
Chapter 4

GE in Dynamic Environments

In the previous Chapter we highlighted the fact that very little research
has been conducted into the area of Genetic Programming (GP) in dynamic
environments. In this book we outline the foundations of research to date with
Grammatical Evolution (GE) for these kinds of non-stationary environments.
As described earlier, GE possesses a number of features that differentiate it
significantly from GP and it is these features that present the most interesting
avenues for exploration in relation to dynamic environments, more so than
in their application to static problems.

In this chapter we start out by detailing in Section 4.1 the very first steps
which we have taken with GE into the domain of non-stationary environ-
ments. Following this, in Section 4.2, we discuss the potential strengths of
GE for the challenges presented by a dynamic world. Finally outline in Sec-
tion 4.3 how we build the foundations upon which GE can be developed for
application in these formidable environments.

4.1 The First Steps

In an investigation examining the possibility of evolving the grammar that GE
uses [156] the Grammatical Evolution by Grammatical Evolution (GE2) algo-
rithm was detailed. This study focused on the utility of such an approach for
dynamic symbolic regression problems where the target function was changed
after a number of generations. The approach was initially inspired by an ear-
lier study by Keller and Banzhaf [103], which examined whether or not it
might be useful to evolve the genetic code for their linear form of GP. The
net effect of their approach was to evolve biases for individual symbols of
their programming language, including both functions and terminals. To this
end the study was a success on the static problem examined.

By evolving the grammar that GE uses to specify a solution, one can
effectively permit the evolution of the genetic code. The ability to evolve
genetic code is important when one has little or no information about the

I. Dempsey et al.: Foundations in Gramm. Evol. for Dyn. Environ., SCI 194, pp. 55–68.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

56 4 GE in Dynamic Environments

problem being solved, or the environment in which a population exists is
dynamic in nature and adaptability is essential for survival. A more adaptive
and/or open-ended representation that can facilitate progression to different
environments may be required to successfully tackle non-stationary domains.
We now describe the (GE)2 algorithm in detail and describe how it was
applied to a dynamic environment.

4.1.1 Grammatical Evolution by Grammatical
Evolution

When we have a set of production rules for a non-terminal, such as, for
example, <op>::= + | -, a codon is used to select the rule to be applied
during the development of a solution. In a similar manner to a biological
genetic code, the productions above represent a degenerate genetic code by
which a codon is mapped to a symbol in the output language [154]. A brief
overview of the biological genetic code now follows.

In biology, a codon (on mRNA), which is comprised of a group of three
nucleotides from the set {A, U, G, C}, is mapped to an amino acid from the
set of 20 naturally occurring amino acids. In nature, the code is encoded in
transfer RNA (tRNA) molecules, which have a domino like structure, in that
one end matches (with a certain affinity dubbed the wobble hypothesis) to
a codon, while the amino acid corresponding to this codon is bound to the
other end of the tRNA molecule [118]. In this sense, the above productions
are equivalent to two such tRNA molecules, one matching a set of codons to
+ while the other matches a different set of codons to −. By modifying the
grammar, we are changing the types of tRNA molecules in our system. To
put it another way, we are directly modifying the genetic code by changing
the mapping of codon values to different rules (amino acids).

In order to allow evolution of a grammar, (GE)2, we must provide a gram-
mar to specify the form a grammar can take. This is an example of the
richness of the expressiveness of grammars that makes the GE approach so
powerful. By allowing an EA to adapt its representation (in this case through
the evolution of the genetic code or grammar) it provides the population with
a potential mechanism to survive in dynamic environments. Such a repre-
sentation also allows the automatic adaptation of biases during the search
process.

In this approach we therefore have two distinct grammars, the meta-
grammar (or grammars’ grammar) and the solution grammar.1

1 In the original study [156] we adopted the term Universal Grammar instead of meta-
grammar. The notion of a universal grammar is adopted from linguistics and refers to
a universal set of syntactic rules that hold for spoken languages [41]. It has been pro-

posed that during a child’s development the universal grammar undergoes modifications
through learning that allows the development of communication in their parents’ native
language(s) [172]. We now prefer the use of the term meta-grammar as it is more firmly
rooted in the Computer Science discipline of formal grammars.

