
Chapter 3

Survey of EC in Dynamic
Environments

3.1 Introduction

The domain of EC in dynamic environments can be broken up into four main
areas. This chapter is therefore divided up into four sections so as to com-
prehensively detail the prior art in the field as it stands. Section 3.2 focuses
on the definition of dynamic environments. It examines the different types of
changes that can occur as well as the features of each type of change that
differentiate it from the other. Section 3.3 identifies the various approaches
researchers have adopted in attempting to tune the EC paradigm to dynamic
environments. Following from this, Section 3.4 describes the difficulties en-
countered when trying to measure the performance of an evolutionary algo-
rithm placed in a dynamic environment. It also covers the types of metrics
adopted to date. Section 3.5 looks at the different benchmark problems ex-
plored in the literature. The chapter then continues with a review of the
findings of this survey in Section 3.6.

A number of conclusions emerge from this chapter. It is found that while
most of the research effort on EC in dynamic environments has been aimed
at adding memory, this comes at a computational cost with mixed results.
At the same time, it overlooks the idea that problem-solving competency can
be built into the solution population in a general manner. The chapter finds
that efforts to maintain a diverse or dispersed population are of significant
importance for dynamic environments. However, of lesser importance is the
field’s emphasis on developing benchmark problems and metrics. Too many
have been developed and all use bounded search spaces aimed at traditional
GA fixed-length individuals while often also having a known optimum. These
points are elaborated upon in Section 3.7.

3.2 Dynamic Problems

3.2.1 Background

A dynamic problem can most broadly be defined as a problem in which
some element under its domain varies with the progression of time. Dynamic
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problems have received a growing degree of attention in recent years as au-
thors have highlighted the fact that dynamic problems share more in common
with real-world problems than static problems [78, 81, 27, 13]. Even though
Goldberg first highlighted this link in 1987 [78], the momentum of research
in the area only picked up towards the end of the 1990s. To date there are in
the region of 200 publications available in the field of dynamic optimisation
problems [59] compared to many thousands of publications in the area of EC
as a whole [75].

This section will continue by surveying the relevant literature and cate-
gorising the types of problems that can occur in dealing with dynamic en-
vironments. Following from this a more detailed insight will be developed
by incorporating the types of changes that can occur into a unifying ta-
ble. Having analysed the characteristics of dynamic problems, the section
then closes with an analysis of the differences between dynamic and static
problems.

3.2.2 Dynamic Environment Categorisations

Taxonomies are useful categorisations that provide a conceptual framework
for discussion, analysis, or information retrieval. A taxonomy should be dis-
criminatory by allowing the separation of a group into mutually exclusive
subgroups. This section examines two taxonomies relevant to EC in dynamic
environments: types of dynamic problems and types of change.

Categories of Dynamic Problems

Trojanowski and Michalewicz (T&M), in their works [215, 216], develop a
clear taxonomy of the range of problems to which EC is applied, including
both static and dynamic. By splitting the problem in two and placing the
solution landscape in one column and the constraints of the problem in the
second, they discriminate between six categories of problems. Under the solu-
tion landscape or objective function, two possible states can be represented:
either static or variable/dynamic. The constraints of a problem can then take
on one of three states. They are non-existent or null, static, or variable. Table
3.1 lays out the various permutations.

The first two categories of problem in Table 3.1, represent the classes of
problems to which the majority of EC research has been focused, where the
objective function remains static over the lifetime of the problem. Problem
categories 3–6 on the other hand, describe problems where some element in
the problem domain changes, and form the area of study for this work. While
this describes the types of problems that are tackled by researchers in EC,
the variable elements within these categories can be broken down into the
various types of change that can occur.
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Table 3.1 Trojanowski and Michalewicz categorisation of problems split in two
dimensions: objective function and constraints

No. Objective Function Constraints

1 static null
2 static static
3 static var
4 var null
5 var static
6 var var

Categories of Change

In comparison to categorisation of dynamic problems, categorisation of
change has received more attention in the literature. De Jong derived a cat-
egorisation of different types of change in [52]. He describes four patterns of
change:

i. Drifting landscapes: Here the landscape is undergoing small changes and
it is the algorithm’s job to track the optimum as it moves. An example
under this category would be a manufacturing plant where the quality of
materials may change over time, or machines may age and break down.

ii. The landscape undergoes morphological changes: This type of change
includes landscapes where new regions of fitness may emerge where pre-
viously no optima resided. It is representative of competitive problems
such as those seen in financial markets.

iii. Cyclic changes: This is where the change has an element of periodicity
or the optima continuously reside within a certain region of the solution
space. Problems under this category may include weather or political
analysis.

iv. Abrupt and discontinuous changes: De Jong describes these changes as
ones that may be cataclysmic and sudden, such as a power plant failure.

Branke too develops his own categorisation of types of change in [32, 33] that
differ from De Jong’s. He too describes four different types:

i. Frequency of change: How often does the solution landscape change?
ii. Severity of change: How far is it from the old optimum to the new?
iii. Predictability of change: Are the changes random or do they follow a

pattern?
iv. Cycle length/accuracy: How accurate, and what is the period of a cycle

in the solution landscape?

A final categorisation is presented by T&M [215] who propose three types of
change:

i. Random changes: This describes changes that are not dependent upon
the previous change or state.
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ii. Non-random and non-predictable changes: These are changes that do
depend on prior state and changes, but that occur as a result of relation-
ships too complex to predict.

iii. Non-random and predictable changes: Here changes may be cyclical or
follow some predictable pattern.

Of these three categorisations a certain amount of crossover and differences
can be observed, with T&M presenting the most succinct classification. The
T&M classification most closely constructs a taxonomy with the discrimina-
tory factor being the degree of correlation in changes in the fitness landscape
over time. Distinguishing types of change in this manner is useful as the
EAs being developed will be expected to adapt their state or populations to
these changes. Three different subgroups are identified by T&M. The first
where the changes in the fitness landscape are Markovian in nature–entirely
uncorrelated. The third where there is a predictable pattern to the change,
where a correlation in changes in the landscape occurs over time and a deter-
ministic prediction may be made. The second subgroup then is everything in
between. This subgroup is large and may be refined into smaller subgroups to
take into account endogenous and exogenous fitness functions. That is where
algorithms take action as a result of their model or prediction and the conse-
quences of the actions taken by the EA may not directly affect the changes
occurring in the fitness landscape, or they do. The first and last subgroups
only encompass exogenous fitness functions.

All three categorisations identify cyclical changes or changes that follow
a pattern. De Jong and T&M could also be said to agree with regard to
their identification of random changes; pattern 4 from De Jong with type 1
from T&M. De Jong describes pattern 4 as being abrupt and discontinuous
indicating that it may be a change that would not have a dependency on
the prior state and not leak information in the lead up to the change. Thus
this satisfies the description given by T&M for their first type. This then
leaves the non-random and non-predictable type of change from the T&M
taxonomy and drifting landscape and morphological landscape changes from
De Jong. Of these, the non-random and non-predictable type readily matches
up with the morphological landscape given the example of financial markets
provided by De Jong to describe this category. The final remaining type
from De Jong can either be subsumed into the first or third types defined
by T&M or fall somewhere in between the two. If the landscape is gradually
shifting, with information on the shift’s vector being leaked, then there are
potentially predictive indicators that can be evolved placing this in T&M’s
third category. On the other hand, if information is not being yielded from the
system then these gradual shifts are essentially the random changes identified
in T&M’s first category.

In examining the first two points from Branke, it is difficult to view fre-
quency of change and severity of change as types of change. It is better
rather to place them under the properties of a change that can be applied
across all types of change, as they are measures of the rate and degree of the
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change. T&M also suggest that change can be examined under the criteria
of being discrete or continuous but this basically describes the rate at which
the change is occurring, matching up with Branke’s frequency description. It
should be noted that even if the rate of change is continuous, for the purposes
of analysis, it will be required that the data be discretised on some level so
as to allow evolution to occur on a stable data set.

