.35mm. 
The critical load of this structures obtained by computations are listed in 
Tables 11.18 and 11.19, and also plotted in Figs. 11.32 and 11.33. It can be seen 
that the results by the element SSR28 agree with those obtained by the 
cylindrical shell element[50], the flat-shell element[51] and the quasi-conforming 
rectangular shallow shell element[52].

Table 11.18 The critical load Pcr of a cylindrical shell (h 12.7mm) subjected to 
concentrated load 

2 2 4 4 16 16Mesh 

Model Up limit Low limit Up limit Low limit Up limit Low limit

SSR28 2.223 0.6066 2.200 0.5169   

Reference [52]     2.222 86 0.546 40

Reference [51]   2.27    

Reference [50]   2.22    

Table 11.19 The critical load Pcr of a cylindrical shell (h 6.35mm) subjected to 
concentrated load 

2 2 4 4 16 16Mesh 

Model Up limit Low limit Up limit Low limit Up limit Low limit

SSR28 0.5956 0.3324 0.5837 0.3739   

Reference [52]     0.5907 0.3794

Figure 11.32 Load-central deflection relation curve of a cylindrical shell 
(h 12.7mm)

Example 11.18 Post-buckling analysis of a thin cylindrical shell subjected to 
uniform load. 

The dimensions and material properties of a cylindrical shell structure are 
shown in Fig. 11.31. This cylindrical shell is clamped and subjected to vertical 
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Figure 11.33 Load-central deflection relation curve of a cylindrical shell (h 6.35mm)

uniformly distributed load q, and its thickness h 3.175mm. The results of the 
post-buckling analysis by 4 4 mesh are plotted in Fig. 11.34, in which w is the 
vertical deflection at central point. 

Figure 11.34 Post-buckling analysis of a clamped cylindrical shell (h 3.175mm)

Example 11.19 Post-buckling analysis of a shallow spheric shell. 
A simply-supported shallow spheric shell subjected to a central concentrated 

load P is shown in Fig. 11.35. Its stability problem has already been analyzed by  

Figure 11.35 A shallow spheric shell 
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many element models[51,52,54]. The results of the critical load obtained by the element 
SSR28 using 2 2 and 4 4 meshes are listed in Table 11.20. A comparison 
between the results by the element SSR28 using 4 4 mesh and those in 
reference [51] is given in Fig. 11.36. 

Table 11.20 The critical load Pcr (kN) of a shallow spheric shell subjected to 
concentrated load 

2 2 4 4 5 5 16 16Mesh 
Model Up Low limit Up limit Low limit Up limit Low limit Up limit Low limit

SSR28 48.991 37.360 49.874 36.562     

Reference       48.172 36.951

Reference   52.000      

Reference     51.400    

Figure 11.36 Post-buckling analysis of a shallow spheric shell 
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Abstract This chapter firstly gives a brief review of the variational 
fundamentals and computational method of the sub-region mixed element 
method in the first two sections. Then, in the next three sections, the 
applications of this method in the 2D crack problem, cracked thick plate 
problem and surface crack problem in 3D body are introduced, respectively. 
Numerical examples show that the proposed sub-region mixed element method 
is an efficient tool for solving the various crack problems. 

Keywords finite element, sub-region mixed element, crack problem. 

12.1 Review of the Sub-Region Mixed Element Method 

The main characteristic of the sub-region mixed element method can be stated as 
follows: a whole structure is divided into several sub-regions (or sub-domains), and 
then, the displacement-based elements and the stress-based elements are adopted in 
different sub-regions, respectively. The finite element mesh used here is a kind of 
mixed mesh in which both displacement-based element and stress-based element 
exist and are coupled with each other. This is a new version of the mixed 
methods—usual mixed-hybrid element method is only a mixed method in the 
element level, while the sub-region mixed element method is a mixed method in 
the whole structure level. 

The sub-region mixed element method takes the sub-region mixed variational 
principle (refer to Chap. 2) as its theoretical basis. Thus, the coupling problem and 
convergence problem at the mixed interface between the displacement-based 
element and stress-based element can be solved in theory. 

The sub-region mixed element method has a broad application range. On the 
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one hand, it is a universal method which can be used for various mechanics 
problems. On the other hand, the most suitable application field of this method is 
the stress concentration problem or singular stress problem (such as crack 
problem and notch problem). The distinguished characteristic of this kind of 
problem is that, there are two sub-domain types in the structure: one belongs to 
the singular stress region, and the other belongs to the even stress region. That is 
to say, the stress fields of this kind of problem possess a characteristic of 
“sub-region mixed”—the stress fields of the whole structure can be divided into 
multiple sub-domains with different stress types. They simultaneously exist in 
the whole structure.  

Obviously, this kind of problem in which the stress fields possess the 
sub-region mixed character is just the problem that the sub-region mixed element 
method is the most suitable for. 

In fact, the sub-region mixed element method was initially established[1] just 
for this kind of problem (crack problem). The stress-based element with singular 
stress terms is used in the singular stress region at the tip of the crack, and the 
conventional displacement-based elements are used in the even stress region away 
from the tip of the crack. Due to the ingenious combination of the stress-based 
element and the displacement-based element (i.e. singular element and conventional 
element), both advantages of these two elements can be obtained. So, the 
computational accuracy of this method is very high. In reference [1], results of 
mode  plane crack problem by Benzley’s method[2], Qian’s method[3] and 
sub-region mixed element method are compared with each other. It can be seen 
that, the precision of Qian’s method is nearly thrice as good as that of Benzley’s 
method, but the precision of the sub-region mixed element method using only 17 
elements is the same as that of Qian’s method using 448 elements. 

Following are the analysis steps of the sub-region mixed element method for 
the crack problem. 

(1) An example of the sub-region mixed problem—stress analysis of a body 
with crack (Fig. 12.1). 

Figure 12.1 Crack problem 

Two different region types (stress concentration region and even stress region) 
exist simultaneously. 

(2) The region division of the sub-region mixed element method (Fig. 12.2). 
Two different element types (displacement-based element and stress-based 

element) are used simultaneously. 
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Figure 12.2 The coupling of potential energy region (displacement-based element) 
and complementary energy region (stress-based element) 

Region division Element type Basic variables 

Stress concentration region 
(Complementary energy 
region)

Singular stress element (stresses 
distribute according to the singular 
analytical solutions) 

Stress parameters  (unk-
nown coefficients in the 
analytical solutions) 

Even stress region (Potential 
energy region) 

Conventional displacement-based 
element (isoparametric element) 
(displacements distribute according 
to polynomial expressions) 

Nodal displacements 

(3) The basic equations of the sub-region mixed element method 
From the sub-region mixed variational principle 

p c pc( ) ( ) ( , )H stationary (12-1) 

and stationary conditions 

0 , 0 ,

the basic equations of the mixed method can be obtained. Then,  and  can be 
solved.

(4) Advances on the applications of the sub-region mixed element method 

Applications References 

Fracture 
problem

2D fracture problem (mode )
2D fracture problem (mixed mode) 
Fracture problem in Reissner plate 
Surface crack problem in 3D elastic body 

[1] (1982) 
[4] (1985) 
[5] (1988) 
[6] (1992) 

Notch
problem

Plane V-notch problem 
Bi-material notch problem 
Notch problem in Reissner plate 
Notch problem in 3D elastic body 
Stress concentrated problem in shear wall supported 

by beam column system 

[7] (1992) 
[8] (1990) [9] (1992)
[10] (1992) 
[11] (1994) 
[12] (1984) 
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(5) The characteristics and merits of the sub-region mixed element method 
The knack of the success—smart combinations between the stress-based element 

and displacement-based element, between singular element and conventional 
element, and between analytical solution and numerical solution. 

12.2 Basic Equations of the Sub-Region Mixed Element  
Method

This section will briefly narrate the basic concepts and equations of the sub-region 
mixed element method. The concepts of the sub-region mixed mesh and mixed 
basic variables, mixed energy functional, and mixed basic equations, are introduced 
in turn. 

12.2.1 Sub-Region Mixed Mesh and Mixed Basic Variables 

In the sub-region mixed element method, an elastic body is divided into a mixed 
body composed of potential energy region (P-region) and complementary energy 
region (C-region), and then, a mixed mesh containing both displacement-based 
element and stress-based element is established. 

In the potential energy region, the displacement-based element is adopted, and 
the nodal displacements are taken as the basic variables: 

T
1 2[ ]n  (12-2) 

In the complementary energy region, the stress-based element is used, and the 
stress parameters are taken as the basic variables: 

T
1 2[ ]m  (12-3) 

The basic variables of the sub-region mixed element method is formed by the 
combination of the above two basic variables  and :

T T T[ ]q  (12-4) 

Obviously, this set of basic variables is a mixed mode. 

12.2.2 Mixed Energy Functional 

The sub-region mixed element method takes the sub-region mixed variational 
principle as its theoretical basis. The energy functional of the sub-region mixed 
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variational principle is given by Eq. (2-1) in Chap. 2, i.e., 

p c pcH  (12-5) 

where p  is the total potential energy of the potential region (P-region); c  is 
the total complementary energy of the complementary energy region; pcH  is the 
additional energy on the interface pcS .

The expressions of the terms at the right side of Eq. (12-5) are as follows: 
The total potential energy p  of the potential energy region is expressed in 

terms of the nodal displacements  of the potential energy region as 

T T
p

1
2

K P  (12-6) 

where K is the global stiffness matrix of the potential energy region; P is the 
equivalent nodal load vector.  

The total complementary energy c  of the complementary energy region is 
expressed in terms of the stress parameters  of the complementary energy 
region as 

T
c

1
2

F  (12-7) 

where F is the flexibility matrix of the complementary energy region. 
The additional energy pcH  at the interface of the two regions is given by 

Eq. (2-4), i.e.,  

pc

T
pc d

S
H sT u  (12-8) 

where T denotes the boundary forces of the complementary energy region on the 
interface pc ;S u  denotes the boundary displacements of the potential energy 
region at the interface; and the additional energy pcH  at the interface pcS  is the 
work done by the boundary forces T of the complementary energy region along 
the boundary displacements u  of the potential energy region. 

The boundary forces T can be derived from the stress parameters , and the 
boundary displacements u  can be derived from the boundary nodal displacements 

. Let 

T R  (12-9) 

u N  (12-10) 

Substitution of the above two equations into Eq. (12-8) yields 
T

pcH H  (12-11) 

where H is the mixed matrix at the interface: 
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pc

T d
S

sH R N  (12-12) 

Anyway, substituting Eqs. (12-6), (12-7) and (12-11) into Eq. (12-5), the expression 
of the energy functional  of the sub-region mixed element method can be 
obtained as follows: 

T T T T1 1
2 2

K P F H  (12-13) 

 is a mixed energy functional, and determined by the mixed basic variables 
and .

12.2.3 Mixed Basic Equations 

The stationary condition of the sub-region mixed energy functional is 

0  (12-14) 

or written in the following form of mixed stationary conditions 

0  (12-15a) 

0  (12-15b) 

Firstly, from the condition (12-15a), we have 

0F H

Then, the stress parameters  can be solved: 

1F H  (12-16) 

Substituting the above equation into Eq. (12-13), then  containing only  can 
be obtained 

T T T 1 T1 1 ( )
2 2

K H F H P  (12-17) 

Secondly, let 

 (12-18) 

here,  and  denote the nodal displacements in the potential energy region at 
the interface and not at the interface, respectively. From the condition (12-15b), 
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we obtain 

T 1 0
0 0

H F H
K P  (12-19) 

Then, from this equation, the nodal displacements  can be solved. And, the stress 
parameters  can be evaluated from Eq. (12-16).  

The mixed basic Eqs. (12-15a,b) of the sub-region mixed element method are 
listed above, and Eqs. (12-19) and (12-16), for solving  and , respectively, 
are also derived. 

12.3 2D Crack Problem 

Reference [1] firstly applied the sub-region mixed element method to analyze the 
2D fracture problems and discussed the computational problem for the stress 
intensity factor K  of mode . Later, reference [4] discussed the mixed problem 
of the stress intensity factor K  of mode  and the stress intensity factor K  of 
mode .

In this section, the 2D crack problems are systematically analyzed by the 
sub-region mixed element method. Firstly, the expansion of stresses near the tip 
of the crack is introduced. Then, the related computational formulas of the 
sub-region mixed element method for the mixed crack problem are given.  

12.3.1 The Series Expansion of Stresses Near the Tip of a 2D  
Crack 

Let us consider an elastic plane crack shown in Fig. 12.3. The origin of the 
coordinate is at the tip of the crack. In the series expansion of stresses near the  

Figure 12.3 Stress analysis near the tip of a crack 
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crack tip, m1 terms are taken for both modes  and  stress terms, then we have 

T[ ]x y xy S S  (12-20) 

in which the two terms at the right side are corresponding to the modes  and 
stress terms, respectively: 

T
1 2 1[ ]m  (12-21) 

T
1 2 1[ ]m  (12-22) 

1 2 1[ ]mS S S S  (12-23) 

1 2 1[ ]mS S S S  (12-24) 

In the coordinate system shown in Fig. 12.3, kS  and kS  can be expressed as 

1
2

2 ( 1) cos 1 ( ) 1 cos 3 ( )
2 2 2 2

2 ( 1) cos 1 ( ) 1 cos 3 ( )
2 2 2 2 2

( 1) sin 1 ( ) 1 sin 3
2 2 2 2

k

k

k
k

k

k k k k

k r k k k k
R

k k k k

S

( )

(12-25)

1
2

2 ( 1) sin 1 ( ) 1 sin 3 ( )
2 2 2 2

2 ( 1) sin 1 ( ) 1 sin 3 ( )
2 2 2 2 2

( 1) cos 1 ( ) 1 cos 3
2 2 2 2

k

k

k
k

k

k k k k

k r k k k k
R

k k k k

S

1

( )

( 1,2, , )k m
(12-26)

It can be verified that, the above stress terms satisfy the stress equilibrium 
differential equations and the stress boundary conditions on the crack surface 
( 0, 2 ):

0x xy

Then, the stress intensity factors K and K can be expressed in terms of the 
stress parameters 1  and 1  as: 
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1

1

2

2

K R

K R
 (12-27) 

The stress expansion (12-20) can also be written as 

S  (12-28) 
in which 

T T T[ ]  (12-29a) 

 [ ]S S S  (12-29b) 

12.3.2 Formulation of Sub-Region Mixed Element Method for the  
2D Crack Problem 

As an example, the plate with a skew crack and under tension load, which is 
shown in Fig. 12.1, is considered. We will introduce the main ideas of the sub- 
region mixed element method for this problem. Let the thickness of the plate h 1.

(1) Region division and basic variables 
Region division is shown in Fig. 12.2. It contains two region types. 
The complementary energy region—it is the circular region near the crack tip, 

in which the crack tip is the center of the circle; R is the radius. This is a singular 
stress-based element with internal crack, and the 2m1 stress parameters in  are 
its basic variables, as shown in Eq. (12-29a). 

The potential energy region—it is the region out of the singular element, and 
takes 2n1 nodal displacement components as the basic variables: 

1 1

T
1 1[ ]n nu v u v  (12-30) 

(2) Mixed energy functional 
The energy functional of the sub-region mixed variational principle is given 

initially by Eq. (12-5) and finally by Eq. (12-13), in which the stiffness matrix K
of the potential energy region and the equivalent nodal load vector P are 
determined according to the conventional procedure. Furthermore, the flexibility 
matrix F of the complementary energy region and the mixed matrix H at the 
interface will be derived as follows.  

(3) The flexibility matrix F of the complementary energy region 
In the current problem, the total complementary energy of the complementary 

energy region is equal to the complementary strain energy of the singular 
element, i.e., 

T 1
c

1 d
2 A

AD  (12-31) 
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For plane stress problem, we have 

1

1 0
1 1 0

0 0 2(1 )
E

D  (12-32) 

E is the Young’s modulus;  is the Poisson’s ratio. For the plane strain problem, E

and  in the above equation should be replaced by 21
E  and 

1
, respectively. 

Substitution of Eq. (12-28) into Eq. (12-31) yields 

T
c

1
2

F  (12-33) 

where

T 1 d
A

AF S D S  (12-34) 

Equation (12-34) gives the expression of the flexibility matrix F of the 
complementary energy region.  

In consideration of the symmetry of mode  stress terms and antisymmetry of 
mode  stress terms, the complementary energy c  can also be written as 

T T
c

1 1
2 2

F F  (12-35) 

where
T 1

T 1

d

d
A

A

A

A

F S D S

F S D S (12-36)

Substituting Eqs. (12-25) and (12-26) into the above equation, and let m1 4, 
we have 

2

32 3 64(5 3 ) (2 3 ) (1 ) (6 )
4 15 2 105

328 (2 ) 02
5

3 64Sym. (5 3 ) (6 )
4 35

8 (3 2 )

R
E

F  (12-37) 
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2

3 128(9 ) 0 (1 ) (6 )
4 2 105

0 0 02
3 128Sym. (17 9 ) (6 )
4 35

8

R
E

F  (12-38) 

And, 

0
0
F

F
F

 (12-39) 

Substituting Eqs. (12-37) and (12-38) into the above equation, the explicit 
expressions for the flexibility matrix F of the complementary energy region can 
be obtained.  

(4) The mixed matrix H at the interface 
From Eqs. (12-8) and (12-11), we have 

pc

T T
pc d

S
H sT u H

In order to determine H, T and u  should be firstly derived. 
Firstly, the boundary forces T of the complementary energy region at the 

interface can be derived: 

T L LS  (12-40) 

where L is the direction cosine matrix of the interface 

sin 0 cos
0 cos sin

L  (12-41) 

From Eqs. (12-40) and (12-9), we obtain 

R LS  (12-42) 

Secondly, the boundary displacements u  of the potential energy region at the 
interface are then derived. From Eq. (12-10), we have 

u
v

u N  (12-43) 

N  is the shape function matrix of the boundary nodes at the interface, 
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2

2

1 2

1 2

0 0 0

0 0 0
n

n

N N N

N N N
N  (12-44) 

where n2 is the number of the nodes on the interface; and the expressions of 
shape functions iN  are given by reference[4]. 

Substitution of R in Eq. (12-42) and N  in Eq. (12-44) into Eq. (12-12) yields 
the mixed matrix H at the interface, i.e.,  

pc pc

T T Td d
S S

s sH R N S L N  (12-45) 

(5) Solution of basic equations 
Matrices F and H can be obtained from Eqs. (12-39) and (12-45), respectively. 

Substitution of them into Eq. (12-13) yields the expression of the energy 
functional .

By using the stationary condition of the energy functional, the basic Eqs. (12-19) 
and (12-16) of the sub-region mixed element method can be derived. From them, 
the basic variables  and  can be solved in turn. Finally, the stress intensity 
factors K  and K  can be obtained from Eq. (12-27). 

The sub-region mixed element method can be denoted by SRM. For the 2D 
mode  crack problem, it is denoted by SRM-C1; and for the mixed 2D problem, 
it is denoted by SRM-C2. 

Example 12.1 Stress intensity factors of the four 2D crack problems shown 
in Fig. 12.4.  

(a) single-edge cracked tension plate—SEC (Fig. 12.4(a)); 
(b) centre cracked tension plate—CC (Fig. 12.4(b)); 
(c) single-edge slant cracked tension plate—SESC (Fig. 12.4(c)); 
(d) centre slant cracked tension plate—CSC (Fig. 12.4(d)). 

Figure 12.4 Four crack problems 
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The results by the sub-region mixed element method in reference[4] and the 
related results for comparison are given in Table 12.1. For comparison with the 
results in related references, here the original data and the unit given in these 
references are used for the computations: the loading is 1lb/in2; the Poisson’s 
ratio is 0.3; the Young’s modulus is 107lb/in2; the length or semi-length of the 
crack is a.

Table 12.1 Stress intensity factor result comparisons 

Problem References /( )K a Error 1

(%)
Error 2

(%) DOF Standard 
value

(a) SEC [13] 
[14] 
SRM[4]

2.098
2.092
2.088

0.57
0.84
1.04

 186 
712
90

2.110[15]

(b) CC [13] 
[14] 
SRM[4]

1.229
1.211 
1.225

 0.65 
0.64
0.41

 186 
88
90

1.220[16]

(c) SESC SRM[4,17] 1.012
1.020

0.508
0.505

0.78 0.59 210 
[17] 

(d) CSC SRM[4,18] 0.614
0.612

0.549
0.545

0.33 0.73 320 
[18] 

The results for the stress intensity factors K  and K  calculated by the sub-region 
element method and other methods are listed in Table 12.1. 

From the numerical results in Table 12.1 and other examples, it can be concluded 
that:

(1) The sub-region mixed element method has been successfully applied to 2D 
crack problem involving single as well as mixed mode of crack deformation. It 
may provide more accurate results with less work load.  

(2) If the radius R of the complementary energy region is too small, then more 
nodes must be used in the P-region for obtaining better accuracy. When R is 
about 0.075a (a is the crack length or semi-length), better results can be obtained 
by using less nodes in the P-region. In this case, 9 nodes on the interface 
(semicircular) are enough.  

(3) With the increase of the number of the stress parameters in the C-region, 
the accuracy can in general be improved. However, it is suitable to use the first 
four terms (m1 4) of the known stress function. Fig. 12.5 shows the relation 

curves of computed errors in the stress intensity factors and a
R

 when different 

m1 is taken for CC specimen.  
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          Figure 12.5 The relation curve of  and R/a
— the relative error between numerical results and reference values 

m1 — the number of the terms in stress functions 
R — the radius of the complementary energy region 
a — the semi-length of the crack 

12.4 Cracked Thick Plate Problem 

The early analysis of the plate fracture problems was based on the Kirchhoff thin 
plate theory, in which the disadvantage is that the degree of stress singularity of 
the shear force is different from that of the bending moment. But, if the Reissner 
thick plate theory is adopted, the correct conclusion that both singularities are 
equal to each other can then be obtained. The mode  problem has been 
calculated by Barsoum[19] who used the degenerated thick plate element as well 
as distorted isoparametric element, and G. Yagawa[20] who superimposed the finite 
element mode on the singular term.  

This section discusses the computation of the stress intensity factor in the 
cracked plate bending problem by using the sub-region mixed element method[5].
Here, the Reissner thick plate theory is adopted so that the influence of transverse 
shear deformation is considered. In the computational model, the singular stress 
element is used near the crack tip, and the isoparametric displacement-based 
elements are used in the other region. Then, the stress intensity factors of 
modes ,  and  for some finite and infinite plates are calculated. The 
relative errors are less than 1%.  

In this section, the basic equations of the thick plate theory and the series 
expansion of the internal forces near the crack tip are introduced firstly; and then 
the related formulas of the sub-region mixed element method for the cracked 
thick plate bending problem are given. 
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12.4.1 Basic Equations of the Thick Plate 

In a thick plate, the positive directions of deflection w, normal slopes  of 
mid-surface, shear strains , curvatures ,  internal moments M and transverse 
shear forces Q are shown in Fig. 12.6. Here, we have 

T

T

T

T

T

[ ]

[ ]

[ 2 ]

[ ]

[ ]

x y

x y

x y xy

x y xy

x y

M M M

Q Q

M

Q

 (12-46) 

Figure 12.6 The internal forces and displacements of thick plate 

The geometrical relations between strains and displacements are 

,

x

x
y

y

yx

xw
x
w y
y

y x

 (12-47a,b) 

The elastic relations between internal forces and strains are 

 ,M D Q C  (12-48a,b) 

in which 
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1 0
1 0

1 0 ,
0 1

10 0
2

D CD C  (12-49a,b) 

where
3

212(1 )
EhD ;

1.2
GhC ; E is the Young’s modulus; G is the shear elastic 

modulus;  is the Poisson’s ratio; h is the thickness of the plate.  

12.4.2 Series Expansion of the Internal Forces Around the  
Crack Tip 

Let the crack tip be the origin of the coordinate system, and the x-axis be along 
the direction of the crack (Fig. 12.7). r and  are the polar coordinates. From [21], 
we know that the internal forces for symmetrical bending can be expressed by 

Figure 12.7 Analysis of internal forces around the crack tip in thick plate 

1
2

11 12

1
2

12 13

3
2

14

30.5 cos 5cos (1 ) (1 )(1 cos 2 )
2 2

(cos3 cos ) 1.5 (1 )
2

5 1cos 3cos 2 (1 ) cos3 cos ( )
2 2 3

rM A r A
D

C D r A r
D

A r O r (12-50a)

      

1
2

11 12

1
2

12 13

3
2

14

3( 1) cos 3cos (1 )(1 cos 2 )
2 2

(cos3 cos ) 1.5 ( 1)
2

5cos 5cos 2 ( 1)(cos3 cos ) ( )
2 2

M A r A
D

C D r A r
D

A r O r (12-50b)
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1
22

11 12 12

1
2

13

3
2

14

2 3sin sin 2 sin 2 2
(1 ) 2 2

5(sin sin 3 ) 3 sin sin
2 2

14 sin 3 sin ( )
3

rM
A r A D rk

D

A r

A r O r (12-50c)

1
2 22

11 12

3
2

13

5
2 2

14

2 3cos 3cos [cos 0.5
(1 ) 2 2

2 5(cos cos3 )] cos 5cos
(1 ) 2 2

2 (cos cos3 ) ( )
(3 3 )

rQ A r D k r
C

A r

A r O r (12-50d)

1
2 22

11 12

3
2

13

5
2 2

14

6 3sin sin sin 1.5
(1 ) 2 2

1 10 5sin sin 3 sin sin
3 (1 ) 2 2

2 1sin sin 3 ( )
(1 ) 3

Q
A r D k r

C

A r

A r O r (12-50e)

and the internal forces for anti-symmetrical bending can be expressed by 

       

1 1
2 2

21 21

1
2

23

3
2

24

3 50.5 (1 ) sin sin
2 3 2 4

5 5sin sin 1.5 (1 ) sin 0.6sin
2 2 2 2

2 (1 )(sin 3 sin ) ( )

rM CA r D r
D D

A r

A r O r (12-51a)

       

1 1
2 2

21 21

1
2

23

3
2

24

30.5 ( 1) sin sin
2 2 4

5 5sin sin 1.5 ( 1) sin sin
2 2 2 2

2 ( 1)(sin 3 3sin ) ( )

M CA r D r
D D

A r

A r O r (12-51b)
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1 1
22 2

21 21

1
2

23

3
2

24

2 3 1 5cos cos cos cos
(1 ) 2 3 2 2 2

53 cos 0.2cos
2 2

4 (cos3 cos ) ( )

rM
A r D r k

D

A r

A r O r (12-51c)

      

1 1
2 2

21 21

3 3
2 2 2

23

5
1 2 2
2

23

3
2 2

24 25

2 3sin sin 0.5 sin
(3 3 ) 2 2 2

1 5 2 5sin sin sin sin
3 2 2 (5 5 ) 2 2

3 3 7 31.5 sin sin sin
2 5 2 2

2 5(sin 3sin 3 ) sin
(1 )

rQ A r D r
C

k r A r

k rD r

A r D r
5
2( )

2
O r (12-51d)

      

3
1 1 2 2
2 2

21 21

3
2

23

5
1 2 2
2

23

2
24

2 1 3 5cos cos 0.5 cos
(1 ) 2 3 2 2 3

5 2 5cos 0.2cos cos 0.2cos
2 2 (1 ) 2 2

3 7 3 3 71.5 cos cos cos
2 5 2 7 2

6 (cos cos
(1 )

Q k rA r D r
C

A r

k rD r

A r
3 5
2 2

25
53 ) 2.5 cos ( )
2

D r O r (12-51e)

In the above equations, 2
2

5
2 (1 ) 2

Ck
D h

. Let 

T
11 12 12 13 14[ ]A A D A A   (symmetry case)          (12-52a) 

T
21 21 23 23 24 25[ ]D A A D A D   (anti-symmetry case) (12-52b) 

then the above expressions of the internal forces can be written as 

b s,M S Q S  (12-53) 
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The stress intensity factors can be obtained from the following relations: 

11

21

III 21

2 2 (1 )

2 2 (1 ) / 3

2 / 2

K D A

K D A

K CD

 (12-54) 

12.4.3 Formulation of the Sub-Region Mixed Element Method  
for the Cracked Thick Plate Problem 

The final energy functional of the sub-region mixed variational principle is still 
given by Eq. (12-13), in which the flexibility matrix F of the C-region and the 
mixed matrix H on the interface will be derived as follows.  

(1) The flexibility matrix F of the C-region 
The total complementary energy of the C-region in a thick plate is composed 

of two parts, bending and shear strain complementary energy: 

T 1 T 1
c

1 ( )d
2 A

AM D M Q C Q  (12-55) 

Substitution of Eqs. (12-50) and (12-51) into the above equation yields 

T
c

1
2

F  (12-56) 

where the flexibility matrix F is 
T 1 T 1

b b s s( )d
A

AF S D S S C S  (12-57) 

(2) The mixed matrix H on the interface 
Let n and s denote the directions of the normal and tangent of the interface pc .S

The additional energy pcH  on the interface is 

pc
pc ( )dn n n ns sS

H Q w M M s  (12-58) 

where Qn, Mn and Mns are the components in the boundary forces T of the 
C-region on the interface; w , n  and s  are the corresponding components in 
the boundary displacements u  of the P-region on the interface. 

From the above equation, pcH  can be derived, and can be written in the form 
of Eq. (12-11), i.e.,  

T
pcH H

Then, the expressions of H are obtained. 
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(3) Solution of stress intensity factor 
Substitution of F and H, which have already been obtained, into Eq. (12-13) 

yields the expression of the energy functional .  Then, the basic Eqs. (12-19) 
and (12-16) can be derived from the stationary condition, and the basic unknowns 

 and  can be solved in turn. Finally, the stress intensity factors can be solved 
from Eq. (12-54).  

The sub-region mixed element method for the cracked thick plate is denoted as 
SRM-C3.

Example 12.2 Stress intensity factor of mode  for an infinite cracked plate 
subjected to uniform bending moment. 

A cracked plate subjected to uniform bending moment M along its four edges 
is shown in Fig. 12.8. The length of the crack is 2a. In order to approximate the 
infinite plate, 2L 2W 20a is taken. The Young’s modulus E 2 106, and 
Poisson’s ratio 0.3.

Figure 12.8 An infinite plate with crack 

Owing to symmetry, only 1/4 of the plate is calculated. The division of 
C-region and P-region are shown in Fig. 12.9, in which the C-region is a 
rectangle, the crack tip O locates at the center of the rectangle; and the dimension 
of the C-region c 0.1r a .

Figure 12.9 The division of C-region and P-region 
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In the P-region, 8-node isoparametric element is used, and the mesh division is 
shown in Fig. 12.10. 

Figure 12.10 Mesh division 

The computed results of the stress intensity factor K  of mode  by SRM-C3 
are listed in Table 12.2, in which a comparison is made with the analytical solutions 
given by [22] and other finite element results given by [21]. 

Table 12.2 Comparison of K  for infinite plate 

h/a Analytical solution 
/K M a [22] I /K M a (SRM-C3) /K M a [21]

0.2
0.5
1.0
1.5
2.0

0.647
0.693
0.741
0.781
0.816

0.6510 (0.62%) 
0.6970 (0.57%) 
0.745 (0.54%) 
0.7848 (0.49%) 
0.8186 (0.32%) 

0.6726 (2.79%) 
0.7352 (1.25%) 

0.8144 (0.195%) 
Note: The numerical values in parentheses are the relative errors with respect to the analytical solutions in [22]. 

Example 12.3 Stress intensity factor K  of finite cracked plate with 2L
2W 4a under uniform moment. 

The results of K  computed by SRM-C3 are listed in Table 12.3. They are in 
agreement with the results of reference [21]. The values of /K K  are also 

given in Table 12.3. When 2.0h
a

, K  is 32.7% higher than K .

Example 12.4 Stress intensity factors of modes  and  of infinite cracked 
plate subjected to pure twisting moment. 

A cracked plate is shown in Fig. 12.8. Assume that it is subjected to uniform 
twisting moment H along the outer boundary. The meshes shown in Figs. 12.9 
and 12.10 are still adopted. Results for the stress intensity factors K  and K  of 
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modes  and  computed by SRM-C3 are listed in Table 12.4. Compared with 
the results given by [23], all errors are under 1%.  

Table 12.3 Stress intensity factors K  for finite plate 

h/a K [21] K  (SRM-C3) /K K
0.2
0.5
1.0
1.5
2.0

0.8036
0.8985

0.7376
0.8108
0.8985
1.0059
1.0830

1.141
1.170
1.208
1.288
1.327

Table 12.4 Stress intensity factors of modes  and  for an infinite plate subjected 
to pure twisting moment 

/K H a
10/

(1 )
K H a

h

h/a SRM-C3 Reference
[23] 

Relative
errors SRM-C3 Reference

[23] 
Relative

errors
0.2
0.5
1.0
1.5
2.0

0.1942
0.3974
0.5135
0.6467
0.7010

0.193
0.395
0.510
0.643
0.697

0.63%
0.62%
0.59%
0.58%
0.59%

0.1386
0.1437
0.1219
0.0818
0.0605

0.140
0.145
0.123

0.0825
0.061

1.00%
0.92%
0.88%
0.89%
0.90%

12.5 Surface Crack Problem in a 3D Body 

Various solution schemes for the stress intensity factors of the surface crack in a 
3D body have been proposed in some references [24–26]. Reference [27] 
discussed the stress and strain fields around the tip of surface crack in a 3D body. 

This section will use the sub-region mixed element method to analyze the 
surface crack problem in a 3D body[6]. According to the asymptotic representation 
of the stress fields in the region of the surface crack, a special singular stress-based 
element is constructed; and the stress intensity factors of different positions at the 
tip of crack are computed by the sub-region mixed element method. 

12.5.1 The Expression of Stress Fields in the Region of the  
Surface Crack 

The 3D body with the surface elliptic crack shown in Fig. 12.11 is analyzed here. 
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Let Oxyz be the original coordinate system, in which the xOy plane is a free 
surface. The semi-elliptical crack is within the xOz plane, and the z-axis points to 
the inner of the body.  

Figure 12.11 A 3D body with surface elliptic crack 

For convenience, a special coordinate transformation is introduced here. Let 
y -axis be parallel to y-axis, and x O z  plane only translate and rotate within xOz
plane. The origin O  of the new coordinate system is always at the line of the 
crack tip; O z -axis and O x -axis are taken as the tangent and normal of the 
ellipse, respectively. The angle between O x -axis and Ox-axis is ,  and polar 
coordinates r and  are introduced in x O y  plane. 

The relation between the new and old coordinate system is as follows: 

2 2 3/ 2

2

2 2 3/ 2

cos cos cos
(1 sin )

sin
sin cos sin

(1 sin )

ax r
e

y r
bz r

a e

 (12-59) 

where 2 2 2 2( ) /e a b a .
The equilibrium differential equations in the curved coordinate system are 

   

1 ( )cos sin 0

2 1 cos ( )sin 0

1 2 cos 2 sin 0

rr rr
r r

r r
r

r r
r

r r r

r r r

r r r

 (12-60) 

in which 
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2

2 2 2 / 3 cos
(1 sin )

b r
a e

 (12-61) 

The geometric equations in the curved coordinate system are 

1 cos sin

1 cos

1 sin
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r

r

r
r

r
r
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u u

r r
u

u u

u uu
r r r

uu u
r

uu
u

r

 (12-62) 

And, the boundary conditions at the crack are  

 0 (at )r  (12-63) 

By eigenfunction method, the expression of stress at the tip of the crack can be 
derived[42]. Some low order solutions are listed as follows.  

(a) zero-order solution 

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) 0r r r  (12-64a) 

(b) first-order solution 

1
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1 1 1
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1 1 1

1
2

1 1 1
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1 1
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2(1 ) 2 2 2 2
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1 2 3 2
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2(1 ) 2

r
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E K L

E K L

E K L

E K 1
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1 1

1
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1 1

3 1sin cos cos
2 2 3 2

( ) sin
4(1 ) 2
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4(1 ) 2
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E Q

E Q

 (12-64b) 
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where 1 1 12 , , ,
/

r K L Q
b a

 are functions of .

(c) second-order solution 

2 2

2 2

2 2 0 0

2 2

2 2 0 0

2 2 0 0

( ) (1 cos 2 )
1

( ) (1 cos 2 )
1
2( ) ( )
1

( ) sin 2
1

( ) [ cos ( )cos ]
2(1 )

( ) [ sin ( )sin ]
2(1 )

r

r

r

E K

E K

E K E P K

E K

E P K P

E P K P

 (12-64c) 

where
3

2 2 2(1 sin ) ,e K0, P0, K2 and P2 are the functions of ; 0P  and 0K
denote the first-order derivatives with respect to .

12.5.2 Formulation of the Sub-Region Mixed Element Method for 
the Surface Crack Problem 

A thick plate with the surface elliptic crack is shown in Fig. 12.12. Here, it is 
analyzed by the sub-region mixed element method. 

Figure 12.12 A thick plate with surface elliptic crack 
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In the sub-region mixed element method, the whole structure is divided into 
two regions (Fig. 12.13): 

Figure 12.13 The division of the potential and complementary energy regions 

(1) Region  is the complementary energy region, an annular region in which 
the line of the crack tip is taken as the axial line, and the intersection of this 
annular region with the x O y  plane is a circle with radius rc. Region  is a 
stress concentration region, in which a singular stress element is constructed and 
the unknown stress parameters  are taken as the variational variables.  

(2) Region  is the potential energy region, an even stress region. In this 
region, 20-node isoparametric element is used, and the nodal displacements 
are taken as the variational variables.  

The final energy functional of the sub-region mixed variational principle is 
still given by Eq. (12-13), in which matrices F and H will be derived as follows.  

(1) The flexibility matrix F in the C-region 
Here, the C-region is the annular region with crack. The first and second order 

solutions of the stress expansion are given by Eq. (12-64). Now, the stress fields 
can be expressed by 

S  (12-65) 
where  is a vector formed by 6 stress components 

T[ ]r r r  (12-66) 

 is a vector formed by 10 unknown coefficients in Eq. (12-64) 

T
0 0 1 2 0 0 1 2 1 1[ ]K K K K P P P P L Q  (12-67) 

S  is formed by related terms in Eq. (12-64).  
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Since the 10 coefficients in  are all the functions of , discretization of them 
is needed. In consideration of the existence of the derivatives 0P  and 0K , in 
order to ensure the accuracy of numerical differentiation after discretization, it is 
suitable to use the cubic spline interpolation formulas. Due to symmetry, only a 

half of the region is considered, so  varies within the interval 0,
2

. If this 

interval is divided into 5 sub intervals, then, there will be 8 unknowns including 
6 nodal values and 2 derivative values at two ends. Hence,  can be re-expressed 
in terms of the parameters  as follows: 

A  (12-68) 

where

T
01 08 11 18 11 18[ ]K K K K Q Q  (12-69) 

A is formed by the spline interpolation formulas.  
Substituting Eq. (12-68) into Eq. (12-65), the stress fields of the C-region 

finally can be expressed as 

S  (12-70) 

where

S SA   (12-71) 

The total complementary energy of the C-region is 

1

T 1 T
c

1 1d
2 2V

VD F  (12-72) 

So, the flexibility matrix F is 

1

T 1 d
V

VF S D S  (12-73) 

where

2
2 Sym.

2
0 0 0
0 0 0 0
0 0 0 0 0

G
G

G
G

G
G

D  (12-74) 
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,
(1 )(1 2 ) 2(1 )

E EG  (12-75) 

 d | | d d dV rJ  (12-76) 

2
2

2 2 3/ 2| | cos
(1 sin )

brr
a e

J  (12-77) 

(2) The mixed matrix H on the interface 
The interface pcS  is a curved face of the annular shell (Fig. 12.14(a)). The 

additional energy on the interface is 

pc

pc ( )dr r r r
S

H u u u S  (12-78) 

where , andr r r  are the boundary force components on the interface, and 
can be expressed in terms of the stress parameters  as 

T[ ]r r r S  (12-79) 

,ru u  and u  are the boundary displacement components along r,  and 
directions on the interface, and can be expressed in terms of the boundary 
displacement components ,xu yu  and zu  along x, y and z directions as 

xr

y

z

uu
u u
u u

t  (12-80) 

where t is the coordinate transformation matrix, from Fig. 12.14, we have 

cos cos sin sin cos
cos sin cos sin sin

sin 0 cos
t  (12-81) 

And, the boundary displacements xu , yu  and zu  can be expressed in terms of 
the boundary nodal displacements  and shape functions N  as 

x

y

z

u
u
u

 (12-82) 

Substitution of the above equation into Eq. (12-80) yields 

ru
u
u

tN  (12-83) 
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Figure 12.14 The interface Spc

Substitution of Eqs. (12-79) and (12-83) into Eq. (12-78) yields 

T
pcH H  (12-84) 

where the mixed matrix H on the interface is  

pc

T d
S

SH S tN   (12-85) 

here the differential area dS on the interface can be derived from Eq. (12-59) as 
follows:

2

c c2 2 3/ 2d ( cos ) d d
(1 sin )

bS r r
a e

 (12-86) 

After the determination of matrices H and F, the basic unknowns  and 
can be solved in turn from Eqs. (12-19) and (12-16). Then, the stress intensity 
factors at different points on the tip line of the crack can be obtained.  

The sub-region mixed element method for the surface crack problem in a 3D 
body is denoted as SRM-C4[6].

Example 12.5 The dimensionless stress intensity factor of a thick plate with 
the surface elliptic crack (Fig. 12.12) under tension and bending loads. 

In Fig. 12.12, a and b are the half long axis and the half short axis of the 
ellipse, respectively; h is the thickness of the plate; 2l and 2w are the length and 
width of the plate, respectively; and the Poisson’s ratio 0.3.

For the different points on the tip line of the crack, their coordinates  are 
corresponding to different values. The stress intensity factors K  at different 
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points are functions of , which can be defined as follows[28]:

, , ,b b b aK F
Q h a l

 (12-87) 

where F is the dimensionless stress intensity factor; Q is the shape factors, its 
approximate formula is 

1.65

1 1.46 ( )bQ a b
a

 (12-88) 

and  is the stress on the plate edge.  

Table 12.5 Dimensionless stress intensity factor of a plate with surface crack 
under tension and bending loads 

0.2, 0.6, 0.2, 0.6, 0.3a b a b
l a w h

Tension Bending 
2 /

SRM-C4[6] Reference [28] SRM-C4[6] Reference [28]
0

0.25
0.5
0.75
1.00

1.111 
1.137
1.164
1.182
1.201

1.172
1.142
1.182
1.218
1.230

0.794
0.625
0.464
0.355
0.301

0.862
0.676
0.504
0.370
0.317

(1) Two load cases, tension and bending, are considered 
Results for F given by SRM-C4[6] are given in Table 12.5, and compared with 

the results in reference [28]. 
The present method can provide quite good accuracy, but its workload is only 

1/10 of that of [28]. 

(2) Different ratios a
l

 are considered 

For the cases a
l

0.1, 0.2, 0.3, 0.4, the stress intensity factors of a plate with the 

surface crack under tension load are given in Table 12.6, and compared with the 
results of reference [27].  

(3) Different ratios b
h

 are considered 

For the cases b
h

0.2, 0.4, 0.6, the stress intensity factors of a plate with the 

surface crack under bending load are given in Table 12.7, and compared with the 
results of reference [27]. 



Chapter 12 Sub-Region Mixed Element — Fundamental Theory and Crack Problem 

435

Table 12.6 Dimensionless stress intensity factors of a plate with surface crack 

under tension load for different a
l

0.6, 0.2, 0.6, 0.3b a b
a w h

a/l 0.1 0.2 0.3 0.4 

2 /  SRM-C4 Reference
[27] SRM-C4 Reference

[27] SRM-C4 Reference
[27] SRM-C4 Reference

[27] 
0

0.25
0.5

0.75
1.00

1.015
1.117 
1.153
1.149
1.199

0.248
1.126
1.138
1.144
1.206

1.111
1.137
1.164
1.182
1.201

0.253
1.150
1.160
1.178
1.225

1.138
1.200
1.251
1.255
1.292

0.283
1.240
1.244
1.248
1.304

1.164
1.258
1.301
1.312
1.354

0.304
1.324
1.320
1.322
1.383

Table 12.7 Dimensionless stress intensity factors of a plate with surface crack 

under bending load for different b
h

0.2, 0.6, 0.2, 0.3a b a
l a w

b/h 0.2 0.4 0.6 

2 /  SRM-C4 Reference
[27] SRM-C4 Reference

[27] SRM-C4 Reference
[27] 

0
0.25
0.5
0.75
1.00

0.823
0.724
0.735
0.741
0.772

0.153
0.732
0.756
0.748
0.792

0.801
0.667
0.604
0.558
0.542

0.153
0.680
0.632
0.572
0.568

0.794
0.625
0.464
0.355
0.301

0.101
0.640
0.486
0.364
0.322
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Chapter 13 Sub-Region Mixed Element —V-Notch  
Problem 
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Abstract This chapter continues discussing the sub-region mixed element 
method. Here, the applications of the sub-region mixed element method in 
the analysis of the V-notches in plane problem, bi-material problem, Reissner 
plate problem, and 3D elastic body problem are focused on and discussed in 
turn. It is demonstrated again that the proposed sub-region mixed element 
method is efficient for such singular stress problems. 

Keywords finite element, sub-region mixed element, V-notch problem. 

13.1 Introduction 

This chapter will discuss some topics about the stress analysis of structures with 
V-notches and the applications of the sub-region mixed element method.  

Stress concentration will happen around the notches in structures, i.e., the 
stress fields at the tip of the notches possess singularity. Angular corners of holes 
and welding structures are all examples of the V-notch problem. An ideal straight 
crack can also be regarded as a V-notch with zero opening angle. 

In this chapter, the sub-region mixed element analysis of the V-notches in 
plane problem[1], bi-material problem[2], Reissner plate problem[3] and 3D elastic 
body problem[4] will be discussed in turn.  

13.2 Plane V-Notch Problem 

Plane V-notch problems have always attracted much attention. In 1952, Williams[5]

first established the eigenequations for the V-notch problem. He pointed out that 
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the stress at the notch-tip possesses singularity, and concluded that such singularity 
depends on the opening angle of the notch. Gross et al.[6] extended the concept of 
the stress intensity factors from ideal cracks into V-notch cases and evaluated the 
notch-tip stress intensity factors using a boundary collocation method. The 
boundary integral method has also been applied in reference [7] for the beam 
bending problem with a V-notch. The reciprocal work contour integral method 
was extended by Carpenter[8 10] into the analysis of stress concentration at the 
notch. Lin and Tong[11] proposed a hybrid singular element for the analysis of the 
V-notch problem. Awaji et al.[12] investigated the V-notches using dense triangular 
elements. 

In this section, the sub-region mixed element method will be used for the 
analysis of the plane V-notch problem[1]. Firstly, by starting with the complex 
potentials of elasticity, the eigenproblem of the V-notch is discussed, and the 
variation regularity of the eigenvalue with the opening angle is given, in which 
the embranchment phenomenon of the high-order eigenvalue curve and the 
concept of the critical angle are also pointed out. Then, the expressions of the 
stress fields for modes  and  problems are given. Finally, the sub-region 
mixed element method is used to analyze the V-notch problem, which gives the 
results of the stress intensity factors K  and K  of the specimens containing 
V-notches with various angles. 

13.2.1 Eigenproblem of V-Notches 

The configuration of the elastic plane with a V-notch is shown in Fig. 13.1, the 
polar coordinate system is set. The stresses can be expressed in terms of two 
complex potentials (z) and (z) as follows: 

Figure 13.1 Stress analysis around a V-notch tip 

4Re ( )r z  (13-1) 

1i ( ) ( ) ( ) ( )r z z z z zz z  (13-2) 

The complex potentials can be expanded in series further 
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1

1

1( ) ( )
2
1( ) ( )
2

n n

n n

n n
n

n n
n

x A z B z

x C z D z
 (13-3) 

The stress boundary conditions for two unloaded surfaces of a V-notch are 

2
( i ) 0r  (13-4) 

Then, from the above equations, we obtain 

cos cos
cos cos

n n n n n

n n n n n

C A B
D A B

 (13-5) 

sin sin 0
sin sin 0

n n n n

n n n n

A B
A B

 (13-6) 

Since stresses exist in the neighborhood of the notch-tip, the determinant of the 
coefficient matrix must be zero. Hence, two eigenequations can be obtained 

 sin sin 0n n   (mode - symmetry) (13-7) 

sin sin 0n n   (mode - antisymmetry) (13-8) 

From these eigenequations, two series of eigenvalues can be solved 

i , in n n n n n  (13-9) 

The eigenvalues n  and n  for  ranging from  to 2  are listed in Tables 13.1 
and 13.2, respectively. And, a series of real part curves n -  (or n - ) and 
imaginary part curves n -  (or n - ) are also given in Figs. 13.2 and 13.3. 

From these tables and figures, the following four points should be mentioned: 
(1) The 3 eigenvalues ( 0, * 0, * 1) are corresponding to the 3 states of 

rigid-body motion, so they should not be considered in practical analysis.  
(2) The first eigenvalue 1  (or 1 ) is identical to a real number. The imaginary 

part curves 1 -  and 1 - coincide with the abscissa axis. And, the real part 
curves 1 -  and 1 - are smooth curves when 2 . For the mode
problem, the relation 0.5 1 <1 is satisfied when the notch-tip angle  is in the 
range [ , 2 ], hence, the stress singularity always exists in the notch-tip. For the 
mode  problem, the relation 0.5 1 <1 will not be satisfied unless the 
notch-tip angle  is in the range [4.493 409, 2 ], thus, the stress singularity at the 
notch-tip does not always exist. In reference [11], the authors said that the mode 
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Table 13.1 Eigenvalues in n n  for Mode  (symmetry) problem

2
(360 )

6.108 652 
(350 )

5.934 119
(340 )

5.855 023
(335.47 )

5.759 587 
(330 )

5.499 379
(315.07 )

5.235 988
(300 )

4.712 389
(270 )

1 0.5 0.500 053 0.500 427  0.501 453  0.512 222 0.544 484

2 1.0 1.058 843 1.125 407  1.202 157 

3 1.5 1.499 728 1.497 614  1.490 378 
1.404 750

1.471 028
0.141 853i

1.629 257
0.231 251i

4 2.0 2.118 822 2.267 187

5 2.5 2.497 980 2.476 770
2.402 415

2.440 492 
0.114 207i 

2.567 762
0.284 901i

2.971 844
0.373 931i

4.188 790 
(240 )

3.665 191 
(210 )

3.625 739
(207.74 )

3.490 659 
(200 )

3.383 923
(193.88 )

3.316 126
(190 ) (180 )

1 0.615 731 0.751 973  0.818 703  0.900 042 1.0 

2 2.018 265  2.001 797 2.0 

3

1.833 550 
0.252 260i 

2.106 29 
0.096 099i

2.130 670
2.420 588  2.695 23 3.0 

4 4.022 68 4.0 

5

3.343 717 
0.414 037i 

3.828 294 
0.347 177i

4.025 002 
0.243 015i 

4.156 771
4.468 954 5.0 

Table 13.2 Eigenvalues in n n  for Mode  (antisymmetry) problem 

2
(360 )

6.108 652 
(350 )

5.934 119
(340 )

5.932 123
(339.89 )

5.759 587 
(330 )

5.732 235
(328.43 )

5.235 988
(300 )

4.712 389
(270 )

1  0.5 0.529 355 0.562 007  0.598 192  0.730 901 0.908 529

2  1.5 1.588 609 1.692 250  1.838 934 

3  2.0 1.999 107 1.991 385  1.948 556 
1.902 246

2.074 826

0.229 426i

2.301 328

0.315 837i

4  2.5 2.649 696 2.883 887

5  3.0 2.996 141 2.920 168
2.902 967

2.987 005 
0.166 741i 

3.279 767
0.326 690i

3.641 420
0.418 787i

4.493 409 
(257.45 )

4.188 790 
(240 )

3.665 191
(210 )

3.490 659 
(200 )

3.463 416
(198.44 )

3.336 226
(191.15 )

3.316 126
(190 ) (180 )

1  1.0 1.148 913 1.485 81 1.630 47   1.798 929 2.0 

2   3.007 832 3.0 

3

2.589 479 
0.348 375i 

2.967 836
0.261 186i

3.122 551 
0.108 732i

3.148 372
 3.586 718 4.0 

4 5.060 484 5.0 

5

4.096 928 
0.464 641i 

4.688 039
0.409 575i

4.926 987 
0.319 811i

 5.161 747
5.327 916 6.0 

problem always possesses stress singularity when < 2 . This does not seem 
to be correct. 

(3) The higher-order eigenvalues n  and n  may be complex numbers. The 
features of the curves of the higher-order eigenvalues can be described in detail 
as follows: 

 When 2 , these curves, which are not smooth curves any more, 
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consist of 3-piecewise curves, in which the middle segment and the two end 
segments are corresponding to complex roots and real roots, respectively. The 
positions of two conjunction points of 3-piecewise curves are corresponding to 
critical angles, cr1 and cr2.

 The higher-order eigenvalues exist in pairs, for instance, 2 and 3 are a 
pair; 4 and 5 are a pair, etc. In addition, the curves of each pair of eigenvalues 
coincide in some ranges and then separate in other ranges. The real part curves 
-  and *-  (see Figs. 13.2(a) and 13.3(a)) are separate curves in the two end 

ranges, and then coincide in the middle range. For example, the curves for 2 and  

Figure 13.2 Real part and imaginary part curves of eigenvalues for Mode 
(symmetry) problem 
                      (a) n- curve; (b) n- curve



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

443

3, which are two-branch curves in the two end ranges, will become a one-branch 
curve in the middle range after meeting at the critical angles cr1 and cr2.
Conversely, the imaginary part curves -  and *-  (see Figs. 13.2(b) and 13.3(b)) 
are separated curves in the middle range, but will coincide in the two end ranges. 
For example, 2 and 3 are two symmetric curves ( 2 and 3 are conjugate with 
each other) on the two sides of the abscissa axis in the middle range (complex 
root region), and will be merged into the abscissa axis in the two end ranges (real 
root regions).  