4.1 The First Steps 57

In (GE)2, the meta-grammar dictates the construction of the solution gram-
mar. Given below are examples of these grammars for solutions that generate
expressions, which could be used for symbolic regression type problems.

meta-Grammar
(Grammars’ Grammar)

<g> ::=
‘‘<expr> ::= <op> <expr> <expr> | <var>’’
‘‘<op> ::=’’ <ops>
‘‘<var> ::=’’ <vars>

<ops> ::= <opt> ‘‘|’’ <ops>
| <opt>

<opt> ::= + | - | * | /

<vars> ::= <vart> ‘‘|’’ <vars>
| <vart>

<vart> ::= m | v | q | a

Solution Grammar
<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= ?

<var> ::= ?

In the example meta-grammar, a grammar, <g>, is specified such that it
is possible for the non-terminals <var> and <op> to have one or more rules,
with the potential for rule duplication. These are the rules that will be made
available to an individual during mapping, and this effectively allows bias
for symbols to be subjected to the processes of evolution. The productions
<vars> and <ops> in the meta-grammar are strictly non-terminals, and do
not appear in the solution grammar. Instead they are interim values used
when producing the solution grammar for an individual.

The hard-coded aspect of the solution grammar can be seen in the example
above with the rules for <op> and <var> as yet unspecified. In this case we
have restricted evolution to occur only on the number of productions for
<var> and <op>, although it would be possible to evolve the rules for <expr>
and even for the entire grammar itself. It is this ability that sets this form of
genetic code/grammar evolution apart from previous studies in GP. Notice
that each individual has its own solution grammar.

In this study two separate, variable-length, genotypic binary chromosomes
were used, the first chromosome to generate the solution grammar from the
meta-grammar and the second chromosome the solution itself. Crossover op-
erates between homologous chromosomes, that is, the meta-grammar chromo-
some from the first parent recombines with the meta-grammar chromosome
from the second parent, with the same occurring for the solution chromo-
somes. In order for evolution to be successful it must co-evolve both the
genetic code (otherwise known as the solution grammar) and the structure
of solutions based on the evolved genetic code.

4.1.2 Experiments in GE2 and Dynamic
Environments

An instance of a symbolic regression problem was tackled in order to verify
that it is possible for the co-evolution of a genetic code (or grammar) to occur

58 4 GE in Dynamic Environments

along with a solution. A target function of f(m, v, q, a) = a + a2 + a3 + a4

was chosen, with the three input variables m,v, and q introducing an ele-
ment of noise. 100 randomly generated input vectors are created for each
call to the target function, with values for each of the four input variables
drawn from the range [0,1]. Runs were conducted with a population size of
100, for 100 generations. The other evolutionary parameters were as follows:
pairwise tournament selection, generational replacement, bit mutation proba-
bility 0.01, one-point crossover probability 0.3, codon duplication probability
0.01. Wrapping is turned off, and codon lengths are initialised in the range
[1,10], with a codon size of 8-bits. Fitness is minimisation of the sum of er-
rors over the 100 test cases, and a protected division operator is adopted
that returns one in the event of a division by zero. The progress of evolution
toward the target solution can be seen in Fig. 4.1 with ever decreasing error
at successive generations.

Fig. 4.1 shows the increasing frequency of occurrence of the target solu-
tion symbols a, + and ∗. Curiously, after 50 generations the frequency of ∗ is
dramatically less than a and +, and even less than /, even though there are
double the number of multiplication symbols in the target solution as there
are addition operators. It is not until after this point that we begin to see an
increase in the frequency of ∗, which, although it finishes considerably lower
than the other two symbols, finishes higher than all others. This could have
implications as to how a solution to this problem is constructed, suggesting
that firstly terms are added together with the use of multiplication not oc-
curring until much later, perhaps replacing some of the addition operators,
or secondly, through expansion of terms with the multiplication of a by itself.

The above results demonstrate that it is possible to co-evolve the solution
grammar and solution specification with GE2. Two experiments were then
conducted where GE2 was applied to two instances of dynamic symbolic
regression.