In unifying these different categorisations, the opportunity is then pre-
sented to provide new and more widely recognisable names for the various
types of changes that occur. T&M’s first category “Random Changes” essen-
tially describes a Markovian process where the changes that occur are inde-
pendent of what has preceded. Such problems may include, for example, a
sudden major disruption to infrastructure in a job scheduling system. T&M’s
second category also matches with De Jong’s second and describes a Complex
System where the changes that occur are a result of relationships too com-
plex to accurately predict, for example, where multiple parties are competing
against each other with various different goals such as those in the financial
domain. As already stated this category includes fitness functions that may be
exogenous or endogenous in nature. An example of such a change from the fi-
nancial domain that includes an exogenous fitness function is fund replication
where a risk portability profile is developed to replicate the returns of a fund
with more liquid securities. An example with an endogenous fitness function
is the act of investing itself and attempting to uncover inefficiencies in the
market. The final classification from T&M, “Non-Random and Predictable
Changes” suggests that there is information available in the build-up to a
change that makes it possible to explain and predict the change. The change
may occur as part of a cycle, a pattern, or some incremental process, because
there are dependency relationships across the variables. As a result problems
with this type of change are essentially Deterministic, where the current state
is dependent upon that which has gone before and past information can be
used to predict future states; analysis of weather may be considered under
this category. Table 3.2 displays the results of this unification.

The properties of change described above and others can then be applied
in varying degrees to each type of change listed in Table 3.2. This table will
be used through out this chapter to identify what issues the various authors
are seeking to address in their work.

Table 3.2 Unification of De Jong, Branke and Trojanowski and Michalewicz cat-
egorisations of types of change. The unified names are given in the first column
followed by the mapping from each of the authors.

De Jong Branke T & M

Markov 1 & 4 3 1
Complex System 2 - 2

Deterministic 1 & 3 3 & 4 3
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3.2.3 EC in Static Versus Dynamic Environments

The question to consider here is as follows: what is the essential difference
between evolving solutions for a static environment versus a dynamic environ-
ment? Traditionally GAs and other EC algorithms have worked on problems
where the goal has been to deterministically solve a particular problem or
reach a close-to-optimal state. With regards to dynamic environments this
focus shifts–the emphasis is no longer on an individual becoming a specialist
or expert at a certain task. Instead despite changes in an individual’s environ-
ment, the focus is to track the optimum point as closely as possible, as stated
and demonstrated by Huang and Rocha [95]. In essence, the aim of an individ-
ual in a dynamic environment is to survive. In order to do so it must develop
a robustness or “plasticity”, as described by Rand and Riolo [178], despite
the fact that the changes listed in the previous section obfuscate this goal.

Branke observes that the primary issue with Evolutionary Algorithms is
their tendency to “... eventually converge to an optimum and thereby lose
their diversity necessary for efficiently exploring the search space and con-
sequently their ability to adapt to a change in the environment when such a
change occurs ...”. Yet if the inspiration behind GAs is evolution, which works
in an inherently dynamic environment [178, 121], it is difficult to see how the
application of artificially simulated evolution to problems is itself misguided.
The problem therefore must lie in our interpretation or implementation of
evolution. De Jong notes that researchers often “over fit (their) algorithms
to various classes of static optimisation problems with the focus on getting
the representation and operators to produce rapid convergence to near optimal
points”. The next section will explore the avenues researchers have explored
in attempting to bring the results of EAs more in line with those observed in
nature: adding extra features to prevent a telescoping of diversity and making
the algorithms more amenable to changes in the problem landscape.

3.3 Existing Approaches for Evolution in Dynamic
Environments

3.3.1 Overview

Standard GA and GP have led to 36 human-competitive results as defined in
[112] in a number of areas [75] with complexity scaling up to a billion-variable
problem [80]. This clearly demonstrates the ability of an artificial-evolutionary
process to produce solutions through the stochastic recombination and muta-
tion of solutions deemed to be fit in the problem environment. When this prob-
lem environment becomes dynamic however, as far as the authors are aware,
there are no published results that are comparative to the patentable works
cited for static environments.

As already stated populations in GAs exhibit a tendency to converge to an
optimum with a resulting loss in diversity. This impedes the algorithm from
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efficiently exploring new areas in the solution space when the optimum shifts.
This section looks at approaches researchers have adopted in overcoming this
issue. Five approaches are examined:

i. Memory: Equip algorithms with a mechanism to recall previously effec-
tive solutions.

ii. Diversity: Prevent the noted problem of convergence within a popula-
tion, resulting in the algorithm’s failure to discover new solutions.

iii. Multiple Populations: Strike a balance between exploration and ex-
ploitation by assigning sub-populations to specific areas of the search
space.

iv. Problem Decomposition: Break the problem down to its fundamental
pieces.

v. Evolvability: Provide a representation that aids the population in pro-
ducing offspring that are fitter than their parents.

Each approach will first be described, then analysed.

3.3.2 Memory

Of all the approaches investigated in attempting to make Evolutionary Algo-
rithms’ performance in dynamic environments comparable to that of natural
evolution, the incorporation of memory into the algorithm has received the
most interest [12, 29, 61, 100, 132, 131, 205, 214, 237, 238, 239, 240, 50, 49,
78, 82, 126, 144, 177, 189, 206, 95]. Within the application of this approach,
Branke identified two distinct implementations [28]: Explicit Memory and
Implicit Memory. Both of these are discussed next with respect to dynamic
environments.

Explicit Memory: Background

Explicit memory involves the deliberate storing of genetic material in a mem-
ory cache. The philosophy behind this memory is that if a solution was useful
in the past it may prove to be useful again at some point in the future. Var-
ious different strategies are employed in the selection, storage, and deletion
of excess individuals to and from memory.

Louis and Xu [126] apply a memory feature to the shop scheduling prob-
lem, whereby at regular intervals of generations the best individual is stored.
When the scheduling environment changes, for example, a faster machine is
added or another machine breaks down, a new population is generated. How-
ever, 5–10% of this new population is seeded with individuals found in mem-
ory. The authors reported positive results with this level of seeding though
saw a deterioration in performance due to either convergence with greater
percentages or if the scheduling problem changed significantly (for example,
if one job was deleted). Karaman et al. [100] also reinitialise their population,
upon observing a change, with individuals from a stored memory.
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With Ramsey and Grefenstette [177] the best performing individuals are
again stored. In this case Ramsey and Grefenstette store the best-performing
individuals in context at each change in the environment. They do this by
measuring the state of the environment that the individual is being evolved
and tested in. The state of the environment is measured through the use of
a monitor module that captures the observeable parameters. When a change
in the environment is recorded the population is reinitialised and 50% of
the population is seeded with individuals from memory that have evolved
in contexts similar to the current environment. Similarity is calculated by
measuring the Euclidean distance between the observable parameters of the
new environment and the previously recorded environments. Eggermont et al.
[61] adopt a similar strategy and develop a case-based memory, which aims to
keep track of interesting historical events and store individuals around these
events. They test their solution on a periodically changing fitness function and
reintroduce the stored individuals by randomly seeding the population after
a change or, alternatively, by replacing the weakest individuals with memory
individuals evolved in a similar context. Simoes and Costa [205] adapt the
traditional GA paradigm to behave more like an immune system. The Im-
mune System GA employs a memory population that attempts to remember
prior pathogens and then selects the antibody cells that are most appropriate
to battle against the pathogen in a process known as secondary response.

Mori et al. [132, 131] explore the use of a Thermodynamical Genetic Al-
gorithm where at each generation the best individual is stored using a re-
placement strategy for the memory. The aim is to maintain a certain level
of diversity, where diversity is the variance of bits in positions. This strategy
attempts to maintain a wide representation of individuals across the solution
space.