Figure 13.3 Real part and imaginary part curves of eigenvalues for Mode 
(antisymmetry) problem 
                      (a) *-n  curve; (b) *-n curve
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The above features of the curves of the higher-order eigenvalues, such as 
appearance in pairs and the phenomenon of embranchment, have not been 
recognized by some authors in the early time. For example, the -  curve in 
reference [8] does not reflect the characteristic of embranchment. 

(4) For a certain notch-angle , its eigenvalue series  and  are formed in 
the following manner: in the first place there are a few real roots in odd number, 
then followed by a sequence of conjugate complex roots in pairs. The number of 
real roots varies according to the notch-angle . For 207.74 < <315.07 , only 
one real root 1 exists among . For 198.44 < <328.43 , only one real root 1

exists among . The number of real roots will increase while tends to  or 2 .
When  or 2 , only real roots exist.  

13.2.2 Stress Fields of the Mode  (Symmetry) Problem 

1. For complex eigenvalue n

Substitution of Eq. (13-7) into Eqs. (13-6) and (13-5) yields 

, ( cos cos )n n n n n n nB A C D A  (13-10) 

The stresses pertaining to the complex eigenvalue n for mode  problem are 

,

,

,

Re Im
Re

Re Im
Im

Re Im

r n n n
n

n n n n
n

n nr n

J J
A

G G
A

H H
 (13-11) 

where

1

1

1

[(3 )cos( 1) ( cos cos )cos( 1) ]

[( 1)cos( 1) ( cos cos )cos( 1) ]

[( 1)sin( 1) ( cos cos )sin( 1) ]

n

n

n

n n n n n n n

n n n n n n n

n n n n n n n

J r

G r

H r

(13-12)

The eigenroots are pairs of conjugate complex number. Let n and n+1 be a pair 
of conjugate complex roots, we have 

1 1 1, ,n n n n n nJ J G G H H  (13-13) 

Therefore, the stresses pertaining to this pair of conjugate complex roots can 
be written as 
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1
1

Re Im
Re Im
Re Im

n n
n

n n n n
n

n n

J J
G G
H H

 (13-14) 

in which two undetermined stress parameters n  and 1n  are included.  

2. For real eigenvalue n

When n is real, Jn, Gn and Hn in Eq. (13-12) are all real numbers. So, Eq. (13-11) 
will degenerate into 

n

n n n

n

J
G
H

 (13-15) 

in which only one undetermined stress parameter n is involved. 

3. Mode  stress intensity factor K

11
,1 1 1 1 1 100

2 lim 2 ( 1 cos cos )
r

K r  (13-16) 

13.2.3 Stress Fields of the Mode  (Antisymmetry) Problem 

1. For complex eigenvalue n

Substitution of Eq. (13-8) into Eqs. (13-6) and (13-5) yields 

, ( cos cos )n n n n n n nB A C D A  (13-17) 

The stresses pertaining to the complex eigenvalue n  for mode  problem are 

Re Im
Im

Re Im
ReRe Im

n n
n

n n n
n

n n

J J
A

G G
AH H

 (13-18) 

where

1

1

1

[(3 )sin( 1) ( cos cos )sin( 1) ]

[( 1)sin( 1) ( cos cos )sin( 1) ]

[(1 )cos( 1) ( cos cos )cos( 1) ]

n

n

n

n n n n n n n

n n n n n n n

n n n n n n n

J r

G r

H r

(13-19)
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The stresses pertaining to the conjugate complex roots n  and 1n  can be written as 

1
1

Re Im
Re Im
Re Im

n n
n

n n n n
n

n n

J J
G G
H H

  (13-20) 

2. For real eigenvalue n

n

n n n

n

J

G

H

 (13-21) 

3. Mode  stress intensity factor K

11
,1 1 1 1 1 100

2 lim 2 ( )(1 cos cos )rr
K r

(13-22)

13.2.4 The Sub-Region Mixed Element Method 

Now, the plane V-notch problem is considered using the sub-region mixed element 
method. The sectorial region of radius R, centered on the notch-tip is regarded as 
the complementary energy region (C-region), and the outside domain as the 
potential energy region (P-region). And, the P-region is modelled by the 8-node 
displacement-based isoparametric elements (see Fig. 13.4). 

Figure 13.4 Stress-based element and outside 8-node isoparametric elements 
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The energy functional of the sub-region mixed variational principle is still given 
by Eq. (12-13), in which the matrices F and H can be derived as follows. 

(1) The flexibility matrix F of the C-region 
The stress fields of the C-region for modes  and  have already been derived, 

respectively. Here, the stress fields can be expressed in terms of the stress 
parameters  as 

T[ ]r r S  (13-23) 

Then, the complementary energy c  of the C-region and its flexibility matrix F
can be written as 

c

T
c

T 1

1
2

d
A

h A

F

F S D S (13-24)

where D is the elastic coefficient matrix; 1D  is given by Eq. (12-32). h is the 
thickness; and Ac is the area of the sectorial region in the C-region.  

(2) The mixed matrix H on the interface 
The mixed matrix H on the interface is still given by Eq. (12-45), i.e.,  

pc

T T d
S

h sH S L N  (13-25) 

where S is defined by Eq. (13-23); L is the direction cosine matrix, and given by 
Eq. (12-41); N  is the shape function matrix of the 8-node isoparametric element. 
In Fig. 13.4, there are M isoparametric elements along the interface Spc, then the 
components in matrix N  are 

     

1 1 1

2
2

2 1

1 1

2 1

1 (1 )
2 (1 )

1
1 (1 ) (element )
2 (1 1)

1 (1 ) (element 1)
2

1 (1 )
2

k k

k k

k

k k

M M M

N
k M

N

k
k MN

k

N

(13-26)

h is the thickness (in Eq. (12-45), h 1 is assumed). 
(3) The stress intensity factors 
Substitution of F and H obtained into Eq. (12-13) yields the expression of the 

energy functional . The basic unknowns  and  are still solved from the 
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stationary conditions (12-19) and (12-16). Finally, the stress intensity factors K
and K  can be obtained from Eqs. (13-16) and (13-22).  

The sub-region mixed element method for the plane V-notch problem is denoted 
as SRM-V1. 

Example 13.1 Evaluate the stress intensity factor K  of a V-notched specimen 
subjected to uniform tension. 

The geometry of the specimen is shown in Fig. 13.5(a), in which 1.0H
w

;

the Poisson’s ratio 0.3. Due to the symmetry, only half of the specimen is 
considered. Two meshes used here are shown in Figs. 13.5(b) and (c), which 
contain 11 and 22 elements, respectively.  

The numerical results of the dimensionless stress intensity factor 11/( )K w

for the various angles  are listed in Table 13.3 assume 0.4a
w

. It can be seen 

that, in comparison with the results given by reference [6], the relative errors are 
all less than 0.6% for mesh .

Figure 13.5 A V-notched specimen subjected to uniform tension 
(a) Geometry; (b) Mesh ; (c) Mesh 

The results for various a/w are listed in Table 13.4 (assume 300 ). In 
comparison with the results given by reference [6], the relative errors are no 
larger than 0.6% for mesh .

Example 13.2 Evaluate the stress intensity factor K  of a V-notched specimen 
subjected to antisymmetric load. 

A single edge notched specimen is shown in Fig. 13.6(a): a/w 0.333, H/a 1.0, 
0.3. And, the mesh used for this example is shown in Fig. 13.6(b). 
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Table 13.3 11/( )K w  for various 0.4a
w

1 Reference [6] Mesh Error (%) Mesh Error (%)

360
350
330
300
270
240

0.500 000 
0.500 053 
0.501 453 
0.512 221 
0.544 484 
0.615 731 

2.369
2.369
2.389
2.520
2.888
3.766

2.314
2.314
2.313
2.437
2.795
3.662

2.3
2.3
3.0
3.3
3.2
2.8

2.357
2.357
2.378
2.514
2.876
3.754

0.5
0.5
0.5
0.2
0.4
0.3

Table 13.4 11/( )K w  for various a/w ( 300 )

a/w Reference [6] Mesh  Error (%) Mesh  Error (%)

0.3
0.4
0.5
0.6

1.724
2.520
3.756
5.859

1.671
2.436
3.569
5.576

3.1
3.3
5.0
4.8

1.713
2.511 
3.736
5.761

0.6
0.5
0.5
0.6

Figure 13.6 Single edge notched specimen subjected to antisymmetric load 
(a) Geometry; (b) Mesh

For investigating the effect of the number of the eigenvalues considered on the 
stress intensity factors, the numerical results with which 1, 2, 3 and 4 eigenvalues 
are considered are given respectively in Table 13.5. It can be seen that satisfactory 
results can be obtained when the first 3 eigenvalues are used. 

Table 13.5 11( / )K H Pa  for various numbers of the first eigenvalues 

Number of eigenvalues considered 
1 1 2 3 4 

Reference [6]

360o

350o

340o

0.500 000 
0.529 355 
0.562 007 

0.521
0.425
0.308

0.484
0.388
0.269

0.503
0.405
0.283

0.502
0.404
0.282

0.500
0.401
0.278
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13.3 Plane V-Notch Problem in a Bi-Material 

The plane V-notch problem in a bi-material not only keeps the main features of 
the plane V-notch problem for homogeneous material, but also reflects the 
characteristic of the interface crack. The singularities of stresses and strains at the 
notch-tip depend both on the opening angle of the notch and the ratio of the 
bi-material properties. 

The plane V-notch problems in a bi-material have been discussed in references [2] 
and [13, 14]. In this section, the sub-region mixed element method will be used 
to analyze the V-notches in a bi-material[2]. Firstly, by starting with the potential 
function theory, the eigenequations for the plane V-notch problem in a bi-material 
are derived. Then, the eigenvalues are solved by Muller iteration method, and the 
displacement and stress fields around the notch-tip can be obtained. Finally, the 
stress intensity factors for the various opening angles and ratios of bi-material 
properties are solved by the sub-region mixed element method.  

13.3.1 The Stress Fields Around the Notch-Tip 

As shown in Fig. 13.7, the V-notch is composed of two kinds of materials. Their shear 
elastic moduli are G1 and G2, respectively; and the Poisson’s ratios are 1 and 2.

Figure 13.7 A V-notch in a bi-material 

Let the notch-tip be the origin of the coordinate system, and the interface line 
be the x-axis. Then, the two sides of the notch are given by 

1 2,

Let i 1, 2 denote material 1 and material 2, respectively. Then, the stress 
fields of this bi-material can be derived as follows.  

(1) The stress functions 1 and 2

1 and 2 denote the stress functions of material 1 and 2, respectively. In polar 
coordinates r and , they can be expressed in the following form of separated 
variables:

1 ( , ) ( 1,2)i ir f i  (13-27) 
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where  is the eigenvalue.  
Since both the stress functions 1 and 2 should satisfy the bi-harmonic equation, 

fi in the above equation should be 

 sin( 1) cos( 1) sin( 1) cos( 1) ( 1,2)i i i i if a b c d i
(13-28)

Thus, the stresses and displacements of the bi-material can be expressed in terms 
of fi as follows 

1

1

1

1 2

1 2

[ ( 1) ]
[ ( 1) ]
[ ]

{ ( 1) ( ) [ ( 1) ]}
2

{ ( ( 1) ) [ ( 1) ]}
2

irr i i

i i

ir i

ir i i i i
i

i i i i i
i

r f f
r f
r f
ru f f f
G

ru f f f
G

  ( 1,2)i  (13-29) 

where if  is the first-order derivative of fi with respect to , the rest may be 
inferred by analogy; Gi is the shear modulus; i can be expressed as 

1 plane stress state
1 plane strain state

1

i

i

i

in which i  is the Poisson’s ratio of material i.
(2) The boundary and continuity conditions 
From Eq. (13-28), it can be seen that f1 and f2 each contain 4 unknown parameters. 

These 8 unknown parameters can be written as 
T

1 1 1 1 2 2 2 2[ ]a b c d a b c dg  (13-30) 

In order to solve these unknown parameters, the following 8 conditions 

1
1

1

2
2

2

1 2

1 2

1 2

1 2

0
( )

0
0

( )
0

( 0)

r

r

r r

r ru u
u u

  (13-31) 
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can be introduced.  
Substitution of Eq. (13-29) into the above equation yields 8 homogeneous 

conditions about the unknown parameters g as follows: 

1 1 1 1 1 1 1 1sin( 1) cos( 1) sin( 1) cos( 1) 0a b c d
(13-32a)

1 1 1 1

1 1 1 1

( 1)cos( 1) ( 1)sin( 1)
( 1)cos( 1) ( 1)sin( 1) 0

a b
c d

 (13-32b) 

2 2 2 2 2 2 2 2sin( 1) cos( 1) sin( 1) cos( 1) 0a b c d
(13-32c)

2 2 2 2

2 2 2 2

( 1)cos( 1) ( 1)sin( 1)
( 1)cos( 1) ( 1)sin( 1) 0

a b
c d

 (13-32d) 

1 1 2 2b d b d   (13-32e) 

1 1 2 2( 1) ( 1) ( 1) ( 1)a c a c  (13-32f) 

1 2 2
1 1 1 1 1 1 1

1 2 2
2 2 2 2 2 2 2

( 1)( ) ( ) [ ( 1) ( 1) ( 1)( )]

( 1)( ) ( ) [ ( 1) ( 1) ( 1)( )]

b d b d b d
b d b d b d

(13-32g)

1 3
1 1 1 1

3 2
1 1 1

1 3
2 2 2 2

3 2
2 2 2

( 1) ( 1) ( ( 1) ) { ( 1)

( 1) ( 1) [( 1) ( 1) ]}

( 1) ( 1) ( ( 1) ) { ( 1)

( 1) ( 1) [( 1) ( 1) ]}

a c a
c a c

a c a
c a c

 (13-32h) 

The above 8 homogeneous equations can be rewritten in the following matrix form: 

Gg 0  (13-33) 

where the unknown parameters in g are defined by Eq. (13-30); and G is the 
coefficient matrix of the equation set (13-32).  

(3) Eigenequaiton and the first n eigenvalues 
In order to obtain the nonzero solutions of the homogeneous Eq. (13-33), let the 

determinant of the coefficient matrix G be zero: 

 | | 0G  (13-34) 

This is the eigenequaiton of the plane V-notch problem in a bi-material.  
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By using the Muller iteration method, a series of eigenvalues of the eigenequaiton 
(13-34) can be solved. The first n eigenvalues are written by 

T
1 2[ ]n  (13-35) 

(4) Stress expansion around the notch-tip 
Substituting any eigenvalue k in  into Eq. (13-33), a set of nonzero solutions 

g(k) of g can be obtained. We can only determine the ratio of each component to 
the first component a1k in g(k), but a1k is still an unknown value. That is to say, 
each component in g(k) can be expressed as a known multiple of a1k. Substitution 
of g(k) into Eq. (13-29) yields the stress terms corresponding to the eigenvalue k:

( ) ( ) 1

( )

( 1,2)
irr

i k i i k k

ir k

a iJ  (13-36) 

By superposition of the stress terms corresponding to the first n eigenvalues, 
the stress expansion can be obtained as follows: 

 ( 1,2)
irr

i i i

ir

iS  (13-37) 

where

T
11 12 1

(1) (2) ( )

[ ]
[ ]

n

i i i i n

a a a
S J J J

 (13-38) 

The unknown coefficients in  will be determined by the sub-region mixed 
element method.  

13.3.2 The Sub-Region Mixed Element Method 

Now, the sub-region mixed element method is used to analyze the plane V-notch 
problem in a bi-material. The sectorial region centered at the notch-tip is taken as 
the complementary energy region Ac, which is composed of two kinds of materials 
and denoted as Ac1 and Ac2, respectively (Fig. 13.8). The outside of the C-region 
is the potential energy region Ap, which is composed of Ap1 and Ap2 and modelled 
by 8-node displacement-based isoparametric elements. And, the interface Spc is 
composed of Spc1 and Spc2.

The energy functional of the sub-region mixed variational principle is still given 
by Eq. (12-13), in which the matrices F and H can be derived as follows. 
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Figure 13.8 Division of the C-region and P-region 
(V-notch in a bi-material) 

(1) The flexibility matrix F of the C-region 
The complementary energy c of the C-region is 

c1 c 2

T 1 T 1
c 1 1 1 2 2 2

1 1d d
2 2A A

h A h AD D  (13-39) 

in which stresses i  are expressed by Eq. (13-37), so we have 

T
c

1
2

F  (13-40) 

Then, the flexibility matrix F can be written as 

c1 c 2

T 1 T 1
1 1 1 2 2 2d d

A A

h A h AF S D S S D S   (13-41) 

where D1 and D2 are the elastic matrices of the materials 1 and 2, respectively.  
(2) The mixed matrix H on the interface 
The additional energy pcH  on the interface is composed of two parts. According 

to Eq. (12-8), pcH  can be expressed as 

pc1 pc 2

T T
pc 1 1 2 2d d

S S
H h s h sT u T u  (13-42) 

Ti is the boundary force of the C-region on the interface Spci; iu  is the boundary 
displacement of the P-region on the interface Spci:

i i i i i

i i

T L L S

u N
 (13-43) 

where L1 and L2 are the direction cosine matrix of the interface; 1N  and 2N  are 
formed by the shape functions of the displacement-based elements;  is the nodal 
displacement vector of the nodes on the interface. Substitution of Eq. (13-43) 
into Eq. (13-42) yields  
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T
pcH H  (13-44) 

And, the mixed matrix H on the interface can be derived: 

pc1 pc 2

T T
1 1 1 2 2 2d d

S S
h s h sH S L N S L N  (13-45) 

(3) The stress intensity factors 
Substituting F and H, which have been obtained, into Eq. (12-13), the 

expression of the energy functional  can be obtained. The basic unknowns 
and  are still solved by the stationary conditions (12-19) and (12-16).  

From , the stresses  and r  can be determined. And, the stress intensity 
factor of the notch-tip can be determined from the following definition:  

1

2

1
I 00

1
II 00

2 lim

2 lim
r

rr

K r

K r
 (13-46) 

The sub-region mixed element method for the plane V-notch problem in a 
bi-material is denoted as SRM-V2. 

Example 13.3 Evaluate the stress intensity factors K  and K  of a plate in 
extension with a V-notch at a bi-material interface by the sub-region mixed 
element method SRM-V2 (Fig. 13.9). The notch-tip is also at the bi-material 
interface.

Figure 13.9 A plate in extension with a V-notch at a bi-material interface 

Let 1 2 0.3; H / w 1.0; and 1 2.
In order to check the effects on the stress intensity factors with the variations 

of different factors (ratios of material properties, opening angle of the notch and 
ratio of the notch length to plate width), the following two cases are considered: 

(1) a/w ratio keeps invariant, but opening angles 1 2 of the notch and G2
/G1 ratio vary—Numerical results are listed in Table 13.6. 
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(2) Opening angles 1 2 keep invariant, but ratios of a / w and G2 / G1
vary—Numerical results are listed in Table 13.7. 

From the above results, it can be concluded that 
(1) For a symmetric notch subjected to symmetric load, the shear mode stress 

concentration phenomenon ( 0)K  will happen due to the difference of materials; 
when 

2 1/ 1,G G 0.K

Table 13.6 The stress intensity factors under various ratios of material properties 
and opening angles of the notch (a / w 0.4)

1
1 2

       G2 /G1

SRM-V2 Reference[6] Error (%) 3 5 7 10 

11/K w 3.801 3.766 0.93 3.944 4.187 4.336 4.515
240

21/K w 0.0 0.0  0.234 0.397 0.494 0.631
11/K w 2.913 2.888 0.87 3.340 3.904 4.480 5.397

270
21/K w 0.0 0.0  1.018 1.564 1.990 2.576

Table 13.7 Variations of the stress intensity factors with various ratios G2 / G1 and 
notch lengths ( 1 2 150 )

G2 / G1
           a / w

0.3 0.4 0.5 0.6 

11/K w 1.750 2.574 3.779 5.757 
1

21/K w 0.0 0.0 0.0 0.0 
11/K w 2.400 3.428 4.988 7.554 

3
21/K w 1.278 1.717 2.398 3.541 

(2) The singularity at the notch-tip will increase with the increase of the 
difference of materials.  

(3) The singularity at the notch-tip will increase with the decrease of the 
opening angle of notch.  

(4) The singularity at the notch-tip will increase with the increase of the notch 
length.  

The first 4 eigenvalues are taken during the computations. If the radius of the 
singular element varies within the range 0.1a – 0.08a, the results are relatively 
stable.

Example 13.4 Evaluate the stress intensity factors of a central crack at a 
bi-material interface in an infinite plate.  

An infinite plate subjected to a uniform tension load 1kPay  along y-direction 
is shown in Fig. 13.10. There is an interface crack with length 2a 2m located at 
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the center of the bi-material interface. And, the Young’s modulus 1 1kPa;E  the 
Poisson’s ratios 1 2 0.3.

Figure 13.10 An infinite plate in extension with a crack at a bi-material interface 

The stress intensity factors of the interface crack are defined as follows: 

1 1Im
20

i 2 2e lim ( )
z

K K z z

where 2(z) denotes the complex potential function of elasticity, and can be 
expressed in terms of the stress coefficients .

Numerical results are listed in Table 13.8. In comparison with classical 
solutions[15], all relative errors are within 1%. 

In practical computations, the infinite plate is replaced by a 20m 20m plate. 
The radius of the singular element is taken as 0.08a, and the first 4 terms of  are 
used. It can be seen that the results are basically stable. The accuracy of K  is 
lower than that of .K  So, for improving the precision of ,K  more terms of the 
eigenvalues are needed.

Table 13.8 Stress intensity factors of a central interface crack in an infinite plate 
under uniform tension 

G2 / G1 1 3 10 100 1000 
SRM-V2 1.009 0.999 0.981 0.968 0.957 

K
Reference [15] 1.000 0.988 0.968 0.953 0.952 

SRM-V2 0.0 0.0822 0.1289 0.1401 0.1535 
K

Reference [15] 0.0 0.0724 0.1171 0.1391 0.1415 

13.4 Anti-Plane V-Notch Problem in a Bi-Material 

This section will discuss the anti-plane V-notch problem (Mode ) in a 
bi-material[16]. Firstly, the stress fields around the notch-tip are derived by the 
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eigenfunction method; then, the stress intensity factor K  is solved by the 
sub-region mixed element method. Besides, the anti-plane V-notch problem has 
already been analyzed by the weight function theory in references [17, 18], and the 
anti-plane crack problem in a non-homogenous elastic material has also been 
studied in [19].  

13.4.1 The Displacement and Stress Fields around the Notch-Tip 

An anti-plane V-notch in a bi-material shown in Fig. 13.11 is considered. Let the 
interface line of the two materials be the x-axis, then equations of two notch sides 
are 1 and 2, respectively.  

Figure 13.11 An anti-plane V-notch in a bi-material 

Under the anti-plane state, only the displacement w in the z-direction exists, so 
the stresses can be expressed in terms of displacement as follows: 

1,i i
rzi i zi i

w wG G
r r

 (13-47) 

in which Gi denotes the shear modulus of the material i, i 1 and 2. 
Ignoring the influences of body forces, the equilibrium equation can be expressed 

in terms of stresses as follows: 

( ) ( ) 0rzi zir
r

 (13-48) 

Substitution of Eq. (13-47) into Eq. (13-48) yields the equilibrium equation 
expressed in terms of displacement: 

2 2

2 2 2

1 1 0i i iw w w
r r r r

 (13-49) 

wi can be rewritten as the following form of separated variables 

1 ( , )i iw r F
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Then, from Eq. (13-49), we obtain 

1( , ) [ cos( 1) sin( 1) ]i i iw r r A B  (13-50) 

Assume that there is no external load around the notch-tip, so the boundary 
conditions of the notch can be expressed as follows: 

1 2
1 20, 0z z

And, the continuity conditions of displacements and stresses between the two 
materials are 

1 2 1 20 0 0 0
, z zw w

By Eqs. (13-47) and (13-50), we can obtain 

1 1 1 1

2 2 2 2

1 2 1 1 2 2

sin( 1) cos( 1) 0
sin( 1) cos( 1) 0

,

A B
A B

A A G B G B
 (13-51) 

In order to obtain nonzero solutions from the original problem, the coefficient 
determinant of Eq. (13-51) must be zero, then we have 

1 1 2 2 2 1sin( 1) cos( 1) sin( 1) cos( 1) 0G G  (13-52) 

Equation (13-52) is the eigenequaiton of the anti-plane V-notch in a bi-material. 
In general, a series of solutions for  can be solved by the Muller iteration 
method. For the following special cases: 

If G1 G2, 1 21 /( ) ( 1,2, )n n n

If 1 2, 11 /(2 ) ( 1,2, )n n n    

The singularities of stresses and strains will increase with the decrease of the 
corresponding . Hence, the influence of the minimum eigenvalue 1 is dominant 
for the singularity of notch-tip. If only 1 is considered, the displacement and 
stress fields around the notch-tip can be derived from Eq. (13-51): 

1 1

1

1

1
1

1 1

1

1

1

1

cos[( 1)( )](2 )
( 1) sin[( 1) ]

cos[( 1)( )]
(2 ) ( 1,2)

sin[( 1) ]
sin[( 1)( )]

(2 )
sin[( 1) ]

i
i

i i

i
zri

i

i
zi

i

rw K
G

K r i

K r

 (13-53) 
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in which K  is the stress intensity factor of the anti-plane V-notch in a 
bi-material, and is defined as: 

1 00

1lim
(2 ) zir

K
r

 (13-54) 

If let G1 G2 and 1 2  in Eq. (13-53), the displacement and stress fields 
of the mode  crack in homogenous material can then be obtained, and they 
are in agreement with those given in reference [20]. 

Equation (13-53) gives the dominant term of the displacement and stress fields 
around the notch-tip, in which an undetermined parameter K  is included. And, 
Eq. (13-53) can be rewritten as: 

 , ,i i zri zri zi ziw K w K K  (13-55) 

13.4.2 The Sub-Region Mixed Element Method 

The energy functional of the sub-region mixed variational principle is still given 
by Eq. (12-5), i.e.,  

p c pcH  (13-56) 

in which the stress parameter K  of the complementary energy region and the 
nodal displacements  of the potential energy region are the basic unknowns.  

(1) The total potential energy p of the potential energy region 

T T
p

1 1 1

1 1
2 2

n n n

kj k j j j
k j j

K w w P wK P  (13-57) 

where n is the total number of the nodes of the displacement-based elements in 
the potential energy region; K is the stiffness matrix; P is the equivalent nodal 
load vector;  is the nodal displacement vector: 

T
1 2[ ]nw w w

(2) The total complementary energy c of the complementary energy region 
The complementary energy region Ac is composed of two materials, which are 

denoted as Ac1 and Ac2, respectively. Thus, the complementary energy c of the 
complementary energy region is 

c1 c 2

2 2 2 2
c 1 1 2 2

1 2

1 1( )d ( )d
2 2rz z rz z

A A

A A
G G

Substitution of Eq. (13-53) into the above equation yields 
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1 1

c1 c 2

2 2
2 2

c 2 2
1 1 1 2 1 2

(2 ) d (2 ) d
2 sin ( 1) 2 sin ( 1)A A

K Kr A r A
G G

If the complementary energy region is assumed as a sectorial region with radius 
rc, then we have 

2
c

1
2

K V  (13-58) 

where

1 12 2 2
c 1 2

2 2
1 1 1 1 2 1 2

(2 )
2( 1) sin ( 1) sin ( 1)

r
V

G G
 (13-59) 

(3) The additional energy Hpc on the interface 
The interface line Spc is composed of two segments Spc1 and Spc2. The total 

number of the nodes on the interface is n1, and the nodal displacement vector on 
the interface is 

1

T
1 2[ ]nw w w

Then, the additional energy Hpc on the interface is 

pc1 pc 2
pc 1 2d drz rzS S

H w s w s   (13-60) 

And, the displacement w  on the interface can be expressed in terms of the nodal 
displacement vector  and shape functions  as 

1

1

n

j j
j

w N w  (13-61) 

Substituting the above equation into Eq. (13-60), Hpc can be expressed in terms 
of K  and  as 

1

pc
1

n

j j
j

H K h w  (13-62) 

where

pc1 pc 2
1 2d dj rz j rz jS S

h N s N s  (13-63) 

(4) The energy stationary condition 
Substituting Eqs. (13-57), (13-58) and (13-62) into Eq. (13-56), the energy 

can be expressed in terms of the basic unknowns K  and  as 
1

2

1 1 1 1

1 1
2 2

nn n n

kj k j j j j j
k j j j

k w w P w K V K h w  (13-64) 
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From the stationary condition 0
jw

, we obtain 

1
1

1
1

( 1,2, , )

( 1, , )

n

kj k j j
k

n

kj k j
k

K w K h P j n

K w P j n n
 (13-65) 

From 0
K

, we obtain 

1

1
0

n

j j
j

K V h w  (13-66) 

By substituting Eq. (13-66) into the first expression in Eq. (13-65), K  can be 
eliminated, and T

1 2[ ]nw w w  can first be solved. Then, K  can be 
solved from Eq. (13-66). 

The sub-region mixed element method for the anti-plane V-notch problem in a 
bi-material is denoted as SRM-V3. 

Example 13.5 Evaluate the stress intensity factor K  of an infinite V-notch in 
a bi-material. Let the interface of the two materials be the sectrix line for the 
opening angle of the V-notch, and a pair of concentrated forces P with reverse 
directions act on the notch boundary (Fig. 13.12). 

Figure 13.12 An infinite V-notch in a bi-material 

The computational formula of K  obtained by weight function method in [17] 
is

0

0

1
2

1
2

0

(2 ) PK
b

 (13-67) 

where b is the distance from load P to the notch-tip. 
The results of the stress intensity factor K  calculated by the sub-region 
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mixed element method are listed in Table 13.9. And for comparison, the results 

of [17] are also given. Here, 0
3
4

 and b 10m. 

Table 13.9 Results of K  with different radius rc of the complementary energy region

rc/b 0.2 0.1 0.075 0.05 0.01 Reference [17] 

K / P 0.740 0.761 0.794 0.812 0.832 0.783 

Error (%) 5.25 2.82 1.39 3.68 6.23  

It can be seen from Table 13.9 that, when c 0.075
r
b

, the accuracy of the 

present method (SRM-V3) is the best. And, when c0.01 0.2
r
b

, the numerical 

results are relatively stable. By increasing the number of the displacement-based 
elements outside the interface Spc, the stress continuity on the interface can be 
improved, then the computational accuracy of K  can also be improved.  

13.5 V-Notch Problem in Reissner Plate 

This section will discuss the V-notch problem in a thick plate[3]. Since limitations 
may happen for the crack and V-notch problems in plate bending if the Kirchhoff 
thin plate theory is used, the Reissner plate theory which considers the influence 
of shear deformation is adopted here. Firstly, the eigenequations and their solutions 
for the V-notch problem in the Reissner plate are derived; then, the expressions 
of stress and displacement fields around the notch-tip in the Reissner plate are 
derived; finally, the stress intensity factor is solved by the sub-region mixed 
element method. 

13.5.1 The Eigenequations and Eigenvalues of V-Notch Problem  
in Reissner Plate 

1. Fundamental equations 

As shown in Fig. 13.13, a bending plate with a notch is considered, and the 
notch-tip is taken as the origin of the coordinate system. By using the Reissner 
theory and polar coordinates, the fundamental equations of the thick plate can be 
expressed in terms of 3 generalized displacements r,  and w as 
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22 2

2 2 2 2 2

2 22

2 2 2 2 2

2

2

1 1 1 1 3
2 2 2

0

1 1 3 1 1 1 1 1 1
2 2 2 2 2

1 0

1 1

r r r r

r

r r

D
r r r r r r r r

wC
r

D
r r r r r r r r

wC
r

w wC
r r r r

2

2 2

1 0r rw p
r r r

  (13-68)  

where r  and are rotating angles of straight lines which are perpendicular to 
the middle plane before deformation. r  is the rotating angle in the rz-plane, and 
is positive if rotates from r-axis to z-axis;  is the rotating angle in the z-plane,
and is positive if rotates from -direction to z-axis; w is the deflection. D and C
are bending and shearing stiffness, respectively,  

3

2

5,
12(1 ) 6

EhD C Gh

in which E is the Young’s modulus; G is the shear modulus;  is the Poisson’s 
ratio; h is the thickness of the plate; p is the density of the external load.  

Figure 13.13 V-notch problem in plate bending 

The relations between internal forces and displacements are as follows: 
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1

1

1 1
2

1

r r
r

r r

r
r

r r

M D
r r r

M D
r r r

M D
r r r

wQ C
r

wQ C
r

 (13-69) 

The boundary conditions of the notch are  

 0 ( / 2)rM M Q  (13-70) 

2. Eigenexpansions and eigenequations 

r ,  and w can be expanded as follows: 

( , )

( , )

( , )

j

j

j

n
r nj j

j n

n
nj j

j n

n
nj j

j n

r a

r b

w r c

  (13-71) 

Substitution of Eq. (13-71) into Eq. (13-68) yields 

22

1

22

1

1 1 3(( ) 1) ( )
2 2 2

( ) 0

1 3 1( ) (( ) 1)
2 2 2

j

j j

j

j j

n
j nj nj j nj

j n

n n
j nj nj

n
j nj j nj nj

n n
nj nj

D n a a n b r

C n c Ca r

D n a n b b r

Cc r Cb r

22

0

{[( ) ] [( 1) ] } 0j jn n
j nj nj j nj njn c c r n a b r

in which nj
nj

a
a , and others can be obtained by analogy. In the above equation 
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set, if we let the sum of the coefficients of r with the same power order be zero, 
equation sets with various orders can be obtained. For instance, the lowest order 
equation set (called zero-order equation set) is formed by letting the sum of the 
coefficients of 2jr  terms be zero, i.e., 

2
0 0 0

2
0 0 0

2
0 0

1 1 3( 1) 0
2 2 2

1 3 1 ( 1) 0
2 2 2

0

j j j j j

j j j j j

j j j

a a b

a b b

c c

 (13-72) 

This is a homogenous ordinary differential equation set about a0j, b0j and c0j. And, 
if we let the sum of the coefficients of 1jr  terms be zero, the first-order 
equation set, which is a homogenous ordinary differential equation set about (a1j,
b1j, c1j) and (a0j, b0j, c0j), can be established. Then from this set, a1j, b1j and c1j can 
be solved. According to this step, equation set of any order can be obtained, and 
the corresponding coefficients anj, bnj and cnj can be solved. 

The solution strategy for the zero-order equation set (13-72) is discussed in 
detail as follows. Its solutions can be expressed by 

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

cos( 1) sin( 1) cos( 1) sin( 1)

cos( 1) sin( 1) cos( 1) sin( 1)

cos sin

j j j j j j j j j

j j j j j j j j j j j

j j j j j

a A B C D
b B A K D K C
c E F

(13-73)

in which the parameter K0j is  

0

(1 ) (3 )
(1 ) (3 )

j
j

j

K

A0j, B0j, C0j, D0j, E0j and F0j are 6 undetermined coefficients; j is the eigenvalue, 
and determined by the eigenequation.  

The zero-order boundary conditions which a0j, b0j and c0j should satisfy can be 
derived from the boundary condition Eq. (13-70). Therefore, substitution of 
Eq. (13-71) into Eq. (13-69) yields the series expressions of the internal forces. 
Substituting them into Eq. (13-70), the series expressions of the boundary 
conditions can also be obtained, in which the zero-order boundary conditions are 
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0 0

0 0

0

( 1) 0
( 1) 0

2
0

j j j

j j j

j

b a
a b
c

 (13-74) 

Substituting Eq. (13-73) into the above equation, the following 6 conditions can 
be obtained: 

0 0 02 ( 1) cos( 1) 2[ ( 1) (1 )] cos( 1) 0
2 2j j j j j j j jA K C

(13-75a)

0 0 02 sin( 1) ( 1)( 1) sin( 1) 0
2 2j j j j j j jA K C  (13-75b) 

0 0 02 ( 1) sin( 1) 2[ ( 1) (1 )] sin( 1) 0
2 2j j j j j j j jB K D

(13-75c)

0 0 02 cos( 1) ( 1)( 1) cos( 1) 0
2 2j j j j j j jB K D  (13-75d) 

0 cos 0
2j jF   (13-75e) 

0 sin 0
2j jE   (13-75f) 

This is a homogenous algebraic equation set about 6 undetermined coefficients 
A0j, B0j, C0j, D0j, E0j and F0j. If the homogenous equation set has nontrivial 
solutions, its coefficient determinant should be zero, i.e.,  

(sin sin )(sin sin )cos sin 0
2 2j j j j j j  (13-76) 

This is the eigenequation for the V-notch problem in the Reissner plate, from 
which a series of eigenvalues j can be determined. 

By the way, the eigenequation (13-76) can be decomposed into the following 4 
equations:

sin sin 0 (13-77a)
sin sin 0 (13-77b)

cos 0 (13-77c)
2

sin 0 (13-77d)
2

j j

j j

j

j
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They are corresponding to the following 4 conditions, respectively: 
A0j and C0j in Eqs. (13-75a,b) have nontrivial solutions;  
B0j and D0j in Eqs. (13-75c,d) have nontrivial solutions; 
F0j in Eq. (13-75e) has nontrivial solution; 
E0j in Eq. (13-75f) has nontrivial solution.  

3. The solution of eigenequation 

By comparing the eigenequation (13-76) for the V-notch problem in the Reissner 
plate with the eigenequations (13-7) and (13-8) for the plane V-notch problem, it 
can be seen that, besides the first two factors contained in the left side of 
Eq. (13-76) that are the same as those in Eqs. (13-7) and (13-8), there are still 

other two factors, cos
2j  and sin

2j , existing here. Hence, the singularities 

of the V-notches in the Reissner plate and plane problem have some relations, but 
are different.  

By Muller iteration method, all the real and complex roots of Eq. (13-76) can 
be solved. A series of eigenvalues with various opening angles of notch are listed 
in Table 13.10.  

Along with the decrease of the inner angle of the notch, the minimum 
eigenvalue 1 increases gradually, which means that the singularity at the tip of 
the notch decreases gradually. When the inner angle of the notch tends to be 
180 , the singularity at the tip of the notch will disappear. 

For convenience, let us divide the roots of the eigenequation (13-76) into two 
parts: one is composed of { 1, 4, 5, 8, }, which represents the symmetric 
part; the other is composed of { 2, 3, 6, 7, }, which represents the 
antisymmetric part. The coefficients of displacement corresponding to the 
symmetric part and antisymmetric part are derived in the following, respectively. 
Furthermore, the expressions of stresses at the tip of the notch can be obtained.  

13.5.2 The Internal Force Fields at Notch-Tip in Reissner Plate 
—the Symmetric Part 

The symmetric part is corresponding to the following eigenvalue series: 

1 4 5 8 9 12[ , , , , , , ]

which can be divided into two groups, a and b: 

group a: 1 5 9[ , , , ]

group b: 4 8 12[ , , , ]
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The results for the first two orders (n 0 and n 1) are given as follows. 
(1a) n 0, j 1,5,9,
In this case, j satisfies Eq. (13-77a). From Eqs. (13-75a) and (13-75b), we have 

0 0j j jC m

where

0

0

2 sin( 1)
2

( 1)(1 )sin( 1)
2

j j

j

j j j

m
K

and j represents A0j.
And, from Eqs. (13-75c), (13-75d), (13-75e) and (13-75f), we can obtain 

0 0 0 0 0j j j jB D E F

Therefore, Eq. (13-73) yields 

0 0

0 0 0

0

[cos( 1) cos( 1) ]

[sin( 1) sin( 1) ]

0

j j j j j

j j j j j j

j

a m
b K m
c

 (13-78) 

And, the corresponding internal force fields can be written as 

1
0 0

1
0 0

1
0 0

{(1 ) cos( 1) [( ) ( 1)]cos( 1) }

{( 1) cos( 1) [1 ( 1)]cos( 1) }

(1 ) [2 sin( 1) ( 1)(1 ) sin( 1) ]
2
[cos(

j

j

j

j

r j j j j j j j j

j j j j j j j j

r j j j j j j j

r

M Dr m K

M Dr m K
DM r K m

Q Cr 0

0 0

1) cos( 1) ]

[sin( 1) sin( 1) ]j

j j j j

j j j j j

m

Q Cr K m

  (13-79) 
(1b) n 0, j 4,8,12,
In this case, j only satisfies Eq. (13-77d). Then, from Eq. (13-75), we have 

0 0jE ,  and 0 0 0 0 0 0j j j j jA B C D F

From Eq. (13-73), we obtain 

0 0 00, 0, cosj j j j ja b c  (13-80) 

in which j represents E0j. And, the corresponding internal force fields are 
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1 1

0, 0, 0

( cos ) , ( sin )j j

r r

r j j j j j j

M M M

Q Cr Q Cr
 (13-81) 

(2a) n 1, j 1,5,9,
When n 1, from Eq. (13.71), we have 

1 1 1
1 1 1, ,j j j

r j j jr a r b w r c  (13-82) 

Substituting Eq. (13-82) into Eq. (13-68), and making use of Eq. (13-78), the 
following solutions can be obtained: 

1 1 1 1 1

1 1 1 1 1 1 1

0
1 1 1

cos( 2) sin( 2) cos sin

cos( 2) sin( 2) cos sin
1 ( 1)

cos( 1) sin( 1) cos( 1)
4

j j j j j j j j j

j j j j j j j j j j j

j j j
j j j j j j j

j

a A B C D

b B A K D K C
K

c E F

(13-83)
where

1

(1 )(1 ) (3 )
(1 )(1 ) (3 )

j
j

j

K

Substituting Eq. (13-82) into Eq. (13-70) and making use of Eq. (13-78), the 
corresponding boundary conditions can be derived as follows: 

1 1 1

1 1

1 0 0

( 1) 0

0
2

[sin( 1) sin( 1) ] 0

j j j j

j j j

j j j j j j

b a a
a b
c K m

 (13-84) 

Substitution of Eq. (13-83) into Eq. (13-84) yields: 

1 1 1 1 1 1 1 10,j j j j j j j jA B C D F E f

where

0
1

0 0

sin( 1)1 ( 1) 2( 1)
4 ( 1) sin( 1)

2

sin( 1) sin( 1)1 2 2
1 sin( 1)

2

j
j j j

j j
j j

j

j j j j

j
j

K
f

K m
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From Eq. (13-83), we can obtain 

1 1 1 1 10, 0, [ cos( 1) cos( 1) ]j j j j j j j ja b c f g  (13-85) 

where

1 0[ 1 ( 1)]/ 4j j j j jg K

And, the corresponding internal force fields are 

1 1

1 1

0, 0, 0

( 1)[ cos( 1) cos( 1) ]

[ ( 1) sin( 1) ( 1) sin( 1) ]

j

j

r r

r j j j j j j

j j j j j j j

M M M

Q Cr f g

Q Cr f g

 (13-86) 

(2b) n 1, j 4,8,12,
Substituting Eq. (13-82) into Eq. (13-68) and making use of Eq. (13-80), we 

can obtain: 

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

cos( 2) sin( 2) cos sin

cos
[ (1 ) / 2 2]

cos( 2) sin( 2) cos sin

cos( 1) sin( 1)

j j j j j j j j j

j j
j

j j j j j j j j j j j

j j j j j

a A B C D
C

D

b B A K D K C
c E F

(13-87)

Substituting Eq. (13-82) into Eq. (13-70) and making use of Eq. (13-80), the 
corresponding boundary conditions can be obtained: 

1 1 1

1 1 1

( 1) 0

0, 0 2
j j j j

j j j j

b a a
a b c

 (13-88) 

Substitution of Eq. (13-87) into Eq. (13-88) yields: 

1 1 1 1

1 22 2 12 2 11 1 21
1 1 1 1

11 22 12 21 11 22 12 21

0

,

j j j j

j j j j j j j j

B D F E
c a c a c a c aA l C v

a a a a a a a a

where
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11 12 1

21 22 1

1 2

2( 1)( 1)cos( 1) , 2[ 1 ( 1)]cos
2 2

2( 1)sin( 2) , (1 )sin
2 2

2 [1 ( 1)]
cos , sin

[(1 ) / 2 2] 2 [(1 ) / 2 2] 2

j j j j j j

j j j j j

j
j j j

j j

a a K

a a K

C Cc c
D D

Finally, from Eq. (13-87), we obtain 

1 1 1

1 1 1 1

1

[ cos cos( 2) ]

[ sin sin( 2) ]

0

j j j j j j

j j j j j j j

j

a l
b K v l
c

 (13-89) 

where

1 1 [ (1 ) / 2 2]j j
j

Cv
D

And, the corresponding internal force fields are 

1 1 1

1 1

1 1 1

1 1

1 1 1 1

{[ ( 1 ) ]cos

[ ( 1 ) ( 2)]cos( 2) }

{[ ( 1) ]cos

[ ( 1) ( 2)]cos( 2) }

(1 ) [ ( )sin 2( 1) si
2

j

j

j

r j j j j j j

j j j j j j

j j j j j j

j j j j j j

r j j j j j j j

M Dr K v
l l

M Dr K v
l l

DM r K v l

1
1 1

1
1 1 1

n( 2) ]

[ cos cos( 2) ]

[ sin sin( 2) ]

j

j

j j

r j j j j j

j j j j j j

Q Cr l

Q Cr K v l

(13-90)

13.5.3 The Internal Force Fields at Notch-Tip in Reissner Plate 
—the Antisymmetric Part

The antisymmetric part is corresponding to the following eigenvalue series: 

2 3 6 7 10 11[ , , , , , , ]
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which can also be divided into two groups, a and b: 

group a: 2 6 10[ , , , ]

group b: 3 7 11[ , , , ]

The results for the first two orders (n 0 and n 1) are given as follows. 
(1a) n 0,  j 2,6,10,

0 0 00, 0, sinj j j j ja b c  (13-91) 

The corresponding internal force fields are  

1 1

0, 0, 0

sin , cosj j

r r

r j j j j j j

M M M

Q C r Q C r
 (13-92) 

(1b) n 0, j 3,7,11,

0 0

0 0 0

0

[sin( 1) sin( 1) ]

[cos( 1) cos( 1) ]

0

j j j j j

j j j j j j

j

a m
b K m
c

 (13-93) 

where

0

0

2 cos( 1)
2

( 1)(1 )cos( 1)
2

j j

j

j j j

m
K

The corresponding internal force fields are  

1
0 0

1
0 0

1
0 0

{(1 ) sin( 1) [( ) ( 1)]sin( 1) }

{( 1) sin( 1) [1 ( 1)]sin( 1) }

(1 ) {2 cos( 1) ( 1)(1 )cos( 1) }
2

[s

j

j

j

j

r j j j j j j j j

j j j j j j j j

r j j j j j j j

r

M Dr m K

M Dr m K
DM r m K

Q Cr 0

0 0

in( 1) sin( 1) ]

[cos( 1) cos( 1) ]j

j j j j

j j j j j

m

Q Cr m K

  (13-94) 

(2a) n 1, j 2,6,10,
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1 1 1

1 1 1 1

1

[ sin sin( 2) ]

[ cos( 2) cos ]

0

j j j j j j

j j j j j j j

j

a a l
b l K v
c

 (13-95) 

where

1 22 2 12 2 11 1 21
1 1

11 22 12 21 11 22 12 21

11

12 1

21 22 1

1

,

2( 1)( 1)sin( 2)
2

2[ 1 ( 1)]sin
2

2( 1)cos( 2) , (1 )cos
2 2

2[1 ( 1)]
1

j j

j j

j j j j

j j j j j

j

c a c a c a c al v
a a a a a a a a

a

a K

a a K

C
c

D
2sin , cos

12 22 2
2 2

j j j

j j

Cc
D

1 1 [ (1 ) / 2 2]j j
j

Cv
D

The corresponding internal force fields are  

1 1 1

1 1

1 1 1

1 1

1 1 1

{[ ( 1 ) ]sin

[ ( 1 ) ( 2)]sin( 2) }

{[ ( 1) ]sin

[ ( 1) ( 2)]sin( 2) }

(1 ) {[ ]cos
2

j

j

j

r j j j j j j

j j j j j j

j j j j j j

j j j j j j

r j j j j j j

M Dr K v

l l

M Dr K v

l l

DM r K v 1

1
1 1

1
1 1 1

2 ( 1)cos( 2) }

[ sin sin( 2) ]

[ cos( 2) cos ]

j

j

j j j j

r j j j j j

j j j j j j

l

Q Cr l

Q Cr l K v

(13-96)

(2b) n 1, j 3,7,11,

1 1 1 1 10, 0, [ sin( 1) sin( 1) ]j j j j j j j ja b c f g  (13-97) 

where



Advanced Finite Element Method in Structural Engineering 

476

0
1 0

0 0

1 1 0

cos( 1)1 ( 1) 2( 1)
4 ( 1) cos( 1)

2

cos( 1) cos( 1)
2

( 1)cos( 1)
2

[ 1 ( 1)]/ 4

j
j j j

j j j
j j

j

j j j j

j j

j j j j j j

K
f m

K m

g m K

The corresponding internal force fields are  

1 1

1 1

0, 0, 0

( 1) [ sin( 1) sin( 1) ]

[( 1) cos( 1) ( 1) cos( 1) ]

j

j

r r

r j j j j j j

j j j j j j j

M M M

Q C r f g

Q Cr f g

 (13-98) 

The expressions for the zero and first order internal force fields have been given 
above. According to the above process, some higher order solutions can be derived. 

When 2 , the V-notch problem will degenerate into the crack problem. The 
solution of the internal force fields around the crack-tip in the Reissner plate given 
in reference [21] can be treated as a special case of the solution in this section. 

From the above derived expressions of the internal force fields around the 
notch-tip, it is found that, around the notch-tip, the order of singularity of the 
transverse shear stresses rz and z is different from that of stresses r,  and r ,
the former is 2 1r  while the latter is 1 1r . Only when the opening angle 2
(crack problem), since 1 2 0.5, the order of singularity of rz and z will be 
the same as that of r,  and r , which is identical to that in reference [22]. 

13.5.4 The Sub-Region Mixed Element Method 

Now, the sub-region mixed element method is used to analyze the plane V-notch 
problem in thick plate. The sectorial region centered at the notch-tip is taken as 
the complementary energy region (C-region), and the outside of the C-region is 
the potential energy region (P-region). The P-region is divided by the 8-node 
isoparametric thick plate elements, and its nodal displacements  are the 
undetermined displacement parameters. The above solutions of the internal force 
fields around the notch-tip can be taken as the internal force fields of the 
C-region, which can be written as 

b

s

M S
Q S

 (13-99) 
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where T[ ]x y xyM M MM  are the bending and twisting moments; T[ ]x yQ QQ
are the transverse shear forces;  are the undetermined internal force parameters; 
Sb and Ss are formed by the combination of the internal forces around the 
notch-tip.

The undetermined parameters  and  can be determined by the stationary 
condition of the sub-region mixed variational principle.  

The energy functional of the sub-region mixed variational principle is still 
given by Eq. (12-5), i.e., 

p c pcH  (13-100) 

(1) The total potential energy p of the P-region (see Eq. (12-6)) 

T T
p

1
2

K P  (13-101) 

in which K and P are the stiffness matrix and the equivalent nodal load vector, 
respectively.  

(2) The total complementary energy c of the C-region 
The total complementary energy c of the C-region in the thick plate is 

composed of two parts, bending strain complementary energy and shearing strain 
complementary energy (see Eq. (12-55)): 

c

T 1 T 1
c b s

1 ( )d
2 A

AM D M Q D Q  (13-102) 

Substitution of Eq. (13-99) into the above equation yields 

T
c

1
2

F  (13-103) 

where F is the flexibility matrix (see Eq. (12-57)): 

c

T 1 T 1
b b b s s s( )d

A

AF S D S S D S   (13-104) 

in which Db and Ds are given by Eq. (12-49).  
(3) The additional energy Hpc on the interface 
The additional energy Hpc on the interface line Spc of the two regions is (see 

Eq. (12-58)): 

pc pc

T
pc ( )d dn n n ns sS S

H Q w M M s sT u  (13-105) 
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where Qn, Mn and Mns are the three components of the boundary forces T of the 
C-region on the interface; w , n  and s  are the three components of the 
boundary displacements u  of the P-region on the interface. 

The boundary forces T can be expressed in terms of the stress parameters ,
and the boundary displacements u  can be expressed in terms of the nodal 
displacements  on the interface. Since the C-region is a sectorial region, and 
the interface Spc is a circular arc, the polar coordinates are used. Let 

T

T T

[ ]

[ ] [ ]
r r r

r x y

Q M M

w w

T R

u L LN
 (13-106) 

where R can be derived from the internal force fields around the notch-tip; L is a 
transformation matrix: 

1 0 0
0 cos sin
0 sin cos

L   (13-107) 

N  is given by the shape functions of the 8-node isoparametric thick plate 
element 

1 2

1 2

1 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

m

m

m

N N N
N N N

N N N
N  (13-108) 

m is the number of the nodes on the interface.  is the nodal displacement vector 
on the interface.  