4.1.3 Dynamic Symbolic Regression I

In addition to learning symbol bias, dynamic problems are another area in
which one could expect to derive some benefit from using evolvable grammars
by adapting these biases over time. In this case, one could reasonably expect
a system with an evolvable grammar to be able to react more quickly to a
change in the environment than a static one could, as a single change in a
grammar can reintroduce lost genetic material. The target functions for the
first instance are:

i. f(m, v, q, a) = a + a2 + a3 + a4

ii. f(m, v, q, a) = m + m2 + m3 + m4

iii. f(m, v, q, a) = v + v2 + v3 + v4

iv. f(m, v, q, a) = q + q2 + q3 + q4

v. f(m, v, q, a) = a + a2 + a3 + a4

4.1 The First Steps 59

30

35

40

45

50

55

60

65

70

75

80

0 20 40 60 80 100

M
e
a
n
 B

e
s
t
F

it
n
e
s
s
 (

1
0
0
 R

u
n
s
)

Generation

Grammatical Evolution Grammar Evolution (f(m,v,q,a) = a+a*a+a*a*a+a*a*a*a)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

M
e
a
n
 F

re
q
u
e
n
c
y

Generation

Genetic Code Symbol Frequency (f(m,v,q,a) = a+a*a+a*a*a+a*a*a*a)

+
-
*
/

m
v
q
a

Fig. 4.1 A plot of the mean best fitness (left) and mean symbol frequency (right)
from 100 runs of the quartic symbolic regression problem

The target changes between the functions above every 20 generations. The
only difference between each successive function is the variable used. 100 ran-
domly generated input vectors are created for each call to the target function,
with values for each of the four input variables drawn from the range [0,1].
The symbols −, and / are not used in any of the target expressions. Runs were
conducted with a population size of 500, for 100 generations, with all other
parameters as reported earlier. A plot of the average best fitness and average
symbol frequencies can be seen in Fig. 4.2. A sample of evolved grammars
from one of the runs is given below, where in each case the grammar selected
is the best solution from the generation just prior to a change in target.

Target 1

<op>::= +

<var>::= a

<expression>::= + a a

fitness: 34.6511

Target 2

<op>::= +

<var>::= m

<expression>::= + m m

fitness: 34.2854

60 4 GE in Dynamic Environments

Target 3

<op>::= + | -

<var>::= v

<expression>::= + v v

fitness: 36.6667

Target 4

<op>::= + | *

<var>::= q

<expression>::= + + q q * * q q * q q

fitness: 22.8506

Target 5

<op>::= + | *

<var>::= a

<expression>::= + * a + a a * a a

fitness: 7.85477

The results presented suggest that, when using dynamic grammars, it is
possible to successfully preserve and improve solution structure, while still
being able to learn appropriate terminal values. This is reflected in the fitness
plot where, when the fitness function changes, in most cases there is a decrease
in solution fitness for a short period when solutions adjust to the new variable

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

M
e

a
n

 B
e

s
t

F
it
n

e
s
s
 (

1
0

0
 R

u
n

s
)

Generation

Grammatical Evolution Grammar Evolution Dynamic II Fixed Grammar

Best (Fixed Grammar)
Best (Evolved Grammar)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

M
e

a
n

 F
re

q
u

e
n

c
y

Generation

Genetic Code Symbol Frequency - Dynamic Symbolic Regression

+
-
*
/

m
v
q
a

Fig. 4.2 Plot of the mean best fitness over 100 generations on the first dynamic
symbolic regression instance with both static and dynamic grammars (left). Symbol
frequency plot (right).

4.1 The First Steps 61

Table 4.1 Statistics for both the static and evolvable grammars on the first
dynamic problem instance. Lower scores indicate better performance.

Fitness mean median std. dev signif.
Case fixed(dynamic) fixed(dynamic) fixed(dynamic)

1 37.33 (40.55) 37.75 (38.22) 7.81 (10.082) Yes
2 35.48 (36.08) 37.1 (36.57) 6.35 (8.73) No
3 34.26 (31.53) 36.6 (36.48) 7.54 (10.79) Yes
4 35.39 (28.74) 37.2 (35.08) 7.96 (12.46) Yes
5 20.05 (15.1) 22.00 (20.54) 5.99 (10.17) Yes

adopted. Later on in the simulations we reach the point where the structure
becomes closer to the target and changes in variables alone no longer confer as
much damage to fitness, which is again illustrated in the fitness plot (Figure
4.2).