Branke [29] also follows the idea of maintaining a level of diversity in mem-
ory and adopts a dual-population paradigm. In this algorithm one population
is re-initialised upon a change in the environment and the second population
draws from a memory cache. The goal is to allow one population to explore
potentially new areas of the solution landscape while the memory initialised
population conducts search over previously discovered optima.

Bendsten and Kirk [12] create a dynamic model of memory. In their work
an explicit memory population is initialised in parallel with the original pop-
ulation. At each iteration the individual from the memory population that
is closest to the best performing individual from the solution population is
selected and modified slightly to bring it closer to the solution individual on
the solution landscape. This approach avoids the problems faced by others
of adding to and selecting from the memory cache.

Trojanowski et al. [214] use a finite-size memory for each individual that
stores successful ancestors in a FIFO queue. The better parent at each re-
combination is stored and the offspring inherits the memory of its parents.
The memory is then employed when a previously unencountered obstacle is
discovered.
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Yang [237] employs a memory-based emigrants scheme, whereby the
best solution in memory is used to seed new offspring and replace the
weakest-performing members in the solution population. In further studies
[238, 239, 240] Yang explores other forms of explicit memory. In conjunc-
tion with different forms of GAs, a population-based incremental-learning
scheme stores the individuals working vector as well as the individual and an
associative memory scheme.

Sebag et al. [198] introduce a negative memory with the concept of the
virtual loser. The virtual loser is constructed by identifying the bits in the
worst performers that are different from the best performers. Once this is
done a flee-mutation operator is applied to new offspring that attempts to
move the new individuals away from the virtual loser.

Explicit Memory: Analysis

The above approaches to the incorporation of memory into the evolutionary
process are founded on the principle that it may be useful to remember pre-
viously successful solutions. Various different storage, selection and replace-
ment schemes are explored and positive results are generally reported over a
standard GA. However, problems examined also incorporate some element of
periodicity, which is certain to favour any scheme that remembers previously
successful solutions. The addition of memory does allow the algorithm to effi-
ciently retrieve a previously successful solution. Through recombination with
memorised individuals, or the seeding of new individuals with the genetic
material of memorised solutions, it does provide a mechanism for shifting the
population towards the neighbourhood of a previously discovered optimum.
However this has been pointed out by Rand and Riolo [178] to have a nega-
tive effect in some cases, as it is based on the questionable premise that in a
dynamic environment previous solutions will be useful in the future.

This addition of memory also comes at a cost in terms of computational
effort due to the extra storage size of the memory individuals, which is gen-
erally the same size as that of the solution population. Derived from this,
are the added evaluation costs of examining the memory population when a
change occurs, measuring the environment, checking this metric against the
stored contexts, and processing the steps involved in executing the chosen
memory replacement strategy.

The intuitive use of a memory of previously discovered optimal solutions
is appealing when considered for certain problems. Where a problem solution
landscape is tightly bounded or undergoes a level of periodicity, the incorpo-
ration of an explicit memory, as shown by the above researchers, provides an
efficient path to the rediscovery of optimal solutions or solution neighbour-
hoods.

The concept of an external explicit memory, however, does not readily exist
in the natural evolutionary process. Though the study by Simoes and Costa
[205] does present a parallel however, by placing the GA in the context of an



34 3 Survey of EC in Dynamic Environments

immune system. The purpose of an immune system is to recognise non-self
cells and mark them for destruction. The human immune system is made
up of two parts; an innate and an adaptive. The innate part is encoded in
our genome and is static from birth until death. The adaptive part of the
immune system is modified each time it encounters a new pathogen, so that
it is able to recognise this pathogen again in the future [24]. However, during
this process no ontogenetic process occurs and the patterns recognised by a
parent’s adaptive immune system are not be passed onto his/her offspring.

Implicit Memory: Background

Implicit memory differs from explicit memory in that it does not utilise an
external memory cache of previous solutions or states, negating the need for
extra selection, replacement, and storage strategies. Implicit memory instead
is incorporated into the individuals of the population through degenerate ge-
netic material. A number of authors have adopted different approaches in
the creation and utilisation of implicit memory though most researchers fo-
cus on the development of multiploidy representations. Multiploidy is where
more than one allele is used to represent each individual. Whereas in stan-
dard evolutionary computation representation one allele is used to represent
the solution, this is known as haploid representation. Multiploidy includes
a multitude of alleles to express a phenotype and diploid is where just two
alleles are used. The use of a multiploidy representation requires some mech-
anism to enable the dominance of one allele over the other. The literature
expresses almost as many dominance mechanisms as researchers investigating
the mechanism.

Goldberg and Smith [78], and Smith [206] produced the earliest publica-
tions on a diploid representation for improved evolutionary results in non-
static problems. Their results demonstrated that a diploid structure with an
evolving dominance map provides superior results over a haploid represen-
tation. They show that the diploid structure is able to maintain alternating
alleles in abeyance, thus affording a quicker evolutionary process to an al-
ternative optima. Hadad and Eick [82], and Ng and Wong [144] also present
diploidy representations with varying dominance mechanisms.

Dasgupta and McGregor [49, 49] implement a multiploidy approach where
genes at higher levels are able to activate or deactivate the genes at the
immediate lower level enabling a hierarchical structure to be evolved.

Ryan [189] develops a multiploidy representation where the dominance is
performed through the summing of genes for a particular trait. If the result
exceeds a certain threshold the phenotypic trait is 1, or 0 otherwise. This
methodology was extended in Ryan and Collins [191], by introducing a lower
threshold. Where the summation was below this the phenotypic trait was
0, in between the two bands the trait was generated randomly, and above
the higher threshold it was 1, as in the previous study. This methodology
produced superior results to the prior study.
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Osmera et al. [170] found that for highly multi-modal problems the diploid
structures were able to outperform their haploid counterparts. Dominance in
this case was performed through an XOR operation between chromosomes.
Callabretta et al. [37], similar to Osmera, also employ an XOR mechanism.
In this case the first bits of the alleles are XOR-ed. If the result is 0, then the
allele with the second bit equal to 0 is expressed, with the same algorithm
being used if the result of the XOR is 1. If the second bit in both is the same,
then the alleles are co-dominant and an average between them is used.

Collingwood et al. [45] adopt a mask to determine dominance. This speci-
fices which of the chromosomes is dominant independent of which allele is
present in that chromosome. Each individual in the population possesses its
own mask that is also evolved through the application of genetic operators
during reproduction.

Kim et al. [243] use a winner take all approach whereby each chromosome
is evaluated with the phenotype being expressed, derived from the fitter chro-
mosome. In this case reproduction occurs among the dominant chromosomes
of parents to generate one offspring, and the recessive chromosomes to gen-
erate another.

In, [223], Uyar and Harmanci conduct an analysis of performance of dif-
ferent genotype-to-phenotype mapping schemes. However, having completed
this survey unsatisfied they adopt their own dominance mechanism [224] that
aims to maintain a balance between exploration and exploitation. It does this
through adaptation of the dominance mechanism as a result of feedback from
current phenotypic output. Lewis [119] also conducts a survey of multiploidy
techniques and concludes that a simple multiploidy scheme does not provide
a strong advantage over a haploid GA. When equipped with a dominance
mechanism, multiploidy algorithms do perform better though similar to a
haploid GA, which throttles mutation when a degradation in fitness is ob-
served. For diploid representations, such as that presented by Ng [144], Lewis
comments that their utility is largely limited to functions that oscillate be-
tween two optima.

Though the exploration of multiploidy and dominance mechanisms has
received the majority of attention from researchers for the incorporation of
degenerate genetic material other methods also have been examined.