Substituting Eq. (13-106) into Eq. (13-105), the additional energy on the 
interface can be written in the form of Eq. (12-11): 

T
pcH H  (13-109) 

where 

pc

T d
S

sH R LN  (13-110) 

(4) Solutions of the stress intensity factors 
The energy functional  above has already been expressed in terms of 

and . From the stationary conditions, the fundamental Eqs. (12-19) and (12-16) 
can be derived. Then,  and  can be solved in turn, and the internal forces can 
also be obtained. Finally, we obtain 
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1

3

2

1
1 01 1 01 1 100

1
3 03 3 03 300

1
2 200

2 lim 2 {( 1) [1 ( 1)]}

22 lim (1 )[2 ( 1)(1 )]
2

2 lim 2

r

rr

r

K r M D m K

K r M D m K

K r Q C

(13-111)

The sub-region mixed element method for the V-notch problem in thick plate 
is denoted as SRM-V4. 

Several numerical examples are given as follows. 
Example 13.6 Stress intensity factor of mode  for the V-notch problem in 

an infinite plate subjected to uniform bending moment.  
An infinite rectangular plate with a rhombic hole is shown in Fig. 13.14. Its 

periphery is subjected to uniform bending moment M. The inner angle of the 
rhombic hole is , and the length of diagonal line is 2a.

In order to simulate the infinite plate, the side lengths of the rectangular plate 
are assumed as 2L 2W 20a during computation. And, E 2 106, 0.3. 
Owing to symmetry, only 1/4 of the plate is used for computation. The division 
of the C-region and P-region is shown in Fig. 13.15. The C-region is a sector 
centered at the notch-tip, and its radius is rc.

The 8-node isoparametric thick plate element is used for the P-region, and the 
mesh divisions are shown in Fig. 13.16(a),(b). 

The results for the stress intensity factor K  (mode ) with various opening 
angles are listed in Table 13.11. Along with the decrease of the opening angle ,

Table 13.11 /K M a  of an infinite plate with various opening angles of the notch 

/2
h/a

0  15  30  45  60

1.0 0.7343 0.7899 0.8010 0.8515 0.9405 
1.5 0.7874 0.8423 0.8540 0.8969 0.9890 
2.0 0.8236 0.8917 0.8977 0.9305 1.0090 

Figure 13.14 An infinite plate with V-notch subjected to uniform bending moment 
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Figure 13.15 The division of the C-region and P-region (V-notch in thick plate) 

Figure 13.16 The mesh divisions of the P-region 

the results will tend to be the analytical solutions of the crack problem[23], and 
errors are within 1%. 

Example 13.7 The stress intensity factor K  of the V-notch in a finite plate. 
The dimensions of the plate are 2L 2W 4a, and the other data are the same 

as those in Example 13.6. The results for the stress intensity factor K  with 
various opening angles are listed in Table 13.12. 

Table 13.12 K  of a finite plate with various opening angles of the notch 

/2
h/a

0  15  30  45  60

1.0 0.8962 0.9418 0.9565 1.008 1.146 

1.5 0.9901 1.045 1.058 1.115 1.250 

2.0 1.055 1.112 1.118 1.162 1.288 

In the above two examples, the radius of the C-region rc 0.08a. And, the 
highest order terms used here in the asymptotic solutions of the stresses at the 
notch-tip are 2r  (for M) and 2 1r  (for Q), respectively. It can be concluded that 
the computational results are basically stable. 
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13.6 3D V-Notch Problem  

This section will discuss the 3D V-notch problem[4]. Firstly, by the expansion of 
the double power series, the eigenequaiton of the 3D V-notch problem is derived. 
Then, the eigenvalue series for notches with various inner opening angles are 
solved by the Muller iteration method, in which the minimum positive 
eigenvalue can be used to reflect the singularity of the notch-tip and the relation 
between this singularity and the inner angle of the notch. If the inner angle of the 
notch is equal to , the problem will degenerate to be a semi-infinite space 
problem, in which no singularity exists; if the inner angle of the notch increases 
to be 2 , the problem will transfer to the 3D crack problem, in which the crack-tip 
possesses singularity with 1/2 order. For the general notch, the eigenvalue series 
can be decomposed into two parts, symmetric part and antisymmetric part. The 
corresponding displacement fields of the notch-tip are first derived; then the 
stress fields of the notch-tip are solved by the stress-displacement or strain- 
displacement relations.  

13.6.1 The Differential Equations and Boundary Conditions for  
the 3D V-Notch Problem 

As shown in Fig. 13.17, a 3D V-notch is considered. Its inner angle is , and 
< <2 . The line of the notch-tip coincides with the z-axis, and can be infinitely 
extended forward and backward. The equations of the two surfaces of the notch 

are
2

 and 
2

, respectively.  

Figure 13.17 3D V-notch problem 

By ignoring the influence of body forces and using the cylinder coordinate 
system, the equilibrium differential equations of this problem can be expressed in 
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terms of the stress components as follows: 

1 1 ( ) 0

1 2 0

1 1 0

rrr rz
rr

r z
r

zrz zz
rz

r r z r

r r z r

r r z r

 (13-112) 

The stress-displacement relations are 

1,
1 1 2 1 1 2

1,
1 1 2 2(1 )

1 ,
2(1 ) 2(1 )

r r
rr

z r
zz r

z r z
z rz

uu uE Ee e
r r r

u uu uE Ee
z r r r
uu u uE E

r z z r

(13-113)

where E and  are the Young’s modulus and the Poisson’s ratio of the material, 

respectively; and 1r r zuu u ue
r r r z

.

Substitution of Eq. (13-113) into Eq. (13-112) yields the equilibrium differential 
equations expressed by displacements: 

2
2 2

2
2 2

2

1( ) 2 0

1 2( ) 0

( ) 0

r
r

r

z

uueX G G u G G
r r r

ue G GX G G u u
r r r
eX G G u
z

 (13-114) 

where 

2 2 2
2

2 2 2 2

1 1, ,
(1 )(1 2 ) 2(1 )

E EX G
r r r r z

The boundary conditions of the notch (see Fig. 13.17) can be expressed by 

0
2r z  (13-115) 
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13.6.2 The Eigenequaiton and Eigenvalue of the 3D V-Notch  
Problem

The displacements ur, u  and uz can be expanded as the following double power 
series:

( , , )

( , , )

( , , )

j

j

j

n
r nj j

j n

n
nj j

j n

n
z nj j

j n

u r a z

u r b z

u r c z

 (13-116) 

where n 0,1,2, ; j 1,2, ; and 1, 2,  are the eigenvalue series. 
Substitution of Eq. (13-116) into Eq. (13-114) yields 

2 2

2 1

[{( )[(( ) 1) ( 1) ] [(( ) 1)

2 ]} ( )( ) ] 0 (13-117a)j j j

j nj j nj j nj
j n

n n n
nj nj j nj nj

X G n a n b G n a

a b r X G n c r Ga r

22

1

[{( )[( 1) ] [2 (( ) 1) ]}

( ) ] 0 (13-117b)

j

j j

n
j nj nj nj j nj nj

j n

n n
nj nj

X G n a b G a n b b r

X G c r Gb r

22

1

[ [( ) ]

( )[( 1) ] ( 2 ) ] 0

j

j j

n
j nj nj

j n

n n
j nj nj nj

G n c c r

X G n a b r X G c r (13-117c)

where a  and a
z

 are denoted by a  and ,a  respectively. In the above equation 

set, by letting the sum of the coefficients of r terms with the same power order to 
be zero, equation set for each order will be obtained. The lowest order equation 
set (called the zero-order equation set) can be established by letting the sum of 
the coefficients of 2jr  terms to be zero, i.e., 

2 2
0 0 0 0 0

2
0 0 0 0 0

2
0 0

( )[( 1) ( 1) ] [( 1) 2 ] 0

( )[( 1) ] [2 ( 1) ] 0

0

j j j j j j j j

j j j j j j j

j j j

X G a b G a a b

X G a b G a b b

c c

 (13-118) 

This is a homogenous ordinary differential equation set about a0j, b0j and c0j.



Advanced Finite Element Method in Structural Engineering 

484

Similarly, the first order equation set is obtained by letting the sum of the 
coefficients of 1jr  terms in Eq. (13-117) be zero. This is a homogenous ordinary 
differential equation set about (a1j, b1j, c1j) and (a0j, b0j, c0j), from which a1j, b1j

and c1j can be solved. 
According to the above procedure, equation set for each order can be derived 

in turn, and anj, bnj and cnj (n 2,3, ) of each order can also be solved in turn. 
The solution procedure for the zero-order equation set (13-118) (can be 

compared with that for Eq. (13-72)) will be discussed in detail as follows: 
Firstly, the solutions of Eq. (13-118) can be expressed by 

0 0 0 0 0

0 0 0 0 0 0

0 0 0

cos( 1) sin( 1) cos( 1) sin( 1)

cos( 1) sin( 1) [ cos( 1) sin( 1) ]

cos sin

j j j j j j j j j

j j j j j j j j j j

j j j j j

a A B D F
b B A K F D
c P Q

(13-119)

in which A0j, B0j, D0j, F0j, P0j and Q0j are the undetermined coefficients and functions 

of z; and 0

3 4
3 4

j
j

j

K .

Secondly, the corresponding boundary conditions are introduced. Substitution of 
Eq. (13-116) into the boundary conditions (13-115) yields the following zero-order 
boundary conditions 

0 0

0 0

0

1 0
1

2( 1) 0
0

j
j j

j j j

j

b a

a b
c

(13-120)

Substituting Eq. (13-119) into the above equation, the following 6 conditions can 
be obtained: 

0 0 0
2 1 cos( 1) ( 1) 1 cos( 1) 0
1 2 1 2

j
j j j j j j jA K D

(13-121a)

0 0 02 sin( 1) ( 1)(1 ) sin( 1) 0
2 2j j j j j j jA K D  (13-121b) 

0 0 0
2 1 sin( 1) ( 1) 1 sin( 1) 0
1 2 1 2

j
j j j j j j jB K F

(13-121c)
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0 0 02 cos( 1) ( 1)(1 ) cos( 1) 0
2 2j j j j j j jB K F  (13-121d) 

0 cos 0
2j j jQ   (13-121e) 

0 sin 0
2j j jP   (13-121f) 

This is a homogenous equation set about A0j, B0j, D0j, F0j, Q0j and P0j. If this 
homogenous equation set has nontrivial solutions, its determinant of coefficients 
should be equal to zero, i.e., 

(sin sin )(sin sin )sin cos 0
2 2
j j

j j j j  (13-122) 

This is the eigenequation for the 3D V-notch problem, which is completely the 
same as the eigenequation (13-76) for the V-notch problem in the Reissner plate. 
Therefore, the eigenvalues of the V-notch problem in the Reissner plate listed in 
Table 13.10 are still suitable for the 3D V-notch problem.  

It can be recalled that, the eigenequation (13-122) can be decomposed into the 
following four equations (i.e. Eq. (13-77)): 

 sin sin 0j j  (13-123a) 

 sin sin 0j j  (13-123b) 

cos 0
2j         (13-123c) 

sin 0
2j         (13-123d) 

which are corresponding to the following four cases: 
A0j and D0j in Eqs. (13-121a,b) have nontrivial solutions—symmetric state; 
B0j and F0j in Eqs. (13-121 c,d) have nontrivial solutions—antisymmetric state; 
Q0j in Eq. (13-121e) has nontrivial solution—antisymmetric state; 
P0j in Eq. (13-121f) has nontrivial solution—symmetric state. 
Load states in the 3D V-notch problem can be classified as symmetric state 

and antisymmetric state. And, the eigenvalue series  can also be classified as 
two sub series of symmetry and antisymmetry: 

Symmetric sub series 1 4 5 8{ , , , , }—the combination of the eigenvalues 
of Eqs. (13-123a,d). 

Antisymmetric sub series 2 3 6 7{ , , , , } —the combination of the eigenvalues 
of Eqs. (13-123b,c). 

The following discussions on the displacement and stress fields around notch-tip 
are also classified as two cases of symmetry and antisymmetry.  
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13.6.3 Stress Fields Around 3D Notch-Tip—the Symmetric State 

The symmetric sub series of eigenvalues can be divided into two groups 

Group a:    1 5 9[ , , , ]

Group b:    4 8 12[ , , , ]

Here, the results of the first two orders (n 0 and n 1) are given as follows. 
(1a) n 0, j 1,5,9,
Eigenvalue j of this group satisfies Eq. (13-123a). Substitution of it into 

Eq. (13-121b) or Eq. (13-121a) yields 

0 0 0j j jA m D
where 

0
0

1sin ( 1)( 1)(1 ) 2
12 sin ( 1)
2

j
j j

j
j

j

K
m

Then, from Eq. (13-121c) to Eq. (13-121f), we have 

0 0 0 0 0j j j jB F Q P

Substituting them into Eqs. (13-119) and (13-116), the corresponding displacement 
terms can be derived: 

0

0 0

[ cos( 1) cos( 1) ]

[ sin( 1) sin( 1) ]

0

j

j

r j j j j

j j j j j

z

u r m

u r m K
u

 (13-124) 

in which j is just D0j, it is a function of z (j 1,5,9, ). By the stress- 
displacement relation (13-113), the corresponding stress field can be obtained: 

1
0 0

1
0

0 0

1
0

1
0

{[ ( 1) ( 1) 2 ]cos( 1) 2 cos( 1) }

{[ ( 1) ( 1) 2

2 ( 1)]cos( 1) 2 cos( 1) }

{[ ( 1) ( 1)]cos( 1) }

[ 2

j

j

j

j

rr j j j j j j j j j

j j j

j j j j j j j

zz j j j j j

r j

r X XK G G m

r X XK G
GK G m

r X K

r G m 0

0 0

0

sin( 1) ( 1)(1 )sin( 1) ]

[ sin( 1) sin( 1) ]

[ cos( 1) cos( 1) ]

j

j

j j j j j j

z j j j j j

rz j j j j

K

r G m K

r G m

(13-125)



Chapter 13 Sub-Region Mixed Element — V-Notch Problem 

487

(1b) n 0, j 4,8,12,
The eigenvalue j of this group satisfies Eq. (13-123d). Substitution of it into 

Eq. (13-121f) yields 

0 0jP

And, from the other expressions in Eq. (13-121), we obtain 

0 0 0 0 0 0j j j j jA D B F Q

Substituting them into Eqs. (13-119) and (13-116), the corresponding displacement 
terms can be obtained  

0, 0, cosj
r z j ju u u r  (13-126) 

in which j is just P0j (j 4,8,12, ).
The corresponding stress terms can be solved from Eq. (13-113) as follows: 

1 1

cos , cos

(2 ) cos , 0

sin , cos

j j

j

j j

rr j j j j

zz j j r

z j j j rz j j j

r X r X

r G X

r G r G

 (13-127) 

(2a) n 1 j 1,5,9,
The case of n 1 is corresponding to the first-order equation set and the 

first-order displacement and stress terms. By letting the sum of the coefficients 
of 1jr  terms in Eq. (13-117) be zero, an ordinary differential equation set about 
(a1j, b1j, c1j) and (a0j, b0j, c0j) can be obtained as follows: 

2
1 1

2
1 1 1 0

2
1 1 1 1 1 0

2
1 1 0 0

( ){[( 1) 1] }

{[( 1) 1] 2 } ( ) 0

( )[( 2) ] {2 [( 1) 1] } ( ) 0

[( 1) ] ( )[( 1) ] 0

j j j j

j j j j j j

j j j j j j j j

j j j j j j

X G a b

G a a b X G c

X G a b G a b b X G c

G c c X G a b
(13-128)

When j 1,5,9, , (a0j, b0j, c0j) in the above equation can be obtained from 
Eq. (13-124): 

0 0

0 0 0

0

[ cos( 1) cos( 1) ]

[ sin( 1) sin( 1) ]

0

j j j j j

j j j j j j

j

a m
b m K
c

 (13-129) 
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Substituting the above equation into Eq. (13-128), (a1j, b1j, c1j) can be solved as 
follows:

1 1 1 1 1

1 1 1 1 1 1

1 1 1 0

cos( 2) sin( 2) cos sin

cos( 2) sin( 2) [ cos sin ]

cos( 1) sin( 1) [ 1 ( 1)] cos( 1)
4

j j j j j j j j j

j j j j j j j j j j

j j j j j j j j j j
j

a A B D F
b B A K F D

X Gc P Q K
G

(13-130)

where

1

1 3 4
1 3 4

j
j

j

K

From the boundary condition (13-115), the first-order boundary conditions can 
be written by 

1 1

1 1

1 0 0

1
0

1
20

[ sin( 1) sin( 1) ] 0

j
j j

j j j

j j j j j j

b a

a b
c m K

(13-131)

Substitution of Eq. (13-130) into the above equation, we have 

1 1 1 1 1

1 1

0j j j j j

j j j

A B D F Q

P f

where

1 0

0 0

1sin ( 1)1 2[( 1) ( 1)]
14 1 sin ( 1)
2

1 1sin ( 1) sin ( 1)
2 2

1( 1)sin ( 1)
2

j
j

j j j j
j j

j

j j j j

j j

X Gf K
G

m K

The corresponding displacement terms can be solved as follows 

1
1 1

0
0

[ cos( 1) cos( 1) ]j

r

z j j j j j

u
u

u r f g

 (13-132) 
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where

1 0[ 1 ( 1)]
4j j j j

j

X Gg K
G

And, the corresponding stress terms are 

1
1 1

1
1 1

1
1 1

1 1

[ cos( 1) cos( 1) ]

[ cos( 1) cos( 1) ]

( 2 )[ cos( 1) cos( 1) ]

0

[( 1) sin( 1) ( 1) sin( 1) ]

j

j

j

j

j

rr j j j j j

j j j j j

zz j j j j j

r

z j j j j j j j

rz

r X f g

r X f g

r X G f g

r G f g

r G 1 1[ cos( 1) cos( 1) ]j j j j j jf g

 (13-133) 

(2b) n 1, j 4,8,12,
Now, the cases of j 4,8,12,  are considered. Here, a0j, b0j and c0j can be 

obtained from Eq. (13-126): 

0 0 00, 0, cosj j j j ja b c  (13-134) 

Substituting the above equation back into Eq. (13-128), a1j, b1j and c1j can be 
solved as follows: 

1 1 1 1 1

1 1 1 1 1 1

1 1 1

cos( 2) sin( 2) cos sin

cos
( )( 2) 2

cos( 2) sin( 2) ( cos sin )

cos( 1) sin( 1)

j j j j j j j j j

j j
j

j j j j j j j j j j

j j j j j

a A B D F
X G

X G G

b B A K F D
c P Q

  (13-135) 

From the boundary condition (13-115), the corresponding first-order boundary 
condition can be written as: 

1 1

1 1

1

1
cos 0

1 1
0 2

0

j
j j j j

j j j

j

b a

a b
c

(13-136)

Substitution of Eq. (13-135) into the above equation yields 
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1 1 1 1

1 1 1 1

0

,
j j j j

j j j j j j

B F Q P

A l D
  (13-137) 

where l1j and 1j are given in Appendix C. The corresponding displacement terms 
are

1
1 1

1
1 1 1
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[ sin( 2) sin ]

0

j

j

r j j j j j

j j j j j j

z

u r l h
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 (13-138) 

where

1 1 ( )( 2) 2j j
j

X Gh
X G G

And, the corresponding stress terms are 

1 1 1 1 1

1 1 1

1 1 1 1

1 1 1
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1
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1
1 1

( 1)sin( 2) ( ) sin ]
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[ cos( 2) cos ]

j

j

j j j j j j j j j

z j j j j j j

rz j j j j j

g K

r G l K

r G l g
(13-139)

13.6.4 Stress Fields Around 3D Notch-Tip—the Antisymmetric State 

The antisymmetric sub series of eigenvalues can be divided into two groups 

Group a:   2 6 10[ , , , ]

Group b:   3 7 11[ , , , ]

Here, the results of the first two orders (n 0 and n 1) are given as follows.  
(1a) n 0, j 2,6,10,
The displacement terms are 

0, 0, sinj
r z j ju u u r  (13-140) 
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And, the stress terms are: 

1
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(1b) n 0, j 3,7,11,
The displacement terms are 

0
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 (13-142) 

And, the stress terms are 
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where

0

0

1( 1)(1 )cos ( 1)
2

12 cos ( 1)
2

j j j

j

j j

K
n

(2a) n 1, j 2,6,10,
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The displacement terms are 

1
1 1
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where s1j and t1j are given in Appendix D, 

1 1 ( )( 2) 2j j
j
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And, the stress terms are 
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(2b) n 1, j 3,7,11,
The displacement terms are 

1 10, 0, [ sin( 1) sin( 1) ]j
r z j j j j ju u u r q v  (13-146) 
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1 0
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And, the stress terms are 

1
1 1

1
1 1

1
1 1
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[ sin( 1) sin( 1) ]

[ sin( 1) sin( 1) ]

( 2 )[ sin( 1) sin( 1) ]
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 (13-147) 

When the inner angle tends to be 2 , the above solutions can be transferred to 
the displacement and stress fields of a crack in 3D space, which are identical 
with the results given by reference [24].  

The sub-region mixed element method for the 3D V-notch problem is denoted 
by SRM-V5. 
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Abstract This chapter introduces a novel finite element method, namely, 
the analytical trial function method. A detailed discussion on the features of 
the analytical trial function method is firstly given in Sect. 14.1. Then, in the 
next five sections, the basic analytical solutions of plane problem, thick plate 
problem and thin plate problem are derived and taken as the trial functions 
for the corresponding finite element models. It can be seen that those resulting 
models exhibit excellent performance. Some challenging problems, such as 
the trapezoidal locking and shear locking, can be avoided naturally. 

Keywords finite element, analytical trial function method, membrane 
element, plate bending element. 

14.1 Recognition of the Analytical Trial Function Method 

14.1.1 Trial Function 

When constructing a displacement-based element, the first step is usually to 
assume its displacement mode. For example, the displacement mode of the constant 
strain triangular element CST is assumed to be 

1

6

1 0 0 0
0 1 0 0

u x y
v x y

F  (14-1) 
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and the displacement mode of the rectangular thin plate element ACM is assumed 
to be 

1
2 2 3 2 2 3 3 3

12

[1 ]w x y x xy y x x y xy y x y xy F

(14-2)

where  is the undetermined parameter vector; F  is composed of trial functions 
(or basis functions). 

Element performance relies deeply on the selected trial functions. As a result 
of the irrationally selected trial functions for displacements, trapezoidal locking 
and shear locking phenomena may exist in some membrane and thick plate 
elements, respectively. 

14.1.2 Analytical Trial Function 

In structural matrix analysis, the exact (or analytical) solutions for the displacement 
of the thin beam theory are used by the thin beam element. That is to say, the 
selected trial functions are analytical solutions; therefore, they are called as 
analytical trial functions.

Timoshenko thick beam element also uses the exact solutions for the 
displacements of the thick beam theory. So, it will not suffer from shear locking 
phenomenon because the analytical trial functions are employed. 

2D and 3D elasticity problems, thin and thick plate problems are all problems 
with infinite DOFs. For their homogeneous problems, the analytical solutions are 
composed of infinite terms. Finite element method is an approximate method in 
which such infinite DOF problems are treated as problems with only finite DOFs. 
And, the corresponding element model also contains finite (n) DOFs, which 
means that its displacement mode contains only n basic analytical trial functions. 
These n analytical solutions can be selected in turn from low to high orders.  

14.1.3 Analytical Trial Function Method 

The construction procedure of the finite element model in which the basic 
analytical solutions are taken as the trial functions is called the finite element 
method based on analytical trial functions, or the analytical trial function 
method.

The feature of the analytical trial function method is: the finite element method 
is a discrete approximate method, while the advantages of the analytical method 
are preserved in it. It exhibits the close relation between the trial function and the 
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basic analytical solution and the complementarity between discrete and analytical 
methods. 

14.1.4 Recognition of the Analytical Trial Function Method 

At the beginning of the finite element method, all people thought of taking the 
most basic analytical solutions as the trial functions. For instance, in the 
displacement mode (14-1) of the first membrane element CST, the selected 6 trial 
functions are just the most basic analytical solutions of the 2D homogenous 
problem in elasticity (3 rigid body displacements and 3 constant strain states). 
And, in the displacement mode (14-2) of the first rectangular thin plate element 
ACM, the selected 12 trial functions are just the most basic analytical solutions 
of the thin plate homogenous problem, i.e., they are all the analytical solutions of 
the following homogenous differential equation 

2 2 0w  (14-3) 

and are the 12 analytical solutions of the lowest orders which contain 3 rigid body 
displacement states, 3 constant strain states, 4 linear strain states and 2 quadratic 
strain states. It can be seen that, for these earliest elements, whether by conscious 
efforts or not, their construction procedures are in keeping with the requirement 
of the analytical trial function method. That is to say, the analytical trial function 
method is the earliest scheme used in the finite element method.  

With the flourishing development of the finite element method, various schemes 
have been proposed one after the other. Especially, after the isoparametric elements 
were broadly used, the analytical trial function method was almost overlooked.  

Owing to the inherent advantages of the analytical trial function method, its new 
applications are continuously suggested in some references. For example, in 1982, 
reference [1] used the analytical solutions containing singular stress point as the 
trial functions for developing the singular element with crack, which provides an 
effective solution scheme for the crack problem; in 1996, reference [2] proposed a 
rational finite element method, and constructed a set of high quality elements by 
using the basic analytical solutions for plane elasticity; reference [3] takes the 
basic analytical solutions of the thick plate theory as the trial functions to 
develop the thick plate elements, which rationally resolves the matching problem 
of the trial functions for deflection and rotations so that shear locking phenomenon 
can be eliminated from the outset; reference [4] uses the analytical solutions to 
construct two membrane elements which can keep high precision in distorted 
mesh, and the trapezoidal locking problem given in reference [5] is thus solved. 
In 2002, reference [6] gave a systematical review of the analytical trial function 
method. It points out the advantages and potentialities of the analytical trial 
function method in dealing with mesh distortion, shear locking and singular 
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stress point problems, which will induce further studies and developments on the 
analytical trial function method.  

14.2 4-Node Membrane Elements Based on the Analytical  
Trial Function Method 

14.2.1 The Basic Analytical Solutions in Plane Elasticity 

In plane elasticity, the analytical solutions of different order which satisfy the 
basic governing equations, including equilibrium equations, geometrical equations 
and constitutive law, can be derived. The 12 low-order analytical solutions are 
listed in Table 14.1 (in which  is the Poisson’s ratio). 

Table 14.1 The basic analytical solutions in plane elasticity 

No.of 
terms 

1 2 3 4 5 6 7 8 9 10 11 12 

u
v

x

y

xy

1
0
0
0
0
0

0
1
0
0
0
0

y
– x
1
0
0
0

y
x
0
0
0
2

– x
y
0

–
1
0

x
– y

0
1

–
0

– x2 y2

2xy
– 2y

– 2 x
2x
0

2xy
– y2 x2

2x
2y

– 2 y
0

– 2 xy
y2 (2 )x2

2x
– 2 y

2y
– 4(1 )x

x2 (2 )y2

– 2 xy
– 2y
2x

– 2 x
– 4(1 )y

– 3 x2y y3

3xy2 (2 )x3

3x2 3y2

– 6 xy
6xy

– 6(1 )x2

3yx2 (2 )y3

– 3 y2x x3

3x2 3y2

6xy
– 6 xy

– 6(1 )y2

14.2.2 3 Membrane Elements Based on the Analytical Trial  
Functions

A 4-node, 8-DOF membrane element shown in Fig. 14.1 is considered. The 
element nodal displacement vector is 

T
1 1 2 2 3 3 4 4[ ]e u v u v u v u vq  (14-4) 

By using the first eight terms of the analytical solutions given in Table 14.1 as 
the trial functions, the element displacements u and v are assumed to be 

1
2 2

2
2 2

8

1 0 2
0 1 2

u y y x x x y xy
v x x y y xy y x

 (14-5) 
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where 1, 2, , 8 are 8 unknown parameters. 

Figure 14.1 A 4-node quadrilateral membrane element 

By employing 8 nodal conforming conditions  

( ) 0
( ) 0

i

i

u u
v v

   (i 1,2,3,4)  (14-6) 

the 8 unknown parameters can be solved and expressed in terms of qe. This 
element is denoted as ATF-Q4a. 

If the 8 nodal conforming conditions are replaced by the following nodal and 
perimeter conforming conditions  

4

1

4

1

d d

d d

( ) 0

( ) 0

e
e

e

A
A
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i
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i i i
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u u

u u
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d d

d d

( ) 0

( ) 0

e

e

A

A

i
i

i i i
i

v A lv s
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v A mv s
y

v v

v v

 (14-7) 

in which l and m are the direction cosines of the normal on the element boundary; 
i and i are the isoparametric coordinates of node i; u  and v  are the 

displacements of the element boundary. This element is denoted as ATF-Q4b. 
For the 4-node membrane element shown in Fig. 14.1, if the rotation i of 

node i is also taken as the DOF, the element will have 12 DOFs. Thus, the 
element nodal displacement vector is  

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e u v u v u v u vq  (14-8) 

The 12 analytical solutions given in Table 14.1 are taken as the trial functions, 
and the following 12 nodal conforming conditions 
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( ) 0
( ) 0

( ) 0

i

i

i

u u
v v    (i 1,2,3,4) (14-9) 

are also used, in which 

1
2

u v
y x

 (14-10) 

This element is denoted as ATF-Q4 .

14.3 Avoiding Trapezoidal Locking Phenomenon by  
ATF Elements 

As to the trapezoidal locking problem (or sensitivity problem to mesh distortion), 
the analytical trial function method provides an effective solution countermeasure.  

Example 14.1 Sensitivity test  to mesh distortion—A pure bending beam 
divided by two distorted elements. 

A cantilever beam subjected to pure bending load is shown in Fig. 14.2, and it 
is divided into two elements.  is a distortion parameter. When  increases, the 
distortion will become more serious. The length of the beam is 10; height is 2; 
thickness is 1. And, E 1500, 0.25. Results of the deflection vA at tip A are 
plotted in Fig. 14.3. Besides the present elements ATF-Q4a, ATF-Q4b and ATF-Q4 ,
results obtained by the 4-node isoparametric element Q4, the isoparametric element 
with internal parameters QM6[7] and the hybrid stress element P-S[8] are also 
given for comparison. 

Figure 14.2 A beam divided by two distorted elements 

From Fig. 14.3, it can be seen that, the precision of the 4-node isoparametric 
element Q4 is the lowest: when 0, since the length-height ratio of the 

rectangular element is high 5
2

L
h

, the precision of vA has already dropped to 

28%. And, with the increase of , its precision will continually drop, even below 
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10%. Though the precisions of the hybrid stress element P-S, the isoparametric 
element with internal parameters QM6 and element ATF-Q4b are all 100% for the 
rectangular element case ( 0), if >1, they will be below 60%. The precisions 
of the other two present elements ATF-Q4a and ATF-Q4  are the best: with the 
increase of the distortion parameter , the precision can always keep 100% which 
means that both the elements are very insensitive to mesh distortion. From these 
results, it can be concluded that, if appropriate conforming conditions are selected, 
ATF elements can exhibit excellent performance for avoiding trapezoidal locking. 

Figure 14.3 Relation between Percentage (%) precision of vA and distortion 
parameter

Example 14.2 Sensitivity test  to mesh distortion—MacNeal thin beam 
problem with distorted mesh. 

The MacNeal thin beam problem[5] is shown in Fig. 14.4, in which rectangular, 
parallelogram and trapezoidal mesh are used. This is a famous benchmark for 
testing the sensitivity to mesh distortion. The precisions of many 4-node membrane  

Figure 14.4 MacNeal thin beam with distorted meshes 
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elements drop dramatically for the trapezoidal mesh case, which is the so-called 
trapezoidal locking phenomenon. The length of the cantilever beam is 6, the 
height is 0.2; the elastic constants E 107 and 0.3. Two tip load cases are 
considered: pure bending and transverse shear. 

The results of the deflection vA at tip A are listed in Table 14.2. Besides the 
present three elements, the results obtained by the 4-node isoparametric element 
Q4, hybrid stress element P-S[8], 4-node element QUAD4[5] with one integration 
point, assumed strain element PEAS7[9] and its modification versions, the 
elements M1PEAS7 and M2PEAS7[10] are also given for comparison.

Table 14.2 The percentage (%) precision of the tip deflection vA of MacNeal beam 

Load case Transverse shear Pure bending 
Mesh Rectangle Parallelogram Trapezoid Rectangle Parallelogram Trapezoid
Q4

QUAD4
P-S

PEAS7 
M1PEAS7
M2PEAS7
ATF-Q4b 
ATF-Q4a 
ATF-Q4

9.3
90.4
99.3
98.2
99.3
99.3
99.4
99.4
100

3.5
8.0
79.8
79.5
94.8
94.3
61.3
99.4
100

0.3
7.1
22.1
21.7
36.7
36.8
4.5
99.4
100

9.3

100

100
100
100

3.1

85.2

70.7
100
100

2.2

16.7

4.1
100
100

From Table 14.2, it can be seen that, because the length-height ratio of the 
element is 1/0.2 5, the precision of the element Q4 drops obviously. The element 
QUAD 4 using a single integration point is seriously locking in parallelogram 
and trapezoidal meshes. The precisions of the hybrid stress element P-S, element 
ATF-Q4b, assumed strain elements PEAS7, M1PEAS7 and M2PEAS7 are similar: 
for the mesh divided by rectangular elements, the precision is the best; for the 
mesh divided by parallelogram elements, the precision will drop; and for the 
mesh divided by trapezoidal elements, locking phenomenon will happen. Only 
two elements ATF-Q4a and ATF-Q4 , which are proposed in this section, possess 
high accuracy for all mesh divisions, i.e., they are insensitive to mesh distortion. 
And, element ATF-Q4  can even provide exact solutions for the two load cases 
and three meshes. The trapezoidal locking problem of MacNeal beam is a serious 
challenge to the 4-node, 8-DOF membrane elements. The victory of the element 
ATF-Q4a in this challenge exhibits its advantage again.  

Example 14.3 Weak patch test for the element ATF-Q4a. 
Patch test is often used for testing the convergence of the non-conforming 

elements. It has two forms: 
Strict form—The boundary conditions are specified according to the constant 

strain state. Then, by using an arbitrary mesh divided by the elements with finite 
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dimensions, the finite element solutions will be tested to see whether they are the 
exact solutions.  

Weak form—The boundary conditions are also specified according to the 
constant strain state. Then, by using meshes refined by more and more elements, 
the finite element solutions will be tested to see whether they are convergent to 
the exact ones. 

The merit of the strict form is that it can be conveniently performed; and the 
merit of the weak form is that it possesses the right description and is more 
coincident with the original idea of the convergence. 

The MacNeal beam subjected to a horizontal load (resultant force is 1) is 
considered. This structure is under a constant strain state. By using the two 
refined meshes shown in Fig. 14.5, the convergence of the element ATF-Q4a is 
analyzed. The results of the tip displacement are listed in Table 14.3 (the 
analytical solution is 0.6). 

In Fig. 14.5, the refined mesh A firstly contains n n rectangular elements; 
then, each rectangular element is divided into two trapezoidal elements, thus, 2n2

elements are totally obtained. And, the refined mesh B firstly contains two 
trapezoidal elements; then, each trapezoidal element is bisected through the 
midpoints of the element sides so that it is divided into four trapezoidal elements; 
finally, 2n2 elements are totally obtained. 

From Table 14.3, it can be seen that the element ATF-Q4a cannot pass the 
strict patch test because it does not produce the exact solutions of the constant 
strain state by mesh with finite dimensions. But, with the refinement of the mesh, 
the finite element solutions can rapidly converge to the exact solutions. So, the 
element ATF-Q4a can pass the weak patch test.  

Figure 14.5 Two refined patterns of the meshes for MacNeal beam 

Let us make a comparison between the elements ATF-Q4a and ATF-Q4b. 
From the numerical results of Examples 14.1 and 14.2, it can be seen that the 
precision of the element ATF-Q4a is obviously higher than that of the element 
ATF-Q4b. But, the element ATF-Q4b can pass the strict patch test (thereby it can 
also pass the weak one), and the element ATF-Q4a can only pass the weak patch 
test. By this token, the ultimate rule for testing the convergence should be the 
weak patch test, not the strict one. It is not appropriate to deny the element 
ATF-Q4a, which possesses high accuracy, only according to the results of the 
strict patch test. 
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Table 14.3 The tip displacements of the MacNeal beam under tension (ATF-Q4a) 

Refined mesh A Refined mesh BNum. of 
elements Result Relative Precision Result Relative Precision

0.6923 1.1538 0.6923 1.1538
2

0.6923 1.1538 0.6923 1.1538
0.5935 0.9892 0.6067 1.0112
0.6318 1.0530 0.5998 0.99978
0.5935 0.9892 0.6065 1.0108
0.6008 1.0013 0.6014 1.0023
0.6010 1.0017 0.6003 1.0005
0.6010 1.0017 0.5997 0.9995
0.6010 1.0017 0.5988 0.9980

32

0.6008 1.0013 0.6029 1.0048

14.4 The Basic Analytical Solutions of the Thick Plate  
Theory and ATF Elements Free of Shear Locking 

14.4.1 Shear Locking Phenomenon in the Thick Plate Element 

During the construction procedure of the thick plate element based on the 
Mindlin-Reissner thick plate theory, the three displacement components w, x
and y should be independent variables. When the thick plate degenerates to be a 
thin plate, then, according to the Kirchhoff thin plate theory, the rotations x and 

y will be the derivatives of w, which are not independent anymore. Many 
displacement-based elements produce false shear strains x and y in thin plate 
cases, consequently, shear locking phenomenon will happen. Reference [11] 
claimed that, “The root of this difficulty lies on the contradiction of the double 
requirements of dependence and independence among the displacements”. In 
order to overcome such shear locking, many countermeasures have already been 
proposed in numerous literatures. The most popular countermeasures are reduced 
integration[12] and selected reduced integration schemes[13]. However, though 
they can provide us temporary solutions, the shear locking is still not eliminated 
from the outset, and even some new troubles, such as spurious zero energy mode, 
may be aroused. In some recent references [14 – 18], the double requirements of 
dependence and independence among the displacements have been translated 
into other double requirements of nonzero and zero shear strains, and a rational 
interpolation scheme for shear strains which satisfies the double requirements is 
proposed. As a result, a series of thick plate elements which can completely 
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avoid shear locking are developed successfully. This section will present another 
way to eliminate shear locking: The basic analytical solutions of the Mindlin- 
Reissner theory are used in the trial functions of the thick plate displacements w,

x and y ; when the plate degenerates to be a thin plate, these basic analytical 
solutions will automatically degenerate to be those of the Kirchhoff theory, and 
consequently, the shear locking will also be avoided from the outset.  

14.4.2 The Basic Analytical Solutions of the Thick Plate Theory 

In the equilibrium differential equations of the thick plate, if the internal forces 
are expressed in terms of the displacements, the basic differential equations of the 
displacement method for the thick plate can be obtained. For the homogeneous 
problem when all loads are zero, we have 

22 2

2 2

2 22

2 2

2 2

2 2

1 1 0
2 2

1 1 0
2 2

0

yx x
x

y yx
y

yx

wD C
x y x y x

wD C
x y x y y

w wC
x y x y

 (14-11) 

Let F(x, y) be a bi-harmonic function which satisfies the following bi-harmonic 
equation

2 2 0F  (14-12) 
where

2 2
2

2 2x y

Then, the following expressions  

2 , ,x y
D F Fw F F
C x y

 (14-13) 

are the solutions of Eq. (14-11). Let d be a characteristic length. By introducing 
the dimensionless coordinates  and 

x
d

, y
d

 (14-14) 

and the dimensionless parameter 
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2

2 25(1 )
D h

Cd d
 (14-15) 

the first expression in Eq. (14-13) can be written as 

2 2

2 2w F F  (14-16) 

If 0h
d

,  0, then, the analytical solutions (14-13) of the thick plate 

theory will degenerate to be the following analytical solutions of the thin plate 
theory 

, ,

0, 0

x y

xz x yz y

F Fw F
x y

w w
x y

 (14-17) 

From above, it can be concluded that, if the basic analytical solutions (14-13) of 
the thick plate theory are taken as the trial functions for the thick plate element, 

once 0h
d

, these trial functions will automatically degenerate to be the analytical 

solutions of the thin plate theory, thereby, the shear locking phenomenon can be 
eliminated from the outset.  

14.5 Development of Quadrilateral Thin-Thick Plate  
Element Based on the Analytical Trial Function  
Method

14.5.1 Thick Plate Element ATF-MQ Based on the Analytical  
Trial Function Method 

Consider a quadrilateral thick plate element with 12 DOFs, its nodal displacement 
vector is 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq

According to the analytical solutions (14-13) of the thick plate theory, the first 12 
low-order terms of the analytical solutions are taken as the trial functions. The 



Chapter 14 Analytical Trial Function Method  Membrane and Plate Bending Element 

507

element displacements w, x and y can be expressed by 

2 2 3 2

2

2

2 3 3 3

2 2 3

2 3 2

1 2 2 6 2

0 1 0 2 0 3 2
0 0 1 0 2 0

2 6 6 6

0 3
2 3 3

x

y

D D D Dx y x xy y x x x y yw C C C C
x y x xy

x y x

D D D Dxy x y y x y xy xy xy
C C C C

y x y y
xy y x xy

(14-18)

where D is the bending stiffness of the plate; C is the shear stiffness of the 
plate;  is a vector composed of 12 parameters.  

The corresponding curvature fields T[ 2 ]x y xy  are 

2 2

0 0 0 2 0 0 6 2 0 0 6 0
0 0 0 0 0 2 0 0 2 6 0 6
0 0 0 0 2 0 0 4 4 0 6 62

x

y

xy

x y xy
x y xy

x y x y

(14-19)

And, the corresponding shear strain fields T[ ]xz yz  are 

0 0 0 0 0 0 6 0 2 0 6 6

0 0 0 0 0 0 0 2 0 6 6 6

xz

yz

D D D Dy y
C C C C

D D D Dx x
C C C C

(14-20)

The following 12 nodal and line conforming conditions 

( ) 0 (for each node 1,2,3,4)
( ) 0 (for the end point  of each side : 1,2,3,4)

( )d 0 (for each side 12,23,34,41)
ij

i

s s i ij

n nd

w w i
i d i

s ij

(14-21)

are employed, in which n and s are the normal and tangential directions of each 
element side; w , s  and n  are the displacements along the element boundary. 
Thus, the 12 parameters in  can be obtained and expressed in terms of .eq  This 
element is denoted as ATF-MQ. 
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14.5.2 Numerical Examples 

Example 14.4 The central deflection of the simply-supported and clamped square 
plates under uniformly distributed load. 

Two thickness-span cases,  thick plate (h/L 0.3)and  thin plate (h/L
0.003), are considered. The central deflection wC is computed by the element 
ATF-MQ using different mesh density. Its relative precision is given in Table 14.4. 

Table 14.4 The relative precision for the central deflection wC of square plate (ATF-MQ) 

Thick plate (h/L 0.3) Thin plate (h/L 0.003)
Mesh 

Simply-supported Clamped Simply-supported Clamped 
2 2
4 4
8 8

16 16
32 32

1.009
1.002
1.0005
1.0002
1.0001

1.035
1.006

0.9998
0.9984
0.9980

1.011 
1.003
1.0007
1.0001
1.0001

1.009
1.006
1.003
1.002
1.002

From Table 14.4, it can be seen that the element ATF-MQ exhibits excellent 
performance for both thick and thin plates, and no shear locking happens. For the 
simply-supported and clamped square plates, high accuracy can be obtained. 
When a 8 8 mesh is used, all relative errors are below 0.3%.  

Example 14.5 The central deflection and bending moment of the simply- 
supported and clamped circular plates under uniformly distributed load. 

The element ATF-MQ is used for this computation by using two meshes given 
by Fig. 6.14 in which the numbers of the elements are 12 and 48, respectively. 
The thickness-radius ratios h/R of the circular plate vary from 10–30 to 0.35. And, 
the relative precisions for the central deflection and bending moment are listed in 
Table 14.5. 

From Table 14.5, it can be seen again that, the element ATF-MQ is universal 
for both thick and thin plates, and no shear locking happens. It provides high 
precision for both deflection and bending moment. When 48 elements are used, 
all errors are around or below 1%. 

Example 14.6 Sensitivity test for mesh distortion. 
The central deflections of the simply-supported and clamped square plates 

under uniformly distributed load are computed by using two distorted meshes 

shown in Fig. 14.6. Three distortion parameter cases: 
0.5L

0.05, 0.10 and 0.12 

(or 0.20), are considered. The relative precision is given in Table 14.6. 
From Table 14.6, it can be seen that, the element ATF-MQ is insensitive to 

mesh distortion. For various values of the distortion parameter
L

, high accuracy 

can all be obtained. 
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Table 14.5 The relative precisions for central deflection wC and bending moment 
MC of circular plate (ATF-MQ) 

Central deflection wC Central bending moment MC

Simply-supported Clamped Simply-supported Clamped /h R
12

elements 
48

elements
12

elements
48

elements
12

elements 
48

elements
12

elements
48

elements

10–30 

0.001
0.01
0.10
0.15
0.20
0.25
0.30
0.35

1.0103
1.0103
1.0103
1.0100
1.0099
1.0099
1.0098
1.0097
1.0096

1.0024
1.0024
1.0024
1.0025
1.0025
1.0026
1.0026
1.0026
1.0025

0.9625
0.9625
0.9625
0.9631
0.9648
0.9673
0.9703
0.9732
0.9762

0.9898
0.9898
0.9898
0.9905
0.9913
0.9922
0.9930
0.9938
0.9945

1.0208
1.0208
1.0207
1.0199
1.0194
1.0190
1.0188
1.0187
1.0186

1.0040
1.0040
1.0041
1.0046
1.0047
1.0047
1.0047
1.0046
1.0045

1.0137
1.0137
1.0136
1.0107
1.0086
1.0068
1.0053
1.0041
1.0031

1.0002
1.0002
1.0003
1.0014
1.0014
1.0011
1.0007
1.0002
0.9997

Figure 14.6 Two distorted meshes (for 1/4 square plate) 

Table 14.6 The relative precision for central deflection of square plate by using 
distorted meshes (ATF-MQ) 

Clamped Simply-supported 

Mesh 
Distortion
parameter

0.5L

Thickness-span 
ratio h/L 0.1

Thickness-
span ratio

h/L 0.001

Thickness-span 
ratio h/L 0.1

Thickness-
span ratio

h/L 0.001

Mesh 
A

0.05
0.10
0.12

1.0246
1.0500
1.0559

1.0152
1.0480
1.0573

1.0013
1.0074
1.0092

1.0093
1.0079
1.0071

Mesh 
B

0.05
0.10
0.20

1.0186
1.0348
1.0567

1.0091
1.0284
1.0481

1.0001
0.9958
1.0075

1.0096
1.0078
0.9942
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14.6 Analytical Trial Function Method for Developing  
a Triangular Thick Plate Element Based on a Thin  
Plate Element 

In this section, the analytical trial function (ATF) method is used to extend the 
existing Kirchhoff triangular thin plate element to the corresponding Mindlin 
triangular thick plate element. As an example, the triangular thin plate element 
GPL, proposed in reference [19], is generalized to a thick/thin plate element 
GPLM (M denotes the Mindlin plate). 

14.6.1 Brief Review of the Triangular Thin Plate Element GPL 

This element possesses only 9 DOFs. The element nodal displacement vector is  
T

1 1 1 2 2 2 3 3 3[ ]e
x y x y x yw w wq  (14-22) 

According to the ATF method, the element deflection and rotation fields are 
assumed to be 

x

y

w
w
x x
w
y y

F

F

F

 (14-23) 

in which  contains 9 unknown coefficients; and F is composed of 9 trial functions 

1 2 3 1 2 2 3 3 1 1 1 1

2 2 2 3 3 3

1 ( 1)
2

1 1( 1) ( 1)
2 2

L L L L L L L L L L L L

L L L L L L

F

(14-24)

Since the highest order of these trial functions F is cubic, thereby, they satisfy the 
bi-harmonic Eq. (14-12). For the thin plate theory, these trial functions are all the 
analytical trial functions. 

For solving the 9 unknown coefficients, 9 conforming conditions are selected 
as follows 

( ) 0iw w           (for each corner node i 1,2,3) (14-25a) 

( )d 0
jd

w w s       (for each side dj d1, d2, d3) (14-25b) 
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( )d 0
j

n nd
s     (for each side dj d1, d2, d3) (14-25c) 

Then,  can be derived from the above equations, and can be expressed in terms 
of eq

ePq  (14-26) 

Substituting the above equation back into Eq. (14-23), the element displacement 
fields and its shape functions can be determined. And then, the element stiffness 
matrix Ke can be derived following the conventional procedure.  

14.6.2 Generalization of the Element GPL to the Triangular  
Thick Plate Element GPLM 

In the thick plate element, eq  is still given by Eq. (14-22).  
Based on the analytical solutions (14-13) of the thick plate theory, the 

displacement fields (14-23) of the element GPL are generalized to the following 
forms 

2

x

y

Dw
C

x

y

F F

F

F

 (14-27) 

The expressions in the above equation are the displacement fields of the thick 
plate element assumed according to the ATF method. Thus, from the above equation, 
the shear strains of the thick plate element can be obtained as follows 

2

2

x x

y y

w D
x C x
w D
y C y

F

F
 (14-28) 

It can be seen that, when the plate becomes thinner, Eq. (14-27) will degenerate to 
be Eq. (14-23) of the thin plate element, and Eq. (14-28) will degenerate to be 

 0, 0x y  (14-29) 

In order to solve the unknown coefficients in , the conforming conditions 
(14-25a,b,c) for the thin plate element are still used, in which the original 
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displacement w  along the element boundary should be replaced by the boundary 
displacement *w  of the thick plate element  

1 2 3

1 2 3

( *) 0 (for each corner node 1,2,3)
( *)d 0 (for each side , , )

( )d 0 (for each side , , )
j

j

i

jd

n n jd

w w i
w w s d d d d

s d d d d

 (14-30) 

Then, we can obtain  

* eP q  (14-31) 

When the plate becomes thinner, Eqs. (14-30) and (14-31) will degenerate to be 
Eqs. (14-25) and (14-26) which are used for the thin plate element.  

The main procedure for the generalization of the element GPL to the element 
GPLM has been described above. This generalization can be performed 
conveniently.  

By the comparison of the new and old elements, it can be seen that their 
derivation procedures are the same, and formulae in each step are also similar. 
The key step in this procedure is the assumption of displacement fields according 
to the analytical trial function method, in which Eq. (14-23) of the original 
element is replaced by Eq. (14-27) of the new element. In these two equations,

except that there is a 2D
C

F  term in the deflection expression of Eq. (14-27), 

the other expressions are exactly the same. Only one term is different, so the new 
and old elements are quite similar in form. 

However, although only one term is different, the effects of this term 
2D

C
F  is very pivotal—By this term, the shear strains can be introduced 

into the new thick plate element; and also by this term, the shear locking 
phenomenon of the new thick plate element can be successfully eliminated.  

Though the method proposed in this section is described by taking the element 
GPL as an example, in fact, it can also be used to generalize other existing 
triangular and quadrilateral thin plate elements to the corresponding thick/thin 
elements, as long as the trial functions for the deflections of these existing thin 
plate elements are the analytical trial functions of thin plate theory, i.e., should be 
the bi-harmonic functions.  

There are several successful schemes that can generalize the thin plate element 
to thick/thin one. What is introduced here is only one of them, and can be called 
as the analytical trial function (ATF) method. Another scheme is the rational 
interpolation technique in which the shear strain fields are directly introduced 
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into a thin plate (refer to Sects. 8.5 and 8.6). The triangular thick/thin element 
TCGC given in Sect. 8.6 is just derived by the latter scheme. When the plate 
becomes thinner, the element TCGC will also degenerate to be the element GPL. 
(It can be seen that the elements GPLM and TCGC are the two thick/thin plate 
elements generalized from the element GPL by the above two approaches.) 

14.6.3 Numerical Examples 

Example 14.7 Simply-supported and clamped square plates subjected to uniform 
load q.

As shown in Fig. 14.7, due to the symmetry, only a quarter of the plate is 
considered. The results obtained by four 8 8 meshes are listed in Table 14.7. 
The side length of the square plate is L, The Poisson’s ratio 0.3.

From Table 14.7, it can be seen that 
(1) when the plate becomes thinner, the thin plate element GPL-T9 is the final 

limit, thus, no shear locking will happen; 
(2) the rational results can all be provided when the thickness-span ratio h/L

varies from 10–30 to 0.35; 
(3) the present element is insensitive to mesh distortion. For the four meshes ,
,  and IV, errors given in Table 14.7 are all very small. 