A performance comparison of the dynamic and static equivalent of the
grammar (given below) for this problem is presented in Fig. 4.2 and corre-
sponding statistics can be found in Table 4.1.

<expr> ::= <op> <expr> <expr> | <var>

<op> ::= + | - | * | /

<var> ::= m | v | q | a

4.1.4 Dynamic Symbolic Regression II

The target functions for the second dynamic symbolic regression problem
instance are:

i. f(m, v, q, a) = a + a2 + a3 + a4

ii. f(m, v, q, a) = m + a2 + a3 + a4

iii. f(m, v, q, a) = m + m2 + a3 + a4

iv. f(m, v, q, a) = m + m2 + m3 + a4

v. f(m, v, q, a) = m + m2 + m3 + m4

The target changes between the functions above every 20 generations. The
transition used in this problem differs from the previous in that only one
term changes each time. However, the change is larger each time (because
the power that the new term is raised to increases). 100 randomly generated
input vectors are created for each call to the target function, with values for
each of the four input variables drawn from the range [0,1]. The symbols q,
v, −, and / are not used in any of the target expressions. As in the previous
dynamic symbolic regression problem instance runs are conducted with a
population size of 500, for 100 generations, with all other parameters as per
the standard values reported earlier. A plot of the average best fitness and
average symbol frequencies can be seen in Figure 4.3.

62 4 GE in Dynamic Environments

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50 60 70 80 90

M
e
a
n
 B

e
s
t
F

it
n
e
s
s
 (

1
0
0
 R

u
n
s
)

Generation

Grammatical Evolution Grammar Evolution Dynamic Problem

Best (Fixed Grammar)
Best (Evolved Grammar)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

M
e
a
n
 F

re
q
u
e
n
c
y

Generation

Genetic Code Symbol Frequency - Dynamic Symbolic Regression

+
-
*
/

m
v
q
a

Fig. 4.3 Plot of the mean best fitness over 100 generations on the second dynamic
symbolic regression instance with both dynamic and static grammars (left), and the
mean symbol frequency (right)

It is interesting to note that fitness keeps improving over time for the evolv-
able grammar, with an occasional deterioration corresponding with a change
in the fitness function. Notice how the disimprovement is more pronounced
later in the runs, particularly for the static grammar, which is due to higher
powers being exchanged. These results suggest that the evolvable grammar is
more adaptable in scenarios with larger changes facilitating smoother tran-
sitions to successive targets. Also evident from Figure 4.3 is the manner in
which the quantity of a in the population decreases over time while that of m
increases. The two plots intersect at around generation 42, shortly after the
target has changed to f(m, v, q, a) = m + m2 + a3 + a4. However, the plots
remain very close until around generation 60, at which time m3 becomes part
of the solution.

A sample of evolved grammars from one of the runs is given below, where
the grammars presented represent the best solution at the generation just
prior to each fitness change.

4.1 The First Steps 63

Target 1

<op>::= + | +
<var>::= a
<expression>::= (+ a a)
fitness: 37.4525

Target 2

<op>::= +
<var>::= m | a
<expression> = (+ a m)
fitness: 33.8423

Target 3

<op>::= + | *
<var>::= m | a
<expression> = (+ a (+ m (* a m)))
fitness: 22.9743

Target 4

<op>::= + | *
<var>::= m
<expression> = (+ m (* (+ (* m m) m) m))
fitness: 15.6311

Target 5

<op>::= + | *
<var>::= m
<expression>::= (+ (* (+ m (* m (+ m (* m m) m) m))))
fitness: 4.57967e-15

Table 4.2 Statistics for the second dynamic problem instance. Lower numbers
indicate a better fitness.