Ohkura and Ueda [165, 166], present a string representation that contains
inactive regions. These inactive regions allow for the possibility of neutral
mutations to occur. Over the course of the evolutionary process active and
inactive regions will change. They will present a higher level of diversity across
the population along with the incorporation of memory in inactive regions
that can be reactivated by evolution when a change occurs.

Huang and Rocha [93, 94, 95, 181, 182] explore the use of RNA editors in
their studies. RNA editing occurs during the mapping process from genotype-
to-phenotype and applies stochastic variations to this process. This results
in genotypically equal candidates producing different phenotypes, meaning
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a many-to-one mapping from genotype-to-phenotype and vice versa. RNA
editing in nature occurs in the development process of an organism and so is
not ontogenetic, meaning the changes that occur in the mapping process are
not inherited by offspring. Huang and Rocha report greater plasticity and
robustness of solutions as a result of the RNA editing over traditional GAs.
The RNA editors can be classified as implicit memory because in [95] they
develop an agent-based model where each individual evolves and possesses
its own RNA editor.

In [148], O’Neill highlights the presence of degenerate genetic material in
Grammatical Evolution. In this case a genotype-to-phenotype mapping oc-
curs that involves a many-to-one relationship and, like the studies by Ohkura
and Ueda, the ability to conduct neutral mutations is also present. Though
GE has largely only been tested on static problems, with the exception of
[156], considering the prior studies examined here it would suggest that these
features give GE a plasticity of solution. The genotype-to-phenotype mapping
in GE is discussed in greater detail in Chapter 2.

Implicit Memory: Analysis

The concept of diploid or multiploidy in EC is inspired by similar representa-
tions in the natural world. Each human cell contains 23 pairs of chromosomes,
one from each parent. This cell structure is considered to be diploid. Different
strands of chromosomes then, have the attribute of being either dominant or
recessive and it is this relationship, for example, that dictates whether we
have brown or blue eyes.

In surveying the work to-date on exploring the potential implementations
of Implicit Memory, it is clear that a multiploidy representation has mo-
tivated the majority of researchers’ efforts with mixed results. Comparative
studies on multiploidy representations with different dominance schemes have
demonstrated that their performance is equivalent to that of haploid GAs
with higher or adaptable mutation rates. The central criticism of Lewis’
study is that the multiploidy representations he examined were essentially
only useful for problems that alternated between a couple of solutions [119],
while Branke also makes a similar observation [27].

While this problem could also be considered an advantage in applying the
“horses for courses” addage – in that there are certainly problems in the real-
world to which a diploid structure may be applied quite successfully – there
is still the problem of selecting a suitable dominance function. Of the work
surveyed, no clear solution was presented that had received any degree of
traction. This is evidenced by the diversity of dominance functions. It should
also be noted that the representation of multiple versions of the genotype for
each individual also comes at a computational cost.

Ohkura and Ueda, and Huang and Rocha provide alternative implemen-
tations of Implicit Memory, where redundant genetic material is not stored



3.3 Existing Approaches for Evolution in Dynamic Environments 37

in a diploid or multiploid structure thereby negating the need for a domi-
nance function. With Ohkura and Ueda, the degenerate genetic material is
represented by inactive regions on the genotype presenting a resilience to
destructive mutations, while also providing memory when those regions are
reactivated. Huang and Rocha develop an Implicit Memory mechanism with
the addition of stochastic RNA editors. These editors allow a single individual
to present multiple phenotypes each time the RNA editor is run, favouring
one phenotype over the other by adapting the probabilities of the rules the
RNA editors use.

While the representations expressed by researchers in the previous section
do have a strong foundation in the natural world, the development of the
various dominance functions does not mirror the natural parallel to the same
degree. This may be partly down to the complexity of dominance in the
natural world where there may in some cases be partial dominance or also co-
dominance. Such variations present challenges when attempting to implement
the relationship in algorithmic form.

Of course, what Explicit Memory and the Implicit Memory outlined here
do not cover is the fact that there is also an Implicit Memory inherent in
the population as a whole. The memory resident in the population itself
becomes more important in dynamic environments, especially where changes
are of a more gradual degree. Under such circumstances previously optimal
solutions may slip in the rankings and stand less of a chance of passing on
their genetic material once the optima have moved. However, they do provide
the population with a means to quickly reproduce older useful solutions if the
environment reaches a state similar to one previously visited.

Reflecting on the categories of change identified earlier in Table 3.2, it can
be seen that through the incorporation of memory into the GA, the authors
were seeking to address two types of change, Complex and Deterministic. In
the case of Complex changes memory of past events can prove to be useful
as they may give insights into future changes where similar conditions exist.
Where the changes are Deterministic in nature, cycles or patterns may ex-
ist and previously discovered solutions can be readily recalled. In situations
where the type of change is Markov, memory does not play as important a
role as these changes are random and remembering previous states or good
solutions will not aid in an algorithm’s search.

Table 3.3 The addition of memory is aimed at helping systems remember past
useful solutions for problems where there may be cycles or patterns

Problem Type Memory

Markov -
Complex System X

Deterministic X
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3.3.3 Diversity

GAs can be considered to be parallel problem solvers, where a population of
solutions spread out across the solution space attempt to find and converge
to a global optima. While in the initial dispersed state, a wide coverage of the
solution space is achieved with many local optima being explored. However,
as the population converges, this search narrows in focus. This problem has
been alluded to by a number of authors [32, 205, 74, 81] especially with
respect to dynamic problems. Diversity itself can be measured in a number
of ways [36]: through explicitly counting the number of distinct genotypes,
phenotypes, and fitnesses; using entropy [185]; or implicitly, by monitoring
the time-averaged-fitness of the population and associating a drop in this
average with a narrowing of diversity.

Diversity: Background

As mentioned above, a common criticism of GAs is that the population con-
verges to an optimum, leading to a drop in diversity and making the discovery
of new optima difficult when the environment changes. Increasing the level of
diversity after a change has occurred, or been noticed, is one way of addressing
this issue. However, this fails to take into account the clustering of a diverse
population and so dispersion of the population must also be considered.

The most popular solution is hypermutation, proposed by Cobb [44], where
the rate of application of the mutation operator is increased at certain times.
Cobb uses hypermutation to maintain an acceptable level of time-averaged
best performance. When this average performance drops below a threshold,
hypermutation is applied with the aim of maintaining a balance between
exploration and exploitation. The implication of this increased rate of muta-
tion is that a higher level of diversity is achieved as opposed to what could
be achieved through crossover alone. The issue being addressed by hypermu-
tation is that in a converged population, crossover between parents fails to
increase diversity leading to the need for greater mutation.

Vavak et al. [225] also examine the time-averaged best performance as
the trigger for the application of their variable local search (VLS). When this
occurs, crossover and mutation are temporarily suspended. VLS is conducted
by applying a shift bit register to the individuals selected for reproduction.
The bit register is made up of bits that are set randomly and the value
represented by this register is either added to or subtracted from the bit string
of the individual. This enables a local search around the location in the search
space represented by the solution. The register is applied to each member
of the population and then the GA resumes with its normal operators. If
performance is not improved after a number of generations and/or a period
of time, the VLS is again applied with an extended area of search, in other
words, the register is longer allowing a wider boundary. In [226], Vavak et al.
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extend their study of VLS with the introduction of an incremental learning
technique for controlling the boundary of search automatically.

As an alternative to the monitoring of time-averaged fitness, the explicit
maintenance of diversity over the course of evolution also addresses the is-
sue. Mauldin [128] presents an early example of the maintenance of diversity
for static environments through setting an adaptive threshold of Hamming
Distance between bit strings for new individuals to be introduced to the
population, with this threshold decreasing as generations progress. Mauldin
observed that this methodology produced more robust solutions when applied
to the out-of-sample data.