Figure 14.7 Simply-supported and clamped square plates 
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Table 14.7 The central deflection 
4

100C
qLw

D
 of square plate under uniform load 

(four 8 8 meshes , ,  and  are used) 

 Simply-supported square plate Clamped square plate 

h/L Mesh  Mesh  Mesh Mesh Analytical
solution

Mesh  Mesh Mesh Mesh Analytical
solution

10–30 0.4057 
(99.88%) 

0.4050 
(99.70%) 

0.4059
(99.93%)

0.4058
(99.90%)

0.4062 0.1247 
(98.58%) 

0.1261
(99.68%)

0.1252
(98.97%)

0.1254
(99.13%)

0.1265

0.01 0.4058 
(99.85%) 

0.4051 
(99.68%) 

0.4060
(99.90%)

0.4060
(99.90%)

0.4064 0.1249 
(98.74%) 

0.1263
(99.84%)

0.1255
(99.21%)

0.1256
(99.29%)

0.1265

0.10 0.4260 
(99.70%) 

0.4255 
(99.58%) 

0.4261
(99.72%)

0.4261
(99.72%)

0.4273 0.1480 
(98.73%) 

0.1502
(100.20%)

0.1494
(99.67%)

0.1492
(99.53%)

0.1499

0.15 0.4519 
(99.63%) 

0.4520 
(99.65%) 

0.4522
(99.69%)

0.4523
(99.71%)

0.4536 0.1759 
(97.83%) 

0.1788
(99.44%)

0.1780
(99.00%)

0.1773
(98.61%)

0.1798

0.20 0.4882 
(99.51%) 

0.4891 
(99.69%) 

0.4887
(99.61%)

0.4889
(99.65%)

0.4906 0.2138 
(98.66%) 

0.2175
(100.37%)

0.2168
(100.05%)

0.2156
(99.49%)

0.2167

0.25 0.5350 
(99.46%) 

0.5368 
(99.80%) 

0.5357
(99.59%)

0.5360
(99.65%)

0.5379 0.2616 
(97.79%) 

0.2665
(99.63%)

0.2658
(99.36%)

0.2639
(98.65%)

0.2675

0.30 0.5921 
(99.41%) 

0.5951 
(99.92%) 

0.5931
(99.58%)

0.5936
(99.66%)

0.5956 0.3195 
(99.01%) 

0.3257
(100.93%)

0.3251
(100.74%)

0.3224
(99.91%)

0.3227

0.35 0.6595 
(99.31%) 

0.6640 
(99.98%) 

0.6610
(99.53%)

0.6616
(99.62%)

0.6641 0.3876 
(98.10%) 

0.3953
(100.05%)

0.3949
(99.95%)

0.3911
(98.99%)

0.3951

Note: Numbers in ( ) are percentage precisions. 

Example 14.8 Circular plate under uniform load. 
Two boundary conditions are considered: soft simply-supported and clamped. 

As shown in Fig. 14.8, due to the symmetry, only a quarter of the circular plate is 
computed. The radius of the circular plate R 5; and the Poisson’s ratio 0.3.

Numerical results obtained by the present element GPLM are listed in Tables 14.8 
and 14.9. For comparison, the results by the other elements T3BL, T3BL(R)[20],
DKMT[21], DST-BK[22] and DST-BL[23] are also given. 

Figure 14.8 Meshes for circular plate 
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From Table 14.8, it can be seen that, in comparison with the similar elements, 
the element GPLM can give the best results for the central bending moment of 
clamped square plate. And, from Table 14.9, it can also be seen that the element 
GPLM can produce the best answers for the central deflection and bending 
moment of the simply-supported plate. 

Table 14.8 The central deflection 
4

C
qRw
D

 and bending moment 2
CM qR  of 

clamped circular plate 

h/R 0.002 h/R 0.2 

GPLM T3BL 
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

GPLM T3BL
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

Central deflection 

6 elements 7.2283 6.0495 9.1192 10.3060 9.8430 10.3060 8.7991 8.0392 10.8377 11.921 11.342 11.951

24 elements 9.0867 8.7750 9.6403 9.9956 9.8551 9.9958 10.7473 10.6006 11.4059 11.703 11.548 11.806

96 elements 9.6038 9.5237 9.7382 9.8748 9.8025 9.8483 11.3344 11.3022 11.5066 11.594 11.554 11.731

Analytical 9.7835 11.5513 

Central bending moment 

6 elements 2.0315 1.2188 1.3304 2.40 2.56 2.40 2.0010 1.2885 1.3296 2.47 2.31 2.43

24 elements 2.0535 1.8187 1.8354 2.17 2.25 2.17 2.0498 1.8258 1.8316 2.22 2.16 2.19

96 elements 2.0383 1.9771 1.9789 2.07 2.09 2.07 2.0317 1.9780 1.9784 2.09 2.07 2.10

Analytical 2.0313 

Table 14.9 The central deflection 
4

C
qRw
D

 and bending moment 2
CM qR  of 

simply-supported circular plate 

h/R 0.002 h/R 0.2 

GPLM T3BL 
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

GPLM T3BL
T3BL

(R) 
DKMT

DST-
BK

DST-
BL

Central deflection 

6 elements 40.2358 39.4319 42.2158 37.848 37.391 37.847 41.8163 41.1627 43.9038 39.462 38.888 39.494

24 elements 39.9018 39.6576 40.4609 39.398 39.249 39.397 41.5706 41.4296 42.2235 41.091 40.926 41.185

96 elements 39.8455 39.7848 39.9434 39.729 39.680 39.729 41.5771 41.5555 41.7594 41.473 41.432 41.705

Analytical 39.8315 41.5994 

Central bending moment 

6 elements 5.4548 4.7084 4.7486 5.26 5.43 5.26 5.4238 4.7237 4.7460 5.33 5.27 5.30

24 elements 5.2563 5.0310 5.0380 5.23 5.28 5.23 5.2345 5.0294 5.0342 5.27 5.22 5.25

96 elements 5.1835 5.1242 5.1217 5.18 5.20 5.18 5.1768 5.1239 5.1243 5.20 5.18 5.22

Analytical 5.1563 
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Abstract This chapter continues to discuss the analytical trial function 
method. Here, the analytical trial function method is applied to develop the 
singular hybrid elements with crack and notch for the analysis of the crack 
and notch problems. During the analysis, the singular hybrid element is 
collocated in the region around the tips of the crack and notch, while the 
conventional displacement-based elements are used in the periphery region. 
Furthermore, this chapter also gives detailed discussions on the convergence 
of the singular element, zero energy mode, and improvement for the iteration 
solution method of eigenvalues. From the contents of this chapter and the 
previous chapter, it can be seen that, in the analytical trial function method, 
analytical and discrete methods can complement each other; and as a result, 
some challenging problems existing in FEM can be successfully solved. 

Keywords finite element, analytical trial function method, singular element, 
crack, notch. 

15.1 Introduction 

In this chapter, the analytical trial function method is further applied to construct 
the singular hybrid elements with crack and notch in the analysis of the crack and 
notch problems. During the analysis, a kind of coupling mesh is employed: the 
singular hybrid element is collocated in the region around the tips of the crack 
and notch, while the conventional displacement-based elements are used in the 
periphery region.  

Though the contents of this chapter are consistent with the sub-region mixed 
element method reported in Chaps. 12 and 13, however, their emphases are 
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different. Chaps. 12 and 13 emphasize particularly on the joint existence of the 
complementary and potential energy regions and on the application of the 
sub-region mixed variational principle, by which the mixed equations containing 
both stress and displacement variables are finally established. This chapter 
emphasizes particularly on the joint existence of the singular hybrid element and 
the conventional displacement-based elements in one mesh division and on the 
applications of the analytical trial function method and complementary energy 
principle, by which the stiffness equations containing only nodal displacements 
are finally obtained. That is to say, both approaches belong to the sub-region 
mixed element method, one emphasizes particularly on the sub-region mixture of 
the stress-based and displacement-based elements, and leads to the mixed 
equations; the other emphasizes particularly on the sub-region mixture of the 
hybrid and displacement-based elements, and leads to the stiffness equations.  

Furthermore, this chapter will give detailed discussions on the convergence of 
the singular element, zero energy mode, and improvement for the iteration solution 
method of the eigenvalues. 

15.2 The Basic Analytical Solutions of the Plane Crack  
Problem

According to Williams’s theoretical analysis of the stress field at a plane crack tip[1],
the analytical solutions of stresses, which can satisfy the equilibrium equations 
and boundary conditions, can be derived from the bi-harmonic stress function.  

15.2.1 The Basic Analytical Solutions for the Symmetric  
Problem of Mode 

A structure with a crack shown in Fig. 15.1 is considered. And, the coordinate 
system used here is also plotted in the figure (note: it is different from that given 
in Fig. 12.3, so the expressions of the analytical solutions for stresses are also 
different from those given by Sect. 12.3). In the polar coordinate system, the 

Figure 15.1 A structure with a crack 



Advanced Finite Element Method in Structural Engineering 

520

symmetric part of the bi-harmonic stress functions which satisfy equation 4 0
can be written as 

1
2 cos 1 cos 1 ( 1,2, )

2 2

K

K K
K Kr A B K  (15-1) 

And, the corresponding stresses are 
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For the surface of the crack with free boundary (Fig. 15.1), we have 

0r  (15-4) 

From the last two expressions of Eq. (15-3), we can obtain 

cos 1 cos 1 0
2 2K K
K KA B  (15-5) 

1 sin 1 1 sin 1 0
2 2 2 2K K
K K K KA B  (15-6) 

If AK and BK are both nonzero, the determinant of coefficient matrix should be 
zero, i.e., 
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1 sin 1 cos 1 1 sin 1 cos 1
2 2 2 2 2 2

1 [sin sin 2 ] 1 [sin sin 2 ]
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2 sin sin 2 0 (15-7)
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When K is an arbitrary integer, Eq. (15-7) is an identical equation. From Eqs. (15-5) 
and (15-6), we can obtain 
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/ 2 1 2

KK
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A KB
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 (15-8) 

Let

2 1 ( 1,2, )K KA K  (15-9) 

then the basic analytical solutions for the stresses of the symmetric part can be 
written as 
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15.2.2 The Basic Analytical Solutions for the Antisymmetric  
Problem of Mode 

In the polar coordinate system, the antisymmetric part of the bi-harmonic stress 
functions which satisfy equation 4 0  can be written as 

1
2 sin 1 sin 1

2 2

K

K K
K Kr C D  (15-11) 

Similar to the symmetric problem, from the free boundary conditions of the crack 
surface, we can obtain 
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Let

2 ( 1,2, )K KC K  (15-13) 

then the basic analytical solutions for the stresses of the antisymmetric part can 
be written as 
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15.2.3 The Stress Field Subspace and the Stress Intensity Factor  

By selecting the first M terms of Eqs. (15-10) and (15-14), a stress field subspace 
with 2M stress parameters is then established. It can be denoted as 

1

2

r

Mr

S  (15-15) 

where S is the matrix of the basic analytical solutions for stresses, which is 
determined by Eqs. (15-10) and (15-14).  

In Eq. (15-14), when K 2, the stress vector is a zero vector, this term will 
disappear in the formulations of the stress fields.  

The stress intensity factor K  of mode  is  

1/ 2
0 10

2 lim 2
r

K r  (15-16) 

where 1 is the first stress parameter in Eq. (15-10). 
The stress intensity factor K  of mode  is  

1/ 2
0 20

2 lim 2rr
K r  (15-17) 

where 2 is the first stress parameter in Eq. (15-14). 
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15.3 Element ATF-MS with Crack Formulated by the  
Analytical Trial Function Method 

An element with crack is shown in Fig. 15.2. The crack surface and
are free boundaries. The outer boundary of the element contains n nodes, and 
there are 2n DOFs. The element nodal displacement vector eq  is  

T
1 1 2 2[ ]e

n nu v u v u vq  (15-18) 

The element stress fields are given by Eq. (15-15), in which S is a combination 
of the basic stress analytical solutions at the crack tip of modes  and , and 
satisfies the equilibrium differential equations and stress boundary conditions of 
the crack surface. The stress parameters are 

T
1 2 2[ ]M  (15-19) 

Here, the element stiffness matrix will be derived according to the minimum 
complementary energy principle. 

Figure 15.2 An element with crack 

The complementary energy functional of the element with crack is 

c cU H  (15-20) 

where Uc is the strain complementary energy of the element; H is the 
complementary energy of the boundary displacements .eq

The strain complementary energy is 

T 1
c

1 d
2

U h AD   (15-21) 

where D is the elastic matrix 
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1

1 0
1 1 0

0 0 2(1 )
E

D   (15-22) 

For the plane stress problem  

,E E  (15-23) 

and for the plane strain problem 

2/(1 )E E ,  /(1 )   (15-24) 

where E is the Young’s modulus;  is the Poisson’s ratio. 
Substitution of Eq. (15-15) into Eq. (15-21) yields 

T
c

1
2

U V   (15-25) 

where
T 1 dh AV S D S  (15-26) 

As to the complementary energy of the boundary displacements, we have 

( ) dx yH T u T v h s   (15-27) 

where u  and v  are the element boundary displacements; Tx and Ty are the 
element boundary tractions 

x

y

T
T

LS   (15-28) 

When the direction of the boundary outer normal is consistent with r-direction, 
the direction cosine matrix L will be 

cos 0 sin
sin 0 cos

L   (15-29) 

When an angle exists between boundary outer normal and r, L will be 

cos cos sin sin (sin cos cos sin )
sin cos cos sin cos cos sin sin

L  (15-30) 

The boundary displacements can be determined by eq  and its shape function N

eu Nq  (15-31) 
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Equation (15-27) can be written as 

T eH Hq  (15-32) 

where

T T dh sH S L N  (15-33) 

Substitution of Eqs. (15-25) and (15-32) into the expression (15-20) of the 
complementary energy yields 

T T
c

1
2

eV Hq  (15-34) 

From the stationary condition of the complementary energy c 0,  we can obtain 

1 eV Hq  (15-35) 

Finally, the element stiffness matrix can be derived 

T 1eK H V H  (15-36) 

This element is denoted as ATF-MS. 

15.4 Error Analysis of Element ATF-MS with Crack 

A cracked plate subjected to tension load is shown in Fig. 15.3. Its stress 
intensity factor K  has been calculated by the singular element ATF-MS, and the 
corresponding analysis of the convergence is also given in reference [2]. The 
dimensions of the plate b 2 and w 1; the load intensity at two sides q 1; the 
length of the crack a 0.5; the Young’s modulus E 0.21 107; and the Poisson’s 
ratio 0.3. A plane strain state is considered for this example.  

Figure 15.3 The sub-region coupled mesh of a cracked plate subjected to tension load 
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The mesh used is also plotted in Fig. 15.3: a singular element ATF-MS is located 
at the tip of the crack; around this singular element, the mesh is composed of 
layer-by-layer annularly distributed displacement-based elements (isoparametric 
element Q8), which are denser near the crack and coarser far away from the crack. 
In this figure, the number of the element layers along the radial direction SR 3; 
and the number of the element layers along the circumferential direction 4S 8.

The shape of the singular element ATF-MS is a square, and its half side length 
is R. The number of the stress terms contained in the basic analytical solutions is 
M (only the terms of the symmetric stress state are considered). 

Here, the influences on the computational errors of the stress intensity factor K
with variations of the following four parameters 

M—the number of the stress terms used by the singular element 
R—the dimension of the singular element 
4S —the number of the element layers along the circumferential direction 
SR —the number of the element layers along the radial direction are studied. 

15.4.1 Error Analysis of K  with Variation of the Number M of  
Stress Terms (R constant)

In Fig. 15.4, the longitudinal coordinate e denotes the relative error for the 
computational results of K ; and the horizontal coordinate M denotes the number 

of the stress terms used by the singular element. Three e-M curves with R
a

0.1, 

0.3 and 0.5, respectively, are plotted. From Fig. 15.4, it can be seen that 

(1) Among the three curves, errors with 0.1R
a

 are the smallest. 

Figure 15.4 e-M curves 
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(2) With the increasing number M of the stress terms, the computational errors 
will monotonically decrease. When M 4, the errors are quite small.  

15.4.2 Error Analysis of K  with Variation of the Dimension R of  
Singular Element (M constant)

In Fig. 15.5, the longitudinal coordinate e still denotes the relative error for the 

computational results of ;K  and the horizontal coordinate R
a

 denotes the ratio of 

the dimension R of the singular element to crack length a. Four e- R
a

 curves with 

M 2, 6, 10 and 16, respectively, are plotted. From Fig. 15.5, it can be seen that 
(1) among the four curves, errors with M 2 (only the first two stress terms are 

used) are the highest. With the increasing number M of the stress terms, errors will 
decrease.  

(2) when M 6, if the ratio R
a

 varies within the range 0.03~0.3, the 

computational values will tend to be stable. When R
a

<0.03, since the dimension 

of the singular element is too small, those adjacent displacement-based elements 
will be distorted, thereby, destabilization may happen in the computational results. 

Figure 15.5 e- R
a

 curves 
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15.4.3 Error Analysis of K  with Variation of the Number SR of  
Element Layers along the Radial Direction (4S 4)

In Fig. 15.6, the longitudinal coordinate denotes the computational value of the 

stress intensity factor K ; and the horizontal coordinate denotes the ratio R
a

. Six 

curves with SR 1,2,3,4,6 and 10, respectively, are plotted (the number of the 
element layers along the circumferential direction 4S 4). From Fig. 15.6, it 
can be seen that 

(1) Among the six curves, errors with SR 1 are the highest. When SR increases 
to 10, the computational results will be quite close to the exact solutions. 

(2) Since the stress fields near the crack tip vary severely along the radial 
direction, increase of the number SR of the element layers along radial direction 
can effectively improve computational accuracy. 

Figure 15.6 Error analysis of K  with variation of the number SR of element 
layers along radial direction 

15.4.4 Error Analysis of K  with Variation of the Number 4S of  
Element Layers along the Circumferential Direction (SR 1)

In Fig. 15.7, the longitudinal coordinate denotes the computational value of the 
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stress intensity factor K ; and the horizontal coordinate denotes the ratio R
a

. Six 

curves with S 1,2,3,4,5 and 6, respectively, are plotted. From Fig. 15.7, it can 
be seen that by increasing the number 4S  of the element layers along the 
circumferential direction, the precision cannot be improved significantly. This is 
because the circumferential variations of stress fields near the crack tip are quite 
gentle.

Figure 15.7 Error analysis of K  with variation of the number 4S  of element layers 
along circumferential direction 

15.5 Analysis of Zero Energy Mode in Element and in  
Structural System 

15.5.1 Analysis of Element Zero Energy Mode 

Let us consider a plane crack problem. The coupled mesh division shown in 
Fig. 15.3 is employed for global analysis. Both hybrid singular element and 
conventional displacement-based element models simultaneously exist in the 
sub-region mesh, and are coupled with each other. 

Assume that the stress expressions (15-15) of the hybrid stress element contains 
2M stress parameters i(i 1,2, , 2M), and element energy is expressed by 
Eq. (15-34). Thereby, this element contains 2M independent stress (strain) modes, 
and the energy c corresponding to each mode is nonzero and called as nonzero 
energy mode. 

Assume that there are n nodes on the boundary of the hybrid singular element, 
so the element possesses 2n DOFs. Since there are 2M nonzero energy modes, 
the element has 2n 2M zero energy modes. Among these 2n 2M zero energy 
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modes, except r rigid body displacements (for plane element, r 3), the other 
zero energy modes are called as spurious zero energy modes. 

Let z be the number of the element zero energy modes, and z1 be the number of 
the spurious zero energy modes. Then, we have 

1

2 2
2 2

z n M
z z r n M r

  (15-37) 

From the above equation, it can be seen that by properly increasing the number 
2M of the stress terms, the number z1 of the spurious zero energy mode can be 
reduced, it even becomes negative. (negative z1 denotes that the number of the 
stress terms exceeds the lowest number which makes z1 0)

If there are no spurious zero energy mode existing in the element, the number 
2M of the stress terms should be not less than 2n r:

2 2M n r  (15-38) 

In order to make further discussions on the element spurious zero energy mode, 
a brief introduction for the matrix eigenvalue problem is firstly given as follows.  

15.5.2 Analysis of the Eigenvalues in Matrix 

Let A be a n-order square matrix.  
If there is a number  satisfying 

Aq q  (15-39) 

in which q is a n-order nonzero vector, then,  is called the eigenvalue (eigenroot) 
of matrix A; and q is the eigenvector corresponding to the eigenvalue . The 
eigenvalue  and its corresponding eigenvector q are called characteristic pair. 

The eigenmatrix of matrix A is defined by 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a
a a a

a a a

A I   (15-40) 

in which I is the n-order identity matrix. 
The characteristic equation of matrix A is defined by 

0A I  (15-41) 

The left side of the above equation is the determinant of the eigenmatrix, which 
is called as eigenpolynomial, and denoted by 
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( ) A I  (15-42) 

The n roots 1, 2, , n of the characteristic equation ( ) 0 are the n
eigenvalues of matrix A.

The nonzero solution q of the homogeneous equation 

 ( )iA I q 0  (15-43) 

is the eigenvector corresponding to the eigenvalue i of matrix A.
These eigenvalues and eigenvectors possess the following features: 
(1) The eigenvalues of real symmetric matrix are all real number. 
(2) The sum of n eigenvalues of n-order square matrix A equals the trace of A, i.e., 

1 2 11 22n nna a a  (15-44) 

(3) The product of n eigenvalues of n-order square matrix A equals the 
determinant of A

1 2 n A  (15-45) 

Therefore, the necessary and sufficient condition of that matrix is invertible can 
also be stated as: all eigenvalues of A are nonzero.  

(4) If i is a simple root of the characteristic equation, there will be only one 
linearly independent eigenvector corresponding to i; If i is a k multiple root of 
the characteristic equation, there will be k linearly independent eigenvectors 
corresponding to i.

15.5.3 Analysis of the Eigenvalues in Element Stiffness Matrix 

Let eK  be the element stiffness matrix. Since eK  is a real symmetric matrix, all 
eigenvalues of eK  are real numbers. 

The element strain energy eU  is a quadratic expression of the element nodal 
displacements 

T1 ( )
2

e e e eU q K q  (15-46) 

where the coefficient matrix eK  is just the element stiffness matrix. 
If eq  is the eigenvector of ,eK  and corresponding to eigenvalue , we have 

e e eK q q  (15-47) 

Substitution of the above equation into Eq. (15-46) yields 

T( )
2

e e eU q q  (15-48) 
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Since the strain energy eU  is non-negative, we can obtain 

 0  (15-49) 

If > 0, the energy eU  corresponding to the eigenvector eq  will be greater than 
zero, i.e., eq  belongs to the nonzero energy modes. 

If 0, the energy eU  corresponding to the eigenvector eq  will equal zero, 
i.e., eq  belongs to the zero energy modes.  

If the zero eigenvalue ( 0) of eK  is a k multiple root, there will be k linearly 
independent eigenvectors corresponding to it, therefore, the element possesses k
zero energy modes. 

From above, it can be seen that, there is a corresponding relationship existing in 
the analysis of the element zero energy modes and the analysis of the eigenvalues 
of the element stiffness matrix :eK

(1) If the element possesses zero energy mode, the element stiffness matrix will 
possess zero eigenvalue, and vice versa. 

(2) If the element possesses z zero energy modes, the element stiffness matrix 
will possess zero eigenvalue which is a z multiple root, and vice versa.  

(3) Assume that the element possesses r rigid body displacement modes: 

r 3 (2D element),  r 6 (3D element),  r 3 (plate bending element) 

then, the element will have r or more zero energy modes; and the element stiffness 
matrix will possess zero eigenvalue which is a r or more multiple root. 

15.5.4 Analysis of the Zero Energy Mode in Structural System 

In the previous section, the analysis of the element zero energy mode has been 
carried out. Now, a further discussion on the zero energy mode in structural system 
will be given as follows. 

In global finite element analysis, the global stiffness matrix K of the structural 
system is established by assembling the element stiffness matrix eK  and 
introducing the displacement boundary conditions. 

In order to ensure that the structural mechanics problem can be solved, the 
global stiffness matrix should be an invertible one. Thereby, K should not possess 
zero eigenvalue, and the structural system should not have zero energy mode, i.e., 
on the one hand, there is no rigid body displacement mode; on the other hand, 
there is no spurious zero energy mode either. 

As to the first point, if the structural system has enough support conditions 
which can prevent rigid body displacements, the rigid body displacement modes 
can be eliminated when the displacement boundary conditions are introduced in 
the global analysis.  
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As to the second point, the usual treatment is: it is required that all the element 
stiffness matrices eK  should not possess the spurious zero energy modes; and 
then, the global stiffness matrix K assembled by these elements will not have the 
spurious zero energy mode naturally. This is just for the general case. Sometimes 
the following case may also happen: initially, during the stage of the element 
analysis, though the spurious zero energy modes happen in very few elements, 
there are no spurious zero energy modes existing in other elements; after global 
assembly, these spurious zero energy mode will disappear automatically because 
they are prevented by constraints, i.e., the structural system after assembly will 
not have spurious zero energy mode. This case will be discussed as follows. 

15.5.5 Theorem for the Analysis of the Spurious Zero Energy  
Mode in Structural System 

Now, let us go back to the plane crack problem, which will be analyzed globally 
by using the sub-region mixed element system given by Fig. 15.3. 

For example, as shown in Fig. 15.3, the mixed mesh, which is composed of 
hybrid singular and conventional displacement-based elements, is used, and the 
number 4S  is equal to 8, so the number of the nodes in the hybrid singular 
element is n 17. From the computational results given by Fig. 15.4 and 
Fig. 15.5, it can be seen that, when the number of stress terms in the hybrid 
element is M 6, the precisions of the results have already been quite high. Here, 
according to Eq. (15-37), the number of the spurious zero energy modes in the 
hybrid element is 

 z1 2n 2M r 34 12 3 19

So, it can be seen that, though 19 spurious zero energy modes appear in the 
individual element, satisfactory results can still be obtained for the structural 
computations because there is no spurious zero energy mode existing in the 
structural system.  

In the above example, two points can be explained as follows: 
(1) The structural system is composed of two parts: the dominant part is the 

displacement-based element part containing all nodes; and the hybrid element is 
just an individual element containing partial nodes.  

(2) If the dominant part composed of displacement-based elements is 
geometrically stable, and has no spurious zero energy mode, then, no matter 
whether the hybrid element possesses spurious zero energy modes, the original 
system is also geometrically stable, and has no spurious zero energy mode.  

These conclusions can be written as the following forms of theorem: 
(1) A sub-region mixed element system, which is composed of displacement- 

based and hybrid elements, is considered. For the global system, the nodal 
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displacement vector is q, and the stiffness matrix is K. For the dominant part 
composed of displacement-based elements, the nodal displacement vector is still 
q, and the stiffness matrix is K0. For the hybrid element, the nodal displacement 
vector is q , and the stiffness matrix is .K q  is a sub-vector of q

*
q

q
q

According to the assembly rule of the stiffness matrix, we have 

0
K

K K
0

0 0
  (15-50) 

(2) The singularity theorem of stiffness matrix in the sub-region mixed element 
system can be stated as follows: 

If K0 is a nonsingular matrix, then, no matter whether K  is singular or not, K
is still a nonsingular matrix. 

Proof Since K0 is a nonsingular matrix, therefore, for the arbitrary nonzero q,
its strain energy is 

T
0 0

1 0
2

U q K q  (15-51) 

No matter whether K  is singular or not, for the arbitrary q , its strain energy is  

T1 0
2

U q Kq  (15-52) 

Hence, for the arbitrary nonzero q, the strain energy of the original system is 

T T T
0

1 1 1 0
2 2 2

U q Kq q K q q Kq   (15-53) 

Therefore, K must be a nonsingular matrix. 
(3) Theorem for the analysis of the spurious zero energy mode in the sub- 

region mixed element system. 
The above theorem can also be stated as the theorem for the analysis of the 

spurious zero energy mode: 
If there is no spurious zero energy mode in the dominant part composed of 

displacement-based elements, then, no matter whether the hybrid element contains 
spurious zero energy mode or not, the sub-region mixed element system will not 
contain the spurious zero energy mode. 

By the way, here the spurious zero energy mode can exist in the hybrid element, 
but it is inactive because of the constraints from the dominant part.  
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15.6 The Basic Analytical Solutions of the Plane Notch  
Problem

A structure with a notch is shown in Fig. 15.8. The open angle of the notch is . By 
employing the stress analysis method proposed by Williams[3] for the plane notch 
problem, the analytical solutions for the symmetric and antisymmetric problems 
can be derived. 

Figure 15.8 A structure with a notch 

15.6.1 The Basic Analytical Solutions for Symmetric Problem of  
Mode

In polar coordinate system, the symmetric part of the bi-harmonic stress function 
is

1[ cos( 1) cos( 1) ]r A B  (15-54) 

Then, the corresponding stresses are 

1

1

1

( )[ ( 3)cos( 1) ( 1)cos( 1) ]
( 1)[ cos( 1) cos( 1) ]
[ ( 1)sin( 1) ( 1)sin( 1) ]

r

r

r A B
r A B
r A B

 (15-55) 

The boundary conditions along the free edges of the notch are 

2 2

0r

From the last two expressions in Eq. (15-55), we have 

cos( 1) cos( 1) 0
2 2

A B  (15-56a) 

( 1)sin( 1) ( 1)sin( 1) 0
2 2

A B  (15-56b) 
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If A and B are not zero at the same time, the determinant of the coefficient matrix 
should be zero, i.e.,  

    

( 1)sin( 1) cos( 1) ( 1)sin( 1) cos( 1)
2 2 2 2

( 1)[sin sin ] ( 1)[sin sin ]
2[sin sin ] 0 (15-57)

This is the characteristic equation of the symmetric part for the single-material 
V-notch problem. The eigenroots of the symmetric part can be obtained by solving 
Eq. (15-57). Here, these eigenroots can be both real and complex numbers. When 
one eigenroot is a complex number, its conjugated complex number can also satisfy 
the characteristic equation. So, the complex eigenroots always appear pair-wise 
in the form of conjugated complex numbers. 

Multiply Eqs. (15-56a) and (15-56b) by cos ( 1)
2

 and 1
1

sin ( 1)
2

respectively, the sum of the results will be 

1cos ( 1) cos ( 1) sin ( 1) sin ( 1) 0
2 2 1 2 2

A B

i.e.,
cos cos 1 cos cos [cos cos ]

2 1 2 1
AB A

Let A 1, then from Eq. (15-55), we obtain 

1

1

1

[(3 )cos( 1) ( cos cos )cos( 1) ]
[( 1)cos( 1) ( cos cos )cos( 1) ]
[( 1)sin( 1) ( cos cos )sin( 1) ]

r

r

r
r
r

 (15-58) 

15.6.2 The Basic Analytical Solutions for the Antisymmetric  
Problem of Mode 

In the polar coordinate system, the antisymmetric part of the bi-harmonic stress 
function which satisfies the compatiblity equation 4 0  can be written as 

1[ sin( 1) sin( 1) ]r C D  (15-59) 

Similar to the symmetric problem, the characteristic equation with free boundary 
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can be derived as 

 sin sin 0  (15-60) 

The basic analytical solutions for the antisymmetric problem of mode  are 

1

1

1

[(3 )sin( 1) ( cos cos )sin( 1) ]
[( 1)sin( 1) ( cos cos )sin( 1) ]
[(1 )cos( 1) ( cos cos )cos( 1) ]

r

r

r
r
r

 (15-61) 

15.6.3 Construction of Stress Field Subspace 

Let n be an arbitrary eigenroot. When n is a complex root, since complex 
eigenroots always appear pair-wise, thereby, the real and imaginary parts of the 
stress solutions 

 Re

n

r

r

 and  Im

n

r

r

 (15-62) 

can be treated as two independent stress solutions.  
When n is a real root, then the imaginary part will be zero, and only the real 

part is the nonzero stress solution.  
By rationally selecting a set of basic analytical solutions corresponding to low- 

order eigenroots, a stress field subspace with stress parameters can be obtained 
and denoted by 

1

2

r

Mr

S  (15-63) 

in which S is determined by Eqs. (15-58), (15-61) and (15-62). 

15.6.4 Calculation of the Stress Intensity Factor 

The stress intensity factor K  of mode  is  

11
0 1 1 1 1 10

2 lim 2 ( 1 cos cos )
r

K r  (15-64) 

where 1 is the minimum positive real root for the symmetric problem of mode ;
1 is the corresponding stress parameter.  
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The stress intensity factor K  of mode  is 

21
00

2 2 2 2 2

2 lim

2 ( )(1 cos cos )

rr
K r

(15-65)

where 2 is the minimum positive real root for the antisymmetric problem of 
mode ; 2 is the corresponding stress parameter. 

15.7 Element ATF-VN with Notch Formulated by the  
Analytical Trial Function Method 

As shown in Fig. 15.9, an element with V-notch is considered. The opening angle 
of the notch is . The outer circle of the element contains n nodes and 2n DOFs. 
Thus, the element nodal displacement vector is 

T
1 1 2 2[ ]e

n nu v u v u vq

Now, the element stiffness matrix will be derived by using the analytical trial 
function method and the minimum complementary energy principle. This element 
is denoted as ATF-VN. 

Figure 15.9 An element with V-notch 

The derivation procedure is the same as that given in Sect. 15.3, and the basic 
formulae obtained are also the same. Now, some of them are given as follows.  

The element stiffness matrix is still given by Eq. (15-36) 

T 1eK H V H

in which two matrices V and H on the right side are still given by Eqs. (15-26) 
and (15-33), respectively 
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T 1 dh AV S D S

T T dh sH S L N

Except S, the definitions of D, L, and N  are all the same as those given in 
Sect. 15.3.  

Compared with the element with crack given in Sect. 15.3, there are two main 
differences existing in the element with notch given in this section: 

(1) Differences of the stress fields and matrix S
According to Eq. (15-15) or Eq. (15-63), the stress fields can be expressed as 

1

2

r

Mr

S

But S is different from each other: in Sect. 15.3, S is determined by Eqs. (15-10) 
and (15-14); in this section, S is determined by Eqs. (15-58) and (15-61). 

(2) Differences of the characteristic equations and eigenroots 
In V-notch problem, the opening angle  of the notch is a parameter. The 

characteristic equations are given by Eqs. (15-57) and (15-60), and can be written 
as

 sin sin 0

The crack problem can be looked upon as a special case of the V-notch problem, 
in which the parameter  is assigned to be 2 .

In reference [4], there are systematical discussions on the schemes for solving 
eigenroots of the notch problem. In reference [5], these methods have been 
improved by proposing the sub-region accelerated Müller method. In Tables 15.1 
and 15.2, the values of the real and imaginary parts of the first 7 eigenroot pairs 

k k i k (k 1,2, ,7) in the notch problem are listed. 

Table 15.1 The first 7 eigenroots k k i k (k 1,2, ,7) of the symmetric 
V-notch problem of mode 

1 1 2 2 3 3 4 4

190 0.900 043 76 0 1 0 2.001 795 18 0 2.695 231 53 0 

200 0.818 695 81 0 1 0 2.018 264 18 0 2.420 587 07 0 

210 0.751 974 51 0 1 0 2.106 286 25 0.096 100 1 3.828 293 71 0.347 176 77

220 0.697 164 94 0 1 0 2.005 648 78 0.198 379 72 3.651 102 30 0.391 981 45
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(Continued)    

1 1 2 2 3 3 4 4

230 0.652 269 53 0 1 0 1.915 272 97 0.236 951 87 3.490 348 40 0.410 599 02

240 0.615 731 04 0 1 0 1.833 548 84 0.252 251 27 3.343 717 56 0.414 037 23

250 0.586 278 85 0 1 0 1.759 251 08 0.253 998 99 3.209 376 63 0.407 444 49

260 0.562 839 47 0 1 0 1.691 413 67 0.246 340 64 3.085 831 64 0.393 570 21

270 0.544 483 72 0 1 0 1.629 257 33 0.231 250 53 2.971 843 69 0.373 931 19

280 0.530 395 71 0 1 0 1.572 143 99 0.209 446 39 2.866 373 86 0.349 278 88

290 0.519 854 30 0 1 0 1.519 546 5 0.180 478 02 2.768 545 04 0.319 765 92

300 0.512 221 36 0 1 0 1.471 027 91 0.141 852 90 2.677 615 03 0.284 901 36

310 0.506 932 84 0 1 0 1.426 227 32 0.083 159 46 2.592 958 14 0.243 187 20

320 0.503 490 48 0 1 0 1.302 693 25 0 1.467 008 48 0 

330 0.501 453 01 0 1 0 1.202 957 09 0 1.490 377 81 0 

340 0.500 426 37 0 1 0 1.125 406 58 0 1.497 613 49 0 

350 0.500 052 99 0 1 0 1.058 842 89 0 1.499 727 77 0 

5 5 6 6 7 7

190 4.022 680 43 0 4.468 956 72 0 6.142 445 45 0.110 609 04

200 4.025 002 28 0.243 014 71 5.828 632 84 0.377 126 45 7.631 219 36 0.462 931 49

210 5.547 288 43 0.459 267 73 7.264 799 21 0.536 558 54 8.981 455 32 0.596 121 47

220 5.292 797 61 0.494 878 01 6.932 731 97 0.567 288 07 8.571 681 47 0.623 509 63

230 5.061 211 04 0.507 369 59 6.630 158 89 0.576 050 10 8.198 054 26 0.629 551 95

240 4.849 458 42 0.506 015 06 6.353 222 50 0.571 559 41 7.855 910 95 0.622 700 58

250 4.655 052 57 0.495 417 26 6.098 759 71 0.558 220 72 7.541 400 85 0.607 258 88

260 4.475 934 64 0.478 103 47 5.864 131 58 0.538 470 87 7.251 297 45 0.585 613 03

270 4.310 377 17 0.455 493 56 5.647 111 62 0.513 683 79 6.982 870 25 0.559 108 24

280 4.156 917 45 0.428 313 17 5.445 805 98 0.484 565 25 6.733 791 05 0.528 434 74

290 4.014 309 24 0.396 758 19 5.258 594 12 0.451 315 66 6.502 062 99 0.493 789 48

300 3.881 487 39 0.360 496 27 5.084 084 09 0.413 644 47 6.285 966 14 0.454 895 93

310 3.757 542 54 0.318 470 43 4.921 079 46 0.370 618 18 6.084 016 40 0.410 870 72

320 2.514 054 95 0.190 785 59 3.641 705 67 0.268 252 20 4.768 557 38 0.320 170 77

330 2.440 491 94 0.114 206 83 3.533 345 48 0.203 710 63 4.625 661 14 0.257 540 31

340 2.267 186 42 0 2.476 770 05 0 3.431 990 40 0.098 448 11

350 2.118 822 72 0 2.497 979 92 0 3.181 532 51 0 
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Table 15.2 The first 7 eigenroots k k i k (k 1,2, ,7) of the antisymmetric 
V-notch problem of mode 

1 1 2 2 3 3

190 1.798 932 53 0 3.007 825 75 0 3.586 721 26 0 
200 1.630 525 00 0 3.122 551 06 0.108 732 10 4.926 986 80 0.319 810 82
210 1.485 811 63 0 2.967 836 19 0.261 186 47 4.688 038 43 0.409 575 49
220 1.359 494 88 0 2.829 075 26 0.316 619 25 4.472 248 09 0.448 844 01
230 1.248 039 54 0 2.703 607 79 0.340 957 34 4.276 106 90 0.463 915 80
240 1.148 912 69 0 2.589 478 97 0.348 374 75 4.096 927 57 0.464 641 40
250 1.060 214 60 0 2.485 167 80 0.344 860 86 3.932 553 70 0.455 814 72
260 0.980 474 87 0 2.389 451 49 0.333 470 69 3.781 211 59 0.440 044 09
270 0.908 529 14 0 2.301 327 00 0.315 836 73 3.641 420 00 0.418 786 68
280 0.843 439 52 0 2.219 960 94 0.292 721 62 3.511 929 49 0.392 780 34
290 0.784 440 51 0 2.144 655 71 0.264 181 64 3.391 679 44 0.362 209 11
300 0.730 900 70 0 2.074 826 15 0.229 425 77 3.279 767 00 0.326 690 28
310 0.682 294 79 0 2.009 983 81 0.186 062 96 3.175 425 46 0.285 026 54
320 0.638 182 43 0 1.949 728 10 0.126 554 45 3.078 011 65 0.234 364 65
330 0.598 191 81 0 1.838 934 04 0 1.948 556 00 0 
340 0.562 006 52 0 1.692 249 99 0 1.991 384 81 0 
350 0.529 354 71 0 1.588 609 10 0 1.999 106 97 0 

4 4 5 5 6 6 7 7

190 5.060 479 68 0 5.327 915 57 0 7.090 587 48 0.201 940 45 8.986 626 03 0.306 373 03

200 6.730 024 47 0.423 592 26 8.532 258 54 0.497 160 38 10.333 982 60 0.554 820 34 12.135 360 30 0.602 434 32

210 6.406 179 04 0.500 793 05 8.123 210 11 0.568 017 11 9.839 566 83 0.621 533 63 11.555 479 40 0.666 082 79

220 6.112 922 23 0.533 685 35 7.752 301 03 0.596 947 80 9.390 911 01 0.647 569 48 11.029 023 00 0.689 824 63

230 5.845 854 24 0.544 138 61 7.414 206 64 0.604 260 57 8.981 742 59 0.652 479 25 10.548 754 80 0.692 778 53

240 5.601 514 07 0.541 086 75 7.104 668 57 0.598 518 31 8.606 991 67 0.644 631 07 10.108 784 40 0.683 194 05

250 5.377 078 48 0.529 014 46 6.820 181 00 0.584 068 07 8.262 461 04 0.628 293 97 9.704 217 80 0.665 289 36

260 5.170 199 86 0.510 396 12 6.557 811 90 0.563 318 35 7.944 628 67 0.605 835 93 9.330 939 73 0.641 404 08

270 4.978 902 06 0.486 625 45 6.315 083 20 0.537 627 37 7.650 510 96 0.578 591 12 8.985 458 93 0.612 854 32

280 4.801 507 37 0.458 417 47 6.089 884 17 0.507 692 68 7.377 561 85 0.547 243 11 8.664 792 75 0.580 312 00

290 4.636 582 76 0.425 972 12 5.880 406 25 0.473 713 43 7.123 595 91 0.511 986 21 8.366 378 15 0.543 965 60

300 4.482 899 92 0.388 983 73 5.685 093 59 0.435 407 90 6.886 729 06 0.472 546 80 8.088 002 59 0.503 543 47

310 4.339 406 11 0.346 472 26 5.502 605 95 0.391 872 56 6.665 333 36 0.428 055 52 7.827 750 58 0.458 193 33

320 4.205 205 56 0.296 235 66 5.331 793 33 0.341 129 83 6.458 004 69 0.376 638 90 7.583 964 33 0.406 097 94

330 2.987 004 95 0.166 740 99 4.079 554 65 0.233 016 50 5.171 685 63 0.278 729 57 6.263 546 29 0.314 206 38

340 2.883 885 78 0 2.920 169 71 0 3.961 883 78 0.138 439 15 5.021 511 63 0.191 634 58

350 2.649 698 56 0 2.996 140 98 0 3.714 772 43 0 3.989 019 73 0 
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15.8 Error Analysis of Element ATF-VN with Notch 

15.8.1 Calculation of Stress Intensity Factor K  of a Specimen  
with V-Notch Subjected to Unidirection Tension 

As an example, a specimen with V-notch subjected to unidirection tension (shown 
in Fig. 15.10) is considered. The error analysis of the computational results 
obtained by the element ATF-VN is carried out here. The dimensions of the plate 
are b 1, w 1 and a 0.5; the load density on the two sides q 1; the opening 
angle 300 ; the Young’s modulus E 0.21 107; and the Poisson’s ratio 

0.3. The reference solution[6] is 3.756.K

Figure 15.10 A specimen with V-notch subjected to unidirection tension 

(1) The error analysis of K  with variation of the number M of the stress terms 
(the dimension of the singular element R constant).

In Fig. 15.11, the longitudinal coordinate e denotes the relative error for the  

Figure 15.11 e-M curves 
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computational results of ;K  and the horizontal coordinate M denotes the number 
of the stress terms used by the singular element. 

Three e-M curves with R
a

0.05, 0.13 and 0.25 are plotted in Fig. 15.11, 

respectively. These curves show that, with the increase of M, errors will decrease. 
When M increases to 6, the relative errors will be less than 2%.  

This numerical test shows that, when R
a

0.1 and M 6, the effect of the 

global analysis is good. 
(2) The error analysis of K  with variation of the dimension R of the singular 

element (M constant)
In Fig. 15.12, the longitudinal coordinate e still denotes the relative error 

of K ; and the horizontal coordinate R
a

 denotes the ratio of the dimension R of 

the singular element to notch length a.

In Fig. 15.12(a), five e- R
a

 curves with the number of the stress terms M 1, 2, 

3, 4 and 5 are plotted. Among these five curves, the error is maximum when 
M 1, and minimum when M 5.

In Fig. 15.12(b), e- R
a

 curves with the number of the stress terms M 6 to 10 

are plotted. From these curves, it can be seen that, error e is insensitive to M; but 

the relation between e and R
a

 is nonlinear; when R
a

0.1, the error is minimum.  

Figure 15.12 e- R
a

 curves 
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15.8.2 Calculation of Stress Intensity Factor K  of a Specimen  
with V-Notch Subjected to Antisymmetric Load 

As an example, a specimen with V-notch shown in Fig. 15.13 is considered. The 
error analysis of K  obtained by the element ATF-VN is carried out. 

The dimensions of the specimen are a 1, w 3 and h 1. The Young’s 
modulus E  0.21 107; and the Poisson’s ratio 0.3. The resultant force P 1. 
The opening angle of the notch varies from 360  to 330 .

Figure 15.13 A specimen with V-notch subjected to antisymmetric load 

The computational results of the stress intensity factor with different number 
2M of the stress terms are listed in Table 15.3. From the results given by the 
Table, it can be seen that, when 2M 12, the results have already been stable, and 
the computational errors are less than 1%. 

Table 15.3 The stress intensity factor K  with different number of stress terms 

Number of stress 
terms 2M

360  350  340  330

2 0.000 945 729 0.001 327 029 0.001 708 115 0.001 567 462

4 0.002 090 411 0.419 567 45 0.304 236 10 0.153 866 82 

6 0.679 651 54 0.403 623 74 0.281 348 67 0.127 061 63 

8 0.447 836 04 0.400 346 10 0.278 282 01 0.123 635 52 

10 0.512 325 42 0.398 693 45 0.276 048 56 0.121 872 21 

12 0.493 713 40 0.398 760 45 0.276 116 19 0.121 951 93 

14 0.493 446 69 0.398 772 48 0.276 129 34 0.121 957 86 

16 0.492 738 16 0.398 774 24 0.276 136 54 0.121 974 48 

18 0.493 056 95 0.398 778 35 0.276 141 77 0.121 978 14 

20 0.493 829 68 0.398 778 33 0.276 141 36 0.121 975 84 

Reference [6] 0.500 0.401 0.278  
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Abstract This chapter introduces new concepts for developing the quad- 
rilateral finite element models. Firstly, the quadrilateral area coordinate system 
(QACM- ) with four coordinate components, which is a generalization of 
the triangular area coordinate method, is systematically established in detail. 
Then, on the basis of the QACM- , another quadrilateral area coordinate 
system (QACM- ) with only two coordinate components is also proposed. 
These new coordinate systems provide the theoretical bases for the construction 
of new quadrilateral element models insensitive to mesh distortion, which 
will be introduced in Chap. 17. 

Keywords quadrilateral element, quadrilateral area coordinate system, 
coordinate components, QACM- , QACM- .

16.1 Introduction 

In comparison with the rectangular and triangular elements, the quadrilateral 
element possesses more flexibility and can be used to model multiform shapes, 
but its construction procedure is more complicated. The invention of the 
isoparametric coordinates greatly promotes the development of the quadrilateral 
elements. At present, the isoparametric coordinate method almost occupies a 
dominant position in the construction of the quadrilateral elements. But, some 
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disadvantages still exist in this system: 
(1) The relation equations (inverse transformations) in which the isoparametric 

coordinates ( , ) are expressed in terms of the Cartesian coordinates (x, y) are 
too complicated to use. 

(2) The stiffness matrix of the isoparametric element generally cannot be 
evaluated exactly by numerical integration. 

(3) When the shape of an element is distorted, the accuracy of the Serendipity 
isoparametric element will drop obviously. 

How to overcome the above shortcomings of the isoparametric element is an 
interesting topic which attracted many researchers in the finite element method 
area for a long time, and is also the background of the developments of the 
quadrilateral area coordinate method and related quadrilateral elements. It can be 
seen from this chapter and Chap. 17 that, these new methods are effective tools 
for eliminating the above disadvantages. 

Related new developments were proposed in 1997. The first papers about the 
QACM-  are references [1 6], and the first papers about the QACM-  are 
references [7,8]. 

This chapter will introduce the systematic theories of the quadrilateral area 
coordinates:

(1) Characteristic parameters for the quadrilateral elements are defined and the 
degeneration conditions under which a quadrilateral degenerates into a 
parallelogram (including rectangle) or a trapezoid or a triangle are given; 

(2) For the QACM- , the area coordinates of any point in a quadrilateral are 
defined, and transformation relations between the area coordinates and the 
Cartesian or isoparametric coordinates are presented; 

(3) For the QACM- , two identical equations, which the four area coordinate 
components should satisfy, are given and proved; 

(4) Another quadrilateral area coordinate system with only two components 
(QACM- ) is defined and the transformation relations between the QACM-

 and the Cartesian or isoparametric coordinates are presented; 
(5) Related differential and integral formulae are given and proved.  
This chapter provides a theoretical basis for the construction of new quadrilateral 

elements in the next chapter. By the combination of the quadrilateral area and the 
isoparametric coordinates, excellent elements with curved sides can also be 
derived.  

16.2 The Isoparametric Coordinate Method and the  
Area Coordinate Method 

The isoparametric coordinate method[9,10] has been successfully applied in the 
construction of the quadrilateral elements. The coordinate transformations between 
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the isoparametric coordinates ( , ) and the Cartesian coordinates (x, y) are 

4

1

4

1

1 (1 )(1 )
4
1 (1 )(1 )
4

i i i
i

i i i
i

x x

y y
 (16-1) 

where (xi, yi) and ( i, i) are the coordinates of node i, respectively. Although    
the isoparametric coordinates have been broadly applied, there are still some 
disadvantages which have been mentioned above. Here, some explanations are 
given:

(1) The inverse transformation of (16-1) is too complicated to use. Reference [11] 
divided the quadrilateral elements into 6 cases, and derived the corresponding 
inverse transformation, respectively: 

1

2

( , )
( , )

F x y
F x y

 (16-2) 

but 1( , )F x y  and 2 ( , )F x y  cannot be expressed by a polynomial in finite terms 
except for the degenerate case of a parallelogram. 

(2) In general, the stiffness matrix of the quadrilateral element constructed by the 
isoparametric coordinates has to be evaluated by numerical integration instead of 
exact integration, which leads to the loss of accuracy. 

(3) Serendipity isoparametric elements are very sensitive to mesh distortion. 
Although the shape functions of these elements contain high-order terms of  and 

, they have only first-order completeness in the Cartesian coordinates x and y.
Detailed discussions of this can be found in reference [12], and some convincing 
numerical examples are also given.  

On the other hand, the area coordinate method[13,14] has been successfully applied 
in the construction of triangular elements. The coordinate transformation between 
the triangular area coordinates (L1, L2, L3) and Cartesian coordinates (x, y) is 

1 ( ) ( 1,2,3)
2i i i iL a b x c y i

A
  (16-3) 

where ai, bi, ci are constants determined by the nodal coordinates (xi, yi), e.g. 

1 2 3 3 2 1 2 3 1 3 2, ,a x y x y b y y c x x  (16-4) 

There are only two independent coordinates in L1, L2, L3 which should satisfy the 
identical equation 

1 2 3 1L L L  (16-5) 
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The advantages of the triangular area co-ordinate method are: 
(1) The area coordinate Li is natural and invariant, that is, when the Cartesian 

axes rotate, the area coordinate Li of the given point is invariant. 
(2) The equation of the element boundary line is Li 0, and therefore the 

boundary condition is easy to express and be satisfied. 
(3) The inverse transformation of (16-3) is 

3 3

1 1
,i i i i

i i
x L x y L y  (16-6) 

which is a linear relation, and vice versa. 
(4) The stiffness matrix of the triangular element constructed by the area 

coordinate method can be easily formulated with exact integration instead of 
numerical integration. 

In this chapter, the traditional area coordinate method, which is an efficient 
tool in the construction of triangular elements, is generalized to formulate the 
quadrilateral elements. Two characteristic parameters for quadrilateral elements 
and the general theory of the area coordinates for quadrilateral elements are 
presented. Thus, it offers a new way to formulate the quadrilateral elements.  

16.3 Two Shape Characteristic Parameters of a  
Quadrilateral

16.3.1 The Definition of Two Shape Characteristic Parameters  
of a Quadrilateral 

Quadrilaterals have various shapes. In references [1] and [3], two dimensionless 
parameters g1 and g2 are defined as the shape characteristic parameters of a 
quadrilateral (Fig. 16.1(a),(b)): 

1 2
( 124) ( 123),A Ag g

A A
 (16-7) 

where A is the quadrilateral area, and A( 124) and A( 123) are triangular areas 
of 124 and 123, respectively. If we set 3 1 4 21 , 1g g g g , then from 
Fig. 16.1 we see that two triangular areas on both sides of the diagonal 24 are g1A
and g3A, respectively; while two triangular areas on both sides of the diagonal 13 
are g2A and g4A, respectively.  

For a convex quadrilateral, the ranges of parameters g1 and g2 are taken as 

1 20 1, 0 1g g  (16-8) 
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Figure 16.1 Definition of g1, g2, g3 and g4

from which we have 

3 40 1, 0 1g g

16.3.2 The Characteristic Conditions for a Quadrilateral to  
Degenerate into a Parallelogram or a Trapezoid or a  
Triangle

Special case 1 The characteristic condition under which a quadrilateral degenerates 
into a parallelogram (including rectangle) is 

1 2
1
2

g g  (16-9) 

from which we have 

3 4
1
2

g g

Special case 2 The characteristic condition under which a quadrilateral 
degenerates into a trapezoid is  

1 2 2 3( )( ) 0g g g g  (16-10) 

which can be resolved into two sub-conditions as follows: 

1 2 0g g   (16-11a) 

or

2 3 0g g   (16-11b) 

Only one of these two sub-conditions needs to be satisfied. They are in 
correspondence with two degeneration cases respectively as follows: 

Condition (16-11a) corresponds to a trapezoid of kind A (12 // 34 , Fig. 16.2(a)). 
Condition (16-11b) corresponds to a trapezoid of kind B ( 23// 41 , Fig. 16.2(b)). 
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Figure 16.2 Two kinds of trapezoids 
(a) Trapezoid of kind 1 2 4 3(12 // 34) 0A g g g g ; (b) Trapezoid of  

kind 2 3 1 4(23 // 41) 0B g g g g

If both sub-conditions (16-11a,b) are satisfied simultaneously, then the 
condition (16-9) should be satisfied, which means it degenerates into a parallelogram. 