Fitness mean median std. dev signif.
Case fixed(dynamic) fixed(dynamic) fixed(dynamic)

1 39.27 (41.63) 37.98 (38.65) 9.18 (12.59) No
2 31.55 (36.06) 31.93 (36.60) 6.77 (3.84) Yes
3 27.62 (33.46) 25.82 (34.52) 6.3 (4.1) Yes
4 24.05 (29.2) 22.62 (32.17) 5.83 (6.39) Yes
5 21.34 (27.47) 18.74 (35.2) 11.42 (14.94) Yes

A performance comparison of the dynamic and static equivalent of the
grammar (static grammar as per earlier dynamic problem instance) for this
problem is presented in Figure 4.3 and corresponding statistics can be found
in Table 4.2. In this case the static grammar outperforms the evolving gram-
mar in terms of best fitness values achieved for all targets but the first. With
the evolving grammar there is, as usual, a warm up period where a suitable
grammar must be adopted before good solutions can be found. When succes-
sive targets are very similar to previous ones this almost negates the potential
benefits that a more adaptive representation can bring, as in the case of the
evolvable grammars. Clearly, some dynamic problems are more dynamic than
others as discussed in Chapter 3, especially in terms of the degree of change.
Previous work (e.g., [144]) with GAs applied to dynamic problems has shown
that, when the change is relatively small, a standard GA with high mutation
can handle those types of problems. We believe it is likely to be the same
for GP.

These results would also lend support to the idea of introducing different
operator rates on the grammar chromosome to the solution chromosome,

64 4 GE in Dynamic Environments

allowing the population to converge towards a similar grammar, facilitating
the exploration of solutions based on a similar grammar. If these rates were
adaptable, then it may be possible to allow grammars to change more often
if the target changes are large, and vice versa.

This first study in the application of GE to dynamic environments was
encouraging as it suggested that there may be benefits to representational
flexibility, which can be provided with a GE approach. The following section
describes some of the potential strengths of GE for dynamic problems.

4.2 Strengths

In [148] O’Neill described eight desireable features, inspired by Molecular Bi-
ology, that evolutionary algorithms could incorporate as researchers attempt
to improve their algorithms’ performance. Seven of these, implemented in
GE, are as follows:

i. Generalised encoding that can represent a variety of structures
Through the decoupling of search and solution spaces, a mapping pro-
cess can afford the opportunity to generate phenotypes in an arbitrary
language.

ii. Efficiency gains for evolutionary search
Improvement of the evolutionary search is generally positive. By incor-
porating degenerate genetic code, a medium is provided for neutral mu-
tations to occur giving rise to neutral evolution. As described in Sections
3.3.5 and 3.3.6, this yields efficiency gains in evolution.

iii. Maintenance of genetic diversity within an evolving population
Diversity was highlighted as being one of the key approaches for evolu-
tionary algorithms in dynamic environments in Chapter 3. An ability to
maintain a diverse dispersed population allows the algorithm to conduct
wide coverage of the search space, equipping it with the ability to quickly
discover new optima when the environment changes.

iv. Preservation of functionality while allowing continuation of
search Providing a mechanism to conduct neutral mutations allows
an algorithm to preserve a functioning, fit, phenotype while continuing
the evolutionary search. This feature gives rise to the potential of Engel-
hart’s neutral networks being evolved. Individuals aligned along neutral
networks in the genotypic space may then easily evolve to produce alter-
nate phenotypes.

v. Reuse of genetic material
Reusing genetic material presents efficiency gains in an implemented al-
gorithm. When individuals in a population are of variable length, the
possibility for bloat arises whereby the amount of genetic material in the
individuals may grow over the course of the evolutionary process.

4.2 Strengths 65

vi. A compression of representation
Again regarding an implemented algorithm this feature bears benefits at
execution.

vii. Positional independence
By decoupling the expressed functionality of a gene from its position on
the chromosome a mechanism is provided to preserve the functionality of
genes after crossover. This may lead to more productive recombination
events.

Standard GE, as described in [148], integrated the first six features with
further research leading to the implementation of the seventh feature in πGE
[157]. Considering the various approaches for evolution in dynamic environ-
ments identified in Section 3.3, some of these features bear special relevance
when applied to dynamic environments.