Grefenstette [81] maintains diversity by introducing the concept of replac-
ing a certain precentage of the population at each generation with randomly
generated individuals, a process that has become known as random immi-
grants. This process maintains a level of diversity throughout a run by poten-
tially introducing new genetic material to the population at each generation.

Cedeno and Vemuri [39] employ a Multi-Niche Crowding GA that promotes
reproduction among solutions sharing similar traits, which collectively could
be described as occupying a niche. The replacement strategy that is then
adopted replaces the worst-performing individuals in this niche. This has the
effect of essentially preventing a speedy convergence in the search space by
encouraging similar solutions to reproduce in their niche.

Ghosh et al. [77] keep track of the ages of individuals in the population. In
doing so they are enabling a selection bias based on the age of the individual
in conjunction with its score derived from the objective function. The age-
scoring function adopted in this study intuitively favours the middle aged
over the young or old. Such a scheme provides less of a chance for selection
of poor-performing young and old solutions.

Mori et al. [132, 133] aim to maintain a temperature or a level of free
energy in the evolution of a population through the use of a Thermodynamical
Genetic Algorithm (TDGA). This algorithm maintains this level with the
expression

F = E − TH (3.1)

where F is the energy level of the population, E is the average fitness of the
population, H is the diversity of the population and T is the weighting placed
on diversity. Individuals are introduced into the population after reproduction
in such a way as to maintain a high level of F .

Simoes and Costa [204] develop a new genetic operator known as a transfor-
mation whereby genetic segments from previous solutions, which have left the
population, are stored in a pool. These segments are then inserted into indi-
viduals at reproduction replacing the crossover genetic operator and avoiding
the problem of crossover in a converged population.

In [135] Morrison employs sentinels, which are individuals uniformally dis-
persed [134] in the search space. These sentinels remain statically located
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and play normal roles in selection and reproduction, while also providing the
algorithm with the ability to maintain a level of diversity that is dispersed
throughout the search space. When a radical shift in the environment causes
the optimum to move to a different area, a sentinel will already be located
in the general neighbourhood to provide genetic material that will help in
moving the general population towards this new position.

Diversity: Analysis

Reflecting on nature where almost every animal on the planet possesses its
own unique genetic makeup, diversity is seen to play a central role in the
natural environment. It is this diversity that enables populations to produce
solutions to new diseases or changes in their environment, where each prob-
lem is tackled in a massively parallel manner through a multitude of unique
genetic makeups. In contrast, studies have shown [231, 127] that inbreeding
and a reduction in diversity can have a negative effect on the fitness of or-
ganisms in nature, lending credence to approaches that place an importance
on diversity in evolutionary algorithms.

Branke [27] identifies two ways in which researchers use diversity as an
aid to EAs for dynamic environments: to increase diversity after a change
has occurred and to maintain a level of diversity throughout the run. The
maintenance of diversity can be further broken down into the active mainte-
nance of diversity and the pre-emptive maintenance of diversity. Both Cobb
and Vavak’s solutions fall under Branke’s first classification. In their studies,
a time-averaged drop in fitness is used as an assumption that the popula-
tion has converged and is struggling to explore new solutions. This approach,
however, may suffer in real-world applications. The reason is that if it has
become noticeable that the time-averaged fitness has dropped below a certain
threshold, the system is already failing or underperforming in its task. Also
implicitly associating fitness with diversity, instead of monitoring or main-
taining it directly, may mask other issues. The manner in which these two
solutions are applied, whereby the degree or rate of application is increased
with a drop in fitness, suggests that these solutions are essentially temporary
fixes or bandages on the more fundamental problem of maintaining diversity
and exploring new areas of the search space.

Maintaining a level of diversity throughout the life cycle of a system cer-
tainly addresses these problems. Simoes and Costa, and Grefenstette contin-
uously introduce new genetic material to the population by recycling extinct
genes and introducing newly generated random material. Such mechanisms
are necessary to prevent the problem described earlier, whereby crossover in
a converged population does not yield new genetic material. Ghosh et al.,
and Mori pre-emptively solve the problem through selection and replacement
strategies that attempt to prevent any individual from taking too strong a
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hold of the population and dominating the genetic pool. Morrison too pre-
emptively maintains diversity in his contribution, but more than this Morri-
son also ensures the population maintains a level of dispersion throughout the
search space. This addition prevents a population, which may be genetically
diverse, from clustering around one area of the search space and therefore
provides the algorithm with the ability to maintain a dispersed coverage of a
bounded search space. Table 3.4 summarises the classifications.

Table 3.4 Authors and the three approaches to diversity: increasing diversity,
actively maintaining diversity, and pre-emptively maintaining diversity

Increase Maintain Maintain
Active Pre-emptive

Cobb Simoes & Costa Ghosh
Vavak Grefenstette Mori

- - Morrison

This considered, an issue that largely escapes attention in the EC literature
is whether in fact the drop in diversity is a result of too much evolution
being conducted. Branke [33] attempted to measure change severity that
could potentially have led to an evolution-throttling mechanism, though the
developed metric proved to be inaccurate. Dempster and Jones [57] monitor
for convergence in their population and stop evolution when the fitness of
a number of the most fit individuals fails to improve by no more than 1%.
This issue is potentially a legacy problem from static environments, where
evolution is used as an optimiser and in a sense to overfit to a particular
problem.

Ensuring a population is adequately diverse aids the algorithm in discov-
ering new solutions in areas of the search space that before had provided
poorly fit individuals. In continuing the development of Table 3.3, diversity
is tailored to aid in the navigation of two types of changes, Markov and Com-
plex Systems. For Markov type changes maintaining a dispersed and diverse
population can ensure that some member will be in a relatively fit neigh-
bourhood when a change occurs. With complex types of change the model
of change is unknown and is also subject to change. Maintaining a diverse
population in this case enables the system to discover relatively fit neighbour-
hoods as the optima move and also to evolve innovative solutions from areas
of the solution space that had not previously been explored. Deterministic
problems in this case are not specifically catered to. Yes, as in all problems,
a level of diversity is necessary to adequately explore the solution space.
However, in this case a converged solution is sought in uncovering underly-
ing pattern or structure and the maintenance of a diverse population carries
less weight.
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Table 3.5 Diversity enables the algorithm to discover new solutions in Markov
and Complex System problems

Type Memory Diversity

Markov - X
Complex System X X

Deterministic X -

3.3.4 Multiple Populations

Again addressing the issue of population convergence, researchers have adopted
a separate strategy different to that of maintaining diversity in a population
through the creation of multiple populations by partitioning the main popu-
lation. The aim here being that separate multiple populations can exploit dis-
crete areas of the solution landscape. This is based on Wright’s (1932) Shifting
Balance Theory (SBT). In this theory, Wright recognised that within a pop-
ulation premature genetic convergence can occur. However, if the population
is split up into smaller subpopulations, genetic drift allows these discrete sub-
populations to exploit new areas on the fitness landscape. A GA first developed
along the lines of this theory is known as the Forking GA and was first devel-
oped by Tsutsui et al. [218] for static environments.

Multiple Populations: Background

Oppacher and Wineberg [167] developed the first SBT inspired GA for dy-
namic environments. Key to the implementation of such a system is the
incorporation of a mechanism for meaningfully dividing the subpopulations.
Oppacher and Wineberg achieve this through use of Hamming Distance. If a
particular colony population overlaps the core population, extra evolutionary
pressures are activated to push that colony away from the core population.
Migration is then conducted from the colonies to the core population in a
stochastic manner, based on a colony’s fitness. In this case, the core popu-
lation is responsible for the exploitation of best solutions, while the colonies
explore the landscape for new promising optima.