Special case 3 The characteristic condition under which a quadrilateral 
degenerates into a triangle is 

1 2 3 4 0g g g g   (16-12) 

which can be resolved into four sub-conditions as follows: 

1 0g  (16-13a) 

or
2 0g  (16-13b) 

or
3 0g  (16-13c) 

or
4 0g  (16-13d) 

If any of the sub-conditions (16-13a,b,c,d) is satisfied, then some three 
adjacent nodes of the quadrilateral are in line with each other, so the quadrilateral 
degenerates into one of the four kinds of triangles in Fig. 16.3. 

Figure 16.3 Degeneration into four kinds of triangles (some three nodes in line).  
(a) 1 0g (4,1,2 in line); (b) 2 0g (1,2,3 in line); (c) 3 0g (2,3,4 in line);  

(d) 4 0g (3,4,1 in line)                                             
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If any two adjacent sub-conditions (16-13a,b,c,d) are satisfied simultaneously, 
then some two adjacent nodes are in coincidence with each other, so the 
quadrilateral degenerates into one of the four kinds of triangles in Fig. 16.4. 

Figure 16.4 Degeneration into four kinds of triangles (some two adjacent nodes 
in coincidence). 

(a) 1 2 0g g (1,2 in coincidence); (b) 2 3 0g g (2,3 in coincidence);  

(c) 3 4 0g g (3,4 in coincidence); (d) 4 1 0g g (4,1 in coincidence)  

16.3.3 Two Identical Relations among Nodal Cartesian  
Coordinates and Parameters g1 and g2

The Cartesian coordinates of node i of a quadrilateral are denoted by (xi, yi), i 1, 
2, 3, 4. There are two identical relations among (xi, yi) and (g1, g2) as follows: 

31 2 4
1 2 1 2

1 2 3 4

0
(1 ) (1 )

0
xx x x

g g g g
y y y y

 (16-14) 

which can also be written as 

31 2 4
3 4 1 2

1 2 3 4

0
0

xx x x
g g g g

y y y y

Proof Point 5, for which the coordinates are assumed to be (x5, y5), is the 
intersection point of two quadrilateral diagonals 13 and 24 (Fig. 16.5).  

Figure 16.5 Intersection point 5 of diagonals 
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Firstly, from diagonal 153, we obtain 

5 3 11
1

5 1 3 1

x x xx
g

y y y y
 (16-15) 

Secondly, from diagonal 254, we obtain 

5 2 4 2
2

5 2 4 2

x x x x
g

y y y y
 (16-16) 

From the above equations, Eq. (16-14) can be obtained. 

16.3.4 The Quadrilateral Determined by Its Base Triangle  
and Parameters g1 and g2

For convenience, we only discuss the case of a convex quadrilateral.  
Take the triangle 123 as the base triangle of the quadrilateral (Fig. 16.1(b)). 

If the base triangle 123 is given, then the coordinate (x4, y4) of the fourth node 
can be determined by g1 and g2 as follows: 

34 1 2
2 1 2 1

4 1 2 3

(1 ) (1 )
xx x x

g g g g
y y y y

 (16-17) 

In fact, Eq. (16-17) can be obtained from Eq. (16-14). 
Thus, we can draw a conclusion that a quadrilateral can be determined by the 

parameters g1 and g2 and its base triangle. In other words, if the base triangle is 
given, the corresponding quadrilateral varies with g1 and g2. Otherwise, if g1 and 
g2 are given, it varies with the base triangle. 

It can be proved that the above conclusion still holds if the quadrilateral 
degenerates into a triangle. 

16.4 The Definition of Quadrilateral Area Coordinates  
(QACM- )

16.4.1 Definition 

In a quadrilateral, the area coordinates (L1, L2, L3, L4) of any point P are defined as 

( 1,2,3,4)i
i

AL i
A

 (16-18) 



Advanced Finite Element Method in Structural Engineering 

554

where A1, A2, A3, A4 are the areas of the four triangles formed by point P and two 
adjacent vertices in the quadrilateral element, respectively (Fig. 16.6). 

Figure 16.6 The definition of  
quadrilateral area coordinates

Figure 16.7 Nodal coordinates 

Obviously, the equation of every side in a quadrilateral element is 

 0 ( 1,2,3,4)iL i  (16-19) 

The area co-ordinates of the four nodes are (Fig. 16.7): 

2 4

3 1

4 2

3 1

node1 ( , ,0,0)
node 2 (0, , ,0)
node 3 (0,0, , )
node 4 ( ,0,0, )

g g
g g

g g
g g

 (16-20) 

The area coordinates of the intersection point 5 of diagonal lines are (Fig. 16.7) 

2 3 3 4 4 1 1 2( , , , )g g g g g g g g   (16-21) 

16.4.2 Area Coordinates Expressed by Cartesian Coordinates 

The triangle area A1, A2, A3, A4 in Fig. 16.6 can be obtained by the determinants: 

1 2 2 2 3 3

3 3 4 4

3 4 4 4 1 1

1 1 2 2

1 1
1 11 , 1
2 2

1 1

1 1
1 11 , 1
2 2

1 1

x y x y
A x y A x y

x y x y

x y x y
A x y A x y

x y x y

 (16-22) 
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Substituting Eq. (16-22) into Eq. (16-18), we obtain the transformation formula 
from the Cartesian coordinates to the area coordinates: 

1 ( ) ( 1,2,3,4)
2i i i iL a b x c y i

A
 (16-23) 

in which 

, ,

( 1,2,3,4; 2,3,4,1; 3,4,1,2)
i j k k j i j k i k ja x y x y b y y c x x

i j k
  (16-24) 

The transformation formula (16-23) is linear and similar to formula (16-3). 

16.4.3 Two Sets of Equalities about ai bi ci

About ai, bi and ci the following two sets of equalities can be obtained: 

4

1

4

1

4

1

2
0
0

i
i

i
i

i
i

a
A

b

c

 (16-25) 

31 2 4

4 1 1 1 2 2 2 3 3 3 4 4

1 2 43

0
0
0

aa a a
g g b g g b g g b g g b

c c cc
 (16-26) 

The proof of formula (16-25) is much easier. The first and second formulas of 
Eq. (16-26) are proved as follows. 

The proof of the second formula of Eq. (16-26): 

4 1 1 1 2 2 2 3 3 3 4 4

4 1 2 3 1 2 3 4 2 3 4 1 3 4 1 2

1 3 2 4 3 1 4 2

LHS
( ) ( ) ( ) ( )

0

g g b g g b g g b g g b
g g y y g g y y g g y y g g y y

y g y g y g y g

Equation (16-14) is quoted in the last step of the above proof, and the proof of 
the third formula of Eq. (16-26) is similar to this. 

The proof of the first formula of Eq. (16-26): 



Advanced Finite Element Method in Structural Engineering 

556

4 1 1 1 2 2 2 3 3 3 4 4

4 1 2 3 3 2 1 2 3 4 4 3 2 3 4 1 1 4 3 4 1 2 2 1

1 3 2 4 4 2 2 4 3 1 1 3 3 1 4 2 2 4 4 2 1 3 3 1

2 4 4 2 1 3 2 4 3 1 4 2

LHS
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( )
0

g g a g g a g g a g g a
g g x y x y g g x y x y g g x y x y g g x y x y

x g g y g y x g g y g y x g g y g y x g g y g y
g y g y x g x g x g x g

Equation (16-14) is quoted twice in the last two steps of the above proof. 

16.4.4 g1 and g2 Expressed by bi and ci

From Fig. 16.1(a), we have 

1 1 1 1

1 2 2 4 4 3 4 4 3

4 4 3 3

1 1
2 1 0

1 0

x y x y
Ag x y c b b c b c

x y c b

With cyclic permutation of 1 2 3 4 1g g g g g , we obtain the following formulae: 

1 3 4 4 3

2 4 1 1 4

3 1 2 2 1

4 2 3 3 2

2
2
2
2

Ag b c b c
Ag b c b c
Ag b c b c
Ag b c b c

 (16-27) 

which can be used to obtain 

3 2 3 1 1 3

2 1 2 4 4 2

3 4 4 3 1 2 2 1 4 1 1 4 2 3 3 2

1 3 2 4 2 4 1 3

2 ( )
2 ( )
2 ( ) ( ) ( ) ( )

1 [( )( ) ( )( )]
2

A g g b c b c
A g g b c b c
A b c b c b c b c b c b c b c b c

b b c c b b c c

 (16-28) 

16.5 Two Identical Relations Among Area Coordinates  
(QACM- )

16.5.1 Two Identical Relations Satisfied by the Area  
Co-Ordinates (QACM- )

An arbitrary point in a quadrilateral has two DOFs. Obviously, in the four area 
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co-ordinates, only two are independent. Namely, there are two identical relations 
which the four area co-ordinates should satisfy. They are firstly presented and 
proved in reference [1]: 

1 2 3 4 1L L L L  (16-29) 

4 1 1 1 2 2 2 3 3 3 4 4 0g g L g g L g g L g g L  (16-30) 

These two identical relations (16-29) and (16-30), are the fundamental part in 
the complete definition of the quadrilateral area coordinates. In other words, 
Eq. (16-18), together with the relations (16-29) and (16-30), constitutes a complete 
definition of the quadrilateral area coordinate system. 

Equation (16-29) holds, obviously, and Eq. (16-30) can be proved as follows. 
The proof of Eq. (16-30): 
By quoting Eqs. (16-23) and (16-26), Eq. (16-30) can be proved as follows: 

4 1 1 1 2 2 2 3 3 3 4 4

4 1 1 1 1 1 2 2 2 2 2 3 3 3 3

3 4 4 4 4

4 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2

2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4

LHS
1 [ ( ) ( ) ( )

2
( )]

1 {[ ] [
2

] [ ]

g g L g g L g g L g g L

g g a b x c y g g a b x c y g g a b x c y
A
g g a b x c y

g g a g g a g g a g g a x g g b g g b
A
g g b g g b y g g c g g c g g c g g c }

0

Though a definition of the quadrilateral area coordinates similar to Eq. (16-18) 
has been suggested for constructing several simple contact functions in reference 
[15], only the establishment of the above identical Eq. (16-30) indicates that the 
QACM-  can be treated as a complete system. 

16.5.2 Use Independent Area Co-Ordinates to Express Others 

There are only two independent area coordinates in (L1, L2, L3, L4). Independent 
coordinates can be taken in many ways, but they must be adjacent coordinates, e.g. 

1 2 2 3 3 4 4 1( , ), ( , ), ( , ), ( , )L L L L L L L L

Otherwise, two opposite coordinates, e.g. (L1, L3) or (L2, L4), cannot be taken as 
independent coordinates. From the rectangle case (a special case of quadrilateral) 
we can easily understand this conclusion. 

Take (L1, L2) as independent coordinates: 
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4 1 4
3 4 1 2

3 3

1 2 2
4 2 1 2

3 3

g g gL g L L
g g
g g gL g L L

g g

 (16-31) 

Take (L2, L3) as independent coordinates: 

1 2 1
4 1 2 3

4 4

2 3 3
1 3 2 3

4 4

g g gL g L L
g g
g g g

L g L L
g g

 (16-32) 

Take (L3, L4) as independent coordinates: 

3 22
1 2 3 4

1 1

3 4 4
2 4 3 4

1 1

g ggL g L L
g g
g g gL g L L

g g

 (16-33) 

Take (L4, L1) as independent coordinates: 

3 4 3
2 3 4 1

2 2

4 1 1
3 1 4 1

2 2

g g g
L g L L

g g
g g gL g L L

g g

 (16-34) 

16.6 Transformation Relations Between the Area  
Coordinate System (QACM- ) and the Cartesian  
or Isoparametric Coordinate System 

16.6.1 Cartesian Coordinates Expressed by the Area  
Coordinates (QACM- )

Equation (16-23) is the coordinate transformation formula from Cartesian to area 
co-ordinates. Now, we derive its inverse formula with which the Cartesian 
coordinates are expressed by the area coordinates. 

Since there are four different ways to take the independent area coordinates: 
(L1, L2), (L2, L3), (L3, L4), (L4, L1), four inverse transformation formulae can be 
obtained.
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Take (L1, L2) as independent coordinates: 

2 1 1 2 3
3

2 1 1 2 3
3

1 ( )

1 ( )

x c L c L x
g

y b L b L y
g

 (16-35) 

Take (L2, L3) as independent coordinates: 

3 2 2 3 4
4

3 2 2 3 4
4

1 ( )

1 ( )

x c L c L x
g

y b L b L y
g

 (16-36) 

Take (L3, L4) as independent coordinates: 

4 3 3 4 1
1

4 3 3 4 1
1

1 ( )

1 ( )

x c L c L x
g

y b L b L y
g

  (16-37) 

Take (L4, L1) as independent coordinates: 

1 4 4 1 2
2

1 4 4 1 2
2

1 ( )

1 ( )

x c L c L x
g

y b L b L y
g

  (16-38) 

16.6.2 Quadrilateral Area Coordinates (QACM- ) Expressed by 
the Isoparametric Coordinates 

Area coordinates (L1, L2, L3, L4) can be expressed by the quadrilateral 
isoparametric coordinates ( , ) as follows: 

1 2 3

2 3 4

3 4 1

4 1 2

1 (1 )[ (1 ) (1 )]
4
1 (1 )[ (1 ) (1 )]
4
1 (1 )[ (1 ) (1 )]
4
1 (1 )[ (1 ) (1 )]
4

L g g

L g g

L g g

L g g

 (16-39) 
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It is known that area co-ordinates Li (i 1,2,3,4) are the linear functions of the 
Cartesian coordinates (x, y). Assume that Z stands for any arbitrary linear function 
of (x, y); then it can be expressed by the quadrilateral isoparametric coordinate  
( , ) as follows: 

4

1

1 (1 )(1 )
4 i i i

i
Z Z  (16-40) 

where Zi, i, i are the values of Z, ,  at node i. According to Eq. (16-40) we 
can obtain Eq. (16-39). Taking the first formula of Eq. (16-39) as an example, Z
stands for L1. From Eq. (16-20), we get 

1 2 3 4 2 3[ ] [ 0 0 ]Z Z Z Z g g  (16-41) 

Substituting this into Eq. (16-40), the first formula of Eq. (16-39) can be obtained. 

16.7 Differential Formulae (QACM- )

16.7.1 Transformations of Derivatives (QACM- )

In a quadrilateral element, any point P has four area coordinate components (L1,
L2, L3, L4) to which the transformation from the Cartesian coordinates (x, y) is 
given by Eq. (16-23), i.e.,  

1 ( ) ( 1,2,3,4)
2i i i iL a b x c y i

A

From the above equation, the transformation of derivatives of the first and second 
order in both coordinate systems is presented as follows: 

(1) The transformation of the derivatives of the first order: 

1 2 3 4

1 2 3 4

1
2

b b b bx
c c c cA

y

 (16-42) 

where

T

1 2 3 4L L L L
 (16-43) 
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(2) The transformation of the derivatives of the second order: 

2

2

2
2

2

2

2

x

y

x y

T  (16-44) 

where

T2 2 2 2 2 2 2 2 2 2
2

2 2 2 2
1 2 3 4 1 2 2 3 3 4 4 1 1 3 2 4L L L L L L L L L L L L L L L L

(16-45)
2 2 2 2

1 2 3 4 1 2 2 3
2 2 2 2
1 2 3 4 1 2 2 32

1 1 2 2 3 3 4 4 1 2 2 1 2 3 3 2

3 4 4 1 1 3 2 4

3 4 4 1 1 3 2 4

3 4 4 3 4 1 1 4 1 3 3 1 2 4 4 2

2 2
1 2 2

4
2 2 2 2 2( ) 2( )

2 2 2 2
2 2 2 2

2( ) 2( ) 2( ) 2( )

b b b b b b b b
c c c c c c c c

A
b c b c b c b c b c b c b c b c

b b b b b b b b
c c c c c c c c

b c b c b c b c b c b c b c b c

T

(16-46)

16.7.2 Normal and Tangential Derivatives (QACM- )

Assume that ni and si stand for unit vectors oriented in the normal and the 
tangential direction respectively of the side i in a quadrilateral element (Fig. 16.8). 
The length of each side is 

2 2 ( 1,2,3,4)i i id b c i  (16-47) 

Figure 16.8 Normal and tangential directions of quadrilateral element sides 
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The direction cosines of the normal vector of each side are: 

cos( , ) , cos( , )i i
i i

i i

b c
n x n y

d d
 (16-48) 

The direction cosines of the tangential vector of each side are: 

cos( , ) , cos( , )i i
i i

i i

c b
s x s y

d d
 (16-49) 

The normal derivative of each side is: 

1 2 3 4

1 2 3 4

1 1 [ ]

1 [ ]
2

i i i i
i i i

i i
i

xb c b c
n d x y d

y
b b b b

b c
c c c cAd

(16-50)

The tangential derivative of each side is 

1 2 3 4

1 2 3 4

1 1 [ ]

1 [ ]
2

i i i i
i i i

i i
i

xc b c b
s d x y d

y
b b b b

c b
c c c cAd

(16-51)

16.8 Integral Formulae (QACM- )

16.8.1 The Basic Formulae for Area Integrals (QACM- )

In a quadrilateral element, two equivalent basic integral formulae, which can be 
applied to evaluate the area integrals for the arbitrary power function 1 2 3 4

m n p qL L L L
of the area coordinates, are given as follows: 

1 2 3 4

1
3 2 4 1

0 0

1
1 2 4 3

0 0

! ! ! !d 2
( 2)!

C C C

C C C

m n p q

A

q p
m n m n k k j p q k j

m q k n p j k j
k j

m n
p q q p k k j m n k j

m q k n p j k j
k j

m n p qL L L L A A
m n p q

g g g g

g g g g (A)
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1 2 3 4

1
4 3 1 2

0 0

1
2 3 1 4

0 0

! ! ! !d 2
( 2)!

C C C

C C C

m n p q

A

qm
n p n p k k j m q k j

n m k p q j k j
k j

pn
m q m q k k j n p k j

m n k q p j k j
k j

m n p qL L L L A A
m n p q

g g g g

g g g g (B)

where !C
( )! !

i
k

k
k i i

 (16-52) 

In fact, with the cyclic permutation that we change (m, n, p, q) to (n, p, q, m) and 
(g1, g2, g3, g4) to (g2, g3, g4, g1) in Eq. (A), Eq. (B) can be obtained. 

If a quadrilateral element degenerates into a triangular element, e.g. when 
g1 g2 0, nodes 1 and 2 become coincident; thus L4 0, q 0, and we substitute 
them into Eq. (A) or Eq. (B), so that the following famous integral formula for 
the arbitrary power function of the area coordinates over the triangular element is 
obtained[14]:

1 2 3
! ! !d 2

( 2)!
m n p

A

m n pL L L A A
m n p

 (16-53) 

16.8.2 Area Integral Formulae for Lower Power Functions  
(QACM- )

For convenience in application, we list the area integral formulae for lower power 
functions (from first order to third order) as follows according to the basic 
formulae (A) or (B). 

(1) The first power terms (four in one group)  

4 11

1 22

2 33

3 44

1
1

d
13
1

A

g gL
g gL AA
g gL
g gL

 (16-54) 

(2) The second power terms (ten in three groups)  

22
3 1 2 2 31

2 2
2 4 2 3 3 4
2 2
3 1 3 4 4 1
2 2
4 2 4 1 1 2

( )
( )

d
6 ( )

( )
A

g g g g gL
L g g g g gAA
L g g g g g
L g g g g g

 (16-55) 
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3 4 1 21 2

2 3 4 1 2 3

3 4 1 2 3 4

4 1 2 3 4 1

2
2

d
212
2

A

g g g gL L
L L g g g gAA
L L g g g g
L L g g g g

 (16-56) 

1 3 4 1 1 2

1 2 2 32 4

2
d

212A

L L g g g gAA
g g g gL L

 (16-57) 

(3) The third power terms (20 in five groups) 
Considering the above integral formulae (16-54) (16-57), we find that if the 

formula in the first line of any group is known, then the others in this group can 
easily be obtained with the cyclic permutation of ( 1 2 3 4 1L L L L L  and 

1 2 3 4 1g g g g g ). Thus, only the first formula in each group needs to 
be listed, for brevity: 

3 3 2 2
1 3 1 2 2 2 3 3d [ ( )]

10A

AL A g g g g g g g  (16-58) 

2 2 2 3
1 2 3 1 2 3 2 1 1 2 1d [ 2 (2 ) 3 ]

30A

AL L A g g g g g g g g g  (16-59) 

2 2 2 2
1 3 3 2 3 3 2 1d [ (1 2 ) ]

30A

AL L A g g g g g g  (16-60) 

2 2 2 2 2 2
1 4 1 3 2 3 3 1 1 2d [3 ( 2 ) ]

30A

AL L A g g g g g g g g  (16-61) 

2 2
1 2 3 4 1 1 2 1 2d [ 3 2 ]

60A

AL L L A g g g g g g  (16-62) 

16.8.3 The Basic Formulae for Line Integrals (QACM- )

In a quadrilateral element, the following basic formulae can be used to evaluate 
the line integral for the arbitrary power function of the area coordinates along 
each side Li 0 (i 1,2,3,4):

Along side 412( 0)L

1

1 2 3 2 1 3 40
0

! ! !d C C
( 1)!

n
m n p m p n k k p m

p n k m k
k

m n pL L L s g g g g
m n p

 (C1) 
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Along side 123( 0)L

1

2 3 4 3 2 4 10
0

! ! !d C C
( 1)!

p
n p q n q p k k q n

q p k n k
k

n p qL L L s g g g g
n p q

 (C2) 

Along side 234( 0)L

1

3 4 1 4 3 1 20
0

! ! !d C C
( 1)!

q
p q m p m q k k m p

m q k p k
k

p q mL L L s g g g g
p q m

 (C3) 

Along side 341( 0)L

1

4 1 2 1 4 2 30
0

! ! !d C C
( 1)!

m
q m n q n m k k n q

n m k q k
k

q m nL L L s g g g g
q m n

 (C4) 

where s  is a dimensionless coordinate along side jk , and it is 0 at node j and 1 
at node k.

In fact, if the cyclic permutation is inserted in Eq. (C1), then Eqs. (C2), (C3) 
and (C4) can be obtained. 

If quadrilateral elements degenerate into triangular elements, e.g. when g1
g2 0, nodes 1 and 2 become coincident; thus L4 0, q 0, we substitute them 
into Eqs. (C2), (C3) and (C4), so that the following line integral formulae for the 
arbitrary power function over the triangular element sides are obtained: 

1

2 30

1

3 10

1

1 20

! !d (along 0)1( 1)!
! !d (along 0)2( 1)!
! !d (along 0)3( 1)!

n p

p m

m n

n pL L s L
n p

p mL L s L
p m

m nL L s L
m n

 (16-63) 

16.9 The Proof of the Basic Formulae (A) and (B)  
(QACM- )

16.9.1 Preparative Formula (D) 

1

0

! !(1 ) d
( 1)!

i j i jt t t
i j

 (D) 

Proof Using integration by parts 
1 11

00 0
d du v uv v u  (16-64) 
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we have 
1 11 1 1

0 0

1

0

1LHS (1 ) d (1 ) d
1 1

! ! ! !d RHS
( )! ( 1)!

i j i j

j i

it t t t t
j j
i j i jt t

i j i j

16.9.2 Preparative Formula (E) 

1

0
0

! ! !(1 ) [ (1 )] d C C
( 1)!

p
m n p p k k m n

m p k n k
k

m n pt t t t t
m n p

 (E) 

Proof From formula (D), we can write that 

1

0
0

0

0

!LHS (1 ) (1 ) d
( )! !

! ( )!( )!(D)
( )! ! ( 1)!
! ! ! C C RHS

( 1)!

p
m n p k k p k k

k

p
p k k

k

p
p k k m n

m p k n k
k

pt t t t t
p k k

p m p k n k
p k k m n p

m n p
m n p

16.9.3 Subdivision of the Quadrilateral 

In order to obtain the basic formula (A), the quadrilateral 1234 is subdivided into 
two triangles: 234 and 124 (Fig. 16.9). Assume that A, A  and A  represent 
the areas of the quadrilateral 1234, 234 and 124, respectively, thus 

1 3(1 )A g A g A  (16-65) 

1A g A  (16-66) 

Figure 16.9 Subdivision  of a quadrilateral 
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Since the integral in the basic formula (A) is the integral over the quadrilateral 
area A (denoted by I ), it can be expressed by the sum of the integrals over 
triangles A  and A  (denoted by I1 and I2).

1 2 3 4 1 2 3 4 1 2 3 4 1 2d d dm n p q m n p q m n p q

A A A

I L L L L A L L L L A L L L L A I I  (16-67) 

Consider an arbitrary point P  in 234 (Fig. 16.9(b)). We use two coordinate 
systems to describe point :P quadrilateral area coordinates 1 2 3 4( , , , )L L L L  and 
triangular area coordinates 1 2 3( , , )L L L . The relation between these two coordinate 
systems is: 

1 3 1L g L         (16-68a) 

2 3 2L g L         (16-68b) 

3 1 2 4 3L g L g L    (16-68c) 

4 1 1 2 3L g L g L   (16-68d) 

In fact, the first two formulae (16-68a,b) can be obtained from Eq. (16-65): 

31
1 1 3 1

32
2 2 3 2

( )

( )

gAL A g L
A A

gAL A g L
A A

The last two formulae (16-68c,d) can be obtained from (16-31): 

4 1 4
3 4 1 2 4 4 1 1 4 2 1 2 4 3

3 3

1 2 2
4 2 1 2 2 1 2 1 2 2 1 1 2 3

3 3

( )

( )

g g gL g L L g g L g g L g L g L
g g
g g gL g L L g g g L g L g L g L

g g

Similarly, the relations between these two coordinate systems of any point P  in 
124 are 

3 1 1L g L        (16-69a) 

4 1 2L g L        (16-69b) 

1 3 2 2 3L g L g L  (16-69c) 

2 3 1 4 3L g L g L  (16-69d) 



Advanced Finite Element Method in Structural Engineering 

568

16.9.4 Area Integral I1

From the preparative formula (E) and the coordinate transformation (16-68), the 
area integral I1 can be evaluated: 

1 1 2 3 4

1
3 2 4 1

0 0

! ! ! !d 2
( 2)!

C C C

m n p q

A
q p

m n m n k k j p q k j
m q k n p j k j

k j

m n p qI L L L L A A
m n p q

g g g g (16-70)

Now, we prove it as follows. 
First, applying the coordinate transformation (16-68) and the differential area 

formula 3 1 2d 2 d dA Ag L L , we have 

1 3 1 2 1 2 4 3 1 1 2 3 3 1 2( ) ( ) 2 d dm n m n p q

A

I g L L g L g L g L g L Ag L L  (16-71) 

Second, introducing a new variable 2

11
Lt

L
, thus 

1 11 1
1 3 1 1 1 40 0

1 1 2 1 1

2 { (1 ) [ (1 )]

[ (1 )(1 )] d }d

m n m n p n p

q

I Ag L L t g t g t

g L g L t t L (16-72)

Since

1 1 2 1 1 2 1 1
0

[ (1 )(1 )] C (1 ) (1 )
q

q k q k k q k k k
q

k
g L g L t g g L L t  (16-73) 

substituting it into (16-72), we obtain 

1 11 1
1 3 1 2 1 1 1 1 40 0

0
2 C ( (1 ) d )( (1 ) [ (1 )] d )

q
m n k q k k m q k m p k n k p

q
k

I Ag g g L L L t t g t g t t

in which the two integrals can be evaluated by the preparative formulae (D) and (E), 
and finally Eq. (16-70) is obtained. 

16.9.5 Area Integral I2 and the Derivation of Formula (A)

Similarly, using the coordinate transformation (16-69), we obtain the area integral 
I2 as follows: 

2 1 2 3 4

1
1 2 4 1

0 0

! ! ! !d 2
( 2)!

C C C

m n p q

A
m n

p q q p k k j m n k j
m q k n p j k j

k j

m n p qI L L L L A A
m n p q

g g g g (16-74)
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Superpose I1 and I2 obtained from (16-70) and (16-74), thus we can get the 
expression of area integral I, that is, the basic formula (A). 

16.9.6 The Derivation of Formula (B) 

The quadrilateral 1234 can be divided into two triangles: 123 and 134 in 
the way shown in Fig. 16.10. With similar steps, the basic formula (B) for the 
area integral can be derived. 

Figure 16.10 Subdivision  of a quadrilateral 

16.10 The Proof of the Basic Formulae (C) (QACM- )

16.10.1 Variation of Area Co-Ordinates (L1, L2, L3, L4) along  
Each Side 

Define a dimensionless coordinate s  along side jk  in the way that it is 0 at 
node j and 1 at k. Thus, the area coordinate Li is a linear function of s  along each 
side, which are listed in the following table. 

iL Along line 12
4( 0)L

Along line 23
1( 0)L

Along line 34
2( 0)L

Along line 41  
3( 0)L

1L 2 (1 )g s 0 3g s 2 3(1 )g s g s

2L 3 4 (1 )g s g s 3(1 )g s 0 4g s

3L 1g s 4 1(1 )g s g s 4 (1 )g s 0

4L 0 2g s 1 2 (1 )g s g s 1(1 )g s

   (16-75) 

16.10.2 The Proof of Formula (C1) 

Along side 412( 0)L , the area coordinates L1, L2, L3 are linear functions of s
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as listed in the first column of the above table. Substitution into the LHS of (C1) 
yields 

1

2 1 3 40

1

2 1 3 40
0

1

2 1 3 4 0
0

2 1 3 4
0

LHS (1 ) [ (1 )] d

(1 ) [ C (1 ) ]d

C (1 ) d

( )!( )!(D) C RHS
( 1)!

m p m p n

n
m p m p k n k n k k k

n
k

n
m p k n k k p n k m k

n
k

n
m p k n k k

n
k

g g s s g s g s s

g g s s g s g s s

g g g g s s s

p n k m kg g g g
m n p

So, the formula (C1) holds. The preparative formula (D) is applied in the above 
steps. Similarly, the other three formulae of equation (C) can be proved. 

16.11 The Quadrilateral Area Coordinate System with  
Only Two Components (QACM- )

According to the definition of the QACM- , this system contains four area 
coordinate components (L1, L2, L3, L4), among which two are independent. The 
existence of the four components must bring distinct complexity to the con- 
struction of an element, for example, users may be confused as to how to formulate 
a complete high order polynomial. And, most formulations expressed by the 
QACM-  are more complicated than those by the isoparametric coordinates. In 
view of the shortcomings of the QACM- , another quadrilateral area coordinate 
method, denoted as QACM- , is systematically established in this section. This 
new QACM-  possesses new physical meanings and contains only two coordinate 
components. It can not only avoid the defects mentioned above, but also keep the 
most important advantage of the QACM- , that is, the linear relationship with 
the Cartesian coordinates. 

Recently the third version of quadrilateral area coordinate method (QACM- )
was developed in reference [16]. 

16.11.1 The Definition of the New Quadrilateral Area  
Coordinates Method (QACM- )

As shown in Fig. 16.11, Mi (i 1,2,3,4) are the mid-side points of element 
sides 23 , 34 , 41  and 12 , respectively. Thus, the position of an arbitrary point P
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within the quadrilateral element 1234  can be uniquely specified by the new 
two-component area coordinates Z1 and Z2 (QACM- ), which are defined as: 

1
1 4Z

A
, 2

2 4Z
A

 (16-76) 

where A is still the area of the quadrilateral element; 1  and 2  are the 
generalized areas of PM2M4 and PM3M1, respectively. It must be noted here 
that the values of generalized areas 1  and 2  can be both positive and negative: 
for PM2M4 (or PM3M1), if the permutation order of points P, M2 and M4

(or P, M3 and M1) is anti-clockwise, a positive 1  (or 2 ) should be taken; 
otherwise, 1 (or 2 ) should be negative. 

Figure 16.11 Definition of the quadrilateral area coordinates Zi of QACM-

Though the QACM- (Eq.(16-76)) and the QACM-  (Eq. (16-18)) have 
different physical meanings, it can be proved that they satisfy the following 
simple linear relations: 

1 3 1 2 1

2 4 2 3 2

2( ) ( )
2( ) ( )

Z L L g g
Z L L g g

 (16-77) 

where gi (i 1,2,3,4) are the shape parameters of the quadrangle and given in 
Sect. 16.2. 

Proof Let (xi, yi) (i 1,2,3,4) be the Cartesian coordinates of the four corner 
nodes 1, 2, 3 and 4, respectively; and (x, y) be the Cartesian coordinates of an 
arbitrary point P within the element. And, from Eq. (16-28), we have 

2 1 4 2 2 4

3 2 3 1 1 3

2 ( )
2 ( )

A g g b c b c
A g g b c b c

  (16-78) 

where bi and ci (i 1,2,3,4) are given by Eq. (16-24). Then, the generalized areas
of PM2 M4 and PM3 M1 in Fig. 16.11 can be obtained as: 
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3 4 3 4
1

1 2 1 2

1
1 1
2 2 2

1
2 2

x y
x x y y

x x y y

, 4 1 4 1
2

2 3 2 3

1
1 1
2 2 2

1
2 2

x y
x x y y

x x y y

 (16-79) 

Substitution of Eqs. (16-24), (16-78) and (16-79) into Eq. (16-76) yields  

3 4 1 2 1 2 3 4 3 4 1 21

1 2 3 4

4 1 1 4 4 1 1 4

2 3 3 2 2 3 3 2

2 1 3 4 3 4 1 2

2 4 4 2
3 1 3 1 2 1

( )( ) ( )( ) ( )14
2

( )

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )( )
2

2( ) 2( ) (
2

x x y y x x y y x y y y y
A A A

y x x x x
A

x y x y x y y y x x
A

x y x y x y y y x x
A

x x y y x x y y
A

b c b cL L L L g g
A

) (16-80a)

4 1 2 3 4 1 2 3 4 1 2 32

2 3 4 1

1 2 2 1 1 2 2 1

3 4 4 3 3 4 4 3

3 2 4 1 4 1 2 3

3 1 1 3
4 2 4 2 3 2

( )( ) ( )( ) ( )14
2

( )

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )( )
2

2( ) 2( ) (
2

x x y y y y x x x y y y y
A A A

y x x x x
A

x y x y x y y y x x
A

x y x y x y y y x x
A

x x y y x x y y
A

b c b cL L L L g g
A

) (16-80b)

So, according to Eqs. (16-23) and (16-77), the new area coordinates Z1 and Z2
will also keep the linear relationship with the Cartesian coordinates (x, y).

Here, for convenience, two new shape parameters 1g  and 2g  are defined as: 

1 2 1

2 3 2

g g g
g g g

 (16-81) 
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It can be seen that 1 2 0g g  for the rectangle cases. Thus, Eq. (16-77) can be 
rewritten as 

1 3 1 1

2 4 2 2

2( )
2( )

Z L L g
Z L L g

 (16-82) 

And, the new local coordinates of the corner nodes and mid-side points can be 
written as:  

2 1 2 1

2 1 2 1

1 2

3 4

node1 ( 1 , 1 ); node 2 (1 , 1 )
node3 (1 ,1 ); node 4 ( 1 ,1 )

(1, 0); (0,1)
( 1, 0); (0, 1)

g g g g
g g g g

M M
M M

It is interesting that the above coordinate values are only small modifications for the 
isoparametric coordinates. 

16.11.2 The Relationship Between the QACM-  and the  
Cartesian Coordinates 

Substitution of Eqs. (16-23) and (16-81) into Eq. (16-82) yields 

1 3 1 3 1 3 1 1 1 1 1 1

2 4 2 4 2 4 2 2 2 2 2 2

1 1[( ) ( ) ( ) ] [ ]

1 1[( ) ( ) ( ) ] [ ]

Z a a b b x c c y g a b x c y g
A A

Z a a b b x c c y g a b x c y g
A A

(16-83)

where

1 3 1 1 3 1 1 3 1

2 4 2 2 4 2 2 4 2

, ,
, ,

a a a b b b c c c
a a a b b b c c c

 (16-84) 

The linear relationship between the QACM-  and the Cartesian coordinates is 
clearly illustrated.  

16.11.3 The Relationship Between the QACM-  and the  
Isoparametric Coordinates 

By substituting the relationship (16-39) of the QACM-  and the isoparametric 
coordinates and Eq. (16-81) into Eq. (16-82), we have 



Advanced Finite Element Method in Structural Engineering 

574

1 2

2 1

Z g
Z g

 (16-85) 

From Eq. (16-85), it can be seen that the new area coordinates Z1 and Z2 will 
degenerate to be the isoparametric coordinates  and  for the rectangular 
element cases.  

16.11.4 Some Discussions on QACM-  for Various Distortion  
Modes

Some typical shapes of a quadrilateral element and the corresponding shape 
parameters are summarized as follows: 

Parallelogram 

1 2 0g g   or  1 2 3 4
1
2

g g g g  (16-86) 

Trapezoid (refer to Fig. 16.12)  

1 0g   or  1 2g g   (for 12 // 34 )   (16-87a) 

2 0g   or  2 3g g   (for 23// 41 ) (16-87b) 

Figure 16.12 Two kinds of trapezoids 

Triangular mode : some three nodes are in line (refer to Fig. 16.13) 

1 2

2 4

g g
g g

 or 1

3

0
1

g
g

 (Fig. 16.13(a): nodes 4, 1, 2 are in line) (16-88a) 

1 1

2 3

g g
g g

 or 2

4

0
1

g
g

 (Fig. 16.13(b): nodes 1, 2, 3 are in line) (16-88b) 
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1 4

2 2

g g
g g

 or 3

1

0
1

g
g

 (Fig. 16.13(c): nodes 2, 3, 4 are in line) (16-88c) 

1 3

2 1

g g
g g

 or 4

2

0
1

g
g

 (Fig. 16.13(d): nodes 3, 4, 1 are in line) (16-88d) 

Figure 16.13 Degeneration into triangular mode : some three nodes are in line 

Triangular mode : some two nodes are in coincidence (refer to Fig. 16.14)  

1

2

0
1

g
g

 or 1 2

3 4

0
1

g g
g g

 (Fig. 16.14(a): nodes 1, 2 are in coincidence)  

(16-89a)

1

2

1
0

g
g

 or 2 3

4 1

0
1

g g
g g

 (Fig. 16.14(b): nodes 2, 3 are in coincidence)  

(16-89b)
1

2

0
1

g
g

 or 3 4

1 2

0
1

g g
g g

 (Fig. 16.14(c): nodes 3, 4 are in coincidence)  

(16-89c)
1

2

1
0

g
g

 or 4 1

2 3

0
1

g g
g g

 (Fig. 16.14(d): nodes 4, 1 are in coincidence)  

(16-89d)

Figure 16.14 Degeneration into triangular mode : some two nodes are in 
coincidence
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16.11.5 Some Basic Differential Formulae of the QACM-

(1) The transformation of the derivatives of the first order: 

11 2

1 2

2

1 Zb bx
A c c

y Z

 (16-90) 

(2) The transformation of the derivatives of the second order: 

22

22
12 2

1 2 1 22 2
2 2

1 2 1 22 2 2
2

1 1 2 2 1 2 2 12 2

1 2

2
1 2

Zx b b b b
c c c c

y A Z
b c b c b c b c

x y Z Z

 (16-91) 

(3) Normal and tangential derivatives 
Assume that ni and si stand for unit vectors oriented in the normal and the 

tangential direction respectively of the side i in a quadrilateral element (Fig. 16.8). 
The normal derivative of each side is: 

11 2

1 2

2

1 1
i i i i

i i i

Zb bxb c b c
n d Ad c c

y Z

 (16-92) 

The tangential derivative of each side is: 

11 2

1 2

2

1 1
i i i i

i i i

Zb bxc b c b
s d Ad c c

y Z

 (16-93) 

16.11.6 Some Basic Integration Formulae of the QACM-

(1) The area integral formulae within a quadrilateral element 
The integration formulae for evaluating the area integrals of the arbitrary power 

function 1 2
m nZ Z  can be written as: 
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1 2 2 1
0 0

d C C
4

m n
m n i j i j

m n
i jA

AZ Z A g g P  (16-94) 

where m and n are arbitrary positive integers, 

1 1

1 2
[1 ( 1) ][1 ( 1) ] [1 ( 1) ][1 ( 1) ] [1 ( 1) ][1 ( 1) ]

( 1) ( 1)

M N M N M N

P g g
MN M N M N

(16-95)

with

 1, 1M m j N n i  (16-96) 

Thus, from Eqs. (16-95) and (16-96), we have  

2

1

4 (for and are both odd numbers)

0 (for and are both even numbers)
4 (for is odd, is even)

( 1)
4 (for is even, is odd)

( 1)

P M N
MN

P M N

P g M N
M N

P g M N
M N

 (16-97) 

and Cn
m  is defined as 

!C
( )! !

n
m

m
m n n

 (16-98) 

The proof of Eq. (16-94) can be easily performed by using the relationship 
(16-85) between the QACM-  and the isoparametric coordinates. 

Proof of Eq. (16-94) 
Substitution of Eq. (16-85) into the left side of Eq. (16-94) yields 

1 2 2 1d d dm nm n

A A

Z Z A g g J  (16-99) 

where J  is the Jacobi determinant; J is the Jacobi matrix, and it is the same as 
that of the usual 4-node bilinear isoparametric element Q4: 

Q4Q4 Q4 Q4
1 131 2 4

2 2
Q4Q4 Q4 Q4

3 331 2 4

4 4

x yNN N N
x y
x yNN N N
x y

J  (16-100) 
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with  
Q4 1 (1 )(1 )

4i i iN   (i 1,2,3,4) (16-101) 

where i and i are the isoparametric coordinates of the four corner nodes. And, 
from Eqs. (16-25), (16-78) and (16-81), we can obtain: 

4

2 4 4 2 1 3 1 1 3 2
1

2 , 2 , 2i
i

a A b c b c Ag b c b c Ag  (16-102) 

Then, the Jacobi determinant J  can be written as: 

4

2 4 4 2 3 1 1 3 1 2
1

1 1 1| | ( ) ( ) [1 ]
8 8 8 4i

i

Aa b c b c b c b c g gJ

(16-103)

Substitution of Eq. (16-103) into Eq. (16-99) yields 

1 2 2 1 1 2

2 1 1 2
0 0

1 1
2 1 1 2

0 0

2 1
0 0

d (1 ) (1 ) (1 )d d
4

C C (1 )d d
4

C C ( )d d
4

C C (16
4

m n m n m n

A A
m n

m n i i i j j j
m n

i jA
m n

i j i j m j n i m j n i m j n i
m n

i j A
m n

i j i j
m n

i j

AZ Z A g g g g

A g g g g

A g g g g

A g g P -104)

(2) Some area integral formulae for lower power functions 
For convenience in application, we list the area integral formulae for lower power 

functions (from first order to fourth order) as follows according to Eq. (16-94): 
The first power terms: 

1 1

2 2

d
3A

Z gAA
Z g

 (16-105) 

The second power terms: 

2 2
1 2
2 2
2 1

1 2 1 2

1
d 1

3A

Z g
AZ A g

Z Z g g
 (16-106) 

The third power terms: 
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The fourth power terms: 
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 (16-108) 

(3) Some basic formulae for line integral 
In a quadrilateral element, the following basic formulae can be used to evaluate 

the line integral for the arbitrary power function of QACM-  along each side. 
Along side 23  

11

1 2 1 20
0

1 1 ( 1)d (1 ) C
2 1

n im
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m
i

Z Z s g g
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 (16-109) 

Along side 34  
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 (16-110) 

Along side 41  
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1 2 1 20
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1 1 ( 1)d ( 1) (1 ) C
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n im
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m
i

Z Z s g g
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 (16-111) 

Along side 12  

11

1 2 2 10
0

1 1 ( 1)d ( 1) (1 ) C
2 1

m in
m n n m i i

n
i

Z Z s g g
m i

 (16-112) 

where s  is a dimensionless coordinate along side jk ( jk 23,34,41,12), it is 0 at 
node j and 1 at node k.



Advanced Finite Element Method in Structural Engineering 

580

Proof of Eq. (16-111) 
By using Eq. (16-85), Z1 and Z2 can be replaced by isoparametric coordinates 

 and , then 
1 1

1 2 2 10 0
d ( ) ( ) dm n m nZ Z s g g s  (16-113) 

Along side 23 , we have 

11, 1 1,
2

s  (16-114) 

Thus, Eq. (16-113) can be rewritten as  
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The proof procedures of the Eqs. (16-110), (16-111) and (16-112) are similar to 
the procedure given above. 

Thus, a new area coordinate system QACM- , which only contains two 
independent components, is successfully established. 
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Abstract This chapter focuses on the applications of the quadrilateral area 
coordinate systems discussed in the previous chapter. Here, a series of new 
quadrilateral elements formulated by the quadrilateral area coordinate 
methods are introduced in detail. Following the Introduction in Sect. 17.1, 
the sensitivity analysis of the quadrilateral membrane elements to mesh 
distortion is discussed in Sect. 17.2. Then, a brief review of the construction 
of various quadrilateral elements formulated by the quadrilateral area 
coordinate methods is given in Sect. 17.3. In Sects. 17.4 to 17.7 of this 
chapter, various quadrilateral membrane elements (4-node element, 4-node 
element with drilling freedoms, 8-node element) for linear and nonlinear 
analyses, in which the area coordinate methods are adopted, are introduced 
in detail. And, in the last three sections (Sects. 17.8 to 17.10), the applications 
of the area coordinate methods for the quadrilateral thin plate, thick plate 
and composite laminated plate elements are described, respectively. It is 
demonstrated that the area coordinate methods are efficient tools for 
developing simple, effective and reliable serendipity quadrilateral element 
models. 

Keywords quadrilateral element, quadrilateral area coordinate system, 
generalized conforming, mesh distortion. 

17.1 Introduction 

For the past years, the isoparametric coordinate method has almost been the unique 
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tool for constructing arbitrary quadrilateral elements. So, the establishment of the 
quadrilateral area coordinate theory provides us a new way for related jobs. 
Especially, some new models formulated by these new tools can still keep high 
precision in a distorted mesh division, which cannot be easily achieved by the 
conventional isoparametric elements. At present, some excellent element models, 
including membrane elements, thin plate elements, thick plate elements and 
composite laminated plate elements, have already been developed by using the 
quadrilateral area coordinate method. 

Firstly, the sensitivity analysis of the quadrilateral membrane elements to mesh 
distortion is discussed in Sect. 17.2. It is pointed out that the accuracy of the 
Serendipity-type elements will drop obviously when the element shapes are 
distorted. The academic background for the creation of the quadrilateral area 
coordinate methods is just for overcoming this disadvantage.  

Then, a brief review of the finite element models formulated by the quadrilateral 
area coordinate methods is given in Sect. 17.3. 

Various quadrilateral membrane elements formulated by the quadrilateral area 
coordinate methods are introduced in Sects. 17.4 to 17.7. 

Quadrilateral thin plate, thick plate and composite laminated plate elements 
formulated by the quadrilateral area coordinate methods are described in the last 
three sections.  

17.2 Sensitivity Analysis of Isoparametric Elements to 
Mesh Distortion 

Many finite element models possess high precision in a regular mesh division, 
but perform badly when the mesh is distorted. So, we say that these elements are 
sensitive to mesh distortion, which is a fatal disadvantage for applications.  

For many years, a great amount of effort has been made by many researchers for 
developing the elements which are insensitive to mesh distortion. Pian et al.[1]

and Wilson et al.[2] all discussed this problem, and proposed the hybrid-stress 
element scheme and the incompatible element scheme, respectively. Though some 
improvements were obtained, the sensitivity problem to mesh distortion still exists. 
Xu and Long[3] adopted the generalized conforming method to develop a 
quadrilateral membrane element GQ12M8 which is insensitive to mesh distortion. 
This is a membrane element with drilling freedoms and 8 internal freedoms.  

Lee and Bathe[4] have studied the effects of element distortions on the 
performance of the isoparametric membrane elements. Isoparametric elements 
can be classified into two types. One type is named as the Lagrange-type element. 
The elements which belong to this type usually contain internal nodes, such as 
the elements Q9 (9 nodes), Q16 (16 nodes) and Q25 (25 nodes). And, the other 
type is named as the Serendipity-type element. The elements which belong to 
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this type contain no internal nodes, such as the elements Q8 (8 nodes), Q12 (12 
nodes) and Q16 (16 nodes). In reference[4], the sensitivity problem to mesh 
distortion was tested by systematical numerical examples. It pointed out that the 
Serendipity family is very sensitive to mesh distortion, and on the contrary, the 
Lagrange-type elements are quite robust and insensitive to mesh distortion. 
However, there exist many internal nodes within a Lagrange-type element, which 
is inconvenient for practical applications. 

After the recognition of the above disadvantage of the Serendipity isoparametric 
elements, many researchers are quite interested in the reason that causes the 
problem, and hope to find new countermeasures. One of the recent effective 
strategies is the application of the quadrilateral area coordinate method, a new 
tool for developing the quadrilateral finite element models. For example, in order 
to compare with the 8-node Serendipity isoparametric element Q8, reference [5] 
used the quadrilateral area coordinate method to construct two 8-node elements 
MQ8-  and MQ8- . These two new elements exhibit excellent performance in 
various distorted meshes while the element Q8 is very sensitive to mesh distortion, 
which shows a striking contrast. On the basis of the comparison between the 
elements Q8 and MQ8, reference [6] gave systematic discussion on the sensitivity 
problem to mesh distortion, and proposed related countermeasures which can be 
stated as follows: 

Firstly, the results of a sensitivity test for mesh distortion are given. 
As shown in Fig. 17.1, a slender beam under pure bending is divided by two 

elements.  is a distortion parameter. The results obtained by the following 4 
models are plotted in Fig. 17.2. 

Q4: 4-node isoparametric element; Q8: 8-node isoparametric element; MQ8-
and MQ8- : 8-node elements formulated by the area coordinate method (model 
and model ).

It can be seen from Fig. 17.2 that, both the isoparametric elements Q4 and Q8 
are very sensitive to mesh distortion while the 8-node elements formulated by the 
area coordinate method can provide the exact solution when 0 < <1.

Secondly, the reason why the Serendipity isoparametric elements Q4, Q8, 
Q12, are sensitive to mesh distortion is analyzed.  

Figure 17.1 Sensitivity test for mesh distortion 
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Figure 17.2 Percentage error (%) of the deflection at point A in pure bending 
problem due to mesh distortion 

As an example, the displacement polynomial of the element Q12 contains 12 
undetermined coefficients (the completeness order for both  and  are third 
order):

2 2
1 2 3 4 5 6

3 2 2 3 3 3
7 8 9 10 11 12

( ) ( )

( ) ( )

u

(17-1)

If this polynomial is expressed in terms of the Cartesian coordinates (x, y), then 
we have: 

for regular rectangular element—linear transformation 
for distorted quadrilateral element—nonlinear transformation: x a0 a1 a2

a3  (bilinear) 
The completeness order of the displacement polynomial (17-1) in the Cartesian 

coordinates (x, y) is: 

 Rectangular element—third order completeness—high precision 
 Distorted element—first order completeness—low precision 

Since there is no 2 2 term in Eq. (17-1), x2, xy and y2 terms will disappear 
when the element is distorted, i.e., only the first order completeness for x and y
can be obtained for distorted element.  

Finally, conclusion and countermeasure are given as follows. 
The accuracy of an element mainly depends on the completeness order for x

and y.
Reason which causes the sensitivity problem to mesh distortion—mesh 

distortion leads to grave consequences that the completeness order for x and y
decreases rapidly from third order completeness (in the case of the rectangular 
element) to first order completeness (in the case of the distorted element). 

Countermeasure—the coordinate system which possesses linear relation with 
(x, y) is preferred during the construction of an element model, for example, if 
the quadrilateral area coordinate system is used, the completeness order for x and 
y will not decrease.  

sensitive to
mesh distortion



Advanced Finite Element Method in Structural Engineering 

586

17.3 Brief Review of the Finite Element Models Formulated  
by Quadrilateral Area Coordinate Methods 

17.3.1 Some Characteristics and Merits of Universal Area  
Coordinates (QACM- )

Both triangular and quadrilateral area coordinates (QACM- ) are two examples 
that belong to the universal area coordinate method. The former is a special case 
and a degenerated form of the QACM- ; and the QACM-  is the general form 
which contains the former. It can be seen that, in fact, the basic formulae of 
QACM-  are composed of two parts: in the first part are formulae that are 
newly derived specially for a quadrangle; and in the other part are the 
generalizations of those which are originally derived for a triangle. 

The universal area coordinate system possesses the following characteristics 
and merits: 

The transformation between the area coordinate system and the Cartesian 
coordinate system is linear. 
(In contrast: the transformation between the isoparametric coordinate 
system ( , ) and the Cartesian coordinate system is nonlinear.) 
The area coordinate system is a natural coordinate system. 
(In contrast: the Cartesian coordinate system is an artificially established 
system. When the Cartesian axes rotate, the area coordinates of the given 
point are invariant, while its Cartesian coordinates are not invariant.) 
Equation of the element boundary line is Li 0, and therefore the boundary 
condition is easy to express and be satisfied. 
Shape functions (or preparatory shape functions) can be written out directly. 