The first feature of adopting a generalised encoding is achieved in GE
through the use of the BNF grammar plug-in. With regard to dynamic en-
vironments, the development of the grammar is of particular importance as
it affords the modeller the opportunity to incorporate some fundamental do-
main knowledge into the system while maintaining flexibility. Recent devel-
opments in GE have lead to the development of meta-Grammars and Gram-
matical Evolution by Grammatical Evolution. In this case a meta-Grammar
or grammar’s grammar is defined, which allows evolution to evolve its own
vocabulary for the expression of phenotypes. Chapter 6 will deal with this in
more detail.

Regarding efficiency gains for evolutionary search, O’Neill refers to the
presence of degenerate genetic code and its relationship with Kimura’s neu-
tral theory of evolution [108]. The degenerate or redundant genetic material
is brought about in GE through the many-to-one mapping from genotype
to phenotype, allowing neutral mutations to occur. This caters directly to
dynamic environments as it allows for the development Engelhart and New-
man’s neutral networks [140] as already outlined in Section 3.3.5 and provides
a representation that is more evolvable than a direct encoding as outlined in
Section 3.3.6.

With the employment of the genotype-to-phenotype mapping and the pres-
ence of degenerate genetic code, features three and four are simultaneously
addressed. Due to the unconstrained search in the genotype space with a
many-to-one mapping back to the phenotype solution space, there is the po-
tential for a high degree of diversity to be maintained continuously over the
life cycle of the algorithm. Whether this is in a static or dynamic environ-
ment, it places this feature in the category of preemptive approaches used to
maintain diversity.

The possibility of neutral evolution brought about by degenerate genetic
code is also responsible for a robustness in the solution space to changes in the
genetic search space. This is because as mutations can occur with the presence
of degenerate code and still produce the same phenotype. This mechanism
then allows GE to preserve the expressed functionality of the phenotype

66 4 GE in Dynamic Environments

while continuing with a neutral evolutionary search in the genotypic space
dispersing across a neutral network.

Features five and six are implemented in GE through the use of the wrap-
ping operator. In other words, if upon reaching the end of the genome, an
individual is still not a fully formed phenotype, mapping will continue again
at the beginning of the genetic string. Though O’Neill found the use of this
operator to provide a better success rate than with the operator turned off,
the operator does not address directly any of the extra issues involved in
dynamic environments. Table 4.3 presents a summary of the implemented
features in GE.

Table 4.3 Implementation of features in GE

Feature Implementation

1 Generalised Encoding BNF Grammar
2 Efficiency Gains Degenerate Genetic Code
3 Diversity Many to One Mapping
4 Preservation of Functionality Many to One Mapping

During Search
5 Re-use of Genetic Code Wrapping Operator
6 Compression of Representation Wrapping Operator
7 Positional Independence πGE

4.3 Extending GE for Dynamic Environments

Aside from [156], no work has been done in exploring the use, and analysing
the performance, of GE in dynamic environments prior to the research out-
lined in the remainder of this book. In light of this, shortfalls specific to
GE’s proficiency in these environments have not been identified. Considering
that GE has undergone little analysis in dynamic environments, a number of
the features built-in to the design of the paradigm bear particular significance
when placed in a dynamic environment. The addition of BNF grammars as an
input to GE present an extra level of representational flexibility that may be
exploited in terms of evolvability. With BNF grammars, the researcher may
incorporate a greater level of adaptability in the vocabulary available to the
search process while ensuring syntactic correctness. Through the design of the
grammar, a structure may be created that aids in the evolution towards fit-
ter solutions. The ability to allow the evolutionary process to evolve its own
grammars takes this feature even further. Reflecting upon the approaches
highlighted in this book so far, with the inclusion of degenerate genetic code
and many-to-one mapping, standard GE is equipped with an ability to form
neutral networks in the genotypic space through neutral evolution and to
preemptively maintain a high degree of dispersed diversity unconstrained by
a phenotypic search-space boundary.