Branke et al. [30] approach the problem from a slightly different angle
through the Self-Organising Scouts model. Here, the larger base population
searches the landscape for new undiscovered optima and assigns a scout sub-
population to areas which show promise. At each generation, an analysis
of the population is conducted in order to determine whether there exists a
group of individuals that are clustering around a phenotypic optimum. If this
is the case, this group is separated from the base population and undergoes
evolution only within the group to fully exploit the area.

Multinational GAs developed by Ursem [222] identify groups of individuals
attempting to form nations. A nation is formed when a fitness valley exists
between the most fit individual in an old nation and the most fit of a poten-
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tially new nation, calculated by evaluating random points between the two
individuals. A variable mutation rate is also adopted within nations where
individuals on the periphery undergo a higher rate of mutation compared to
the most fit individuals within the nation. While this method did provide
evidence of being able to track multiple optima, it suffered from a lack of
diversity on a global level.

Another method of splitting up the population is explored by Ronnewinkel
and Martinez [184] based on a fitness envelope defined by Petrowski and
Genet [171] where fitness envelopes are formed around centroids. This method
has benefits over the previous paradigms as it does not require extra fitness
evaluations to determine valleys and also does not require parameters for
maximal distance around a centroid to encompass its colony.

Multiple Populations: Analysis

Through splitting up the population into subpopulations charged with ex-
ploring different areas of the fitness landscape, a GA can exploit multiple
optima simultaneously. The number of potential optima to be explored, how-
ever, is limited by the minimum subpopulation size and the global population
size. As demonstrated by Ursem, diversity can still become an issue with the
population potentially converging to a range represented by converged sub-
populations.

The function of multiple populations is to strike a balance between explo-
ration and exploitation. In this regard its intention is generally applicable
to search and as such is not catering to specific types of change in dynamic
environments. Indeed, its benefits also extend to static environments.

Table 3.6 Using multiple populations aids search in general as it tries to strike a
balance between exploration and exploitation

Type Memory Diversity Multiple
Populations

Markov - X X
Complex System X X X

Deterministic X - X

3.3.5 Problem Decomposition

The act of problem decomposition is the breaking up of a problem into its
more fundamental constituents. This relates to the building block hypothesis
[89, 79], which states that GAs work well when short, low-order, highly-fit
schemata or building blocks, recombine to form even more fit higher-order
schemas. While analysis of this theory has largely been conducted for static
environments [227, 69, 208], its importance is also carried through to dynamic
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environments where the formation of robust generalised solutions goes hand
in hand with problem decomposition.

Problem Decomposition: Background

Abass et al. [1] approach the problem of evolution in dynamic environments
by assuming that the most efficient way of tracking an optimum in a changed
environment is to extract structural knowledge about the problem from previ-
ously successful solutions. Using the information theoretic measure, the min-
imum description length (MDL) [180], a probabilistic decomposition model
is established for the structure of the problem and manipulated as the en-
vironment changes. This model is then used to identify building blocks and
to conduct crossover along the partitions of these building blocks. In their
work Abass et al. maintain the decomposition model across changes in the
environment, but restart their population of solutions at each change.

In Ronnewinkel et al. [183] a theoretical examination of a GA is under-
taken, with mutation as the only genetic operator. Where regular changes
occur in the environment, defined as changes that have a fixed duration and
obey some deterministic rule that is the same for all change cycles, Ron-
newinkel et al. observe the correspondence of their model to Eigen’s quasi-
species [62]. A quasi-species is a generalised self replicating entity that can
be represented by a small number of building blocks. New genetic material
is arrived at through mutation, which occurs during the copying process.
The identification of the quasi-species model in a GA provides evidence of
problem decomposition by identifying atomic problem building blocks that
allow the algorithm to more efficiently adapt to changes within the problem’s
environment.

Problem Decomposition: Analysis

While the majority of research conducted on the building-block hypothe-
sis and problem decomposition has focused on static environments, its use
and understanding is of equal or greater importance for the construction of
robust solutions for dynamic environments. Eigen’s evidence of problem de-
composition in the form of the quasi-species in a natural setting reinforces
the importance.

The identification of a quasi-species and building blocks for problem de-
composition also ties into one of the approaches discussed earlier: memory, or
implicit memory more exactly. As a population evolves and begins to learn
the structure of a problem, this information gets incorporated into the genetic
structure of the individuals. Therefore, it operates as a type of memory and
provides the population with a level of competency in its problem domain.
This implicit memory, or population competency, then intuitively leads to
the generation of solutions that will be more robust to changes.
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For problem decomposition, the intention is to evolve a robust, competent
population of solutions. This necessitates that the problem domain offer some
information that may be analysed to provide an insight into how it is chang-
ing. In Table 3.7 problem decomposition is seen to aid with two problems.
In Complex and Deterministic changes information may be extracted from
the domain, providing insights to the nature of the changes or the structure
of the solution. On the other hand, a system’s response to a Markov type of
change is essentially reactionary, as prior information or state does not aid
in predicting the change.

Table 3.7 Problem decomposition requires the presence of information and de-
pendencies in the domain

Type Memory Diversity Multiple Problem
Populations Decomposition

Markov - X X -
Complex System X X X X

Deterministic X - X X

3.3.6 Evolvability

Where problem domains are dynamic, the ability of a population to evolve
to a new area in the solution space becomes key. Navigating from a local
optimum to a global optimum or following a moving optimum is more effi-
cient when the representation or paradigm used makes this process easier.
Providing a high level of evolvability may allow the migration to a new, bet-
ter optimum without the population or individuals first experiencing a drop
in fitness as they traverse the fitness landscape. In natural evolution, evolv-
ability is described as the capacity for an adaptive response to a dynamic
environment [83].

Evolvability: Background

Altenberg [3] approaches the issue of evolvability from a theoretical stand-
point in a static environment and examines the constructional fitness of
blocks of code. The constructional fitness is the probability that a block
of code will increase an individuals fitness if it is added. A genetic operator
then, based on this premise, will become focused on the dimensions of vari-
ability with a greater potential for increasing fitness. Altenberg recommends
Upward-mobility selection (a type of steady state selection) and Soft Brood
selection (a tournament selection is applied to the offspring before they are
added to the population) as means of improving proliferation of construction-
ally fit blocks through the population. For recombination he advises the use of
a type of genetic engineering where blocks of code are selected from a library
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which has a rated catalog of blocks based on their historical performance in
increasing an individual’s fitness after insertion.

Risinger et al. [179] note that in dynamic environments more evolvable
representations are better able to survive in the long-term. With this in mind,
they set out to measure the evolvability of three different representations on a
dynamic fitness function: a direct encoding, a modified direct encoding with
parameters affecting how mutations should occur, and Genetic Regulatory
Network (GRN) that uses a genotype-to-phenotype representation. The GRN
presented highest level of evolvability due to its ability to conduct neutral
mutations which enabled it to maintain a more diverse population and more
easily switch to a new solution.

Shipman et al. [201] seek to harness the benefits of evolvability through
the use of a many-to-one genotype-to-phenotype mapping, which is applied
to the real-world dynamic problem of planning for the growth of a telecom-
munications network. They observe that such a representation allows for the
potential of neutral drift that can migrate a population out of a local opti-
mum. The GRN representation they adopt allows this, as the evolutionary
search can continue in the genotypic space through neutral mutations while
the underlying fit phenotype is maintained.

In Ebner et al. [60] the work of Shipman et al. is extended through drawing
a link between phenotypic performance of an indirect encoding and the exis-
tence of neutral networks in the genotypic space. These neutral networks are
identified by Engelhart and Newman [140] in the natural world where neu-
tral mutations allow the maintenance of genotypic diversity with genes spread
out along a “neutral” network while still mapping to a valid fit phenotype.
This provides the ability to easily evolve to a new, fitter phenotype when cir-
cumstances change as the search space widely covered at the genotypic level.
Ebner et al. examine the reachability of phenotypes, the innovation rate, con-
nectivity between phenotypes and the extent of neutral networks where a di-
rect encoding representation is also used as comparison. Across all metrics the
indirect encoding provided far superior results due to it possessing the ability
to easily reach other phenotypes with small shifts in the genotypic space.