Shape function Ni for 3-node triangular element:

1 1

2 2

3 3

N L
N L
N L

 (17-2) 

Preparatory shape function Ni (Ni( j) ij) for quadrilateral element: 

1 1 2
2 4

2 2 3
3 1

3 3 4
4 2

4 4 1
1 3

1

1

1

1

N L L
g g

N L L
g g

N L L
g g

N L L
g g

 (17-3) 
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Stiffness matrix of an element formulated by the area coordinate method can 
be obtained explicitly. 
(Contrast: when the isoparametric coordinates are used, generally, the 
element stiffness matrix cannot be expressed explicitly, and it is evaluated 
only by numerical integration.) 
The elements formulated by the area coordinate method are insensitive to 
mesh distortion. 
(Contrast: the serendipity isoparametric elements are very sensitive to mesh 
distortion.)

17.3.2 New Quadrilateral Elements Formulated by the Area  
Coordinate Methods 

Due to the merits mentioned above, the quadrilateral area coordinate methods 
(including both QACM-  and QACM- ) have already become new tools for 
developing the quadrilateral elements. Since 1997, 20 new quadrilateral elements 
based on the area coordinate method have been proposed in succession by 
references [5] and [7 18], and they are listed in Table 17.1 (models with symbol* 
will be introduced in this book). 

The 20 quadrilateral elements listed in Table 17.1 can be classified into 7 types: 
(1) 4-node membrane elements—4 elements using different shape functions 

are proposed. Among these models, no. 1, 2 and 4 elements can not only give the 
exact solutions for pure bending problem by using distorted meshes, but also 
overcome the trapezoidal locking for the MacNeal thin beam problem, so they 
possess high computational accuracy and are insensitive to mesh distortion. These 
three elements will be introduced in Sect. 17.4. And, the performance of the no. 3 
element is also better than that of the similar isoparametric model, element 
QM6[19]. Furthermore, due to the feature of the quadrilateral area coordinate 
methods, the analytical element stiffness matrix of the element AGQ6-  (no.1 
element) can be formulated, which can improve the computation efficiency. And, 
in geometrically nonlinear analysis, the element AGQ6-  also exhibits excellent 
performance, and this will be described in Sect. 17.5. Here, the advantages and 
potential of the quadrilateral area coordinate methods are fully exhibited. 

(2) 4-node membrane elements with drilling degrees of freedom—2 elements, 
AQ4  and AQ4 , are proposed. They will be introduced in Sect. 17.6. 

(3) 5, 6, 7 and 8-node membrane elements—8 elements are proposed. No. 13 
and 14 elements AQ8 (  and ) will be introduced in Sect. 17.7. When a mesh 
is distorted, the new element AQ8 can still keep good accuracy, which is 
obviously better than the conventional 8-node isoparametric element Q8.  
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Table 17.1 New quadrilateral elements based on the area coordinate method 
(20 elements) 

Problem types Element names References

(1) 4-node membrane element 

1. *AGQ6-
AGQ6-  with analytical element
stiffness matrix 
*AGQ6-  for geometrically 
 nonlinear analysis 

2. *AGQ6-
3. QACM4 
4. *QAC 6  (by QACM- )

2004 [7] 
2007 [8] 

2008 [9] 

2004 [7] 
2007 [10] 
2008 [11] 

(2) 4-node membrane element with 
drilling degrees of freedom 

5. *AQ4
6. *AQ4

2003 [12] 
2003 [12] 

(3) 5, 6, 7 and 8-node membrane 
element 

7. QACM5  (5-node) 
8. QACM6  (6-node) 
9. QACM7  (7-node) 
10. QACM8  (8-node) 
11. MQ8-   (8-node) 
12. MQ8-   (8-node) 
13. *AQ8-   (8-node) 
14. *AQ8-   (8-node) 

2007 [10] 
2007 [10] 
2007 [10] 
2007 [10] 
1998 [6] 
1998 [6] 
2000 [13] 
2000 [13] 

(4) 4-node axisymmetric element 15. AQACQ6 
16. AQACQ6M 

2007 [14] 
2007 [14] 

(5) 4-node thin plate element 17. ACQ 
18. *ACGCQ 

1997 [15] 
2000 [16] 

(6) 4-node thick plate element 19. *AC-MQ4 2006 [17] 
(7) 4-node laminated composite plate 

element 
20. *AC-MQ4-LC 2007 [18] 

(4) 4-node axisymmetric elements—2 elements are proposed. Similar to those 
4-node membrane elements formulated by the area coordinate method, they also 
exhibit better performance than the corresponding isoparametric models in distorted 
meshes. 

(5) 4-node thin plate element—2 elements are proposed. Element ACGCQ 
will be introduced in Sect. 17.8. 

(6) 4-node thick plate element—A new thick plate bending element AC-MQ4 
is proposed and will be introduced in Sect. 17.9. This element is generalized 
from the thin plate element ACGCQ by using the rational interpolation technique 
for shear strain fields which was proposed in reference [20]. When the thickness 
of a plate becomes small, this element AC-MQ4 will degenerate to be the thin 
plate element ACGCQ, so no shear locking will happen.  

(7) 4-node laminated composite plate element—A new element AC-MQ4-LC 
is developed by adding bilinear in-plane displacement fields into the formulations 
of the element AC-MQ4. It will be introduced in Sect. 17.10. 
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17.4 4-Node Quadrilateral Membrane Elements  
Formulated by the Area Coordinate Method 

There are four 4-node quadrilateral elements, which have been listed in Table 17.1, 
formulated by the area coordinate methods. They all belong to the generalized 
conforming element. The differences among these models are that different 
displacement trial functions and different generalized conforming conditions are 
employed. Three of these models, the elements AGQ6-  and AGQ6- [7],
QAC6[11], exhibit the best performance, and will be introduced in this section. 
Their construction procedures possess the following characteristics: 

(1) The displacement field is expressed with the polynomial in the area 
coordinates (instead of the isoparametric coordinates). Thus, whether the element is 
distorted or not, the completeness order of the displacement polynomial in the 
Cartesian coordinates system (x, y) will not change. 

(2) Various generalized conforming conditions are adopted for determining the 
displacement field, including the nodal version conforming conditions, and 
integral form conforming conditions of the displacement along the perimeter of 
the element. 

(3) Only the weak patch test, instead of the strict form, is used to assure the 
convergence of the elements. 

(4) The internal DOFs are condensed during the element analysis level. 
Therefore, the element stiffness matrix is still an 8 8 matrix after condensation. 

17.4.1 Formulations of the Element AGQ6-

1. Element nodal displacement vector eq  and internal parameter vector 

For a 4-node quadrilateral element, the element nodal displacement vector eq  is 
composed of the displacement components u and v of the 4 nodes: 

T
1 1 2 2 3 3 4 4[ ]e u v u v u v u vq  (17-4) 

In addition, the displacement fields u and v are assumed to include two internal 
parameters, respectively. They form the internal parameter vector 

T
1 1 2 2[ ]  (17-5) 

Thus, the displacement fields of the element are composed of two parts and 
expressed by eq  and :

0

0
e

q

uu u
vv v

N q N  (17-6) 
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where u0 and v0 are the essential displacement fields; u  and v  are the additional 
internal displacement fields; Nq is the shape function matrix; and N  is the 
internal parameter shape function matrix; 

0 0 0 0
1 2 3 4

0 0 0 0
1 2 3 4

0 0 0 0
0 0 0 0q

N N N N
N N N N

N  (17-7) 

1 2

1 2

0 0
0 0

N N
N N

N  (17-8) 

2. Shape functions Nq

The element displacement fields are expressed with the polynomial in the 
quadrilateral area coordinates. 

The shape functions for u0 and v0 have the same forms. So, only the derivation 
of u0 is given as follows. Let u0 be the second-order polynomial in terms of the 
area coordinates L1, L2, L3, L4:

0
1 2 3 1 3 4 2 4 3 1 4 2( ) ( ) ( )( )u L L L L L L L L  (17-9) 

In order to determine four constants 1, 2, 3 and 4, four generalized 
conforming conditions are introduced: 

4
0 0

1
4

0 0

1

( ) 0, ( )d 0

( ) 0, ( )d 0

e

e

i A
i

i i i A
i

u u l u u s

u u m u u s
 (17-10) 

where two conditions are the combination forms of the nodal conforming 
conditions, and the other two are the integral form conforming conditions along 
the perimeter Ae of the element; u  is the displacement at the element boundary; 
l and m are the direction cosines of the outer normal along the element boundary. 

Then, the shape functions 0
iN  (i 1, 2, 3, 4) can be obtained from the above 

conforming conditions: 

0
2 1 2

1
2i i i i i i iN g L L g P   (i 1,2,3,4) (17-11) 

where

3 1 4 2 2 3 3 1 1 2 4 2 2 4 1 3

1 3 2 4

13( )( ) ( )( ) ( )( ) ( )
2

1

L L L L g g L L g g L L g g g g
P

g g g g
 (17-12) 



Chapter 17 Quadrilateral Area Coordinate Systems, Part  New Tools for ... 

591

3. Internal parameter shape functions N

The two shape functions of the internal displacement field u  are given by 

1 1 3

2 2 4

N L L
N L L

 (17-13) 

It can be seen that the nodal values of these two shape functions are both zero. 
When the element shape degenerates to rectangle, N i (i 1, 2) will be the same 
as the internal parameter shape functions of the element Q6 proposed by Wilson 
et al.[21].

4. Element stiffness matrix 

The element displacement fields are  

e
q

u
v

N q N  (17-14) 

It can be shown that such displacement fields are the complete second-order 
polynomial in terms of the Cartesian coordinates (x, y).

Then, by using the transformation of derivatives of first order, the element 
strain vector  can be obtained: 

e
qB q B  (17-15) 

with

1 2 3 4[ ]q q q q qB B B B B ,

0
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qi
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N
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1 2[ ]B B B ,

0

0

i

i
i

i i

N
x

N
y

N N
y x

B   (i 1,2)

After condensation, the element stiffness matrix of the element can be 
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expressed by 

T 1e
qq q qK K K K K  (17-16) 

where
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 (17-17) 

in which D is the elasticity matrix; h is the thickness of element.  

17.4.2 Formulations of the Element AGQ6-

The construction procedure of the element AGQ6-  is similar to that of AGQ6- .
The only difference is that the shape functions 0

iN are expressed by Eqs. (17-20) 
and (17-21) instead of Eqs. (17-11) and (17-12). The derivation procedure is given 
as follows. 

The displacement u0 of the element AGQ6-  is still given by Eq. (17-9). But, 
the conforming conditions are changed to the following combination conditions 
at the element nodes: 

4
0

1

4
0

1

( ) 0,

( ) 0,
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u u

u u

4
0

1
4
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1
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i i i
i

u u
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 (17-18) 

Substitution of Eq. (17-9) into Eq. (17-18) yields: 

4

1 1 2 2 2 3 3 2 4 1 3 4
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u g g g g g g g g

u

u

u g g g g g g g g

 (17-19) 
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Then, the shape functions of the element AGQ6-  can be obtained: 

0
1

1
(1 )

2
i

i i i i i i
g

N L L g P   (i 1,2,3,4) (17-20) 

where

3 1 4 2 2 4 1 3
2 4 1 3

1 1( )( ) ( )
2

P L L L L g g g g
g g g g

 (17-21) 

And, other formulations of the element AGQ6-  are the same as those of the 
element AGQ6- .

17.4.3 Formulations of the Element QAC 6

The construction procedure of the element QAC 6 is similar to those of AGQ6-
and AGQ6- . The main difference is that all formulations are expressed in the 
QACM- . The derivation procedure is given as follows. 

Equations (17-4) to (17-8) are still adopted. The displacement field u0 is 
assumed to be a second order polynomial expressed in Z1 and Z2 (QACM- ):

0
1 2 1 3 2 4 1 2u Z Z Z Z  (17-22) 

where 1, 2, 3 and 4 are still four unknown constants. In order to determine 
these four constants, four generalized conforming (point-conforming) conditions 
are introduced as follows: 

0
ii

u u   (i 1,2,3,4)  (17-23) 

After substituting Eq. (17-22) into Eq. (17-23), and replacing Z1 and Z2 by their 
values at four corner nodes, four simultaneous equations can be obtained from 
Eq. (17-23). Then by solving these equations, we can obtain 

0
1 2 1 22 2

1 2

1 2 1 1 1 2 2 2

1 2 1 2

1 (1 )(1 )(1 )
4(1 )

(1 )(1 ) (1 )(1 )
(1 ) ( 1,2,3,4)

i i i i i

i i i i i i i i

i i i i

N g g g g
g g

g g g Z g g g Z
g g Z Z i (17-24)

The internal parameter displacement fields u and v are assumed as follows: 

1 1 2 2

1 1 2 2

u N N
v N N

 (17-25) 

with
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2
1 1 1 1 2 2 1 3 2 4

2
2 2 1 1 2 2 1 3 2 4

N Z Z Z Z Z
N Z Z Z Z Z

 (17-26) 

where i and i (i 1,2,3,4) are eight unknown constants. The values of each 
internal parameter displacement field at four corner nodes should be zero. So, we 
have

1

2

0
0

i

i

N
N

  (i 1,2,3,4) (17-27) 

By substituting Eq. (17-26) into Eq. (17-27), the eight unknown constants can be 
solved out. Finally, we obtain 

2 2 2 2 2
2 1 2 1 2 1 2 1 2 2 2 1 2 2

1 1 2 2
1 2

2 2 2 2 2
2 1 2 1 2 1 1 1 1 2 2 1 2 1

2 2 2 2
1 2

2 2 2(1 ) (1 )(1 )
1

2 2(1 ) 2 (1 )(1 )
1

g g Z Z g g Z g g Z g g gN Z
g g

g g Z Z g g Z g g Z g g gN Z
g g

(17-28)

And, other formulations of the element QAC 6 are the same as those of the 
element AGQ6- .

17.4.4 Numerical Examples 

Example 17.1 Cantilever beam divided by five quadrilateral elements (Fig. 17.3). 

Figure 17.3 Cantilever beam with five irregular elements 

The cantilever beam, as shown in Fig. 17.3, is divided by five irregular 
quadrilateral elements. And, two loading cases are considered: (1) pure bending 
under moment M ; (2) linear bending under transverse force P. The Young’s 
modulus E 1500, Poisson’s ratio 0.25. The results of the vertical deflection 
vA at point A and the stress xB at point B are given in Table 17.2. 

Compared with the results solved by other element models, it can be seen from 



Chapter 17 Quadrilateral Area Coordinate Systems, Part  New Tools for ... 

595

Table 17.2 that the new elements AGQ6- , AGQ6-  and QAC 6 give the best 
answers. Furthermore, exact solutions can even be obtained by the presented 
elements for the pure bending case. 

Table 17.2 The deflection and stress at selected locations for bending problems 
of a cantilever beam (Fig. 17.3) 

Load M Load P
Elements 

vA xB vA xB

Q4 45.7 1761 50.7 2448
Q6[21] 98.4 2428 100.4 3354
QC6[22] 96.1 2439 98.1 3339
NQ6[23] 96.1 2439 98.0 3294
QM6[19] 96.07 2497 97.98 3235
P-S[1] 96.18 3001 98.05 3899
QE-2[24] 96.5 3004 98.26 3906

B -Q4E[24] 96.5 3004 98.26 3906
AGQ6- 100 3000 102.0 4151
AGQ6- 100 3000 102.7 4180
QAC 6 100 3000 102.7 4180
Exact 100 3000 102.6 4050

Example 17.2 Cook’s skew beam problem (Fig. 17.4). 
As shown in Fig. 17.4, a skew cantilever using a 2 2 typical mesh division is 

subjected to a shear distributed load at the free edge. The results of vertical 
deflection at point C, the maximum principal stress at point A and the minimum 
principal stress at point B are listed in Table 17.3. Compared with the other 7 
elements, the elements AGQ6- , AGQ6-  and QAC 6 exhibit the best 
convergence. 

Figure 17.4 Cook’s skew beam problem 
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Example 17.3 MacNeal’s thin cantilever beam with distorted meshes 
(Fig. 17.5). 

Consider the thin beams presented in Fig. 17.5. Three different mesh shapes, 
rectangular, parallelogram and trapezoidal, are adopted. This example, proposed 
by MacNeal and Harder[27], is a famous benchmark for testing the sensitivity to 
mesh distortion of the 4-node quadrilateral membrane elements. Besides the 
distortion caused only by the length-width ratio, the composite distortions of 
parallelogram and trapezoidal shapes together with length-width ratio are also 
taken into account. 

Figure 17.5 MacNeal’s beam 
(a) Mesh A; (b) Mesh B; (c) Mesh C

There are two loading cases under consideration: pure bending and transverse 
linear bending. The Young’s modulus of the beam E 107; the Poisson’s ratio 

0.3; and the thickness h 0.1.
The results of the tip deflection are shown in Table 17.4. Besides elements 

AGQ6- , AGQ6-  and QAC 6, the results obtained by the other nine element 
models are also given for comparison. 

From Table 17.4, one can conclude that 
(1) It is obvious that the element Q4 suffers from locking problems for all three 

types of distortion (  length-width ratio distortion,  parallelogram distortion, 
 trapezoidal distortion) of three different meshes. 
(2) The other eight elements can all improve the accuracy more or less. 
Firstly, they all exhibit high precision using mesh A, no locking problem happens 

for the distortion caused by the length-width ratio. 
Secondly, although their precisions are also improved using mesh B and mesh 

C, the locking problems are still not avoided completely, especially for the 
trapezoidal locking. 

(3) The new elements, AGQ6- , AGQ6- , and QAC 6 possess high accuracy 
for all three mesh divisions, and are insensitive to three types of distortion. 
Moreover, they can even produce the exact solutions for the pure bending problem. 
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Table 17.4 The normalized results of the tip deflection for the MacNeal’s thin beam 
using different meshes (Fig. 17.5) 

Load P Load M
Elements 

Mesh A Mesh B Mesh C Mesh A Mesh B Mesh C
Q4 0.093 0.035 0.003 0.093 0.031 0.022 
QUAD4[27] 0.904 0.080 0.071    
Q6[21] 0.993 0.677 0.106 1.000 0.759 0.093 
QM6[19] 0.993 0.623 0.044 1.000 0.722 0.037 
P-S[1] 0.993 0.798 0.221 1.000 0.852 0.167 
RGD20[28] 0.981 0.625 0.047    
PEAS7[29] 0.982 0.795 0.217    
PN340[25] 0.982 0.620 0.065    
ANSYS 0.979 0.624 0.047    
AGQ6- 0.993 0.994 0.994 1.000 1.000 1.000 
AGQ6- 0.993 0.994 0.994 1.000 1.000 1.000 
QAC 6 0.993 0.994 0.994 1.000 1.000 1.000 

Exact 1.000 1.000

 The standard value is 0.1081; 
 The standard value is 0.0054. 

Reference [30] has pointed out that if the element can pass the constant strain/ 
stress patch test in a finite size mesh (i.e. the strict patch test), the trapezoidal 
locking will inevitably appear for the element in the calculation of the MacNeal’s 
thin beam. One reason that the new elements AGQ6- , AGQ6-  and QAC 6
can successfully avoid trapezoidal locking is that the new tool of the quadrilateral 
area coordinate systems are used, which can always keep the second-order 
completeness in the Cartesian coordinates under distortion meshes. Besides, 
instead of the strict form, only the weak form of patch test is used to assure the 
convergence of the new elements. 

Example 17.4 Cantilever beam divided by two elements containing a parameter 
of distortion (Fig. 17.6). 

The cantilever beam shown in Fig. 17.6 is divided by two elements. The shape 
of the two elements varies with the distortion parameter e. When e 0, both 
elements are rectangular. But, with the increase of e, the mesh will be distorted 
more and more seriously. This is another famous benchmark for testing the 
sensitivity to the mesh distortion. 

For the pure bending problem, the results of the tip deflection vA at point A
are listed in Table 17.5. Besides the elements AGQ6- , AGQ6-  and QAC 6, 
the solutions obtained by the other five element models are also given for 
comparison. 
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Figure 17.6 Cantilever beam divided by two elements with distortion parameter e

Table 17.5 Results of the tip deflection of a cantilever beam with a distortion 
parameter e (Fig. 17.6)

e 0 0.5 1 2 3 4 4.9 
Q4 28.0 21.0 14.1 9.7 8.3 7.2 6.2 
QM6[19] 100 80.9 62.7 54.4 53.6 51.2 46.8 
P-S[1] 100 81.0 62.9 55.0 54.7 53.1 49.8 
QE2[24] 100 81.2 63.4 56.5 57.5 57.9 56.9 
B -Q4E[24] 100 81.2 63.4 56.5 57.5 57.9 56.9 
AGQ6- 100 100 100 100 100 100 100 
AGQ6- 100 100 100 100 100 100 100 
QAC 6 100 100 100 100 100 100 100 
Exact 100 100 100 100 100 100 100 

Table 17.5 shows that: 
The accuracy of the element Q4 is the poorest. Its relative precision only 

reaches 28% when e 0.
The accuracies of the elements QM6, P-S, QE2 and B -Q4E are better than 

that of Q4. All these four elements can produce the exact solution when e 0.
But, unfortunately, they are still sensitive to the mesh distortion. The relative 
precision only reaches 63% or so when e 1, and will continue decreasing if e
keeps increasing. 

But, things become very different for the elements AGQ6- , AGQ6-  and 
QAC 6. All of them can keep providing the exact solutions when e varies from 
0 to 5, i.e., they can overcome the trapezoidal locking completely. This shows 
again the advantages of the quadrilateral area coordinate methods and the weak 
patch test. 

Example 17.5 Weak patch test (Fig. 17.7). 
The constant strain/stress weak patch test using irregular mesh is shown in 

Fig. 17.7. Let Young’s modulus E 1000, Poisson’s ratio 0.25, and thickness 
of the patch t 1. At first, the patch divided by only three elements, as shown in 
Fig. 17.7, is considered. Each element is then bisected through the midpoints of 
the element sides. Thus, each original element is subdivided into four elements. 
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Repeat this division again and again, the total number of the elements in the 
refined mesh after each action will be 12, 48, 192, , in turn. 

Figure 17.7 Weak patch test 

From the results of this problem, it can be seen that the new elements AGQ6- ,
AGQ6-  and QAC 6 cannot give the exact solutions using the coarse mesh in 
finite size, i.e., they fail to pass the strict patch test. But, with the subdivision of 
the mesh, the results obtained by these elements will converge to the exact 
solutions. Therefore, they pass the weak patch test. 

17.4.5 Conclusions 

Three 4-node quadrilateral membrane elements, AGQ6- , AGQ6-  and QAC 6,
have been developed using the quadrilateral area coordinates and generalized 
conforming conditions. The formulations of these elements are quite simple and 
easy to be constructed. And, the potential accuracy and versatility of the said 
elements have been illustrated using numerical examples, which show that: these 
new elements can not only produce the exact solutions for the pure bending 
problems using arbitrary mesh, but also avoid trapezoidal locking of the 
MacNeal’s thin beam with distorted mesh. Compared with other 4-node 
quadrilateral membrane element models, these new elements exhibit higher 
precision and are more insensitive to mesh distortion.  

Two points are worthy of being pointed out: 
(1) This section provides a successful experience for constructing the 

quadrilateral membrane elements that are insensitive to mesh distortion. For a 
long time, many researchers have struggled for establishing effective element 
models that can not only avoid the trapezoidal locking in the MacNeal’s thin 
beam problem, but also ensure the convergence of them. But, after many failed 
attempts, somebody even suspected that the above two purposes could not be 
achieved simultaneously. This section negates this suspicion, because it is 
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obvious that both purposes have been realized by the present elements. The 
success depends on two keys: the isoparametric coordinates are replaced by the 
quadrilateral area coordinates; and the strict patch test is replaced by the weak 
form. 

(2) This section also shows the advantages of the quadrilateral area coordinates, 
especially for their excellent performance that can improve insensitivity of the 
elements to distorted meshes. This merit has been exhibited in references [5,13] 
for constructing the 8-node quadrilateral membrane elements, now it is again 
illustrated here for constructing the 4-node models. Besides, the formulations 
expressed by the area coordinates are isotropic because the area coordinate system 
is a natural coordinate system. This is another distinguished characteristic of the 
area coordinates, which the Cartesian coordinates cannot assure. 

17.5 Geometrically Nonlinear Analysis Using Element  
AGQ6-

17.5.1 Total Lagrangian Formulation of AGQ6-

In order to establish the Total Lagrangian (TL) formulation for the element 
AGQ6- , the proper strain measure should be the Green’s strain: 

, , , ,
1 ( )
2

E u u u u  (17-29) 

Where the Green’s strain is temporarily written in index tensor form; the indices 
,  and  range from 1 to 2 (so u1, u2 denote u, v in Eq. (17-6), respectively). 

Substitution of Eq. (17-6) into Eq. (17-29) will lead to quite complicated 
formulations. In fact, the linear part of the Green’s strain plays a dominant role in 
calculations. Therefore, it is possible to exclude the incompatible displacement 
from the quadratic displacement term, as in the paper of Wu et al.[31]:

0 0 0 0 0 0
, , , , , , , , , ,

1 1 1( ) ( ) ( )
2 2 2

E u u u u u u u u u u

(17-30)

Based on the above assumption, the Green’s strain can be expressed in matrix 
form: 

1
2

e e e e
qE B q B AGq  (17-31) 
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where

1 2 3 4[ ]G G G G G ,

0

0

0

0

0
0

0
0

i

i
i

i

i

N X
N X

N Y
N Y

G   (i 1,2,3,4)  

(17-32)
0 0

0 0

0 0 0 0

0 0
0 0

u X v X
u Y v Y

u Y v Y u X v X
A  (17-33) 

T0 0 0 0
eu v u v

X X Y Y
Gq  (17-34) 

It should be noted that, since the Total Lagrangian form is used, all the 
derivatives are with respect to the undeformed (or initial) configuration (X, Y).
Here, there is no difference between X  (or Y ) and x  (or y ).

The condensation of the internal parameter vector e  can be achieved by 
using the following stationary condition: 

e eU 0   (17-35) 

in which eU  is the element strain energy. In 2D linear elastic applications eU
can be expressed as follows:

T de e e

A
U h AE DE  (17-36) 

Substitution of Eqs. (17-31) and (17-36) into Eq. (17-35) yields:

1
1 2

1
2

e eR G G q  (17-37) 

with
T T T

1 2d , d , dq
A A A

h A h A h AR B DB G B DB G B DAG   (17-38) 

Thus, the Green’s strain vector can be written in the following condensed form:

1 1
1 2

1( ) ( )
2

e e e
qE B B R G q AG B R G q  (17-39) 

Define the following incremental relation
ed dE B q  (17-40) 
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where the matrix B  can be evaluated as follows:
1 1

1 2( ) ( )qB B B R G AG B R G  (17-41) 

The second Piola-Kirchhoff (PK2) stress vector eS  is calculated by:

e eS DE (17-42)

with
T[ ]e

x y xyS S SS  (17-43) 

So, the internal nodal force vector int e

f  and the tangent stiffness matrix T
eK  can 

be written as follows
int T( ) d

e e

A

h Af B S  (17-44) 

T mat geo
e e eK K K  (17-45) 

where e
matK  is the material tangent stiffness matrix and e

geoK  is the geometrical 
tangent stiffness matrix, 

T
mat ( ) de

A

h AK B DB ,
2

e T
geo

1

d i i
iA

h AK G MG H  (17-46) 

1 3T

3 2

11 12

21 22

31 32

d ( 1,2)

1 0
,

0 1

i i
i

i iA

l l
h A i

l l

l l
l l
l l

I I
H G G

I I

DB I
 (17-47) 

x xy

xy y

S S
S S

I I
M

I I
 (17-48) 

T 1 T
1 2[ ] de

A

h AR B S  (17-49) 

Thus, the Total Lagrangian formulation of AGQ6-  is established. By using 
Eq. (16-39), all the necessary matrices can be evaluated by the Gauss numerical 
integration scheme. 

17.5.2 Numerical Examples 

All examples are selected from the documentation of the FEM software 
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ABAQUS[32].
Example 17.6 Deformations of a cantilever beam subjected to a constant tip 

vertical load P (Fig. 17.8). 
As shown in Fig. 17.8, a slender cantilever is subjected to a constant vertical 

concentrated load P 269.35N (load direction keeps vertical) at its free tip. The 
length L, height H and thickness T of the cantilever are as follows: L 10m; 
H 147.8mm; and T 100mm, so the beam is moderately slender (L/H 70). The 
Young’s modulus E 100MPa; and the Poisson’s ratio 0. Bending behavior 
will be the dominant deformation since axial deformation is insignificant. Two 
mesh divisions are used: (1) parallelogram (45 ) coarse mesh: 1 10 for the 4-node 
elements and 1 5 for the 8-node elements; and (2) trapezoidal coarse mesh 
(45 ): 1 10 for the 4-node elements and 1 5 for the 8-node elements. The exact 
solution for the inextensible beam is given in reference [33]. Here, the reference 
solution is obtained with the 8-node reduced integration isoparametric element in 
a regular mesh of 1 20, and is very close to the analytical solution. As shown in 
Table 17.6, besides the element AGQ6- , the results by the incompatible 
isoparametric elements Q6 and QM6, the conventional 4-node isoparametric 
element Q4, and several ABAQUS elements are all reported for comparison. 

Figure 17.8 Slender cantilever subjected to tip vertical load P

Table 17.6 List of quadrilateral element models for comparison 

Element 
symbols Features Number of Gauss 

integration points
QACM
elements (T.L.) AGQ6- 4-node, incompatible mode, pass the weak 

constant strain/stress patch test 3 3

Q4 4-node, standard bilinear isoparametric element 3 3
Q4-2 as above 2 2
Q6 4-node, incompatible mode[21] 3 3
Q6-2 as above 2 2

QM6 4-node, incompatible mode, pass the strict
constant strain/stress patch test[19] 3 3

Isoparametric
elements 
(T.L.) 

QM6-2 as above 2 2
CPS4 4-node, standard, fully integrated  

CPS4I 4-node, incompatible mode with enhanced 
assumed strain, pass the strong patch test 

CPS4R 4-node, standard, reduced-integration, hourglass
control

CPS8R 8-node, reduced-integration  

ABAQUS
elements[32]

(U.L.) 

CPS8 8-node, fully integrated  
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Figure 17.9 Deformations of the beam subjected to constant vertical load P:
parallelogram coarse mesh 

Figure 17.10 Deformations of the beam subjected to constant vertical load 
P: trapezoidal coarse mesh 

The deformations of the beam are plotted in Fig. 17.9 and Fig. 17.10. It can be 
seen that the element AGQ6-  exhibits obvious advantage when compared with 
the other 4-node models. Among the results by the 4-node elements, AGQ6-  is 
the closest one to the solution of the element CPS8R which is recommended by 
ABAQUS.



Advanced Finite Element Method in Structural Engineering 

606

Example 17.7 Deformations of a cantilever beam subjected to tip bending 
moment M (Fig. 17.11). 

Figure 17.11 Slender cantilever subjected to tip bending moment M

As shown in Fig. 17.11, a slender cantilever is subjected to a bending moment 
load M 3384.78N m at its free tip. The length L of the beam is 100m. Other 
dimensions and material constants are the same as those in the previous example. 
The analytical solution for this problem is ML/EI 2 n, where I is the section 
moment of inertia; n  is the number of times that the beam will wind around 
itself. Here 2n  is the exact analytical solution. A 1 400 mesh division with 
the trapezoidal (45 ) element shape is adopted. The results by the element 
AGQ6-  and some other models are plotted in Fig. 17.12. It is very interesting 
that the displacement of the beam obtained by the element AGQ6-  winds exactly 
two times, while the locking phenomenon happens for the other 4-node elements. 

Figure 17.12 Deformations of a slender beam subjected to tip moment load 
M: trapezoidal mesh 1 400

17.6 Quadrilateral Membrane Elements with Drilling  
Degrees of Freedom Formulated by the Area  
Coordinate Method 

There are two 4-node quadrilateral elements with drilling degrees of freedom, 
AQ4  and AQ4 , which have been listed in Table 17.1, formulated by the area 
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coordinate method. They will be introduced in this section. The key points of 
their construction are as follows: 

(1) The element AQ4  is derived from the element QACM4[10] by introducing 
vertex drilling degrees of freedom i (i 1,2,3,4) and their shape functions Nu i

and Nv i.
(2) The element AQ4  is derived from the element AQ4  by introducing 

internal degrees of freedom 1, 1  and their shape function N 1.

17.6.1 Formulations of the Element AQ4

Consider a 4-node quadrilateral membrane element with vertex drilling degrees 
of freedom. The element nodal displacement vector can be written as: 

T T T T T
1 2 3 4[ ]eq q q q q

in which the degrees of freedom for each node are given by 

T[ ]i i i iu vq   (i 1,2,3,4)

where ui and vi are the nodal translation displacements; i are the additional rigid 
rotations at vertices. 

The element displacement fields are composed of two parts 

0u u u  (17-50) 

The first term on the right side of the above equation represents the displacement 
fields determined by the nodal translation degrees of freedom; and the second 
term represents the additional displacement fields caused by the in-plane rigid 
vertex drilling degrees of freedom.  

1. Determination of the displacement fields u0

The displacement fields u0 are caused by the nodal translation degrees of 
freedom, and by using the formulations of the element QACM4[10], they can be 
expressed in terms of the quadrilateral area coordinates as follows: 

4
0 0

1
4

0 0

1

i i
i

i i
i

u N u

v N v
 (17-51) 

in which the shape functions 0
iN  are given by 
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0
2 1 2

1
2i i i i i i iN g L L g P   (i 1,2,3,4) (17-52) 

where

3 1 4 2 2 3 3 1 1 2 4 2 2 4 1 3

1 3 2 4

13( )( ) ( )( ) ( )( ) ( )
2

1

L L L L g g L L g g L L g g g g
P

g g g g
(17-53)

Equations (17-52) and (17-53) are the same as Eqs. (17-11) and (17-12), 
respectively. 

2. Determination of the displacement fields u

The displacement fields u  are the element displacement fields caused by the 
vertex drilling degrees of freedom i (i 1,2,3,4), and can be determined as 
follows.

Firstly, the boundary displacements along each element side are determined by 
the vertex rotations i. A cubic interpolation polynomial is used for the boundary 
displacements. Then, the displacements of the side ij can be expressed by the 
rotations i and j at two ends as follows: 

12 4
1 3 1 1 3 22 2

12 4 1 2 1 2

23 1
2 4 2 2 4 32 2

23 1 2 3 2 3

34 2
1 3 3 3 1 42 2

34 2 3 4 3 4

41 3

41 3

1 1

1 1

1 1

u b
L L L L

v c g g g g

u b
L L L L

v c g g g g

u b
L L L L

v c g g g g

u b
v c 2 4 4 4 2 12 2

4 1 4 1

1 1L L L L
g g g g

 (17-54) 

where 1 2i i ib y y  and 2 1i i ic x x .
Secondly, the element displacement fields u  caused by the vertex rotations i

are determined by the boundary displacements given in the above equation. 
Assume that u  and v  are both expressed by a complete quadric polynomial in 
the quadrilateral area coordinates Li (i 1,2,3,4):

1 2 3 1 3 4 2 4 3 1 4 2 5 1 3 6 2 4

1 2 3 1 3 4 2 4 3 1 4 2 5 1 3 6 2 4

( ) ( ) ( )( )
( ) ( ) ( )( )

u L L L L L L L L L L L L
v L L L L L L L L L L L L

(17-55)

For u , the following 6 generalized conforming conditions are introduced (similar 
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conditions are also used for v ):

4

1

4

1

( ) 0

( ) 0

( )d 0 ( 12,23,34,41)
ij

i i

i

i i
i i

i

d

u u

u u

u u s ij

 (17-56) 

Substitution of Eq. (17-54) and Eq. (17-55) into the above equation yields 

L Tq
L T q

 (17-57) 

From the above equation, we obtain 

1

1

L Tq
L T q

 (17-58) 

where

1 2 2 3 2 4 1 3

3 2 2 1 2 4 1 3

2 3 2 4 1 3 4 1 2 34 1

4 3 4 2 1 3 2 1 3 41 2

2 3 4 2 3 1 2 31 4 1 4

31 2

4 2( ) 2( ) 2( ) 0 0
0 2( ) 2( ) 2( ) 0 0

(2 ) ( 2 )
1 0

2 2 6 6
(2 ) ( 2 )

1 0
2 2 6 6

(2 ) ( 2 )1 0
2 2 6 6

1
2

g g g g g g g g
g g g g g g g g

g g g g g g g g g gg g

g g g g g g g g g gg g

g g g g g g g gg g g g

g gg g

L

4 2 4 3 1 4 3 1 2(2 ) ( 2 ) 0
2 6 6

g g g g g g g g

(17-59)

1 1

2 2

3 3

4 4

0 0 0 0
0 0 0 0
0 01
0 012

0 0
0 0

b b
b b

b b
b b

T , 1 1

2 2

3 3

4 4

0 0 0 0
0 0 0 0
0 01
0 012

0 0
0 0

c c
c c

c c
c c

T  (17-60) 
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T
1 2 3 4 5 6 , T

1 2 3 4 5 6

T
1 2 3 4[ ]q

Let
1

1

G L T
G L T

 (17-61) 

then, we have 
4

1
4

1

u i i
i

v i i
i

u N

v N
 (17-62) 

in which the shape functions are 

1 2 3 1 3 4 2 4 3 1 4 2 5 1 3 6 2 4

1 2 3 1 3 4 2 4 3 1 4 2 5 1 3 6 2 4

( ) ( ) ( )( )
( ) ( ) ( )( )

( 1,2,3,4) (17-63)

u i i i i i i i

v i i i i i i i

N G G L L G L L G L L L L G L L G L L
N G G L L G L L G L L L L G L L G L L

i

3. Element displacement fields and stiffness matrix 

The element displacement fields can be obtained by the superposition of u0

and u :
4

0
1

e e
i i

i
u u u Nq N q  (17-64) 

where

1 2 3 4[ ]N N N N N  (17-65) 

0

0

0
0

i u i
i

i v i

N N
N N

N

And, the element strain fields are 

e
qB q  (17-66) 

where

1 2 3 4[ ]qB B B B B
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0

0

0 0

0

0

i u i

i v i
i

i i u i v i

N N
x x

N N
y y

N N N N
y x y x

B   ( 1,2,3,4)i  (17-67) 

Then, the element stiffness matrix of the element AQ4  can be written as 

T d
e

qq q q
A

h AK B DB  (17-68) 

17.6.2 Formulations of the Element AQ4

The new element AQ4  is derived from the element AQ4  by introducing 
internal degrees of freedom. Firstly, the displacements related to the internal degrees 
of freedom are assumed to be 

   1 2 3 1 3 4 2 4 1 3 1 2 4 2 3 1 4 2

1 2 3 1 3 4 2 4 1 3 1 2 4 2 3 1 4 2

( ) ( ) ( )( )
( ) ( ) ( )( )

u L L L L L L L L L L L L
v L L L L L L L L L L L L

(17-69)

Then, four line generalized conforming conditions of zero boundary displacement 
for u  and v  are introduced: 

 d
ijd

su 0  (17-70) 

Finally, we obtain 

1 1 2 2

1 1 2 2

u N N
v N N

 (17-71) 

where 1, 1, 2, 2  are 4 internal parameters; N 1 and N 2 are the shape 
functions for internal parameters: 

1 2 3 4 1 3 2 4 1 2
1 3 1

1 4 2 3

1 4 1 4 2 3 1 4 2 3
4 2 1 3 2 4

1 4 2 3 1 4 2 3

2 3 2 3 1 1 2 4 2 3 1 4 2

6
( )

6(1 ) 6
( )( )

( )
6(1 ) 1

1 ( )( ) 2( )( ) ( )( )
3

g g g g g g g g g gN L L
g g g g

g g g g g g g g g gL L L L L L
g g g g g g g g

N g g L L g g L L L L L L

 (17-72) 
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Equation (17-71) can be written as 

u N  (17-73) 

where
T

1 1 2 2

1 2

1 2

[ ]
0 0

0 0
N N

N N
N

 (17-74) 

From the internal parameter displacements u , the internal parameter strain can 
be derived: 

B   (17-75) 

After condensation, the stiffness matrix of the element AQ4  can be obtained 

T 1e
qq q qK K K K K  (17-76) 

where

T

T

T

d

d

d

e

e

e

qq q q
A

A

q q
A

h A

h A

h A

K B DB

K B DB

K B DB

 (17-77) 

17.6.3 Numerical Examples 

Example 17.8 Recalculate Example 17.1 by using the elements AQ4  and 
AQ4 .

The results are listed in Table 17.7 (it is a continuous part of Table 17.2). 

Table 17.7 Results for a cantilever beam divided by 5 elements (Fig. 17.3) 

Load M Load P
Elements 

vA xB vA xB

AQ4 97.7 2947 98.9 3931
AQ4 100 2999 101.0 3907
Exact 100 3000 102.6 4050

Example 17.9 Recalculate Example 17.2 by using the elements AQ4  and 
AQ4 .
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The results are listed in Table 17.8 (it is a continuous part of Table 17.3).  

Table 17.8 Results for Cook’s skew beam problem (Fig. 17.4) 

vC Amax BminElements 
2 2 4 4 8 8 2 2 4 4 8 8 2 2 4 4 8 8

AQ4  21.00 23.05 24.28 0.1917 0.2241 0.2377 0.1877 0.1939 0.2060
AQ4  22.91 23.66 24.18 0.2498 0.2338 0.2358 0.1729 0.1896 0.2018

Example 17.10 Recalculate Example 17.3 by using the elements AQ4  and 
AQ4 .

The results are listed in Table 17.9 (it is a continuous part of Table 17.4).  

Table 17.9 Results for MacNeal’s thin beam problem (Fig. 17.5) 

 Load P
Elements Mesh A Mesh B Mesh C

AQ4 0.904 0.906 0.867 
AQ4  0.993 0.988 0.984 

Example 17.11 Recalculate Example 17.4 by using the elements AQ4  and 
AQ4 .

The results are listed in Table 17.10 (it is a continuous part of Table 17.5).  

Table 17.10 Results of tip deflection for a beam with a distortion parameter e
(Fig. 17.6) 

e 0 0.5 1 2 3 4 4.9 
AQ4  100 99.9 98.9 99.8 102.0 102.2 100.3 
AQ4  100 100 100 100 100 100 100 

From the above numerical examples, it can be seen that the elements AQ4
and AQ4  possess high accuracy and are quite insensitive to mesh distortion. 
These two elements and elements AGQ6- , AGQ6-  and QAC 6 presented in 
Sect. 17.4 are the best 4-node quadrilateral membrane elements. There is a 
difference among these five elements: elements AQ4  and AQ4  can pass the 
strict patch test while AGQ6- , AGQ6-  and QAC 6 can only pass the weak 
patch test.  

17.7 8-Node Quadrilateral Membrane Elements  
Formulated by the Area Coordinate Method

Four 8-node quadrilateral elements formulated by the area coordinate method, 
MQ8-  and MQ8- [5], AQ8-  and AQ8- [13], have already been listed in 
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Table 17.1. In Sect. 17.2 and Fig. 17.2, a comparison of the elements MQ8-
 and MQ8-  with 8-node isoparametric element Q8 is carried out. It can be 

seen that the accuracy of the elements MQ8-  and MQ8-  is much better than 
that of the element Q8 when a distorted mesh is used. In this section, the 
elements AQ8-  and AQ8- , which are also constructed by the quadrilateral 
area coordinate method and insensitive to mesh distortion, will be introduced. 
They are similar to the elements MQ8-  and MQ8-  (only some difference 
exists in the shape functions). 

17.7.1 Preparatory Shape Functions for Corner Nodes 

An 8-node quadrilateral plane element is shown in Fig. 17.13. 

Figure 17.13 An 8-node quadrilateral plane element 

Firstly, prescribe a set of shape functions for the four corner nodes 1, 2, 3 and 4: 

0 31 4 2
1

2 1 4 1

0 32 1 4
2

3 2 1 2

0 3 2 4 1
3

4 3 2 3

0 34 1 2
4

1 4 3 4

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

LL L LN
g g g g

LL L LN
g g g g

L L L LN
g g g g

LL L LN
g g g g

 (17-78) 

i.e.,
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0 1 1
2 2

ji m k
i

j i m i

LL L LN
g g g g

( , , , 1,2,3,4)i j k m  (17-79) 

The above equation can also be written as 

0

0

0 1 2 3 4

1 1 ( )
4

ji k m k
i i i j j j k k k m m m i

j m i

LL L L g
N g L L g L L g L L g L L

g g g g

g g g g g
(17-80)

It can be clearly seen that 0
iN (i 1,2,3,4), which are quadratic, satisfy the 

following conditions: 

0
1 2 3 4

1 ( )
(( ) , ( ) , ( ) , ( ) )

0 ( )i j j j j ij

i j
N L L L L

i j
  (i, j 1,2,3,4)

But, 0
iN  are not zero at the mid-side nodes 5, 6, 7 and 8. Thus, they cannot be 

the real shape functions for the corner nodes, and are called the preparatory shape 
functions for corner nodes. 

17.7.2 Shape Functions for Mid-Side Nodes 

Secondly, define two sets of shape functions for the mid-side nodes 5, 6, 7, 8 as 
follows:

(1) For AQ8-

5 1 3 2 4
1 2 3 4 1 2

6 2 4 3 1
2 3 4 1 2 3

7 3 1 4 2
3 4 1 2 3 4

8 4 2 1 3
4 1 2 3 4 1

2 2 21

2 2 21

2 2 21

2 2 21

N L L L L
g g g g g g

N L L L L
g g g g g g

N L L L L
g g g g g g

N L L L L
g g g g g g

 (17-81) 

i.e.,

      4
2 2 21i i k j m
i j k m i j

N L L L L
g g g g g g

 ( , , , 1,2,3,4)i j k m  (17-82) 
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(2) For AQ8-

1 2
5 1 3 2 4

1 2

2 3
6 2 4 3 1

2 3

3 4
7 3 1 4 2

3 4

4 1
8 4 2 1 3

4 1

4
2

4
2

4
2

4
2

g gN L L L L
g g

g gN L L L L
g g

g gN L L L L
g g

g gN L L L L
g g

 (17-83) 

i.e.,

4
4

2
i j

i i k j m
i j

g g
N L L L L

g g
  ( , , , 1,2,3,4)i j k m  (17-84) 

It can be clearly seen that both sets of shape functions satisfy: 

1 2 3 4

1 ( )
(( ) , ( ) , ( ) , ( ) )

0 ( )i j j j j ij

i j
N L L L L

i j
 ( 5,6,7,8; 1,2, ,7,8)i j

(17-85)

17.7.3 Shape Functions for Corner Nodes 

For corner nodes, the following modified shape functions are employed: 

0
4 4

4 4

( )1
2 8 8

( ) 1
8 2 8

i j k j k
i i i j

m m i

k k m m i
k m

i j j

g g g g g
N N N N

g g g

g g g g g
N N

g g g ( , , , 1,2,3,4)i j k m (17-86)

It is obvious that Ni(i 1,2,3,4) satisfy: 

1 2 3 4

1 ( )
(( ) , ( ) , ( ) , ( ) )

0 ( )i j j j j ij

i j
N L L L L

i j
( 1,2,3,4; 1,2, ,7,8)i j

(17-87)

17.7.4 The Characteristics of the Two New Elements 

Equations (17-86) and (17-81) constitute a set of shape functions for the first 
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8-node quadrilateral element, which is denoted as AQ8- . And, another set of 
shape functions can be obtained by combining Eqs. (17-86) and (17-83) for the 
second element denoted by AQ8- .

The element displacement fields are 

8 8

1 1
,i i i i

i i
u N u v N v  (17-88) 

From the above equations, the two new elements possess the following 
characteristics:

(1) The displacement fields are cubic both within an element and along the 
element sides. 

(2) The point conforming condition is satisfied at 8 nodes. 
(3) Since the displacement along each element side is cubic, and satisfies the 

point conforming condition at 3 points (two end nodes and one mid-side node), it 
must satisfy the average line conforming condition along this element side. 

(4) The two new elements are both generalized conforming elements. 
(5) When the element degenerates to a rectangular element, the elements AQ8-

and AQ8-  will be the same as those of the Q8 element. 
According to the shape functions of the new elements, the element stiffness 

matrices can be obtained by the conventional procedure.  

17.7.5 Numerical Examples 

Example 17.12 Pure bending problem of a cantilever beam (Fig. 17.14). The 
results of displacements and stresses at selected points are calculated by the three 
meshes plotted in Fig. 17.15. 

Figure 17.14 Pure bending problem of a cantilever beam 

The results obtained by the elements AQ8-  and AQ8-  and other models 
are listed in Table 17.11. Compared with the Serendipity isoparametric elements 
Q8 and Q12, the new elements can still keep good accuracy in distorted meshes, 
but the precisions of the isoparametric elements Q8 and Q12 drop dramatically. 

Example 17.13 Linear bending problem of a cantilever beam (Fig. 17.16). 
Four meshes plotted in Fig. 17.17 are used here. 
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The results obtained by AQ8-  and AQ8-  are listed in Table 17.12. It is 
again obvious that the AQ8-  and AQ8-  elements perform better than the Q8 
element when irregular meshes are used. 

Figure 17.15 Mesh divisions and dimensions for Example 17.12 

Table 17.11 Numerical results of the pure bending cantilever beam (Example 17.12) 

 Q8 Q12[4] AQ8-  AQ8-  Exact 

x(0, 10)  120.000 120.0 120.000 120.000 120.0 

x(0, 0)  120.000 120.0 120.000 120.000 120.0Mesh 1 

v(100,0) 103 12.000 12.00 12.000 12.000 12.0

x(0, 10)  56.447 125.5 118.222 118.222 120.0 

x(0, 0)  74.863 145.5 114.667 114.667 120.0Mesh 2 

v(100,0) 103 2.328 5.18 12.014 12.014 12.0

x(0 , 10) 13.665 29.4 119.696 119.815 120.0 

x(0, 10 ) 5.262 14.0 118.887 119.271 120.0 

x(0, 0+) 5.665 13.1 119.112 119.341 120.0

x(0+, 0) 14.299 28.5 119.880 119.866 120.0

Mesh 3 

v(100,0) 103 0.477 0.69 11.997 11.997 12.0

Figure 17.16 Linear bending problem of a cantilever beam 
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Figure 17.17 Meshes for Example 17.13 

Table 17.12 The deflection v(100,0) for the linear bending problem of a cantilever 
beam (Example 17.13) 

 Q8 AQ8-  AQ8-  Exact 

Mesh 1 3.85 3.85 3.85 4.03 

Mesh 2 0.74 3.15 3.15 4.03 

Mesh 3 2.00 3.30 3.30 4.03 

Mesh 4 3.65 3.99 3.99 4.03 

Example 17.14 Sensitivity test for mesh distortion. 
Re-perform Examples 17.4 and 17.11 using the mesh shown in Fig. 17.18, 

where e varies from 0 to 0.99L. The results obtained by the elements Q4 and Q8 
are also explored for comparison. 

Figure 17.18 Mesh with a distortion parameter a

The curves of the percentage errors of deflection vA and stress xB for the pure 
bending problem are plotted in Fig. 17.19(a) and (b). It can be seen that, the 
isoparametric elements Q4 and Q8 are very sensitive to mesh distortion, while 
the elements AQ8-  and AQ8-  can still give accurate results when the mesh is 
distorted.

The curves of the percentage errors of deflection vA for linear bending problem 
are shown in Fig. 17.20. Again, the precision of the elements AQ8-  and AQ8-
are still much better than those of the elements Q4 and Q8. 
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Figure 17.19 Error curves of the results for pure bending problem 

Figure 17.20 Error curves of the results for linear bending problem 

17.8 Quadrilateral Thin Plate Element Formulated by the  
Area Coordinate Method 

This section will introduce the quadrilateral thin plate element ACGCQ[16]

formulated by the area coordinate method. This element has 12 degrees of 
freedom: 

T
1 1 1 2 2 2 3 3 3 4 4 4[ ]e

x y x y x y x yw w w wq      
(17-89)

The element deflection field is expressed by a polynomial in terms of the area 
coordinates. It contains 12 coefficients which are determined by 12 generalized 
conforming conditions, i.e., 4 nodal conforming conditions for deflection, 4 line 
conforming conditions for deflection and 4 line conforming conditions for 
normal rotation. Since the generalized conforming theory and the quadrilateral area 
coordinate method are employed, this element possesses excellent performance. 
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17.8.1 Element Deflection Field 

The element deflection field consists of two parts: 

0 *w w w  (17-90) 

where w0 is the low-order deflection field, which is related to the nodal 
displacements w1, w2, w3 and w4; and w* is the high-order deflection field, which 
is related to eight unknown coefficients i (i 1, 2, , 8). 