In placing the features of GE in the context of tables developed in this
chapter, the inclusion of the BNF grammar allows researchers to scope the

4.3 Extending GE for Dynamic Environments 67

adaptiveness of the vocabulary. It also presents an opportunity to incorporate
useful domain knowledge tailoring it for problems where information can be
extracted out of the domain. Added to this, the BNF grammar can aid in
the evolvability of individuals thus aiding in the evolution for all types of
change. Finally, the maintenance of diversity through many-to-one mapping
is a feature that enables wide coverage of the solution space as evolution
progresses. While all problems benefit from this coverage of the search space,
the maintenance of diversity throughout the life cycle of a run is tailored
for Markov and Complex type changes. Though Deterministic problems will
also benefit from this diversity early in the search, a level of convergence
is sought in uncovering the predictable nature of the change. Therefore the
maintenance of diversity is of lesser importance for this type of problem.
Table 4.4 summarises these features.

Table 4.4 Features of GE that cater to the types of change faced in dynamic
environments

Type BNF Input Many-to-One
(Evolvability) (Diversity)

Markov X X
Complex System X X

Deterministic X -

A problem identified in GP in general, and also existing in GE, is its in-
flexible approach to the creation and variance of constants [9]. GE’s approach
to the variance of constants is through the evolution of expressions operat-
ing on a handful of constants that are defined in the BNF grammar prior
to the system’s execution. This weakness presents particular problems when
conducting evolution in a dynamic environment, as for both efficiency and
flexibility purposes, it may be desireable to directly adapt old or evolve new
constants in the solutions as the optimum shifts or moves on the landscape.
Indeed, in many of these problems a continual adaptation of constants is re-
quired and improvements in this area will be useful in applying GP and GE
to dynamic problems. This weakness will be addressed in Chapter 5. It is also
worth noting that even though [156] did apply (GE)2 to dynamic environ-
ments it did so with very little analysis pertaining to the dynamic domain.
Chapter 6 will endeavour to take this analysis further and examine the effects
of the extra dimension of adaptability in the algorithm.

Through examining the extra layer of adaptability in (GE)2 and adapting
a population of solutions as time progresses the representation of solutions
as well as the solutions themselves are being adapted. Another facet of GE
may also be adapted with the progression of time–dynamic adjustment of the
parameters of the algorithm. These include, for example, the number of gen-
erations of evolution and probabilities for applying genetic operators. Work
has been conducted on investigating the effects of adapting these parameters
for static environments [141].

68 4 GE in Dynamic Environments

4.4 Conclusion

In conjunction with the review of EC for dynamic environments and our
knowledge of GE to date we have identified a number of research gaps. These
are summarised as follows:

• Analysis of the level of diversity maintained in GE promoted by
the separation of search and solution spaces
The maintenance of a dispersed, diverse population is of great importance
in dynamic environments; the separation of search and solution spaces may
aid this. An examination of this is undertaken in Chapter 8.

• Exploiting the use of BNF grammars to improve evolvability
Not only does GE provide for improved evolvability through potential
search efficiencies presented due to its genotype-to-phenotype mapping
and subsequent separation of its search and solution spaces. In addition,
the opportunity exists to improve evolvability through the use of the BNF
grammar used by GE. The majority of the research presented in this book
focuses on this form of representational evolvability. Chapters 5 and 6
explore this.

• Use of a real-world problem as a benchmark, and the application
of problem domain specific analytics to determine behaviour of
algorithm developments
The use of such a benchmark and analytics provide both qualitative and
quantitative evidence of algorithm performance and also facilitates com-
parison with human achievements. Chapter 8 conducts such analysis in
the financial domain of trading.

• Application of GP type paradigm to a dynamic problem
The lack of research in the application of GP to dynamic problems is re-
markable, this book will endeavour to close that gap. This gap is addressed
in a number of the experimental chapters beginning with more simple types
of change and progressing to complex types of change in Chapter 8.

In subsequent chapters these gaps shall be examined in greater detail.

	GE in Dynamic Environments
	The First Steps
	{\it Grammatical Evolution by Grammatical Evolution}
	{\it Experiments in GE2 and Dynamic Environments}
	{\it Dynamic Symbolic Regression I}
	{\it Dynamic Symbolic Regression II}

	Strengths
	Extending GE for Dynamic Environments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