Evolvability: Analysis

Providing an evolutionary algorithm with a strong level of evolvability gives
it the potential to incrementally improve its population fitness without first
experiencing a decrease as it escapes a local optimum. Where the environment
is dynamic a high level of evolvability allows the population to more easily
track a moving optimum. Indeed, where the environment is dynamic, a high
level of evolvability is rewarded in the evolutionary process, as it has a greater
chance of survival.

Altenberg focused on a direct encoding in a static environment and as
such the selection and recombination recommendations made suggest a high
rate of convergence. Under such schemes it may be difficult to shake out
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of a neighbourhood where a target moves. However, in the representations
examined above, those with an indirect mapping are implicitly coupled with
another desirable attribute: a potentially higher level of diversity in the geno-
typic space. Because of the many-to-one mapping, individuals may spread out
along a neutral network in the genotypic space providing the high levels of
connectivity described by Ebner in the phenotypic space. Combined with
this, such a representation also facilitates neutral mutations.

In adopting a many-to-one genotype-to-phenotype mapping a greater level
of evolvability can be achieved which parallels features observed in nature.
For dynamic environments the ability to easily reach another solution is im-
perative. Whether the type of change is Complex, Markov or Deterministic,
providing good evolvability essentially lubricates the evolutionary process.

Table 3.8 Evolvability is key across all dynamic problems where the ability to
adapt and improve fitness in a changing environment is necessary for survival

Type Memory Diversity Multiple Problem Evolvability
Type Populations Decomposition

Markov - X X - X
Complex System X X X X X

Deterministic X - X X X

3.4 Evaluation of Performance

3.4.1 Evaluation of Performance: Problem
Description

In static-environment problems, comparing the performance of different al-
gorithms is not typically difficult. Comparison of final fitnesses and the rate
at which they are achieved are readily available and serve both quantitative
and qualitative purposes. Where the environment is time variant, the final
fitness only represents one snapshot into the life cycle of the dynamic process;
it does not capture the performance of the system over time.

For static environments Feng et al. [66] formalise a number of metrics
examining:

• Optimality
• Accuracy
• Sensitivity
• Convergence and
• Optimiser overhead.

Of these, Optimality and Accuracy may be used as measurements of a dy-
namic algorithm’s quality through taking snapshots at regular intervals. How-
ever, these measurements, as defined by Feng et al., assume that the global
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optimum is known and that the solution space is bounded. These two con-
straints may render the metrics unusable when applied to real-world dynamic
problems.

3.4.2 Evaluation of Performance: Metrics for
Dynamic Environments

De Jong [51] identifies two types of performance set in static environments:
on-line performance and off-line performance. On-line performance is the
performance or average fitness of the best solution during training on the
in-sample data. Off-line performance is the fitness of the best solution on the
out-of-sample data. Even though intended for static in-sample/out-of-sample
tests, these types of performance bear relevance in dynamic environments
where, during on-line training, the goal is to track the moving optima as
closely as possible. Then when the system is live on new data, tracking the
off-line performance becomes necessary.

Mori [132] derives a metric that produces the average ratio of best-evolved
fitness to the global optima over time. Its equation is:

M =

∑Tmax

t=1
fbest(t)
fopt(t)

Tmax
(3.2)

where Tmax is the length of the search process or the number of time steps
in the search, fbest(t) is the best solution at time step t, and fopt(t) is the
global optimum at time step t.

Trojanowski and Michalewicz [215] develop two metrics specifically for
dynamic environments that measure accuracy and adaptability. The accuracy
metric measures the difference between the current best solution before a
change in the environment and the optimum value averaged over the entire
run. It is given by the expression:

Accuracy =
1
K

K∑

i=1

(erri, τ − 1) (3.3)

While the adaptability metric measures the difference between the best in-
dividual at each generation and the optimum value averaged over the entire
run, it is expressed as:

Adaptability =
1
K

K∑

i=1

[
1
τ

τ−1∑

j=0

(erri,j )] (3.4)

where erri,j is the difference between the value of the current best individual
of the jth generation after the last change and the optimum value after the
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ith change. τ is the number of generations between two changes and K is the
number of changes of the fitness landscape during the run.

Besides these metrics, other measurements of performance have been de-
veloped by charting differences between best performing individuals over time
relative to the global optimum at the same time.

3.4.3 Evaluation of Performance: Analysis

A common thread through these metrics is the incorporation of the global op-
timum into the calculations. Unfortunately, however, in real-world dynamic
problems it is often the case that a non-deterministic problem is being anal-
ysed. Under such circumstances, the comparability of the metrics across dif-
ferent problems is not possible. Indeed, the utility of comparing accuracy and
adaptability across different problems is indeed questionable in the first place.
For example, results achieved in comparing a symbolic regression system on
an unbounded random walk, and a simple linear function will produce vastly
different performances.

In examining the performance of algorithms on real-world dynamic prob-
lems, often the domain in question will possesses a wealth of relevant metrics.
Indeed, such metrics produce a more relevant analysis of performance as the
results can be compared against acceptable norms in the domain or in the per-
formance of human competitors. In the domain analysed in this book, which
is finance, a wide variety of metrics are used to analyse both the performance
and behaviour of the subject system.

3.5 Benchmark Problems

Benchmark problems are used to provide a common baseline in understanding
the behaviour of new algorithms or extensions to existing algorithms. The
problems are generally straightforward to reproduce and allow researchers to
gain a relative perspective of their work compared to others. According to
Branke [29], benchmarks should be:

• Easy to describe
• Easy to analyse
• Tunable in their parameters and
• Strike a balance between complexity and simplicity.

With the aim of satisfying these criteria, Branke introduced the Moving Peaks
benchmark. This benchmark is similar to Morrison and De Jong’s [134]. The
Moving Peaks benchmark is a multivariate problem where multiple peaks of
varying height and width shift and change their dimensions after a number
of generations. The goal here is to locate the highest peak.

Yang [235, 236, 237] produces a dynamic benchmark suite that varies in dif-
ficulty using a decomposable trap function. This problem is also multi-variate,
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as the function decomposes to constituent building blocks and the difficulty
of the problem can be changed on line.

Huang and Rocha [95] examine their system using an oscillating Royal
Road benchmark along with trials on an Optimal Control Testbed, which
crosses into the domain of engineering sciences.

Rand and Riolo [178] conduct benchmarking tests using Shaky Ladder
Hyperplane-Defined functions that, like Yang’s benchmark, are designed with
building blocks in mind and are based on schemata.

de Franca et al. [70] develop a suite of dynamic problems based on the
work of Angeline [6], where optima are displaced every n generations.

Many other researchers examine their algorithms on time-varying knap-
sack, oscillating, and scheduling problems.

3.5.1 Benchmark Problems: Analysis

Despite the best efforts and intentions of a number of authors, the number
of benchmark problems in use, like dominance functions in Section 3.3.2,
remains as varied as the number of researchers involved. This then has the
negative consequence of placing the reader in the situation where benchmarks
are being compared ahead of the actual algorithms.

Hidden by this problem is the question of what the researchers are actually
aiming to achieve. If the long-term view is the application of algorithms to
real-world problems, there exists a very real danger that algorithms are being
optimised to solve benchmarks and not the relevant problem at hand. Added
to this, a wide range of real-world problems from a multitude of domains
exist and it is naive to assume that a particular benchmark can capture the
various intricacies involved in each.

Benchmark problems certainly have their use as logical unit tests for ex-
tensions to algorithms in order to gain fundamental understanding of their
behaviour. With this in mind, different benchmarks should simulate the var-
ious categories of change outlined in Section 3.2.