Firstly, the low-order deflection field w0 can be defined as: 

4
0 0 0

1

e
i i

i
w N w N q  (17-91) 

where

0 0 0 0 0
1 2 3 4[ 0 0 0 0 0 0 0 0]N N N NN  (17-92) 

0
iN  is given by Eq. (17-79). 
Secondly, the high-order deflection field w* can be defined as: 

*w F  (17-93) 

where

2 2 2 2
1 3 2 1 3 4 2 4 1 2 4 3 1 3 3 1 1 3 2 4 4 2 2 4[ ( ) ( ) ]L L L L L L L L L L L L L L L L L L L L L L L LF

(17-94)

T
1 2 3 4 5 6 7 8  (17-95) 

The low-order deflection field w0 in Eq. (17-91) and the total deflection field w
in Eq. (17-90) have already satisfied the 4 nodal conforming conditions: 

( ) 0jw w   ( j 1,2,3,4 indicate the node numbers of the element)    

 (17-96) 

The eight unknown coefficients i in the total deflection field w are determined 
by eight generalized conforming conditions, i.e., four line conforming conditions 
for the deflection w and another four for the normal slope n as follows: 

( )d 0

d 0

ij

ij

d

nd

w w s

w s
n

  (ij 12,23,34,41) (17-97) 
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17.8.2 Determination of the Unknown Coefficients 

Firstly, by substituting Eqs. (17-91) and (17-93) into the first expression of 
Eq. (17-97) for the deflection w, the coefficients 1, 2, 3 and 4 in  can be 
expressed in terms of 5, 6, 7, 8 and :eq

eR P q  (17-98)  
where

T
1 2 3 4 , T

5 6 7 8

2 1 1 2

3 4 3 4

3 4 3 4

1 2 1 2

4 1 4 1

2 3 2 3

3 2 2 3

4 1 4 1

2 0 0
5
2 0 0
5

20 0
5
20 0
5

g g g g
g g g g
g g g g
g g g g

g g g g
g g g g
g g g g
g g g g

R  (17-99) 

1 2 3 4P P P P P  (17-100) 
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0 0 0 0
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1 2i i ib y y , 2 1i i ic x x   ( 1,2,3,4)i  (17-101) 

0 1 2 3 4g g g g g  (17-102) 

Secondly, by substituting Eqs. (17-91) and (17-93) into the second expression in 
Eq. (17-97) for the normal slope n, and eliminating  using Eq. (17-98), we 
obtain

eF Hq  (17-103) 

where

F F F R
H P F P

 (17-104) 

and

11 3 4 1 11 2 1 4
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3 4 44 1 2) ]g g f g g

    

         

11 2 3 11 4 3 4 1 4 1
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(17-105)
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12 2 ( ) 0
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            (17-106) 
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11 4
11 12 1 1
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(17-107)

ij i j i jf b b c c   (i,j 1,2,3,4) (17-108) 

Finally, by solving Eq. (17-103),  can be obtained 

eM q  (17-109) 

where

1M F H  (17-110) 

Substitution of Eq. (17-109) into Eq. (17-98) yields 

eM q  (17-111) 

where

M P RM  (17-112) 
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17.8.3 Shape Functions and Element Stiffness Matrix 

From the above results, the deflection field and its shape functions can be written 
as:

0 * ew w w Nq  (17-113) 

where

0N N F M  (17-114) 

M
M

M
 (17-115) 

The element curvature fields are: 

T2 2 2

2 2 2
2

x

y

xy

w w w
x y x y

 (17-116) 

Substitution of Eqs. (17-113) and (17-114) into the above equation yields 

b
eB q  (17-117) 

where Bb is the bending strain matrix,  

bB Z  (17-118) 

where

2 2 2 2
1 2 3 4

2 2 2 2
1 2 3 42

1 1 2 2 3 3 4 4

1
4

2 2 2 2

b b b b

c c c c
A

b c b c b c b c

1 2 2 3

1 2 2 3

1 2 2 1 2 3 3 2

2 2

2 2

2( ) 2( )

b b b b

c c c c

b c b c b c b c

3 4 4 1

3 4 4 1

3 4 4 3 4 1 1 4

2 2

2 2

2( ) 2( )

b b b b

c c c c

b c b c b c b c

1 3 2 4

1 3 2 4

1 3 3 1 2 4 4 2

2 2

2 2

2( ) 2( )

b b b b

c c c c

b c b c b c b c

 (17-119) 

0Z Z ZM  (17-120) 
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2
1 3 4 1 1 1 20

2
0 2 3 2 4 1 2 2

2
3 3 4 1 3 2 3

2
3 4 4 4 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01
4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

g g g g g g g
g g g g g g g g

g g g g g g g

g g g g g g g

Z

(17-121)

2
3 3

2
4 4

2
1 1

2
2 2

3 4

1 4

1 2

3 2

2 4 3 1 1 3

1 3 4 2 2 4

0 0 0 0 2 2 0 0

0 0 0 0 0 0 2 2

0 0 0 0 2 2 0 0

0 0 0 0 0 0 2 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2( ) 4 0 0

0 0 0 0 2( ) 4

L L

L L

L L

L L

L L

L L

L L

L L

L L L L L L

L L L L L L

Z  (17-122) 

Then, the element stiffness matrix can be written as 
1 1T T

b b b b b b1 1
d | | d d

e

e

A

AK B D B B D B J  (17-123) 

where | |J  is the Jacobian determinant; which is the same as that of the 4-node 
bilinear isoparametric element Q4. Since there is no 1J  (the inverse of the 
Jacobian matrix J ) existing in strain matrix Bb, the exact value of eK can be 
obtained when a 3 3 Gauss integration scheme is used. 

17.8.4 Numerical Example 

Example 17.15 Sensitivity test to mesh distortion. 
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A clamped square plate subjected to uniformly distributed load q is calculated. 
The thickness-span ratio of the plate is h/L 0.01. Due to the symmetry, only a 
quarter of the plate is considered by using the meshes given by Fig. 17.21, in 
which  is a distortion parameter. 

The distortion parameter  varies from 0 to 2.5. The results of the central 
deflection wC computed by element ACGCQ are plotted in Figs. 17.22 and 17.23. 
And, the results obtained by the elements CRB1, CRB2, S1 in reference [34] and 
the element DKQ[35] are also given for comparison.  

Figure 17.21 Sensitivity test to mesh distortion: mesh for a quarter clamped plate 
(a) symmetric distortion 2×2; (b) antisymmetric distortion 2×2 

Figure 17.22 Results of the sensitivity test to mesh distortion, symmetric 

From Figs. 17.22 and 17.23, it can be seen that the element ACGCQ is robust, 
it possesses the best accuracy and is very insensitive to mesh distortion. The 
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advantage of the quadrilateral area coordinate method is exhibited again. 

Figure 17.23 Results of the sensitivity test to mesh distortion, antisymmetric 

17.9 Quadrilateral Thick Plate Element Formulated by  
the Area Coordinate Method 

In this section, a quadrilateral 12 DOF thin-thick plate bending element 
AC-MQ4[17] is constructed by the quadrilateral area coordinate method, rational 
interpolation scheme for shear strain fields, and generalized conforming theory. 
When the thickness of the plate approaches to the thin plate limit, this element will 
degenerate to be the thin plate element ACGCQ. 

The main construction steps are as follows: Firstly, based on the Mindlin plate 
theory, the shear strain and deflection fields are assumed independently, and then, 
the rotation fields can be derived from such shear strain and deflection fields; 
Secondly, the shear strain along each element side is determined by 
Timoshenko’s beam theory, and then, the element shear strain fields are obtained 
by the rational interpolation technique; Thirdly, the deflection field is determined 
by the nodal conforming conditions for deflections at the corner nodes, and the 
average line conforming conditions for deflection and normal slope along each 
element side. This approach has two characteristics: (1) Since the nodal and line 
generalized conforming conditions are satisfied, convergence can be guaranteed; 
(2) Since the shear strains degenerate to be zero for the thin plate cases, no shear 
locking will happen. Numerical examples show that the new element is free of 
shear locking, insensitive to mesh distortion, and possesses excellent accuracy in 
the analysis of both thick and thin plates. 



Chapter 17 Quadrilateral Area Coordinate Systems, Part  New Tools for ... 

629

17.9.1 Determination of the Element Shear Strain Fields 

Consider a thick plate quadrilateral element shown in Fig. 17.24. Its shear strain 
fields are determined by the following procedure: 

Shear strain along each element side  Nodal shear strains  Element shear strain fields 

Figure 17.24 The shear strain along each element side 

1. Shear strain along each element side 

According to the formulae of the thick beam element[36], the transverse shear 
strains along the element sides can be obtained as follows:  

1
s1 2 3 1 2 1 2 1 3 1 3

1

2
s2 3 4 2 3 2 3 2 4 2 4

2

3
s3 4 1 3 4 3 4 3 1 3 1

3

4
s4 1 2 4 1 4 1 4 2 4 2

4

2( ) ( ) ( )

2( ) ( ) ( )

2( ) ( ) ( )

2( ) ( ) ( )

x y x y

x y x y

x y x y

x y x y

w w c b c b
d

w w c b c b
d

w w c b c b
d

w w c b c b
d

 (17-124) 

where s1, s2, s3 and s4 are the transverse shear strains of the sides 23 , 34 , 41 
and 12 , respectively; d1, d2, d3 and d4 are the lengths of the sides 23 , 34 , 41 
and 12 , respectively. 

1 2 3 2 3 4 3 4 1 4 1 2

1 3 2 2 4 3 3 1 4 4 2 1

, , ,
, , ,

b y y b y y b y y b y y
c x x c x x c x x c x x

2

2
5 (1 ) 2
6

i
i

i

h
d

h
d

  (i 1,2,3,4) (17-125) 
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where h is the thickness of the plate;  is the Poisson’s ratio. It can be seen that 
when h  0, we have i  0, and then si  0. 

Let

*
s si i id   (i 1,2,3,4) (17-126) 

* * * * * T
s s1 s2 s3 s4[ ]  (17-127) 

Thus, we have 

* *
s

eq  (17-128) 

where

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2*

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

0 0 0 2 2 0 0 0
0 0 0 0 0 0 2 2

2 0 0 0 0 0 0 2
2 2 0 0 0 0 0 0

c b c b
c b c b

c b c b
c b c b

(17-129)

2. Nodal shear strains 

Following the procedure given by references [20] and [37], the element nodal 
shear strains xi and yi (i 1,2,3,4) can be obtained as follows: 

*
s s

*
s s

xi

yi

X

Y
 (17-130) 

where

T
1 2 3 4[ ]xi x x x x , T

1 2 3 4[ ]yi y y y y  (17-131) 
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(17-132)
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3. Element shear strain fields 

By using the preparatory shape functions 0
iN  given by Eq. (17-79) or Eq. (17-80), 

the element shear strain fields can be written as 

0 0 0 0
1 1 2 2 3 3 4 4

0 0 0 0
1 1 2 2 3 3 4 4

x x x x x

y y y y y

N N N N
N N N N

 (17-133) 

where

0

0

0 1 2 3 4

1 1 ( )
4

( , , , 1,2,3,4)

ji k m k
i i i j j j k k k m m m i

j m i

LL L L gN g L L g L L g L L g L L
g g g g

i j k m
g g g g g

(17-134)

Substitution of Eq. (17-130) into Eq. (17-133) yields 

0 *
s s

s0 *
s s

x e e

y

N X
q B q

N Y
 (17-135) 

in which Bs is the element shear strain matrix, 

0 *
s s

s 0 *
s s

N X
B

N Y
 (17-136) 

0 0 0 0 0
s 1 2 3 4[ ]N N N NN

17.9.2 Determination of the Element Displacement Fields 

The element deflection field w consists of two parts: 

0 *w w w  (17-137) 

where w0 is the low-order deflection field, which is related to the nodal 
deflections w1, w2, w3 and w4; and w* is the high-order deflection field, which is 
related to eight unknown coefficients i (i 1, 2, 3, , 8). 

Firstly, the low-order deflection field w0 can be defined as 

4
0 0 0

1

e
i i

i
w N w N q  (17-138) 
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where 0
iN  (i 1,2,3,4) are given by Eq. (17-134). 

0 0 0 0 0
1 2 3 4[ 0 0 0 0 0 0 0 0]N N N NN  (17-139) 

Secondly, the high-order deflection field w* can be defined as 

*w F  (17-140) 

where

2 2 2 2
1 3 2 1 3 4 2 4 1 2 4 3 1 3 3 1 1 3 2 4 4 2 2 4[ ( ) ( ) ]L L L L L L L L L L L L L L L L L L L L L L L LF

(17-141)
T

1 2 3 4 5 6 7 8[ ]  (17-142) 

The element rotation fields can be obtained as follows: 

x
x

y
y

w
x
w
y

 (17-143) 

It can be easily proved that the low-order deflection field w0 in Eq. (17-138) and 
the total deflection field w in Eq. (17-137) have already satisfied the compatibility 
conditions at the four nodes, i.e., 

  ( ) 0jw w   ( j 1,2,3,4 indicate the node numbers of the element) (17-144) 

The eight unknown coefficients i (i 1, 2, 3, , 8) in the total displacement 
field w are determined by eight generalized conforming conditions, i.e., four 
average line conforming conditions for the deflection w and another four for the 
normal slope n as follows: 

( )d 0
di

w w s   (i 1,2,3,4)   (17-145a) 

( )d 0n ndi
s   (i 1,2,3,4) (17-145b) 

The boundary deflection w  along each element side is determined by the formulae 
of the thick beam element; and the boundary normal slope n  is assumed to be 
linear along each element side. 

By using the eight generalized conforming conditions given by Eq. (17-145), 
the eight unknown coefficients can be determined as follows: 

eMq  (17-146) 

in which the expression of M is given in reference [17]. 



Chapter 17 Quadrilateral Area Coordinate Systems, Part  New Tools for ... 

633

Finally, the element deflection field can be obtained 
0 * ew w w Nq  (17-147) 

where the shape function matrix N is given by 
0N N F M  (17-148) 

And, the element rotation fields are given by Eq. (17-143). Then the element 
stiffness matrix can be obtained by conventional procedure. When the thickness 
of the plate h 0, the present element AC-MQ4 will degenerate to be the thin 
plate element ACGCQ derived in the previous section. 

17.9.3 Numerical Example 

Example 17.16 Boundary effect problem near the free edges of a plate. 
For the boundary conditions along a free edge of plate, the description in the 

thick plate theory is different from that in the thin plate theory. The former 
requires that three force boundary conditions must be satisfied, while the latter 
approximately reduces them to two force boundary conditions. Therefore, difference 
will exist in the solutions of the two theories near the free edges. That is to say, the 
solutions of the thick plate theory can reflect the boundary effect (rapid variation of 
forces near the free edge), but those of the thin plate theory cannot.  

Accordingly, the above difference will also exist in the thin plate element and 
the thick plate element. For studying the boundary effect problem, only the thick 
plate element can provide rational results.  

Figure 17.25 shows a uniformly loaded (load q) square (h/L 0.02) plate with 
two opposite edges simply supported (hard) and the other two edges free. A 64 64
square mesh was employed for analyzing a quadrant of the plate, and Poisson’s 
ratio 0.3. The results obtained by the present element AC-MQ4 and the element 
ARS-Q12[37] are given by Figs. 17.26 through 17.28. And, the series solutions by 
Kant-Hinton[38] are also plotted for comparison. 

Figure 17.25 Square plate with two opposite edges simply-supported and the 
other two free 
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Figure 17.26 Variation of shear force Qy (y 0)

Figure 17.27 Variation of twisting moment Mxy (y 0)

Figure 17.28 Variation of shear force Qx (y 0.5L)
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It is obvious that the shear force and the moment distributions obtained using 
the two elements AC-MQ4 and ARS-Q12 are in good agreement with those 
obtained by Kant and Hinton[38] in the main region and near the edges except for 
the edge point. The results show that the steep gradient of shear forces and twisting 
moment at the plate edge can be well represented by the proposed elements. 

17.10 Quadrilateral Laminated Composite Plate Element  
Formulated by the Area Coordinate Method 

In the previous section, by introducing the shear strain fields into the thin plate 
element ACGCQ, the thick plate element AC-MQ4, which is formulated by the 
area coordinate method, is successfully developed. In reference [18], by adding 
the bilinear in-plane displacement fields into the element AC-MQ4 (following 
the procedure of Chap. 9), a quadrilateral 20 DOF plate bending element AC- 
MQ4-LC for the analysis of arbitrary laminated composite plates is presented. 
This section will introduce this element. 

Consider the laminated composite plate quadrilateral element shown in Fig. 9.3. 
The element DOFs are defined as follows: 

1 1 1 1 1 2 2 2 2 2

T
3 3 3 3 3 4 4 4 4 4

[

]

e
x y x y

x y x y

u v w u v w

u v w u v w

q

(17-149)

Following the procedure given in Sect. 9.3.1, the shear strain matrix can be 
obtained:

0 *
s s

s 0 *
s s

N X
B

N Y
 (17-150) 

where 0
sN  are given by Eqs. (17-136) and (17-134); Xs and Ys are given by 

Eq. (17-132); and *  is given by Eq. (9-41). 
Assume that the in-plane displacement fields of the mid-plane are bilinear 

fields, i.e., Eq. (9-67), the element in-plane strain matrix can be obtained, see 
Eqs. (9-68) to (9-71). 

The element bending strain matrix can be written as 

b b1 b2 b3 b4[ ]c c c c cB B B B B  (17-151) 

b1,3 2 b1,3 1 b1,3

b b2,3 2 b2,3 1 b2,3

b3,3 2 b3,3 1 b3,3

0 0
0 0
0 0

i i i
c
i i i i

i i i

B B B
B B B
B B B

B   (i 1,2,3,4) (17-152) 
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where Bbpq (p 1, 2, 3; q 1, 2, , 12) are the components of the bending strain 
matrix Bb of element AC-MQ4. 

Thus, the element stiffness matrix can be obtained according to Eq. (9-77) to 
Eq. (9-79). 

Furthermore, the stress solutions are also improved by the hybrid-enhanced 
procedure given in Sect. 9.4. 

Example 17.17 Recalculate Example 9.1 by using the element AC-MQ4-LC, 
and the results for the 9-layer (0/90/0/90/0/90/0/90/0) plate are listed in Table 17.13. 

Table 17.13 Maximum deflection and stresses in 9-ply (0/90/0/90/0/90/0/90/0) 
square laminated composite plate (hard simply-supported mode I) subjected to 
doubly sinusoidal load 

h/L Mesh & models 

w

, ,0
2 2
L L

x

, ,
2 2 2
L L h

y

, ,
2 2 4
L L h

xy

0,0,
2
h

xz

0, ,0
2
L

yz

,0,0
2
L

0.1   4 4
AC-MQ4-LC 8 8

16 16
DST 10 10[39]

LPL-20  8 8[40]

3D elasticity[41]

FSDT 

1.515
1.520
1.522
1.526

1.512
1.522

0.526
0.521
0.519
0.541
0.520
0.551
0.519

0.460
0.456
0.455
0.425
0.458
0.477
0.454

0.0212
0.0214
0.0214

0.0216
0.0233
0.0215

0.245
0.248
0.249
0.219
0.248
0.247
0.250

0.228
0.230
0.231
0.257
0.228
0.226
0.230

0.02   4 4
AC-MQ4-LC 8 8

  16 16
DST 10 10[39]

LPL-20  8 8[40]

3D elasticity[41]

FSDT 

1.013
1.018
1.020
1.020

1.021
1.021

0.547
0.540
0.538
0.522
0.540
0.539
0.538

0.440
0.434
0.433
0.447
0.434
0.433
0.432

0.0213
0.0212
0.0213

0.0214
0.0214
0.0213

0.248
0.255
0.257
0.190
0.256
0.258
0.258

0.212
0.218
0.220
0.263
0.217
0.219
0.219

0.01   4 4
AC-MQ4-LC 8 8

  16 16
LPL-20  8 8[40]

3D elasticity[41]

FSDT 

1.001
1.003
1.005

1.005
1.005

0.550
0.541
0.539
0.541
0.539
0.539

0.440
0.433
0.432
0.433
0.431
0.431

0.0216
0.0213
0.0213
0.0214
0.0213
0.0213

0.248
0.254
0.257
0.257
0.259
0.259

0.211
0.216
0.218
0.217
0.219
0.219

10–6   4 4
AC-MQ4-LC 8 8

  16 16
FSDT 

1.000
1.000
1.000
1.000

0.552
0.542
0.540
0.539

0.442
0.434
0.432
0.431

0.0218
0.0214
0.0213
0.0213

0.250
0.257
0.258
0.259

0.212
0.217
0.218
0.219

 Reference [40] pointed out that the computational error of the deflection by the element LPL-20  is big, so the 
results were not given. 



Chapter 17 Quadrilateral Area Coordinate Systems, Part  New Tools for ... 

637

Example 17.18 Recalculate Example 9.2 by using the element AC-MQ4-LC, 
and the results for the 8-layer [( 45/45)4]s plate are listed in Table 17.14. 

From Tables 17.13 and 17.14, it can be seen that the present element AC- 
MQ4-LC possesses high accuracy for both displacement and stress solutions. 
When dealing with single layer isotropic cases, the new laminated element will 
degenerate into the plate element AC-MQ4 given in the previous section.  

Table 17.14 Maximum deflection and stresses in 8-ply [( 45/45)4]s square 
laminated composite plate (hard simply-supported mode ) subjected to doubly 
sinusoidal load

h/L Mesh & Models 
w(L/2, L/2)
100E2h3/L4q0

x(L/2, L/2, h/2)
h2/L2q0

xy(0, 0, h/2)
h2/L2q0

xz(0, L/2, 0)
h/Lq0

0.1

  4 4
AC-MQ4-LC 8 8

  16 16
  32 32
  64 64
  80 80

FSDT[42]

0.3990
0.4119 
0.4176
0.4193
0.4197
0.4197
0.4198

0.1638
0.1499
0.1459
0.1448
0.1446
0.1445
0.1445

0.1350
0.1361
0.1377
0.1382
0.1384
0.1384
0.1384

0.2117 
0.2383
0.2460
0.2480
0.2485
0.2486
0.2487

0.05

  4 4
AC-MQ4-LC 8 8

  16 16
  32 32
  64 64
  80 80

FSDT[42]

0.2721
0.2814
0.2871
0.2889
0.2894
0.2895
0.2896

0.1568
0.1489
0.1458
0.1448
0.1446
0.1445
0.1445

0.1438
0.1371
0.1378
0.1382
0.1384
0.1384
0.1384

0.1877
0.2233
0.2409
0.2466
0.2482
0.2483
0.2487

0.01

  4 4
AC-MQ4-LC 8 8

  16 16
  32 32
  64 64
  80 80

FSDT[42]

0.2454
0.2463
0.2468
0.2474
0.2477
0.2478
0.2479

0.1559
0.1472
0.1451
0.1447
0.1446
0.1445
0.1445

0.1657
0.1442
0.1390
0.1384
0.1384
0.1384
0.1384

0.2072
0.2163
0.2071
0.2203
0.2383
0.2417
0.2487
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Abstract This chapter discusses the spline element method, which is the 
result obtained by the combination of the spline function and the finite 
element method. Firstly, the characteristics of the spline functions and spline 
elements are given. Then, the beam and membrane element models 
constructed by the spline functions are presented. Finally, some applications 
of these spline elements in the analysis of the shear wall and tube structures 
are illustrated. 

Keywords finite element, spline function, spline element, high-rise building 
structure.

18.1 Introduction 

In the finite element method, a structure will be divided by the elements with 
piecewise interpolation functions.  

The most commonly used piecewise polynomials are Lagrangian interpolations, 
Hermitian interpolations, spline functions, and so on. Compared with other 
piecewise polynomials, the spline functions have many advantages. For example, 
they contain fewer undetermined coefficients; possess high-order continuity; and 
exhibit high approximate performance. Therefore, the spline function method is 
increasingly important for various numerical analyses[1– 4].

n-order spline function is a piecewise n-order polynomial with Cn–1-continuity. 
The configurations and corresponding mechanics models of linear, quadratic and 
cubic spline functions are given in Table 18.1. 

There are two application patterns of the spline functions in structure analyses. 
One is the global interpolation scheme, such as the spline variation method and 
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the spline weighted residual method. The other is the piecewise interpolation 
scheme, which is called the spline finite element method[5–9]. The common 
advantage of these two patterns is that more accurate and smoother solutions can 
be obtained with fewer degrees of freedom. But, the former is only suitable for 
domains with regular shapes, while the latter can be conveniently used for 
structures with complicated geometry. 

The spline finite element method is the topic discussed in this and the next 
chapters.

Table 18.1 Configurations of spline functions and their mechanics models 

 Configurations Mechanics models 

Linear spline 
C0-continuity piecewise fold line Displacement curve of a suspended-cable 

subjected to concentrated loads 

Quadratic spline 
C1-continuity piecewise parabolic curve Displacement curve of a beam subjected to 

concentrated couples 

Cubic spline 
C2-continuity piecewise cubic parabolic 

curve 

Displacement curve of a beam subjected to 
concentrated forces 

18.2 Spline Beam Elements 

Two low-order spline beam elements are introduced in this section. And, the spline 
thick beam elements considering shear deformation will be given in Sect. 19.2. 

18.2.1 Quadratic Spline Beam Element (4 Degrees of Freedom) 

A quadratic spline beam element is shown in Fig. 18.1. Its element nodal 
displacement vector contains 4 degrees of freedom: 

T
1 1 2 2[ ]e w wq
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The element is divided into two segments 13 and 32. Assume that the deflection 
w(x) is quadratic polynomial within each segment: 

2
1 2 3

2
4 5 6

10
2

( )
1 1
2

c c c
w x

c c c
 (18-1) 

Figure 18.1 Quadratic spline beam element 

in which 6 unknown coefficients c1, , c6 can be determined by the following 6 
conditions

1 11 20 1 0 0
2 2

1 2
1 10 1 0 0
2 2

, ,

d d d d, ,
d d d d

w w w w w w

w w w w
x x x x

 (18-2) 

Therefore, w(x) can be expressed in terms of 4 shape functions as follows 
(0) (1) (0) (1)
1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( )w x N x w N x N x w N x  (18-3) 

where the shape functions are all quadratic spline functions 

2

(0)
1

2

(1)
1

2

(0) (0)
2 1
(1) (1)
2 1

11 2 0
2

( )
12(1 ) 1
2

1(2 3 ) 0
2 2

( )
1(1 ) 1

2 2

( ) 1 ( )

( ) ( )

N x

a

N x
a
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Finally, the element stiffness matrix can be obtained 

2 2

2

16 8 16 8
5 8 3

16 8
5

e

a a
a a a

a
a

K  (18-5) 

18.2.2 Cubic Spline Beam Element (6 Degrees of Freedom) 

A cubic spline beam element is shown in Fig. 18.2. Its element nodal displacement 
vector contains 6 degrees of freedom: 

T
1 1 1 2 2 2[ ]e w w w w w wq

Figure 18.2 Cubic spline beam element 

The element is divided into three segments 13, 34 and 42. Assume that the 
deflection w(x) is cubic polynomial within each segment. It contains 12 unknown 
coefficients, which can be determined by the boundary conditions at end nodes 1 
and 2, and continuous conditions at virtual nodes 3 and 4 of deflection and its 
first and second order derivatives. Hence, w(x) can be expressed in terms of the 6 
shape functions as follows: 

(0) (1) (2) (0) (1) (2)
1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )w x N x w N x w N x w N x w N x w N x w

(18-6)

in which the shape functions are all cubic spline functions 

3

(0) 2 3
1

3

9 11 0
2 3

1 1 2( ) [5 3(3 1) 3(3 1) 2(3 1) ]
6 3 3
9 2(1 ) 1
2 3

N x

Sym.
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(18-7)

Finally, the element stiffness matrix can be obtained 

2 2

2 3 2 3

4 2 3 4

3 2

2 3

4

108 54 5 108 54 5
32 3 54 22 2

2 15 2
3 6

4 108 54 5
Sym. 32 3

2
3

e

a a a a
a a a a a

a a a aEI
a a a

a a

a

K  (18-8) 

18.2.3 Numerical Examples 

Example 18.1 A simply-supported beam (span length is L) is subjected to 
uniformly distributed load q. The flexural rigidity of the beam is EI. The results 
and errors of the central deflection and moment by the quadratic and cubic spline 
elements are listed in Tables 18.2 and 18.3.  

Table 18.2 Central deflection 
4

16C
qLw

EI

Number of elements (1/2 beam) 1 2 3 4 
Quadratic spline element 0.1979 (5%) 0.2057 (1%) 0.2077 (0.3%) 0.2080 (0.1%)
Cubic spline element 0.2083 (0%)    
Analytical solution 0.2083 
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Table 18.3 Central moment 
2

8C
qLM

Number of elements (1/2 beam) 1 2 
Cubic spline element 1.0186 (2%) 1.0046 (0.5%) 
Analytical solution 1.0000 

18.3 Spline Plane Membrane Elements 

The spline plane membrane element is introduced as follows. Assume that the 
shape of the element is rectangle, and bi-quadratic spline functions are used for 
interpolation[10].

As shown in Fig. 18.3, a rectangular element is equally divided into 4 sub-regions. 
And, the coordinates of node ij (i, j 1,2) are ( , ).i jx y

Figure 18.3 Rectangular element (4 sub-regions) 

There are 8 degrees of freedom at each node ij

(00) (10) (01) (11) (00) (10) (01) (11) T[ ]ij ij ij ij ij ij ij ij iju u u u v v v vq  (18-9) 

where

(00) (10)
( , )

( , )

2
(01) (11)

( , ) ( , )

,

,

i j
i j

i j i j

ij ijx y
x y

ij ij
x y x y

uu u u
x

u uu u
y x y

 (18-10) 

Thus, each element has 32 degrees of freedom 

T T T T T
11 21 22 12[ ]eq q q q q  (18-11) 
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The element displacement fields u and v can be expressed in terms of the nodal 
displacements as follows: 

2 2

1 1
ij ij

i j

u
v

N q  (18-12) 

in which the shape functions are all bi-quadratic spline functions 

(00) (10) (01) (11)

(00) (10) (01) (11)

0 0 0 0

0 0 0 0
ij ij ij ij

ij
ij ij ij ij

N N N N

N N N N
N  (18-13) 

( ) ( )( , ) ( ) ( ) ( , 1,2; , 0,1)kl k l
ij i jN x y N x N y i j k l  (18-14) 

( ) ( )k
iN x  are the shape functions of the quadratic spline beam element defined in 

Eq. (18-4), and ( ) ( )l
jN y  can be defined similarly.  

After the determination of the shape functions, the element stiffness matrix can 
then be obtained by the conventional procedure. This element is denoted as R-OQQ. 

Example 18.2 A simply-supported beam subjected to uniformly distributed 
load is divided by 6 R-OQQ elements (as shown in Fig. 18.4). The results and 
comparison of stress x(0, y) by the present element and analytical solution are 
listed in Table 18.4. 

Figure 18.4 A simply-supported beam and mesh division 

Table 18.4 Results of stress x(0, y)

y(m) 1.5 1.0 0.5 0 0.5 1.0 1.5

Present element 273.4 180.4 89.8 0.6 89.6 181.0 273.1 

Analytical 272.0 179.5 89.2 0.0 89.2 179.5 272.0 

Details about the spline sectorial and triangular elements can be referred to 
reference [10]. 
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18.4 Analysis of Shear Wall Structures by Spline  
Elements

Shear wall is one of the important structures popularly used in high-rise buildings.  
Ever since finite strip method was proposed by Cheung[11] for structure 

analysis, it has been broadly used in computations of high-rise building structures. 
And, the longitudinal interpolation functions of strip elements also obtain 
continuous improvements. However, the common characteristic of this kind of 
method is that the interpolation procedure must be carried out in the whole strip 
domain, which is only suitable for the structures with regular shapes. Troubles and 
difficulties often happen when irregular opening hole and boundary shape exist 
(Fig. 18.5).  

Figure 18.5 Shear wall with opening 

Girijavallaham[12] used conventional triangular and rectangular elements to 
analyze the coupled shear wall structures, but the density of the mesh is quite high. 
Recently, the continuity assumption of structure has been wildly accepted. So, in 
the analysis of structures, the discrete connecting beams can be replaced by the 
equivalent orthotropic plate, which greatly reduces the number of elements. Chan 
and Cheung[13] proposed a high-order rectangular element, in which the 
interpolation polynomials of the element transverse and longitudinal displacements 
are linear and quintic, respectively. Only a few of such elements are enough for 
the analysis of the whole structure. However, in general, the numerical instability 
may occur for high-order polynomial approximation.  

In this section, a spline element TB-mn which can be broadly used for the 
analysis of high-rise building structures will be introduced. The displacement 
components of this spline element are interpolated locally within an element by 
using the spline function. Then, according to the characteristics of the high-rise 
building structures, the orders of spline functions for transverse and longitudinal 
interpolations are selected properly, so that more accurate results can be obtained 



Chapter 18 Spline Element — Analysis of High-Rise Building Structures 

649

by low-order spline functions and fewer degrees of freedom. Since such spline 
interpolation is performed only within a local element, just as the conventional 
displacement-based element, this spline element can easily deal with various 
structure forms with irregular opening holes and boundary shapes.  

18.4.1 Element TB-mn for the Analysis of High-Rise Building  
Structures[8 –14]

For a plane stress rectangular element for the analysis of high-rise building 
structures (Fig. 18.6), piecewise spline Hermitian interpolation is used for the 
transverse displacement u and longitudinal displacement v of the element 

2 2 1 1

1 1 0 0
( ) ( , )

m n
ij

mn ij
i j ij

uu
N x y

v v
 (18-15) 

Figure 18.6 Rectangular element 

in which m and n are the orders of spline functions; iju  and ijv  are the values of 
displacements or their derivatives at element nodes ij (i, j 1,2)

,

( , )
( , )

i j

ij

ij x x y y

u u x y
v x yx yv

 (18-16) 

The element shape function ( ) ( , )mn ijN x y  is composed of two piecewise spline 
interpolation functions 

 ( ) ( ) ( ) ( ) ( )mn ij m i n jN N x N y  (18-17) 
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where ( ) ( )m iN x  and ( ) ( )n jN y  are m and n order spline Hermitian interpolation 
function, respectively; the expressions of ( ) ( )m iN x  or ( ) ( )n jN y  are as follows: 

(1) Linear spline interpolation functions (m 1)

0
1 1

0 0
1 2 1 1

( ) ( ) 1 ( [ , ])
2
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x hN x x h h
h

N x N x

(2) Quadratic spline interpolation functions (m 2)
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(3) Cubic spline interpolation functions (m 3)
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In the above expressions, we have 
2
ah
m

. And, the interpolation procedure is 

performed within the range ,
2 2
a a  (Fig. 18.6). 

Similar to the conventional displacement-based element, the displacement 
interpolation mode of the spline element can also be written in matrix forms 

mn

u
v

N q  (18-18) 

In the analysis of the high-rise building structures, the longitudinal dimensions 
of the elements are usually much larger than their transverse dimensions. So 
m n is taken when the piecewise interpolation in an element is considered. The 
spline element constructed by such interpolation mode is called as TB-mn 
element. When m 1, n 1, the element TB-mn will degenerate to be the ordinary 
bi-linear plane stress rectangular element. 

18.4.2 Analysis of Shear Wall Structures by the Element TB-mn 

Here, the static and dynamic analyses of the shear wall structures are performed 
by using the element TB-mn, and several typical examples are given.  

For a shear wall with only small opening, the element TB-mn can be used like 
the usual rectangular element; for a coupled shear wall structure, the wall limbs 
can be analyzed directly by the element TB-mn; and the connecting beams are 
equivalently looked upon as orthotropic continuous grids according to the continuity 
assumption of the structure. The equivalent elastic and shear modulus of the 
continuous grids are 
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h

E
d EG
h l d

 (18-19) 

in which l and d are the span of the connecting beam and height of beam section, 
respectively; h is the storey height of the structure.  

Example 18.3 Tip displacement of a vertical cantilever beam subjected to 
horizontal load. 

In order to test the performance of the element TB-mn, the tip displacement of 
a vertical cantilever beam subjected to horizontal force is calculated in this 
example. Geometries and material properties are given in Fig. 18.7(a). The 
variations of results of tip displacement with total degrees of freedom are plotted 
in Fig. 18.7(b). Obviously, the convergence speed of the spline element is much 
faster than that of the usual rectangular element (TB-11). The results obtained 
from the element TB-mn by the same mesh are listed in Table 18.5. It can be seen 
that, when only one element is used, the elements TB-22 and TB-23 already 
reach good accuracy; even the element TB-12, which has only a few nodal 
degrees of freedom, can improve the precision greatly.  

Figure 18.7 Analysis of shear wall structure by element TB-mn 

Table 18.5 The tip displacement u of a cantilever beam subjected to horizontal force 

Element type TB-11 TB-12 TB-13 TB-22 TB-23 
Nodal degrees of freedom 2 4 6 8 12 

1 1 102 3452 3649 3724 4024 Mesh 
division 1 4 1149 3861 3699 4050 4035 

Analytical solution 4031 
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Example 18.4 Vibration analysis of a cantilever beam. 
Dimensions of the cantilever beam are: h b 1.0cm 0.5cm, l 10cm. Material 

properties: E 2.1 105MPa, 0.3, and mass density 7.8g/cm3. The results 
of the natural frequency of the cantilever are listed in Table 18.6. 

Table 18.6 Natural frequencies of a cantilever beam (103rad/s)

Frequency First-order Second-order 
Element type TB-11 TB-12 TB-13 TB-11 TB-12 TB-13 

1 1  5.778 5.397  48.93 32.81 
1 2  5.450 5.336  34.21 32.58 
1 4 9.637 5.337  61.62 32.67  
1 8 6.750   41.21   

Mesh 
division

1 40 5.532   32.97   

Example 18.5 Displacement of a coupled shear wall subjected to horizontal 
load.

In this example, an 11-storey coupled shear wall structure (Fig. 18.8) is calculated 
by the element TB-mn (Fig. 18.8). The geometrical and physical parameters are 
as follows: 

H 132ft*, W 18ft,  l 7ft,  d 2ft          
h 12ft, E 0.4 105kip/f t2*, 0.2,  t 1.0ft 

For comparison, the usual rectangular element (TB-11) and spline element are 
both employed. In order to obtain enough precision, the mesh divided by the 
usual rectangular elements (contains 572 elements) is quite dense. When the 
computation is performed by the element TB-mn, a continuity treatment must be 
used for the connecting beams. The lateral displacement curves of the coupled 
shear wall are plotted in Fig. 18.8(b). It can be seen that satisfactory results can 
be obtained by quite sparse mesh when the element TB-mn is used. 

Example 18.6 Analysis of the shear wall with local stagger holes at the 
bottom.  

A 6-storey shear wall with local stagger holes at the bottom is shown in 
Fig. 18.9. Young’s modulus E 3.0 104MPa, Poisson’s ratio 1/ 3,  thickness 
of the wall is 25cm. The vertical load q 100kN/m, and horizontal load and other 
parameters are given in Table 18.7.  

For comparison, the results obtained by the usual element and spline element 
methods are both given. The mesh divided by the usual model, which contains 
2192 elements, is quite dense, while only 104 spline elements TB-13 are utilized.  

                                                       
* ft—feet; kip—kilopound. For comparison with results in related references, units of British Imperial system 

are used here.
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Figure 18.8 Coupled shear wall structure 
(a) Structural geometry; (b) Load-displacement curves

Figure 18.9 Shear wall with local stagger holes at bottom (unit: mm) 
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From Tables 18.7 and 18.8, it can be seen that, the results of the horizontal 
displacements of the wall obtained by these two schemes are in good agreement 
with each other; and, among the computational results of the internal forces at the 
bottom wall limb, the solutions for the axis forces obtained by the two schemes 
are in good agreement while the moment solutions have a few differences, however, 
obvious discrepancies exist in shear force solutions. 

Table 18.7 Parameters and horizontal displacements of a shear wall with stagger 
holes at the bottom 

Storey No. 1 2 3 4 5 6 
Storey height (m) 4.500 3.000 3.000 3.000 3.000 3.000
Height of connecting beam (m) 1.500 1.000 1.000 1.000 1.000 1.000
Horizontal force iP (kN) 36.7 61.2 85.7 110.1 134.6 191.0

Usual element 0.6446 1.015 1.454 1.890 2.227 2.667Horizontal  
displacement (mm) Spline element 0.6633 1.090 1.577 2.048 2.464 2.875

Table 18.8 Results of internal forces at bottom wall limb 

Wall limb No. A B C 
Usual element 45.0 499.0 617.5 

Moment M (kN m)
Spline element 60.0 396.8 688.4 
Usual element 1040 3161 3803 

Axial force N (kN)
Spline element 775 2946 4248 
Usual element 6.4 252.8 365.1 

Shear force (kN) 
Spline element 22.8 104.7 489.2 

18.5 Analysis of Frame-Tube Structures by Spline  
Elements

Frame-tube structure or tube structure, which possesses high spatial stiffness and 
can perform well in earthquake-resistance, is an ideal structural system for the 
high-rise and super high-rise buildings. To date, great developments have been 
achieved in the computational theories of the frame-tube structures. Coull and 
Subedi[15] proposed an equivalent plane frame method in which the frame-tube 
structure in a 3D space is simplified as a plane frame, so that the computation 
cost can be greatly reduced. According to the characteristic of “shear lag” in a 
rectangular frame-tube structure, Coull and Bose[16,17] established the corresponding 
differential equations based on the minimum complementary energy principle. 
This method is simple, and its accuracy can meet the requirements of design. By 
assuming that the distribution of the longitudinal stresses along tube section is 
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piecewise linear, Long et al.[18] also established the fundamental equations based 
on the complementary energy principle. This method can produce high precision 
solutions for internal forces, and can be used for the computation of the tube 
structures with arbitrary polygonal section.  

The following basic assumptions for the tube structures are employed: 
(1) For the floor slab, the in-plane stiffness is infinite rigid, and the out-of-plane 

stiffness is zero; 
(2) The bending stresses at the wall panel of the tube structure are ignored.  
For the tube structure with a polygonal section, the whole structure is composed 

of several wall panels. When we analyze each of these wall panels, local 
coordinates x , y  will be firstly employed. Under this local coordinate system, 
the element stiffness matrix eK  and equivalent nodal load vector ep  of the 
spline element TB-mn can be obtained. When we analyze the whole tube 
structure, global coordinates x, y, z will be used. By the coordinate transformation 
formulae, eK  and ,ep  which are established in the local coordinate system, can 
be transformed into and assembled in the global coordinate system. The procedure 
is as follows. The transformation between the local and global coordinate systems 
is shown in Fig. 18.10. 

18.5.1 Piecewise Spline Hermitian Interpolation 

According to the basic assumptions, the horizontal displacements at the same 
height of the tube should be the same. Therefore, the horizontal displacement u
is interpolated only along the longitudinal direction; but the vertical displacement 
v  is still interpolated by the spline functions along two directions. 

Figure 18.10 Local and global coordinates 
(a) Local coordinates; (b) Global coordinates; (c) Coordinate transformation 
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2 1

1 0
( )

n

nj j
j

u N y u  (18-20) 

2 2 1 1

1 1 0 0
( , )

m n

mnij ij
i j

v N x y v  (18-21) 

In the above equations, ju  and ijv  are the nodal values of displacements or 
their derivatives in the local coordinate system O xy  (Fig. 18.10(a)): 

( )
jj y y

u u y
y

 (18-22) 

,
( , )

i jij x x y y
v v x y

x y
 (18-23) 

18.5.2 Coordinate Transformation 

The spline interpolations in the local coordinate system have already been 
finished above. Here they will be transformed into the global coordinate system 
(Fig. 18.10(b)). The transformations of the displacement components u  and v
in the local coordinate system and u, v and w in the global coordinate system are 

cos 0
0 1

sin 0

u
u

v
v

w
 (18-24) 

From this equation, the element stiffness matrix eK  and load vector ep  can be 
transformed into the global coordinate system 

T ,e e e eK TK T p T p  (18-25) 

in which T is the coordinate transformation matrix 

1 1

1 1

1 1

cos

sin

d d

d d

d d

I

T I

I

0

0

0

 (18-26) 

I is the identity matrix; d1 2n, d2 4mn.
Due to the constraint effect of the floor slab, on any section of the tube, the 

horizontal displacements (ui, wi) at node i ( i is the transverse node number of 
element e, i 1, 2 ) can be expressed in terms of the horizontal displacements and 
angular displacement (u0, w0, 0) at a reference point on the same section 
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(Fig. 18.10(c)): 

0
0

0
0

0

1 0 ( )
0 1

i i

ii

u
u z z

w
x xw

Thus, at any height of the tube, there are only three horizontal displacements. 
Here, the global stiffness matrix and load vector of the tube structure can be 
written as 

T Te

e
K HTK T H  (18-27) 

e

e
P HT p  (18-28) 

In the above equations, H is the transverse constraint matrix 

1 1

2 2

1 1

1 1 1 1

d d

d d

d d

d d d d

I

I
H

I

A B

0 0

0 0

0 0

0

 (18-29) 

where A and B are the transformation matrices of the nodal displacements (ui, wi)
(i 1, 2) and rotation 0 at the reference point 

1 1

2 2

0 0

,

( ), ( 1,2)

n n n n

n n n n

i i i i

a b
a b

a z z b x x i

0 0
0 0
I I

A B
I I

(18-30)

Some numerical examples of the tube structures with rectangular and 
polygonal sections are given as follows.  

Example 18.7 Computation of internal forces and displacements of a tube 
structure with a rectangular section subjected to horizontal load (Fig. 18.11(a),(b)). 

The tube structure with a rectangular section is shown in Fig. 18.11(b).  
Geometric parameters: b/c 1, H/b 2,4,10, h constant; Physical parameters: 

E constant, 0.3.
In this example, the tube structure with a rectangular section is analyzed by the 

elements TB-12 and TB-13. Due to symmetry, only a quarter of the structure is 
computed. The results of the displacements and internal forces are listed in 
Tables 18.9 and 18.10. From Table 18.9, it can be seen that the convergence of 
displacements by the element TB-mn is very good. Since the spline interpolation 
orders of the element along two directions are selected rationally, the 
convergence speed of the displacements is faster with the increase of H/b. The  
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Figure 18.11 Rectangular and polygonal tube structures 

Table 18.9 The tip displacement 
3

/
3b b
PHu u u

EI
 of a tube structure with 

rectangular section subjected to horizontal concentrated load  

Element type TB-12 TB-13 
H/b 2 4 10 2 4 10 

1 1 3.757 1.625 1.021 3.751 1.637 1.028 
2 2 3.856 1.663 1.032 3.856 1.663 1.032 
4 2    3.887 1.671 1.033 

Mesh 

4 4 3.887 1.671 1.033    
Coull method 3.981 1.741 1.118 3.981 1.741 1.118 
Beam theory 1.000 1.000 1.000 1.000 1.000 1.000 

Table 18.10 The bottom stress /y b b
PH b

I
 of a tube structure with 

rectangular section subjected to horizontal concentrated load

Position Mid-point A Corner point B
H/b 2 4 10 2 4 10 

1 1 0.4011 0.7638 0.9352 1.357 1.135 1.013 
2 2 0.5541 0.7813 0.9352 1.658 1.274 1.013 TB-12
4 4 0.5651 0.7835 0.9216 1.930 1.406 1.111 
1 1 0.3173 0.6724 0.9013 1.410 1.197 1.058 
2 1 0.5531 0.7681 0.9236 1.701 1.311 1.081 
2 2 0.5643 0.7747 0.9081 1.724 1.352 1.115 

TB-13

4 2 0.5630 0.7794 0.9145 1.976 1.445 1.130 
Energy method 0.576 0.787 0.915 1.874 1.438 1.175 
Coull method 0.5380 0.7680 0.9070 1.577 1.290 1.116 
Beam theory 1.0000 1.0000 1.0000 1.000 1.000 1.000 
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displacement values of Coull method[16] given in Table 18.9 are obtained from the 
force method, so they are larger than the practical displacement values of the 
structure. Furthermore, with the increase of H/b, the difference of the tip 
displacements between numerical result and beam theory will reduce gradually. 
Results of the vertical stress y at the bottom of the tube structure are listed in 
Table 18.10. It can be seen that, the stress at the mid-point A of the edge is 
smaller than the stress at the corner point B, which is the so-called “shear lag”. 
With the increase of H/b, the shear lag effect will weaken. The stress convergence 
of the spline element is also very good, and is similar to that of the energy 
method[18].

Example 18.8 The internal forces and displacements of a tube structure with 
a polygonal section subjected to horizontal load (Fig. 18.11(a),(c)). 

Geometric parameters: b/c 1, H/b 2,4,10, h constant; Physical parameters: 
E constant, 0.3. The tube structure with a polygonal section is analyzed by 
the element TB-13. Numerical solutions of the displacements and stresses are 
listed in Tables 18.11 and 18.12, respectively, in which the mesh is used for 1/4 
of the structure. Satisfactory solutions can be obtained only by a few elements. 
It can be seen that, the influence of the shear lag effect of the polygonal section 
tube structure is less than that of the rectangular section tube structure. 

Table 18.11 The tip displacement 
3

/
3b b
PHu u u

EI
 of a tube structure with 

polygonal section 

H/b 2 4 10 
3 1 3.142 1.469 1.000 
6 1 3.182 1.480 1.001 
6 2 3.182 1.480 1.001 

Mesh 

9 2 3.190 1.482 1.002 
Beam theory 1.000 1.000 1.000 

Table 18.12 The bottom stress /y b b
PH b

I
 of a tube structure with 

polygonal section 

Position Mid-point A Corner point B
H/b 2 4 10 2 4 10 

3 1 0.660 0.855 1.010 1.153 1.062 1.012 
6 1 0.761 0.892 0.974 1.313 1.114 1.022 
9 1 0.773 0.899 0.975 1.360 1.125 1.023 
6 2 0.768 0.880 0.961 1.354 1.156 1.039 

Mesh 

9 2 0.771 0.887 0.963 1.426 1.179 1.042 
Energy method 0.793 0.897 0.959 1.317 1.159 1.063 
Beam theory 1.000 1.000 1.000 1.000 1.000 1.000 
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(Continued)

Position Corner point C

H/b 2 4 10 

3 1 0.502 0.508 0.505 

6 1 0.624 0.544 0.510 

9 1 0.643 0.551 0.511 

6 2 0.646 0.562 0.515 

Mesh 

9 2 0.656 0.571 0.518 

Energy method 0.651 0.575 0.530 

Beam theory 0.500 0.500 0.500 
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Abstract This chapter continues focusing on the spline element method. 
Some applications of the spline elements for thin plate, thin shallow shell, 
thick-thin plate/shell and geometrically nonlinear problems are discussed in 
detail.

Keywords finite element, spline function, spline element, plate, shell. 

19.1 Spline Elements for Thin Plate Bending 

This section will present two rectangular spline elements for the thin plate 
bending problem[1].

19.1.1 Bi-Quadratic Rectangular Spline Element (16 DOFs) 

The geometries of the bi-quadratic rectangular spline element are still given by 
Fig. 18.3. There are 4 DOFs at each node ij

(00) (10) (01) (11) T[ ]ij ij ij ij ijw w w wq  (19-1) 

And, each element has 16 DOFs 

T T T T T
11 21 22 12[ ]eq q q q q   (19-2) 

The element deflection w(x, y) can be expressed in terms of nodal displacements 
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2 2

1 1
( , ) ij ij

i j
w x y N q  (19-3) 

where
(00) (10) (01) (11)[ ]ij ij ij ij ijN N N NN  (19-4) 

( ) ( ) ( )( ) ( )kl k l
ij i jN N x N y   (i, j 1,2; k, l 0,1) (19-5) 

( ) ( )k
iN x  and ( ) ( )l

jN y  are the shape functions of the quadratic spline beam element, 
and have been given by Eq. (18-4). 

Example 19.1 Simply-supported or clamped square plate subjected to 
uniform load q or central concentrated force P.

The results of the central deflection obtained by the above bi-quadratic spline 
element and different meshes are listed in Table 19.1.  

Table 19.1 Results of the central deflection wC

Uniform load q Concentrated load P
Mesh (1/4 plate) Total DOFs

Simply-supported Clamped Simply-supported Clamped
1 1 16 0.398 0.099 1.03 0.395 
2 2 36 0.404 0.120 1.12 0.510 
3 3 64 0.405 0.123 1.14 0.536 
4 4 100 0.406 0.125 1.15 0.546 

Exact 0.406 0.126 1.16 0.560 
Factor qL4/(100D) PL2/(100D)

19.1.2 Bi-Cubic Rectangular Spline Element (36 DOFs) 

As shown in Fig. 19.1, a bi-cubic rectangular spline element is divided into nine 
sub-regions. There are 9 DOFs at each node ij

Figure 19.1 Bi-cubic rectangular spline element 
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(00) (10) (01) (11) (20) (02) (21) (12) (22) T[ ]ij ij ij ij ij ij ij ij ij ijw w w w w w w w wq  (19-6) 

And, each element has 36 DOFs 

T T T T T
11 21 22 12[ ]eq q q q q  (19-7) 

For each node ij, there are 9 shape functions 

(00) (10) (01) (11) (20) (02) (21) (12) (22)[ ]ij ij ij ij ij ij ij ij ij ijN N N N N N N N NN  (19-8) 

where
( ) ( ) ( )( , ) ( ) ( ) ( , 1,2; , 0,1,2)kl k l
ij i jN x y N x N y i j k l  (19-9) 

( ) ( )k
iN x  and ( ) ( )l

jN y  are the shape functions of the cubic spline beam element, 
and have been given by Eq. (18-7). 

Example 19.2 Simply-supported or clamped square plate subjected to uniform 
load q or central concentrated force P.

The above cubic rectangular spline element is used to calculate this example. 
And for comparison, the results obtained by the rectangular thin plate element 
ACM and the analytical solutions are also given. (Refer to Table 19.2).  

Table 19.2 Central deflection wC and bending moments MxB, MxC (B is the 
mid-side point, C is the plate center)

Uniform q Concentrated force P

Clamped Simply-supported Clamped Simply-
supported

Element 
type 

Mesh 
(1/4

plate)

Total 
DOFs

wC MxB wC MxC wC MxB wC

1 1 36 0.126 4.69 0.406 4.83 0.554 0.119 1.15 Bi-cubic
spline

element 2 2 81 0.126 5.01 0.406 4.80 0.559 0.123 1.16 

ACM 6 6 147 0.128  0.405  0.571  1.17 
Analytical solution 0.126 5.13 0.406 4.79 0.560 0.126 1.16 

Factor qL4/(100D) qL2/100 qL4/(100D) qL2/100 PL2/(100D) P PL2/(100D)

The sectorial and triangular spline elements for the thin plate bending can be 
found in reference [1]. 