3.6 Chapter Review

The core aspects of EC in dynamic environments have been examined. The
chapter began with an examination of dynamic environments and how they
differ from static problems. This was followed by an attempt to classify and
unify independent categorisations of the types of changes that occur while
also identifying a number of properties of change.

Following from this an in-depth analysis was made of the various ap-
proaches adopted by researchers in advancing Evolutionary Algorithms to
produce better performance in dynamic environments. The first approach
analysed was the addition of explicit memory to algorithms. This generally
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involves the inclusion of a cache or extra population to serve as a memory
for previously effective solutions. The philosophy being that these solutions
may prove to be useful again if the environment returns to a similar state, or
their genetic material can provide a source to help direct the search neigh-
bourhood. While results presented by authors do demonstrate improvements
in benchmarks, the approach comes at a computational cost and has the un-
dertones of being a brute-force algorithm. Indeed it begs the question, why
not store all good solutions? It also rests on the assumption that previously
learned optima may be useful, or returned to, in the future.

Implicit memory differs from explicit in that information is stored in de-
generate or redundant genetic material. The favoured implementation in the
literature is through the incorporation of diploid or multiploid genetic struc-
tures for the individuals. This enables the individual to store previously good
information and swap quickly when a change occurs. This paradigm was seen
to be limited in its success. It is applicable predominantly to problems that
oscillate between a small number of states while still incurring a computa-
tional cost, and does not demonstrate any clear cohesive approach to the
subject of dominance functions. It is noteworthy that both the explicit and
implicit multiploid forms of memory come at a computational cost when
one of the aims of EC in dynamic environments is to reduce computation
cost by adapting a population, rather than restarting it from scratch, with
each change. However, still under the umbrella of implicit memory, flexi-
ble, computationally-efficient methods are demonstrated through the use of
a many-to-one genotype-to-phenotype mapping process, along with the use
of degenerate genetic material in a linear-string representation. These meth-
ods were found to be more adaptable to multiple states over a standard EA,
while the efficient representation meant that memory was maintained at little
computational cost. Such a representation with a many-to-one mapping also
addresses Eggermont’s criticism [61] that the population, which is supposed
to contain the history of evolution, does not keep enough information to allow
the algorithm to react adequately to changes.

In examining the role of diversity, two paradigms were also observed.
Examined first was the increasing of diversity triggered by a drop in per-
formance. This approach while serving the purpose of increasing diversity,
suffers in application, where the lag inherent in the triggering mechanism
can mean a period of sub-par performance before recovery. The second ap-
proach, simply maintaining the level of diversity, is achieved in the literature
through the use of a number of different strategies for both actively main-
taining the level of diversity and pre-emptively maintaining it. None of these
strategies, however, look on the issue of convergence within the population
as a representation problem or one of overfitting. By adopting a representa-
tion with a many-to-one genotype-to-phenotype mapping, the search space is
separated from the solution space, allowing a much greater level of freedom
in the genotype space.
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By partitioning their populations, researchers use multiple populations to
probe separate areas of the solution space simultaneously. In doing so, a
balance between exploitation and exploration is sought, though limitations
are encountered in large search spaces where a population can only be divided
up a certain number of times. Added to this, a loss of diversity is observed
without maintaining migration between the populations.

Problem decomposition and the building block-hypothesis were examined
next. To a large extent this theory addresses the good intentions that inspired
the incorporation of memory into GAs for dynamic environments. By seeking
to identify the structural or theoretical nature of the problem, an algorithm
is able to establish an understanding or identify a structure that can aid it in
tracking a moving optimum, or indeed in quickly generating solutions when
the optimum returns to previously examined neighbourhoods. In effect, a
level of competency is developed within the population.

Finally, improving the evolvability of individuals was examined. Two ap-
proaches were analysed. The first focused on the genetic operators by explic-
itly identifying constructionally fit blocks of code and biasing reproduction to
favour blocks that demonstrated a good statistical fitness in this area. This
approach, however, was rooted in static environments and sought to encour-
age a quick convergence. Other studies focused on the issue of evolvability
from a representational problem where the genotype and phenotype spaces
are separated allowing many-to-one mappings and the evolution of neutral
networks. Neutral networks were seen to improve the accessability of pheno-
types where small changes in the genome could enable the discovery of newly
fit phenotypes.

Moving on from approaches to aid algorithms, two related sections on per-
formance measurement and benchmark problems were covered. These sec-
tions are related because the same criticism can be applied to both. Namely,
if the goal of research into EC in dynamic environments is to bring the art
closer to applicability to real-world problems, then the pursuit of good results
for benchmarks and general performance measures is potentially a distrac-
tion. A danger exists that the race to deliver improvements to algorithms is
being driven by one-up-manship on benchmarks and metrics, at the expense
of understanding the nuances of real-world problems. A correlation between
improvement on a benchmark problem and improvement on the real-world
problem must be established if results on a benchmark are to carry any
weight. This still considered, benchmark problems by their nature do not
capture all the dynamics of complex real-world problems and should be con-
sidered more as unit tests or controls. In reviewing the categorisations in
Table 3.2 the benchmark problems developed generally attempt to emulate
two types of change as seen in Table 3.9. By extension, the metrics developed
to evaluate the algorithms also focus on these two types. In attempting to
follow through on the goals of research for EC in dynamic environments, it
may instead prove more useful to research and code to the problems rather
than benchmarks.
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Table 3.9 The types of change faced in benchmarks, real-world problems, and
nature

Type Benchmarks Real-World Nature

Type Real-World Problems

Markov X X X
Complex System - X X

Deterministic X X X

This then leads to a final issue: of all the literature covered in this chapter,
not one study was conducted on the application of GP to dynamic environ-
ments. This is potentially due to a trend of working with benchmark problems
for dynamic environments that focus on fixed-length individuals in bounded
search spaces. The purpose of these benchmarks is to allow the results of
different algorithms to be broadly comparable. However, the majority of the
benchmarks are relatively simple and may potentially be holding back pro-
gression into the richer representation of GP.

3.7 Conclusion

This chapter has outlined the current state of the art in the area of EC
applied to dynamic environments. Emanating from this process, first of all, is
a clear categorisation of dynamic problems that exist, along with the types of
changes that occur. This is achieved through the unification and development
of different authors’ works, which aided in the literature survey by presenting
a clear perspective on what issues the various authors were seeking to address
with their contributions.

Of these contributions, the incorporation of explicit memory comes at an
efficiency cost while at the same time only providing a better performance for
one type of change. The use of multiploid implicit memory also falls under
the same criticism, but newer representations with genotype-to-phenotype
mappings present promise for the efficient storage of previously useful ge-
netic material. The development of building blocks within individuals and a
competent population also serve as means to retrieve previously useful infor-
mation without introducing computational costs.

The maintenance of a high level of dispersion and diversity is of great
importance in developing evolutionary algorithms for dynamic environments.
The implementation of mechanisms to allow this runs counter to the legacy
development of the field, which has matured focusing on static problems
where a speedy convergence is desired. Nevertheless a number of approaches
have been described here with further opportunity presented in this study
through the utilisation of GE’s decoupling of search and solution spaces.
Such a decoupling also provides scope for exploring evolvability along with
taking into account the added flexibility through the incorporation of a BNF
grammar.
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There has been too much focus on the development of algorithms to nar-
row benchmarks, which has led the EC community to focus their efforts on
bounded Markovian and Deterministic-type problems.

The most striking outcome of this survey of the literature on EC in dy-
namic environments is the lack of research in the application of GP to dy-
namic problems. In this book we endeavour to close that gap. This gap is
addressed in a number of the experimental chapters beginning with more
simple types of change and progressing to complex types of change in Chap-
ter 8. In the next chapter we discuss Grammatical Evolution and its potential
for application in these non-stationary domains.
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