19.2 Spline Elements for Thick/Thin Beam and Plate 

In this section, quadratic and cubic spline thick/thin beam elements are introduced 
firstly. Then, these beam elements are generalized to establish bi-quadratic and 
bi-cubic spline thick/thin plate elements[1].
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19.2.1 d-Order Spline Thick/Thin Beam Elements (d 2, 3) 

For the spline thin beam elements discussed in Sect. 18.2, the displacement modes 
of quadratic and cubic spline thin beam elements are given by Eqs. (18-3) and 
(18-6), respectively. These two displacement modes can be written as 

2 1

1 0
( ) ( 2,3)

d

i i
i

w N x w d  (19-10) 

in which ( ) ( )iN x  has been simplified as ( )iN x .
When we construct the thick/thin beam element, the requirements of both thick 

beam theory and thin beam theory must be considered at the same time: 
In the thin beam theory, the rotation of the cross section  depends on the 

deflection w, and d
d
w
x

.

But, in the thick beam theory, w and  are two independent displacements, and 

shear strain d
d
w
x

 is generally nonzero. 

Here, d-order (d 2,3) spline thick/thin beam elements will be developed 
according to the above requirements. 

Firstly, the element DOFs are composed of the following nodal displacements: 
For the quadratic spline element (d 2), there are 4 DOFs, i.e., 

0 0, ( 1,2)i iw i

For the cubic spline element (d 3), there are 6 DOFs, i.e.,  
0 0 1, , ( 1,2)i i iw i

When the element degenerates to be the thin beam element, the above element 
DOFs will degenerate to be the DOFs defined in Sect. 18.2. 

Secondly, the displacement modes of d-order spline elements are considered. 
The deflection w is still expressed by the d-order spline functions, and the 
rotation  is expressed by the d 1 order spline functions, i.e.,  

2 2 1
0 0

1 1 1

2 1
0 0 1
1 1

1 1

d

i i i i
i i

d

x x i i
i

w N w N

D N D N
 (19-11) 

where
dx
dD
x

, 0
1  and ( 1,2; 1,2, , 1)i i d  are the element internal 

DOFs which are waiting for being eliminated. It can be noted that  should 
contain a 0

2xD N  term as one of the basis functions, but no matter for d 2 or for 
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d 3, 0
2xD N  and 0

1xD N  are both linearly dependent ( 0
2xD N 0

1xD N ), so only 
the 0

1xD N  term is reserved in .
After condensation for internal DOFs, the displacement modes of the 

thick/thin beam element can be obtained 

2 1 2 1
0 0 1 0 0 1

1 1 1 1

,
d d

i i i i i i i i
i i

w N w N N w N  (19-12) 

where the shape functions iN  and iN  can be written as: 
d 2 (quadratic spline element) 

0 0 1 1
1 2

1 1 1 1
1 2

0 0 0
1

1 1 0
1

2

16( 1) ( )

8 ( )

( 1) (16 )

8

/( ), 1/(1 16 )

i
i i

i i

i
i x i x

i x i x

vN N N N
a

N N v N N

N D N v D N

N D N vaD N

D Ca v

  (i 1,2) (19-13) 

d 3 (cubic spline element) 

0 0 1 1
1 2

1 1 1 1
1 2

2 2 1 1
1 2

0 0 0
1

1 1 0
1

2
2 2 0

1

2

( 1) ( )

3 ( )
2

5( 1) ( )
12

( 1) (3 )
9

2
5( 1)

4
/( ), / 3, 1/(1 3 )

i
i i

i i

i
i i

i
i x i x

i x i x

i
i x i x

vN N N N
h

vN N N N

vhN N N N

N D N v D N
vhN D N D N

vhN D N D N

D Ch h a v

  (i 1,2) (19-14) 

in which D and C are the bending and shear stiffness, respectively; a is the element 
length. iN  in the above two equations are the shape functions of the spline thin 
beam element: for the quadratic spline element, iN  are defined by Eq. (18-4); 
for the cubic spline element, iN  are defined by Eq. (18-7). 

Finally, some features of the displacement modes given by Eq. (19-11) are 
pointed out as follows: 
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(1) Within an element, w is expressed by d ( 2,3)-order spline functions 
which possess (d 1)-order continuity;  is expressed by the derivatives of the 
d-order spline functions ((d 1)-order spline functions) which possess 
(d 2)-order continuity.  

(2) Between two adjacent elements, w is continuous, but its derivative is 
generally not; possesses (d 2)-order continuity. When 0 (C ), Dxw.
Thus, w will have (d 1)-order continuity between two adjacent elements, and 
the element will become a thin beam element with only one independent 
displacement w, refer to Eq. (19-10). 

(3) When d 2, the curvature Dx  will not be continuous within an 
element and between two adjacent elements, and bending moments are piecewise 
constants; When d 3, the curvature will be continuous within an element and 
between two adjacent elements, then, the continuous bending moments can be 
obtained.  

(4) When d is 2 or 3, iN  will satisfy the following relation 

1 1 0
1 2 1( ) 1x xD N N aD N

So, the shear strain Dxw  will be a constant within an element, i.e.,  

0 0 0 0
2 1 1 2

2
0 0 0 0 1 1
2 1 1 2 2 1

8 [2( ) ( )] ( 2)

3 5( ) ( ) ( ) ( 3)
2 12

v w w a d
a
v hw w h d

h

in which ,  are defined by Eq. (19-13) or Eq. (19-14). In the above equation, 
when C ,  0. 

(5) The numbers of the element DOFs for both thick (  0) and thin ( 0)
beams are exactly the same.  

19.2.2 Bi-d-Order Spline Thick/Thin Plate Element (d=2, 3) 

As to plate element, the displacements along x and y directions can be assumed 
to vary according to Eq. (19-12), i.e., the shape functions can be constructed by 
pair-wise multiplication of the shape functions given in Eqs. (19-13) and (19-14) 
for beam element. Thus, the displacement mode of the bi-d-order (d 2,3) spline 
thick/thin plate element can be written as 

2 2
00 00 10 00 01 00 11 11

1 1

20 10 02 01 21 21 12 12 22 22

(

)

ij ij ij xij ij yij ij ij
i j

ij xij ij yij ij ij ij ij ij ij

wq N N N N

N N N N N (19-15)
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The above equation is just for the cubic spline element. As to the quadratic spline 
element, the last five terms should be eliminated. In the above equation, we have 

( ) ( )
, 1,2

, ( ) ( )
, 0,1, , 1

( ) ( )

i j

x ij i j

i jy

w N x N y
i j

N x N y
d

N x N y
q N

iN  and iN  are defined by Eq. (19-13) or Eq. (19-14), in which D and C are the 
bending stiffness and shear stiffness of the plate, respectively. And, ( , 1,2)ij

in Eq. (19-15) are generalized nodal displacements, when C , we have 

  , , ( , ) ( , 1,2; , 1,2, , )x x y y ij x y i iD w D w D D w x y i j d

(19-16)

as a result of which the thin plate element can be arrived at. 
Example 19.3 Simply-supported square plate subjected to uniform load. The 

Poisson’s ratio 0.3, and let 2/( )D CL .
This example is computed with the quadratic and cubic spline thick/thin plate 

elements. The results obtained by the quadratic spline element are listed in 
Tables 19.3a and b, in which the bending moment solutions are the average  

Table 19.3a The central deflection wC/(qL4/D) of the plate (quadratic spline 
element) 

Mesh for 1/4 plate Total DOFs 0.000 0.010 0.025 0.050
1 1 16 0.003 98 0.004 75 0.006 04 0.008 31 
2 2 36 0.004 04 0.004 76 0.005 91 0.007 85 
3 3 64 0.004 05 0.004 78 0.005 91 0.007 79 
4 4 100 0.004 06 0.004 79 0.005 91 0.007 77 

Analytical solution[2] 0.004 06 0.004 80 0.005 91 0.007 76 

Table 19.3b The central bending moment MxC /(qL2) of the plate (quadratic 
spline element) 

Mesh for 1/4 plate Total DOFs 0.000 0.010 0.025 0.050
1 1 16 0.0468 0.0523 0.0567 0.0600 
2 2 36 0.0477 0.0498 0.0502 0.0504 
3 3 64 0.0478 0.0488 0.0489 0.0489 
4 4 100 0.0478 0.0484 0.0485 0.0485 

Analytical solution[2] 0.0479 
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values at the nodes. And, results of the cubic spline element are given in 
Tables 19.4a and b. These results show that for plates with different thickness 
(  is taken different value), both elements can give highly accurate displacements 
and bending moments. The numbers in the column of 0  are the analytical 
solutions of the thin plate theory. 

Table 19.4a The central deflection wC/(qL4/D) of the plate (cubic spline element) 

Mesh for 1/4 plate Total DOFs 0.000 0.010 0.025 0.050
1 1 36 0.004 06 0.004 83 0.006 15 0.008 43 
2 2 81 0.004 06 0.004 80 0.005 96 0.007 90 
3 3 144 0.004 06 0.004 80 0.005 93 0.007 81 

Analytical solution[2] 0.004 06 0.004 80 0.005 91 0.007 76 

Table 19.4b The central bending moment MxC /(qL2) of the plate (cubic spline 
element) 

Mesh for 1/4 plate Total DOFs 0.000 0.010 0.025 0.050
1 1 36 0.0483 0.0468 0.0451 0.0424 
2 2 81 0.0480 0.0474 0.0472 0.0471 
3 3 144 0.0479 0.0477 0.0476 0.0476 
Analytical solution[2] 0.0479 

19.3 Spline Elements for Shallow Shell 

The base plane of the shallow shell is taken as the xOy plane, and the z-axis is 
normal to the base plane. Equation for the mid-surface of the shallow shell is 
z z(x, y). Thus, the initial curvatures of the mid-surface are 

2 2 2

2 2, ,x y xy
z z zk k k

x y x y
 (19-17) 

The tangential displacements of the mid-surface are u and v, and the normal 
displacement is w. The curvature vector is  
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x y

 (19-18) 
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And, the strain vector of the mid-surface is  

2

x

x

y y

xy

xy

u k w
x
v k w
y

u v k w
y x

 (19-19) 

The projection of the shallow element on the base plane is a rectangle. Let the 
normal displacement w be bi-d-order (d 2,3) spline, and the tangential 
displacements u and v be the bi- d -order spline ( d 1,2,3). Then, the 
displacement mode of the shell element can be written as 

2 1 2 1
( ) ( )

1 0 1 0

( )2 1 2 1
( )

( )
1 0 1 0

( , )

( , )

d d

ij ij
i j

d d
ij

ij
i j ij

w N x y w

uu
N x y

v v
(19-20)

where

( ) ( ) ( )( , ) ( ) ( )ij i jN x y N x N y  (19-21) 

From the different combinations of d and d , 6 elements can be obtained[1], see 
Table 19.5. 

Table 19.5 6 different spline elements for shallow shell 

d d Element symbol Number of Nodal DOFs Number of element DOFs

1 R-QLL 6 24 
2 R-QQQ 12 48 2
3 R-QCC 22 88 
1 R-CLL 11 44 
2 R-CQQ 17 68 3
3 R-CCC 27 108 

Example 19.4 Simply-supported elliptic paraboloidal shallow shell with 
square base plane and subjected to uniform vertical load q. Poisson’s ration 

0.3.

Equation of the mid-surface is 2 2( )
2
kz x y , and the side length of the 
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square base plane is 2a. Results of the central deflections, bending moments and 
in-plane forces obtained by three spline elements are listed in Table 19.6. 

Table 19.6 Numerical results obtained by 3 different spline elements for shallow shell 

 Mesh (1/4 shell) Total DOFs wC MxC NxC

1 1 48 4.244 0.6025 6.480
2 2 108 4.037 0.2896 6.096
3 3 192 4.010 0.2443 6.032

R-QQQ

4 4 300 4.001 0.2296 6.011 
1 1 68 3.998 0.1025 6.165
2 2 153 3.991 0.1881 6.023R-CQQ
3 3 272 3.991 0.2021 6.003
1 1 108 3.989 0.1275 5.874

R-CCC
2 2 243 3.990 0.1884 5.963

Analytical solution 3.990 0.2111 5.985
Factor qa4/1000D qa2/100 qa

19.4 Spline Elements for Thick/Thin Shell 

This section will introduce the spline elements for the analysis of both thick and 
thin shells, which can also be used for thick and thin plates. 

The influence of the transverse shear strain should be taken into account in the 
thick shell element. In order to avoid the shear locking phenomenon, the nodal 
displacements and transverse shear strains are taken as the independent variables. 
Since fewer undetermined coefficients and higher continuity exist in the spline 
functions, a very ideal effect can be achieved if the interpolation functions for the 
element displacements and transverse shear strains are constructed by the rational 
selection of the spline functions with different order. Furthermore, since the 
derivative terms of w at the nodes are replaced by the normal rotations and 
transverse shear strains of the cross-section, boundary conditions can be introduced 
easily. The features of this thick shell element are as follows: the interpolations for 
displacements and transverse shear strains are finished in local element by using 
the spline functions; each undetermined coefficient represents the nodal value of 
the element variable or its derivative; higher accurate solutions can be obtained 
with only low-order spline functions and fewer DOFs. 

Two spline element types will be discussed as follows. They are 
Rectangular element—suitable for the analysis of the shallow shell with 

rectangular base; 
Sectorial element—suitable for the analysis of the axisymmetric shell. 
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19.4.1 Rectangular Spline Element for Thick/Thin Shell[3, 4]

1. The potential energy functional of thick shell 

The total potential energy functional of the thick shell can be written as 

T T T
p b

1 1 1 d
2 2 2 x yqw q u q v AD D C  (19-22) 

in which  is the membrane strain vector in the mid-surface of the shell;  is 
the curvature vector of the mid-surface: 

p p
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 (19-24) 

where ,x y  and xy  are the initial curvatures of the mid-surface and given by 
Eq. (19-17); x and y are the rotations of the mid-surface. According to the 
Mindlin assumption, the transverse shear strains , the derivatives of the 
deflection w and the rotations  satisfy the following relation: 

x
x

y
y

w
x
w
y

  (19-25) 

In the variational formulation of the total potential energy functional, the 
displacements and the transverse shear strains are treated as independent variables, 
so from Eq. (19-25), the curvatures of the mid-surface  can be expressed in 
terms of the derivatives of w and .
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 (19-26) 

In the total potential energy functional (19-22), Dp, Db and C are the membrane, 
bending and shear stiffness matrices of the shell 
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0 1 2(1 )
EC C kGh GC  (19-29) 

where E is the Young’s modulus;  is the Poisson’s ratio; h is the thickness of the 
shell; k is the section shear coefficient. It can be seen that, in the total potential 
energy functional, 1w C , u, v and 0C .

2. Rational spline interpolations 

Now, the variables w, u and  of the rectangular element shown in Fig. 19.2 are 
interpolated, respectively. 

Since continuity requirements of u and  are lower than those of w, the orders 
of the spline interpolation functions should be selected individually, i.e., both u
and  are one-order lower than w. Here, the following interpolations are used: 
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2 2 2 2

1 1 0 0
( , )

d d
xijx

ij
i jy yij

N x y  (19-32) 

In the above equations, the order of the spline interpolation functions for w is d,
while the orders of u and  are both d 1. Usually, d 2 or 3, and corres- 
ponding element is quadratic or cubic spline element. 

Figure 19.2 Rectangular element 

ijf  still represents the derivative value of function f at node ij, i.e., 

,
( , )

i jij x x y y
f f x y

x y
 (19-33) 

where i, j 1, 2 (refer to Fig. 19.2); and  are the derivative orders with respect 
to x and y, respectively. 

The shape functions ijN  are the product of two spline interpolation functions: 

 ( , ) ( ) ( )ij i jN x y N x N y  (19-34) 

The quadratic and cubic spline interpolation functions ( )iN x  (or ( )jN y ) are 
given by Eqs. (18-4) and (18-7), respectively; and the linear spline interpolation 
function is 

0
1
0
2

( ) 1
(0 1)

( )
N x
N x

 (19-35) 

In order to deal with boundary conditions conveniently, by using the Eq. (19-25), 
the following derivative terms of w at nodes can be expressed in terms of 
rotations  and shear strains  at the nodes:  

( 1) 0 0

0 ( 1) 0

( 0,1, , 2)

( 0,1, , 2)
i j xij xij

i j yij yij

w d

w d
 (19-36) 
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Therefore, the interpolation formula (19-30) for w can be rewritten as 

2 2 2 2 1 1
00 00
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(19-37)

And, the interpolation formulae (19-37), (19-31) and (19-32) can be written in 
the following matrix forms 

b b

p

w

u

w N w N
u N u

N
 (19-38) 

where w , u  and  are the element nodal unknown vectors. Since Eq. (19-36) is 
used here, the vector w  should be 

T T T T T
11 12 21 22[ ]w w w w w  (19-39) 

with
00 0 0 11 1 1 21 12 22 T[ ]ij ij xij yij ij xij yij ij ij ijw w w w ww  (19-40) 

Equation (19-40) is suitable for cubic spline element. As to the quadratic spline 
element, only the first four terms will be retained.  

Substituting Eq. (19-38) back into Eqs. (19-23) and (19-26), the membrane 
strain vector  and curvature vector  can be written as 

p p p b b

p p p

( )u u w w

u w

N u N w N

B u B w B
 (19-41) 

b b b b b b( )w w wN w N N B w B  (19-42) 

3. Element stiffness matrix 

From the stationary condition of the energy functional, the following equations 
can be obtained, in which the coefficient matrix is the element stiffness matrix.  

www wu w

uw uu u u

w u

PK K K w
K K K u P
K K K P

 (19-43) 

where



Chapter 19 Spline Element — Analysis of Plate/Shell Structures 

677

T T
p p p b b b

T
p p p

T T
p p p b b b

T
p p p

T
p p p

( )d

d

( )d

d

d

e

e

e

e

e

ww w w w w

wu w u

w w w

uu u u

u u

A

A

A

A

A

K B D B B D B

K B D B

K B D B B D B

K B D B

K B D B

      

T T T
p p p b b b

T T T

T T T
b p b

( )d

, ,

d , d , d

e

e e e

uw wu w w u u

x
w w u u

y

A

q
q A A q Aq

K B D B B D B N CN

K K K K K K

P N P N P N

4. Numerical examples 

Example 19.5 Internal forces and displacements of simply-supported square 
plates subjected to uniform load. 

In this example, the central deflection wC and bending moment MxC of 
simply-supported square plates with different thickness-span ratios are computed 
by using the quadratic and cubic rectangular spline shell elements (d 2,3). The 
results are listed in Tables 19.7 and 19.8. Due to symmetry, only 1/4 of the plate 
is considered. These results show that, the present spline elements for moderately 
thick shell possess high precision. When only one cubic element is used, the 
solutions of deflection wC and bending moment MxC are very close to the 
analytical solutions. Even though the quadratic spline element, which has fewer 
nodal DOFs, is used, the convergence is also quite good.  

Table 19.7 The central deflection 3 4/Cw Eh qL  of simply-supported square plate 
subjected to uniform load 

Thickness-span ratio h/L of the square plate 
Spline order Mesh 

0.0001 0.01 0.05 0.10 0.20 
1 1 0.043 46 0.043 49 0.044 00 0.045 47 0.051 41
2 2 0.044 15 0.044 18 0.044 63 0.046 07 0.051 82
3 3 0.044 27 0.044 29 0.044 75 0.046 19 0.051 92

d 2

4 4 0.044 31 0.044 33 0.044 79 0.046 23 0.051 97
1 1 0.044 36 0.044 38 0.044 76 0.046 28 0.052 02d 3
2 2 0.044 36 0.044 38 0.044 76 0.046 28 0.052 02

Analytical solution[5] 0.044 34 0.044 39 0.044 68 0.046 32 0.052 17
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Table 19.8 The central bending moment 2/xCM qL  of simply-supported square 
plate subjected to uniform load 

Thickness-span ratio h/L of the square plate 
Spline order Mesh 

0.0001 0.01 0.05 0.10 0.20 
1 1 0.046 76 0.046 75 0.046 64 0.046 31 0.044 98
2 2 0.047 66 0.047 66 0.047 64 0.047 57 0.047 34
3 3 0.047 79 0.047 79 0.047 78 0.047 76 0.047 66

d 2

4 4 0.047 84 0.047 84 0.047 83 0.047 81 0.047 76
1 1 0.048 35 0.048 35 0.048 35 0.048 37 0.048 43

d 3
2 2 0.048 00 0.048 00 0.048 00 0.048 01 0.048 02

Analytical solution[5] 0.047 90 

Example 19.6 Displacements and internal forces of simply-supported 
double-parabolic shallow shell subjected to uniform load. 

The mid-surface equation of the simply-supported (movements along membrane 
direction are admissible) shallow shell is z 0.5k(x2 y2), and the shell is 
subjected to uniform vertical load q (Fig. 19.3). In this example, displacements 
and internal forces of the double-parabolic shallow shell are computed by using 
the cubic spline element for moderately thick shell. All results are listed in 
Table 19.9. From Table 19.9, it can be seen that the displacement wC possesses 
faster convergence speed, and the convergence speed of the bending moment MxC
is slower.  

Figure 19.3 Double-parabolic shallow shell 

Table 19.9 Results of the double-parabolic shallow shell subjected to uniform load 

Mesh 
4

410C
qaw
D

2 2(10 )xCM qa ( )xCN qa

1 1 0.3996 0.1064 6.123 
2 2 0.3990 0.1869 6.020 
3 3 0.3990 0.1984 6.000 

Reference [1] 0.3990 0.2111 5.985 
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19.4.2 Sectorial Spline Element for Thick/Thin Axisymmetric  
Shell[3]

For the analysis of the axisymmetric shell, spherical coordinates r, ,  are 
employed. Then, the membrane strains , curvatures  and transverse shear 
strains  can be expressed in terms of the displacements as follows: 

p p
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u  (19-44) 

b b2

1 0 0

cos sin cos 1

2 12sin 0 2

u

us R s
v

rR r r r

rR s r s

u

(19-45)

w
s w w

r

 (19-46) 

For a sectorial element shown in Fig. 19.4, by imitating the rectangular element, its 
interpolation formulae of displacements w, u, v and shear strains can be written as  
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 (19-47) 
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Figure 19.4 Sectorial element 

In order to introduce the boundary conditions rationally, the partial derivative 
terms of the displacement component w at nodes will be replaced by  and 

( 1)0 0

0( 1) 0

( 0, , 2)

( 0, , 2)

ij ij ij

ij ij ij

w d

w d
 (19-48) 

The other steps are the same as those of the rectangular spline thick shell 
element, and will not be repeated here. 

Example 19.7 Displacements and internal forces of simply-supported circular 
plate subjected to uniform load.  

In this example, the central deflection wC and bending moment M C of the 
simply-supported circular plate with different thickness-radius ratios subjected to 
uniform load are computed by using the sectorial spline element for moderately 
thick shell. The results are listed in Tables 19.10 and 19.11. Due to symmetry, only 
one element is used along the hoop direction. It can be seen that excellent 
convergences of the displacements and internal forces can be obtained from the 
spline axisymmetric thick shell element.  

Table 19.10 The central deflection 4/Cw D qR  of simply-supported circular plate 
subjected to uniform load 

The thickness-radius ratio h/R of the circular plate 
Spline order Number of 

the elements 0.0001 0.01 0.05 0.20 0.30 
1 0.061 26 0.061 26 0.061 41 0.064 10 0.067 67
2 0.063 17 0.063 17 0.063 39 0.066 04 0.069 61
4 0.063 60 0.063 60 0.063 76 0.066 45 0.070 01

d 2

8 0.063 70 0.063 71 0.063 88 0.066 53 0.070 11
1 0.063 72 0.063 73 0.063 88 0.066 59 0.070 11

d 3
2 0.063 70 0.063 71 0.063 88 0.066 56 0.070 13

Analytical solution[2] 0.063 70 0.063 71 0.063 88 0.066 56 0.070 13
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Table 19.11 The bending moment 2/CM qR  of simply-supported circular plate 
subjected to uniform load 

The thickness-radius ratio h/R of the circular plate 
Spline order Number of 

the elements 0.0001 0.01 0.05 0.20 0.30 
1 0.1933 0.1933 0.1933 0.1933 0.1933 
2 0.2048 0.2048 0.2048 0.2048 0.2048 
4 0.2063 0.2063 0.2063 0.2063 0.2063 

d 2

8 0.2064 0.2064 0.2064 0.2064 0.2064 
1 0.2110 0.2110 0.2110 0.2111 0.2112 
2 0.2074 0.2074 0.2074 0.2075 0.2075 d 3
4 0.2065 0.2065 0.2065 0.2065 0.2066 

Analytical solution[2] 0.2063 

Example 19.8 Internal forces of a spherical shell subjected to uniform normal 
load.

Dimensions of the spherical shell and results are given in Fig. 19.5. Due to 
symmetry, only one cubic spline element for moderately thick shell is used along 
the hoop direction, and four elements are used along the radial direction. It can be 
seen that the radial bending moment M  is in exact agreement with the analytical 
solution[6], but there is a little difference existing in the hoop membrane force N .
Reference [7] provides the results obtained by 8 axisymmetric shell elements.  

Figure 19.5 Clamped spherical shell 

19.5 Spline Elements for Geometrically Nonlinear  
Analysis[3–8]

This section will introduce the spline elements for geometrically nonlinear analysis 
of the shell, which can be used to analyze large deflection problem, determine 
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critical load, track post-buckling path, and study buckling characters of the plate/ 
shell structure with initial defects.  

Two geometrically nonlinear spline elements, rectangular shallow shell element 
in the Cartesian coordinate system and sectorial axisymmetric shell element in the 
spherical coordinate system, are discussed as follows.  

19.5.1 Rectangular Shallow Shell Element in the Cartesian  
Coordinate System 

As shown in Fig. 19.6, a shallow shell in the Cartesian coordinate system Oxyz is 
considered. And, the rectangular element shown in Fig. 19.2 is used. The Total 
Lagrange Formulation of the geometrically nonlinear spline element will be 
derived from the virtual work principle. 

Figure 19.6 Shallow shell in Cartesian coordinate system 

1. Nonlinear strain-displacement relation of shell 

Here, the von Karman scheme is used. In the coordinate system Oxyz, the strain- 
displacement relation of the shallow shell can be written as 
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 (19-49) 

where R1 and R2 are two principal radii of curvature;  is the normal coordinate 
of the shell. The curvatures in the mid-surface of the shallow shell are the same 
as those in the small deflection theory 
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w w w

x y x y
 (19-50) 
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The above relations can be rewritten as the following matrix forms 

p

b
 (19-51) 

in which the superscript p denotes the membrane state; b denotes the bending state. 

2. Spline Hermitian interpolation 

Spline Hermitian interpolation is employed here for the element displacement 
components. If m-order spline is used, then, after the assembly of the elements, 
the interpolation functions will keep Cm–1-continuity within the domain. Thus, 
the displacements can be interpolated by the following equations 
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 (19-52) 

where the tangential displacements of the mid-surface u and v are bi-m-order; normal 
displacement w is bi-n-order. If m 1, the membrane forces between elements 
will be continuous; if n 2, the bending moments between elements will be 
continuous. iju  (or ijv , ijw ) denote the displacement or its derivative at node 
ij (i, j 1,2, Fig. 19.2) 

,
( , )

i jij x x y y
u u x y

x y
 (19-53) 

The spline interpolation base function ( , )mmijN x y  possesses the following 
features:

( , ) ( , , , 1,2; , , , 0,1, , 1)mmij k l ik jlN x y i j k l m
x y

(19-54)

where ij is the Kronecker symbol 

1,
0,ij

i j
i j

Bi-m-order piecewise spline interpolation base function ( , )mmijN x y  is composed 
of two m-order spline functions 
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 ( , ) ( ) ( )mmij mi mjN x y N x N y  (19-55) 

The quadratic spline function (m 2) is defined by Eq. (18.4); the cubic spline 
function (m 3) is defined by Eq. (18.7). 

Equation (19-52) can be written as the following matrix form 
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b
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qN
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0
 (19-56) 

Substitution of Eq. (19-56) into Eq. (19-51) yields 

0.5L NLB q B q   (19-57) 

According to the above interpolation formulae, the element tangential stiffness 
matrix can be derived. This geometrically nonlinear element is called the 
rectangular element (NS)mn.

19.5.2 Sectorial Axisymmetric Shell Element in the Spherical  
Coordinate System 

In the large deflection theory of axisymmetric shell, the membrane strains of any 
point in the mid-surface of the shell are (Fig. 19.7) 
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 (19-58) 

And, the curvatures are 
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Chapter 19 Spline Element — Analysis of Plate/Shell Structures 

685

Figure 19.7 Axisymmetric shell in spherical coordinate system 

Piecewise spline interpolation is used for the sectorial axisymmetric shell 
element (Fig. 19.8) 
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 (19-60) 

Substitution of the above equation into Eqs. (19-58) and (19-59) yields 

 0.5L NLB q B q  (19-61) 

Figure 19.8 Sectorial element 

19.5.3 Solution Scheme for Nonlinear Equation Set  

Reference [9] gave reviews on the existing solution schemes for the nonlinear 
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equation set. For weak nonlinear problems, a modified Newton-Raphson method 
is used here. In order to control iteration times rationally, the load increment will 
be determined by the nonlinearity of the current equation set. Determining critical 
load and tracking post-buckling path of structures are difficult points in 
geometrically nonlinear problems. Here, a fixed arc length method is used to 
track the post-buckling path when the load reaches extremum and structure 
becomes unstable. That is to say, when the modified Newton-Raphson method is 
employed for iteration, the length of the displacement vector is restricted so that 
the arc length in solution space will keep invariant during the iteration procedure. 
Since this fixed arc length method cannot give the buckling critical point directly, 
in order to obtain the correct critical load of the structures, the spline functions 
will be used for fitting the solution curve near the extremum point. This  is 
because the spline functions possess obvious advantages in computational stability 
and geometrical approximation. During the iteration, the allowable iteration times 
are 6 8; otherwise, the load increment will be adjusted. 

19.5.4 Numerical Examples 

Example 19.9 Large deflection analysis of a clamped square plate subjected to 
uniform load. 

The side length of the clamped square plate 2a 100cm, the thickness h 0.5cm; 
the Young’s modulus E 2.05 105MPa, the Poisson’s ratio 0.3.  

Due to symmetry, only 1/4 structure is computed by a 4 4 mesh composed of 
the rectangular element (NS)22. The results are plotted in Fig. 19.9. It can be seen 
that the results of the present method are in good agreement with the curve of the 
series solution[6].

Figure 19.9 Large deflections of clamped plate subjected to uniform load 
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Example 19.10 Large deflection analysis of the double-parabolic shallow 
shell.

In this example, the load-displacement curve of the simply-supported double- 
parabolic shallow shell subjected to central concentrated load is given. Dimensions 
of the structure and results are all shown in Fig. 19.10.  

Figure 19.10 The load-displacement curve of double-parabolic shallow shell 

Due to symmetry, only 2 2 rectangular elements (NS)33 are used for 1/4 of 
the shell. The results are very close to those obtained in reference [10] using 
displacement-based elements. But, the number of the displacement-based elements 
is about six times of that for the spline elements used here. 

Example 19.11 Buckling analysis of the spherical shell subjected to uniform 
outer pressure. 

In this example, the buckling problem of the clamped spherical shell subjected 
to uniform outer pressure (Fig. 19.11(a)) is analyzed. Due to symmetry, only 4 
sectorial elements (NS)33 are collocated in radius direction. The variation of 
critical load qcr with parameter 24( 12(1 ) / )R h  is plotted in 
Fig. 19.11(b). When 3.5< <6, qcr is greatly below the classical value cr ;q  when 
6< <8, qcr is a little higher than crq ; when >8, qcr oscillates around cr .q  The 
results in this example are in good agreement with those obtained by Budiansky[11]

and Weinitschke[12]. The load-displacement curves of the spherical shell subjected 
to uniform outer pressure are given in Figs. 19.11(c),(d): Fig. 19.11(c) is for the 
case of 5 which possesses evident extreme point and complete post-buckling 
curve; Fig. 19.11(d) is corresponding to oblate spherical shell which has no 
apparent critical point. 
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Figure 19.11 Buckling of spherical shell 
(a) clamped spherical shell; (b) critical load of spherical shell under outer pressure;  
(c), (d) load-displacement curve of spherical shell under outer pressure          

Example 19.12 Buckling analysis of the circular plate with initial defects. 
There are two basic buckling forms for the plate/shell structures: buckling at 

the bifurcation point and buckling at the extreme point. The former is usually 
considered within the range of linear elasticity and small displacement, and its 
critical features are expressed by the linear eigenvalue problem. In practical 
engineering, initial defects in a structure, caused by manufacture errors, etc., are 
hard to be avoided. So, the structural state of buckling at the bifurcation point 
may become that of buckling at the extreme point. In this example, assume that 
the initial defect is the displacement field caused by uniformly distributed 
transverse load on the circular plate, in which the initial central deflections 

0
Cw  are 0.01%, 0.1% and 1% of the thickness, respectively. The radius of the 

circular plate a 20in; the thickness h 0.2in; the Young’s modulus E 3.0 107psi;
the Poisson’s ratio 0.3. Due to symmetry, only 2 sectorial elements (NS)33 are 
used along the radius direction. The results are shown in Fig. 19.12. It can be 
seen that the circular plate is very sensitive to initial disturbance. The variation of 
the load-displacement curve is more and more gentle with the increase of the 
initial disturbance; on the contrary, the curve varies more severely around the 
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critical point with the decrease of the initial disturbance. When 0
Cw 0.01%h,

the situation is very close to the case of ideal buckling at the bifurcation point. 
Giving a tiny initial disturbance to perfect structure is also one of the methods for 
obtaining the post-buckling path after buckling at the bifurcation point. 

Figure 19.12 Buckling analysis of circular plate with initial defect 
(a) Circular plate subjected to radial pressure; (b) relation between transverse  
displacement and radial pressure                                    
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Abstract This chapter presents a summary of the contributions of the 
whole book, including seven new achievements in the finite element method, 
five new element series with 108 new element models, and new solution 
strategies for five challenging problems. 

Keywords finite element, new achievements, new element series, challenging 
problems. 

20.1 Seven New Achievements in the Finite Element  
Method

Besides the Introduction and this chapter, this book uses eighteen chapters, three 
parts to illustrate seven new achievements in the finite element method. The 
contents of these seven achievements and the corresponding original literatures 
are listed in Table 20.1. 

Table 20.1 Seven new achievements and their original literatures 

Name (chapter no.) New creations 
Original

literatures

1. Sub-region 
variational principle 
(Chap. 2) 

1.1 New variational principles based on sub-region 
interpolation and relaxed continuity conditions at the 
interfaces are established 

1.2 Sub-region mixed energy principle—the theoretical
basis of sub-region mixed element method 

[1 3]
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(Continued)    

Name (chapter no.) New creations Original
literatures

1.3 Sub-region potential energy principle—the theoretical 
basis of the generalized conforming element 

1.4 Sub-region complementary energy principle—the 
theoretical basis of the stress hybrid element 

2. Variational 
principle with 
several adjustable 
parameters 
(Chap. 3) 

2.1 An optimization space is available for the applications of the 
variational principles because of the existence of adjustable
parameters

2.2 Several patterns of functional transformations are proposed
2.3 Variable-substitution-multiplier method is proposed 

[4] 

3. Generalized 
Conforming
element 

  (Chaps. 4 11) 

3.1 Generalized conforming element theory, which can 
guarantee the convergence of the non-conforming elements,
is proposed 

3.2 Various new conforming schemes, such as Line conforming, 
Perimeter conforming, Point-Line-Perimeter conforming, 
SemiLoof conforming, etc., are proposed 

3.3 New rational interpolation scheme for shear strains and 
mixed assumption method of strains-displacements,
which can eliminate shear locking completely, are proposed

3.4 A new hybrid-enhanced procedure, which can improve the 
accuracy for stress solutions of displacement-based 
elements, is proposed 

3.5 New membrane elements with additional rigid rotation 
DOFs are developed 

3.6 New flat-shell and curved shell elements are constructed

[6] 

4. Sub-region 
mixed element 
method

  (Chaps. 12, 13) 

4.1 A new mixed finite element method in which a coupling 
mesh composed of conventional displacement-based and 
stress-based elements is proposed 

4.2 High precision solution methods for crack and notch 
problems are developed 

[7] 

5. Analytical trial 
function method 

  (Chaps. 14, 15) 

5.1 A new finite element method, the analytical trial function 
method, is proposed. It uses the basic analytical solutions 
as its trial functions which exhibits complementarities of 
analytical and discrete methods 

5.2 High precision solution method is developed for the 
singular stress problem 

[8] 

6. Quadrilateral 
area coordinate 
method

  (Chaps. 16, 17) 

6.1 Area coordinate method is generalized from triangular 
elements to quadrilateral elements. Two quadrilateral 
area coordinate methods (QACM-  and QACM- ) are 
systematically established 

6.2 A new tool for construction of quadrilateral elements is 
provided. Elements formulated by such tool are more 
insensitive to mesh distortion than those by the 
isoparametric coordinate method 

[10] 

7. Spline element 
method

  (Chaps. 18, 19) 

7.1 A new method with both merits of high flexibility of 
finite element method and high smoothing of spline 
functions is proposed 

7.2 New elements for the analysis of plate/shell structures 
and high-rise buildings are constructed 

[11,12]
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20.2 Five New Element Series with 108 New Element  
Models

Brief introduction on the theoretical achievements have been given in Table 20.1. 
On the basis of these developments, new element models, which possess excellent 
performance, are successfully developed. 

In this book, five new element series with 108 new element models are developed 
and listed in Table 20.2. 

Table 20.2 Five new element series with 108 new element models 

 New element series Chapter 
no.

Number of new 
element models Remark

1
Generalized
conforming
element series 

Thin plate elements
Thick and composite 
plate elements 
Membrane and shell 
elements 

5,6,7
8,9,10

11 

28
11 

15

See Table 5.1 
See Table 20.3 

See Table 20.4 

2 Sub-region mixed element series 12,13 9 See Table 20.5 

3 Analytical trial function element 
series q 7 

5 generalized conforming
elements; 
2 singular hybrid elements;
See Table 20.6 

4 Quadrilateral area coordinate element
series 16,17 20 

All are generalized 
conforming elements; See 
Table 17.1 

5 Spline element series 18,19 18 See Table 20.7 

Total 108 new 
element models

Following are the supplementary explanations for the five new element series 
in Table 20.2. 

20.2.1 Generalized Conforming Element Series 

Generalized conforming element series are the main part of this book, so eight 
chapters (Part , Chaps. 4 11) are used to discuss them.  

The generalized conforming element series can be divided into three groups: 
thin plate elements, thick and composite plate elements, membrane/shell elements. 
Some remarks are given as follows. 

1. Generalized conforming thin plate element series 

Generalized conforming elements were cradled in the field of the thin plate. The 
initial generalized conforming elements (elements TGC-9 and RGC-12) are all 
thin plate bending elements. Therefore, it can be seen that the generalized 
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conforming element theory can exhibit its advantages most easily in the thin 
plate problem. This is because the construction of the exactly conforming thin 
plate element, which belongs to C1 continuity problems, is a difficult task. But, 
the generalized conforming element theory can solve this difficulty simply by its 
own advantages, and both convergence and convenience can be insured. 
Consequently, it has been paid attention to by some researchers, and successfully 
generalized to other fields. In general, new theories and methods are firstly born 
in special areas, and then, are generalized and applied in other areas. 

The detailed discussions on generalized conforming thin plate element series 
can be referred to the content given by Table 5.1. There are 28 element models, 
which can be classified as five generalized conforming schemes: Line conforming, 
Line-point conforming, SemiLoof conforming, Perimeter-point conforming and 
Least square schemes. The wide applicability and the multiplicity of construction 
schemes are also the features and advantages of the generalized conforming 
element theory. 

2. Generalized conforming thick plate and composite plate element series 

The detailed discussions on generalized conforming thick and composite plate 
element series can be referred to the content given by Table 20.3. There are 11 
elements, in which 8 are the thick plate elements, 2 are composite plate elements, 
and 1 is piezoelectric composite plate element. 

Table 20.3 Index of generalized conforming thick and composite plate elements 
(11 elements) 

Symbol of element Degenerated case Original
reference

Chapter
& section 

no.

By 
assuming 

( , )

1. Triangular element TMT 
2.Quadrilateral element TMQ
3.Quadrilateral element 
ARS-Q12

Thin plate element DKT
Thin plate element DKQ 
Thin plate element DKQ

[13] 
[14] 
[15] 

8.5
8.5
9.3

By 
assuming 

(w, )

4. Triangular element 
TCGC-T9
5. Triangular element TSL-T9

Thin plate element 
GPL-T9 
Thin plate element 
LSL-T9 

[16] 

[17] 
8.6

11.5.3Thick
plate

element From
thin plate 
element 
to thick 

plate
element 

6. Rectangular element LFR1

7. Rectangular element LFR2
8. Rectangular element 
GACM

Thin plate element 
LR12-2
Thin plate element ACM
Thin plate element ACM

[18] 

[18] 
[19] 

8.7

Composite plate 
element 

9. Quadrilateral element 
TMQ20
10.Quadrilateral element 
CTMQ20

Thick plate element 
TMQ
Thick plate element 
ARS-Q12

[20] 

[21] 9.3

Piezoelectric 
composite plate 

element 

11.Quadrilateral element 
CTMQE

Composite plate element
CTMQ20 [22] 10.3 
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During the studies on the generalized conforming thick plate and composite 
plate elements, developments for two key problems have been achieved: 

(1) The shear locking problem—According to the generalized conforming 
element theory, countermeasures for solving shear locking are proposed. The key 
point of these countermeasures is the rational interpolation method for shear 
strains of the thick plates. On the basis of this point, three schemes can be used, 
such as no. 1 3 elements constructed by assuming ( , ), no. 4 and 5 elements 
constructed by assuming (w, ), and no. 6 8 elements constructed by the 
transition from thin plate elements to thick plate elements. 

(2) The precisions for stress solutions, including transverse shear stresses at 
the interfaces of laminated composite plate, are improved—On the basis of the 
displacement solutions calculated by the generalized conforming elements, a 
hybrid-enhanced post-processing procedure for stress solutions is used. 

3. Generalized conforming membrane and shell element series 

Membrane element is the model for plane stress or plane strain problems, and 
also can be treated as the component of the shell element.  

The generalized conforming membrane and shell element series involve 8 
membrane elements and 7 shell elements, i.e., totally 15 models. Their detailed 
information can be found in Table 20.4, in which the membrane elements are 
classified as elements with or without drilling freedoms, and the shell elements 
are classified as flat-shell element and shallow shell element.  

Table 20.4 Index of generalized conforming membrane and shell elements (15 
elements) 

Symbol of element 
Original
reference

Chapter
& section 

no.
Remark

Membran
e element 

1. Isoparametric element GC-Q6 [23] 11.2 
It degenerates to Wilson Q6 
element in rectangular case 

2. Rectangular element GR12 
3. Rectangular element GR12M

[24] 
[24] 

11.3 
Without internal parameter 
With two internal parameters

4. Quadrilateral element GQ12
5. Quadrilateral element GQ12M

[25] 
[25] 

11.3 
Without internal parameter 
With two internal parameters

Membran
e element 

with
drilling
freedom

6. Triangular element GT9 
7. Triangular element GT9M 
8. Triangular element GT9M8 

[26] 
[26] 
[27] 

11.4 
Without internal parameter 
With one internal parameter
With eight internal parameters

Flat-shell
element 

9. Rectangular element GCR24
10. Triangular element GST18 
11. Triangular element GST18M
12. Triangular element GMST18

[28] 
[29] 
[29] 
[17] 

11.5 

GCR24 GR12 GPL-R12
GST18 GT9 GPL-T9 
GST18M GT9M8 GPL-T9
GMST18 GT9 TSL-T9 
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(Continued)

Symbol of element Original
reference

Chapter
& section 

no.
Remark

13. Rectangular element 
GC-S20 [30] 11.6 

For eliminating membrane 
locking, generalized 
conforming conditions 
between membrane strains 
and displacements are used 

14. Triangular element SST21 [31] 11.7 

For eliminating membrane 
locking, tangential freedoms 
at mid-side nodes are 
introduced

Shallow
shell

element 

15. Rectangular element SSR28 [32] 11.9 

For eliminating membrane 
locking, tangential freedoms 
at mid-side nodes are 
introduced

During the studies on the generalized conforming membrane and shell elements, 
developments for three key problems have been achieved: 

(1) Rational definition of nodal drilling freedom in membrane element—On
the basis of the analysis of the disadvantages existing in two early definitions for 
nodal rotation freedom, a new more rational definition is proposed. 

(2) Double improvements on flat-shell element—Flat-shell element is composed 
of two parts: membrane element and plate bending element. Here, these two parts 
are both upgraded: the membrane element part is replaced by the new model with 
newly defined drilling freedoms, and the plate bending element part is replaced by 
the generalized conforming element with excellent performance.  

(3) Elimination of the membrane locking phenomenon in shallow shell 
element—By adding the tangential displacement DOFs at the mid-side nodes, the 
orders of the tangential and normal displacements can match with each other, so 
that membrane locking will be eliminated. 

20.2.2 Sub-Region Mixed Element Series 

The sub-region mixed element method is a new finite element method derived 
from the sub-region mixed variational principle. Its feature is that a coupling 
mesh composed of conventional displacement-based and singular stress-based 
elements is used, so that both advantages from the two models can be obtained. It 
specializes in the analysis of crack and notch problems which contain singular 
stress points.  

This book presents a detailed introduction to the sub-region mixed element 
method for the analyses of 4 different crack problems and 5 different V-notch 
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problems. And, the index of the new elements for these 9 problems is given in 
Table 20.5. 

Table 20.5 Index of sub-region mixed elements (9 elements) 

Symbol of element 
Original
reference

Chapter & section no.

Crack
problem

1. SRM-C1  2D crack of mode 
2. SRM-C2  2D crack of mixed mode 
3. SRM-C3  Crack in thick plate 
4. SRM-C4  Surface crack in 3D body 

[7] 
[33] 
[34] 
[35] 

12.3
12.3
12.4
12.5

Notch
problem

5. SRM-V1  Plane V-notch 
6. SRM-V2  Bi-material plane notch 
7. SRM-V3  Bi-material anti-plane notch 
8. SRM-V4  V-notch in thick plate 
9. SRM-V5  3D V-notch 

[36] 
[37] 
[38] 
[39] 
[40] 

13.2
13.3
13.4
13.5
13.6

20.2.3 Analytical Trial Function Element Series 

By taking the analytical solutions as trial functions, three developments for the 
finite element method have been achieved: 

(1) For the membrane element, excellent models which can still keep high 
precision in distorted mesh are successfully constructed.  

(2) For the thick plate element, shear locking phenomenon can be eliminated 
from the outset.  

(3) For the crack and notch problems, high precision hybrid elements with 
singular point are developed. 

The index of the new models is given in Table 20.6. 

Table 20.6 Index of analytical trial function elements (7 elements) 

Symbol of element Original
reference

Chapter & 
section no. Remark

4-node
membrane 

element 

1. ATF-Q4a (point conforming) 
2. ATF-Q4b (perimeter-point 
   conforming) 
3. ATF-Q4  (with drilling freedoms)

[41] 14.2  

4. quadrilateral element ATF-MQ [42] 14.5  
Thick plate 

element 5. triangular element GPLM (this book) 14.6 Generalization of thin
plate element GPL 

Singular
hybrid 

element 

6. ATF-MS (for crack problem) 
7. ATF-VN (for notch problem) 

[43] 
[44] 

15.3
15.7
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20.2.4 Quadrilateral Area Coordinate Element Series 

The establishment of the quadrilateral area coordinate theory provides a new tool 
for the construction of the quadrilateral element models. Compared with those 
traditional isoparametric models, the elements formulated by such new tool are 
more insensitive to various mesh distortions. Up to date, more than 20 models 
have been developed, including membrane elements, membrane elements with 
drilling freedoms, thin plate elements, thick plate elements, laminated composite 
plate element, and so on. The index of these elements can be found in Table 17.1. 

20.2.5 Spline Element Series 

Spline interpolation—possesses the highest order continuity among the piecewise 
polynomial with the same order, and the most smoothing curve can be obtained. 

Spline element method is a new finite element method which uses spline 
functions as the interpolation functions in the sub-regions. It possesses high 
smoothing and precision, which is suitable for complicated structures. This book 
introduces 18 spline element models, and their detailed information can be 
referred to Table 20.7. Some materials about triangular, sector and other spline 
elements can be referred to references [11] and [12]. 

Table 20.7 Index of spline elements (18 elements) 

Symbol of element Original
reference

Chapter & 
section no.

Beam element 1. Quadratic spline beam element 
2. Cubic spline beam element [11] 18.2 

Membrane element 3. Bi-quadratic spline rectangular element
4. Bi-cubic spline rectangular element [11] 18.3 

Membrane element 
for high-rise building 

5. spline rectangular element TB-12 
6. spline rectangular element TB-13 
7. spline rectangular element TB-23 

[45] 18.4
18.5

Thin plate element 8. quadratic spline rectangular element 
9. cubic spline rectangular element [11] 19.1 

Thin-thick plate 
element 

10. quadratic spline rectangular element 
11. cubic spline rectangular element [11] 19.2 

Thin shallow shell 
element 

12. spline element R-QQQ 
13. spline element R-CQQ 
14. spline element R-CCC 

[11] 19.3 

Thick shallow shell 
element 

15. quadratic spline rectangular element 
16. cubic spline rectangular element [46] 19.4.1 

Thick axisymmetric 
shell element 

17. quadratic spline sector element 
18. cubic spline sector element [47] 19.4.2 
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20.3 New Solution Strategies for Five Challenging  
Problems

During the developments of many subjects, some plain and simple problems are 
always encountered and solved firstly, while a few unsolved challenging problems 
have to be left, even for a long time. The appearance of novel and effective 
solution strategies for the challenging problems is a symbol of advance in related 
subjects. For example: 

(1) The shear-locking problem in thick plate element and its countermeasures  
The shear-locking phenomenon of the thick plate element is caused by false 

shear strain when analyzing a thin plate. Two effective solution strategies proposed 
recently are:  the rational interpolation method for shear strain[13,16] (1998, 
locking-free shear strain field is obtained by using the Timoshenko’s beam 
formulae); and  the analytical trial function method based on the analytical 
solutions of the thick plate theory[42].

(2) The sensitivity problem to mesh distortion and its countermeasures 
Two effective solution strategies are proposed recently.  Instead of 

isoparametric coordinates, the quadrilateral area coordinates are used in the 
interpolation polynomial of the element displacement field[48–51];  The analytical 
trial function method is used[41].

(3) The non-convergence problem of non-conforming elements and its 
countermeasure 

The reason for the appearance of this problem is that the minimum potential 
energy principle is irrationally used to construct the non-conforming element. 
The key procedure of the generalized conforming element[6] is the introduction of 
the fundamental generalized conforming conditions, which makes the application 
of the minimum potential energy principle rational, so that the convergence can 
be ensured. 

(4) The accuracy loss problem of stress solutions by displacement-based 
elements and its countermeasure 

The accuracy loss of stress solutions by displacement-based elements is caused 
by differential operations. Its countermeasure is the hybrid-enhanced post-processing 
procedure[21], in which the stresses are computed by using Hellinger-Reissner 
variational principle, i.e., the differential operations are replaced by a macro 
method. 

(5) The singular stress problem and its countermeasures 
In order to improve the computational accuracy near a singular stress point, 

the analytical solutions with singular terms should be used adequately. Therefore, 
the effective countermeasures are the sub-region mixed element method[7] and the 
analytical trial function method[8].
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Appendix

A The equivalent equation of the functional stationary  
condition (2-45) 

In order to derive the equivalent equation of the stationary condition (2-45), the 
integration by parts formula (2-53) is used firstly to develop the expression of the 
functional variation 3.

The area integration terms in 3 are 
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The line integration terms in 3 are 
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The corner point and the node terms in 3 are 
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Since the variation of the field variables can be arbitrarily and independently 
performed, based on the stationary condition (2-45) it can be known that the area 
integration terms, the line integration terms, the corner point and the node terms 
in 3 should be zero, respectively. From the zero condition of the area 
integration terms in 3, the field Eq. (2-46) within a and b can be derived. 
From the zero condition of the line integration terms in 3, the boundary 
condition (2-47) on the boundary lines Ca and Cb and the interface condition 
(2-48) on the interface Cab can be derived. From the zero conditions of the corner 
point and the node terms in 3, the corner point condition (2-49) on the 
boundary line and the node condition (2-50) on the interface can be derived. 

B The node conditions derived from the stationary  
condition (2-77) 

Two different node types, J1 and J2, are considered here, respectively. Then, the 
related node conditions can be derived from the stationary condition (2-77) 

0 .
Firstly, consider the node J1 with supports; the node terms in  related to the 

node J1 are composed of the following three terms. 
(1) In the potential energy variation p
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(3) In G1, the corresponding node terms are 
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By superposition, the node terms related to the node J1 in  can be obtained 
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( ) ( )( )( )e e
ns

e
w w M   (Sum of all elements e around the node J1)

Thereby, from the stationary condition 0 , the interface condition at the 
node 1J  can be obtained as: 

( )ew w   (e denotes each element around the node J1)

Secondly, consider the node J2 without supports. In , the node terms related 
to the node J2 are composed of the following three terms. 

(1) In the potential variation p
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(3) In G2, the corresponding node terms are 
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By superposition, the node terms related to the node J2 in  can be obtained 
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Thereby, from the stationary condition 0 , the interface condition at the 
node J2 can be obtained as: 
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D js1 and jt1 in Eq. (13-144) 
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